1 /*- 2 * Copyright (c) 2003 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bus.h> 33 #include <sys/conf.h> 34 #include <sys/cons.h> 35 #include <sys/fcntl.h> 36 #include <sys/interrupt.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/reboot.h> 40 #include <machine/bus.h> 41 #include <sys/rman.h> 42 #include <sys/termios.h> 43 #include <sys/tty.h> 44 #include <machine/resource.h> 45 #include <machine/stdarg.h> 46 47 #include <dev/uart/uart.h> 48 #include <dev/uart/uart_bus.h> 49 #include <dev/uart/uart_cpu.h> 50 51 #include "uart_if.h" 52 53 static cn_probe_t uart_cnprobe; 54 static cn_init_t uart_cninit; 55 static cn_term_t uart_cnterm; 56 static cn_getc_t uart_cngetc; 57 static cn_putc_t uart_cnputc; 58 59 CONSOLE_DRIVER(uart); 60 61 static struct uart_devinfo uart_console; 62 63 static void 64 uart_cnprobe(struct consdev *cp) 65 { 66 67 cp->cn_pri = CN_DEAD; 68 69 KASSERT(uart_console.cookie == NULL, ("foo")); 70 71 if (uart_cpu_getdev(UART_DEV_CONSOLE, &uart_console)) 72 return; 73 74 if (uart_probe(&uart_console)) 75 return; 76 77 strlcpy(cp->cn_name, uart_driver_name, sizeof(cp->cn_name)); 78 cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL; 79 cp->cn_arg = &uart_console; 80 } 81 82 static void 83 uart_cninit(struct consdev *cp) 84 { 85 struct uart_devinfo *di; 86 87 /* 88 * Yedi trick: we need to be able to define cn_dev before we go 89 * single- or multi-user. The problem is that we don't know at 90 * this time what the device will be. Hence, we need to link from 91 * the uart_devinfo to the consdev that corresponds to it so that 92 * we can define cn_dev in uart_bus_attach() when we find the 93 * device during bus enumeration. That's when we'll know what the 94 * the unit number will be. 95 */ 96 di = cp->cn_arg; 97 KASSERT(di->cookie == NULL, ("foo")); 98 di->cookie = cp; 99 di->type = UART_DEV_CONSOLE; 100 uart_add_sysdev(di); 101 uart_init(di); 102 } 103 104 static void 105 uart_cnterm(struct consdev *cp) 106 { 107 108 uart_term(cp->cn_arg); 109 } 110 111 static void 112 uart_cnputc(struct consdev *cp, int c) 113 { 114 115 uart_putc(cp->cn_arg, c); 116 } 117 118 static int 119 uart_cngetc(struct consdev *cp) 120 { 121 122 return (uart_poll(cp->cn_arg)); 123 } 124 125 static int 126 uart_tty_open(struct tty *tp, struct cdev *dev) 127 { 128 struct uart_softc *sc; 129 130 sc = tp->t_sc; 131 132 if (sc == NULL || sc->sc_leaving) 133 return (ENXIO); 134 135 sc->sc_opened = 1; 136 return (0); 137 } 138 139 static void 140 uart_tty_close(struct tty *tp) 141 { 142 struct uart_softc *sc; 143 144 sc = tp->t_sc; 145 if (sc == NULL || sc->sc_leaving || !sc->sc_opened) 146 return; 147 148 if (sc->sc_hwiflow) 149 UART_IOCTL(sc, UART_IOCTL_IFLOW, 0); 150 if (sc->sc_hwoflow) 151 UART_IOCTL(sc, UART_IOCTL_OFLOW, 0); 152 if (sc->sc_sysdev == NULL) 153 UART_SETSIG(sc, SER_DDTR | SER_DRTS); 154 155 wakeup(sc); 156 sc->sc_opened = 0; 157 return; 158 } 159 160 static void 161 uart_tty_oproc(struct tty *tp) 162 { 163 struct uart_softc *sc; 164 165 sc = tp->t_sc; 166 if (sc == NULL || sc->sc_leaving) 167 return; 168 169 /* 170 * Handle input flow control. Note that if we have hardware support, 171 * we don't do anything here. We continue to receive until our buffer 172 * is full. At that time we cannot empty the UART itself and it will 173 * de-assert RTS for us. In that situation we're completely stuffed. 174 * Without hardware support, we need to toggle RTS ourselves. 175 */ 176 if ((tp->t_cflag & CRTS_IFLOW) && !sc->sc_hwiflow) { 177 if ((tp->t_state & TS_TBLOCK) && 178 (sc->sc_hwsig & SER_RTS)) 179 UART_SETSIG(sc, SER_DRTS); 180 else if (!(tp->t_state & TS_TBLOCK) && 181 !(sc->sc_hwsig & SER_RTS)) 182 UART_SETSIG(sc, SER_DRTS|SER_RTS); 183 } 184 185 if (tp->t_state & TS_TTSTOP) 186 return; 187 188 if ((tp->t_state & TS_BUSY) || sc->sc_txbusy) 189 return; 190 191 if (tp->t_outq.c_cc == 0) { 192 ttwwakeup(tp); 193 return; 194 } 195 196 sc->sc_txdatasz = q_to_b(&tp->t_outq, sc->sc_txbuf, sc->sc_txfifosz); 197 tp->t_state |= TS_BUSY; 198 UART_TRANSMIT(sc); 199 ttwwakeup(tp); 200 } 201 202 static int 203 uart_tty_param(struct tty *tp, struct termios *t) 204 { 205 struct uart_softc *sc; 206 int databits, parity, stopbits; 207 208 sc = tp->t_sc; 209 if (sc == NULL || sc->sc_leaving) 210 return (ENODEV); 211 if (t->c_ispeed != t->c_ospeed && t->c_ospeed != 0) 212 return (EINVAL); 213 /* Fixate certain parameters for system devices. */ 214 if (sc->sc_sysdev != NULL) { 215 t->c_ispeed = t->c_ospeed = sc->sc_sysdev->baudrate; 216 t->c_cflag |= CLOCAL; 217 t->c_cflag &= ~HUPCL; 218 } 219 if (t->c_ospeed == 0) { 220 UART_SETSIG(sc, SER_DDTR | SER_DRTS); 221 return (0); 222 } 223 switch (t->c_cflag & CSIZE) { 224 case CS5: databits = 5; break; 225 case CS6: databits = 6; break; 226 case CS7: databits = 7; break; 227 default: databits = 8; break; 228 } 229 stopbits = (t->c_cflag & CSTOPB) ? 2 : 1; 230 if (t->c_cflag & PARENB) 231 parity = (t->c_cflag & PARODD) ? UART_PARITY_ODD 232 : UART_PARITY_EVEN; 233 else 234 parity = UART_PARITY_NONE; 235 if (UART_PARAM(sc, t->c_ospeed, databits, stopbits, parity) != 0) 236 return (EINVAL); 237 UART_SETSIG(sc, SER_DDTR | SER_DTR); 238 /* Set input flow control state. */ 239 if (!sc->sc_hwiflow) { 240 if ((t->c_cflag & CRTS_IFLOW) && (tp->t_state & TS_TBLOCK)) 241 UART_SETSIG(sc, SER_DRTS); 242 else 243 UART_SETSIG(sc, SER_DRTS | SER_RTS); 244 } else 245 UART_IOCTL(sc, UART_IOCTL_IFLOW, (t->c_cflag & CRTS_IFLOW)); 246 /* Set output flow control state. */ 247 if (sc->sc_hwoflow) 248 UART_IOCTL(sc, UART_IOCTL_OFLOW, (t->c_cflag & CCTS_OFLOW)); 249 ttsetwater(tp); 250 return (0); 251 } 252 253 static int 254 uart_tty_modem(struct tty *tp, int biton, int bitoff) 255 { 256 struct uart_softc *sc; 257 258 sc = tp->t_sc; 259 if (biton != 0 || bitoff != 0) 260 UART_SETSIG(sc, SER_DELTA(bitoff|biton) | biton); 261 return (sc->sc_hwsig); 262 } 263 264 static void 265 uart_tty_break(struct tty *tp, int state) 266 { 267 struct uart_softc *sc; 268 269 sc = tp->t_sc; 270 UART_IOCTL(sc, UART_IOCTL_BREAK, state); 271 } 272 273 static void 274 uart_tty_stop(struct tty *tp, int rw) 275 { 276 struct uart_softc *sc; 277 278 sc = tp->t_sc; 279 if (sc == NULL || sc->sc_leaving) 280 return; 281 if (rw & FWRITE) { 282 if (sc->sc_txbusy) { 283 sc->sc_txbusy = 0; 284 UART_FLUSH(sc, UART_FLUSH_TRANSMITTER); 285 } 286 tp->t_state &= ~TS_BUSY; 287 } 288 if (rw & FREAD) { 289 UART_FLUSH(sc, UART_FLUSH_RECEIVER); 290 sc->sc_rxget = sc->sc_rxput = 0; 291 } 292 } 293 294 void 295 uart_tty_intr(void *arg) 296 { 297 struct uart_softc *sc = arg; 298 struct tty *tp; 299 int c, pend, sig, xc; 300 301 if (sc->sc_leaving) 302 return; 303 304 pend = atomic_readandclear_32(&sc->sc_ttypend); 305 if (!(pend & SER_INT_MASK)) 306 return; 307 308 tp = sc->sc_u.u_tty.tp; 309 310 if (pend & SER_INT_RXREADY) { 311 while (!uart_rx_empty(sc) && !(tp->t_state & TS_TBLOCK)) { 312 xc = uart_rx_get(sc); 313 c = xc & 0xff; 314 if (xc & UART_STAT_FRAMERR) 315 c |= TTY_FE; 316 if (xc & UART_STAT_PARERR) 317 c |= TTY_PE; 318 ttyld_rint(tp, c); 319 } 320 } 321 322 if (pend & SER_INT_BREAK) { 323 if (tp != NULL && !(tp->t_iflag & IGNBRK)) 324 ttyld_rint(tp, 0); 325 } 326 327 if (pend & SER_INT_SIGCHG) { 328 sig = pend & SER_INT_SIGMASK; 329 if (sig & SER_DDCD) 330 ttyld_modem(tp, sig & SER_DCD); 331 if ((sig & SER_DCTS) && (tp->t_cflag & CCTS_OFLOW) && 332 !sc->sc_hwoflow) { 333 if (sig & SER_CTS) { 334 tp->t_state &= ~TS_TTSTOP; 335 ttyld_start(tp); 336 } else 337 tp->t_state |= TS_TTSTOP; 338 } 339 } 340 341 if (pend & SER_INT_TXIDLE) { 342 tp->t_state &= ~TS_BUSY; 343 ttyld_start(tp); 344 } 345 } 346 347 int 348 uart_tty_attach(struct uart_softc *sc) 349 { 350 struct tty *tp; 351 int unit; 352 353 tp = ttyalloc(); 354 sc->sc_u.u_tty.tp = tp; 355 tp->t_sc = sc; 356 357 unit = device_get_unit(sc->sc_dev); 358 359 tp->t_oproc = uart_tty_oproc; 360 tp->t_param = uart_tty_param; 361 tp->t_stop = uart_tty_stop; 362 tp->t_modem = uart_tty_modem; 363 tp->t_break = uart_tty_break; 364 tp->t_open = uart_tty_open; 365 tp->t_close = uart_tty_close; 366 367 tp->t_pps = &sc->sc_pps; 368 369 if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) { 370 sprintf(((struct consdev *)sc->sc_sysdev->cookie)->cn_name, 371 "ttyu%r", unit); 372 ttyconsolemode(tp, 0); 373 } 374 375 swi_add(&tty_intr_event, uart_driver_name, uart_tty_intr, sc, SWI_TTY, 376 INTR_TYPE_TTY, &sc->sc_softih); 377 378 ttycreate(tp, TS_CALLOUT, "u%r", unit); 379 380 return (0); 381 } 382 383 int uart_tty_detach(struct uart_softc *sc) 384 { 385 struct tty *tp; 386 387 tp = sc->sc_u.u_tty.tp; 388 tp->t_pps = NULL; 389 ttygone(tp); 390 swi_remove(sc->sc_softih); 391 ttyfree(tp); 392 393 return (0); 394 } 395