1 /* 2 * Copyright (c) 2003 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bus.h> 33 #include <sys/conf.h> 34 #include <sys/cons.h> 35 #include <sys/fcntl.h> 36 #include <sys/interrupt.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/reboot.h> 40 #include <machine/bus.h> 41 #include <sys/rman.h> 42 #include <sys/termios.h> 43 #include <sys/tty.h> 44 #include <machine/resource.h> 45 #include <machine/stdarg.h> 46 47 #include <dev/uart/uart.h> 48 #include <dev/uart/uart_bus.h> 49 #include <dev/uart/uart_cpu.h> 50 51 #include "uart_if.h" 52 53 #define UART_MINOR_CALLOUT 0x10000 54 55 static cn_probe_t uart_cnprobe; 56 static cn_init_t uart_cninit; 57 static cn_term_t uart_cnterm; 58 static cn_getc_t uart_cngetc; 59 static cn_checkc_t uart_cncheckc; 60 static cn_putc_t uart_cnputc; 61 62 CONS_DRIVER(uart, uart_cnprobe, uart_cninit, uart_cnterm, uart_cngetc, 63 uart_cncheckc, uart_cnputc, NULL); 64 65 static d_open_t uart_tty_open; 66 static d_close_t uart_tty_close; 67 static d_ioctl_t uart_tty_ioctl; 68 69 static struct cdevsw uart_cdevsw = { 70 .d_open = uart_tty_open, 71 .d_close = uart_tty_close, 72 .d_read = ttyread, 73 .d_write = ttywrite, 74 .d_ioctl = uart_tty_ioctl, 75 .d_poll = ttypoll, 76 .d_name = uart_driver_name, 77 .d_maj = MAJOR_AUTO, 78 .d_flags = D_TTY, 79 .d_kqfilter = ttykqfilter, 80 }; 81 82 static struct uart_devinfo uart_console; 83 84 static void 85 uart_cnprobe(struct consdev *cp) 86 { 87 88 cp->cn_pri = CN_DEAD; 89 90 KASSERT(uart_console.cookie == NULL, ("foo")); 91 92 if (uart_cpu_getdev(UART_DEV_CONSOLE, &uart_console)) 93 return; 94 95 if (uart_probe(&uart_console)) 96 return; 97 98 cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL; 99 cp->cn_arg = &uart_console; 100 } 101 102 static void 103 uart_cninit(struct consdev *cp) 104 { 105 struct uart_devinfo *di; 106 107 /* 108 * Yedi trick: we need to be able to define cn_dev before we go 109 * single- or multi-user. The problem is that we don't know at 110 * this time what the device will be. Hence, we need to link from 111 * the uart_devinfo to the consdev that corresponds to it so that 112 * we can define cn_dev in uart_bus_attach() when we find the 113 * device during bus enumeration. That's when we'll know what the 114 * the unit number will be. 115 */ 116 di = cp->cn_arg; 117 KASSERT(di->cookie == NULL, ("foo")); 118 di->cookie = cp; 119 di->type = UART_DEV_CONSOLE; 120 uart_add_sysdev(di); 121 uart_init(di); 122 } 123 124 static void 125 uart_cnterm(struct consdev *cp) 126 { 127 128 uart_term(cp->cn_arg); 129 } 130 131 static void 132 uart_cnputc(struct consdev *cp, int c) 133 { 134 135 uart_putc(cp->cn_arg, c); 136 } 137 138 static int 139 uart_cncheckc(struct consdev *cp) 140 { 141 142 return (uart_poll(cp->cn_arg)); 143 } 144 145 static int 146 uart_cngetc(struct consdev *cp) 147 { 148 149 return (uart_getc(cp->cn_arg)); 150 } 151 152 static void 153 uart_tty_oproc(struct tty *tp) 154 { 155 struct uart_softc *sc; 156 157 KASSERT(tp->t_dev != NULL, ("foo")); 158 sc = tp->t_dev->si_drv1; 159 if (sc == NULL || sc->sc_leaving) 160 return; 161 162 /* 163 * Handle input flow control. Note that if we have hardware support, 164 * we don't do anything here. We continue to receive until our buffer 165 * is full. At that time we cannot empty the UART itself and it will 166 * de-assert RTS for us. In that situation we're completely stuffed. 167 * Without hardware support, we need to toggle RTS ourselves. 168 */ 169 if ((tp->t_cflag & CRTS_IFLOW) && !sc->sc_hwiflow) { 170 if ((tp->t_state & TS_TBLOCK) && 171 (sc->sc_hwsig & UART_SIG_RTS)) 172 UART_SETSIG(sc, UART_SIG_DRTS); 173 else if (!(tp->t_state & TS_TBLOCK) && 174 !(sc->sc_hwsig & UART_SIG_RTS)) 175 UART_SETSIG(sc, UART_SIG_DRTS|UART_SIG_RTS); 176 } 177 178 if (tp->t_state & TS_TTSTOP) 179 return; 180 181 if ((tp->t_state & TS_BUSY) || sc->sc_txbusy) 182 return; 183 184 if (tp->t_outq.c_cc == 0) { 185 ttwwakeup(tp); 186 return; 187 } 188 189 sc->sc_txdatasz = q_to_b(&tp->t_outq, sc->sc_txbuf, sc->sc_txfifosz); 190 tp->t_state |= TS_BUSY; 191 UART_TRANSMIT(sc); 192 ttwwakeup(tp); 193 } 194 195 static int 196 uart_tty_param(struct tty *tp, struct termios *t) 197 { 198 struct uart_softc *sc; 199 int databits, parity, stopbits; 200 201 KASSERT(tp->t_dev != NULL, ("foo")); 202 sc = tp->t_dev->si_drv1; 203 if (sc == NULL || sc->sc_leaving) 204 return (ENODEV); 205 if (t->c_ispeed != t->c_ospeed && t->c_ospeed != 0) 206 return (EINVAL); 207 /* Fixate certain parameters for system devices. */ 208 if (sc->sc_sysdev != NULL) { 209 t->c_ispeed = t->c_ospeed = sc->sc_sysdev->baudrate; 210 t->c_cflag |= CLOCAL; 211 t->c_cflag &= ~HUPCL; 212 } 213 if (t->c_ospeed == 0) { 214 UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DRTS); 215 return (0); 216 } 217 switch (t->c_cflag & CSIZE) { 218 case CS5: databits = 5; break; 219 case CS6: databits = 6; break; 220 case CS7: databits = 7; break; 221 default: databits = 8; break; 222 } 223 stopbits = (t->c_cflag & CSTOPB) ? 2 : 1; 224 if (t->c_cflag & PARENB) 225 parity = (t->c_cflag & PARODD) ? UART_PARITY_ODD 226 : UART_PARITY_EVEN; 227 else 228 parity = UART_PARITY_NONE; 229 UART_PARAM(sc, t->c_ospeed, databits, stopbits, parity); 230 UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DTR); 231 /* Set input flow control state. */ 232 if (!sc->sc_hwiflow) { 233 if ((t->c_cflag & CRTS_IFLOW) && (tp->t_state & TS_TBLOCK)) 234 UART_SETSIG(sc, UART_SIG_DRTS); 235 else 236 UART_SETSIG(sc, UART_SIG_DRTS | UART_SIG_RTS); 237 } else 238 UART_IOCTL(sc, UART_IOCTL_IFLOW, (t->c_cflag & CRTS_IFLOW)); 239 /* Set output flow control state. */ 240 if (sc->sc_hwoflow) 241 UART_IOCTL(sc, UART_IOCTL_OFLOW, (t->c_cflag & CCTS_OFLOW)); 242 ttsetwater(tp); 243 return (0); 244 } 245 246 static void 247 uart_tty_stop(struct tty *tp, int rw) 248 { 249 struct uart_softc *sc; 250 251 KASSERT(tp->t_dev != NULL, ("foo")); 252 sc = tp->t_dev->si_drv1; 253 if (sc == NULL || sc->sc_leaving) 254 return; 255 if (rw & FWRITE) { 256 if (sc->sc_txbusy) { 257 sc->sc_txbusy = 0; 258 UART_FLUSH(sc, UART_FLUSH_TRANSMITTER); 259 } 260 tp->t_state &= ~TS_BUSY; 261 } 262 if (rw & FREAD) { 263 UART_FLUSH(sc, UART_FLUSH_RECEIVER); 264 sc->sc_rxget = sc->sc_rxput = 0; 265 } 266 } 267 268 void 269 uart_tty_intr(void *arg) 270 { 271 struct uart_softc *sc = arg; 272 struct tty *tp; 273 int c, pend, sig, xc; 274 275 if (sc->sc_leaving) 276 return; 277 278 pend = atomic_readandclear_32(&sc->sc_ttypend); 279 if (!(pend & UART_IPEND_MASK)) 280 return; 281 282 tp = sc->sc_u.u_tty.tp; 283 284 if (pend & UART_IPEND_RXREADY) { 285 while (!uart_rx_empty(sc) && !(tp->t_state & TS_TBLOCK)) { 286 xc = uart_rx_get(sc); 287 c = xc & 0xff; 288 if (xc & UART_STAT_FRAMERR) 289 c |= TTY_FE; 290 if (xc & UART_STAT_PARERR) 291 c |= TTY_PE; 292 (*linesw[tp->t_line].l_rint)(c, tp); 293 } 294 } 295 296 if (pend & UART_IPEND_BREAK) { 297 if (tp != NULL && !(tp->t_iflag & IGNBRK)) 298 (*linesw[tp->t_line].l_rint)(0, tp); 299 } 300 301 if (pend & UART_IPEND_SIGCHG) { 302 sig = pend & UART_IPEND_SIGMASK; 303 if (sig & UART_SIG_DDCD) 304 (*linesw[tp->t_line].l_modem)(tp, sig & UART_SIG_DCD); 305 if ((sig & UART_SIG_DCTS) && (tp->t_cflag & CCTS_OFLOW) && 306 !sc->sc_hwoflow) { 307 if (sig & UART_SIG_CTS) { 308 tp->t_state &= ~TS_TTSTOP; 309 (*linesw[tp->t_line].l_start)(tp); 310 } else 311 tp->t_state |= TS_TTSTOP; 312 } 313 } 314 315 if (pend & UART_IPEND_TXIDLE) { 316 tp->t_state &= ~TS_BUSY; 317 (*linesw[tp->t_line].l_start)(tp); 318 } 319 } 320 321 int 322 uart_tty_attach(struct uart_softc *sc) 323 { 324 struct tty *tp; 325 326 tp = ttymalloc(NULL); 327 sc->sc_u.u_tty.tp = tp; 328 329 sc->sc_u.u_tty.si[0] = make_dev(&uart_cdevsw, 330 device_get_unit(sc->sc_dev), UID_ROOT, GID_WHEEL, 0600, "ttyu%r", 331 device_get_unit(sc->sc_dev)); 332 sc->sc_u.u_tty.si[0]->si_drv1 = sc; 333 sc->sc_u.u_tty.si[0]->si_tty = tp; 334 sc->sc_u.u_tty.si[1] = make_dev(&uart_cdevsw, 335 device_get_unit(sc->sc_dev) | UART_MINOR_CALLOUT, UID_UUCP, 336 GID_DIALER, 0660, "uart%r", device_get_unit(sc->sc_dev)); 337 sc->sc_u.u_tty.si[1]->si_drv1 = sc; 338 sc->sc_u.u_tty.si[1]->si_tty = tp; 339 340 tp->t_oproc = uart_tty_oproc; 341 tp->t_param = uart_tty_param; 342 tp->t_stop = uart_tty_stop; 343 344 if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) { 345 sprintf(((struct consdev *)sc->sc_sysdev->cookie)->cn_name, 346 "ttyu%r", device_get_unit(sc->sc_dev)); 347 } 348 349 swi_add(&tty_ithd, uart_driver_name, uart_tty_intr, sc, SWI_TTY, 350 INTR_TYPE_TTY, &sc->sc_softih); 351 352 return (0); 353 } 354 355 int uart_tty_detach(struct uart_softc *sc) 356 { 357 358 ithread_remove_handler(sc->sc_softih); 359 destroy_dev(sc->sc_u.u_tty.si[0]); 360 destroy_dev(sc->sc_u.u_tty.si[1]); 361 /* ttyfree(sc->sc_u.u_tty.tp); */ 362 363 return (0); 364 } 365 366 static int 367 uart_tty_open(dev_t dev, int flags, int mode, struct thread *td) 368 { 369 struct uart_softc *sc; 370 struct tty *tp; 371 int error; 372 373 sc = dev->si_drv1; 374 if (sc == NULL || sc->sc_leaving) 375 return (ENODEV); 376 377 tp = dev->si_tty; 378 379 loop: 380 if (sc->sc_opened) { 381 KASSERT(tp->t_state & TS_ISOPEN, ("foo")); 382 /* 383 * The device is open, so everything has been initialized. 384 * Handle conflicts. 385 */ 386 if (minor(dev) & UART_MINOR_CALLOUT) { 387 if (!sc->sc_callout) 388 return (EBUSY); 389 } else { 390 if (sc->sc_callout) { 391 if (flags & O_NONBLOCK) 392 return (EBUSY); 393 error = tsleep(sc, TTIPRI|PCATCH, "uartbi", 0); 394 if (error) 395 return (error); 396 sc = dev->si_drv1; 397 if (sc == NULL || sc->sc_leaving) 398 return (ENODEV); 399 goto loop; 400 } 401 } 402 if (tp->t_state & TS_XCLUDE && suser(td) != 0) 403 return (EBUSY); 404 } else { 405 KASSERT(!(tp->t_state & TS_ISOPEN), ("foo")); 406 /* 407 * The device isn't open, so there are no conflicts. 408 * Initialize it. Initialization is done twice in many 409 * cases: to preempt sleeping callin opens if we are 410 * callout, and to complete a callin open after DCD rises. 411 */ 412 sc->sc_callout = (minor(dev) & UART_MINOR_CALLOUT) ? 1 : 0; 413 tp->t_dev = dev; 414 415 tp->t_cflag = TTYDEF_CFLAG; 416 tp->t_iflag = TTYDEF_IFLAG; 417 tp->t_lflag = TTYDEF_LFLAG; 418 tp->t_oflag = TTYDEF_OFLAG; 419 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED; 420 ttychars(tp); 421 error = uart_tty_param(tp, &tp->t_termios); 422 if (error) 423 return (error); 424 /* 425 * Handle initial DCD. 426 */ 427 if ((sc->sc_hwsig & UART_SIG_DCD) || sc->sc_callout) 428 (*linesw[tp->t_line].l_modem)(tp, 1); 429 } 430 /* 431 * Wait for DCD if necessary. 432 */ 433 if (!(tp->t_state & TS_CARR_ON) && !sc->sc_callout && 434 !(tp->t_cflag & CLOCAL) && !(flags & O_NONBLOCK)) { 435 error = tsleep(TSA_CARR_ON(tp), TTIPRI|PCATCH, "uartdcd", 0); 436 if (error) 437 return (error); 438 sc = dev->si_drv1; 439 if (sc == NULL || sc->sc_leaving) 440 return (ENODEV); 441 goto loop; 442 } 443 error = ttyopen(dev, tp); 444 if (error) 445 return (error); 446 error = (*linesw[tp->t_line].l_open)(dev, tp); 447 if (error) 448 return (error); 449 450 KASSERT(tp->t_state & TS_ISOPEN, ("foo")); 451 sc->sc_opened = 1; 452 return (0); 453 } 454 455 static int 456 uart_tty_close(dev_t dev, int flags, int mode, struct thread *td) 457 { 458 struct uart_softc *sc; 459 struct tty *tp; 460 461 sc = dev->si_drv1; 462 if (sc == NULL || sc->sc_leaving) 463 return (ENODEV); 464 tp = dev->si_tty; 465 if (!sc->sc_opened) { 466 KASSERT(!(tp->t_state & TS_ISOPEN), ("foo")); 467 return (0); 468 } 469 KASSERT(tp->t_state & TS_ISOPEN, ("foo")); 470 471 if (sc->sc_hwiflow) 472 UART_IOCTL(sc, UART_IOCTL_IFLOW, 0); 473 if (sc->sc_hwoflow) 474 UART_IOCTL(sc, UART_IOCTL_OFLOW, 0); 475 if (sc->sc_sysdev == NULL) 476 UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DRTS); 477 478 /* Disable pulse capturing. */ 479 sc->sc_pps.ppsparam.mode = 0; 480 481 (*linesw[tp->t_line].l_close)(tp, flags); 482 ttyclose(tp); 483 wakeup(sc); 484 wakeup(TSA_CARR_ON(tp)); 485 KASSERT(!(tp->t_state & TS_ISOPEN), ("foo")); 486 sc->sc_opened = 0; 487 return (0); 488 } 489 490 static int 491 uart_tty_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, 492 struct thread *td) 493 { 494 struct uart_softc *sc; 495 struct tty *tp; 496 int bits, error, sig; 497 498 sc = dev->si_drv1; 499 if (sc == NULL || sc->sc_leaving) 500 return (ENODEV); 501 502 tp = dev->si_tty; 503 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flags, td); 504 if (error != ENOIOCTL) 505 return (error); 506 error = ttioctl(tp, cmd, data, flags); 507 if (error != ENOIOCTL) 508 return (error); 509 510 error = 0; 511 switch (cmd) { 512 case TIOCSBRK: 513 UART_IOCTL(sc, UART_IOCTL_BREAK, 1); 514 break; 515 case TIOCCBRK: 516 UART_IOCTL(sc, UART_IOCTL_BREAK, 0); 517 break; 518 case TIOCSDTR: 519 UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DTR); 520 break; 521 case TIOCCDTR: 522 UART_SETSIG(sc, UART_SIG_DDTR); 523 break; 524 case TIOCMSET: 525 bits = *(int*)data; 526 sig = UART_SIG_DDTR | UART_SIG_DRTS; 527 if (bits & TIOCM_DTR) 528 sig |= UART_SIG_DTR; 529 if (bits & TIOCM_RTS) 530 sig |= UART_SIG_RTS; 531 UART_SETSIG(sc, sig); 532 break; 533 case TIOCMBIS: 534 bits = *(int*)data; 535 sig = 0; 536 if (bits & TIOCM_DTR) 537 sig |= UART_SIG_DDTR | UART_SIG_DTR; 538 if (bits & TIOCM_RTS) 539 sig |= UART_SIG_DRTS | UART_SIG_RTS; 540 UART_SETSIG(sc, sig); 541 break; 542 case TIOCMBIC: 543 bits = *(int*)data; 544 sig = 0; 545 if (bits & TIOCM_DTR) 546 sig |= UART_SIG_DDTR; 547 if (bits & TIOCM_RTS) 548 sig |= UART_SIG_DRTS; 549 UART_SETSIG(sc, sig); 550 break; 551 case TIOCMGET: 552 sig = sc->sc_hwsig; 553 bits = TIOCM_LE; 554 if (sig & UART_SIG_DTR) 555 bits |= TIOCM_DTR; 556 if (sig & UART_SIG_RTS) 557 bits |= TIOCM_RTS; 558 if (sig & UART_SIG_DSR) 559 bits |= TIOCM_DSR; 560 if (sig & UART_SIG_CTS) 561 bits |= TIOCM_CTS; 562 if (sig & UART_SIG_DCD) 563 bits |= TIOCM_CD; 564 if (sig & (UART_SIG_DRI | UART_SIG_RI)) 565 bits |= TIOCM_RI; 566 *(int*)data = bits; 567 break; 568 default: 569 error = pps_ioctl(cmd, data, &sc->sc_pps); 570 if (error == ENODEV) 571 error = ENOTTY; 572 break; 573 } 574 return (error); 575 } 576