xref: /freebsd/sys/dev/uart/uart_dev_imx.c (revision db33c6f3ae9d1231087710068ee4ea5398aacca7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012 The FreeBSD Foundation
5  *
6  * This software was developed by Oleksandr Rybalko under sponsorship
7  * from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1.	Redistributions of source code must retain the above copyright
13  *	notice, this list of conditions and the following disclaimer.
14  * 2.	Redistributions in binary form must reproduce the above copyright
15  *	notice, this list of conditions and the following disclaimer in the
16  *	documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_ddb.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/kdb.h>
39 #include <machine/bus.h>
40 
41 #include <dev/uart/uart.h>
42 #include <dev/uart/uart_cpu.h>
43 #include <dev/uart/uart_cpu_fdt.h>
44 #include <dev/uart/uart_bus.h>
45 #include <dev/uart/uart_dev_imx.h>
46 
47 #if defined(__aarch64__)
48 #define	IMX_ENABLE_CLOCKS
49 #endif
50 
51 #ifdef IMX_ENABLE_CLOCKS
52 #include <dev/clk/clk.h>
53 #endif
54 
55 #include "uart_if.h"
56 
57 #include <arm/freescale/imx/imx_ccmvar.h>
58 
59 /*
60  * The hardare FIFOs are 32 bytes.  We want an interrupt when there are 24 bytes
61  * available to read or space for 24 more bytes to write.  While 8 bytes of
62  * slack before over/underrun might seem excessive, the hardware can run at
63  * 5mbps, which means 2uS per char, so at full speed 8 bytes provides only 16uS
64  * to get into the interrupt handler and service the fifo.
65  */
66 #define	IMX_FIFOSZ		32
67 #define	IMX_RXFIFO_LEVEL	24
68 #define	IMX_TXFIFO_LEVEL	24
69 
70 /*
71  * Low-level UART interface.
72  */
73 static int imx_uart_probe(struct uart_bas *bas);
74 static void imx_uart_init(struct uart_bas *bas, int, int, int, int);
75 static void imx_uart_term(struct uart_bas *bas);
76 static void imx_uart_putc(struct uart_bas *bas, int);
77 static int imx_uart_rxready(struct uart_bas *bas);
78 static int imx_uart_getc(struct uart_bas *bas, struct mtx *);
79 
80 static struct uart_ops uart_imx_uart_ops = {
81 	.probe = imx_uart_probe,
82 	.init = imx_uart_init,
83 	.term = imx_uart_term,
84 	.putc = imx_uart_putc,
85 	.rxready = imx_uart_rxready,
86 	.getc = imx_uart_getc,
87 };
88 
89 #if 0 /* Handy when debugging. */
90 static void
91 dumpregs(struct uart_bas *bas, const char * msg)
92 {
93 
94 	if (!bootverbose)
95 		return;
96 	printf("%s bsh 0x%08lx UCR1 0x%08x UCR2 0x%08x "
97 		"UCR3 0x%08x UCR4 0x%08x USR1 0x%08x USR2 0x%08x\n",
98 	    msg, bas->bsh,
99 	    GETREG(bas, REG(UCR1)), GETREG(bas, REG(UCR2)),
100 	    GETREG(bas, REG(UCR3)), GETREG(bas, REG(UCR4)),
101 	    GETREG(bas, REG(USR1)), GETREG(bas, REG(USR2)));
102 }
103 #endif
104 
105 static int
106 imx_uart_probe(struct uart_bas *bas)
107 {
108 
109 	return (0);
110 }
111 
112 static u_int
113 imx_uart_getbaud(struct uart_bas *bas)
114 {
115 	uint32_t rate, ubir, ubmr;
116 	u_int baud, blo, bhi, i;
117 	static const u_int predivs[] = {6, 5, 4, 3, 2, 1, 7, 1};
118 	static const u_int std_rates[] = {
119 		9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800, 921600
120 	};
121 
122 	/*
123 	 * Get the baud rate the hardware is programmed for, then search the
124 	 * table of standard baud rates for a number that's within 3% of the
125 	 * actual rate the hardware is programmed for.  It's more comforting to
126 	 * see that your console is running at 115200 than 114942.  Note that
127 	 * here we cannot make a simplifying assumption that the predivider and
128 	 * numerator are 1 (like we do when setting the baud rate), because we
129 	 * don't know what u-boot might have set up.
130 	 */
131 	i = (GETREG(bas, REG(UFCR)) & IMXUART_UFCR_RFDIV_MASK) >>
132 	    IMXUART_UFCR_RFDIV_SHIFT;
133 	rate = bas->rclk / predivs[i];
134 	ubir = GETREG(bas, REG(UBIR)) + 1;
135 	ubmr = GETREG(bas, REG(UBMR)) + 1;
136 	baud = ((rate / 16 ) * ubir) / ubmr;
137 
138 	blo = (baud * 100) / 103;
139 	bhi = (baud * 100) / 97;
140 	for (i = 0; i < nitems(std_rates); i++) {
141 		rate = std_rates[i];
142 		if (rate >= blo && rate <= bhi) {
143 			baud = rate;
144 			break;
145 		}
146 	}
147 
148 	return (baud);
149 }
150 
151 static void
152 imx_uart_init(struct uart_bas *bas, int baudrate, int databits,
153     int stopbits, int parity)
154 {
155 	uint32_t baseclk, reg;
156 
157         /* Enable the device and the RX/TX channels. */
158 	SET(bas, REG(UCR1), FLD(UCR1, UARTEN));
159 	SET(bas, REG(UCR2), FLD(UCR2, RXEN) | FLD(UCR2, TXEN));
160 
161 	if (databits == 7)
162 		DIS(bas, UCR2, WS);
163 	else
164 		ENA(bas, UCR2, WS);
165 
166 	if (stopbits == 2)
167 		ENA(bas, UCR2, STPB);
168 	else
169 		DIS(bas, UCR2, STPB);
170 
171 	switch (parity) {
172 	case UART_PARITY_ODD:
173 		DIS(bas, UCR2, PROE);
174 		ENA(bas, UCR2, PREN);
175 		break;
176 	case UART_PARITY_EVEN:
177 		ENA(bas, UCR2, PROE);
178 		ENA(bas, UCR2, PREN);
179 		break;
180 	case UART_PARITY_MARK:
181 	case UART_PARITY_SPACE:
182                 /* FALLTHROUGH: Hardware doesn't support mark/space. */
183 	case UART_PARITY_NONE:
184 	default:
185 		DIS(bas, UCR2, PREN);
186 		break;
187 	}
188 
189 	/*
190 	 * The hardware has an extremely flexible baud clock: it allows setting
191 	 * both the numerator and denominator of the divider, as well as a
192 	 * separate pre-divider.  We simplify the problem of coming up with a
193 	 * workable pair of numbers by assuming a pre-divider and numerator of
194 	 * one because our base clock is so fast we can reach virtually any
195 	 * reasonable speed with a simple divisor.  The numerator value actually
196 	 * includes the 16x over-sampling (so a value of 16 means divide by 1);
197 	 * the register value is the numerator-1, so we have a hard-coded 15.
198 	 * Note that a quirk of the hardware requires that both UBIR and UBMR be
199 	 * set back to back in order for the change to take effect.
200 	 */
201 	if ((baudrate > 0) && (bas->rclk != 0)) {
202 		baseclk = bas->rclk;
203 		reg = GETREG(bas, REG(UFCR));
204 		reg = (reg & ~IMXUART_UFCR_RFDIV_MASK) | IMXUART_UFCR_RFDIV_DIV1;
205 		SETREG(bas, REG(UFCR), reg);
206 		SETREG(bas, REG(UBIR), 15);
207 		SETREG(bas, REG(UBMR), (baseclk / baudrate) - 1);
208 	}
209 
210 	/*
211 	 * Program the tx lowater and rx hiwater levels at which fifo-service
212 	 * interrupts are signaled.  The tx value is interpetted as "when there
213 	 * are only this many bytes remaining" (not "this many free").
214 	 */
215 	reg = GETREG(bas, REG(UFCR));
216 	reg &= ~(IMXUART_UFCR_TXTL_MASK | IMXUART_UFCR_RXTL_MASK);
217 	reg |= (IMX_FIFOSZ - IMX_TXFIFO_LEVEL) << IMXUART_UFCR_TXTL_SHIFT;
218 	reg |= IMX_RXFIFO_LEVEL << IMXUART_UFCR_RXTL_SHIFT;
219 	SETREG(bas, REG(UFCR), reg);
220 }
221 
222 static void
223 imx_uart_term(struct uart_bas *bas)
224 {
225 
226 }
227 
228 static void
229 imx_uart_putc(struct uart_bas *bas, int c)
230 {
231 
232 	while (!(IS(bas, USR1, TRDY)))
233 		;
234 	SETREG(bas, REG(UTXD), c);
235 }
236 
237 static int
238 imx_uart_rxready(struct uart_bas *bas)
239 {
240 
241 	return ((IS(bas, USR2, RDR)) ? 1 : 0);
242 }
243 
244 static int
245 imx_uart_getc(struct uart_bas *bas, struct mtx *hwmtx)
246 {
247 	int c;
248 
249 	uart_lock(hwmtx);
250 	while (!(IS(bas, USR2, RDR)))
251 		;
252 
253 	c = GETREG(bas, REG(URXD));
254 	uart_unlock(hwmtx);
255 #if defined(KDB)
256 	if (c & FLD(URXD, BRK)) {
257 		if (kdb_break())
258 			return (0);
259 	}
260 #endif
261 	return (c & 0xff);
262 }
263 
264 /*
265  * High-level UART interface.
266  */
267 struct imx_uart_softc {
268 	struct uart_softc base;
269 };
270 
271 static int imx_uart_bus_attach(struct uart_softc *);
272 static int imx_uart_bus_detach(struct uart_softc *);
273 static int imx_uart_bus_flush(struct uart_softc *, int);
274 static int imx_uart_bus_getsig(struct uart_softc *);
275 static int imx_uart_bus_ioctl(struct uart_softc *, int, intptr_t);
276 static int imx_uart_bus_ipend(struct uart_softc *);
277 static int imx_uart_bus_param(struct uart_softc *, int, int, int, int);
278 static int imx_uart_bus_probe(struct uart_softc *);
279 static int imx_uart_bus_receive(struct uart_softc *);
280 static int imx_uart_bus_setsig(struct uart_softc *, int);
281 static int imx_uart_bus_transmit(struct uart_softc *);
282 static void imx_uart_bus_grab(struct uart_softc *);
283 static void imx_uart_bus_ungrab(struct uart_softc *);
284 
285 static kobj_method_t imx_uart_methods[] = {
286 	KOBJMETHOD(uart_attach,		imx_uart_bus_attach),
287 	KOBJMETHOD(uart_detach,		imx_uart_bus_detach),
288 	KOBJMETHOD(uart_flush,		imx_uart_bus_flush),
289 	KOBJMETHOD(uart_getsig,		imx_uart_bus_getsig),
290 	KOBJMETHOD(uart_ioctl,		imx_uart_bus_ioctl),
291 	KOBJMETHOD(uart_ipend,		imx_uart_bus_ipend),
292 	KOBJMETHOD(uart_param,		imx_uart_bus_param),
293 	KOBJMETHOD(uart_probe,		imx_uart_bus_probe),
294 	KOBJMETHOD(uart_receive,	imx_uart_bus_receive),
295 	KOBJMETHOD(uart_setsig,		imx_uart_bus_setsig),
296 	KOBJMETHOD(uart_transmit,	imx_uart_bus_transmit),
297 	KOBJMETHOD(uart_grab,		imx_uart_bus_grab),
298 	KOBJMETHOD(uart_ungrab,		imx_uart_bus_ungrab),
299 	{ 0, 0 }
300 };
301 
302 static struct uart_class uart_imx_class = {
303 	"imx",
304 	imx_uart_methods,
305 	sizeof(struct imx_uart_softc),
306 	.uc_ops = &uart_imx_uart_ops,
307 	.uc_range = 0x100,
308 	.uc_rclk = 24000000, /* TODO: get value from CCM */
309 	.uc_rshift = 0
310 };
311 
312 static struct ofw_compat_data compat_data[] = {
313 	{"fsl,imx6q-uart",	(uintptr_t)&uart_imx_class},
314 	{"fsl,imx53-uart",	(uintptr_t)&uart_imx_class},
315 	{"fsl,imx51-uart",	(uintptr_t)&uart_imx_class},
316 	{"fsl,imx31-uart",	(uintptr_t)&uart_imx_class},
317 	{"fsl,imx27-uart",	(uintptr_t)&uart_imx_class},
318 	{"fsl,imx25-uart",	(uintptr_t)&uart_imx_class},
319 	{"fsl,imx21-uart",	(uintptr_t)&uart_imx_class},
320 	{NULL,			(uintptr_t)NULL},
321 };
322 UART_FDT_CLASS_AND_DEVICE(compat_data);
323 
324 #define	SIGCHG(c, i, s, d)				\
325 	if (c) {					\
326 		i |= (i & s) ? s : s | d;		\
327 	} else {					\
328 		i = (i & s) ? (i & ~s) | d : i;		\
329 	}
330 
331 #ifdef IMX_ENABLE_CLOCKS
332 static int
333 imx_uart_setup_clocks(struct uart_softc *sc)
334 {
335 	struct uart_bas *bas;
336 	clk_t ipgclk, perclk;
337 	uint64_t freq;
338 	int error;
339 
340 	bas = &sc->sc_bas;
341 
342 	if (clk_get_by_ofw_name(sc->sc_dev, 0, "ipg", &ipgclk) != 0)
343 		return (ENOENT);
344 
345 	if (clk_get_by_ofw_name(sc->sc_dev, 0, "per", &perclk) != 0) {
346 		return (ENOENT);
347 	}
348 
349 	error = clk_enable(ipgclk);
350 	if (error != 0) {
351 		device_printf(sc->sc_dev, "cannot enable ipg clock\n");
352 		return (error);
353 	}
354 
355 	error = clk_get_freq(perclk, &freq);
356 	if (error != 0) {
357 		device_printf(sc->sc_dev, "cannot get frequency\n");
358 		return (error);
359 	}
360 
361 	bas->rclk = (uint32_t)freq;
362 
363 	return (0);
364 }
365 #endif
366 
367 static int
368 imx_uart_bus_attach(struct uart_softc *sc)
369 {
370 	struct uart_bas *bas;
371 	struct uart_devinfo *di;
372 
373 	bas = &sc->sc_bas;
374 
375 #ifdef IMX_ENABLE_CLOCKS
376 	int error = imx_uart_setup_clocks(sc);
377 	if (error)
378 		return (error);
379 #else
380 	bas->rclk = imx_ccm_uart_hz();
381 #endif
382 
383 	if (sc->sc_sysdev != NULL) {
384 		di = sc->sc_sysdev;
385 		imx_uart_init(bas, di->baudrate, di->databits, di->stopbits,
386 		    di->parity);
387 	} else {
388 		imx_uart_init(bas, 115200, 8, 1, 0);
389 	}
390 
391 	(void)imx_uart_bus_getsig(sc);
392 
393 	/* Clear all pending interrupts. */
394 	SETREG(bas, REG(USR1), 0xffff);
395 	SETREG(bas, REG(USR2), 0xffff);
396 
397 	DIS(bas, UCR4, DREN);
398 	ENA(bas, UCR1, RRDYEN);
399 	DIS(bas, UCR1, IDEN);
400 	DIS(bas, UCR3, RXDSEN);
401 	ENA(bas, UCR2, ATEN);
402 	DIS(bas, UCR1, TXMPTYEN);
403 	DIS(bas, UCR1, TRDYEN);
404 	DIS(bas, UCR4, TCEN);
405 	DIS(bas, UCR4, OREN);
406 	ENA(bas, UCR4, BKEN);
407 	DIS(bas, UCR4, WKEN);
408 	DIS(bas, UCR1, ADEN);
409 	DIS(bas, UCR3, ACIEN);
410 	DIS(bas, UCR2, ESCI);
411 	DIS(bas, UCR4, ENIRI);
412 	DIS(bas, UCR3, AIRINTEN);
413 	DIS(bas, UCR3, AWAKEN);
414 	DIS(bas, UCR3, FRAERREN);
415 	DIS(bas, UCR3, PARERREN);
416 	DIS(bas, UCR1, RTSDEN);
417 	DIS(bas, UCR2, RTSEN);
418 	DIS(bas, UCR3, DTREN);
419 	DIS(bas, UCR3, RI);
420 	DIS(bas, UCR3, DCD);
421 	DIS(bas, UCR3, DTRDEN);
422 	ENA(bas, UCR2, IRTS);
423 	ENA(bas, UCR3, RXDMUXSEL);
424 
425 	return (0);
426 }
427 
428 static int
429 imx_uart_bus_detach(struct uart_softc *sc)
430 {
431 
432 	SETREG(&sc->sc_bas, REG(UCR4), 0);
433 
434 	return (0);
435 }
436 
437 static int
438 imx_uart_bus_flush(struct uart_softc *sc, int what)
439 {
440 
441 	/* TODO */
442 	return (0);
443 }
444 
445 static int
446 imx_uart_bus_getsig(struct uart_softc *sc)
447 {
448 	uint32_t new, old, sig;
449 	uint8_t bes;
450 
451 	do {
452 		old = sc->sc_hwsig;
453 		sig = old;
454 		uart_lock(sc->sc_hwmtx);
455 		bes = GETREG(&sc->sc_bas, REG(USR2));
456 		uart_unlock(sc->sc_hwmtx);
457 		/* XXX: chip can show delta */
458 		SIGCHG(bes & FLD(USR2, DCDIN), sig, SER_DCD, SER_DDCD);
459 		new = sig & ~SER_MASK_DELTA;
460 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
461 
462 	return (sig);
463 }
464 
465 static int
466 imx_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
467 {
468 	struct uart_bas *bas;
469 	int error;
470 
471 	bas = &sc->sc_bas;
472 	error = 0;
473 	uart_lock(sc->sc_hwmtx);
474 	switch (request) {
475 	case UART_IOCTL_BREAK:
476 		/* TODO */
477 		break;
478 	case UART_IOCTL_BAUD:
479 		*(u_int*)data = imx_uart_getbaud(bas);
480 		break;
481 	default:
482 		error = EINVAL;
483 		break;
484 	}
485 	uart_unlock(sc->sc_hwmtx);
486 
487 	return (error);
488 }
489 
490 static int
491 imx_uart_bus_ipend(struct uart_softc *sc)
492 {
493 	struct uart_bas *bas;
494 	int ipend;
495 	uint32_t usr1, usr2;
496 	uint32_t ucr1, ucr2, ucr4;
497 
498 	bas = &sc->sc_bas;
499 	ipend = 0;
500 
501 	uart_lock(sc->sc_hwmtx);
502 
503 	/* Read pending interrupts */
504 	usr1 = GETREG(bas, REG(USR1));
505 	usr2 = GETREG(bas, REG(USR2));
506 	/* ACK interrupts */
507 	SETREG(bas, REG(USR1), usr1);
508 	SETREG(bas, REG(USR2), usr2);
509 
510 	ucr1 = GETREG(bas, REG(UCR1));
511 	ucr2 = GETREG(bas, REG(UCR2));
512 	ucr4 = GETREG(bas, REG(UCR4));
513 
514 	/* If we have reached tx low-water, we can tx some more now. */
515 	if ((usr1 & FLD(USR1, TRDY)) && (ucr1 & FLD(UCR1, TRDYEN))) {
516 		DIS(bas, UCR1, TRDYEN);
517 		ipend |= SER_INT_TXIDLE;
518 	}
519 
520 	/*
521 	 * If we have reached the rx high-water, or if there are bytes in the rx
522 	 * fifo and no new data has arrived for 8 character periods (aging
523 	 * timer), we have input data to process.
524 	 */
525 	if (((usr1 & FLD(USR1, RRDY)) && (ucr1 & FLD(UCR1, RRDYEN))) ||
526 	    ((usr1 & FLD(USR1, AGTIM)) && (ucr2 & FLD(UCR2, ATEN)))) {
527 		DIS(bas, UCR1, RRDYEN);
528 		DIS(bas, UCR2, ATEN);
529 		ipend |= SER_INT_RXREADY;
530 	}
531 
532 	/* A break can come in at any time, it never gets disabled. */
533 	if ((usr2 & FLD(USR2, BRCD)) && (ucr4 & FLD(UCR4, BKEN)))
534 		ipend |= SER_INT_BREAK;
535 
536 	uart_unlock(sc->sc_hwmtx);
537 
538 	return (ipend);
539 }
540 
541 static int
542 imx_uart_bus_param(struct uart_softc *sc, int baudrate, int databits,
543     int stopbits, int parity)
544 {
545 
546 	uart_lock(sc->sc_hwmtx);
547 	imx_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity);
548 	uart_unlock(sc->sc_hwmtx);
549 	return (0);
550 }
551 
552 static int
553 imx_uart_bus_probe(struct uart_softc *sc)
554 {
555 	int error;
556 
557 	error = imx_uart_probe(&sc->sc_bas);
558 	if (error)
559 		return (error);
560 
561 	/*
562 	 * On input we can read up to the full fifo size at once.  On output, we
563 	 * want to write only as much as the programmed tx low water level,
564 	 * because that's all we can be certain we have room for in the fifo
565 	 * when we get a tx-ready interrupt.
566 	 */
567 	sc->sc_rxfifosz = IMX_FIFOSZ;
568 	sc->sc_txfifosz = IMX_TXFIFO_LEVEL;
569 
570 	device_set_desc(sc->sc_dev, "Freescale i.MX UART");
571 	return (0);
572 }
573 
574 static int
575 imx_uart_bus_receive(struct uart_softc *sc)
576 {
577 	struct uart_bas *bas;
578 	int xc, out;
579 
580 	bas = &sc->sc_bas;
581 	uart_lock(sc->sc_hwmtx);
582 
583 	/*
584 	 * Empty the rx fifo.  We get the RRDY interrupt when IMX_RXFIFO_LEVEL
585 	 * (the rx high-water level) is reached, but we set sc_rxfifosz to the
586 	 * full hardware fifo size, so we can safely process however much is
587 	 * there, not just the highwater size.
588 	 */
589 	while (IS(bas, USR2, RDR)) {
590 		if (uart_rx_full(sc)) {
591 			/* No space left in input buffer */
592 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
593 			break;
594 		}
595 		xc = GETREG(bas, REG(URXD));
596 		out = xc & 0x000000ff;
597 		if (xc & FLD(URXD, FRMERR))
598 			out |= UART_STAT_FRAMERR;
599 		if (xc & FLD(URXD, PRERR))
600 			out |= UART_STAT_PARERR;
601 		if (xc & FLD(URXD, OVRRUN))
602 			out |= UART_STAT_OVERRUN;
603 		if (xc & FLD(URXD, BRK))
604 			out |= UART_STAT_BREAK;
605 
606 		uart_rx_put(sc, out);
607 	}
608 	ENA(bas, UCR1, RRDYEN);
609 	ENA(bas, UCR2, ATEN);
610 
611 	uart_unlock(sc->sc_hwmtx);
612 	return (0);
613 }
614 
615 static int
616 imx_uart_bus_setsig(struct uart_softc *sc, int sig)
617 {
618 
619 	return (0);
620 }
621 
622 static int
623 imx_uart_bus_transmit(struct uart_softc *sc)
624 {
625 	struct uart_bas *bas = &sc->sc_bas;
626 	int i;
627 
628 	bas = &sc->sc_bas;
629 	uart_lock(sc->sc_hwmtx);
630 
631 	/*
632 	 * Fill the tx fifo.  The uart core puts at most IMX_TXFIFO_LEVEL bytes
633 	 * into the txbuf (because that's what sc_txfifosz is set to), and
634 	 * because we got the TRDY (low-water reached) interrupt we know at
635 	 * least that much space is available in the fifo.
636 	 */
637 	for (i = 0; i < sc->sc_txdatasz; i++) {
638 		SETREG(bas, REG(UTXD), sc->sc_txbuf[i] & 0xff);
639 	}
640 	sc->sc_txbusy = 1;
641 	ENA(bas, UCR1, TRDYEN);
642 
643 	uart_unlock(sc->sc_hwmtx);
644 
645 	return (0);
646 }
647 
648 static void
649 imx_uart_bus_grab(struct uart_softc *sc)
650 {
651 	struct uart_bas *bas = &sc->sc_bas;
652 
653 	bas = &sc->sc_bas;
654 	uart_lock(sc->sc_hwmtx);
655 	DIS(bas, UCR1, RRDYEN);
656 	DIS(bas, UCR2, ATEN);
657 	uart_unlock(sc->sc_hwmtx);
658 }
659 
660 static void
661 imx_uart_bus_ungrab(struct uart_softc *sc)
662 {
663 	struct uart_bas *bas = &sc->sc_bas;
664 
665 	bas = &sc->sc_bas;
666 	uart_lock(sc->sc_hwmtx);
667 	ENA(bas, UCR1, RRDYEN);
668 	ENA(bas, UCR2, ATEN);
669 	uart_unlock(sc->sc_hwmtx);
670 }
671