xref: /freebsd/sys/dev/uart/uart_dev_imx.c (revision f3065e767def62d9b593dd7528c0eb121a7e1439)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012 The FreeBSD Foundation
5  *
6  * This software was developed by Oleksandr Rybalko under sponsorship
7  * from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1.	Redistributions of source code must retain the above copyright
13  *	notice, this list of conditions and the following disclaimer.
14  * 2.	Redistributions in binary form must reproduce the above copyright
15  *	notice, this list of conditions and the following disclaimer in the
16  *	documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_ddb.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/kdb.h>
41 #include <machine/bus.h>
42 
43 #include <dev/uart/uart.h>
44 #include <dev/uart/uart_cpu.h>
45 #include <dev/uart/uart_cpu_fdt.h>
46 #include <dev/uart/uart_bus.h>
47 #include <dev/uart/uart_dev_imx.h>
48 
49 #if defined(__aarch64__)
50 #define	IMX_ENABLE_CLOCKS
51 #endif
52 
53 #ifdef IMX_ENABLE_CLOCKS
54 #include <dev/extres/clk/clk.h>
55 #endif
56 
57 #include "uart_if.h"
58 
59 #include <arm/freescale/imx/imx_ccmvar.h>
60 
61 /*
62  * The hardare FIFOs are 32 bytes.  We want an interrupt when there are 24 bytes
63  * available to read or space for 24 more bytes to write.  While 8 bytes of
64  * slack before over/underrun might seem excessive, the hardware can run at
65  * 5mbps, which means 2uS per char, so at full speed 8 bytes provides only 16uS
66  * to get into the interrupt handler and service the fifo.
67  */
68 #define	IMX_FIFOSZ		32
69 #define	IMX_RXFIFO_LEVEL	24
70 #define	IMX_TXFIFO_LEVEL	24
71 
72 /*
73  * Low-level UART interface.
74  */
75 static int imx_uart_probe(struct uart_bas *bas);
76 static void imx_uart_init(struct uart_bas *bas, int, int, int, int);
77 static void imx_uart_term(struct uart_bas *bas);
78 static void imx_uart_putc(struct uart_bas *bas, int);
79 static int imx_uart_rxready(struct uart_bas *bas);
80 static int imx_uart_getc(struct uart_bas *bas, struct mtx *);
81 
82 static struct uart_ops uart_imx_uart_ops = {
83 	.probe = imx_uart_probe,
84 	.init = imx_uart_init,
85 	.term = imx_uart_term,
86 	.putc = imx_uart_putc,
87 	.rxready = imx_uart_rxready,
88 	.getc = imx_uart_getc,
89 };
90 
91 #if 0 /* Handy when debugging. */
92 static void
93 dumpregs(struct uart_bas *bas, const char * msg)
94 {
95 
96 	if (!bootverbose)
97 		return;
98 	printf("%s bsh 0x%08lx UCR1 0x%08x UCR2 0x%08x "
99 		"UCR3 0x%08x UCR4 0x%08x USR1 0x%08x USR2 0x%08x\n",
100 	    msg, bas->bsh,
101 	    GETREG(bas, REG(UCR1)), GETREG(bas, REG(UCR2)),
102 	    GETREG(bas, REG(UCR3)), GETREG(bas, REG(UCR4)),
103 	    GETREG(bas, REG(USR1)), GETREG(bas, REG(USR2)));
104 }
105 #endif
106 
107 static int
108 imx_uart_probe(struct uart_bas *bas)
109 {
110 
111 	return (0);
112 }
113 
114 static u_int
115 imx_uart_getbaud(struct uart_bas *bas)
116 {
117 	uint32_t rate, ubir, ubmr;
118 	u_int baud, blo, bhi, i;
119 	static const u_int predivs[] = {6, 5, 4, 3, 2, 1, 7, 1};
120 	static const u_int std_rates[] = {
121 		9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800, 921600
122 	};
123 
124 	/*
125 	 * Get the baud rate the hardware is programmed for, then search the
126 	 * table of standard baud rates for a number that's within 3% of the
127 	 * actual rate the hardware is programmed for.  It's more comforting to
128 	 * see that your console is running at 115200 than 114942.  Note that
129 	 * here we cannot make a simplifying assumption that the predivider and
130 	 * numerator are 1 (like we do when setting the baud rate), because we
131 	 * don't know what u-boot might have set up.
132 	 */
133 	i = (GETREG(bas, REG(UFCR)) & IMXUART_UFCR_RFDIV_MASK) >>
134 	    IMXUART_UFCR_RFDIV_SHIFT;
135 	rate = bas->rclk / predivs[i];
136 	ubir = GETREG(bas, REG(UBIR)) + 1;
137 	ubmr = GETREG(bas, REG(UBMR)) + 1;
138 	baud = ((rate / 16 ) * ubir) / ubmr;
139 
140 	blo = (baud * 100) / 103;
141 	bhi = (baud * 100) / 97;
142 	for (i = 0; i < nitems(std_rates); i++) {
143 		rate = std_rates[i];
144 		if (rate >= blo && rate <= bhi) {
145 			baud = rate;
146 			break;
147 		}
148 	}
149 
150 	return (baud);
151 }
152 
153 static void
154 imx_uart_init(struct uart_bas *bas, int baudrate, int databits,
155     int stopbits, int parity)
156 {
157 	uint32_t baseclk, reg;
158 
159         /* Enable the device and the RX/TX channels. */
160 	SET(bas, REG(UCR1), FLD(UCR1, UARTEN));
161 	SET(bas, REG(UCR2), FLD(UCR2, RXEN) | FLD(UCR2, TXEN));
162 
163 	if (databits == 7)
164 		DIS(bas, UCR2, WS);
165 	else
166 		ENA(bas, UCR2, WS);
167 
168 	if (stopbits == 2)
169 		ENA(bas, UCR2, STPB);
170 	else
171 		DIS(bas, UCR2, STPB);
172 
173 	switch (parity) {
174 	case UART_PARITY_ODD:
175 		DIS(bas, UCR2, PROE);
176 		ENA(bas, UCR2, PREN);
177 		break;
178 	case UART_PARITY_EVEN:
179 		ENA(bas, UCR2, PROE);
180 		ENA(bas, UCR2, PREN);
181 		break;
182 	case UART_PARITY_MARK:
183 	case UART_PARITY_SPACE:
184                 /* FALLTHROUGH: Hardware doesn't support mark/space. */
185 	case UART_PARITY_NONE:
186 	default:
187 		DIS(bas, UCR2, PREN);
188 		break;
189 	}
190 
191 	/*
192 	 * The hardware has an extremely flexible baud clock: it allows setting
193 	 * both the numerator and denominator of the divider, as well as a
194 	 * separate pre-divider.  We simplify the problem of coming up with a
195 	 * workable pair of numbers by assuming a pre-divider and numerator of
196 	 * one because our base clock is so fast we can reach virtually any
197 	 * reasonable speed with a simple divisor.  The numerator value actually
198 	 * includes the 16x over-sampling (so a value of 16 means divide by 1);
199 	 * the register value is the numerator-1, so we have a hard-coded 15.
200 	 * Note that a quirk of the hardware requires that both UBIR and UBMR be
201 	 * set back to back in order for the change to take effect.
202 	 */
203 	if ((baudrate > 0) && (bas->rclk != 0)) {
204 		baseclk = bas->rclk;
205 		reg = GETREG(bas, REG(UFCR));
206 		reg = (reg & ~IMXUART_UFCR_RFDIV_MASK) | IMXUART_UFCR_RFDIV_DIV1;
207 		SETREG(bas, REG(UFCR), reg);
208 		SETREG(bas, REG(UBIR), 15);
209 		SETREG(bas, REG(UBMR), (baseclk / baudrate) - 1);
210 	}
211 
212 	/*
213 	 * Program the tx lowater and rx hiwater levels at which fifo-service
214 	 * interrupts are signaled.  The tx value is interpetted as "when there
215 	 * are only this many bytes remaining" (not "this many free").
216 	 */
217 	reg = GETREG(bas, REG(UFCR));
218 	reg &= ~(IMXUART_UFCR_TXTL_MASK | IMXUART_UFCR_RXTL_MASK);
219 	reg |= (IMX_FIFOSZ - IMX_TXFIFO_LEVEL) << IMXUART_UFCR_TXTL_SHIFT;
220 	reg |= IMX_RXFIFO_LEVEL << IMXUART_UFCR_RXTL_SHIFT;
221 	SETREG(bas, REG(UFCR), reg);
222 }
223 
224 static void
225 imx_uart_term(struct uart_bas *bas)
226 {
227 
228 }
229 
230 static void
231 imx_uart_putc(struct uart_bas *bas, int c)
232 {
233 
234 	while (!(IS(bas, USR1, TRDY)))
235 		;
236 	SETREG(bas, REG(UTXD), c);
237 }
238 
239 static int
240 imx_uart_rxready(struct uart_bas *bas)
241 {
242 
243 	return ((IS(bas, USR2, RDR)) ? 1 : 0);
244 }
245 
246 static int
247 imx_uart_getc(struct uart_bas *bas, struct mtx *hwmtx)
248 {
249 	int c;
250 
251 	uart_lock(hwmtx);
252 	while (!(IS(bas, USR2, RDR)))
253 		;
254 
255 	c = GETREG(bas, REG(URXD));
256 	uart_unlock(hwmtx);
257 #if defined(KDB)
258 	if (c & FLD(URXD, BRK)) {
259 		if (kdb_break())
260 			return (0);
261 	}
262 #endif
263 	return (c & 0xff);
264 }
265 
266 /*
267  * High-level UART interface.
268  */
269 struct imx_uart_softc {
270 	struct uart_softc base;
271 };
272 
273 static int imx_uart_bus_attach(struct uart_softc *);
274 static int imx_uart_bus_detach(struct uart_softc *);
275 static int imx_uart_bus_flush(struct uart_softc *, int);
276 static int imx_uart_bus_getsig(struct uart_softc *);
277 static int imx_uart_bus_ioctl(struct uart_softc *, int, intptr_t);
278 static int imx_uart_bus_ipend(struct uart_softc *);
279 static int imx_uart_bus_param(struct uart_softc *, int, int, int, int);
280 static int imx_uart_bus_probe(struct uart_softc *);
281 static int imx_uart_bus_receive(struct uart_softc *);
282 static int imx_uart_bus_setsig(struct uart_softc *, int);
283 static int imx_uart_bus_transmit(struct uart_softc *);
284 static void imx_uart_bus_grab(struct uart_softc *);
285 static void imx_uart_bus_ungrab(struct uart_softc *);
286 
287 static kobj_method_t imx_uart_methods[] = {
288 	KOBJMETHOD(uart_attach,		imx_uart_bus_attach),
289 	KOBJMETHOD(uart_detach,		imx_uart_bus_detach),
290 	KOBJMETHOD(uart_flush,		imx_uart_bus_flush),
291 	KOBJMETHOD(uart_getsig,		imx_uart_bus_getsig),
292 	KOBJMETHOD(uart_ioctl,		imx_uart_bus_ioctl),
293 	KOBJMETHOD(uart_ipend,		imx_uart_bus_ipend),
294 	KOBJMETHOD(uart_param,		imx_uart_bus_param),
295 	KOBJMETHOD(uart_probe,		imx_uart_bus_probe),
296 	KOBJMETHOD(uart_receive,	imx_uart_bus_receive),
297 	KOBJMETHOD(uart_setsig,		imx_uart_bus_setsig),
298 	KOBJMETHOD(uart_transmit,	imx_uart_bus_transmit),
299 	KOBJMETHOD(uart_grab,		imx_uart_bus_grab),
300 	KOBJMETHOD(uart_ungrab,		imx_uart_bus_ungrab),
301 	{ 0, 0 }
302 };
303 
304 static struct uart_class uart_imx_class = {
305 	"imx",
306 	imx_uart_methods,
307 	sizeof(struct imx_uart_softc),
308 	.uc_ops = &uart_imx_uart_ops,
309 	.uc_range = 0x100,
310 	.uc_rclk = 24000000, /* TODO: get value from CCM */
311 	.uc_rshift = 0
312 };
313 
314 static struct ofw_compat_data compat_data[] = {
315 	{"fsl,imx6q-uart",	(uintptr_t)&uart_imx_class},
316 	{"fsl,imx53-uart",	(uintptr_t)&uart_imx_class},
317 	{"fsl,imx51-uart",	(uintptr_t)&uart_imx_class},
318 	{"fsl,imx31-uart",	(uintptr_t)&uart_imx_class},
319 	{"fsl,imx27-uart",	(uintptr_t)&uart_imx_class},
320 	{"fsl,imx25-uart",	(uintptr_t)&uart_imx_class},
321 	{"fsl,imx21-uart",	(uintptr_t)&uart_imx_class},
322 	{NULL,			(uintptr_t)NULL},
323 };
324 UART_FDT_CLASS_AND_DEVICE(compat_data);
325 
326 #define	SIGCHG(c, i, s, d)				\
327 	if (c) {					\
328 		i |= (i & s) ? s : s | d;		\
329 	} else {					\
330 		i = (i & s) ? (i & ~s) | d : i;		\
331 	}
332 
333 #ifdef IMX_ENABLE_CLOCKS
334 static int
335 imx_uart_setup_clocks(struct uart_softc *sc)
336 {
337 	struct uart_bas *bas;
338 	clk_t ipgclk, perclk;
339 	uint64_t freq;
340 	int error;
341 
342 	bas = &sc->sc_bas;
343 
344 	if (clk_get_by_ofw_name(sc->sc_dev, 0, "ipg", &ipgclk) != 0)
345 		return (ENOENT);
346 
347 	if (clk_get_by_ofw_name(sc->sc_dev, 0, "per", &perclk) != 0) {
348 		return (ENOENT);
349 	}
350 
351 	error = clk_enable(ipgclk);
352 	if (error != 0) {
353 		device_printf(sc->sc_dev, "cannot enable ipg clock\n");
354 		return (error);
355 	}
356 
357 	error = clk_get_freq(perclk, &freq);
358 	if (error != 0) {
359 		device_printf(sc->sc_dev, "cannot get frequency\n");
360 		return (error);
361 	}
362 
363 	bas->rclk = (uint32_t)freq;
364 
365 	return (0);
366 }
367 #endif
368 
369 static int
370 imx_uart_bus_attach(struct uart_softc *sc)
371 {
372 	struct uart_bas *bas;
373 	struct uart_devinfo *di;
374 
375 	bas = &sc->sc_bas;
376 
377 #ifdef IMX_ENABLE_CLOCKS
378 	int error = imx_uart_setup_clocks(sc);
379 	if (error)
380 		return (error);
381 #else
382 	bas->rclk = imx_ccm_uart_hz();
383 #endif
384 
385 	if (sc->sc_sysdev != NULL) {
386 		di = sc->sc_sysdev;
387 		imx_uart_init(bas, di->baudrate, di->databits, di->stopbits,
388 		    di->parity);
389 	} else {
390 		imx_uart_init(bas, 115200, 8, 1, 0);
391 	}
392 
393 	(void)imx_uart_bus_getsig(sc);
394 
395 	/* Clear all pending interrupts. */
396 	SETREG(bas, REG(USR1), 0xffff);
397 	SETREG(bas, REG(USR2), 0xffff);
398 
399 	DIS(bas, UCR4, DREN);
400 	ENA(bas, UCR1, RRDYEN);
401 	DIS(bas, UCR1, IDEN);
402 	DIS(bas, UCR3, RXDSEN);
403 	ENA(bas, UCR2, ATEN);
404 	DIS(bas, UCR1, TXMPTYEN);
405 	DIS(bas, UCR1, TRDYEN);
406 	DIS(bas, UCR4, TCEN);
407 	DIS(bas, UCR4, OREN);
408 	ENA(bas, UCR4, BKEN);
409 	DIS(bas, UCR4, WKEN);
410 	DIS(bas, UCR1, ADEN);
411 	DIS(bas, UCR3, ACIEN);
412 	DIS(bas, UCR2, ESCI);
413 	DIS(bas, UCR4, ENIRI);
414 	DIS(bas, UCR3, AIRINTEN);
415 	DIS(bas, UCR3, AWAKEN);
416 	DIS(bas, UCR3, FRAERREN);
417 	DIS(bas, UCR3, PARERREN);
418 	DIS(bas, UCR1, RTSDEN);
419 	DIS(bas, UCR2, RTSEN);
420 	DIS(bas, UCR3, DTREN);
421 	DIS(bas, UCR3, RI);
422 	DIS(bas, UCR3, DCD);
423 	DIS(bas, UCR3, DTRDEN);
424 	ENA(bas, UCR2, IRTS);
425 	ENA(bas, UCR3, RXDMUXSEL);
426 
427 	return (0);
428 }
429 
430 static int
431 imx_uart_bus_detach(struct uart_softc *sc)
432 {
433 
434 	SETREG(&sc->sc_bas, REG(UCR4), 0);
435 
436 	return (0);
437 }
438 
439 static int
440 imx_uart_bus_flush(struct uart_softc *sc, int what)
441 {
442 
443 	/* TODO */
444 	return (0);
445 }
446 
447 static int
448 imx_uart_bus_getsig(struct uart_softc *sc)
449 {
450 	uint32_t new, old, sig;
451 	uint8_t bes;
452 
453 	do {
454 		old = sc->sc_hwsig;
455 		sig = old;
456 		uart_lock(sc->sc_hwmtx);
457 		bes = GETREG(&sc->sc_bas, REG(USR2));
458 		uart_unlock(sc->sc_hwmtx);
459 		/* XXX: chip can show delta */
460 		SIGCHG(bes & FLD(USR2, DCDIN), sig, SER_DCD, SER_DDCD);
461 		new = sig & ~SER_MASK_DELTA;
462 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
463 
464 	return (sig);
465 }
466 
467 static int
468 imx_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
469 {
470 	struct uart_bas *bas;
471 	int error;
472 
473 	bas = &sc->sc_bas;
474 	error = 0;
475 	uart_lock(sc->sc_hwmtx);
476 	switch (request) {
477 	case UART_IOCTL_BREAK:
478 		/* TODO */
479 		break;
480 	case UART_IOCTL_BAUD:
481 		*(u_int*)data = imx_uart_getbaud(bas);
482 		break;
483 	default:
484 		error = EINVAL;
485 		break;
486 	}
487 	uart_unlock(sc->sc_hwmtx);
488 
489 	return (error);
490 }
491 
492 static int
493 imx_uart_bus_ipend(struct uart_softc *sc)
494 {
495 	struct uart_bas *bas;
496 	int ipend;
497 	uint32_t usr1, usr2;
498 	uint32_t ucr1, ucr2, ucr4;
499 
500 	bas = &sc->sc_bas;
501 	ipend = 0;
502 
503 	uart_lock(sc->sc_hwmtx);
504 
505 	/* Read pending interrupts */
506 	usr1 = GETREG(bas, REG(USR1));
507 	usr2 = GETREG(bas, REG(USR2));
508 	/* ACK interrupts */
509 	SETREG(bas, REG(USR1), usr1);
510 	SETREG(bas, REG(USR2), usr2);
511 
512 	ucr1 = GETREG(bas, REG(UCR1));
513 	ucr2 = GETREG(bas, REG(UCR2));
514 	ucr4 = GETREG(bas, REG(UCR4));
515 
516 	/* If we have reached tx low-water, we can tx some more now. */
517 	if ((usr1 & FLD(USR1, TRDY)) && (ucr1 & FLD(UCR1, TRDYEN))) {
518 		DIS(bas, UCR1, TRDYEN);
519 		ipend |= SER_INT_TXIDLE;
520 	}
521 
522 	/*
523 	 * If we have reached the rx high-water, or if there are bytes in the rx
524 	 * fifo and no new data has arrived for 8 character periods (aging
525 	 * timer), we have input data to process.
526 	 */
527 	if (((usr1 & FLD(USR1, RRDY)) && (ucr1 & FLD(UCR1, RRDYEN))) ||
528 	    ((usr1 & FLD(USR1, AGTIM)) && (ucr2 & FLD(UCR2, ATEN)))) {
529 		DIS(bas, UCR1, RRDYEN);
530 		DIS(bas, UCR2, ATEN);
531 		ipend |= SER_INT_RXREADY;
532 	}
533 
534 	/* A break can come in at any time, it never gets disabled. */
535 	if ((usr2 & FLD(USR2, BRCD)) && (ucr4 & FLD(UCR4, BKEN)))
536 		ipend |= SER_INT_BREAK;
537 
538 	uart_unlock(sc->sc_hwmtx);
539 
540 	return (ipend);
541 }
542 
543 static int
544 imx_uart_bus_param(struct uart_softc *sc, int baudrate, int databits,
545     int stopbits, int parity)
546 {
547 
548 	uart_lock(sc->sc_hwmtx);
549 	imx_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity);
550 	uart_unlock(sc->sc_hwmtx);
551 	return (0);
552 }
553 
554 static int
555 imx_uart_bus_probe(struct uart_softc *sc)
556 {
557 	int error;
558 
559 	error = imx_uart_probe(&sc->sc_bas);
560 	if (error)
561 		return (error);
562 
563 	/*
564 	 * On input we can read up to the full fifo size at once.  On output, we
565 	 * want to write only as much as the programmed tx low water level,
566 	 * because that's all we can be certain we have room for in the fifo
567 	 * when we get a tx-ready interrupt.
568 	 */
569 	sc->sc_rxfifosz = IMX_FIFOSZ;
570 	sc->sc_txfifosz = IMX_TXFIFO_LEVEL;
571 
572 	device_set_desc(sc->sc_dev, "Freescale i.MX UART");
573 	return (0);
574 }
575 
576 static int
577 imx_uart_bus_receive(struct uart_softc *sc)
578 {
579 	struct uart_bas *bas;
580 	int xc, out;
581 
582 	bas = &sc->sc_bas;
583 	uart_lock(sc->sc_hwmtx);
584 
585 	/*
586 	 * Empty the rx fifo.  We get the RRDY interrupt when IMX_RXFIFO_LEVEL
587 	 * (the rx high-water level) is reached, but we set sc_rxfifosz to the
588 	 * full hardware fifo size, so we can safely process however much is
589 	 * there, not just the highwater size.
590 	 */
591 	while (IS(bas, USR2, RDR)) {
592 		if (uart_rx_full(sc)) {
593 			/* No space left in input buffer */
594 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
595 			break;
596 		}
597 		xc = GETREG(bas, REG(URXD));
598 		out = xc & 0x000000ff;
599 		if (xc & FLD(URXD, FRMERR))
600 			out |= UART_STAT_FRAMERR;
601 		if (xc & FLD(URXD, PRERR))
602 			out |= UART_STAT_PARERR;
603 		if (xc & FLD(URXD, OVRRUN))
604 			out |= UART_STAT_OVERRUN;
605 		if (xc & FLD(URXD, BRK))
606 			out |= UART_STAT_BREAK;
607 
608 		uart_rx_put(sc, out);
609 	}
610 	ENA(bas, UCR1, RRDYEN);
611 	ENA(bas, UCR2, ATEN);
612 
613 	uart_unlock(sc->sc_hwmtx);
614 	return (0);
615 }
616 
617 static int
618 imx_uart_bus_setsig(struct uart_softc *sc, int sig)
619 {
620 
621 	return (0);
622 }
623 
624 static int
625 imx_uart_bus_transmit(struct uart_softc *sc)
626 {
627 	struct uart_bas *bas = &sc->sc_bas;
628 	int i;
629 
630 	bas = &sc->sc_bas;
631 	uart_lock(sc->sc_hwmtx);
632 
633 	/*
634 	 * Fill the tx fifo.  The uart core puts at most IMX_TXFIFO_LEVEL bytes
635 	 * into the txbuf (because that's what sc_txfifosz is set to), and
636 	 * because we got the TRDY (low-water reached) interrupt we know at
637 	 * least that much space is available in the fifo.
638 	 */
639 	for (i = 0; i < sc->sc_txdatasz; i++) {
640 		SETREG(bas, REG(UTXD), sc->sc_txbuf[i] & 0xff);
641 	}
642 	sc->sc_txbusy = 1;
643 	ENA(bas, UCR1, TRDYEN);
644 
645 	uart_unlock(sc->sc_hwmtx);
646 
647 	return (0);
648 }
649 
650 static void
651 imx_uart_bus_grab(struct uart_softc *sc)
652 {
653 	struct uart_bas *bas = &sc->sc_bas;
654 
655 	bas = &sc->sc_bas;
656 	uart_lock(sc->sc_hwmtx);
657 	DIS(bas, UCR1, RRDYEN);
658 	DIS(bas, UCR2, ATEN);
659 	uart_unlock(sc->sc_hwmtx);
660 }
661 
662 static void
663 imx_uart_bus_ungrab(struct uart_softc *sc)
664 {
665 	struct uart_bas *bas = &sc->sc_bas;
666 
667 	bas = &sc->sc_bas;
668 	uart_lock(sc->sc_hwmtx);
669 	ENA(bas, UCR1, RRDYEN);
670 	ENA(bas, UCR2, ATEN);
671 	uart_unlock(sc->sc_hwmtx);
672 }
673