xref: /freebsd/sys/dev/uart/uart_dev_imx.c (revision 6ae1554a5d9b318f8ad53ccc39fa5a961403da73)
1 /*-
2  * Copyright (c) 2012 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Oleksandr Rybalko under sponsorship
6  * from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1.	Redistributions of source code must retain the above copyright
12  *	notice, this list of conditions and the following disclaimer.
13  * 2.	Redistributions in binary form must reproduce the above copyright
14  *	notice, this list of conditions and the following disclaimer in the
15  *	documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/kdb.h>
40 #include <machine/bus.h>
41 #include <machine/fdt.h>
42 
43 #include <dev/uart/uart.h>
44 #include <dev/uart/uart_cpu.h>
45 #include <dev/uart/uart_cpu_fdt.h>
46 #include <dev/uart/uart_bus.h>
47 #include <dev/uart/uart_dev_imx.h>
48 #include "uart_if.h"
49 
50 #include <arm/freescale/imx/imx_ccmvar.h>
51 
52 /*
53  * The hardare FIFOs are 32 bytes.  We want an interrupt when there are 24 bytes
54  * available to read or space for 24 more bytes to write.  While 8 bytes of
55  * slack before over/underrun might seem excessive, the hardware can run at
56  * 5mbps, which means 2uS per char, so at full speed 8 bytes provides only 16uS
57  * to get into the interrupt handler and service the fifo.
58  */
59 #define	IMX_FIFOSZ		32
60 #define	IMX_RXFIFO_LEVEL	24
61 #define	IMX_TXFIFO_LEVEL	24
62 
63 /*
64  * Low-level UART interface.
65  */
66 static int imx_uart_probe(struct uart_bas *bas);
67 static void imx_uart_init(struct uart_bas *bas, int, int, int, int);
68 static void imx_uart_term(struct uart_bas *bas);
69 static void imx_uart_putc(struct uart_bas *bas, int);
70 static int imx_uart_rxready(struct uart_bas *bas);
71 static int imx_uart_getc(struct uart_bas *bas, struct mtx *);
72 
73 static struct uart_ops uart_imx_uart_ops = {
74 	.probe = imx_uart_probe,
75 	.init = imx_uart_init,
76 	.term = imx_uart_term,
77 	.putc = imx_uart_putc,
78 	.rxready = imx_uart_rxready,
79 	.getc = imx_uart_getc,
80 };
81 
82 #if 0 /* Handy when debugging. */
83 static void
84 dumpregs(struct uart_bas *bas, const char * msg)
85 {
86 
87 	if (!bootverbose)
88 		return;
89 	printf("%s bsh 0x%08lx UCR1 0x%08x UCR2 0x%08x "
90 		"UCR3 0x%08x UCR4 0x%08x USR1 0x%08x USR2 0x%08x\n",
91 	    msg, bas->bsh,
92 	    GETREG(bas, REG(UCR1)), GETREG(bas, REG(UCR2)),
93 	    GETREG(bas, REG(UCR3)), GETREG(bas, REG(UCR4)),
94 	    GETREG(bas, REG(USR1)), GETREG(bas, REG(USR2)));
95 }
96 #endif
97 
98 static int
99 imx_uart_probe(struct uart_bas *bas)
100 {
101 
102 	return (0);
103 }
104 
105 static u_int
106 imx_uart_getbaud(struct uart_bas *bas)
107 {
108 	uint32_t rate, ubir, ubmr;
109 	u_int baud, blo, bhi, i;
110 	static const u_int predivs[] = {6, 5, 4, 3, 2, 1, 7, 1};
111 	static const u_int std_rates[] = {
112 		9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800, 921600
113 	};
114 
115 	/*
116 	 * Get the baud rate the hardware is programmed for, then search the
117 	 * table of standard baud rates for a number that's within 3% of the
118 	 * actual rate the hardware is programmed for.  It's more comforting to
119 	 * see that your console is running at 115200 than 114942.  Note that
120 	 * here we cannot make a simplifying assumption that the predivider and
121 	 * numerator are 1 (like we do when setting the baud rate), because we
122 	 * don't know what u-boot might have set up.
123 	 */
124 	i = (GETREG(bas, REG(UFCR)) & IMXUART_UFCR_RFDIV_MASK) >>
125 	    IMXUART_UFCR_RFDIV_SHIFT;
126 	rate = imx_ccm_uart_hz() / predivs[i];
127 	ubir = GETREG(bas, REG(UBIR)) + 1;
128 	ubmr = GETREG(bas, REG(UBMR)) + 1;
129 	baud = ((rate / 16 ) * ubir) / ubmr;
130 
131 	blo = (baud * 100) / 103;
132 	bhi = (baud * 100) / 97;
133 	for (i = 0; i < nitems(std_rates); i++) {
134 		rate = std_rates[i];
135 		if (rate >= blo && rate <= bhi) {
136 			baud = rate;
137 			break;
138 		}
139 	}
140 
141 	return (baud);
142 }
143 
144 static void
145 imx_uart_init(struct uart_bas *bas, int baudrate, int databits,
146     int stopbits, int parity)
147 {
148 	uint32_t baseclk, reg;
149 
150         /* Enable the device and the RX/TX channels. */
151 	SET(bas, REG(UCR1), FLD(UCR1, UARTEN));
152 	SET(bas, REG(UCR2), FLD(UCR2, RXEN) | FLD(UCR2, TXEN));
153 
154 	if (databits == 7)
155 		DIS(bas, UCR2, WS);
156 	else
157 		ENA(bas, UCR2, WS);
158 
159 	if (stopbits == 2)
160 		ENA(bas, UCR2, STPB);
161 	else
162 		DIS(bas, UCR2, STPB);
163 
164 	switch (parity) {
165 	case UART_PARITY_ODD:
166 		DIS(bas, UCR2, PROE);
167 		ENA(bas, UCR2, PREN);
168 		break;
169 	case UART_PARITY_EVEN:
170 		ENA(bas, UCR2, PROE);
171 		ENA(bas, UCR2, PREN);
172 		break;
173 	case UART_PARITY_MARK:
174 	case UART_PARITY_SPACE:
175                 /* FALLTHROUGH: Hardware doesn't support mark/space. */
176 	case UART_PARITY_NONE:
177 	default:
178 		DIS(bas, UCR2, PREN);
179 		break;
180 	}
181 
182 	/*
183 	 * The hardware has an extremely flexible baud clock: it allows setting
184 	 * both the numerator and denominator of the divider, as well as a
185 	 * separate pre-divider.  We simplify the problem of coming up with a
186 	 * workable pair of numbers by assuming a pre-divider and numerator of
187 	 * one because our base clock is so fast we can reach virtually any
188 	 * reasonable speed with a simple divisor.  The numerator value actually
189 	 * includes the 16x over-sampling (so a value of 16 means divide by 1);
190 	 * the register value is the numerator-1, so we have a hard-coded 15.
191 	 * Note that a quirk of the hardware requires that both UBIR and UBMR be
192 	 * set back to back in order for the change to take effect.
193 	 */
194 	if (baudrate > 0) {
195 		baseclk = imx_ccm_uart_hz();
196 		reg = GETREG(bas, REG(UFCR));
197 		reg = (reg & ~IMXUART_UFCR_RFDIV_MASK) | IMXUART_UFCR_RFDIV_DIV1;
198 		SETREG(bas, REG(UFCR), reg);
199 		SETREG(bas, REG(UBIR), 15);
200 		SETREG(bas, REG(UBMR), (baseclk / baudrate) - 1);
201 	}
202 
203 	/*
204 	 * Program the tx lowater and rx hiwater levels at which fifo-service
205 	 * interrupts are signaled.  The tx value is interpetted as "when there
206 	 * are only this many bytes remaining" (not "this many free").
207 	 */
208 	reg = GETREG(bas, REG(UFCR));
209 	reg &= ~(IMXUART_UFCR_TXTL_MASK | IMXUART_UFCR_RXTL_MASK);
210 	reg |= (IMX_FIFOSZ - IMX_TXFIFO_LEVEL) << IMXUART_UFCR_TXTL_SHIFT;
211 	reg |= IMX_RXFIFO_LEVEL << IMXUART_UFCR_RXTL_SHIFT;
212 	SETREG(bas, REG(UFCR), reg);
213 }
214 
215 static void
216 imx_uart_term(struct uart_bas *bas)
217 {
218 
219 }
220 
221 static void
222 imx_uart_putc(struct uart_bas *bas, int c)
223 {
224 
225 	while (!(IS(bas, USR1, TRDY)))
226 		;
227 	SETREG(bas, REG(UTXD), c);
228 }
229 
230 static int
231 imx_uart_rxready(struct uart_bas *bas)
232 {
233 
234 	return ((IS(bas, USR2, RDR)) ? 1 : 0);
235 }
236 
237 static int
238 imx_uart_getc(struct uart_bas *bas, struct mtx *hwmtx)
239 {
240 	int c;
241 
242 	uart_lock(hwmtx);
243 	while (!(IS(bas, USR2, RDR)))
244 		;
245 
246 	c = GETREG(bas, REG(URXD));
247 	uart_unlock(hwmtx);
248 #if defined(KDB)
249 	if (c & FLD(URXD, BRK)) {
250 		if (kdb_break())
251 			return (0);
252 	}
253 #endif
254 	return (c & 0xff);
255 }
256 
257 /*
258  * High-level UART interface.
259  */
260 struct imx_uart_softc {
261 	struct uart_softc base;
262 };
263 
264 static int imx_uart_bus_attach(struct uart_softc *);
265 static int imx_uart_bus_detach(struct uart_softc *);
266 static int imx_uart_bus_flush(struct uart_softc *, int);
267 static int imx_uart_bus_getsig(struct uart_softc *);
268 static int imx_uart_bus_ioctl(struct uart_softc *, int, intptr_t);
269 static int imx_uart_bus_ipend(struct uart_softc *);
270 static int imx_uart_bus_param(struct uart_softc *, int, int, int, int);
271 static int imx_uart_bus_probe(struct uart_softc *);
272 static int imx_uart_bus_receive(struct uart_softc *);
273 static int imx_uart_bus_setsig(struct uart_softc *, int);
274 static int imx_uart_bus_transmit(struct uart_softc *);
275 static void imx_uart_bus_grab(struct uart_softc *);
276 static void imx_uart_bus_ungrab(struct uart_softc *);
277 
278 static kobj_method_t imx_uart_methods[] = {
279 	KOBJMETHOD(uart_attach,		imx_uart_bus_attach),
280 	KOBJMETHOD(uart_detach,		imx_uart_bus_detach),
281 	KOBJMETHOD(uart_flush,		imx_uart_bus_flush),
282 	KOBJMETHOD(uart_getsig,		imx_uart_bus_getsig),
283 	KOBJMETHOD(uart_ioctl,		imx_uart_bus_ioctl),
284 	KOBJMETHOD(uart_ipend,		imx_uart_bus_ipend),
285 	KOBJMETHOD(uart_param,		imx_uart_bus_param),
286 	KOBJMETHOD(uart_probe,		imx_uart_bus_probe),
287 	KOBJMETHOD(uart_receive,	imx_uart_bus_receive),
288 	KOBJMETHOD(uart_setsig,		imx_uart_bus_setsig),
289 	KOBJMETHOD(uart_transmit,	imx_uart_bus_transmit),
290 	KOBJMETHOD(uart_grab,		imx_uart_bus_grab),
291 	KOBJMETHOD(uart_ungrab,		imx_uart_bus_ungrab),
292 	{ 0, 0 }
293 };
294 
295 static struct uart_class uart_imx_class = {
296 	"imx",
297 	imx_uart_methods,
298 	sizeof(struct imx_uart_softc),
299 	.uc_ops = &uart_imx_uart_ops,
300 	.uc_range = 0x100,
301 	.uc_rclk = 24000000, /* TODO: get value from CCM */
302 	.uc_rshift = 0
303 };
304 
305 static struct ofw_compat_data compat_data[] = {
306 	{"fsl,imx6q-uart",	(uintptr_t)&uart_imx_class},
307 	{"fsl,imx53-uart",	(uintptr_t)&uart_imx_class},
308 	{"fsl,imx51-uart",	(uintptr_t)&uart_imx_class},
309 	{"fsl,imx31-uart",	(uintptr_t)&uart_imx_class},
310 	{"fsl,imx27-uart",	(uintptr_t)&uart_imx_class},
311 	{"fsl,imx25-uart",	(uintptr_t)&uart_imx_class},
312 	{"fsl,imx21-uart",	(uintptr_t)&uart_imx_class},
313 	{NULL,			(uintptr_t)NULL},
314 };
315 UART_FDT_CLASS_AND_DEVICE(compat_data);
316 
317 #define	SIGCHG(c, i, s, d)				\
318 	if (c) {					\
319 		i |= (i & s) ? s : s | d;		\
320 	} else {					\
321 		i = (i & s) ? (i & ~s) | d : i;		\
322 	}
323 
324 static int
325 imx_uart_bus_attach(struct uart_softc *sc)
326 {
327 	struct uart_bas *bas;
328 	struct uart_devinfo *di;
329 
330 	bas = &sc->sc_bas;
331 	if (sc->sc_sysdev != NULL) {
332 		di = sc->sc_sysdev;
333 		imx_uart_init(bas, di->baudrate, di->databits, di->stopbits,
334 		    di->parity);
335 	} else {
336 		imx_uart_init(bas, 115200, 8, 1, 0);
337 	}
338 
339 	(void)imx_uart_bus_getsig(sc);
340 
341 	/* Clear all pending interrupts. */
342 	SETREG(bas, REG(USR1), 0xffff);
343 	SETREG(bas, REG(USR2), 0xffff);
344 
345 	DIS(bas, UCR4, DREN);
346 	ENA(bas, UCR1, RRDYEN);
347 	DIS(bas, UCR1, IDEN);
348 	DIS(bas, UCR3, RXDSEN);
349 	ENA(bas, UCR2, ATEN);
350 	DIS(bas, UCR1, TXMPTYEN);
351 	DIS(bas, UCR1, TRDYEN);
352 	DIS(bas, UCR4, TCEN);
353 	DIS(bas, UCR4, OREN);
354 	ENA(bas, UCR4, BKEN);
355 	DIS(bas, UCR4, WKEN);
356 	DIS(bas, UCR1, ADEN);
357 	DIS(bas, UCR3, ACIEN);
358 	DIS(bas, UCR2, ESCI);
359 	DIS(bas, UCR4, ENIRI);
360 	DIS(bas, UCR3, AIRINTEN);
361 	DIS(bas, UCR3, AWAKEN);
362 	DIS(bas, UCR3, FRAERREN);
363 	DIS(bas, UCR3, PARERREN);
364 	DIS(bas, UCR1, RTSDEN);
365 	DIS(bas, UCR2, RTSEN);
366 	DIS(bas, UCR3, DTREN);
367 	DIS(bas, UCR3, RI);
368 	DIS(bas, UCR3, DCD);
369 	DIS(bas, UCR3, DTRDEN);
370 	ENA(bas, UCR2, IRTS);
371 	ENA(bas, UCR3, RXDMUXSEL);
372 
373 	return (0);
374 }
375 
376 static int
377 imx_uart_bus_detach(struct uart_softc *sc)
378 {
379 
380 	SETREG(&sc->sc_bas, REG(UCR4), 0);
381 
382 	return (0);
383 }
384 
385 static int
386 imx_uart_bus_flush(struct uart_softc *sc, int what)
387 {
388 
389 	/* TODO */
390 	return (0);
391 }
392 
393 static int
394 imx_uart_bus_getsig(struct uart_softc *sc)
395 {
396 	uint32_t new, old, sig;
397 	uint8_t bes;
398 
399 	do {
400 		old = sc->sc_hwsig;
401 		sig = old;
402 		uart_lock(sc->sc_hwmtx);
403 		bes = GETREG(&sc->sc_bas, REG(USR2));
404 		uart_unlock(sc->sc_hwmtx);
405 		/* XXX: chip can show delta */
406 		SIGCHG(bes & FLD(USR2, DCDIN), sig, SER_DCD, SER_DDCD);
407 		new = sig & ~SER_MASK_DELTA;
408 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
409 
410 	return (sig);
411 }
412 
413 static int
414 imx_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
415 {
416 	struct uart_bas *bas;
417 	int error;
418 
419 	bas = &sc->sc_bas;
420 	error = 0;
421 	uart_lock(sc->sc_hwmtx);
422 	switch (request) {
423 	case UART_IOCTL_BREAK:
424 		/* TODO */
425 		break;
426 	case UART_IOCTL_BAUD:
427 		*(u_int*)data = imx_uart_getbaud(bas);
428 		break;
429 	default:
430 		error = EINVAL;
431 		break;
432 	}
433 	uart_unlock(sc->sc_hwmtx);
434 
435 	return (error);
436 }
437 
438 static int
439 imx_uart_bus_ipend(struct uart_softc *sc)
440 {
441 	struct uart_bas *bas;
442 	int ipend;
443 	uint32_t usr1, usr2;
444 	uint32_t ucr1, ucr2, ucr4;
445 
446 	bas = &sc->sc_bas;
447 	ipend = 0;
448 
449 	uart_lock(sc->sc_hwmtx);
450 
451 	/* Read pending interrupts */
452 	usr1 = GETREG(bas, REG(USR1));
453 	usr2 = GETREG(bas, REG(USR2));
454 	/* ACK interrupts */
455 	SETREG(bas, REG(USR1), usr1);
456 	SETREG(bas, REG(USR2), usr2);
457 
458 	ucr1 = GETREG(bas, REG(UCR1));
459 	ucr2 = GETREG(bas, REG(UCR2));
460 	ucr4 = GETREG(bas, REG(UCR4));
461 
462 	/* If we have reached tx low-water, we can tx some more now. */
463 	if ((usr1 & FLD(USR1, TRDY)) && (ucr1 & FLD(UCR1, TRDYEN))) {
464 		DIS(bas, UCR1, TRDYEN);
465 		ipend |= SER_INT_TXIDLE;
466 	}
467 
468 	/*
469 	 * If we have reached the rx high-water, or if there are bytes in the rx
470 	 * fifo and no new data has arrived for 8 character periods (aging
471 	 * timer), we have input data to process.
472 	 */
473 	if (((usr1 & FLD(USR1, RRDY)) && (ucr1 & FLD(UCR1, RRDYEN))) ||
474 	    ((usr1 & FLD(USR1, AGTIM)) && (ucr2 & FLD(UCR2, ATEN)))) {
475 		DIS(bas, UCR1, RRDYEN);
476 		DIS(bas, UCR2, ATEN);
477 		ipend |= SER_INT_RXREADY;
478 	}
479 
480 	/* A break can come in at any time, it never gets disabled. */
481 	if ((usr2 & FLD(USR2, BRCD)) && (ucr4 & FLD(UCR4, BKEN)))
482 		ipend |= SER_INT_BREAK;
483 
484 	uart_unlock(sc->sc_hwmtx);
485 
486 	return (ipend);
487 }
488 
489 static int
490 imx_uart_bus_param(struct uart_softc *sc, int baudrate, int databits,
491     int stopbits, int parity)
492 {
493 
494 	uart_lock(sc->sc_hwmtx);
495 	imx_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity);
496 	uart_unlock(sc->sc_hwmtx);
497 	return (0);
498 }
499 
500 static int
501 imx_uart_bus_probe(struct uart_softc *sc)
502 {
503 	int error;
504 
505 	error = imx_uart_probe(&sc->sc_bas);
506 	if (error)
507 		return (error);
508 
509 	/*
510 	 * On input we can read up to the full fifo size at once.  On output, we
511 	 * want to write only as much as the programmed tx low water level,
512 	 * because that's all we can be certain we have room for in the fifo
513 	 * when we get a tx-ready interrupt.
514 	 */
515 	sc->sc_rxfifosz = IMX_FIFOSZ;
516 	sc->sc_txfifosz = IMX_TXFIFO_LEVEL;
517 
518 	device_set_desc(sc->sc_dev, "Freescale i.MX UART");
519 	return (0);
520 }
521 
522 static int
523 imx_uart_bus_receive(struct uart_softc *sc)
524 {
525 	struct uart_bas *bas;
526 	int xc, out;
527 
528 	bas = &sc->sc_bas;
529 	uart_lock(sc->sc_hwmtx);
530 
531 	/*
532 	 * Empty the rx fifo.  We get the RRDY interrupt when IMX_RXFIFO_LEVEL
533 	 * (the rx high-water level) is reached, but we set sc_rxfifosz to the
534 	 * full hardware fifo size, so we can safely process however much is
535 	 * there, not just the highwater size.
536 	 */
537 	while (IS(bas, USR2, RDR)) {
538 		if (uart_rx_full(sc)) {
539 			/* No space left in input buffer */
540 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
541 			break;
542 		}
543 		xc = GETREG(bas, REG(URXD));
544 		out = xc & 0x000000ff;
545 		if (xc & FLD(URXD, FRMERR))
546 			out |= UART_STAT_FRAMERR;
547 		if (xc & FLD(URXD, PRERR))
548 			out |= UART_STAT_PARERR;
549 		if (xc & FLD(URXD, OVRRUN))
550 			out |= UART_STAT_OVERRUN;
551 		if (xc & FLD(URXD, BRK))
552 			out |= UART_STAT_BREAK;
553 
554 		uart_rx_put(sc, out);
555 	}
556 	ENA(bas, UCR1, RRDYEN);
557 	ENA(bas, UCR2, ATEN);
558 
559 	uart_unlock(sc->sc_hwmtx);
560 	return (0);
561 }
562 
563 static int
564 imx_uart_bus_setsig(struct uart_softc *sc, int sig)
565 {
566 
567 	return (0);
568 }
569 
570 static int
571 imx_uart_bus_transmit(struct uart_softc *sc)
572 {
573 	struct uart_bas *bas = &sc->sc_bas;
574 	int i;
575 
576 	bas = &sc->sc_bas;
577 	uart_lock(sc->sc_hwmtx);
578 
579 	/*
580 	 * Fill the tx fifo.  The uart core puts at most IMX_TXFIFO_LEVEL bytes
581 	 * into the txbuf (because that's what sc_txfifosz is set to), and
582 	 * because we got the TRDY (low-water reached) interrupt we know at
583 	 * least that much space is available in the fifo.
584 	 */
585 	for (i = 0; i < sc->sc_txdatasz; i++) {
586 		SETREG(bas, REG(UTXD), sc->sc_txbuf[i] & 0xff);
587 	}
588 	sc->sc_txbusy = 1;
589 	ENA(bas, UCR1, TRDYEN);
590 
591 	uart_unlock(sc->sc_hwmtx);
592 
593 	return (0);
594 }
595 
596 static void
597 imx_uart_bus_grab(struct uart_softc *sc)
598 {
599 	struct uart_bas *bas = &sc->sc_bas;
600 
601 	bas = &sc->sc_bas;
602 	uart_lock(sc->sc_hwmtx);
603 	DIS(bas, UCR1, RRDYEN);
604 	DIS(bas, UCR2, ATEN);
605 	uart_unlock(sc->sc_hwmtx);
606 }
607 
608 static void
609 imx_uart_bus_ungrab(struct uart_softc *sc)
610 {
611 	struct uart_bas *bas = &sc->sc_bas;
612 
613 	bas = &sc->sc_bas;
614 	uart_lock(sc->sc_hwmtx);
615 	ENA(bas, UCR1, RRDYEN);
616 	ENA(bas, UCR2, ATEN);
617 	uart_unlock(sc->sc_hwmtx);
618 }
619