xref: /freebsd/sys/dev/uart/uart_dev_imx.c (revision b4e38a41f584ad4391c04b8cfec81f46176b18b0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * This software was developed by Oleksandr Rybalko under sponsorship
8  * from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1.	Redistributions of source code must retain the above copyright
14  *	notice, this list of conditions and the following disclaimer.
15  * 2.	Redistributions in binary form must reproduce the above copyright
16  *	notice, this list of conditions and the following disclaimer in the
17  *	documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ddb.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/conf.h>
41 #include <sys/kdb.h>
42 #include <machine/bus.h>
43 
44 #include <dev/uart/uart.h>
45 #include <dev/uart/uart_cpu.h>
46 #include <dev/uart/uart_cpu_fdt.h>
47 #include <dev/uart/uart_bus.h>
48 #include <dev/uart/uart_dev_imx.h>
49 
50 #if defined(EXT_RESOURCES) && defined(__aarch64__)
51 #define	IMX_ENABLE_CLOCKS
52 #endif
53 
54 #ifdef IMX_ENABLE_CLOCKS
55 #include <dev/extres/clk/clk.h>
56 #endif
57 
58 #include "uart_if.h"
59 
60 #include <arm/freescale/imx/imx_ccmvar.h>
61 
62 /*
63  * The hardare FIFOs are 32 bytes.  We want an interrupt when there are 24 bytes
64  * available to read or space for 24 more bytes to write.  While 8 bytes of
65  * slack before over/underrun might seem excessive, the hardware can run at
66  * 5mbps, which means 2uS per char, so at full speed 8 bytes provides only 16uS
67  * to get into the interrupt handler and service the fifo.
68  */
69 #define	IMX_FIFOSZ		32
70 #define	IMX_RXFIFO_LEVEL	24
71 #define	IMX_TXFIFO_LEVEL	24
72 
73 /*
74  * Low-level UART interface.
75  */
76 static int imx_uart_probe(struct uart_bas *bas);
77 static void imx_uart_init(struct uart_bas *bas, int, int, int, int);
78 static void imx_uart_term(struct uart_bas *bas);
79 static void imx_uart_putc(struct uart_bas *bas, int);
80 static int imx_uart_rxready(struct uart_bas *bas);
81 static int imx_uart_getc(struct uart_bas *bas, struct mtx *);
82 
83 static struct uart_ops uart_imx_uart_ops = {
84 	.probe = imx_uart_probe,
85 	.init = imx_uart_init,
86 	.term = imx_uart_term,
87 	.putc = imx_uart_putc,
88 	.rxready = imx_uart_rxready,
89 	.getc = imx_uart_getc,
90 };
91 
92 #if 0 /* Handy when debugging. */
93 static void
94 dumpregs(struct uart_bas *bas, const char * msg)
95 {
96 
97 	if (!bootverbose)
98 		return;
99 	printf("%s bsh 0x%08lx UCR1 0x%08x UCR2 0x%08x "
100 		"UCR3 0x%08x UCR4 0x%08x USR1 0x%08x USR2 0x%08x\n",
101 	    msg, bas->bsh,
102 	    GETREG(bas, REG(UCR1)), GETREG(bas, REG(UCR2)),
103 	    GETREG(bas, REG(UCR3)), GETREG(bas, REG(UCR4)),
104 	    GETREG(bas, REG(USR1)), GETREG(bas, REG(USR2)));
105 }
106 #endif
107 
108 static int
109 imx_uart_probe(struct uart_bas *bas)
110 {
111 
112 	return (0);
113 }
114 
115 static u_int
116 imx_uart_getbaud(struct uart_bas *bas)
117 {
118 	uint32_t rate, ubir, ubmr;
119 	u_int baud, blo, bhi, i;
120 	static const u_int predivs[] = {6, 5, 4, 3, 2, 1, 7, 1};
121 	static const u_int std_rates[] = {
122 		9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800, 921600
123 	};
124 
125 	/*
126 	 * Get the baud rate the hardware is programmed for, then search the
127 	 * table of standard baud rates for a number that's within 3% of the
128 	 * actual rate the hardware is programmed for.  It's more comforting to
129 	 * see that your console is running at 115200 than 114942.  Note that
130 	 * here we cannot make a simplifying assumption that the predivider and
131 	 * numerator are 1 (like we do when setting the baud rate), because we
132 	 * don't know what u-boot might have set up.
133 	 */
134 	i = (GETREG(bas, REG(UFCR)) & IMXUART_UFCR_RFDIV_MASK) >>
135 	    IMXUART_UFCR_RFDIV_SHIFT;
136 	rate = bas->rclk / predivs[i];
137 	ubir = GETREG(bas, REG(UBIR)) + 1;
138 	ubmr = GETREG(bas, REG(UBMR)) + 1;
139 	baud = ((rate / 16 ) * ubir) / ubmr;
140 
141 	blo = (baud * 100) / 103;
142 	bhi = (baud * 100) / 97;
143 	for (i = 0; i < nitems(std_rates); i++) {
144 		rate = std_rates[i];
145 		if (rate >= blo && rate <= bhi) {
146 			baud = rate;
147 			break;
148 		}
149 	}
150 
151 	return (baud);
152 }
153 
154 static void
155 imx_uart_init(struct uart_bas *bas, int baudrate, int databits,
156     int stopbits, int parity)
157 {
158 	uint32_t baseclk, reg;
159 
160         /* Enable the device and the RX/TX channels. */
161 	SET(bas, REG(UCR1), FLD(UCR1, UARTEN));
162 	SET(bas, REG(UCR2), FLD(UCR2, RXEN) | FLD(UCR2, TXEN));
163 
164 	if (databits == 7)
165 		DIS(bas, UCR2, WS);
166 	else
167 		ENA(bas, UCR2, WS);
168 
169 	if (stopbits == 2)
170 		ENA(bas, UCR2, STPB);
171 	else
172 		DIS(bas, UCR2, STPB);
173 
174 	switch (parity) {
175 	case UART_PARITY_ODD:
176 		DIS(bas, UCR2, PROE);
177 		ENA(bas, UCR2, PREN);
178 		break;
179 	case UART_PARITY_EVEN:
180 		ENA(bas, UCR2, PROE);
181 		ENA(bas, UCR2, PREN);
182 		break;
183 	case UART_PARITY_MARK:
184 	case UART_PARITY_SPACE:
185                 /* FALLTHROUGH: Hardware doesn't support mark/space. */
186 	case UART_PARITY_NONE:
187 	default:
188 		DIS(bas, UCR2, PREN);
189 		break;
190 	}
191 
192 	/*
193 	 * The hardware has an extremely flexible baud clock: it allows setting
194 	 * both the numerator and denominator of the divider, as well as a
195 	 * separate pre-divider.  We simplify the problem of coming up with a
196 	 * workable pair of numbers by assuming a pre-divider and numerator of
197 	 * one because our base clock is so fast we can reach virtually any
198 	 * reasonable speed with a simple divisor.  The numerator value actually
199 	 * includes the 16x over-sampling (so a value of 16 means divide by 1);
200 	 * the register value is the numerator-1, so we have a hard-coded 15.
201 	 * Note that a quirk of the hardware requires that both UBIR and UBMR be
202 	 * set back to back in order for the change to take effect.
203 	 */
204 	if ((baudrate > 0) && (bas->rclk != 0)) {
205 		baseclk = bas->rclk;
206 		reg = GETREG(bas, REG(UFCR));
207 		reg = (reg & ~IMXUART_UFCR_RFDIV_MASK) | IMXUART_UFCR_RFDIV_DIV1;
208 		SETREG(bas, REG(UFCR), reg);
209 		SETREG(bas, REG(UBIR), 15);
210 		SETREG(bas, REG(UBMR), (baseclk / baudrate) - 1);
211 	}
212 
213 	/*
214 	 * Program the tx lowater and rx hiwater levels at which fifo-service
215 	 * interrupts are signaled.  The tx value is interpetted as "when there
216 	 * are only this many bytes remaining" (not "this many free").
217 	 */
218 	reg = GETREG(bas, REG(UFCR));
219 	reg &= ~(IMXUART_UFCR_TXTL_MASK | IMXUART_UFCR_RXTL_MASK);
220 	reg |= (IMX_FIFOSZ - IMX_TXFIFO_LEVEL) << IMXUART_UFCR_TXTL_SHIFT;
221 	reg |= IMX_RXFIFO_LEVEL << IMXUART_UFCR_RXTL_SHIFT;
222 	SETREG(bas, REG(UFCR), reg);
223 }
224 
225 static void
226 imx_uart_term(struct uart_bas *bas)
227 {
228 
229 }
230 
231 static void
232 imx_uart_putc(struct uart_bas *bas, int c)
233 {
234 
235 	while (!(IS(bas, USR1, TRDY)))
236 		;
237 	SETREG(bas, REG(UTXD), c);
238 }
239 
240 static int
241 imx_uart_rxready(struct uart_bas *bas)
242 {
243 
244 	return ((IS(bas, USR2, RDR)) ? 1 : 0);
245 }
246 
247 static int
248 imx_uart_getc(struct uart_bas *bas, struct mtx *hwmtx)
249 {
250 	int c;
251 
252 	uart_lock(hwmtx);
253 	while (!(IS(bas, USR2, RDR)))
254 		;
255 
256 	c = GETREG(bas, REG(URXD));
257 	uart_unlock(hwmtx);
258 #if defined(KDB)
259 	if (c & FLD(URXD, BRK)) {
260 		if (kdb_break())
261 			return (0);
262 	}
263 #endif
264 	return (c & 0xff);
265 }
266 
267 /*
268  * High-level UART interface.
269  */
270 struct imx_uart_softc {
271 	struct uart_softc base;
272 };
273 
274 static int imx_uart_bus_attach(struct uart_softc *);
275 static int imx_uart_bus_detach(struct uart_softc *);
276 static int imx_uart_bus_flush(struct uart_softc *, int);
277 static int imx_uart_bus_getsig(struct uart_softc *);
278 static int imx_uart_bus_ioctl(struct uart_softc *, int, intptr_t);
279 static int imx_uart_bus_ipend(struct uart_softc *);
280 static int imx_uart_bus_param(struct uart_softc *, int, int, int, int);
281 static int imx_uart_bus_probe(struct uart_softc *);
282 static int imx_uart_bus_receive(struct uart_softc *);
283 static int imx_uart_bus_setsig(struct uart_softc *, int);
284 static int imx_uart_bus_transmit(struct uart_softc *);
285 static void imx_uart_bus_grab(struct uart_softc *);
286 static void imx_uart_bus_ungrab(struct uart_softc *);
287 
288 static kobj_method_t imx_uart_methods[] = {
289 	KOBJMETHOD(uart_attach,		imx_uart_bus_attach),
290 	KOBJMETHOD(uart_detach,		imx_uart_bus_detach),
291 	KOBJMETHOD(uart_flush,		imx_uart_bus_flush),
292 	KOBJMETHOD(uart_getsig,		imx_uart_bus_getsig),
293 	KOBJMETHOD(uart_ioctl,		imx_uart_bus_ioctl),
294 	KOBJMETHOD(uart_ipend,		imx_uart_bus_ipend),
295 	KOBJMETHOD(uart_param,		imx_uart_bus_param),
296 	KOBJMETHOD(uart_probe,		imx_uart_bus_probe),
297 	KOBJMETHOD(uart_receive,	imx_uart_bus_receive),
298 	KOBJMETHOD(uart_setsig,		imx_uart_bus_setsig),
299 	KOBJMETHOD(uart_transmit,	imx_uart_bus_transmit),
300 	KOBJMETHOD(uart_grab,		imx_uart_bus_grab),
301 	KOBJMETHOD(uart_ungrab,		imx_uart_bus_ungrab),
302 	{ 0, 0 }
303 };
304 
305 static struct uart_class uart_imx_class = {
306 	"imx",
307 	imx_uart_methods,
308 	sizeof(struct imx_uart_softc),
309 	.uc_ops = &uart_imx_uart_ops,
310 	.uc_range = 0x100,
311 	.uc_rclk = 24000000, /* TODO: get value from CCM */
312 	.uc_rshift = 0
313 };
314 
315 static struct ofw_compat_data compat_data[] = {
316 	{"fsl,imx6q-uart",	(uintptr_t)&uart_imx_class},
317 	{"fsl,imx53-uart",	(uintptr_t)&uart_imx_class},
318 	{"fsl,imx51-uart",	(uintptr_t)&uart_imx_class},
319 	{"fsl,imx31-uart",	(uintptr_t)&uart_imx_class},
320 	{"fsl,imx27-uart",	(uintptr_t)&uart_imx_class},
321 	{"fsl,imx25-uart",	(uintptr_t)&uart_imx_class},
322 	{"fsl,imx21-uart",	(uintptr_t)&uart_imx_class},
323 	{NULL,			(uintptr_t)NULL},
324 };
325 UART_FDT_CLASS_AND_DEVICE(compat_data);
326 
327 #define	SIGCHG(c, i, s, d)				\
328 	if (c) {					\
329 		i |= (i & s) ? s : s | d;		\
330 	} else {					\
331 		i = (i & s) ? (i & ~s) | d : i;		\
332 	}
333 
334 #ifdef IMX_ENABLE_CLOCKS
335 static int
336 imx_uart_setup_clocks(struct uart_softc *sc)
337 {
338 	struct uart_bas *bas;
339 	clk_t ipgclk, perclk;
340 	uint64_t freq;
341 	int error;
342 
343 	bas = &sc->sc_bas;
344 
345 	if (clk_get_by_ofw_name(sc->sc_dev, 0, "ipg", &ipgclk) != 0)
346 		return (ENOENT);
347 
348 	if (clk_get_by_ofw_name(sc->sc_dev, 0, "per", &perclk) != 0) {
349 		return (ENOENT);
350 	}
351 
352 	error = clk_enable(ipgclk);
353 	if (error != 0) {
354 		device_printf(sc->sc_dev, "cannot enable ipg clock\n");
355 		return (error);
356 	}
357 
358 	error = clk_get_freq(perclk, &freq);
359 	if (error != 0) {
360 		device_printf(sc->sc_dev, "cannot get frequency\n");
361 		return (error);
362 	}
363 
364 	bas->rclk = (uint32_t)freq;
365 
366 	return (0);
367 }
368 #endif
369 
370 static int
371 imx_uart_bus_attach(struct uart_softc *sc)
372 {
373 	struct uart_bas *bas;
374 	struct uart_devinfo *di;
375 
376 	bas = &sc->sc_bas;
377 
378 #ifdef IMX_ENABLE_CLOCKS
379 	int error = imx_uart_setup_clocks(sc);
380 	if (error)
381 		return (error);
382 #else
383 	bas->rclk = imx_ccm_uart_hz();
384 #endif
385 
386 	if (sc->sc_sysdev != NULL) {
387 		di = sc->sc_sysdev;
388 		imx_uart_init(bas, di->baudrate, di->databits, di->stopbits,
389 		    di->parity);
390 	} else {
391 		imx_uart_init(bas, 115200, 8, 1, 0);
392 	}
393 
394 	(void)imx_uart_bus_getsig(sc);
395 
396 	/* Clear all pending interrupts. */
397 	SETREG(bas, REG(USR1), 0xffff);
398 	SETREG(bas, REG(USR2), 0xffff);
399 
400 	DIS(bas, UCR4, DREN);
401 	ENA(bas, UCR1, RRDYEN);
402 	DIS(bas, UCR1, IDEN);
403 	DIS(bas, UCR3, RXDSEN);
404 	ENA(bas, UCR2, ATEN);
405 	DIS(bas, UCR1, TXMPTYEN);
406 	DIS(bas, UCR1, TRDYEN);
407 	DIS(bas, UCR4, TCEN);
408 	DIS(bas, UCR4, OREN);
409 	ENA(bas, UCR4, BKEN);
410 	DIS(bas, UCR4, WKEN);
411 	DIS(bas, UCR1, ADEN);
412 	DIS(bas, UCR3, ACIEN);
413 	DIS(bas, UCR2, ESCI);
414 	DIS(bas, UCR4, ENIRI);
415 	DIS(bas, UCR3, AIRINTEN);
416 	DIS(bas, UCR3, AWAKEN);
417 	DIS(bas, UCR3, FRAERREN);
418 	DIS(bas, UCR3, PARERREN);
419 	DIS(bas, UCR1, RTSDEN);
420 	DIS(bas, UCR2, RTSEN);
421 	DIS(bas, UCR3, DTREN);
422 	DIS(bas, UCR3, RI);
423 	DIS(bas, UCR3, DCD);
424 	DIS(bas, UCR3, DTRDEN);
425 	ENA(bas, UCR2, IRTS);
426 	ENA(bas, UCR3, RXDMUXSEL);
427 
428 	return (0);
429 }
430 
431 static int
432 imx_uart_bus_detach(struct uart_softc *sc)
433 {
434 
435 	SETREG(&sc->sc_bas, REG(UCR4), 0);
436 
437 	return (0);
438 }
439 
440 static int
441 imx_uart_bus_flush(struct uart_softc *sc, int what)
442 {
443 
444 	/* TODO */
445 	return (0);
446 }
447 
448 static int
449 imx_uart_bus_getsig(struct uart_softc *sc)
450 {
451 	uint32_t new, old, sig;
452 	uint8_t bes;
453 
454 	do {
455 		old = sc->sc_hwsig;
456 		sig = old;
457 		uart_lock(sc->sc_hwmtx);
458 		bes = GETREG(&sc->sc_bas, REG(USR2));
459 		uart_unlock(sc->sc_hwmtx);
460 		/* XXX: chip can show delta */
461 		SIGCHG(bes & FLD(USR2, DCDIN), sig, SER_DCD, SER_DDCD);
462 		new = sig & ~SER_MASK_DELTA;
463 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
464 
465 	return (sig);
466 }
467 
468 static int
469 imx_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
470 {
471 	struct uart_bas *bas;
472 	int error;
473 
474 	bas = &sc->sc_bas;
475 	error = 0;
476 	uart_lock(sc->sc_hwmtx);
477 	switch (request) {
478 	case UART_IOCTL_BREAK:
479 		/* TODO */
480 		break;
481 	case UART_IOCTL_BAUD:
482 		*(u_int*)data = imx_uart_getbaud(bas);
483 		break;
484 	default:
485 		error = EINVAL;
486 		break;
487 	}
488 	uart_unlock(sc->sc_hwmtx);
489 
490 	return (error);
491 }
492 
493 static int
494 imx_uart_bus_ipend(struct uart_softc *sc)
495 {
496 	struct uart_bas *bas;
497 	int ipend;
498 	uint32_t usr1, usr2;
499 	uint32_t ucr1, ucr2, ucr4;
500 
501 	bas = &sc->sc_bas;
502 	ipend = 0;
503 
504 	uart_lock(sc->sc_hwmtx);
505 
506 	/* Read pending interrupts */
507 	usr1 = GETREG(bas, REG(USR1));
508 	usr2 = GETREG(bas, REG(USR2));
509 	/* ACK interrupts */
510 	SETREG(bas, REG(USR1), usr1);
511 	SETREG(bas, REG(USR2), usr2);
512 
513 	ucr1 = GETREG(bas, REG(UCR1));
514 	ucr2 = GETREG(bas, REG(UCR2));
515 	ucr4 = GETREG(bas, REG(UCR4));
516 
517 	/* If we have reached tx low-water, we can tx some more now. */
518 	if ((usr1 & FLD(USR1, TRDY)) && (ucr1 & FLD(UCR1, TRDYEN))) {
519 		DIS(bas, UCR1, TRDYEN);
520 		ipend |= SER_INT_TXIDLE;
521 	}
522 
523 	/*
524 	 * If we have reached the rx high-water, or if there are bytes in the rx
525 	 * fifo and no new data has arrived for 8 character periods (aging
526 	 * timer), we have input data to process.
527 	 */
528 	if (((usr1 & FLD(USR1, RRDY)) && (ucr1 & FLD(UCR1, RRDYEN))) ||
529 	    ((usr1 & FLD(USR1, AGTIM)) && (ucr2 & FLD(UCR2, ATEN)))) {
530 		DIS(bas, UCR1, RRDYEN);
531 		DIS(bas, UCR2, ATEN);
532 		ipend |= SER_INT_RXREADY;
533 	}
534 
535 	/* A break can come in at any time, it never gets disabled. */
536 	if ((usr2 & FLD(USR2, BRCD)) && (ucr4 & FLD(UCR4, BKEN)))
537 		ipend |= SER_INT_BREAK;
538 
539 	uart_unlock(sc->sc_hwmtx);
540 
541 	return (ipend);
542 }
543 
544 static int
545 imx_uart_bus_param(struct uart_softc *sc, int baudrate, int databits,
546     int stopbits, int parity)
547 {
548 
549 	uart_lock(sc->sc_hwmtx);
550 	imx_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity);
551 	uart_unlock(sc->sc_hwmtx);
552 	return (0);
553 }
554 
555 static int
556 imx_uart_bus_probe(struct uart_softc *sc)
557 {
558 	int error;
559 
560 	error = imx_uart_probe(&sc->sc_bas);
561 	if (error)
562 		return (error);
563 
564 	/*
565 	 * On input we can read up to the full fifo size at once.  On output, we
566 	 * want to write only as much as the programmed tx low water level,
567 	 * because that's all we can be certain we have room for in the fifo
568 	 * when we get a tx-ready interrupt.
569 	 */
570 	sc->sc_rxfifosz = IMX_FIFOSZ;
571 	sc->sc_txfifosz = IMX_TXFIFO_LEVEL;
572 
573 	device_set_desc(sc->sc_dev, "Freescale i.MX UART");
574 	return (0);
575 }
576 
577 static int
578 imx_uart_bus_receive(struct uart_softc *sc)
579 {
580 	struct uart_bas *bas;
581 	int xc, out;
582 
583 	bas = &sc->sc_bas;
584 	uart_lock(sc->sc_hwmtx);
585 
586 	/*
587 	 * Empty the rx fifo.  We get the RRDY interrupt when IMX_RXFIFO_LEVEL
588 	 * (the rx high-water level) is reached, but we set sc_rxfifosz to the
589 	 * full hardware fifo size, so we can safely process however much is
590 	 * there, not just the highwater size.
591 	 */
592 	while (IS(bas, USR2, RDR)) {
593 		if (uart_rx_full(sc)) {
594 			/* No space left in input buffer */
595 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
596 			break;
597 		}
598 		xc = GETREG(bas, REG(URXD));
599 		out = xc & 0x000000ff;
600 		if (xc & FLD(URXD, FRMERR))
601 			out |= UART_STAT_FRAMERR;
602 		if (xc & FLD(URXD, PRERR))
603 			out |= UART_STAT_PARERR;
604 		if (xc & FLD(URXD, OVRRUN))
605 			out |= UART_STAT_OVERRUN;
606 		if (xc & FLD(URXD, BRK))
607 			out |= UART_STAT_BREAK;
608 
609 		uart_rx_put(sc, out);
610 	}
611 	ENA(bas, UCR1, RRDYEN);
612 	ENA(bas, UCR2, ATEN);
613 
614 	uart_unlock(sc->sc_hwmtx);
615 	return (0);
616 }
617 
618 static int
619 imx_uart_bus_setsig(struct uart_softc *sc, int sig)
620 {
621 
622 	return (0);
623 }
624 
625 static int
626 imx_uart_bus_transmit(struct uart_softc *sc)
627 {
628 	struct uart_bas *bas = &sc->sc_bas;
629 	int i;
630 
631 	bas = &sc->sc_bas;
632 	uart_lock(sc->sc_hwmtx);
633 
634 	/*
635 	 * Fill the tx fifo.  The uart core puts at most IMX_TXFIFO_LEVEL bytes
636 	 * into the txbuf (because that's what sc_txfifosz is set to), and
637 	 * because we got the TRDY (low-water reached) interrupt we know at
638 	 * least that much space is available in the fifo.
639 	 */
640 	for (i = 0; i < sc->sc_txdatasz; i++) {
641 		SETREG(bas, REG(UTXD), sc->sc_txbuf[i] & 0xff);
642 	}
643 	sc->sc_txbusy = 1;
644 	ENA(bas, UCR1, TRDYEN);
645 
646 	uart_unlock(sc->sc_hwmtx);
647 
648 	return (0);
649 }
650 
651 static void
652 imx_uart_bus_grab(struct uart_softc *sc)
653 {
654 	struct uart_bas *bas = &sc->sc_bas;
655 
656 	bas = &sc->sc_bas;
657 	uart_lock(sc->sc_hwmtx);
658 	DIS(bas, UCR1, RRDYEN);
659 	DIS(bas, UCR2, ATEN);
660 	uart_unlock(sc->sc_hwmtx);
661 }
662 
663 static void
664 imx_uart_bus_ungrab(struct uart_softc *sc)
665 {
666 	struct uart_bas *bas = &sc->sc_bas;
667 
668 	bas = &sc->sc_bas;
669 	uart_lock(sc->sc_hwmtx);
670 	ENA(bas, UCR1, RRDYEN);
671 	ENA(bas, UCR2, ATEN);
672 	uart_unlock(sc->sc_hwmtx);
673 }
674