1 /* 2 * Copyright (c) 2003 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bus.h> 33 #include <sys/conf.h> 34 #include <sys/cons.h> 35 #include <sys/fcntl.h> 36 #include <sys/interrupt.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/reboot.h> 40 #include <machine/bus.h> 41 #include <sys/rman.h> 42 #include <sys/termios.h> 43 #include <sys/tty.h> 44 #include <machine/resource.h> 45 #include <machine/stdarg.h> 46 47 #include <dev/uart/uart.h> 48 #include <dev/uart/uart_bus.h> 49 #include <dev/uart/uart_cpu.h> 50 51 #include "uart_if.h" 52 53 #define UART_MINOR_CALLOUT 0x10000 54 55 static cn_probe_t uart_cnprobe; 56 static cn_init_t uart_cninit; 57 static cn_term_t uart_cnterm; 58 static cn_getc_t uart_cngetc; 59 static cn_checkc_t uart_cncheckc; 60 static cn_putc_t uart_cnputc; 61 62 CONS_DRIVER(uart, uart_cnprobe, uart_cninit, uart_cnterm, uart_cngetc, 63 uart_cncheckc, uart_cnputc, NULL); 64 65 static d_open_t uart_tty_open; 66 static d_close_t uart_tty_close; 67 static d_ioctl_t uart_tty_ioctl; 68 69 static struct cdevsw uart_cdevsw = { 70 .d_open = uart_tty_open, 71 .d_close = uart_tty_close, 72 .d_read = ttyread, 73 .d_write = ttywrite, 74 .d_ioctl = uart_tty_ioctl, 75 .d_poll = ttypoll, 76 .d_name = uart_driver_name, 77 .d_maj = MAJOR_AUTO, 78 .d_flags = D_TTY, 79 .d_kqfilter = ttykqfilter, 80 }; 81 82 static struct uart_devinfo uart_console; 83 84 static void 85 uart_cnprobe(struct consdev *cp) 86 { 87 88 cp->cn_dev = NULL; 89 cp->cn_pri = CN_DEAD; 90 91 KASSERT(uart_console.cookie == NULL, ("foo")); 92 93 if (uart_cpu_getdev(UART_DEV_CONSOLE, &uart_console)) 94 return; 95 96 if (uart_probe(&uart_console)) 97 return; 98 99 cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL; 100 cp->cn_arg = &uart_console; 101 } 102 103 static void 104 uart_cninit(struct consdev *cp) 105 { 106 struct uart_devinfo *di; 107 108 /* 109 * Yedi trick: we need to be able to define cn_dev before we go 110 * single- or multi-user. The problem is that we don't know at 111 * this time what the device will be. Hence, we need to link from 112 * the uart_devinfo to the consdev that corresponds to it so that 113 * we can define cn_dev in uart_bus_attach() when we find the 114 * device during bus enumeration. That's when we'll know what the 115 * the unit number will be. 116 */ 117 di = cp->cn_arg; 118 KASSERT(di->cookie == NULL, ("foo")); 119 di->cookie = cp; 120 di->type = UART_DEV_CONSOLE; 121 uart_add_sysdev(di); 122 uart_init(di); 123 } 124 125 static void 126 uart_cnterm(struct consdev *cp) 127 { 128 129 uart_term(cp->cn_arg); 130 } 131 132 static void 133 uart_cnputc(struct consdev *cp, int c) 134 { 135 136 uart_putc(cp->cn_arg, c); 137 } 138 139 static int 140 uart_cncheckc(struct consdev *cp) 141 { 142 143 return (uart_poll(cp->cn_arg)); 144 } 145 146 static int 147 uart_cngetc(struct consdev *cp) 148 { 149 150 return (uart_getc(cp->cn_arg)); 151 } 152 153 static void 154 uart_tty_oproc(struct tty *tp) 155 { 156 struct uart_softc *sc; 157 158 KASSERT(tp->t_dev != NULL, ("foo")); 159 sc = tp->t_dev->si_drv1; 160 if (sc == NULL || sc->sc_leaving) 161 return; 162 163 /* 164 * Handle input flow control. Note that if we have hardware support, 165 * we don't do anything here. We continue to receive until our buffer 166 * is full. At that time we cannot empty the UART itself and it will 167 * de-assert RTS for us. In that situation we're completely stuffed. 168 * Without hardware support, we need to toggle RTS ourselves. 169 */ 170 if ((tp->t_cflag & CRTS_IFLOW) && !sc->sc_hwiflow) { 171 if ((tp->t_state & TS_TBLOCK) && 172 (sc->sc_hwsig & UART_SIG_RTS)) 173 UART_SETSIG(sc, UART_SIG_DRTS); 174 else if (!(tp->t_state & TS_TBLOCK) && 175 !(sc->sc_hwsig & UART_SIG_RTS)) 176 UART_SETSIG(sc, UART_SIG_DRTS|UART_SIG_RTS); 177 } 178 179 if (tp->t_state & TS_TTSTOP) 180 return; 181 182 if ((tp->t_state & TS_BUSY) || sc->sc_txbusy) 183 return; 184 185 if (tp->t_outq.c_cc == 0) { 186 ttwwakeup(tp); 187 return; 188 } 189 190 sc->sc_txdatasz = q_to_b(&tp->t_outq, sc->sc_txbuf, sc->sc_txfifosz); 191 tp->t_state |= TS_BUSY; 192 UART_TRANSMIT(sc); 193 ttwwakeup(tp); 194 } 195 196 static int 197 uart_tty_param(struct tty *tp, struct termios *t) 198 { 199 struct uart_softc *sc; 200 int databits, parity, stopbits; 201 202 KASSERT(tp->t_dev != NULL, ("foo")); 203 sc = tp->t_dev->si_drv1; 204 if (sc == NULL || sc->sc_leaving) 205 return (ENODEV); 206 if (t->c_ispeed != t->c_ospeed && t->c_ospeed != 0) 207 return (EINVAL); 208 /* Fixate certain parameters for system devices. */ 209 if (sc->sc_sysdev != NULL) { 210 t->c_ispeed = t->c_ospeed = sc->sc_sysdev->baudrate; 211 t->c_cflag |= CLOCAL; 212 t->c_cflag &= ~HUPCL; 213 } 214 if (t->c_ospeed == 0) { 215 UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DRTS); 216 return (0); 217 } 218 switch (t->c_cflag & CSIZE) { 219 case CS5: databits = 5; break; 220 case CS6: databits = 6; break; 221 case CS7: databits = 7; break; 222 default: databits = 8; break; 223 } 224 stopbits = (t->c_cflag & CSTOPB) ? 2 : 1; 225 if (t->c_cflag & PARENB) 226 parity = (t->c_cflag & PARODD) ? UART_PARITY_ODD 227 : UART_PARITY_EVEN; 228 else 229 parity = UART_PARITY_NONE; 230 UART_PARAM(sc, t->c_ospeed, databits, stopbits, parity); 231 UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DTR); 232 /* Set input flow control state. */ 233 if (!sc->sc_hwiflow) { 234 if ((t->c_cflag & CRTS_IFLOW) && (tp->t_state & TS_TBLOCK)) 235 UART_SETSIG(sc, UART_SIG_DRTS); 236 else 237 UART_SETSIG(sc, UART_SIG_DRTS | UART_SIG_RTS); 238 } else 239 UART_IOCTL(sc, UART_IOCTL_IFLOW, (t->c_cflag & CRTS_IFLOW)); 240 /* Set output flow control state. */ 241 if (sc->sc_hwoflow) 242 UART_IOCTL(sc, UART_IOCTL_OFLOW, (t->c_cflag & CCTS_OFLOW)); 243 ttsetwater(tp); 244 return (0); 245 } 246 247 static void 248 uart_tty_stop(struct tty *tp, int rw) 249 { 250 struct uart_softc *sc; 251 252 KASSERT(tp->t_dev != NULL, ("foo")); 253 sc = tp->t_dev->si_drv1; 254 if (sc == NULL || sc->sc_leaving) 255 return; 256 if (rw & FWRITE) { 257 if (sc->sc_txbusy) { 258 sc->sc_txbusy = 0; 259 UART_FLUSH(sc, UART_FLUSH_TRANSMITTER); 260 } 261 tp->t_state &= ~TS_BUSY; 262 } 263 if (rw & FREAD) { 264 UART_FLUSH(sc, UART_FLUSH_RECEIVER); 265 sc->sc_rxget = sc->sc_rxput = 0; 266 } 267 } 268 269 void 270 uart_tty_intr(void *arg) 271 { 272 struct uart_softc *sc = arg; 273 struct tty *tp; 274 int c, pend, sig, xc; 275 276 if (sc->sc_leaving) 277 return; 278 279 pend = atomic_readandclear_32(&sc->sc_ttypend); 280 if (!(pend & UART_IPEND_MASK)) 281 return; 282 283 tp = sc->sc_u.u_tty.tp; 284 285 if (pend & UART_IPEND_RXREADY) { 286 while (!uart_rx_empty(sc) && !(tp->t_state & TS_TBLOCK)) { 287 xc = uart_rx_get(sc); 288 c = xc & 0xff; 289 if (xc & UART_STAT_FRAMERR) 290 c |= TTY_FE; 291 if (xc & UART_STAT_PARERR) 292 c |= TTY_PE; 293 (*linesw[tp->t_line].l_rint)(c, tp); 294 } 295 } 296 297 if (pend & UART_IPEND_BREAK) { 298 if (tp != NULL && !(tp->t_iflag & IGNBRK)) 299 (*linesw[tp->t_line].l_rint)(0, tp); 300 } 301 302 if (pend & UART_IPEND_SIGCHG) { 303 sig = pend & UART_IPEND_SIGMASK; 304 if (sig & UART_SIG_DDCD) 305 (*linesw[tp->t_line].l_modem)(tp, sig & UART_SIG_DCD); 306 if ((sig & UART_SIG_DCTS) && (tp->t_cflag & CCTS_OFLOW) && 307 !sc->sc_hwoflow) { 308 if (sig & UART_SIG_CTS) { 309 tp->t_state &= ~TS_TTSTOP; 310 (*linesw[tp->t_line].l_start)(tp); 311 } else 312 tp->t_state |= TS_TTSTOP; 313 } 314 } 315 316 if (pend & UART_IPEND_TXIDLE) { 317 tp->t_state &= ~TS_BUSY; 318 (*linesw[tp->t_line].l_start)(tp); 319 } 320 } 321 322 int 323 uart_tty_attach(struct uart_softc *sc) 324 { 325 struct tty *tp; 326 327 tp = ttymalloc(NULL); 328 sc->sc_u.u_tty.tp = tp; 329 330 sc->sc_u.u_tty.si[0] = make_dev(&uart_cdevsw, 331 device_get_unit(sc->sc_dev), UID_ROOT, GID_WHEEL, 0600, "ttyu%r", 332 device_get_unit(sc->sc_dev)); 333 sc->sc_u.u_tty.si[0]->si_drv1 = sc; 334 sc->sc_u.u_tty.si[0]->si_tty = tp; 335 sc->sc_u.u_tty.si[1] = make_dev(&uart_cdevsw, 336 device_get_unit(sc->sc_dev) | UART_MINOR_CALLOUT, UID_UUCP, 337 GID_DIALER, 0660, "uart%r", device_get_unit(sc->sc_dev)); 338 sc->sc_u.u_tty.si[1]->si_drv1 = sc; 339 sc->sc_u.u_tty.si[1]->si_tty = tp; 340 341 tp->t_oproc = uart_tty_oproc; 342 tp->t_param = uart_tty_param; 343 tp->t_stop = uart_tty_stop; 344 345 if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) { 346 ((struct consdev *)sc->sc_sysdev->cookie)->cn_dev = 347 makedev(uart_cdevsw.d_maj, device_get_unit(sc->sc_dev)); 348 } 349 350 swi_add(&tty_ithd, uart_driver_name, uart_tty_intr, sc, SWI_TTY, 351 INTR_TYPE_TTY, &sc->sc_softih); 352 353 return (0); 354 } 355 356 int uart_tty_detach(struct uart_softc *sc) 357 { 358 359 ithread_remove_handler(sc->sc_softih); 360 destroy_dev(sc->sc_u.u_tty.si[0]); 361 destroy_dev(sc->sc_u.u_tty.si[1]); 362 /* ttyfree(sc->sc_u.u_tty.tp); */ 363 364 return (0); 365 } 366 367 static int 368 uart_tty_open(dev_t dev, int flags, int mode, struct thread *td) 369 { 370 struct uart_softc *sc; 371 struct tty *tp; 372 int error; 373 374 sc = dev->si_drv1; 375 if (sc == NULL || sc->sc_leaving) 376 return (ENODEV); 377 378 tp = dev->si_tty; 379 380 loop: 381 if (sc->sc_opened) { 382 KASSERT(tp->t_state & TS_ISOPEN, ("foo")); 383 /* 384 * The device is open, so everything has been initialized. 385 * Handle conflicts. 386 */ 387 if (minor(dev) & UART_MINOR_CALLOUT) { 388 if (!sc->sc_callout) 389 return (EBUSY); 390 } else { 391 if (sc->sc_callout) { 392 if (flags & O_NONBLOCK) 393 return (EBUSY); 394 error = tsleep(sc, TTIPRI|PCATCH, "uartbi", 0); 395 if (error) 396 return (error); 397 sc = dev->si_drv1; 398 if (sc == NULL || sc->sc_leaving) 399 return (ENODEV); 400 goto loop; 401 } 402 } 403 if (tp->t_state & TS_XCLUDE && suser(td) != 0) 404 return (EBUSY); 405 } else { 406 KASSERT(!(tp->t_state & TS_ISOPEN), ("foo")); 407 /* 408 * The device isn't open, so there are no conflicts. 409 * Initialize it. Initialization is done twice in many 410 * cases: to preempt sleeping callin opens if we are 411 * callout, and to complete a callin open after DCD rises. 412 */ 413 sc->sc_callout = (minor(dev) & UART_MINOR_CALLOUT) ? 1 : 0; 414 tp->t_dev = dev; 415 416 tp->t_cflag = TTYDEF_CFLAG; 417 tp->t_iflag = TTYDEF_IFLAG; 418 tp->t_lflag = TTYDEF_LFLAG; 419 tp->t_oflag = TTYDEF_OFLAG; 420 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED; 421 ttychars(tp); 422 error = uart_tty_param(tp, &tp->t_termios); 423 if (error) 424 return (error); 425 /* 426 * Handle initial DCD. 427 */ 428 if ((sc->sc_hwsig & UART_SIG_DCD) || sc->sc_callout) 429 (*linesw[tp->t_line].l_modem)(tp, 1); 430 } 431 /* 432 * Wait for DCD if necessary. 433 */ 434 if (!(tp->t_state & TS_CARR_ON) && !sc->sc_callout && 435 !(tp->t_cflag & CLOCAL) && !(flags & O_NONBLOCK)) { 436 error = tsleep(TSA_CARR_ON(tp), TTIPRI|PCATCH, "uartdcd", 0); 437 if (error) 438 return (error); 439 sc = dev->si_drv1; 440 if (sc == NULL || sc->sc_leaving) 441 return (ENODEV); 442 goto loop; 443 } 444 error = ttyopen(dev, tp); 445 if (error) 446 return (error); 447 error = (*linesw[tp->t_line].l_open)(dev, tp); 448 if (error) 449 return (error); 450 451 KASSERT(tp->t_state & TS_ISOPEN, ("foo")); 452 sc->sc_opened = 1; 453 return (0); 454 } 455 456 static int 457 uart_tty_close(dev_t dev, int flags, int mode, struct thread *td) 458 { 459 struct uart_softc *sc; 460 struct tty *tp; 461 462 sc = dev->si_drv1; 463 if (sc == NULL || sc->sc_leaving) 464 return (ENODEV); 465 tp = dev->si_tty; 466 if (!sc->sc_opened) { 467 KASSERT(!(tp->t_state & TS_ISOPEN), ("foo")); 468 return (0); 469 } 470 KASSERT(tp->t_state & TS_ISOPEN, ("foo")); 471 472 if (sc->sc_hwiflow) 473 UART_IOCTL(sc, UART_IOCTL_IFLOW, 0); 474 if (sc->sc_hwoflow) 475 UART_IOCTL(sc, UART_IOCTL_OFLOW, 0); 476 if (sc->sc_sysdev == NULL) 477 UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DRTS); 478 479 (*linesw[tp->t_line].l_close)(tp, flags); 480 ttyclose(tp); 481 wakeup(sc); 482 wakeup(TSA_CARR_ON(tp)); 483 KASSERT(!(tp->t_state & TS_ISOPEN), ("foo")); 484 sc->sc_opened = 0; 485 return (0); 486 } 487 488 static int 489 uart_tty_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, 490 struct thread *td) 491 { 492 struct uart_softc *sc; 493 struct tty *tp; 494 int bits, error, sig; 495 496 sc = dev->si_drv1; 497 if (sc == NULL || sc->sc_leaving) 498 return (ENODEV); 499 500 tp = dev->si_tty; 501 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flags, td); 502 if (error != ENOIOCTL) 503 return (error); 504 error = ttioctl(tp, cmd, data, flags); 505 if (error != ENOIOCTL) 506 return (error); 507 508 switch (cmd) { 509 case TIOCSBRK: 510 UART_IOCTL(sc, UART_IOCTL_BREAK, 1); 511 break; 512 case TIOCCBRK: 513 UART_IOCTL(sc, UART_IOCTL_BREAK, 0); 514 break; 515 case TIOCSDTR: 516 UART_SETSIG(sc, UART_SIG_DDTR | UART_SIG_DTR); 517 break; 518 case TIOCCDTR: 519 UART_SETSIG(sc, UART_SIG_DDTR); 520 break; 521 case TIOCMSET: 522 bits = *(int*)data; 523 sig = UART_SIG_DDTR | UART_SIG_DRTS; 524 if (bits & TIOCM_DTR) 525 sig |= UART_SIG_DTR; 526 if (bits & TIOCM_RTS) 527 sig |= UART_SIG_RTS; 528 UART_SETSIG(sc, sig); 529 break; 530 case TIOCMBIS: 531 bits = *(int*)data; 532 sig = 0; 533 if (bits & TIOCM_DTR) 534 sig |= UART_SIG_DDTR | UART_SIG_DTR; 535 if (bits & TIOCM_RTS) 536 sig |= UART_SIG_DRTS | UART_SIG_RTS; 537 UART_SETSIG(sc, sig); 538 break; 539 case TIOCMBIC: 540 bits = *(int*)data; 541 sig = 0; 542 if (bits & TIOCM_DTR) 543 sig |= UART_SIG_DDTR; 544 if (bits & TIOCM_RTS) 545 sig |= UART_SIG_DRTS; 546 UART_SETSIG(sc, sig); 547 break; 548 case TIOCMGET: 549 sig = sc->sc_hwsig; 550 bits = TIOCM_LE; 551 if (sig & UART_SIG_DTR) 552 bits |= TIOCM_DTR; 553 if (sig & UART_SIG_RTS) 554 bits |= TIOCM_RTS; 555 if (sig & UART_SIG_DSR) 556 bits |= TIOCM_DSR; 557 if (sig & UART_SIG_CTS) 558 bits |= TIOCM_CTS; 559 if (sig & UART_SIG_DCD) 560 bits |= TIOCM_CD; 561 if (sig & (UART_SIG_DRI | UART_SIG_RI)) 562 bits |= TIOCM_RI; 563 *(int*)data = bits; 564 break; 565 default: 566 return (ENOTTY); 567 } 568 return (0); 569 } 570