xref: /freebsd/sys/dev/sym/sym_hipd.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2000  Gerard Roudier <groudier@club-internet.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895.
9  *
10  *  but does not support earlier chips as the following ones:
11  *	53C810, 53C815, 53C825.
12  *
13  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
14  *  Copyright (C) 1998-1999  Gerard Roudier
15  *
16  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
17  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
18  *
19  *  The original ncr driver has been written for 386bsd and FreeBSD by
20  *          Wolfgang Stanglmeier        <wolf@cologne.de>
21  *          Stefan Esser                <se@mi.Uni-Koeln.de>
22  *  Copyright (C) 1994  Wolfgang Stanglmeier
23  *
24  *  The initialisation code, and part of the code that addresses
25  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
26  *  written by Justin T. Gibbs.
27  *
28  *  Other major contributions:
29  *
30  *  NVRAM detection and reading.
31  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
32  *
33  *-----------------------------------------------------------------------------
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. The name of the author may not be used to endorse or promote products
44  *    derived from this software without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
50  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  */
58 
59 /* $FreeBSD$ */
60 
61 #define SYM_DRIVER_NAME	"sym-1.3.2-20000206"
62 
63 /* #define	SYM_DEBUG_PM_WITH_WSR (current debugging) */
64 
65 #include <pci.h>
66 #include <stddef.h>	/* For offsetof */
67 
68 #include <sys/param.h>
69 /*
70  *  Only use the BUS stuff for PCI under FreeBSD 4 and later versions.
71  *  Note that the old BUS stuff also works for FreeBSD 4 and spares
72  *  about 1.5KB for the driver objet file.
73  */
74 #if 	__FreeBSD_version >= 400000
75 #define	FreeBSD_4_Bus
76 #endif
77 
78 #include <sys/systm.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #ifdef FreeBSD_4_Bus
82 #include <sys/module.h>
83 #include <sys/bus.h>
84 #endif
85 
86 #include <sys/buf.h>
87 #include <sys/proc.h>
88 
89 #include <pci/pcireg.h>
90 #include <pci/pcivar.h>
91 
92 #include <machine/bus_memio.h>
93 #include <machine/bus_pio.h>
94 #include <machine/bus.h>
95 #ifdef FreeBSD_4_Bus
96 #include <machine/resource.h>
97 #include <sys/rman.h>
98 #endif
99 #include <machine/clock.h>
100 
101 #include <cam/cam.h>
102 #include <cam/cam_ccb.h>
103 #include <cam/cam_sim.h>
104 #include <cam/cam_xpt_sim.h>
105 #include <cam/cam_debug.h>
106 
107 #include <cam/scsi/scsi_all.h>
108 #include <cam/scsi/scsi_message.h>
109 
110 #include <vm/vm.h>
111 #include <vm/vm_param.h>
112 #include <vm/pmap.h>
113 
114 #if 0
115 #include <sys/kernel.h>
116 #include <sys/sysctl.h>
117 #include <vm/vm_extern.h>
118 #endif
119 
120 /* Short and quite clear integer types */
121 typedef int8_t    s8;
122 typedef int16_t   s16;
123 typedef	int32_t   s32;
124 typedef u_int8_t  u8;
125 typedef u_int16_t u16;
126 typedef	u_int32_t u32;
127 
128 /* Driver configuration and definitions */
129 #if 1
130 #include "opt_sym.h"
131 #include <dev/sym/sym_conf.h>
132 #include <dev/sym/sym_defs.h>
133 #else
134 #include "ncr.h"	/* To know if the ncr has been configured */
135 #include <pci/sym_conf.h>
136 #include <pci/sym_defs.h>
137 #endif
138 
139 /*
140  *  On x86 architecture, write buffers management does not
141  *  reorder writes to memory. So, preventing compiler from
142  *  optimizing the code is enough to guarantee some ordering
143  *  when the CPU is writing data accessed by the PCI chip.
144  *  On Alpha architecture, explicit barriers are to be used.
145  *  By the way, the *BSD semantic associates the barrier
146  *  with some window on the BUS and the corresponding verbs
147  *  are for now unused. What a strangeness. The driver must
148  *  ensure that accesses from the CPU to the start and done
149  *  queues are not reordered by either the compiler or the
150  *  CPU and uses 'volatile' for this purpose.
151  */
152 
153 #ifdef	__alpha__
154 #define MEMORY_BARRIER()	alpha_mb()
155 #else /*__i386__*/
156 #define MEMORY_BARRIER()	do { ; } while(0)
157 #endif
158 
159 /*
160  *  A la VMS/CAM-3 queue management.
161  */
162 
163 typedef struct sym_quehead {
164 	struct sym_quehead *flink;	/* Forward  pointer */
165 	struct sym_quehead *blink;	/* Backward pointer */
166 } SYM_QUEHEAD;
167 
168 #define sym_que_init(ptr) do { \
169 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
170 } while (0)
171 
172 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
173 {
174 	return (head->flink == head) ? 0 : head->flink;
175 }
176 
177 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
178 {
179 	return (head->blink == head) ? 0 : head->blink;
180 }
181 
182 static __inline void __sym_que_add(struct sym_quehead * new,
183 	struct sym_quehead * blink,
184 	struct sym_quehead * flink)
185 {
186 	flink->blink	= new;
187 	new->flink	= flink;
188 	new->blink	= blink;
189 	blink->flink	= new;
190 }
191 
192 static __inline void __sym_que_del(struct sym_quehead * blink,
193 	struct sym_quehead * flink)
194 {
195 	flink->blink = blink;
196 	blink->flink = flink;
197 }
198 
199 static __inline int sym_que_empty(struct sym_quehead *head)
200 {
201 	return head->flink == head;
202 }
203 
204 static __inline void sym_que_splice(struct sym_quehead *list,
205 	struct sym_quehead *head)
206 {
207 	struct sym_quehead *first = list->flink;
208 
209 	if (first != list) {
210 		struct sym_quehead *last = list->blink;
211 		struct sym_quehead *at   = head->flink;
212 
213 		first->blink = head;
214 		head->flink  = first;
215 
216 		last->flink = at;
217 		at->blink   = last;
218 	}
219 }
220 
221 #define sym_que_entry(ptr, type, member) \
222 	((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
223 
224 
225 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
226 
227 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
228 
229 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
230 
231 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
232 {
233 	struct sym_quehead *elem = head->flink;
234 
235 	if (elem != head)
236 		__sym_que_del(head, elem->flink);
237 	else
238 		elem = 0;
239 	return elem;
240 }
241 
242 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
243 
244 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
245 {
246 	struct sym_quehead *elem = head->blink;
247 
248 	if (elem != head)
249 		__sym_que_del(elem->blink, head);
250 	else
251 		elem = 0;
252 	return elem;
253 }
254 
255 /*
256  *  This one may be usefull.
257  */
258 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
259 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
260 /*
261  *  FreeBSD does not offer our kind of queue in the CAM CCB.
262  *  So, we have to cast.
263  */
264 #define sym_qptr(p)	((struct sym_quehead *) (p))
265 
266 /*
267  *  Simple bitmap operations.
268  */
269 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
270 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
271 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
272 
273 /*
274  *  Number of tasks per device we want to handle.
275  */
276 #if	SYM_CONF_MAX_TAG_ORDER > 8
277 #error	"more than 256 tags per logical unit not allowed."
278 #endif
279 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
280 
281 /*
282  *  Donnot use more tasks that we can handle.
283  */
284 #ifndef	SYM_CONF_MAX_TAG
285 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
286 #endif
287 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
288 #undef	SYM_CONF_MAX_TAG
289 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
290 #endif
291 
292 /*
293  *    This one means 'NO TAG for this job'
294  */
295 #define NO_TAG	(256)
296 
297 /*
298  *  Number of SCSI targets.
299  */
300 #if	SYM_CONF_MAX_TARGET > 16
301 #error	"more than 16 targets not allowed."
302 #endif
303 
304 /*
305  *  Number of logical units per target.
306  */
307 #if	SYM_CONF_MAX_LUN > 64
308 #error	"more than 64 logical units per target not allowed."
309 #endif
310 
311 /*
312  *    Asynchronous pre-scaler (ns). Shall be 40 for
313  *    the SCSI timings to be compliant.
314  */
315 #define	SYM_CONF_MIN_ASYNC (40)
316 
317 /*
318  *  Number of entries in the START and DONE queues.
319  *
320  *  We limit to 1 PAGE in order to succeed allocation of
321  *  these queues. Each entry is 8 bytes long (2 DWORDS).
322  */
323 #ifdef	SYM_CONF_MAX_START
324 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
325 #else
326 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
327 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
328 #endif
329 
330 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
331 #undef	SYM_CONF_MAX_QUEUE
332 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
333 #undef	SYM_CONF_MAX_START
334 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
335 #endif
336 
337 /*
338  *  For this one, we want a short name :-)
339  */
340 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
341 
342 /*
343  *  This one should have been already defined.
344  */
345 #ifndef offsetof
346 #define offsetof(t, m)	((size_t) (&((t *)0)->m))
347 #endif
348 
349 /*
350  *  Active debugging tags and verbosity.
351  */
352 #define DEBUG_ALLOC	(0x0001)
353 #define DEBUG_PHASE	(0x0002)
354 #define DEBUG_POLL	(0x0004)
355 #define DEBUG_QUEUE	(0x0008)
356 #define DEBUG_RESULT	(0x0010)
357 #define DEBUG_SCATTER	(0x0020)
358 #define DEBUG_SCRIPT	(0x0040)
359 #define DEBUG_TINY	(0x0080)
360 #define DEBUG_TIMING	(0x0100)
361 #define DEBUG_NEGO	(0x0200)
362 #define DEBUG_TAGS	(0x0400)
363 #define DEBUG_POINTER	(0x0800)
364 
365 #if 0
366 static int sym_debug = 0;
367 	#define DEBUG_FLAGS sym_debug
368 #else
369 /*	#define DEBUG_FLAGS (0x0631) */
370 	#define DEBUG_FLAGS (0x0000)
371 #endif
372 #define sym_verbose	(np->verbose)
373 
374 /*
375  *  Virtual to bus address translation.
376  */
377 #ifdef	__alpha__
378 #define	vtobus(p)	alpha_XXX_dmamap((vm_offset_t)(p))
379 #else /*__i386__*/
380 #define vtobus(p)	vtophys(p)
381 #endif
382 
383 /*
384  *  Copy from main memory to PCI memory space.
385  */
386 #ifdef	__alpha__
387 #define memcpy_to_pci(d, s, n)	memcpy_toio((u32)(d), (void *)(s), (n))
388 #else /*__i386__*/
389 #define memcpy_to_pci(d, s, n)	bcopy((s), (void *)(d), (n))
390 #endif
391 
392 /*
393  *  Insert a delay in micro-seconds and milli-seconds.
394  */
395 static void UDELAY(long us) { DELAY(us); }
396 static void MDELAY(long ms) { while (ms--) UDELAY(1000); }
397 
398 /*
399  *  Memory allocation/allocator.
400  *  We assume allocations are naturally aligned and if it is
401  *  not guaranteed, we may use our internal allocator.
402  */
403 #ifdef	SYM_CONF_USE_INTERNAL_ALLOCATOR
404 /*
405  *  Simple power of two buddy-like allocator.
406  *
407  *  This simple code is not intended to be fast, but to
408  *  provide power of 2 aligned memory allocations.
409  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
410  *  this allocator allows simple and fast address calculations
411  *  from the SCRIPTS code. In addition, cache line alignment
412  *  is guaranteed for power of 2 cache line size.
413  *
414  *  This allocator has been developped for the Linux sym53c8xx
415  *  driver, since this O/S does not provide naturally aligned
416  *  allocations.
417  *  It has the vertue to allow the driver to use private pages
418  *  of memory that will be useful if we ever need to deal with
419  *  IO MMU for PCI.
420  */
421 
422 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
423 #define MEMO_PAGE_ORDER	0	/* 1 PAGE maximum (for now (ever?) */
424 typedef unsigned long addr;	/* Enough bits to bit-hack addresses */
425 
426 #if 0
427 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
428 #endif
429 
430 struct m_link {
431 	struct m_link *next;	/* Simple links are enough */
432 };
433 
434 #ifndef M_DMA_32BIT
435 #define M_DMA_32BIT	0	/* Will this flag ever exist */
436 #endif
437 
438 #define get_pages() \
439 	malloc(PAGE_SIZE<<MEMO_PAGE_ORDER, M_DEVBUF, M_NOWAIT)
440 #define free_pages(p) \
441 	free((p), M_DEVBUF)
442 
443 /*
444  *  Lists of available memory chunks.
445  *  Starts with 16 bytes chunks until 1 PAGE chunks.
446  */
447 static struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
448 
449 /*
450  *  Allocate a memory area aligned on the lowest power of 2
451  *  greater than the requested size.
452  */
453 static void *__sym_malloc(int size)
454 {
455 	int i = 0;
456 	int s = (1 << MEMO_SHIFT);
457 	int j;
458 	addr a ;
459 
460 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
461 		return 0;
462 
463 	while (size > s) {
464 		s <<= 1;
465 		++i;
466 	}
467 
468 	j = i;
469 	while (!h[j].next) {
470 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
471 			h[j].next = (struct m_link *)get_pages();
472 			if (h[j].next)
473 				h[j].next->next = 0;
474 			break;
475 		}
476 		++j;
477 		s <<= 1;
478 	}
479 	a = (addr) h[j].next;
480 	if (a) {
481 		h[j].next = h[j].next->next;
482 		while (j > i) {
483 			j -= 1;
484 			s >>= 1;
485 			h[j].next = (struct m_link *) (a+s);
486 			h[j].next->next = 0;
487 		}
488 	}
489 #ifdef DEBUG
490 	printf("__sym_malloc(%d) = %p\n", size, (void *) a);
491 #endif
492 	return (void *) a;
493 }
494 
495 /*
496  *  Free a memory area allocated using sym_malloc().
497  *  Coalesce buddies.
498  *  Free pages that become unused if MEMO_FREE_UNUSED is
499  *  defined.
500  */
501 static void __sym_mfree(void *ptr, int size)
502 {
503 	int i = 0;
504 	int s = (1 << MEMO_SHIFT);
505 	struct m_link *q;
506 	addr a, b;
507 
508 #ifdef DEBUG
509 	printf("sym_mfree(%p, %d)\n", ptr, size);
510 #endif
511 
512 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
513 		return;
514 
515 	while (size > s) {
516 		s <<= 1;
517 		++i;
518 	}
519 
520 	a = (addr) ptr;
521 
522 	while (1) {
523 #ifdef MEMO_FREE_UNUSED
524 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
525 			free_pages(a);
526 			break;
527 		}
528 #endif
529 		b = a ^ s;
530 		q = &h[i];
531 		while (q->next && q->next != (struct m_link *) b) {
532 			q = q->next;
533 		}
534 		if (!q->next) {
535 			((struct m_link *) a)->next = h[i].next;
536 			h[i].next = (struct m_link *) a;
537 			break;
538 		}
539 		q->next = q->next->next;
540 		a = a & b;
541 		s <<= 1;
542 		++i;
543 	}
544 }
545 
546 #else	/* !defined SYSCONF_USE_INTERNAL_ALLOCATOR */
547 
548 /*
549  *  Using directly the system memory allocator.
550  */
551 
552 #define	__sym_mfree(ptr, size)		free((ptr), M_DEVBUF)
553 #define	__sym_malloc(size)		malloc((size), M_DEVBUF, M_NOWAIT)
554 
555 #endif	/* SYM_CONF_USE_INTERNAL_ALLOCATOR */
556 
557 #define MEMO_WARN	1
558 
559 static void *sym_calloc2(int size, char *name, int uflags)
560 {
561 	void *p;
562 
563 	p = __sym_malloc(size);
564 
565 	if (DEBUG_FLAGS & DEBUG_ALLOC)
566 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
567 
568 	if (p)
569 		bzero(p, size);
570 	else if (uflags & MEMO_WARN)
571 		printf ("sym_calloc: failed to allocate %s[%d]\n", name, size);
572 
573 	return p;
574 }
575 
576 #define sym_calloc(s, n)	sym_calloc2(s, n, MEMO_WARN)
577 
578 static void sym_mfree(void *ptr, int size, char *name)
579 {
580 	if (DEBUG_FLAGS & DEBUG_ALLOC)
581 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
582 
583 	__sym_mfree(ptr, size);
584 }
585 
586 /*
587  *  Print a buffer in hexadecimal format.
588  */
589 static void sym_printb_hex (u_char *p, int n)
590 {
591 	while (n-- > 0)
592 		printf (" %x", *p++);
593 }
594 
595 /*
596  *  Same with a label at beginning and .\n at end.
597  */
598 static void sym_printl_hex (char *label, u_char *p, int n)
599 {
600 	printf ("%s", label);
601 	sym_printb_hex (p, n);
602 	printf (".\n");
603 }
604 
605 /*
606  *  Return a string for SCSI BUS mode.
607  */
608 static char *sym_scsi_bus_mode(int mode)
609 {
610 	switch(mode) {
611 	case SMODE_HVD:	return "HVD";
612 	case SMODE_SE:	return "SE";
613 	case SMODE_LVD: return "LVD";
614 	}
615 	return "??";
616 }
617 
618 /*
619  *  Some poor sync table that refers to Tekram NVRAM layout.
620  */
621 #ifdef SYM_CONF_NVRAM_SUPPORT
622 static u_char Tekram_sync[16] =
623 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
624 #endif
625 
626 /*
627  *  Union of supported NVRAM formats.
628  */
629 struct sym_nvram {
630 	int type;
631 #define	SYM_SYMBIOS_NVRAM	(1)
632 #define	SYM_TEKRAM_NVRAM	(2)
633 #ifdef	SYM_CONF_NVRAM_SUPPORT
634 	union {
635 		Symbios_nvram Symbios;
636 		Tekram_nvram Tekram;
637 	} data;
638 #endif
639 };
640 
641 /*
642  *  This one is hopefully useless, but actually useful. :-)
643  */
644 #ifndef assert
645 #define	assert(expression) { \
646 	if (!(expression)) { \
647 		(void)panic( \
648 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
649 			#expression, \
650 			__FILE__, __LINE__); \
651 	} \
652 }
653 #endif
654 
655 /*
656  *  Some provision for a possible big endian support.
657  *  By the way some Symbios chips also may support some kind
658  *  of big endian byte ordering.
659  *  For now, this stuff does not deserve any comments. :)
660  */
661 
662 #define sym_offb(o)	(o)
663 #define sym_offw(o)	(o)
664 
665 #define cpu_to_scr(dw)	(dw)
666 #define scr_to_cpu(dw)	(dw)
667 
668 /*
669  *  Access to the controller chip.
670  *
671  *  If SYM_CONF_IOMAPPED is defined, the driver will use
672  *  normal IOs instead of the MEMORY MAPPED IO method
673  *  recommended by PCI specifications.
674  */
675 
676 /*
677  *  Define some understable verbs so we will not suffer of
678  *  having to deal with the stupid PC tokens for IO.
679  */
680 #define io_read8(p)	 scr_to_cpu(inb((p)))
681 #define	io_read16(p)	 scr_to_cpu(inw((p)))
682 #define io_read32(p)	 scr_to_cpu(inl((p)))
683 #define	io_write8(p, v)	 outb((p), cpu_to_scr(v))
684 #define io_write16(p, v) outw((p), cpu_to_scr(v))
685 #define io_write32(p, v) outl((p), cpu_to_scr(v))
686 
687 #ifdef	__alpha__
688 
689 #define mmio_read8(a)	     readb(a)
690 #define mmio_read16(a)	     readw(a)
691 #define mmio_read32(a)	     readl(a)
692 #define mmio_write8(a, b)    writeb(a, b)
693 #define mmio_write16(a, b)   writew(a, b)
694 #define mmio_write32(a, b)   writel(a, b)
695 
696 #else /*__i386__*/
697 
698 #define mmio_read8(a)	     scr_to_cpu((*(volatile unsigned char *) (a)))
699 #define mmio_read16(a)	     scr_to_cpu((*(volatile unsigned short *) (a)))
700 #define mmio_read32(a)	     scr_to_cpu((*(volatile unsigned int *) (a)))
701 #define mmio_write8(a, b)   (*(volatile unsigned char *) (a)) = cpu_to_scr(b)
702 #define mmio_write16(a, b)  (*(volatile unsigned short *) (a)) = cpu_to_scr(b)
703 #define mmio_write32(a, b)  (*(volatile unsigned int *) (a)) = cpu_to_scr(b)
704 
705 #endif
706 
707 /*
708  *  Normal IO
709  */
710 #if defined(SYM_CONF_IOMAPPED)
711 
712 #define	INB_OFF(o)	io_read8(np->io_port + sym_offb(o))
713 #define	OUTB_OFF(o, v)	io_write8(np->io_port + sym_offb(o), (v))
714 
715 #define	INW_OFF(o)	io_read16(np->io_port + sym_offw(o))
716 #define	OUTW_OFF(o, v)	io_write16(np->io_port + sym_offw(o), (v))
717 
718 #define	INL_OFF(o)	io_read32(np->io_port + (o))
719 #define	OUTL_OFF(o, v)	io_write32(np->io_port + (o), (v))
720 
721 #else	/* Memory mapped IO */
722 
723 #define	INB_OFF(o)	mmio_read8(np->mmio_va + sym_offb(o))
724 #define	OUTB_OFF(o, v)	mmio_write8(np->mmio_va + sym_offb(o), (v))
725 
726 #define	INW_OFF(o)	mmio_read16(np->mmio_va + sym_offw(o))
727 #define	OUTW_OFF(o, v)	mmio_write16(np->mmio_va + sym_offw(o), (v))
728 
729 #define	INL_OFF(o)	mmio_read32(np->mmio_va + (o))
730 #define	OUTL_OFF(o, v)	mmio_write32(np->mmio_va + (o), (v))
731 
732 #endif
733 
734 /*
735  *  Common to both normal IO and MMIO.
736  */
737 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
738 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
739 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
740 
741 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
742 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
743 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
744 
745 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
746 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
747 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
748 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
749 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
750 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
751 
752 /*
753  *  Command control block states.
754  */
755 #define HS_IDLE		(0)
756 #define HS_BUSY		(1)
757 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
758 #define HS_DISCONNECT	(3)	/* Disconnected by target */
759 
760 #define HS_DONEMASK	(0x80)
761 #define HS_COMPLETE	(4|HS_DONEMASK)
762 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
763 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
764 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
765 
766 /*
767  *  Software Interrupt Codes
768  */
769 #define	SIR_BAD_SCSI_STATUS	(1)
770 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
771 #define	SIR_MSG_RECEIVED	(3)
772 #define	SIR_MSG_WEIRD		(4)
773 #define	SIR_NEGO_FAILED		(5)
774 #define	SIR_NEGO_PROTO		(6)
775 #define	SIR_SCRIPT_STOPPED	(7)
776 #define	SIR_REJECT_TO_SEND	(8)
777 #define	SIR_SWIDE_OVERRUN	(9)
778 #define	SIR_SODL_UNDERRUN	(10)
779 #define	SIR_RESEL_NO_MSG_IN	(11)
780 #define	SIR_RESEL_NO_IDENTIFY	(12)
781 #define	SIR_RESEL_BAD_LUN	(13)
782 #define	SIR_TARGET_SELECTED	(14)
783 #define	SIR_RESEL_BAD_I_T_L	(15)
784 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
785 #define	SIR_ABORT_SENT		(17)
786 #define	SIR_RESEL_ABORTED	(18)
787 #define	SIR_MSG_OUT_DONE	(19)
788 #define	SIR_COMPLETE_ERROR	(20)
789 #ifdef	SYM_DEBUG_PM_WITH_WSR
790 #define	SIR_PM_WITH_WSR		(21)
791 #define	SIR_MAX			(21)
792 #else
793 #define	SIR_MAX			(20)
794 #endif
795 
796 /*
797  *  Extended error bit codes.
798  *  xerr_status field of struct sym_ccb.
799  */
800 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
801 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
802 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
803 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
804 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
805 
806 /*
807  *  Negotiation status.
808  *  nego_status field of struct sym_ccb.
809  */
810 #define NS_SYNC		(1)
811 #define NS_WIDE		(2)
812 #define NS_PPR		(3)
813 
814 /*
815  *  A CCB hashed table is used to retrieve CCB address
816  *  from DSA value.
817  */
818 #define CCB_HASH_SHIFT		8
819 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
820 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
821 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
822 
823 /*
824  *  Device flags.
825  */
826 #define SYM_DISC_ENABLED	(1)
827 #define SYM_TAGS_ENABLED	(1<<1)
828 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
829 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
830 
831 /*
832  *  Host adapter miscellaneous flags.
833  */
834 #define SYM_AVOID_BUS_RESET	(1)
835 #define SYM_SCAN_TARGETS_HILO	(1<<1)
836 
837 /*
838  *  Device quirks.
839  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
840  *  saving the DATA POINTER then reconnect and terminates the IO.
841  *  On reselection, the automatic RESTORE DATA POINTER makes the
842  *  CURRENT DATA POINTER not point at the end of the IO.
843  *  This behaviour just breaks our calculation of the residual.
844  *  For now, we just force an AUTO SAVE on disconnection and will
845  *  fix that in a further driver version.
846  */
847 #define SYM_QUIRK_AUTOSAVE 1
848 
849 /*
850  *  Misc.
851  */
852 #define SYM_SNOOP_TIMEOUT (10000000)
853 #define SYM_PCI_IO	PCIR_MAPS
854 #define SYM_PCI_MMIO	(PCIR_MAPS + 4)
855 #define SYM_PCI_RAM	(PCIR_MAPS + 8)
856 #define SYM_PCI_RAM64	(PCIR_MAPS + 12)
857 
858 /*
859  *  Back-pointer from the CAM CCB to our data structures.
860  */
861 #define sym_hcb_ptr	spriv_ptr0
862 /* #define sym_ccb_ptr	spriv_ptr1 */
863 
864 /*
865  *  We mostly have to deal with pointers.
866  *  Thus these typedef's.
867  */
868 typedef struct sym_tcb *tcb_p;
869 typedef struct sym_lcb *lcb_p;
870 typedef struct sym_ccb *ccb_p;
871 typedef struct sym_hcb *hcb_p;
872 typedef struct sym_scr  *script_p;
873 typedef struct sym_scrh *scripth_p;
874 
875 /*
876  *  Gather negotiable parameters value
877  */
878 struct sym_trans {
879 	u8 period;
880 	u8 offset;
881 	u8 width;
882 	u8 options;	/* PPR options */
883 };
884 
885 struct sym_tinfo {
886 	struct sym_trans current;
887 	struct sym_trans goal;
888 	struct sym_trans user;
889 };
890 
891 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
892 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
893 
894 /*
895  *  Target Control Block
896  */
897 struct sym_tcb {
898 	/*
899 	 *  LUN table used by the SCRIPTS processor.
900 	 *  An array of bus addresses is used on reselection.
901 	 *  LUN #0 is a special case, since multi-lun devices are rare,
902 	 *  and we we want to speed-up the general case and not waste
903 	 *  resources.
904 	 */
905 	u32	*luntbl;	/* LCBs bus address table	*/
906 	u32	luntbl_sa;	/* bus address of this table	*/
907 	u32	lun0_sa;	/* bus address of LCB #0	*/
908 
909 	/*
910 	 *  LUN table used by the C code.
911 	 */
912 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
913 #if SYM_CONF_MAX_LUN > 1
914 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
915 #endif
916 
917 	/*
918 	 *  Bitmap that tells about LUNs that succeeded at least
919 	 *  1 IO and therefore assumed to be a real device.
920 	 *  Avoid useless allocation of the LCB structure.
921 	 */
922 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
923 
924 	/*
925 	 *  Bitmap that tells about LUNs that haven't yet an LCB
926 	 *  allocated (not discovered or LCB allocation failed).
927 	 */
928 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
929 
930 	/*
931 	 *  Actual SYNC/WIDE IO registers value for this target.
932 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
933 	 *  so have alignment constraints.
934 	 */
935 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
936 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
937 /*2*/	u_char	filler1;
938 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
939 
940 	/*
941 	 *  Transfer capabilities (SIP)
942 	 */
943 	struct sym_tinfo tinfo;
944 
945 	/*
946 	 * Keep track of the CCB used for the negotiation in order
947 	 * to ensure that only 1 negotiation is queued at a time.
948 	 */
949 	ccb_p   nego_cp;	/* CCB used for the nego		*/
950 
951 	/*
952 	 *  Set when we want to reset the device.
953 	 */
954 	u_char	to_reset;
955 
956 	/*
957 	 *  Other user settable limits and options.
958 	 *  These limits are read from the NVRAM if present.
959 	 */
960 	u_char	usrflags;
961 	u_short	usrtags;
962 };
963 
964 /*
965  *  Logical Unit Control Block
966  */
967 struct sym_lcb {
968 	/*
969 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
970 	 *  For not probed logical units, this address points to
971 	 *  SCRIPTS that deal with bad LU handling (must be at
972 	 *  offset zero for that reason).
973 	 */
974 /*0*/	u32	resel_sa;
975 
976 	/*
977 	 *  Task (bus address of a CCB) read from SCRIPTS that points
978 	 *  to the unique ITL nexus allowed to be disconnected.
979 	 */
980 	u32	itl_task_sa;
981 
982 	/*
983 	 *  Task table read from SCRIPTS that contains pointers to
984 	 *  ITLQ nexuses (bus addresses read from SCRIPTS).
985 	 */
986 	u32	*itlq_tbl;	/* Kernel virtual address	*/
987 	u32	itlq_tbl_sa;	/* Bus address used by SCRIPTS	*/
988 
989 	/*
990 	 *  Busy CCBs management.
991 	 */
992 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
993 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
994 
995 	/*
996 	 *  Circular tag allocation buffer.
997 	 */
998 	u_short	ia_tag;		/* Tag allocation index		*/
999 	u_short	if_tag;		/* Tag release index		*/
1000 	u_char	*cb_tags;	/* Circular tags buffer		*/
1001 
1002 	/*
1003 	 *  Set when we want to clear all tasks.
1004 	 */
1005 	u_char to_clear;
1006 
1007 	/*
1008 	 *  Capabilities.
1009 	 */
1010 	u_char	user_flags;
1011 	u_char	current_flags;
1012 };
1013 
1014 /*
1015  *  Action from SCRIPTS on a task.
1016  *  Is part of the CCB, but is also used separately to plug
1017  *  error handling action to perform from SCRIPTS.
1018  */
1019 struct sym_actscr {
1020 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1021 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1022 };
1023 
1024 /*
1025  *  Phase mismatch context.
1026  *
1027  *  It is part of the CCB and is used as parameters for the
1028  *  DATA pointer. We need two contexts to handle correctly the
1029  *  SAVED DATA POINTER.
1030  */
1031 struct sym_pmc {
1032 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1033 	u32	ret;		/* SCRIPT return address	*/
1034 };
1035 
1036 /*
1037  *  LUN control block lookup.
1038  *  We use a direct pointer for LUN #0, and a table of
1039  *  pointers which is only allocated for devices that support
1040  *  LUN(s) > 0.
1041  */
1042 #if SYM_CONF_MAX_LUN <= 1
1043 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1044 #else
1045 #define sym_lp(np, tp, lun) \
1046 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1047 #endif
1048 
1049 /*
1050  *  Status are used by the host and the script processor.
1051  *
1052  *  The last four bytes (status[4]) are copied to the
1053  *  scratchb register (declared as scr0..scr3) just after the
1054  *  select/reselect, and copied back just after disconnecting.
1055  *  Inside the script the XX_REG are used.
1056  *
1057  *  The first four bytes (scr_st[4]) are used inside the
1058  *  script by "LOAD/STORE" commands.
1059  *  Because source and destination must have the same alignment
1060  *  in a DWORD, the fields HAVE to be at the choosen offsets.
1061  *  	xerr_st		0	(0x34)	scratcha
1062  *  	nego_st		2
1063  */
1064 
1065 /*
1066  *  Last four bytes (script)
1067  */
1068 #define  QU_REG	scr0
1069 #define  HS_REG	scr1
1070 #define  HS_PRT	nc_scr1
1071 #define  SS_REG	scr2
1072 #define  SS_PRT	nc_scr2
1073 #define  HF_REG	scr3
1074 #define  HF_PRT	nc_scr3
1075 
1076 /*
1077  *  Last four bytes (host)
1078  */
1079 #define  actualquirks  phys.status[0]
1080 #define  host_status   phys.status[1]
1081 #define  ssss_status   phys.status[2]
1082 #define  host_flags    phys.status[3]
1083 
1084 /*
1085  *  Host flags
1086  */
1087 #define HF_IN_PM0	1u
1088 #define HF_IN_PM1	(1u<<1)
1089 #define HF_ACT_PM	(1u<<2)
1090 #define HF_DP_SAVED	(1u<<3)
1091 #define HF_SENSE	(1u<<4)
1092 #define HF_EXT_ERR	(1u<<5)
1093 #ifdef SYM_CONF_IARB_SUPPORT
1094 #define HF_HINT_IARB	(1u<<7)
1095 #endif
1096 
1097 /*
1098  *  First four bytes (script)
1099  */
1100 #define  xerr_st       scr_st[0]
1101 #define  nego_st       scr_st[2]
1102 
1103 /*
1104  *  First four bytes (host)
1105  */
1106 #define  xerr_status   phys.xerr_st
1107 #define  nego_status   phys.nego_st
1108 
1109 /*
1110  *  Data Structure Block
1111  *
1112  *  During execution of a ccb by the script processor, the
1113  *  DSA (data structure address) register points to this
1114  *  substructure of the ccb.
1115  */
1116 struct dsb {
1117 	/*
1118 	 *  Start and restart SCRIPTS addresses (must be at 0).
1119 	 */
1120 /*0*/	struct sym_actscr go;
1121 
1122 	/*
1123 	 *  SCRIPTS jump address that deal with data pointers.
1124 	 *  'savep' points to the position in the script responsible
1125 	 *  for the	actual transfer of data.
1126 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1127 	 */
1128 	u32	savep;		/* Jump address to saved data pointer	*/
1129 	u32	lastp;		/* SCRIPTS address at end of data	*/
1130 	u32	goalp;		/* Not used for now			*/
1131 
1132 	/*
1133 	 *  Status fields.
1134 	 */
1135 	u8	scr_st[4];	/* script status		*/
1136 	u8	status[4];	/* host status			*/
1137 
1138 	/*
1139 	 *  Table data for Script
1140 	 */
1141 	struct sym_tblsel  select;
1142 	struct sym_tblmove smsg;
1143 	struct sym_tblmove smsg_ext;
1144 	struct sym_tblmove cmd;
1145 	struct sym_tblmove sense;
1146 	struct sym_tblmove wresid;
1147 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1148 
1149 	/*
1150 	 *  Phase mismatch contexts.
1151 	 *  We need two to handle correctly the SAVED DATA POINTER.
1152 	 */
1153 	struct sym_pmc pm0;
1154 	struct sym_pmc pm1;
1155 
1156 	/*
1157 	 *  Extra bytes count transferred in case of data overrun.
1158 	 */
1159 	u32	extra_bytes;
1160 };
1161 
1162 /*
1163  *  Our Command Control Block
1164  */
1165 struct sym_ccb {
1166 	/*
1167 	 *  This is the data structure which is pointed by the DSA
1168 	 *  register when it is executed by the script processor.
1169 	 *  It must be the first entry.
1170 	 */
1171 	struct dsb phys;
1172 
1173 	/*
1174 	 *  Pointer to CAM ccb and related stuff.
1175 	 */
1176 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1177 	int	data_len;	/* Total data length		*/
1178 	int	segments;	/* Number of SG segments	*/
1179 
1180 	/*
1181 	 *  Message areas.
1182 	 *  We prepare a message to be sent after selection.
1183 	 *  We may use a second one if the command is rescheduled
1184 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1185 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1186 	 *  While negotiating sync or wide transfer,
1187 	 *  a SDTR or WDTR message is appended.
1188 	 */
1189 	u_char	scsi_smsg [12];
1190 	u_char	scsi_smsg2[12];
1191 
1192 	/*
1193 	 *  Auto request sense related fields.
1194 	 */
1195 	u_char	sensecmd[6];	/* Request Sense command	*/
1196 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1197 	u_char	sv_xerr_status;	/* Saved extended status	*/
1198 	int	sv_resid;	/* Saved residual		*/
1199 
1200 	/*
1201 	 *  Other fields.
1202 	 */
1203 	u_long	ccb_ba;		/* BUS address of this CCB	*/
1204 	u_short	tag;		/* Tag for this transfer	*/
1205 				/*  NO_TAG means no tag		*/
1206 	u_char	target;
1207 	u_char	lun;
1208 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1209 	SYM_QUEHEAD
1210 		link_ccbq;	/* Link to free/busy CCB queue	*/
1211 	u32	startp;		/* Initial data pointer		*/
1212 	int	ext_sg;		/* Extreme data pointer, used	*/
1213 	int	ext_ofs;	/*  to calculate the residual.	*/
1214 	u_char	to_abort;	/* Want this IO to be aborted	*/
1215 };
1216 
1217 #define CCB_PHYS(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1218 
1219 /*
1220  *  Host Control Block
1221  */
1222 struct sym_hcb {
1223 	/*
1224 	 *  Idle task and invalid task actions and
1225 	 *  their bus addresses.
1226 	 */
1227 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1228 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1229 
1230 	/*
1231 	 *  Dummy lun table to protect us against target
1232 	 *  returning bad lun number on reselection.
1233 	 */
1234 	u32	*badluntbl;	/* Table physical address	*/
1235 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1236 
1237 	/*
1238 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1239 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1240 	 *  field.
1241 	 */
1242 	u32	scr_ram_seg;
1243 
1244 	/*
1245 	 *  Chip and controller indentification.
1246 	 */
1247 #ifdef FreeBSD_4_Bus
1248 	device_t device;
1249 #else
1250 	pcici_t	pci_tag;
1251 #endif
1252 	int	unit;
1253 	char	inst_name[8];
1254 
1255 	/*
1256 	 *  Initial value of some IO register bits.
1257 	 *  These values are assumed to have been set by BIOS, and may
1258 	 *  be used to probe adapter implementation differences.
1259 	 */
1260 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1261 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1262 		sv_stest1;
1263 
1264 	/*
1265 	 *  Actual initial value of IO register bits used by the
1266 	 *  driver. They are loaded at initialisation according to
1267 	 *  features that are to be enabled/disabled.
1268 	 */
1269 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1270 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1271 
1272 	/*
1273 	 *  Target data used by the CPU.
1274 	 */
1275 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1276 
1277 	/*
1278 	 *  Target control block bus address array used by the SCRIPT
1279 	 *  on reselection.
1280 	 */
1281 	u32		*targtbl;
1282 
1283 	/*
1284 	 *  CAM SIM information for this instance.
1285 	 */
1286 	struct		cam_sim  *sim;
1287 	struct		cam_path *path;
1288 
1289 	/*
1290 	 *  Allocated hardware resources.
1291 	 */
1292 #ifdef FreeBSD_4_Bus
1293 	struct resource	*irq_res;
1294 	struct resource	*io_res;
1295 	struct resource	*mmio_res;
1296 	struct resource	*ram_res;
1297 	int		ram_id;
1298 	void *intr;
1299 #endif
1300 
1301 	/*
1302 	 *  Bus stuff.
1303 	 *
1304 	 *  My understanding of PCI is that all agents must share the
1305 	 *  same addressing range and model.
1306 	 *  But some hardware architecture guys provide complex and
1307 	 *  brain-deaded stuff that makes shit.
1308 	 *  This driver only support PCI compliant implementations and
1309 	 *  deals with part of the BUS stuff complexity only to fit O/S
1310 	 *  requirements.
1311 	 */
1312 #ifdef FreeBSD_4_Bus
1313 	bus_space_handle_t	io_bsh;
1314 	bus_space_tag_t		io_tag;
1315 	bus_space_handle_t	mmio_bsh;
1316 	bus_space_tag_t		mmio_tag;
1317 	bus_space_handle_t	ram_bsh;
1318 	bus_space_tag_t		ram_tag;
1319 #endif
1320 
1321 	/*
1322 	 *  Virtual and physical bus addresses of the chip.
1323 	 */
1324 	vm_offset_t	mmio_va;	/* MMIO kernel virtual address	*/
1325 	vm_offset_t	mmio_pa;	/* MMIO CPU physical address	*/
1326 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1327 	int		mmio_ws;	/* MMIO Window size		*/
1328 
1329 	vm_offset_t	ram_va;		/* RAM kernel virtual address	*/
1330 	vm_offset_t	ram_pa;		/* RAM CPU physical address	*/
1331 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1332 	int		ram_ws;		/* RAM window size		*/
1333 	u32		io_port;	/* IO port address		*/
1334 
1335 	/*
1336 	 *  SCRIPTS virtual and physical bus addresses.
1337 	 *  'script'  is loaded in the on-chip RAM if present.
1338 	 *  'scripth' stays in main memory for all chips except the
1339 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1340 	 */
1341 	struct sym_scr	*script0;	/* Copies of script and scripth	*/
1342 	struct sym_scrh	*scripth0;	/*  relocated for this host.	*/
1343 	vm_offset_t	script_ba;	/* Actual script and scripth	*/
1344 	vm_offset_t	scripth_ba;	/*  bus addresses.		*/
1345 	vm_offset_t	scripth0_ba;
1346 
1347 	/*
1348 	 *  General controller parameters and configuration.
1349 	 */
1350 	u_short	device_id;	/* PCI device id		*/
1351 	u_char	revision_id;	/* PCI device revision id	*/
1352 	u_int	features;	/* Chip features map		*/
1353 	u_char	myaddr;		/* SCSI id of the adapter	*/
1354 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1355 	u_char	maxwide;	/* Maximum transfer width	*/
1356 	u_char	minsync;	/* Min sync period factor (ST)	*/
1357 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1358 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1359 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1360 	u_char	maxoffs;	/* Max scsi offset		*/
1361 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1362 	u_char	clock_divn;	/* Number of clock divisors	*/
1363 	u_long	clock_khz;	/* SCSI clock frequency in KHz	*/
1364 
1365 	/*
1366 	 *  Start queue management.
1367 	 *  It is filled up by the host processor and accessed by the
1368 	 *  SCRIPTS processor in order to start SCSI commands.
1369 	 */
1370 	volatile		/* Prevent code optimizations	*/
1371 	u32	*squeue;	/* Start queue			*/
1372 	u_short	squeueput;	/* Next free slot of the queue	*/
1373 	u_short	actccbs;	/* Number of allocated CCBs	*/
1374 
1375 	/*
1376 	 *  Command completion queue.
1377 	 *  It is the same size as the start queue to avoid overflow.
1378 	 */
1379 	u_short	dqueueget;	/* Next position to scan	*/
1380 	volatile		/* Prevent code optimizations	*/
1381 	u32	*dqueue;	/* Completion (done) queue	*/
1382 
1383 	/*
1384 	 *  Miscellaneous buffers accessed by the scripts-processor.
1385 	 *  They shall be DWORD aligned, because they may be read or
1386 	 *  written with a script command.
1387 	 */
1388 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1389 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1390 	u32		lastmsg;	/* Last SCSI message sent	*/
1391 	u_char		scratch;	/* Scratch for SCSI receive	*/
1392 
1393 	/*
1394 	 *  Miscellaneous configuration and status parameters.
1395 	 */
1396 	u_char		usrflags;	/* Miscellaneous user flags	*/
1397 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1398 	u_char		verbose;	/* Verbosity for this controller*/
1399 	u32		cache;		/* Used for cache test at init.	*/
1400 
1401 	/*
1402 	 *  CCB lists and queue.
1403 	 */
1404 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1405 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1406 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1407 
1408 	/*
1409 	 *  During error handling and/or recovery,
1410 	 *  active CCBs that are to be completed with
1411 	 *  error or requeued are moved from the busy_ccbq
1412 	 *  to the comp_ccbq prior to completion.
1413 	 */
1414 	SYM_QUEHEAD	comp_ccbq;
1415 
1416 	/*
1417 	 *  CAM CCB pending queue.
1418 	 */
1419 	SYM_QUEHEAD	cam_ccbq;
1420 
1421 	/*
1422 	 *  IMMEDIATE ARBITRATION (IARB) control.
1423 	 *
1424 	 *  We keep track in 'last_cp' of the last CCB that has been
1425 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1426 	 *  this CCB completes. If last_cp is not zero at the moment
1427 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1428 	 *  used by the SCRIPTS as a hint for setting IARB.
1429 	 *  We donnot set more than 'iarb_max' consecutive hints for
1430 	 *  IARB in order to leave devices a chance to reselect.
1431 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1432 	 */
1433 #ifdef SYM_CONF_IARB_SUPPORT
1434 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1435 	u_short		iarb_count;	/* Actual # of these hints	*/
1436 	ccb_p		last_cp;
1437 #endif
1438 
1439 	/*
1440 	 *  Command abort handling.
1441 	 *  We need to synchronize tightly with the SCRIPTS
1442 	 *  processor in order to handle things correctly.
1443 	 */
1444 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1445 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1446 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1447 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1448 };
1449 
1450 #define SCRIPT_BA(np,lbl)   (np->script_ba   + offsetof(struct sym_scr, lbl))
1451 #define SCRIPTH_BA(np,lbl)  (np->scripth_ba  + offsetof(struct sym_scrh,lbl))
1452 #define SCRIPTH0_BA(np,lbl) (np->scripth0_ba + offsetof(struct sym_scrh,lbl))
1453 
1454 /*
1455  *  Scripts for SYMBIOS-Processor
1456  *
1457  *  Use sym_fill_scripts() to create the variable parts.
1458  *  Use sym_bind_script()  to make a copy and bind to
1459  *  physical bus addresses.
1460  *  We have to know the offsets of all labels before we reach
1461  *  them (for forward jumps). Therefore we declare a struct
1462  *  here. If you make changes inside the script,
1463  *
1464  *  DONT FORGET TO CHANGE THE LENGTHS HERE!
1465  */
1466 
1467 /*
1468  *  Script fragments which are loaded into the on-chip RAM
1469  *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
1470  *  Must not exceed 4K bytes.
1471  */
1472 struct sym_scr {
1473 	u32 start		[ 14];
1474 	u32 getjob_begin	[  4];
1475 	u32 getjob_end		[  4];
1476 	u32 select		[  8];
1477 	u32 wf_sel_done		[  2];
1478 	u32 send_ident		[  2];
1479 #ifdef SYM_CONF_IARB_SUPPORT
1480 	u32 select2		[  8];
1481 #else
1482 	u32 select2		[  2];
1483 #endif
1484 	u32 command		[  2];
1485 	u32 dispatch		[ 30];
1486 	u32 sel_no_cmd		[ 10];
1487 	u32 init		[  6];
1488 	u32 clrack		[  4];
1489 	u32 disp_status		[  4];
1490 	u32 datai_done		[ 26];
1491 	u32 datao_done		[ 12];
1492 	u32 dataphase		[  2];
1493 	u32 msg_in		[  2];
1494 	u32 msg_in2		[ 10];
1495 #ifdef SYM_CONF_IARB_SUPPORT
1496 	u32 status		[ 14];
1497 #else
1498 	u32 status		[ 10];
1499 #endif
1500 	u32 complete		[  8];
1501 	u32 complete2		[ 12];
1502 	u32 complete_error	[  4];
1503 	u32 done		[ 14];
1504 	u32 done_end		[  2];
1505 	u32 save_dp		[  8];
1506 	u32 restore_dp		[  4];
1507 	u32 disconnect		[ 20];
1508 #ifdef SYM_CONF_IARB_SUPPORT
1509 	u32 idle		[  4];
1510 #else
1511 	u32 idle		[  2];
1512 #endif
1513 #ifdef SYM_CONF_IARB_SUPPORT
1514 	u32 ungetjob		[  6];
1515 #else
1516 	u32 ungetjob		[  4];
1517 #endif
1518 	u32 reselect		[  4];
1519 	u32 reselected		[ 20];
1520 	u32 resel_scntl4	[ 28];
1521 #if   SYM_CONF_MAX_TASK*4 > 512
1522 	u32 resel_tag		[ 26];
1523 #elif SYM_CONF_MAX_TASK*4 > 256
1524 	u32 resel_tag		[ 20];
1525 #else
1526 	u32 resel_tag		[ 16];
1527 #endif
1528 	u32 resel_dsa		[  2];
1529 	u32 resel_dsa1		[  6];
1530 	u32 resel_no_tag	[  6];
1531 	u32 data_in		[SYM_CONF_MAX_SG * 2];
1532 	u32 data_in2		[  4];
1533 	u32 data_out		[SYM_CONF_MAX_SG * 2];
1534 	u32 data_out2		[  4];
1535 	u32 pm0_data		[ 16];
1536 	u32 pm1_data		[ 16];
1537 };
1538 
1539 /*
1540  *  Script fragments which stay in main memory for all chips
1541  *  except for chips that support 8K on-chip RAM.
1542  */
1543 struct sym_scrh {
1544 	u32 start64		[  2];
1545 	u32 no_data		[  2];
1546 	u32 sel_for_abort	[ 18];
1547 	u32 sel_for_abort_1	[  2];
1548 	u32 select_no_atn	[  8];
1549 	u32 wf_sel_done_no_atn	[  4];
1550 
1551 	u32 msg_in_etc		[ 14];
1552 	u32 msg_received	[  4];
1553 	u32 msg_weird_seen	[  4];
1554 	u32 msg_extended	[ 20];
1555 	u32 msg_bad		[  6];
1556 	u32 msg_weird		[  4];
1557 	u32 msg_weird1		[  8];
1558 
1559 	u32 wdtr_resp		[  6];
1560 	u32 send_wdtr		[  4];
1561 	u32 sdtr_resp		[  6];
1562 	u32 send_sdtr		[  4];
1563 	u32 ppr_resp		[  6];
1564 	u32 send_ppr		[  4];
1565 	u32 nego_bad_phase	[  4];
1566 	u32 msg_out		[  4];
1567 	u32 msg_out_done	[  4];
1568 	u32 data_ovrun		[ 18];
1569 	u32 data_ovrun1		[ 20];
1570 	u32 abort_resel		[ 16];
1571 	u32 resend_ident	[  4];
1572 	u32 ident_break		[  4];
1573 	u32 ident_break_atn	[  4];
1574 	u32 sdata_in		[  6];
1575 	u32 resel_bad_lun	[  4];
1576 	u32 bad_i_t_l		[  4];
1577 	u32 bad_i_t_l_q		[  4];
1578 	u32 bad_status		[  6];
1579 	u32 pm_handle		[ 20];
1580 	u32 pm_handle1		[  4];
1581 	u32 pm_save		[  4];
1582 	u32 pm0_save		[ 14];
1583 	u32 pm1_save		[ 14];
1584 
1585 	/* WSR handling */
1586 #ifdef	SYM_DEBUG_PM_WITH_WSR
1587 	u32 pm_wsr_handle	[ 44];
1588 #else
1589 	u32 pm_wsr_handle	[ 42];
1590 #endif
1591 	u32 wsr_ma_helper	[  4];
1592 
1593 	/* Data area */
1594 	u32 zero		[  1];
1595 	u32 scratch		[  1];
1596 	u32 pm0_data_addr	[  1];
1597 	u32 pm1_data_addr	[  1];
1598 	u32 saved_dsa		[  1];
1599 	u32 saved_drs		[  1];
1600 	u32 done_pos		[  1];
1601 	u32 startpos		[  1];
1602 	u32 targtbl		[  1];
1603 	/* End of data area */
1604 
1605 	u32 snooptest		[  6];
1606 	u32 snoopend		[  2];
1607 };
1608 
1609 /*
1610  *  Function prototypes.
1611  */
1612 static void sym_fill_scripts (script_p scr, scripth_p scrh);
1613 static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len);
1614 static void sym_save_initial_setting (hcb_p np);
1615 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
1616 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
1617 static void sym_put_start_queue (hcb_p np, ccb_p cp);
1618 static void sym_chip_reset (hcb_p np);
1619 static void sym_soft_reset (hcb_p np);
1620 static void sym_start_reset (hcb_p np);
1621 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
1622 static int  sym_wakeup_done (hcb_p np);
1623 static void sym_flush_busy_queue (hcb_p np, int cam_status);
1624 static void sym_flush_comp_queue (hcb_p np, int cam_status);
1625 static void sym_init (hcb_p np, int reason);
1626 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
1627 		        u_char *fakp);
1628 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
1629 			 u_char div, u_char fak);
1630 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
1631 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
1632 			 u_char per, u_char wide, u_char div, u_char fak);
1633 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
1634 			 u_char per, u_char wide, u_char div, u_char fak);
1635 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
1636 static void sym_intr (void *arg);
1637 static void sym_poll (struct cam_sim *sim);
1638 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
1639 static void sym_int_sto (hcb_p np);
1640 static void sym_int_udc (hcb_p np);
1641 static void sym_int_sbmc (hcb_p np);
1642 static void sym_int_par (hcb_p np, u_short sist);
1643 static void sym_int_ma (hcb_p np);
1644 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
1645 				    int task);
1646 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
1647 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
1648 static void sym_sir_task_recovery (hcb_p np, int num);
1649 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
1650 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
1651 static int  sym_compute_residual (hcb_p np, ccb_p cp);
1652 static int  sym_show_msg (u_char * msg);
1653 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
1654 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
1655 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
1656 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
1657 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
1658 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
1659 static void sym_int_sir (hcb_p np);
1660 static void sym_free_ccb (hcb_p np, ccb_p cp);
1661 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
1662 static ccb_p sym_alloc_ccb (hcb_p np);
1663 static ccb_p sym_ccb_from_dsa (hcb_p np, u_long dsa);
1664 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
1665 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
1666 static int  sym_snooptest (hcb_p np);
1667 static void sym_selectclock(hcb_p np, u_char scntl3);
1668 static void sym_getclock (hcb_p np, int mult);
1669 static int  sym_getpciclock (hcb_p np);
1670 static void sym_complete_ok (hcb_p np, ccb_p cp);
1671 static void sym_complete_error (hcb_p np, ccb_p cp);
1672 static void sym_timeout (void *arg);
1673 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
1674 static void sym_reset_dev (hcb_p np, union ccb *ccb);
1675 static void sym_action (struct cam_sim *sim, union ccb *ccb);
1676 static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
1677 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
1678 static int  sym_setup_data(hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
1679 static int  sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr,
1680 				 vm_size_t len);
1681 static int  sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t vaddr,
1682 				 vm_size_t len);
1683 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
1684 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
1685 			      struct ccb_trans_settings *cts);
1686 static void sym_update_dflags(hcb_p np, u_char *flags,
1687 			      struct ccb_trans_settings *cts);
1688 
1689 #ifdef FreeBSD_4_Bus
1690 static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
1691 static int  sym_pci_probe (device_t dev);
1692 static int  sym_pci_attach (device_t dev);
1693 #else
1694 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag);
1695 static const char *sym_pci_probe (pcici_t tag, pcidi_t type);
1696 static void sym_pci_attach (pcici_t tag, int unit);
1697 static int sym_pci_attach2 (pcici_t tag, int unit);
1698 #endif
1699 
1700 static void sym_pci_free (hcb_p np);
1701 static int  sym_cam_attach (hcb_p np);
1702 static void sym_cam_free (hcb_p np);
1703 
1704 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
1705 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
1706 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
1707 
1708 /*
1709  *  Return the name of the controller.
1710  */
1711 static __inline char *sym_name(hcb_p np)
1712 {
1713 	return np->inst_name;
1714 }
1715 
1716 /*
1717  *  Scripts for SYMBIOS-Processor
1718  *
1719  *  Use sym_bind_script for binding to physical addresses.
1720  *
1721  *  NADDR generates a reference to a field of the controller data.
1722  *  PADDR generates a reference to another part of the script.
1723  *  RADDR generates a reference to a script processor register.
1724  *  FADDR generates a reference to a script processor register
1725  *        with offset.
1726  *
1727  */
1728 #define	RELOC_SOFTC	0x40000000
1729 #define	RELOC_LABEL	0x50000000
1730 #define	RELOC_REGISTER	0x60000000
1731 #if 0
1732 #define	RELOC_KVAR	0x70000000
1733 #endif
1734 #define	RELOC_LABELH	0x80000000
1735 #define	RELOC_MASK	0xf0000000
1736 
1737 #define	NADDR(label)	(RELOC_SOFTC  | offsetof(struct sym_hcb, label))
1738 #define PADDR(label)    (RELOC_LABEL  | offsetof(struct sym_scr, label))
1739 #define PADDRH(label)   (RELOC_LABELH | offsetof(struct sym_scrh, label))
1740 #define	RADDR(label)	(RELOC_REGISTER | REG(label))
1741 #define	FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
1742 #define	KVAR(which)	(RELOC_KVAR | (which))
1743 
1744 #define SCR_DATA_ZERO	0xf00ff00f
1745 
1746 #ifdef	RELOC_KVAR
1747 #define	SCRIPT_KVAR_JIFFIES	(0)
1748 #define	SCRIPT_KVAR_FIRST	SCRIPT_KVAR_XXXXXXX
1749 #define	SCRIPT_KVAR_LAST	SCRIPT_KVAR_XXXXXXX
1750 /*
1751  * Kernel variables referenced in the scripts.
1752  * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
1753  */
1754 static void *script_kvars[] =
1755 	{ (void *)&xxxxxxx };
1756 #endif
1757 
1758 static struct sym_scr script0 = {
1759 /*--------------------------< START >-----------------------*/ {
1760 	/*
1761 	 *  This NOP will be patched with LED ON
1762 	 *  SCR_REG_REG (gpreg, SCR_AND, 0xfe)
1763 	 */
1764 	SCR_NO_OP,
1765 		0,
1766 	/*
1767 	 *      Clear SIGP.
1768 	 */
1769 	SCR_FROM_REG (ctest2),
1770 		0,
1771 	/*
1772 	 *  Stop here if the C code wants to perform
1773 	 *  some error recovery procedure manually.
1774 	 *  (Indicate this by setting SEM in ISTAT)
1775 	 */
1776 	SCR_FROM_REG (istat),
1777 		0,
1778 	/*
1779 	 *  Report to the C code the next position in
1780 	 *  the start queue the SCRIPTS will schedule.
1781 	 *  The C code must not change SCRATCHA.
1782 	 */
1783 	SCR_LOAD_ABS (scratcha, 4),
1784 		PADDRH (startpos),
1785 	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
1786 		SIR_SCRIPT_STOPPED,
1787 	/*
1788 	 *  Start the next job.
1789 	 *
1790 	 *  @DSA	 = start point for this job.
1791 	 *  SCRATCHA = address of this job in the start queue.
1792 	 *
1793 	 *  We will restore startpos with SCRATCHA if we fails the
1794 	 *  arbitration or if it is the idle job.
1795 	 *
1796 	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
1797 	 *  is a critical path. If it is partially executed, it then
1798 	 *  may happen that the job address is not yet in the DSA
1799 	 *  and the the next queue position points to the next JOB.
1800 	 */
1801 	SCR_LOAD_ABS (dsa, 4),
1802 		PADDRH (startpos),
1803 	SCR_LOAD_REL (temp, 4),
1804 		4,
1805 }/*-------------------------< GETJOB_BEGIN >------------------*/,{
1806 	SCR_STORE_ABS (temp, 4),
1807 		PADDRH (startpos),
1808 	SCR_LOAD_REL (dsa, 4),
1809 		0,
1810 }/*-------------------------< GETJOB_END >--------------------*/,{
1811 	SCR_LOAD_REL (temp, 4),
1812 		0,
1813 	SCR_RETURN,
1814 		0,
1815 }/*-------------------------< SELECT >----------------------*/,{
1816 	/*
1817 	 *  DSA	contains the address of a scheduled
1818 	 *  	data structure.
1819 	 *
1820 	 *  SCRATCHA contains the address of the start queue
1821 	 *  	entry which points to the next job.
1822 	 *
1823 	 *  Set Initiator mode.
1824 	 *
1825 	 *  (Target mode is left as an exercise for the reader)
1826 	 */
1827 	SCR_CLR (SCR_TRG),
1828 		0,
1829 	/*
1830 	 *      And try to select this target.
1831 	 */
1832 	SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
1833 		PADDR (ungetjob),
1834 	/*
1835 	 *  Now there are 4 possibilities:
1836 	 *
1837 	 *  (1) The chip looses arbitration.
1838 	 *  This is ok, because it will try again,
1839 	 *  when the bus becomes idle.
1840 	 *  (But beware of the timeout function!)
1841 	 *
1842 	 *  (2) The chip is reselected.
1843 	 *  Then the script processor takes the jump
1844 	 *  to the RESELECT label.
1845 	 *
1846 	 *  (3) The chip wins arbitration.
1847 	 *  Then it will execute SCRIPTS instruction until
1848 	 *  the next instruction that checks SCSI phase.
1849 	 *  Then will stop and wait for selection to be
1850 	 *  complete or selection time-out to occur.
1851 	 *
1852 	 *  After having won arbitration, the SCRIPTS
1853 	 *  processor is able to execute instructions while
1854 	 *  the SCSI core is performing SCSI selection.
1855 	 */
1856 	/*
1857 	 *      load the savep (saved data pointer) into
1858 	 *      the actual data pointer.
1859 	 */
1860 	SCR_LOAD_REL (temp, 4),
1861 		offsetof (struct sym_ccb, phys.savep),
1862 	/*
1863 	 *      Initialize the status registers
1864 	 */
1865 	SCR_LOAD_REL (scr0, 4),
1866 		offsetof (struct sym_ccb, phys.status),
1867 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
1868 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1869 		SIR_SEL_ATN_NO_MSG_OUT,
1870 }/*-------------------------< SEND_IDENT >----------------------*/,{
1871 	/*
1872 	 *  Selection complete.
1873 	 *  Send the IDENTIFY and possibly the TAG message
1874 	 *  and negotiation message if present.
1875 	 */
1876 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
1877 		offsetof (struct dsb, smsg),
1878 }/*-------------------------< SELECT2 >----------------------*/,{
1879 #ifdef SYM_CONF_IARB_SUPPORT
1880 	/*
1881 	 *  Set IMMEDIATE ARBITRATION if we have been given
1882 	 *  a hint to do so. (Some job to do after this one).
1883 	 */
1884 	SCR_FROM_REG (HF_REG),
1885 		0,
1886 	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
1887 		8,
1888 	SCR_REG_REG (scntl1, SCR_OR, IARB),
1889 		0,
1890 #endif
1891 	/*
1892 	 *  Anticipate the COMMAND phase.
1893 	 *  This is the PHASE we expect at this point.
1894 	 */
1895 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
1896 		PADDR (sel_no_cmd),
1897 }/*-------------------------< COMMAND >--------------------*/,{
1898 	/*
1899 	 *  ... and send the command
1900 	 */
1901 	SCR_MOVE_TBL ^ SCR_COMMAND,
1902 		offsetof (struct dsb, cmd),
1903 }/*-----------------------< DISPATCH >----------------------*/,{
1904 	/*
1905 	 *  MSG_IN is the only phase that shall be
1906 	 *  entered at least once for each (re)selection.
1907 	 *  So we test it first.
1908 	 */
1909 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
1910 		PADDR (msg_in),
1911 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
1912 		PADDR (dataphase),
1913 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
1914 		PADDR (dataphase),
1915 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
1916 		PADDR (status),
1917 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
1918 		PADDR (command),
1919 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
1920 		PADDRH (msg_out),
1921 
1922 	/*
1923 	 *  Set the extended error flag.
1924 	 */
1925 	SCR_REG_REG (HF_REG, SCR_OR, HF_EXT_ERR),
1926 		0,
1927 	/*
1928 	 *  Discard one illegal phase byte, if required.
1929 	 */
1930 	SCR_LOAD_REL (scratcha, 1),
1931 		offsetof (struct sym_ccb, xerr_status),
1932 	SCR_REG_REG (scratcha,  SCR_OR,  XE_BAD_PHASE),
1933 		0,
1934 	SCR_STORE_REL (scratcha, 1),
1935 		offsetof (struct sym_ccb, xerr_status),
1936 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
1937 		8,
1938 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
1939 		NADDR (scratch),
1940 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
1941 		8,
1942 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
1943 		NADDR (scratch),
1944 
1945 	SCR_JUMP,
1946 		PADDR (dispatch),
1947 }/*---------------------< SEL_NO_CMD >----------------------*/,{
1948 	/*
1949 	 *  The target does not switch to command
1950 	 *  phase after IDENTIFY has been sent.
1951 	 *
1952 	 *  If it stays in MSG OUT phase send it
1953 	 *  the IDENTIFY again.
1954 	 */
1955 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1956 		PADDRH (resend_ident),
1957 	/*
1958 	 *  If target does not switch to MSG IN phase
1959 	 *  and we sent a negotiation, assert the
1960 	 *  failure immediately.
1961 	 */
1962 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
1963 		PADDR (dispatch),
1964 	SCR_FROM_REG (HS_REG),
1965 		0,
1966 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
1967 		SIR_NEGO_FAILED,
1968 	/*
1969 	 *  Jump to dispatcher.
1970 	 */
1971 	SCR_JUMP,
1972 		PADDR (dispatch),
1973 }/*-------------------------< INIT >------------------------*/,{
1974 	/*
1975 	 *  Wait for the SCSI RESET signal to be
1976 	 *  inactive before restarting operations,
1977 	 *  since the chip may hang on SEL_ATN
1978 	 *  if SCSI RESET is active.
1979 	 */
1980 	SCR_FROM_REG (sstat0),
1981 		0,
1982 	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
1983 		-16,
1984 	SCR_JUMP,
1985 		PADDR (start),
1986 }/*-------------------------< CLRACK >----------------------*/,{
1987 	/*
1988 	 *  Terminate possible pending message phase.
1989 	 */
1990 	SCR_CLR (SCR_ACK),
1991 		0,
1992 	SCR_JUMP,
1993 		PADDR (dispatch),
1994 }/*-------------------------< DISP_STATUS >----------------------*/,{
1995 	/*
1996 	 *  Anticipate STATUS phase.
1997 	 *
1998 	 *  Does spare 3 SCRIPTS instructions when we have
1999 	 *  completed the INPUT of the data.
2000 	 */
2001 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
2002 		PADDR (status),
2003 	SCR_JUMP,
2004 		PADDR (dispatch),
2005 }/*-------------------------< DATAI_DONE >-------------------*/,{
2006 	/*
2007 	 *  If the device still wants to send us data,
2008 	 *  we must count the extra bytes.
2009 	 */
2010 	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_IN)),
2011 		PADDRH (data_ovrun),
2012 	/*
2013 	 *  If the SWIDE is not full, jump to dispatcher.
2014 	 *  We anticipate a STATUS phase.
2015 	 */
2016 	SCR_FROM_REG (scntl2),
2017 		0,
2018 	SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)),
2019 		PADDR (disp_status),
2020 	/*
2021 	 *  The SWIDE is full.
2022 	 *  Clear this condition.
2023 	 */
2024 	SCR_REG_REG (scntl2, SCR_OR, WSR),
2025 		0,
2026 	/*
2027 	 *  We are expecting an IGNORE RESIDUE message
2028 	 *  from the device, otherwise we are in data
2029 	 *  overrun condition. Check against MSG_IN phase.
2030 	 */
2031 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2032 		SIR_SWIDE_OVERRUN,
2033 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2034 		PADDR (disp_status),
2035 	/*
2036 	 *  We are in MSG_IN phase,
2037 	 *  Read the first byte of the message.
2038 	 *  If it is not an IGNORE RESIDUE message,
2039 	 *  signal overrun and jump to message
2040 	 *  processing.
2041 	 */
2042 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2043 		NADDR (msgin[0]),
2044 	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
2045 		SIR_SWIDE_OVERRUN,
2046 	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
2047 		PADDR (msg_in2),
2048 	/*
2049 	 *  We got the message we expected.
2050 	 *  Read the 2nd byte, and jump to dispatcher.
2051 	 */
2052 	SCR_CLR (SCR_ACK),
2053 		0,
2054 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2055 		NADDR (msgin[1]),
2056 	SCR_CLR (SCR_ACK),
2057 		0,
2058 	SCR_JUMP,
2059 		PADDR (disp_status),
2060 }/*-------------------------< DATAO_DONE >-------------------*/,{
2061 	/*
2062 	 *  If the device wants us to send more data,
2063 	 *  we must count the extra bytes.
2064 	 */
2065 	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
2066 		PADDRH (data_ovrun),
2067 	/*
2068 	 *  If the SODL is not full jump to dispatcher.
2069 	 *  We anticipate a STATUS phase.
2070 	 */
2071 	SCR_FROM_REG (scntl2),
2072 		0,
2073 	SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)),
2074 		PADDR (disp_status),
2075 	/*
2076 	 *  The SODL is full, clear this condition.
2077 	 */
2078 	SCR_REG_REG (scntl2, SCR_OR, WSS),
2079 		0,
2080 	/*
2081 	 *  And signal a DATA UNDERRUN condition
2082 	 *  to the C code.
2083 	 */
2084 	SCR_INT,
2085 		SIR_SODL_UNDERRUN,
2086 	SCR_JUMP,
2087 		PADDR (dispatch),
2088 }/*-------------------------< DATAPHASE >------------------*/,{
2089 	SCR_RETURN,
2090  		0,
2091 }/*-------------------------< MSG_IN >--------------------*/,{
2092 	/*
2093 	 *  Get the first byte of the message.
2094 	 *
2095 	 *  The script processor doesn't negate the
2096 	 *  ACK signal after this transfer.
2097 	 */
2098 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2099 		NADDR (msgin[0]),
2100 }/*-------------------------< MSG_IN2 >--------------------*/,{
2101 	/*
2102 	 *  Check first against 1 byte messages
2103 	 *  that we handle from SCRIPTS.
2104 	 */
2105 	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
2106 		PADDR (complete),
2107 	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
2108 		PADDR (disconnect),
2109 	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
2110 		PADDR (save_dp),
2111 	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
2112 		PADDR (restore_dp),
2113 	/*
2114 	 *  We handle all other messages from the
2115 	 *  C code, so no need to waste on-chip RAM
2116 	 *  for those ones.
2117 	 */
2118 	SCR_JUMP,
2119 		PADDRH (msg_in_etc),
2120 }/*-------------------------< STATUS >--------------------*/,{
2121 	/*
2122 	 *  get the status
2123 	 */
2124 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
2125 		NADDR (scratch),
2126 #ifdef SYM_CONF_IARB_SUPPORT
2127 	/*
2128 	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
2129 	 *  since we may have to tamper the start queue from
2130 	 *  the C code.
2131 	 */
2132 	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
2133 		8,
2134 	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
2135 		0,
2136 #endif
2137 	/*
2138 	 *  save status to scsi_status.
2139 	 *  mark as complete.
2140 	 */
2141 	SCR_TO_REG (SS_REG),
2142 		0,
2143 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2144 		0,
2145 	/*
2146 	 *  Anticipate the MESSAGE PHASE for
2147 	 *  the TASK COMPLETE message.
2148 	 */
2149 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2150 		PADDR (msg_in),
2151 	SCR_JUMP,
2152 		PADDR (dispatch),
2153 }/*-------------------------< COMPLETE >-----------------*/,{
2154 	/*
2155 	 *  Complete message.
2156 	 *
2157 	 *  Copy the data pointer to LASTP.
2158 	 */
2159 	SCR_STORE_REL (temp, 4),
2160 		offsetof (struct sym_ccb, phys.lastp),
2161 	/*
2162 	 *  When we terminate the cycle by clearing ACK,
2163 	 *  the target may disconnect immediately.
2164 	 *
2165 	 *  We don't want to be told of an "unexpected disconnect",
2166 	 *  so we disable this feature.
2167 	 */
2168 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2169 		0,
2170 	/*
2171 	 *  Terminate cycle ...
2172 	 */
2173 	SCR_CLR (SCR_ACK|SCR_ATN),
2174 		0,
2175 	/*
2176 	 *  ... and wait for the disconnect.
2177 	 */
2178 	SCR_WAIT_DISC,
2179 		0,
2180 }/*-------------------------< COMPLETE2 >-----------------*/,{
2181 	/*
2182 	 *  Save host status.
2183 	 */
2184 	SCR_STORE_REL (scr0, 4),
2185 		offsetof (struct sym_ccb, phys.status),
2186 	/*
2187 	 *  Some bridges may reorder DMA writes to memory.
2188 	 *  We donnot want the CPU to deal with completions
2189 	 *  without all the posted write having been flushed
2190 	 *  to memory. This DUMMY READ should flush posted
2191 	 *  buffers prior to the CPU having to deal with
2192 	 *  completions.
2193 	 */
2194 	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
2195 		offsetof (struct sym_ccb, phys.status),
2196 
2197 	/*
2198 	 *  If command resulted in not GOOD status,
2199 	 *  call the C code if needed.
2200 	 */
2201 	SCR_FROM_REG (SS_REG),
2202 		0,
2203 	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2204 		PADDRH (bad_status),
2205 	/*
2206 	 *  If we performed an auto-sense, call
2207 	 *  the C code to synchronyze task aborts
2208 	 *  with UNIT ATTENTION conditions.
2209 	 */
2210 	SCR_FROM_REG (HF_REG),
2211 		0,
2212 	SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
2213 		16,
2214 }/*-------------------------< COMPLETE_ERROR >-----------------*/,{
2215 	SCR_LOAD_ABS (scratcha, 4),
2216 		PADDRH (startpos),
2217 	SCR_INT,
2218 		SIR_COMPLETE_ERROR,
2219 }/*------------------------< DONE >-----------------*/,{
2220 	/*
2221 	 *  Copy the DSA to the DONE QUEUE and
2222 	 *  signal completion to the host.
2223 	 *  If we are interrupted between DONE
2224 	 *  and DONE_END, we must reset, otherwise
2225 	 *  the completed CCB may be lost.
2226 	 */
2227 	SCR_STORE_ABS (dsa, 4),
2228 		PADDRH (saved_dsa),
2229 	SCR_LOAD_ABS (dsa, 4),
2230 		PADDRH (done_pos),
2231 	SCR_LOAD_ABS (scratcha, 4),
2232 		PADDRH (saved_dsa),
2233 	SCR_STORE_REL (scratcha, 4),
2234 		0,
2235 	/*
2236 	 *  The instruction below reads the DONE QUEUE next
2237 	 *  free position from memory.
2238 	 *  In addition it ensures that all PCI posted writes
2239 	 *  are flushed and so the DSA value of the done
2240 	 *  CCB is visible by the CPU before INTFLY is raised.
2241 	 */
2242 	SCR_LOAD_REL (temp, 4),
2243 		4,
2244 	SCR_INT_FLY,
2245 		0,
2246 	SCR_STORE_ABS (temp, 4),
2247 		PADDRH (done_pos),
2248 }/*------------------------< DONE_END >-----------------*/,{
2249 	SCR_JUMP,
2250 		PADDR (start),
2251 }/*-------------------------< SAVE_DP >------------------*/,{
2252 	/*
2253 	 *  Clear ACK immediately.
2254 	 *  No need to delay it.
2255 	 */
2256 	SCR_CLR (SCR_ACK),
2257 		0,
2258 	/*
2259 	 *  Keep track we received a SAVE DP, so
2260 	 *  we will switch to the other PM context
2261 	 *  on the next PM since the DP may point
2262 	 *  to the current PM context.
2263 	 */
2264 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
2265 		0,
2266 	/*
2267 	 *  SAVE_DP message:
2268 	 *  Copy the data pointer to SAVEP.
2269 	 */
2270 	SCR_STORE_REL (temp, 4),
2271 		offsetof (struct sym_ccb, phys.savep),
2272 	SCR_JUMP,
2273 		PADDR (dispatch),
2274 }/*-------------------------< RESTORE_DP >---------------*/,{
2275 	/*
2276 	 *  RESTORE_DP message:
2277 	 *  Copy SAVEP to actual data pointer.
2278 	 */
2279 	SCR_LOAD_REL  (temp, 4),
2280 		offsetof (struct sym_ccb, phys.savep),
2281 	SCR_JUMP,
2282 		PADDR (clrack),
2283 }/*-------------------------< DISCONNECT >---------------*/,{
2284 	/*
2285 	 *  DISCONNECTing  ...
2286 	 *
2287 	 *  disable the "unexpected disconnect" feature,
2288 	 *  and remove the ACK signal.
2289 	 */
2290 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2291 		0,
2292 	SCR_CLR (SCR_ACK|SCR_ATN),
2293 		0,
2294 	/*
2295 	 *  Wait for the disconnect.
2296 	 */
2297 	SCR_WAIT_DISC,
2298 		0,
2299 	/*
2300 	 *  Status is: DISCONNECTED.
2301 	 */
2302 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2303 		0,
2304 	/*
2305 	 *  Save host status.
2306 	 */
2307 	SCR_STORE_REL (scr0, 4),
2308 		offsetof (struct sym_ccb, phys.status),
2309 	/*
2310 	 *  If QUIRK_AUTOSAVE is set,
2311 	 *  do an "save pointer" operation.
2312 	 */
2313 	SCR_FROM_REG (QU_REG),
2314 		0,
2315 	SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)),
2316 		PADDR (start),
2317 	/*
2318 	 *  like SAVE_DP message:
2319 	 *  Remember we saved the data pointer.
2320 	 *  Copy data pointer to SAVEP.
2321 	 */
2322 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
2323 		0,
2324 	SCR_STORE_REL (temp, 4),
2325 		offsetof (struct sym_ccb, phys.savep),
2326 	SCR_JUMP,
2327 		PADDR (start),
2328 }/*-------------------------< IDLE >------------------------*/,{
2329 	/*
2330 	 *  Nothing to do?
2331 	 *  Wait for reselect.
2332 	 *  This NOP will be patched with LED OFF
2333 	 *  SCR_REG_REG (gpreg, SCR_OR, 0x01)
2334 	 */
2335 	SCR_NO_OP,
2336 		0,
2337 #ifdef SYM_CONF_IARB_SUPPORT
2338 	SCR_JUMPR,
2339 		8,
2340 #endif
2341 }/*-------------------------< UNGETJOB >-----------------*/,{
2342 #ifdef SYM_CONF_IARB_SUPPORT
2343 	/*
2344 	 *  Set IMMEDIATE ARBITRATION, for the next time.
2345 	 *  This will give us better chance to win arbitration
2346 	 *  for the job we just wanted to do.
2347 	 */
2348 	SCR_REG_REG (scntl1, SCR_OR, IARB),
2349 		0,
2350 #endif
2351 	/*
2352 	 *  We are not able to restart the SCRIPTS if we are
2353 	 *  interrupted and these instruction haven't been
2354 	 *  all executed. BTW, this is very unlikely to
2355 	 *  happen, but we check that from the C code.
2356 	 */
2357 	SCR_LOAD_REG (dsa, 0xff),
2358 		0,
2359 	SCR_STORE_ABS (scratcha, 4),
2360 		PADDRH (startpos),
2361 }/*-------------------------< RESELECT >--------------------*/,{
2362 	/*
2363 	 *  Make sure we are in initiator mode.
2364 	 */
2365 	SCR_CLR (SCR_TRG),
2366 		0,
2367 	/*
2368 	 *  Sleep waiting for a reselection.
2369 	 */
2370 	SCR_WAIT_RESEL,
2371 		PADDR(start),
2372 }/*-------------------------< RESELECTED >------------------*/,{
2373 	/*
2374 	 *  This NOP will be patched with LED ON
2375 	 *  SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2376 	 */
2377 	SCR_NO_OP,
2378 		0,
2379 	/*
2380 	 *  load the target id into the sdid
2381 	 */
2382 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2383 		0,
2384 	SCR_TO_REG (sdid),
2385 		0,
2386 	/*
2387 	 *  Load the target control block address
2388 	 */
2389 	SCR_LOAD_ABS (dsa, 4),
2390 		PADDRH (targtbl),
2391 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
2392 		0,
2393 	SCR_REG_REG (dsa, SCR_SHL, 0),
2394 		0,
2395 	SCR_REG_REG (dsa, SCR_AND, 0x3c),
2396 		0,
2397 	SCR_LOAD_REL (dsa, 4),
2398 		0,
2399 	/*
2400 	 *  Load the legacy synchronous transfer registers.
2401 	 */
2402 	SCR_LOAD_REL (scntl3, 1),
2403 		offsetof(struct sym_tcb, wval),
2404 	SCR_LOAD_REL (sxfer, 1),
2405 		offsetof(struct sym_tcb, sval),
2406 }/*-------------------------< RESEL_SCNTL4 >------------------*/,{
2407 	/*
2408 	 *  If C1010, patched with the load of SCNTL4 that
2409 	 *  allows a new synchronous timing scheme.
2410 	 *
2411 	 *	SCR_LOAD_REL (scntl4, 1),
2412 	 * 		offsetof(struct tcb, uval),
2413 	 */
2414 	SCR_NO_OP,
2415 		0,
2416 	/*
2417 	 *  We expect MESSAGE IN phase.
2418 	 *  If not, get help from the C code.
2419 	 */
2420 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2421 		SIR_RESEL_NO_MSG_IN,
2422 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2423 		NADDR (msgin),
2424 	/*
2425 	 *  If IDENTIFY LUN #0, use a faster path
2426 	 *  to find the LCB structure.
2427 	 */
2428 	SCR_JUMPR ^ IFTRUE (MASK (0x80, 0xbf)),
2429 		56,
2430 	/*
2431 	 *  If message isn't an IDENTIFY,
2432 	 *  tell the C code about.
2433 	 */
2434 	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
2435 		SIR_RESEL_NO_IDENTIFY,
2436 	/*
2437 	 *  It is an IDENTIFY message,
2438 	 *  Load the LUN control block address.
2439 	 */
2440 	SCR_LOAD_REL (dsa, 4),
2441 		offsetof(struct sym_tcb, luntbl_sa),
2442 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
2443 		0,
2444 	SCR_REG_REG (dsa, SCR_SHL, 0),
2445 		0,
2446 	SCR_REG_REG (dsa, SCR_AND, 0xfc),
2447 		0,
2448 	SCR_LOAD_REL (dsa, 4),
2449 		0,
2450 	SCR_JUMPR,
2451 		8,
2452 	/*
2453 	 *  LUN 0 special case (but usual one :))
2454 	 */
2455 	SCR_LOAD_REL (dsa, 4),
2456 		offsetof(struct sym_tcb, lun0_sa),
2457 	/*
2458 	 *  Jump indirectly to the reselect action for this LUN.
2459 	 */
2460 	SCR_LOAD_REL (temp, 4),
2461 		offsetof(struct sym_lcb, resel_sa),
2462 	SCR_RETURN,
2463 		0,
2464 	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
2465 }/*-------------------------< RESEL_TAG >-------------------*/,{
2466 	/*
2467 	 *  ACK the IDENTIFY or TAG previously received.
2468 	 */
2469 	SCR_CLR (SCR_ACK),
2470 		0,
2471 	/*
2472 	 *  It shall be a tagged command.
2473 	 *  Read SIMPLE+TAG.
2474 	 *  The C code will deal with errors.
2475 	 *  Agressive optimization, is'nt it? :)
2476 	 */
2477 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
2478 		NADDR (msgin),
2479 	/*
2480 	 *  Load the pointer to the tagged task
2481 	 *  table for this LUN.
2482 	 */
2483 	SCR_LOAD_REL (dsa, 4),
2484 		offsetof(struct sym_lcb, itlq_tbl_sa),
2485 	/*
2486 	 *  The SIDL still contains the TAG value.
2487 	 *  Agressive optimization, isn't it? :):)
2488 	 */
2489 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
2490 		0,
2491 #if SYM_CONF_MAX_TASK*4 > 512
2492 	SCR_JUMPR ^ IFFALSE (CARRYSET),
2493 		8,
2494 	SCR_REG_REG (dsa1, SCR_OR, 2),
2495 		0,
2496 	SCR_REG_REG (sfbr, SCR_SHL, 0),
2497 		0,
2498 	SCR_JUMPR ^ IFFALSE (CARRYSET),
2499 		8,
2500 	SCR_REG_REG (dsa1, SCR_OR, 1),
2501 		0,
2502 #elif SYM_CONF_MAX_TASK*4 > 256
2503 	SCR_JUMPR ^ IFFALSE (CARRYSET),
2504 		8,
2505 	SCR_REG_REG (dsa1, SCR_OR, 1),
2506 		0,
2507 #endif
2508 	/*
2509 	 *  Retrieve the DSA of this task.
2510 	 *  JUMP indirectly to the restart point of the CCB.
2511 	 */
2512 	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
2513 		0,
2514 	SCR_LOAD_REL (dsa, 4),
2515 		0,
2516 	SCR_LOAD_REL (temp, 4),
2517 		offsetof(struct sym_ccb, phys.go.restart),
2518 	SCR_RETURN,
2519 		0,
2520 	/* In normal situations we branch to RESEL_DSA */
2521 }/*-------------------------< RESEL_DSA >-------------------*/,{
2522 	/*
2523 	 *  ACK the IDENTIFY or TAG previously received.
2524 	 */
2525 	SCR_CLR (SCR_ACK),
2526 		0,
2527 }/*-------------------------< RESEL_DSA1 >------------------*/,{
2528 	/*
2529 	 *      load the savep (saved pointer) into
2530 	 *      the actual data pointer.
2531 	 */
2532 	SCR_LOAD_REL (temp, 4),
2533 		offsetof (struct sym_ccb, phys.savep),
2534 	/*
2535 	 *      Initialize the status registers
2536 	 */
2537 	SCR_LOAD_REL (scr0, 4),
2538 		offsetof (struct sym_ccb, phys.status),
2539 	/*
2540 	 *  Jump to dispatcher.
2541 	 */
2542 	SCR_JUMP,
2543 		PADDR (dispatch),
2544 }/*-------------------------< RESEL_NO_TAG >-------------------*/,{
2545 	/*
2546 	 *  Load the DSA with the unique ITL task.
2547 	 */
2548 	SCR_LOAD_REL (dsa, 4),
2549 		offsetof(struct sym_lcb, itl_task_sa),
2550 	/*
2551 	 *  JUMP indirectly to the restart point of the CCB.
2552 	 */
2553 	SCR_LOAD_REL (temp, 4),
2554 		offsetof(struct sym_ccb, phys.go.restart),
2555 	SCR_RETURN,
2556 		0,
2557 	/* In normal situations we branch to RESEL_DSA */
2558 }/*-------------------------< DATA_IN >--------------------*/,{
2559 /*
2560  *  Because the size depends on the
2561  *  #define SYM_CONF_MAX_SG parameter,
2562  *  it is filled in at runtime.
2563  *
2564  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
2565  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
2566  *  ||		offsetof (struct dsb, data[ i]),
2567  *  ##==========================================
2568  */
2569 0
2570 }/*-------------------------< DATA_IN2 >-------------------*/,{
2571 	SCR_CALL,
2572 		PADDR (datai_done),
2573 	SCR_JUMP,
2574 		PADDRH (data_ovrun),
2575 }/*-------------------------< DATA_OUT >--------------------*/,{
2576 /*
2577  *  Because the size depends on the
2578  *  #define SYM_CONF_MAX_SG parameter,
2579  *  it is filled in at runtime.
2580  *
2581  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
2582  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
2583  *  ||		offsetof (struct dsb, data[ i]),
2584  *  ##==========================================
2585  */
2586 0
2587 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2588 	SCR_CALL,
2589 		PADDR (datao_done),
2590 	SCR_JUMP,
2591 		PADDRH (data_ovrun),
2592 }/*-------------------------< PM0_DATA >--------------------*/,{
2593 	/*
2594 	 *  Keep track we are executing the PM0 DATA
2595 	 *  mini-script.
2596 	 */
2597 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
2598 		0,
2599 	/*
2600 	 *  MOVE the data according to the actual
2601 	 *  DATA direction.
2602 	 */
2603 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
2604 		16,
2605 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
2606 		offsetof (struct sym_ccb, phys.pm0.sg),
2607 	SCR_JUMPR,
2608 		8,
2609 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
2610 		offsetof (struct sym_ccb, phys.pm0.sg),
2611 	/*
2612 	 *  Clear the flag that told we were in
2613 	 *  the PM0 DATA mini-script.
2614 	 */
2615 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
2616 		0,
2617 	/*
2618 	 *  Return to the previous DATA script which
2619 	 *  is guaranteed by design (if no bug) to be
2620 	 *  the main DATA script for this transfer.
2621 	 */
2622 	SCR_LOAD_REL (temp, 4),
2623 		offsetof (struct sym_ccb, phys.pm0.ret),
2624 	SCR_RETURN,
2625 		0,
2626 }/*-------------------------< PM1_DATA >--------------------*/,{
2627 	/*
2628 	 *  Keep track we are executing the PM1 DATA
2629 	 *  mini-script.
2630 	 */
2631 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
2632 		0,
2633 	/*
2634 	 *  MOVE the data according to the actual
2635 	 *  DATA direction.
2636 	 */
2637 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
2638 		16,
2639 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
2640 		offsetof (struct sym_ccb, phys.pm1.sg),
2641 	SCR_JUMPR,
2642 		8,
2643 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
2644 		offsetof (struct sym_ccb, phys.pm1.sg),
2645 	/*
2646 	 *  Clear the flag that told we were in
2647 	 *  the PM1 DATA mini-script.
2648 	 */
2649 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
2650 		0,
2651 	/*
2652 	 *  Return to the previous DATA script which
2653 	 *  is guaranteed by design (if no bug) to be
2654 	 *  the main DATA script for this transfer.
2655 	 */
2656 	SCR_LOAD_REL (temp, 4),
2657 		offsetof (struct sym_ccb, phys.pm1.ret),
2658 	SCR_RETURN,
2659 		0,
2660 }/*---------------------------------------------------------*/
2661 };
2662 
2663 static struct sym_scrh scripth0 = {
2664 /*------------------------< START64 >-----------------------*/{
2665 	/*
2666 	 *  SCRIPT entry point for the 895A, 896 and 1010.
2667 	 *  For now, there is no specific stuff for those
2668 	 *  chips at this point, but this may come.
2669 	 */
2670 	SCR_JUMP,
2671 		PADDR (init),
2672 }/*-------------------------< NO_DATA >-------------------*/,{
2673 	SCR_JUMP,
2674 		PADDRH (data_ovrun),
2675 }/*-----------------------< SEL_FOR_ABORT >------------------*/,{
2676 	/*
2677 	 *  We are jumped here by the C code, if we have
2678 	 *  some target to reset or some disconnected
2679 	 *  job to abort. Since error recovery is a serious
2680 	 *  busyness, we will really reset the SCSI BUS, if
2681 	 *  case of a SCSI interrupt occuring in this path.
2682 	 */
2683 
2684 	/*
2685 	 *  Set initiator mode.
2686 	 */
2687 	SCR_CLR (SCR_TRG),
2688 		0,
2689 	/*
2690 	 *      And try to select this target.
2691 	 */
2692 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
2693 		PADDR (reselect),
2694 	/*
2695 	 *  Wait for the selection to complete or
2696 	 *  the selection to time out.
2697 	 */
2698 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2699 		-8,
2700 	/*
2701 	 *  Call the C code.
2702 	 */
2703 	SCR_INT,
2704 		SIR_TARGET_SELECTED,
2705 	/*
2706 	 *  The C code should let us continue here.
2707 	 *  Send the 'kiss of death' message.
2708 	 *  We expect an immediate disconnect once
2709 	 *  the target has eaten the message.
2710 	 */
2711 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2712 		0,
2713 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
2714 		offsetof (struct sym_hcb, abrt_tbl),
2715 	SCR_CLR (SCR_ACK|SCR_ATN),
2716 		0,
2717 	SCR_WAIT_DISC,
2718 		0,
2719 	/*
2720 	 *  Tell the C code that we are done.
2721 	 */
2722 	SCR_INT,
2723 		SIR_ABORT_SENT,
2724 }/*-----------------------< SEL_FOR_ABORT_1 >--------------*/,{
2725 	/*
2726 	 *  Jump at scheduler.
2727 	 */
2728 	SCR_JUMP,
2729 		PADDR (start),
2730 
2731 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2732 	/*
2733 	 *  Set Initiator mode.
2734 	 *  And try to select this target without ATN.
2735 	 */
2736 	SCR_CLR (SCR_TRG),
2737 		0,
2738 	SCR_SEL_TBL ^ offsetof (struct dsb, select),
2739 		PADDR (ungetjob),
2740 	/*
2741 	 *  load the savep (saved pointer) into
2742 	 *  the actual data pointer.
2743 	 */
2744 	SCR_LOAD_REL (temp, 4),
2745 		offsetof (struct sym_ccb, phys.savep),
2746 	/*
2747 	 *  Initialize the status registers
2748 	 */
2749 	SCR_LOAD_REL (scr0, 4),
2750 		offsetof (struct sym_ccb, phys.status),
2751 }/*------------------------< WF_SEL_DONE_NO_ATN >-----------------*/,{
2752 	/*
2753 	 *  Wait immediately for the next phase or
2754 	 *  the selection to complete or time-out.
2755 	 */
2756 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2757 		0,
2758 	SCR_JUMP,
2759 		PADDR (select2),
2760 }/*-------------------------< MSG_IN_ETC >--------------------*/,{
2761 	/*
2762 	 *  If it is an EXTENDED (variable size message)
2763 	 *  Handle it.
2764 	 */
2765 	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
2766 		PADDRH (msg_extended),
2767 	/*
2768 	 *  Let the C code handle any other
2769 	 *  1 byte message.
2770 	 */
2771 	SCR_INT ^ IFTRUE (MASK (0x00, 0xf0)),
2772 		SIR_MSG_RECEIVED,
2773 	SCR_INT ^ IFTRUE (MASK (0x10, 0xf0)),
2774 		SIR_MSG_RECEIVED,
2775 	/*
2776 	 *  We donnot handle 2 bytes messages from SCRIPTS.
2777 	 *  So, let the C code deal with these ones too.
2778 	 */
2779 	SCR_INT ^ IFFALSE (MASK (0x20, 0xf0)),
2780 		SIR_MSG_WEIRD,
2781 	SCR_CLR (SCR_ACK),
2782 		0,
2783 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2784 		NADDR (msgin[1]),
2785 	SCR_INT,
2786 		SIR_MSG_RECEIVED,
2787 
2788 }/*-------------------------< MSG_RECEIVED >--------------------*/,{
2789 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
2790 		0,
2791 	SCR_INT,
2792 		SIR_MSG_RECEIVED,
2793 
2794 }/*-------------------------< MSG_WEIRD_SEEN >------------------*/,{
2795 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
2796 		0,
2797 	SCR_INT,
2798 		SIR_MSG_WEIRD,
2799 
2800 }/*-------------------------< MSG_EXTENDED >--------------------*/,{
2801 	/*
2802 	 *  Clear ACK and get the next byte
2803 	 *  assumed to be the message length.
2804 	 */
2805 	SCR_CLR (SCR_ACK),
2806 		0,
2807 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2808 		NADDR (msgin[1]),
2809 	/*
2810 	 *  Try to catch some unlikely situations as 0 length
2811 	 *  or too large the length.
2812 	 */
2813 	SCR_JUMP ^ IFTRUE (DATA (0)),
2814 		PADDRH (msg_weird_seen),
2815 	SCR_TO_REG (scratcha),
2816 		0,
2817 	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
2818 		0,
2819 	SCR_JUMP ^ IFTRUE (CARRYSET),
2820 		PADDRH (msg_weird_seen),
2821 	/*
2822 	 *  We donnot handle extended messages from SCRIPTS.
2823 	 *  Read the amount of data correponding to the
2824 	 *  message length and call the C code.
2825 	 */
2826 	SCR_STORE_REL (scratcha, 1),
2827 		offsetof (struct dsb, smsg_ext.size),
2828 	SCR_CLR (SCR_ACK),
2829 		0,
2830 	SCR_MOVE_TBL ^ SCR_MSG_IN,
2831 		offsetof (struct dsb, smsg_ext),
2832 	SCR_JUMP,
2833 		PADDRH (msg_received),
2834 
2835 }/*-------------------------< MSG_BAD >------------------*/,{
2836 	/*
2837 	 *  unimplemented message - reject it.
2838 	 */
2839 	SCR_INT,
2840 		SIR_REJECT_TO_SEND,
2841 	SCR_SET (SCR_ATN),
2842 		0,
2843 	SCR_JUMP,
2844 		PADDR (clrack),
2845 }/*-------------------------< MSG_WEIRD >--------------------*/,{
2846 	/*
2847 	 *  weird message received
2848 	 *  ignore all MSG IN phases and reject it.
2849 	 */
2850 	SCR_INT,
2851 		SIR_REJECT_TO_SEND,
2852 	SCR_SET (SCR_ATN),
2853 		0,
2854 }/*-------------------------< MSG_WEIRD1 >--------------------*/,{
2855 	SCR_CLR (SCR_ACK),
2856 		0,
2857 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2858 		PADDR (dispatch),
2859 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2860 		NADDR (scratch),
2861 	SCR_JUMP,
2862 		PADDRH (msg_weird1),
2863 }/*-------------------------< WDTR_RESP >----------------*/,{
2864 	/*
2865 	 *  let the target fetch our answer.
2866 	 */
2867 	SCR_SET (SCR_ATN),
2868 		0,
2869 	SCR_CLR (SCR_ACK),
2870 		0,
2871 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2872 		PADDRH (nego_bad_phase),
2873 }/*-------------------------< SEND_WDTR >----------------*/,{
2874 	/*
2875 	 *  Send the M_X_WIDE_REQ
2876 	 */
2877 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
2878 		NADDR (msgout),
2879 	SCR_JUMP,
2880 		PADDRH (msg_out_done),
2881 }/*-------------------------< SDTR_RESP >-------------*/,{
2882 	/*
2883 	 *  let the target fetch our answer.
2884 	 */
2885 	SCR_SET (SCR_ATN),
2886 		0,
2887 	SCR_CLR (SCR_ACK),
2888 		0,
2889 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2890 		PADDRH (nego_bad_phase),
2891 }/*-------------------------< SEND_SDTR >-------------*/,{
2892 	/*
2893 	 *  Send the M_X_SYNC_REQ
2894 	 */
2895 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
2896 		NADDR (msgout),
2897 	SCR_JUMP,
2898 		PADDRH (msg_out_done),
2899 }/*-------------------------< PPR_RESP >-------------*/,{
2900 	/*
2901 	 *  let the target fetch our answer.
2902 	 */
2903 	SCR_SET (SCR_ATN),
2904 		0,
2905 	SCR_CLR (SCR_ACK),
2906 		0,
2907 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2908 		PADDRH (nego_bad_phase),
2909 }/*-------------------------< SEND_PPR >-------------*/,{
2910 	/*
2911 	 *  Send the M_X_PPR_REQ
2912 	 */
2913 	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
2914 		NADDR (msgout),
2915 	SCR_JUMP,
2916 		PADDRH (msg_out_done),
2917 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
2918 	SCR_INT,
2919 		SIR_NEGO_PROTO,
2920 	SCR_JUMP,
2921 		PADDR (dispatch),
2922 }/*-------------------------< MSG_OUT >-------------------*/,{
2923 	/*
2924 	 *  The target requests a message.
2925 	 *  We donnot send messages that may
2926 	 *  require the device to go to bus free.
2927 	 */
2928 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2929 		NADDR (msgout),
2930 	/*
2931 	 *  ... wait for the next phase
2932 	 *  if it's a message out, send it again, ...
2933 	 */
2934 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2935 		PADDRH (msg_out),
2936 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2937 	/*
2938 	 *  Let the C code be aware of the
2939 	 *  sent message and clear the message.
2940 	 */
2941 	SCR_INT,
2942 		SIR_MSG_OUT_DONE,
2943 	/*
2944 	 *  ... and process the next phase
2945 	 */
2946 	SCR_JUMP,
2947 		PADDR (dispatch),
2948 
2949 }/*-------------------------< NO_DATA >--------------------*/,{
2950 	/*
2951 	 *  The target may want to transfer too much data.
2952 	 *
2953 	 *  If phase is DATA OUT write 1 byte and count it.
2954 	 */
2955 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2956 		16,
2957 	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
2958 		NADDR (scratch),
2959 	SCR_JUMP,
2960 		PADDRH (data_ovrun1),
2961 	/*
2962 	 *  If WSR is set, clear this condition, and
2963 	 *  count this byte.
2964 	 */
2965 	SCR_FROM_REG (scntl2),
2966 		0,
2967 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2968 		16,
2969 	SCR_REG_REG (scntl2, SCR_OR, WSR),
2970 		0,
2971 	SCR_JUMP,
2972 		PADDRH (data_ovrun1),
2973 	/*
2974 	 *  Finally check against DATA IN phase.
2975 	 *  Jump to dispatcher if not so.
2976 	 *  Read 1 byte otherwise and count it.
2977 	 */
2978 	SCR_JUMP ^ IFFALSE (IF (SCR_DATA_IN)),
2979 		PADDR (dispatch),
2980 	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
2981 		NADDR (scratch),
2982 }/*-------------------------< NO_DATA1 >--------------------*/,{
2983 	/*
2984 	 *  Set the extended error flag.
2985 	 */
2986 	SCR_REG_REG (HF_REG, SCR_OR, HF_EXT_ERR),
2987 		0,
2988 	SCR_LOAD_REL (scratcha, 1),
2989 		offsetof (struct sym_ccb, xerr_status),
2990 	SCR_REG_REG (scratcha,  SCR_OR,  XE_EXTRA_DATA),
2991 		0,
2992 	SCR_STORE_REL (scratcha, 1),
2993 		offsetof (struct sym_ccb, xerr_status),
2994 	/*
2995 	 *  Count this byte.
2996 	 *  This will allow to return a negative
2997 	 *  residual to user.
2998 	 */
2999 	SCR_LOAD_REL (scratcha, 4),
3000 		offsetof (struct sym_ccb, phys.extra_bytes),
3001 	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
3002 		0,
3003 	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
3004 		0,
3005 	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
3006 		0,
3007 	SCR_STORE_REL (scratcha, 4),
3008 		offsetof (struct sym_ccb, phys.extra_bytes),
3009 	/*
3010 	 *  .. and repeat as required.
3011 	 */
3012 	SCR_JUMP,
3013 		PADDRH (data_ovrun),
3014 
3015 }/*-------------------------< ABORT_RESEL >----------------*/,{
3016 	SCR_SET (SCR_ATN),
3017 		0,
3018 	SCR_CLR (SCR_ACK),
3019 		0,
3020 	/*
3021 	 *  send the abort/abortag/reset message
3022 	 *  we expect an immediate disconnect
3023 	 */
3024 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3025 		0,
3026 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3027 		NADDR (msgout),
3028 	SCR_CLR (SCR_ACK|SCR_ATN),
3029 		0,
3030 	SCR_WAIT_DISC,
3031 		0,
3032 	SCR_INT,
3033 		SIR_RESEL_ABORTED,
3034 	SCR_JUMP,
3035 		PADDR (start),
3036 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3037 	/*
3038 	 *  The target stays in MSG OUT phase after having acked
3039 	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
3040 	 *  behave this way on parity error.
3041 	 *  We must send it again all the messages.
3042 	 */
3043 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
3044 		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
3045 	SCR_JUMP,
3046 		PADDR (send_ident),
3047 }/*-------------------------< IDENT_BREAK >-------------------*/,{
3048 	SCR_CLR (SCR_ATN),
3049 		0,
3050 	SCR_JUMP,
3051 		PADDR (select2),
3052 }/*-------------------------< IDENT_BREAK_ATN >----------------*/,{
3053 	SCR_SET (SCR_ATN),
3054 		0,
3055 	SCR_JUMP,
3056 		PADDR (select2),
3057 }/*-------------------------< SDATA_IN >-------------------*/,{
3058 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
3059 		offsetof (struct dsb, sense),
3060 	SCR_CALL,
3061 		PADDR (datai_done),
3062 	SCR_JUMP,
3063 		PADDRH (data_ovrun),
3064 
3065 }/*-------------------------< RESEL_BAD_LUN >---------------*/,{
3066 	/*
3067 	 *  Message is an IDENTIFY, but lun is unknown.
3068 	 *  Signal problem to C code for logging the event.
3069 	 *  Send a M_ABORT to clear all pending tasks.
3070 	 */
3071 	SCR_INT,
3072 		SIR_RESEL_BAD_LUN,
3073 	SCR_JUMP,
3074 		PADDRH (abort_resel),
3075 }/*-------------------------< BAD_I_T_L >------------------*/,{
3076 	/*
3077 	 *  We donnot have a task for that I_T_L.
3078 	 *  Signal problem to C code for logging the event.
3079 	 *  Send a M_ABORT message.
3080 	 */
3081 	SCR_INT,
3082 		SIR_RESEL_BAD_I_T_L,
3083 	SCR_JUMP,
3084 		PADDRH (abort_resel),
3085 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3086 	/*
3087 	 *  We donnot have a task that matches the tag.
3088 	 *  Signal problem to C code for logging the event.
3089 	 *  Send a M_ABORTTAG message.
3090 	 */
3091 	SCR_INT,
3092 		SIR_RESEL_BAD_I_T_L_Q,
3093 	SCR_JUMP,
3094 		PADDRH (abort_resel),
3095 }/*-------------------------< BAD_STATUS >-----------------*/,{
3096 	/*
3097 	 *  Anything different from INTERMEDIATE
3098 	 *  CONDITION MET should be a bad SCSI status,
3099 	 *  given that GOOD status has already been tested.
3100 	 *  Call the C code.
3101 	 */
3102 	SCR_LOAD_ABS (scratcha, 4),
3103 		PADDRH (startpos),
3104 	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
3105 		SIR_BAD_SCSI_STATUS,
3106 	SCR_RETURN,
3107 		0,
3108 
3109 }/*-------------------------< PM_HANDLE >------------------*/,{
3110 	/*
3111 	 *  Phase mismatch handling.
3112 	 *
3113 	 *  Since we have to deal with 2 SCSI data pointers
3114 	 *  (current and saved), we need at least 2 contexts.
3115 	 *  Each context (pm0 and pm1) has a saved area, a
3116 	 *  SAVE mini-script and a DATA phase mini-script.
3117 	 */
3118 	/*
3119 	 *  Get the PM handling flags.
3120 	 */
3121 	SCR_FROM_REG (HF_REG),
3122 		0,
3123 	/*
3124 	 *  If no flags (1rst PM for example), avoid
3125 	 *  all the below heavy flags testing.
3126 	 *  This makes the normal case a bit faster.
3127 	 */
3128 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
3129 		PADDRH (pm_handle1),
3130 	/*
3131 	 *  If we received a SAVE DP, switch to the
3132 	 *  other PM context since the savep may point
3133 	 *  to the current PM context.
3134 	 */
3135 	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
3136 		8,
3137 	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
3138 		0,
3139 	/*
3140 	 *  If we have been interrupt in a PM DATA mini-script,
3141 	 *  we take the return address from the corresponding
3142 	 *  saved area.
3143 	 *  This ensure the return address always points to the
3144 	 *  main DATA script for this transfer.
3145 	 */
3146 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
3147 		PADDRH (pm_handle1),
3148 	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
3149 		16,
3150 	SCR_LOAD_REL (ia, 4),
3151 		offsetof(struct sym_ccb, phys.pm0.ret),
3152 	SCR_JUMP,
3153 		PADDRH (pm_save),
3154 	SCR_LOAD_REL (ia, 4),
3155 		offsetof(struct sym_ccb, phys.pm1.ret),
3156 	SCR_JUMP,
3157 		PADDRH (pm_save),
3158 }/*-------------------------< PM_HANDLE1 >-----------------*/,{
3159 	/*
3160 	 *  Normal case.
3161 	 *  Update the return address so that it
3162 	 *  will point after the interrupted MOVE.
3163 	 */
3164 	SCR_REG_REG (ia, SCR_ADD, 8),
3165 		0,
3166 	SCR_REG_REG (ia1, SCR_ADDC, 0),
3167 		0,
3168 }/*-------------------------< PM_SAVE >--------------------*/,{
3169 	/*
3170 	 *  Clear all the flags that told us if we were
3171 	 *  interrupted in a PM DATA mini-script and/or
3172 	 *  we received a SAVE DP.
3173 	 */
3174 	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
3175 		0,
3176 	/*
3177 	 *  Choose the current PM context.
3178 	 */
3179 	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
3180 		PADDRH (pm1_save),
3181 }/*-------------------------< PM0_SAVE >-------------------*/,{
3182 	SCR_STORE_REL (ia, 4),
3183 		offsetof(struct sym_ccb, phys.pm0.ret),
3184 	/*
3185 	 *  If WSR bit is set, either UA and RBC may
3186 	 *  have to be changed whether the device wants
3187 	 *  to ignore this residue or not.
3188 	 */
3189 	SCR_FROM_REG (scntl2),
3190 		0,
3191 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
3192 		PADDRH (pm_wsr_handle),
3193 	/*
3194 	 *  Save the remaining byte count, the updated
3195 	 *  address and the return address.
3196 	 */
3197 	SCR_STORE_REL (rbc, 4),
3198 		offsetof(struct sym_ccb, phys.pm0.sg.size),
3199 	SCR_STORE_REL (ua, 4),
3200 		offsetof(struct sym_ccb, phys.pm0.sg.addr),
3201 	/*
3202 	 *  Set the current pointer at the PM0 DATA mini-script.
3203 	 */
3204 	SCR_LOAD_ABS (temp, 4),
3205 		PADDRH (pm0_data_addr),
3206 	SCR_JUMP,
3207 		PADDR (dispatch),
3208 }/*-------------------------< PM1_SAVE >-------------------*/,{
3209 	SCR_STORE_REL (ia, 4),
3210 		offsetof(struct sym_ccb, phys.pm1.ret),
3211 	/*
3212 	 *  If WSR bit is set, either UA and RBC may
3213 	 *  have to be changed whether the device wants
3214 	 *  to ignore this residue or not.
3215 	 */
3216 	SCR_FROM_REG (scntl2),
3217 		0,
3218 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
3219 		PADDRH (pm_wsr_handle),
3220 	/*
3221 	 *  Save the remaining byte count, the updated
3222 	 *  address and the return address.
3223 	 */
3224 	SCR_STORE_REL (rbc, 4),
3225 		offsetof(struct sym_ccb, phys.pm1.sg.size),
3226 	SCR_STORE_REL (ua, 4),
3227 		offsetof(struct sym_ccb, phys.pm1.sg.addr),
3228 	/*
3229 	 *  Set the current pointer at the PM1 DATA mini-script.
3230 	 */
3231 	SCR_LOAD_ABS (temp, 4),
3232 		PADDRH (pm1_data_addr),
3233 	SCR_JUMP,
3234 		PADDR (dispatch),
3235 
3236 }/*--------------------------< PM_WSR_HANDLE >-----------------------*/,{
3237 	/*
3238 	 *  Phase mismatch handling from SCRIPT with WSR set.
3239 	 *  Such a condition can occur if the chip wants to
3240 	 *  execute a CHMOV(size > 1) when the WSR bit is
3241 	 *  set and the target changes PHASE.
3242 	 */
3243 #ifdef	SYM_DEBUG_PM_WITH_WSR
3244 	/*
3245 	 *  Some debugging may still be needed.:)
3246 	 */
3247 	SCR_INT,
3248 		SIR_PM_WITH_WSR,
3249 #endif
3250 	/*
3251 	 *  We must move the residual byte to memory.
3252 	 *
3253 	 *  UA contains bit 0..31 of the address to
3254 	 *  move the residual byte.
3255 	 *  Move it to the table indirect.
3256 	 */
3257 	SCR_STORE_REL (ua, 4),
3258 		offsetof (struct sym_ccb, phys.wresid.addr),
3259 	/*
3260 	 *  Increment UA (move address to next position).
3261 	 */
3262 	SCR_REG_REG (ua, SCR_ADD, 1),
3263 		0,
3264 	SCR_REG_REG (ua1, SCR_ADDC, 0),
3265 		0,
3266 	SCR_REG_REG (ua2, SCR_ADDC, 0),
3267 		0,
3268 	SCR_REG_REG (ua3, SCR_ADDC, 0),
3269 		0,
3270 	/*
3271 	 *  Compute SCRATCHA as:
3272 	 *  - size to transfer = 1 byte.
3273 	 *  - bit 24..31 = high address bit [32...39].
3274 	 */
3275 	SCR_LOAD_ABS (scratcha, 4),
3276 		PADDRH (zero),
3277 	SCR_REG_REG (scratcha, SCR_OR, 1),
3278 		0,
3279 	SCR_FROM_REG (rbc3),
3280 		0,
3281 	SCR_TO_REG (scratcha3),
3282 		0,
3283 	/*
3284 	 *  Move this value to the table indirect.
3285 	 */
3286 	SCR_STORE_REL (scratcha, 4),
3287 		offsetof (struct sym_ccb, phys.wresid.size),
3288 	/*
3289 	 *  Wait for a valid phase.
3290 	 *  While testing with bogus QUANTUM drives, the C1010
3291 	 *  sometimes raised a spurious phase mismatch with
3292 	 *  WSR and the CHMOV(1) triggered another PM.
3293 	 *  Waiting explicitely for the PHASE seemed to avoid
3294 	 *  the nested phase mismatch. Btw, this didn't happen
3295 	 *  using my IBM drives.
3296 	 */
3297 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
3298 		0,
3299 	/*
3300 	 *  Perform the move of the residual byte.
3301 	 */
3302 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
3303 		offsetof (struct sym_ccb, phys.wresid),
3304 	/*
3305 	 *  We can now handle the phase mismatch with UA fixed.
3306 	 *  RBC[0..23]=0 is a special case that does not require
3307 	 *  a PM context. The C code also checks against this.
3308 	 */
3309 	SCR_FROM_REG (rbc),
3310 		0,
3311 	SCR_RETURN ^ IFFALSE (DATA (0)),
3312 		0,
3313 	SCR_FROM_REG (rbc1),
3314 		0,
3315 	SCR_RETURN ^ IFFALSE (DATA (0)),
3316 		0,
3317 	SCR_FROM_REG (rbc2),
3318 		0,
3319 	SCR_RETURN ^ IFFALSE (DATA (0)),
3320 		0,
3321 	/*
3322 	 *  RBC[0..23]=0.
3323 	 *  Not only we donnot need a PM context, but this would
3324 	 *  lead to a bogus CHMOV(0). This condition means that
3325 	 *  the residual was the last byte to move from this CHMOV.
3326 	 *  So, we just have to move the current data script pointer
3327 	 *  (i.e. TEMP) to the SCRIPTS address following the
3328 	 *  interrupted CHMOV and jump to dispatcher.
3329 	 */
3330 	SCR_STORE_ABS (ia, 4),
3331 		PADDRH (scratch),
3332 	SCR_LOAD_ABS (temp, 4),
3333 		PADDRH (scratch),
3334 	SCR_JUMP,
3335 		PADDR (dispatch),
3336 }/*--------------------------< WSR_MA_HELPER >-----------------------*/,{
3337 	/*
3338 	 *  Helper for the C code when WSR bit is set.
3339 	 *  Perform the move of the residual byte.
3340 	 */
3341 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
3342 		offsetof (struct sym_ccb, phys.wresid),
3343 	SCR_JUMP,
3344 		PADDR (dispatch),
3345 
3346 }/*-------------------------< ZERO >------------------------*/,{
3347 	SCR_DATA_ZERO,
3348 }/*-------------------------< SCRATCH >---------------------*/,{
3349 	SCR_DATA_ZERO,
3350 }/*-------------------------< PM0_DATA_ADDR >---------------*/,{
3351 	SCR_DATA_ZERO,
3352 }/*-------------------------< PM1_DATA_ADDR >---------------*/,{
3353 	SCR_DATA_ZERO,
3354 }/*-------------------------< SAVED_DSA >-------------------*/,{
3355 	SCR_DATA_ZERO,
3356 }/*-------------------------< SAVED_DRS >-------------------*/,{
3357 	SCR_DATA_ZERO,
3358 }/*-------------------------< DONE_POS >--------------------*/,{
3359 	SCR_DATA_ZERO,
3360 }/*-------------------------< STARTPOS >--------------------*/,{
3361 	SCR_DATA_ZERO,
3362 }/*-------------------------< TARGTBL >---------------------*/,{
3363 	SCR_DATA_ZERO,
3364 
3365 }/*-------------------------< SNOOPTEST >-------------------*/,{
3366 	/*
3367 	 *  Read the variable.
3368 	 */
3369 	SCR_LOAD_REL (scratcha, 4),
3370 		offsetof(struct sym_hcb, cache),
3371 	SCR_STORE_REL (temp, 4),
3372 		offsetof(struct sym_hcb, cache),
3373 	SCR_LOAD_REL (temp, 4),
3374 		offsetof(struct sym_hcb, cache),
3375 }/*-------------------------< SNOOPEND >-------------------*/,{
3376 	/*
3377 	 *  And stop.
3378 	 */
3379 	SCR_INT,
3380 		99,
3381 }/*--------------------------------------------------------*/
3382 };
3383 
3384 /*
3385  *  Fill in #define dependent parts of the scripts
3386  */
3387 static void sym_fill_scripts (script_p scr, scripth_p scrh)
3388 {
3389 	int	i;
3390 	u32	*p;
3391 
3392 	p = scr->data_in;
3393 	for (i=0; i<SYM_CONF_MAX_SG; i++) {
3394 		*p++ =SCR_CHMOV_TBL ^ SCR_DATA_IN;
3395 		*p++ =offsetof (struct dsb, data[i]);
3396 	};
3397 	assert ((u_long)p == (u_long)&scr->data_in + sizeof (scr->data_in));
3398 
3399 	p = scr->data_out;
3400 	for (i=0; i<SYM_CONF_MAX_SG; i++) {
3401 		*p++ =SCR_CHMOV_TBL ^ SCR_DATA_OUT;
3402 		*p++ =offsetof (struct dsb, data[i]);
3403 	};
3404 	assert ((u_long)p == (u_long)&scr->data_out + sizeof (scr->data_out));
3405 }
3406 
3407 /*
3408  *  Copy and bind a script.
3409  */
3410 static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len)
3411 {
3412 	u32 opcode, new, old, tmp1, tmp2;
3413 	u32 *start, *end;
3414 	int relocs;
3415 	int opchanged = 0;
3416 
3417 	start = src;
3418 	end = src + len/4;
3419 
3420 	while (src < end) {
3421 
3422 		opcode = *src++;
3423 		*dst++ = cpu_to_scr(opcode);
3424 
3425 		/*
3426 		 *  If we forget to change the length
3427 		 *  in scripts, a field will be
3428 		 *  padded with 0. This is an illegal
3429 		 *  command.
3430 		 */
3431 		if (opcode == 0) {
3432 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
3433 				sym_name(np), (int) (src-start-1));
3434 			MDELAY (10000);
3435 			continue;
3436 		};
3437 
3438 		/*
3439 		 *  We use the bogus value 0xf00ff00f ;-)
3440 		 *  to reserve data area in SCRIPTS.
3441 		 */
3442 		if (opcode == SCR_DATA_ZERO) {
3443 			dst[-1] = 0;
3444 			continue;
3445 		}
3446 
3447 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
3448 			printf ("%p:  <%x>\n", (src-1), (unsigned)opcode);
3449 
3450 		/*
3451 		 *  We don't have to decode ALL commands
3452 		 */
3453 		switch (opcode >> 28) {
3454 		case 0xf:
3455 			/*
3456 			 *  LOAD / STORE DSA relative, don't relocate.
3457 			 */
3458 			relocs = 0;
3459 			break;
3460 		case 0xe:
3461 			/*
3462 			 *  LOAD / STORE absolute.
3463 			 */
3464 			relocs = 1;
3465 			break;
3466 		case 0xc:
3467 			/*
3468 			 *  COPY has TWO arguments.
3469 			 */
3470 			relocs = 2;
3471 			tmp1 = src[0];
3472 			tmp2 = src[1];
3473 #ifdef	RELOC_KVAR
3474 			if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3475 				tmp1 = 0;
3476 			if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3477 				tmp2 = 0;
3478 #endif
3479 			if ((tmp1 ^ tmp2) & 3) {
3480 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
3481 					sym_name(np), (int) (src-start-1));
3482 				MDELAY (1000);
3483 			}
3484 			/*
3485 			 *  If PREFETCH feature not enabled, remove
3486 			 *  the NO FLUSH bit if present.
3487 			 */
3488 			if ((opcode & SCR_NO_FLUSH) &&
3489 			    !(np->features & FE_PFEN)) {
3490 				dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3491 				++opchanged;
3492 			}
3493 			break;
3494 		case 0x0:
3495 			/*
3496 			 *  MOVE/CHMOV (absolute address)
3497 			 */
3498 			if (!(np->features & FE_WIDE))
3499 				dst[-1] = cpu_to_scr(opcode | OPC_MOVE);
3500 			relocs = 1;
3501 			break;
3502 		case 0x1:
3503 			/*
3504 			 *  MOVE/CHMOV (table indirect)
3505 			 */
3506 			if (!(np->features & FE_WIDE))
3507 				dst[-1] = cpu_to_scr(opcode | OPC_MOVE);
3508 			relocs = 0;
3509 			break;
3510 		case 0x8:
3511 			/*
3512 			 *  JUMP / CALL
3513 			 *  dont't relocate if relative :-)
3514 			 */
3515 			if (opcode & 0x00800000)
3516 				relocs = 0;
3517 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
3518 				relocs = 2;
3519 			else
3520 				relocs = 1;
3521 			break;
3522 		case 0x4:
3523 		case 0x5:
3524 		case 0x6:
3525 		case 0x7:
3526 			relocs = 1;
3527 			break;
3528 		default:
3529 			relocs = 0;
3530 			break;
3531 		};
3532 
3533 		if (!relocs) {
3534 			*dst++ = cpu_to_scr(*src++);
3535 			continue;
3536 		}
3537 		while (relocs--) {
3538 			old = *src++;
3539 
3540 			switch (old & RELOC_MASK) {
3541 			case RELOC_REGISTER:
3542 				new = (old & ~RELOC_MASK) + np->mmio_ba;
3543 				break;
3544 			case RELOC_LABEL:
3545 				new = (old & ~RELOC_MASK) + np->script_ba;
3546 				break;
3547 			case RELOC_LABELH:
3548 				new = (old & ~RELOC_MASK) + np->scripth_ba;
3549 				break;
3550 			case RELOC_SOFTC:
3551 				new = (old & ~RELOC_MASK) + vtobus(np);
3552 				break;
3553 #ifdef	RELOC_KVAR
3554 			case RELOC_KVAR:
3555 				if (((old & ~RELOC_MASK) < SCRIPT_KVAR_FIRST) ||
3556 				    ((old & ~RELOC_MASK) > SCRIPT_KVAR_LAST))
3557 					panic("KVAR out of range");
3558 				new = vtobus(script_kvars[old & ~RELOC_MASK]);
3559 #endif
3560 				break;
3561 			case 0:
3562 				/* Don't relocate a 0 address. */
3563 				if (old == 0) {
3564 					new = old;
3565 					break;
3566 				}
3567 				/* fall through */
3568 			default:
3569 				new = 0;	/* For 'cc' not to complain */
3570 				panic("sym_bind_script: "
3571 				      "weird relocation %x\n", old);
3572 				break;
3573 			}
3574 
3575 			*dst++ = cpu_to_scr(new);
3576 		}
3577 	};
3578 }
3579 
3580 /*
3581  *  Print something which allows to retrieve the controler type,
3582  *  unit, target, lun concerned by a kernel message.
3583  */
3584 static void PRINT_TARGET (hcb_p np, int target)
3585 {
3586 	printf ("%s:%d:", sym_name(np), target);
3587 }
3588 
3589 static void PRINT_LUN(hcb_p np, int target, int lun)
3590 {
3591 	printf ("%s:%d:%d:", sym_name(np), target, lun);
3592 }
3593 
3594 static void PRINT_ADDR (ccb_p cp)
3595 {
3596 	if (cp && cp->cam_ccb)
3597 		xpt_print_path(cp->cam_ccb->ccb_h.path);
3598 }
3599 
3600 /*
3601  *  Take into account this ccb in the freeze count.
3602  *  The flag that tells user about avoids doing that
3603  *  more than once for a ccb.
3604  */
3605 static void sym_freeze_cam_ccb(union ccb *ccb)
3606 {
3607 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
3608 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
3609 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
3610 			xpt_freeze_devq(ccb->ccb_h.path, 1);
3611 		}
3612 	}
3613 }
3614 
3615 /*
3616  *  Set the status field of a CAM CCB.
3617  */
3618 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
3619 {
3620 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
3621 	ccb->ccb_h.status |= status;
3622 }
3623 
3624 /*
3625  *  Get the status field of a CAM CCB.
3626  */
3627 static __inline int sym_get_cam_status(union ccb *ccb)
3628 {
3629 	return ccb->ccb_h.status & CAM_STATUS_MASK;
3630 }
3631 
3632 /*
3633  *  Enqueue a CAM CCB.
3634  */
3635 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
3636 {
3637 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
3638 	ccb->ccb_h.status = CAM_REQ_INPROG;
3639 
3640 	ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb,
3641 				       ccb->ccb_h.timeout*hz/1000);
3642 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
3643 	ccb->ccb_h.sym_hcb_ptr = np;
3644 
3645 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
3646 }
3647 
3648 /*
3649  *  Complete a pending CAM CCB.
3650  */
3651 static void sym_xpt_done(hcb_p np, union ccb *ccb)
3652 {
3653 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
3654 		untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch);
3655 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
3656 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
3657 		ccb->ccb_h.sym_hcb_ptr = 0;
3658 	}
3659 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
3660 		sym_freeze_cam_ccb(ccb);
3661 	xpt_done(ccb);
3662 }
3663 
3664 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
3665 {
3666 	sym_set_cam_status(ccb, cam_status);
3667 	sym_xpt_done(np, ccb);
3668 }
3669 
3670 /*
3671  *  SYMBIOS chip clock divisor table.
3672  *
3673  *  Divisors are multiplied by 10,000,000 in order to make
3674  *  calculations more simple.
3675  */
3676 #define _5M 5000000
3677 static u_long div_10M[] =
3678 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3679 
3680 /*
3681  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
3682  *  128 transfers. All chips support at least 16 transfers
3683  *  bursts. The 825A, 875 and 895 chips support bursts of up
3684  *  to 128 transfers and the 895A and 896 support bursts of up
3685  *  to 64 transfers. All other chips support up to 16
3686  *  transfers bursts.
3687  *
3688  *  For PCI 32 bit data transfers each transfer is a DWORD.
3689  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
3690  *  Only the 896 is able to perform 64 bit data transfers.
3691  *
3692  *  We use log base 2 (burst length) as internal code, with
3693  *  value 0 meaning "burst disabled".
3694  */
3695 
3696 /*
3697  *  Burst length from burst code.
3698  */
3699 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3700 
3701 /*
3702  *  Burst code from io register bits.
3703  */
3704 #define burst_code(dmode, ctest4, ctest5) \
3705 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
3706 
3707 /*
3708  *  Set initial io register bits from burst code.
3709  */
3710 static __inline void sym_init_burst(hcb_p np, u_char bc)
3711 {
3712 	np->rv_ctest4	&= ~0x80;
3713 	np->rv_dmode	&= ~(0x3 << 6);
3714 	np->rv_ctest5	&= ~0x4;
3715 
3716 	if (!bc) {
3717 		np->rv_ctest4	|= 0x80;
3718 	}
3719 	else {
3720 		--bc;
3721 		np->rv_dmode	|= ((bc & 0x3) << 6);
3722 		np->rv_ctest5	|= (bc & 0x4);
3723 	}
3724 }
3725 
3726 
3727 /*
3728  * Print out the list of targets that have some flag disabled by user.
3729  */
3730 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
3731 {
3732 	int cnt;
3733 	int i;
3734 
3735 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3736 		if (i == np->myaddr)
3737 			continue;
3738 		if (np->target[i].usrflags & mask) {
3739 			if (!cnt++)
3740 				printf("%s: %s disabled for targets",
3741 					sym_name(np), msg);
3742 			printf(" %d", i);
3743 		}
3744 	}
3745 	if (cnt)
3746 		printf(".\n");
3747 }
3748 
3749 /*
3750  *  Save initial settings of some IO registers.
3751  *  Assumed to have been set by BIOS.
3752  *  We cannot reset the chip prior to reading the
3753  *  IO registers, since informations will be lost.
3754  *  Since the SCRIPTS processor may be running, this
3755  *  is not safe on paper, but it seems to work quite
3756  *  well. :)
3757  */
3758 static void sym_save_initial_setting (hcb_p np)
3759 {
3760 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
3761 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
3762 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
3763 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
3764 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
3765 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
3766 	np->sv_gpcntl	= INB(nc_gpcntl);
3767 	np->sv_stest1	= INB(nc_stest1);
3768 	np->sv_stest2	= INB(nc_stest2) & 0x20;
3769 	np->sv_stest4	= INB(nc_stest4);
3770 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
3771 		np->sv_scntl4	= INB(nc_scntl4);
3772 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
3773 	}
3774 	else
3775 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
3776 }
3777 
3778 /*
3779  *  Prepare io register values used by sym_init() according
3780  *  to selected and supported features.
3781  */
3782 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
3783 {
3784 	u_char	burst_max;
3785 	u_long	period;
3786 	int i;
3787 
3788 	/*
3789 	 *  Wide ?
3790 	 */
3791 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
3792 
3793 	/*
3794 	 *  Get the frequency of the chip's clock.
3795 	 */
3796 	if	(np->features & FE_QUAD)
3797 		np->multiplier	= 4;
3798 	else if	(np->features & FE_DBLR)
3799 		np->multiplier	= 2;
3800 	else
3801 		np->multiplier	= 1;
3802 
3803 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
3804 	np->clock_khz	*= np->multiplier;
3805 
3806 	if (np->clock_khz != 40000)
3807 		sym_getclock(np, np->multiplier);
3808 
3809 	/*
3810 	 * Divisor to be used for async (timer pre-scaler).
3811 	 */
3812 	i = np->clock_divn - 1;
3813 	while (--i >= 0) {
3814 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3815 			++i;
3816 			break;
3817 		}
3818 	}
3819 	np->rv_scntl3 = i+1;
3820 
3821 	/*
3822 	 * The C1010 uses hardwired divisors for async.
3823 	 * So, we just throw away, the async. divisor.:-)
3824 	 */
3825 	if (np->features & FE_C10)
3826 		np->rv_scntl3 = 0;
3827 
3828 	/*
3829 	 * Minimum synchronous period factor supported by the chip.
3830 	 * Btw, 'period' is in tenths of nanoseconds.
3831 	 */
3832 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3833 	if	(period <= 250)		np->minsync = 10;
3834 	else if	(period <= 303)		np->minsync = 11;
3835 	else if	(period <= 500)		np->minsync = 12;
3836 	else				np->minsync = (period + 40 - 1) / 40;
3837 
3838 	/*
3839 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3840 	 */
3841 	if	(np->minsync < 25 &&
3842 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
3843 		np->minsync = 25;
3844 	else if	(np->minsync < 12 &&
3845 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
3846 		np->minsync = 12;
3847 
3848 	/*
3849 	 * Maximum synchronous period factor supported by the chip.
3850 	 */
3851 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3852 	np->maxsync = period > 2540 ? 254 : period / 10;
3853 
3854 	/*
3855 	 * If chip is a C1010, guess the sync limits in DT mode.
3856 	 */
3857 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
3858 		if (np->clock_khz == 160000) {
3859 			np->minsync_dt = 9;
3860 			np->maxsync_dt = 50;
3861 		}
3862 	}
3863 
3864 	/*
3865 	 *  64 bit (53C895A or 53C896) ?
3866 	 */
3867 	if (np->features & FE_64BIT)
3868 #if BITS_PER_LONG > 32
3869 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
3870 #else
3871 		np->rv_ccntl1	|= (DDAC);
3872 #endif
3873 
3874 	/*
3875 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
3876   	 */
3877 	if (np->features & FE_NOPM)
3878 		np->rv_ccntl0	|= (ENPMJ);
3879 
3880  	/*
3881 	 *  C1010 Errata.
3882 	 *  In dual channel mode, contention occurs if internal cycles
3883 	 *  are used. Disable internal cycles.
3884 	 */
3885 	if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45)
3886 		np->rv_ccntl0	|=  DILS;
3887 
3888 	/*
3889 	 *  Select burst length (dwords)
3890 	 */
3891 	burst_max	= SYM_SETUP_BURST_ORDER;
3892 	if (burst_max == 255)
3893 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
3894 				       np->sv_ctest5);
3895 	if (burst_max > 7)
3896 		burst_max = 7;
3897 	if (burst_max > np->maxburst)
3898 		burst_max = np->maxburst;
3899 
3900 	/*
3901 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
3902 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
3903 	 *  based transactions on LOAD/STORE instructions. So we have
3904 	 *  to prevent these chips from using such PCI transactions in
3905 	 *  this driver. The generic ncr driver that does not use
3906 	 *  LOAD/STORE instructions does not need this work-around.
3907 	 */
3908 	if ((np->device_id == PCI_ID_SYM53C810 &&
3909 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
3910 	    (np->device_id == PCI_ID_SYM53C860 &&
3911 	     np->revision_id <= 0x1))
3912 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
3913 
3914 	/*
3915 	 *  Select all supported special features.
3916 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
3917 	 *  does not help, but burst op fetch (BOF) does.
3918 	 *  Disabling PFEN makes sure BOF will be used.
3919 	 */
3920 	if (np->features & FE_ERL)
3921 		np->rv_dmode	|= ERL;		/* Enable Read Line */
3922 	if (np->features & FE_BOF)
3923 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
3924 	if (np->features & FE_ERMP)
3925 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
3926 #if 1
3927 	if ((np->features & FE_PFEN) && !np->ram_ba)
3928 #else
3929 	if (np->features & FE_PFEN)
3930 #endif
3931 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
3932 	if (np->features & FE_CLSE)
3933 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
3934 	if (np->features & FE_WRIE)
3935 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
3936 	if (np->features & FE_DFS)
3937 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
3938 
3939 	/*
3940 	 *  Select some other
3941 	 */
3942 	if (SYM_SETUP_PCI_PARITY)
3943 		np->rv_ctest4	|= MPEE; /* Master parity checking */
3944 	if (SYM_SETUP_SCSI_PARITY)
3945 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
3946 
3947 	/*
3948 	 *  Get parity checking, host ID and verbose mode from NVRAM
3949 	 */
3950 	np->myaddr = 255;
3951 	sym_nvram_setup_host (np, nvram);
3952 
3953 	/*
3954 	 *  Get SCSI addr of host adapter (set by bios?).
3955 	 */
3956 	if (np->myaddr == 255) {
3957 		np->myaddr = INB(nc_scid) & 0x07;
3958 		if (!np->myaddr)
3959 			np->myaddr = SYM_SETUP_HOST_ID;
3960 	}
3961 
3962 	/*
3963 	 *  Prepare initial io register bits for burst length
3964 	 */
3965 	sym_init_burst(np, burst_max);
3966 
3967 	/*
3968 	 *  Set SCSI BUS mode.
3969 	 *  - LVD capable chips (895/895A/896/1010) report the
3970 	 *    current BUS mode through the STEST4 IO register.
3971 	 *  - For previous generation chips (825/825A/875),
3972 	 *    user has to tell us how to check against HVD,
3973 	 *    since a 100% safe algorithm is not possible.
3974 	 */
3975 	np->scsi_mode = SMODE_SE;
3976 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
3977 		np->scsi_mode = (np->sv_stest4 & SMODE);
3978 	else if	(np->features & FE_DIFF) {
3979 		if (SYM_SETUP_SCSI_DIFF == 1) {
3980 			if (np->sv_scntl3) {
3981 				if (np->sv_stest2 & 0x20)
3982 					np->scsi_mode = SMODE_HVD;
3983 			}
3984 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
3985 				if (INB(nc_gpreg) & 0x08)
3986 					np->scsi_mode = SMODE_HVD;
3987 			}
3988 		}
3989 		else if	(SYM_SETUP_SCSI_DIFF == 2)
3990 			np->scsi_mode = SMODE_HVD;
3991 	}
3992 	if (np->scsi_mode == SMODE_HVD)
3993 		np->rv_stest2 |= 0x20;
3994 
3995 	/*
3996 	 *  Set LED support from SCRIPTS.
3997 	 *  Ignore this feature for boards known to use a
3998 	 *  specific GPIO wiring and for the 895A or 896
3999 	 *  that drive the LED directly.
4000 	 */
4001 	if ((SYM_SETUP_SCSI_LED || nvram->type == SYM_SYMBIOS_NVRAM) &&
4002 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
4003 		np->features |= FE_LED0;
4004 
4005 	/*
4006 	 *  Set irq mode.
4007 	 */
4008 	switch(SYM_SETUP_IRQ_MODE & 3) {
4009 	case 2:
4010 		np->rv_dcntl	|= IRQM;
4011 		break;
4012 	case 1:
4013 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
4014 		break;
4015 	default:
4016 		break;
4017 	}
4018 
4019 	/*
4020 	 *  Configure targets according to driver setup.
4021 	 *  If NVRAM present get targets setup from NVRAM.
4022 	 */
4023 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4024 		tcb_p tp = &np->target[i];
4025 
4026 		tp->tinfo.user.period = np->minsync;
4027 		tp->tinfo.user.offset = np->maxoffs;
4028 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
4029 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
4030 		tp->usrtags = SYM_SETUP_MAX_TAG;
4031 
4032 		sym_nvram_setup_target (np, i, nvram);
4033 
4034 		if (!tp->usrtags)
4035 			tp->usrflags &= ~SYM_TAGS_ENABLED;
4036 	}
4037 
4038 	/*
4039 	 *  Let user know about the settings.
4040 	 */
4041 	i = nvram->type;
4042 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
4043 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
4044 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
4045 		np->myaddr,
4046 		(np->features & FE_ULTRA3) ? 80 :
4047 		(np->features & FE_ULTRA2) ? 40 :
4048 		(np->features & FE_ULTRA)  ? 20 : 10,
4049 		sym_scsi_bus_mode(np->scsi_mode),
4050 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
4051 	/*
4052 	 *  Tell him more on demand.
4053 	 */
4054 	if (sym_verbose) {
4055 		printf("%s: %s IRQ line driver%s\n",
4056 			sym_name(np),
4057 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
4058 			np->ram_ba ? ", using on-chip SRAM" : "");
4059 		if (np->features & FE_NOPM)
4060 			printf("%s: handling phase mismatch from SCRIPTS.\n",
4061 			       sym_name(np));
4062 	}
4063 	/*
4064 	 *  And still more.
4065 	 */
4066 	if (sym_verbose > 1) {
4067 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
4068 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4069 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
4070 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
4071 
4072 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
4073 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4074 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
4075 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
4076 	}
4077 	/*
4078 	 *  Let user be aware of targets that have some disable flags set.
4079 	 */
4080 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
4081 	if (sym_verbose)
4082 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
4083 				       "SCAN FOR LUNS");
4084 
4085 	return 0;
4086 }
4087 
4088 /*
4089  *  Prepare the next negotiation message if needed.
4090  *
4091  *  Fill in the part of message buffer that contains the
4092  *  negotiation and the nego_status field of the CCB.
4093  *  Returns the size of the message in bytes.
4094  */
4095 
4096 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
4097 {
4098 	tcb_p tp = &np->target[cp->target];
4099 	int msglen = 0;
4100 
4101 #if 1
4102 	/*
4103 	 *  For now, only use PPR with DT option if period factor = 9.
4104 	 */
4105 	if (tp->tinfo.goal.period == 9) {
4106 		tp->tinfo.goal.width = BUS_16_BIT;
4107 		tp->tinfo.goal.options |= PPR_OPT_DT;
4108 	}
4109 	else
4110 		tp->tinfo.goal.options &= ~PPR_OPT_DT;
4111 #endif
4112 	/*
4113 	 *  Early C1010 chips need a work-around for DT
4114 	 *  data transfer to work.
4115 	 */
4116 	if (!(np->features & FE_U3EN))
4117 		tp->tinfo.goal.options = 0;
4118 	/*
4119 	 *  negotiate using PPR ?
4120 	 */
4121 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
4122 		nego = NS_PPR;
4123 	/*
4124 	 *  negotiate wide transfers ?
4125 	 */
4126 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
4127 		nego = NS_WIDE;
4128 	/*
4129 	 *  negotiate synchronous transfers?
4130 	 */
4131 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
4132 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
4133 		nego = NS_SYNC;
4134 
4135 	switch (nego) {
4136 	case NS_SYNC:
4137 		msgptr[msglen++] = M_EXTENDED;
4138 		msgptr[msglen++] = 3;
4139 		msgptr[msglen++] = M_X_SYNC_REQ;
4140 		msgptr[msglen++] = tp->tinfo.goal.period;
4141 		msgptr[msglen++] = tp->tinfo.goal.offset;
4142 		break;
4143 	case NS_WIDE:
4144 		msgptr[msglen++] = M_EXTENDED;
4145 		msgptr[msglen++] = 2;
4146 		msgptr[msglen++] = M_X_WIDE_REQ;
4147 		msgptr[msglen++] = tp->tinfo.goal.width;
4148 		break;
4149 	case NS_PPR:
4150 		msgptr[msglen++] = M_EXTENDED;
4151 		msgptr[msglen++] = 6;
4152 		msgptr[msglen++] = M_X_PPR_REQ;
4153 		msgptr[msglen++] = tp->tinfo.goal.period;
4154 		msgptr[msglen++] = 0;
4155 		msgptr[msglen++] = tp->tinfo.goal.offset;
4156 		msgptr[msglen++] = tp->tinfo.goal.width;
4157 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
4158 		break;
4159 	};
4160 
4161 	cp->nego_status = nego;
4162 
4163 	if (nego) {
4164 		tp->nego_cp = cp; /* Keep track a nego will be performed */
4165 		if (DEBUG_FLAGS & DEBUG_NEGO) {
4166 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
4167 					  nego == NS_WIDE ? "wide msgout" :
4168 					  "ppr msgout", msgptr);
4169 		};
4170 	};
4171 
4172 	return msglen;
4173 }
4174 
4175 /*
4176  *  Insert a job into the start queue.
4177  */
4178 static void sym_put_start_queue(hcb_p np, ccb_p cp)
4179 {
4180 	u_short	qidx;
4181 
4182 #ifdef SYM_CONF_IARB_SUPPORT
4183 	/*
4184 	 *  If the previously queued CCB is not yet done,
4185 	 *  set the IARB hint. The SCRIPTS will go with IARB
4186 	 *  for this job when starting the previous one.
4187 	 *  We leave devices a chance to win arbitration by
4188 	 *  not using more than 'iarb_max' consecutive
4189 	 *  immediate arbitrations.
4190 	 */
4191 	if (np->last_cp && np->iarb_count < np->iarb_max) {
4192 		np->last_cp->host_flags |= HF_HINT_IARB;
4193 		++np->iarb_count;
4194 	}
4195 	else
4196 		np->iarb_count = 0;
4197 	np->last_cp = cp;
4198 #endif
4199 
4200 	/*
4201 	 *  Insert first the idle task and then our job.
4202 	 *  The MB should ensure proper ordering.
4203 	 */
4204 	qidx = np->squeueput + 2;
4205 	if (qidx >= MAX_QUEUE*2) qidx = 0;
4206 
4207 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
4208 	MEMORY_BARRIER();
4209 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
4210 
4211 	np->squeueput = qidx;
4212 
4213 	if (DEBUG_FLAGS & DEBUG_QUEUE)
4214 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
4215 
4216 	/*
4217 	 *  Script processor may be waiting for reselect.
4218 	 *  Wake it up.
4219 	 */
4220 	MEMORY_BARRIER();
4221 	OUTB (nc_istat, SIGP|np->istat_sem);
4222 }
4223 
4224 
4225 /*
4226  *  Soft reset the chip.
4227  *
4228  *  Raising SRST when the chip is running may cause
4229  *  problems on dual function chips (see below).
4230  *  On the other hand, LVD devices need some delay
4231  *  to settle and report actual BUS mode in STEST4.
4232  */
4233 static void sym_chip_reset (hcb_p np)
4234 {
4235 	OUTB (nc_istat, SRST);
4236 	UDELAY (10);
4237 	OUTB (nc_istat, 0);
4238 	UDELAY(2000);	/* For BUS MODE to settle */
4239 }
4240 
4241 /*
4242  *  Soft reset the chip.
4243  *
4244  *  Some 896 and 876 chip revisions may hang-up if we set
4245  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
4246  *  are running.
4247  *  So, we need to abort the current operation prior to
4248  *  soft resetting the chip.
4249  */
4250 static void sym_soft_reset (hcb_p np)
4251 {
4252 	u_char istat;
4253 	int i;
4254 
4255 	OUTB (nc_istat, CABRT);
4256 	for (i = 1000000 ; i ; --i) {
4257 		istat = INB (nc_istat);
4258 		if (istat & SIP) {
4259 			INW (nc_sist);
4260 			continue;
4261 		}
4262 		if (istat & DIP) {
4263 			OUTB (nc_istat, 0);
4264 			INB (nc_dstat);
4265 			break;
4266 		}
4267 	}
4268 	if (!i)
4269 		printf("%s: unable to abort current chip operation.\n",
4270 			sym_name(np));
4271 	sym_chip_reset (np);
4272 }
4273 
4274 /*
4275  *  Start reset process.
4276  *
4277  *  The interrupt handler will reinitialize the chip.
4278  */
4279 static void sym_start_reset(hcb_p np)
4280 {
4281 	(void) sym_reset_scsi_bus(np, 1);
4282 }
4283 
4284 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
4285 {
4286 	u32 term;
4287 	int retv = 0;
4288 
4289 	sym_soft_reset(np);	/* Soft reset the chip */
4290 	if (enab_int)
4291 		OUTW (nc_sien, RST);
4292 	/*
4293 	 *  Enable Tolerant, reset IRQD if present and
4294 	 *  properly set IRQ mode, prior to resetting the bus.
4295 	 */
4296 	OUTB (nc_stest3, TE);
4297 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
4298 	OUTB (nc_scntl1, CRST);
4299 	UDELAY (200);
4300 
4301 	if (!SYM_SETUP_SCSI_BUS_CHECK)
4302 		goto out;
4303 	/*
4304 	 *  Check for no terminators or SCSI bus shorts to ground.
4305 	 *  Read SCSI data bus, data parity bits and control signals.
4306 	 *  We are expecting RESET to be TRUE and other signals to be
4307 	 *  FALSE.
4308 	 */
4309 	term =	INB(nc_sstat0);
4310 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
4311 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
4312 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
4313 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
4314 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
4315 
4316 	if (!(np->features & FE_WIDE))
4317 		term &= 0x3ffff;
4318 
4319 	if (term != (2<<7)) {
4320 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
4321 			sym_name(np));
4322 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4323 			"0x%lx, expecting 0x%lx\n",
4324 			sym_name(np),
4325 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
4326 			(u_long)term, (u_long)(2<<7));
4327 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
4328 			retv = 1;
4329 	}
4330 out:
4331 	OUTB (nc_scntl1, 0);
4332 	/* MDELAY(100); */
4333 	return retv;
4334 }
4335 
4336 /*
4337  *  The chip may have completed jobs. Look at the DONE QUEUE.
4338  */
4339 static int sym_wakeup_done (hcb_p np)
4340 {
4341 	ccb_p cp;
4342 	int i, n;
4343 	u_long dsa;
4344 
4345 	n = 0;
4346 	i = np->dqueueget;
4347 	while (1) {
4348 		dsa = scr_to_cpu(np->dqueue[i]);
4349 		if (!dsa)
4350 			break;
4351 		np->dqueue[i] = 0;
4352 		if ((i = i+2) >= MAX_QUEUE*2)
4353 			i = 0;
4354 
4355 		cp = sym_ccb_from_dsa(np, dsa);
4356 		if (cp) {
4357 			sym_complete_ok (np, cp);
4358 			++n;
4359 		}
4360 		else
4361 			printf ("%s: bad DSA (%lx) in done queue.\n",
4362 				sym_name(np), dsa);
4363 	}
4364 	np->dqueueget = i;
4365 
4366 	return n;
4367 }
4368 
4369 /*
4370  *  Complete all active CCBs with error.
4371  *  Used on CHIP/SCSI RESET.
4372  */
4373 static void sym_flush_busy_queue (hcb_p np, int cam_status)
4374 {
4375 	/*
4376 	 *  Move all active CCBs to the COMP queue
4377 	 *  and flush this queue.
4378 	 */
4379 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
4380 	sym_que_init(&np->busy_ccbq);
4381 	sym_flush_comp_queue(np, cam_status);
4382 }
4383 
4384 /*
4385  *  Start chip.
4386  *
4387  *  'reason' means:
4388  *     0: initialisation.
4389  *     1: SCSI BUS RESET delivered or received.
4390  *     2: SCSI BUS MODE changed.
4391  */
4392 static void sym_init (hcb_p np, int reason)
4393 {
4394  	int	i;
4395 	u_long	phys;
4396 
4397  	/*
4398 	 *  Reset chip if asked, otherwise just clear fifos.
4399  	 */
4400 	if (reason == 1)
4401 		sym_soft_reset(np);
4402 	else {
4403 		OUTB (nc_stest3, TE|CSF);
4404 		OUTONB (nc_ctest3, CLF);
4405 	}
4406 
4407 	/*
4408 	 *  Clear Start Queue
4409 	 */
4410 	phys = vtobus(np->squeue);
4411 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
4412 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
4413 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
4414 	}
4415 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
4416 
4417 	/*
4418 	 *  Start at first entry.
4419 	 */
4420 	np->squeueput = 0;
4421 	np->scripth0->startpos[0] = cpu_to_scr(phys);
4422 
4423 	/*
4424 	 *  Clear Done Queue
4425 	 */
4426 	phys = vtobus(np->dqueue);
4427 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
4428 		np->dqueue[i]   = 0;
4429 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
4430 	}
4431 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
4432 
4433 	/*
4434 	 *  Start at first entry.
4435 	 */
4436 	np->scripth0->done_pos[0] = cpu_to_scr(phys);
4437 	np->dqueueget = 0;
4438 
4439 	/*
4440 	 *  Wakeup all pending jobs.
4441 	 */
4442 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
4443 
4444 	/*
4445 	 *  Init chip.
4446 	 */
4447 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
4448 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
4449 
4450 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
4451 					/*  full arb., ena parity, par->ATN  */
4452 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
4453 
4454 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
4455 
4456 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
4457 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
4458 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
4459 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
4460 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
4461 
4462 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
4463 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
4464 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
4465 
4466 	/* Extended Sreq/Sack filtering not supported on the C10 */
4467 	if (np->features & FE_C10)
4468 		OUTB (nc_stest2, np->rv_stest2);
4469 	else
4470 		OUTB (nc_stest2, EXT|np->rv_stest2);
4471 
4472 	OUTB (nc_stest3, TE);			/* TolerANT enable */
4473 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
4474 
4475 	/*
4476 	 *  C10101 Errata.
4477 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
4478 	 *  STEST1 register to disable SGE. We probably should do
4479 	 *  that from SCRIPTS for each selection/reselection, but
4480 	 *  I just don't want. :)
4481 	 */
4482 	if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45)
4483 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
4484 
4485 	/*
4486 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
4487 	 *  Disable overlapped arbitration for some dual function devices,
4488 	 *  regardless revision id (kind of post-chip-design feature. ;-))
4489 	 */
4490 	if (np->device_id == PCI_ID_SYM53C875)
4491 		OUTB (nc_ctest0, (1<<5));
4492 	else if (np->device_id == PCI_ID_SYM53C896)
4493 		np->rv_ccntl0 |= DPR;
4494 
4495 	/*
4496 	 *  If 64 bit (895A/896/1010) write CCNTL1 to enable 40 bit
4497 	 *  address table indirect addressing for MOVE.
4498 	 *  Also write CCNTL0 if 64 bit chip, since this register seems
4499 	 *  to only be used by 64 bit cores.
4500 	 */
4501 	if (np->features & FE_64BIT) {
4502 		OUTB (nc_ccntl0, np->rv_ccntl0);
4503 		OUTB (nc_ccntl1, np->rv_ccntl1);
4504 	}
4505 
4506 	/*
4507 	 *  If phase mismatch handled by scripts (895A/896/1010),
4508 	 *  set PM jump addresses.
4509 	 */
4510 	if (np->features & FE_NOPM) {
4511 		OUTL (nc_pmjad1, SCRIPTH_BA (np, pm_handle));
4512 		OUTL (nc_pmjad2, SCRIPTH_BA (np, pm_handle));
4513 	}
4514 
4515 	/*
4516 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
4517 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
4518 	 */
4519 	if (np->features & FE_LED0)
4520 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
4521 	else if (np->features & FE_LEDC)
4522 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
4523 
4524 	/*
4525 	 *      enable ints
4526 	 */
4527 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
4528 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
4529 
4530 	/*
4531 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
4532 	 *  Try to eat the spurious SBMC interrupt that may occur when
4533 	 *  we reset the chip but not the SCSI BUS (at initialization).
4534 	 */
4535 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
4536 		OUTONW (nc_sien, SBMC);
4537 		if (reason == 0) {
4538 			MDELAY(100);
4539 			INW (nc_sist);
4540 		}
4541 		np->scsi_mode = INB (nc_stest4) & SMODE;
4542 	}
4543 
4544 	/*
4545 	 *  Fill in target structure.
4546 	 *  Reinitialize usrsync.
4547 	 *  Reinitialize usrwide.
4548 	 *  Prepare sync negotiation according to actual SCSI bus mode.
4549 	 */
4550 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
4551 		tcb_p tp = &np->target[i];
4552 
4553 		tp->to_reset = 0;
4554 		tp->sval    = 0;
4555 		tp->wval    = np->rv_scntl3;
4556 		tp->uval    = 0;
4557 
4558 		tp->tinfo.current.period = 0;
4559 		tp->tinfo.current.offset = 0;
4560 		tp->tinfo.current.width  = BUS_8_BIT;
4561 		tp->tinfo.current.options = 0;
4562 	}
4563 
4564 	/*
4565 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
4566 	 *  and start script processor.
4567 	 */
4568 	if (np->ram_ba) {
4569 		if (sym_verbose > 1)
4570 			printf ("%s: Downloading SCSI SCRIPTS.\n",
4571 				sym_name(np));
4572 		if (np->ram_ws == 8192) {
4573 			memcpy_to_pci(np->ram_va + 4096,
4574 					np->scripth0, sizeof(struct sym_scrh));
4575 			OUTL (nc_mmws, np->scr_ram_seg);
4576 			OUTL (nc_mmrs, np->scr_ram_seg);
4577 			OUTL (nc_sfs,  np->scr_ram_seg);
4578 			phys = SCRIPTH_BA (np, start64);
4579 		}
4580 		else
4581 			phys = SCRIPT_BA (np, init);
4582 		memcpy_to_pci(np->ram_va,np->script0,sizeof(struct sym_scr));
4583 	}
4584 	else
4585 		phys = SCRIPT_BA (np, init);
4586 
4587 	np->istat_sem = 0;
4588 
4589 	MEMORY_BARRIER();
4590 	OUTL (nc_dsa, vtobus(np));
4591 	OUTL (nc_dsp, phys);
4592 
4593 	/*
4594 	 *  Notify the XPT about the RESET condition.
4595 	 */
4596 	if (reason != 0)
4597 		xpt_async(AC_BUS_RESET, np->path, NULL);
4598 }
4599 
4600 /*
4601  *  Get clock factor and sync divisor for a given
4602  *  synchronous factor period.
4603  */
4604 static int
4605 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
4606 {
4607 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
4608 	int	div = np->clock_divn;	/* Number of divisors supported	*/
4609 	u32	fak;			/* Sync factor in sxfer		*/
4610 	u32	per;			/* Period in tenths of ns	*/
4611 	u32	kpc;			/* (per * clk)			*/
4612 	int	ret;
4613 
4614 	/*
4615 	 *  Compute the synchronous period in tenths of nano-seconds
4616 	 */
4617 	if (dt && sfac <= 9)	per = 125;
4618 	else if	(sfac <= 10)	per = 250;
4619 	else if	(sfac == 11)	per = 303;
4620 	else if	(sfac == 12)	per = 500;
4621 	else			per = 40 * sfac;
4622 	ret = per;
4623 
4624 	kpc = per * clk;
4625 	if (dt)
4626 		kpc <<= 1;
4627 
4628 	/*
4629 	 *  For earliest C10, the extra clocks does not apply
4630 	 *  to CRC cycles, so it may be safe not to use them.
4631 	 *  Note that this limits the lowest sync data transfer
4632 	 *  to 5 Mega-transfers per second and may result in
4633 	 *  using higher clock divisors.
4634 	 */
4635 #if 1
4636 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
4637 		/*
4638 		 *  Look for the lowest clock divisor that allows an
4639 		 *  output speed not faster than the period.
4640 		 */
4641 		while (div > 0) {
4642 			--div;
4643 			if (kpc > (div_10M[div] << 2)) {
4644 				++div;
4645 				break;
4646 			}
4647 		}
4648 		fak = 0;			/* No extra clocks */
4649 		if (div == np->clock_divn) {	/* Are we too fast ? */
4650 			ret = -1;
4651 		}
4652 		*divp = div;
4653 		*fakp = fak;
4654 		return ret;
4655 	}
4656 #endif
4657 
4658 	/*
4659 	 *  Look for the greatest clock divisor that allows an
4660 	 *  input speed faster than the period.
4661 	 */
4662 	while (div-- > 0)
4663 		if (kpc >= (div_10M[div] << 2)) break;
4664 
4665 	/*
4666 	 *  Calculate the lowest clock factor that allows an output
4667 	 *  speed not faster than the period, and the max output speed.
4668 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
4669 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
4670 	 */
4671 	if (dt) {
4672 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
4673 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
4674 	}
4675 	else {
4676 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
4677 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
4678 	}
4679 
4680 	/*
4681 	 *  Check against our hardware limits, or bugs :).
4682 	 */
4683 	if (fak < 0)	{fak = 0; ret = -1;}
4684 	if (fak > 2)	{fak = 2; ret = -1;}
4685 
4686 	/*
4687 	 *  Compute and return sync parameters.
4688 	 */
4689 	*divp = div;
4690 	*fakp = fak;
4691 
4692 	return ret;
4693 }
4694 
4695 /*
4696  *  We received a WDTR.
4697  *  Let everything be aware of the changes.
4698  */
4699 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
4700 {
4701 	struct	ccb_trans_settings neg;
4702 	union ccb *ccb = cp->cam_ccb;
4703 	tcb_p tp = &np->target[cp->target];
4704 
4705 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
4706 
4707 	/*
4708 	 *  Tell the SCSI layer about the new transfer parameters.
4709 	 */
4710 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
4711 	tp->tinfo.current.offset = 0;
4712 	tp->tinfo.current.period = 0;
4713 	tp->tinfo.current.options = 0;
4714 	neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT;
4715 	neg.sync_period = tp->tinfo.current.period;
4716 	neg.sync_offset = tp->tinfo.current.offset;
4717 	neg.valid = CCB_TRANS_BUS_WIDTH_VALID
4718 		  | CCB_TRANS_SYNC_RATE_VALID
4719 		  | CCB_TRANS_SYNC_OFFSET_VALID;
4720 	xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
4721 	xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
4722 }
4723 
4724 /*
4725  *  We received a SDTR.
4726  *  Let everything be aware of the changes.
4727  */
4728 static void
4729 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
4730 {
4731 	struct	ccb_trans_settings neg;
4732 	union ccb *ccb = cp->cam_ccb;
4733 	tcb_p tp = &np->target[cp->target];
4734 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
4735 
4736 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
4737 
4738 	/*
4739 	 *  Tell the SCSI layer about the new transfer parameters.
4740 	 */
4741 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
4742 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
4743 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
4744 	neg.sync_period = tp->tinfo.current.period;
4745 	neg.sync_offset = tp->tinfo.current.offset;
4746 	neg.valid = CCB_TRANS_SYNC_RATE_VALID
4747 		  | CCB_TRANS_SYNC_OFFSET_VALID;
4748 	xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
4749 	xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
4750 }
4751 
4752 /*
4753  *  We received a PPR.
4754  *  Let everything be aware of the changes.
4755  */
4756 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
4757 			 u_char per, u_char wide, u_char div, u_char fak)
4758 {
4759 	struct	ccb_trans_settings neg;
4760 	union ccb *ccb = cp->cam_ccb;
4761 	tcb_p tp = &np->target[cp->target];
4762 
4763 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
4764 
4765 	/*
4766 	 *  Tell the SCSI layer about the new transfer parameters.
4767 	 */
4768 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
4769 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
4770 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
4771 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
4772 	neg.sync_period = tp->tinfo.current.period;
4773 	neg.sync_offset = tp->tinfo.current.offset;
4774 	neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT;
4775 	neg.valid = CCB_TRANS_BUS_WIDTH_VALID
4776 		  | CCB_TRANS_SYNC_RATE_VALID
4777 		  | CCB_TRANS_SYNC_OFFSET_VALID;
4778 	xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
4779 	xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
4780 }
4781 
4782 /*
4783  *  Switch trans mode for current job and it's target.
4784  */
4785 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
4786 			 u_char per, u_char wide, u_char div, u_char fak)
4787 {
4788 	SYM_QUEHEAD *qp;
4789 	union	ccb *ccb;
4790 	tcb_p tp;
4791 	u_char target = INB (nc_sdid) & 0x0f;
4792 	u_char sval, wval, uval;
4793 
4794 	assert (cp);
4795 	if (!cp) return;
4796 	ccb = cp->cam_ccb;
4797 	assert (ccb);
4798 	if (!ccb) return;
4799 	assert (target == (cp->target & 0xf));
4800 	tp = &np->target[target];
4801 
4802 	sval = tp->sval;
4803 	wval = tp->wval;
4804 	uval = tp->uval;
4805 
4806 #if 0
4807 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
4808 		sval, wval, uval, np->rv_scntl3);
4809 #endif
4810 	/*
4811 	 *  Set the offset.
4812 	 */
4813 	if (!(np->features & FE_C10))
4814 		sval = (sval & ~0x1f) | ofs;
4815 	else
4816 		sval = (sval & ~0x3f) | ofs;
4817 
4818 	/*
4819 	 *  Set the sync divisor and extra clock factor.
4820 	 */
4821 	if (ofs != 0) {
4822 		wval = (wval & ~0x70) | ((div+1) << 4);
4823 		if (!(np->features & FE_C10))
4824 			sval = (sval & ~0xe0) | (fak << 5);
4825 		else {
4826 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
4827 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
4828 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
4829 		}
4830 	}
4831 
4832 	/*
4833 	 *  Set the bus width.
4834 	 */
4835 	wval = wval & ~EWS;
4836 	if (wide != 0)
4837 		wval |= EWS;
4838 
4839 	/*
4840 	 *  Set misc. ultra enable bits.
4841 	 */
4842 	if (np->features & FE_C10) {
4843 		uval = uval & ~U3EN;
4844 		if (dt)	{
4845 			assert(np->features & FE_U3EN);
4846 			uval |= U3EN;
4847 		}
4848 	}
4849 	else {
4850 		wval = wval & ~ULTRA;
4851 		if (per <= 12)	wval |= ULTRA;
4852 	}
4853 
4854 	/*
4855 	 *   Stop there if sync parameters are unchanged.
4856 	 */
4857 	if (tp->sval == sval && tp->wval == wval && tp->uval == uval) return;
4858 	tp->sval = sval;
4859 	tp->wval = wval;
4860 	tp->uval = uval;
4861 
4862 	/*
4863 	 *  Disable extended Sreq/Sack filtering if per < 50.
4864 	 *  Not supported on the C1010.
4865 	 */
4866 	if (per < 50 && !(np->features & FE_C10))
4867 		OUTOFFB (nc_stest2, EXT);
4868 
4869 	/*
4870 	 *  set actual value and sync_status
4871 	 */
4872 	OUTB (nc_sxfer, tp->sval);
4873 	OUTB (nc_scntl3, tp->wval);
4874 
4875 	if (np->features & FE_C10) {
4876 		OUTB (nc_scntl4, tp->uval);
4877 	}
4878 
4879 	/*
4880 	 *  patch ALL busy ccbs of this target.
4881 	 */
4882 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4883 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4884 		if (cp->target != target)
4885 			continue;
4886 		cp->phys.select.sel_scntl3 = tp->wval;
4887 		cp->phys.select.sel_sxfer  = tp->sval;
4888 		if (np->features & FE_C10) {
4889 			cp->phys.select.sel_scntl4 = tp->uval;
4890 		}
4891 	}
4892 }
4893 
4894 /*
4895  *  log message for real hard errors
4896  *
4897  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
4898  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
4899  *
4900  *  exception register:
4901  *  	ds:	dstat
4902  *  	si:	sist
4903  *
4904  *  SCSI bus lines:
4905  *  	so:	control lines as driven by chip.
4906  *  	si:	control lines as seen by chip.
4907  *  	sd:	scsi data lines as seen by chip.
4908  *
4909  *  wide/fastmode:
4910  *  	sxfer:	(see the manual)
4911  *  	scntl3:	(see the manual)
4912  *
4913  *  current script command:
4914  *  	dsp:	script adress (relative to start of script).
4915  *  	dbc:	first word of script command.
4916  *
4917  *  First 24 register of the chip:
4918  *  	r0..rf
4919  */
4920 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
4921 {
4922 	u32	dsp;
4923 	int	script_ofs;
4924 	int	script_size;
4925 	char	*script_name;
4926 	u_char	*script_base;
4927 	int	i;
4928 
4929 	dsp	= INL (nc_dsp);
4930 
4931 	if (dsp > np->script_ba &&
4932 	    dsp <= np->script_ba + sizeof(struct sym_scr)) {
4933 		script_ofs	= dsp - np->script_ba;
4934 		script_size	= sizeof(struct sym_scr);
4935 		script_base	= (u_char *) np->script0;
4936 		script_name	= "script";
4937 	}
4938 	else if (np->scripth_ba < dsp &&
4939 		 dsp <= np->scripth_ba + sizeof(struct sym_scrh)) {
4940 		script_ofs	= dsp - np->scripth_ba;
4941 		script_size	= sizeof(struct sym_scrh);
4942 		script_base	= (u_char *) np->scripth0;
4943 		script_name	= "scripth";
4944 	} else {
4945 		script_ofs	= dsp;
4946 		script_size	= 0;
4947 		script_base	= 0;
4948 		script_name	= "mem";
4949 	}
4950 
4951 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
4952 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
4953 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
4954 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
4955 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
4956 		(unsigned)INL (nc_dbc));
4957 
4958 	if (((script_ofs & 3) == 0) &&
4959 	    (unsigned)script_ofs < script_size) {
4960 		printf ("%s: script cmd = %08x\n", sym_name(np),
4961 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
4962 	}
4963 
4964         printf ("%s: regdump:", sym_name(np));
4965         for (i=0; i<24;i++)
4966             printf (" %02x", (unsigned)INB_OFF(i));
4967         printf (".\n");
4968 
4969 	/*
4970 	 *  PCI BUS error, read the PCI ststus register.
4971 	 */
4972 	if (dstat & (MDPE|BF)) {
4973 		u_short pci_sts;
4974 #ifdef FreeBSD_4_Bus
4975 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
4976 #else
4977 		pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2);
4978 #endif
4979 		if (pci_sts & 0xf900) {
4980 #ifdef FreeBSD_4_Bus
4981 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
4982 #else
4983 			pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2);
4984 #endif
4985 			printf("%s: PCI STATUS = 0x%04x\n",
4986 				sym_name(np), pci_sts & 0xf900);
4987 		}
4988 	}
4989 }
4990 
4991 /*
4992  *  chip interrupt handler
4993  *
4994  *  In normal situations, interrupt conditions occur one at
4995  *  a time. But when something bad happens on the SCSI BUS,
4996  *  the chip may raise several interrupt flags before
4997  *  stopping and interrupting the CPU. The additionnal
4998  *  interrupt flags are stacked in some extra registers
4999  *  after the SIP and/or DIP flag has been raised in the
5000  *  ISTAT. After the CPU has read the interrupt condition
5001  *  flag from SIST or DSTAT, the chip unstacks the other
5002  *  interrupt flags and sets the corresponding bits in
5003  *  SIST or DSTAT. Since the chip starts stacking once the
5004  *  SIP or DIP flag is set, there is a small window of time
5005  *  where the stacking does not occur.
5006  *
5007  *  Typically, multiple interrupt conditions may happen in
5008  *  the following situations:
5009  *
5010  *  - SCSI parity error + Phase mismatch  (PAR|MA)
5011  *    When an parity error is detected in input phase
5012  *    and the device switches to msg-in phase inside a
5013  *    block MOV.
5014  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
5015  *    When a stupid device does not want to handle the
5016  *    recovery of an SCSI parity error.
5017  *  - Some combinations of STO, PAR, UDC, ...
5018  *    When using non compliant SCSI stuff, when user is
5019  *    doing non compliant hot tampering on the BUS, when
5020  *    something really bad happens to a device, etc ...
5021  *
5022  *  The heuristic suggested by SYMBIOS to handle
5023  *  multiple interrupts is to try unstacking all
5024  *  interrupts conditions and to handle them on some
5025  *  priority based on error severity.
5026  *  This will work when the unstacking has been
5027  *  successful, but we cannot be 100 % sure of that,
5028  *  since the CPU may have been faster to unstack than
5029  *  the chip is able to stack. Hmmm ... But it seems that
5030  *  such a situation is very unlikely to happen.
5031  *
5032  *  If this happen, for example STO caught by the CPU
5033  *  then UDC happenning before the CPU have restarted
5034  *  the SCRIPTS, the driver may wrongly complete the
5035  *  same command on UDC, since the SCRIPTS didn't restart
5036  *  and the DSA still points to the same command.
5037  *  We avoid this situation by setting the DSA to an
5038  *  invalid value when the CCB is completed and before
5039  *  restarting the SCRIPTS.
5040  *
5041  *  Another issue is that we need some section of our
5042  *  recovery procedures to be somehow uninterruptible but
5043  *  the SCRIPTS processor does not provides such a
5044  *  feature. For this reason, we handle recovery preferently
5045  *  from the C code and check against some SCRIPTS critical
5046  *  sections from the C code.
5047  *
5048  *  Hopefully, the interrupt handling of the driver is now
5049  *  able to resist to weird BUS error conditions, but donnot
5050  *  ask me for any guarantee that it will never fail. :-)
5051  *  Use at your own decision and risk.
5052  */
5053 
5054 static void sym_intr1 (hcb_p np)
5055 {
5056 	u_char	istat, istatc;
5057 	u_char	dstat;
5058 	u_short	sist;
5059 
5060 	/*
5061 	 *  interrupt on the fly ?
5062 	 */
5063 	istat = INB (nc_istat);
5064 	if (istat & INTF) {
5065 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
5066 #if 1
5067 		istat = INB (nc_istat);		/* DUMMY READ */
5068 #endif
5069 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
5070 		(void)sym_wakeup_done (np);
5071 	};
5072 
5073 	if (!(istat & (SIP|DIP)))
5074 		return;
5075 
5076 #if 0	/* We should never get this one */
5077 	if (istat & CABRT)
5078 		OUTB (nc_istat, CABRT);
5079 #endif
5080 
5081 	/*
5082 	 *  PAR and MA interrupts may occur at the same time,
5083 	 *  and we need to know of both in order to handle
5084 	 *  this situation properly. We try to unstack SCSI
5085 	 *  interrupts for that reason. BTW, I dislike a LOT
5086 	 *  such a loop inside the interrupt routine.
5087 	 *  Even if DMA interrupt stacking is very unlikely to
5088 	 *  happen, we also try unstacking these ones, since
5089 	 *  this has no performance impact.
5090 	 */
5091 	sist	= 0;
5092 	dstat	= 0;
5093 	istatc	= istat;
5094 	do {
5095 		if (istatc & SIP)
5096 			sist  |= INW (nc_sist);
5097 		if (istatc & DIP)
5098 			dstat |= INB (nc_dstat);
5099 		istatc = INB (nc_istat);
5100 		istat |= istatc;
5101 	} while (istatc & (SIP|DIP));
5102 
5103 	if (DEBUG_FLAGS & DEBUG_TINY)
5104 		printf ("<%d|%x:%x|%x:%x>",
5105 			(int)INB(nc_scr0),
5106 			dstat,sist,
5107 			(unsigned)INL(nc_dsp),
5108 			(unsigned)INL(nc_dbc));
5109 	/*
5110 	 *  First, interrupts we want to service cleanly.
5111 	 *
5112 	 *  Phase mismatch (MA) is the most frequent interrupt
5113 	 *  for chip earlier than the 896 and so we have to service
5114 	 *  it as quickly as possible.
5115 	 *  A SCSI parity error (PAR) may be combined with a phase
5116 	 *  mismatch condition (MA).
5117 	 *  Programmed interrupts (SIR) are used to call the C code
5118 	 *  from SCRIPTS.
5119 	 *  The single step interrupt (SSI) is not used in this
5120 	 *  driver.
5121 	 */
5122 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
5123 	    !(dstat & (MDPE|BF|ABRT|IID))) {
5124 		if	(sist & PAR)	sym_int_par (np, sist);
5125 		else if (sist & MA)	sym_int_ma (np);
5126 		else if (dstat & SIR)	sym_int_sir (np);
5127 		else if (dstat & SSI)	OUTONB (nc_dcntl, (STD|NOCOM));
5128 		else			goto unknown_int;
5129 		return;
5130 	};
5131 
5132 	/*
5133 	 *  Now, interrupts that donnot happen in normal
5134 	 *  situations and that we may need to recover from.
5135 	 *
5136 	 *  On SCSI RESET (RST), we reset everything.
5137 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
5138 	 *  active CCBs with RESET status, prepare all devices
5139 	 *  for negotiating again and restart the SCRIPTS.
5140 	 *  On STO and UDC, we complete the CCB with the corres-
5141 	 *  ponding status and restart the SCRIPTS.
5142 	 */
5143 	if (sist & RST) {
5144 		xpt_print_path(np->path);
5145 		printf("SCSI BUS reset detected.\n");
5146 		sym_init (np, 1);
5147 		return;
5148 	};
5149 
5150 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
5151 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
5152 
5153 	if (!(sist  & (GEN|HTH|SGE)) &&
5154 	    !(dstat & (MDPE|BF|ABRT|IID))) {
5155 		if	(sist & SBMC)	sym_int_sbmc (np);
5156 		else if (sist & STO)	sym_int_sto (np);
5157 		else if (sist & UDC)	sym_int_udc (np);
5158 		else			goto unknown_int;
5159 		return;
5160 	};
5161 
5162 	/*
5163 	 *  Now, interrupts we are not able to recover cleanly.
5164 	 *
5165 	 *  Log message for hard errors.
5166 	 *  Reset everything.
5167 	 */
5168 
5169 	sym_log_hard_error(np, sist, dstat);
5170 
5171 	if ((sist & (GEN|HTH|SGE)) ||
5172 		(dstat & (MDPE|BF|ABRT|IID))) {
5173 		sym_start_reset(np);
5174 		return;
5175 	};
5176 
5177 unknown_int:
5178 	/*
5179 	 *  We just miss the cause of the interrupt. :(
5180 	 *  Print a message. The timeout will do the real work.
5181 	 */
5182 	printf(	"%s: unknown interrupt(s) ignored, "
5183 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
5184 		sym_name(np), istat, dstat, sist);
5185 }
5186 
5187 static void sym_intr(void *arg)
5188 {
5189 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
5190 	sym_intr1((hcb_p) arg);
5191 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
5192 	return;
5193 }
5194 
5195 static void sym_poll(struct cam_sim *sim)
5196 {
5197 	int s = splcam();
5198 	sym_intr(cam_sim_softc(sim));
5199 	splx(s);
5200 }
5201 
5202 
5203 /*
5204  *  generic recovery from scsi interrupt
5205  *
5206  *  The doc says that when the chip gets an SCSI interrupt,
5207  *  it tries to stop in an orderly fashion, by completing
5208  *  an instruction fetch that had started or by flushing
5209  *  the DMA fifo for a write to memory that was executing.
5210  *  Such a fashion is not enough to know if the instruction
5211  *  that was just before the current DSP value has been
5212  *  executed or not.
5213  *
5214  *  There are some small SCRIPTS sections that deal with
5215  *  the start queue and the done queue that may break any
5216  *  assomption from the C code if we are interrupted
5217  *  inside, so we reset if this happens. Btw, since these
5218  *  SCRIPTS sections are executed while the SCRIPTS hasn't
5219  *  started SCSI operations, it is very unlikely to happen.
5220  *
5221  *  All the driver data structures are supposed to be
5222  *  allocated from the same 4 GB memory window, so there
5223  *  is a 1 to 1 relationship between DSA and driver data
5224  *  structures. Since we are careful :) to invalidate the
5225  *  DSA when we complete a command or when the SCRIPTS
5226  *  pushes a DSA into a queue, we can trust it when it
5227  *  points to a CCB.
5228  */
5229 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
5230 {
5231 	u32	dsp	= INL (nc_dsp);
5232 	u32	dsa	= INL (nc_dsa);
5233 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
5234 
5235 	/*
5236 	 *  If we haven't been interrupted inside the SCRIPTS
5237 	 *  critical pathes, we can safely restart the SCRIPTS
5238 	 *  and trust the DSA value if it matches a CCB.
5239 	 */
5240 	if ((!(dsp > SCRIPT_BA (np, getjob_begin) &&
5241 	       dsp < SCRIPT_BA (np, getjob_end) + 1)) &&
5242 	    (!(dsp > SCRIPT_BA (np, ungetjob) &&
5243 	       dsp < SCRIPT_BA (np, reselect) + 1)) &&
5244 	    (!(dsp > SCRIPTH_BA (np, sel_for_abort) &&
5245 	       dsp < SCRIPTH_BA (np, sel_for_abort_1) + 1)) &&
5246 	    (!(dsp > SCRIPT_BA (np, done) &&
5247 	       dsp < SCRIPT_BA (np, done_end) + 1))) {
5248 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
5249 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
5250 		/*
5251 		 *  If we have a CCB, let the SCRIPTS call us back for
5252 		 *  the handling of the error with SCRATCHA filled with
5253 		 *  STARTPOS. This way, we will be able to freeze the
5254 		 *  device queue and requeue awaiting IOs.
5255 		 */
5256 		if (cp) {
5257 			cp->host_status = hsts;
5258 			OUTL (nc_dsp, SCRIPT_BA (np, complete_error));
5259 		}
5260 		/*
5261 		 *  Otherwise just restart the SCRIPTS.
5262 		 */
5263 		else {
5264 			OUTL (nc_dsa, 0xffffff);
5265 			OUTL (nc_dsp, SCRIPT_BA (np, start));
5266 		}
5267 	}
5268 	else
5269 		goto reset_all;
5270 
5271 	return;
5272 
5273 reset_all:
5274 	sym_start_reset(np);
5275 }
5276 
5277 /*
5278  *  chip exception handler for selection timeout
5279  */
5280 void sym_int_sto (hcb_p np)
5281 {
5282 	u32 dsp	= INL (nc_dsp);
5283 
5284 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
5285 
5286 	if (dsp == SCRIPT_BA (np, wf_sel_done) + 8)
5287 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
5288 	else
5289 		sym_start_reset(np);
5290 }
5291 
5292 /*
5293  *  chip exception handler for unexpected disconnect
5294  */
5295 void sym_int_udc (hcb_p np)
5296 {
5297 	printf ("%s: unexpected disconnect\n", sym_name(np));
5298 	sym_recover_scsi_int(np, HS_UNEXPECTED);
5299 }
5300 
5301 /*
5302  *  chip exception handler for SCSI bus mode change
5303  *
5304  *  spi2-r12 11.2.3 says a transceiver mode change must
5305  *  generate a reset event and a device that detects a reset
5306  *  event shall initiate a hard reset. It says also that a
5307  *  device that detects a mode change shall set data transfer
5308  *  mode to eight bit asynchronous, etc...
5309  *  So, just reinitializing all except chip should be enough.
5310  */
5311 static void sym_int_sbmc (hcb_p np)
5312 {
5313 	u_char scsi_mode = INB (nc_stest4) & SMODE;
5314 
5315 	/*
5316 	 *  Notify user.
5317 	 */
5318 	xpt_print_path(np->path);
5319 	printf("SCSI BUS mode change from %s to %s.\n",
5320 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
5321 
5322 	/*
5323 	 *  Should suspend command processing for a few seconds and
5324 	 *  reinitialize all except the chip.
5325 	 */
5326 	sym_init (np, 2);
5327 }
5328 
5329 /*
5330  *  chip exception handler for SCSI parity error.
5331  *
5332  *  When the chip detects a SCSI parity error and is
5333  *  currently executing a (CH)MOV instruction, it does
5334  *  not interrupt immediately, but tries to finish the
5335  *  transfer of the current scatter entry before
5336  *  interrupting. The following situations may occur:
5337  *
5338  *  - The complete scatter entry has been transferred
5339  *    without the device having changed phase.
5340  *    The chip will then interrupt with the DSP pointing
5341  *    to the instruction that follows the MOV.
5342  *
5343  *  - A phase mismatch occurs before the MOV finished
5344  *    and phase errors are to be handled by the C code.
5345  *    The chip will then interrupt with both PAR and MA
5346  *    conditions set.
5347  *
5348  *  - A phase mismatch occurs before the MOV finished and
5349  *    phase errors are to be handled by SCRIPTS.
5350  *    The chip will load the DSP with the phase mismatch
5351  *    JUMP address and interrupt the host processor.
5352  */
5353 static void sym_int_par (hcb_p np, u_short sist)
5354 {
5355 	u_char	hsts	= INB (HS_PRT);
5356 	u32	dsp	= INL (nc_dsp);
5357 	u32	dbc	= INL (nc_dbc);
5358 	u32	dsa	= INL (nc_dsa);
5359 	u_char	sbcl	= INB (nc_sbcl);
5360 	u_char	cmd	= dbc >> 24;
5361 	int phase	= cmd & 7;
5362 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
5363 
5364 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
5365 		sym_name(np), hsts, dbc, sbcl);
5366 
5367 	/*
5368 	 *  Check that the chip is connected to the SCSI BUS.
5369 	 */
5370 	if (!(INB (nc_scntl1) & ISCON)) {
5371 		sym_recover_scsi_int(np, HS_UNEXPECTED);
5372 		return;
5373 	}
5374 
5375 	/*
5376 	 *  If the nexus is not clearly identified, reset the bus.
5377 	 *  We will try to do better later.
5378 	 */
5379 	if (!cp)
5380 		goto reset_all;
5381 
5382 	/*
5383 	 *  Check instruction was a MOV, direction was INPUT and
5384 	 *  ATN is asserted.
5385 	 */
5386 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
5387 		goto reset_all;
5388 
5389 	/*
5390 	 *  Keep track of the parity error.
5391 	 */
5392 	OUTONB (HF_PRT, HF_EXT_ERR);
5393 	cp->xerr_status |= XE_PARITY_ERR;
5394 
5395 	/*
5396 	 *  Prepare the message to send to the device.
5397 	 */
5398 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
5399 
5400 	/*
5401 	 *  If the old phase was DATA IN phase, we have to deal with
5402 	 *  the 3 situations described above.
5403 	 *  For other input phases (MSG IN and STATUS), the device
5404 	 *  must resend the whole thing that failed parity checking
5405 	 *  or signal error. So, jumping to dispatcher should be OK.
5406 	 */
5407 	if (phase == 1) {
5408 		/* Phase mismatch handled by SCRIPTS */
5409 		if (dsp == SCRIPTH_BA (np, pm_handle))
5410 			OUTL (nc_dsp, dsp);
5411 		/* Phase mismatch handled by the C code */
5412 		else if (sist & MA)
5413 			sym_int_ma (np);
5414 		/* No phase mismatch occurred */
5415 		else {
5416 			OUTL (nc_temp, dsp);
5417 			OUTL (nc_dsp, SCRIPT_BA (np, dispatch));
5418 		}
5419 	}
5420 	else
5421 		OUTL (nc_dsp, SCRIPT_BA (np, clrack));
5422 	return;
5423 
5424 reset_all:
5425 	sym_start_reset(np);
5426 	return;
5427 }
5428 
5429 /*
5430  *  chip exception handler for phase errors.
5431  *
5432  *  We have to construct a new transfer descriptor,
5433  *  to transfer the rest of the current block.
5434  */
5435 static void sym_int_ma (hcb_p np)
5436 {
5437 	u32	dbc;
5438 	u32	rest;
5439 	u32	dsp;
5440 	u32	dsa;
5441 	u32	nxtdsp;
5442 	u32	*vdsp;
5443 	u32	oadr, olen;
5444 	u32	*tblp;
5445         u32	newcmd;
5446 	u_int	delta;
5447 	u_char	cmd;
5448 	u_char	hflags, hflags0;
5449 	struct	sym_pmc *pm;
5450 	ccb_p	cp;
5451 
5452 	dsp	= INL (nc_dsp);
5453 	dbc	= INL (nc_dbc);
5454 	dsa	= INL (nc_dsa);
5455 
5456 	cmd	= dbc >> 24;
5457 	rest	= dbc & 0xffffff;
5458 	delta	= 0;
5459 
5460 	/*
5461 	 *  locate matching cp if any.
5462 	 */
5463 	cp = sym_ccb_from_dsa(np, dsa);
5464 
5465 	/*
5466 	 *  Donnot take into account dma fifo and various buffers in
5467 	 *  INPUT phase since the chip flushes everything before
5468 	 *  raising the MA interrupt for interrupted INPUT phases.
5469 	 *  For DATA IN phase, we will check for the SWIDE later.
5470 	 */
5471 	if ((cmd & 7) != 1) {
5472 		u_char ss0, ss2;
5473 
5474 		if (np->features & FE_DFBC)
5475 			delta = INW (nc_dfbc);
5476 		else {
5477 			u32 dfifo;
5478 
5479 			/*
5480 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
5481 			 */
5482 			dfifo = INL(nc_dfifo);
5483 
5484 			/*
5485 			 *  Calculate remaining bytes in DMA fifo.
5486 			 *  (CTEST5 = dfifo >> 16)
5487 			 */
5488 			if (dfifo & (DFS << 16))
5489 				delta = ((((dfifo >> 8) & 0x300) |
5490 				          (dfifo & 0xff)) - rest) & 0x3ff;
5491 			else
5492 				delta = ((dfifo & 0xff) - rest) & 0x7f;
5493 		}
5494 
5495 		/*
5496 		 *  The data in the dma fifo has not been transfered to
5497 		 *  the target -> add the amount to the rest
5498 		 *  and clear the data.
5499 		 *  Check the sstat2 register in case of wide transfer.
5500 		 */
5501 		rest += delta;
5502 		ss0  = INB (nc_sstat0);
5503 		if (ss0 & OLF) rest++;
5504 		if (!(np->features & FE_C10))
5505 			if (ss0 & ORF) rest++;
5506 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
5507 			ss2 = INB (nc_sstat2);
5508 			if (ss2 & OLF1) rest++;
5509 			if (!(np->features & FE_C10))
5510 				if (ss2 & ORF1) rest++;
5511 		};
5512 
5513 		/*
5514 		 *  Clear fifos.
5515 		 */
5516 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
5517 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
5518 	}
5519 
5520 	/*
5521 	 *  log the information
5522 	 */
5523 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
5524 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
5525 			(unsigned) rest, (unsigned) delta);
5526 
5527 	/*
5528 	 *  try to find the interrupted script command,
5529 	 *  and the address at which to continue.
5530 	 */
5531 	vdsp	= 0;
5532 	nxtdsp	= 0;
5533 	if	(dsp >  np->script_ba &&
5534 		 dsp <= np->script_ba + sizeof(struct sym_scr)) {
5535 		vdsp = (u32 *)((char*)np->script0 + (dsp-np->script_ba-8));
5536 		nxtdsp = dsp;
5537 	}
5538 	else if	(dsp >  np->scripth_ba &&
5539 		 dsp <= np->scripth_ba + sizeof(struct sym_scrh)) {
5540 		vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->scripth_ba-8));
5541 		nxtdsp = dsp;
5542 	}
5543 
5544 	/*
5545 	 *  log the information
5546 	 */
5547 	if (DEBUG_FLAGS & DEBUG_PHASE) {
5548 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
5549 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
5550 	};
5551 
5552 	if (!vdsp) {
5553 		printf ("%s: interrupted SCRIPT address not found.\n",
5554 			sym_name (np));
5555 		goto reset_all;
5556 	}
5557 
5558 	if (!cp) {
5559 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
5560 			sym_name (np));
5561 		goto reset_all;
5562 	}
5563 
5564 	/*
5565 	 *  get old startaddress and old length.
5566 	 */
5567 	oadr = scr_to_cpu(vdsp[1]);
5568 
5569 	if (cmd & 0x10) {	/* Table indirect */
5570 		tblp = (u32 *) ((char*) &cp->phys + oadr);
5571 		olen = scr_to_cpu(tblp[0]);
5572 		oadr = scr_to_cpu(tblp[1]);
5573 	} else {
5574 		tblp = (u32 *) 0;
5575 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
5576 	};
5577 
5578 	if (DEBUG_FLAGS & DEBUG_PHASE) {
5579 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
5580 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
5581 			tblp,
5582 			(unsigned) olen,
5583 			(unsigned) oadr);
5584 	};
5585 
5586 	/*
5587 	 *  check cmd against assumed interrupted script command.
5588 	 */
5589 	if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
5590 		PRINT_ADDR(cp);
5591 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
5592 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
5593 
5594 		goto reset_all;
5595 	};
5596 
5597 	/*
5598 	 *  if old phase not dataphase, leave here.
5599 	 */
5600 	if ((cmd & 5) != (cmd & 7)) {
5601 		PRINT_ADDR(cp);
5602 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
5603 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
5604 			(unsigned)oadr, (unsigned)rest);
5605 		goto unexpected_phase;
5606 	};
5607 
5608 	/*
5609 	 *  Choose the correct PM save area.
5610 	 *
5611 	 *  Look at the PM_SAVE SCRIPT if you want to understand
5612 	 *  this stuff. The equivalent code is implemented in
5613 	 *  SCRIPTS for the 895A and 896 that are able to handle
5614 	 *  PM from the SCRIPTS processor.
5615 	 */
5616 	hflags0 = INB (HF_PRT);
5617 	hflags = hflags0;
5618 
5619 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
5620 		if (hflags & HF_IN_PM0)
5621 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
5622 		else if	(hflags & HF_IN_PM1)
5623 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
5624 
5625 		if (hflags & HF_DP_SAVED)
5626 			hflags ^= HF_ACT_PM;
5627 	}
5628 
5629 	if (!(hflags & HF_ACT_PM)) {
5630 		pm = &cp->phys.pm0;
5631 		newcmd = SCRIPT_BA(np, pm0_data);
5632 	}
5633 	else {
5634 		pm = &cp->phys.pm1;
5635 		newcmd = SCRIPT_BA(np, pm1_data);
5636 	}
5637 
5638 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
5639 	if (hflags != hflags0)
5640 		OUTB (HF_PRT, hflags);
5641 
5642 	/*
5643 	 *  fillin the phase mismatch context
5644 	 */
5645 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
5646 	pm->sg.size = cpu_to_scr(rest);
5647 	pm->ret     = cpu_to_scr(nxtdsp);
5648 
5649 	/*
5650 	 *  If we have a SWIDE,
5651 	 *  - prepare the address to write the SWIDE from SCRIPTS,
5652 	 *  - compute the SCRIPTS address to restart from,
5653 	 *  - move current data pointer context by one byte.
5654 	 */
5655 	nxtdsp = SCRIPT_BA (np, dispatch);
5656 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
5657 	    (INB (nc_scntl2) & WSR)) {
5658 		u32 tmp;
5659 #ifdef	SYM_DEBUG_PM_WITH_WSR
5660 		PRINT_ADDR(cp);
5661 		printf ("MA interrupt with WSR set - "
5662 			"pm->sg.addr=%x - pm->sg.size=%d\n",
5663 			pm->sg.addr, pm->sg.size);
5664 #endif
5665 		/*
5666 		 *  Set up the table indirect for the MOVE
5667 		 *  of the residual byte and adjust the data
5668 		 *  pointer context.
5669 		 */
5670 		tmp = scr_to_cpu(pm->sg.addr);
5671 		cp->phys.wresid.addr = cpu_to_scr(tmp);
5672 		pm->sg.addr = cpu_to_scr(tmp + 1);
5673 		tmp = scr_to_cpu(pm->sg.size);
5674 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
5675 		pm->sg.size = cpu_to_scr(tmp - 1);
5676 
5677 		/*
5678 		 *  If only the residual byte is to be moved,
5679 		 *  no PM context is needed.
5680 		 */
5681 		if ((tmp&0xffffff) == 1)
5682 			newcmd = pm->ret;
5683 
5684 		/*
5685 		 *  Prepare the address of SCRIPTS that will
5686 		 *  move the residual byte to memory.
5687 		 */
5688 		nxtdsp = SCRIPTH_BA (np, wsr_ma_helper);
5689 	}
5690 
5691 	if (DEBUG_FLAGS & DEBUG_PHASE) {
5692 		PRINT_ADDR(cp);
5693 		printf ("PM %x %x %x / %x %x %x.\n",
5694 			hflags0, hflags, newcmd,
5695 			(unsigned)scr_to_cpu(pm->sg.addr),
5696 			(unsigned)scr_to_cpu(pm->sg.size),
5697 			(unsigned)scr_to_cpu(pm->ret));
5698 	}
5699 
5700 	/*
5701 	 *  Restart the SCRIPTS processor.
5702 	 */
5703 	OUTL (nc_temp, newcmd);
5704 	OUTL (nc_dsp,  nxtdsp);
5705 	return;
5706 
5707 	/*
5708 	 *  Unexpected phase changes that occurs when the current phase
5709 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
5710 	 *  Such event may only happen when the SCRIPTS is using a
5711 	 *  multibyte SCSI MOVE.
5712 	 *
5713 	 *  Phase change		Some possible cause
5714 	 *
5715 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
5716 	 *  COMMAND  --> STATUS	Bad command or refused by target.
5717 	 *  MSG OUT  --> MSG IN     Message rejected by target.
5718 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
5719 	 *  			negotiation messages.
5720 	 *
5721 	 *  The code below does not care of the new phase and so
5722 	 *  trusts the target. Why to annoy it ?
5723 	 *  If the interrupted phase is COMMAND phase, we restart at
5724 	 *  dispatcher.
5725 	 *  If a target does not get all the messages after selection,
5726 	 *  the code assumes blindly that the target discards extended
5727 	 *  messages and clears the negotiation status.
5728 	 *  If the target does not want all our response to negotiation,
5729 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
5730 	 *  bloat for such a should_not_happen situation).
5731 	 *  In all other situation, we reset the BUS.
5732 	 *  Are these assumptions reasonnable ? (Wait and see ...)
5733 	 */
5734 unexpected_phase:
5735 	dsp -= 8;
5736 	nxtdsp = 0;
5737 
5738 	switch (cmd & 7) {
5739 	case 2:	/* COMMAND phase */
5740 		nxtdsp = SCRIPT_BA (np, dispatch);
5741 		break;
5742 #if 0
5743 	case 3:	/* STATUS  phase */
5744 		nxtdsp = SCRIPT_BA (np, dispatch);
5745 		break;
5746 #endif
5747 	case 6:	/* MSG OUT phase */
5748 		/*
5749 		 *  If the device may want to use untagged when we want
5750 		 *  tagged, we prepare an IDENTIFY without disc. granted,
5751 		 *  since we will not be able to handle reselect.
5752 		 *  Otherwise, we just don't care.
5753 		 */
5754 		if	(dsp == SCRIPT_BA (np, send_ident)) {
5755 			if (cp->tag != NO_TAG && olen - rest <= 3) {
5756 				cp->host_status = HS_BUSY;
5757 				np->msgout[0] = M_IDENTIFY | cp->lun;
5758 				nxtdsp = SCRIPTH_BA (np, ident_break_atn);
5759 			}
5760 			else
5761 				nxtdsp = SCRIPTH_BA (np, ident_break);
5762 		}
5763 		else if	(dsp == SCRIPTH_BA (np, send_wdtr) ||
5764 			 dsp == SCRIPTH_BA (np, send_sdtr) ||
5765 			 dsp == SCRIPTH_BA (np, send_ppr)) {
5766 			nxtdsp = SCRIPTH_BA (np, nego_bad_phase);
5767 		}
5768 		break;
5769 #if 0
5770 	case 7:	/* MSG IN  phase */
5771 		nxtdsp = SCRIPT_BA (np, clrack);
5772 		break;
5773 #endif
5774 	}
5775 
5776 	if (nxtdsp) {
5777 		OUTL (nc_dsp, nxtdsp);
5778 		return;
5779 	}
5780 
5781 reset_all:
5782 	sym_start_reset(np);
5783 }
5784 
5785 /*
5786  *  Dequeue from the START queue all CCBs that match
5787  *  a given target/lun/task condition (-1 means all),
5788  *  and move them from the BUSY queue to the COMP queue
5789  *  with CAM_REQUEUE_REQ status condition.
5790  *  This function is used during error handling/recovery.
5791  *  It is called with SCRIPTS not running.
5792  */
5793 static int
5794 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
5795 {
5796 	int j;
5797 	ccb_p cp;
5798 
5799 	/*
5800 	 *  Make sure the starting index is within range.
5801 	 */
5802 	assert((i >= 0) && (i < 2*MAX_QUEUE));
5803 
5804 	/*
5805 	 *  Walk until end of START queue and dequeue every job
5806 	 *  that matches the target/lun/task condition.
5807 	 */
5808 	j = i;
5809 	while (i != np->squeueput) {
5810 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
5811 		assert(cp);
5812 #ifdef SYM_CONF_IARB_SUPPORT
5813 		/* Forget hints for IARB, they may be no longer relevant */
5814 		cp->host_flags &= ~HF_HINT_IARB;
5815 #endif
5816 		if ((target == -1 || cp->target == target) &&
5817 		    (lun    == -1 || cp->lun    == lun)    &&
5818 		    (task   == -1 || cp->tag    == task)) {
5819 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
5820 			sym_remque(&cp->link_ccbq);
5821 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
5822 		}
5823 		else {
5824 			if (i != j)
5825 				np->squeue[j] = np->squeue[i];
5826 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
5827 		}
5828 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
5829 	}
5830 	if (i != j)		/* Copy back the idle task if needed */
5831 		np->squeue[j] = np->squeue[i];
5832 	np->squeueput = j;	/* Update our current start queue pointer */
5833 
5834 	return (i - j) / 2;
5835 }
5836 
5837 /*
5838  *  Complete all CCBs queued to the COMP queue.
5839  *
5840  *  These CCBs are assumed:
5841  *  - Not to be referenced either by devices or
5842  *    SCRIPTS-related queues and datas.
5843  *  - To have to be completed with an error condition
5844  *    or requeued.
5845  *
5846  *  The device queue freeze count is incremented
5847  *  for each CCB that does not prevent this.
5848  *  This function is called when all CCBs involved
5849  *  in error handling/recovery have been reaped.
5850  */
5851 static void
5852 sym_flush_comp_queue(hcb_p np, int cam_status)
5853 {
5854 	SYM_QUEHEAD *qp;
5855 	ccb_p cp;
5856 
5857 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
5858 		union ccb *ccb;
5859 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5860 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
5861 		ccb = cp->cam_ccb;
5862 		if (cam_status)
5863 			sym_set_cam_status(ccb, cam_status);
5864 		sym_free_ccb(np, cp);
5865 		sym_freeze_cam_ccb(ccb);
5866 		sym_xpt_done(np, ccb);
5867 	}
5868 }
5869 
5870 /*
5871  *  chip handler for bad SCSI status condition
5872  *
5873  *  In case of bad SCSI status, we unqueue all the tasks
5874  *  currently queued to the controller but not yet started
5875  *  and then restart the SCRIPTS processor immediately.
5876  *
5877  *  QUEUE FULL and BUSY conditions are handled the same way.
5878  *  Basically all the not yet started tasks are requeued in
5879  *  device queue and the queue is frozen until a completion.
5880  *
5881  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
5882  *  the CCB of the failed command to prepare a REQUEST SENSE
5883  *  SCSI command and queue it to the controller queue.
5884  *
5885  *  SCRATCHA is assumed to have been loaded with STARTPOS
5886  *  before the SCRIPTS called the C code.
5887  */
5888 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
5889 {
5890 	tcb_p tp	= &np->target[cp->target];
5891 	u32		startp;
5892 	u_char		s_status = cp->ssss_status;
5893 	u_char		h_flags  = cp->host_flags;
5894 	int		msglen;
5895 	int		nego;
5896 	int		i;
5897 
5898 	/*
5899 	 *  Compute the index of the next job to start from SCRIPTS.
5900 	 */
5901 	i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4;
5902 
5903 	/*
5904 	 *  The last CCB queued used for IARB hint may be
5905 	 *  no longer relevant. Forget it.
5906 	 */
5907 #ifdef SYM_CONF_IARB_SUPPORT
5908 	if (np->last_cp)
5909 		np->last_cp = 0;
5910 #endif
5911 
5912 	/*
5913 	 *  Now deal with the SCSI status.
5914 	 */
5915 	switch(s_status) {
5916 	case S_BUSY:
5917 	case S_QUEUE_FULL:
5918 		if (sym_verbose >= 2) {
5919 			PRINT_ADDR(cp);
5920 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
5921 		}
5922 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
5923 		sym_complete_error (np, cp);
5924 		break;
5925 	case S_TERMINATED:
5926 	case S_CHECK_COND:
5927 		/*
5928 		 *  If we get an SCSI error when requesting sense, give up.
5929 		 */
5930 		if (h_flags & HF_SENSE) {
5931 			sym_complete_error (np, cp);
5932 			break;
5933 		}
5934 
5935 		/*
5936 		 *  Dequeue all queued CCBs for that device not yet started,
5937 		 *  and restart the SCRIPTS processor immediately.
5938 		 */
5939 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5940 		OUTL (nc_dsp, SCRIPT_BA (np, start));
5941 
5942  		/*
5943 		 *  Save some info of the actual IO.
5944 		 *  Compute the data residual.
5945 		 */
5946 		cp->sv_scsi_status = cp->ssss_status;
5947 		cp->sv_xerr_status = cp->xerr_status;
5948 		cp->sv_resid = sym_compute_residual(np, cp);
5949 
5950 		/*
5951 		 *  Prepare all needed data structures for
5952 		 *  requesting sense data.
5953 		 */
5954 
5955 		/*
5956 		 *  identify message
5957 		 */
5958 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
5959 		msglen = 1;
5960 
5961 		/*
5962 		 *  If we are currently using anything different from
5963 		 *  async. 8 bit data transfers with that target,
5964 		 *  start a negotiation, since the device may want
5965 		 *  to report us a UNIT ATTENTION condition due to
5966 		 *  a cause we currently ignore, and we donnot want
5967 		 *  to be stuck with WIDE and/or SYNC data transfer.
5968 		 *
5969 		 *  cp->nego_status is filled by sym_prepare_nego().
5970 		 */
5971 		cp->nego_status = 0;
5972 		nego = 0;
5973 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
5974 			nego = NS_PPR;
5975 		else if	(tp->tinfo.current.width != BUS_8_BIT)
5976 			nego = NS_WIDE;
5977 		else if (tp->tinfo.current.offset != 0)
5978 			nego = NS_SYNC;
5979 		if (nego)
5980 			msglen +=
5981 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
5982 		/*
5983 		 *  Message table indirect structure.
5984 		 */
5985 		cp->phys.smsg.addr	= cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
5986 		cp->phys.smsg.size	= cpu_to_scr(msglen);
5987 
5988 		/*
5989 		 *  sense command
5990 		 */
5991 		cp->phys.cmd.addr	= cpu_to_scr(CCB_PHYS (cp, sensecmd));
5992 		cp->phys.cmd.size	= cpu_to_scr(6);
5993 
5994 		/*
5995 		 *  patch requested size into sense command
5996 		 */
5997 		cp->sensecmd[0]		= 0x03;
5998 		cp->sensecmd[1]		= cp->lun << 5;
5999 		cp->sensecmd[4]		= cp->cam_ccb->csio.sense_len;
6000 		cp->data_len		= cp->cam_ccb->csio.sense_len;
6001 
6002 		/*
6003 		 *  sense data
6004 		 */
6005 		cp->phys.sense.addr	=
6006 			cpu_to_scr(vtobus(&cp->cam_ccb->csio.sense_data));
6007 		cp->phys.sense.size	=
6008 			cpu_to_scr(cp->cam_ccb->csio.sense_len);
6009 
6010 		/*
6011 		 *  requeue the command.
6012 		 */
6013 		startp = SCRIPTH_BA (np, sdata_in);
6014 
6015 		cp->phys.savep	= cpu_to_scr(startp);
6016 		cp->phys.goalp	= cpu_to_scr(startp + 16);
6017 		cp->phys.lastp	= cpu_to_scr(startp);
6018 		cp->startp	= cpu_to_scr(startp);
6019 
6020 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
6021 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
6022 		cp->ssss_status = S_ILLEGAL;
6023 		cp->host_flags	= HF_SENSE;
6024 		cp->xerr_status = 0;
6025 		cp->phys.extra_bytes = 0;
6026 
6027 		cp->phys.go.start =
6028 			cpu_to_scr(SCRIPT_BA (np, select));
6029 
6030 		/*
6031 		 *  Requeue the command.
6032 		 */
6033 		sym_put_start_queue(np, cp);
6034 
6035 		/*
6036 		 *  Give back to upper layer everything we have dequeued.
6037 		 */
6038 		sym_flush_comp_queue(np, 0);
6039 		break;
6040 	}
6041 }
6042 
6043 /*
6044  *  After a device has accepted some management message
6045  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
6046  *  a device signals a UNIT ATTENTION condition, some
6047  *  tasks are thrown away by the device. We are required
6048  *  to reflect that on our tasks list since the device
6049  *  will never complete these tasks.
6050  *
6051  *  This function move from the BUSY queue to the COMP
6052  *  queue all disconnected CCBs for a given target that
6053  *  match the following criteria:
6054  *  - lun=-1  means any logical UNIT otherwise a given one.
6055  *  - task=-1 means any task, otherwise a given one.
6056  */
6057 static int
6058 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
6059 {
6060 	SYM_QUEHEAD qtmp, *qp;
6061 	int i = 0;
6062 	ccb_p cp;
6063 
6064 	/*
6065 	 *  Move the entire BUSY queue to our temporary queue.
6066 	 */
6067 	sym_que_init(&qtmp);
6068 	sym_que_splice(&np->busy_ccbq, &qtmp);
6069 	sym_que_init(&np->busy_ccbq);
6070 
6071 	/*
6072 	 *  Put all CCBs that matches our criteria into
6073 	 *  the COMP queue and put back other ones into
6074 	 *  the BUSY queue.
6075 	 */
6076 	while ((qp = sym_remque_head(&qtmp)) != 0) {
6077 		union ccb *ccb;
6078 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6079 		ccb = cp->cam_ccb;
6080 		if (cp->host_status != HS_DISCONNECT ||
6081 		    cp->target != target	     ||
6082 		    (lun  != -1 && cp->lun != lun)   ||
6083 		    (task != -1 &&
6084 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
6085 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6086 			continue;
6087 		}
6088 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
6089 
6090 		/* Preserve the software timeout condition */
6091 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
6092 			sym_set_cam_status(ccb, cam_status);
6093 		++i;
6094 #if 0
6095 printf("XXXX TASK @%p CLEARED\n", cp);
6096 #endif
6097 	}
6098 	return i;
6099 }
6100 
6101 /*
6102  *  chip handler for TASKS recovery
6103  *
6104  *  We cannot safely abort a command, while the SCRIPTS
6105  *  processor is running, since we just would be in race
6106  *  with it.
6107  *
6108  *  As long as we have tasks to abort, we keep the SEM
6109  *  bit set in the ISTAT. When this bit is set, the
6110  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
6111  *  each time it enters the scheduler.
6112  *
6113  *  If we have to reset a target, clear tasks of a unit,
6114  *  or to perform the abort of a disconnected job, we
6115  *  restart the SCRIPTS for selecting the target. Once
6116  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
6117  *  If it loses arbitration, the SCRIPTS will interrupt again
6118  *  the next time it will enter its scheduler, and so on ...
6119  *
6120  *  On SIR_TARGET_SELECTED, we scan for the more
6121  *  appropriate thing to do:
6122  *
6123  *  - If nothing, we just sent a M_ABORT message to the
6124  *    target to get rid of the useless SCSI bus ownership.
6125  *    According to the specs, no tasks shall be affected.
6126  *  - If the target is to be reset, we send it a M_RESET
6127  *    message.
6128  *  - If a logical UNIT is to be cleared , we send the
6129  *    IDENTIFY(lun) + M_ABORT.
6130  *  - If an untagged task is to be aborted, we send the
6131  *    IDENTIFY(lun) + M_ABORT.
6132  *  - If a tagged task is to be aborted, we send the
6133  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
6134  *
6135  *  Once our 'kiss of death' :) message has been accepted
6136  *  by the target, the SCRIPTS interrupts again
6137  *  (SIR_ABORT_SENT). On this interrupt, we complete
6138  *  all the CCBs that should have been aborted by the
6139  *  target according to our message.
6140  */
6141 static void sym_sir_task_recovery(hcb_p np, int num)
6142 {
6143 	SYM_QUEHEAD *qp;
6144 	ccb_p cp;
6145 	tcb_p tp;
6146 	int target=-1, lun=-1, task;
6147 	int i, k;
6148 
6149 	switch(num) {
6150 	/*
6151 	 *  The SCRIPTS processor stopped before starting
6152 	 *  the next command in order to allow us to perform
6153 	 *  some task recovery.
6154 	 */
6155 	case SIR_SCRIPT_STOPPED:
6156 		/*
6157 		 *  Do we have any target to reset or unit to clear ?
6158 		 */
6159 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
6160 			tp = &np->target[i];
6161 			if (tp->to_reset ||
6162 			    (tp->lun0p && tp->lun0p->to_clear)) {
6163 				target = i;
6164 				break;
6165 			}
6166 			if (!tp->lunmp)
6167 				continue;
6168 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
6169 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
6170 					target	= i;
6171 					break;
6172 				}
6173 			}
6174 			if (target != -1)
6175 				break;
6176 		}
6177 
6178 		/*
6179 		 *  If not, walk the busy queue for any
6180 		 *  disconnected CCB to be aborted.
6181 		 */
6182 		if (target == -1) {
6183 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
6184 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
6185 				if (cp->host_status != HS_DISCONNECT)
6186 					continue;
6187 				if (cp->to_abort) {
6188 					target = cp->target;
6189 					break;
6190 				}
6191 			}
6192 		}
6193 
6194 		/*
6195 		 *  If some target is to be selected,
6196 		 *  prepare and start the selection.
6197 		 */
6198 		if (target != -1) {
6199 			tp = &np->target[target];
6200 			np->abrt_sel.sel_id	= target;
6201 			np->abrt_sel.sel_scntl3 = tp->wval;
6202 			np->abrt_sel.sel_sxfer  = tp->sval;
6203 			OUTL(nc_dsa, vtobus(np));
6204 			OUTL (nc_dsp, SCRIPTH_BA (np, sel_for_abort));
6205 			return;
6206 		}
6207 
6208 		/*
6209 		 *  Now look for a CCB to abort that haven't started yet.
6210 		 *  Btw, the SCRIPTS processor is still stopped, so
6211 		 *  we are not in race.
6212 		 */
6213 		i = 0;
6214 		cp = 0;
6215 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
6216 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6217 			if (cp->host_status != HS_BUSY &&
6218 			    cp->host_status != HS_NEGOTIATE)
6219 				continue;
6220 			if (!cp->to_abort)
6221 				continue;
6222 #ifdef SYM_CONF_IARB_SUPPORT
6223 			/*
6224 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
6225 			 *    want to cancel the last queued CCB, since the
6226 			 *    SCRIPTS may have anticipated the selection.
6227 			 */
6228 			if (cp == np->last_cp) {
6229 				cp->to_abort = 0;
6230 				continue;
6231 			}
6232 #endif
6233 			i = 1;	/* Means we have found some */
6234 			break;
6235 		}
6236 		if (!i) {
6237 			/*
6238 			 *  We are done, so we donnot need
6239 			 *  to synchronize with the SCRIPTS anylonger.
6240 			 *  Remove the SEM flag from the ISTAT.
6241 			 */
6242 			np->istat_sem = 0;
6243 			OUTB (nc_istat, SIGP);
6244 			break;
6245 		}
6246 		/*
6247 		 *  Compute index of next position in the start
6248 		 *  queue the SCRIPTS intends to start and dequeue
6249 		 *  all CCBs for that device that haven't been started.
6250 		 */
6251 		i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4;
6252 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
6253 
6254 		/*
6255 		 *  Make sure at least our IO to abort has been dequeued.
6256 		 */
6257 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
6258 
6259 		/*
6260 		 *  Keep track in cam status of the reason of the abort.
6261 		 */
6262 		if (cp->to_abort == 2)
6263 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
6264 		else
6265 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
6266 
6267 		/*
6268 		 *  Complete with error everything that we have dequeued.
6269 	 	 */
6270 		sym_flush_comp_queue(np, 0);
6271 		break;
6272 	/*
6273 	 *  The SCRIPTS processor has selected a target
6274 	 *  we may have some manual recovery to perform for.
6275 	 */
6276 	case SIR_TARGET_SELECTED:
6277 		target = (INB (nc_sdid) & 0xf);
6278 		tp = &np->target[target];
6279 
6280 		np->abrt_tbl.addr = vtobus(np->abrt_msg);
6281 
6282 		/*
6283 		 *  If the target is to be reset, prepare a
6284 		 *  M_RESET message and clear the to_reset flag
6285 		 *  since we donnot expect this operation to fail.
6286 		 */
6287 		if (tp->to_reset) {
6288 			np->abrt_msg[0] = M_RESET;
6289 			np->abrt_tbl.size = 1;
6290 			tp->to_reset = 0;
6291 			break;
6292 		}
6293 
6294 		/*
6295 		 *  Otherwise, look for some logical unit to be cleared.
6296 		 */
6297 		if (tp->lun0p && tp->lun0p->to_clear)
6298 			lun = 0;
6299 		else if (tp->lunmp) {
6300 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
6301 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
6302 					lun = k;
6303 					break;
6304 				}
6305 			}
6306 		}
6307 
6308 		/*
6309 		 *  If a logical unit is to be cleared, prepare
6310 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
6311 		 */
6312 		if (lun != -1) {
6313 			lcb_p lp = sym_lp(np, tp, lun);
6314 			lp->to_clear = 0; /* We donnot expect to fail here */
6315 			np->abrt_msg[0] = M_IDENTIFY | lun;
6316 			np->abrt_msg[1] = M_ABORT;
6317 			np->abrt_tbl.size = 2;
6318 			break;
6319 		}
6320 
6321 		/*
6322 		 *  Otherwise, look for some disconnected job to
6323 		 *  abort for this target.
6324 		 */
6325 		i = 0;
6326 		cp = 0;
6327 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
6328 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6329 			if (cp->host_status != HS_DISCONNECT)
6330 				continue;
6331 			if (cp->target != target)
6332 				continue;
6333 			if (!cp->to_abort)
6334 				continue;
6335 			i = 1;	/* Means we have some */
6336 			break;
6337 		}
6338 
6339 		/*
6340 		 *  If we have none, probably since the device has
6341 		 *  completed the command before we won abitration,
6342 		 *  send a M_ABORT message without IDENTIFY.
6343 		 *  According to the specs, the device must just
6344 		 *  disconnect the BUS and not abort any task.
6345 		 */
6346 		if (!i) {
6347 			np->abrt_msg[0] = M_ABORT;
6348 			np->abrt_tbl.size = 1;
6349 			break;
6350 		}
6351 
6352 		/*
6353 		 *  We have some task to abort.
6354 		 *  Set the IDENTIFY(lun)
6355 		 */
6356 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
6357 
6358 		/*
6359 		 *  If we want to abort an untagged command, we
6360 		 *  will send a IDENTIFY + M_ABORT.
6361 		 *  Otherwise (tagged command), we will send
6362 		 *  a IDENTITFY + task attributes + ABORT TAG.
6363 		 */
6364 		if (cp->tag == NO_TAG) {
6365 			np->abrt_msg[1] = M_ABORT;
6366 			np->abrt_tbl.size = 2;
6367 		}
6368 		else {
6369 			np->abrt_msg[1] = cp->scsi_smsg[1];
6370 			np->abrt_msg[2] = cp->scsi_smsg[2];
6371 			np->abrt_msg[3] = M_ABORT_TAG;
6372 			np->abrt_tbl.size = 4;
6373 		}
6374 		/*
6375 		 *  Keep track of software timeout condition, since the
6376 		 *  peripheral driver may not count retries on abort
6377 		 *  conditions not due to timeout.
6378 		 */
6379 		if (cp->to_abort == 2)
6380 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
6381 		cp->to_abort = 0; /* We donnot expect to fail here */
6382 		break;
6383 
6384 	/*
6385 	 *  The target has accepted our message and switched
6386 	 *  to BUS FREE phase as we expected.
6387 	 */
6388 	case SIR_ABORT_SENT:
6389 		target = (INB (nc_sdid) & 0xf);
6390 		tp = &np->target[target];
6391 
6392 		/*
6393 		**  If we didn't abort anything, leave here.
6394 		*/
6395 		if (np->abrt_msg[0] == M_ABORT)
6396 			break;
6397 
6398 		/*
6399 		 *  If we sent a M_RESET, then a hardware reset has
6400 		 *  been performed by the target.
6401 		 *  - Reset everything to async 8 bit
6402 		 *  - Tell ourself to negotiate next time :-)
6403 		 *  - Prepare to clear all disconnected CCBs for
6404 		 *    this target from our task list (lun=task=-1)
6405 		 */
6406 		lun = -1;
6407 		task = -1;
6408 		if (np->abrt_msg[0] == M_RESET) {
6409 			tp->sval = 0;
6410 			tp->wval = np->rv_scntl3;
6411 			tp->uval = 0;
6412 			tp->tinfo.current.period = 0;
6413 			tp->tinfo.current.offset = 0;
6414 			tp->tinfo.current.width  = BUS_8_BIT;
6415 			tp->tinfo.current.options = 0;
6416 		}
6417 
6418 		/*
6419 		 *  Otherwise, check for the LUN and TASK(s)
6420 		 *  concerned by the cancelation.
6421 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
6422 		 *  or an ABORT message :-)
6423 		 */
6424 		else {
6425 			lun = np->abrt_msg[0] & 0x3f;
6426 			if (np->abrt_msg[1] == M_ABORT_TAG)
6427 				task = np->abrt_msg[2];
6428 		}
6429 
6430 		/*
6431 		 *  Complete all the CCBs the device should have
6432 		 *  aborted due to our 'kiss of death' message.
6433 		 */
6434 		i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4;
6435 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
6436 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
6437 		sym_flush_comp_queue(np, 0);
6438 
6439 		/*
6440 		 *  If we sent a BDR, make uper layer aware of that.
6441 		 */
6442 		if (np->abrt_msg[0] == M_RESET)
6443 			xpt_async(AC_SENT_BDR, np->path, NULL);
6444 		break;
6445 	}
6446 
6447 	/*
6448 	 *  Print to the log the message we intend to send.
6449 	 */
6450 	if (num == SIR_TARGET_SELECTED) {
6451 		PRINT_TARGET(np, target);
6452 		sym_printl_hex("control msgout:", np->abrt_msg,
6453 			      np->abrt_tbl.size);
6454 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
6455 	}
6456 
6457 	/*
6458 	 *  Let the SCRIPTS processor continue.
6459 	 */
6460 	OUTONB (nc_dcntl, (STD|NOCOM));
6461 }
6462 
6463 /*
6464  *  Gerard's alchemy:) that deals with with the data
6465  *  pointer for both MDP and the residual calculation.
6466  *
6467  *  I didn't want to bloat the code by more than 200
6468  *  lignes for the handling of both MDP and the residual.
6469  *  This has been achieved by using a data pointer
6470  *  representation consisting in an index in the data
6471  *  array (dp_sg) and a negative offset (dp_ofs) that
6472  *  have the following meaning:
6473  *
6474  *  - dp_sg = SYM_CONF_MAX_SG
6475  *    we are at the end of the data script.
6476  *  - dp_sg < SYM_CONF_MAX_SG
6477  *    dp_sg points to the next entry of the scatter array
6478  *    we want to transfer.
6479  *  - dp_ofs < 0
6480  *    dp_ofs represents the residual of bytes of the
6481  *    previous entry scatter entry we will send first.
6482  *  - dp_ofs = 0
6483  *    no residual to send first.
6484  *
6485  *  The function sym_evaluate_dp() accepts an arbitray
6486  *  offset (basically from the MDP message) and returns
6487  *  the corresponding values of dp_sg and dp_ofs.
6488  */
6489 
6490 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
6491 {
6492 	u32	dp_scr;
6493 	int	dp_ofs, dp_sg, dp_sgmin;
6494 	int	tmp;
6495 	struct sym_pmc *pm;
6496 
6497 	/*
6498 	 *  Compute the resulted data pointer in term of a script
6499 	 *  address within some DATA script and a signed byte offset.
6500 	 */
6501 	dp_scr = scr;
6502 	dp_ofs = *ofs;
6503 	if	(dp_scr == SCRIPT_BA (np, pm0_data))
6504 		pm = &cp->phys.pm0;
6505 	else if (dp_scr == SCRIPT_BA (np, pm1_data))
6506 		pm = &cp->phys.pm1;
6507 	else
6508 		pm = 0;
6509 
6510 	if (pm) {
6511 		dp_scr  = scr_to_cpu(pm->ret);
6512 		dp_ofs -= scr_to_cpu(pm->sg.size);
6513 	}
6514 
6515 	/*
6516 	 *  If we are auto-sensing, then we are done.
6517 	 */
6518 	if (cp->host_flags & HF_SENSE) {
6519 		*ofs = dp_ofs;
6520 		return 0;
6521 	}
6522 
6523 	/*
6524 	 *  Deduce the index of the sg entry.
6525 	 *  Keep track of the index of the first valid entry.
6526 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
6527 	 *  end of the data.
6528 	 */
6529 	tmp = scr_to_cpu(cp->phys.goalp);
6530 	dp_sg = SYM_CONF_MAX_SG;
6531 	if (dp_scr != tmp)
6532 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
6533 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
6534 
6535 	/*
6536 	 *  Move to the sg entry the data pointer belongs to.
6537 	 *
6538 	 *  If we are inside the data area, we expect result to be:
6539 	 *
6540 	 *  Either,
6541 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
6542 	 *      the data pointer belongs to (or the end of the data)
6543 	 *  Or,
6544 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
6545 	 *      the data pointer belongs to + 1.
6546 	 */
6547 	if (dp_ofs < 0) {
6548 		int n;
6549 		while (dp_sg > dp_sgmin) {
6550 			--dp_sg;
6551 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
6552 			n = dp_ofs + (tmp & 0xffffff);
6553 			if (n > 0) {
6554 				++dp_sg;
6555 				break;
6556 			}
6557 			dp_ofs = n;
6558 		}
6559 	}
6560 	else if (dp_ofs > 0) {
6561 		while (dp_sg < SYM_CONF_MAX_SG) {
6562 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
6563 			dp_ofs -= (tmp & 0xffffff);
6564 			++dp_sg;
6565 			if (dp_ofs <= 0)
6566 				break;
6567 		}
6568 	}
6569 
6570 	/*
6571 	 *  Make sure the data pointer is inside the data area.
6572 	 *  If not, return some error.
6573 	 */
6574 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
6575 		goto out_err;
6576 	else if	(dp_sg > SYM_CONF_MAX_SG ||
6577 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
6578 		goto out_err;
6579 
6580 	/*
6581 	 *  Save the extreme pointer if needed.
6582 	 */
6583 	if (dp_sg > cp->ext_sg ||
6584             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
6585 		cp->ext_sg  = dp_sg;
6586 		cp->ext_ofs = dp_ofs;
6587 	}
6588 
6589 	/*
6590 	 *  Return data.
6591 	 */
6592 	*ofs = dp_ofs;
6593 	return dp_sg;
6594 
6595 out_err:
6596 #ifdef	SYM_DEBUG_PM_WITH_WSR
6597 	printf("XXXX dp_sg=%d dp_sgmin=%d dp_ofs=%d, SYM_CONF_MAX_SG=%d\n",
6598 		dp_sg, dp_sgmin, dp_ofs, SYM_CONF_MAX_SG);
6599 #endif
6600 
6601 	return -1;
6602 }
6603 
6604 /*
6605  *  chip handler for MODIFY DATA POINTER MESSAGE
6606  *
6607  *  We also call this function on IGNORE WIDE RESIDUE
6608  *  messages that do not match a SWIDE full condition.
6609  *  Btw, we assume in that situation that such a message
6610  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
6611  */
6612 
6613 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
6614 {
6615 	int dp_ofs	= ofs;
6616 	u32	dp_scr	= INL (nc_temp);
6617 	u32	dp_ret;
6618 	u32	tmp;
6619 	u_char	hflags;
6620 	int	dp_sg;
6621 	struct	sym_pmc *pm;
6622 
6623 	/*
6624 	 *  Not supported for auto-sense.
6625 	 */
6626 	if (cp->host_flags & HF_SENSE)
6627 		goto out_reject;
6628 
6629 	/*
6630 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
6631 	 *  to the resulted data pointer.
6632 	 */
6633 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
6634 	if (dp_sg < 0)
6635 		goto out_reject;
6636 
6637 	/*
6638 	 *  And our alchemy:) allows to easily calculate the data
6639 	 *  script address we want to return for the next data phase.
6640 	 */
6641 	dp_ret = cpu_to_scr(cp->phys.goalp);
6642 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
6643 
6644 	/*
6645 	 *  If offset / scatter entry is zero we donnot need
6646 	 *  a context for the new current data pointer.
6647 	 */
6648 	if (dp_ofs == 0) {
6649 		dp_scr = dp_ret;
6650 		goto out_ok;
6651 	}
6652 
6653 	/*
6654 	 *  Get a context for the new current data pointer.
6655 	 */
6656 	hflags = INB (HF_PRT);
6657 
6658 	if (hflags & HF_DP_SAVED)
6659 		hflags ^= HF_ACT_PM;
6660 
6661 	if (!(hflags & HF_ACT_PM)) {
6662 		pm  = &cp->phys.pm0;
6663 		dp_scr = SCRIPT_BA (np, pm0_data);
6664 	}
6665 	else {
6666 		pm = &cp->phys.pm1;
6667 		dp_scr = SCRIPT_BA (np, pm1_data);
6668 	}
6669 
6670 	hflags &= ~(HF_DP_SAVED);
6671 
6672 	OUTB (HF_PRT, hflags);
6673 
6674 	/*
6675 	 *  Set up the new current data pointer.
6676 	 *  ofs < 0 there, and for the next data phase, we
6677 	 *  want to transfer part of the data of the sg entry
6678 	 *  corresponding to index dp_sg-1 prior to returning
6679 	 *  to the main data script.
6680 	 */
6681 	pm->ret = cpu_to_scr(dp_ret);
6682 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
6683 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
6684 	pm->sg.addr = cpu_to_scr(tmp);
6685 	pm->sg.size = cpu_to_scr(-dp_ofs);
6686 
6687 out_ok:
6688 	OUTL (nc_temp, dp_scr);
6689 	OUTL (nc_dsp, SCRIPT_BA (np, clrack));
6690 	return;
6691 
6692 out_reject:
6693 	OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
6694 }
6695 
6696 
6697 /*
6698  *  chip calculation of the data residual.
6699  *
6700  *  As I used to say, the requirement of data residual
6701  *  in SCSI is broken, useless and cannot be achieved
6702  *  without huge complexity.
6703  *  But most OSes and even the official CAM require it.
6704  *  When stupidity happens to be so widely spread inside
6705  *  a community, it gets hard to convince.
6706  *
6707  *  Anyway, I don't care, since I am not going to use
6708  *  any software that considers this data residual as
6709  *  a relevant information. :)
6710  */
6711 
6712 static int sym_compute_residual(hcb_p np, ccb_p cp)
6713 {
6714 	int dp_sg, dp_sgmin, resid = 0;
6715 	int dp_ofs = 0;
6716 
6717 	/*
6718 	 *  Check for some data lost or just thrown away.
6719 	 *  We are not required to be quite accurate in this
6720 	 *  situation. Btw, if we are odd for output and the
6721 	 *  device claims some more data, it may well happen
6722 	 *  than our residual be zero. :-)
6723 	 */
6724 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
6725 		if (cp->xerr_status & XE_EXTRA_DATA)
6726 			resid -= scr_to_cpu(cp->phys.extra_bytes);
6727 		if (cp->xerr_status & XE_SODL_UNRUN)
6728 			++resid;
6729 		if (cp->xerr_status & XE_SWIDE_OVRUN)
6730 			--resid;
6731 	}
6732 
6733 	/*
6734 	 *  If all data has been transferred,
6735 	 *  there is no residual.
6736 	 */
6737 	if (cp->phys.lastp == cp->phys.goalp)
6738 		return resid;
6739 
6740 	/*
6741 	 *  If no data transfer occurs, or if the data
6742 	 *  pointer is weird, return full residual.
6743 	 */
6744 	if (cp->startp == cp->phys.lastp ||
6745 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.lastp), &dp_ofs) < 0) {
6746 		return cp->data_len;
6747 	}
6748 
6749 	/*
6750 	 *  If we were auto-sensing, then we are done.
6751 	 */
6752 	if (cp->host_flags & HF_SENSE) {
6753 		return -dp_ofs;
6754 	}
6755 
6756 	/*
6757 	 *  We are now full comfortable in the computation
6758 	 *  of the data residual (2's complement).
6759 	 */
6760 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
6761 	resid = -cp->ext_ofs;
6762 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
6763 		u_long tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
6764 		resid += (tmp & 0xffffff);
6765 	}
6766 
6767 	/*
6768 	 *  Hopefully, the result is not too wrong.
6769 	 */
6770 	return resid;
6771 }
6772 
6773 /*
6774  *  Print out the containt of a SCSI message.
6775  */
6776 
6777 static int sym_show_msg (u_char * msg)
6778 {
6779 	u_char i;
6780 	printf ("%x",*msg);
6781 	if (*msg==M_EXTENDED) {
6782 		for (i=1;i<8;i++) {
6783 			if (i-1>msg[1]) break;
6784 			printf ("-%x",msg[i]);
6785 		};
6786 		return (i+1);
6787 	} else if ((*msg & 0xf0) == 0x20) {
6788 		printf ("-%x",msg[1]);
6789 		return (2);
6790 	};
6791 	return (1);
6792 }
6793 
6794 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
6795 {
6796 	PRINT_ADDR(cp);
6797 	if (label)
6798 		printf ("%s: ", label);
6799 
6800 	(void) sym_show_msg (msg);
6801 	printf (".\n");
6802 }
6803 
6804 /*
6805  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
6806  *
6807  *  We try to negotiate sync and wide transfer only after
6808  *  a successfull inquire command. We look at byte 7 of the
6809  *  inquire data to determine the capabilities of the target.
6810  *
6811  *  When we try to negotiate, we append the negotiation message
6812  *  to the identify and (maybe) simple tag message.
6813  *  The host status field is set to HS_NEGOTIATE to mark this
6814  *  situation.
6815  *
6816  *  If the target doesn't answer this message immediately
6817  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
6818  *  will be raised eventually.
6819  *  The handler removes the HS_NEGOTIATE status, and sets the
6820  *  negotiated value to the default (async / nowide).
6821  *
6822  *  If we receive a matching answer immediately, we check it
6823  *  for validity, and set the values.
6824  *
6825  *  If we receive a Reject message immediately, we assume the
6826  *  negotiation has failed, and fall back to standard values.
6827  *
6828  *  If we receive a negotiation message while not in HS_NEGOTIATE
6829  *  state, it's a target initiated negotiation. We prepare a
6830  *  (hopefully) valid answer, set our parameters, and send back
6831  *  this answer to the target.
6832  *
6833  *  If the target doesn't fetch the answer (no message out phase),
6834  *  we assume the negotiation has failed, and fall back to default
6835  *  settings (SIR_NEGO_PROTO interrupt).
6836  *
6837  *  When we set the values, we adjust them in all ccbs belonging
6838  *  to this target, in the controller's register, and in the "phys"
6839  *  field of the controller's struct sym_hcb.
6840  */
6841 
6842 /*
6843  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
6844  */
6845 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
6846 {
6847 	u_char	chg, ofs, per, fak, div;
6848 	int	req = 1;
6849 
6850 	/*
6851 	 *  Synchronous request message received.
6852 	 */
6853 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6854 		sym_print_msg(cp, "sync msgin", np->msgin);
6855 	};
6856 
6857 	/*
6858 	 * request or answer ?
6859 	 */
6860 	if (INB (HS_PRT) == HS_NEGOTIATE) {
6861 		OUTB (HS_PRT, HS_BUSY);
6862 		if (cp->nego_status && cp->nego_status != NS_SYNC)
6863 			goto reject_it;
6864 		req = 0;
6865 	}
6866 
6867 	/*
6868 	 *  get requested values.
6869 	 */
6870 	chg = 0;
6871 	per = np->msgin[3];
6872 	ofs = np->msgin[4];
6873 
6874 	/*
6875 	 *  check values against our limits.
6876 	 */
6877 	if (ofs) {
6878 		if (ofs > np->maxoffs)
6879 			{chg = 1; ofs = np->maxoffs;}
6880 		if (req) {
6881 			if (ofs > tp->tinfo.user.offset)
6882 				{chg = 1; ofs = tp->tinfo.user.offset;}
6883 		}
6884 	}
6885 
6886 	if (ofs) {
6887 		if (per < np->minsync)
6888 			{chg = 1; per = np->minsync;}
6889 		if (req) {
6890 			if (per < tp->tinfo.user.period)
6891 				{chg = 1; per = tp->tinfo.user.period;}
6892 		}
6893 	}
6894 
6895 	div = fak = 0;
6896 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
6897 		goto reject_it;
6898 
6899 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6900 		PRINT_ADDR(cp);
6901 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
6902 			ofs, per, div, fak, chg);
6903 	}
6904 
6905 	/*
6906 	 *  This was an answer message
6907 	 */
6908 	if (req == 0) {
6909 		if (chg) 	/* Answer wasn't acceptable. */
6910 			goto reject_it;
6911 		sym_setsync (np, cp, ofs, per, div, fak);
6912 		OUTL (nc_dsp, SCRIPT_BA (np, clrack));
6913 		return;
6914 	}
6915 
6916 	/*
6917 	 *  It was a request. Set value and
6918 	 *  prepare an answer message
6919 	 */
6920 	sym_setsync (np, cp, ofs, per, div, fak);
6921 
6922 	np->msgout[0] = M_EXTENDED;
6923 	np->msgout[1] = 3;
6924 	np->msgout[2] = M_X_SYNC_REQ;
6925 	np->msgout[3] = per;
6926 	np->msgout[4] = ofs;
6927 
6928 	cp->nego_status = NS_SYNC;
6929 
6930 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6931 		sym_print_msg(cp, "sync msgout", np->msgout);
6932 	}
6933 
6934 	np->msgin [0] = M_NOOP;
6935 
6936 	OUTL (nc_dsp, SCRIPTH_BA (np, sdtr_resp));
6937 	return;
6938 reject_it:
6939 	sym_setsync (np, cp, 0, 0, 0, 0);
6940 	OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
6941 }
6942 
6943 /*
6944  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
6945  */
6946 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
6947 {
6948 	u_char	chg, ofs, per, fak, dt, div, wide;
6949 	int	req = 1;
6950 
6951 	/*
6952 	 * Synchronous request message received.
6953 	 */
6954 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6955 		sym_print_msg(cp, "ppr msgin", np->msgin);
6956 	};
6957 
6958 	/*
6959 	 * request or answer ?
6960 	 */
6961 	if (INB (HS_PRT) == HS_NEGOTIATE) {
6962 		OUTB (HS_PRT, HS_BUSY);
6963 		if (cp->nego_status && cp->nego_status != NS_PPR)
6964 			goto reject_it;
6965 		req = 0;
6966 	}
6967 
6968 	/*
6969 	 *  get requested values.
6970 	 */
6971 	chg  = 0;
6972 	per  = np->msgin[3];
6973 	ofs  = np->msgin[5];
6974 	wide = np->msgin[6];
6975 	dt   = np->msgin[7] & PPR_OPT_DT;
6976 
6977 	/*
6978 	 *  check values against our limits.
6979 	 */
6980 	if (wide > np->maxwide)
6981 		{chg = 1; wide = np->maxwide;}
6982 	if (!wide || !(np->features & FE_ULTRA3))
6983 		dt &= ~PPR_OPT_DT;
6984 	if (req) {
6985 		if (wide > tp->tinfo.user.width)
6986 			{chg = 1; wide = tp->tinfo.user.width;}
6987 	}
6988 
6989 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
6990 		dt &= ~PPR_OPT_DT;
6991 
6992 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
6993 
6994 	if (ofs) {
6995 		if (ofs > np->maxoffs)
6996 			{chg = 1; ofs = np->maxoffs;}
6997 		if (req) {
6998 			if (ofs > tp->tinfo.user.offset)
6999 				{chg = 1; ofs = tp->tinfo.user.offset;}
7000 		}
7001 	}
7002 
7003 	if (ofs) {
7004 		if (dt) {
7005 			if (per < np->minsync_dt)
7006 				{chg = 1; per = np->minsync_dt;}
7007 		}
7008 		else if (per < np->minsync)
7009 			{chg = 1; per = np->minsync;}
7010 		if (req) {
7011 			if (per < tp->tinfo.user.period)
7012 				{chg = 1; per = tp->tinfo.user.period;}
7013 		}
7014 	}
7015 
7016 	div = fak = 0;
7017 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
7018 		goto reject_it;
7019 
7020 	if (DEBUG_FLAGS & DEBUG_NEGO) {
7021 		PRINT_ADDR(cp);
7022 		printf ("ppr: "
7023 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
7024 			dt, ofs, per, wide, div, fak, chg);
7025 	}
7026 
7027 	/*
7028 	 *  It was an answer.
7029 	 */
7030 	if (req == 0) {
7031 		if (chg) 	/* Answer wasn't acceptable */
7032 			goto reject_it;
7033 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
7034 		OUTL (nc_dsp, SCRIPT_BA (np, clrack));
7035 		return;
7036 	}
7037 
7038 	/*
7039 	 *  It was a request. Set value and
7040 	 *  prepare an answer message
7041 	 */
7042 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
7043 
7044 	np->msgout[0] = M_EXTENDED;
7045 	np->msgout[1] = 6;
7046 	np->msgout[2] = M_X_PPR_REQ;
7047 	np->msgout[3] = per;
7048 	np->msgout[4] = 0;
7049 	np->msgout[5] = ofs;
7050 	np->msgout[6] = wide;
7051 	np->msgout[7] = dt;
7052 
7053 	cp->nego_status = NS_PPR;
7054 
7055 	if (DEBUG_FLAGS & DEBUG_NEGO) {
7056 		sym_print_msg(cp, "ppr msgout", np->msgout);
7057 	}
7058 
7059 	np->msgin [0] = M_NOOP;
7060 
7061 	OUTL (nc_dsp, SCRIPTH_BA (np, ppr_resp));
7062 	return;
7063 reject_it:
7064 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
7065 	OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
7066 }
7067 
7068 /*
7069  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
7070  */
7071 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
7072 {
7073 	u_char	chg, wide;
7074 	int	req = 1;
7075 
7076 	/*
7077 	 *  Wide request message received.
7078 	 */
7079 	if (DEBUG_FLAGS & DEBUG_NEGO) {
7080 		sym_print_msg(cp, "wide msgin", np->msgin);
7081 	};
7082 
7083 	/*
7084 	 * Is it an request from the device?
7085 	 */
7086 	if (INB (HS_PRT) == HS_NEGOTIATE) {
7087 		OUTB (HS_PRT, HS_BUSY);
7088 		if (cp->nego_status && cp->nego_status != NS_WIDE)
7089 			goto reject_it;
7090 		req = 0;
7091 	}
7092 
7093 	/*
7094 	 *  get requested values.
7095 	 */
7096 	chg  = 0;
7097 	wide = np->msgin[3];
7098 
7099 	/*
7100 	 *  check values against driver limits.
7101 	 */
7102 	if (wide > np->maxoffs)
7103 		{chg = 1; wide = np->maxoffs;}
7104 	if (req) {
7105 		if (wide > tp->tinfo.user.width)
7106 			{chg = 1; wide = tp->tinfo.user.width;}
7107 	}
7108 
7109 	if (DEBUG_FLAGS & DEBUG_NEGO) {
7110 		PRINT_ADDR(cp);
7111 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
7112 	}
7113 
7114 	/*
7115 	 * This was an answer message
7116 	 */
7117 	if (req == 0) {
7118 		if (chg)	/*  Answer wasn't acceptable. */
7119 			goto reject_it;
7120 		sym_setwide (np, cp, wide);
7121 #if 1
7122 		/*
7123 		 * Negotiate for SYNC immediately after WIDE response.
7124 		 * This allows to negotiate for both WIDE and SYNC on
7125 		 * a single SCSI command (Suggested by Justin Gibbs).
7126 		 */
7127 		if (tp->tinfo.goal.offset) {
7128 			np->msgout[0] = M_EXTENDED;
7129 			np->msgout[1] = 3;
7130 			np->msgout[2] = M_X_SYNC_REQ;
7131 			np->msgout[3] = tp->tinfo.goal.period;
7132 			np->msgout[4] = tp->tinfo.goal.offset;
7133 
7134 			if (DEBUG_FLAGS & DEBUG_NEGO) {
7135 				sym_print_msg(cp, "sync msgout", np->msgout);
7136 			}
7137 
7138 			cp->nego_status = NS_SYNC;
7139 			OUTB (HS_PRT, HS_NEGOTIATE);
7140 			OUTL (nc_dsp, SCRIPTH_BA (np, sdtr_resp));
7141 			return;
7142 		}
7143 #endif
7144 		OUTL (nc_dsp, SCRIPT_BA (np, clrack));
7145 		return;
7146 	};
7147 
7148 	/*
7149 	 *  It was a request, set value and
7150 	 *  prepare an answer message
7151 	 */
7152 	sym_setwide (np, cp, wide);
7153 
7154 	np->msgout[0] = M_EXTENDED;
7155 	np->msgout[1] = 2;
7156 	np->msgout[2] = M_X_WIDE_REQ;
7157 	np->msgout[3] = wide;
7158 
7159 	np->msgin [0] = M_NOOP;
7160 
7161 	cp->nego_status = NS_WIDE;
7162 
7163 	if (DEBUG_FLAGS & DEBUG_NEGO) {
7164 		sym_print_msg(cp, "wide msgout", np->msgout);
7165 	}
7166 
7167 	OUTL (nc_dsp, SCRIPTH_BA (np, wdtr_resp));
7168 	return;
7169 reject_it:
7170 	OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
7171 }
7172 
7173 /*
7174  *  Reset SYNC or WIDE to default settings.
7175  *
7176  *  Called when a negotiation does not succeed either
7177  *  on rejection or on protocol error.
7178  */
7179 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
7180 {
7181 	/*
7182 	 *  any error in negotiation:
7183 	 *  fall back to default mode.
7184 	 */
7185 	switch (cp->nego_status) {
7186 	case NS_PPR:
7187 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
7188 		break;
7189 	case NS_SYNC:
7190 		sym_setsync (np, cp, 0, 0, 0, 0);
7191 		break;
7192 	case NS_WIDE:
7193 		sym_setwide (np, cp, 0);
7194 		break;
7195 	};
7196 	np->msgin [0] = M_NOOP;
7197 	np->msgout[0] = M_NOOP;
7198 	cp->nego_status = 0;
7199 }
7200 
7201 /*
7202  *  chip handler for MESSAGE REJECT received in response to
7203  *  a WIDE or SYNCHRONOUS negotiation.
7204  */
7205 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
7206 {
7207 	sym_nego_default(np, tp, cp);
7208 	OUTB (HS_PRT, HS_BUSY);
7209 }
7210 
7211 /*
7212  *  chip exception handler for programmed interrupts.
7213  */
7214 void sym_int_sir (hcb_p np)
7215 {
7216 	u_char	num	= INB (nc_dsps);
7217 	u_long	dsa	= INL (nc_dsa);
7218 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
7219 	u_char	target	= INB (nc_sdid) & 0x0f;
7220 	tcb_p	tp	= &np->target[target];
7221 	int	tmp;
7222 
7223 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
7224 
7225 	switch (num) {
7226 #ifdef	SYM_DEBUG_PM_WITH_WSR
7227 	case SIR_PM_WITH_WSR:
7228 		printf ("%s:%d: HW PM with WSR bit set - ",
7229 			sym_name (np), target);
7230 		tmp =
7231 		(vtobus(&cp->phys.data[SYM_CONF_MAX_SG]) - INL (nc_esa))/8;
7232 		printf("RBC=%d - SEG=%d - SIZE=%d - OFFS=%d\n",
7233 		INL (nc_rbc), cp->segments - tmp,
7234 		cp->phys.data[SYM_CONF_MAX_SG - tmp].size,
7235 		INL (nc_ua) - cp->phys.data[SYM_CONF_MAX_SG - tmp].addr);
7236 		goto out;
7237 #endif
7238 	/*
7239 	 *  Command has been completed with error condition
7240 	 *  or has been auto-sensed.
7241 	 */
7242 	case SIR_COMPLETE_ERROR:
7243 		sym_complete_error(np, cp);
7244 		return;
7245 	/*
7246 	 *  The C code is currently trying to recover from something.
7247 	 *  Typically, user want to abort some command.
7248 	 */
7249 	case SIR_SCRIPT_STOPPED:
7250 	case SIR_TARGET_SELECTED:
7251 	case SIR_ABORT_SENT:
7252 		sym_sir_task_recovery(np, num);
7253 		return;
7254 	/*
7255 	 *  The device didn't go to MSG OUT phase after having
7256 	 *  been selected with ATN. We donnot want to handle
7257 	 *  that.
7258 	 */
7259 	case SIR_SEL_ATN_NO_MSG_OUT:
7260 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
7261 			sym_name (np), target);
7262 		goto out_stuck;
7263 	/*
7264 	 *  The device didn't switch to MSG IN phase after
7265 	 *  having reseleted the initiator.
7266 	 */
7267 	case SIR_RESEL_NO_MSG_IN:
7268 		printf ("%s:%d: No MSG IN phase after reselection.\n",
7269 			sym_name (np), target);
7270 		goto out_stuck;
7271 	/*
7272 	 *  After reselection, the device sent a message that wasn't
7273 	 *  an IDENTIFY.
7274 	 */
7275 	case SIR_RESEL_NO_IDENTIFY:
7276 		printf ("%s:%d: No IDENTIFY after reselection.\n",
7277 			sym_name (np), target);
7278 		goto out_stuck;
7279 	/*
7280 	 *  The device reselected a LUN we donnot know about.
7281 	 */
7282 	case SIR_RESEL_BAD_LUN:
7283 		np->msgout[0] = M_RESET;
7284 		goto out;
7285 	/*
7286 	 *  The device reselected for an untagged nexus and we
7287 	 *  haven't any.
7288 	 */
7289 	case SIR_RESEL_BAD_I_T_L:
7290 		np->msgout[0] = M_ABORT;
7291 		goto out;
7292 	/*
7293 	 *  The device reselected for a tagged nexus that we donnot
7294 	 *  have.
7295 	 */
7296 	case SIR_RESEL_BAD_I_T_L_Q:
7297 		np->msgout[0] = M_ABORT_TAG;
7298 		goto out;
7299 	/*
7300 	 *  The SCRIPTS let us know that the device has grabbed
7301 	 *  our message and will abort the job.
7302 	 */
7303 	case SIR_RESEL_ABORTED:
7304 		np->lastmsg = np->msgout[0];
7305 		np->msgout[0] = M_NOOP;
7306 		printf ("%s:%d: message %x sent on bad reselection.\n",
7307 			sym_name (np), target, np->lastmsg);
7308 		goto out;
7309 	/*
7310 	 *  The SCRIPTS let us know that a message has been
7311 	 *  successfully sent to the device.
7312 	 */
7313 	case SIR_MSG_OUT_DONE:
7314 		np->lastmsg = np->msgout[0];
7315 		np->msgout[0] = M_NOOP;
7316 		/* Should we really care of that */
7317 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
7318 			if (cp) {
7319 				cp->xerr_status &= ~XE_PARITY_ERR;
7320 				if (!cp->xerr_status)
7321 					OUTOFFB (HF_PRT, HF_EXT_ERR);
7322 			}
7323 		}
7324 		goto out;
7325 	/*
7326 	 *  The device didn't send a GOOD SCSI status.
7327 	 *  We may have some work to do prior to allow
7328 	 *  the SCRIPTS processor to continue.
7329 	 */
7330 	case SIR_BAD_SCSI_STATUS:
7331 		if (!cp)
7332 			goto out;
7333 		sym_sir_bad_scsi_status(np, num, cp);
7334 		return;
7335 	/*
7336 	 *  We are asked by the SCRIPTS to prepare a
7337 	 *  REJECT message.
7338 	 */
7339 	case SIR_REJECT_TO_SEND:
7340 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
7341 		np->msgout[0] = M_REJECT;
7342 		goto out;
7343 	/*
7344 	 *  We have been ODD at the end of a DATA IN
7345 	 *  transfer and the device didn't send a
7346 	 *  IGNORE WIDE RESIDUE message.
7347 	 *  It is a data overrun condition.
7348 	 */
7349 	case SIR_SWIDE_OVERRUN:
7350 		if (cp) {
7351 			OUTONB (HF_PRT, HF_EXT_ERR);
7352 			cp->xerr_status |= XE_SWIDE_OVRUN;
7353 		}
7354 		goto out;
7355 	/*
7356 	 *  We have been ODD at the end of a DATA OUT
7357 	 *  transfer.
7358 	 *  It is a data underrun condition.
7359 	 */
7360 	case SIR_SODL_UNDERRUN:
7361 		if (cp) {
7362 			OUTONB (HF_PRT, HF_EXT_ERR);
7363 			cp->xerr_status |= XE_SODL_UNRUN;
7364 		}
7365 		goto out;
7366 	/*
7367 	 *  We received a message.
7368 	 */
7369 	case SIR_MSG_RECEIVED:
7370 		if (!cp)
7371 			goto out_stuck;
7372 		switch (np->msgin [0]) {
7373 		/*
7374 		 *  We received an extended message.
7375 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
7376 		 *  and reject all other extended messages.
7377 		 */
7378 		case M_EXTENDED:
7379 			switch (np->msgin [2]) {
7380 			case M_X_MODIFY_DP:
7381 				if (DEBUG_FLAGS & DEBUG_POINTER)
7382 					sym_print_msg(cp,"modify DP",np->msgin);
7383 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
7384 				      (np->msgin[5]<<8)  + (np->msgin[6]);
7385 				sym_modify_dp(np, tp, cp, tmp);
7386 				return;
7387 			case M_X_SYNC_REQ:
7388 				sym_sync_nego(np, tp, cp);
7389 				return;
7390 			case M_X_PPR_REQ:
7391 				sym_ppr_nego(np, tp, cp);
7392 				return;
7393 			case M_X_WIDE_REQ:
7394 				sym_wide_nego(np, tp, cp);
7395 				return;
7396 			default:
7397 				goto out_reject;
7398 			}
7399 			break;
7400 		/*
7401 		 *  We received a 1/2 byte message not handled from SCRIPTS.
7402 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
7403 		 *  RESIDUE messages that haven't been anticipated by
7404 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
7405 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
7406 		 */
7407 		case M_IGN_RESIDUE:
7408 			if (DEBUG_FLAGS & DEBUG_POINTER)
7409 				sym_print_msg(cp,"ign wide residue", np->msgin);
7410 			sym_modify_dp(np, tp, cp, -1);
7411 			return;
7412 		case M_REJECT:
7413 			if (INB (HS_PRT) == HS_NEGOTIATE)
7414 				sym_nego_rejected(np, tp, cp);
7415 			else {
7416 				PRINT_ADDR(cp);
7417 				printf ("M_REJECT received (%x:%x).\n",
7418 					scr_to_cpu(np->lastmsg), np->msgout[0]);
7419 			}
7420 			goto out_clrack;
7421 			break;
7422 		default:
7423 			goto out_reject;
7424 		}
7425 		break;
7426 	/*
7427 	 *  We received an unknown message.
7428 	 *  Ignore all MSG IN phases and reject it.
7429 	 */
7430 	case SIR_MSG_WEIRD:
7431 		sym_print_msg(cp, "WEIRD message received", np->msgin);
7432 		OUTL (nc_dsp, SCRIPTH_BA (np, msg_weird));
7433 		return;
7434 	/*
7435 	 *  Negotiation failed.
7436 	 *  Target does not send us the reply.
7437 	 *  Remove the HS_NEGOTIATE status.
7438 	 */
7439 	case SIR_NEGO_FAILED:
7440 		OUTB (HS_PRT, HS_BUSY);
7441 	/*
7442 	 *  Negotiation failed.
7443 	 *  Target does not want answer message.
7444 	 */
7445 	case SIR_NEGO_PROTO:
7446 		sym_nego_default(np, tp, cp);
7447 		goto out;
7448 	};
7449 
7450 out:
7451 	OUTONB (nc_dcntl, (STD|NOCOM));
7452 	return;
7453 out_reject:
7454 	OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad));
7455 	return;
7456 out_clrack:
7457 	OUTL (nc_dsp, SCRIPT_BA (np, clrack));
7458 	return;
7459 out_stuck:
7460 }
7461 
7462 /*
7463  *  Acquire a control block
7464  */
7465 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
7466 {
7467 	tcb_p tp = &np->target[tn];
7468 	lcb_p lp = sym_lp(np, tp, ln);
7469 	u_short tag = NO_TAG;
7470 	SYM_QUEHEAD *qp;
7471 	ccb_p cp = (ccb_p) 0;
7472 
7473 	/*
7474 	 *  Look for a free CCB
7475 	 */
7476 	if (sym_que_empty(&np->free_ccbq))
7477 		(void) sym_alloc_ccb(np);
7478 	qp = sym_remque_head(&np->free_ccbq);
7479 	if (!qp)
7480 		goto out;
7481 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7482 
7483 	/*
7484 	 *  If the LCB is not yet available and the LUN
7485 	 *  has been probed ok, try to allocate the LCB.
7486 	 */
7487 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
7488 		lp = sym_alloc_lcb(np, tn, ln);
7489 		if (!lp)
7490 			goto out_free;
7491 	}
7492 
7493 	/*
7494 	 *  If the LCB is not available here, then the
7495 	 *  logical unit is not yet discovered. For those
7496 	 *  ones only accept 1 SCSI IO per logical unit,
7497 	 *  since we cannot allow disconnections.
7498 	 */
7499 	if (!lp) {
7500 		if (!sym_is_bit(tp->busy0_map, ln))
7501 			sym_set_bit(tp->busy0_map, ln);
7502 		else
7503 			goto out_free;
7504 	} else {
7505 		/*
7506 		 *  If we have been asked for a tagged command.
7507 		 */
7508 		if (tag_order) {
7509 			/*
7510 			 *  Debugging purpose.
7511 			 */
7512 			assert(lp->busy_itl == 0);
7513 			/*
7514 			 *  Allocate resources for tags if not yet.
7515 			 */
7516 			if (!lp->cb_tags) {
7517 				sym_alloc_lcb_tags(np, tn, ln);
7518 				if (!lp->cb_tags)
7519 					goto out_free;
7520 			}
7521 			/*
7522 			 *  Get a tag for this SCSI IO and set up
7523 			 *  the CCB bus address for reselection,
7524 			 *  and count it for this LUN.
7525 			 *  Toggle reselect path to tagged.
7526 			 */
7527 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
7528 				tag = lp->cb_tags[lp->ia_tag];
7529 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
7530 					lp->ia_tag = 0;
7531 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
7532 				++lp->busy_itlq;
7533 				lp->resel_sa =
7534 					cpu_to_scr(SCRIPT_BA (np, resel_tag));
7535 			}
7536 			else
7537 				goto out_free;
7538 		}
7539 		/*
7540 		 *  This command will not be tagged.
7541 		 *  If we already have either a tagged or untagged
7542 		 *  one, refuse to overlap this untagged one.
7543 		 */
7544 		else {
7545 			/*
7546 			 *  Debugging purpose.
7547 			 */
7548 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
7549 			/*
7550 			 *  Count this nexus for this LUN.
7551 			 *  Set up the CCB bus address for reselection.
7552 			 *  Toggle reselect path to untagged.
7553 			 */
7554 			if (++lp->busy_itl == 1) {
7555 				lp->itl_task_sa = cpu_to_scr(cp->ccb_ba);
7556 				lp->resel_sa =
7557 					cpu_to_scr(SCRIPT_BA (np,resel_no_tag));
7558 			}
7559 			else
7560 				goto out_free;
7561 		}
7562 	}
7563 	/*
7564 	 *  Put the CCB into the busy queue.
7565 	 */
7566 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
7567 
7568 	/*
7569 	 *  Remember all informations needed to free this CCB.
7570 	 */
7571 	cp->to_abort = 0;
7572 	cp->tag	   = tag;
7573 	cp->target = tn;
7574 	cp->lun    = ln;
7575 
7576 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7577 		PRINT_LUN(np, tn, ln);
7578 		printf ("ccb @%p using tag %d.\n", cp, tag);
7579 	}
7580 
7581 out:
7582 	return cp;
7583 out_free:
7584 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
7585 	return (ccb_p) 0;
7586 }
7587 
7588 /*
7589  *  Release one control block
7590  */
7591 static void sym_free_ccb (hcb_p np, ccb_p cp)
7592 {
7593 	tcb_p tp = &np->target[cp->target];
7594 	lcb_p lp = sym_lp(np, tp, cp->lun);
7595 
7596 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7597 		PRINT_LUN(np, cp->target, cp->lun);
7598 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
7599 	}
7600 
7601 	/*
7602 	 *  If LCB available,
7603 	 */
7604 	if (lp) {
7605 		/*
7606 		 *  If tagged, release the tag, set the relect path
7607 		 */
7608 		if (cp->tag != NO_TAG) {
7609 			/*
7610 			 *  Free the tag value.
7611 			 */
7612 			lp->cb_tags[lp->if_tag] = cp->tag;
7613 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
7614 				lp->if_tag = 0;
7615 			/*
7616 			 *  Make the reselect path invalid,
7617 			 *  and uncount this CCB.
7618 			 */
7619 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
7620 			--lp->busy_itlq;
7621 		} else {	/* Untagged */
7622 			/*
7623 			 *  Make the reselect path invalid,
7624 			 *  and uncount this CCB.
7625 			 */
7626 			lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba);
7627 			--lp->busy_itl;
7628 		}
7629 		/*
7630 		 *  If no JOB active, make the LUN reselect path invalid.
7631 		 */
7632 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
7633 			lp->resel_sa = cpu_to_scr(SCRIPTH_BA(np,resel_bad_lun));
7634 	}
7635 	/*
7636 	 *  Otherwise, we only accept 1 IO per LUN.
7637 	 *  Clear the bit that keeps track of this IO.
7638 	 */
7639 	else
7640 		sym_clr_bit(tp->busy0_map, cp->lun);
7641 
7642 	/*
7643 	 *  We donnot queue more than 1 ccb per target
7644 	 *  with negotiation at any time. If this ccb was
7645 	 *  used for negotiation, clear this info in the tcb.
7646 	 */
7647 	if (cp == tp->nego_cp)
7648 		tp->nego_cp = 0;
7649 
7650 #ifdef SYM_CONF_IARB_SUPPORT
7651 	/*
7652 	 *  If we just complete the last queued CCB,
7653 	 *  clear this info that is no longer relevant.
7654 	 */
7655 	if (cp == np->last_cp)
7656 		np->last_cp = 0;
7657 #endif
7658 	/*
7659 	 *  Make this CCB available.
7660 	 */
7661 	cp->cam_ccb = 0;
7662 	cp->host_status = HS_IDLE;
7663 	sym_remque(&cp->link_ccbq);
7664 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
7665 }
7666 
7667 /*
7668  *  Allocate a CCB from memory and initialize its fixed part.
7669  */
7670 static ccb_p sym_alloc_ccb(hcb_p np)
7671 {
7672 	ccb_p cp = 0;
7673 	int hcode;
7674 
7675 	/*
7676 	 *  Prevent from allocating more CCBs than we can
7677 	 *  queue to the controller.
7678 	 */
7679 	if (np->actccbs >= SYM_CONF_MAX_START)
7680 		return 0;
7681 
7682 	/*
7683 	 *  Allocate memory for this CCB.
7684 	 */
7685 	cp = sym_calloc(sizeof(struct sym_ccb), "CCB");
7686 	if (!cp)
7687 		return 0;
7688 
7689 	/*
7690 	 *  Count it.
7691 	 */
7692 	np->actccbs++;
7693 
7694 	/*
7695 	 *  Compute the bus address of this ccb.
7696 	 */
7697 	cp->ccb_ba = vtobus(cp);
7698 
7699 	/*
7700 	 *  Insert this ccb into the hashed list.
7701 	 */
7702 	hcode = CCB_HASH_CODE(cp->ccb_ba);
7703 	cp->link_ccbh = np->ccbh[hcode];
7704 	np->ccbh[hcode] = cp;
7705 
7706 	/*
7707 	 *  Initialyze the start and restart actions.
7708 	 */
7709 	cp->phys.go.start   = cpu_to_scr(SCRIPT_BA (np, idle));
7710 	cp->phys.go.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l));
7711 
7712  	/*
7713 	 *  Initilialyze some other fields.
7714 	 */
7715 	cp->phys.smsg_ext.addr = cpu_to_scr(vtobus(&np->msgin[2]));
7716 
7717 	/*
7718 	 *  Chain into free ccb queue.
7719 	 */
7720 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
7721 
7722 	return cp;
7723 }
7724 
7725 /*
7726  *  Look up a CCB from a DSA value.
7727  */
7728 static ccb_p sym_ccb_from_dsa(hcb_p np, u_long dsa)
7729 {
7730 	int hcode;
7731 	ccb_p cp;
7732 
7733 	hcode = CCB_HASH_CODE(dsa);
7734 	cp = np->ccbh[hcode];
7735 	while (cp) {
7736 		if (cp->ccb_ba == dsa)
7737 			break;
7738 		cp = cp->link_ccbh;
7739 	}
7740 
7741 	return cp;
7742 }
7743 
7744 /*
7745  *  Target control block initialisation.
7746  *  Nothing important to do at the moment.
7747  */
7748 static void sym_init_tcb (hcb_p np, u_char tn)
7749 {
7750 	/*
7751 	 *  Check some alignments required by the chip.
7752 	 */
7753 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
7754 		offsetof(struct sym_tcb, sval)) &3) == 0);
7755 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
7756 		offsetof(struct sym_tcb, wval)) &3) == 0);
7757 }
7758 
7759 /*
7760  *  Lun control block allocation and initialization.
7761  */
7762 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
7763 {
7764 	tcb_p tp = &np->target[tn];
7765 	lcb_p lp = sym_lp(np, tp, ln);
7766 
7767 	/*
7768 	 *  Already done, just return.
7769 	 */
7770 	if (lp)
7771 		return lp;
7772 	/*
7773 	 *  Check against some race.
7774 	 */
7775 	assert(!sym_is_bit(tp->busy0_map, ln));
7776 
7777 	/*
7778 	 *  Initialize the target control block if not yet.
7779 	 */
7780 	sym_init_tcb (np, tn);
7781 
7782 	/*
7783 	 *  Allocate the LCB bus address array.
7784 	 *  Compute the bus address of this table.
7785 	 */
7786 	if (ln && !tp->luntbl) {
7787 		int i;
7788 
7789 		tp->luntbl = sym_calloc(256, "LUNTBL");
7790 		if (!tp->luntbl)
7791 			goto fail;
7792 		for (i = 0 ; i < 64 ; i++)
7793 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
7794 		tp->luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
7795 	}
7796 
7797 	/*
7798 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
7799 	 */
7800 	if (ln && !tp->lunmp) {
7801 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
7802 				   "LUNMP");
7803 		if (!tp->lunmp)
7804 			goto fail;
7805 	}
7806 
7807 	/*
7808 	 *  Allocate the lcb.
7809 	 *  Make it available to the chip.
7810 	 */
7811 	lp = sym_calloc(sizeof(struct sym_lcb), "LCB");
7812 	if (!lp)
7813 		goto fail;
7814 	if (ln) {
7815 		tp->lunmp[ln] = lp;
7816 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
7817 	}
7818 	else {
7819 		tp->lun0p = lp;
7820 		tp->lun0_sa = cpu_to_scr(vtobus(lp));
7821 	}
7822 
7823 	/*
7824 	 *  Let the itl task point to error handling.
7825 	 */
7826 	lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba);
7827 
7828 	/*
7829 	 *  Set the reselect pattern to our default. :)
7830 	 */
7831 	lp->resel_sa = cpu_to_scr(SCRIPTH_BA(np, resel_bad_lun));
7832 
7833 	/*
7834 	 *  Set user capabilities.
7835 	 */
7836 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
7837 
7838 fail:
7839 	return lp;
7840 }
7841 
7842 /*
7843  *  Allocate LCB resources for tagged command queuing.
7844  */
7845 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
7846 {
7847 	tcb_p tp = &np->target[tn];
7848 	lcb_p lp = sym_lp(np, tp, ln);
7849 	int i;
7850 
7851 	/*
7852 	 *  If LCB not available, try to allocate it.
7853 	 */
7854 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
7855 		goto fail;
7856 
7857 	/*
7858 	 *  Allocate the task table and and the tag allocation
7859 	 *  circular buffer. We want both or none.
7860 	 */
7861 	lp->itlq_tbl = sym_calloc(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
7862 	if (!lp->itlq_tbl)
7863 		goto fail;
7864 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
7865 	if (!lp->cb_tags) {
7866 		sym_mfree(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
7867 		lp->itlq_tbl = 0;
7868 		goto fail;
7869 	}
7870 
7871 	/*
7872 	 *  Initialize the task table with invalid entries.
7873 	 */
7874 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
7875 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
7876 
7877 	/*
7878 	 *  Fill up the tag buffer with tag numbers.
7879 	 */
7880 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
7881 		lp->cb_tags[i] = i;
7882 
7883 	/*
7884 	 *  Make the task table available to SCRIPTS,
7885 	 *  And accept tagged commands now.
7886 	 */
7887 	lp->itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
7888 
7889 	return;
7890 fail:
7891 }
7892 
7893 /*
7894  *  Test the pci bus snoop logic :-(
7895  *
7896  *  Has to be called with interrupts disabled.
7897  */
7898 #ifndef SYM_CONF_IOMAPPED
7899 static int sym_regtest (hcb_p np)
7900 {
7901 	register volatile u32 data;
7902 	/*
7903 	 *  chip registers may NOT be cached.
7904 	 *  write 0xffffffff to a read only register area,
7905 	 *  and try to read it back.
7906 	 */
7907 	data = 0xffffffff;
7908 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
7909 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
7910 #if 1
7911 	if (data == 0xffffffff) {
7912 #else
7913 	if ((data & 0xe2f0fffd) != 0x02000080) {
7914 #endif
7915 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7916 			(unsigned) data);
7917 		return (0x10);
7918 	};
7919 	return (0);
7920 }
7921 #endif
7922 
7923 static int sym_snooptest (hcb_p np)
7924 {
7925 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc;
7926 	int	i, err=0;
7927 #ifndef SYM_CONF_IOMAPPED
7928 	err |= sym_regtest (np);
7929 	if (err) return (err);
7930 #endif
7931 	/*
7932 	 *  init
7933 	 */
7934 	pc  = SCRIPTH0_BA (np, snooptest);
7935 	host_wr = 1;
7936 	sym_wr  = 2;
7937 	/*
7938 	 *  Set memory and register.
7939 	 */
7940 	np->cache = cpu_to_scr(host_wr);
7941 	OUTL (nc_temp, sym_wr);
7942 	/*
7943 	 *  Start script (exchange values)
7944 	 */
7945 	OUTL (nc_dsa, vtobus(np));
7946 	OUTL (nc_dsp, pc);
7947 	/*
7948 	 *  Wait 'til done (with timeout)
7949 	 */
7950 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
7951 		if (INB(nc_istat) & (INTF|SIP|DIP))
7952 			break;
7953 	/*
7954 	 *  Save termination position.
7955 	 */
7956 	pc = INL (nc_dsp);
7957 	/*
7958 	 *  Read memory and register.
7959 	 */
7960 	host_rd = scr_to_cpu(np->cache);
7961 	sym_rd  = INL (nc_scratcha);
7962 	sym_bk  = INL (nc_temp);
7963 
7964 	/*
7965 	 *  check for timeout
7966 	 */
7967 	if (i>=SYM_SNOOP_TIMEOUT) {
7968 		printf ("CACHE TEST FAILED: timeout.\n");
7969 		return (0x20);
7970 	};
7971 	/*
7972 	 *  Check termination position.
7973 	 */
7974 	if (pc != SCRIPTH0_BA (np, snoopend)+8) {
7975 		printf ("CACHE TEST FAILED: script execution failed.\n");
7976 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
7977 			(u_long) SCRIPTH0_BA (np, snooptest), (u_long) pc,
7978 			(u_long) SCRIPTH0_BA (np, snoopend) +8);
7979 		return (0x40);
7980 	};
7981 	/*
7982 	 *  Show results.
7983 	 */
7984 	if (host_wr != sym_rd) {
7985 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
7986 			(int) host_wr, (int) sym_rd);
7987 		err |= 1;
7988 	};
7989 	if (host_rd != sym_wr) {
7990 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
7991 			(int) sym_wr, (int) host_rd);
7992 		err |= 2;
7993 	};
7994 	if (sym_bk != sym_wr) {
7995 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
7996 			(int) sym_wr, (int) sym_bk);
7997 		err |= 4;
7998 	};
7999 	return (err);
8000 }
8001 
8002 /*
8003  *  Determine the chip's clock frequency.
8004  *
8005  *  This is essential for the negotiation of the synchronous
8006  *  transfer rate.
8007  *
8008  *  Note: we have to return the correct value.
8009  *  THERE IS NO SAFE DEFAULT VALUE.
8010  *
8011  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
8012  *  53C860 and 53C875 rev. 1 support fast20 transfers but
8013  *  do not have a clock doubler and so are provided with a
8014  *  80 MHz clock. All other fast20 boards incorporate a doubler
8015  *  and so should be delivered with a 40 MHz clock.
8016  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
8017  *  clock and provide a clock quadrupler (160 Mhz).
8018  */
8019 
8020 /*
8021  *  Select SCSI clock frequency
8022  */
8023 static void sym_selectclock(hcb_p np, u_char scntl3)
8024 {
8025 	/*
8026 	 *  If multiplier not present or not selected, leave here.
8027 	 */
8028 	if (np->multiplier <= 1) {
8029 		OUTB(nc_scntl3,	scntl3);
8030 		return;
8031 	}
8032 
8033 	if (sym_verbose >= 2)
8034 		printf ("%s: enabling clock multiplier\n", sym_name(np));
8035 
8036 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
8037 	/*
8038 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
8039 	 *  Otherwise wait 20 micro-seconds.
8040 	 */
8041 	if (np->features & FE_LCKFRQ) {
8042 		int i = 20;
8043 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
8044 			UDELAY (20);
8045 		if (!i)
8046 			printf("%s: the chip cannot lock the frequency\n",
8047 				sym_name(np));
8048 	} else
8049 		UDELAY (20);
8050 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
8051 	OUTB(nc_scntl3,	scntl3);
8052 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
8053 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
8054 }
8055 
8056 /*
8057  *  calculate SCSI clock frequency (in KHz)
8058  */
8059 static unsigned getfreq (hcb_p np, int gen)
8060 {
8061 	unsigned int ms = 0;
8062 	unsigned int f;
8063 
8064 	/*
8065 	 * Measure GEN timer delay in order
8066 	 * to calculate SCSI clock frequency
8067 	 *
8068 	 * This code will never execute too
8069 	 * many loop iterations (if DELAY is
8070 	 * reasonably correct). It could get
8071 	 * too low a delay (too high a freq.)
8072 	 * if the CPU is slow executing the
8073 	 * loop for some reason (an NMI, for
8074 	 * example). For this reason we will
8075 	 * if multiple measurements are to be
8076 	 * performed trust the higher delay
8077 	 * (lower frequency returned).
8078 	 */
8079 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
8080 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
8081 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
8082 	(void) INW (nc_sist);	/* another one, just to be sure :) */
8083 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
8084 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
8085 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
8086 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
8087 		UDELAY (1000);	/* count ms */
8088 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
8089  	/*
8090  	 * set prescaler to divide by whatever 0 means
8091  	 * 0 ought to choose divide by 2, but appears
8092  	 * to set divide by 3.5 mode in my 53c810 ...
8093  	 */
8094  	OUTB (nc_scntl3, 0);
8095 
8096   	/*
8097  	 * adjust for prescaler, and convert into KHz
8098   	 */
8099 	f = ms ? ((1 << gen) * 4340) / ms : 0;
8100 
8101 	if (sym_verbose >= 2)
8102 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
8103 			sym_name(np), gen, ms, f);
8104 
8105 	return f;
8106 }
8107 
8108 static unsigned sym_getfreq (hcb_p np)
8109 {
8110 	u_int f1, f2;
8111 	int gen = 11;
8112 
8113 	(void) getfreq (np, gen);	/* throw away first result */
8114 	f1 = getfreq (np, gen);
8115 	f2 = getfreq (np, gen);
8116 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
8117 	return f1;
8118 }
8119 
8120 /*
8121  *  Get/probe chip SCSI clock frequency
8122  */
8123 static void sym_getclock (hcb_p np, int mult)
8124 {
8125 	unsigned char scntl3 = np->sv_scntl3;
8126 	unsigned char stest1 = np->sv_stest1;
8127 	unsigned f1;
8128 
8129 	/*
8130 	 *  For the C10 core, assume 40 MHz.
8131 	 */
8132 	if (np->features & FE_C10) {
8133 		np->multiplier = mult;
8134 		np->clock_khz = 40000 * mult;
8135 		return;
8136 	}
8137 
8138 	np->multiplier = 1;
8139 	f1 = 40000;
8140 	/*
8141 	 *  True with 875/895/896/895A with clock multiplier selected
8142 	 */
8143 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
8144 		if (sym_verbose >= 2)
8145 			printf ("%s: clock multiplier found\n", sym_name(np));
8146 		np->multiplier = mult;
8147 	}
8148 
8149 	/*
8150 	 *  If multiplier not found or scntl3 not 7,5,3,
8151 	 *  reset chip and get frequency from general purpose timer.
8152 	 *  Otherwise trust scntl3 BIOS setting.
8153 	 */
8154 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
8155 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
8156 		f1 = sym_getfreq (np);
8157 
8158 		if (sym_verbose)
8159 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
8160 
8161 		if	(f1 <	45000)		f1 =  40000;
8162 		else if (f1 <	55000)		f1 =  50000;
8163 		else				f1 =  80000;
8164 
8165 		if (f1 < 80000 && mult > 1) {
8166 			if (sym_verbose >= 2)
8167 				printf ("%s: clock multiplier assumed\n",
8168 					sym_name(np));
8169 			np->multiplier	= mult;
8170 		}
8171 	} else {
8172 		if	((scntl3 & 7) == 3)	f1 =  40000;
8173 		else if	((scntl3 & 7) == 5)	f1 =  80000;
8174 		else 				f1 = 160000;
8175 
8176 		f1 /= np->multiplier;
8177 	}
8178 
8179 	/*
8180 	 *  Compute controller synchronous parameters.
8181 	 */
8182 	f1		*= np->multiplier;
8183 	np->clock_khz	= f1;
8184 }
8185 
8186 /*
8187  *  Get/probe PCI clock frequency
8188  */
8189 static int sym_getpciclock (hcb_p np)
8190 {
8191 	static int f = 0;
8192 
8193 	/* For the C10, this will not work */
8194 	if (!f && !(np->features & FE_C10)) {
8195 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
8196 		f = (int) sym_getfreq (np);
8197 		OUTB (nc_stest1, 0);
8198 	}
8199 	return f;
8200 }
8201 
8202 /*============= DRIVER ACTION/COMPLETION ====================*/
8203 
8204 /*
8205  *  Print something that tells about extended errors.
8206  */
8207 static void sym_print_xerr(ccb_p cp, int x_status)
8208 {
8209 	if (x_status & XE_PARITY_ERR) {
8210 		PRINT_ADDR(cp);
8211 		printf ("unrecovered SCSI parity error.\n");
8212 	}
8213 	if (x_status & XE_EXTRA_DATA) {
8214 		PRINT_ADDR(cp);
8215 		printf ("extraneous data discarded.\n");
8216 	}
8217 	if (x_status & XE_BAD_PHASE) {
8218 		PRINT_ADDR(cp);
8219 		printf ("illegal scsi phase (4/5).\n");
8220 	}
8221 	if (x_status & XE_SODL_UNRUN) {
8222 		PRINT_ADDR(cp);
8223 		printf ("ODD transfer in DATA OUT phase.\n");
8224 	}
8225 	if (x_status & XE_SWIDE_OVRUN) {
8226 		PRINT_ADDR(cp);
8227 		printf ("ODD transfer in DATA IN phase.\n");
8228 	}
8229 }
8230 
8231 /*
8232  *  Choose the more appropriate CAM status if
8233  *  the IO encountered an extended error.
8234  */
8235 static int sym_xerr_cam_status(int cam_status, int x_status)
8236 {
8237 	if (x_status) {
8238 		if	(x_status & XE_PARITY_ERR)
8239 			cam_status = CAM_UNCOR_PARITY;
8240 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
8241 			cam_status = CAM_DATA_RUN_ERR;
8242 		else if	(x_status & XE_BAD_PHASE)
8243 			cam_status = CAM_REQ_CMP_ERR;
8244 		else
8245 			cam_status = CAM_REQ_CMP_ERR;
8246 	}
8247 	return cam_status;
8248 }
8249 
8250 /*
8251  *  Complete execution of a SCSI command with extented
8252  *  error, SCSI status error, or having been auto-sensed.
8253  *
8254  *  The SCRIPTS processor is not running there, so we
8255  *  can safely access IO registers and remove JOBs from
8256  *  the START queue.
8257  *  SCRATCHA is assumed to have been loaded with STARTPOS
8258  *  before the SCRIPTS called the C code.
8259  */
8260 static void sym_complete_error (hcb_p np, ccb_p cp)
8261 {
8262 	struct ccb_scsiio *csio;
8263 	u_int cam_status;
8264 	int i;
8265 
8266 	/*
8267 	 *  Paranoid check. :)
8268 	 */
8269 	if (!cp || !cp->cam_ccb)
8270 		return;
8271 
8272 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
8273 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
8274 			cp->host_status, cp->ssss_status, cp->host_flags,
8275 			cp->target, cp->lun);
8276 		MDELAY(100);
8277 	}
8278 
8279 	/*
8280 	 *  Get command, target and lun pointers.
8281 	 */
8282 	csio = &cp->cam_ccb->csio;
8283 
8284 	/*
8285 	 *  Check for extended errors.
8286 	 */
8287 	if (cp->xerr_status) {
8288 		if (sym_verbose)
8289 			sym_print_xerr(cp, cp->xerr_status);
8290 		if (cp->host_status == HS_COMPLETE)
8291 			cp->host_status = HS_COMP_ERR;
8292 	}
8293 
8294 	/*
8295 	 *  Calculate the residual.
8296 	 */
8297 	csio->sense_resid = 0;
8298 	csio->resid = sym_compute_residual(np, cp);
8299 
8300 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
8301 		csio->resid  = 0;	/* throw them away. :)		   */
8302 		cp->sv_resid = 0;
8303 	}
8304 
8305 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
8306 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
8307 		csio->sense_resid = csio->resid;	/* Swap residuals */
8308 		csio->resid       = cp->sv_resid;
8309 		cp->sv_resid	  = 0;
8310 		if (sym_verbose && cp->sv_xerr_status)
8311 			sym_print_xerr(cp, cp->sv_xerr_status);
8312 		if (cp->host_status == HS_COMPLETE &&
8313 		    cp->ssss_status == S_GOOD &&
8314 		    cp->xerr_status == 0) {
8315 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
8316 							 cp->sv_xerr_status);
8317 			cam_status |= CAM_AUTOSNS_VALID;
8318 #if 0
8319 			/*
8320 			 *  If the device reports a UNIT ATTENTION condition
8321 			 *  due to a RESET condition, we should consider all
8322 			 *  disconnect CCBs for this unit as aborted.
8323 			 */
8324 			if (1) {
8325 				u_char *p;
8326 				p  = (u_char *) &cp->cam_ccb->csio.sense_data;
8327 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
8328 					sym_clear_tasks(np, CAM_REQ_ABORTED,
8329 							cp->target,cp->lun, -1);
8330 			}
8331 #endif
8332 		}
8333 		else
8334 			cam_status = CAM_AUTOSENSE_FAIL;
8335 	}
8336 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
8337 		csio->scsi_status = cp->ssss_status;
8338 		cam_status = CAM_SCSI_STATUS_ERROR;
8339 	}
8340 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
8341 		cam_status = CAM_SEL_TIMEOUT;
8342 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
8343 		cam_status = CAM_UNEXP_BUSFREE;
8344 	else {						/* Extended error */
8345 		if (sym_verbose) {
8346 			PRINT_ADDR(cp);
8347 			printf ("COMMAND FAILED (%x %x %x).\n",
8348 				cp->host_status, cp->ssss_status,
8349 				cp->xerr_status);
8350 		}
8351 		csio->scsi_status = cp->ssss_status;
8352 		/*
8353 		 *  Set the most appropriate value for CAM status.
8354 		 */
8355 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
8356 						 cp->xerr_status);
8357 	}
8358 
8359 	/*
8360 	 *  Dequeue all queued CCBs for that device
8361 	 *  not yet started by SCRIPTS.
8362 	 */
8363 	i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4;
8364 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
8365 
8366 	/*
8367 	 *  Restart the SCRIPTS processor.
8368 	 */
8369 	OUTL (nc_dsp, SCRIPT_BA (np, start));
8370 
8371 	/*
8372 	 *  Add this one to the COMP queue.
8373 	 *  Complete all those commands with either error
8374 	 *  or requeue condition.
8375 	 */
8376 	sym_set_cam_status((union ccb *) csio, cam_status);
8377 	sym_remque(&cp->link_ccbq);
8378 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
8379 	sym_flush_comp_queue(np, 0);
8380 }
8381 
8382 /*
8383  *  Complete execution of a successful SCSI command.
8384  *
8385  *  Only successful commands go to the DONE queue,
8386  *  since we need to have the SCRIPTS processor
8387  *  stopped on any error condition.
8388  *  The SCRIPTS processor is running while we are
8389  *  completing successful commands.
8390  */
8391 static void sym_complete_ok (hcb_p np, ccb_p cp)
8392 {
8393 	struct ccb_scsiio *csio;
8394 	tcb_p tp;
8395 	lcb_p lp;
8396 
8397 	/*
8398 	 *  Paranoid check. :)
8399 	 */
8400 	if (!cp || !cp->cam_ccb)
8401 		return;
8402 	assert (cp->host_status == HS_COMPLETE);
8403 
8404 	/*
8405 	 *  Get command, target and lun pointers.
8406 	 */
8407 	csio = &cp->cam_ccb->csio;
8408 	tp = &np->target[cp->target];
8409 	lp = sym_lp(np, tp, cp->lun);
8410 
8411 	/*
8412 	 *  Assume device discovered on first success.
8413 	 */
8414 	if (!lp)
8415 		sym_set_bit(tp->lun_map, cp->lun);
8416 
8417 	/*
8418 	 *  If all data have been transferred, given than no
8419 	 *  extended error did occur, there is no residual.
8420 	 */
8421 	csio->resid = 0;
8422 	if (cp->phys.lastp != cp->phys.goalp)
8423 		csio->resid = sym_compute_residual(np, cp);
8424 
8425 	/*
8426 	 *  Wrong transfer residuals may be worse than just always
8427 	 *  returning zero. User can disable this feature from
8428 	 *  sym_conf.h. Residual support is enabled by default.
8429 	 */
8430 	if (!SYM_CONF_RESIDUAL_SUPPORT)
8431 		csio->resid  = 0;
8432 #ifdef	SYM_DEBUG_PM_WITH_WSR
8433 if (csio->resid) {
8434 	printf("XXXX %d %d %d\n", csio->dxfer_len,  csio->resid,
8435 				  csio->dxfer_len - csio->resid);
8436 	csio->resid = 0;
8437 }
8438 #endif
8439 
8440 	/*
8441 	 *  Set status and complete the command.
8442 	 */
8443 	csio->scsi_status = cp->ssss_status;
8444 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
8445 	sym_free_ccb (np, cp);
8446 	sym_xpt_done(np, (union ccb *) csio);
8447 }
8448 
8449 /*
8450  *  Our timeout handler.
8451  */
8452 static void sym_timeout1(void *arg)
8453 {
8454 	union ccb *ccb = (union ccb *) arg;
8455 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
8456 
8457 	/*
8458 	 *  Check that the CAM CCB is still queued.
8459 	 */
8460 	if (!np)
8461 		return;
8462 
8463 	switch(ccb->ccb_h.func_code) {
8464 	case XPT_SCSI_IO:
8465 		(void) sym_abort_scsiio(np, ccb, 1);
8466 		break;
8467 	default:
8468 		break;
8469 	}
8470 }
8471 
8472 static void sym_timeout(void *arg)
8473 {
8474 	int s = splcam();
8475 	sym_timeout1(arg);
8476 	splx(s);
8477 }
8478 
8479 /*
8480  *  Abort an SCSI IO.
8481  */
8482 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
8483 {
8484 	ccb_p cp;
8485 	SYM_QUEHEAD *qp;
8486 
8487 	/*
8488 	 *  Look up our CCB control block.
8489 	 */
8490 	cp = 0;
8491 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
8492 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8493 		if (cp2->cam_ccb == ccb) {
8494 			cp = cp2;
8495 			break;
8496 		}
8497 	}
8498 	if (!cp)
8499 		return -1;
8500 
8501 	/*
8502 	 *  If a previous abort didn't succeed in time,
8503 	 *  perform a BUS reset.
8504 	 */
8505 	if (cp->to_abort) {
8506 		sym_reset_scsi_bus(np, 1);
8507 		return 0;
8508 	}
8509 
8510 	/*
8511 	 *  Mark the CCB for abort and allow time for.
8512 	 */
8513 	cp->to_abort = timed_out ? 2 : 1;
8514 	ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz);
8515 
8516 	/*
8517 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
8518 	 */
8519 	np->istat_sem = SEM;
8520 	OUTB (nc_istat, SIGP|SEM);
8521 	return 0;
8522 }
8523 
8524 /*
8525  *  Reset a SCSI device (all LUNs of a target).
8526  */
8527 static void sym_reset_dev(hcb_p np, union ccb *ccb)
8528 {
8529 	tcb_p tp;
8530 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
8531 
8532 	if (ccb_h->target_id   == np->myaddr ||
8533 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
8534 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
8535 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
8536 		return;
8537 	}
8538 
8539 	tp = &np->target[ccb_h->target_id];
8540 
8541 	tp->to_reset = 1;
8542 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8543 
8544 	np->istat_sem = SEM;
8545 	OUTB (nc_istat, SIGP|SEM);
8546 	return;
8547 }
8548 
8549 /*
8550  *  SIM action entry point.
8551  */
8552 static void sym_action(struct cam_sim *sim, union ccb *ccb)
8553 {
8554 	int s = splcam();
8555 	sym_action1(sim, ccb);
8556 	splx(s);
8557 }
8558 
8559 static void sym_action1(struct cam_sim *sim, union ccb *ccb)
8560 {
8561 	hcb_p	np;
8562 	tcb_p	tp;
8563 	lcb_p	lp;
8564 	ccb_p	cp;
8565 	int 	tmp;
8566 	u_char	idmsg, *msgptr;
8567 	u_int   msglen;
8568 	struct	ccb_scsiio *csio;
8569 	struct	ccb_hdr  *ccb_h;
8570 
8571 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
8572 
8573 	/*
8574 	 *  Retrieve our controller data structure.
8575 	 */
8576 	np = (hcb_p) cam_sim_softc(sim);
8577 
8578 	/*
8579 	 *  The common case is SCSI IO.
8580 	 *  We deal with other ones elsewhere.
8581 	 */
8582 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
8583 		sym_action2(sim, ccb);
8584 		return;
8585 	}
8586 	csio  = &ccb->csio;
8587 	ccb_h = &csio->ccb_h;
8588 
8589 	/*
8590 	 *  Work around races.
8591 	 */
8592 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
8593 		xpt_done(ccb);
8594 		return;
8595 	}
8596 
8597 	/*
8598 	 *  Minimal checkings, so that we will not
8599 	 *  go outside our tables.
8600 	 */
8601 	if (ccb_h->target_id   == np->myaddr ||
8602 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
8603 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
8604 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
8605 		return;
8606         }
8607 
8608 	/*
8609 	 *  Retreive the target and lun descriptors.
8610 	 */
8611 	tp = &np->target[ccb_h->target_id];
8612 	lp = sym_lp(np, tp, ccb_h->target_lun);
8613 
8614 	/*
8615 	 *  Complete the 1st INQUIRY command with error
8616 	 *  condition if the device is flagged NOSCAN
8617 	 *  at BOOT in the NVRAM. This may speed up
8618 	 *  the boot and maintain coherency with BIOS
8619 	 *  device numbering. Clearing the flag allows
8620 	 *  user to rescan skipped devices later.
8621 	 *  We also return error for devices not flagged
8622 	 *  for SCAN LUNS in the NVRAM since some mono-lun
8623 	 *  devices behave badly when asked for some non
8624 	 *  zero LUN. Btw, this is an absolute hack.:-)
8625 	 */
8626 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
8627 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
8628 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
8629 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
8630 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
8631 		     ccb_h->target_lun != 0)) {
8632 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
8633 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
8634 			return;
8635 		}
8636 	}
8637 
8638 	/*
8639 	 *  Get a control block for this IO.
8640 	 */
8641 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
8642 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
8643 	if (!cp) {
8644 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
8645 		return;
8646 	}
8647 
8648 	/*
8649 	 *  Enqueue this IO in our pending queue.
8650 	 */
8651 	cp->cam_ccb = ccb;
8652 	sym_enqueue_cam_ccb(np, ccb);
8653 
8654 	/*
8655 	 *  Build the IDENTIFY message.
8656 	 */
8657 	idmsg = M_IDENTIFY | cp->lun;
8658 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
8659 		idmsg |= 0x40;
8660 
8661 	msgptr = cp->scsi_smsg;
8662 	msglen = 0;
8663 	msgptr[msglen++] = idmsg;
8664 
8665 	/*
8666 	 *  Build the tag message if present.
8667 	 */
8668 	if (cp->tag != NO_TAG) {
8669 		u_char order = csio->tag_action;
8670 
8671 		switch(order) {
8672 		case M_ORDERED_TAG:
8673 			break;
8674 		case M_HEAD_TAG:
8675 			break;
8676 		default:
8677 			order = M_SIMPLE_TAG;
8678 		}
8679 		msgptr[msglen++] = order;
8680 
8681 		/*
8682 		 *  For less than 128 tags, actual tags are numbered
8683 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
8684 		 *  with devices that have problems with #TAG 0 or too
8685 		 *  great #TAG numbers. For more tags (up to 256),
8686 		 *  we use directly our tag number.
8687 		 */
8688 #if SYM_CONF_MAX_TASK > (512/4)
8689 		msgptr[msglen++] = cp->tag;
8690 #else
8691 		msgptr[msglen++] = (cp->tag << 1) + 1;
8692 #endif
8693 	}
8694 
8695 	/*
8696 	 *  Build a negotiation message if needed.
8697 	 *  (nego_status is filled by sym_prepare_nego())
8698 	 */
8699 	cp->nego_status = 0;
8700 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
8701 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
8702 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
8703 #if 0 /* For now only renegotiate, based on width, period and offset */
8704 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
8705 #else
8706 	    0) {
8707 #endif
8708 		if (!tp->nego_cp && lp)
8709 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
8710 	}
8711 
8712 	/*
8713 	 *  Fill in our ccb
8714 	 */
8715 
8716 	/*
8717 	 *  Startqueue
8718 	 */
8719 	cp->phys.go.start   = cpu_to_scr(SCRIPT_BA (np, select));
8720 	cp->phys.go.restart = cpu_to_scr(SCRIPT_BA (np, resel_dsa));
8721 
8722 	/*
8723 	 *  select
8724 	 */
8725 	cp->phys.select.sel_id		= cp->target;
8726 	cp->phys.select.sel_scntl3	= tp->wval;
8727 	cp->phys.select.sel_sxfer	= tp->sval;
8728 	cp->phys.select.sel_scntl4	= tp->uval;
8729 
8730 	/*
8731 	 *  message
8732 	 */
8733 	cp->phys.smsg.addr	= cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
8734 	cp->phys.smsg.size	= cpu_to_scr(msglen);
8735 
8736 	/*
8737 	 *  command
8738 	 */
8739 	if (sym_setup_cdb(np, csio, cp) < 0) {
8740 		sym_free_ccb(np, cp);
8741 		sym_xpt_done(np, ccb);
8742 		return;
8743 	}
8744 
8745 	/*
8746 	 *  status
8747 	 */
8748 #if	0	/* Provision */
8749 	cp->actualquirks	= tp->quirks;
8750 #endif
8751 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
8752 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
8753 	cp->ssss_status		= S_ILLEGAL;
8754 	cp->xerr_status		= 0;
8755 	cp->host_flags		= 0;
8756 	cp->phys.extra_bytes	= 0;
8757 
8758 	/*
8759 	 *  extreme data pointer.
8760 	 *  shall be positive, so -1 is lower than lowest.:)
8761 	 */
8762 	cp->ext_sg  = -1;
8763 	cp->ext_ofs = 0;
8764 
8765 	/*
8766 	 *  Build the data descriptor block
8767 	 *  and start the IO.
8768 	 */
8769 	if (sym_setup_data(np, csio, cp) < 0) {
8770 		sym_free_ccb(np, cp);
8771 		sym_xpt_done(np, ccb);
8772 		return;
8773 	}
8774 }
8775 
8776 /*
8777  *  How complex it gets to deal with the CDB in CAM.
8778  *  I bet, physical CDBs will never be used on the planet.
8779  */
8780 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8781 {
8782 	struct ccb_hdr *ccb_h;
8783 	u32	cmd_ba;
8784 	int	cmd_len;
8785 
8786 	ccb_h = &csio->ccb_h;
8787 
8788 	/*
8789 	 *  CDB is 16 bytes max.
8790 	 */
8791 	if (csio->cdb_len > 16) {
8792 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8793 		return -1;
8794 	}
8795 	cmd_len = csio->cdb_len;
8796 
8797 	if (ccb_h->flags & CAM_CDB_POINTER) {
8798 		/* CDB is a pointer */
8799 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
8800 			/* CDB pointer is virtual */
8801 			cmd_ba = vtobus(csio->cdb_io.cdb_ptr);
8802 		} else {
8803 			/* CDB pointer is physical */
8804 #if 0
8805 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
8806 #else
8807 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8808 			return -1;
8809 #endif
8810 		}
8811 	} else {
8812 		/* CDB is in the ccb (buffer) */
8813 		cmd_ba = vtobus(csio->cdb_io.cdb_bytes);
8814 	}
8815 
8816 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
8817 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
8818 
8819 	return 0;
8820 }
8821 
8822 /*
8823  *  How complex it gets to deal with the data in CAM.
8824  *  I bet physical data will never be used in our galaxy.
8825  */
8826 static int sym_setup_data(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8827 {
8828 	struct ccb_hdr *ccb_h;
8829 	int dir, retv;
8830 	u32 lastp, goalp;
8831 
8832 	ccb_h = &csio->ccb_h;
8833 
8834 	/*
8835 	 *  Now deal with the data.
8836 	 */
8837 	cp->data_len = 0;
8838 	cp->segments = 0;
8839 
8840 	/*
8841 	 *  No direction means no data.
8842 	 */
8843 	dir = (ccb_h->flags & CAM_DIR_MASK);
8844 	if (dir == CAM_DIR_NONE)
8845 		goto end_scatter;
8846 
8847 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8848 		/* Single buffer */
8849 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8850 			/* Buffer is virtual */
8851 			retv = sym_scatter_virtual(np, cp,
8852 						(vm_offset_t) csio->data_ptr,
8853 						(vm_size_t) csio->dxfer_len);
8854 		} else {
8855 			/* Buffer is physical */
8856 			retv = sym_scatter_physical(np, cp,
8857 						(vm_offset_t) csio->data_ptr,
8858 						(vm_size_t) csio->dxfer_len);
8859 		}
8860 		if (retv < 0)
8861 			goto too_big;
8862 	} else {
8863 		/* Scatter/gather list */
8864 		int i;
8865 		struct bus_dma_segment *segs;
8866 		segs = (struct bus_dma_segment *)csio->data_ptr;
8867 
8868 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8869 			/* The SG list pointer is physical */
8870 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8871 			return -1;
8872 		}
8873 		retv = 0;
8874 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8875 			/* SG buffer pointers are virtual */
8876 			for (i = csio->sglist_cnt - 1 ;  i >= 0 ; --i) {
8877 				retv = sym_scatter_virtual(np, cp,
8878 							   segs[i].ds_addr,
8879 							   segs[i].ds_len);
8880 				if (retv < 0)
8881 					break;
8882 			}
8883 		} else {
8884 			/* SG buffer pointers are physical */
8885 			for (i = csio->sglist_cnt - 1 ;  i >= 0 ; --i) {
8886 				retv = sym_scatter_physical(np, cp,
8887 							    segs[i].ds_addr,
8888 							    segs[i].ds_len);
8889 				if (retv < 0)
8890 					break;
8891 			}
8892 		}
8893 		if (retv < 0)
8894 			goto too_big;
8895 	}
8896 
8897 end_scatter:
8898 	/*
8899 	 *  No segments means no data.
8900 	 */
8901 	if (!cp->segments)
8902 		dir = CAM_DIR_NONE;
8903 
8904 	/*
8905 	 *  Set the data pointer.
8906 	 */
8907 	switch(dir) {
8908 	case CAM_DIR_OUT:
8909 		goalp = SCRIPT_BA (np, data_out2) + 8;
8910 		lastp = goalp - 8 - (cp->segments * (2*4));
8911 		break;
8912 	case CAM_DIR_IN:
8913 		goalp = SCRIPT_BA (np, data_in2) + 8;
8914 		lastp = goalp - 8 - (cp->segments * (2*4));
8915 		break;
8916 	case CAM_DIR_NONE:
8917 	default:
8918 		lastp = goalp = SCRIPTH_BA (np, no_data);
8919 		break;
8920 	}
8921 
8922 	cp->phys.lastp = cpu_to_scr(lastp);
8923 	cp->phys.goalp = cpu_to_scr(goalp);
8924 	cp->phys.savep = cpu_to_scr(lastp);
8925 	cp->startp     = cp->phys.savep;
8926 
8927 	/*
8928 	 *  Activate this job.
8929 	 */
8930 	sym_put_start_queue(np, cp);
8931 
8932 	/*
8933 	 *  Command is successfully queued.
8934 	 */
8935 	return 0;
8936 too_big:
8937 	sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
8938 	return -1;
8939 }
8940 
8941 /*
8942  *  Scatter a virtual buffer into bus addressable chunks.
8943  */
8944 static int
8945 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
8946 {
8947 	u_long	pe, pn;
8948 	u_long	n, k;
8949 	int s;
8950 #ifdef	SYM_DEBUG_PM_WITH_WSR
8951 	int k0 = 0;
8952 #endif
8953 
8954 	cp->data_len += len;
8955 
8956 	pe = vaddr + len;
8957 	n  = len;
8958 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8959 
8960 	while (n && s >= 0) {
8961 		pn = (pe - 1) & ~PAGE_MASK;
8962 		k = pe - pn;
8963 #ifdef	SYM_DEBUG_PM_WITH_WSR
8964 		if (len < 20 && k >= 2) {
8965 			k = (k0&1) ? 1 : 2;
8966 			pn = pe - k;
8967 			++k0;
8968 			if (k0 == 1) printf("[%d]:", (int)len);
8969 		}
8970 #if 0
8971 		if (len > 512 && len < 515 && k > 512) {
8972 			k = 512;
8973 			pn = pe - k;
8974 			++k0;
8975 			if (k0 == 1) printf("[%d]:", (int)len);
8976 		}
8977 #endif
8978 #endif
8979 		if (k > n) {
8980 			k  = n;
8981 			pn = pe - n;
8982 		}
8983 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8984 			printf ("%s scatter: va=%lx pa=%lx siz=%lx\n",
8985 				sym_name(np), pn, (u_long) vtobus(pn), k);
8986 		}
8987 		cp->phys.data[s].addr = cpu_to_scr(vtobus(pn));
8988 		cp->phys.data[s].size = cpu_to_scr(k);
8989 		pe = pn;
8990 		n -= k;
8991 		--s;
8992 #ifdef	SYM_DEBUG_PM_WITH_WSR
8993 		if (k0)
8994 			printf(" %d", (int)k);
8995 #endif
8996 	}
8997 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8998 
8999 #ifdef	SYM_DEBUG_PM_WITH_WSR
9000 	if (k0)
9001 		printf("\n");
9002 #endif
9003 	return n ? -1 : 0;
9004 }
9005 
9006 /*
9007  *  Will stay so forever, in my opinion.
9008  */
9009 static int
9010 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
9011 {
9012 	return -1;
9013 }
9014 
9015 /*
9016  *  SIM action for non performance critical stuff.
9017  */
9018 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
9019 {
9020 	hcb_p	np;
9021 	tcb_p	tp;
9022 	lcb_p	lp;
9023 	struct	ccb_hdr  *ccb_h;
9024 
9025 	/*
9026 	 *  Retrieve our controller data structure.
9027 	 */
9028 	np = (hcb_p) cam_sim_softc(sim);
9029 
9030 	ccb_h = &ccb->ccb_h;
9031 
9032 	switch (ccb_h->func_code) {
9033 	case XPT_SET_TRAN_SETTINGS:
9034 	{
9035 		struct ccb_trans_settings *cts;
9036 
9037 		cts  = &ccb->cts;
9038 		tp = &np->target[ccb_h->target_id];
9039 
9040 		/*
9041 		 *  Update our transfer settings (basically WIDE/SYNC).
9042 		 *  These features are to be handled in a per target
9043 		 *  basis according to SCSI specifications.
9044 		 */
9045 		if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
9046 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
9047 
9048 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
9049 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
9050 
9051 		/*
9052 		 *  Update our disconnect and tag settings.
9053 		 *  SCSI requires CmdQue feature to be handled in a per
9054 		 *  device (logical unit) basis.
9055 		 */
9056 		lp = sym_lp(np, tp, ccb_h->target_lun);
9057 		if (lp) {
9058 			if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
9059 				sym_update_dflags(np, &lp->user_flags, cts);
9060 			if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
9061 				sym_update_dflags(np, &lp->current_flags, cts);
9062 		}
9063 
9064 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
9065 		break;
9066 	}
9067 	case XPT_GET_TRAN_SETTINGS:
9068 	{
9069 		struct ccb_trans_settings *cts;
9070 		struct sym_trans *tip;
9071 		u_char dflags;
9072 
9073 		cts = &ccb->cts;
9074 		tp = &np->target[ccb_h->target_id];
9075 		lp = sym_lp(np, tp, ccb_h->target_lun);
9076 
9077 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
9078 			tip = &tp->tinfo.current;
9079 			dflags = lp ? lp->current_flags : 0;
9080 		}
9081 		else {
9082 			tip = &tp->tinfo.user;
9083 			dflags = lp ? lp->user_flags : tp->usrflags;
9084 		}
9085 
9086 		cts->sync_period = tip->period;
9087 		cts->sync_offset = tip->offset;
9088 		cts->bus_width   = tip->width;
9089 
9090 		cts->valid = CCB_TRANS_SYNC_RATE_VALID
9091 			   | CCB_TRANS_SYNC_OFFSET_VALID
9092 			   | CCB_TRANS_BUS_WIDTH_VALID;
9093 
9094 		if (lp) {
9095 			cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
9096 
9097 			if (dflags & SYM_DISC_ENABLED)
9098 				cts->flags |= CCB_TRANS_DISC_ENB;
9099 
9100 			if (dflags & SYM_TAGS_ENABLED)
9101 				cts->flags |= CCB_TRANS_TAG_ENB;
9102 
9103 			cts->valid |= CCB_TRANS_DISC_VALID;
9104 			cts->valid |= CCB_TRANS_TQ_VALID;
9105 		}
9106 
9107 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
9108 		break;
9109 	}
9110 	case XPT_CALC_GEOMETRY:
9111 	{
9112 		struct ccb_calc_geometry *ccg;
9113 		u32 size_mb;
9114 		u32 secs_per_cylinder;
9115 		int extended;
9116 
9117 		/*
9118 		 *  Silly DOS geometry.
9119 		 */
9120 		ccg = &ccb->ccg;
9121 		size_mb = ccg->volume_size
9122 			/ ((1024L * 1024L) / ccg->block_size);
9123 		extended = 1;
9124 
9125 		if (size_mb > 1024 && extended) {
9126 			ccg->heads = 255;
9127 			ccg->secs_per_track = 63;
9128 		} else {
9129 			ccg->heads = 64;
9130 			ccg->secs_per_track = 32;
9131 		}
9132 		secs_per_cylinder = ccg->heads * ccg->secs_per_track;
9133 		ccg->cylinders = ccg->volume_size / secs_per_cylinder;
9134 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
9135 		break;
9136 	}
9137 	case XPT_PATH_INQ:
9138 	{
9139 		struct ccb_pathinq *cpi = &ccb->cpi;
9140 		cpi->version_num = 1;
9141 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
9142 		if ((np->features & FE_WIDE) != 0)
9143 			cpi->hba_inquiry |= PI_WIDE_16;
9144 		cpi->target_sprt = 0;
9145 		cpi->hba_misc = 0;
9146 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
9147 			cpi->hba_misc |= PIM_SCANHILO;
9148 		if (np->usrflags & SYM_AVOID_BUS_RESET)
9149 			cpi->hba_misc |= PIM_NOBUSRESET;
9150 		cpi->hba_eng_cnt = 0;
9151 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
9152 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
9153 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
9154 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
9155 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
9156 		cpi->bus_id = cam_sim_bus(sim);
9157 		cpi->initiator_id = np->myaddr;
9158 		cpi->base_transfer_speed = 3300;
9159 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
9160 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
9161 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
9162 		cpi->unit_number = cam_sim_unit(sim);
9163 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
9164 		break;
9165 	}
9166 	case XPT_ABORT:
9167 	{
9168 		union ccb *abort_ccb = ccb->cab.abort_ccb;
9169 		switch(abort_ccb->ccb_h.func_code) {
9170 		case XPT_SCSI_IO:
9171 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
9172 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
9173 				break;
9174 			}
9175 		default:
9176 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
9177 			break;
9178 		}
9179 		break;
9180 	}
9181 	case XPT_RESET_DEV:
9182 	{
9183 		sym_reset_dev(np, ccb);
9184 		break;
9185 	}
9186 	case XPT_RESET_BUS:
9187 	{
9188 		sym_reset_scsi_bus(np, 0);
9189 		if (sym_verbose) {
9190 			xpt_print_path(np->path);
9191 			printf("SCSI BUS reset delivered.\n");
9192 		}
9193 		sym_init (np, 1);
9194 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
9195 		break;
9196 	}
9197 	case XPT_ACCEPT_TARGET_IO:
9198 	case XPT_CONT_TARGET_IO:
9199 	case XPT_EN_LUN:
9200 	case XPT_NOTIFY_ACK:
9201 	case XPT_IMMED_NOTIFY:
9202 	case XPT_TERM_IO:
9203 	default:
9204 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
9205 		break;
9206 	}
9207 }
9208 
9209 /*
9210  *  Update transfer settings of a target.
9211  */
9212 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
9213 			    struct ccb_trans_settings *cts)
9214 {
9215 	/*
9216 	 *  Update the infos.
9217 	 */
9218 	if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
9219 		tip->width = cts->bus_width;
9220 	if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
9221 		tip->offset = cts->sync_offset;
9222 	if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
9223 		tip->period = cts->sync_period;
9224 
9225 	/*
9226 	 *  Scale against out limits.
9227 	 */
9228 	if (tip->width  > SYM_SETUP_MAX_WIDE)	tip->width  =SYM_SETUP_MAX_WIDE;
9229 	if (tip->width  > np->maxwide)		tip->width  = np->maxwide;
9230 	if (tip->offset > SYM_SETUP_MAX_OFFS)	tip->offset =SYM_SETUP_MAX_OFFS;
9231 	if (tip->offset > np->maxoffs)		tip->offset = np->maxoffs;
9232 	if (tip->period) {
9233 		if (tip->period < SYM_SETUP_MIN_SYNC)
9234 			tip->period = SYM_SETUP_MIN_SYNC;
9235 		if (np->features & FE_ULTRA3) {
9236 			if (tip->period < np->minsync_dt)
9237 				tip->period = np->minsync_dt;
9238 		}
9239 		else {
9240 			if (tip->period < np->minsync)
9241 				tip->period = np->minsync;
9242 		}
9243 		if (tip->period > np->maxsync)
9244 			tip->period = np->maxsync;
9245 	}
9246 }
9247 
9248 /*
9249  *  Update flags for a device (logical unit).
9250  */
9251 static void
9252 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
9253 {
9254 	if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
9255 		if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
9256 			*flags |= SYM_DISC_ENABLED;
9257 		else
9258 			*flags &= ~SYM_DISC_ENABLED;
9259 	}
9260 
9261 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
9262 		if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
9263 			*flags |= SYM_TAGS_ENABLED;
9264 		else
9265 			*flags &= ~SYM_TAGS_ENABLED;
9266 	}
9267 }
9268 
9269 
9270 /*============= DRIVER INITIALISATION ==================*/
9271 
9272 #ifdef FreeBSD_4_Bus
9273 
9274 static device_method_t sym_pci_methods[] = {
9275 	DEVMETHOD(device_probe,	 sym_pci_probe),
9276 	DEVMETHOD(device_attach, sym_pci_attach),
9277 	{ 0, 0 }
9278 };
9279 
9280 static driver_t sym_pci_driver = {
9281 	"sym",
9282 	sym_pci_methods,
9283 	sizeof(struct sym_hcb)
9284 };
9285 
9286 static devclass_t sym_devclass;
9287 
9288 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
9289 
9290 #else	/* Pre-FreeBSD_4_Bus */
9291 
9292 static u_long sym_unit;
9293 
9294 static struct	pci_device sym_pci_driver = {
9295 	"sym",
9296 	sym_pci_probe,
9297 	sym_pci_attach,
9298 	&sym_unit,
9299 	NULL
9300 };
9301 
9302 DATA_SET (pcidevice_set, sym_pci_driver);
9303 
9304 #endif /* FreeBSD_4_Bus */
9305 
9306 static struct sym_pci_chip sym_pci_dev_table[] = {
9307  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 0,
9308  FE_ERL}
9309  ,
9310  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
9311  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
9312  ,
9313  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 0,
9314  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
9315  ,
9316  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
9317  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
9318  ,
9319  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
9320  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
9321  ,
9322  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
9323  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
9324  FE_RAM|FE_DIFF}
9325  ,
9326  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
9327  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
9328  FE_RAM|FE_DIFF}
9329  ,
9330  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
9331  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
9332  FE_RAM|FE_DIFF}
9333  ,
9334  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
9335  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
9336  FE_RAM|FE_DIFF}
9337  ,
9338  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
9339  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
9340  FE_RAM|FE_LCKFRQ}
9341  ,
9342  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
9343  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
9344  FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
9345  ,
9346  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
9347  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
9348  FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
9349  ,
9350  {PCI_ID_LSI53C1010, 0x00, "1010", 6, 62, 7, 8,
9351  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
9352  FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC|
9353  FE_C10}
9354  ,
9355  {PCI_ID_LSI53C1010, 0xff, "1010", 6, 62, 7, 8,
9356  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
9357  FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
9358  FE_C10|FE_U3EN}
9359  ,
9360  {PCI_ID_LSI53C1010_2, 0xff, "1010", 6, 62, 7, 8,
9361  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
9362  FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC|
9363  FE_C10|FE_U3EN}
9364  ,
9365  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
9366  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
9367  FE_RAM|FE_IO256|FE_LEDC}
9368 };
9369 
9370 #define sym_pci_num_devs \
9371 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
9372 
9373 /*
9374  *  Look up the chip table.
9375  *
9376  *  Return a pointer to the chip entry if found,
9377  *  zero otherwise.
9378  */
9379 static struct sym_pci_chip *
9380 #ifdef FreeBSD_4_Bus
9381 sym_find_pci_chip(device_t dev)
9382 #else
9383 sym_find_pci_chip(pcici_t pci_tag)
9384 #endif
9385 {
9386 	struct	sym_pci_chip *chip;
9387 	int	i;
9388 	u_short	device_id;
9389 	u_char	revision;
9390 
9391 #ifdef FreeBSD_4_Bus
9392 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
9393 		return 0;
9394 
9395 	device_id = pci_get_device(dev);
9396 	revision  = pci_get_revid(dev);
9397 #else
9398 	if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR)
9399 		return 0;
9400 
9401 	device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
9402 	revision  = pci_cfgread(pci_tag, PCIR_REVID,  1);
9403 #endif
9404 
9405 	for (i = 0; i < sym_pci_num_devs; i++) {
9406 		chip = &sym_pci_dev_table[i];
9407 		if (device_id != chip->device_id)
9408 			continue;
9409 		if (revision > chip->revision_id)
9410 			continue;
9411 		if (FE_LDSTR & chip->features)
9412 			return chip;
9413 		break;
9414 	}
9415 
9416 	return 0;
9417 }
9418 
9419 /*
9420  *  Tell upper layer if the chip is supported.
9421  */
9422 #ifdef FreeBSD_4_Bus
9423 static int
9424 sym_pci_probe(device_t dev)
9425 {
9426 	struct	sym_pci_chip *chip;
9427 
9428 	chip = sym_find_pci_chip(dev);
9429 	if (chip) {
9430 		device_set_desc(dev, chip->name);
9431 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0;
9432 	}
9433 	return ENXIO;
9434 }
9435 #else /* Pre-FreeBSD_4_Bus */
9436 static const char *
9437 sym_pci_probe(pcici_t pci_tag, pcidi_t type)
9438 {
9439 	struct	sym_pci_chip *chip;
9440 
9441 	chip = sym_find_pci_chip(pci_tag);
9442 #if NNCR > 0
9443 	/* Only claim chips we are allowed to take precedence over the ncr */
9444 	if (chip && !(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP))
9445 #else
9446 	if (chip)
9447 #endif
9448 		return chip->name;
9449 	return 0;
9450 }
9451 #endif
9452 
9453 /*
9454  *  Attach a sym53c8xx device.
9455  */
9456 #ifdef FreeBSD_4_Bus
9457 static int
9458 sym_pci_attach(device_t dev)
9459 #else
9460 static void
9461 sym_pci_attach(pcici_t pci_tag, int unit)
9462 {
9463 	int err = sym_pci_attach2(pci_tag, unit);
9464 	if (err)
9465 		printf("sym: failed to attach unit %d - err=%d.\n", unit, err);
9466 }
9467 static int
9468 sym_pci_attach2(pcici_t pci_tag, int unit)
9469 #endif
9470 {
9471 	struct	sym_pci_chip *chip;
9472 	u_short	command;
9473 	u_char	cachelnsz;
9474 	struct	sym_hcb *np = 0;
9475 	struct	sym_nvram nvram;
9476 	int 	i;
9477 
9478 	/*
9479 	 *  Only probed devices should be attached.
9480 	 *  We just enjoy being paranoid. :)
9481 	 */
9482 #ifdef FreeBSD_4_Bus
9483 	chip = sym_find_pci_chip(dev);
9484 #else
9485 	chip = sym_find_pci_chip(pci_tag);
9486 #endif
9487 	if (chip == NULL)
9488 		return (ENXIO);
9489 
9490 	/*
9491 	 *  Allocate immediately the host control block,
9492 	 *  since we are only expecting to succeed. :)
9493 	 *  We keep track in the HCB of all the resources that
9494 	 *  are to be released on error.
9495 	 */
9496 	np = sym_calloc(sizeof(*np), "HCB");
9497 	if (!np)
9498 		goto attach_failed;
9499 
9500 	/*
9501 	 *  Copy some useful infos to the HCB.
9502 	 */
9503 	np->verbose	 = bootverbose;
9504 #ifdef FreeBSD_4_Bus
9505 	np->device	 = dev;
9506 	np->unit	 = device_get_unit(dev);
9507 	np->device_id	 = pci_get_device(dev);
9508 	np->revision_id  = pci_get_revid(dev);
9509 #else
9510 	np->pci_tag	 = pci_tag;
9511 	np->unit	 = unit;
9512 	np->device_id	 = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
9513 	np->revision_id  = pci_cfgread(pci_tag, PCIR_REVID,  1);
9514 #endif
9515 	np->features	 = chip->features;
9516 	np->clock_divn	 = chip->nr_divisor;
9517 	np->maxoffs	 = chip->offset_max;
9518 	np->maxburst	 = chip->burst_max;
9519 
9520 	/*
9521 	 * Edit its name.
9522 	 */
9523 	snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
9524 
9525 	/*
9526 	 *  Read and apply some fix-ups to the PCI COMMAND
9527 	 *  register. We want the chip to be enabled for:
9528 	 *  - BUS mastering
9529 	 *  - PCI parity checking (reporting would also be fine)
9530 	 *  - Write And Invalidate.
9531 	 */
9532 #ifdef FreeBSD_4_Bus
9533 	command = pci_read_config(dev, PCIR_COMMAND, 2);
9534 #else
9535 	command = pci_cfgread(pci_tag, PCIR_COMMAND, 2);
9536 #endif
9537 	command |= PCIM_CMD_BUSMASTEREN;
9538 	command |= PCIM_CMD_PERRESPEN;
9539 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
9540 #ifdef FreeBSD_4_Bus
9541 	pci_write_config(dev, PCIR_COMMAND, command, 2);
9542 #else
9543 	pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2);
9544 #endif
9545 
9546 	/*
9547 	 *  Let the device know about the cache line size,
9548 	 *  if it doesn't yet.
9549 	 */
9550 #ifdef FreeBSD_4_Bus
9551 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
9552 #else
9553 	cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1);
9554 #endif
9555 	if (!cachelnsz) {
9556 		cachelnsz = 8;
9557 #ifdef FreeBSD_4_Bus
9558 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
9559 #else
9560 		pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1);
9561 #endif
9562 	}
9563 
9564 	/*
9565 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
9566 	 */
9567 #ifdef FreeBSD_4_Bus
9568 	if ((command & PCIM_CMD_MEMEN) != 0) {
9569 		int regs_id = SYM_PCI_MMIO;
9570 		np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9571 						  0, ~0, 1, RF_ACTIVE);
9572 	}
9573 	if (!np->mmio_res) {
9574 		device_printf(dev, "failed to allocate MMIO resources\n");
9575 		goto attach_failed;
9576 	}
9577 	np->mmio_bsh = rman_get_bushandle(np->mmio_res);
9578 	np->mmio_tag = rman_get_bustag(np->mmio_res);
9579 	np->mmio_pa  = rman_get_start(np->mmio_res);
9580 	np->mmio_va  = (vm_offset_t) rman_get_virtual(np->mmio_res);
9581 	np->mmio_ba  = np->mmio_pa;
9582 #else
9583 	if ((command & PCIM_CMD_MEMEN) != 0) {
9584 		vm_offset_t vaddr, paddr;
9585 		if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) {
9586 			printf("%s: failed to map MMIO window\n", sym_name(np));
9587 			goto attach_failed;
9588 		}
9589 		np->mmio_va = vaddr;
9590 		np->mmio_pa = paddr;
9591 		np->mmio_ba = paddr;
9592 	}
9593 #endif
9594 
9595 	/*
9596 	 *  Allocate the IRQ.
9597 	 */
9598 #ifdef FreeBSD_4_Bus
9599 	i = 0;
9600 	np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i,
9601 					 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
9602 	if (!np->irq_res) {
9603 		device_printf(dev, "failed to allocate IRQ resource\n");
9604 		goto attach_failed;
9605 	}
9606 #endif
9607 
9608 #ifdef	SYM_CONF_IOMAPPED
9609 	/*
9610 	 *  User want us to use normal IO with PCI.
9611 	 *  Alloc/get/map/retrieve everything that deals with IO.
9612 	 */
9613 #ifdef FreeBSD_4_Bus
9614 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9615 		int regs_id = SYM_PCI_IO;
9616 		np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &regs_id,
9617 						0, ~0, 1, RF_ACTIVE);
9618 	}
9619 	if (!np->io_res) {
9620 		device_printf(dev, "failed to allocate IO resources\n");
9621 		goto attach_failed;
9622 	}
9623 	np->io_bsh  = rman_get_bushandle(np->io_res);
9624 	np->io_tag  = rman_get_bustag(np->io_res);
9625 	np->io_port = rman_get_start(np->io_res);
9626 #else
9627 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9628 		pci_port_t io_port;
9629 		if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) {
9630 			printf("%s: failed to map IO window\n", sym_name(np));
9631 			goto attach_failed;
9632 		}
9633 		np->io_port = io_port;
9634 	}
9635 #endif
9636 
9637 #endif /* SYM_CONF_IOMAPPED */
9638 
9639 	/*
9640 	 *  If the chip has RAM.
9641 	 *  Alloc/get/map/retrieve the corresponding resources.
9642 	 */
9643 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
9644 	    (command & PCIM_CMD_MEMEN) != 0) {
9645 #ifdef FreeBSD_4_Bus
9646 		int regs_id = SYM_PCI_RAM;
9647 		if (np->features & FE_64BIT)
9648 			regs_id = SYM_PCI_RAM64;
9649 		np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9650 						 0, ~0, 1, RF_ACTIVE);
9651 		if (!np->ram_res) {
9652 			device_printf(dev,"failed to allocate RAM resources\n");
9653 			goto attach_failed;
9654 		}
9655 		np->ram_id  = regs_id;
9656 		np->ram_bsh = rman_get_bushandle(np->ram_res);
9657 		np->ram_tag = rman_get_bustag(np->ram_res);
9658 		np->ram_pa  = rman_get_start(np->ram_res);
9659 		np->ram_va  = (vm_offset_t) rman_get_virtual(np->ram_res);
9660 		np->ram_ba  = np->ram_pa;
9661 #else
9662 		vm_offset_t vaddr, paddr;
9663 		int regs_id = SYM_PCI_RAM;
9664 		if (np->features & FE_64BIT)
9665 			regs_id = SYM_PCI_RAM64;
9666 		if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) {
9667 			printf("%s: failed to map RAM window\n", sym_name(np));
9668 			goto attach_failed;
9669 		}
9670 		np->ram_va = vaddr;
9671 		np->ram_pa = paddr;
9672 		np->ram_ba = paddr;
9673 #endif
9674 	}
9675 
9676 	/*
9677 	 *  Save setting of some IO registers, so we will
9678 	 *  be able to probe specific implementations.
9679 	 */
9680 	sym_save_initial_setting (np);
9681 
9682 	/*
9683 	 *  Reset the chip now, since it has been reported
9684 	 *  that SCSI clock calibration may not work properly
9685 	 *  if the chip is currently active.
9686 	 */
9687 	sym_chip_reset (np);
9688 
9689 	/*
9690 	 *  Try to read the user set-up.
9691 	 */
9692 	(void) sym_read_nvram(np, &nvram);
9693 
9694 	/*
9695 	 *  Prepare controller and devices settings, according
9696 	 *  to chip features, user set-up and driver set-up.
9697 	 */
9698 	(void) sym_prepare_setting(np, &nvram);
9699 
9700 	/*
9701 	 *  Check the PCI clock frequency.
9702 	 *  Must be performed after prepare_setting since it destroys
9703 	 *  STEST1 that is used to probe for the clock doubler.
9704 	 */
9705 	i = sym_getpciclock(np);
9706 	if (i > 37000)
9707 #ifdef FreeBSD_4_Bus
9708 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
9709 #else
9710 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
9711 			sym_name(np), i);
9712 #endif
9713 
9714 	/*
9715 	 *  Allocate the start queue.
9716 	 */
9717 	np->squeue = (u32 *) sym_calloc(sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
9718 	if (!np->squeue)
9719 		goto attach_failed;
9720 
9721 	/*
9722 	 *  Allocate the done queue.
9723 	 */
9724 	np->dqueue = (u32 *) sym_calloc(sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
9725 	if (!np->dqueue)
9726 		goto attach_failed;
9727 
9728 	/*
9729 	 *  Allocate the target bus address array.
9730 	 */
9731 	np->targtbl = (u32 *) sym_calloc(256, "TARGTBL");
9732 	if (!np->targtbl)
9733 		goto attach_failed;
9734 
9735 	/*
9736 	 *  Allocate SCRIPTS areas.
9737 	 */
9738 	np->script0  = (struct sym_scr *)
9739 			sym_calloc(sizeof(struct sym_scr), "SCRIPT0");
9740 	np->scripth0 = (struct sym_scrh *)
9741 			sym_calloc(sizeof(struct sym_scrh), "SCRIPTH0");
9742 	if (!np->script0 || !np->scripth0)
9743 		goto attach_failed;
9744 
9745 	/*
9746 	 *  Initialyze the CCB free and busy queues.
9747 	 *  Allocate some CCB. We need at least ONE.
9748 	 */
9749 	sym_que_init(&np->free_ccbq);
9750 	sym_que_init(&np->busy_ccbq);
9751 	sym_que_init(&np->comp_ccbq);
9752 	if (!sym_alloc_ccb(np))
9753 		goto attach_failed;
9754 
9755 	/*
9756 	 * Initialyze the CAM CCB pending queue.
9757 	 */
9758 	sym_que_init(&np->cam_ccbq);
9759 
9760 	/*
9761 	 *  Fill-up variable-size parts of the SCRIPTS.
9762 	 */
9763 	sym_fill_scripts(&script0, &scripth0);
9764 
9765 	/*
9766 	 *  Calculate BUS addresses where we are going
9767 	 *  to load the SCRIPTS.
9768 	 */
9769 	np->script_ba	= vtobus(np->script0);
9770 	np->scripth_ba	= vtobus(np->scripth0);
9771 	np->scripth0_ba	= np->scripth_ba;
9772 
9773 	if (np->ram_ba) {
9774 		np->script_ba	= np->ram_ba;
9775 		if (np->features & FE_RAM8K) {
9776 			np->ram_ws = 8192;
9777 			np->scripth_ba = np->script_ba + 4096;
9778 #if BITS_PER_LONG > 32
9779 			np->scr_ram_seg = cpu_to_scr(np->script_ba >> 32);
9780 #endif
9781 		}
9782 		else
9783 			np->ram_ws = 4096;
9784 	}
9785 
9786 	/*
9787 	 *  Bind SCRIPTS with physical addresses usable by the
9788 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
9789 	 */
9790 	sym_bind_script(np, (u32 *) &script0,
9791 			    (u32 *) np->script0, sizeof(struct sym_scr));
9792 	sym_bind_script(np, (u32 *) &scripth0,
9793 			    (u32 *) np->scripth0, sizeof(struct sym_scrh));
9794 
9795 	/*
9796 	 *  Patch some variables in SCRIPTS.
9797 	 *  These ones are loaded by the SCRIPTS processor.
9798 	 */
9799 	np->scripth0->pm0_data_addr[0] = cpu_to_scr(SCRIPT_BA(np,pm0_data));
9800 	np->scripth0->pm1_data_addr[0] = cpu_to_scr(SCRIPT_BA(np,pm1_data));
9801 
9802 
9803 	/*
9804 	 *  Still some for LED support.
9805 	 */
9806 	if (np->features & FE_LED0) {
9807 		np->script0->idle[0]  =
9808 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR,  0x01));
9809 		np->script0->reselected[0] =
9810 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
9811 		np->script0->start[0] =
9812 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
9813 	}
9814 
9815 	/*
9816 	 *  Load SCNTL4 on reselection for the C10.
9817 	 */
9818 	if (np->features & FE_C10) {
9819 		np->script0->resel_scntl4[0] =
9820 				cpu_to_scr(SCR_LOAD_REL (scntl4, 1));
9821 		np->script0->resel_scntl4[1] =
9822 				cpu_to_scr(offsetof(struct sym_tcb, uval));
9823 	}
9824 
9825 #ifdef SYM_CONF_IARB_SUPPORT
9826 	/*
9827 	 *    If user does not want to use IMMEDIATE ARBITRATION
9828 	 *    when we are reselected while attempting to arbitrate,
9829 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
9830 	 */
9831 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
9832 		np->script0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
9833 
9834 	/*
9835 	 *    If user wants IARB to be set when we win arbitration
9836 	 *    and have other jobs, compute the max number of consecutive
9837 	 *    settings of IARB hints before we leave devices a chance to
9838 	 *    arbitrate for reselection.
9839 	 */
9840 #ifdef	SYM_SETUP_IARB_MAX
9841 	np->iarb_max = SYM_SETUP_IARB_MAX;
9842 #else
9843 	np->iarb_max = 4;
9844 #endif
9845 #endif
9846 
9847 	/*
9848 	 *  Prepare the idle and invalid task actions.
9849 	 */
9850 	np->idletask.start	= cpu_to_scr(SCRIPT_BA(np, idle));
9851 	np->idletask.restart	= cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l));
9852 	np->idletask_ba		= vtobus(&np->idletask);
9853 
9854 	np->notask.start	= cpu_to_scr(SCRIPT_BA(np, idle));
9855 	np->notask.restart	= cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l));
9856 	np->notask_ba		= vtobus(&np->notask);
9857 
9858 	np->bad_itl.start	= cpu_to_scr(SCRIPT_BA(np, idle));
9859 	np->bad_itl.restart	= cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l));
9860 	np->bad_itl_ba		= vtobus(&np->bad_itl);
9861 
9862 	np->bad_itlq.start	= cpu_to_scr(SCRIPT_BA(np, idle));
9863 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTH_BA (np,bad_i_t_l_q));
9864 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
9865 
9866 	/*
9867 	 *  Allocate and prepare the lun JUMP table that is used
9868 	 *  for a target prior the probing of devices (bad lun table).
9869 	 *  A private table will be allocated for the target on the
9870 	 *  first INQUIRY response received.
9871 	 */
9872 	np->badluntbl = sym_calloc(256, "BADLUNTBL");
9873 	if (!np->badluntbl)
9874 		goto attach_failed;
9875 
9876 	np->badlun_sa = cpu_to_scr(SCRIPTH_BA(np, resel_bad_lun));
9877 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
9878 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
9879 
9880 	/*
9881 	 *  Prepare the bus address array that contains the bus
9882 	 *  address of each target control bloc.
9883 	 *  For now, assume all logical unit are wrong. :)
9884 	 */
9885 	np->scripth0->targtbl[0] = cpu_to_scr(vtobus(np->targtbl));
9886 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
9887 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
9888 		np->target[i].luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
9889 		np->target[i].lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
9890 	}
9891 
9892 	/*
9893 	 *  Now check the cache handling of the pci chipset.
9894 	 */
9895 	if (sym_snooptest (np)) {
9896 #ifdef FreeBSD_4_Bus
9897 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
9898 #else
9899 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
9900 #endif
9901 		goto attach_failed;
9902 	};
9903 
9904 	/*
9905 	 *  Now deal with CAM.
9906 	 *  Hopefully, we will succeed with that one.:)
9907 	 */
9908 	if (!sym_cam_attach(np))
9909 		goto attach_failed;
9910 
9911 	/*
9912 	 *  Sigh! we are done.
9913 	 */
9914 	return 0;
9915 
9916 	/*
9917 	 *  We have failed.
9918 	 *  We will try to free all the resources we have
9919 	 *  allocated, but if we are a boot device, this
9920 	 *  will not help that much.;)
9921 	 */
9922 attach_failed:
9923 	if (np)
9924 		sym_pci_free(np);
9925 	return ENXIO;
9926 }
9927 
9928 /*
9929  *  Free everything that have been allocated for this device.
9930  */
9931 static void sym_pci_free(hcb_p np)
9932 {
9933 	SYM_QUEHEAD *qp;
9934 	ccb_p cp;
9935 	tcb_p tp;
9936 	lcb_p lp;
9937 	int target, lun;
9938 	int s;
9939 
9940 	/*
9941 	 *  First free CAM resources.
9942 	 */
9943 	s = splcam();
9944 	sym_cam_free(np);
9945 	splx(s);
9946 
9947 	/*
9948 	 *  Now every should be quiet for us to
9949 	 *  free other resources.
9950 	 */
9951 #ifdef FreeBSD_4_Bus
9952 	if (np->ram_res)
9953 		bus_release_resource(np->device, SYS_RES_MEMORY,
9954 				     np->ram_id, np->ram_res);
9955 	if (np->mmio_res)
9956 		bus_release_resource(np->device, SYS_RES_MEMORY,
9957 				     SYM_PCI_MMIO, np->mmio_res);
9958 	if (np->io_res)
9959 		bus_release_resource(np->device, SYS_RES_IOPORT,
9960 				     SYM_PCI_IO, np->io_res);
9961 	if (np->irq_res)
9962 		bus_release_resource(np->device, SYS_RES_IRQ,
9963 				     0, np->irq_res);
9964 #else
9965 	/*
9966 	 *  YEAH!!!
9967 	 *  It seems there is no means to free MMIO resources.
9968 	 */
9969 #endif
9970 
9971 	if (np->scripth0)
9972 		sym_mfree(np->scripth0, sizeof(struct sym_scrh), "SCRIPTH0");
9973 	if (np->script0)
9974 		sym_mfree(np->script0, sizeof(struct sym_scr), "SCRIPT0");
9975 	if (np->squeue)
9976 		sym_mfree(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
9977 	if (np->dqueue)
9978 		sym_mfree(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
9979 
9980 	while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
9981 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
9982 		sym_mfree(cp, sizeof(*cp), "CCB");
9983 	}
9984 
9985 	if (np->badluntbl)
9986 		sym_mfree(np->badluntbl, 256,"BADLUNTBL");
9987 
9988 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
9989 		tp = &np->target[target];
9990 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
9991 			lp = sym_lp(np, tp, lun);
9992 			if (!lp)
9993 				continue;
9994 			if (lp->itlq_tbl)
9995 				sym_mfree(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
9996 				       "ITLQ_TBL");
9997 			if (lp->cb_tags)
9998 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
9999 				       "CB_TAGS");
10000 			sym_mfree(lp, sizeof(*lp), "LCB");
10001 		}
10002 #if SYM_CONF_MAX_LUN > 1
10003 		if (tp->lunmp)
10004 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
10005 			       "LUNMP");
10006 #endif
10007 	}
10008 
10009 	sym_mfree(np, sizeof(*np), "HCB");
10010 }
10011 
10012 /*
10013  *  Allocate CAM resources and register a bus to CAM.
10014  */
10015 int sym_cam_attach(hcb_p np)
10016 {
10017 	struct cam_devq *devq = 0;
10018 	struct cam_sim *sim = 0;
10019 	struct cam_path *path = 0;
10020 	int err, s;
10021 
10022 	s = splcam();
10023 
10024 	/*
10025 	 *  Establish our interrupt handler.
10026 	 */
10027 #ifdef FreeBSD_4_Bus
10028 	err = bus_setup_intr(np->device, np->irq_res, INTR_TYPE_CAM,
10029 			     sym_intr, np, &np->intr);
10030 	if (err) {
10031 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
10032 			      err);
10033 		goto fail;
10034 	}
10035 #else
10036 	if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) {
10037 		printf("%s: failed to map interrupt\n", sym_name(np));
10038 		goto fail;
10039 	}
10040 #endif
10041 
10042 	/*
10043 	 *  Create the device queue for our sym SIM.
10044 	 */
10045 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
10046 	if (!devq)
10047 		goto fail;
10048 
10049 	/*
10050 	 *  Construct our SIM entry.
10051 	 */
10052 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
10053 			    1, SYM_SETUP_MAX_TAG, devq);
10054 	if (!sim)
10055 		goto fail;
10056 	devq = 0;
10057 
10058 	if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
10059 		goto fail;
10060 	np->sim = sim;
10061 	sim = 0;
10062 
10063 	if (xpt_create_path(&path, 0,
10064 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
10065 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
10066 		goto fail;
10067 	}
10068 	np->path = path;
10069 
10070 	/*
10071 	 *  Hmmm... This should be useful, but I donnot want to
10072 	 *  know about.
10073 	 */
10074 #if 	__FreeBSD_version < 400000
10075 #ifdef	__alpha__
10076 #ifdef	FreeBSD_4_Bus
10077 	alpha_register_pci_scsi(pci_get_bus(np->device),
10078 				pci_get_slot(np->device), np->sim);
10079 #else
10080 	alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim);
10081 #endif
10082 #endif
10083 #endif
10084 
10085 #if 0
10086 	/*
10087 	 *  Establish our async notification handler.
10088 	 */
10089 	{
10090 	struct ccb_setasync csa;
10091 	xpt_setup_ccb(&csa.ccb_h, np->path, 5);
10092 	csa.ccb_h.func_code = XPT_SASYNC_CB;
10093 	csa.event_enable    = AC_LOST_DEVICE;
10094 	csa.callback	    = sym_async;
10095 	csa.callback_arg    = np->sim;
10096 	xpt_action((union ccb *)&csa);
10097 	}
10098 #endif
10099 	/*
10100 	 *  Start the chip now, without resetting the BUS, since
10101 	 *  it seems that this must stay under control of CAM.
10102 	 *  With LVD/SE capable chips and BUS in SE mode, we may
10103 	 *  get a spurious SMBC interrupt.
10104 	 */
10105 	sym_init (np, 0);
10106 
10107 	splx(s);
10108 	return 1;
10109 fail:
10110 	if (sim)
10111 		cam_sim_free(sim, FALSE);
10112 	if (devq)
10113 		cam_simq_free(devq);
10114 
10115 	sym_cam_free(np);
10116 
10117 	splx(s);
10118 	return 0;
10119 }
10120 
10121 /*
10122  *  Free everything that deals with CAM.
10123  */
10124 void sym_cam_free(hcb_p np)
10125 {
10126 #ifdef FreeBSD_4_Bus
10127 	if (np->intr)
10128 		bus_teardown_intr(np->device, np->irq_res, np->intr);
10129 #else
10130 	/* pci_unmap_int(np->pci_tag); */	/* Does nothing */
10131 #endif
10132 
10133 	if (np->sim) {
10134 		xpt_bus_deregister(cam_sim_path(np->sim));
10135 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
10136 	}
10137 	if (np->path)
10138 		xpt_free_path(np->path);
10139 }
10140 
10141 /*============ OPTIONNAL NVRAM SUPPORT =================*/
10142 
10143 /*
10144  *  Get host setup from NVRAM.
10145  */
10146 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
10147 {
10148 #ifdef SYM_CONF_NVRAM_SUPPORT
10149 	/*
10150 	 *  Get parity checking, host ID, verbose mode
10151 	 *  and miscellaneous host flags from NVRAM.
10152 	 */
10153 	switch(nvram->type) {
10154 	case SYM_SYMBIOS_NVRAM:
10155 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
10156 			np->rv_scntl0  &= ~0x0a;
10157 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
10158 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
10159 			np->verbose += 1;
10160 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
10161 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
10162 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
10163 			np->usrflags |= SYM_AVOID_BUS_RESET;
10164 		break;
10165 	case SYM_TEKRAM_NVRAM:
10166 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
10167 		break;
10168 	default:
10169 		break;
10170 	}
10171 #endif
10172 }
10173 
10174 /*
10175  *  Get target setup from NVRAM.
10176  */
10177 #ifdef SYM_CONF_NVRAM_SUPPORT
10178 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
10179 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
10180 #endif
10181 
10182 static void
10183 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
10184 {
10185 #ifdef SYM_CONF_NVRAM_SUPPORT
10186 	switch(nvp->type) {
10187 	case SYM_SYMBIOS_NVRAM:
10188 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
10189 		break;
10190 	case SYM_TEKRAM_NVRAM:
10191 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
10192 		break;
10193 	default:
10194 		break;
10195 	}
10196 #endif
10197 }
10198 
10199 #ifdef SYM_CONF_NVRAM_SUPPORT
10200 /*
10201  *  Get target set-up from Symbios format NVRAM.
10202  */
10203 static void
10204 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
10205 {
10206 	tcb_p tp = &np->target[target];
10207 	Symbios_target *tn = &nvram->target[target];
10208 
10209 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
10210 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
10211 	tp->usrtags =
10212 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
10213 
10214 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
10215 		tp->usrflags &= ~SYM_DISC_ENABLED;
10216 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
10217 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
10218 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
10219 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
10220 }
10221 
10222 /*
10223  *  Get target set-up from Tekram format NVRAM.
10224  */
10225 static void
10226 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
10227 {
10228 	tcb_p tp = &np->target[target];
10229 	struct Tekram_target *tn = &nvram->target[target];
10230 	int i;
10231 
10232 	if (tn->flags & TEKRAM_SYNC_NEGO) {
10233 		i = tn->sync_index & 0xf;
10234 		tp->tinfo.user.period = Tekram_sync[i];
10235 	}
10236 
10237 	tp->tinfo.user.width =
10238 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
10239 
10240 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
10241 		tp->usrtags = 2 << nvram->max_tags_index;
10242 	}
10243 
10244 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
10245 		tp->usrflags |= SYM_DISC_ENABLED;
10246 
10247 	/* If any device does not support parity, we will not use this option */
10248 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
10249 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
10250 }
10251 
10252 #ifdef	SYM_CONF_DEBUG_NVRAM
10253 /*
10254  *  Dump Symbios format NVRAM for debugging purpose.
10255  */
10256 void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
10257 {
10258 	int i;
10259 
10260 	/* display Symbios nvram host data */
10261 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
10262 		sym_name(np), nvram->host_id & 0x0f,
10263 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
10264 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
10265 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
10266 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
10267 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
10268 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
10269 
10270 	/* display Symbios nvram drive data */
10271 	for (i = 0 ; i < 15 ; i++) {
10272 		struct Symbios_target *tn = &nvram->target[i];
10273 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
10274 		sym_name(np), i,
10275 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
10276 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
10277 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
10278 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
10279 		tn->bus_width,
10280 		tn->sync_period / 4,
10281 		tn->timeout);
10282 	}
10283 }
10284 
10285 /*
10286  *  Dump TEKRAM format NVRAM for debugging purpose.
10287  */
10288 static u_char Tekram_boot_delay[7] __initdata = {3, 5, 10, 20, 30, 60, 120};
10289 void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
10290 {
10291 	int i, tags, boot_delay;
10292 	char *rem;
10293 
10294 	/* display Tekram nvram host data */
10295 	tags = 2 << nvram->max_tags_index;
10296 	boot_delay = 0;
10297 	if (nvram->boot_delay_index < 6)
10298 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
10299 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
10300 	default:
10301 	case 0:	rem = "";			break;
10302 	case 1: rem = " REMOVABLE=boot device";	break;
10303 	case 2: rem = " REMOVABLE=all";		break;
10304 	}
10305 
10306 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
10307 		sym_name(np), nvram->host_id & 0x0f,
10308 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
10309 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
10310 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
10311 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
10312 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
10313 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
10314 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
10315 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
10316 		rem, boot_delay, tags);
10317 
10318 	/* display Tekram nvram drive data */
10319 	for (i = 0; i <= 15; i++) {
10320 		int sync, j;
10321 		struct Tekram_target *tn = &nvram->target[i];
10322 		j = tn->sync_index & 0xf;
10323 		sync = Tekram_sync[j];
10324 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
10325 		sym_name(np), i,
10326 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
10327 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
10328 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
10329 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
10330 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
10331 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
10332 		sync);
10333 	}
10334 }
10335 #endif	/* SYM_CONF_DEBUG_NVRAM */
10336 #endif	/* SYM_CONF_NVRAM_SUPPORT */
10337 
10338 
10339 /*
10340  *  Try reading Symbios or Tekram NVRAM
10341  */
10342 #ifdef SYM_CONF_NVRAM_SUPPORT
10343 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
10344 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
10345 #endif
10346 
10347 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
10348 {
10349 #ifdef SYM_CONF_NVRAM_SUPPORT
10350 	/*
10351 	 *  Try to read SYMBIOS nvram.
10352 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
10353 	 */
10354 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
10355 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios))
10356 		nvp->type = SYM_SYMBIOS_NVRAM;
10357 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
10358 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram))
10359 		nvp->type = SYM_TEKRAM_NVRAM;
10360 	else
10361 		nvp->type = 0;
10362 #else
10363 	nvp->type = 0;
10364 #endif
10365 	return nvp->type;
10366 }
10367 
10368 
10369 #ifdef SYM_CONF_NVRAM_SUPPORT
10370 /*
10371  *  24C16 EEPROM reading.
10372  *
10373  *  GPOI0 - data in/data out
10374  *  GPIO1 - clock
10375  *  Symbios NVRAM wiring now also used by Tekram.
10376  */
10377 
10378 #define SET_BIT 0
10379 #define CLR_BIT 1
10380 #define SET_CLK 2
10381 #define CLR_CLK 3
10382 
10383 /*
10384  *  Set/clear data/clock bit in GPIO0
10385  */
10386 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
10387 			  int bit_mode)
10388 {
10389 	UDELAY (5);
10390 	switch (bit_mode){
10391 	case SET_BIT:
10392 		*gpreg |= write_bit;
10393 		break;
10394 	case CLR_BIT:
10395 		*gpreg &= 0xfe;
10396 		break;
10397 	case SET_CLK:
10398 		*gpreg |= 0x02;
10399 		break;
10400 	case CLR_CLK:
10401 		*gpreg &= 0xfd;
10402 		break;
10403 
10404 	}
10405 	OUTB (nc_gpreg, *gpreg);
10406 	UDELAY (5);
10407 }
10408 
10409 /*
10410  *  Send START condition to NVRAM to wake it up.
10411  */
10412 static void S24C16_start(hcb_p np, u_char *gpreg)
10413 {
10414 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
10415 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10416 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
10417 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
10418 }
10419 
10420 /*
10421  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
10422  */
10423 static void S24C16_stop(hcb_p np, u_char *gpreg)
10424 {
10425 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10426 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
10427 }
10428 
10429 /*
10430  *  Read or write a bit to the NVRAM,
10431  *  read if GPIO0 input else write if GPIO0 output
10432  */
10433 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
10434 			 u_char *gpreg)
10435 {
10436 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
10437 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10438 	if (read_bit)
10439 		*read_bit = INB (nc_gpreg);
10440 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
10441 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
10442 }
10443 
10444 /*
10445  *  Output an ACK to the NVRAM after reading,
10446  *  change GPIO0 to output and when done back to an input
10447  */
10448 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
10449 			    u_char *gpcntl)
10450 {
10451 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
10452 	S24C16_do_bit(np, 0, write_bit, gpreg);
10453 	OUTB (nc_gpcntl, *gpcntl);
10454 }
10455 
10456 /*
10457  *  Input an ACK from NVRAM after writing,
10458  *  change GPIO0 to input and when done back to an output
10459  */
10460 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
10461 			   u_char *gpcntl)
10462 {
10463 	OUTB (nc_gpcntl, *gpcntl | 0x01);
10464 	S24C16_do_bit(np, read_bit, 1, gpreg);
10465 	OUTB (nc_gpcntl, *gpcntl);
10466 }
10467 
10468 /*
10469  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
10470  *  GPIO0 must already be set as an output
10471  */
10472 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
10473 			     u_char *gpreg, u_char *gpcntl)
10474 {
10475 	int x;
10476 
10477 	for (x = 0; x < 8; x++)
10478 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
10479 
10480 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
10481 }
10482 
10483 /*
10484  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
10485  *  GPIO0 must already be set as an input
10486  */
10487 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
10488 			    u_char *gpreg, u_char *gpcntl)
10489 {
10490 	int x;
10491 	u_char read_bit;
10492 
10493 	*read_data = 0;
10494 	for (x = 0; x < 8; x++) {
10495 		S24C16_do_bit(np, &read_bit, 1, gpreg);
10496 		*read_data |= ((read_bit & 0x01) << (7 - x));
10497 	}
10498 
10499 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
10500 }
10501 
10502 /*
10503  *  Read 'len' bytes starting at 'offset'.
10504  */
10505 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
10506 {
10507 	u_char	gpcntl, gpreg;
10508 	u_char	old_gpcntl, old_gpreg;
10509 	u_char	ack_data;
10510 	int	retv = 1;
10511 	int	x;
10512 
10513 	/* save current state of GPCNTL and GPREG */
10514 	old_gpreg	= INB (nc_gpreg);
10515 	old_gpcntl	= INB (nc_gpcntl);
10516 	gpcntl		= old_gpcntl & 0xfc;
10517 
10518 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
10519 	OUTB (nc_gpreg,  old_gpreg);
10520 	OUTB (nc_gpcntl, gpcntl);
10521 
10522 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
10523 	gpreg = old_gpreg;
10524 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
10525 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
10526 
10527 	/* now set NVRAM inactive with GPIO0/1 both high */
10528 	S24C16_stop(np, &gpreg);
10529 
10530 	/* activate NVRAM */
10531 	S24C16_start(np, &gpreg);
10532 
10533 	/* write device code and random address MSB */
10534 	S24C16_write_byte(np, &ack_data,
10535 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
10536 	if (ack_data & 0x01)
10537 		goto out;
10538 
10539 	/* write random address LSB */
10540 	S24C16_write_byte(np, &ack_data,
10541 		offset & 0xff, &gpreg, &gpcntl);
10542 	if (ack_data & 0x01)
10543 		goto out;
10544 
10545 	/* regenerate START state to set up for reading */
10546 	S24C16_start(np, &gpreg);
10547 
10548 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
10549 	S24C16_write_byte(np, &ack_data,
10550 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
10551 	if (ack_data & 0x01)
10552 		goto out;
10553 
10554 	/* now set up GPIO0 for inputting data */
10555 	gpcntl |= 0x01;
10556 	OUTB (nc_gpcntl, gpcntl);
10557 
10558 	/* input all requested data - only part of total NVRAM */
10559 	for (x = 0; x < len; x++)
10560 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
10561 
10562 	/* finally put NVRAM back in inactive mode */
10563 	gpcntl &= 0xfe;
10564 	OUTB (nc_gpcntl, gpcntl);
10565 	S24C16_stop(np, &gpreg);
10566 	retv = 0;
10567 out:
10568 	/* return GPIO0/1 to original states after having accessed NVRAM */
10569 	OUTB (nc_gpcntl, old_gpcntl);
10570 	OUTB (nc_gpreg,  old_gpreg);
10571 
10572 	return retv;
10573 }
10574 
10575 #undef SET_BIT 0
10576 #undef CLR_BIT 1
10577 #undef SET_CLK 2
10578 #undef CLR_CLK 3
10579 
10580 /*
10581  *  Try reading Symbios NVRAM.
10582  *  Return 0 if OK.
10583  */
10584 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
10585 {
10586 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
10587 	u_char *data = (u_char *) nvram;
10588 	int len  = sizeof(*nvram);
10589 	u_short	csum;
10590 	int x;
10591 
10592 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
10593 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
10594 		return 1;
10595 
10596 	/* check valid NVRAM signature, verify byte count and checksum */
10597 	if (nvram->type != 0 ||
10598 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
10599 	    nvram->byte_count != len - 12)
10600 		return 1;
10601 
10602 	/* verify checksum */
10603 	for (x = 6, csum = 0; x < len - 6; x++)
10604 		csum += data[x];
10605 	if (csum != nvram->checksum)
10606 		return 1;
10607 
10608 	return 0;
10609 }
10610 
10611 /*
10612  *  93C46 EEPROM reading.
10613  *
10614  *  GPOI0 - data in
10615  *  GPIO1 - data out
10616  *  GPIO2 - clock
10617  *  GPIO4 - chip select
10618  *
10619  *  Used by Tekram.
10620  */
10621 
10622 /*
10623  *  Pulse clock bit in GPIO0
10624  */
10625 static void T93C46_Clk(hcb_p np, u_char *gpreg)
10626 {
10627 	OUTB (nc_gpreg, *gpreg | 0x04);
10628 	UDELAY (2);
10629 	OUTB (nc_gpreg, *gpreg);
10630 }
10631 
10632 /*
10633  *  Read bit from NVRAM
10634  */
10635 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
10636 {
10637 	UDELAY (2);
10638 	T93C46_Clk(np, gpreg);
10639 	*read_bit = INB (nc_gpreg);
10640 }
10641 
10642 /*
10643  *  Write bit to GPIO0
10644  */
10645 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
10646 {
10647 	if (write_bit & 0x01)
10648 		*gpreg |= 0x02;
10649 	else
10650 		*gpreg &= 0xfd;
10651 
10652 	*gpreg |= 0x10;
10653 
10654 	OUTB (nc_gpreg, *gpreg);
10655 	UDELAY (2);
10656 
10657 	T93C46_Clk(np, gpreg);
10658 }
10659 
10660 /*
10661  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
10662  */
10663 static void T93C46_Stop(hcb_p np, u_char *gpreg)
10664 {
10665 	*gpreg &= 0xef;
10666 	OUTB (nc_gpreg, *gpreg);
10667 	UDELAY (2);
10668 
10669 	T93C46_Clk(np, gpreg);
10670 }
10671 
10672 /*
10673  *  Send read command and address to NVRAM
10674  */
10675 static void T93C46_Send_Command(hcb_p np, u_short write_data,
10676 				u_char *read_bit, u_char *gpreg)
10677 {
10678 	int x;
10679 
10680 	/* send 9 bits, start bit (1), command (2), address (6)  */
10681 	for (x = 0; x < 9; x++)
10682 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
10683 
10684 	*read_bit = INB (nc_gpreg);
10685 }
10686 
10687 /*
10688  *  READ 2 bytes from the NVRAM
10689  */
10690 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
10691 {
10692 	int x;
10693 	u_char read_bit;
10694 
10695 	*nvram_data = 0;
10696 	for (x = 0; x < 16; x++) {
10697 		T93C46_Read_Bit(np, &read_bit, gpreg);
10698 
10699 		if (read_bit & 0x01)
10700 			*nvram_data |=  (0x01 << (15 - x));
10701 		else
10702 			*nvram_data &= ~(0x01 << (15 - x));
10703 	}
10704 }
10705 
10706 /*
10707  *  Read Tekram NvRAM data.
10708  */
10709 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
10710 {
10711 	u_char	read_bit;
10712 	int	x;
10713 
10714 	for (x = 0; x < len; x++)  {
10715 
10716 		/* output read command and address */
10717 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
10718 		if (read_bit & 0x01)
10719 			return 1; /* Bad */
10720 		T93C46_Read_Word(np, &data[x], gpreg);
10721 		T93C46_Stop(np, gpreg);
10722 	}
10723 
10724 	return 0;
10725 }
10726 
10727 /*
10728  *  Try reading 93C46 Tekram NVRAM.
10729  */
10730 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
10731 {
10732 	u_char gpcntl, gpreg;
10733 	u_char old_gpcntl, old_gpreg;
10734 	int retv = 1;
10735 
10736 	/* save current state of GPCNTL and GPREG */
10737 	old_gpreg	= INB (nc_gpreg);
10738 	old_gpcntl	= INB (nc_gpcntl);
10739 
10740 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
10741 	   1/2/4 out */
10742 	gpreg = old_gpreg & 0xe9;
10743 	OUTB (nc_gpreg, gpreg);
10744 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
10745 	OUTB (nc_gpcntl, gpcntl);
10746 
10747 	/* input all of NVRAM, 64 words */
10748 	retv = T93C46_Read_Data(np, (u_short *) nvram,
10749 				sizeof(*nvram) / sizeof(short), &gpreg);
10750 
10751 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
10752 	OUTB (nc_gpcntl, old_gpcntl);
10753 	OUTB (nc_gpreg,  old_gpreg);
10754 
10755 	return retv;
10756 }
10757 
10758 /*
10759  *  Try reading Tekram NVRAM.
10760  *  Return 0 if OK.
10761  */
10762 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
10763 {
10764 	u_char *data = (u_char *) nvram;
10765 	int len = sizeof(*nvram);
10766 	u_short	csum;
10767 	int x;
10768 
10769 	switch (np->device_id) {
10770 	case PCI_ID_SYM53C885:
10771 	case PCI_ID_SYM53C895:
10772 	case PCI_ID_SYM53C896:
10773 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10774 					  data, len);
10775 		break;
10776 	case PCI_ID_SYM53C875:
10777 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10778 					  data, len);
10779 		if (!x)
10780 			break;
10781 	default:
10782 		x = sym_read_T93C46_nvram(np, nvram);
10783 		break;
10784 	}
10785 	if (x)
10786 		return 1;
10787 
10788 	/* verify checksum */
10789 	for (x = 0, csum = 0; x < len - 1; x += 2)
10790 		csum += data[x] + (data[x+1] << 8);
10791 	if (csum != 0x1234)
10792 		return 1;
10793 
10794 	return 0;
10795 }
10796 
10797 #endif	/* SYM_CONF_NVRAM_SUPPORT */
10798