1 /*- 2 * Copyright (c) 2006 Sam Leffler, Errno Consulting 3 * Copyright (c) 2008-2009 Weongyo Jeong <weongyo@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 14 * redistribution must be conditioned upon including a substantially 15 * similar Disclaimer requirement for further binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 28 * THE POSSIBILITY OF SUCH DAMAGES. 29 */ 30 31 /* 32 * This driver is distantly derived from a driver of the same name 33 * by Damien Bergamini. The original copyright is included below: 34 * 35 * Copyright (c) 2006 36 * Damien Bergamini <damien.bergamini@free.fr> 37 * 38 * Permission to use, copy, modify, and distribute this software for any 39 * purpose with or without fee is hereby granted, provided that the above 40 * copyright notice and this permission notice appear in all copies. 41 * 42 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 43 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 44 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 45 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 46 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 47 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 48 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 /*- 55 * Driver for Atheros AR5523 USB parts. 56 * 57 * The driver requires firmware to be loaded into the device. This 58 * is done on device discovery from a user application (uathload) 59 * that is launched by devd when a device with suitable product ID 60 * is recognized. Once firmware has been loaded the device will 61 * reset the USB port and re-attach with the original product ID+1 62 * and this driver will be attached. The firmware is licensed for 63 * general use (royalty free) and may be incorporated in products. 64 * Note that the firmware normally packaged with the NDIS drivers 65 * for these devices does not work in this way and so does not work 66 * with this driver. 67 */ 68 #include <sys/param.h> 69 #include <sys/sockio.h> 70 #include <sys/sysctl.h> 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/mbuf.h> 74 #include <sys/kernel.h> 75 #include <sys/socket.h> 76 #include <sys/systm.h> 77 #include <sys/malloc.h> 78 #include <sys/module.h> 79 #include <sys/bus.h> 80 #include <sys/endian.h> 81 #include <sys/kdb.h> 82 83 #include <machine/bus.h> 84 #include <machine/resource.h> 85 #include <sys/rman.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 #include <net/if_types.h> 95 96 #ifdef INET 97 #include <netinet/in.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/in_var.h> 100 #include <netinet/if_ether.h> 101 #include <netinet/ip.h> 102 #endif 103 104 #include <net80211/ieee80211_var.h> 105 #include <net80211/ieee80211_input.h> 106 #include <net80211/ieee80211_regdomain.h> 107 #include <net80211/ieee80211_radiotap.h> 108 109 #include <dev/usb/usb.h> 110 #include <dev/usb/usbdi.h> 111 #include "usbdevs.h" 112 113 #include <dev/usb/wlan/if_uathreg.h> 114 #include <dev/usb/wlan/if_uathvar.h> 115 116 static SYSCTL_NODE(_hw_usb, OID_AUTO, uath, CTLFLAG_RW, 0, "USB Atheros"); 117 118 static int uath_countrycode = CTRY_DEFAULT; /* country code */ 119 SYSCTL_INT(_hw_usb_uath, OID_AUTO, countrycode, CTLFLAG_RWTUN, &uath_countrycode, 120 0, "country code"); 121 static int uath_regdomain = 0; /* regulatory domain */ 122 SYSCTL_INT(_hw_usb_uath, OID_AUTO, regdomain, CTLFLAG_RD, &uath_regdomain, 123 0, "regulatory domain"); 124 125 #ifdef UATH_DEBUG 126 int uath_debug = 0; 127 SYSCTL_INT(_hw_usb_uath, OID_AUTO, debug, CTLFLAG_RWTUN, &uath_debug, 0, 128 "uath debug level"); 129 enum { 130 UATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 131 UATH_DEBUG_XMIT_DUMP = 0x00000002, /* xmit dump */ 132 UATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 133 UATH_DEBUG_TX_PROC = 0x00000008, /* tx ISR proc */ 134 UATH_DEBUG_RX_PROC = 0x00000010, /* rx ISR proc */ 135 UATH_DEBUG_RECV_ALL = 0x00000020, /* trace all frames (beacons) */ 136 UATH_DEBUG_INIT = 0x00000040, /* initialization of dev */ 137 UATH_DEBUG_DEVCAP = 0x00000080, /* dev caps */ 138 UATH_DEBUG_CMDS = 0x00000100, /* commands */ 139 UATH_DEBUG_CMDS_DUMP = 0x00000200, /* command buffer dump */ 140 UATH_DEBUG_RESET = 0x00000400, /* reset processing */ 141 UATH_DEBUG_STATE = 0x00000800, /* 802.11 state transitions */ 142 UATH_DEBUG_MULTICAST = 0x00001000, /* multicast */ 143 UATH_DEBUG_WME = 0x00002000, /* WME */ 144 UATH_DEBUG_CHANNEL = 0x00004000, /* channel */ 145 UATH_DEBUG_RATES = 0x00008000, /* rates */ 146 UATH_DEBUG_CRYPTO = 0x00010000, /* crypto */ 147 UATH_DEBUG_LED = 0x00020000, /* LED */ 148 UATH_DEBUG_ANY = 0xffffffff 149 }; 150 #define DPRINTF(sc, m, fmt, ...) do { \ 151 if (sc->sc_debug & (m)) \ 152 printf(fmt, __VA_ARGS__); \ 153 } while (0) 154 #else 155 #define DPRINTF(sc, m, fmt, ...) do { \ 156 (void) sc; \ 157 } while (0) 158 #endif 159 160 /* recognized device vendors/products */ 161 static const STRUCT_USB_HOST_ID uath_devs[] = { 162 #define UATH_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 163 UATH_DEV(ACCTON, SMCWUSBTG2), 164 UATH_DEV(ATHEROS, AR5523), 165 UATH_DEV(ATHEROS2, AR5523_1), 166 UATH_DEV(ATHEROS2, AR5523_2), 167 UATH_DEV(ATHEROS2, AR5523_3), 168 UATH_DEV(CONCEPTRONIC, AR5523_1), 169 UATH_DEV(CONCEPTRONIC, AR5523_2), 170 UATH_DEV(DLINK, DWLAG122), 171 UATH_DEV(DLINK, DWLAG132), 172 UATH_DEV(DLINK, DWLG132), 173 UATH_DEV(DLINK2, DWA120), 174 UATH_DEV(GIGASET, AR5523), 175 UATH_DEV(GIGASET, SMCWUSBTG), 176 UATH_DEV(GLOBALSUN, AR5523_1), 177 UATH_DEV(GLOBALSUN, AR5523_2), 178 UATH_DEV(NETGEAR, WG111U), 179 UATH_DEV(NETGEAR3, WG111T), 180 UATH_DEV(NETGEAR3, WPN111), 181 UATH_DEV(NETGEAR3, WPN111_2), 182 UATH_DEV(UMEDIA, TEW444UBEU), 183 UATH_DEV(UMEDIA, AR5523_2), 184 UATH_DEV(WISTRONNEWEB, AR5523_1), 185 UATH_DEV(WISTRONNEWEB, AR5523_2), 186 UATH_DEV(ZCOM, AR5523) 187 #undef UATH_DEV 188 }; 189 190 static usb_callback_t uath_intr_rx_callback; 191 static usb_callback_t uath_intr_tx_callback; 192 static usb_callback_t uath_bulk_rx_callback; 193 static usb_callback_t uath_bulk_tx_callback; 194 195 static const struct usb_config uath_usbconfig[UATH_N_XFERS] = { 196 [UATH_INTR_RX] = { 197 .type = UE_BULK, 198 .endpoint = 0x1, 199 .direction = UE_DIR_IN, 200 .bufsize = UATH_MAX_CMDSZ, 201 .flags = { 202 .pipe_bof = 1, 203 .short_xfer_ok = 1 204 }, 205 .callback = uath_intr_rx_callback 206 }, 207 [UATH_INTR_TX] = { 208 .type = UE_BULK, 209 .endpoint = 0x1, 210 .direction = UE_DIR_OUT, 211 .bufsize = UATH_MAX_CMDSZ * UATH_CMD_LIST_COUNT, 212 .flags = { 213 .force_short_xfer = 1, 214 .pipe_bof = 1, 215 }, 216 .callback = uath_intr_tx_callback, 217 .timeout = UATH_CMD_TIMEOUT 218 }, 219 [UATH_BULK_RX] = { 220 .type = UE_BULK, 221 .endpoint = 0x2, 222 .direction = UE_DIR_IN, 223 .bufsize = MCLBYTES, 224 .flags = { 225 .ext_buffer = 1, 226 .pipe_bof = 1, 227 .short_xfer_ok = 1 228 }, 229 .callback = uath_bulk_rx_callback 230 }, 231 [UATH_BULK_TX] = { 232 .type = UE_BULK, 233 .endpoint = 0x2, 234 .direction = UE_DIR_OUT, 235 .bufsize = UATH_MAX_TXBUFSZ * UATH_TX_DATA_LIST_COUNT, 236 .flags = { 237 .force_short_xfer = 1, 238 .pipe_bof = 1 239 }, 240 .callback = uath_bulk_tx_callback, 241 .timeout = UATH_DATA_TIMEOUT 242 } 243 }; 244 245 static struct ieee80211vap *uath_vap_create(struct ieee80211com *, 246 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 247 const uint8_t [IEEE80211_ADDR_LEN], 248 const uint8_t [IEEE80211_ADDR_LEN]); 249 static void uath_vap_delete(struct ieee80211vap *); 250 static int uath_alloc_cmd_list(struct uath_softc *, struct uath_cmd []); 251 static void uath_free_cmd_list(struct uath_softc *, struct uath_cmd []); 252 static int uath_host_available(struct uath_softc *); 253 static int uath_get_capability(struct uath_softc *, uint32_t, uint32_t *); 254 static int uath_get_devcap(struct uath_softc *); 255 static struct uath_cmd * 256 uath_get_cmdbuf(struct uath_softc *); 257 static int uath_cmd_read(struct uath_softc *, uint32_t, const void *, 258 int, void *, int, int); 259 static int uath_cmd_write(struct uath_softc *, uint32_t, const void *, 260 int, int); 261 static void uath_stat(void *); 262 #ifdef UATH_DEBUG 263 static void uath_dump_cmd(const uint8_t *, int, char); 264 static const char * 265 uath_codename(int); 266 #endif 267 static int uath_get_devstatus(struct uath_softc *, 268 uint8_t macaddr[IEEE80211_ADDR_LEN]); 269 static int uath_get_status(struct uath_softc *, uint32_t, void *, int); 270 static int uath_alloc_rx_data_list(struct uath_softc *); 271 static int uath_alloc_tx_data_list(struct uath_softc *); 272 static void uath_free_rx_data_list(struct uath_softc *); 273 static void uath_free_tx_data_list(struct uath_softc *); 274 static int uath_init(struct uath_softc *); 275 static void uath_stop(struct uath_softc *); 276 static void uath_parent(struct ieee80211com *); 277 static int uath_transmit(struct ieee80211com *, struct mbuf *); 278 static void uath_start(struct uath_softc *); 279 static int uath_raw_xmit(struct ieee80211_node *, struct mbuf *, 280 const struct ieee80211_bpf_params *); 281 static void uath_scan_start(struct ieee80211com *); 282 static void uath_scan_end(struct ieee80211com *); 283 static void uath_set_channel(struct ieee80211com *); 284 static void uath_update_mcast(struct ieee80211com *); 285 static void uath_update_promisc(struct ieee80211com *); 286 static int uath_config(struct uath_softc *, uint32_t, uint32_t); 287 static int uath_config_multi(struct uath_softc *, uint32_t, const void *, 288 int); 289 static int uath_switch_channel(struct uath_softc *, 290 struct ieee80211_channel *); 291 static int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t); 292 static void uath_watchdog(void *); 293 static void uath_abort_xfers(struct uath_softc *); 294 static int uath_dataflush(struct uath_softc *); 295 static int uath_cmdflush(struct uath_softc *); 296 static int uath_flush(struct uath_softc *); 297 static int uath_set_ledstate(struct uath_softc *, int); 298 static int uath_set_chan(struct uath_softc *, struct ieee80211_channel *); 299 static int uath_reset_tx_queues(struct uath_softc *); 300 static int uath_wme_init(struct uath_softc *); 301 static struct uath_data * 302 uath_getbuf(struct uath_softc *); 303 static int uath_newstate(struct ieee80211vap *, enum ieee80211_state, 304 int); 305 static int uath_set_key(struct uath_softc *, 306 const struct ieee80211_key *, int); 307 static int uath_set_keys(struct uath_softc *, struct ieee80211vap *); 308 static void uath_sysctl_node(struct uath_softc *); 309 310 static int 311 uath_match(device_t dev) 312 { 313 struct usb_attach_arg *uaa = device_get_ivars(dev); 314 315 if (uaa->usb_mode != USB_MODE_HOST) 316 return (ENXIO); 317 if (uaa->info.bConfigIndex != UATH_CONFIG_INDEX) 318 return (ENXIO); 319 if (uaa->info.bIfaceIndex != UATH_IFACE_INDEX) 320 return (ENXIO); 321 322 return (usbd_lookup_id_by_uaa(uath_devs, sizeof(uath_devs), uaa)); 323 } 324 325 static int 326 uath_attach(device_t dev) 327 { 328 struct uath_softc *sc = device_get_softc(dev); 329 struct usb_attach_arg *uaa = device_get_ivars(dev); 330 struct ieee80211com *ic = &sc->sc_ic; 331 uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; 332 uint8_t iface_index = UATH_IFACE_INDEX; /* XXX */ 333 usb_error_t error; 334 335 sc->sc_dev = dev; 336 sc->sc_udev = uaa->device; 337 #ifdef UATH_DEBUG 338 sc->sc_debug = uath_debug; 339 #endif 340 device_set_usb_desc(dev); 341 342 /* 343 * Only post-firmware devices here. 344 */ 345 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 346 MTX_DEF); 347 callout_init(&sc->stat_ch, 0); 348 callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); 349 mbufq_init(&sc->sc_snd, ifqmaxlen); 350 351 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 352 uath_usbconfig, UATH_N_XFERS, sc, &sc->sc_mtx); 353 if (error) { 354 device_printf(dev, "could not allocate USB transfers, " 355 "err=%s\n", usbd_errstr(error)); 356 goto fail; 357 } 358 359 sc->sc_cmd_dma_buf = 360 usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_INTR_TX], 0); 361 sc->sc_tx_dma_buf = 362 usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_BULK_TX], 0); 363 364 /* 365 * Setup buffers for firmware commands. 366 */ 367 error = uath_alloc_cmd_list(sc, sc->sc_cmd); 368 if (error != 0) { 369 device_printf(sc->sc_dev, 370 "could not allocate Tx command list\n"); 371 goto fail1; 372 } 373 374 /* 375 * We're now ready to send+receive firmware commands. 376 */ 377 UATH_LOCK(sc); 378 error = uath_host_available(sc); 379 if (error != 0) { 380 device_printf(sc->sc_dev, "could not initialize adapter\n"); 381 goto fail2; 382 } 383 error = uath_get_devcap(sc); 384 if (error != 0) { 385 device_printf(sc->sc_dev, 386 "could not get device capabilities\n"); 387 goto fail2; 388 } 389 UATH_UNLOCK(sc); 390 391 /* Create device sysctl node. */ 392 uath_sysctl_node(sc); 393 394 UATH_LOCK(sc); 395 error = uath_get_devstatus(sc, ic->ic_macaddr); 396 if (error != 0) { 397 device_printf(sc->sc_dev, "could not get device status\n"); 398 goto fail2; 399 } 400 401 /* 402 * Allocate xfers for Rx/Tx data pipes. 403 */ 404 error = uath_alloc_rx_data_list(sc); 405 if (error != 0) { 406 device_printf(sc->sc_dev, "could not allocate Rx data list\n"); 407 goto fail2; 408 } 409 error = uath_alloc_tx_data_list(sc); 410 if (error != 0) { 411 device_printf(sc->sc_dev, "could not allocate Tx data list\n"); 412 goto fail2; 413 } 414 UATH_UNLOCK(sc); 415 416 ic->ic_softc = sc; 417 ic->ic_name = device_get_nameunit(dev); 418 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 419 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 420 421 /* set device capabilities */ 422 ic->ic_caps = 423 IEEE80211_C_STA | /* station mode */ 424 IEEE80211_C_MONITOR | /* monitor mode supported */ 425 IEEE80211_C_TXPMGT | /* tx power management */ 426 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 427 IEEE80211_C_SHSLOT | /* short slot time supported */ 428 IEEE80211_C_WPA | /* 802.11i */ 429 IEEE80211_C_BGSCAN | /* capable of bg scanning */ 430 IEEE80211_C_TXFRAG; /* handle tx frags */ 431 432 /* put a regulatory domain to reveal informations. */ 433 uath_regdomain = sc->sc_devcap.regDomain; 434 435 memset(bands, 0, sizeof(bands)); 436 setbit(bands, IEEE80211_MODE_11B); 437 setbit(bands, IEEE80211_MODE_11G); 438 if ((sc->sc_devcap.analog5GhzRevision & 0xf0) == 0x30) 439 setbit(bands, IEEE80211_MODE_11A); 440 /* XXX turbo */ 441 ieee80211_init_channels(ic, NULL, bands); 442 443 ieee80211_ifattach(ic); 444 ic->ic_raw_xmit = uath_raw_xmit; 445 ic->ic_scan_start = uath_scan_start; 446 ic->ic_scan_end = uath_scan_end; 447 ic->ic_set_channel = uath_set_channel; 448 ic->ic_vap_create = uath_vap_create; 449 ic->ic_vap_delete = uath_vap_delete; 450 ic->ic_update_mcast = uath_update_mcast; 451 ic->ic_update_promisc = uath_update_promisc; 452 ic->ic_transmit = uath_transmit; 453 ic->ic_parent = uath_parent; 454 455 ieee80211_radiotap_attach(ic, 456 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 457 UATH_TX_RADIOTAP_PRESENT, 458 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 459 UATH_RX_RADIOTAP_PRESENT); 460 461 if (bootverbose) 462 ieee80211_announce(ic); 463 464 return (0); 465 466 fail2: UATH_UNLOCK(sc); 467 uath_free_cmd_list(sc, sc->sc_cmd); 468 fail1: usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 469 fail: 470 return (error); 471 } 472 473 static int 474 uath_detach(device_t dev) 475 { 476 struct uath_softc *sc = device_get_softc(dev); 477 struct ieee80211com *ic = &sc->sc_ic; 478 unsigned int x; 479 480 /* 481 * Prevent further allocations from RX/TX/CMD 482 * data lists and ioctls 483 */ 484 UATH_LOCK(sc); 485 sc->sc_flags |= UATH_FLAG_INVALID; 486 487 STAILQ_INIT(&sc->sc_rx_active); 488 STAILQ_INIT(&sc->sc_rx_inactive); 489 490 STAILQ_INIT(&sc->sc_tx_active); 491 STAILQ_INIT(&sc->sc_tx_inactive); 492 STAILQ_INIT(&sc->sc_tx_pending); 493 494 STAILQ_INIT(&sc->sc_cmd_active); 495 STAILQ_INIT(&sc->sc_cmd_pending); 496 STAILQ_INIT(&sc->sc_cmd_waiting); 497 STAILQ_INIT(&sc->sc_cmd_inactive); 498 499 uath_stop(sc); 500 UATH_UNLOCK(sc); 501 502 callout_drain(&sc->stat_ch); 503 callout_drain(&sc->watchdog_ch); 504 505 /* drain USB transfers */ 506 for (x = 0; x != UATH_N_XFERS; x++) 507 usbd_transfer_drain(sc->sc_xfer[x]); 508 509 /* free data buffers */ 510 UATH_LOCK(sc); 511 uath_free_rx_data_list(sc); 512 uath_free_tx_data_list(sc); 513 uath_free_cmd_list(sc, sc->sc_cmd); 514 UATH_UNLOCK(sc); 515 516 /* free USB transfers and some data buffers */ 517 usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); 518 519 ieee80211_ifdetach(ic); 520 mbufq_drain(&sc->sc_snd); 521 mtx_destroy(&sc->sc_mtx); 522 return (0); 523 } 524 525 static void 526 uath_free_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) 527 { 528 int i; 529 530 for (i = 0; i != UATH_CMD_LIST_COUNT; i++) 531 cmds[i].buf = NULL; 532 } 533 534 static int 535 uath_alloc_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) 536 { 537 int i; 538 539 STAILQ_INIT(&sc->sc_cmd_active); 540 STAILQ_INIT(&sc->sc_cmd_pending); 541 STAILQ_INIT(&sc->sc_cmd_waiting); 542 STAILQ_INIT(&sc->sc_cmd_inactive); 543 544 for (i = 0; i != UATH_CMD_LIST_COUNT; i++) { 545 struct uath_cmd *cmd = &cmds[i]; 546 547 cmd->sc = sc; /* backpointer for callbacks */ 548 cmd->msgid = i; 549 cmd->buf = ((uint8_t *)sc->sc_cmd_dma_buf) + 550 (i * UATH_MAX_CMDSZ); 551 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 552 UATH_STAT_INC(sc, st_cmd_inactive); 553 } 554 return (0); 555 } 556 557 static int 558 uath_host_available(struct uath_softc *sc) 559 { 560 struct uath_cmd_host_available setup; 561 562 UATH_ASSERT_LOCKED(sc); 563 564 /* inform target the host is available */ 565 setup.sw_ver_major = htobe32(ATH_SW_VER_MAJOR); 566 setup.sw_ver_minor = htobe32(ATH_SW_VER_MINOR); 567 setup.sw_ver_patch = htobe32(ATH_SW_VER_PATCH); 568 setup.sw_ver_build = htobe32(ATH_SW_VER_BUILD); 569 return uath_cmd_read(sc, WDCMSG_HOST_AVAILABLE, 570 &setup, sizeof setup, NULL, 0, 0); 571 } 572 573 #ifdef UATH_DEBUG 574 static void 575 uath_dump_cmd(const uint8_t *buf, int len, char prefix) 576 { 577 const char *sep = ""; 578 int i; 579 580 for (i = 0; i < len; i++) { 581 if ((i % 16) == 0) { 582 printf("%s%c ", sep, prefix); 583 sep = "\n"; 584 } 585 else if ((i % 4) == 0) 586 printf(" "); 587 printf("%02x", buf[i]); 588 } 589 printf("\n"); 590 } 591 592 static const char * 593 uath_codename(int code) 594 { 595 static const char *names[] = { 596 "0x00", 597 "HOST_AVAILABLE", 598 "BIND", 599 "TARGET_RESET", 600 "TARGET_GET_CAPABILITY", 601 "TARGET_SET_CONFIG", 602 "TARGET_GET_STATUS", 603 "TARGET_GET_STATS", 604 "TARGET_START", 605 "TARGET_STOP", 606 "TARGET_ENABLE", 607 "TARGET_DISABLE", 608 "CREATE_CONNECTION", 609 "UPDATE_CONNECT_ATTR", 610 "DELETE_CONNECT", 611 "SEND", 612 "FLUSH", 613 "STATS_UPDATE", 614 "BMISS", 615 "DEVICE_AVAIL", 616 "SEND_COMPLETE", 617 "DATA_AVAIL", 618 "SET_PWR_MODE", 619 "BMISS_ACK", 620 "SET_LED_STEADY", 621 "SET_LED_BLINK", 622 "SETUP_BEACON_DESC", 623 "BEACON_INIT", 624 "RESET_KEY_CACHE", 625 "RESET_KEY_CACHE_ENTRY", 626 "SET_KEY_CACHE_ENTRY", 627 "SET_DECOMP_MASK", 628 "SET_REGULATORY_DOMAIN", 629 "SET_LED_STATE", 630 "WRITE_ASSOCID", 631 "SET_STA_BEACON_TIMERS", 632 "GET_TSF", 633 "RESET_TSF", 634 "SET_ADHOC_MODE", 635 "SET_BASIC_RATE", 636 "MIB_CONTROL", 637 "GET_CHANNEL_DATA", 638 "GET_CUR_RSSI", 639 "SET_ANTENNA_SWITCH", 640 "0x2c", "0x2d", "0x2e", 641 "USE_SHORT_SLOT_TIME", 642 "SET_POWER_MODE", 643 "SETUP_PSPOLL_DESC", 644 "SET_RX_MULTICAST_FILTER", 645 "RX_FILTER", 646 "PER_CALIBRATION", 647 "RESET", 648 "DISABLE", 649 "PHY_DISABLE", 650 "SET_TX_POWER_LIMIT", 651 "SET_TX_QUEUE_PARAMS", 652 "SETUP_TX_QUEUE", 653 "RELEASE_TX_QUEUE", 654 }; 655 static char buf[8]; 656 657 if (code < nitems(names)) 658 return names[code]; 659 if (code == WDCMSG_SET_DEFAULT_KEY) 660 return "SET_DEFAULT_KEY"; 661 snprintf(buf, sizeof(buf), "0x%02x", code); 662 return buf; 663 } 664 #endif 665 666 /* 667 * Low-level function to send read or write commands to the firmware. 668 */ 669 static int 670 uath_cmdsend(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, 671 void *odata, int olen, int flags) 672 { 673 struct uath_cmd_hdr *hdr; 674 struct uath_cmd *cmd; 675 int error; 676 677 UATH_ASSERT_LOCKED(sc); 678 679 /* grab a xfer */ 680 cmd = uath_get_cmdbuf(sc); 681 if (cmd == NULL) { 682 device_printf(sc->sc_dev, "%s: empty inactive queue\n", 683 __func__); 684 return (ENOBUFS); 685 } 686 cmd->flags = flags; 687 /* always bulk-out a multiple of 4 bytes */ 688 cmd->buflen = roundup2(sizeof(struct uath_cmd_hdr) + ilen, 4); 689 690 hdr = (struct uath_cmd_hdr *)cmd->buf; 691 memset(hdr, 0, sizeof(struct uath_cmd_hdr)); 692 hdr->len = htobe32(cmd->buflen); 693 hdr->code = htobe32(code); 694 hdr->msgid = cmd->msgid; /* don't care about endianness */ 695 hdr->magic = htobe32((cmd->flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0); 696 memcpy((uint8_t *)(hdr + 1), idata, ilen); 697 698 #ifdef UATH_DEBUG 699 if (sc->sc_debug & UATH_DEBUG_CMDS) { 700 printf("%s: send %s [flags 0x%x] olen %d\n", 701 __func__, uath_codename(code), cmd->flags, olen); 702 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 703 uath_dump_cmd(cmd->buf, cmd->buflen, '+'); 704 } 705 #endif 706 cmd->odata = odata; 707 KASSERT(odata == NULL || 708 olen < UATH_MAX_CMDSZ - sizeof(*hdr) + sizeof(uint32_t), 709 ("odata %p olen %u", odata, olen)); 710 cmd->olen = olen; 711 712 STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next); 713 UATH_STAT_INC(sc, st_cmd_pending); 714 usbd_transfer_start(sc->sc_xfer[UATH_INTR_TX]); 715 716 if (cmd->flags & UATH_CMD_FLAG_READ) { 717 usbd_transfer_start(sc->sc_xfer[UATH_INTR_RX]); 718 719 /* wait at most two seconds for command reply */ 720 error = mtx_sleep(cmd, &sc->sc_mtx, 0, "uathcmd", 2 * hz); 721 cmd->odata = NULL; /* in case reply comes too late */ 722 if (error != 0) { 723 device_printf(sc->sc_dev, "timeout waiting for reply " 724 "to cmd 0x%x (%u)\n", code, code); 725 } else if (cmd->olen != olen) { 726 device_printf(sc->sc_dev, "unexpected reply data count " 727 "to cmd 0x%x (%u), got %u, expected %u\n", 728 code, code, cmd->olen, olen); 729 error = EINVAL; 730 } 731 return (error); 732 } 733 return (0); 734 } 735 736 static int 737 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata, 738 int ilen, void *odata, int olen, int flags) 739 { 740 741 flags |= UATH_CMD_FLAG_READ; 742 return uath_cmdsend(sc, code, idata, ilen, odata, olen, flags); 743 } 744 745 static int 746 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len, 747 int flags) 748 { 749 750 flags &= ~UATH_CMD_FLAG_READ; 751 return uath_cmdsend(sc, code, data, len, NULL, 0, flags); 752 } 753 754 static struct uath_cmd * 755 uath_get_cmdbuf(struct uath_softc *sc) 756 { 757 struct uath_cmd *uc; 758 759 UATH_ASSERT_LOCKED(sc); 760 761 uc = STAILQ_FIRST(&sc->sc_cmd_inactive); 762 if (uc != NULL) { 763 STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next); 764 UATH_STAT_DEC(sc, st_cmd_inactive); 765 } else 766 uc = NULL; 767 if (uc == NULL) 768 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 769 "out of command xmit buffers"); 770 return (uc); 771 } 772 773 /* 774 * This function is called periodically (every second) when associated to 775 * query device statistics. 776 */ 777 static void 778 uath_stat(void *arg) 779 { 780 struct uath_softc *sc = arg; 781 int error; 782 783 UATH_LOCK(sc); 784 /* 785 * Send request for statistics asynchronously. The timer will be 786 * restarted when we'll get the stats notification. 787 */ 788 error = uath_cmd_write(sc, WDCMSG_TARGET_GET_STATS, NULL, 0, 789 UATH_CMD_FLAG_ASYNC); 790 if (error != 0) { 791 device_printf(sc->sc_dev, 792 "could not query stats, error %d\n", error); 793 } 794 UATH_UNLOCK(sc); 795 } 796 797 static int 798 uath_get_capability(struct uath_softc *sc, uint32_t cap, uint32_t *val) 799 { 800 int error; 801 802 cap = htobe32(cap); 803 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_CAPABILITY, 804 &cap, sizeof cap, val, sizeof(uint32_t), UATH_CMD_FLAG_MAGIC); 805 if (error != 0) { 806 device_printf(sc->sc_dev, "could not read capability %u\n", 807 be32toh(cap)); 808 return (error); 809 } 810 *val = be32toh(*val); 811 return (error); 812 } 813 814 static int 815 uath_get_devcap(struct uath_softc *sc) 816 { 817 #define GETCAP(x, v) do { \ 818 error = uath_get_capability(sc, x, &v); \ 819 if (error != 0) \ 820 return (error); \ 821 DPRINTF(sc, UATH_DEBUG_DEVCAP, \ 822 "%s: %s=0x%08x\n", __func__, #x, v); \ 823 } while (0) 824 struct uath_devcap *cap = &sc->sc_devcap; 825 int error; 826 827 /* collect device capabilities */ 828 GETCAP(CAP_TARGET_VERSION, cap->targetVersion); 829 GETCAP(CAP_TARGET_REVISION, cap->targetRevision); 830 GETCAP(CAP_MAC_VERSION, cap->macVersion); 831 GETCAP(CAP_MAC_REVISION, cap->macRevision); 832 GETCAP(CAP_PHY_REVISION, cap->phyRevision); 833 GETCAP(CAP_ANALOG_5GHz_REVISION, cap->analog5GhzRevision); 834 GETCAP(CAP_ANALOG_2GHz_REVISION, cap->analog2GhzRevision); 835 836 GETCAP(CAP_REG_DOMAIN, cap->regDomain); 837 GETCAP(CAP_REG_CAP_BITS, cap->regCapBits); 838 #if 0 839 /* NB: not supported in rev 1.5 */ 840 GETCAP(CAP_COUNTRY_CODE, cap->countryCode); 841 #endif 842 GETCAP(CAP_WIRELESS_MODES, cap->wirelessModes); 843 GETCAP(CAP_CHAN_SPREAD_SUPPORT, cap->chanSpreadSupport); 844 GETCAP(CAP_COMPRESS_SUPPORT, cap->compressSupport); 845 GETCAP(CAP_BURST_SUPPORT, cap->burstSupport); 846 GETCAP(CAP_FAST_FRAMES_SUPPORT, cap->fastFramesSupport); 847 GETCAP(CAP_CHAP_TUNING_SUPPORT, cap->chapTuningSupport); 848 GETCAP(CAP_TURBOG_SUPPORT, cap->turboGSupport); 849 GETCAP(CAP_TURBO_PRIME_SUPPORT, cap->turboPrimeSupport); 850 GETCAP(CAP_DEVICE_TYPE, cap->deviceType); 851 GETCAP(CAP_WME_SUPPORT, cap->wmeSupport); 852 GETCAP(CAP_TOTAL_QUEUES, cap->numTxQueues); 853 GETCAP(CAP_CONNECTION_ID_MAX, cap->connectionIdMax); 854 855 GETCAP(CAP_LOW_5GHZ_CHAN, cap->low5GhzChan); 856 GETCAP(CAP_HIGH_5GHZ_CHAN, cap->high5GhzChan); 857 GETCAP(CAP_LOW_2GHZ_CHAN, cap->low2GhzChan); 858 GETCAP(CAP_HIGH_2GHZ_CHAN, cap->high2GhzChan); 859 GETCAP(CAP_TWICE_ANTENNAGAIN_5G, cap->twiceAntennaGain5G); 860 GETCAP(CAP_TWICE_ANTENNAGAIN_2G, cap->twiceAntennaGain2G); 861 862 GETCAP(CAP_CIPHER_AES_CCM, cap->supportCipherAES_CCM); 863 GETCAP(CAP_CIPHER_TKIP, cap->supportCipherTKIP); 864 GETCAP(CAP_MIC_TKIP, cap->supportMicTKIP); 865 866 cap->supportCipherWEP = 1; /* NB: always available */ 867 868 return (0); 869 } 870 871 static int 872 uath_get_devstatus(struct uath_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 873 { 874 int error; 875 876 /* retrieve MAC address */ 877 error = uath_get_status(sc, ST_MAC_ADDR, macaddr, IEEE80211_ADDR_LEN); 878 if (error != 0) { 879 device_printf(sc->sc_dev, "could not read MAC address\n"); 880 return (error); 881 } 882 883 error = uath_get_status(sc, ST_SERIAL_NUMBER, 884 &sc->sc_serial[0], sizeof(sc->sc_serial)); 885 if (error != 0) { 886 device_printf(sc->sc_dev, 887 "could not read device serial number\n"); 888 return (error); 889 } 890 return (0); 891 } 892 893 static int 894 uath_get_status(struct uath_softc *sc, uint32_t which, void *odata, int olen) 895 { 896 int error; 897 898 which = htobe32(which); 899 error = uath_cmd_read(sc, WDCMSG_TARGET_GET_STATUS, 900 &which, sizeof(which), odata, olen, UATH_CMD_FLAG_MAGIC); 901 if (error != 0) 902 device_printf(sc->sc_dev, 903 "could not read EEPROM offset 0x%02x\n", be32toh(which)); 904 return (error); 905 } 906 907 static void 908 uath_free_data_list(struct uath_softc *sc, struct uath_data data[], int ndata, 909 int fillmbuf) 910 { 911 int i; 912 913 for (i = 0; i < ndata; i++) { 914 struct uath_data *dp = &data[i]; 915 916 if (fillmbuf == 1) { 917 if (dp->m != NULL) { 918 m_freem(dp->m); 919 dp->m = NULL; 920 dp->buf = NULL; 921 } 922 } else { 923 dp->buf = NULL; 924 } 925 if (dp->ni != NULL) { 926 ieee80211_free_node(dp->ni); 927 dp->ni = NULL; 928 } 929 } 930 } 931 932 static int 933 uath_alloc_data_list(struct uath_softc *sc, struct uath_data data[], 934 int ndata, int maxsz, void *dma_buf) 935 { 936 int i, error; 937 938 for (i = 0; i < ndata; i++) { 939 struct uath_data *dp = &data[i]; 940 941 dp->sc = sc; 942 if (dma_buf == NULL) { 943 /* XXX check maxsz */ 944 dp->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 945 if (dp->m == NULL) { 946 device_printf(sc->sc_dev, 947 "could not allocate rx mbuf\n"); 948 error = ENOMEM; 949 goto fail; 950 } 951 dp->buf = mtod(dp->m, uint8_t *); 952 } else { 953 dp->m = NULL; 954 dp->buf = ((uint8_t *)dma_buf) + (i * maxsz); 955 } 956 dp->ni = NULL; 957 } 958 959 return (0); 960 961 fail: uath_free_data_list(sc, data, ndata, 1 /* free mbufs */); 962 return (error); 963 } 964 965 static int 966 uath_alloc_rx_data_list(struct uath_softc *sc) 967 { 968 int error, i; 969 970 /* XXX is it enough to store the RX packet with MCLBYTES bytes? */ 971 error = uath_alloc_data_list(sc, 972 sc->sc_rx, UATH_RX_DATA_LIST_COUNT, MCLBYTES, 973 NULL /* setup mbufs */); 974 if (error != 0) 975 return (error); 976 977 STAILQ_INIT(&sc->sc_rx_active); 978 STAILQ_INIT(&sc->sc_rx_inactive); 979 980 for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) { 981 STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], 982 next); 983 UATH_STAT_INC(sc, st_rx_inactive); 984 } 985 986 return (0); 987 } 988 989 static int 990 uath_alloc_tx_data_list(struct uath_softc *sc) 991 { 992 int error, i; 993 994 error = uath_alloc_data_list(sc, 995 sc->sc_tx, UATH_TX_DATA_LIST_COUNT, UATH_MAX_TXBUFSZ, 996 sc->sc_tx_dma_buf); 997 if (error != 0) 998 return (error); 999 1000 STAILQ_INIT(&sc->sc_tx_active); 1001 STAILQ_INIT(&sc->sc_tx_inactive); 1002 STAILQ_INIT(&sc->sc_tx_pending); 1003 1004 for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) { 1005 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], 1006 next); 1007 UATH_STAT_INC(sc, st_tx_inactive); 1008 } 1009 1010 return (0); 1011 } 1012 1013 static void 1014 uath_free_rx_data_list(struct uath_softc *sc) 1015 { 1016 uath_free_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT, 1017 1 /* free mbufs */); 1018 } 1019 1020 static void 1021 uath_free_tx_data_list(struct uath_softc *sc) 1022 { 1023 uath_free_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT, 1024 0 /* no mbufs */); 1025 } 1026 1027 static struct ieee80211vap * 1028 uath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1029 enum ieee80211_opmode opmode, int flags, 1030 const uint8_t bssid[IEEE80211_ADDR_LEN], 1031 const uint8_t mac[IEEE80211_ADDR_LEN]) 1032 { 1033 struct uath_vap *uvp; 1034 struct ieee80211vap *vap; 1035 1036 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1037 return (NULL); 1038 uvp = malloc(sizeof(struct uath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1039 vap = &uvp->vap; 1040 /* enable s/w bmiss handling for sta mode */ 1041 1042 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 1043 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 1044 /* out of memory */ 1045 free(uvp, M_80211_VAP); 1046 return (NULL); 1047 } 1048 1049 /* override state transition machine */ 1050 uvp->newstate = vap->iv_newstate; 1051 vap->iv_newstate = uath_newstate; 1052 1053 /* complete setup */ 1054 ieee80211_vap_attach(vap, ieee80211_media_change, 1055 ieee80211_media_status, mac); 1056 ic->ic_opmode = opmode; 1057 return (vap); 1058 } 1059 1060 static void 1061 uath_vap_delete(struct ieee80211vap *vap) 1062 { 1063 struct uath_vap *uvp = UATH_VAP(vap); 1064 1065 ieee80211_vap_detach(vap); 1066 free(uvp, M_80211_VAP); 1067 } 1068 1069 static int 1070 uath_init(struct uath_softc *sc) 1071 { 1072 struct ieee80211com *ic = &sc->sc_ic; 1073 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1074 uint32_t val; 1075 int error; 1076 1077 UATH_ASSERT_LOCKED(sc); 1078 1079 if (sc->sc_flags & UATH_FLAG_INITDONE) 1080 uath_stop(sc); 1081 1082 /* reset variables */ 1083 sc->sc_intrx_nextnum = sc->sc_msgid = 0; 1084 1085 val = htobe32(0); 1086 uath_cmd_write(sc, WDCMSG_BIND, &val, sizeof val, 0); 1087 1088 /* set MAC address */ 1089 uath_config_multi(sc, CFG_MAC_ADDR, 1090 vap ? vap->iv_myaddr : ic->ic_macaddr, IEEE80211_ADDR_LEN); 1091 1092 /* XXX honor net80211 state */ 1093 uath_config(sc, CFG_RATE_CONTROL_ENABLE, 0x00000001); 1094 uath_config(sc, CFG_DIVERSITY_CTL, 0x00000001); 1095 uath_config(sc, CFG_ABOLT, 0x0000003f); 1096 uath_config(sc, CFG_WME_ENABLED, 0x00000001); 1097 1098 uath_config(sc, CFG_SERVICE_TYPE, 1); 1099 uath_config(sc, CFG_TP_SCALE, 0x00000000); 1100 uath_config(sc, CFG_TPC_HALF_DBM5, 0x0000003c); 1101 uath_config(sc, CFG_TPC_HALF_DBM2, 0x0000003c); 1102 uath_config(sc, CFG_OVERRD_TX_POWER, 0x00000000); 1103 uath_config(sc, CFG_GMODE_PROTECTION, 0x00000000); 1104 uath_config(sc, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003); 1105 uath_config(sc, CFG_PROTECTION_TYPE, 0x00000000); 1106 uath_config(sc, CFG_MODE_CTS, 0x00000002); 1107 1108 error = uath_cmd_read(sc, WDCMSG_TARGET_START, NULL, 0, 1109 &val, sizeof(val), UATH_CMD_FLAG_MAGIC); 1110 if (error) { 1111 device_printf(sc->sc_dev, 1112 "could not start target, error %d\n", error); 1113 goto fail; 1114 } 1115 DPRINTF(sc, UATH_DEBUG_INIT, "%s returns handle: 0x%x\n", 1116 uath_codename(WDCMSG_TARGET_START), be32toh(val)); 1117 1118 /* set default channel */ 1119 error = uath_switch_channel(sc, ic->ic_curchan); 1120 if (error) { 1121 device_printf(sc->sc_dev, 1122 "could not switch channel, error %d\n", error); 1123 goto fail; 1124 } 1125 1126 val = htobe32(TARGET_DEVICE_AWAKE); 1127 uath_cmd_write(sc, WDCMSG_SET_PWR_MODE, &val, sizeof val, 0); 1128 /* XXX? check */ 1129 uath_cmd_write(sc, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0); 1130 1131 usbd_transfer_start(sc->sc_xfer[UATH_BULK_RX]); 1132 /* enable Rx */ 1133 uath_set_rxfilter(sc, 0x0, UATH_FILTER_OP_INIT); 1134 uath_set_rxfilter(sc, 1135 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1136 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON, 1137 UATH_FILTER_OP_SET); 1138 1139 sc->sc_flags |= UATH_FLAG_INITDONE; 1140 1141 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1142 1143 return (0); 1144 1145 fail: 1146 uath_stop(sc); 1147 return (error); 1148 } 1149 1150 static void 1151 uath_stop(struct uath_softc *sc) 1152 { 1153 1154 UATH_ASSERT_LOCKED(sc); 1155 1156 sc->sc_flags &= ~UATH_FLAG_INITDONE; 1157 1158 callout_stop(&sc->stat_ch); 1159 callout_stop(&sc->watchdog_ch); 1160 sc->sc_tx_timer = 0; 1161 /* abort pending transmits */ 1162 uath_abort_xfers(sc); 1163 /* flush data & control requests into the target */ 1164 (void)uath_flush(sc); 1165 /* set a LED status to the disconnected. */ 1166 uath_set_ledstate(sc, 0); 1167 /* stop the target */ 1168 uath_cmd_write(sc, WDCMSG_TARGET_STOP, NULL, 0, 0); 1169 } 1170 1171 static int 1172 uath_config(struct uath_softc *sc, uint32_t reg, uint32_t val) 1173 { 1174 struct uath_write_mac write; 1175 int error; 1176 1177 write.reg = htobe32(reg); 1178 write.len = htobe32(0); /* 0 = single write */ 1179 *(uint32_t *)write.data = htobe32(val); 1180 1181 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1182 3 * sizeof (uint32_t), 0); 1183 if (error != 0) { 1184 device_printf(sc->sc_dev, "could not write register 0x%02x\n", 1185 reg); 1186 } 1187 return (error); 1188 } 1189 1190 static int 1191 uath_config_multi(struct uath_softc *sc, uint32_t reg, const void *data, 1192 int len) 1193 { 1194 struct uath_write_mac write; 1195 int error; 1196 1197 write.reg = htobe32(reg); 1198 write.len = htobe32(len); 1199 bcopy(data, write.data, len); 1200 1201 /* properly handle the case where len is zero (reset) */ 1202 error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 1203 (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0); 1204 if (error != 0) { 1205 device_printf(sc->sc_dev, 1206 "could not write %d bytes to register 0x%02x\n", len, reg); 1207 } 1208 return (error); 1209 } 1210 1211 static int 1212 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c) 1213 { 1214 int error; 1215 1216 UATH_ASSERT_LOCKED(sc); 1217 1218 /* set radio frequency */ 1219 error = uath_set_chan(sc, c); 1220 if (error) { 1221 device_printf(sc->sc_dev, 1222 "could not set channel, error %d\n", error); 1223 goto failed; 1224 } 1225 /* reset Tx rings */ 1226 error = uath_reset_tx_queues(sc); 1227 if (error) { 1228 device_printf(sc->sc_dev, 1229 "could not reset Tx queues, error %d\n", error); 1230 goto failed; 1231 } 1232 /* set Tx rings WME properties */ 1233 error = uath_wme_init(sc); 1234 if (error) { 1235 device_printf(sc->sc_dev, 1236 "could not init Tx queues, error %d\n", error); 1237 goto failed; 1238 } 1239 error = uath_set_ledstate(sc, 0); 1240 if (error) { 1241 device_printf(sc->sc_dev, 1242 "could not set led state, error %d\n", error); 1243 goto failed; 1244 } 1245 error = uath_flush(sc); 1246 if (error) { 1247 device_printf(sc->sc_dev, 1248 "could not flush pipes, error %d\n", error); 1249 goto failed; 1250 } 1251 failed: 1252 return (error); 1253 } 1254 1255 static int 1256 uath_set_rxfilter(struct uath_softc *sc, uint32_t bits, uint32_t op) 1257 { 1258 struct uath_cmd_rx_filter rxfilter; 1259 1260 rxfilter.bits = htobe32(bits); 1261 rxfilter.op = htobe32(op); 1262 1263 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 1264 "setting Rx filter=0x%x flags=0x%x\n", bits, op); 1265 return uath_cmd_write(sc, WDCMSG_RX_FILTER, &rxfilter, 1266 sizeof rxfilter, 0); 1267 } 1268 1269 static void 1270 uath_watchdog(void *arg) 1271 { 1272 struct uath_softc *sc = arg; 1273 struct ieee80211com *ic = &sc->sc_ic; 1274 1275 if (sc->sc_tx_timer > 0) { 1276 if (--sc->sc_tx_timer == 0) { 1277 device_printf(sc->sc_dev, "device timeout\n"); 1278 /*uath_init(sc); XXX needs a process context! */ 1279 counter_u64_add(ic->ic_oerrors, 1); 1280 return; 1281 } 1282 callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); 1283 } 1284 } 1285 1286 static void 1287 uath_abort_xfers(struct uath_softc *sc) 1288 { 1289 int i; 1290 1291 UATH_ASSERT_LOCKED(sc); 1292 /* abort any pending transfers */ 1293 for (i = 0; i < UATH_N_XFERS; i++) 1294 usbd_transfer_stop(sc->sc_xfer[i]); 1295 } 1296 1297 static int 1298 uath_flush(struct uath_softc *sc) 1299 { 1300 int error; 1301 1302 error = uath_dataflush(sc); 1303 if (error != 0) 1304 goto failed; 1305 1306 error = uath_cmdflush(sc); 1307 if (error != 0) 1308 goto failed; 1309 1310 failed: 1311 return (error); 1312 } 1313 1314 static int 1315 uath_cmdflush(struct uath_softc *sc) 1316 { 1317 1318 return uath_cmd_write(sc, WDCMSG_FLUSH, NULL, 0, 0); 1319 } 1320 1321 static int 1322 uath_dataflush(struct uath_softc *sc) 1323 { 1324 struct uath_data *data; 1325 struct uath_chunk *chunk; 1326 struct uath_tx_desc *desc; 1327 1328 UATH_ASSERT_LOCKED(sc); 1329 1330 data = uath_getbuf(sc); 1331 if (data == NULL) 1332 return (ENOBUFS); 1333 data->buflen = sizeof(struct uath_chunk) + sizeof(struct uath_tx_desc); 1334 data->m = NULL; 1335 data->ni = NULL; 1336 chunk = (struct uath_chunk *)data->buf; 1337 desc = (struct uath_tx_desc *)(chunk + 1); 1338 1339 /* one chunk only */ 1340 chunk->seqnum = 0; 1341 chunk->flags = UATH_CFLAGS_FINAL; 1342 chunk->length = htobe16(sizeof (struct uath_tx_desc)); 1343 1344 memset(desc, 0, sizeof(struct uath_tx_desc)); 1345 desc->msglen = htobe32(sizeof(struct uath_tx_desc)); 1346 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1347 desc->type = htobe32(WDCMSG_FLUSH); 1348 desc->txqid = htobe32(0); 1349 desc->connid = htobe32(0); 1350 desc->flags = htobe32(0); 1351 1352 #ifdef UATH_DEBUG 1353 if (sc->sc_debug & UATH_DEBUG_CMDS) { 1354 DPRINTF(sc, UATH_DEBUG_RESET, "send flush ix %d\n", 1355 desc->msgid); 1356 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 1357 uath_dump_cmd(data->buf, data->buflen, '+'); 1358 } 1359 #endif 1360 1361 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1362 UATH_STAT_INC(sc, st_tx_pending); 1363 sc->sc_tx_timer = 5; 1364 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1365 1366 return (0); 1367 } 1368 1369 static struct uath_data * 1370 _uath_getbuf(struct uath_softc *sc) 1371 { 1372 struct uath_data *bf; 1373 1374 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 1375 if (bf != NULL) { 1376 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 1377 UATH_STAT_DEC(sc, st_tx_inactive); 1378 } else 1379 bf = NULL; 1380 if (bf == NULL) 1381 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, 1382 "out of xmit buffers"); 1383 return (bf); 1384 } 1385 1386 static struct uath_data * 1387 uath_getbuf(struct uath_softc *sc) 1388 { 1389 struct uath_data *bf; 1390 1391 UATH_ASSERT_LOCKED(sc); 1392 1393 bf = _uath_getbuf(sc); 1394 if (bf == NULL) 1395 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 1396 return (bf); 1397 } 1398 1399 static int 1400 uath_set_ledstate(struct uath_softc *sc, int connected) 1401 { 1402 1403 DPRINTF(sc, UATH_DEBUG_LED, 1404 "set led state %sconnected\n", connected ? "" : "!"); 1405 connected = htobe32(connected); 1406 return uath_cmd_write(sc, WDCMSG_SET_LED_STATE, 1407 &connected, sizeof connected, 0); 1408 } 1409 1410 static int 1411 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c) 1412 { 1413 #ifdef UATH_DEBUG 1414 struct ieee80211com *ic = &sc->sc_ic; 1415 #endif 1416 struct uath_cmd_reset reset; 1417 1418 memset(&reset, 0, sizeof(reset)); 1419 if (IEEE80211_IS_CHAN_2GHZ(c)) 1420 reset.flags |= htobe32(UATH_CHAN_2GHZ); 1421 if (IEEE80211_IS_CHAN_5GHZ(c)) 1422 reset.flags |= htobe32(UATH_CHAN_5GHZ); 1423 /* NB: 11g =>'s 11b so don't specify both OFDM and CCK */ 1424 if (IEEE80211_IS_CHAN_OFDM(c)) 1425 reset.flags |= htobe32(UATH_CHAN_OFDM); 1426 else if (IEEE80211_IS_CHAN_CCK(c)) 1427 reset.flags |= htobe32(UATH_CHAN_CCK); 1428 /* turbo can be used in either 2GHz or 5GHz */ 1429 if (c->ic_flags & IEEE80211_CHAN_TURBO) 1430 reset.flags |= htobe32(UATH_CHAN_TURBO); 1431 reset.freq = htobe32(c->ic_freq); 1432 reset.maxrdpower = htobe32(50); /* XXX */ 1433 reset.channelchange = htobe32(1); 1434 reset.keeprccontent = htobe32(0); 1435 1436 DPRINTF(sc, UATH_DEBUG_CHANNEL, "set channel %d, flags 0x%x freq %u\n", 1437 ieee80211_chan2ieee(ic, c), 1438 be32toh(reset.flags), be32toh(reset.freq)); 1439 return uath_cmd_write(sc, WDCMSG_RESET, &reset, sizeof reset, 0); 1440 } 1441 1442 static int 1443 uath_reset_tx_queues(struct uath_softc *sc) 1444 { 1445 int ac, error; 1446 1447 DPRINTF(sc, UATH_DEBUG_RESET, "%s: reset Tx queues\n", __func__); 1448 for (ac = 0; ac < 4; ac++) { 1449 const uint32_t qid = htobe32(ac); 1450 1451 error = uath_cmd_write(sc, WDCMSG_RELEASE_TX_QUEUE, &qid, 1452 sizeof qid, 0); 1453 if (error != 0) 1454 break; 1455 } 1456 return (error); 1457 } 1458 1459 static int 1460 uath_wme_init(struct uath_softc *sc) 1461 { 1462 /* XXX get from net80211 */ 1463 static const struct uath_wme_settings uath_wme_11g[4] = { 1464 { 7, 4, 10, 0, 0 }, /* Background */ 1465 { 3, 4, 10, 0, 0 }, /* Best-Effort */ 1466 { 3, 3, 4, 26, 0 }, /* Video */ 1467 { 2, 2, 3, 47, 0 } /* Voice */ 1468 }; 1469 struct uath_cmd_txq_setup qinfo; 1470 int ac, error; 1471 1472 DPRINTF(sc, UATH_DEBUG_WME, "%s: setup Tx queues\n", __func__); 1473 for (ac = 0; ac < 4; ac++) { 1474 qinfo.qid = htobe32(ac); 1475 qinfo.len = htobe32(sizeof(qinfo.attr)); 1476 qinfo.attr.priority = htobe32(ac); /* XXX */ 1477 qinfo.attr.aifs = htobe32(uath_wme_11g[ac].aifsn); 1478 qinfo.attr.logcwmin = htobe32(uath_wme_11g[ac].logcwmin); 1479 qinfo.attr.logcwmax = htobe32(uath_wme_11g[ac].logcwmax); 1480 qinfo.attr.bursttime = htobe32(IEEE80211_TXOP_TO_US( 1481 uath_wme_11g[ac].txop)); 1482 qinfo.attr.mode = htobe32(uath_wme_11g[ac].acm);/*XXX? */ 1483 qinfo.attr.qflags = htobe32(1); /* XXX? */ 1484 1485 error = uath_cmd_write(sc, WDCMSG_SETUP_TX_QUEUE, &qinfo, 1486 sizeof qinfo, 0); 1487 if (error != 0) 1488 break; 1489 } 1490 return (error); 1491 } 1492 1493 static void 1494 uath_parent(struct ieee80211com *ic) 1495 { 1496 struct uath_softc *sc = ic->ic_softc; 1497 int startall = 0; 1498 1499 UATH_LOCK(sc); 1500 if (sc->sc_flags & UATH_FLAG_INVALID) { 1501 UATH_UNLOCK(sc); 1502 return; 1503 } 1504 1505 if (ic->ic_nrunning > 0) { 1506 if (!(sc->sc_flags & UATH_FLAG_INITDONE)) { 1507 uath_init(sc); 1508 startall = 1; 1509 } 1510 } else if (sc->sc_flags & UATH_FLAG_INITDONE) 1511 uath_stop(sc); 1512 UATH_UNLOCK(sc); 1513 if (startall) 1514 ieee80211_start_all(ic); 1515 } 1516 1517 static int 1518 uath_tx_start(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1519 struct uath_data *data) 1520 { 1521 struct ieee80211vap *vap = ni->ni_vap; 1522 struct uath_chunk *chunk; 1523 struct uath_tx_desc *desc; 1524 const struct ieee80211_frame *wh; 1525 struct ieee80211_key *k; 1526 int framelen, msglen; 1527 1528 UATH_ASSERT_LOCKED(sc); 1529 1530 data->ni = ni; 1531 data->m = m0; 1532 chunk = (struct uath_chunk *)data->buf; 1533 desc = (struct uath_tx_desc *)(chunk + 1); 1534 1535 if (ieee80211_radiotap_active_vap(vap)) { 1536 struct uath_tx_radiotap_header *tap = &sc->sc_txtap; 1537 1538 tap->wt_flags = 0; 1539 if (m0->m_flags & M_FRAG) 1540 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 1541 1542 ieee80211_radiotap_tx(vap, m0); 1543 } 1544 1545 wh = mtod(m0, struct ieee80211_frame *); 1546 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1547 k = ieee80211_crypto_encap(ni, m0); 1548 if (k == NULL) { 1549 m_freem(m0); 1550 return (ENOBUFS); 1551 } 1552 1553 /* packet header may have moved, reset our local pointer */ 1554 wh = mtod(m0, struct ieee80211_frame *); 1555 } 1556 m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1)); 1557 1558 framelen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 1559 msglen = framelen + sizeof (struct uath_tx_desc); 1560 data->buflen = msglen + sizeof (struct uath_chunk); 1561 1562 /* one chunk only for now */ 1563 chunk->seqnum = sc->sc_seqnum++; 1564 chunk->flags = (m0->m_flags & M_FRAG) ? 0 : UATH_CFLAGS_FINAL; 1565 if (m0->m_flags & M_LASTFRAG) 1566 chunk->flags |= UATH_CFLAGS_FINAL; 1567 chunk->flags = UATH_CFLAGS_FINAL; 1568 chunk->length = htobe16(msglen); 1569 1570 /* fill Tx descriptor */ 1571 desc->msglen = htobe32(msglen); 1572 /* NB: to get UATH_TX_NOTIFY reply, `msgid' must be larger than 0 */ 1573 desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ 1574 desc->type = htobe32(WDCMSG_SEND); 1575 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1576 case IEEE80211_FC0_TYPE_CTL: 1577 case IEEE80211_FC0_TYPE_MGT: 1578 /* NB: force all management frames to highest queue */ 1579 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1580 /* NB: force all management frames to highest queue */ 1581 desc->txqid = htobe32(WME_AC_VO | UATH_TXQID_MINRATE); 1582 } else 1583 desc->txqid = htobe32(WME_AC_BE | UATH_TXQID_MINRATE); 1584 break; 1585 case IEEE80211_FC0_TYPE_DATA: 1586 /* XXX multicast frames should honor mcastrate */ 1587 desc->txqid = htobe32(M_WME_GETAC(m0)); 1588 break; 1589 default: 1590 device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", 1591 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 1592 m_freem(m0); 1593 return (EIO); 1594 } 1595 if (vap->iv_state == IEEE80211_S_AUTH || 1596 vap->iv_state == IEEE80211_S_ASSOC || 1597 vap->iv_state == IEEE80211_S_RUN) 1598 desc->connid = htobe32(UATH_ID_BSS); 1599 else 1600 desc->connid = htobe32(UATH_ID_INVALID); 1601 desc->flags = htobe32(0 /* no UATH_TX_NOTIFY */); 1602 desc->buflen = htobe32(m0->m_pkthdr.len); 1603 1604 #ifdef UATH_DEBUG 1605 DPRINTF(sc, UATH_DEBUG_XMIT, 1606 "send frame ix %u framelen %d msglen %d connid 0x%x txqid 0x%x\n", 1607 desc->msgid, framelen, msglen, be32toh(desc->connid), 1608 be32toh(desc->txqid)); 1609 if (sc->sc_debug & UATH_DEBUG_XMIT_DUMP) 1610 uath_dump_cmd(data->buf, data->buflen, '+'); 1611 #endif 1612 1613 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1614 UATH_STAT_INC(sc, st_tx_pending); 1615 usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); 1616 1617 return (0); 1618 } 1619 1620 /* 1621 * Cleanup driver resources when we run out of buffers while processing 1622 * fragments; return the tx buffers allocated and drop node references. 1623 */ 1624 static void 1625 uath_txfrag_cleanup(struct uath_softc *sc, 1626 uath_datahead *frags, struct ieee80211_node *ni) 1627 { 1628 struct uath_data *bf, *next; 1629 1630 UATH_ASSERT_LOCKED(sc); 1631 1632 STAILQ_FOREACH_SAFE(bf, frags, next, next) { 1633 /* NB: bf assumed clean */ 1634 STAILQ_REMOVE_HEAD(frags, next); 1635 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1636 UATH_STAT_INC(sc, st_tx_inactive); 1637 ieee80211_node_decref(ni); 1638 } 1639 } 1640 1641 /* 1642 * Setup xmit of a fragmented frame. Allocate a buffer for each frag and bump 1643 * the node reference count to reflect the held reference to be setup by 1644 * uath_tx_start. 1645 */ 1646 static int 1647 uath_txfrag_setup(struct uath_softc *sc, uath_datahead *frags, 1648 struct mbuf *m0, struct ieee80211_node *ni) 1649 { 1650 struct mbuf *m; 1651 struct uath_data *bf; 1652 1653 UATH_ASSERT_LOCKED(sc); 1654 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1655 bf = uath_getbuf(sc); 1656 if (bf == NULL) { /* out of buffers, cleanup */ 1657 uath_txfrag_cleanup(sc, frags, ni); 1658 break; 1659 } 1660 ieee80211_node_incref(ni); 1661 STAILQ_INSERT_TAIL(frags, bf, next); 1662 } 1663 1664 return !STAILQ_EMPTY(frags); 1665 } 1666 1667 static int 1668 uath_transmit(struct ieee80211com *ic, struct mbuf *m) 1669 { 1670 struct uath_softc *sc = ic->ic_softc; 1671 int error; 1672 1673 UATH_LOCK(sc); 1674 if ((sc->sc_flags & UATH_FLAG_INITDONE) == 0) { 1675 UATH_UNLOCK(sc); 1676 return (ENXIO); 1677 } 1678 error = mbufq_enqueue(&sc->sc_snd, m); 1679 if (error) { 1680 UATH_UNLOCK(sc); 1681 return (error); 1682 } 1683 uath_start(sc); 1684 UATH_UNLOCK(sc); 1685 1686 return (0); 1687 } 1688 1689 static void 1690 uath_start(struct uath_softc *sc) 1691 { 1692 struct uath_data *bf; 1693 struct ieee80211_node *ni; 1694 struct mbuf *m, *next; 1695 uath_datahead frags; 1696 1697 UATH_ASSERT_LOCKED(sc); 1698 1699 if ((sc->sc_flags & UATH_FLAG_INITDONE) == 0 || 1700 (sc->sc_flags & UATH_FLAG_INVALID)) 1701 return; 1702 1703 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1704 bf = uath_getbuf(sc); 1705 if (bf == NULL) { 1706 mbufq_prepend(&sc->sc_snd, m); 1707 break; 1708 } 1709 1710 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1711 m->m_pkthdr.rcvif = NULL; 1712 1713 /* 1714 * Check for fragmentation. If this frame has been broken up 1715 * verify we have enough buffers to send all the fragments 1716 * so all go out or none... 1717 */ 1718 STAILQ_INIT(&frags); 1719 if ((m->m_flags & M_FRAG) && 1720 !uath_txfrag_setup(sc, &frags, m, ni)) { 1721 DPRINTF(sc, UATH_DEBUG_XMIT, 1722 "%s: out of txfrag buffers\n", __func__); 1723 ieee80211_free_mbuf(m); 1724 goto bad; 1725 } 1726 sc->sc_seqnum = 0; 1727 nextfrag: 1728 /* 1729 * Pass the frame to the h/w for transmission. 1730 * Fragmented frames have each frag chained together 1731 * with m_nextpkt. We know there are sufficient uath_data's 1732 * to send all the frags because of work done by 1733 * uath_txfrag_setup. 1734 */ 1735 next = m->m_nextpkt; 1736 if (uath_tx_start(sc, m, ni, bf) != 0) { 1737 bad: 1738 if_inc_counter(ni->ni_vap->iv_ifp, 1739 IFCOUNTER_OERRORS, 1); 1740 reclaim: 1741 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1742 UATH_STAT_INC(sc, st_tx_inactive); 1743 uath_txfrag_cleanup(sc, &frags, ni); 1744 ieee80211_free_node(ni); 1745 continue; 1746 } 1747 1748 if (next != NULL) { 1749 /* 1750 * Beware of state changing between frags. 1751 XXX check sta power-save state? 1752 */ 1753 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 1754 DPRINTF(sc, UATH_DEBUG_XMIT, 1755 "%s: flush fragmented packet, state %s\n", 1756 __func__, 1757 ieee80211_state_name[ni->ni_vap->iv_state]); 1758 ieee80211_free_mbuf(next); 1759 goto reclaim; 1760 } 1761 m = next; 1762 bf = STAILQ_FIRST(&frags); 1763 KASSERT(bf != NULL, ("no buf for txfrag")); 1764 STAILQ_REMOVE_HEAD(&frags, next); 1765 goto nextfrag; 1766 } 1767 1768 sc->sc_tx_timer = 5; 1769 } 1770 } 1771 1772 static int 1773 uath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1774 const struct ieee80211_bpf_params *params) 1775 { 1776 struct ieee80211com *ic = ni->ni_ic; 1777 struct uath_data *bf; 1778 struct uath_softc *sc = ic->ic_softc; 1779 1780 UATH_LOCK(sc); 1781 /* prevent management frames from being sent if we're not ready */ 1782 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1783 !(sc->sc_flags & UATH_FLAG_INITDONE)) { 1784 m_freem(m); 1785 UATH_UNLOCK(sc); 1786 return (ENETDOWN); 1787 } 1788 1789 /* grab a TX buffer */ 1790 bf = uath_getbuf(sc); 1791 if (bf == NULL) { 1792 m_freem(m); 1793 UATH_UNLOCK(sc); 1794 return (ENOBUFS); 1795 } 1796 1797 sc->sc_seqnum = 0; 1798 if (uath_tx_start(sc, m, ni, bf) != 0) { 1799 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 1800 UATH_STAT_INC(sc, st_tx_inactive); 1801 UATH_UNLOCK(sc); 1802 return (EIO); 1803 } 1804 UATH_UNLOCK(sc); 1805 1806 sc->sc_tx_timer = 5; 1807 return (0); 1808 } 1809 1810 static void 1811 uath_scan_start(struct ieee80211com *ic) 1812 { 1813 /* do nothing */ 1814 } 1815 1816 static void 1817 uath_scan_end(struct ieee80211com *ic) 1818 { 1819 /* do nothing */ 1820 } 1821 1822 static void 1823 uath_set_channel(struct ieee80211com *ic) 1824 { 1825 struct uath_softc *sc = ic->ic_softc; 1826 1827 UATH_LOCK(sc); 1828 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1829 (sc->sc_flags & UATH_FLAG_INITDONE) == 0) { 1830 UATH_UNLOCK(sc); 1831 return; 1832 } 1833 (void)uath_switch_channel(sc, ic->ic_curchan); 1834 UATH_UNLOCK(sc); 1835 } 1836 1837 static int 1838 uath_set_rxmulti_filter(struct uath_softc *sc) 1839 { 1840 /* XXX broken */ 1841 return (0); 1842 } 1843 static void 1844 uath_update_mcast(struct ieee80211com *ic) 1845 { 1846 struct uath_softc *sc = ic->ic_softc; 1847 1848 UATH_LOCK(sc); 1849 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1850 (sc->sc_flags & UATH_FLAG_INITDONE) == 0) { 1851 UATH_UNLOCK(sc); 1852 return; 1853 } 1854 /* 1855 * this is for avoiding the race condition when we're try to 1856 * connect to the AP with WPA. 1857 */ 1858 if (sc->sc_flags & UATH_FLAG_INITDONE) 1859 (void)uath_set_rxmulti_filter(sc); 1860 UATH_UNLOCK(sc); 1861 } 1862 1863 static void 1864 uath_update_promisc(struct ieee80211com *ic) 1865 { 1866 struct uath_softc *sc = ic->ic_softc; 1867 1868 UATH_LOCK(sc); 1869 if ((sc->sc_flags & UATH_FLAG_INVALID) || 1870 (sc->sc_flags & UATH_FLAG_INITDONE) == 0) { 1871 UATH_UNLOCK(sc); 1872 return; 1873 } 1874 if (sc->sc_flags & UATH_FLAG_INITDONE) { 1875 uath_set_rxfilter(sc, 1876 UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | 1877 UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON | 1878 UATH_FILTER_RX_PROM, UATH_FILTER_OP_SET); 1879 } 1880 UATH_UNLOCK(sc); 1881 } 1882 1883 static int 1884 uath_create_connection(struct uath_softc *sc, uint32_t connid) 1885 { 1886 const struct ieee80211_rateset *rs; 1887 struct ieee80211com *ic = &sc->sc_ic; 1888 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1889 struct ieee80211_node *ni; 1890 struct uath_cmd_create_connection create; 1891 1892 ni = ieee80211_ref_node(vap->iv_bss); 1893 memset(&create, 0, sizeof(create)); 1894 create.connid = htobe32(connid); 1895 create.bssid = htobe32(0); 1896 /* XXX packed or not? */ 1897 create.size = htobe32(sizeof(struct uath_cmd_rateset)); 1898 1899 rs = &ni->ni_rates; 1900 create.connattr.rateset.length = rs->rs_nrates; 1901 bcopy(rs->rs_rates, &create.connattr.rateset.set[0], 1902 rs->rs_nrates); 1903 1904 /* XXX turbo */ 1905 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) 1906 create.connattr.wlanmode = htobe32(WLAN_MODE_11a); 1907 else if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) 1908 create.connattr.wlanmode = htobe32(WLAN_MODE_11g); 1909 else 1910 create.connattr.wlanmode = htobe32(WLAN_MODE_11b); 1911 ieee80211_free_node(ni); 1912 1913 return uath_cmd_write(sc, WDCMSG_CREATE_CONNECTION, &create, 1914 sizeof create, 0); 1915 } 1916 1917 static int 1918 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs) 1919 { 1920 struct uath_cmd_rates rates; 1921 1922 memset(&rates, 0, sizeof(rates)); 1923 rates.connid = htobe32(UATH_ID_BSS); /* XXX */ 1924 rates.size = htobe32(sizeof(struct uath_cmd_rateset)); 1925 /* XXX bounds check rs->rs_nrates */ 1926 rates.rateset.length = rs->rs_nrates; 1927 bcopy(rs->rs_rates, &rates.rateset.set[0], rs->rs_nrates); 1928 1929 DPRINTF(sc, UATH_DEBUG_RATES, 1930 "setting supported rates nrates=%d\n", rs->rs_nrates); 1931 return uath_cmd_write(sc, WDCMSG_SET_BASIC_RATE, 1932 &rates, sizeof rates, 0); 1933 } 1934 1935 static int 1936 uath_write_associd(struct uath_softc *sc) 1937 { 1938 struct ieee80211com *ic = &sc->sc_ic; 1939 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1940 struct ieee80211_node *ni; 1941 struct uath_cmd_set_associd associd; 1942 1943 ni = ieee80211_ref_node(vap->iv_bss); 1944 memset(&associd, 0, sizeof(associd)); 1945 associd.defaultrateix = htobe32(1); /* XXX */ 1946 associd.associd = htobe32(ni->ni_associd); 1947 associd.timoffset = htobe32(0x3b); /* XXX */ 1948 IEEE80211_ADDR_COPY(associd.bssid, ni->ni_bssid); 1949 ieee80211_free_node(ni); 1950 return uath_cmd_write(sc, WDCMSG_WRITE_ASSOCID, &associd, 1951 sizeof associd, 0); 1952 } 1953 1954 static int 1955 uath_set_ledsteady(struct uath_softc *sc, int lednum, int ledmode) 1956 { 1957 struct uath_cmd_ledsteady led; 1958 1959 led.lednum = htobe32(lednum); 1960 led.ledmode = htobe32(ledmode); 1961 1962 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (steady)\n", 1963 (lednum == UATH_LED_LINK) ? "link" : "activity", 1964 ledmode ? "on" : "off"); 1965 return uath_cmd_write(sc, WDCMSG_SET_LED_STEADY, &led, sizeof led, 0); 1966 } 1967 1968 static int 1969 uath_set_ledblink(struct uath_softc *sc, int lednum, int ledmode, 1970 int blinkrate, int slowmode) 1971 { 1972 struct uath_cmd_ledblink led; 1973 1974 led.lednum = htobe32(lednum); 1975 led.ledmode = htobe32(ledmode); 1976 led.blinkrate = htobe32(blinkrate); 1977 led.slowmode = htobe32(slowmode); 1978 1979 DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (blink)\n", 1980 (lednum == UATH_LED_LINK) ? "link" : "activity", 1981 ledmode ? "on" : "off"); 1982 return uath_cmd_write(sc, WDCMSG_SET_LED_BLINK, &led, sizeof led, 0); 1983 } 1984 1985 static int 1986 uath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1987 { 1988 enum ieee80211_state ostate = vap->iv_state; 1989 int error; 1990 struct ieee80211_node *ni; 1991 struct ieee80211com *ic = vap->iv_ic; 1992 struct uath_softc *sc = ic->ic_softc; 1993 struct uath_vap *uvp = UATH_VAP(vap); 1994 1995 DPRINTF(sc, UATH_DEBUG_STATE, 1996 "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], 1997 ieee80211_state_name[nstate]); 1998 1999 IEEE80211_UNLOCK(ic); 2000 UATH_LOCK(sc); 2001 callout_stop(&sc->stat_ch); 2002 callout_stop(&sc->watchdog_ch); 2003 ni = ieee80211_ref_node(vap->iv_bss); 2004 2005 switch (nstate) { 2006 case IEEE80211_S_INIT: 2007 if (ostate == IEEE80211_S_RUN) { 2008 /* turn link and activity LEDs off */ 2009 uath_set_ledstate(sc, 0); 2010 } 2011 break; 2012 2013 case IEEE80211_S_SCAN: 2014 break; 2015 2016 case IEEE80211_S_AUTH: 2017 /* XXX good place? set RTS threshold */ 2018 uath_config(sc, CFG_USER_RTS_THRESHOLD, vap->iv_rtsthreshold); 2019 /* XXX bad place */ 2020 error = uath_set_keys(sc, vap); 2021 if (error != 0) { 2022 device_printf(sc->sc_dev, 2023 "could not set crypto keys, error %d\n", error); 2024 break; 2025 } 2026 if (uath_switch_channel(sc, ni->ni_chan) != 0) { 2027 device_printf(sc->sc_dev, "could not switch channel\n"); 2028 break; 2029 } 2030 if (uath_create_connection(sc, UATH_ID_BSS) != 0) { 2031 device_printf(sc->sc_dev, 2032 "could not create connection\n"); 2033 break; 2034 } 2035 break; 2036 2037 case IEEE80211_S_ASSOC: 2038 if (uath_set_rates(sc, &ni->ni_rates) != 0) { 2039 device_printf(sc->sc_dev, 2040 "could not set negotiated rate set\n"); 2041 break; 2042 } 2043 break; 2044 2045 case IEEE80211_S_RUN: 2046 /* XXX monitor mode doesn't be tested */ 2047 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2048 uath_set_ledstate(sc, 1); 2049 break; 2050 } 2051 2052 /* 2053 * Tx rate is controlled by firmware, report the maximum 2054 * negotiated rate in ifconfig output. 2055 */ 2056 ni->ni_txrate = ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates-1]; 2057 2058 if (uath_write_associd(sc) != 0) { 2059 device_printf(sc->sc_dev, 2060 "could not write association id\n"); 2061 break; 2062 } 2063 /* turn link LED on */ 2064 uath_set_ledsteady(sc, UATH_LED_LINK, UATH_LED_ON); 2065 /* make activity LED blink */ 2066 uath_set_ledblink(sc, UATH_LED_ACTIVITY, UATH_LED_ON, 1, 2); 2067 /* set state to associated */ 2068 uath_set_ledstate(sc, 1); 2069 2070 /* start statistics timer */ 2071 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2072 break; 2073 default: 2074 break; 2075 } 2076 ieee80211_free_node(ni); 2077 UATH_UNLOCK(sc); 2078 IEEE80211_LOCK(ic); 2079 return (uvp->newstate(vap, nstate, arg)); 2080 } 2081 2082 static int 2083 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *wk, 2084 int index) 2085 { 2086 #if 0 2087 struct uath_cmd_crypto crypto; 2088 int i; 2089 2090 memset(&crypto, 0, sizeof(crypto)); 2091 crypto.keyidx = htobe32(index); 2092 crypto.magic1 = htobe32(1); 2093 crypto.size = htobe32(368); 2094 crypto.mask = htobe32(0xffff); 2095 crypto.flags = htobe32(0x80000068); 2096 if (index != UATH_DEFAULT_KEY) 2097 crypto.flags |= htobe32(index << 16); 2098 memset(crypto.magic2, 0xff, sizeof(crypto.magic2)); 2099 2100 /* 2101 * Each byte of the key must be XOR'ed with 10101010 before being 2102 * transmitted to the firmware. 2103 */ 2104 for (i = 0; i < wk->wk_keylen; i++) 2105 crypto.key[i] = wk->wk_key[i] ^ 0xaa; 2106 2107 DPRINTF(sc, UATH_DEBUG_CRYPTO, 2108 "setting crypto key index=%d len=%d\n", index, wk->wk_keylen); 2109 return uath_cmd_write(sc, WDCMSG_SET_KEY_CACHE_ENTRY, &crypto, 2110 sizeof crypto, 0); 2111 #else 2112 /* XXX support H/W cryto */ 2113 return (0); 2114 #endif 2115 } 2116 2117 static int 2118 uath_set_keys(struct uath_softc *sc, struct ieee80211vap *vap) 2119 { 2120 int i, error; 2121 2122 error = 0; 2123 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2124 const struct ieee80211_key *wk = &vap->iv_nw_keys[i]; 2125 2126 if (wk->wk_flags & (IEEE80211_KEY_XMIT|IEEE80211_KEY_RECV)) { 2127 error = uath_set_key(sc, wk, i); 2128 if (error) 2129 return (error); 2130 } 2131 } 2132 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2133 error = uath_set_key(sc, &vap->iv_nw_keys[vap->iv_def_txkey], 2134 UATH_DEFAULT_KEY); 2135 } 2136 return (error); 2137 } 2138 2139 #define UATH_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2140 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2141 2142 static void 2143 uath_sysctl_node(struct uath_softc *sc) 2144 { 2145 struct sysctl_ctx_list *ctx; 2146 struct sysctl_oid_list *child; 2147 struct sysctl_oid *tree; 2148 struct uath_stat *stats; 2149 2150 stats = &sc->sc_stat; 2151 ctx = device_get_sysctl_ctx(sc->sc_dev); 2152 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2153 2154 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2155 NULL, "UATH statistics"); 2156 child = SYSCTL_CHILDREN(tree); 2157 UATH_SYSCTL_STAT_ADD32(ctx, child, "badchunkseqnum", 2158 &stats->st_badchunkseqnum, "Bad chunk sequence numbers"); 2159 UATH_SYSCTL_STAT_ADD32(ctx, child, "invalidlen", &stats->st_invalidlen, 2160 "Invalid length"); 2161 UATH_SYSCTL_STAT_ADD32(ctx, child, "multichunk", &stats->st_multichunk, 2162 "Multi chunks"); 2163 UATH_SYSCTL_STAT_ADD32(ctx, child, "toobigrxpkt", 2164 &stats->st_toobigrxpkt, "Too big rx packets"); 2165 UATH_SYSCTL_STAT_ADD32(ctx, child, "stopinprogress", 2166 &stats->st_stopinprogress, "Stop in progress"); 2167 UATH_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", &stats->st_crcerr, 2168 "CRC errors"); 2169 UATH_SYSCTL_STAT_ADD32(ctx, child, "phyerr", &stats->st_phyerr, 2170 "PHY errors"); 2171 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_crcerr", 2172 &stats->st_decrypt_crcerr, "Decryption CRC errors"); 2173 UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_micerr", 2174 &stats->st_decrypt_micerr, "Decryption Misc errors"); 2175 UATH_SYSCTL_STAT_ADD32(ctx, child, "decomperr", &stats->st_decomperr, 2176 "Decomp errors"); 2177 UATH_SYSCTL_STAT_ADD32(ctx, child, "keyerr", &stats->st_keyerr, 2178 "Key errors"); 2179 UATH_SYSCTL_STAT_ADD32(ctx, child, "err", &stats->st_err, 2180 "Unknown errors"); 2181 2182 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_active", 2183 &stats->st_cmd_active, "Active numbers in Command queue"); 2184 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_inactive", 2185 &stats->st_cmd_inactive, "Inactive numbers in Command queue"); 2186 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_pending", 2187 &stats->st_cmd_pending, "Pending numbers in Command queue"); 2188 UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_waiting", 2189 &stats->st_cmd_waiting, "Waiting numbers in Command queue"); 2190 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_active", 2191 &stats->st_rx_active, "Active numbers in RX queue"); 2192 UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_inactive", 2193 &stats->st_rx_inactive, "Inactive numbers in RX queue"); 2194 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2195 &stats->st_tx_active, "Active numbers in TX queue"); 2196 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2197 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2198 UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2199 &stats->st_tx_pending, "Pending numbers in TX queue"); 2200 } 2201 2202 #undef UATH_SYSCTL_STAT_ADD32 2203 2204 static void 2205 uath_cmdeof(struct uath_softc *sc, struct uath_cmd *cmd) 2206 { 2207 struct uath_cmd_hdr *hdr; 2208 int dlen; 2209 2210 hdr = (struct uath_cmd_hdr *)cmd->buf; 2211 /* NB: msgid is passed thru w/o byte swapping */ 2212 #ifdef UATH_DEBUG 2213 if (sc->sc_debug & UATH_DEBUG_CMDS) { 2214 int len = be32toh(hdr->len); 2215 printf("%s: %s [ix %u] len %u status %u\n", 2216 __func__, uath_codename(be32toh(hdr->code)), 2217 hdr->msgid, len, be32toh(hdr->magic)); 2218 if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) 2219 uath_dump_cmd(cmd->buf, 2220 len > UATH_MAX_CMDSZ ? sizeof(*hdr) : len, '-'); 2221 } 2222 #endif 2223 hdr->code = be32toh(hdr->code); 2224 hdr->len = be32toh(hdr->len); 2225 hdr->magic = be32toh(hdr->magic); /* target status on return */ 2226 2227 switch (hdr->code & 0xff) { 2228 /* reply to a read command */ 2229 default: 2230 dlen = hdr->len - sizeof(*hdr); 2231 if (dlen < 0) { 2232 device_printf(sc->sc_dev, 2233 "Invalid header length %d\n", dlen); 2234 return; 2235 } 2236 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2237 "%s: code %d data len %u\n", 2238 __func__, hdr->code & 0xff, dlen); 2239 /* 2240 * The first response from the target after the 2241 * HOST_AVAILABLE has an invalid msgid so we must 2242 * treat it specially. 2243 */ 2244 if (hdr->msgid < UATH_CMD_LIST_COUNT) { 2245 uint32_t *rp = (uint32_t *)(hdr+1); 2246 u_int olen; 2247 2248 if (!(sizeof(*hdr) <= hdr->len && 2249 hdr->len < UATH_MAX_CMDSZ)) { 2250 device_printf(sc->sc_dev, 2251 "%s: invalid WDC msg length %u; " 2252 "msg ignored\n", __func__, hdr->len); 2253 return; 2254 } 2255 /* 2256 * Calculate return/receive payload size; the 2257 * first word, if present, always gives the 2258 * number of bytes--unless it's 0 in which 2259 * case a single 32-bit word should be present. 2260 */ 2261 if (dlen >= (int)sizeof(uint32_t)) { 2262 olen = be32toh(rp[0]); 2263 dlen -= sizeof(uint32_t); 2264 if (olen == 0) { 2265 /* convention is 0 =>'s one word */ 2266 olen = sizeof(uint32_t); 2267 /* XXX KASSERT(olen == dlen ) */ 2268 } 2269 } else 2270 olen = 0; 2271 if (cmd->odata != NULL) { 2272 /* NB: cmd->olen validated in uath_cmd */ 2273 if (olen > (u_int)cmd->olen) { 2274 /* XXX complain? */ 2275 device_printf(sc->sc_dev, 2276 "%s: cmd 0x%x olen %u cmd olen %u\n", 2277 __func__, hdr->code, olen, 2278 cmd->olen); 2279 olen = cmd->olen; 2280 } 2281 if (olen > (u_int)dlen) { 2282 /* XXX complain, shouldn't happen */ 2283 device_printf(sc->sc_dev, 2284 "%s: cmd 0x%x olen %u dlen %u\n", 2285 __func__, hdr->code, olen, dlen); 2286 olen = dlen; 2287 } 2288 /* XXX have submitter do this */ 2289 /* copy answer into caller's supplied buffer */ 2290 bcopy(&rp[1], cmd->odata, olen); 2291 cmd->olen = olen; 2292 } 2293 } 2294 wakeup_one(cmd); /* wake up caller */ 2295 break; 2296 2297 case WDCMSG_TARGET_START: 2298 if (hdr->msgid >= UATH_CMD_LIST_COUNT) { 2299 /* XXX */ 2300 return; 2301 } 2302 dlen = hdr->len - sizeof(*hdr); 2303 if (dlen != (int)sizeof(uint32_t)) { 2304 /* XXX something wrong */ 2305 return; 2306 } 2307 /* XXX have submitter do this */ 2308 /* copy answer into caller's supplied buffer */ 2309 bcopy(hdr+1, cmd->odata, sizeof(uint32_t)); 2310 cmd->olen = sizeof(uint32_t); 2311 wakeup_one(cmd); /* wake up caller */ 2312 break; 2313 2314 case WDCMSG_SEND_COMPLETE: 2315 /* this notification is sent when UATH_TX_NOTIFY is set */ 2316 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2317 "%s: received Tx notification\n", __func__); 2318 break; 2319 2320 case WDCMSG_TARGET_GET_STATS: 2321 DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, 2322 "%s: received device statistics\n", __func__); 2323 callout_reset(&sc->stat_ch, hz, uath_stat, sc); 2324 break; 2325 } 2326 } 2327 2328 static void 2329 uath_intr_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2330 { 2331 struct uath_softc *sc = usbd_xfer_softc(xfer); 2332 struct uath_cmd *cmd; 2333 struct usb_page_cache *pc; 2334 int actlen; 2335 2336 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2337 2338 UATH_ASSERT_LOCKED(sc); 2339 2340 switch (USB_GET_STATE(xfer)) { 2341 case USB_ST_TRANSFERRED: 2342 cmd = STAILQ_FIRST(&sc->sc_cmd_waiting); 2343 if (cmd == NULL) 2344 goto setup; 2345 STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next); 2346 UATH_STAT_DEC(sc, st_cmd_waiting); 2347 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); 2348 UATH_STAT_INC(sc, st_cmd_inactive); 2349 2350 KASSERT(actlen >= (int)sizeof(struct uath_cmd_hdr), 2351 ("short xfer error")); 2352 pc = usbd_xfer_get_frame(xfer, 0); 2353 usbd_copy_out(pc, 0, cmd->buf, actlen); 2354 uath_cmdeof(sc, cmd); 2355 case USB_ST_SETUP: 2356 setup: 2357 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2358 usbd_transfer_submit(xfer); 2359 break; 2360 default: 2361 if (error != USB_ERR_CANCELLED) { 2362 usbd_xfer_set_stall(xfer); 2363 goto setup; 2364 } 2365 break; 2366 } 2367 } 2368 2369 static void 2370 uath_intr_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2371 { 2372 struct uath_softc *sc = usbd_xfer_softc(xfer); 2373 struct uath_cmd *cmd; 2374 2375 UATH_ASSERT_LOCKED(sc); 2376 2377 cmd = STAILQ_FIRST(&sc->sc_cmd_active); 2378 if (cmd != NULL && USB_GET_STATE(xfer) != USB_ST_SETUP) { 2379 STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next); 2380 UATH_STAT_DEC(sc, st_cmd_active); 2381 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_READ) ? 2382 &sc->sc_cmd_waiting : &sc->sc_cmd_inactive, cmd, next); 2383 if (cmd->flags & UATH_CMD_FLAG_READ) 2384 UATH_STAT_INC(sc, st_cmd_waiting); 2385 else 2386 UATH_STAT_INC(sc, st_cmd_inactive); 2387 } 2388 2389 switch (USB_GET_STATE(xfer)) { 2390 case USB_ST_TRANSFERRED: 2391 case USB_ST_SETUP: 2392 setup: 2393 cmd = STAILQ_FIRST(&sc->sc_cmd_pending); 2394 if (cmd == NULL) { 2395 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2396 __func__); 2397 return; 2398 } 2399 STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next); 2400 UATH_STAT_DEC(sc, st_cmd_pending); 2401 STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_ASYNC) ? 2402 &sc->sc_cmd_inactive : &sc->sc_cmd_active, cmd, next); 2403 if (cmd->flags & UATH_CMD_FLAG_ASYNC) 2404 UATH_STAT_INC(sc, st_cmd_inactive); 2405 else 2406 UATH_STAT_INC(sc, st_cmd_active); 2407 2408 usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); 2409 usbd_transfer_submit(xfer); 2410 break; 2411 default: 2412 if (error != USB_ERR_CANCELLED) { 2413 usbd_xfer_set_stall(xfer); 2414 goto setup; 2415 } 2416 break; 2417 } 2418 } 2419 2420 static void 2421 uath_update_rxstat(struct uath_softc *sc, uint32_t status) 2422 { 2423 2424 switch (status) { 2425 case UATH_STATUS_STOP_IN_PROGRESS: 2426 UATH_STAT_INC(sc, st_stopinprogress); 2427 break; 2428 case UATH_STATUS_CRC_ERR: 2429 UATH_STAT_INC(sc, st_crcerr); 2430 break; 2431 case UATH_STATUS_PHY_ERR: 2432 UATH_STAT_INC(sc, st_phyerr); 2433 break; 2434 case UATH_STATUS_DECRYPT_CRC_ERR: 2435 UATH_STAT_INC(sc, st_decrypt_crcerr); 2436 break; 2437 case UATH_STATUS_DECRYPT_MIC_ERR: 2438 UATH_STAT_INC(sc, st_decrypt_micerr); 2439 break; 2440 case UATH_STATUS_DECOMP_ERR: 2441 UATH_STAT_INC(sc, st_decomperr); 2442 break; 2443 case UATH_STATUS_KEY_ERR: 2444 UATH_STAT_INC(sc, st_keyerr); 2445 break; 2446 case UATH_STATUS_ERR: 2447 UATH_STAT_INC(sc, st_err); 2448 break; 2449 default: 2450 break; 2451 } 2452 } 2453 2454 static struct mbuf * 2455 uath_data_rxeof(struct usb_xfer *xfer, struct uath_data *data, 2456 struct uath_rx_desc **pdesc) 2457 { 2458 struct uath_softc *sc = usbd_xfer_softc(xfer); 2459 struct ieee80211com *ic = &sc->sc_ic; 2460 struct uath_chunk *chunk; 2461 struct uath_rx_desc *desc; 2462 struct mbuf *m = data->m, *mnew, *mp; 2463 uint16_t chunklen; 2464 int actlen; 2465 2466 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2467 2468 if (actlen < (int)UATH_MIN_RXBUFSZ) { 2469 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2470 "%s: wrong xfer size (len=%d)\n", __func__, actlen); 2471 counter_u64_add(ic->ic_ierrors, 1); 2472 return (NULL); 2473 } 2474 2475 chunk = (struct uath_chunk *)data->buf; 2476 if (chunk->seqnum == 0 && chunk->flags == 0 && chunk->length == 0) { 2477 device_printf(sc->sc_dev, "%s: strange response\n", __func__); 2478 counter_u64_add(ic->ic_ierrors, 1); 2479 UATH_RESET_INTRX(sc); 2480 return (NULL); 2481 } 2482 2483 if (chunk->seqnum != sc->sc_intrx_nextnum) { 2484 DPRINTF(sc, UATH_DEBUG_XMIT, "invalid seqnum %d, expected %d\n", 2485 chunk->seqnum, sc->sc_intrx_nextnum); 2486 UATH_STAT_INC(sc, st_badchunkseqnum); 2487 if (sc->sc_intrx_head != NULL) 2488 m_freem(sc->sc_intrx_head); 2489 UATH_RESET_INTRX(sc); 2490 return (NULL); 2491 } 2492 2493 /* check multi-chunk frames */ 2494 if ((chunk->seqnum == 0 && !(chunk->flags & UATH_CFLAGS_FINAL)) || 2495 (chunk->seqnum != 0 && (chunk->flags & UATH_CFLAGS_FINAL)) || 2496 chunk->flags & UATH_CFLAGS_RXMSG) 2497 UATH_STAT_INC(sc, st_multichunk); 2498 2499 chunklen = be16toh(chunk->length); 2500 if (chunk->flags & UATH_CFLAGS_FINAL) 2501 chunklen -= sizeof(struct uath_rx_desc); 2502 2503 if (chunklen > 0 && 2504 (!(chunk->flags & UATH_CFLAGS_FINAL) || !(chunk->seqnum == 0))) { 2505 /* we should use intermediate RX buffer */ 2506 if (chunk->seqnum == 0) 2507 UATH_RESET_INTRX(sc); 2508 if ((sc->sc_intrx_len + sizeof(struct uath_rx_desc) + 2509 chunklen) > UATH_MAX_INTRX_SIZE) { 2510 UATH_STAT_INC(sc, st_invalidlen); 2511 counter_u64_add(ic->ic_ierrors, 1); 2512 if (sc->sc_intrx_head != NULL) 2513 m_freem(sc->sc_intrx_head); 2514 UATH_RESET_INTRX(sc); 2515 return (NULL); 2516 } 2517 2518 m->m_len = chunklen; 2519 m->m_data += sizeof(struct uath_chunk); 2520 2521 if (sc->sc_intrx_head == NULL) { 2522 sc->sc_intrx_head = m; 2523 sc->sc_intrx_tail = m; 2524 } else { 2525 m->m_flags &= ~M_PKTHDR; 2526 sc->sc_intrx_tail->m_next = m; 2527 sc->sc_intrx_tail = m; 2528 } 2529 } 2530 sc->sc_intrx_len += chunklen; 2531 2532 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2533 if (mnew == NULL) { 2534 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2535 "%s: can't get new mbuf, drop frame\n", __func__); 2536 counter_u64_add(ic->ic_ierrors, 1); 2537 if (sc->sc_intrx_head != NULL) 2538 m_freem(sc->sc_intrx_head); 2539 UATH_RESET_INTRX(sc); 2540 return (NULL); 2541 } 2542 2543 data->m = mnew; 2544 data->buf = mtod(mnew, uint8_t *); 2545 2546 /* if the frame is not final continue the transfer */ 2547 if (!(chunk->flags & UATH_CFLAGS_FINAL)) { 2548 sc->sc_intrx_nextnum++; 2549 UATH_RESET_INTRX(sc); 2550 return (NULL); 2551 } 2552 2553 /* 2554 * if the frame is not set UATH_CFLAGS_RXMSG, then rx descriptor is 2555 * located at the end, 32-bit aligned 2556 */ 2557 desc = (chunk->flags & UATH_CFLAGS_RXMSG) ? 2558 (struct uath_rx_desc *)(chunk + 1) : 2559 (struct uath_rx_desc *)(((uint8_t *)chunk) + 2560 sizeof(struct uath_chunk) + be16toh(chunk->length) - 2561 sizeof(struct uath_rx_desc)); 2562 *pdesc = desc; 2563 2564 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2565 "%s: frame len %u code %u status %u rate %u antenna %u " 2566 "rssi %d channel %u phyerror %u connix %u decrypterror %u " 2567 "keycachemiss %u\n", __func__, be32toh(desc->framelen) 2568 , be32toh(desc->code), be32toh(desc->status), be32toh(desc->rate) 2569 , be32toh(desc->antenna), be32toh(desc->rssi), be32toh(desc->channel) 2570 , be32toh(desc->phyerror), be32toh(desc->connix) 2571 , be32toh(desc->decrypterror), be32toh(desc->keycachemiss)); 2572 2573 if (be32toh(desc->len) > MCLBYTES) { 2574 DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, 2575 "%s: bad descriptor (len=%d)\n", __func__, 2576 be32toh(desc->len)); 2577 counter_u64_add(ic->ic_ierrors, 1); 2578 UATH_STAT_INC(sc, st_toobigrxpkt); 2579 if (sc->sc_intrx_head != NULL) 2580 m_freem(sc->sc_intrx_head); 2581 UATH_RESET_INTRX(sc); 2582 return (NULL); 2583 } 2584 2585 uath_update_rxstat(sc, be32toh(desc->status)); 2586 2587 /* finalize mbuf */ 2588 if (sc->sc_intrx_head == NULL) { 2589 m->m_pkthdr.len = m->m_len = 2590 be32toh(desc->framelen) - UATH_RX_DUMMYSIZE; 2591 m->m_data += sizeof(struct uath_chunk); 2592 } else { 2593 mp = sc->sc_intrx_head; 2594 mp->m_flags |= M_PKTHDR; 2595 mp->m_pkthdr.len = sc->sc_intrx_len; 2596 m = mp; 2597 } 2598 2599 /* there are a lot more fields in the RX descriptor */ 2600 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0 && 2601 ieee80211_radiotap_active(ic)) { 2602 struct uath_rx_radiotap_header *tap = &sc->sc_rxtap; 2603 uint32_t tsf_hi = be32toh(desc->tstamp_high); 2604 uint32_t tsf_lo = be32toh(desc->tstamp_low); 2605 2606 /* XXX only get low order 24bits of tsf from h/w */ 2607 tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 2608 tap->wr_flags = 0; 2609 if (be32toh(desc->status) == UATH_STATUS_CRC_ERR) 2610 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2611 /* XXX map other status to BADFCS? */ 2612 /* XXX ath h/w rate code, need to map */ 2613 tap->wr_rate = be32toh(desc->rate); 2614 tap->wr_antenna = be32toh(desc->antenna); 2615 tap->wr_antsignal = -95 + be32toh(desc->rssi); 2616 tap->wr_antnoise = -95; 2617 } 2618 2619 UATH_RESET_INTRX(sc); 2620 2621 return (m); 2622 } 2623 2624 static void 2625 uath_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2626 { 2627 struct uath_softc *sc = usbd_xfer_softc(xfer); 2628 struct ieee80211com *ic = &sc->sc_ic; 2629 struct ieee80211_frame *wh; 2630 struct ieee80211_node *ni; 2631 struct mbuf *m = NULL; 2632 struct uath_data *data; 2633 struct uath_rx_desc *desc = NULL; 2634 int8_t nf; 2635 2636 UATH_ASSERT_LOCKED(sc); 2637 2638 switch (USB_GET_STATE(xfer)) { 2639 case USB_ST_TRANSFERRED: 2640 data = STAILQ_FIRST(&sc->sc_rx_active); 2641 if (data == NULL) 2642 goto setup; 2643 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2644 UATH_STAT_DEC(sc, st_rx_active); 2645 m = uath_data_rxeof(xfer, data, &desc); 2646 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2647 UATH_STAT_INC(sc, st_rx_inactive); 2648 /* FALLTHROUGH */ 2649 case USB_ST_SETUP: 2650 setup: 2651 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2652 if (data == NULL) 2653 return; 2654 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2655 UATH_STAT_DEC(sc, st_rx_inactive); 2656 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2657 UATH_STAT_INC(sc, st_rx_active); 2658 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); 2659 usbd_transfer_submit(xfer); 2660 2661 /* 2662 * To avoid LOR we should unlock our private mutex here to call 2663 * ieee80211_input() because here is at the end of a USB 2664 * callback and safe to unlock. 2665 */ 2666 if (sc->sc_flags & UATH_FLAG_INVALID) { 2667 if (m != NULL) 2668 m_freem(m); 2669 return; 2670 } 2671 UATH_UNLOCK(sc); 2672 if (m != NULL && desc != NULL) { 2673 wh = mtod(m, struct ieee80211_frame *); 2674 ni = ieee80211_find_rxnode(ic, 2675 (struct ieee80211_frame_min *)wh); 2676 nf = -95; /* XXX */ 2677 if (ni != NULL) { 2678 (void) ieee80211_input(ni, m, 2679 (int)be32toh(desc->rssi), nf); 2680 /* node is no longer needed */ 2681 ieee80211_free_node(ni); 2682 } else 2683 (void) ieee80211_input_all(ic, m, 2684 (int)be32toh(desc->rssi), nf); 2685 m = NULL; 2686 desc = NULL; 2687 } 2688 UATH_LOCK(sc); 2689 uath_start(sc); 2690 break; 2691 default: 2692 /* needs it to the inactive queue due to a error. */ 2693 data = STAILQ_FIRST(&sc->sc_rx_active); 2694 if (data != NULL) { 2695 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2696 UATH_STAT_DEC(sc, st_rx_active); 2697 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2698 UATH_STAT_INC(sc, st_rx_inactive); 2699 } 2700 if (error != USB_ERR_CANCELLED) { 2701 usbd_xfer_set_stall(xfer); 2702 counter_u64_add(ic->ic_ierrors, 1); 2703 goto setup; 2704 } 2705 break; 2706 } 2707 } 2708 2709 static void 2710 uath_data_txeof(struct usb_xfer *xfer, struct uath_data *data) 2711 { 2712 struct uath_softc *sc = usbd_xfer_softc(xfer); 2713 2714 UATH_ASSERT_LOCKED(sc); 2715 2716 if (data->m) { 2717 /* XXX status? */ 2718 ieee80211_tx_complete(data->ni, data->m, 0); 2719 data->m = NULL; 2720 data->ni = NULL; 2721 } 2722 sc->sc_tx_timer = 0; 2723 } 2724 2725 static void 2726 uath_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2727 { 2728 struct uath_softc *sc = usbd_xfer_softc(xfer); 2729 struct uath_data *data; 2730 2731 UATH_ASSERT_LOCKED(sc); 2732 2733 switch (USB_GET_STATE(xfer)) { 2734 case USB_ST_TRANSFERRED: 2735 data = STAILQ_FIRST(&sc->sc_tx_active); 2736 if (data == NULL) 2737 goto setup; 2738 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2739 UATH_STAT_DEC(sc, st_tx_active); 2740 uath_data_txeof(xfer, data); 2741 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2742 UATH_STAT_INC(sc, st_tx_inactive); 2743 /* FALLTHROUGH */ 2744 case USB_ST_SETUP: 2745 setup: 2746 data = STAILQ_FIRST(&sc->sc_tx_pending); 2747 if (data == NULL) { 2748 DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", 2749 __func__); 2750 return; 2751 } 2752 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2753 UATH_STAT_DEC(sc, st_tx_pending); 2754 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2755 UATH_STAT_INC(sc, st_tx_active); 2756 2757 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2758 usbd_transfer_submit(xfer); 2759 2760 uath_start(sc); 2761 break; 2762 default: 2763 data = STAILQ_FIRST(&sc->sc_tx_active); 2764 if (data == NULL) 2765 goto setup; 2766 if (data->ni != NULL) { 2767 if_inc_counter(data->ni->ni_vap->iv_ifp, 2768 IFCOUNTER_OERRORS, 1); 2769 if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) 2770 ieee80211_free_node(data->ni); 2771 data->ni = NULL; 2772 } 2773 if (error != USB_ERR_CANCELLED) { 2774 usbd_xfer_set_stall(xfer); 2775 goto setup; 2776 } 2777 break; 2778 } 2779 } 2780 2781 static device_method_t uath_methods[] = { 2782 DEVMETHOD(device_probe, uath_match), 2783 DEVMETHOD(device_attach, uath_attach), 2784 DEVMETHOD(device_detach, uath_detach), 2785 DEVMETHOD_END 2786 }; 2787 static driver_t uath_driver = { 2788 .name = "uath", 2789 .methods = uath_methods, 2790 .size = sizeof(struct uath_softc) 2791 }; 2792 static devclass_t uath_devclass; 2793 2794 DRIVER_MODULE(uath, uhub, uath_driver, uath_devclass, NULL, 0); 2795 MODULE_DEPEND(uath, wlan, 1, 1, 1); 2796 MODULE_DEPEND(uath, usb, 1, 1, 1); 2797 MODULE_VERSION(uath, 1); 2798 USB_PNP_HOST_INFO(uath_devs); 2799