1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5 * PCI-SCSI controllers.
6 *
7 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
8 *
9 * This driver also supports the following Symbios/LSI PCI-SCSI chips:
10 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode.
12 *
13 *
14 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15 * Copyright (C) 1998-1999 Gerard Roudier
16 *
17 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18 * a port of the FreeBSD ncr driver to Linux-1.2.13.
19 *
20 * The original ncr driver has been written for 386bsd and FreeBSD by
21 * Wolfgang Stanglmeier <wolf@cologne.de>
22 * Stefan Esser <se@mi.Uni-Koeln.de>
23 * Copyright (C) 1994 Wolfgang Stanglmeier
24 *
25 * The initialisation code, and part of the code that addresses
26 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27 * written by Justin T. Gibbs.
28 *
29 * Other major contributions:
30 *
31 * NVRAM detection and reading.
32 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33 *
34 *-----------------------------------------------------------------------------
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. The name of the author may not be used to endorse or promote products
45 * derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 */
59
60 #include <sys/cdefs.h>
61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902"
62
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64
65 #include <sys/param.h>
66
67 /*
68 * Driver configuration options.
69 */
70 #include "opt_sym.h"
71 #include <dev/sym/sym_conf.h>
72
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/endian.h>
76 #include <sys/kernel.h>
77 #include <sys/lock.h>
78 #include <sys/mutex.h>
79 #include <sys/module.h>
80 #include <sys/bus.h>
81
82 #include <sys/proc.h>
83
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <machine/atomic.h>
90
91 #include <sys/rman.h>
92
93 #include <cam/cam.h>
94 #include <cam/cam_ccb.h>
95 #include <cam/cam_sim.h>
96 #include <cam/cam_xpt_sim.h>
97 #include <cam/cam_debug.h>
98
99 #include <cam/scsi/scsi_all.h>
100 #include <cam/scsi/scsi_message.h>
101
102 /* Short and quite clear integer types */
103 typedef int8_t s8;
104 typedef int16_t s16;
105 typedef int32_t s32;
106 typedef u_int8_t u8;
107 typedef u_int16_t u16;
108 typedef u_int32_t u32;
109
110 /*
111 * Driver definitions.
112 */
113 #include <dev/sym/sym_defs.h>
114 #include <dev/sym/sym_fw.h>
115
116 /*
117 * IA32 architecture does not reorder STORES and prevents
118 * LOADS from passing STORES. It is called `program order'
119 * by Intel and allows device drivers to deal with memory
120 * ordering by only ensuring that the code is not reordered
121 * by the compiler when ordering is required.
122 * Other architectures implement a weaker ordering that
123 * requires memory barriers (and also IO barriers when they
124 * make sense) to be used.
125 */
126 #if defined __i386__ || defined __amd64__
127 #define MEMORY_BARRIER() do { ; } while(0)
128 #elif defined __powerpc__
129 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory")
130 #elif defined __arm__
131 #define MEMORY_BARRIER() dmb()
132 #elif defined __aarch64__
133 #define MEMORY_BARRIER() dmb(sy)
134 #elif defined __riscv
135 #define MEMORY_BARRIER() fence()
136 #else
137 #error "Not supported platform"
138 #endif
139
140 /*
141 * A la VMS/CAM-3 queue management.
142 */
143 typedef struct sym_quehead {
144 struct sym_quehead *flink; /* Forward pointer */
145 struct sym_quehead *blink; /* Backward pointer */
146 } SYM_QUEHEAD;
147
148 #define sym_que_init(ptr) do { \
149 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \
150 } while (0)
151
__sym_que_add(struct sym_quehead * new,struct sym_quehead * blink,struct sym_quehead * flink)152 static __inline void __sym_que_add(struct sym_quehead * new,
153 struct sym_quehead * blink,
154 struct sym_quehead * flink)
155 {
156 flink->blink = new;
157 new->flink = flink;
158 new->blink = blink;
159 blink->flink = new;
160 }
161
__sym_que_del(struct sym_quehead * blink,struct sym_quehead * flink)162 static __inline void __sym_que_del(struct sym_quehead * blink,
163 struct sym_quehead * flink)
164 {
165 flink->blink = blink;
166 blink->flink = flink;
167 }
168
sym_que_empty(struct sym_quehead * head)169 static __inline int sym_que_empty(struct sym_quehead *head)
170 {
171 return head->flink == head;
172 }
173
sym_que_splice(struct sym_quehead * list,struct sym_quehead * head)174 static __inline void sym_que_splice(struct sym_quehead *list,
175 struct sym_quehead *head)
176 {
177 struct sym_quehead *first = list->flink;
178
179 if (first != list) {
180 struct sym_quehead *last = list->blink;
181 struct sym_quehead *at = head->flink;
182
183 first->blink = head;
184 head->flink = first;
185
186 last->flink = at;
187 at->blink = last;
188 }
189 }
190
191 #define sym_que_entry(ptr, type, member) \
192 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
193
194 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink)
195
196 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink)
197
198 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink)
199
sym_remque_head(struct sym_quehead * head)200 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
201 {
202 struct sym_quehead *elem = head->flink;
203
204 if (elem != head)
205 __sym_que_del(head, elem->flink);
206 else
207 elem = NULL;
208 return elem;
209 }
210
211 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head)
212
213 /*
214 * This one may be useful.
215 */
216 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
217 for (qp = (head)->flink; qp != (head); qp = qp->flink)
218 /*
219 * FreeBSD does not offer our kind of queue in the CAM CCB.
220 * So, we have to cast.
221 */
222 #define sym_qptr(p) ((struct sym_quehead *) (p))
223
224 /*
225 * Simple bitmap operations.
226 */
227 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f)))
228 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
229 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f)))
230
231 /*
232 * Number of tasks per device we want to handle.
233 */
234 #if SYM_CONF_MAX_TAG_ORDER > 8
235 #error "more than 256 tags per logical unit not allowed."
236 #endif
237 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
238
239 /*
240 * Donnot use more tasks that we can handle.
241 */
242 #ifndef SYM_CONF_MAX_TAG
243 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
244 #endif
245 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
246 #undef SYM_CONF_MAX_TAG
247 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
248 #endif
249
250 /*
251 * This one means 'NO TAG for this job'
252 */
253 #define NO_TAG (256)
254
255 /*
256 * Number of SCSI targets.
257 */
258 #if SYM_CONF_MAX_TARGET > 16
259 #error "more than 16 targets not allowed."
260 #endif
261
262 /*
263 * Number of logical units per target.
264 */
265 #if SYM_CONF_MAX_LUN > 64
266 #error "more than 64 logical units per target not allowed."
267 #endif
268
269 /*
270 * Asynchronous pre-scaler (ns). Shall be 40 for
271 * the SCSI timings to be compliant.
272 */
273 #define SYM_CONF_MIN_ASYNC (40)
274
275 /*
276 * Number of entries in the START and DONE queues.
277 *
278 * We limit to 1 PAGE in order to succeed allocation of
279 * these queues. Each entry is 8 bytes long (2 DWORDS).
280 */
281 #ifdef SYM_CONF_MAX_START
282 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
283 #else
284 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
285 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
286 #endif
287
288 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
289 #undef SYM_CONF_MAX_QUEUE
290 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8
291 #undef SYM_CONF_MAX_START
292 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
293 #endif
294
295 /*
296 * For this one, we want a short name :-)
297 */
298 #define MAX_QUEUE SYM_CONF_MAX_QUEUE
299
300 /*
301 * Active debugging tags and verbosity.
302 */
303 #define DEBUG_ALLOC (0x0001)
304 #define DEBUG_PHASE (0x0002)
305 #define DEBUG_POLL (0x0004)
306 #define DEBUG_QUEUE (0x0008)
307 #define DEBUG_RESULT (0x0010)
308 #define DEBUG_SCATTER (0x0020)
309 #define DEBUG_SCRIPT (0x0040)
310 #define DEBUG_TINY (0x0080)
311 #define DEBUG_TIMING (0x0100)
312 #define DEBUG_NEGO (0x0200)
313 #define DEBUG_TAGS (0x0400)
314 #define DEBUG_POINTER (0x0800)
315
316 #if 0
317 static int sym_debug = 0;
318 #define DEBUG_FLAGS sym_debug
319 #else
320 /* #define DEBUG_FLAGS (0x0631) */
321 #define DEBUG_FLAGS (0x0000)
322
323 #endif
324 #define sym_verbose (np->verbose)
325
326 /*
327 * Insert a delay in micro-seconds and milli-seconds.
328 */
UDELAY(int us)329 static void UDELAY(int us) { DELAY(us); }
MDELAY(int ms)330 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
331
332 /*
333 * Simple power of two buddy-like allocator.
334 *
335 * This simple code is not intended to be fast, but to
336 * provide power of 2 aligned memory allocations.
337 * Since the SCRIPTS processor only supplies 8 bit arithmetic,
338 * this allocator allows simple and fast address calculations
339 * from the SCRIPTS code. In addition, cache line alignment
340 * is guaranteed for power of 2 cache line size.
341 *
342 * This allocator has been developed for the Linux sym53c8xx
343 * driver, since this O/S does not provide naturally aligned
344 * allocations.
345 * It has the advantage of allowing the driver to use private
346 * pages of memory that will be useful if we ever need to deal
347 * with IO MMUs for PCI.
348 */
349 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
350 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
351 #if 0
352 #define MEMO_FREE_UNUSED /* Free unused pages immediately */
353 #endif
354 #define MEMO_WARN 1
355 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
356 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
357 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
358
359 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
360 #define free_pages(p) free((p), M_DEVBUF)
361
362 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
363
364 typedef struct m_link { /* Link between free memory chunks */
365 struct m_link *next;
366 } m_link_s;
367
368 typedef struct m_vtob { /* Virtual to Bus address translation */
369 struct m_vtob *next;
370 bus_dmamap_t dmamap; /* Map for this chunk */
371 m_addr_t vaddr; /* Virtual address */
372 m_addr_t baddr; /* Bus physical address */
373 } m_vtob_s;
374 /* Hash this stuff a bit to speed up translations */
375 #define VTOB_HASH_SHIFT 5
376 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
377 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
378 #define VTOB_HASH_CODE(m) \
379 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
380
381 typedef struct m_pool { /* Memory pool of a given kind */
382 bus_dma_tag_t dev_dmat; /* Identifies the pool */
383 bus_dma_tag_t dmat; /* Tag for our fixed allocations */
384 m_addr_t (*getp)(struct m_pool *);
385 #ifdef MEMO_FREE_UNUSED
386 void (*freep)(struct m_pool *, m_addr_t);
387 #endif
388 #define M_GETP() mp->getp(mp)
389 #define M_FREEP(p) mp->freep(mp, p)
390 int nump;
391 m_vtob_s *(vtob[VTOB_HASH_SIZE]);
392 struct m_pool *next;
393 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
394 } m_pool_s;
395
___sym_malloc(m_pool_s * mp,int size)396 static void *___sym_malloc(m_pool_s *mp, int size)
397 {
398 int i = 0;
399 int s = (1 << MEMO_SHIFT);
400 int j;
401 m_addr_t a;
402 m_link_s *h = mp->h;
403
404 if (size > MEMO_CLUSTER_SIZE)
405 return NULL;
406
407 while (size > s) {
408 s <<= 1;
409 ++i;
410 }
411
412 j = i;
413 while (!h[j].next) {
414 if (s == MEMO_CLUSTER_SIZE) {
415 h[j].next = (m_link_s *) M_GETP();
416 if (h[j].next)
417 h[j].next->next = NULL;
418 break;
419 }
420 ++j;
421 s <<= 1;
422 }
423 a = (m_addr_t) h[j].next;
424 if (a) {
425 h[j].next = h[j].next->next;
426 while (j > i) {
427 j -= 1;
428 s >>= 1;
429 h[j].next = (m_link_s *) (a+s);
430 h[j].next->next = NULL;
431 }
432 }
433 #ifdef DEBUG
434 printf("___sym_malloc(%d) = %p\n", size, (void *) a);
435 #endif
436 return (void *) a;
437 }
438
___sym_mfree(m_pool_s * mp,void * ptr,int size)439 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
440 {
441 int i = 0;
442 int s = (1 << MEMO_SHIFT);
443 m_link_s *q;
444 m_addr_t a, b;
445 m_link_s *h = mp->h;
446
447 #ifdef DEBUG
448 printf("___sym_mfree(%p, %d)\n", ptr, size);
449 #endif
450
451 if (size > MEMO_CLUSTER_SIZE)
452 return;
453
454 while (size > s) {
455 s <<= 1;
456 ++i;
457 }
458
459 a = (m_addr_t) ptr;
460
461 while (1) {
462 #ifdef MEMO_FREE_UNUSED
463 if (s == MEMO_CLUSTER_SIZE) {
464 M_FREEP(a);
465 break;
466 }
467 #endif
468 b = a ^ s;
469 q = &h[i];
470 while (q->next && q->next != (m_link_s *) b) {
471 q = q->next;
472 }
473 if (!q->next) {
474 ((m_link_s *) a)->next = h[i].next;
475 h[i].next = (m_link_s *) a;
476 break;
477 }
478 q->next = q->next->next;
479 a = a & b;
480 s <<= 1;
481 ++i;
482 }
483 }
484
__sym_calloc2(m_pool_s * mp,int size,char * name,int uflags)485 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
486 {
487 void *p;
488
489 p = ___sym_malloc(mp, size);
490
491 if (DEBUG_FLAGS & DEBUG_ALLOC)
492 printf ("new %-10s[%4d] @%p.\n", name, size, p);
493
494 if (p)
495 bzero(p, size);
496 else if (uflags & MEMO_WARN)
497 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
498
499 return p;
500 }
501
502 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN)
503
__sym_mfree(m_pool_s * mp,void * ptr,int size,char * name)504 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
505 {
506 if (DEBUG_FLAGS & DEBUG_ALLOC)
507 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
508
509 ___sym_mfree(mp, ptr, size);
510
511 }
512
513 /*
514 * Default memory pool we donnot need to involve in DMA.
515 */
516 /*
517 * With the `bus dma abstraction', we use a separate pool for
518 * memory we donnot need to involve in DMA.
519 */
___mp0_getp(m_pool_s * mp)520 static m_addr_t ___mp0_getp(m_pool_s *mp)
521 {
522 m_addr_t m = (m_addr_t) get_pages();
523 if (m)
524 ++mp->nump;
525 return m;
526 }
527
528 #ifdef MEMO_FREE_UNUSED
___mp0_freep(m_pool_s * mp,m_addr_t m)529 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
530 {
531 free_pages(m);
532 --mp->nump;
533 }
534 #endif
535
536 #ifdef MEMO_FREE_UNUSED
537 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
538 #else
539 static m_pool_s mp0 = {0, 0, ___mp0_getp};
540 #endif
541
542 /*
543 * Actual memory allocation routine for non-DMAed memory.
544 */
sym_calloc(int size,char * name)545 static void *sym_calloc(int size, char *name)
546 {
547 void *m;
548 /* Lock */
549 m = __sym_calloc(&mp0, size, name);
550 /* Unlock */
551 return m;
552 }
553
554 /*
555 * Actual memory allocation routine for non-DMAed memory.
556 */
sym_mfree(void * ptr,int size,char * name)557 static void sym_mfree(void *ptr, int size, char *name)
558 {
559 /* Lock */
560 __sym_mfree(&mp0, ptr, size, name);
561 /* Unlock */
562 }
563
564 /*
565 * DMAable pools.
566 */
567 /*
568 * With `bus dma abstraction', we use a separate pool per parent
569 * BUS handle. A reverse table (hashed) is maintained for virtual
570 * to BUS address translation.
571 */
getbaddrcb(void * arg,bus_dma_segment_t * segs,int nseg __diagused,int error)572 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __diagused,
573 int error)
574 {
575 bus_addr_t *baddr;
576
577 KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
578
579 baddr = (bus_addr_t *)arg;
580 if (error)
581 *baddr = 0;
582 else
583 *baddr = segs->ds_addr;
584 }
585
___dma_getp(m_pool_s * mp)586 static m_addr_t ___dma_getp(m_pool_s *mp)
587 {
588 m_vtob_s *vbp;
589 void *vaddr = NULL;
590 bus_addr_t baddr = 0;
591
592 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
593 if (!vbp)
594 goto out_err;
595
596 if (bus_dmamem_alloc(mp->dmat, &vaddr,
597 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
598 goto out_err;
599 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
600 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
601 if (baddr) {
602 int hc = VTOB_HASH_CODE(vaddr);
603 vbp->vaddr = (m_addr_t) vaddr;
604 vbp->baddr = (m_addr_t) baddr;
605 vbp->next = mp->vtob[hc];
606 mp->vtob[hc] = vbp;
607 ++mp->nump;
608 return (m_addr_t) vaddr;
609 }
610 out_err:
611 if (vaddr)
612 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
613 if (vbp)
614 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
615 return 0;
616 }
617
618 #ifdef MEMO_FREE_UNUSED
___dma_freep(m_pool_s * mp,m_addr_t m)619 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
620 {
621 m_vtob_s **vbpp, *vbp;
622 int hc = VTOB_HASH_CODE(m);
623
624 vbpp = &mp->vtob[hc];
625 while (*vbpp && (*vbpp)->vaddr != m)
626 vbpp = &(*vbpp)->next;
627 if (*vbpp) {
628 vbp = *vbpp;
629 *vbpp = (*vbpp)->next;
630 bus_dmamap_unload(mp->dmat, vbp->dmamap);
631 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
632 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
633 --mp->nump;
634 }
635 }
636 #endif
637
___get_dma_pool(bus_dma_tag_t dev_dmat)638 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
639 {
640 m_pool_s *mp;
641 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
642 return mp;
643 }
644
___cre_dma_pool(bus_dma_tag_t dev_dmat)645 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
646 {
647 m_pool_s *mp = NULL;
648
649 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
650 if (mp) {
651 mp->dev_dmat = dev_dmat;
652 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
653 BUS_SPACE_MAXADDR_32BIT,
654 BUS_SPACE_MAXADDR,
655 NULL, NULL, MEMO_CLUSTER_SIZE, 1,
656 MEMO_CLUSTER_SIZE, 0,
657 NULL, NULL, &mp->dmat)) {
658 mp->getp = ___dma_getp;
659 #ifdef MEMO_FREE_UNUSED
660 mp->freep = ___dma_freep;
661 #endif
662 mp->next = mp0.next;
663 mp0.next = mp;
664 return mp;
665 }
666 }
667 if (mp)
668 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
669 return NULL;
670 }
671
672 #ifdef MEMO_FREE_UNUSED
___del_dma_pool(m_pool_s * p)673 static void ___del_dma_pool(m_pool_s *p)
674 {
675 struct m_pool **pp = &mp0.next;
676
677 while (*pp && *pp != p)
678 pp = &(*pp)->next;
679 if (*pp) {
680 *pp = (*pp)->next;
681 bus_dma_tag_destroy(p->dmat);
682 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
683 }
684 }
685 #endif
686
__sym_calloc_dma(bus_dma_tag_t dev_dmat,int size,char * name)687 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
688 {
689 struct m_pool *mp;
690 void *m = NULL;
691
692 /* Lock */
693 mp = ___get_dma_pool(dev_dmat);
694 if (!mp)
695 mp = ___cre_dma_pool(dev_dmat);
696 if (mp)
697 m = __sym_calloc(mp, size, name);
698 #ifdef MEMO_FREE_UNUSED
699 if (mp && !mp->nump)
700 ___del_dma_pool(mp);
701 #endif
702 /* Unlock */
703
704 return m;
705 }
706
707 static void
__sym_mfree_dma(bus_dma_tag_t dev_dmat,void * m,int size,char * name)708 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
709 {
710 struct m_pool *mp;
711
712 /* Lock */
713 mp = ___get_dma_pool(dev_dmat);
714 if (mp)
715 __sym_mfree(mp, m, size, name);
716 #ifdef MEMO_FREE_UNUSED
717 if (mp && !mp->nump)
718 ___del_dma_pool(mp);
719 #endif
720 /* Unlock */
721 }
722
__vtobus(bus_dma_tag_t dev_dmat,void * m)723 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
724 {
725 m_pool_s *mp;
726 int hc = VTOB_HASH_CODE(m);
727 m_vtob_s *vp = NULL;
728 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
729
730 /* Lock */
731 mp = ___get_dma_pool(dev_dmat);
732 if (mp) {
733 vp = mp->vtob[hc];
734 while (vp && (m_addr_t) vp->vaddr != a)
735 vp = vp->next;
736 }
737 /* Unlock */
738 if (!vp)
739 panic("sym: VTOBUS FAILED!\n");
740 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
741 }
742
743 /*
744 * Verbs for DMAable memory handling.
745 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
746 * being discarded.
747 */
748 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
749 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n)
750 #define _sym_mfree_dma(np, p, s, n) \
751 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
752 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n)
753 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n)
754 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p))
755 #define vtobus(p) _vtobus(np, p)
756
757 /*
758 * Print a buffer in hexadecimal format.
759 */
sym_printb_hex(u_char * p,int n)760 static void sym_printb_hex (u_char *p, int n)
761 {
762 while (n-- > 0)
763 printf (" %x", *p++);
764 }
765
766 /*
767 * Same with a label at beginning and .\n at end.
768 */
sym_printl_hex(char * label,u_char * p,int n)769 static void sym_printl_hex (char *label, u_char *p, int n)
770 {
771 printf ("%s", label);
772 sym_printb_hex (p, n);
773 printf (".\n");
774 }
775
776 /*
777 * Return a string for SCSI BUS mode.
778 */
sym_scsi_bus_mode(int mode)779 static const char *sym_scsi_bus_mode(int mode)
780 {
781 switch(mode) {
782 case SMODE_HVD: return "HVD";
783 case SMODE_SE: return "SE";
784 case SMODE_LVD: return "LVD";
785 }
786 return "??";
787 }
788
789 /*
790 * Some poor and bogus sync table that refers to Tekram NVRAM layout.
791 */
792 #ifdef SYM_CONF_NVRAM_SUPPORT
793 static const u_char Tekram_sync[16] =
794 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
795 #endif
796
797 /*
798 * Union of supported NVRAM formats.
799 */
800 struct sym_nvram {
801 int type;
802 #define SYM_SYMBIOS_NVRAM (1)
803 #define SYM_TEKRAM_NVRAM (2)
804 #ifdef SYM_CONF_NVRAM_SUPPORT
805 union {
806 Symbios_nvram Symbios;
807 Tekram_nvram Tekram;
808 } data;
809 #endif
810 };
811
812 /*
813 * This one is hopefully useless, but actually useful. :-)
814 */
815 #ifndef assert
816 #define assert(expression) { \
817 if (!(expression)) { \
818 (void)panic( \
819 "assertion \"%s\" failed: file \"%s\", line %d\n", \
820 #expression, \
821 __FILE__, __LINE__); \
822 } \
823 }
824 #endif
825
826 /*
827 * Some provision for a possible big endian mode supported by
828 * Symbios chips (never seen, by the way).
829 * For now, this stuff does not deserve any comments. :)
830 */
831 #define sym_offb(o) (o)
832 #define sym_offw(o) (o)
833
834 /*
835 * Some provision for support for BIG ENDIAN CPU.
836 */
837 #define cpu_to_scr(dw) htole32(dw)
838 #define scr_to_cpu(dw) le32toh(dw)
839
840 /*
841 * Access to the chip IO registers and on-chip RAM.
842 * We use the `bus space' interface under FreeBSD-4 and
843 * later kernel versions.
844 */
845 #if defined(SYM_CONF_IOMAPPED)
846
847 #define INB_OFF(o) bus_read_1(np->io_res, (o))
848 #define INW_OFF(o) bus_read_2(np->io_res, (o))
849 #define INL_OFF(o) bus_read_4(np->io_res, (o))
850
851 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v))
852 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v))
853 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v))
854
855 #else /* Memory mapped IO */
856
857 #define INB_OFF(o) bus_read_1(np->mmio_res, (o))
858 #define INW_OFF(o) bus_read_2(np->mmio_res, (o))
859 #define INL_OFF(o) bus_read_4(np->mmio_res, (o))
860
861 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v))
862 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v))
863 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v))
864
865 #endif /* SYM_CONF_IOMAPPED */
866
867 #define OUTRAM_OFF(o, a, l) \
868 bus_write_region_1(np->ram_res, (o), (a), (l))
869
870 /*
871 * Common definitions for both bus space and legacy IO methods.
872 */
873 #define INB(r) INB_OFF(offsetof(struct sym_reg,r))
874 #define INW(r) INW_OFF(offsetof(struct sym_reg,r))
875 #define INL(r) INL_OFF(offsetof(struct sym_reg,r))
876
877 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v))
878 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v))
879 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v))
880
881 #define OUTONB(r, m) OUTB(r, INB(r) | (m))
882 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m))
883 #define OUTONW(r, m) OUTW(r, INW(r) | (m))
884 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m))
885 #define OUTONL(r, m) OUTL(r, INL(r) | (m))
886 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m))
887
888 /*
889 * We normally want the chip to have a consistent view
890 * of driver internal data structures when we restart it.
891 * Thus these macros.
892 */
893 #define OUTL_DSP(v) \
894 do { \
895 MEMORY_BARRIER(); \
896 OUTL (nc_dsp, (v)); \
897 } while (0)
898
899 #define OUTONB_STD() \
900 do { \
901 MEMORY_BARRIER(); \
902 OUTONB (nc_dcntl, (STD|NOCOM)); \
903 } while (0)
904
905 /*
906 * Command control block states.
907 */
908 #define HS_IDLE (0)
909 #define HS_BUSY (1)
910 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/
911 #define HS_DISCONNECT (3) /* Disconnected by target */
912 #define HS_WAIT (4) /* waiting for resource */
913
914 #define HS_DONEMASK (0x80)
915 #define HS_COMPLETE (4|HS_DONEMASK)
916 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
917 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
918 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
919
920 /*
921 * Software Interrupt Codes
922 */
923 #define SIR_BAD_SCSI_STATUS (1)
924 #define SIR_SEL_ATN_NO_MSG_OUT (2)
925 #define SIR_MSG_RECEIVED (3)
926 #define SIR_MSG_WEIRD (4)
927 #define SIR_NEGO_FAILED (5)
928 #define SIR_NEGO_PROTO (6)
929 #define SIR_SCRIPT_STOPPED (7)
930 #define SIR_REJECT_TO_SEND (8)
931 #define SIR_SWIDE_OVERRUN (9)
932 #define SIR_SODL_UNDERRUN (10)
933 #define SIR_RESEL_NO_MSG_IN (11)
934 #define SIR_RESEL_NO_IDENTIFY (12)
935 #define SIR_RESEL_BAD_LUN (13)
936 #define SIR_TARGET_SELECTED (14)
937 #define SIR_RESEL_BAD_I_T_L (15)
938 #define SIR_RESEL_BAD_I_T_L_Q (16)
939 #define SIR_ABORT_SENT (17)
940 #define SIR_RESEL_ABORTED (18)
941 #define SIR_MSG_OUT_DONE (19)
942 #define SIR_COMPLETE_ERROR (20)
943 #define SIR_DATA_OVERRUN (21)
944 #define SIR_BAD_PHASE (22)
945 #define SIR_MAX (22)
946
947 /*
948 * Extended error bit codes.
949 * xerr_status field of struct sym_ccb.
950 */
951 #define XE_EXTRA_DATA (1) /* unexpected data phase */
952 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
953 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
954 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
955 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
956
957 /*
958 * Negotiation status.
959 * nego_status field of struct sym_ccb.
960 */
961 #define NS_SYNC (1)
962 #define NS_WIDE (2)
963 #define NS_PPR (3)
964
965 /*
966 * A CCB hashed table is used to retrieve CCB address
967 * from DSA value.
968 */
969 #define CCB_HASH_SHIFT 8
970 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
971 #define CCB_HASH_MASK (CCB_HASH_SIZE-1)
972 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
973
974 /*
975 * Device flags.
976 */
977 #define SYM_DISC_ENABLED (1)
978 #define SYM_TAGS_ENABLED (1<<1)
979 #define SYM_SCAN_BOOT_DISABLED (1<<2)
980 #define SYM_SCAN_LUNS_DISABLED (1<<3)
981
982 /*
983 * Host adapter miscellaneous flags.
984 */
985 #define SYM_AVOID_BUS_RESET (1)
986 #define SYM_SCAN_TARGETS_HILO (1<<1)
987
988 /*
989 * Device quirks.
990 * Some devices, for example the CHEETAH 2 LVD, disconnects without
991 * saving the DATA POINTER then reselects and terminates the IO.
992 * On reselection, the automatic RESTORE DATA POINTER makes the
993 * CURRENT DATA POINTER not point at the end of the IO.
994 * This behaviour just breaks our calculation of the residual.
995 * For now, we just force an AUTO SAVE on disconnection and will
996 * fix that in a further driver version.
997 */
998 #define SYM_QUIRK_AUTOSAVE 1
999
1000 /*
1001 * Misc.
1002 */
1003 #define SYM_LOCK() mtx_lock(&np->mtx)
1004 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what))
1005 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx)
1006 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1007 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx)
1008 #define SYM_UNLOCK() mtx_unlock(&np->mtx)
1009
1010 #define SYM_SNOOP_TIMEOUT (10000000)
1011 #define SYM_PCI_IO PCIR_BAR(0)
1012 #define SYM_PCI_MMIO PCIR_BAR(1)
1013 #define SYM_PCI_RAM PCIR_BAR(2)
1014 #define SYM_PCI_RAM64 PCIR_BAR(3)
1015
1016 /*
1017 * Back-pointer from the CAM CCB to our data structures.
1018 */
1019 #define sym_hcb_ptr spriv_ptr0
1020 /* #define sym_ccb_ptr spriv_ptr1 */
1021
1022 /*
1023 * We mostly have to deal with pointers.
1024 * Thus these typedef's.
1025 */
1026 typedef struct sym_tcb *tcb_p;
1027 typedef struct sym_lcb *lcb_p;
1028 typedef struct sym_ccb *ccb_p;
1029 typedef struct sym_hcb *hcb_p;
1030
1031 /*
1032 * Gather negotiable parameters value
1033 */
1034 struct sym_trans {
1035 u8 scsi_version;
1036 u8 spi_version;
1037 u8 period;
1038 u8 offset;
1039 u8 width;
1040 u8 options; /* PPR options */
1041 };
1042
1043 struct sym_tinfo {
1044 struct sym_trans current;
1045 struct sym_trans goal;
1046 struct sym_trans user;
1047 };
1048
1049 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT
1050 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT
1051
1052 /*
1053 * Global TCB HEADER.
1054 *
1055 * Due to lack of indirect addressing on earlier NCR chips,
1056 * this substructure is copied from the TCB to a global
1057 * address after selection.
1058 * For SYMBIOS chips that support LOAD/STORE this copy is
1059 * not needed and thus not performed.
1060 */
1061 struct sym_tcbh {
1062 /*
1063 * Scripts bus addresses of LUN table accessed from scripts.
1064 * LUN #0 is a special case, since multi-lun devices are rare,
1065 * and we we want to speed-up the general case and not waste
1066 * resources.
1067 */
1068 u32 luntbl_sa; /* bus address of this table */
1069 u32 lun0_sa; /* bus address of LCB #0 */
1070 /*
1071 * Actual SYNC/WIDE IO registers value for this target.
1072 * 'sval', 'wval' and 'uval' are read from SCRIPTS and
1073 * so have alignment constraints.
1074 */
1075 /*0*/ u_char uval; /* -> SCNTL4 register */
1076 /*1*/ u_char sval; /* -> SXFER io register */
1077 /*2*/ u_char filler1;
1078 /*3*/ u_char wval; /* -> SCNTL3 io register */
1079 };
1080
1081 /*
1082 * Target Control Block
1083 */
1084 struct sym_tcb {
1085 /*
1086 * TCB header.
1087 * Assumed at offset 0.
1088 */
1089 /*0*/ struct sym_tcbh head;
1090
1091 /*
1092 * LUN table used by the SCRIPTS processor.
1093 * An array of bus addresses is used on reselection.
1094 */
1095 u32 *luntbl; /* LCBs bus address table */
1096
1097 /*
1098 * LUN table used by the C code.
1099 */
1100 lcb_p lun0p; /* LCB of LUN #0 (usual case) */
1101 #if SYM_CONF_MAX_LUN > 1
1102 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */
1103 #endif
1104
1105 /*
1106 * Bitmap that tells about LUNs that succeeded at least
1107 * 1 IO and therefore assumed to be a real device.
1108 * Avoid useless allocation of the LCB structure.
1109 */
1110 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32];
1111
1112 /*
1113 * Bitmap that tells about LUNs that haven't yet an LCB
1114 * allocated (not discovered or LCB allocation failed).
1115 */
1116 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1117
1118 /*
1119 * Transfer capabilities (SIP)
1120 */
1121 struct sym_tinfo tinfo;
1122
1123 /*
1124 * Keep track of the CCB used for the negotiation in order
1125 * to ensure that only 1 negotiation is queued at a time.
1126 */
1127 ccb_p nego_cp; /* CCB used for the nego */
1128
1129 /*
1130 * Set when we want to reset the device.
1131 */
1132 u_char to_reset;
1133
1134 /*
1135 * Other user settable limits and options.
1136 * These limits are read from the NVRAM if present.
1137 */
1138 u_char usrflags;
1139 u_short usrtags;
1140 };
1141
1142 /*
1143 * Assert some alignments required by the chip.
1144 */
1145 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1146 offsetof(struct sym_tcb, head.sval)) &3) == 0);
1147 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1148 offsetof(struct sym_tcb, head.wval)) &3) == 0);
1149
1150 /*
1151 * Global LCB HEADER.
1152 *
1153 * Due to lack of indirect addressing on earlier NCR chips,
1154 * this substructure is copied from the LCB to a global
1155 * address after selection.
1156 * For SYMBIOS chips that support LOAD/STORE this copy is
1157 * not needed and thus not performed.
1158 */
1159 struct sym_lcbh {
1160 /*
1161 * SCRIPTS address jumped by SCRIPTS on reselection.
1162 * For not probed logical units, this address points to
1163 * SCRIPTS that deal with bad LU handling (must be at
1164 * offset zero of the LCB for that reason).
1165 */
1166 /*0*/ u32 resel_sa;
1167
1168 /*
1169 * Task (bus address of a CCB) read from SCRIPTS that points
1170 * to the unique ITL nexus allowed to be disconnected.
1171 */
1172 u32 itl_task_sa;
1173
1174 /*
1175 * Task table bus address (read from SCRIPTS).
1176 */
1177 u32 itlq_tbl_sa;
1178 };
1179
1180 /*
1181 * Logical Unit Control Block
1182 */
1183 struct sym_lcb {
1184 /*
1185 * TCB header.
1186 * Assumed at offset 0.
1187 */
1188 /*0*/ struct sym_lcbh head;
1189
1190 /*
1191 * Task table read from SCRIPTS that contains pointers to
1192 * ITLQ nexuses. The bus address read from SCRIPTS is
1193 * inside the header.
1194 */
1195 u32 *itlq_tbl; /* Kernel virtual address */
1196
1197 /*
1198 * Busy CCBs management.
1199 */
1200 u_short busy_itlq; /* Number of busy tagged CCBs */
1201 u_short busy_itl; /* Number of busy untagged CCBs */
1202
1203 /*
1204 * Circular tag allocation buffer.
1205 */
1206 u_short ia_tag; /* Tag allocation index */
1207 u_short if_tag; /* Tag release index */
1208 u_char *cb_tags; /* Circular tags buffer */
1209
1210 /*
1211 * Set when we want to clear all tasks.
1212 */
1213 u_char to_clear;
1214
1215 /*
1216 * Capabilities.
1217 */
1218 u_char user_flags;
1219 u_char current_flags;
1220 };
1221
1222 /*
1223 * Action from SCRIPTS on a task.
1224 * Is part of the CCB, but is also used separately to plug
1225 * error handling action to perform from SCRIPTS.
1226 */
1227 struct sym_actscr {
1228 u32 start; /* Jumped by SCRIPTS after selection */
1229 u32 restart; /* Jumped by SCRIPTS on relection */
1230 };
1231
1232 /*
1233 * Phase mismatch context.
1234 *
1235 * It is part of the CCB and is used as parameters for the
1236 * DATA pointer. We need two contexts to handle correctly the
1237 * SAVED DATA POINTER.
1238 */
1239 struct sym_pmc {
1240 struct sym_tblmove sg; /* Updated interrupted SG block */
1241 u32 ret; /* SCRIPT return address */
1242 };
1243
1244 /*
1245 * LUN control block lookup.
1246 * We use a direct pointer for LUN #0, and a table of
1247 * pointers which is only allocated for devices that support
1248 * LUN(s) > 0.
1249 */
1250 #if SYM_CONF_MAX_LUN <= 1
1251 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1252 #else
1253 #define sym_lp(tp, lun) \
1254 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1255 #endif
1256
1257 /*
1258 * Status are used by the host and the script processor.
1259 *
1260 * The last four bytes (status[4]) are copied to the
1261 * scratchb register (declared as scr0..scr3) just after the
1262 * select/reselect, and copied back just after disconnecting.
1263 * Inside the script the XX_REG are used.
1264 */
1265
1266 /*
1267 * Last four bytes (script)
1268 */
1269 #define QU_REG scr0
1270 #define HS_REG scr1
1271 #define HS_PRT nc_scr1
1272 #define SS_REG scr2
1273 #define SS_PRT nc_scr2
1274 #define HF_REG scr3
1275 #define HF_PRT nc_scr3
1276
1277 /*
1278 * Last four bytes (host)
1279 */
1280 #define actualquirks phys.head.status[0]
1281 #define host_status phys.head.status[1]
1282 #define ssss_status phys.head.status[2]
1283 #define host_flags phys.head.status[3]
1284
1285 /*
1286 * Host flags
1287 */
1288 #define HF_IN_PM0 1u
1289 #define HF_IN_PM1 (1u<<1)
1290 #define HF_ACT_PM (1u<<2)
1291 #define HF_DP_SAVED (1u<<3)
1292 #define HF_SENSE (1u<<4)
1293 #define HF_EXT_ERR (1u<<5)
1294 #define HF_DATA_IN (1u<<6)
1295 #ifdef SYM_CONF_IARB_SUPPORT
1296 #define HF_HINT_IARB (1u<<7)
1297 #endif
1298
1299 /*
1300 * Global CCB HEADER.
1301 *
1302 * Due to lack of indirect addressing on earlier NCR chips,
1303 * this substructure is copied from the ccb to a global
1304 * address after selection (or reselection) and copied back
1305 * before disconnect.
1306 * For SYMBIOS chips that support LOAD/STORE this copy is
1307 * not needed and thus not performed.
1308 */
1309 struct sym_ccbh {
1310 /*
1311 * Start and restart SCRIPTS addresses (must be at 0).
1312 */
1313 /*0*/ struct sym_actscr go;
1314
1315 /*
1316 * SCRIPTS jump address that deal with data pointers.
1317 * 'savep' points to the position in the script responsible
1318 * for the actual transfer of data.
1319 * It's written on reception of a SAVE_DATA_POINTER message.
1320 */
1321 u32 savep; /* Jump address to saved data pointer */
1322 u32 lastp; /* SCRIPTS address at end of data */
1323 u32 goalp; /* Not accessed for now from SCRIPTS */
1324
1325 /*
1326 * Status fields.
1327 */
1328 u8 status[4];
1329 };
1330
1331 /*
1332 * Data Structure Block
1333 *
1334 * During execution of a ccb by the script processor, the
1335 * DSA (data structure address) register points to this
1336 * substructure of the ccb.
1337 */
1338 struct sym_dsb {
1339 /*
1340 * CCB header.
1341 * Also assumed at offset 0 of the sym_ccb structure.
1342 */
1343 /*0*/ struct sym_ccbh head;
1344
1345 /*
1346 * Phase mismatch contexts.
1347 * We need two to handle correctly the SAVED DATA POINTER.
1348 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1349 * for address calculation from SCRIPTS.
1350 */
1351 struct sym_pmc pm0;
1352 struct sym_pmc pm1;
1353
1354 /*
1355 * Table data for Script
1356 */
1357 struct sym_tblsel select;
1358 struct sym_tblmove smsg;
1359 struct sym_tblmove smsg_ext;
1360 struct sym_tblmove cmd;
1361 struct sym_tblmove sense;
1362 struct sym_tblmove wresid;
1363 struct sym_tblmove data [SYM_CONF_MAX_SG];
1364 };
1365
1366 /*
1367 * Our Command Control Block
1368 */
1369 struct sym_ccb {
1370 /*
1371 * This is the data structure which is pointed by the DSA
1372 * register when it is executed by the script processor.
1373 * It must be the first entry.
1374 */
1375 struct sym_dsb phys;
1376
1377 /*
1378 * Pointer to CAM ccb and related stuff.
1379 */
1380 struct callout ch; /* callout handle */
1381 union ccb *cam_ccb; /* CAM scsiio ccb */
1382 u8 cdb_buf[16]; /* Copy of CDB */
1383 u8 *sns_bbuf; /* Bounce buffer for sense data */
1384 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data)
1385 int data_len; /* Total data length */
1386 int segments; /* Number of SG segments */
1387
1388 /*
1389 * Miscellaneous status'.
1390 */
1391 u_char nego_status; /* Negotiation status */
1392 u_char xerr_status; /* Extended error flags */
1393 u32 extra_bytes; /* Extraneous bytes transferred */
1394
1395 /*
1396 * Message areas.
1397 * We prepare a message to be sent after selection.
1398 * We may use a second one if the command is rescheduled
1399 * due to CHECK_CONDITION or COMMAND TERMINATED.
1400 * Contents are IDENTIFY and SIMPLE_TAG.
1401 * While negotiating sync or wide transfer,
1402 * a SDTR or WDTR message is appended.
1403 */
1404 u_char scsi_smsg [12];
1405 u_char scsi_smsg2[12];
1406
1407 /*
1408 * Auto request sense related fields.
1409 */
1410 u_char sensecmd[6]; /* Request Sense command */
1411 u_char sv_scsi_status; /* Saved SCSI status */
1412 u_char sv_xerr_status; /* Saved extended status */
1413 int sv_resid; /* Saved residual */
1414
1415 /*
1416 * Map for the DMA of user data.
1417 */
1418 void *arg; /* Argument for some callback */
1419 bus_dmamap_t dmamap; /* DMA map for user data */
1420 u_char dmamapped;
1421 #define SYM_DMA_NONE 0
1422 #define SYM_DMA_READ 1
1423 #define SYM_DMA_WRITE 2
1424 /*
1425 * Other fields.
1426 */
1427 u32 ccb_ba; /* BUS address of this CCB */
1428 u_short tag; /* Tag for this transfer */
1429 /* NO_TAG means no tag */
1430 u_char target;
1431 u_char lun;
1432 ccb_p link_ccbh; /* Host adapter CCB hash chain */
1433 SYM_QUEHEAD
1434 link_ccbq; /* Link to free/busy CCB queue */
1435 u32 startp; /* Initial data pointer */
1436 int ext_sg; /* Extreme data pointer, used */
1437 int ext_ofs; /* to calculate the residual. */
1438 u_char to_abort; /* Want this IO to be aborted */
1439 };
1440
1441 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1442
1443 /*
1444 * Host Control Block
1445 */
1446 struct sym_hcb {
1447 struct mtx mtx;
1448
1449 /*
1450 * Global headers.
1451 * Due to poorness of addressing capabilities, earlier
1452 * chips (810, 815, 825) copy part of the data structures
1453 * (CCB, TCB and LCB) in fixed areas.
1454 */
1455 #ifdef SYM_CONF_GENERIC_SUPPORT
1456 struct sym_ccbh ccb_head;
1457 struct sym_tcbh tcb_head;
1458 struct sym_lcbh lcb_head;
1459 #endif
1460 /*
1461 * Idle task and invalid task actions and
1462 * their bus addresses.
1463 */
1464 struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1465 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1466
1467 /*
1468 * Dummy lun table to protect us against target
1469 * returning bad lun number on reselection.
1470 */
1471 u32 *badluntbl; /* Table physical address */
1472 u32 badlun_sa; /* SCRIPT handler BUS address */
1473
1474 /*
1475 * Bus address of this host control block.
1476 */
1477 u32 hcb_ba;
1478
1479 /*
1480 * Bit 32-63 of the on-chip RAM bus address in LE format.
1481 * The START_RAM64 script loads the MMRS and MMWS from this
1482 * field.
1483 */
1484 u32 scr_ram_seg;
1485
1486 /*
1487 * Chip and controller indentification.
1488 */
1489 device_t device;
1490
1491 /*
1492 * Initial value of some IO register bits.
1493 * These values are assumed to have been set by BIOS, and may
1494 * be used to probe adapter implementation differences.
1495 */
1496 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1497 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1498 sv_stest1;
1499
1500 /*
1501 * Actual initial value of IO register bits used by the
1502 * driver. They are loaded at initialisation according to
1503 * features that are to be enabled/disabled.
1504 */
1505 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1506 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1507
1508 /*
1509 * Target data.
1510 */
1511 #ifdef __amd64__
1512 struct sym_tcb *target;
1513 #else
1514 struct sym_tcb target[SYM_CONF_MAX_TARGET];
1515 #endif
1516
1517 /*
1518 * Target control block bus address array used by the SCRIPT
1519 * on reselection.
1520 */
1521 u32 *targtbl;
1522 u32 targtbl_ba;
1523
1524 /*
1525 * CAM SIM information for this instance.
1526 */
1527 struct cam_sim *sim;
1528 struct cam_path *path;
1529
1530 /*
1531 * Allocated hardware resources.
1532 */
1533 struct resource *irq_res;
1534 struct resource *io_res;
1535 struct resource *mmio_res;
1536 struct resource *ram_res;
1537 int ram_id;
1538 void *intr;
1539
1540 /*
1541 * Bus stuff.
1542 *
1543 * My understanding of PCI is that all agents must share the
1544 * same addressing range and model.
1545 * But some hardware architecture guys provide complex and
1546 * brain-deaded stuff that makes shit.
1547 * This driver only support PCI compliant implementations and
1548 * deals with part of the BUS stuff complexity only to fit O/S
1549 * requirements.
1550 */
1551
1552 /*
1553 * DMA stuff.
1554 */
1555 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */
1556 bus_dma_tag_t data_dmat; /* DMA tag for user data */
1557 /*
1558 * BUS addresses of the chip
1559 */
1560 vm_offset_t mmio_ba; /* MMIO BUS address */
1561 int mmio_ws; /* MMIO Window size */
1562
1563 vm_offset_t ram_ba; /* RAM BUS address */
1564 int ram_ws; /* RAM window size */
1565
1566 /*
1567 * SCRIPTS virtual and physical bus addresses.
1568 * 'script' is loaded in the on-chip RAM if present.
1569 * 'scripth' stays in main memory for all chips except the
1570 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1571 */
1572 u_char *scripta0; /* Copies of script and scripth */
1573 u_char *scriptb0; /* Copies of script and scripth */
1574 vm_offset_t scripta_ba; /* Actual script and scripth */
1575 vm_offset_t scriptb_ba; /* bus addresses. */
1576 vm_offset_t scriptb0_ba;
1577 u_short scripta_sz; /* Actual size of script A */
1578 u_short scriptb_sz; /* Actual size of script B */
1579
1580 /*
1581 * Bus addresses, setup and patch methods for
1582 * the selected firmware.
1583 */
1584 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
1585 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
1586 void (*fw_setup)(hcb_p np, const struct sym_fw *fw);
1587 void (*fw_patch)(hcb_p np);
1588 const char *fw_name;
1589
1590 /*
1591 * General controller parameters and configuration.
1592 */
1593 u_short device_id; /* PCI device id */
1594 u_char revision_id; /* PCI device revision id */
1595 u_int features; /* Chip features map */
1596 u_char myaddr; /* SCSI id of the adapter */
1597 u_char maxburst; /* log base 2 of dwords burst */
1598 u_char maxwide; /* Maximum transfer width */
1599 u_char minsync; /* Min sync period factor (ST) */
1600 u_char maxsync; /* Max sync period factor (ST) */
1601 u_char maxoffs; /* Max scsi offset (ST) */
1602 u_char minsync_dt; /* Min sync period factor (DT) */
1603 u_char maxsync_dt; /* Max sync period factor (DT) */
1604 u_char maxoffs_dt; /* Max scsi offset (DT) */
1605 u_char multiplier; /* Clock multiplier (1,2,4) */
1606 u_char clock_divn; /* Number of clock divisors */
1607 u32 clock_khz; /* SCSI clock frequency in KHz */
1608 u32 pciclk_khz; /* Estimated PCI clock in KHz */
1609 /*
1610 * Start queue management.
1611 * It is filled up by the host processor and accessed by the
1612 * SCRIPTS processor in order to start SCSI commands.
1613 */
1614 volatile /* Prevent code optimizations */
1615 u32 *squeue; /* Start queue virtual address */
1616 u32 squeue_ba; /* Start queue BUS address */
1617 u_short squeueput; /* Next free slot of the queue */
1618 u_short actccbs; /* Number of allocated CCBs */
1619
1620 /*
1621 * Command completion queue.
1622 * It is the same size as the start queue to avoid overflow.
1623 */
1624 u_short dqueueget; /* Next position to scan */
1625 volatile /* Prevent code optimizations */
1626 u32 *dqueue; /* Completion (done) queue */
1627 u32 dqueue_ba; /* Done queue BUS address */
1628
1629 /*
1630 * Miscellaneous buffers accessed by the scripts-processor.
1631 * They shall be DWORD aligned, because they may be read or
1632 * written with a script command.
1633 */
1634 u_char msgout[8]; /* Buffer for MESSAGE OUT */
1635 u_char msgin [8]; /* Buffer for MESSAGE IN */
1636 u32 lastmsg; /* Last SCSI message sent */
1637 u_char scratch; /* Scratch for SCSI receive */
1638
1639 /*
1640 * Miscellaneous configuration and status parameters.
1641 */
1642 u_char usrflags; /* Miscellaneous user flags */
1643 u_char scsi_mode; /* Current SCSI BUS mode */
1644 u_char verbose; /* Verbosity for this controller*/
1645 u32 cache; /* Used for cache test at init. */
1646
1647 /*
1648 * CCB lists and queue.
1649 */
1650 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */
1651 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
1652 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
1653
1654 /*
1655 * During error handling and/or recovery,
1656 * active CCBs that are to be completed with
1657 * error or requeued are moved from the busy_ccbq
1658 * to the comp_ccbq prior to completion.
1659 */
1660 SYM_QUEHEAD comp_ccbq;
1661
1662 /*
1663 * CAM CCB pending queue.
1664 */
1665 SYM_QUEHEAD cam_ccbq;
1666
1667 /*
1668 * IMMEDIATE ARBITRATION (IARB) control.
1669 *
1670 * We keep track in 'last_cp' of the last CCB that has been
1671 * queued to the SCRIPTS processor and clear 'last_cp' when
1672 * this CCB completes. If last_cp is not zero at the moment
1673 * we queue a new CCB, we set a flag in 'last_cp' that is
1674 * used by the SCRIPTS as a hint for setting IARB.
1675 * We donnot set more than 'iarb_max' consecutive hints for
1676 * IARB in order to leave devices a chance to reselect.
1677 * By the way, any non zero value of 'iarb_max' is unfair. :)
1678 */
1679 #ifdef SYM_CONF_IARB_SUPPORT
1680 u_short iarb_max; /* Max. # consecutive IARB hints*/
1681 u_short iarb_count; /* Actual # of these hints */
1682 ccb_p last_cp;
1683 #endif
1684
1685 /*
1686 * Command abort handling.
1687 * We need to synchronize tightly with the SCRIPTS
1688 * processor in order to handle things correctly.
1689 */
1690 u_char abrt_msg[4]; /* Message to send buffer */
1691 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
1692 struct sym_tblsel abrt_sel; /* Sync params for selection */
1693 u_char istat_sem; /* Tells the chip to stop (SEM) */
1694 };
1695
1696 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
1697
1698 /*
1699 * Return the name of the controller.
1700 */
sym_name(hcb_p np)1701 static __inline const char *sym_name(hcb_p np)
1702 {
1703 return device_get_nameunit(np->device);
1704 }
1705
1706 /*--------------------------------------------------------------------------*/
1707 /*------------------------------ FIRMWARES ---------------------------------*/
1708 /*--------------------------------------------------------------------------*/
1709
1710 /*
1711 * This stuff will be moved to a separate source file when
1712 * the driver will be broken into several source modules.
1713 */
1714
1715 /*
1716 * Macros used for all firmwares.
1717 */
1718 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)),
1719 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)),
1720 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1721 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1722
1723 #ifdef SYM_CONF_GENERIC_SUPPORT
1724 /*
1725 * Allocate firmware #1 script area.
1726 */
1727 #define SYM_FWA_SCR sym_fw1a_scr
1728 #define SYM_FWB_SCR sym_fw1b_scr
1729 #include <dev/sym/sym_fw1.h>
1730 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1731 SYM_GEN_FW_A(struct SYM_FWA_SCR)
1732 };
1733 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1734 SYM_GEN_FW_B(struct SYM_FWB_SCR)
1735 };
1736 #undef SYM_FWA_SCR
1737 #undef SYM_FWB_SCR
1738 #endif /* SYM_CONF_GENERIC_SUPPORT */
1739
1740 /*
1741 * Allocate firmware #2 script area.
1742 */
1743 #define SYM_FWA_SCR sym_fw2a_scr
1744 #define SYM_FWB_SCR sym_fw2b_scr
1745 #include <dev/sym/sym_fw2.h>
1746 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1747 SYM_GEN_FW_A(struct SYM_FWA_SCR)
1748 };
1749 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1750 SYM_GEN_FW_B(struct SYM_FWB_SCR)
1751 SYM_GEN_B(struct SYM_FWB_SCR, start64)
1752 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1753 };
1754 #undef SYM_FWA_SCR
1755 #undef SYM_FWB_SCR
1756
1757 #undef SYM_GEN_A
1758 #undef SYM_GEN_B
1759 #undef PADDR_A
1760 #undef PADDR_B
1761
1762 #ifdef SYM_CONF_GENERIC_SUPPORT
1763 /*
1764 * Patch routine for firmware #1.
1765 */
1766 static void
sym_fw1_patch(hcb_p np)1767 sym_fw1_patch(hcb_p np)
1768 {
1769 struct sym_fw1a_scr *scripta0;
1770 struct sym_fw1b_scr *scriptb0;
1771
1772 scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1773 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1774
1775 /*
1776 * Remove LED support if not needed.
1777 */
1778 if (!(np->features & FE_LED0)) {
1779 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
1780 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
1781 scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
1782 }
1783
1784 #ifdef SYM_CONF_IARB_SUPPORT
1785 /*
1786 * If user does not want to use IMMEDIATE ARBITRATION
1787 * when we are reselected while attempting to arbitrate,
1788 * patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1789 */
1790 if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1791 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1792 #endif
1793 /*
1794 * Patch some data in SCRIPTS.
1795 * - start and done queue initial bus address.
1796 * - target bus address table bus address.
1797 */
1798 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
1799 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
1800 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
1801 }
1802 #endif /* SYM_CONF_GENERIC_SUPPORT */
1803
1804 /*
1805 * Patch routine for firmware #2.
1806 */
1807 static void
sym_fw2_patch(hcb_p np)1808 sym_fw2_patch(hcb_p np)
1809 {
1810 struct sym_fw2a_scr *scripta0;
1811 struct sym_fw2b_scr *scriptb0;
1812
1813 scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1814 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1815
1816 /*
1817 * Remove LED support if not needed.
1818 */
1819 if (!(np->features & FE_LED0)) {
1820 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
1821 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
1822 scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
1823 }
1824
1825 #ifdef SYM_CONF_IARB_SUPPORT
1826 /*
1827 * If user does not want to use IMMEDIATE ARBITRATION
1828 * when we are reselected while attempting to arbitrate,
1829 * patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1830 */
1831 if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1832 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1833 #endif
1834 /*
1835 * Patch some variable in SCRIPTS.
1836 * - start and done queue initial bus address.
1837 * - target bus address table bus address.
1838 */
1839 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
1840 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
1841 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
1842
1843 /*
1844 * Remove the load of SCNTL4 on reselection if not a C10.
1845 */
1846 if (!(np->features & FE_C10)) {
1847 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1848 scripta0->resel_scntl4[1] = cpu_to_scr(0);
1849 }
1850
1851 /*
1852 * Remove a couple of work-arounds specific to C1010 if
1853 * they are not desirable. See `sym_fw2.h' for more details.
1854 */
1855 if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1856 np->revision_id < 0x1 &&
1857 np->pciclk_khz < 60000)) {
1858 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1859 scripta0->datao_phase[1] = cpu_to_scr(0);
1860 }
1861 if (!(np->device_id == PCI_ID_LSI53C1010 &&
1862 /* np->revision_id < 0xff */ 1)) {
1863 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1864 scripta0->sel_done[1] = cpu_to_scr(0);
1865 }
1866
1867 /*
1868 * Patch some other variables in SCRIPTS.
1869 * These ones are loaded by the SCRIPTS processor.
1870 */
1871 scriptb0->pm0_data_addr[0] =
1872 cpu_to_scr(np->scripta_ba +
1873 offsetof(struct sym_fw2a_scr, pm0_data));
1874 scriptb0->pm1_data_addr[0] =
1875 cpu_to_scr(np->scripta_ba +
1876 offsetof(struct sym_fw2a_scr, pm1_data));
1877 }
1878
1879 /*
1880 * Fill the data area in scripts.
1881 * To be done for all firmwares.
1882 */
1883 static void
sym_fw_fill_data(u32 * in,u32 * out)1884 sym_fw_fill_data (u32 *in, u32 *out)
1885 {
1886 int i;
1887
1888 for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1889 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1890 *in++ = offsetof (struct sym_dsb, data[i]);
1891 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1892 *out++ = offsetof (struct sym_dsb, data[i]);
1893 }
1894 }
1895
1896 /*
1897 * Setup useful script bus addresses.
1898 * To be done for all firmwares.
1899 */
1900 static void
sym_fw_setup_bus_addresses(hcb_p np,const struct sym_fw * fw)1901 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1902 {
1903 u32 *pa;
1904 const u_short *po;
1905 int i;
1906
1907 /*
1908 * Build the bus address table for script A
1909 * from the script A offset table.
1910 */
1911 po = (const u_short *) fw->a_ofs;
1912 pa = (u32 *) &np->fwa_bas;
1913 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1914 pa[i] = np->scripta_ba + po[i];
1915
1916 /*
1917 * Same for script B.
1918 */
1919 po = (const u_short *) fw->b_ofs;
1920 pa = (u32 *) &np->fwb_bas;
1921 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1922 pa[i] = np->scriptb_ba + po[i];
1923 }
1924
1925 #ifdef SYM_CONF_GENERIC_SUPPORT
1926 /*
1927 * Setup routine for firmware #1.
1928 */
1929 static void
sym_fw1_setup(hcb_p np,const struct sym_fw * fw)1930 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1931 {
1932 struct sym_fw1a_scr *scripta0;
1933
1934 scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1935
1936 /*
1937 * Fill variable parts in scripts.
1938 */
1939 sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1940
1941 /*
1942 * Setup bus addresses used from the C code..
1943 */
1944 sym_fw_setup_bus_addresses(np, fw);
1945 }
1946 #endif /* SYM_CONF_GENERIC_SUPPORT */
1947
1948 /*
1949 * Setup routine for firmware #2.
1950 */
1951 static void
sym_fw2_setup(hcb_p np,const struct sym_fw * fw)1952 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1953 {
1954 struct sym_fw2a_scr *scripta0;
1955
1956 scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1957
1958 /*
1959 * Fill variable parts in scripts.
1960 */
1961 sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1962
1963 /*
1964 * Setup bus addresses used from the C code..
1965 */
1966 sym_fw_setup_bus_addresses(np, fw);
1967 }
1968
1969 /*
1970 * Allocate firmware descriptors.
1971 */
1972 #ifdef SYM_CONF_GENERIC_SUPPORT
1973 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1974 #endif /* SYM_CONF_GENERIC_SUPPORT */
1975 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1976
1977 /*
1978 * Find the most appropriate firmware for a chip.
1979 */
1980 static const struct sym_fw *
sym_find_firmware(const struct sym_pci_chip * chip)1981 sym_find_firmware(const struct sym_pci_chip *chip)
1982 {
1983 if (chip->features & FE_LDSTR)
1984 return &sym_fw2;
1985 #ifdef SYM_CONF_GENERIC_SUPPORT
1986 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1987 return &sym_fw1;
1988 #endif
1989 else
1990 return NULL;
1991 }
1992
1993 /*
1994 * Bind a script to physical addresses.
1995 */
sym_fw_bind_script(hcb_p np,u32 * start,int len)1996 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
1997 {
1998 u32 opcode, new, old, tmp1, tmp2;
1999 u32 *end, *cur;
2000 int relocs;
2001
2002 cur = start;
2003 end = start + len/4;
2004
2005 while (cur < end) {
2006 opcode = *cur;
2007
2008 /*
2009 * If we forget to change the length
2010 * in scripts, a field will be
2011 * padded with 0. This is an illegal
2012 * command.
2013 */
2014 if (opcode == 0) {
2015 printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2016 sym_name(np), (int) (cur-start));
2017 MDELAY (10000);
2018 ++cur;
2019 continue;
2020 }
2021
2022 /*
2023 * We use the bogus value 0xf00ff00f ;-)
2024 * to reserve data area in SCRIPTS.
2025 */
2026 if (opcode == SCR_DATA_ZERO) {
2027 *cur++ = 0;
2028 continue;
2029 }
2030
2031 if (DEBUG_FLAGS & DEBUG_SCRIPT)
2032 printf ("%d: <%x>\n", (int) (cur-start),
2033 (unsigned)opcode);
2034
2035 /*
2036 * We don't have to decode ALL commands
2037 */
2038 switch (opcode >> 28) {
2039 case 0xf:
2040 /*
2041 * LOAD / STORE DSA relative, don't relocate.
2042 */
2043 relocs = 0;
2044 break;
2045 case 0xe:
2046 /*
2047 * LOAD / STORE absolute.
2048 */
2049 relocs = 1;
2050 break;
2051 case 0xc:
2052 /*
2053 * COPY has TWO arguments.
2054 */
2055 relocs = 2;
2056 tmp1 = cur[1];
2057 tmp2 = cur[2];
2058 if ((tmp1 ^ tmp2) & 3) {
2059 printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2060 sym_name(np), (int) (cur-start));
2061 MDELAY (10000);
2062 }
2063 /*
2064 * If PREFETCH feature not enabled, remove
2065 * the NO FLUSH bit if present.
2066 */
2067 if ((opcode & SCR_NO_FLUSH) &&
2068 !(np->features & FE_PFEN)) {
2069 opcode = (opcode & ~SCR_NO_FLUSH);
2070 }
2071 break;
2072 case 0x0:
2073 /*
2074 * MOVE/CHMOV (absolute address)
2075 */
2076 if (!(np->features & FE_WIDE))
2077 opcode = (opcode | OPC_MOVE);
2078 relocs = 1;
2079 break;
2080 case 0x1:
2081 /*
2082 * MOVE/CHMOV (table indirect)
2083 */
2084 if (!(np->features & FE_WIDE))
2085 opcode = (opcode | OPC_MOVE);
2086 relocs = 0;
2087 break;
2088 case 0x8:
2089 /*
2090 * JUMP / CALL
2091 * dont't relocate if relative :-)
2092 */
2093 if (opcode & 0x00800000)
2094 relocs = 0;
2095 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2096 relocs = 2;
2097 else
2098 relocs = 1;
2099 break;
2100 case 0x4:
2101 case 0x5:
2102 case 0x6:
2103 case 0x7:
2104 relocs = 1;
2105 break;
2106 default:
2107 relocs = 0;
2108 break;
2109 }
2110
2111 /*
2112 * Scriptify:) the opcode.
2113 */
2114 *cur++ = cpu_to_scr(opcode);
2115
2116 /*
2117 * If no relocation, assume 1 argument
2118 * and just scriptize:) it.
2119 */
2120 if (!relocs) {
2121 *cur = cpu_to_scr(*cur);
2122 ++cur;
2123 continue;
2124 }
2125
2126 /*
2127 * Otherwise performs all needed relocations.
2128 */
2129 while (relocs--) {
2130 old = *cur;
2131
2132 switch (old & RELOC_MASK) {
2133 case RELOC_REGISTER:
2134 new = (old & ~RELOC_MASK) + np->mmio_ba;
2135 break;
2136 case RELOC_LABEL_A:
2137 new = (old & ~RELOC_MASK) + np->scripta_ba;
2138 break;
2139 case RELOC_LABEL_B:
2140 new = (old & ~RELOC_MASK) + np->scriptb_ba;
2141 break;
2142 case RELOC_SOFTC:
2143 new = (old & ~RELOC_MASK) + np->hcb_ba;
2144 break;
2145 case 0:
2146 /*
2147 * Don't relocate a 0 address.
2148 * They are mostly used for patched or
2149 * script self-modified areas.
2150 */
2151 if (old == 0) {
2152 new = old;
2153 break;
2154 }
2155 /* fall through */
2156 default:
2157 new = 0;
2158 panic("sym_fw_bind_script: "
2159 "weird relocation %x\n", old);
2160 break;
2161 }
2162
2163 *cur++ = cpu_to_scr(new);
2164 }
2165 }
2166 }
2167
2168 /*---------------------------------------------------------------------------*/
2169 /*--------------------------- END OF FIRMWARES -----------------------------*/
2170 /*---------------------------------------------------------------------------*/
2171
2172 /*
2173 * Function prototypes.
2174 */
2175 static void sym_save_initial_setting (hcb_p np);
2176 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2177 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2178 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2179 static void sym_chip_reset (hcb_p np);
2180 static void sym_soft_reset (hcb_p np);
2181 static void sym_start_reset (hcb_p np);
2182 static int sym_reset_scsi_bus (hcb_p np, int enab_int);
2183 static int sym_wakeup_done (hcb_p np);
2184 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2185 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2186 static void sym_init (hcb_p np, int reason);
2187 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2188 u_char *fakp);
2189 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2190 u_char div, u_char fak);
2191 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2192 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2193 u_char per, u_char wide, u_char div, u_char fak);
2194 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2195 u_char per, u_char wide, u_char div, u_char fak);
2196 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2197 static void sym_intr (void *arg);
2198 static void sym_poll (struct cam_sim *sim);
2199 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2200 static void sym_int_sto (hcb_p np);
2201 static void sym_int_udc (hcb_p np);
2202 static void sym_int_sbmc (hcb_p np);
2203 static void sym_int_par (hcb_p np, u_short sist);
2204 static void sym_int_ma (hcb_p np);
2205 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2206 int task);
2207 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2208 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2209 static void sym_sir_task_recovery (hcb_p np, int num);
2210 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2211 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2212 static int sym_compute_residual (hcb_p np, ccb_p cp);
2213 static int sym_show_msg (u_char * msg);
2214 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2215 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2216 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2217 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2218 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2219 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2220 static void sym_int_sir (hcb_p np);
2221 static void sym_free_ccb (hcb_p np, ccb_p cp);
2222 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2223 static ccb_p sym_alloc_ccb (hcb_p np);
2224 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2225 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2226 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2227 static int sym_snooptest (hcb_p np);
2228 static void sym_selectclock(hcb_p np, u_char scntl3);
2229 static void sym_getclock (hcb_p np, int mult);
2230 static int sym_getpciclock (hcb_p np);
2231 static void sym_complete_ok (hcb_p np, ccb_p cp);
2232 static void sym_complete_error (hcb_p np, ccb_p cp);
2233 static void sym_callout (void *arg);
2234 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2235 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2236 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2237 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2238 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2239 ccb_p cp);
2240 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2241 bus_dma_segment_t *psegs, int nsegs);
2242 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2243 bus_dma_segment_t *psegs, int nsegs);
2244 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2245 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2246 struct ccb_trans_settings *cts);
2247 static void sym_update_dflags(hcb_p np, u_char *flags,
2248 struct ccb_trans_settings *cts);
2249
2250 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2251 static int sym_pci_probe (device_t dev);
2252 static int sym_pci_attach (device_t dev);
2253
2254 static void sym_pci_free (hcb_p np);
2255 static int sym_cam_attach (hcb_p np);
2256 static void sym_cam_free (hcb_p np);
2257
2258 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2259 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2260 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2261
2262 /*
2263 * Print something which allows to retrieve the controller type,
2264 * unit, target, lun concerned by a kernel message.
2265 */
PRINT_TARGET(hcb_p np,int target)2266 static void PRINT_TARGET (hcb_p np, int target)
2267 {
2268 printf ("%s:%d:", sym_name(np), target);
2269 }
2270
PRINT_LUN(hcb_p np,int target,int lun)2271 static void PRINT_LUN(hcb_p np, int target, int lun)
2272 {
2273 printf ("%s:%d:%d:", sym_name(np), target, lun);
2274 }
2275
PRINT_ADDR(ccb_p cp)2276 static void PRINT_ADDR (ccb_p cp)
2277 {
2278 if (cp && cp->cam_ccb)
2279 xpt_print_path(cp->cam_ccb->ccb_h.path);
2280 }
2281
2282 /*
2283 * Take into account this ccb in the freeze count.
2284 */
sym_freeze_cam_ccb(union ccb * ccb)2285 static void sym_freeze_cam_ccb(union ccb *ccb)
2286 {
2287 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2288 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2289 ccb->ccb_h.status |= CAM_DEV_QFRZN;
2290 xpt_freeze_devq(ccb->ccb_h.path, 1);
2291 }
2292 }
2293 }
2294
2295 /*
2296 * Set the status field of a CAM CCB.
2297 */
sym_set_cam_status(union ccb * ccb,cam_status status)2298 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2299 {
2300 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2301 ccb->ccb_h.status |= status;
2302 }
2303
2304 /*
2305 * Get the status field of a CAM CCB.
2306 */
sym_get_cam_status(union ccb * ccb)2307 static __inline int sym_get_cam_status(union ccb *ccb)
2308 {
2309 return ccb->ccb_h.status & CAM_STATUS_MASK;
2310 }
2311
2312 /*
2313 * Enqueue a CAM CCB.
2314 */
sym_enqueue_cam_ccb(ccb_p cp)2315 static void sym_enqueue_cam_ccb(ccb_p cp)
2316 {
2317 hcb_p np;
2318 union ccb *ccb;
2319
2320 ccb = cp->cam_ccb;
2321 np = (hcb_p) cp->arg;
2322
2323 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2324 ccb->ccb_h.status = CAM_REQ_INPROG;
2325
2326 callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2327 (caddr_t)ccb, 0);
2328 ccb->ccb_h.status |= CAM_SIM_QUEUED;
2329 ccb->ccb_h.sym_hcb_ptr = np;
2330
2331 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2332 }
2333
2334 /*
2335 * Complete a pending CAM CCB.
2336 */
2337
sym_xpt_done(hcb_p np,union ccb * ccb,ccb_p cp)2338 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2339 {
2340
2341 SYM_LOCK_ASSERT(MA_OWNED);
2342
2343 if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2344 callout_stop(&cp->ch);
2345 sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2346 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2347 ccb->ccb_h.sym_hcb_ptr = NULL;
2348 }
2349 xpt_done(ccb);
2350 }
2351
sym_xpt_done2(hcb_p np,union ccb * ccb,int cam_status)2352 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2353 {
2354
2355 SYM_LOCK_ASSERT(MA_OWNED);
2356
2357 sym_set_cam_status(ccb, cam_status);
2358 xpt_done(ccb);
2359 }
2360
2361 /*
2362 * SYMBIOS chip clock divisor table.
2363 *
2364 * Divisors are multiplied by 10,000,000 in order to make
2365 * calculations more simple.
2366 */
2367 #define _5M 5000000
2368 static const u32 div_10M[] =
2369 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2370
2371 /*
2372 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2373 * 128 transfers. All chips support at least 16 transfers
2374 * bursts. The 825A, 875 and 895 chips support bursts of up
2375 * to 128 transfers and the 895A and 896 support bursts of up
2376 * to 64 transfers. All other chips support up to 16
2377 * transfers bursts.
2378 *
2379 * For PCI 32 bit data transfers each transfer is a DWORD.
2380 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2381 *
2382 * We use log base 2 (burst length) as internal code, with
2383 * value 0 meaning "burst disabled".
2384 */
2385
2386 /*
2387 * Burst length from burst code.
2388 */
2389 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2390
2391 /*
2392 * Burst code from io register bits.
2393 */
2394 #define burst_code(dmode, ctest4, ctest5) \
2395 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2396
2397 /*
2398 * Set initial io register bits from burst code.
2399 */
sym_init_burst(hcb_p np,u_char bc)2400 static __inline void sym_init_burst(hcb_p np, u_char bc)
2401 {
2402 np->rv_ctest4 &= ~0x80;
2403 np->rv_dmode &= ~(0x3 << 6);
2404 np->rv_ctest5 &= ~0x4;
2405
2406 if (!bc) {
2407 np->rv_ctest4 |= 0x80;
2408 }
2409 else {
2410 --bc;
2411 np->rv_dmode |= ((bc & 0x3) << 6);
2412 np->rv_ctest5 |= (bc & 0x4);
2413 }
2414 }
2415
2416 /*
2417 * Print out the list of targets that have some flag disabled by user.
2418 */
sym_print_targets_flag(hcb_p np,int mask,char * msg)2419 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2420 {
2421 int cnt;
2422 int i;
2423
2424 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2425 if (i == np->myaddr)
2426 continue;
2427 if (np->target[i].usrflags & mask) {
2428 if (!cnt++)
2429 printf("%s: %s disabled for targets",
2430 sym_name(np), msg);
2431 printf(" %d", i);
2432 }
2433 }
2434 if (cnt)
2435 printf(".\n");
2436 }
2437
2438 /*
2439 * Save initial settings of some IO registers.
2440 * Assumed to have been set by BIOS.
2441 * We cannot reset the chip prior to reading the
2442 * IO registers, since informations will be lost.
2443 * Since the SCRIPTS processor may be running, this
2444 * is not safe on paper, but it seems to work quite
2445 * well. :)
2446 */
sym_save_initial_setting(hcb_p np)2447 static void sym_save_initial_setting (hcb_p np)
2448 {
2449 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
2450 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
2451 np->sv_dmode = INB(nc_dmode) & 0xce;
2452 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
2453 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
2454 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
2455 np->sv_gpcntl = INB(nc_gpcntl);
2456 np->sv_stest1 = INB(nc_stest1);
2457 np->sv_stest2 = INB(nc_stest2) & 0x20;
2458 np->sv_stest4 = INB(nc_stest4);
2459 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
2460 np->sv_scntl4 = INB(nc_scntl4);
2461 np->sv_ctest5 = INB(nc_ctest5) & 0x04;
2462 }
2463 else
2464 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
2465 }
2466
2467 /*
2468 * Prepare io register values used by sym_init() according
2469 * to selected and supported features.
2470 */
sym_prepare_setting(hcb_p np,struct sym_nvram * nvram)2471 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2472 {
2473 u_char burst_max;
2474 u32 period;
2475 int i;
2476
2477 /*
2478 * Wide ?
2479 */
2480 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
2481
2482 /*
2483 * Get the frequency of the chip's clock.
2484 */
2485 if (np->features & FE_QUAD)
2486 np->multiplier = 4;
2487 else if (np->features & FE_DBLR)
2488 np->multiplier = 2;
2489 else
2490 np->multiplier = 1;
2491
2492 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000;
2493 np->clock_khz *= np->multiplier;
2494
2495 if (np->clock_khz != 40000)
2496 sym_getclock(np, np->multiplier);
2497
2498 /*
2499 * Divisor to be used for async (timer pre-scaler).
2500 */
2501 i = np->clock_divn - 1;
2502 while (--i >= 0) {
2503 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2504 ++i;
2505 break;
2506 }
2507 }
2508 np->rv_scntl3 = i+1;
2509
2510 /*
2511 * The C1010 uses hardwired divisors for async.
2512 * So, we just throw away, the async. divisor.:-)
2513 */
2514 if (np->features & FE_C10)
2515 np->rv_scntl3 = 0;
2516
2517 /*
2518 * Minimum synchronous period factor supported by the chip.
2519 * Btw, 'period' is in tenths of nanoseconds.
2520 */
2521 period = howmany(4 * div_10M[0], np->clock_khz);
2522 if (period <= 250) np->minsync = 10;
2523 else if (period <= 303) np->minsync = 11;
2524 else if (period <= 500) np->minsync = 12;
2525 else np->minsync = howmany(period, 40);
2526
2527 /*
2528 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2529 */
2530 if (np->minsync < 25 &&
2531 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2532 np->minsync = 25;
2533 else if (np->minsync < 12 &&
2534 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2535 np->minsync = 12;
2536
2537 /*
2538 * Maximum synchronous period factor supported by the chip.
2539 */
2540 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2541 np->maxsync = period > 2540 ? 254 : period / 10;
2542
2543 /*
2544 * If chip is a C1010, guess the sync limits in DT mode.
2545 */
2546 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2547 if (np->clock_khz == 160000) {
2548 np->minsync_dt = 9;
2549 np->maxsync_dt = 50;
2550 np->maxoffs_dt = 62;
2551 }
2552 }
2553
2554 /*
2555 * 64 bit addressing (895A/896/1010) ?
2556 */
2557 if (np->features & FE_DAC)
2558 #ifdef __LP64__
2559 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
2560 #else
2561 np->rv_ccntl1 |= (DDAC);
2562 #endif
2563
2564 /*
2565 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2566 */
2567 if (np->features & FE_NOPM)
2568 np->rv_ccntl0 |= (ENPMJ);
2569
2570 /*
2571 * C1010 Errata.
2572 * In dual channel mode, contention occurs if internal cycles
2573 * are used. Disable internal cycles.
2574 */
2575 if (np->device_id == PCI_ID_LSI53C1010 &&
2576 np->revision_id < 0x2)
2577 np->rv_ccntl0 |= DILS;
2578
2579 /*
2580 * Select burst length (dwords)
2581 */
2582 burst_max = SYM_SETUP_BURST_ORDER;
2583 if (burst_max == 255)
2584 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2585 np->sv_ctest5);
2586 if (burst_max > 7)
2587 burst_max = 7;
2588 if (burst_max > np->maxburst)
2589 burst_max = np->maxburst;
2590
2591 /*
2592 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2593 * This chip and the 860 Rev 1 may wrongly use PCI cache line
2594 * based transactions on LOAD/STORE instructions. So we have
2595 * to prevent these chips from using such PCI transactions in
2596 * this driver. The generic ncr driver that does not use
2597 * LOAD/STORE instructions does not need this work-around.
2598 */
2599 if ((np->device_id == PCI_ID_SYM53C810 &&
2600 np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2601 (np->device_id == PCI_ID_SYM53C860 &&
2602 np->revision_id <= 0x1))
2603 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2604
2605 /*
2606 * Select all supported special features.
2607 * If we are using on-board RAM for scripts, prefetch (PFEN)
2608 * does not help, but burst op fetch (BOF) does.
2609 * Disabling PFEN makes sure BOF will be used.
2610 */
2611 if (np->features & FE_ERL)
2612 np->rv_dmode |= ERL; /* Enable Read Line */
2613 if (np->features & FE_BOF)
2614 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
2615 if (np->features & FE_ERMP)
2616 np->rv_dmode |= ERMP; /* Enable Read Multiple */
2617 #if 1
2618 if ((np->features & FE_PFEN) && !np->ram_ba)
2619 #else
2620 if (np->features & FE_PFEN)
2621 #endif
2622 np->rv_dcntl |= PFEN; /* Prefetch Enable */
2623 if (np->features & FE_CLSE)
2624 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
2625 if (np->features & FE_WRIE)
2626 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
2627 if (np->features & FE_DFS)
2628 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
2629
2630 /*
2631 * Select some other
2632 */
2633 if (SYM_SETUP_PCI_PARITY)
2634 np->rv_ctest4 |= MPEE; /* Master parity checking */
2635 if (SYM_SETUP_SCSI_PARITY)
2636 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
2637
2638 /*
2639 * Get parity checking, host ID and verbose mode from NVRAM
2640 */
2641 np->myaddr = 255;
2642 sym_nvram_setup_host (np, nvram);
2643
2644 /*
2645 * Get SCSI addr of host adapter (set by bios?).
2646 */
2647 if (np->myaddr == 255) {
2648 np->myaddr = INB(nc_scid) & 0x07;
2649 if (!np->myaddr)
2650 np->myaddr = SYM_SETUP_HOST_ID;
2651 }
2652
2653 /*
2654 * Prepare initial io register bits for burst length
2655 */
2656 sym_init_burst(np, burst_max);
2657
2658 /*
2659 * Set SCSI BUS mode.
2660 * - LVD capable chips (895/895A/896/1010) report the
2661 * current BUS mode through the STEST4 IO register.
2662 * - For previous generation chips (825/825A/875),
2663 * user has to tell us how to check against HVD,
2664 * since a 100% safe algorithm is not possible.
2665 */
2666 np->scsi_mode = SMODE_SE;
2667 if (np->features & (FE_ULTRA2|FE_ULTRA3))
2668 np->scsi_mode = (np->sv_stest4 & SMODE);
2669 else if (np->features & FE_DIFF) {
2670 if (SYM_SETUP_SCSI_DIFF == 1) {
2671 if (np->sv_scntl3) {
2672 if (np->sv_stest2 & 0x20)
2673 np->scsi_mode = SMODE_HVD;
2674 }
2675 else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2676 if (!(INB(nc_gpreg) & 0x08))
2677 np->scsi_mode = SMODE_HVD;
2678 }
2679 }
2680 else if (SYM_SETUP_SCSI_DIFF == 2)
2681 np->scsi_mode = SMODE_HVD;
2682 }
2683 if (np->scsi_mode == SMODE_HVD)
2684 np->rv_stest2 |= 0x20;
2685
2686 /*
2687 * Set LED support from SCRIPTS.
2688 * Ignore this feature for boards known to use a
2689 * specific GPIO wiring and for the 895A, 896
2690 * and 1010 that drive the LED directly.
2691 */
2692 if ((SYM_SETUP_SCSI_LED ||
2693 (nvram->type == SYM_SYMBIOS_NVRAM ||
2694 (nvram->type == SYM_TEKRAM_NVRAM &&
2695 np->device_id == PCI_ID_SYM53C895))) &&
2696 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2697 np->features |= FE_LED0;
2698
2699 /*
2700 * Set irq mode.
2701 */
2702 switch(SYM_SETUP_IRQ_MODE & 3) {
2703 case 2:
2704 np->rv_dcntl |= IRQM;
2705 break;
2706 case 1:
2707 np->rv_dcntl |= (np->sv_dcntl & IRQM);
2708 break;
2709 default:
2710 break;
2711 }
2712
2713 /*
2714 * Configure targets according to driver setup.
2715 * If NVRAM present get targets setup from NVRAM.
2716 */
2717 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2718 tcb_p tp = &np->target[i];
2719
2720 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2721 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2;
2722 tp->tinfo.user.period = np->minsync;
2723 if (np->features & FE_ULTRA3)
2724 tp->tinfo.user.period = np->minsync_dt;
2725 tp->tinfo.user.offset = np->maxoffs;
2726 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2727 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2728 tp->usrtags = SYM_SETUP_MAX_TAG;
2729
2730 sym_nvram_setup_target (np, i, nvram);
2731
2732 /*
2733 * For now, guess PPR/DT support from the period
2734 * and BUS width.
2735 */
2736 if (np->features & FE_ULTRA3) {
2737 if (tp->tinfo.user.period <= 9 &&
2738 tp->tinfo.user.width == BUS_16_BIT) {
2739 tp->tinfo.user.options |= PPR_OPT_DT;
2740 tp->tinfo.user.offset = np->maxoffs_dt;
2741 tp->tinfo.user.spi_version = 3;
2742 }
2743 }
2744
2745 if (!tp->usrtags)
2746 tp->usrflags &= ~SYM_TAGS_ENABLED;
2747 }
2748
2749 /*
2750 * Let user know about the settings.
2751 */
2752 i = nvram->type;
2753 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2754 i == SYM_SYMBIOS_NVRAM ? "Symbios" :
2755 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"),
2756 np->myaddr,
2757 (np->features & FE_ULTRA3) ? 80 :
2758 (np->features & FE_ULTRA2) ? 40 :
2759 (np->features & FE_ULTRA) ? 20 : 10,
2760 sym_scsi_bus_mode(np->scsi_mode),
2761 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
2762 /*
2763 * Tell him more on demand.
2764 */
2765 if (sym_verbose) {
2766 printf("%s: %s IRQ line driver%s\n",
2767 sym_name(np),
2768 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2769 np->ram_ba ? ", using on-chip SRAM" : "");
2770 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2771 if (np->features & FE_NOPM)
2772 printf("%s: handling phase mismatch from SCRIPTS.\n",
2773 sym_name(np));
2774 }
2775 /*
2776 * And still more.
2777 */
2778 if (sym_verbose > 1) {
2779 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2780 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2781 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2782 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2783
2784 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2785 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2786 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2787 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2788 }
2789 /*
2790 * Let user be aware of targets that have some disable flags set.
2791 */
2792 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2793 if (sym_verbose)
2794 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2795 "SCAN FOR LUNS");
2796
2797 return 0;
2798 }
2799
2800 /*
2801 * Prepare the next negotiation message if needed.
2802 *
2803 * Fill in the part of message buffer that contains the
2804 * negotiation and the nego_status field of the CCB.
2805 * Returns the size of the message in bytes.
2806 */
sym_prepare_nego(hcb_p np,ccb_p cp,int nego,u_char * msgptr)2807 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2808 {
2809 tcb_p tp = &np->target[cp->target];
2810 int msglen = 0;
2811
2812 /*
2813 * Early C1010 chips need a work-around for DT
2814 * data transfer to work.
2815 */
2816 if (!(np->features & FE_U3EN))
2817 tp->tinfo.goal.options = 0;
2818 /*
2819 * negotiate using PPR ?
2820 */
2821 if (tp->tinfo.goal.options & PPR_OPT_MASK)
2822 nego = NS_PPR;
2823 /*
2824 * negotiate wide transfers ?
2825 */
2826 else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2827 nego = NS_WIDE;
2828 /*
2829 * negotiate synchronous transfers?
2830 */
2831 else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2832 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2833 nego = NS_SYNC;
2834
2835 switch (nego) {
2836 case NS_SYNC:
2837 msgptr[msglen++] = M_EXTENDED;
2838 msgptr[msglen++] = 3;
2839 msgptr[msglen++] = M_X_SYNC_REQ;
2840 msgptr[msglen++] = tp->tinfo.goal.period;
2841 msgptr[msglen++] = tp->tinfo.goal.offset;
2842 break;
2843 case NS_WIDE:
2844 msgptr[msglen++] = M_EXTENDED;
2845 msgptr[msglen++] = 2;
2846 msgptr[msglen++] = M_X_WIDE_REQ;
2847 msgptr[msglen++] = tp->tinfo.goal.width;
2848 break;
2849 case NS_PPR:
2850 msgptr[msglen++] = M_EXTENDED;
2851 msgptr[msglen++] = 6;
2852 msgptr[msglen++] = M_X_PPR_REQ;
2853 msgptr[msglen++] = tp->tinfo.goal.period;
2854 msgptr[msglen++] = 0;
2855 msgptr[msglen++] = tp->tinfo.goal.offset;
2856 msgptr[msglen++] = tp->tinfo.goal.width;
2857 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2858 break;
2859 }
2860
2861 cp->nego_status = nego;
2862
2863 if (nego) {
2864 tp->nego_cp = cp; /* Keep track a nego will be performed */
2865 if (DEBUG_FLAGS & DEBUG_NEGO) {
2866 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2867 nego == NS_WIDE ? "wide msgout" :
2868 "ppr msgout", msgptr);
2869 }
2870 }
2871
2872 return msglen;
2873 }
2874
2875 /*
2876 * Insert a job into the start queue.
2877 */
sym_put_start_queue(hcb_p np,ccb_p cp)2878 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2879 {
2880 u_short qidx;
2881
2882 #ifdef SYM_CONF_IARB_SUPPORT
2883 /*
2884 * If the previously queued CCB is not yet done,
2885 * set the IARB hint. The SCRIPTS will go with IARB
2886 * for this job when starting the previous one.
2887 * We leave devices a chance to win arbitration by
2888 * not using more than 'iarb_max' consecutive
2889 * immediate arbitrations.
2890 */
2891 if (np->last_cp && np->iarb_count < np->iarb_max) {
2892 np->last_cp->host_flags |= HF_HINT_IARB;
2893 ++np->iarb_count;
2894 }
2895 else
2896 np->iarb_count = 0;
2897 np->last_cp = cp;
2898 #endif
2899
2900 /*
2901 * Insert first the idle task and then our job.
2902 * The MB should ensure proper ordering.
2903 */
2904 qidx = np->squeueput + 2;
2905 if (qidx >= MAX_QUEUE*2) qidx = 0;
2906
2907 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
2908 MEMORY_BARRIER();
2909 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2910
2911 np->squeueput = qidx;
2912
2913 if (DEBUG_FLAGS & DEBUG_QUEUE)
2914 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2915
2916 /*
2917 * Script processor may be waiting for reselect.
2918 * Wake it up.
2919 */
2920 MEMORY_BARRIER();
2921 OUTB (nc_istat, SIGP|np->istat_sem);
2922 }
2923
2924 /*
2925 * Soft reset the chip.
2926 *
2927 * Raising SRST when the chip is running may cause
2928 * problems on dual function chips (see below).
2929 * On the other hand, LVD devices need some delay
2930 * to settle and report actual BUS mode in STEST4.
2931 */
sym_chip_reset(hcb_p np)2932 static void sym_chip_reset (hcb_p np)
2933 {
2934 OUTB (nc_istat, SRST);
2935 UDELAY (10);
2936 OUTB (nc_istat, 0);
2937 UDELAY(2000); /* For BUS MODE to settle */
2938 }
2939
2940 /*
2941 * Soft reset the chip.
2942 *
2943 * Some 896 and 876 chip revisions may hang-up if we set
2944 * the SRST (soft reset) bit at the wrong time when SCRIPTS
2945 * are running.
2946 * So, we need to abort the current operation prior to
2947 * soft resetting the chip.
2948 */
sym_soft_reset(hcb_p np)2949 static void sym_soft_reset (hcb_p np)
2950 {
2951 u_char istat;
2952 int i;
2953
2954 OUTB (nc_istat, CABRT);
2955 for (i = 1000000 ; i ; --i) {
2956 istat = INB (nc_istat);
2957 if (istat & SIP) {
2958 INW (nc_sist);
2959 continue;
2960 }
2961 if (istat & DIP) {
2962 OUTB (nc_istat, 0);
2963 INB (nc_dstat);
2964 break;
2965 }
2966 }
2967 if (!i)
2968 printf("%s: unable to abort current chip operation.\n",
2969 sym_name(np));
2970 sym_chip_reset (np);
2971 }
2972
2973 /*
2974 * Start reset process.
2975 *
2976 * The interrupt handler will reinitialize the chip.
2977 */
sym_start_reset(hcb_p np)2978 static void sym_start_reset(hcb_p np)
2979 {
2980 (void) sym_reset_scsi_bus(np, 1);
2981 }
2982
sym_reset_scsi_bus(hcb_p np,int enab_int)2983 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2984 {
2985 u32 term;
2986 int retv = 0;
2987
2988 sym_soft_reset(np); /* Soft reset the chip */
2989 if (enab_int)
2990 OUTW (nc_sien, RST);
2991 /*
2992 * Enable Tolerant, reset IRQD if present and
2993 * properly set IRQ mode, prior to resetting the bus.
2994 */
2995 OUTB (nc_stest3, TE);
2996 OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
2997 OUTB (nc_scntl1, CRST);
2998 UDELAY (200);
2999
3000 if (!SYM_SETUP_SCSI_BUS_CHECK)
3001 goto out;
3002 /*
3003 * Check for no terminators or SCSI bus shorts to ground.
3004 * Read SCSI data bus, data parity bits and control signals.
3005 * We are expecting RESET to be TRUE and other signals to be
3006 * FALSE.
3007 */
3008 term = INB(nc_sstat0);
3009 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
3010 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
3011 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
3012 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
3013 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
3014
3015 if (!(np->features & FE_WIDE))
3016 term &= 0x3ffff;
3017
3018 if (term != (2<<7)) {
3019 printf("%s: suspicious SCSI data while resetting the BUS.\n",
3020 sym_name(np));
3021 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3022 "0x%lx, expecting 0x%lx\n",
3023 sym_name(np),
3024 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
3025 (u_long)term, (u_long)(2<<7));
3026 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3027 retv = 1;
3028 }
3029 out:
3030 OUTB (nc_scntl1, 0);
3031 /* MDELAY(100); */
3032 return retv;
3033 }
3034
3035 /*
3036 * The chip may have completed jobs. Look at the DONE QUEUE.
3037 *
3038 * On architectures that may reorder LOAD/STORE operations,
3039 * a memory barrier may be needed after the reading of the
3040 * so-called `flag' and prior to dealing with the data.
3041 */
sym_wakeup_done(hcb_p np)3042 static int sym_wakeup_done (hcb_p np)
3043 {
3044 ccb_p cp;
3045 int i, n;
3046 u32 dsa;
3047
3048 SYM_LOCK_ASSERT(MA_OWNED);
3049
3050 n = 0;
3051 i = np->dqueueget;
3052 while (1) {
3053 dsa = scr_to_cpu(np->dqueue[i]);
3054 if (!dsa)
3055 break;
3056 np->dqueue[i] = 0;
3057 if ((i = i+2) >= MAX_QUEUE*2)
3058 i = 0;
3059
3060 cp = sym_ccb_from_dsa(np, dsa);
3061 if (cp) {
3062 MEMORY_BARRIER();
3063 sym_complete_ok (np, cp);
3064 ++n;
3065 }
3066 else
3067 printf ("%s: bad DSA (%x) in done queue.\n",
3068 sym_name(np), (u_int) dsa);
3069 }
3070 np->dqueueget = i;
3071
3072 return n;
3073 }
3074
3075 /*
3076 * Complete all active CCBs with error.
3077 * Used on CHIP/SCSI RESET.
3078 */
sym_flush_busy_queue(hcb_p np,int cam_status)3079 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3080 {
3081 /*
3082 * Move all active CCBs to the COMP queue
3083 * and flush this queue.
3084 */
3085 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3086 sym_que_init(&np->busy_ccbq);
3087 sym_flush_comp_queue(np, cam_status);
3088 }
3089
3090 /*
3091 * Start chip.
3092 *
3093 * 'reason' means:
3094 * 0: initialisation.
3095 * 1: SCSI BUS RESET delivered or received.
3096 * 2: SCSI BUS MODE changed.
3097 */
sym_init(hcb_p np,int reason)3098 static void sym_init (hcb_p np, int reason)
3099 {
3100 int i;
3101 u32 phys;
3102
3103 SYM_LOCK_ASSERT(MA_OWNED);
3104
3105 /*
3106 * Reset chip if asked, otherwise just clear fifos.
3107 */
3108 if (reason == 1)
3109 sym_soft_reset(np);
3110 else {
3111 OUTB (nc_stest3, TE|CSF);
3112 OUTONB (nc_ctest3, CLF);
3113 }
3114
3115 /*
3116 * Clear Start Queue
3117 */
3118 phys = np->squeue_ba;
3119 for (i = 0; i < MAX_QUEUE*2; i += 2) {
3120 np->squeue[i] = cpu_to_scr(np->idletask_ba);
3121 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3122 }
3123 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3124
3125 /*
3126 * Start at first entry.
3127 */
3128 np->squeueput = 0;
3129
3130 /*
3131 * Clear Done Queue
3132 */
3133 phys = np->dqueue_ba;
3134 for (i = 0; i < MAX_QUEUE*2; i += 2) {
3135 np->dqueue[i] = 0;
3136 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3137 }
3138 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3139
3140 /*
3141 * Start at first entry.
3142 */
3143 np->dqueueget = 0;
3144
3145 /*
3146 * Install patches in scripts.
3147 * This also let point to first position the start
3148 * and done queue pointers used from SCRIPTS.
3149 */
3150 np->fw_patch(np);
3151
3152 /*
3153 * Wakeup all pending jobs.
3154 */
3155 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3156
3157 /*
3158 * Init chip.
3159 */
3160 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */
3161 UDELAY (2000); /* The 895 needs time for the bus mode to settle */
3162
3163 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3164 /* full arb., ena parity, par->ATN */
3165 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
3166
3167 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
3168
3169 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
3170 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
3171 OUTB (nc_istat , SIGP ); /* Signal Process */
3172 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
3173 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
3174
3175 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
3176 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
3177 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
3178
3179 /* Extended Sreq/Sack filtering not supported on the C10 */
3180 if (np->features & FE_C10)
3181 OUTB (nc_stest2, np->rv_stest2);
3182 else
3183 OUTB (nc_stest2, EXT|np->rv_stest2);
3184
3185 OUTB (nc_stest3, TE); /* TolerANT enable */
3186 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
3187
3188 /*
3189 * For now, disable AIP generation on C1010-66.
3190 */
3191 if (np->device_id == PCI_ID_LSI53C1010_2)
3192 OUTB (nc_aipcntl1, DISAIP);
3193
3194 /*
3195 * C10101 Errata.
3196 * Errant SGE's when in narrow. Write bits 4 & 5 of
3197 * STEST1 register to disable SGE. We probably should do
3198 * that from SCRIPTS for each selection/reselection, but
3199 * I just don't want. :)
3200 */
3201 if (np->device_id == PCI_ID_LSI53C1010 &&
3202 /* np->revision_id < 0xff */ 1)
3203 OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3204
3205 /*
3206 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3207 * Disable overlapped arbitration for some dual function devices,
3208 * regardless revision id (kind of post-chip-design feature. ;-))
3209 */
3210 if (np->device_id == PCI_ID_SYM53C875)
3211 OUTB (nc_ctest0, (1<<5));
3212 else if (np->device_id == PCI_ID_SYM53C896)
3213 np->rv_ccntl0 |= DPR;
3214
3215 /*
3216 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3217 * and/or hardware phase mismatch, since only such chips
3218 * seem to support those IO registers.
3219 */
3220 if (np->features & (FE_DAC|FE_NOPM)) {
3221 OUTB (nc_ccntl0, np->rv_ccntl0);
3222 OUTB (nc_ccntl1, np->rv_ccntl1);
3223 }
3224
3225 /*
3226 * If phase mismatch handled by scripts (895A/896/1010),
3227 * set PM jump addresses.
3228 */
3229 if (np->features & FE_NOPM) {
3230 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3231 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3232 }
3233
3234 /*
3235 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
3236 * Also set GPIO5 and clear GPIO6 if hardware LED control.
3237 */
3238 if (np->features & FE_LED0)
3239 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3240 else if (np->features & FE_LEDC)
3241 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3242
3243 /*
3244 * enable ints
3245 */
3246 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3247 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3248
3249 /*
3250 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3251 * Try to eat the spurious SBMC interrupt that may occur when
3252 * we reset the chip but not the SCSI BUS (at initialization).
3253 */
3254 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3255 OUTONW (nc_sien, SBMC);
3256 if (reason == 0) {
3257 MDELAY(100);
3258 INW (nc_sist);
3259 }
3260 np->scsi_mode = INB (nc_stest4) & SMODE;
3261 }
3262
3263 /*
3264 * Fill in target structure.
3265 * Reinitialize usrsync.
3266 * Reinitialize usrwide.
3267 * Prepare sync negotiation according to actual SCSI bus mode.
3268 */
3269 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3270 tcb_p tp = &np->target[i];
3271
3272 tp->to_reset = 0;
3273 tp->head.sval = 0;
3274 tp->head.wval = np->rv_scntl3;
3275 tp->head.uval = 0;
3276
3277 tp->tinfo.current.period = 0;
3278 tp->tinfo.current.offset = 0;
3279 tp->tinfo.current.width = BUS_8_BIT;
3280 tp->tinfo.current.options = 0;
3281 }
3282
3283 /*
3284 * Download SCSI SCRIPTS to on-chip RAM if present,
3285 * and start script processor.
3286 */
3287 if (np->ram_ba) {
3288 if (sym_verbose > 1)
3289 printf ("%s: Downloading SCSI SCRIPTS.\n",
3290 sym_name(np));
3291 if (np->ram_ws == 8192) {
3292 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3293 OUTL (nc_mmws, np->scr_ram_seg);
3294 OUTL (nc_mmrs, np->scr_ram_seg);
3295 OUTL (nc_sfs, np->scr_ram_seg);
3296 phys = SCRIPTB_BA (np, start64);
3297 }
3298 else
3299 phys = SCRIPTA_BA (np, init);
3300 OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3301 }
3302 else
3303 phys = SCRIPTA_BA (np, init);
3304
3305 np->istat_sem = 0;
3306
3307 OUTL (nc_dsa, np->hcb_ba);
3308 OUTL_DSP (phys);
3309
3310 /*
3311 * Notify the XPT about the RESET condition.
3312 */
3313 if (reason != 0)
3314 xpt_async(AC_BUS_RESET, np->path, NULL);
3315 }
3316
3317 /*
3318 * Get clock factor and sync divisor for a given
3319 * synchronous factor period.
3320 */
3321 static int
sym_getsync(hcb_p np,u_char dt,u_char sfac,u_char * divp,u_char * fakp)3322 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3323 {
3324 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
3325 int div = np->clock_divn; /* Number of divisors supported */
3326 u32 fak; /* Sync factor in sxfer */
3327 u32 per; /* Period in tenths of ns */
3328 u32 kpc; /* (per * clk) */
3329 int ret;
3330
3331 /*
3332 * Compute the synchronous period in tenths of nano-seconds
3333 */
3334 if (dt && sfac <= 9) per = 125;
3335 else if (sfac <= 10) per = 250;
3336 else if (sfac == 11) per = 303;
3337 else if (sfac == 12) per = 500;
3338 else per = 40 * sfac;
3339 ret = per;
3340
3341 kpc = per * clk;
3342 if (dt)
3343 kpc <<= 1;
3344
3345 /*
3346 * For earliest C10 revision 0, we cannot use extra
3347 * clocks for the setting of the SCSI clocking.
3348 * Note that this limits the lowest sync data transfer
3349 * to 5 Mega-transfers per second and may result in
3350 * using higher clock divisors.
3351 */
3352 #if 1
3353 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3354 /*
3355 * Look for the lowest clock divisor that allows an
3356 * output speed not faster than the period.
3357 */
3358 while (div > 0) {
3359 --div;
3360 if (kpc > (div_10M[div] << 2)) {
3361 ++div;
3362 break;
3363 }
3364 }
3365 fak = 0; /* No extra clocks */
3366 if (div == np->clock_divn) { /* Are we too fast ? */
3367 ret = -1;
3368 }
3369 *divp = div;
3370 *fakp = fak;
3371 return ret;
3372 }
3373 #endif
3374
3375 /*
3376 * Look for the greatest clock divisor that allows an
3377 * input speed faster than the period.
3378 */
3379 while (div-- > 0)
3380 if (kpc >= (div_10M[div] << 2)) break;
3381
3382 /*
3383 * Calculate the lowest clock factor that allows an output
3384 * speed not faster than the period, and the max output speed.
3385 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3386 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3387 */
3388 if (dt) {
3389 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3390 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3391 }
3392 else {
3393 fak = (kpc - 1) / div_10M[div] + 1 - 4;
3394 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3395 }
3396
3397 /*
3398 * Check against our hardware limits, or bugs :).
3399 */
3400 if (fak > 2) {fak = 2; ret = -1;}
3401
3402 /*
3403 * Compute and return sync parameters.
3404 */
3405 *divp = div;
3406 *fakp = fak;
3407
3408 return ret;
3409 }
3410
3411 /*
3412 * Tell the SCSI layer about the new transfer parameters.
3413 */
3414 static void
sym_xpt_async_transfer_neg(hcb_p np,int target,u_int spi_valid)3415 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3416 {
3417 struct ccb_trans_settings cts;
3418 struct cam_path *path;
3419 int sts;
3420 tcb_p tp = &np->target[target];
3421
3422 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3423 CAM_LUN_WILDCARD);
3424 if (sts != CAM_REQ_CMP)
3425 return;
3426
3427 bzero(&cts, sizeof(cts));
3428
3429 #define cts__scsi (cts.proto_specific.scsi)
3430 #define cts__spi (cts.xport_specific.spi)
3431
3432 cts.type = CTS_TYPE_CURRENT_SETTINGS;
3433 cts.protocol = PROTO_SCSI;
3434 cts.transport = XPORT_SPI;
3435 cts.protocol_version = tp->tinfo.current.scsi_version;
3436 cts.transport_version = tp->tinfo.current.spi_version;
3437
3438 cts__spi.valid = spi_valid;
3439 if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3440 cts__spi.sync_period = tp->tinfo.current.period;
3441 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3442 cts__spi.sync_offset = tp->tinfo.current.offset;
3443 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3444 cts__spi.bus_width = tp->tinfo.current.width;
3445 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3446 cts__spi.ppr_options = tp->tinfo.current.options;
3447 #undef cts__spi
3448 #undef cts__scsi
3449 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3450 xpt_async(AC_TRANSFER_NEG, path, &cts);
3451 xpt_free_path(path);
3452 }
3453
3454 #define SYM_SPI_VALID_WDTR \
3455 CTS_SPI_VALID_BUS_WIDTH | \
3456 CTS_SPI_VALID_SYNC_RATE | \
3457 CTS_SPI_VALID_SYNC_OFFSET
3458 #define SYM_SPI_VALID_SDTR \
3459 CTS_SPI_VALID_SYNC_RATE | \
3460 CTS_SPI_VALID_SYNC_OFFSET
3461 #define SYM_SPI_VALID_PPR \
3462 CTS_SPI_VALID_PPR_OPTIONS | \
3463 CTS_SPI_VALID_BUS_WIDTH | \
3464 CTS_SPI_VALID_SYNC_RATE | \
3465 CTS_SPI_VALID_SYNC_OFFSET
3466
3467 /*
3468 * We received a WDTR.
3469 * Let everything be aware of the changes.
3470 */
sym_setwide(hcb_p np,ccb_p cp,u_char wide)3471 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3472 {
3473 tcb_p tp = &np->target[cp->target];
3474
3475 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3476
3477 /*
3478 * Tell the SCSI layer about the new transfer parameters.
3479 */
3480 tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3481 tp->tinfo.current.offset = 0;
3482 tp->tinfo.current.period = 0;
3483 tp->tinfo.current.options = 0;
3484
3485 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3486 }
3487
3488 /*
3489 * We received a SDTR.
3490 * Let everything be aware of the changes.
3491 */
3492 static void
sym_setsync(hcb_p np,ccb_p cp,u_char ofs,u_char per,u_char div,u_char fak)3493 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3494 {
3495 tcb_p tp = &np->target[cp->target];
3496 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3497
3498 sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3499
3500 /*
3501 * Tell the SCSI layer about the new transfer parameters.
3502 */
3503 tp->tinfo.goal.period = tp->tinfo.current.period = per;
3504 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
3505 tp->tinfo.goal.options = tp->tinfo.current.options = 0;
3506
3507 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3508 }
3509
3510 /*
3511 * We received a PPR.
3512 * Let everything be aware of the changes.
3513 */
sym_setpprot(hcb_p np,ccb_p cp,u_char dt,u_char ofs,u_char per,u_char wide,u_char div,u_char fak)3514 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3515 u_char per, u_char wide, u_char div, u_char fak)
3516 {
3517 tcb_p tp = &np->target[cp->target];
3518
3519 sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3520
3521 /*
3522 * Tell the SCSI layer about the new transfer parameters.
3523 */
3524 tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3525 tp->tinfo.goal.period = tp->tinfo.current.period = per;
3526 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
3527 tp->tinfo.goal.options = tp->tinfo.current.options = dt;
3528
3529 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3530 }
3531
3532 /*
3533 * Switch trans mode for current job and it's target.
3534 */
sym_settrans(hcb_p np,ccb_p cp,u_char dt,u_char ofs,u_char per,u_char wide,u_char div,u_char fak)3535 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3536 u_char per, u_char wide, u_char div, u_char fak)
3537 {
3538 SYM_QUEHEAD *qp;
3539 union ccb *ccb;
3540 tcb_p tp;
3541 u_char target = INB (nc_sdid) & 0x0f;
3542 u_char sval, wval, uval;
3543
3544 assert (cp);
3545 if (!cp) return;
3546 ccb = cp->cam_ccb;
3547 assert (ccb);
3548 if (!ccb) return;
3549 assert (target == (cp->target & 0xf));
3550 tp = &np->target[target];
3551
3552 sval = tp->head.sval;
3553 wval = tp->head.wval;
3554 uval = tp->head.uval;
3555
3556 #if 0
3557 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3558 sval, wval, uval, np->rv_scntl3);
3559 #endif
3560 /*
3561 * Set the offset.
3562 */
3563 if (!(np->features & FE_C10))
3564 sval = (sval & ~0x1f) | ofs;
3565 else
3566 sval = (sval & ~0x3f) | ofs;
3567
3568 /*
3569 * Set the sync divisor and extra clock factor.
3570 */
3571 if (ofs != 0) {
3572 wval = (wval & ~0x70) | ((div+1) << 4);
3573 if (!(np->features & FE_C10))
3574 sval = (sval & ~0xe0) | (fak << 5);
3575 else {
3576 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3577 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3578 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3579 }
3580 }
3581
3582 /*
3583 * Set the bus width.
3584 */
3585 wval = wval & ~EWS;
3586 if (wide != 0)
3587 wval |= EWS;
3588
3589 /*
3590 * Set misc. ultra enable bits.
3591 */
3592 if (np->features & FE_C10) {
3593 uval = uval & ~(U3EN|AIPCKEN);
3594 if (dt) {
3595 assert(np->features & FE_U3EN);
3596 uval |= U3EN;
3597 }
3598 }
3599 else {
3600 wval = wval & ~ULTRA;
3601 if (per <= 12) wval |= ULTRA;
3602 }
3603
3604 /*
3605 * Stop there if sync parameters are unchanged.
3606 */
3607 if (tp->head.sval == sval &&
3608 tp->head.wval == wval &&
3609 tp->head.uval == uval)
3610 return;
3611 tp->head.sval = sval;
3612 tp->head.wval = wval;
3613 tp->head.uval = uval;
3614
3615 /*
3616 * Disable extended Sreq/Sack filtering if per < 50.
3617 * Not supported on the C1010.
3618 */
3619 if (per < 50 && !(np->features & FE_C10))
3620 OUTOFFB (nc_stest2, EXT);
3621
3622 /*
3623 * set actual value and sync_status
3624 */
3625 OUTB (nc_sxfer, tp->head.sval);
3626 OUTB (nc_scntl3, tp->head.wval);
3627
3628 if (np->features & FE_C10) {
3629 OUTB (nc_scntl4, tp->head.uval);
3630 }
3631
3632 /*
3633 * patch ALL busy ccbs of this target.
3634 */
3635 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3636 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3637 if (cp->target != target)
3638 continue;
3639 cp->phys.select.sel_scntl3 = tp->head.wval;
3640 cp->phys.select.sel_sxfer = tp->head.sval;
3641 if (np->features & FE_C10) {
3642 cp->phys.select.sel_scntl4 = tp->head.uval;
3643 }
3644 }
3645 }
3646
3647 /*
3648 * log message for real hard errors
3649 *
3650 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3651 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3652 *
3653 * exception register:
3654 * ds: dstat
3655 * si: sist
3656 *
3657 * SCSI bus lines:
3658 * so: control lines as driven by chip.
3659 * si: control lines as seen by chip.
3660 * sd: scsi data lines as seen by chip.
3661 *
3662 * wide/fastmode:
3663 * sxfer: (see the manual)
3664 * scntl3: (see the manual)
3665 *
3666 * current script command:
3667 * dsp: script address (relative to start of script).
3668 * dbc: first word of script command.
3669 *
3670 * First 24 register of the chip:
3671 * r0..rf
3672 */
sym_log_hard_error(hcb_p np,u_short sist,u_char dstat)3673 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3674 {
3675 u32 dsp;
3676 int script_ofs;
3677 int script_size;
3678 char *script_name;
3679 u_char *script_base;
3680 int i;
3681
3682 dsp = INL (nc_dsp);
3683
3684 if (dsp > np->scripta_ba &&
3685 dsp <= np->scripta_ba + np->scripta_sz) {
3686 script_ofs = dsp - np->scripta_ba;
3687 script_size = np->scripta_sz;
3688 script_base = (u_char *) np->scripta0;
3689 script_name = "scripta";
3690 }
3691 else if (np->scriptb_ba < dsp &&
3692 dsp <= np->scriptb_ba + np->scriptb_sz) {
3693 script_ofs = dsp - np->scriptb_ba;
3694 script_size = np->scriptb_sz;
3695 script_base = (u_char *) np->scriptb0;
3696 script_name = "scriptb";
3697 } else {
3698 script_ofs = dsp;
3699 script_size = 0;
3700 script_base = NULL;
3701 script_name = "mem";
3702 }
3703
3704 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3705 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3706 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3707 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3708 (unsigned)INB (nc_scntl3), script_name, script_ofs,
3709 (unsigned)INL (nc_dbc));
3710
3711 if (((script_ofs & 3) == 0) &&
3712 (unsigned)script_ofs < script_size) {
3713 printf ("%s: script cmd = %08x\n", sym_name(np),
3714 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3715 }
3716
3717 printf ("%s: regdump:", sym_name(np));
3718 for (i=0; i<24;i++)
3719 printf (" %02x", (unsigned)INB_OFF(i));
3720 printf (".\n");
3721
3722 /*
3723 * PCI BUS error, read the PCI ststus register.
3724 */
3725 if (dstat & (MDPE|BF)) {
3726 u_short pci_sts;
3727 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3728 if (pci_sts & 0xf900) {
3729 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3730 printf("%s: PCI STATUS = 0x%04x\n",
3731 sym_name(np), pci_sts & 0xf900);
3732 }
3733 }
3734 }
3735
3736 /*
3737 * chip interrupt handler
3738 *
3739 * In normal situations, interrupt conditions occur one at
3740 * a time. But when something bad happens on the SCSI BUS,
3741 * the chip may raise several interrupt flags before
3742 * stopping and interrupting the CPU. The additionnal
3743 * interrupt flags are stacked in some extra registers
3744 * after the SIP and/or DIP flag has been raised in the
3745 * ISTAT. After the CPU has read the interrupt condition
3746 * flag from SIST or DSTAT, the chip unstacks the other
3747 * interrupt flags and sets the corresponding bits in
3748 * SIST or DSTAT. Since the chip starts stacking once the
3749 * SIP or DIP flag is set, there is a small window of time
3750 * where the stacking does not occur.
3751 *
3752 * Typically, multiple interrupt conditions may happen in
3753 * the following situations:
3754 *
3755 * - SCSI parity error + Phase mismatch (PAR|MA)
3756 * When a parity error is detected in input phase
3757 * and the device switches to msg-in phase inside a
3758 * block MOV.
3759 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
3760 * When a stupid device does not want to handle the
3761 * recovery of an SCSI parity error.
3762 * - Some combinations of STO, PAR, UDC, ...
3763 * When using non compliant SCSI stuff, when user is
3764 * doing non compliant hot tampering on the BUS, when
3765 * something really bad happens to a device, etc ...
3766 *
3767 * The heuristic suggested by SYMBIOS to handle
3768 * multiple interrupts is to try unstacking all
3769 * interrupts conditions and to handle them on some
3770 * priority based on error severity.
3771 * This will work when the unstacking has been
3772 * successful, but we cannot be 100 % sure of that,
3773 * since the CPU may have been faster to unstack than
3774 * the chip is able to stack. Hmmm ... But it seems that
3775 * such a situation is very unlikely to happen.
3776 *
3777 * If this happen, for example STO caught by the CPU
3778 * then UDC happenning before the CPU have restarted
3779 * the SCRIPTS, the driver may wrongly complete the
3780 * same command on UDC, since the SCRIPTS didn't restart
3781 * and the DSA still points to the same command.
3782 * We avoid this situation by setting the DSA to an
3783 * invalid value when the CCB is completed and before
3784 * restarting the SCRIPTS.
3785 *
3786 * Another issue is that we need some section of our
3787 * recovery procedures to be somehow uninterruptible but
3788 * the SCRIPTS processor does not provides such a
3789 * feature. For this reason, we handle recovery preferently
3790 * from the C code and check against some SCRIPTS critical
3791 * sections from the C code.
3792 *
3793 * Hopefully, the interrupt handling of the driver is now
3794 * able to resist to weird BUS error conditions, but donnot
3795 * ask me for any guarantee that it will never fail. :-)
3796 * Use at your own decision and risk.
3797 */
sym_intr1(hcb_p np)3798 static void sym_intr1 (hcb_p np)
3799 {
3800 u_char istat, istatc;
3801 u_char dstat;
3802 u_short sist;
3803
3804 SYM_LOCK_ASSERT(MA_OWNED);
3805
3806 /*
3807 * interrupt on the fly ?
3808 *
3809 * A `dummy read' is needed to ensure that the
3810 * clear of the INTF flag reaches the device
3811 * before the scanning of the DONE queue.
3812 */
3813 istat = INB (nc_istat);
3814 if (istat & INTF) {
3815 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3816 istat = INB (nc_istat); /* DUMMY READ */
3817 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3818 (void)sym_wakeup_done (np);
3819 }
3820
3821 if (!(istat & (SIP|DIP)))
3822 return;
3823
3824 #if 0 /* We should never get this one */
3825 if (istat & CABRT)
3826 OUTB (nc_istat, CABRT);
3827 #endif
3828
3829 /*
3830 * PAR and MA interrupts may occur at the same time,
3831 * and we need to know of both in order to handle
3832 * this situation properly. We try to unstack SCSI
3833 * interrupts for that reason. BTW, I dislike a LOT
3834 * such a loop inside the interrupt routine.
3835 * Even if DMA interrupt stacking is very unlikely to
3836 * happen, we also try unstacking these ones, since
3837 * this has no performance impact.
3838 */
3839 sist = 0;
3840 dstat = 0;
3841 istatc = istat;
3842 do {
3843 if (istatc & SIP)
3844 sist |= INW (nc_sist);
3845 if (istatc & DIP)
3846 dstat |= INB (nc_dstat);
3847 istatc = INB (nc_istat);
3848 istat |= istatc;
3849 } while (istatc & (SIP|DIP));
3850
3851 if (DEBUG_FLAGS & DEBUG_TINY)
3852 printf ("<%d|%x:%x|%x:%x>",
3853 (int)INB(nc_scr0),
3854 dstat,sist,
3855 (unsigned)INL(nc_dsp),
3856 (unsigned)INL(nc_dbc));
3857 /*
3858 * On paper, a memory barrier may be needed here.
3859 * And since we are paranoid ... :)
3860 */
3861 MEMORY_BARRIER();
3862
3863 /*
3864 * First, interrupts we want to service cleanly.
3865 *
3866 * Phase mismatch (MA) is the most frequent interrupt
3867 * for chip earlier than the 896 and so we have to service
3868 * it as quickly as possible.
3869 * A SCSI parity error (PAR) may be combined with a phase
3870 * mismatch condition (MA).
3871 * Programmed interrupts (SIR) are used to call the C code
3872 * from SCRIPTS.
3873 * The single step interrupt (SSI) is not used in this
3874 * driver.
3875 */
3876 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3877 !(dstat & (MDPE|BF|ABRT|IID))) {
3878 if (sist & PAR) sym_int_par (np, sist);
3879 else if (sist & MA) sym_int_ma (np);
3880 else if (dstat & SIR) sym_int_sir (np);
3881 else if (dstat & SSI) OUTONB_STD ();
3882 else goto unknown_int;
3883 return;
3884 }
3885
3886 /*
3887 * Now, interrupts that donnot happen in normal
3888 * situations and that we may need to recover from.
3889 *
3890 * On SCSI RESET (RST), we reset everything.
3891 * On SCSI BUS MODE CHANGE (SBMC), we complete all
3892 * active CCBs with RESET status, prepare all devices
3893 * for negotiating again and restart the SCRIPTS.
3894 * On STO and UDC, we complete the CCB with the corres-
3895 * ponding status and restart the SCRIPTS.
3896 */
3897 if (sist & RST) {
3898 xpt_print_path(np->path);
3899 printf("SCSI BUS reset detected.\n");
3900 sym_init (np, 1);
3901 return;
3902 }
3903
3904 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
3905 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
3906
3907 if (!(sist & (GEN|HTH|SGE)) &&
3908 !(dstat & (MDPE|BF|ABRT|IID))) {
3909 if (sist & SBMC) sym_int_sbmc (np);
3910 else if (sist & STO) sym_int_sto (np);
3911 else if (sist & UDC) sym_int_udc (np);
3912 else goto unknown_int;
3913 return;
3914 }
3915
3916 /*
3917 * Now, interrupts we are not able to recover cleanly.
3918 *
3919 * Log message for hard errors.
3920 * Reset everything.
3921 */
3922
3923 sym_log_hard_error(np, sist, dstat);
3924
3925 if ((sist & (GEN|HTH|SGE)) ||
3926 (dstat & (MDPE|BF|ABRT|IID))) {
3927 sym_start_reset(np);
3928 return;
3929 }
3930
3931 unknown_int:
3932 /*
3933 * We just miss the cause of the interrupt. :(
3934 * Print a message. The timeout will do the real work.
3935 */
3936 printf( "%s: unknown interrupt(s) ignored, "
3937 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3938 sym_name(np), istat, dstat, sist);
3939 }
3940
sym_intr(void * arg)3941 static void sym_intr(void *arg)
3942 {
3943 hcb_p np = arg;
3944
3945 SYM_LOCK();
3946
3947 if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3948 sym_intr1((hcb_p) arg);
3949 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3950
3951 SYM_UNLOCK();
3952 }
3953
sym_poll(struct cam_sim * sim)3954 static void sym_poll(struct cam_sim *sim)
3955 {
3956 sym_intr1(cam_sim_softc(sim));
3957 }
3958
3959 /*
3960 * generic recovery from scsi interrupt
3961 *
3962 * The doc says that when the chip gets an SCSI interrupt,
3963 * it tries to stop in an orderly fashion, by completing
3964 * an instruction fetch that had started or by flushing
3965 * the DMA fifo for a write to memory that was executing.
3966 * Such a fashion is not enough to know if the instruction
3967 * that was just before the current DSP value has been
3968 * executed or not.
3969 *
3970 * There are some small SCRIPTS sections that deal with
3971 * the start queue and the done queue that may break any
3972 * assomption from the C code if we are interrupted
3973 * inside, so we reset if this happens. Btw, since these
3974 * SCRIPTS sections are executed while the SCRIPTS hasn't
3975 * started SCSI operations, it is very unlikely to happen.
3976 *
3977 * All the driver data structures are supposed to be
3978 * allocated from the same 4 GB memory window, so there
3979 * is a 1 to 1 relationship between DSA and driver data
3980 * structures. Since we are careful :) to invalidate the
3981 * DSA when we complete a command or when the SCRIPTS
3982 * pushes a DSA into a queue, we can trust it when it
3983 * points to a CCB.
3984 */
sym_recover_scsi_int(hcb_p np,u_char hsts)3985 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
3986 {
3987 u32 dsp = INL (nc_dsp);
3988 u32 dsa = INL (nc_dsa);
3989 ccb_p cp = sym_ccb_from_dsa(np, dsa);
3990
3991 /*
3992 * If we haven't been interrupted inside the SCRIPTS
3993 * critical paths, we can safely restart the SCRIPTS
3994 * and trust the DSA value if it matches a CCB.
3995 */
3996 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
3997 dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
3998 (!(dsp > SCRIPTA_BA (np, ungetjob) &&
3999 dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4000 (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4001 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4002 (!(dsp > SCRIPTA_BA (np, done) &&
4003 dsp < SCRIPTA_BA (np, done_end) + 1))) {
4004 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
4005 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
4006 /*
4007 * If we have a CCB, let the SCRIPTS call us back for
4008 * the handling of the error with SCRATCHA filled with
4009 * STARTPOS. This way, we will be able to freeze the
4010 * device queue and requeue awaiting IOs.
4011 */
4012 if (cp) {
4013 cp->host_status = hsts;
4014 OUTL_DSP (SCRIPTA_BA (np, complete_error));
4015 }
4016 /*
4017 * Otherwise just restart the SCRIPTS.
4018 */
4019 else {
4020 OUTL (nc_dsa, 0xffffff);
4021 OUTL_DSP (SCRIPTA_BA (np, start));
4022 }
4023 }
4024 else
4025 goto reset_all;
4026
4027 return;
4028
4029 reset_all:
4030 sym_start_reset(np);
4031 }
4032
4033 /*
4034 * chip exception handler for selection timeout
4035 */
sym_int_sto(hcb_p np)4036 static void sym_int_sto (hcb_p np)
4037 {
4038 u32 dsp = INL (nc_dsp);
4039
4040 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4041
4042 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4043 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4044 else
4045 sym_start_reset(np);
4046 }
4047
4048 /*
4049 * chip exception handler for unexpected disconnect
4050 */
sym_int_udc(hcb_p np)4051 static void sym_int_udc (hcb_p np)
4052 {
4053 printf ("%s: unexpected disconnect\n", sym_name(np));
4054 sym_recover_scsi_int(np, HS_UNEXPECTED);
4055 }
4056
4057 /*
4058 * chip exception handler for SCSI bus mode change
4059 *
4060 * spi2-r12 11.2.3 says a transceiver mode change must
4061 * generate a reset event and a device that detects a reset
4062 * event shall initiate a hard reset. It says also that a
4063 * device that detects a mode change shall set data transfer
4064 * mode to eight bit asynchronous, etc...
4065 * So, just reinitializing all except chip should be enough.
4066 */
sym_int_sbmc(hcb_p np)4067 static void sym_int_sbmc (hcb_p np)
4068 {
4069 u_char scsi_mode = INB (nc_stest4) & SMODE;
4070
4071 /*
4072 * Notify user.
4073 */
4074 xpt_print_path(np->path);
4075 printf("SCSI BUS mode change from %s to %s.\n",
4076 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4077
4078 /*
4079 * Should suspend command processing for a few seconds and
4080 * reinitialize all except the chip.
4081 */
4082 sym_init (np, 2);
4083 }
4084
4085 /*
4086 * chip exception handler for SCSI parity error.
4087 *
4088 * When the chip detects a SCSI parity error and is
4089 * currently executing a (CH)MOV instruction, it does
4090 * not interrupt immediately, but tries to finish the
4091 * transfer of the current scatter entry before
4092 * interrupting. The following situations may occur:
4093 *
4094 * - The complete scatter entry has been transferred
4095 * without the device having changed phase.
4096 * The chip will then interrupt with the DSP pointing
4097 * to the instruction that follows the MOV.
4098 *
4099 * - A phase mismatch occurs before the MOV finished
4100 * and phase errors are to be handled by the C code.
4101 * The chip will then interrupt with both PAR and MA
4102 * conditions set.
4103 *
4104 * - A phase mismatch occurs before the MOV finished and
4105 * phase errors are to be handled by SCRIPTS.
4106 * The chip will load the DSP with the phase mismatch
4107 * JUMP address and interrupt the host processor.
4108 */
sym_int_par(hcb_p np,u_short sist)4109 static void sym_int_par (hcb_p np, u_short sist)
4110 {
4111 u_char hsts = INB (HS_PRT);
4112 u32 dsp = INL (nc_dsp);
4113 u32 dbc = INL (nc_dbc);
4114 u32 dsa = INL (nc_dsa);
4115 u_char sbcl = INB (nc_sbcl);
4116 u_char cmd = dbc >> 24;
4117 int phase = cmd & 7;
4118 ccb_p cp = sym_ccb_from_dsa(np, dsa);
4119
4120 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4121 sym_name(np), hsts, dbc, sbcl);
4122
4123 /*
4124 * Check that the chip is connected to the SCSI BUS.
4125 */
4126 if (!(INB (nc_scntl1) & ISCON)) {
4127 sym_recover_scsi_int(np, HS_UNEXPECTED);
4128 return;
4129 }
4130
4131 /*
4132 * If the nexus is not clearly identified, reset the bus.
4133 * We will try to do better later.
4134 */
4135 if (!cp)
4136 goto reset_all;
4137
4138 /*
4139 * Check instruction was a MOV, direction was INPUT and
4140 * ATN is asserted.
4141 */
4142 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4143 goto reset_all;
4144
4145 /*
4146 * Keep track of the parity error.
4147 */
4148 OUTONB (HF_PRT, HF_EXT_ERR);
4149 cp->xerr_status |= XE_PARITY_ERR;
4150
4151 /*
4152 * Prepare the message to send to the device.
4153 */
4154 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4155
4156 /*
4157 * If the old phase was DATA IN phase, we have to deal with
4158 * the 3 situations described above.
4159 * For other input phases (MSG IN and STATUS), the device
4160 * must resend the whole thing that failed parity checking
4161 * or signal error. So, jumping to dispatcher should be OK.
4162 */
4163 if (phase == 1 || phase == 5) {
4164 /* Phase mismatch handled by SCRIPTS */
4165 if (dsp == SCRIPTB_BA (np, pm_handle))
4166 OUTL_DSP (dsp);
4167 /* Phase mismatch handled by the C code */
4168 else if (sist & MA)
4169 sym_int_ma (np);
4170 /* No phase mismatch occurred */
4171 else {
4172 OUTL (nc_temp, dsp);
4173 OUTL_DSP (SCRIPTA_BA (np, dispatch));
4174 }
4175 }
4176 else
4177 OUTL_DSP (SCRIPTA_BA (np, clrack));
4178 return;
4179
4180 reset_all:
4181 sym_start_reset(np);
4182 }
4183
4184 /*
4185 * chip exception handler for phase errors.
4186 *
4187 * We have to construct a new transfer descriptor,
4188 * to transfer the rest of the current block.
4189 */
sym_int_ma(hcb_p np)4190 static void sym_int_ma (hcb_p np)
4191 {
4192 u32 dbc;
4193 u32 rest;
4194 u32 dsp;
4195 u32 dsa;
4196 u32 nxtdsp;
4197 u32 *vdsp;
4198 u32 oadr, olen;
4199 u32 *tblp;
4200 u32 newcmd;
4201 u_int delta;
4202 u_char cmd;
4203 u_char hflags, hflags0;
4204 struct sym_pmc *pm;
4205 ccb_p cp;
4206
4207 dsp = INL (nc_dsp);
4208 dbc = INL (nc_dbc);
4209 dsa = INL (nc_dsa);
4210
4211 cmd = dbc >> 24;
4212 rest = dbc & 0xffffff;
4213 delta = 0;
4214
4215 /*
4216 * locate matching cp if any.
4217 */
4218 cp = sym_ccb_from_dsa(np, dsa);
4219
4220 /*
4221 * Donnot take into account dma fifo and various buffers in
4222 * INPUT phase since the chip flushes everything before
4223 * raising the MA interrupt for interrupted INPUT phases.
4224 * For DATA IN phase, we will check for the SWIDE later.
4225 */
4226 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4227 u_char ss0, ss2;
4228
4229 if (np->features & FE_DFBC)
4230 delta = INW (nc_dfbc);
4231 else {
4232 u32 dfifo;
4233
4234 /*
4235 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4236 */
4237 dfifo = INL(nc_dfifo);
4238
4239 /*
4240 * Calculate remaining bytes in DMA fifo.
4241 * (CTEST5 = dfifo >> 16)
4242 */
4243 if (dfifo & (DFS << 16))
4244 delta = ((((dfifo >> 8) & 0x300) |
4245 (dfifo & 0xff)) - rest) & 0x3ff;
4246 else
4247 delta = ((dfifo & 0xff) - rest) & 0x7f;
4248 }
4249
4250 /*
4251 * The data in the dma fifo has not been transferred to
4252 * the target -> add the amount to the rest
4253 * and clear the data.
4254 * Check the sstat2 register in case of wide transfer.
4255 */
4256 rest += delta;
4257 ss0 = INB (nc_sstat0);
4258 if (ss0 & OLF) rest++;
4259 if (!(np->features & FE_C10))
4260 if (ss0 & ORF) rest++;
4261 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4262 ss2 = INB (nc_sstat2);
4263 if (ss2 & OLF1) rest++;
4264 if (!(np->features & FE_C10))
4265 if (ss2 & ORF1) rest++;
4266 }
4267
4268 /*
4269 * Clear fifos.
4270 */
4271 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
4272 OUTB (nc_stest3, TE|CSF); /* scsi fifo */
4273 }
4274
4275 /*
4276 * log the information
4277 */
4278 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4279 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4280 (unsigned) rest, (unsigned) delta);
4281
4282 /*
4283 * try to find the interrupted script command,
4284 * and the address at which to continue.
4285 */
4286 vdsp = NULL;
4287 nxtdsp = 0;
4288 if (dsp > np->scripta_ba &&
4289 dsp <= np->scripta_ba + np->scripta_sz) {
4290 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4291 nxtdsp = dsp;
4292 }
4293 else if (dsp > np->scriptb_ba &&
4294 dsp <= np->scriptb_ba + np->scriptb_sz) {
4295 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4296 nxtdsp = dsp;
4297 }
4298
4299 /*
4300 * log the information
4301 */
4302 if (DEBUG_FLAGS & DEBUG_PHASE) {
4303 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4304 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4305 }
4306
4307 if (!vdsp) {
4308 printf ("%s: interrupted SCRIPT address not found.\n",
4309 sym_name (np));
4310 goto reset_all;
4311 }
4312
4313 if (!cp) {
4314 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4315 sym_name (np));
4316 goto reset_all;
4317 }
4318
4319 /*
4320 * get old startaddress and old length.
4321 */
4322 oadr = scr_to_cpu(vdsp[1]);
4323
4324 if (cmd & 0x10) { /* Table indirect */
4325 tblp = (u32 *) ((char*) &cp->phys + oadr);
4326 olen = scr_to_cpu(tblp[0]);
4327 oadr = scr_to_cpu(tblp[1]);
4328 } else {
4329 tblp = (u32 *) 0;
4330 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4331 }
4332
4333 if (DEBUG_FLAGS & DEBUG_PHASE) {
4334 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4335 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4336 tblp,
4337 (unsigned) olen,
4338 (unsigned) oadr);
4339 }
4340
4341 /*
4342 * check cmd against assumed interrupted script command.
4343 * If dt data phase, the MOVE instruction hasn't bit 4 of
4344 * the phase.
4345 */
4346 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4347 PRINT_ADDR(cp);
4348 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4349 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4350
4351 goto reset_all;
4352 }
4353
4354 /*
4355 * if old phase not dataphase, leave here.
4356 */
4357 if (cmd & 2) {
4358 PRINT_ADDR(cp);
4359 printf ("phase change %x-%x %d@%08x resid=%d.\n",
4360 cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4361 (unsigned)oadr, (unsigned)rest);
4362 goto unexpected_phase;
4363 }
4364
4365 /*
4366 * Choose the correct PM save area.
4367 *
4368 * Look at the PM_SAVE SCRIPT if you want to understand
4369 * this stuff. The equivalent code is implemented in
4370 * SCRIPTS for the 895A, 896 and 1010 that are able to
4371 * handle PM from the SCRIPTS processor.
4372 */
4373 hflags0 = INB (HF_PRT);
4374 hflags = hflags0;
4375
4376 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4377 if (hflags & HF_IN_PM0)
4378 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4379 else if (hflags & HF_IN_PM1)
4380 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4381
4382 if (hflags & HF_DP_SAVED)
4383 hflags ^= HF_ACT_PM;
4384 }
4385
4386 if (!(hflags & HF_ACT_PM)) {
4387 pm = &cp->phys.pm0;
4388 newcmd = SCRIPTA_BA (np, pm0_data);
4389 }
4390 else {
4391 pm = &cp->phys.pm1;
4392 newcmd = SCRIPTA_BA (np, pm1_data);
4393 }
4394
4395 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4396 if (hflags != hflags0)
4397 OUTB (HF_PRT, hflags);
4398
4399 /*
4400 * fillin the phase mismatch context
4401 */
4402 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4403 pm->sg.size = cpu_to_scr(rest);
4404 pm->ret = cpu_to_scr(nxtdsp);
4405
4406 /*
4407 * If we have a SWIDE,
4408 * - prepare the address to write the SWIDE from SCRIPTS,
4409 * - compute the SCRIPTS address to restart from,
4410 * - move current data pointer context by one byte.
4411 */
4412 nxtdsp = SCRIPTA_BA (np, dispatch);
4413 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4414 (INB (nc_scntl2) & WSR)) {
4415 u32 tmp;
4416
4417 /*
4418 * Set up the table indirect for the MOVE
4419 * of the residual byte and adjust the data
4420 * pointer context.
4421 */
4422 tmp = scr_to_cpu(pm->sg.addr);
4423 cp->phys.wresid.addr = cpu_to_scr(tmp);
4424 pm->sg.addr = cpu_to_scr(tmp + 1);
4425 tmp = scr_to_cpu(pm->sg.size);
4426 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4427 pm->sg.size = cpu_to_scr(tmp - 1);
4428
4429 /*
4430 * If only the residual byte is to be moved,
4431 * no PM context is needed.
4432 */
4433 if ((tmp&0xffffff) == 1)
4434 newcmd = pm->ret;
4435
4436 /*
4437 * Prepare the address of SCRIPTS that will
4438 * move the residual byte to memory.
4439 */
4440 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4441 }
4442
4443 if (DEBUG_FLAGS & DEBUG_PHASE) {
4444 PRINT_ADDR(cp);
4445 printf ("PM %x %x %x / %x %x %x.\n",
4446 hflags0, hflags, newcmd,
4447 (unsigned)scr_to_cpu(pm->sg.addr),
4448 (unsigned)scr_to_cpu(pm->sg.size),
4449 (unsigned)scr_to_cpu(pm->ret));
4450 }
4451
4452 /*
4453 * Restart the SCRIPTS processor.
4454 */
4455 OUTL (nc_temp, newcmd);
4456 OUTL_DSP (nxtdsp);
4457 return;
4458
4459 /*
4460 * Unexpected phase changes that occurs when the current phase
4461 * is not a DATA IN or DATA OUT phase are due to error conditions.
4462 * Such event may only happen when the SCRIPTS is using a
4463 * multibyte SCSI MOVE.
4464 *
4465 * Phase change Some possible cause
4466 *
4467 * COMMAND --> MSG IN SCSI parity error detected by target.
4468 * COMMAND --> STATUS Bad command or refused by target.
4469 * MSG OUT --> MSG IN Message rejected by target.
4470 * MSG OUT --> COMMAND Bogus target that discards extended
4471 * negotiation messages.
4472 *
4473 * The code below does not care of the new phase and so
4474 * trusts the target. Why to annoy it ?
4475 * If the interrupted phase is COMMAND phase, we restart at
4476 * dispatcher.
4477 * If a target does not get all the messages after selection,
4478 * the code assumes blindly that the target discards extended
4479 * messages and clears the negotiation status.
4480 * If the target does not want all our response to negotiation,
4481 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4482 * bloat for such a should_not_happen situation).
4483 * In all other situation, we reset the BUS.
4484 * Are these assumptions reasonnable ? (Wait and see ...)
4485 */
4486 unexpected_phase:
4487 dsp -= 8;
4488 nxtdsp = 0;
4489
4490 switch (cmd & 7) {
4491 case 2: /* COMMAND phase */
4492 nxtdsp = SCRIPTA_BA (np, dispatch);
4493 break;
4494 #if 0
4495 case 3: /* STATUS phase */
4496 nxtdsp = SCRIPTA_BA (np, dispatch);
4497 break;
4498 #endif
4499 case 6: /* MSG OUT phase */
4500 /*
4501 * If the device may want to use untagged when we want
4502 * tagged, we prepare an IDENTIFY without disc. granted,
4503 * since we will not be able to handle reselect.
4504 * Otherwise, we just don't care.
4505 */
4506 if (dsp == SCRIPTA_BA (np, send_ident)) {
4507 if (cp->tag != NO_TAG && olen - rest <= 3) {
4508 cp->host_status = HS_BUSY;
4509 np->msgout[0] = M_IDENTIFY | cp->lun;
4510 nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4511 }
4512 else
4513 nxtdsp = SCRIPTB_BA (np, ident_break);
4514 }
4515 else if (dsp == SCRIPTB_BA (np, send_wdtr) ||
4516 dsp == SCRIPTB_BA (np, send_sdtr) ||
4517 dsp == SCRIPTB_BA (np, send_ppr)) {
4518 nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4519 }
4520 break;
4521 #if 0
4522 case 7: /* MSG IN phase */
4523 nxtdsp = SCRIPTA_BA (np, clrack);
4524 break;
4525 #endif
4526 }
4527
4528 if (nxtdsp) {
4529 OUTL_DSP (nxtdsp);
4530 return;
4531 }
4532
4533 reset_all:
4534 sym_start_reset(np);
4535 }
4536
4537 /*
4538 * Dequeue from the START queue all CCBs that match
4539 * a given target/lun/task condition (-1 means all),
4540 * and move them from the BUSY queue to the COMP queue
4541 * with CAM_REQUEUE_REQ status condition.
4542 * This function is used during error handling/recovery.
4543 * It is called with SCRIPTS not running.
4544 */
4545 static int
sym_dequeue_from_squeue(hcb_p np,int i,int target,int lun,int task)4546 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4547 {
4548 int j;
4549 ccb_p cp;
4550
4551 /*
4552 * Make sure the starting index is within range.
4553 */
4554 assert((i >= 0) && (i < 2*MAX_QUEUE));
4555
4556 /*
4557 * Walk until end of START queue and dequeue every job
4558 * that matches the target/lun/task condition.
4559 */
4560 j = i;
4561 while (i != np->squeueput) {
4562 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4563 assert(cp);
4564 #ifdef SYM_CONF_IARB_SUPPORT
4565 /* Forget hints for IARB, they may be no longer relevant */
4566 cp->host_flags &= ~HF_HINT_IARB;
4567 #endif
4568 if ((target == -1 || cp->target == target) &&
4569 (lun == -1 || cp->lun == lun) &&
4570 (task == -1 || cp->tag == task)) {
4571 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4572 sym_remque(&cp->link_ccbq);
4573 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4574 }
4575 else {
4576 if (i != j)
4577 np->squeue[j] = np->squeue[i];
4578 if ((j += 2) >= MAX_QUEUE*2) j = 0;
4579 }
4580 if ((i += 2) >= MAX_QUEUE*2) i = 0;
4581 }
4582 if (i != j) /* Copy back the idle task if needed */
4583 np->squeue[j] = np->squeue[i];
4584 np->squeueput = j; /* Update our current start queue pointer */
4585
4586 return (i - j) / 2;
4587 }
4588
4589 /*
4590 * Complete all CCBs queued to the COMP queue.
4591 *
4592 * These CCBs are assumed:
4593 * - Not to be referenced either by devices or
4594 * SCRIPTS-related queues and datas.
4595 * - To have to be completed with an error condition
4596 * or requeued.
4597 *
4598 * The device queue freeze count is incremented
4599 * for each CCB that does not prevent this.
4600 * This function is called when all CCBs involved
4601 * in error handling/recovery have been reaped.
4602 */
4603 static void
sym_flush_comp_queue(hcb_p np,int cam_status)4604 sym_flush_comp_queue(hcb_p np, int cam_status)
4605 {
4606 SYM_QUEHEAD *qp;
4607 ccb_p cp;
4608
4609 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4610 union ccb *ccb;
4611 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4612 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4613 /* Leave quiet CCBs waiting for resources */
4614 if (cp->host_status == HS_WAIT)
4615 continue;
4616 ccb = cp->cam_ccb;
4617 if (cam_status)
4618 sym_set_cam_status(ccb, cam_status);
4619 sym_freeze_cam_ccb(ccb);
4620 sym_xpt_done(np, ccb, cp);
4621 sym_free_ccb(np, cp);
4622 }
4623 }
4624
4625 /*
4626 * chip handler for bad SCSI status condition
4627 *
4628 * In case of bad SCSI status, we unqueue all the tasks
4629 * currently queued to the controller but not yet started
4630 * and then restart the SCRIPTS processor immediately.
4631 *
4632 * QUEUE FULL and BUSY conditions are handled the same way.
4633 * Basically all the not yet started tasks are requeued in
4634 * device queue and the queue is frozen until a completion.
4635 *
4636 * For CHECK CONDITION and COMMAND TERMINATED status, we use
4637 * the CCB of the failed command to prepare a REQUEST SENSE
4638 * SCSI command and queue it to the controller queue.
4639 *
4640 * SCRATCHA is assumed to have been loaded with STARTPOS
4641 * before the SCRIPTS called the C code.
4642 */
sym_sir_bad_scsi_status(hcb_p np,ccb_p cp)4643 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4644 {
4645 tcb_p tp = &np->target[cp->target];
4646 u32 startp;
4647 u_char s_status = cp->ssss_status;
4648 u_char h_flags = cp->host_flags;
4649 int msglen;
4650 int nego;
4651 int i;
4652
4653 SYM_LOCK_ASSERT(MA_OWNED);
4654
4655 /*
4656 * Compute the index of the next job to start from SCRIPTS.
4657 */
4658 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4659
4660 /*
4661 * The last CCB queued used for IARB hint may be
4662 * no longer relevant. Forget it.
4663 */
4664 #ifdef SYM_CONF_IARB_SUPPORT
4665 if (np->last_cp)
4666 np->last_cp = NULL;
4667 #endif
4668
4669 /*
4670 * Now deal with the SCSI status.
4671 */
4672 switch(s_status) {
4673 case S_BUSY:
4674 case S_QUEUE_FULL:
4675 if (sym_verbose >= 2) {
4676 PRINT_ADDR(cp);
4677 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4678 }
4679 /* FALLTHROUGH */
4680 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
4681 sym_complete_error (np, cp);
4682 break;
4683 case S_TERMINATED:
4684 case S_CHECK_COND:
4685 /*
4686 * If we get an SCSI error when requesting sense, give up.
4687 */
4688 if (h_flags & HF_SENSE) {
4689 sym_complete_error (np, cp);
4690 break;
4691 }
4692
4693 /*
4694 * Dequeue all queued CCBs for that device not yet started,
4695 * and restart the SCRIPTS processor immediately.
4696 */
4697 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4698 OUTL_DSP (SCRIPTA_BA (np, start));
4699
4700 /*
4701 * Save some info of the actual IO.
4702 * Compute the data residual.
4703 */
4704 cp->sv_scsi_status = cp->ssss_status;
4705 cp->sv_xerr_status = cp->xerr_status;
4706 cp->sv_resid = sym_compute_residual(np, cp);
4707
4708 /*
4709 * Prepare all needed data structures for
4710 * requesting sense data.
4711 */
4712
4713 /*
4714 * identify message
4715 */
4716 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4717 msglen = 1;
4718
4719 /*
4720 * If we are currently using anything different from
4721 * async. 8 bit data transfers with that target,
4722 * start a negotiation, since the device may want
4723 * to report us a UNIT ATTENTION condition due to
4724 * a cause we currently ignore, and we donnot want
4725 * to be stuck with WIDE and/or SYNC data transfer.
4726 *
4727 * cp->nego_status is filled by sym_prepare_nego().
4728 */
4729 cp->nego_status = 0;
4730 nego = 0;
4731 if (tp->tinfo.current.options & PPR_OPT_MASK)
4732 nego = NS_PPR;
4733 else if (tp->tinfo.current.width != BUS_8_BIT)
4734 nego = NS_WIDE;
4735 else if (tp->tinfo.current.offset != 0)
4736 nego = NS_SYNC;
4737 if (nego)
4738 msglen +=
4739 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4740 /*
4741 * Message table indirect structure.
4742 */
4743 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4744 cp->phys.smsg.size = cpu_to_scr(msglen);
4745
4746 /*
4747 * sense command
4748 */
4749 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd));
4750 cp->phys.cmd.size = cpu_to_scr(6);
4751
4752 /*
4753 * patch requested size into sense command
4754 */
4755 cp->sensecmd[0] = 0x03;
4756 cp->sensecmd[1] = cp->lun << 5;
4757 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4758 cp->sensecmd[1] = 0;
4759 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
4760 cp->data_len = SYM_SNS_BBUF_LEN;
4761
4762 /*
4763 * sense data
4764 */
4765 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4766 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf));
4767 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
4768
4769 /*
4770 * requeue the command.
4771 */
4772 startp = SCRIPTB_BA (np, sdata_in);
4773
4774 cp->phys.head.savep = cpu_to_scr(startp);
4775 cp->phys.head.goalp = cpu_to_scr(startp + 16);
4776 cp->phys.head.lastp = cpu_to_scr(startp);
4777 cp->startp = cpu_to_scr(startp);
4778
4779 cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4780 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4781 cp->ssss_status = S_ILLEGAL;
4782 cp->host_flags = (HF_SENSE|HF_DATA_IN);
4783 cp->xerr_status = 0;
4784 cp->extra_bytes = 0;
4785
4786 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4787
4788 /*
4789 * Requeue the command.
4790 */
4791 sym_put_start_queue(np, cp);
4792
4793 /*
4794 * Give back to upper layer everything we have dequeued.
4795 */
4796 sym_flush_comp_queue(np, 0);
4797 break;
4798 }
4799 }
4800
4801 /*
4802 * After a device has accepted some management message
4803 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4804 * a device signals a UNIT ATTENTION condition, some
4805 * tasks are thrown away by the device. We are required
4806 * to reflect that on our tasks list since the device
4807 * will never complete these tasks.
4808 *
4809 * This function move from the BUSY queue to the COMP
4810 * queue all disconnected CCBs for a given target that
4811 * match the following criteria:
4812 * - lun=-1 means any logical UNIT otherwise a given one.
4813 * - task=-1 means any task, otherwise a given one.
4814 */
4815 static int
sym_clear_tasks(hcb_p np,int cam_status,int target,int lun,int task)4816 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4817 {
4818 SYM_QUEHEAD qtmp, *qp;
4819 int i = 0;
4820 ccb_p cp;
4821
4822 /*
4823 * Move the entire BUSY queue to our temporary queue.
4824 */
4825 sym_que_init(&qtmp);
4826 sym_que_splice(&np->busy_ccbq, &qtmp);
4827 sym_que_init(&np->busy_ccbq);
4828
4829 /*
4830 * Put all CCBs that matches our criteria into
4831 * the COMP queue and put back other ones into
4832 * the BUSY queue.
4833 */
4834 while ((qp = sym_remque_head(&qtmp)) != NULL) {
4835 union ccb *ccb;
4836 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4837 ccb = cp->cam_ccb;
4838 if (cp->host_status != HS_DISCONNECT ||
4839 cp->target != target ||
4840 (lun != -1 && cp->lun != lun) ||
4841 (task != -1 &&
4842 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4843 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4844 continue;
4845 }
4846 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4847
4848 /* Preserve the software timeout condition */
4849 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4850 sym_set_cam_status(ccb, cam_status);
4851 ++i;
4852 #if 0
4853 printf("XXXX TASK @%p CLEARED\n", cp);
4854 #endif
4855 }
4856 return i;
4857 }
4858
4859 /*
4860 * chip handler for TASKS recovery
4861 *
4862 * We cannot safely abort a command, while the SCRIPTS
4863 * processor is running, since we just would be in race
4864 * with it.
4865 *
4866 * As long as we have tasks to abort, we keep the SEM
4867 * bit set in the ISTAT. When this bit is set, the
4868 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4869 * each time it enters the scheduler.
4870 *
4871 * If we have to reset a target, clear tasks of a unit,
4872 * or to perform the abort of a disconnected job, we
4873 * restart the SCRIPTS for selecting the target. Once
4874 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4875 * If it loses arbitration, the SCRIPTS will interrupt again
4876 * the next time it will enter its scheduler, and so on ...
4877 *
4878 * On SIR_TARGET_SELECTED, we scan for the more
4879 * appropriate thing to do:
4880 *
4881 * - If nothing, we just sent a M_ABORT message to the
4882 * target to get rid of the useless SCSI bus ownership.
4883 * According to the specs, no tasks shall be affected.
4884 * - If the target is to be reset, we send it a M_RESET
4885 * message.
4886 * - If a logical UNIT is to be cleared , we send the
4887 * IDENTIFY(lun) + M_ABORT.
4888 * - If an untagged task is to be aborted, we send the
4889 * IDENTIFY(lun) + M_ABORT.
4890 * - If a tagged task is to be aborted, we send the
4891 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4892 *
4893 * Once our 'kiss of death' :) message has been accepted
4894 * by the target, the SCRIPTS interrupts again
4895 * (SIR_ABORT_SENT). On this interrupt, we complete
4896 * all the CCBs that should have been aborted by the
4897 * target according to our message.
4898 */
sym_sir_task_recovery(hcb_p np,int num)4899 static void sym_sir_task_recovery(hcb_p np, int num)
4900 {
4901 SYM_QUEHEAD *qp;
4902 ccb_p cp;
4903 tcb_p tp;
4904 int target=-1, lun=-1, task;
4905 int i, k;
4906
4907 switch(num) {
4908 /*
4909 * The SCRIPTS processor stopped before starting
4910 * the next command in order to allow us to perform
4911 * some task recovery.
4912 */
4913 case SIR_SCRIPT_STOPPED:
4914 /*
4915 * Do we have any target to reset or unit to clear ?
4916 */
4917 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4918 tp = &np->target[i];
4919 if (tp->to_reset ||
4920 (tp->lun0p && tp->lun0p->to_clear)) {
4921 target = i;
4922 break;
4923 }
4924 if (!tp->lunmp)
4925 continue;
4926 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4927 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4928 target = i;
4929 break;
4930 }
4931 }
4932 if (target != -1)
4933 break;
4934 }
4935
4936 /*
4937 * If not, walk the busy queue for any
4938 * disconnected CCB to be aborted.
4939 */
4940 if (target == -1) {
4941 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4942 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4943 if (cp->host_status != HS_DISCONNECT)
4944 continue;
4945 if (cp->to_abort) {
4946 target = cp->target;
4947 break;
4948 }
4949 }
4950 }
4951
4952 /*
4953 * If some target is to be selected,
4954 * prepare and start the selection.
4955 */
4956 if (target != -1) {
4957 tp = &np->target[target];
4958 np->abrt_sel.sel_id = target;
4959 np->abrt_sel.sel_scntl3 = tp->head.wval;
4960 np->abrt_sel.sel_sxfer = tp->head.sval;
4961 OUTL(nc_dsa, np->hcb_ba);
4962 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4963 return;
4964 }
4965
4966 /*
4967 * Now look for a CCB to abort that haven't started yet.
4968 * Btw, the SCRIPTS processor is still stopped, so
4969 * we are not in race.
4970 */
4971 i = 0;
4972 cp = NULL;
4973 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4974 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4975 if (cp->host_status != HS_BUSY &&
4976 cp->host_status != HS_NEGOTIATE)
4977 continue;
4978 if (!cp->to_abort)
4979 continue;
4980 #ifdef SYM_CONF_IARB_SUPPORT
4981 /*
4982 * If we are using IMMEDIATE ARBITRATION, we donnot
4983 * want to cancel the last queued CCB, since the
4984 * SCRIPTS may have anticipated the selection.
4985 */
4986 if (cp == np->last_cp) {
4987 cp->to_abort = 0;
4988 continue;
4989 }
4990 #endif
4991 i = 1; /* Means we have found some */
4992 break;
4993 }
4994 if (!i) {
4995 /*
4996 * We are done, so we donnot need
4997 * to synchronize with the SCRIPTS anylonger.
4998 * Remove the SEM flag from the ISTAT.
4999 */
5000 np->istat_sem = 0;
5001 OUTB (nc_istat, SIGP);
5002 break;
5003 }
5004 /*
5005 * Compute index of next position in the start
5006 * queue the SCRIPTS intends to start and dequeue
5007 * all CCBs for that device that haven't been started.
5008 */
5009 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5010 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5011
5012 /*
5013 * Make sure at least our IO to abort has been dequeued.
5014 */
5015 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5016
5017 /*
5018 * Keep track in cam status of the reason of the abort.
5019 */
5020 if (cp->to_abort == 2)
5021 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5022 else
5023 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5024
5025 /*
5026 * Complete with error everything that we have dequeued.
5027 */
5028 sym_flush_comp_queue(np, 0);
5029 break;
5030 /*
5031 * The SCRIPTS processor has selected a target
5032 * we may have some manual recovery to perform for.
5033 */
5034 case SIR_TARGET_SELECTED:
5035 target = (INB (nc_sdid) & 0xf);
5036 tp = &np->target[target];
5037
5038 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5039
5040 /*
5041 * If the target is to be reset, prepare a
5042 * M_RESET message and clear the to_reset flag
5043 * since we donnot expect this operation to fail.
5044 */
5045 if (tp->to_reset) {
5046 np->abrt_msg[0] = M_RESET;
5047 np->abrt_tbl.size = 1;
5048 tp->to_reset = 0;
5049 break;
5050 }
5051
5052 /*
5053 * Otherwise, look for some logical unit to be cleared.
5054 */
5055 if (tp->lun0p && tp->lun0p->to_clear)
5056 lun = 0;
5057 else if (tp->lunmp) {
5058 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5059 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5060 lun = k;
5061 break;
5062 }
5063 }
5064 }
5065
5066 /*
5067 * If a logical unit is to be cleared, prepare
5068 * an IDENTIFY(lun) + ABORT MESSAGE.
5069 */
5070 if (lun != -1) {
5071 lcb_p lp = sym_lp(tp, lun);
5072 lp->to_clear = 0; /* We donnot expect to fail here */
5073 np->abrt_msg[0] = M_IDENTIFY | lun;
5074 np->abrt_msg[1] = M_ABORT;
5075 np->abrt_tbl.size = 2;
5076 break;
5077 }
5078
5079 /*
5080 * Otherwise, look for some disconnected job to
5081 * abort for this target.
5082 */
5083 i = 0;
5084 cp = NULL;
5085 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5086 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5087 if (cp->host_status != HS_DISCONNECT)
5088 continue;
5089 if (cp->target != target)
5090 continue;
5091 if (!cp->to_abort)
5092 continue;
5093 i = 1; /* Means we have some */
5094 break;
5095 }
5096
5097 /*
5098 * If we have none, probably since the device has
5099 * completed the command before we won abitration,
5100 * send a M_ABORT message without IDENTIFY.
5101 * According to the specs, the device must just
5102 * disconnect the BUS and not abort any task.
5103 */
5104 if (!i) {
5105 np->abrt_msg[0] = M_ABORT;
5106 np->abrt_tbl.size = 1;
5107 break;
5108 }
5109
5110 /*
5111 * We have some task to abort.
5112 * Set the IDENTIFY(lun)
5113 */
5114 np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5115
5116 /*
5117 * If we want to abort an untagged command, we
5118 * will send an IDENTIFY + M_ABORT.
5119 * Otherwise (tagged command), we will send
5120 * an IDENTIFY + task attributes + ABORT TAG.
5121 */
5122 if (cp->tag == NO_TAG) {
5123 np->abrt_msg[1] = M_ABORT;
5124 np->abrt_tbl.size = 2;
5125 }
5126 else {
5127 np->abrt_msg[1] = cp->scsi_smsg[1];
5128 np->abrt_msg[2] = cp->scsi_smsg[2];
5129 np->abrt_msg[3] = M_ABORT_TAG;
5130 np->abrt_tbl.size = 4;
5131 }
5132 /*
5133 * Keep track of software timeout condition, since the
5134 * peripheral driver may not count retries on abort
5135 * conditions not due to timeout.
5136 */
5137 if (cp->to_abort == 2)
5138 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5139 cp->to_abort = 0; /* We donnot expect to fail here */
5140 break;
5141
5142 /*
5143 * The target has accepted our message and switched
5144 * to BUS FREE phase as we expected.
5145 */
5146 case SIR_ABORT_SENT:
5147 target = (INB (nc_sdid) & 0xf);
5148 tp = &np->target[target];
5149
5150 /*
5151 ** If we didn't abort anything, leave here.
5152 */
5153 if (np->abrt_msg[0] == M_ABORT)
5154 break;
5155
5156 /*
5157 * If we sent a M_RESET, then a hardware reset has
5158 * been performed by the target.
5159 * - Reset everything to async 8 bit
5160 * - Tell ourself to negotiate next time :-)
5161 * - Prepare to clear all disconnected CCBs for
5162 * this target from our task list (lun=task=-1)
5163 */
5164 lun = -1;
5165 task = -1;
5166 if (np->abrt_msg[0] == M_RESET) {
5167 tp->head.sval = 0;
5168 tp->head.wval = np->rv_scntl3;
5169 tp->head.uval = 0;
5170 tp->tinfo.current.period = 0;
5171 tp->tinfo.current.offset = 0;
5172 tp->tinfo.current.width = BUS_8_BIT;
5173 tp->tinfo.current.options = 0;
5174 }
5175
5176 /*
5177 * Otherwise, check for the LUN and TASK(s)
5178 * concerned by the cancellation.
5179 * If it is not ABORT_TAG then it is CLEAR_QUEUE
5180 * or an ABORT message :-)
5181 */
5182 else {
5183 lun = np->abrt_msg[0] & 0x3f;
5184 if (np->abrt_msg[1] == M_ABORT_TAG)
5185 task = np->abrt_msg[2];
5186 }
5187
5188 /*
5189 * Complete all the CCBs the device should have
5190 * aborted due to our 'kiss of death' message.
5191 */
5192 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5193 (void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5194 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5195 sym_flush_comp_queue(np, 0);
5196
5197 /*
5198 * If we sent a BDR, make uper layer aware of that.
5199 */
5200 if (np->abrt_msg[0] == M_RESET)
5201 xpt_async(AC_SENT_BDR, np->path, NULL);
5202 break;
5203 }
5204
5205 /*
5206 * Print to the log the message we intend to send.
5207 */
5208 if (num == SIR_TARGET_SELECTED) {
5209 PRINT_TARGET(np, target);
5210 sym_printl_hex("control msgout:", np->abrt_msg,
5211 np->abrt_tbl.size);
5212 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5213 }
5214
5215 /*
5216 * Let the SCRIPTS processor continue.
5217 */
5218 OUTONB_STD ();
5219 }
5220
5221 /*
5222 * Gerard's alchemy:) that deals with with the data
5223 * pointer for both MDP and the residual calculation.
5224 *
5225 * I didn't want to bloat the code by more than 200
5226 * lignes for the handling of both MDP and the residual.
5227 * This has been achieved by using a data pointer
5228 * representation consisting in an index in the data
5229 * array (dp_sg) and a negative offset (dp_ofs) that
5230 * have the following meaning:
5231 *
5232 * - dp_sg = SYM_CONF_MAX_SG
5233 * we are at the end of the data script.
5234 * - dp_sg < SYM_CONF_MAX_SG
5235 * dp_sg points to the next entry of the scatter array
5236 * we want to transfer.
5237 * - dp_ofs < 0
5238 * dp_ofs represents the residual of bytes of the
5239 * previous entry scatter entry we will send first.
5240 * - dp_ofs = 0
5241 * no residual to send first.
5242 *
5243 * The function sym_evaluate_dp() accepts an arbitray
5244 * offset (basically from the MDP message) and returns
5245 * the corresponding values of dp_sg and dp_ofs.
5246 */
sym_evaluate_dp(hcb_p np,ccb_p cp,u32 scr,int * ofs)5247 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5248 {
5249 u32 dp_scr;
5250 int dp_ofs, dp_sg, dp_sgmin;
5251 int tmp;
5252 struct sym_pmc *pm;
5253
5254 /*
5255 * Compute the resulted data pointer in term of a script
5256 * address within some DATA script and a signed byte offset.
5257 */
5258 dp_scr = scr;
5259 dp_ofs = *ofs;
5260 if (dp_scr == SCRIPTA_BA (np, pm0_data))
5261 pm = &cp->phys.pm0;
5262 else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5263 pm = &cp->phys.pm1;
5264 else
5265 pm = NULL;
5266
5267 if (pm) {
5268 dp_scr = scr_to_cpu(pm->ret);
5269 dp_ofs -= scr_to_cpu(pm->sg.size);
5270 }
5271
5272 /*
5273 * If we are auto-sensing, then we are done.
5274 */
5275 if (cp->host_flags & HF_SENSE) {
5276 *ofs = dp_ofs;
5277 return 0;
5278 }
5279
5280 /*
5281 * Deduce the index of the sg entry.
5282 * Keep track of the index of the first valid entry.
5283 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5284 * end of the data.
5285 */
5286 tmp = scr_to_cpu(cp->phys.head.goalp);
5287 dp_sg = SYM_CONF_MAX_SG;
5288 if (dp_scr != tmp)
5289 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5290 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5291
5292 /*
5293 * Move to the sg entry the data pointer belongs to.
5294 *
5295 * If we are inside the data area, we expect result to be:
5296 *
5297 * Either,
5298 * dp_ofs = 0 and dp_sg is the index of the sg entry
5299 * the data pointer belongs to (or the end of the data)
5300 * Or,
5301 * dp_ofs < 0 and dp_sg is the index of the sg entry
5302 * the data pointer belongs to + 1.
5303 */
5304 if (dp_ofs < 0) {
5305 int n;
5306 while (dp_sg > dp_sgmin) {
5307 --dp_sg;
5308 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5309 n = dp_ofs + (tmp & 0xffffff);
5310 if (n > 0) {
5311 ++dp_sg;
5312 break;
5313 }
5314 dp_ofs = n;
5315 }
5316 }
5317 else if (dp_ofs > 0) {
5318 while (dp_sg < SYM_CONF_MAX_SG) {
5319 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5320 dp_ofs -= (tmp & 0xffffff);
5321 ++dp_sg;
5322 if (dp_ofs <= 0)
5323 break;
5324 }
5325 }
5326
5327 /*
5328 * Make sure the data pointer is inside the data area.
5329 * If not, return some error.
5330 */
5331 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5332 goto out_err;
5333 else if (dp_sg > SYM_CONF_MAX_SG ||
5334 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5335 goto out_err;
5336
5337 /*
5338 * Save the extreme pointer if needed.
5339 */
5340 if (dp_sg > cp->ext_sg ||
5341 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5342 cp->ext_sg = dp_sg;
5343 cp->ext_ofs = dp_ofs;
5344 }
5345
5346 /*
5347 * Return data.
5348 */
5349 *ofs = dp_ofs;
5350 return dp_sg;
5351
5352 out_err:
5353 return -1;
5354 }
5355
5356 /*
5357 * chip handler for MODIFY DATA POINTER MESSAGE
5358 *
5359 * We also call this function on IGNORE WIDE RESIDUE
5360 * messages that do not match a SWIDE full condition.
5361 * Btw, we assume in that situation that such a message
5362 * is equivalent to a MODIFY DATA POINTER (offset=-1).
5363 */
sym_modify_dp(hcb_p np,ccb_p cp,int ofs)5364 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5365 {
5366 int dp_ofs = ofs;
5367 u32 dp_scr = INL (nc_temp);
5368 u32 dp_ret;
5369 u32 tmp;
5370 u_char hflags;
5371 int dp_sg;
5372 struct sym_pmc *pm;
5373
5374 /*
5375 * Not supported for auto-sense.
5376 */
5377 if (cp->host_flags & HF_SENSE)
5378 goto out_reject;
5379
5380 /*
5381 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
5382 * to the resulted data pointer.
5383 */
5384 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5385 if (dp_sg < 0)
5386 goto out_reject;
5387
5388 /*
5389 * And our alchemy:) allows to easily calculate the data
5390 * script address we want to return for the next data phase.
5391 */
5392 dp_ret = cpu_to_scr(cp->phys.head.goalp);
5393 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5394
5395 /*
5396 * If offset / scatter entry is zero we donnot need
5397 * a context for the new current data pointer.
5398 */
5399 if (dp_ofs == 0) {
5400 dp_scr = dp_ret;
5401 goto out_ok;
5402 }
5403
5404 /*
5405 * Get a context for the new current data pointer.
5406 */
5407 hflags = INB (HF_PRT);
5408
5409 if (hflags & HF_DP_SAVED)
5410 hflags ^= HF_ACT_PM;
5411
5412 if (!(hflags & HF_ACT_PM)) {
5413 pm = &cp->phys.pm0;
5414 dp_scr = SCRIPTA_BA (np, pm0_data);
5415 }
5416 else {
5417 pm = &cp->phys.pm1;
5418 dp_scr = SCRIPTA_BA (np, pm1_data);
5419 }
5420
5421 hflags &= ~(HF_DP_SAVED);
5422
5423 OUTB (HF_PRT, hflags);
5424
5425 /*
5426 * Set up the new current data pointer.
5427 * ofs < 0 there, and for the next data phase, we
5428 * want to transfer part of the data of the sg entry
5429 * corresponding to index dp_sg-1 prior to returning
5430 * to the main data script.
5431 */
5432 pm->ret = cpu_to_scr(dp_ret);
5433 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5434 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5435 pm->sg.addr = cpu_to_scr(tmp);
5436 pm->sg.size = cpu_to_scr(-dp_ofs);
5437
5438 out_ok:
5439 OUTL (nc_temp, dp_scr);
5440 OUTL_DSP (SCRIPTA_BA (np, clrack));
5441 return;
5442
5443 out_reject:
5444 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5445 }
5446
5447 /*
5448 * chip calculation of the data residual.
5449 *
5450 * As I used to say, the requirement of data residual
5451 * in SCSI is broken, useless and cannot be achieved
5452 * without huge complexity.
5453 * But most OSes and even the official CAM require it.
5454 * When stupidity happens to be so widely spread inside
5455 * a community, it gets hard to convince.
5456 *
5457 * Anyway, I don't care, since I am not going to use
5458 * any software that considers this data residual as
5459 * a relevant information. :)
5460 */
sym_compute_residual(hcb_p np,ccb_p cp)5461 static int sym_compute_residual(hcb_p np, ccb_p cp)
5462 {
5463 int dp_sg, resid = 0;
5464 int dp_ofs = 0;
5465
5466 /*
5467 * Check for some data lost or just thrown away.
5468 * We are not required to be quite accurate in this
5469 * situation. Btw, if we are odd for output and the
5470 * device claims some more data, it may well happen
5471 * than our residual be zero. :-)
5472 */
5473 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5474 if (cp->xerr_status & XE_EXTRA_DATA)
5475 resid -= cp->extra_bytes;
5476 if (cp->xerr_status & XE_SODL_UNRUN)
5477 ++resid;
5478 if (cp->xerr_status & XE_SWIDE_OVRUN)
5479 --resid;
5480 }
5481
5482 /*
5483 * If all data has been transferred,
5484 * there is no residual.
5485 */
5486 if (cp->phys.head.lastp == cp->phys.head.goalp)
5487 return resid;
5488
5489 /*
5490 * If no data transfer occurs, or if the data
5491 * pointer is weird, return full residual.
5492 */
5493 if (cp->startp == cp->phys.head.lastp ||
5494 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5495 &dp_ofs) < 0) {
5496 return cp->data_len;
5497 }
5498
5499 /*
5500 * If we were auto-sensing, then we are done.
5501 */
5502 if (cp->host_flags & HF_SENSE) {
5503 return -dp_ofs;
5504 }
5505
5506 /*
5507 * We are now full comfortable in the computation
5508 * of the data residual (2's complement).
5509 */
5510 resid = -cp->ext_ofs;
5511 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5512 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5513 resid += (tmp & 0xffffff);
5514 }
5515
5516 /*
5517 * Hopefully, the result is not too wrong.
5518 */
5519 return resid;
5520 }
5521
5522 /*
5523 * Print out the content of a SCSI message.
5524 */
sym_show_msg(u_char * msg)5525 static int sym_show_msg (u_char * msg)
5526 {
5527 u_char i;
5528 printf ("%x",*msg);
5529 if (*msg==M_EXTENDED) {
5530 for (i=1;i<8;i++) {
5531 if (i-1>msg[1]) break;
5532 printf ("-%x",msg[i]);
5533 }
5534 return (i+1);
5535 } else if ((*msg & 0xf0) == 0x20) {
5536 printf ("-%x",msg[1]);
5537 return (2);
5538 }
5539 return (1);
5540 }
5541
sym_print_msg(ccb_p cp,char * label,u_char * msg)5542 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5543 {
5544 PRINT_ADDR(cp);
5545 if (label)
5546 printf ("%s: ", label);
5547
5548 (void) sym_show_msg (msg);
5549 printf (".\n");
5550 }
5551
5552 /*
5553 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5554 *
5555 * When we try to negotiate, we append the negotiation message
5556 * to the identify and (maybe) simple tag message.
5557 * The host status field is set to HS_NEGOTIATE to mark this
5558 * situation.
5559 *
5560 * If the target doesn't answer this message immediately
5561 * (as required by the standard), the SIR_NEGO_FAILED interrupt
5562 * will be raised eventually.
5563 * The handler removes the HS_NEGOTIATE status, and sets the
5564 * negotiated value to the default (async / nowide).
5565 *
5566 * If we receive a matching answer immediately, we check it
5567 * for validity, and set the values.
5568 *
5569 * If we receive a Reject message immediately, we assume the
5570 * negotiation has failed, and fall back to standard values.
5571 *
5572 * If we receive a negotiation message while not in HS_NEGOTIATE
5573 * state, it's a target initiated negotiation. We prepare a
5574 * (hopefully) valid answer, set our parameters, and send back
5575 * this answer to the target.
5576 *
5577 * If the target doesn't fetch the answer (no message out phase),
5578 * we assume the negotiation has failed, and fall back to default
5579 * settings (SIR_NEGO_PROTO interrupt).
5580 *
5581 * When we set the values, we adjust them in all ccbs belonging
5582 * to this target, in the controller's register, and in the "phys"
5583 * field of the controller's struct sym_hcb.
5584 */
5585
5586 /*
5587 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5588 */
sym_sync_nego(hcb_p np,tcb_p tp,ccb_p cp)5589 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5590 {
5591 u_char chg, ofs, per, fak, div;
5592 int req = 1;
5593
5594 /*
5595 * Synchronous request message received.
5596 */
5597 if (DEBUG_FLAGS & DEBUG_NEGO) {
5598 sym_print_msg(cp, "sync msgin", np->msgin);
5599 }
5600
5601 /*
5602 * request or answer ?
5603 */
5604 if (INB (HS_PRT) == HS_NEGOTIATE) {
5605 OUTB (HS_PRT, HS_BUSY);
5606 if (cp->nego_status && cp->nego_status != NS_SYNC)
5607 goto reject_it;
5608 req = 0;
5609 }
5610
5611 /*
5612 * get requested values.
5613 */
5614 chg = 0;
5615 per = np->msgin[3];
5616 ofs = np->msgin[4];
5617
5618 /*
5619 * check values against our limits.
5620 */
5621 if (ofs) {
5622 if (ofs > np->maxoffs)
5623 {chg = 1; ofs = np->maxoffs;}
5624 if (req) {
5625 if (ofs > tp->tinfo.user.offset)
5626 {chg = 1; ofs = tp->tinfo.user.offset;}
5627 }
5628 }
5629
5630 if (ofs) {
5631 if (per < np->minsync)
5632 {chg = 1; per = np->minsync;}
5633 if (req) {
5634 if (per < tp->tinfo.user.period)
5635 {chg = 1; per = tp->tinfo.user.period;}
5636 }
5637 }
5638
5639 div = fak = 0;
5640 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5641 goto reject_it;
5642
5643 if (DEBUG_FLAGS & DEBUG_NEGO) {
5644 PRINT_ADDR(cp);
5645 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5646 ofs, per, div, fak, chg);
5647 }
5648
5649 /*
5650 * This was an answer message
5651 */
5652 if (req == 0) {
5653 if (chg) /* Answer wasn't acceptable. */
5654 goto reject_it;
5655 sym_setsync (np, cp, ofs, per, div, fak);
5656 OUTL_DSP (SCRIPTA_BA (np, clrack));
5657 return;
5658 }
5659
5660 /*
5661 * It was a request. Set value and
5662 * prepare an answer message
5663 */
5664 sym_setsync (np, cp, ofs, per, div, fak);
5665
5666 np->msgout[0] = M_EXTENDED;
5667 np->msgout[1] = 3;
5668 np->msgout[2] = M_X_SYNC_REQ;
5669 np->msgout[3] = per;
5670 np->msgout[4] = ofs;
5671
5672 cp->nego_status = NS_SYNC;
5673
5674 if (DEBUG_FLAGS & DEBUG_NEGO) {
5675 sym_print_msg(cp, "sync msgout", np->msgout);
5676 }
5677
5678 np->msgin [0] = M_NOOP;
5679
5680 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5681 return;
5682 reject_it:
5683 sym_setsync (np, cp, 0, 0, 0, 0);
5684 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5685 }
5686
5687 /*
5688 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5689 */
sym_ppr_nego(hcb_p np,tcb_p tp,ccb_p cp)5690 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5691 {
5692 u_char chg, ofs, per, fak, dt, div, wide;
5693 int req = 1;
5694
5695 /*
5696 * Synchronous request message received.
5697 */
5698 if (DEBUG_FLAGS & DEBUG_NEGO) {
5699 sym_print_msg(cp, "ppr msgin", np->msgin);
5700 }
5701
5702 /*
5703 * get requested values.
5704 */
5705 chg = 0;
5706 per = np->msgin[3];
5707 ofs = np->msgin[5];
5708 wide = np->msgin[6];
5709 dt = np->msgin[7] & PPR_OPT_DT;
5710
5711 /*
5712 * request or answer ?
5713 */
5714 if (INB (HS_PRT) == HS_NEGOTIATE) {
5715 OUTB (HS_PRT, HS_BUSY);
5716 if (cp->nego_status && cp->nego_status != NS_PPR)
5717 goto reject_it;
5718 req = 0;
5719 }
5720
5721 /*
5722 * check values against our limits.
5723 */
5724 if (wide > np->maxwide)
5725 {chg = 1; wide = np->maxwide;}
5726 if (!wide || !(np->features & FE_ULTRA3))
5727 dt &= ~PPR_OPT_DT;
5728 if (req) {
5729 if (wide > tp->tinfo.user.width)
5730 {chg = 1; wide = tp->tinfo.user.width;}
5731 }
5732
5733 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */
5734 dt &= ~PPR_OPT_DT;
5735
5736 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5737
5738 if (ofs) {
5739 if (dt) {
5740 if (ofs > np->maxoffs_dt)
5741 {chg = 1; ofs = np->maxoffs_dt;}
5742 }
5743 else if (ofs > np->maxoffs)
5744 {chg = 1; ofs = np->maxoffs;}
5745 if (req) {
5746 if (ofs > tp->tinfo.user.offset)
5747 {chg = 1; ofs = tp->tinfo.user.offset;}
5748 }
5749 }
5750
5751 if (ofs) {
5752 if (dt) {
5753 if (per < np->minsync_dt)
5754 {chg = 1; per = np->minsync_dt;}
5755 }
5756 else if (per < np->minsync)
5757 {chg = 1; per = np->minsync;}
5758 if (req) {
5759 if (per < tp->tinfo.user.period)
5760 {chg = 1; per = tp->tinfo.user.period;}
5761 }
5762 }
5763
5764 div = fak = 0;
5765 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5766 goto reject_it;
5767
5768 if (DEBUG_FLAGS & DEBUG_NEGO) {
5769 PRINT_ADDR(cp);
5770 printf ("ppr: "
5771 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5772 dt, ofs, per, wide, div, fak, chg);
5773 }
5774
5775 /*
5776 * It was an answer.
5777 */
5778 if (req == 0) {
5779 if (chg) /* Answer wasn't acceptable */
5780 goto reject_it;
5781 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5782 OUTL_DSP (SCRIPTA_BA (np, clrack));
5783 return;
5784 }
5785
5786 /*
5787 * It was a request. Set value and
5788 * prepare an answer message
5789 */
5790 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5791
5792 np->msgout[0] = M_EXTENDED;
5793 np->msgout[1] = 6;
5794 np->msgout[2] = M_X_PPR_REQ;
5795 np->msgout[3] = per;
5796 np->msgout[4] = 0;
5797 np->msgout[5] = ofs;
5798 np->msgout[6] = wide;
5799 np->msgout[7] = dt;
5800
5801 cp->nego_status = NS_PPR;
5802
5803 if (DEBUG_FLAGS & DEBUG_NEGO) {
5804 sym_print_msg(cp, "ppr msgout", np->msgout);
5805 }
5806
5807 np->msgin [0] = M_NOOP;
5808
5809 OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5810 return;
5811 reject_it:
5812 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5813 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5814 /*
5815 * If it was a device response that should result in
5816 * ST, we may want to try a legacy negotiation later.
5817 */
5818 if (!req && !dt) {
5819 tp->tinfo.goal.options = 0;
5820 tp->tinfo.goal.width = wide;
5821 tp->tinfo.goal.period = per;
5822 tp->tinfo.goal.offset = ofs;
5823 }
5824 }
5825
5826 /*
5827 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5828 */
sym_wide_nego(hcb_p np,tcb_p tp,ccb_p cp)5829 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5830 {
5831 u_char chg, wide;
5832 int req = 1;
5833
5834 /*
5835 * Wide request message received.
5836 */
5837 if (DEBUG_FLAGS & DEBUG_NEGO) {
5838 sym_print_msg(cp, "wide msgin", np->msgin);
5839 }
5840
5841 /*
5842 * Is it a request from the device?
5843 */
5844 if (INB (HS_PRT) == HS_NEGOTIATE) {
5845 OUTB (HS_PRT, HS_BUSY);
5846 if (cp->nego_status && cp->nego_status != NS_WIDE)
5847 goto reject_it;
5848 req = 0;
5849 }
5850
5851 /*
5852 * get requested values.
5853 */
5854 chg = 0;
5855 wide = np->msgin[3];
5856
5857 /*
5858 * check values against driver limits.
5859 */
5860 if (wide > np->maxwide)
5861 {chg = 1; wide = np->maxwide;}
5862 if (req) {
5863 if (wide > tp->tinfo.user.width)
5864 {chg = 1; wide = tp->tinfo.user.width;}
5865 }
5866
5867 if (DEBUG_FLAGS & DEBUG_NEGO) {
5868 PRINT_ADDR(cp);
5869 printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5870 }
5871
5872 /*
5873 * This was an answer message
5874 */
5875 if (req == 0) {
5876 if (chg) /* Answer wasn't acceptable. */
5877 goto reject_it;
5878 sym_setwide (np, cp, wide);
5879
5880 /*
5881 * Negotiate for SYNC immediately after WIDE response.
5882 * This allows to negotiate for both WIDE and SYNC on
5883 * a single SCSI command (Suggested by Justin Gibbs).
5884 */
5885 if (tp->tinfo.goal.offset) {
5886 np->msgout[0] = M_EXTENDED;
5887 np->msgout[1] = 3;
5888 np->msgout[2] = M_X_SYNC_REQ;
5889 np->msgout[3] = tp->tinfo.goal.period;
5890 np->msgout[4] = tp->tinfo.goal.offset;
5891
5892 if (DEBUG_FLAGS & DEBUG_NEGO) {
5893 sym_print_msg(cp, "sync msgout", np->msgout);
5894 }
5895
5896 cp->nego_status = NS_SYNC;
5897 OUTB (HS_PRT, HS_NEGOTIATE);
5898 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5899 return;
5900 }
5901
5902 OUTL_DSP (SCRIPTA_BA (np, clrack));
5903 return;
5904 }
5905
5906 /*
5907 * It was a request, set value and
5908 * prepare an answer message
5909 */
5910 sym_setwide (np, cp, wide);
5911
5912 np->msgout[0] = M_EXTENDED;
5913 np->msgout[1] = 2;
5914 np->msgout[2] = M_X_WIDE_REQ;
5915 np->msgout[3] = wide;
5916
5917 np->msgin [0] = M_NOOP;
5918
5919 cp->nego_status = NS_WIDE;
5920
5921 if (DEBUG_FLAGS & DEBUG_NEGO) {
5922 sym_print_msg(cp, "wide msgout", np->msgout);
5923 }
5924
5925 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5926 return;
5927 reject_it:
5928 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5929 }
5930
5931 /*
5932 * Reset SYNC or WIDE to default settings.
5933 *
5934 * Called when a negotiation does not succeed either
5935 * on rejection or on protocol error.
5936 *
5937 * If it was a PPR that made problems, we may want to
5938 * try a legacy negotiation later.
5939 */
sym_nego_default(hcb_p np,tcb_p tp,ccb_p cp)5940 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5941 {
5942 /*
5943 * any error in negotiation:
5944 * fall back to default mode.
5945 */
5946 switch (cp->nego_status) {
5947 case NS_PPR:
5948 #if 0
5949 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5950 #else
5951 tp->tinfo.goal.options = 0;
5952 if (tp->tinfo.goal.period < np->minsync)
5953 tp->tinfo.goal.period = np->minsync;
5954 if (tp->tinfo.goal.offset > np->maxoffs)
5955 tp->tinfo.goal.offset = np->maxoffs;
5956 #endif
5957 break;
5958 case NS_SYNC:
5959 sym_setsync (np, cp, 0, 0, 0, 0);
5960 break;
5961 case NS_WIDE:
5962 sym_setwide (np, cp, 0);
5963 break;
5964 }
5965 np->msgin [0] = M_NOOP;
5966 np->msgout[0] = M_NOOP;
5967 cp->nego_status = 0;
5968 }
5969
5970 /*
5971 * chip handler for MESSAGE REJECT received in response to
5972 * a WIDE or SYNCHRONOUS negotiation.
5973 */
sym_nego_rejected(hcb_p np,tcb_p tp,ccb_p cp)5974 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5975 {
5976 sym_nego_default(np, tp, cp);
5977 OUTB (HS_PRT, HS_BUSY);
5978 }
5979
5980 /*
5981 * chip exception handler for programmed interrupts.
5982 */
sym_int_sir(hcb_p np)5983 static void sym_int_sir (hcb_p np)
5984 {
5985 u_char num = INB (nc_dsps);
5986 u32 dsa = INL (nc_dsa);
5987 ccb_p cp = sym_ccb_from_dsa(np, dsa);
5988 u_char target = INB (nc_sdid) & 0x0f;
5989 tcb_p tp = &np->target[target];
5990 int tmp;
5991
5992 SYM_LOCK_ASSERT(MA_OWNED);
5993
5994 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
5995
5996 switch (num) {
5997 /*
5998 * Command has been completed with error condition
5999 * or has been auto-sensed.
6000 */
6001 case SIR_COMPLETE_ERROR:
6002 if (!cp)
6003 goto out;
6004 sym_complete_error(np, cp);
6005 return;
6006 /*
6007 * The C code is currently trying to recover from something.
6008 * Typically, user want to abort some command.
6009 */
6010 case SIR_SCRIPT_STOPPED:
6011 case SIR_TARGET_SELECTED:
6012 case SIR_ABORT_SENT:
6013 sym_sir_task_recovery(np, num);
6014 return;
6015 /*
6016 * The device didn't go to MSG OUT phase after having
6017 * been selected with ATN. We donnot want to handle
6018 * that.
6019 */
6020 case SIR_SEL_ATN_NO_MSG_OUT:
6021 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6022 sym_name (np), target);
6023 goto out_stuck;
6024 /*
6025 * The device didn't switch to MSG IN phase after
6026 * having reseleted the initiator.
6027 */
6028 case SIR_RESEL_NO_MSG_IN:
6029 printf ("%s:%d: No MSG IN phase after reselection.\n",
6030 sym_name (np), target);
6031 goto out_stuck;
6032 /*
6033 * After reselection, the device sent a message that wasn't
6034 * an IDENTIFY.
6035 */
6036 case SIR_RESEL_NO_IDENTIFY:
6037 printf ("%s:%d: No IDENTIFY after reselection.\n",
6038 sym_name (np), target);
6039 goto out_stuck;
6040 /*
6041 * The device reselected a LUN we donnot know about.
6042 */
6043 case SIR_RESEL_BAD_LUN:
6044 np->msgout[0] = M_RESET;
6045 goto out;
6046 /*
6047 * The device reselected for an untagged nexus and we
6048 * haven't any.
6049 */
6050 case SIR_RESEL_BAD_I_T_L:
6051 np->msgout[0] = M_ABORT;
6052 goto out;
6053 /*
6054 * The device reselected for a tagged nexus that we donnot
6055 * have.
6056 */
6057 case SIR_RESEL_BAD_I_T_L_Q:
6058 np->msgout[0] = M_ABORT_TAG;
6059 goto out;
6060 /*
6061 * The SCRIPTS let us know that the device has grabbed
6062 * our message and will abort the job.
6063 */
6064 case SIR_RESEL_ABORTED:
6065 np->lastmsg = np->msgout[0];
6066 np->msgout[0] = M_NOOP;
6067 printf ("%s:%d: message %x sent on bad reselection.\n",
6068 sym_name (np), target, np->lastmsg);
6069 goto out;
6070 /*
6071 * The SCRIPTS let us know that a message has been
6072 * successfully sent to the device.
6073 */
6074 case SIR_MSG_OUT_DONE:
6075 np->lastmsg = np->msgout[0];
6076 np->msgout[0] = M_NOOP;
6077 /* Should we really care of that */
6078 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6079 if (cp) {
6080 cp->xerr_status &= ~XE_PARITY_ERR;
6081 if (!cp->xerr_status)
6082 OUTOFFB (HF_PRT, HF_EXT_ERR);
6083 }
6084 }
6085 goto out;
6086 /*
6087 * The device didn't send a GOOD SCSI status.
6088 * We may have some work to do prior to allow
6089 * the SCRIPTS processor to continue.
6090 */
6091 case SIR_BAD_SCSI_STATUS:
6092 if (!cp)
6093 goto out;
6094 sym_sir_bad_scsi_status(np, cp);
6095 return;
6096 /*
6097 * We are asked by the SCRIPTS to prepare a
6098 * REJECT message.
6099 */
6100 case SIR_REJECT_TO_SEND:
6101 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6102 np->msgout[0] = M_REJECT;
6103 goto out;
6104 /*
6105 * We have been ODD at the end of a DATA IN
6106 * transfer and the device didn't send a
6107 * IGNORE WIDE RESIDUE message.
6108 * It is a data overrun condition.
6109 */
6110 case SIR_SWIDE_OVERRUN:
6111 if (cp) {
6112 OUTONB (HF_PRT, HF_EXT_ERR);
6113 cp->xerr_status |= XE_SWIDE_OVRUN;
6114 }
6115 goto out;
6116 /*
6117 * We have been ODD at the end of a DATA OUT
6118 * transfer.
6119 * It is a data underrun condition.
6120 */
6121 case SIR_SODL_UNDERRUN:
6122 if (cp) {
6123 OUTONB (HF_PRT, HF_EXT_ERR);
6124 cp->xerr_status |= XE_SODL_UNRUN;
6125 }
6126 goto out;
6127 /*
6128 * The device wants us to transfer more data than
6129 * expected or in the wrong direction.
6130 * The number of extra bytes is in scratcha.
6131 * It is a data overrun condition.
6132 */
6133 case SIR_DATA_OVERRUN:
6134 if (cp) {
6135 OUTONB (HF_PRT, HF_EXT_ERR);
6136 cp->xerr_status |= XE_EXTRA_DATA;
6137 cp->extra_bytes += INL (nc_scratcha);
6138 }
6139 goto out;
6140 /*
6141 * The device switched to an illegal phase (4/5).
6142 */
6143 case SIR_BAD_PHASE:
6144 if (cp) {
6145 OUTONB (HF_PRT, HF_EXT_ERR);
6146 cp->xerr_status |= XE_BAD_PHASE;
6147 }
6148 goto out;
6149 /*
6150 * We received a message.
6151 */
6152 case SIR_MSG_RECEIVED:
6153 if (!cp)
6154 goto out_stuck;
6155 switch (np->msgin [0]) {
6156 /*
6157 * We received an extended message.
6158 * We handle MODIFY DATA POINTER, SDTR, WDTR
6159 * and reject all other extended messages.
6160 */
6161 case M_EXTENDED:
6162 switch (np->msgin [2]) {
6163 case M_X_MODIFY_DP:
6164 if (DEBUG_FLAGS & DEBUG_POINTER)
6165 sym_print_msg(cp,"modify DP",np->msgin);
6166 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6167 (np->msgin[5]<<8) + (np->msgin[6]);
6168 sym_modify_dp(np, cp, tmp);
6169 return;
6170 case M_X_SYNC_REQ:
6171 sym_sync_nego(np, tp, cp);
6172 return;
6173 case M_X_PPR_REQ:
6174 sym_ppr_nego(np, tp, cp);
6175 return;
6176 case M_X_WIDE_REQ:
6177 sym_wide_nego(np, tp, cp);
6178 return;
6179 default:
6180 goto out_reject;
6181 }
6182 break;
6183 /*
6184 * We received a 1/2 byte message not handled from SCRIPTS.
6185 * We are only expecting MESSAGE REJECT and IGNORE WIDE
6186 * RESIDUE messages that haven't been anticipated by
6187 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6188 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6189 */
6190 case M_IGN_RESIDUE:
6191 if (DEBUG_FLAGS & DEBUG_POINTER)
6192 sym_print_msg(cp,"ign wide residue", np->msgin);
6193 sym_modify_dp(np, cp, -1);
6194 return;
6195 case M_REJECT:
6196 if (INB (HS_PRT) == HS_NEGOTIATE)
6197 sym_nego_rejected(np, tp, cp);
6198 else {
6199 PRINT_ADDR(cp);
6200 printf ("M_REJECT received (%x:%x).\n",
6201 scr_to_cpu(np->lastmsg), np->msgout[0]);
6202 }
6203 goto out_clrack;
6204 break;
6205 default:
6206 goto out_reject;
6207 }
6208 break;
6209 /*
6210 * We received an unknown message.
6211 * Ignore all MSG IN phases and reject it.
6212 */
6213 case SIR_MSG_WEIRD:
6214 sym_print_msg(cp, "WEIRD message received", np->msgin);
6215 OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6216 return;
6217 /*
6218 * Negotiation failed.
6219 * Target does not send us the reply.
6220 * Remove the HS_NEGOTIATE status.
6221 */
6222 case SIR_NEGO_FAILED:
6223 OUTB (HS_PRT, HS_BUSY);
6224 /*
6225 * Negotiation failed.
6226 * Target does not want answer message.
6227 */
6228 case SIR_NEGO_PROTO:
6229 if (!cp)
6230 goto out;
6231 sym_nego_default(np, tp, cp);
6232 goto out;
6233 }
6234
6235 out:
6236 OUTONB_STD ();
6237 return;
6238 out_reject:
6239 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6240 return;
6241 out_clrack:
6242 OUTL_DSP (SCRIPTA_BA (np, clrack));
6243 return;
6244 out_stuck:
6245 return;
6246 }
6247
6248 /*
6249 * Acquire a control block
6250 */
sym_get_ccb(hcb_p np,u_char tn,u_char ln,u_char tag_order)6251 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6252 {
6253 tcb_p tp = &np->target[tn];
6254 lcb_p lp = sym_lp(tp, ln);
6255 u_short tag = NO_TAG;
6256 SYM_QUEHEAD *qp;
6257 ccb_p cp = (ccb_p) NULL;
6258
6259 /*
6260 * Look for a free CCB
6261 */
6262 if (sym_que_empty(&np->free_ccbq))
6263 goto out;
6264 qp = sym_remque_head(&np->free_ccbq);
6265 if (!qp)
6266 goto out;
6267 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6268
6269 /*
6270 * If the LCB is not yet available and the LUN
6271 * has been probed ok, try to allocate the LCB.
6272 */
6273 if (!lp && sym_is_bit(tp->lun_map, ln)) {
6274 lp = sym_alloc_lcb(np, tn, ln);
6275 if (!lp)
6276 goto out_free;
6277 }
6278
6279 /*
6280 * If the LCB is not available here, then the
6281 * logical unit is not yet discovered. For those
6282 * ones only accept 1 SCSI IO per logical unit,
6283 * since we cannot allow disconnections.
6284 */
6285 if (!lp) {
6286 if (!sym_is_bit(tp->busy0_map, ln))
6287 sym_set_bit(tp->busy0_map, ln);
6288 else
6289 goto out_free;
6290 } else {
6291 /*
6292 * If we have been asked for a tagged command, refuse
6293 * to overlap with an existing untagged one.
6294 */
6295 if (tag_order) {
6296 if (lp->busy_itl != 0)
6297 goto out_free;
6298 /*
6299 * Allocate resources for tags if not yet.
6300 */
6301 if (!lp->cb_tags) {
6302 sym_alloc_lcb_tags(np, tn, ln);
6303 if (!lp->cb_tags)
6304 goto out_free;
6305 }
6306 /*
6307 * Get a tag for this SCSI IO and set up
6308 * the CCB bus address for reselection,
6309 * and count it for this LUN.
6310 * Toggle reselect path to tagged.
6311 */
6312 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6313 tag = lp->cb_tags[lp->ia_tag];
6314 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6315 lp->ia_tag = 0;
6316 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6317 ++lp->busy_itlq;
6318 lp->head.resel_sa =
6319 cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6320 }
6321 else
6322 goto out_free;
6323 }
6324 /*
6325 * This command will not be tagged.
6326 * If we already have either a tagged or untagged
6327 * one, refuse to overlap this untagged one.
6328 */
6329 else {
6330 if (lp->busy_itlq != 0 || lp->busy_itl != 0)
6331 goto out_free;
6332 /*
6333 * Count this nexus for this LUN.
6334 * Set up the CCB bus address for reselection.
6335 * Toggle reselect path to untagged.
6336 */
6337 lp->busy_itl = 1;
6338 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6339 lp->head.resel_sa =
6340 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6341 }
6342 }
6343 /*
6344 * Put the CCB into the busy queue.
6345 */
6346 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6347
6348 /*
6349 * Remember all informations needed to free this CCB.
6350 */
6351 cp->to_abort = 0;
6352 cp->tag = tag;
6353 cp->target = tn;
6354 cp->lun = ln;
6355
6356 if (DEBUG_FLAGS & DEBUG_TAGS) {
6357 PRINT_LUN(np, tn, ln);
6358 printf ("ccb @%p using tag %d.\n", cp, tag);
6359 }
6360
6361 out:
6362 return cp;
6363 out_free:
6364 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6365 return NULL;
6366 }
6367
6368 /*
6369 * Release one control block
6370 */
sym_free_ccb(hcb_p np,ccb_p cp)6371 static void sym_free_ccb(hcb_p np, ccb_p cp)
6372 {
6373 tcb_p tp = &np->target[cp->target];
6374 lcb_p lp = sym_lp(tp, cp->lun);
6375
6376 if (DEBUG_FLAGS & DEBUG_TAGS) {
6377 PRINT_LUN(np, cp->target, cp->lun);
6378 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6379 }
6380
6381 /*
6382 * If LCB available,
6383 */
6384 if (lp) {
6385 /*
6386 * If tagged, release the tag, set the reselect path.
6387 */
6388 if (cp->tag != NO_TAG) {
6389 /*
6390 * Free the tag value.
6391 */
6392 lp->cb_tags[lp->if_tag] = cp->tag;
6393 if (++lp->if_tag == SYM_CONF_MAX_TASK)
6394 lp->if_tag = 0;
6395 /*
6396 * Make the reselect path invalid,
6397 * and uncount this CCB.
6398 */
6399 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6400 --lp->busy_itlq;
6401 } else { /* Untagged */
6402 /*
6403 * Make the reselect path invalid,
6404 * and uncount this CCB.
6405 */
6406 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6407 lp->busy_itl = 0;
6408 }
6409 /*
6410 * If no JOB active, make the LUN reselect path invalid.
6411 */
6412 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6413 lp->head.resel_sa =
6414 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6415 }
6416 /*
6417 * Otherwise, we only accept 1 IO per LUN.
6418 * Clear the bit that keeps track of this IO.
6419 */
6420 else
6421 sym_clr_bit(tp->busy0_map, cp->lun);
6422
6423 /*
6424 * We donnot queue more than 1 ccb per target
6425 * with negotiation at any time. If this ccb was
6426 * used for negotiation, clear this info in the tcb.
6427 */
6428 if (cp == tp->nego_cp)
6429 tp->nego_cp = NULL;
6430
6431 #ifdef SYM_CONF_IARB_SUPPORT
6432 /*
6433 * If we just complete the last queued CCB,
6434 * clear this info that is no longer relevant.
6435 */
6436 if (cp == np->last_cp)
6437 np->last_cp = NULL;
6438 #endif
6439
6440 /*
6441 * Unmap user data from DMA map if needed.
6442 */
6443 if (cp->dmamapped) {
6444 bus_dmamap_unload(np->data_dmat, cp->dmamap);
6445 cp->dmamapped = 0;
6446 }
6447
6448 /*
6449 * Make this CCB available.
6450 */
6451 cp->cam_ccb = NULL;
6452 cp->host_status = HS_IDLE;
6453 sym_remque(&cp->link_ccbq);
6454 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6455 }
6456
6457 /*
6458 * Allocate a CCB from memory and initialize its fixed part.
6459 */
sym_alloc_ccb(hcb_p np)6460 static ccb_p sym_alloc_ccb(hcb_p np)
6461 {
6462 ccb_p cp = NULL;
6463 int hcode;
6464
6465 SYM_LOCK_ASSERT(MA_NOTOWNED);
6466
6467 /*
6468 * Prevent from allocating more CCBs than we can
6469 * queue to the controller.
6470 */
6471 if (np->actccbs >= SYM_CONF_MAX_START)
6472 return NULL;
6473
6474 /*
6475 * Allocate memory for this CCB.
6476 */
6477 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6478 if (!cp)
6479 return NULL;
6480
6481 /*
6482 * Allocate a bounce buffer for sense data.
6483 */
6484 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6485 if (!cp->sns_bbuf)
6486 goto out_free;
6487
6488 /*
6489 * Allocate a map for the DMA of user data.
6490 */
6491 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6492 goto out_free;
6493 /*
6494 * Count it.
6495 */
6496 np->actccbs++;
6497
6498 /*
6499 * Initialize the callout.
6500 */
6501 callout_init(&cp->ch, 1);
6502
6503 /*
6504 * Compute the bus address of this ccb.
6505 */
6506 cp->ccb_ba = vtobus(cp);
6507
6508 /*
6509 * Insert this ccb into the hashed list.
6510 */
6511 hcode = CCB_HASH_CODE(cp->ccb_ba);
6512 cp->link_ccbh = np->ccbh[hcode];
6513 np->ccbh[hcode] = cp;
6514
6515 /*
6516 * Initialize the start and restart actions.
6517 */
6518 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle));
6519 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6520
6521 /*
6522 * Initilialyze some other fields.
6523 */
6524 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6525
6526 /*
6527 * Chain into free ccb queue.
6528 */
6529 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6530
6531 return cp;
6532 out_free:
6533 if (cp->sns_bbuf)
6534 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6535 sym_mfree_dma(cp, sizeof(*cp), "CCB");
6536 return NULL;
6537 }
6538
6539 /*
6540 * Look up a CCB from a DSA value.
6541 */
sym_ccb_from_dsa(hcb_p np,u32 dsa)6542 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6543 {
6544 int hcode;
6545 ccb_p cp;
6546
6547 hcode = CCB_HASH_CODE(dsa);
6548 cp = np->ccbh[hcode];
6549 while (cp) {
6550 if (cp->ccb_ba == dsa)
6551 break;
6552 cp = cp->link_ccbh;
6553 }
6554
6555 return cp;
6556 }
6557
6558 /*
6559 * Lun control block allocation and initialization.
6560 */
sym_alloc_lcb(hcb_p np,u_char tn,u_char ln)6561 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6562 {
6563 tcb_p tp = &np->target[tn];
6564 lcb_p lp = sym_lp(tp, ln);
6565
6566 /*
6567 * Already done, just return.
6568 */
6569 if (lp)
6570 return lp;
6571 /*
6572 * Check against some race.
6573 */
6574 assert(!sym_is_bit(tp->busy0_map, ln));
6575
6576 /*
6577 * Allocate the LCB bus address array.
6578 * Compute the bus address of this table.
6579 */
6580 if (ln && !tp->luntbl) {
6581 int i;
6582
6583 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6584 if (!tp->luntbl)
6585 goto fail;
6586 for (i = 0 ; i < 64 ; i++)
6587 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6588 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6589 }
6590
6591 /*
6592 * Allocate the table of pointers for LUN(s) > 0, if needed.
6593 */
6594 if (ln && !tp->lunmp) {
6595 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6596 "LUNMP");
6597 if (!tp->lunmp)
6598 goto fail;
6599 }
6600
6601 /*
6602 * Allocate the lcb.
6603 * Make it available to the chip.
6604 */
6605 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6606 if (!lp)
6607 goto fail;
6608 if (ln) {
6609 tp->lunmp[ln] = lp;
6610 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6611 }
6612 else {
6613 tp->lun0p = lp;
6614 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6615 }
6616
6617 /*
6618 * Let the itl task point to error handling.
6619 */
6620 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6621
6622 /*
6623 * Set the reselect pattern to our default. :)
6624 */
6625 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6626
6627 /*
6628 * Set user capabilities.
6629 */
6630 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6631
6632 fail:
6633 return lp;
6634 }
6635
6636 /*
6637 * Allocate LCB resources for tagged command queuing.
6638 */
sym_alloc_lcb_tags(hcb_p np,u_char tn,u_char ln)6639 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6640 {
6641 tcb_p tp = &np->target[tn];
6642 lcb_p lp = sym_lp(tp, ln);
6643 int i;
6644
6645 /*
6646 * If LCB not available, try to allocate it.
6647 */
6648 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6649 return;
6650
6651 /*
6652 * Allocate the task table and and the tag allocation
6653 * circular buffer. We want both or none.
6654 */
6655 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6656 if (!lp->itlq_tbl)
6657 return;
6658 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6659 if (!lp->cb_tags) {
6660 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6661 lp->itlq_tbl = NULL;
6662 return;
6663 }
6664
6665 /*
6666 * Initialize the task table with invalid entries.
6667 */
6668 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6669 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6670
6671 /*
6672 * Fill up the tag buffer with tag numbers.
6673 */
6674 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6675 lp->cb_tags[i] = i;
6676
6677 /*
6678 * Make the task table available to SCRIPTS,
6679 * And accept tagged commands now.
6680 */
6681 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6682 }
6683
6684 /*
6685 * Test the pci bus snoop logic :-(
6686 *
6687 * Has to be called with interrupts disabled.
6688 */
6689 #ifndef SYM_CONF_IOMAPPED
sym_regtest(hcb_p np)6690 static int sym_regtest (hcb_p np)
6691 {
6692 register volatile u32 data;
6693 /*
6694 * chip registers may NOT be cached.
6695 * write 0xffffffff to a read only register area,
6696 * and try to read it back.
6697 */
6698 data = 0xffffffff;
6699 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6700 data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6701 #if 1
6702 if (data == 0xffffffff) {
6703 #else
6704 if ((data & 0xe2f0fffd) != 0x02000080) {
6705 #endif
6706 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6707 (unsigned) data);
6708 return (0x10);
6709 }
6710 return (0);
6711 }
6712 #endif
6713
6714 static int sym_snooptest (hcb_p np)
6715 {
6716 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6717 int i, err=0;
6718 #ifndef SYM_CONF_IOMAPPED
6719 err |= sym_regtest (np);
6720 if (err) return (err);
6721 #endif
6722 restart_test:
6723 /*
6724 * Enable Master Parity Checking as we intend
6725 * to enable it for normal operations.
6726 */
6727 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6728 /*
6729 * init
6730 */
6731 pc = SCRIPTB0_BA (np, snooptest);
6732 host_wr = 1;
6733 sym_wr = 2;
6734 /*
6735 * Set memory and register.
6736 */
6737 np->cache = cpu_to_scr(host_wr);
6738 OUTL (nc_temp, sym_wr);
6739 /*
6740 * Start script (exchange values)
6741 */
6742 OUTL (nc_dsa, np->hcb_ba);
6743 OUTL_DSP (pc);
6744 /*
6745 * Wait 'til done (with timeout)
6746 */
6747 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6748 if (INB(nc_istat) & (INTF|SIP|DIP))
6749 break;
6750 if (i>=SYM_SNOOP_TIMEOUT) {
6751 printf ("CACHE TEST FAILED: timeout.\n");
6752 return (0x20);
6753 }
6754 /*
6755 * Check for fatal DMA errors.
6756 */
6757 dstat = INB (nc_dstat);
6758 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
6759 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6760 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6761 "DISABLING MASTER DATA PARITY CHECKING.\n",
6762 sym_name(np));
6763 np->rv_ctest4 &= ~MPEE;
6764 goto restart_test;
6765 }
6766 #endif
6767 if (dstat & (MDPE|BF|IID)) {
6768 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6769 return (0x80);
6770 }
6771 /*
6772 * Save termination position.
6773 */
6774 pc = INL (nc_dsp);
6775 /*
6776 * Read memory and register.
6777 */
6778 host_rd = scr_to_cpu(np->cache);
6779 sym_rd = INL (nc_scratcha);
6780 sym_bk = INL (nc_temp);
6781
6782 /*
6783 * Check termination position.
6784 */
6785 if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6786 printf ("CACHE TEST FAILED: script execution failed.\n");
6787 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6788 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6789 (u_long) SCRIPTB0_BA (np, snoopend) +8);
6790 return (0x40);
6791 }
6792 /*
6793 * Show results.
6794 */
6795 if (host_wr != sym_rd) {
6796 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6797 (int) host_wr, (int) sym_rd);
6798 err |= 1;
6799 }
6800 if (host_rd != sym_wr) {
6801 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6802 (int) sym_wr, (int) host_rd);
6803 err |= 2;
6804 }
6805 if (sym_bk != sym_wr) {
6806 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6807 (int) sym_wr, (int) sym_bk);
6808 err |= 4;
6809 }
6810
6811 return (err);
6812 }
6813
6814 /*
6815 * Determine the chip's clock frequency.
6816 *
6817 * This is essential for the negotiation of the synchronous
6818 * transfer rate.
6819 *
6820 * Note: we have to return the correct value.
6821 * THERE IS NO SAFE DEFAULT VALUE.
6822 *
6823 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6824 * 53C860 and 53C875 rev. 1 support fast20 transfers but
6825 * do not have a clock doubler and so are provided with a
6826 * 80 MHz clock. All other fast20 boards incorporate a doubler
6827 * and so should be delivered with a 40 MHz clock.
6828 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6829 * clock and provide a clock quadrupler (160 Mhz).
6830 */
6831
6832 /*
6833 * Select SCSI clock frequency
6834 */
6835 static void sym_selectclock(hcb_p np, u_char scntl3)
6836 {
6837 /*
6838 * If multiplier not present or not selected, leave here.
6839 */
6840 if (np->multiplier <= 1) {
6841 OUTB(nc_scntl3, scntl3);
6842 return;
6843 }
6844
6845 if (sym_verbose >= 2)
6846 printf ("%s: enabling clock multiplier\n", sym_name(np));
6847
6848 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
6849 /*
6850 * Wait for the LCKFRQ bit to be set if supported by the chip.
6851 * Otherwise wait 20 micro-seconds.
6852 */
6853 if (np->features & FE_LCKFRQ) {
6854 int i = 20;
6855 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6856 UDELAY (20);
6857 if (!i)
6858 printf("%s: the chip cannot lock the frequency\n",
6859 sym_name(np));
6860 } else
6861 UDELAY (20);
6862 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
6863 OUTB(nc_scntl3, scntl3);
6864 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
6865 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
6866 }
6867
6868 /*
6869 * calculate SCSI clock frequency (in KHz)
6870 */
6871 static unsigned getfreq (hcb_p np, int gen)
6872 {
6873 unsigned int ms = 0;
6874 unsigned int f;
6875
6876 /*
6877 * Measure GEN timer delay in order
6878 * to calculate SCSI clock frequency
6879 *
6880 * This code will never execute too
6881 * many loop iterations (if DELAY is
6882 * reasonably correct). It could get
6883 * too low a delay (too high a freq.)
6884 * if the CPU is slow executing the
6885 * loop for some reason (an NMI, for
6886 * example). For this reason we will
6887 * if multiple measurements are to be
6888 * performed trust the higher delay
6889 * (lower frequency returned).
6890 */
6891 OUTW (nc_sien , 0); /* mask all scsi interrupts */
6892 (void) INW (nc_sist); /* clear pending scsi interrupt */
6893 OUTB (nc_dien , 0); /* mask all dma interrupts */
6894 (void) INW (nc_sist); /* another one, just to be sure :) */
6895 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
6896 OUTB (nc_stime1, 0); /* disable general purpose timer */
6897 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
6898 while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6899 UDELAY (1000); /* count ms */
6900 OUTB (nc_stime1, 0); /* disable general purpose timer */
6901 /*
6902 * set prescaler to divide by whatever 0 means
6903 * 0 ought to choose divide by 2, but appears
6904 * to set divide by 3.5 mode in my 53c810 ...
6905 */
6906 OUTB (nc_scntl3, 0);
6907
6908 /*
6909 * adjust for prescaler, and convert into KHz
6910 */
6911 f = ms ? ((1 << gen) * 4340) / ms : 0;
6912
6913 if (sym_verbose >= 2)
6914 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6915 sym_name(np), gen, ms, f);
6916
6917 return f;
6918 }
6919
6920 static unsigned sym_getfreq (hcb_p np)
6921 {
6922 u_int f1, f2;
6923 int gen = 11;
6924
6925 (void) getfreq (np, gen); /* throw away first result */
6926 f1 = getfreq (np, gen);
6927 f2 = getfreq (np, gen);
6928 if (f1 > f2) f1 = f2; /* trust lower result */
6929 return f1;
6930 }
6931
6932 /*
6933 * Get/probe chip SCSI clock frequency
6934 */
6935 static void sym_getclock (hcb_p np, int mult)
6936 {
6937 unsigned char scntl3 = np->sv_scntl3;
6938 unsigned char stest1 = np->sv_stest1;
6939 unsigned f1;
6940
6941 /*
6942 * For the C10 core, assume 40 MHz.
6943 */
6944 if (np->features & FE_C10) {
6945 np->multiplier = mult;
6946 np->clock_khz = 40000 * mult;
6947 return;
6948 }
6949
6950 np->multiplier = 1;
6951 f1 = 40000;
6952 /*
6953 * True with 875/895/896/895A with clock multiplier selected
6954 */
6955 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6956 if (sym_verbose >= 2)
6957 printf ("%s: clock multiplier found\n", sym_name(np));
6958 np->multiplier = mult;
6959 }
6960
6961 /*
6962 * If multiplier not found or scntl3 not 7,5,3,
6963 * reset chip and get frequency from general purpose timer.
6964 * Otherwise trust scntl3 BIOS setting.
6965 */
6966 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6967 OUTB (nc_stest1, 0); /* make sure doubler is OFF */
6968 f1 = sym_getfreq (np);
6969
6970 if (sym_verbose)
6971 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
6972
6973 if (f1 < 45000) f1 = 40000;
6974 else if (f1 < 55000) f1 = 50000;
6975 else f1 = 80000;
6976
6977 if (f1 < 80000 && mult > 1) {
6978 if (sym_verbose >= 2)
6979 printf ("%s: clock multiplier assumed\n",
6980 sym_name(np));
6981 np->multiplier = mult;
6982 }
6983 } else {
6984 if ((scntl3 & 7) == 3) f1 = 40000;
6985 else if ((scntl3 & 7) == 5) f1 = 80000;
6986 else f1 = 160000;
6987
6988 f1 /= np->multiplier;
6989 }
6990
6991 /*
6992 * Compute controller synchronous parameters.
6993 */
6994 f1 *= np->multiplier;
6995 np->clock_khz = f1;
6996 }
6997
6998 /*
6999 * Get/probe PCI clock frequency
7000 */
7001 static int sym_getpciclock (hcb_p np)
7002 {
7003 int f = 0;
7004
7005 /*
7006 * For the C1010-33, this doesn't work.
7007 * For the C1010-66, this will be tested when I'll have
7008 * such a beast to play with.
7009 */
7010 if (!(np->features & FE_C10)) {
7011 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
7012 f = (int) sym_getfreq (np);
7013 OUTB (nc_stest1, 0);
7014 }
7015 np->pciclk_khz = f;
7016
7017 return f;
7018 }
7019
7020 /*============= DRIVER ACTION/COMPLETION ====================*/
7021
7022 /*
7023 * Print something that tells about extended errors.
7024 */
7025 static void sym_print_xerr(ccb_p cp, int x_status)
7026 {
7027 if (x_status & XE_PARITY_ERR) {
7028 PRINT_ADDR(cp);
7029 printf ("unrecovered SCSI parity error.\n");
7030 }
7031 if (x_status & XE_EXTRA_DATA) {
7032 PRINT_ADDR(cp);
7033 printf ("extraneous data discarded.\n");
7034 }
7035 if (x_status & XE_BAD_PHASE) {
7036 PRINT_ADDR(cp);
7037 printf ("illegal scsi phase (4/5).\n");
7038 }
7039 if (x_status & XE_SODL_UNRUN) {
7040 PRINT_ADDR(cp);
7041 printf ("ODD transfer in DATA OUT phase.\n");
7042 }
7043 if (x_status & XE_SWIDE_OVRUN) {
7044 PRINT_ADDR(cp);
7045 printf ("ODD transfer in DATA IN phase.\n");
7046 }
7047 }
7048
7049 /*
7050 * Choose the more appropriate CAM status if
7051 * the IO encountered an extended error.
7052 */
7053 static int sym_xerr_cam_status(int cam_status, int x_status)
7054 {
7055 if (x_status) {
7056 if (x_status & XE_PARITY_ERR)
7057 cam_status = CAM_UNCOR_PARITY;
7058 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7059 cam_status = CAM_DATA_RUN_ERR;
7060 else if (x_status & XE_BAD_PHASE)
7061 cam_status = CAM_REQ_CMP_ERR;
7062 else
7063 cam_status = CAM_REQ_CMP_ERR;
7064 }
7065 return cam_status;
7066 }
7067
7068 /*
7069 * Complete execution of a SCSI command with extented
7070 * error, SCSI status error, or having been auto-sensed.
7071 *
7072 * The SCRIPTS processor is not running there, so we
7073 * can safely access IO registers and remove JOBs from
7074 * the START queue.
7075 * SCRATCHA is assumed to have been loaded with STARTPOS
7076 * before the SCRIPTS called the C code.
7077 */
7078 static void sym_complete_error (hcb_p np, ccb_p cp)
7079 {
7080 struct ccb_scsiio *csio;
7081 u_int cam_status;
7082 int i, sense_returned;
7083
7084 SYM_LOCK_ASSERT(MA_OWNED);
7085
7086 /*
7087 * Paranoid check. :)
7088 */
7089 if (!cp || !cp->cam_ccb)
7090 return;
7091
7092 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7093 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7094 cp->host_status, cp->ssss_status, cp->host_flags,
7095 cp->target, cp->lun);
7096 MDELAY(100);
7097 }
7098
7099 /*
7100 * Get CAM command pointer.
7101 */
7102 csio = &cp->cam_ccb->csio;
7103
7104 /*
7105 * Check for extended errors.
7106 */
7107 if (cp->xerr_status) {
7108 if (sym_verbose)
7109 sym_print_xerr(cp, cp->xerr_status);
7110 if (cp->host_status == HS_COMPLETE)
7111 cp->host_status = HS_COMP_ERR;
7112 }
7113
7114 /*
7115 * Calculate the residual.
7116 */
7117 csio->sense_resid = 0;
7118 csio->resid = sym_compute_residual(np, cp);
7119
7120 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7121 csio->resid = 0; /* throw them away. :) */
7122 cp->sv_resid = 0;
7123 }
7124
7125 if (cp->host_flags & HF_SENSE) { /* Auto sense */
7126 csio->scsi_status = cp->sv_scsi_status; /* Restore status */
7127 csio->sense_resid = csio->resid; /* Swap residuals */
7128 csio->resid = cp->sv_resid;
7129 cp->sv_resid = 0;
7130 if (sym_verbose && cp->sv_xerr_status)
7131 sym_print_xerr(cp, cp->sv_xerr_status);
7132 if (cp->host_status == HS_COMPLETE &&
7133 cp->ssss_status == S_GOOD &&
7134 cp->xerr_status == 0) {
7135 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7136 cp->sv_xerr_status);
7137 cam_status |= CAM_AUTOSNS_VALID;
7138 /*
7139 * Bounce back the sense data to user and
7140 * fix the residual.
7141 */
7142 bzero(&csio->sense_data, sizeof(csio->sense_data));
7143 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7144 if (sense_returned < csio->sense_len)
7145 csio->sense_resid = csio->sense_len -
7146 sense_returned;
7147 else
7148 csio->sense_resid = 0;
7149 bcopy(cp->sns_bbuf, &csio->sense_data,
7150 MIN(csio->sense_len, sense_returned));
7151 #if 0
7152 /*
7153 * If the device reports a UNIT ATTENTION condition
7154 * due to a RESET condition, we should consider all
7155 * disconnect CCBs for this unit as aborted.
7156 */
7157 if (1) {
7158 u_char *p;
7159 p = (u_char *) csio->sense_data;
7160 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7161 sym_clear_tasks(np, CAM_REQ_ABORTED,
7162 cp->target,cp->lun, -1);
7163 }
7164 #endif
7165 }
7166 else
7167 cam_status = CAM_AUTOSENSE_FAIL;
7168 }
7169 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */
7170 csio->scsi_status = cp->ssss_status;
7171 cam_status = CAM_SCSI_STATUS_ERROR;
7172 }
7173 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
7174 cam_status = CAM_SEL_TIMEOUT;
7175 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
7176 cam_status = CAM_UNEXP_BUSFREE;
7177 else { /* Extended error */
7178 if (sym_verbose) {
7179 PRINT_ADDR(cp);
7180 printf ("COMMAND FAILED (%x %x %x).\n",
7181 cp->host_status, cp->ssss_status,
7182 cp->xerr_status);
7183 }
7184 csio->scsi_status = cp->ssss_status;
7185 /*
7186 * Set the most appropriate value for CAM status.
7187 */
7188 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7189 cp->xerr_status);
7190 }
7191
7192 /*
7193 * Dequeue all queued CCBs for that device
7194 * not yet started by SCRIPTS.
7195 */
7196 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7197 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7198
7199 /*
7200 * Restart the SCRIPTS processor.
7201 */
7202 OUTL_DSP (SCRIPTA_BA (np, start));
7203
7204 /*
7205 * Synchronize DMA map if needed.
7206 */
7207 if (cp->dmamapped) {
7208 bus_dmamap_sync(np->data_dmat, cp->dmamap,
7209 (cp->dmamapped == SYM_DMA_READ ?
7210 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7211 }
7212 /*
7213 * Add this one to the COMP queue.
7214 * Complete all those commands with either error
7215 * or requeue condition.
7216 */
7217 sym_set_cam_status((union ccb *) csio, cam_status);
7218 sym_remque(&cp->link_ccbq);
7219 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7220 sym_flush_comp_queue(np, 0);
7221 }
7222
7223 /*
7224 * Complete execution of a successful SCSI command.
7225 *
7226 * Only successful commands go to the DONE queue,
7227 * since we need to have the SCRIPTS processor
7228 * stopped on any error condition.
7229 * The SCRIPTS processor is running while we are
7230 * completing successful commands.
7231 */
7232 static void sym_complete_ok (hcb_p np, ccb_p cp)
7233 {
7234 struct ccb_scsiio *csio;
7235 tcb_p tp;
7236 lcb_p lp;
7237
7238 SYM_LOCK_ASSERT(MA_OWNED);
7239
7240 /*
7241 * Paranoid check. :)
7242 */
7243 if (!cp || !cp->cam_ccb)
7244 return;
7245 assert (cp->host_status == HS_COMPLETE);
7246
7247 /*
7248 * Get command, target and lun pointers.
7249 */
7250 csio = &cp->cam_ccb->csio;
7251 tp = &np->target[cp->target];
7252 lp = sym_lp(tp, cp->lun);
7253
7254 /*
7255 * Assume device discovered on first success.
7256 */
7257 if (!lp)
7258 sym_set_bit(tp->lun_map, cp->lun);
7259
7260 /*
7261 * If all data have been transferred, given than no
7262 * extended error did occur, there is no residual.
7263 */
7264 csio->resid = 0;
7265 if (cp->phys.head.lastp != cp->phys.head.goalp)
7266 csio->resid = sym_compute_residual(np, cp);
7267
7268 /*
7269 * Wrong transfer residuals may be worse than just always
7270 * returning zero. User can disable this feature from
7271 * sym_conf.h. Residual support is enabled by default.
7272 */
7273 if (!SYM_CONF_RESIDUAL_SUPPORT)
7274 csio->resid = 0;
7275
7276 /*
7277 * Synchronize DMA map if needed.
7278 */
7279 if (cp->dmamapped) {
7280 bus_dmamap_sync(np->data_dmat, cp->dmamap,
7281 (cp->dmamapped == SYM_DMA_READ ?
7282 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7283 }
7284 /*
7285 * Set status and complete the command.
7286 */
7287 csio->scsi_status = cp->ssss_status;
7288 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7289 sym_xpt_done(np, (union ccb *) csio, cp);
7290 sym_free_ccb(np, cp);
7291 }
7292
7293 /*
7294 * Our callout handler
7295 */
7296 static void sym_callout(void *arg)
7297 {
7298 union ccb *ccb = (union ccb *) arg;
7299 hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7300
7301 /*
7302 * Check that the CAM CCB is still queued.
7303 */
7304 if (!np)
7305 return;
7306
7307 SYM_LOCK();
7308
7309 switch(ccb->ccb_h.func_code) {
7310 case XPT_SCSI_IO:
7311 (void) sym_abort_scsiio(np, ccb, 1);
7312 break;
7313 default:
7314 break;
7315 }
7316
7317 SYM_UNLOCK();
7318 }
7319
7320 /*
7321 * Abort an SCSI IO.
7322 */
7323 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7324 {
7325 ccb_p cp;
7326 SYM_QUEHEAD *qp;
7327
7328 SYM_LOCK_ASSERT(MA_OWNED);
7329
7330 /*
7331 * Look up our CCB control block.
7332 */
7333 cp = NULL;
7334 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7335 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7336 if (cp2->cam_ccb == ccb) {
7337 cp = cp2;
7338 break;
7339 }
7340 }
7341 if (!cp || cp->host_status == HS_WAIT)
7342 return -1;
7343
7344 /*
7345 * If a previous abort didn't succeed in time,
7346 * perform a BUS reset.
7347 */
7348 if (cp->to_abort) {
7349 sym_reset_scsi_bus(np, 1);
7350 return 0;
7351 }
7352
7353 /*
7354 * Mark the CCB for abort and allow time for.
7355 */
7356 cp->to_abort = timed_out ? 2 : 1;
7357 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7358
7359 /*
7360 * Tell the SCRIPTS processor to stop and synchronize with us.
7361 */
7362 np->istat_sem = SEM;
7363 OUTB (nc_istat, SIGP|SEM);
7364 return 0;
7365 }
7366
7367 /*
7368 * Reset a SCSI device (all LUNs of a target).
7369 */
7370 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7371 {
7372 tcb_p tp;
7373 struct ccb_hdr *ccb_h = &ccb->ccb_h;
7374
7375 SYM_LOCK_ASSERT(MA_OWNED);
7376
7377 if (ccb_h->target_id == np->myaddr ||
7378 ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
7379 ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
7380 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7381 return;
7382 }
7383
7384 tp = &np->target[ccb_h->target_id];
7385
7386 tp->to_reset = 1;
7387 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7388
7389 np->istat_sem = SEM;
7390 OUTB (nc_istat, SIGP|SEM);
7391 }
7392
7393 /*
7394 * SIM action entry point.
7395 */
7396 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7397 {
7398 hcb_p np;
7399 tcb_p tp;
7400 lcb_p lp;
7401 ccb_p cp;
7402 int tmp;
7403 u_char idmsg, *msgptr;
7404 u_int msglen;
7405 struct ccb_scsiio *csio;
7406 struct ccb_hdr *ccb_h;
7407
7408 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7409
7410 /*
7411 * Retrieve our controller data structure.
7412 */
7413 np = (hcb_p) cam_sim_softc(sim);
7414
7415 SYM_LOCK_ASSERT(MA_OWNED);
7416
7417 /*
7418 * The common case is SCSI IO.
7419 * We deal with other ones elsewhere.
7420 */
7421 if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7422 sym_action2(sim, ccb);
7423 return;
7424 }
7425 csio = &ccb->csio;
7426 ccb_h = &csio->ccb_h;
7427
7428 /*
7429 * Work around races.
7430 */
7431 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7432 xpt_done(ccb);
7433 return;
7434 }
7435
7436 /*
7437 * Minimal checkings, so that we will not
7438 * go outside our tables.
7439 */
7440 if (ccb_h->target_id == np->myaddr ||
7441 ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
7442 ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
7443 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7444 return;
7445 }
7446
7447 /*
7448 * Retrieve the target and lun descriptors.
7449 */
7450 tp = &np->target[ccb_h->target_id];
7451 lp = sym_lp(tp, ccb_h->target_lun);
7452
7453 /*
7454 * Complete the 1st INQUIRY command with error
7455 * condition if the device is flagged NOSCAN
7456 * at BOOT in the NVRAM. This may speed up
7457 * the boot and maintain coherency with BIOS
7458 * device numbering. Clearing the flag allows
7459 * user to rescan skipped devices later.
7460 * We also return error for devices not flagged
7461 * for SCAN LUNS in the NVRAM since some mono-lun
7462 * devices behave badly when asked for some non
7463 * zero LUN. Btw, this is an absolute hack.:-)
7464 */
7465 if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7466 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7467 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7468 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7469 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7470 ccb_h->target_lun != 0)) {
7471 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7472 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7473 return;
7474 }
7475 }
7476
7477 /*
7478 * Get a control block for this IO.
7479 */
7480 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7481 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7482 if (!cp) {
7483 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7484 return;
7485 }
7486
7487 /*
7488 * Keep track of the IO in our CCB.
7489 */
7490 cp->cam_ccb = ccb;
7491
7492 /*
7493 * Build the IDENTIFY message.
7494 */
7495 idmsg = M_IDENTIFY | cp->lun;
7496 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7497 idmsg |= 0x40;
7498
7499 msgptr = cp->scsi_smsg;
7500 msglen = 0;
7501 msgptr[msglen++] = idmsg;
7502
7503 /*
7504 * Build the tag message if present.
7505 */
7506 if (cp->tag != NO_TAG) {
7507 u_char order = csio->tag_action;
7508
7509 switch(order) {
7510 case M_ORDERED_TAG:
7511 break;
7512 case M_HEAD_TAG:
7513 break;
7514 default:
7515 order = M_SIMPLE_TAG;
7516 }
7517 msgptr[msglen++] = order;
7518
7519 /*
7520 * For less than 128 tags, actual tags are numbered
7521 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
7522 * with devices that have problems with #TAG 0 or too
7523 * great #TAG numbers. For more tags (up to 256),
7524 * we use directly our tag number.
7525 */
7526 #if SYM_CONF_MAX_TASK > (512/4)
7527 msgptr[msglen++] = cp->tag;
7528 #else
7529 msgptr[msglen++] = (cp->tag << 1) + 1;
7530 #endif
7531 }
7532
7533 /*
7534 * Build a negotiation message if needed.
7535 * (nego_status is filled by sym_prepare_nego())
7536 */
7537 cp->nego_status = 0;
7538 if (tp->tinfo.current.width != tp->tinfo.goal.width ||
7539 tp->tinfo.current.period != tp->tinfo.goal.period ||
7540 tp->tinfo.current.offset != tp->tinfo.goal.offset ||
7541 tp->tinfo.current.options != tp->tinfo.goal.options) {
7542 if (!tp->nego_cp && lp)
7543 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7544 }
7545
7546 /*
7547 * Fill in our ccb
7548 */
7549
7550 /*
7551 * Startqueue
7552 */
7553 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
7554 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7555
7556 /*
7557 * select
7558 */
7559 cp->phys.select.sel_id = cp->target;
7560 cp->phys.select.sel_scntl3 = tp->head.wval;
7561 cp->phys.select.sel_sxfer = tp->head.sval;
7562 cp->phys.select.sel_scntl4 = tp->head.uval;
7563
7564 /*
7565 * message
7566 */
7567 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg));
7568 cp->phys.smsg.size = cpu_to_scr(msglen);
7569
7570 /*
7571 * command
7572 */
7573 if (sym_setup_cdb(np, csio, cp) < 0) {
7574 sym_xpt_done(np, ccb, cp);
7575 sym_free_ccb(np, cp);
7576 return;
7577 }
7578
7579 /*
7580 * status
7581 */
7582 #if 0 /* Provision */
7583 cp->actualquirks = tp->quirks;
7584 #endif
7585 cp->actualquirks = SYM_QUIRK_AUTOSAVE;
7586 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7587 cp->ssss_status = S_ILLEGAL;
7588 cp->xerr_status = 0;
7589 cp->host_flags = 0;
7590 cp->extra_bytes = 0;
7591
7592 /*
7593 * extreme data pointer.
7594 * shall be positive, so -1 is lower than lowest.:)
7595 */
7596 cp->ext_sg = -1;
7597 cp->ext_ofs = 0;
7598
7599 /*
7600 * Build the data descriptor block
7601 * and start the IO.
7602 */
7603 sym_setup_data_and_start(np, csio, cp);
7604 }
7605
7606 /*
7607 * Setup buffers and pointers that address the CDB.
7608 * I bet, physical CDBs will never be used on the planet,
7609 * since they can be bounced without significant overhead.
7610 */
7611 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7612 {
7613 struct ccb_hdr *ccb_h;
7614 u32 cmd_ba;
7615 int cmd_len;
7616
7617 SYM_LOCK_ASSERT(MA_OWNED);
7618
7619 ccb_h = &csio->ccb_h;
7620
7621 /*
7622 * CDB is 16 bytes max.
7623 */
7624 if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7625 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7626 return -1;
7627 }
7628 cmd_len = csio->cdb_len;
7629
7630 if (ccb_h->flags & CAM_CDB_POINTER) {
7631 /* CDB is a pointer */
7632 if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7633 /* CDB pointer is virtual */
7634 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7635 cmd_ba = CCB_BA (cp, cdb_buf[0]);
7636 } else {
7637 /* CDB pointer is physical */
7638 #if 0
7639 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7640 #else
7641 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7642 return -1;
7643 #endif
7644 }
7645 } else {
7646 /* CDB is in the CAM ccb (buffer) */
7647 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7648 cmd_ba = CCB_BA (cp, cdb_buf[0]);
7649 }
7650
7651 cp->phys.cmd.addr = cpu_to_scr(cmd_ba);
7652 cp->phys.cmd.size = cpu_to_scr(cmd_len);
7653
7654 return 0;
7655 }
7656
7657 /*
7658 * Set up data pointers used by SCRIPTS.
7659 */
7660 static void __inline
7661 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7662 {
7663 u32 lastp, goalp;
7664
7665 SYM_LOCK_ASSERT(MA_OWNED);
7666
7667 /*
7668 * No segments means no data.
7669 */
7670 if (!cp->segments)
7671 dir = CAM_DIR_NONE;
7672
7673 /*
7674 * Set the data pointer.
7675 */
7676 switch(dir) {
7677 case CAM_DIR_OUT:
7678 goalp = SCRIPTA_BA (np, data_out2) + 8;
7679 lastp = goalp - 8 - (cp->segments * (2*4));
7680 break;
7681 case CAM_DIR_IN:
7682 cp->host_flags |= HF_DATA_IN;
7683 goalp = SCRIPTA_BA (np, data_in2) + 8;
7684 lastp = goalp - 8 - (cp->segments * (2*4));
7685 break;
7686 case CAM_DIR_NONE:
7687 default:
7688 lastp = goalp = SCRIPTB_BA (np, no_data);
7689 break;
7690 }
7691
7692 cp->phys.head.lastp = cpu_to_scr(lastp);
7693 cp->phys.head.goalp = cpu_to_scr(goalp);
7694 cp->phys.head.savep = cpu_to_scr(lastp);
7695 cp->startp = cp->phys.head.savep;
7696 }
7697
7698 /*
7699 * Call back routine for the DMA map service.
7700 * If bounce buffers are used (why ?), we may sleep and then
7701 * be called there in another context.
7702 */
7703 static void
7704 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7705 {
7706 ccb_p cp;
7707 hcb_p np;
7708 union ccb *ccb;
7709
7710 cp = (ccb_p) arg;
7711 ccb = cp->cam_ccb;
7712 np = (hcb_p) cp->arg;
7713
7714 SYM_LOCK_ASSERT(MA_OWNED);
7715
7716 /*
7717 * Deal with weird races.
7718 */
7719 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7720 goto out_abort;
7721
7722 /*
7723 * Deal with weird errors.
7724 */
7725 if (error) {
7726 cp->dmamapped = 0;
7727 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7728 goto out_abort;
7729 }
7730
7731 /*
7732 * Build the data descriptor for the chip.
7733 */
7734 if (nsegs) {
7735 int retv;
7736 /* 896 rev 1 requires to be careful about boundaries */
7737 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7738 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7739 else
7740 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7741 if (retv < 0) {
7742 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7743 goto out_abort;
7744 }
7745 }
7746
7747 /*
7748 * Synchronize the DMA map only if we have
7749 * actually mapped the data.
7750 */
7751 if (cp->dmamapped) {
7752 bus_dmamap_sync(np->data_dmat, cp->dmamap,
7753 (cp->dmamapped == SYM_DMA_READ ?
7754 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7755 }
7756
7757 /*
7758 * Set host status to busy state.
7759 * May have been set back to HS_WAIT to avoid a race.
7760 */
7761 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7762
7763 /*
7764 * Set data pointers.
7765 */
7766 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK));
7767
7768 /*
7769 * Enqueue this IO in our pending queue.
7770 */
7771 sym_enqueue_cam_ccb(cp);
7772
7773 /*
7774 * When `#ifed 1', the code below makes the driver
7775 * panic on the first attempt to write to a SCSI device.
7776 * It is the first test we want to do after a driver
7777 * change that does not seem obviously safe. :)
7778 */
7779 #if 0
7780 switch (cp->cdb_buf[0]) {
7781 case 0x0A: case 0x2A: case 0xAA:
7782 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7783 MDELAY(10000);
7784 break;
7785 default:
7786 break;
7787 }
7788 #endif
7789 /*
7790 * Activate this job.
7791 */
7792 sym_put_start_queue(np, cp);
7793 return;
7794 out_abort:
7795 sym_xpt_done(np, ccb, cp);
7796 sym_free_ccb(np, cp);
7797 }
7798
7799 /*
7800 * How complex it gets to deal with the data in CAM.
7801 * The Bus Dma stuff makes things still more complex.
7802 */
7803 static void
7804 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7805 {
7806 struct ccb_hdr *ccb_h;
7807 int dir, retv;
7808
7809 SYM_LOCK_ASSERT(MA_OWNED);
7810
7811 ccb_h = &csio->ccb_h;
7812
7813 /*
7814 * Now deal with the data.
7815 */
7816 cp->data_len = csio->dxfer_len;
7817 cp->arg = np;
7818
7819 /*
7820 * No direction means no data.
7821 */
7822 dir = (ccb_h->flags & CAM_DIR_MASK);
7823 if (dir == CAM_DIR_NONE) {
7824 sym_execute_ccb(cp, NULL, 0, 0);
7825 return;
7826 }
7827
7828 cp->dmamapped = (dir == CAM_DIR_IN) ? SYM_DMA_READ : SYM_DMA_WRITE;
7829 retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7830 (union ccb *)csio, sym_execute_ccb, cp, 0);
7831 if (retv == EINPROGRESS) {
7832 cp->host_status = HS_WAIT;
7833 xpt_freeze_simq(np->sim, 1);
7834 csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7835 }
7836 }
7837
7838 /*
7839 * Move the scatter list to our data block.
7840 */
7841 static int
7842 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7843 bus_dma_segment_t *psegs, int nsegs)
7844 {
7845 struct sym_tblmove *data;
7846 bus_dma_segment_t *psegs2;
7847
7848 SYM_LOCK_ASSERT(MA_OWNED);
7849
7850 if (nsegs > SYM_CONF_MAX_SG)
7851 return -1;
7852
7853 data = &cp->phys.data[SYM_CONF_MAX_SG-1];
7854 psegs2 = &psegs[nsegs-1];
7855 cp->segments = nsegs;
7856
7857 while (1) {
7858 data->addr = cpu_to_scr(psegs2->ds_addr);
7859 data->size = cpu_to_scr(psegs2->ds_len);
7860 if (DEBUG_FLAGS & DEBUG_SCATTER) {
7861 printf ("%s scatter: paddr=%lx len=%ld\n",
7862 sym_name(np), (long) psegs2->ds_addr,
7863 (long) psegs2->ds_len);
7864 }
7865 if (psegs2 != psegs) {
7866 --data;
7867 --psegs2;
7868 continue;
7869 }
7870 break;
7871 }
7872 return 0;
7873 }
7874
7875 /*
7876 * Scatter a SG list with physical addresses into bus addressable chunks.
7877 */
7878 static int
7879 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7880 {
7881 u_long ps, pe, pn;
7882 u_long k;
7883 int s, t;
7884
7885 SYM_LOCK_ASSERT(MA_OWNED);
7886
7887 s = SYM_CONF_MAX_SG - 1;
7888 t = nsegs - 1;
7889 ps = psegs[t].ds_addr;
7890 pe = ps + psegs[t].ds_len;
7891
7892 while (s >= 0) {
7893 pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY);
7894 if (pn <= ps)
7895 pn = ps;
7896 k = pe - pn;
7897 if (DEBUG_FLAGS & DEBUG_SCATTER) {
7898 printf ("%s scatter: paddr=%lx len=%ld\n",
7899 sym_name(np), pn, k);
7900 }
7901 cp->phys.data[s].addr = cpu_to_scr(pn);
7902 cp->phys.data[s].size = cpu_to_scr(k);
7903 --s;
7904 if (pn == ps) {
7905 if (--t < 0)
7906 break;
7907 ps = psegs[t].ds_addr;
7908 pe = ps + psegs[t].ds_len;
7909 }
7910 else
7911 pe = pn;
7912 }
7913
7914 cp->segments = SYM_CONF_MAX_SG - 1 - s;
7915
7916 return t >= 0 ? -1 : 0;
7917 }
7918
7919 /*
7920 * SIM action for non performance critical stuff.
7921 */
7922 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7923 {
7924 union ccb *abort_ccb;
7925 struct ccb_hdr *ccb_h;
7926 struct ccb_pathinq *cpi;
7927 struct ccb_trans_settings *cts;
7928 struct sym_trans *tip;
7929 hcb_p np;
7930 tcb_p tp;
7931 lcb_p lp;
7932 u_char dflags;
7933
7934 /*
7935 * Retrieve our controller data structure.
7936 */
7937 np = (hcb_p) cam_sim_softc(sim);
7938
7939 SYM_LOCK_ASSERT(MA_OWNED);
7940
7941 ccb_h = &ccb->ccb_h;
7942
7943 switch (ccb_h->func_code) {
7944 case XPT_SET_TRAN_SETTINGS:
7945 cts = &ccb->cts;
7946 tp = &np->target[ccb_h->target_id];
7947
7948 /*
7949 * Update SPI transport settings in TARGET control block.
7950 * Update SCSI device settings in LUN control block.
7951 */
7952 lp = sym_lp(tp, ccb_h->target_lun);
7953 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7954 sym_update_trans(np, &tp->tinfo.goal, cts);
7955 if (lp)
7956 sym_update_dflags(np, &lp->current_flags, cts);
7957 }
7958 if (cts->type == CTS_TYPE_USER_SETTINGS) {
7959 sym_update_trans(np, &tp->tinfo.user, cts);
7960 if (lp)
7961 sym_update_dflags(np, &lp->user_flags, cts);
7962 }
7963
7964 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7965 break;
7966 case XPT_GET_TRAN_SETTINGS:
7967 cts = &ccb->cts;
7968 tp = &np->target[ccb_h->target_id];
7969 lp = sym_lp(tp, ccb_h->target_lun);
7970
7971 #define cts__scsi (&cts->proto_specific.scsi)
7972 #define cts__spi (&cts->xport_specific.spi)
7973 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7974 tip = &tp->tinfo.current;
7975 dflags = lp ? lp->current_flags : 0;
7976 }
7977 else {
7978 tip = &tp->tinfo.user;
7979 dflags = lp ? lp->user_flags : tp->usrflags;
7980 }
7981
7982 cts->protocol = PROTO_SCSI;
7983 cts->transport = XPORT_SPI;
7984 cts->protocol_version = tip->scsi_version;
7985 cts->transport_version = tip->spi_version;
7986
7987 cts__spi->sync_period = tip->period;
7988 cts__spi->sync_offset = tip->offset;
7989 cts__spi->bus_width = tip->width;
7990 cts__spi->ppr_options = tip->options;
7991
7992 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
7993 | CTS_SPI_VALID_SYNC_OFFSET
7994 | CTS_SPI_VALID_BUS_WIDTH
7995 | CTS_SPI_VALID_PPR_OPTIONS;
7996
7997 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
7998 if (dflags & SYM_DISC_ENABLED)
7999 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8000 cts__spi->valid |= CTS_SPI_VALID_DISC;
8001
8002 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8003 if (dflags & SYM_TAGS_ENABLED)
8004 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8005 cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8006 #undef cts__spi
8007 #undef cts__scsi
8008 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8009 break;
8010 case XPT_CALC_GEOMETRY:
8011 cam_calc_geometry(&ccb->ccg, /*extended*/1);
8012 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8013 break;
8014 case XPT_PATH_INQ:
8015 cpi = &ccb->cpi;
8016 cpi->version_num = 1;
8017 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8018 if ((np->features & FE_WIDE) != 0)
8019 cpi->hba_inquiry |= PI_WIDE_16;
8020 cpi->target_sprt = 0;
8021 cpi->hba_misc = PIM_UNMAPPED;
8022 if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8023 cpi->hba_misc |= PIM_SCANHILO;
8024 if (np->usrflags & SYM_AVOID_BUS_RESET)
8025 cpi->hba_misc |= PIM_NOBUSRESET;
8026 cpi->hba_eng_cnt = 0;
8027 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8028 /* Semantic problem:)LUN number max = max number of LUNs - 1 */
8029 cpi->max_lun = SYM_CONF_MAX_LUN-1;
8030 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8031 cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8032 cpi->bus_id = cam_sim_bus(sim);
8033 cpi->initiator_id = np->myaddr;
8034 cpi->base_transfer_speed = 3300;
8035 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8036 strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8037 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8038 cpi->unit_number = cam_sim_unit(sim);
8039
8040 cpi->protocol = PROTO_SCSI;
8041 cpi->protocol_version = SCSI_REV_2;
8042 cpi->transport = XPORT_SPI;
8043 cpi->transport_version = 2;
8044 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8045 if (np->features & FE_ULTRA3) {
8046 cpi->transport_version = 3;
8047 cpi->xport_specific.spi.ppr_options =
8048 SID_SPI_CLOCK_DT_ST;
8049 }
8050 cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8051 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8052 break;
8053 case XPT_ABORT:
8054 abort_ccb = ccb->cab.abort_ccb;
8055 switch(abort_ccb->ccb_h.func_code) {
8056 case XPT_SCSI_IO:
8057 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8058 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8059 break;
8060 }
8061 default:
8062 sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8063 break;
8064 }
8065 break;
8066 case XPT_RESET_DEV:
8067 sym_reset_dev(np, ccb);
8068 break;
8069 case XPT_RESET_BUS:
8070 sym_reset_scsi_bus(np, 0);
8071 if (sym_verbose) {
8072 xpt_print_path(np->path);
8073 printf("SCSI BUS reset delivered.\n");
8074 }
8075 sym_init (np, 1);
8076 sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8077 break;
8078 case XPT_TERM_IO:
8079 default:
8080 sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8081 break;
8082 }
8083 }
8084
8085 /*
8086 * Asynchronous notification handler.
8087 */
8088 static void
8089 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8090 {
8091 hcb_p np;
8092 struct cam_sim *sim;
8093 u_int tn;
8094 tcb_p tp;
8095
8096 sim = (struct cam_sim *) cb_arg;
8097 np = (hcb_p) cam_sim_softc(sim);
8098
8099 SYM_LOCK_ASSERT(MA_OWNED);
8100
8101 switch (code) {
8102 case AC_LOST_DEVICE:
8103 tn = xpt_path_target_id(path);
8104 if (tn >= SYM_CONF_MAX_TARGET)
8105 break;
8106
8107 tp = &np->target[tn];
8108
8109 tp->to_reset = 0;
8110 tp->head.sval = 0;
8111 tp->head.wval = np->rv_scntl3;
8112 tp->head.uval = 0;
8113
8114 tp->tinfo.current.period = tp->tinfo.goal.period = 0;
8115 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0;
8116 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT;
8117 tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8118
8119 break;
8120 default:
8121 break;
8122 }
8123 }
8124
8125 /*
8126 * Update transfer settings of a target.
8127 */
8128 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8129 struct ccb_trans_settings *cts)
8130 {
8131
8132 SYM_LOCK_ASSERT(MA_OWNED);
8133
8134 /*
8135 * Update the infos.
8136 */
8137 #define cts__spi (&cts->xport_specific.spi)
8138 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8139 tip->width = cts__spi->bus_width;
8140 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8141 tip->offset = cts__spi->sync_offset;
8142 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8143 tip->period = cts__spi->sync_period;
8144 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8145 tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8146 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8147 cts->protocol_version != PROTO_VERSION_UNKNOWN)
8148 tip->scsi_version = cts->protocol_version;
8149 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8150 cts->transport_version != XPORT_VERSION_UNKNOWN)
8151 tip->spi_version = cts->transport_version;
8152 #undef cts__spi
8153 /*
8154 * Scale against driver configuration limits.
8155 */
8156 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE;
8157 if (tip->period && tip->offset) {
8158 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8159 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8160 } else {
8161 tip->offset = 0;
8162 tip->period = 0;
8163 }
8164
8165 /*
8166 * Scale against actual controller BUS width.
8167 */
8168 if (tip->width > np->maxwide)
8169 tip->width = np->maxwide;
8170
8171 /*
8172 * Only accept DT if controller supports and SYNC/WIDE asked.
8173 */
8174 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8175 !(tip->width == BUS_16_BIT && tip->offset)) {
8176 tip->options &= ~PPR_OPT_DT;
8177 }
8178
8179 /*
8180 * Scale period factor and offset against controller limits.
8181 */
8182 if (tip->offset && tip->period) {
8183 if (tip->options & PPR_OPT_DT) {
8184 if (tip->period < np->minsync_dt)
8185 tip->period = np->minsync_dt;
8186 if (tip->period > np->maxsync_dt)
8187 tip->period = np->maxsync_dt;
8188 if (tip->offset > np->maxoffs_dt)
8189 tip->offset = np->maxoffs_dt;
8190 }
8191 else {
8192 if (tip->period < np->minsync)
8193 tip->period = np->minsync;
8194 if (tip->period > np->maxsync)
8195 tip->period = np->maxsync;
8196 if (tip->offset > np->maxoffs)
8197 tip->offset = np->maxoffs;
8198 }
8199 }
8200 }
8201
8202 /*
8203 * Update flags for a device (logical unit).
8204 */
8205 static void
8206 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8207 {
8208
8209 SYM_LOCK_ASSERT(MA_OWNED);
8210
8211 #define cts__scsi (&cts->proto_specific.scsi)
8212 #define cts__spi (&cts->xport_specific.spi)
8213 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8214 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8215 *flags |= SYM_DISC_ENABLED;
8216 else
8217 *flags &= ~SYM_DISC_ENABLED;
8218 }
8219
8220 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8221 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8222 *flags |= SYM_TAGS_ENABLED;
8223 else
8224 *flags &= ~SYM_TAGS_ENABLED;
8225 }
8226 #undef cts__spi
8227 #undef cts__scsi
8228 }
8229
8230 /*============= DRIVER INITIALISATION ==================*/
8231
8232 static device_method_t sym_pci_methods[] = {
8233 DEVMETHOD(device_probe, sym_pci_probe),
8234 DEVMETHOD(device_attach, sym_pci_attach),
8235 DEVMETHOD_END
8236 };
8237
8238 static driver_t sym_pci_driver = {
8239 "sym",
8240 sym_pci_methods,
8241 1 /* no softc */
8242 };
8243
8244 DRIVER_MODULE(sym, pci, sym_pci_driver, NULL, NULL);
8245 MODULE_DEPEND(sym, cam, 1, 1, 1);
8246 MODULE_DEPEND(sym, pci, 1, 1, 1);
8247
8248 static const struct sym_pci_chip sym_pci_dev_table[] = {
8249 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8250 FE_ERL}
8251 ,
8252 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8253 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
8254 FE_BOF}
8255 ,
8256 #else
8257 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
8258 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8259 ,
8260 #endif
8261 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64,
8262 FE_BOF|FE_ERL}
8263 ,
8264 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64,
8265 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8266 ,
8267 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2,
8268 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8269 ,
8270 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1,
8271 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8272 ,
8273 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8274 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8275 FE_RAM|FE_DIFF}
8276 ,
8277 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8278 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8279 FE_RAM|FE_DIFF}
8280 ,
8281 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8282 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8283 FE_RAM|FE_DIFF}
8284 ,
8285 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8286 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8287 FE_RAM|FE_DIFF}
8288 ,
8289 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8290 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8291 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8292 FE_RAM|FE_LCKFRQ}
8293 ,
8294 #else
8295 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8296 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8297 FE_RAM|FE_LCKFRQ}
8298 ,
8299 #endif
8300 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8301 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8302 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8303 ,
8304 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8305 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8306 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8307 ,
8308 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8309 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8310 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8311 FE_C10}
8312 ,
8313 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8314 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8315 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8316 FE_C10|FE_U3EN}
8317 ,
8318 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8319 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8320 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8321 FE_C10|FE_U3EN}
8322 ,
8323 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8324 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8325 FE_RAM|FE_IO256|FE_LEDC}
8326 };
8327
8328 /*
8329 * Look up the chip table.
8330 *
8331 * Return a pointer to the chip entry if found,
8332 * zero otherwise.
8333 */
8334 static const struct sym_pci_chip *
8335 sym_find_pci_chip(device_t dev)
8336 {
8337 const struct sym_pci_chip *chip;
8338 int i;
8339 u_short device_id;
8340 u_char revision;
8341
8342 if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8343 return NULL;
8344
8345 device_id = pci_get_device(dev);
8346 revision = pci_get_revid(dev);
8347
8348 for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8349 chip = &sym_pci_dev_table[i];
8350 if (device_id != chip->device_id)
8351 continue;
8352 if (revision > chip->revision_id)
8353 continue;
8354 return chip;
8355 }
8356
8357 return NULL;
8358 }
8359
8360 /*
8361 * Tell upper layer if the chip is supported.
8362 */
8363 static int
8364 sym_pci_probe(device_t dev)
8365 {
8366 const struct sym_pci_chip *chip;
8367
8368 chip = sym_find_pci_chip(dev);
8369 if (chip && sym_find_firmware(chip)) {
8370 device_set_desc(dev, chip->name);
8371 return BUS_PROBE_DEFAULT;
8372 }
8373 return ENXIO;
8374 }
8375
8376 /*
8377 * Attach a sym53c8xx device.
8378 */
8379 static int
8380 sym_pci_attach(device_t dev)
8381 {
8382 const struct sym_pci_chip *chip;
8383 u_short command;
8384 u_char cachelnsz;
8385 struct sym_hcb *np = NULL;
8386 struct sym_nvram nvram;
8387 const struct sym_fw *fw = NULL;
8388 int i;
8389 bus_dma_tag_t bus_dmat;
8390
8391 bus_dmat = bus_get_dma_tag(dev);
8392
8393 /*
8394 * Only probed devices should be attached.
8395 * We just enjoy being paranoid. :)
8396 */
8397 chip = sym_find_pci_chip(dev);
8398 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8399 return (ENXIO);
8400
8401 /*
8402 * Allocate immediately the host control block,
8403 * since we are only expecting to succeed. :)
8404 * We keep track in the HCB of all the resources that
8405 * are to be released on error.
8406 */
8407 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8408 if (np)
8409 np->bus_dmat = bus_dmat;
8410 else
8411 return (ENXIO);
8412 device_set_softc(dev, np);
8413
8414 SYM_LOCK_INIT();
8415
8416 /*
8417 * Copy some useful infos to the HCB.
8418 */
8419 np->hcb_ba = vtobus(np);
8420 np->verbose = bootverbose;
8421 np->device = dev;
8422 np->device_id = pci_get_device(dev);
8423 np->revision_id = pci_get_revid(dev);
8424 np->features = chip->features;
8425 np->clock_divn = chip->nr_divisor;
8426 np->maxoffs = chip->offset_max;
8427 np->maxburst = chip->burst_max;
8428 np->scripta_sz = fw->a_size;
8429 np->scriptb_sz = fw->b_size;
8430 np->fw_setup = fw->setup;
8431 np->fw_patch = fw->patch;
8432 np->fw_name = fw->name;
8433
8434 #ifdef __amd64__
8435 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8436 "TARGET");
8437 if (!np->target)
8438 goto attach_failed;
8439 #endif
8440
8441 /*
8442 * Initialize the CCB free and busy queues.
8443 */
8444 sym_que_init(&np->free_ccbq);
8445 sym_que_init(&np->busy_ccbq);
8446 sym_que_init(&np->comp_ccbq);
8447 sym_que_init(&np->cam_ccbq);
8448
8449 /*
8450 * Allocate a tag for the DMA of user data.
8451 */
8452 if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8453 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8454 BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8455 0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8456 device_printf(dev, "failed to create DMA tag.\n");
8457 goto attach_failed;
8458 }
8459
8460 /*
8461 * Read and apply some fix-ups to the PCI COMMAND
8462 * register. We want the chip to be enabled for:
8463 * - BUS mastering
8464 * - PCI parity checking (reporting would also be fine)
8465 * - Write And Invalidate.
8466 */
8467 command = pci_read_config(dev, PCIR_COMMAND, 2);
8468 command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8469 PCIM_CMD_MWRICEN;
8470 pci_write_config(dev, PCIR_COMMAND, command, 2);
8471
8472 /*
8473 * Let the device know about the cache line size,
8474 * if it doesn't yet.
8475 */
8476 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8477 if (!cachelnsz) {
8478 cachelnsz = 8;
8479 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8480 }
8481
8482 /*
8483 * Alloc/get/map/retrieve everything that deals with MMIO.
8484 */
8485 i = SYM_PCI_MMIO;
8486 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8487 RF_ACTIVE);
8488 if (!np->mmio_res) {
8489 device_printf(dev, "failed to allocate MMIO resources\n");
8490 goto attach_failed;
8491 }
8492 np->mmio_ba = rman_get_start(np->mmio_res);
8493
8494 /*
8495 * Allocate the IRQ.
8496 */
8497 i = 0;
8498 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8499 RF_ACTIVE | RF_SHAREABLE);
8500 if (!np->irq_res) {
8501 device_printf(dev, "failed to allocate IRQ resource\n");
8502 goto attach_failed;
8503 }
8504
8505 #ifdef SYM_CONF_IOMAPPED
8506 /*
8507 * User want us to use normal IO with PCI.
8508 * Alloc/get/map/retrieve everything that deals with IO.
8509 */
8510 i = SYM_PCI_IO;
8511 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8512 if (!np->io_res) {
8513 device_printf(dev, "failed to allocate IO resources\n");
8514 goto attach_failed;
8515 }
8516
8517 #endif /* SYM_CONF_IOMAPPED */
8518
8519 /*
8520 * If the chip has RAM.
8521 * Alloc/get/map/retrieve the corresponding resources.
8522 */
8523 if (np->features & (FE_RAM|FE_RAM8K)) {
8524 int regs_id = SYM_PCI_RAM;
8525 if (np->features & FE_64BIT)
8526 regs_id = SYM_PCI_RAM64;
8527 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8528 ®s_id, RF_ACTIVE);
8529 if (!np->ram_res) {
8530 device_printf(dev,"failed to allocate RAM resources\n");
8531 goto attach_failed;
8532 }
8533 np->ram_id = regs_id;
8534 np->ram_ba = rman_get_start(np->ram_res);
8535 }
8536
8537 /*
8538 * Save setting of some IO registers, so we will
8539 * be able to probe specific implementations.
8540 */
8541 sym_save_initial_setting (np);
8542
8543 /*
8544 * Reset the chip now, since it has been reported
8545 * that SCSI clock calibration may not work properly
8546 * if the chip is currently active.
8547 */
8548 sym_chip_reset (np);
8549
8550 /*
8551 * Try to read the user set-up.
8552 */
8553 (void) sym_read_nvram(np, &nvram);
8554
8555 /*
8556 * Prepare controller and devices settings, according
8557 * to chip features, user set-up and driver set-up.
8558 */
8559 (void) sym_prepare_setting(np, &nvram);
8560
8561 /*
8562 * Check the PCI clock frequency.
8563 * Must be performed after prepare_setting since it destroys
8564 * STEST1 that is used to probe for the clock doubler.
8565 */
8566 i = sym_getpciclock(np);
8567 if (i > 37000)
8568 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8569
8570 /*
8571 * Allocate the start queue.
8572 */
8573 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8574 if (!np->squeue)
8575 goto attach_failed;
8576 np->squeue_ba = vtobus(np->squeue);
8577
8578 /*
8579 * Allocate the done queue.
8580 */
8581 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8582 if (!np->dqueue)
8583 goto attach_failed;
8584 np->dqueue_ba = vtobus(np->dqueue);
8585
8586 /*
8587 * Allocate the target bus address array.
8588 */
8589 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8590 if (!np->targtbl)
8591 goto attach_failed;
8592 np->targtbl_ba = vtobus(np->targtbl);
8593
8594 /*
8595 * Allocate SCRIPTS areas.
8596 */
8597 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8598 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8599 if (!np->scripta0 || !np->scriptb0)
8600 goto attach_failed;
8601
8602 /*
8603 * Allocate the CCBs. We need at least ONE.
8604 */
8605 for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8606 ;
8607 if (i < 1)
8608 goto attach_failed;
8609
8610 /*
8611 * Calculate BUS addresses where we are going
8612 * to load the SCRIPTS.
8613 */
8614 np->scripta_ba = vtobus(np->scripta0);
8615 np->scriptb_ba = vtobus(np->scriptb0);
8616 np->scriptb0_ba = np->scriptb_ba;
8617
8618 if (np->ram_ba) {
8619 np->scripta_ba = np->ram_ba;
8620 if (np->features & FE_RAM8K) {
8621 np->ram_ws = 8192;
8622 np->scriptb_ba = np->scripta_ba + 4096;
8623 #ifdef __LP64__
8624 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8625 #endif
8626 }
8627 else
8628 np->ram_ws = 4096;
8629 }
8630
8631 /*
8632 * Copy scripts to controller instance.
8633 */
8634 bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8635 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8636
8637 /*
8638 * Setup variable parts in scripts and compute
8639 * scripts bus addresses used from the C code.
8640 */
8641 np->fw_setup(np, fw);
8642
8643 /*
8644 * Bind SCRIPTS with physical addresses usable by the
8645 * SCRIPTS processor (as seen from the BUS = BUS addresses).
8646 */
8647 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8648 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8649
8650 #ifdef SYM_CONF_IARB_SUPPORT
8651 /*
8652 * If user wants IARB to be set when we win arbitration
8653 * and have other jobs, compute the max number of consecutive
8654 * settings of IARB hints before we leave devices a chance to
8655 * arbitrate for reselection.
8656 */
8657 #ifdef SYM_SETUP_IARB_MAX
8658 np->iarb_max = SYM_SETUP_IARB_MAX;
8659 #else
8660 np->iarb_max = 4;
8661 #endif
8662 #endif
8663
8664 /*
8665 * Prepare the idle and invalid task actions.
8666 */
8667 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
8668 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8669 np->idletask_ba = vtobus(&np->idletask);
8670
8671 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
8672 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8673 np->notask_ba = vtobus(&np->notask);
8674
8675 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle));
8676 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8677 np->bad_itl_ba = vtobus(&np->bad_itl);
8678
8679 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle));
8680 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8681 np->bad_itlq_ba = vtobus(&np->bad_itlq);
8682
8683 /*
8684 * Allocate and prepare the lun JUMP table that is used
8685 * for a target prior the probing of devices (bad lun table).
8686 * A private table will be allocated for the target on the
8687 * first INQUIRY response received.
8688 */
8689 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8690 if (!np->badluntbl)
8691 goto attach_failed;
8692
8693 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8694 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
8695 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8696
8697 /*
8698 * Prepare the bus address array that contains the bus
8699 * address of each target control block.
8700 * For now, assume all logical units are wrong. :)
8701 */
8702 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8703 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8704 np->target[i].head.luntbl_sa =
8705 cpu_to_scr(vtobus(np->badluntbl));
8706 np->target[i].head.lun0_sa =
8707 cpu_to_scr(vtobus(&np->badlun_sa));
8708 }
8709
8710 /*
8711 * Now check the cache handling of the pci chipset.
8712 */
8713 if (sym_snooptest (np)) {
8714 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8715 goto attach_failed;
8716 }
8717
8718 /*
8719 * Now deal with CAM.
8720 * Hopefully, we will succeed with that one.:)
8721 */
8722 if (!sym_cam_attach(np))
8723 goto attach_failed;
8724
8725 /*
8726 * Sigh! we are done.
8727 */
8728 return 0;
8729
8730 /*
8731 * We have failed.
8732 * We will try to free all the resources we have
8733 * allocated, but if we are a boot device, this
8734 * will not help that much.;)
8735 */
8736 attach_failed:
8737 if (np)
8738 sym_pci_free(np);
8739 return ENXIO;
8740 }
8741
8742 /*
8743 * Free everything that have been allocated for this device.
8744 */
8745 static void sym_pci_free(hcb_p np)
8746 {
8747 SYM_QUEHEAD *qp;
8748 ccb_p cp;
8749 tcb_p tp;
8750 lcb_p lp;
8751 int target, lun;
8752
8753 /*
8754 * First free CAM resources.
8755 */
8756 sym_cam_free(np);
8757
8758 /*
8759 * Now every should be quiet for us to
8760 * free other resources.
8761 */
8762 if (np->ram_res)
8763 bus_release_resource(np->device, SYS_RES_MEMORY,
8764 np->ram_id, np->ram_res);
8765 if (np->mmio_res)
8766 bus_release_resource(np->device, SYS_RES_MEMORY,
8767 SYM_PCI_MMIO, np->mmio_res);
8768 if (np->io_res)
8769 bus_release_resource(np->device, SYS_RES_IOPORT,
8770 SYM_PCI_IO, np->io_res);
8771 if (np->irq_res)
8772 bus_release_resource(np->device, SYS_RES_IRQ,
8773 0, np->irq_res);
8774
8775 if (np->scriptb0)
8776 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8777 if (np->scripta0)
8778 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8779 if (np->squeue)
8780 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8781 if (np->dqueue)
8782 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8783
8784 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8785 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8786 bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8787 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8788 sym_mfree_dma(cp, sizeof(*cp), "CCB");
8789 }
8790
8791 if (np->badluntbl)
8792 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8793
8794 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8795 tp = &np->target[target];
8796 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8797 lp = sym_lp(tp, lun);
8798 if (!lp)
8799 continue;
8800 if (lp->itlq_tbl)
8801 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8802 "ITLQ_TBL");
8803 if (lp->cb_tags)
8804 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8805 "CB_TAGS");
8806 sym_mfree_dma(lp, sizeof(*lp), "LCB");
8807 }
8808 #if SYM_CONF_MAX_LUN > 1
8809 if (tp->lunmp)
8810 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8811 "LUNMP");
8812 #endif
8813 }
8814 #ifdef __amd64__
8815 if (np->target)
8816 sym_mfree_dma(np->target,
8817 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8818 #endif
8819 if (np->targtbl)
8820 sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8821 if (np->data_dmat)
8822 bus_dma_tag_destroy(np->data_dmat);
8823 if (SYM_LOCK_INITIALIZED() != 0)
8824 SYM_LOCK_DESTROY();
8825 device_set_softc(np->device, NULL);
8826 sym_mfree_dma(np, sizeof(*np), "HCB");
8827 }
8828
8829 /*
8830 * Allocate CAM resources and register a bus to CAM.
8831 */
8832 static int sym_cam_attach(hcb_p np)
8833 {
8834 struct cam_devq *devq = NULL;
8835 struct cam_sim *sim = NULL;
8836 struct cam_path *path = NULL;
8837 int err;
8838
8839 /*
8840 * Establish our interrupt handler.
8841 */
8842 err = bus_setup_intr(np->device, np->irq_res,
8843 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8844 NULL, sym_intr, np, &np->intr);
8845 if (err) {
8846 device_printf(np->device, "bus_setup_intr() failed: %d\n",
8847 err);
8848 goto fail;
8849 }
8850
8851 /*
8852 * Create the device queue for our sym SIM.
8853 */
8854 devq = cam_simq_alloc(SYM_CONF_MAX_START);
8855 if (!devq)
8856 goto fail;
8857
8858 /*
8859 * Construct our SIM entry.
8860 */
8861 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8862 device_get_unit(np->device),
8863 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8864 if (!sim)
8865 goto fail;
8866
8867 SYM_LOCK();
8868
8869 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8870 goto fail;
8871 np->sim = sim;
8872 sim = NULL;
8873
8874 if (xpt_create_path(&path, NULL,
8875 cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8876 CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8877 goto fail;
8878 }
8879 np->path = path;
8880
8881 /*
8882 * Establish our async notification handler.
8883 */
8884 if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) !=
8885 CAM_REQ_CMP)
8886 goto fail;
8887
8888 /*
8889 * Start the chip now, without resetting the BUS, since
8890 * it seems that this must stay under control of CAM.
8891 * With LVD/SE capable chips and BUS in SE mode, we may
8892 * get a spurious SMBC interrupt.
8893 */
8894 sym_init (np, 0);
8895
8896 SYM_UNLOCK();
8897
8898 return 1;
8899 fail:
8900 if (sim)
8901 cam_sim_free(sim, FALSE);
8902 if (devq)
8903 cam_simq_free(devq);
8904
8905 SYM_UNLOCK();
8906
8907 sym_cam_free(np);
8908
8909 return 0;
8910 }
8911
8912 /*
8913 * Free everything that deals with CAM.
8914 */
8915 static void sym_cam_free(hcb_p np)
8916 {
8917
8918 SYM_LOCK_ASSERT(MA_NOTOWNED);
8919
8920 if (np->intr) {
8921 bus_teardown_intr(np->device, np->irq_res, np->intr);
8922 np->intr = NULL;
8923 }
8924
8925 SYM_LOCK();
8926
8927 if (np->sim) {
8928 xpt_bus_deregister(cam_sim_path(np->sim));
8929 cam_sim_free(np->sim, /*free_devq*/ TRUE);
8930 np->sim = NULL;
8931 }
8932 if (np->path) {
8933 xpt_free_path(np->path);
8934 np->path = NULL;
8935 }
8936
8937 SYM_UNLOCK();
8938 }
8939
8940 /*============ OPTIONNAL NVRAM SUPPORT =================*/
8941
8942 /*
8943 * Get host setup from NVRAM.
8944 */
8945 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8946 {
8947 #ifdef SYM_CONF_NVRAM_SUPPORT
8948 /*
8949 * Get parity checking, host ID, verbose mode
8950 * and miscellaneous host flags from NVRAM.
8951 */
8952 switch(nvram->type) {
8953 case SYM_SYMBIOS_NVRAM:
8954 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8955 np->rv_scntl0 &= ~0x0a;
8956 np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8957 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8958 np->verbose += 1;
8959 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8960 np->usrflags |= SYM_SCAN_TARGETS_HILO;
8961 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8962 np->usrflags |= SYM_AVOID_BUS_RESET;
8963 break;
8964 case SYM_TEKRAM_NVRAM:
8965 np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8966 break;
8967 default:
8968 break;
8969 }
8970 #endif
8971 }
8972
8973 /*
8974 * Get target setup from NVRAM.
8975 */
8976 #ifdef SYM_CONF_NVRAM_SUPPORT
8977 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8978 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8979 #endif
8980
8981 static void
8982 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
8983 {
8984 #ifdef SYM_CONF_NVRAM_SUPPORT
8985 switch(nvp->type) {
8986 case SYM_SYMBIOS_NVRAM:
8987 sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
8988 break;
8989 case SYM_TEKRAM_NVRAM:
8990 sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
8991 break;
8992 default:
8993 break;
8994 }
8995 #endif
8996 }
8997
8998 #ifdef SYM_CONF_NVRAM_SUPPORT
8999 /*
9000 * Get target set-up from Symbios format NVRAM.
9001 */
9002 static void
9003 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9004 {
9005 tcb_p tp = &np->target[target];
9006 Symbios_target *tn = &nvram->target[target];
9007
9008 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9009 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9010 tp->usrtags =
9011 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9012
9013 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9014 tp->usrflags &= ~SYM_DISC_ENABLED;
9015 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9016 tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9017 if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9018 tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9019 }
9020
9021 /*
9022 * Get target set-up from Tekram format NVRAM.
9023 */
9024 static void
9025 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9026 {
9027 tcb_p tp = &np->target[target];
9028 struct Tekram_target *tn = &nvram->target[target];
9029 int i;
9030
9031 if (tn->flags & TEKRAM_SYNC_NEGO) {
9032 i = tn->sync_index & 0xf;
9033 tp->tinfo.user.period = Tekram_sync[i];
9034 }
9035
9036 tp->tinfo.user.width =
9037 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9038
9039 if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9040 tp->usrtags = 2 << nvram->max_tags_index;
9041 }
9042
9043 if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9044 tp->usrflags |= SYM_DISC_ENABLED;
9045
9046 /* If any device does not support parity, we will not use this option */
9047 if (!(tn->flags & TEKRAM_PARITY_CHECK))
9048 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */
9049 }
9050
9051 #ifdef SYM_CONF_DEBUG_NVRAM
9052 /*
9053 * Dump Symbios format NVRAM for debugging purpose.
9054 */
9055 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9056 {
9057 int i;
9058
9059 /* display Symbios nvram host data */
9060 printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9061 sym_name(np), nvram->host_id & 0x0f,
9062 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
9063 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"",
9064 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"",
9065 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"",
9066 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"",
9067 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :"");
9068
9069 /* display Symbios nvram drive data */
9070 for (i = 0 ; i < 15 ; i++) {
9071 struct Symbios_target *tn = &nvram->target[i];
9072 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9073 sym_name(np), i,
9074 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "",
9075 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "",
9076 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "",
9077 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "",
9078 tn->bus_width,
9079 tn->sync_period / 4,
9080 tn->timeout);
9081 }
9082 }
9083
9084 /*
9085 * Dump TEKRAM format NVRAM for debugging purpose.
9086 */
9087 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9088 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9089 {
9090 int i, tags, boot_delay;
9091 char *rem;
9092
9093 /* display Tekram nvram host data */
9094 tags = 2 << nvram->max_tags_index;
9095 boot_delay = 0;
9096 if (nvram->boot_delay_index < 6)
9097 boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9098 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9099 default:
9100 case 0: rem = ""; break;
9101 case 1: rem = " REMOVABLE=boot device"; break;
9102 case 2: rem = " REMOVABLE=all"; break;
9103 }
9104
9105 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9106 sym_name(np), nvram->host_id & 0x0f,
9107 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
9108 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"",
9109 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"",
9110 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"",
9111 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"",
9112 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"",
9113 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"",
9114 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"",
9115 rem, boot_delay, tags);
9116
9117 /* display Tekram nvram drive data */
9118 for (i = 0; i <= 15; i++) {
9119 int sync, j;
9120 struct Tekram_target *tn = &nvram->target[i];
9121 j = tn->sync_index & 0xf;
9122 sync = Tekram_sync[j];
9123 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9124 sym_name(np), i,
9125 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "",
9126 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "",
9127 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "",
9128 (tn->flags & TEKRAM_START_CMD) ? " START" : "",
9129 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "",
9130 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "",
9131 sync);
9132 }
9133 }
9134 #endif /* SYM_CONF_DEBUG_NVRAM */
9135 #endif /* SYM_CONF_NVRAM_SUPPORT */
9136
9137 /*
9138 * Try reading Symbios or Tekram NVRAM
9139 */
9140 #ifdef SYM_CONF_NVRAM_SUPPORT
9141 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9142 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram);
9143 #endif
9144
9145 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9146 {
9147 #ifdef SYM_CONF_NVRAM_SUPPORT
9148 /*
9149 * Try to read SYMBIOS nvram.
9150 * Try to read TEKRAM nvram if Symbios nvram not found.
9151 */
9152 if (SYM_SETUP_SYMBIOS_NVRAM &&
9153 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9154 nvp->type = SYM_SYMBIOS_NVRAM;
9155 #ifdef SYM_CONF_DEBUG_NVRAM
9156 sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9157 #endif
9158 }
9159 else if (SYM_SETUP_TEKRAM_NVRAM &&
9160 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9161 nvp->type = SYM_TEKRAM_NVRAM;
9162 #ifdef SYM_CONF_DEBUG_NVRAM
9163 sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9164 #endif
9165 }
9166 else
9167 nvp->type = 0;
9168 #else
9169 nvp->type = 0;
9170 #endif
9171 return nvp->type;
9172 }
9173
9174 #ifdef SYM_CONF_NVRAM_SUPPORT
9175 /*
9176 * 24C16 EEPROM reading.
9177 *
9178 * GPOI0 - data in/data out
9179 * GPIO1 - clock
9180 * Symbios NVRAM wiring now also used by Tekram.
9181 */
9182
9183 #define SET_BIT 0
9184 #define CLR_BIT 1
9185 #define SET_CLK 2
9186 #define CLR_CLK 3
9187
9188 /*
9189 * Set/clear data/clock bit in GPIO0
9190 */
9191 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9192 int bit_mode)
9193 {
9194 UDELAY (5);
9195 switch (bit_mode){
9196 case SET_BIT:
9197 *gpreg |= write_bit;
9198 break;
9199 case CLR_BIT:
9200 *gpreg &= 0xfe;
9201 break;
9202 case SET_CLK:
9203 *gpreg |= 0x02;
9204 break;
9205 case CLR_CLK:
9206 *gpreg &= 0xfd;
9207 break;
9208 }
9209 OUTB (nc_gpreg, *gpreg);
9210 UDELAY (5);
9211 }
9212
9213 /*
9214 * Send START condition to NVRAM to wake it up.
9215 */
9216 static void S24C16_start(hcb_p np, u_char *gpreg)
9217 {
9218 S24C16_set_bit(np, 1, gpreg, SET_BIT);
9219 S24C16_set_bit(np, 0, gpreg, SET_CLK);
9220 S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9221 S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9222 }
9223
9224 /*
9225 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9226 */
9227 static void S24C16_stop(hcb_p np, u_char *gpreg)
9228 {
9229 S24C16_set_bit(np, 0, gpreg, SET_CLK);
9230 S24C16_set_bit(np, 1, gpreg, SET_BIT);
9231 }
9232
9233 /*
9234 * Read or write a bit to the NVRAM,
9235 * read if GPIO0 input else write if GPIO0 output
9236 */
9237 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9238 u_char *gpreg)
9239 {
9240 S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9241 S24C16_set_bit(np, 0, gpreg, SET_CLK);
9242 if (read_bit)
9243 *read_bit = INB (nc_gpreg);
9244 S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9245 S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9246 }
9247
9248 /*
9249 * Output an ACK to the NVRAM after reading,
9250 * change GPIO0 to output and when done back to an input
9251 */
9252 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9253 u_char *gpcntl)
9254 {
9255 OUTB (nc_gpcntl, *gpcntl & 0xfe);
9256 S24C16_do_bit(np, 0, write_bit, gpreg);
9257 OUTB (nc_gpcntl, *gpcntl);
9258 }
9259
9260 /*
9261 * Input an ACK from NVRAM after writing,
9262 * change GPIO0 to input and when done back to an output
9263 */
9264 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9265 u_char *gpcntl)
9266 {
9267 OUTB (nc_gpcntl, *gpcntl | 0x01);
9268 S24C16_do_bit(np, read_bit, 1, gpreg);
9269 OUTB (nc_gpcntl, *gpcntl);
9270 }
9271
9272 /*
9273 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9274 * GPIO0 must already be set as an output
9275 */
9276 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9277 u_char *gpreg, u_char *gpcntl)
9278 {
9279 int x;
9280
9281 for (x = 0; x < 8; x++)
9282 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9283
9284 S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9285 }
9286
9287 /*
9288 * READ a byte from the NVRAM and then send an ACK to say we have got it,
9289 * GPIO0 must already be set as an input
9290 */
9291 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9292 u_char *gpreg, u_char *gpcntl)
9293 {
9294 int x;
9295 u_char read_bit;
9296
9297 *read_data = 0;
9298 for (x = 0; x < 8; x++) {
9299 S24C16_do_bit(np, &read_bit, 1, gpreg);
9300 *read_data |= ((read_bit & 0x01) << (7 - x));
9301 }
9302
9303 S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9304 }
9305
9306 /*
9307 * Read 'len' bytes starting at 'offset'.
9308 */
9309 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9310 {
9311 u_char gpcntl, gpreg;
9312 u_char old_gpcntl, old_gpreg;
9313 u_char ack_data;
9314 int retv = 1;
9315 int x;
9316
9317 /* save current state of GPCNTL and GPREG */
9318 old_gpreg = INB (nc_gpreg);
9319 old_gpcntl = INB (nc_gpcntl);
9320 gpcntl = old_gpcntl & 0x1c;
9321
9322 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9323 OUTB (nc_gpreg, old_gpreg);
9324 OUTB (nc_gpcntl, gpcntl);
9325
9326 /* this is to set NVRAM into a known state with GPIO0/1 both low */
9327 gpreg = old_gpreg;
9328 S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9329 S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9330
9331 /* now set NVRAM inactive with GPIO0/1 both high */
9332 S24C16_stop(np, &gpreg);
9333
9334 /* activate NVRAM */
9335 S24C16_start(np, &gpreg);
9336
9337 /* write device code and random address MSB */
9338 S24C16_write_byte(np, &ack_data,
9339 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9340 if (ack_data & 0x01)
9341 goto out;
9342
9343 /* write random address LSB */
9344 S24C16_write_byte(np, &ack_data,
9345 offset & 0xff, &gpreg, &gpcntl);
9346 if (ack_data & 0x01)
9347 goto out;
9348
9349 /* regenerate START state to set up for reading */
9350 S24C16_start(np, &gpreg);
9351
9352 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9353 S24C16_write_byte(np, &ack_data,
9354 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9355 if (ack_data & 0x01)
9356 goto out;
9357
9358 /* now set up GPIO0 for inputting data */
9359 gpcntl |= 0x01;
9360 OUTB (nc_gpcntl, gpcntl);
9361
9362 /* input all requested data - only part of total NVRAM */
9363 for (x = 0; x < len; x++)
9364 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9365
9366 /* finally put NVRAM back in inactive mode */
9367 gpcntl &= 0xfe;
9368 OUTB (nc_gpcntl, gpcntl);
9369 S24C16_stop(np, &gpreg);
9370 retv = 0;
9371 out:
9372 /* return GPIO0/1 to original states after having accessed NVRAM */
9373 OUTB (nc_gpcntl, old_gpcntl);
9374 OUTB (nc_gpreg, old_gpreg);
9375
9376 return retv;
9377 }
9378
9379 #undef SET_BIT /* 0 */
9380 #undef CLR_BIT /* 1 */
9381 #undef SET_CLK /* 2 */
9382 #undef CLR_CLK /* 3 */
9383
9384 /*
9385 * Try reading Symbios NVRAM.
9386 * Return 0 if OK.
9387 */
9388 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9389 {
9390 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9391 u_char *data = (u_char *) nvram;
9392 int len = sizeof(*nvram);
9393 u_short csum;
9394 int x;
9395
9396 /* probe the 24c16 and read the SYMBIOS 24c16 area */
9397 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9398 return 1;
9399
9400 /* check valid NVRAM signature, verify byte count and checksum */
9401 if (nvram->type != 0 ||
9402 bcmp(nvram->trailer, Symbios_trailer, 6) ||
9403 nvram->byte_count != len - 12)
9404 return 1;
9405
9406 /* verify checksum */
9407 for (x = 6, csum = 0; x < len - 6; x++)
9408 csum += data[x];
9409 if (csum != nvram->checksum)
9410 return 1;
9411
9412 return 0;
9413 }
9414
9415 /*
9416 * 93C46 EEPROM reading.
9417 *
9418 * GPOI0 - data in
9419 * GPIO1 - data out
9420 * GPIO2 - clock
9421 * GPIO4 - chip select
9422 *
9423 * Used by Tekram.
9424 */
9425
9426 /*
9427 * Pulse clock bit in GPIO0
9428 */
9429 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9430 {
9431 OUTB (nc_gpreg, *gpreg | 0x04);
9432 UDELAY (2);
9433 OUTB (nc_gpreg, *gpreg);
9434 }
9435
9436 /*
9437 * Read bit from NVRAM
9438 */
9439 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9440 {
9441 UDELAY (2);
9442 T93C46_Clk(np, gpreg);
9443 *read_bit = INB (nc_gpreg);
9444 }
9445
9446 /*
9447 * Write bit to GPIO0
9448 */
9449 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9450 {
9451 if (write_bit & 0x01)
9452 *gpreg |= 0x02;
9453 else
9454 *gpreg &= 0xfd;
9455
9456 *gpreg |= 0x10;
9457
9458 OUTB (nc_gpreg, *gpreg);
9459 UDELAY (2);
9460
9461 T93C46_Clk(np, gpreg);
9462 }
9463
9464 /*
9465 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9466 */
9467 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9468 {
9469 *gpreg &= 0xef;
9470 OUTB (nc_gpreg, *gpreg);
9471 UDELAY (2);
9472
9473 T93C46_Clk(np, gpreg);
9474 }
9475
9476 /*
9477 * Send read command and address to NVRAM
9478 */
9479 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9480 u_char *read_bit, u_char *gpreg)
9481 {
9482 int x;
9483
9484 /* send 9 bits, start bit (1), command (2), address (6) */
9485 for (x = 0; x < 9; x++)
9486 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9487
9488 *read_bit = INB (nc_gpreg);
9489 }
9490
9491 /*
9492 * READ 2 bytes from the NVRAM
9493 */
9494 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9495 {
9496 int x;
9497 u_char read_bit;
9498
9499 *nvram_data = 0;
9500 for (x = 0; x < 16; x++) {
9501 T93C46_Read_Bit(np, &read_bit, gpreg);
9502
9503 if (read_bit & 0x01)
9504 *nvram_data |= (0x01 << (15 - x));
9505 else
9506 *nvram_data &= ~(0x01 << (15 - x));
9507 }
9508 }
9509
9510 /*
9511 * Read Tekram NvRAM data.
9512 */
9513 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9514 {
9515 u_char read_bit;
9516 int x;
9517
9518 for (x = 0; x < len; x++) {
9519 /* output read command and address */
9520 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9521 if (read_bit & 0x01)
9522 return 1; /* Bad */
9523 T93C46_Read_Word(np, &data[x], gpreg);
9524 T93C46_Stop(np, gpreg);
9525 }
9526
9527 return 0;
9528 }
9529
9530 /*
9531 * Try reading 93C46 Tekram NVRAM.
9532 */
9533 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9534 {
9535 u_char gpcntl, gpreg;
9536 u_char old_gpcntl, old_gpreg;
9537 int retv = 1;
9538
9539 /* save current state of GPCNTL and GPREG */
9540 old_gpreg = INB (nc_gpreg);
9541 old_gpcntl = INB (nc_gpcntl);
9542
9543 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9544 1/2/4 out */
9545 gpreg = old_gpreg & 0xe9;
9546 OUTB (nc_gpreg, gpreg);
9547 gpcntl = (old_gpcntl & 0xe9) | 0x09;
9548 OUTB (nc_gpcntl, gpcntl);
9549
9550 /* input all of NVRAM, 64 words */
9551 retv = T93C46_Read_Data(np, (u_short *) nvram,
9552 sizeof(*nvram) / sizeof(short), &gpreg);
9553
9554 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9555 OUTB (nc_gpcntl, old_gpcntl);
9556 OUTB (nc_gpreg, old_gpreg);
9557
9558 return retv;
9559 }
9560
9561 /*
9562 * Try reading Tekram NVRAM.
9563 * Return 0 if OK.
9564 */
9565 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9566 {
9567 u_char *data = (u_char *) nvram;
9568 int len = sizeof(*nvram);
9569 u_short csum;
9570 int x;
9571
9572 switch (np->device_id) {
9573 case PCI_ID_SYM53C885:
9574 case PCI_ID_SYM53C895:
9575 case PCI_ID_SYM53C896:
9576 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9577 data, len);
9578 break;
9579 case PCI_ID_SYM53C875:
9580 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9581 data, len);
9582 if (!x)
9583 break;
9584 default:
9585 x = sym_read_T93C46_nvram(np, nvram);
9586 break;
9587 }
9588 if (x)
9589 return 1;
9590
9591 /* verify checksum */
9592 for (x = 0, csum = 0; x < len - 1; x += 2)
9593 csum += data[x] + (data[x+1] << 8);
9594 if (csum != 0x1234)
9595 return 1;
9596
9597 return 0;
9598 }
9599
9600 #endif /* SYM_CONF_NVRAM_SUPPORT */
9601