1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 /* #define CAM_NEW_TRAN_CODE */ 65 66 #include <sys/param.h> 67 68 /* 69 * Driver configuration options. 70 */ 71 #include "opt_sym.h" 72 #include <dev/sym/sym_conf.h> 73 74 75 #include <sys/systm.h> 76 #include <sys/malloc.h> 77 #include <sys/endian.h> 78 #include <sys/kernel.h> 79 #include <sys/lock.h> 80 #include <sys/mutex.h> 81 #include <sys/module.h> 82 #include <sys/bus.h> 83 84 #include <sys/proc.h> 85 86 #include <dev/pci/pcireg.h> 87 #include <dev/pci/pcivar.h> 88 89 #include <machine/bus_memio.h> 90 /* 91 * Only include bus_pio if needed. 92 * This avoids bus space primitives to be uselessly bloated 93 * by out-of-age PIO operations. 94 */ 95 #ifdef SYM_CONF_IOMAPPED 96 #include <machine/bus_pio.h> 97 #endif 98 #include <machine/bus.h> 99 100 #include <machine/resource.h> 101 #include <sys/rman.h> 102 103 #include <cam/cam.h> 104 #include <cam/cam_ccb.h> 105 #include <cam/cam_sim.h> 106 #include <cam/cam_xpt_sim.h> 107 #include <cam/cam_debug.h> 108 109 #include <cam/scsi/scsi_all.h> 110 #include <cam/scsi/scsi_message.h> 111 112 #include <vm/vm.h> 113 #include <vm/vm_param.h> 114 #include <vm/pmap.h> 115 116 /* Short and quite clear integer types */ 117 typedef int8_t s8; 118 typedef int16_t s16; 119 typedef int32_t s32; 120 typedef u_int8_t u8; 121 typedef u_int16_t u16; 122 typedef u_int32_t u32; 123 124 /* 125 * From 'cam.error_recovery_diffs.20010313.context' patch. 126 */ 127 #ifdef CAM_NEW_TRAN_CODE 128 #define FreeBSD_New_Tran_Settings 129 #endif /* CAM_NEW_TRAN_CODE */ 130 131 /* 132 * Driver definitions. 133 */ 134 #include <dev/sym/sym_defs.h> 135 #include <dev/sym/sym_fw.h> 136 137 /* 138 * IA32 architecture does not reorder STORES and prevents 139 * LOADS from passing STORES. It is called `program order' 140 * by Intel and allows device drivers to deal with memory 141 * ordering by only ensuring that the code is not reordered 142 * by the compiler when ordering is required. 143 * Other architectures implement a weaker ordering that 144 * requires memory barriers (and also IO barriers when they 145 * make sense) to be used. 146 */ 147 148 #if defined __i386__ || defined __amd64__ 149 #define MEMORY_BARRIER() do { ; } while(0) 150 #elif defined __alpha__ 151 #define MEMORY_BARRIER() alpha_mb() 152 #elif defined __powerpc__ 153 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 154 #elif defined __ia64__ 155 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 156 #elif defined __sparc64__ 157 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 158 #else 159 #error "Not supported platform" 160 #endif 161 162 /* 163 * Portable but silly implemented byte order primitives. 164 * We define the primitives we need, since FreeBSD doesn't 165 * seem to have them yet. 166 */ 167 #if BYTE_ORDER == BIG_ENDIAN 168 169 #define __revb16(x) ( (((u16)(x) & (u16)0x00ffU) << 8) | \ 170 (((u16)(x) & (u16)0xff00U) >> 8) ) 171 #define __revb32(x) ( (((u32)(x) & 0x000000ffU) << 24) | \ 172 (((u32)(x) & 0x0000ff00U) << 8) | \ 173 (((u32)(x) & 0x00ff0000U) >> 8) | \ 174 (((u32)(x) & 0xff000000U) >> 24) ) 175 176 #define __htole16(v) __revb16(v) 177 #define __htole32(v) __revb32(v) 178 #define __le16toh(v) __htole16(v) 179 #define __le32toh(v) __htole32(v) 180 181 static __inline u16 _htole16(u16 v) { return __htole16(v); } 182 static __inline u32 _htole32(u32 v) { return __htole32(v); } 183 #define _le16toh _htole16 184 #define _le32toh _htole32 185 186 #else /* LITTLE ENDIAN */ 187 188 #define __htole16(v) (v) 189 #define __htole32(v) (v) 190 #define __le16toh(v) (v) 191 #define __le32toh(v) (v) 192 193 #define _htole16(v) (v) 194 #define _htole32(v) (v) 195 #define _le16toh(v) (v) 196 #define _le32toh(v) (v) 197 198 #endif /* BYTE_ORDER */ 199 200 /* 201 * A la VMS/CAM-3 queue management. 202 */ 203 204 typedef struct sym_quehead { 205 struct sym_quehead *flink; /* Forward pointer */ 206 struct sym_quehead *blink; /* Backward pointer */ 207 } SYM_QUEHEAD; 208 209 #define sym_que_init(ptr) do { \ 210 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 211 } while (0) 212 213 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 214 { 215 return (head->flink == head) ? 0 : head->flink; 216 } 217 218 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 219 { 220 return (head->blink == head) ? 0 : head->blink; 221 } 222 223 static __inline void __sym_que_add(struct sym_quehead * new, 224 struct sym_quehead * blink, 225 struct sym_quehead * flink) 226 { 227 flink->blink = new; 228 new->flink = flink; 229 new->blink = blink; 230 blink->flink = new; 231 } 232 233 static __inline void __sym_que_del(struct sym_quehead * blink, 234 struct sym_quehead * flink) 235 { 236 flink->blink = blink; 237 blink->flink = flink; 238 } 239 240 static __inline int sym_que_empty(struct sym_quehead *head) 241 { 242 return head->flink == head; 243 } 244 245 static __inline void sym_que_splice(struct sym_quehead *list, 246 struct sym_quehead *head) 247 { 248 struct sym_quehead *first = list->flink; 249 250 if (first != list) { 251 struct sym_quehead *last = list->blink; 252 struct sym_quehead *at = head->flink; 253 254 first->blink = head; 255 head->flink = first; 256 257 last->flink = at; 258 at->blink = last; 259 } 260 } 261 262 #define sym_que_entry(ptr, type, member) \ 263 ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member))) 264 265 266 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 267 268 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 269 270 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 271 272 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 273 { 274 struct sym_quehead *elem = head->flink; 275 276 if (elem != head) 277 __sym_que_del(head, elem->flink); 278 else 279 elem = 0; 280 return elem; 281 } 282 283 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 284 285 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 286 { 287 struct sym_quehead *elem = head->blink; 288 289 if (elem != head) 290 __sym_que_del(elem->blink, head); 291 else 292 elem = 0; 293 return elem; 294 } 295 296 /* 297 * This one may be useful. 298 */ 299 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 300 for (qp = (head)->flink; qp != (head); qp = qp->flink) 301 /* 302 * FreeBSD does not offer our kind of queue in the CAM CCB. 303 * So, we have to cast. 304 */ 305 #define sym_qptr(p) ((struct sym_quehead *) (p)) 306 307 /* 308 * Simple bitmap operations. 309 */ 310 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 311 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 312 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 313 314 /* 315 * Number of tasks per device we want to handle. 316 */ 317 #if SYM_CONF_MAX_TAG_ORDER > 8 318 #error "more than 256 tags per logical unit not allowed." 319 #endif 320 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 321 322 /* 323 * Donnot use more tasks that we can handle. 324 */ 325 #ifndef SYM_CONF_MAX_TAG 326 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 327 #endif 328 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 329 #undef SYM_CONF_MAX_TAG 330 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 331 #endif 332 333 /* 334 * This one means 'NO TAG for this job' 335 */ 336 #define NO_TAG (256) 337 338 /* 339 * Number of SCSI targets. 340 */ 341 #if SYM_CONF_MAX_TARGET > 16 342 #error "more than 16 targets not allowed." 343 #endif 344 345 /* 346 * Number of logical units per target. 347 */ 348 #if SYM_CONF_MAX_LUN > 64 349 #error "more than 64 logical units per target not allowed." 350 #endif 351 352 /* 353 * Asynchronous pre-scaler (ns). Shall be 40 for 354 * the SCSI timings to be compliant. 355 */ 356 #define SYM_CONF_MIN_ASYNC (40) 357 358 /* 359 * Number of entries in the START and DONE queues. 360 * 361 * We limit to 1 PAGE in order to succeed allocation of 362 * these queues. Each entry is 8 bytes long (2 DWORDS). 363 */ 364 #ifdef SYM_CONF_MAX_START 365 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 366 #else 367 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 368 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 369 #endif 370 371 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 372 #undef SYM_CONF_MAX_QUEUE 373 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 374 #undef SYM_CONF_MAX_START 375 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 376 #endif 377 378 /* 379 * For this one, we want a short name :-) 380 */ 381 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 382 383 /* 384 * Active debugging tags and verbosity. 385 */ 386 #define DEBUG_ALLOC (0x0001) 387 #define DEBUG_PHASE (0x0002) 388 #define DEBUG_POLL (0x0004) 389 #define DEBUG_QUEUE (0x0008) 390 #define DEBUG_RESULT (0x0010) 391 #define DEBUG_SCATTER (0x0020) 392 #define DEBUG_SCRIPT (0x0040) 393 #define DEBUG_TINY (0x0080) 394 #define DEBUG_TIMING (0x0100) 395 #define DEBUG_NEGO (0x0200) 396 #define DEBUG_TAGS (0x0400) 397 #define DEBUG_POINTER (0x0800) 398 399 #if 0 400 static int sym_debug = 0; 401 #define DEBUG_FLAGS sym_debug 402 #else 403 /* #define DEBUG_FLAGS (0x0631) */ 404 #define DEBUG_FLAGS (0x0000) 405 406 #endif 407 #define sym_verbose (np->verbose) 408 409 /* 410 * Insert a delay in micro-seconds and milli-seconds. 411 */ 412 static void UDELAY(int us) { DELAY(us); } 413 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 414 415 /* 416 * Simple power of two buddy-like allocator. 417 * 418 * This simple code is not intended to be fast, but to 419 * provide power of 2 aligned memory allocations. 420 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 421 * this allocator allows simple and fast address calculations 422 * from the SCRIPTS code. In addition, cache line alignment 423 * is guaranteed for power of 2 cache line size. 424 * 425 * This allocator has been developped for the Linux sym53c8xx 426 * driver, since this O/S does not provide naturally aligned 427 * allocations. 428 * It has the advantage of allowing the driver to use private 429 * pages of memory that will be useful if we ever need to deal 430 * with IO MMUs for PCI. 431 */ 432 433 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 434 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 435 #if 0 436 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 437 #endif 438 #define MEMO_WARN 1 439 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 440 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 441 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 442 443 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 444 #define free_pages(p) free((p), M_DEVBUF) 445 446 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 447 448 typedef struct m_link { /* Link between free memory chunks */ 449 struct m_link *next; 450 } m_link_s; 451 452 typedef struct m_vtob { /* Virtual to Bus address translation */ 453 struct m_vtob *next; 454 bus_dmamap_t dmamap; /* Map for this chunk */ 455 m_addr_t vaddr; /* Virtual address */ 456 m_addr_t baddr; /* Bus physical address */ 457 } m_vtob_s; 458 /* Hash this stuff a bit to speed up translations */ 459 #define VTOB_HASH_SHIFT 5 460 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 461 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 462 #define VTOB_HASH_CODE(m) \ 463 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 464 465 typedef struct m_pool { /* Memory pool of a given kind */ 466 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 467 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 468 m_addr_t (*getp)(struct m_pool *); 469 #ifdef MEMO_FREE_UNUSED 470 void (*freep)(struct m_pool *, m_addr_t); 471 #endif 472 #define M_GETP() mp->getp(mp) 473 #define M_FREEP(p) mp->freep(mp, p) 474 int nump; 475 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 476 struct m_pool *next; 477 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 478 } m_pool_s; 479 480 static void *___sym_malloc(m_pool_s *mp, int size) 481 { 482 int i = 0; 483 int s = (1 << MEMO_SHIFT); 484 int j; 485 m_addr_t a; 486 m_link_s *h = mp->h; 487 488 if (size > MEMO_CLUSTER_SIZE) 489 return 0; 490 491 while (size > s) { 492 s <<= 1; 493 ++i; 494 } 495 496 j = i; 497 while (!h[j].next) { 498 if (s == MEMO_CLUSTER_SIZE) { 499 h[j].next = (m_link_s *) M_GETP(); 500 if (h[j].next) 501 h[j].next->next = 0; 502 break; 503 } 504 ++j; 505 s <<= 1; 506 } 507 a = (m_addr_t) h[j].next; 508 if (a) { 509 h[j].next = h[j].next->next; 510 while (j > i) { 511 j -= 1; 512 s >>= 1; 513 h[j].next = (m_link_s *) (a+s); 514 h[j].next->next = 0; 515 } 516 } 517 #ifdef DEBUG 518 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 519 #endif 520 return (void *) a; 521 } 522 523 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 524 { 525 int i = 0; 526 int s = (1 << MEMO_SHIFT); 527 m_link_s *q; 528 m_addr_t a, b; 529 m_link_s *h = mp->h; 530 531 #ifdef DEBUG 532 printf("___sym_mfree(%p, %d)\n", ptr, size); 533 #endif 534 535 if (size > MEMO_CLUSTER_SIZE) 536 return; 537 538 while (size > s) { 539 s <<= 1; 540 ++i; 541 } 542 543 a = (m_addr_t) ptr; 544 545 while (1) { 546 #ifdef MEMO_FREE_UNUSED 547 if (s == MEMO_CLUSTER_SIZE) { 548 M_FREEP(a); 549 break; 550 } 551 #endif 552 b = a ^ s; 553 q = &h[i]; 554 while (q->next && q->next != (m_link_s *) b) { 555 q = q->next; 556 } 557 if (!q->next) { 558 ((m_link_s *) a)->next = h[i].next; 559 h[i].next = (m_link_s *) a; 560 break; 561 } 562 q->next = q->next->next; 563 a = a & b; 564 s <<= 1; 565 ++i; 566 } 567 } 568 569 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 570 { 571 void *p; 572 573 p = ___sym_malloc(mp, size); 574 575 if (DEBUG_FLAGS & DEBUG_ALLOC) 576 printf ("new %-10s[%4d] @%p.\n", name, size, p); 577 578 if (p) 579 bzero(p, size); 580 else if (uflags & MEMO_WARN) 581 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 582 583 return p; 584 } 585 586 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 587 588 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 589 { 590 if (DEBUG_FLAGS & DEBUG_ALLOC) 591 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 592 593 ___sym_mfree(mp, ptr, size); 594 595 } 596 597 /* 598 * Default memory pool we donnot need to involve in DMA. 599 */ 600 /* 601 * With the `bus dma abstraction', we use a separate pool for 602 * memory we donnot need to involve in DMA. 603 */ 604 static m_addr_t ___mp0_getp(m_pool_s *mp) 605 { 606 m_addr_t m = (m_addr_t) get_pages(); 607 if (m) 608 ++mp->nump; 609 return m; 610 } 611 612 #ifdef MEMO_FREE_UNUSED 613 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 614 { 615 free_pages(m); 616 --mp->nump; 617 } 618 #endif 619 620 #ifdef MEMO_FREE_UNUSED 621 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 622 #else 623 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 624 #endif 625 626 627 /* 628 * Actual memory allocation routine for non-DMAed memory. 629 */ 630 static void *sym_calloc(int size, char *name) 631 { 632 void *m; 633 /* Lock */ 634 m = __sym_calloc(&mp0, size, name); 635 /* Unlock */ 636 return m; 637 } 638 639 /* 640 * Actual memory allocation routine for non-DMAed memory. 641 */ 642 static void sym_mfree(void *ptr, int size, char *name) 643 { 644 /* Lock */ 645 __sym_mfree(&mp0, ptr, size, name); 646 /* Unlock */ 647 } 648 649 /* 650 * DMAable pools. 651 */ 652 /* 653 * With `bus dma abstraction', we use a separate pool per parent 654 * BUS handle. A reverse table (hashed) is maintained for virtual 655 * to BUS address translation. 656 */ 657 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 658 { 659 bus_addr_t *baddr; 660 baddr = (bus_addr_t *)arg; 661 *baddr = segs->ds_addr; 662 } 663 664 static m_addr_t ___dma_getp(m_pool_s *mp) 665 { 666 m_vtob_s *vbp; 667 void *vaddr = 0; 668 bus_addr_t baddr = 0; 669 670 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 671 if (!vbp) 672 goto out_err; 673 674 if (bus_dmamem_alloc(mp->dmat, &vaddr, 675 BUS_DMA_NOWAIT, &vbp->dmamap)) 676 goto out_err; 677 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 678 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0); 679 if (baddr) { 680 int hc = VTOB_HASH_CODE(vaddr); 681 vbp->vaddr = (m_addr_t) vaddr; 682 vbp->baddr = (m_addr_t) baddr; 683 vbp->next = mp->vtob[hc]; 684 mp->vtob[hc] = vbp; 685 ++mp->nump; 686 return (m_addr_t) vaddr; 687 } 688 out_err: 689 if (baddr) 690 bus_dmamap_unload(mp->dmat, vbp->dmamap); 691 if (vaddr) 692 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 693 if (vbp->dmamap) 694 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 695 if (vbp) 696 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 697 return 0; 698 } 699 700 #ifdef MEMO_FREE_UNUSED 701 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 702 { 703 m_vtob_s **vbpp, *vbp; 704 int hc = VTOB_HASH_CODE(m); 705 706 vbpp = &mp->vtob[hc]; 707 while (*vbpp && (*vbpp)->vaddr != m) 708 vbpp = &(*vbpp)->next; 709 if (*vbpp) { 710 vbp = *vbpp; 711 *vbpp = (*vbpp)->next; 712 bus_dmamap_unload(mp->dmat, vbp->dmamap); 713 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 714 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 715 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 716 --mp->nump; 717 } 718 } 719 #endif 720 721 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 722 { 723 m_pool_s *mp; 724 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 725 return mp; 726 } 727 728 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 729 { 730 m_pool_s *mp = 0; 731 732 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 733 if (mp) { 734 mp->dev_dmat = dev_dmat; 735 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 736 BUS_SPACE_MAXADDR_32BIT, 737 BUS_SPACE_MAXADDR_32BIT, 738 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 739 MEMO_CLUSTER_SIZE, 0, 740 busdma_lock_mutex, &Giant, &mp->dmat)) { 741 mp->getp = ___dma_getp; 742 #ifdef MEMO_FREE_UNUSED 743 mp->freep = ___dma_freep; 744 #endif 745 mp->next = mp0.next; 746 mp0.next = mp; 747 return mp; 748 } 749 } 750 if (mp) 751 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 752 return 0; 753 } 754 755 #ifdef MEMO_FREE_UNUSED 756 static void ___del_dma_pool(m_pool_s *p) 757 { 758 struct m_pool **pp = &mp0.next; 759 760 while (*pp && *pp != p) 761 pp = &(*pp)->next; 762 if (*pp) { 763 *pp = (*pp)->next; 764 bus_dma_tag_destroy(p->dmat); 765 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 766 } 767 } 768 #endif 769 770 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 771 { 772 struct m_pool *mp; 773 void *m = 0; 774 775 /* Lock */ 776 mp = ___get_dma_pool(dev_dmat); 777 if (!mp) 778 mp = ___cre_dma_pool(dev_dmat); 779 if (mp) 780 m = __sym_calloc(mp, size, name); 781 #ifdef MEMO_FREE_UNUSED 782 if (mp && !mp->nump) 783 ___del_dma_pool(mp); 784 #endif 785 /* Unlock */ 786 787 return m; 788 } 789 790 static void 791 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 792 { 793 struct m_pool *mp; 794 795 /* Lock */ 796 mp = ___get_dma_pool(dev_dmat); 797 if (mp) 798 __sym_mfree(mp, m, size, name); 799 #ifdef MEMO_FREE_UNUSED 800 if (mp && !mp->nump) 801 ___del_dma_pool(mp); 802 #endif 803 /* Unlock */ 804 } 805 806 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 807 { 808 m_pool_s *mp; 809 int hc = VTOB_HASH_CODE(m); 810 m_vtob_s *vp = 0; 811 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 812 813 /* Lock */ 814 mp = ___get_dma_pool(dev_dmat); 815 if (mp) { 816 vp = mp->vtob[hc]; 817 while (vp && (m_addr_t) vp->vaddr != a) 818 vp = vp->next; 819 } 820 /* Unlock */ 821 if (!vp) 822 panic("sym: VTOBUS FAILED!\n"); 823 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 824 } 825 826 827 /* 828 * Verbs for DMAable memory handling. 829 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 830 * being discarded. 831 */ 832 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 833 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 834 #define _sym_mfree_dma(np, p, s, n) \ 835 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 836 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 837 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 838 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 839 #define vtobus(p) _vtobus(np, p) 840 841 842 /* 843 * Print a buffer in hexadecimal format. 844 */ 845 static void sym_printb_hex (u_char *p, int n) 846 { 847 while (n-- > 0) 848 printf (" %x", *p++); 849 } 850 851 /* 852 * Same with a label at beginning and .\n at end. 853 */ 854 static void sym_printl_hex (char *label, u_char *p, int n) 855 { 856 printf ("%s", label); 857 sym_printb_hex (p, n); 858 printf (".\n"); 859 } 860 861 /* 862 * Return a string for SCSI BUS mode. 863 */ 864 static char *sym_scsi_bus_mode(int mode) 865 { 866 switch(mode) { 867 case SMODE_HVD: return "HVD"; 868 case SMODE_SE: return "SE"; 869 case SMODE_LVD: return "LVD"; 870 } 871 return "??"; 872 } 873 874 /* 875 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 876 */ 877 #ifdef SYM_CONF_NVRAM_SUPPORT 878 static u_char Tekram_sync[16] = 879 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 880 #endif 881 882 /* 883 * Union of supported NVRAM formats. 884 */ 885 struct sym_nvram { 886 int type; 887 #define SYM_SYMBIOS_NVRAM (1) 888 #define SYM_TEKRAM_NVRAM (2) 889 #ifdef SYM_CONF_NVRAM_SUPPORT 890 union { 891 Symbios_nvram Symbios; 892 Tekram_nvram Tekram; 893 } data; 894 #endif 895 }; 896 897 /* 898 * This one is hopefully useless, but actually useful. :-) 899 */ 900 #ifndef assert 901 #define assert(expression) { \ 902 if (!(expression)) { \ 903 (void)panic( \ 904 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 905 #expression, \ 906 __FILE__, __LINE__); \ 907 } \ 908 } 909 #endif 910 911 /* 912 * Some provision for a possible big endian mode supported by 913 * Symbios chips (never seen, by the way). 914 * For now, this stuff does not deserve any comments. :) 915 */ 916 917 #define sym_offb(o) (o) 918 #define sym_offw(o) (o) 919 920 /* 921 * Some provision for support for BIG ENDIAN CPU. 922 * Btw, FreeBSD does not seem to be ready yet for big endian. 923 */ 924 925 #if BYTE_ORDER == BIG_ENDIAN 926 #define cpu_to_scr(dw) _htole32(dw) 927 #define scr_to_cpu(dw) _le32toh(dw) 928 #else 929 #define cpu_to_scr(dw) (dw) 930 #define scr_to_cpu(dw) (dw) 931 #endif 932 933 /* 934 * Access to the chip IO registers and on-chip RAM. 935 * We use the `bus space' interface under FreeBSD-4 and 936 * later kernel versions. 937 */ 938 939 940 #if defined(SYM_CONF_IOMAPPED) 941 942 #define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o) 943 #define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o) 944 #define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o) 945 946 #define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v)) 947 #define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v)) 948 #define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v)) 949 950 #else /* Memory mapped IO */ 951 952 #define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o) 953 #define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o) 954 #define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o) 955 956 #define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v)) 957 #define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v)) 958 #define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v)) 959 960 #endif /* SYM_CONF_IOMAPPED */ 961 962 #define OUTRAM_OFF(o, a, l) \ 963 bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l)) 964 965 966 /* 967 * Common definitions for both bus space and legacy IO methods. 968 */ 969 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 970 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 971 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 972 973 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 974 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 975 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 976 977 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 978 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 979 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 980 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 981 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 982 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 983 984 /* 985 * We normally want the chip to have a consistent view 986 * of driver internal data structures when we restart it. 987 * Thus these macros. 988 */ 989 #define OUTL_DSP(v) \ 990 do { \ 991 MEMORY_BARRIER(); \ 992 OUTL (nc_dsp, (v)); \ 993 } while (0) 994 995 #define OUTONB_STD() \ 996 do { \ 997 MEMORY_BARRIER(); \ 998 OUTONB (nc_dcntl, (STD|NOCOM)); \ 999 } while (0) 1000 1001 /* 1002 * Command control block states. 1003 */ 1004 #define HS_IDLE (0) 1005 #define HS_BUSY (1) 1006 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 1007 #define HS_DISCONNECT (3) /* Disconnected by target */ 1008 #define HS_WAIT (4) /* waiting for resource */ 1009 1010 #define HS_DONEMASK (0x80) 1011 #define HS_COMPLETE (4|HS_DONEMASK) 1012 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 1013 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 1014 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 1015 1016 /* 1017 * Software Interrupt Codes 1018 */ 1019 #define SIR_BAD_SCSI_STATUS (1) 1020 #define SIR_SEL_ATN_NO_MSG_OUT (2) 1021 #define SIR_MSG_RECEIVED (3) 1022 #define SIR_MSG_WEIRD (4) 1023 #define SIR_NEGO_FAILED (5) 1024 #define SIR_NEGO_PROTO (6) 1025 #define SIR_SCRIPT_STOPPED (7) 1026 #define SIR_REJECT_TO_SEND (8) 1027 #define SIR_SWIDE_OVERRUN (9) 1028 #define SIR_SODL_UNDERRUN (10) 1029 #define SIR_RESEL_NO_MSG_IN (11) 1030 #define SIR_RESEL_NO_IDENTIFY (12) 1031 #define SIR_RESEL_BAD_LUN (13) 1032 #define SIR_TARGET_SELECTED (14) 1033 #define SIR_RESEL_BAD_I_T_L (15) 1034 #define SIR_RESEL_BAD_I_T_L_Q (16) 1035 #define SIR_ABORT_SENT (17) 1036 #define SIR_RESEL_ABORTED (18) 1037 #define SIR_MSG_OUT_DONE (19) 1038 #define SIR_COMPLETE_ERROR (20) 1039 #define SIR_DATA_OVERRUN (21) 1040 #define SIR_BAD_PHASE (22) 1041 #define SIR_MAX (22) 1042 1043 /* 1044 * Extended error bit codes. 1045 * xerr_status field of struct sym_ccb. 1046 */ 1047 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 1048 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 1049 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 1050 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 1051 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 1052 1053 /* 1054 * Negotiation status. 1055 * nego_status field of struct sym_ccb. 1056 */ 1057 #define NS_SYNC (1) 1058 #define NS_WIDE (2) 1059 #define NS_PPR (3) 1060 1061 /* 1062 * A CCB hashed table is used to retrieve CCB address 1063 * from DSA value. 1064 */ 1065 #define CCB_HASH_SHIFT 8 1066 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1067 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1068 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1069 1070 /* 1071 * Device flags. 1072 */ 1073 #define SYM_DISC_ENABLED (1) 1074 #define SYM_TAGS_ENABLED (1<<1) 1075 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1076 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1077 1078 /* 1079 * Host adapter miscellaneous flags. 1080 */ 1081 #define SYM_AVOID_BUS_RESET (1) 1082 #define SYM_SCAN_TARGETS_HILO (1<<1) 1083 1084 /* 1085 * Device quirks. 1086 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1087 * saving the DATA POINTER then reselects and terminates the IO. 1088 * On reselection, the automatic RESTORE DATA POINTER makes the 1089 * CURRENT DATA POINTER not point at the end of the IO. 1090 * This behaviour just breaks our calculation of the residual. 1091 * For now, we just force an AUTO SAVE on disconnection and will 1092 * fix that in a further driver version. 1093 */ 1094 #define SYM_QUIRK_AUTOSAVE 1 1095 1096 /* 1097 * Misc. 1098 */ 1099 #define SYM_SNOOP_TIMEOUT (10000000) 1100 #define SYM_PCI_IO PCIR_BAR(0) 1101 #define SYM_PCI_MMIO PCIR_BAR(1) 1102 #define SYM_PCI_RAM PCIR_BAR(2) 1103 #define SYM_PCI_RAM64 PCIR_BAR(3) 1104 1105 /* 1106 * Back-pointer from the CAM CCB to our data structures. 1107 */ 1108 #define sym_hcb_ptr spriv_ptr0 1109 /* #define sym_ccb_ptr spriv_ptr1 */ 1110 1111 /* 1112 * We mostly have to deal with pointers. 1113 * Thus these typedef's. 1114 */ 1115 typedef struct sym_tcb *tcb_p; 1116 typedef struct sym_lcb *lcb_p; 1117 typedef struct sym_ccb *ccb_p; 1118 typedef struct sym_hcb *hcb_p; 1119 1120 /* 1121 * Gather negotiable parameters value 1122 */ 1123 struct sym_trans { 1124 #ifdef FreeBSD_New_Tran_Settings 1125 u8 scsi_version; 1126 u8 spi_version; 1127 #endif 1128 u8 period; 1129 u8 offset; 1130 u8 width; 1131 u8 options; /* PPR options */ 1132 }; 1133 1134 struct sym_tinfo { 1135 struct sym_trans current; 1136 struct sym_trans goal; 1137 struct sym_trans user; 1138 }; 1139 1140 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1141 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1142 1143 /* 1144 * Global TCB HEADER. 1145 * 1146 * Due to lack of indirect addressing on earlier NCR chips, 1147 * this substructure is copied from the TCB to a global 1148 * address after selection. 1149 * For SYMBIOS chips that support LOAD/STORE this copy is 1150 * not needed and thus not performed. 1151 */ 1152 struct sym_tcbh { 1153 /* 1154 * Scripts bus addresses of LUN table accessed from scripts. 1155 * LUN #0 is a special case, since multi-lun devices are rare, 1156 * and we we want to speed-up the general case and not waste 1157 * resources. 1158 */ 1159 u32 luntbl_sa; /* bus address of this table */ 1160 u32 lun0_sa; /* bus address of LCB #0 */ 1161 /* 1162 * Actual SYNC/WIDE IO registers value for this target. 1163 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1164 * so have alignment constraints. 1165 */ 1166 /*0*/ u_char uval; /* -> SCNTL4 register */ 1167 /*1*/ u_char sval; /* -> SXFER io register */ 1168 /*2*/ u_char filler1; 1169 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1170 }; 1171 1172 /* 1173 * Target Control Block 1174 */ 1175 struct sym_tcb { 1176 /* 1177 * TCB header. 1178 * Assumed at offset 0. 1179 */ 1180 /*0*/ struct sym_tcbh head; 1181 1182 /* 1183 * LUN table used by the SCRIPTS processor. 1184 * An array of bus addresses is used on reselection. 1185 */ 1186 u32 *luntbl; /* LCBs bus address table */ 1187 1188 /* 1189 * LUN table used by the C code. 1190 */ 1191 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1192 #if SYM_CONF_MAX_LUN > 1 1193 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1194 #endif 1195 1196 /* 1197 * Bitmap that tells about LUNs that succeeded at least 1198 * 1 IO and therefore assumed to be a real device. 1199 * Avoid useless allocation of the LCB structure. 1200 */ 1201 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1202 1203 /* 1204 * Bitmap that tells about LUNs that haven't yet an LCB 1205 * allocated (not discovered or LCB allocation failed). 1206 */ 1207 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1208 1209 /* 1210 * Transfer capabilities (SIP) 1211 */ 1212 struct sym_tinfo tinfo; 1213 1214 /* 1215 * Keep track of the CCB used for the negotiation in order 1216 * to ensure that only 1 negotiation is queued at a time. 1217 */ 1218 ccb_p nego_cp; /* CCB used for the nego */ 1219 1220 /* 1221 * Set when we want to reset the device. 1222 */ 1223 u_char to_reset; 1224 1225 /* 1226 * Other user settable limits and options. 1227 * These limits are read from the NVRAM if present. 1228 */ 1229 u_char usrflags; 1230 u_short usrtags; 1231 }; 1232 1233 /* 1234 * Global LCB HEADER. 1235 * 1236 * Due to lack of indirect addressing on earlier NCR chips, 1237 * this substructure is copied from the LCB to a global 1238 * address after selection. 1239 * For SYMBIOS chips that support LOAD/STORE this copy is 1240 * not needed and thus not performed. 1241 */ 1242 struct sym_lcbh { 1243 /* 1244 * SCRIPTS address jumped by SCRIPTS on reselection. 1245 * For not probed logical units, this address points to 1246 * SCRIPTS that deal with bad LU handling (must be at 1247 * offset zero of the LCB for that reason). 1248 */ 1249 /*0*/ u32 resel_sa; 1250 1251 /* 1252 * Task (bus address of a CCB) read from SCRIPTS that points 1253 * to the unique ITL nexus allowed to be disconnected. 1254 */ 1255 u32 itl_task_sa; 1256 1257 /* 1258 * Task table bus address (read from SCRIPTS). 1259 */ 1260 u32 itlq_tbl_sa; 1261 }; 1262 1263 /* 1264 * Logical Unit Control Block 1265 */ 1266 struct sym_lcb { 1267 /* 1268 * TCB header. 1269 * Assumed at offset 0. 1270 */ 1271 /*0*/ struct sym_lcbh head; 1272 1273 /* 1274 * Task table read from SCRIPTS that contains pointers to 1275 * ITLQ nexuses. The bus address read from SCRIPTS is 1276 * inside the header. 1277 */ 1278 u32 *itlq_tbl; /* Kernel virtual address */ 1279 1280 /* 1281 * Busy CCBs management. 1282 */ 1283 u_short busy_itlq; /* Number of busy tagged CCBs */ 1284 u_short busy_itl; /* Number of busy untagged CCBs */ 1285 1286 /* 1287 * Circular tag allocation buffer. 1288 */ 1289 u_short ia_tag; /* Tag allocation index */ 1290 u_short if_tag; /* Tag release index */ 1291 u_char *cb_tags; /* Circular tags buffer */ 1292 1293 /* 1294 * Set when we want to clear all tasks. 1295 */ 1296 u_char to_clear; 1297 1298 /* 1299 * Capabilities. 1300 */ 1301 u_char user_flags; 1302 u_char current_flags; 1303 }; 1304 1305 /* 1306 * Action from SCRIPTS on a task. 1307 * Is part of the CCB, but is also used separately to plug 1308 * error handling action to perform from SCRIPTS. 1309 */ 1310 struct sym_actscr { 1311 u32 start; /* Jumped by SCRIPTS after selection */ 1312 u32 restart; /* Jumped by SCRIPTS on relection */ 1313 }; 1314 1315 /* 1316 * Phase mismatch context. 1317 * 1318 * It is part of the CCB and is used as parameters for the 1319 * DATA pointer. We need two contexts to handle correctly the 1320 * SAVED DATA POINTER. 1321 */ 1322 struct sym_pmc { 1323 struct sym_tblmove sg; /* Updated interrupted SG block */ 1324 u32 ret; /* SCRIPT return address */ 1325 }; 1326 1327 /* 1328 * LUN control block lookup. 1329 * We use a direct pointer for LUN #0, and a table of 1330 * pointers which is only allocated for devices that support 1331 * LUN(s) > 0. 1332 */ 1333 #if SYM_CONF_MAX_LUN <= 1 1334 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1335 #else 1336 #define sym_lp(np, tp, lun) \ 1337 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1338 #endif 1339 1340 /* 1341 * Status are used by the host and the script processor. 1342 * 1343 * The last four bytes (status[4]) are copied to the 1344 * scratchb register (declared as scr0..scr3) just after the 1345 * select/reselect, and copied back just after disconnecting. 1346 * Inside the script the XX_REG are used. 1347 */ 1348 1349 /* 1350 * Last four bytes (script) 1351 */ 1352 #define QU_REG scr0 1353 #define HS_REG scr1 1354 #define HS_PRT nc_scr1 1355 #define SS_REG scr2 1356 #define SS_PRT nc_scr2 1357 #define HF_REG scr3 1358 #define HF_PRT nc_scr3 1359 1360 /* 1361 * Last four bytes (host) 1362 */ 1363 #define actualquirks phys.head.status[0] 1364 #define host_status phys.head.status[1] 1365 #define ssss_status phys.head.status[2] 1366 #define host_flags phys.head.status[3] 1367 1368 /* 1369 * Host flags 1370 */ 1371 #define HF_IN_PM0 1u 1372 #define HF_IN_PM1 (1u<<1) 1373 #define HF_ACT_PM (1u<<2) 1374 #define HF_DP_SAVED (1u<<3) 1375 #define HF_SENSE (1u<<4) 1376 #define HF_EXT_ERR (1u<<5) 1377 #define HF_DATA_IN (1u<<6) 1378 #ifdef SYM_CONF_IARB_SUPPORT 1379 #define HF_HINT_IARB (1u<<7) 1380 #endif 1381 1382 /* 1383 * Global CCB HEADER. 1384 * 1385 * Due to lack of indirect addressing on earlier NCR chips, 1386 * this substructure is copied from the ccb to a global 1387 * address after selection (or reselection) and copied back 1388 * before disconnect. 1389 * For SYMBIOS chips that support LOAD/STORE this copy is 1390 * not needed and thus not performed. 1391 */ 1392 1393 struct sym_ccbh { 1394 /* 1395 * Start and restart SCRIPTS addresses (must be at 0). 1396 */ 1397 /*0*/ struct sym_actscr go; 1398 1399 /* 1400 * SCRIPTS jump address that deal with data pointers. 1401 * 'savep' points to the position in the script responsible 1402 * for the actual transfer of data. 1403 * It's written on reception of a SAVE_DATA_POINTER message. 1404 */ 1405 u32 savep; /* Jump address to saved data pointer */ 1406 u32 lastp; /* SCRIPTS address at end of data */ 1407 u32 goalp; /* Not accessed for now from SCRIPTS */ 1408 1409 /* 1410 * Status fields. 1411 */ 1412 u8 status[4]; 1413 }; 1414 1415 /* 1416 * Data Structure Block 1417 * 1418 * During execution of a ccb by the script processor, the 1419 * DSA (data structure address) register points to this 1420 * substructure of the ccb. 1421 */ 1422 struct sym_dsb { 1423 /* 1424 * CCB header. 1425 * Also assumed at offset 0 of the sym_ccb structure. 1426 */ 1427 /*0*/ struct sym_ccbh head; 1428 1429 /* 1430 * Phase mismatch contexts. 1431 * We need two to handle correctly the SAVED DATA POINTER. 1432 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1433 * for address calculation from SCRIPTS. 1434 */ 1435 struct sym_pmc pm0; 1436 struct sym_pmc pm1; 1437 1438 /* 1439 * Table data for Script 1440 */ 1441 struct sym_tblsel select; 1442 struct sym_tblmove smsg; 1443 struct sym_tblmove smsg_ext; 1444 struct sym_tblmove cmd; 1445 struct sym_tblmove sense; 1446 struct sym_tblmove wresid; 1447 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1448 }; 1449 1450 /* 1451 * Our Command Control Block 1452 */ 1453 struct sym_ccb { 1454 /* 1455 * This is the data structure which is pointed by the DSA 1456 * register when it is executed by the script processor. 1457 * It must be the first entry. 1458 */ 1459 struct sym_dsb phys; 1460 1461 /* 1462 * Pointer to CAM ccb and related stuff. 1463 */ 1464 union ccb *cam_ccb; /* CAM scsiio ccb */ 1465 u8 cdb_buf[16]; /* Copy of CDB */ 1466 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1467 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1468 int data_len; /* Total data length */ 1469 int segments; /* Number of SG segments */ 1470 1471 /* 1472 * Miscellaneous status'. 1473 */ 1474 u_char nego_status; /* Negotiation status */ 1475 u_char xerr_status; /* Extended error flags */ 1476 u32 extra_bytes; /* Extraneous bytes transferred */ 1477 1478 /* 1479 * Message areas. 1480 * We prepare a message to be sent after selection. 1481 * We may use a second one if the command is rescheduled 1482 * due to CHECK_CONDITION or COMMAND TERMINATED. 1483 * Contents are IDENTIFY and SIMPLE_TAG. 1484 * While negotiating sync or wide transfer, 1485 * a SDTR or WDTR message is appended. 1486 */ 1487 u_char scsi_smsg [12]; 1488 u_char scsi_smsg2[12]; 1489 1490 /* 1491 * Auto request sense related fields. 1492 */ 1493 u_char sensecmd[6]; /* Request Sense command */ 1494 u_char sv_scsi_status; /* Saved SCSI status */ 1495 u_char sv_xerr_status; /* Saved extended status */ 1496 int sv_resid; /* Saved residual */ 1497 1498 /* 1499 * Map for the DMA of user data. 1500 */ 1501 void *arg; /* Argument for some callback */ 1502 bus_dmamap_t dmamap; /* DMA map for user data */ 1503 u_char dmamapped; 1504 #define SYM_DMA_NONE 0 1505 #define SYM_DMA_READ 1 1506 #define SYM_DMA_WRITE 2 1507 /* 1508 * Other fields. 1509 */ 1510 u32 ccb_ba; /* BUS address of this CCB */ 1511 u_short tag; /* Tag for this transfer */ 1512 /* NO_TAG means no tag */ 1513 u_char target; 1514 u_char lun; 1515 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1516 SYM_QUEHEAD 1517 link_ccbq; /* Link to free/busy CCB queue */ 1518 u32 startp; /* Initial data pointer */ 1519 int ext_sg; /* Extreme data pointer, used */ 1520 int ext_ofs; /* to calculate the residual. */ 1521 u_char to_abort; /* Want this IO to be aborted */ 1522 }; 1523 1524 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1525 1526 /* 1527 * Host Control Block 1528 */ 1529 struct sym_hcb { 1530 /* 1531 * Global headers. 1532 * Due to poorness of addressing capabilities, earlier 1533 * chips (810, 815, 825) copy part of the data structures 1534 * (CCB, TCB and LCB) in fixed areas. 1535 */ 1536 #ifdef SYM_CONF_GENERIC_SUPPORT 1537 struct sym_ccbh ccb_head; 1538 struct sym_tcbh tcb_head; 1539 struct sym_lcbh lcb_head; 1540 #endif 1541 /* 1542 * Idle task and invalid task actions and 1543 * their bus addresses. 1544 */ 1545 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1546 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1547 1548 /* 1549 * Dummy lun table to protect us against target 1550 * returning bad lun number on reselection. 1551 */ 1552 u32 *badluntbl; /* Table physical address */ 1553 u32 badlun_sa; /* SCRIPT handler BUS address */ 1554 1555 /* 1556 * Bus address of this host control block. 1557 */ 1558 u32 hcb_ba; 1559 1560 /* 1561 * Bit 32-63 of the on-chip RAM bus address in LE format. 1562 * The START_RAM64 script loads the MMRS and MMWS from this 1563 * field. 1564 */ 1565 u32 scr_ram_seg; 1566 1567 /* 1568 * Chip and controller indentification. 1569 */ 1570 device_t device; 1571 int unit; 1572 char inst_name[8]; 1573 1574 /* 1575 * Initial value of some IO register bits. 1576 * These values are assumed to have been set by BIOS, and may 1577 * be used to probe adapter implementation differences. 1578 */ 1579 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1580 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1581 sv_stest1; 1582 1583 /* 1584 * Actual initial value of IO register bits used by the 1585 * driver. They are loaded at initialisation according to 1586 * features that are to be enabled/disabled. 1587 */ 1588 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1589 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1590 1591 /* 1592 * Target data. 1593 */ 1594 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1595 1596 /* 1597 * Target control block bus address array used by the SCRIPT 1598 * on reselection. 1599 */ 1600 u32 *targtbl; 1601 u32 targtbl_ba; 1602 1603 /* 1604 * CAM SIM information for this instance. 1605 */ 1606 struct cam_sim *sim; 1607 struct cam_path *path; 1608 1609 /* 1610 * Allocated hardware resources. 1611 */ 1612 struct resource *irq_res; 1613 struct resource *io_res; 1614 struct resource *mmio_res; 1615 struct resource *ram_res; 1616 int ram_id; 1617 void *intr; 1618 1619 /* 1620 * Bus stuff. 1621 * 1622 * My understanding of PCI is that all agents must share the 1623 * same addressing range and model. 1624 * But some hardware architecture guys provide complex and 1625 * brain-deaded stuff that makes shit. 1626 * This driver only support PCI compliant implementations and 1627 * deals with part of the BUS stuff complexity only to fit O/S 1628 * requirements. 1629 */ 1630 bus_space_handle_t io_bsh; 1631 bus_space_tag_t io_tag; 1632 bus_space_handle_t mmio_bsh; 1633 bus_space_tag_t mmio_tag; 1634 bus_space_handle_t ram_bsh; 1635 bus_space_tag_t ram_tag; 1636 1637 /* 1638 * DMA stuff. 1639 */ 1640 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1641 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1642 /* 1643 * Virtual and physical bus addresses of the chip. 1644 */ 1645 vm_offset_t mmio_va; /* MMIO kernel virtual address */ 1646 vm_offset_t mmio_pa; /* MMIO CPU physical address */ 1647 vm_offset_t mmio_ba; /* MMIO BUS address */ 1648 int mmio_ws; /* MMIO Window size */ 1649 1650 vm_offset_t ram_va; /* RAM kernel virtual address */ 1651 vm_offset_t ram_pa; /* RAM CPU physical address */ 1652 vm_offset_t ram_ba; /* RAM BUS address */ 1653 int ram_ws; /* RAM window size */ 1654 u32 io_port; /* IO port address */ 1655 1656 /* 1657 * SCRIPTS virtual and physical bus addresses. 1658 * 'script' is loaded in the on-chip RAM if present. 1659 * 'scripth' stays in main memory for all chips except the 1660 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1661 */ 1662 u_char *scripta0; /* Copies of script and scripth */ 1663 u_char *scriptb0; /* Copies of script and scripth */ 1664 vm_offset_t scripta_ba; /* Actual script and scripth */ 1665 vm_offset_t scriptb_ba; /* bus addresses. */ 1666 vm_offset_t scriptb0_ba; 1667 u_short scripta_sz; /* Actual size of script A */ 1668 u_short scriptb_sz; /* Actual size of script B */ 1669 1670 /* 1671 * Bus addresses, setup and patch methods for 1672 * the selected firmware. 1673 */ 1674 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1675 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1676 void (*fw_setup)(hcb_p np, struct sym_fw *fw); 1677 void (*fw_patch)(hcb_p np); 1678 char *fw_name; 1679 1680 /* 1681 * General controller parameters and configuration. 1682 */ 1683 u_short device_id; /* PCI device id */ 1684 u_char revision_id; /* PCI device revision id */ 1685 u_int features; /* Chip features map */ 1686 u_char myaddr; /* SCSI id of the adapter */ 1687 u_char maxburst; /* log base 2 of dwords burst */ 1688 u_char maxwide; /* Maximum transfer width */ 1689 u_char minsync; /* Min sync period factor (ST) */ 1690 u_char maxsync; /* Max sync period factor (ST) */ 1691 u_char maxoffs; /* Max scsi offset (ST) */ 1692 u_char minsync_dt; /* Min sync period factor (DT) */ 1693 u_char maxsync_dt; /* Max sync period factor (DT) */ 1694 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1695 u_char multiplier; /* Clock multiplier (1,2,4) */ 1696 u_char clock_divn; /* Number of clock divisors */ 1697 u32 clock_khz; /* SCSI clock frequency in KHz */ 1698 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1699 /* 1700 * Start queue management. 1701 * It is filled up by the host processor and accessed by the 1702 * SCRIPTS processor in order to start SCSI commands. 1703 */ 1704 volatile /* Prevent code optimizations */ 1705 u32 *squeue; /* Start queue virtual address */ 1706 u32 squeue_ba; /* Start queue BUS address */ 1707 u_short squeueput; /* Next free slot of the queue */ 1708 u_short actccbs; /* Number of allocated CCBs */ 1709 1710 /* 1711 * Command completion queue. 1712 * It is the same size as the start queue to avoid overflow. 1713 */ 1714 u_short dqueueget; /* Next position to scan */ 1715 volatile /* Prevent code optimizations */ 1716 u32 *dqueue; /* Completion (done) queue */ 1717 u32 dqueue_ba; /* Done queue BUS address */ 1718 1719 /* 1720 * Miscellaneous buffers accessed by the scripts-processor. 1721 * They shall be DWORD aligned, because they may be read or 1722 * written with a script command. 1723 */ 1724 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1725 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1726 u32 lastmsg; /* Last SCSI message sent */ 1727 u_char scratch; /* Scratch for SCSI receive */ 1728 1729 /* 1730 * Miscellaneous configuration and status parameters. 1731 */ 1732 u_char usrflags; /* Miscellaneous user flags */ 1733 u_char scsi_mode; /* Current SCSI BUS mode */ 1734 u_char verbose; /* Verbosity for this controller*/ 1735 u32 cache; /* Used for cache test at init. */ 1736 1737 /* 1738 * CCB lists and queue. 1739 */ 1740 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1741 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1742 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1743 1744 /* 1745 * During error handling and/or recovery, 1746 * active CCBs that are to be completed with 1747 * error or requeued are moved from the busy_ccbq 1748 * to the comp_ccbq prior to completion. 1749 */ 1750 SYM_QUEHEAD comp_ccbq; 1751 1752 /* 1753 * CAM CCB pending queue. 1754 */ 1755 SYM_QUEHEAD cam_ccbq; 1756 1757 /* 1758 * IMMEDIATE ARBITRATION (IARB) control. 1759 * 1760 * We keep track in 'last_cp' of the last CCB that has been 1761 * queued to the SCRIPTS processor and clear 'last_cp' when 1762 * this CCB completes. If last_cp is not zero at the moment 1763 * we queue a new CCB, we set a flag in 'last_cp' that is 1764 * used by the SCRIPTS as a hint for setting IARB. 1765 * We donnot set more than 'iarb_max' consecutive hints for 1766 * IARB in order to leave devices a chance to reselect. 1767 * By the way, any non zero value of 'iarb_max' is unfair. :) 1768 */ 1769 #ifdef SYM_CONF_IARB_SUPPORT 1770 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1771 u_short iarb_count; /* Actual # of these hints */ 1772 ccb_p last_cp; 1773 #endif 1774 1775 /* 1776 * Command abort handling. 1777 * We need to synchronize tightly with the SCRIPTS 1778 * processor in order to handle things correctly. 1779 */ 1780 u_char abrt_msg[4]; /* Message to send buffer */ 1781 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1782 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1783 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1784 }; 1785 1786 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1787 1788 /* 1789 * Return the name of the controller. 1790 */ 1791 static __inline char *sym_name(hcb_p np) 1792 { 1793 return np->inst_name; 1794 } 1795 1796 /*--------------------------------------------------------------------------*/ 1797 /*------------------------------ FIRMWARES ---------------------------------*/ 1798 /*--------------------------------------------------------------------------*/ 1799 1800 /* 1801 * This stuff will be moved to a separate source file when 1802 * the driver will be broken into several source modules. 1803 */ 1804 1805 /* 1806 * Macros used for all firmwares. 1807 */ 1808 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1809 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1810 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1811 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1812 1813 1814 #ifdef SYM_CONF_GENERIC_SUPPORT 1815 /* 1816 * Allocate firmware #1 script area. 1817 */ 1818 #define SYM_FWA_SCR sym_fw1a_scr 1819 #define SYM_FWB_SCR sym_fw1b_scr 1820 #include <dev/sym/sym_fw1.h> 1821 struct sym_fwa_ofs sym_fw1a_ofs = { 1822 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1823 }; 1824 struct sym_fwb_ofs sym_fw1b_ofs = { 1825 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1826 }; 1827 #undef SYM_FWA_SCR 1828 #undef SYM_FWB_SCR 1829 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1830 1831 /* 1832 * Allocate firmware #2 script area. 1833 */ 1834 #define SYM_FWA_SCR sym_fw2a_scr 1835 #define SYM_FWB_SCR sym_fw2b_scr 1836 #include <dev/sym/sym_fw2.h> 1837 struct sym_fwa_ofs sym_fw2a_ofs = { 1838 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1839 }; 1840 struct sym_fwb_ofs sym_fw2b_ofs = { 1841 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1842 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1843 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1844 }; 1845 #undef SYM_FWA_SCR 1846 #undef SYM_FWB_SCR 1847 1848 #undef SYM_GEN_A 1849 #undef SYM_GEN_B 1850 #undef PADDR_A 1851 #undef PADDR_B 1852 1853 #ifdef SYM_CONF_GENERIC_SUPPORT 1854 /* 1855 * Patch routine for firmware #1. 1856 */ 1857 static void 1858 sym_fw1_patch(hcb_p np) 1859 { 1860 struct sym_fw1a_scr *scripta0; 1861 struct sym_fw1b_scr *scriptb0; 1862 1863 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1864 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1865 1866 /* 1867 * Remove LED support if not needed. 1868 */ 1869 if (!(np->features & FE_LED0)) { 1870 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1871 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1872 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1873 } 1874 1875 #ifdef SYM_CONF_IARB_SUPPORT 1876 /* 1877 * If user does not want to use IMMEDIATE ARBITRATION 1878 * when we are reselected while attempting to arbitrate, 1879 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1880 */ 1881 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1882 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1883 #endif 1884 /* 1885 * Patch some data in SCRIPTS. 1886 * - start and done queue initial bus address. 1887 * - target bus address table bus address. 1888 */ 1889 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1890 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1891 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1892 } 1893 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1894 1895 /* 1896 * Patch routine for firmware #2. 1897 */ 1898 static void 1899 sym_fw2_patch(hcb_p np) 1900 { 1901 struct sym_fw2a_scr *scripta0; 1902 struct sym_fw2b_scr *scriptb0; 1903 1904 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1905 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1906 1907 /* 1908 * Remove LED support if not needed. 1909 */ 1910 if (!(np->features & FE_LED0)) { 1911 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1912 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1913 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1914 } 1915 1916 #ifdef SYM_CONF_IARB_SUPPORT 1917 /* 1918 * If user does not want to use IMMEDIATE ARBITRATION 1919 * when we are reselected while attempting to arbitrate, 1920 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1921 */ 1922 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1923 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1924 #endif 1925 /* 1926 * Patch some variable in SCRIPTS. 1927 * - start and done queue initial bus address. 1928 * - target bus address table bus address. 1929 */ 1930 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1931 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1932 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1933 1934 /* 1935 * Remove the load of SCNTL4 on reselection if not a C10. 1936 */ 1937 if (!(np->features & FE_C10)) { 1938 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1939 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1940 } 1941 1942 /* 1943 * Remove a couple of work-arounds specific to C1010 if 1944 * they are not desirable. See `sym_fw2.h' for more details. 1945 */ 1946 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1947 np->revision_id < 0x1 && 1948 np->pciclk_khz < 60000)) { 1949 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1950 scripta0->datao_phase[1] = cpu_to_scr(0); 1951 } 1952 if (!(np->device_id == PCI_ID_LSI53C1010 && 1953 /* np->revision_id < 0xff */ 1)) { 1954 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1955 scripta0->sel_done[1] = cpu_to_scr(0); 1956 } 1957 1958 /* 1959 * Patch some other variables in SCRIPTS. 1960 * These ones are loaded by the SCRIPTS processor. 1961 */ 1962 scriptb0->pm0_data_addr[0] = 1963 cpu_to_scr(np->scripta_ba + 1964 offsetof(struct sym_fw2a_scr, pm0_data)); 1965 scriptb0->pm1_data_addr[0] = 1966 cpu_to_scr(np->scripta_ba + 1967 offsetof(struct sym_fw2a_scr, pm1_data)); 1968 } 1969 1970 /* 1971 * Fill the data area in scripts. 1972 * To be done for all firmwares. 1973 */ 1974 static void 1975 sym_fw_fill_data (u32 *in, u32 *out) 1976 { 1977 int i; 1978 1979 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1980 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1981 *in++ = offsetof (struct sym_dsb, data[i]); 1982 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1983 *out++ = offsetof (struct sym_dsb, data[i]); 1984 } 1985 } 1986 1987 /* 1988 * Setup useful script bus addresses. 1989 * To be done for all firmwares. 1990 */ 1991 static void 1992 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw) 1993 { 1994 u32 *pa; 1995 u_short *po; 1996 int i; 1997 1998 /* 1999 * Build the bus address table for script A 2000 * from the script A offset table. 2001 */ 2002 po = (u_short *) fw->a_ofs; 2003 pa = (u32 *) &np->fwa_bas; 2004 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 2005 pa[i] = np->scripta_ba + po[i]; 2006 2007 /* 2008 * Same for script B. 2009 */ 2010 po = (u_short *) fw->b_ofs; 2011 pa = (u32 *) &np->fwb_bas; 2012 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 2013 pa[i] = np->scriptb_ba + po[i]; 2014 } 2015 2016 #ifdef SYM_CONF_GENERIC_SUPPORT 2017 /* 2018 * Setup routine for firmware #1. 2019 */ 2020 static void 2021 sym_fw1_setup(hcb_p np, struct sym_fw *fw) 2022 { 2023 struct sym_fw1a_scr *scripta0; 2024 struct sym_fw1b_scr *scriptb0; 2025 2026 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 2027 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 2028 2029 /* 2030 * Fill variable parts in scripts. 2031 */ 2032 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2033 2034 /* 2035 * Setup bus addresses used from the C code.. 2036 */ 2037 sym_fw_setup_bus_addresses(np, fw); 2038 } 2039 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2040 2041 /* 2042 * Setup routine for firmware #2. 2043 */ 2044 static void 2045 sym_fw2_setup(hcb_p np, struct sym_fw *fw) 2046 { 2047 struct sym_fw2a_scr *scripta0; 2048 struct sym_fw2b_scr *scriptb0; 2049 2050 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2051 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2052 2053 /* 2054 * Fill variable parts in scripts. 2055 */ 2056 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2057 2058 /* 2059 * Setup bus addresses used from the C code.. 2060 */ 2061 sym_fw_setup_bus_addresses(np, fw); 2062 } 2063 2064 /* 2065 * Allocate firmware descriptors. 2066 */ 2067 #ifdef SYM_CONF_GENERIC_SUPPORT 2068 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2069 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2070 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2071 2072 /* 2073 * Find the most appropriate firmware for a chip. 2074 */ 2075 static struct sym_fw * 2076 sym_find_firmware(struct sym_pci_chip *chip) 2077 { 2078 if (chip->features & FE_LDSTR) 2079 return &sym_fw2; 2080 #ifdef SYM_CONF_GENERIC_SUPPORT 2081 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2082 return &sym_fw1; 2083 #endif 2084 else 2085 return 0; 2086 } 2087 2088 /* 2089 * Bind a script to physical addresses. 2090 */ 2091 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2092 { 2093 u32 opcode, new, old, tmp1, tmp2; 2094 u32 *end, *cur; 2095 int relocs; 2096 2097 cur = start; 2098 end = start + len/4; 2099 2100 while (cur < end) { 2101 2102 opcode = *cur; 2103 2104 /* 2105 * If we forget to change the length 2106 * in scripts, a field will be 2107 * padded with 0. This is an illegal 2108 * command. 2109 */ 2110 if (opcode == 0) { 2111 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2112 sym_name(np), (int) (cur-start)); 2113 MDELAY (10000); 2114 ++cur; 2115 continue; 2116 }; 2117 2118 /* 2119 * We use the bogus value 0xf00ff00f ;-) 2120 * to reserve data area in SCRIPTS. 2121 */ 2122 if (opcode == SCR_DATA_ZERO) { 2123 *cur++ = 0; 2124 continue; 2125 } 2126 2127 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2128 printf ("%d: <%x>\n", (int) (cur-start), 2129 (unsigned)opcode); 2130 2131 /* 2132 * We don't have to decode ALL commands 2133 */ 2134 switch (opcode >> 28) { 2135 case 0xf: 2136 /* 2137 * LOAD / STORE DSA relative, don't relocate. 2138 */ 2139 relocs = 0; 2140 break; 2141 case 0xe: 2142 /* 2143 * LOAD / STORE absolute. 2144 */ 2145 relocs = 1; 2146 break; 2147 case 0xc: 2148 /* 2149 * COPY has TWO arguments. 2150 */ 2151 relocs = 2; 2152 tmp1 = cur[1]; 2153 tmp2 = cur[2]; 2154 if ((tmp1 ^ tmp2) & 3) { 2155 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2156 sym_name(np), (int) (cur-start)); 2157 MDELAY (10000); 2158 } 2159 /* 2160 * If PREFETCH feature not enabled, remove 2161 * the NO FLUSH bit if present. 2162 */ 2163 if ((opcode & SCR_NO_FLUSH) && 2164 !(np->features & FE_PFEN)) { 2165 opcode = (opcode & ~SCR_NO_FLUSH); 2166 } 2167 break; 2168 case 0x0: 2169 /* 2170 * MOVE/CHMOV (absolute address) 2171 */ 2172 if (!(np->features & FE_WIDE)) 2173 opcode = (opcode | OPC_MOVE); 2174 relocs = 1; 2175 break; 2176 case 0x1: 2177 /* 2178 * MOVE/CHMOV (table indirect) 2179 */ 2180 if (!(np->features & FE_WIDE)) 2181 opcode = (opcode | OPC_MOVE); 2182 relocs = 0; 2183 break; 2184 case 0x8: 2185 /* 2186 * JUMP / CALL 2187 * dont't relocate if relative :-) 2188 */ 2189 if (opcode & 0x00800000) 2190 relocs = 0; 2191 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2192 relocs = 2; 2193 else 2194 relocs = 1; 2195 break; 2196 case 0x4: 2197 case 0x5: 2198 case 0x6: 2199 case 0x7: 2200 relocs = 1; 2201 break; 2202 default: 2203 relocs = 0; 2204 break; 2205 }; 2206 2207 /* 2208 * Scriptify:) the opcode. 2209 */ 2210 *cur++ = cpu_to_scr(opcode); 2211 2212 /* 2213 * If no relocation, assume 1 argument 2214 * and just scriptize:) it. 2215 */ 2216 if (!relocs) { 2217 *cur = cpu_to_scr(*cur); 2218 ++cur; 2219 continue; 2220 } 2221 2222 /* 2223 * Otherwise performs all needed relocations. 2224 */ 2225 while (relocs--) { 2226 old = *cur; 2227 2228 switch (old & RELOC_MASK) { 2229 case RELOC_REGISTER: 2230 new = (old & ~RELOC_MASK) + np->mmio_ba; 2231 break; 2232 case RELOC_LABEL_A: 2233 new = (old & ~RELOC_MASK) + np->scripta_ba; 2234 break; 2235 case RELOC_LABEL_B: 2236 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2237 break; 2238 case RELOC_SOFTC: 2239 new = (old & ~RELOC_MASK) + np->hcb_ba; 2240 break; 2241 case 0: 2242 /* 2243 * Don't relocate a 0 address. 2244 * They are mostly used for patched or 2245 * script self-modified areas. 2246 */ 2247 if (old == 0) { 2248 new = old; 2249 break; 2250 } 2251 /* fall through */ 2252 default: 2253 new = 0; 2254 panic("sym_fw_bind_script: " 2255 "weird relocation %x\n", old); 2256 break; 2257 } 2258 2259 *cur++ = cpu_to_scr(new); 2260 } 2261 }; 2262 } 2263 2264 /*--------------------------------------------------------------------------*/ 2265 /*--------------------------- END OF FIRMARES -----------------------------*/ 2266 /*--------------------------------------------------------------------------*/ 2267 2268 /* 2269 * Function prototypes. 2270 */ 2271 static void sym_save_initial_setting (hcb_p np); 2272 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2273 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2274 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2275 static void sym_chip_reset (hcb_p np); 2276 static void sym_soft_reset (hcb_p np); 2277 static void sym_start_reset (hcb_p np); 2278 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2279 static int sym_wakeup_done (hcb_p np); 2280 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2281 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2282 static void sym_init (hcb_p np, int reason); 2283 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2284 u_char *fakp); 2285 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2286 u_char div, u_char fak); 2287 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2288 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2289 u_char per, u_char wide, u_char div, u_char fak); 2290 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2291 u_char per, u_char wide, u_char div, u_char fak); 2292 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2293 static void sym_intr (void *arg); 2294 static void sym_poll (struct cam_sim *sim); 2295 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2296 static void sym_int_sto (hcb_p np); 2297 static void sym_int_udc (hcb_p np); 2298 static void sym_int_sbmc (hcb_p np); 2299 static void sym_int_par (hcb_p np, u_short sist); 2300 static void sym_int_ma (hcb_p np); 2301 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2302 int task); 2303 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2304 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2305 static void sym_sir_task_recovery (hcb_p np, int num); 2306 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2307 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2308 static int sym_compute_residual (hcb_p np, ccb_p cp); 2309 static int sym_show_msg (u_char * msg); 2310 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2311 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2312 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2313 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2314 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2315 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2316 static void sym_int_sir (hcb_p np); 2317 static void sym_free_ccb (hcb_p np, ccb_p cp); 2318 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2319 static ccb_p sym_alloc_ccb (hcb_p np); 2320 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2321 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2322 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2323 static int sym_snooptest (hcb_p np); 2324 static void sym_selectclock(hcb_p np, u_char scntl3); 2325 static void sym_getclock (hcb_p np, int mult); 2326 static int sym_getpciclock (hcb_p np); 2327 static void sym_complete_ok (hcb_p np, ccb_p cp); 2328 static void sym_complete_error (hcb_p np, ccb_p cp); 2329 static void sym_timeout (void *arg); 2330 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2331 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2332 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2333 static void sym_action1 (struct cam_sim *sim, union ccb *ccb); 2334 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2335 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2336 ccb_p cp); 2337 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2338 bus_dma_segment_t *psegs, int nsegs); 2339 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2340 bus_dma_segment_t *psegs, int nsegs); 2341 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2342 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2343 struct ccb_trans_settings *cts); 2344 static void sym_update_dflags(hcb_p np, u_char *flags, 2345 struct ccb_trans_settings *cts); 2346 2347 static struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2348 static int sym_pci_probe (device_t dev); 2349 static int sym_pci_attach (device_t dev); 2350 2351 static void sym_pci_free (hcb_p np); 2352 static int sym_cam_attach (hcb_p np); 2353 static void sym_cam_free (hcb_p np); 2354 2355 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2356 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2357 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2358 2359 /* 2360 * Print something which allows to retrieve the controler type, 2361 * unit, target, lun concerned by a kernel message. 2362 */ 2363 static void PRINT_TARGET (hcb_p np, int target) 2364 { 2365 printf ("%s:%d:", sym_name(np), target); 2366 } 2367 2368 static void PRINT_LUN(hcb_p np, int target, int lun) 2369 { 2370 printf ("%s:%d:%d:", sym_name(np), target, lun); 2371 } 2372 2373 static void PRINT_ADDR (ccb_p cp) 2374 { 2375 if (cp && cp->cam_ccb) 2376 xpt_print_path(cp->cam_ccb->ccb_h.path); 2377 } 2378 2379 /* 2380 * Take into account this ccb in the freeze count. 2381 */ 2382 static void sym_freeze_cam_ccb(union ccb *ccb) 2383 { 2384 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2385 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2386 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2387 xpt_freeze_devq(ccb->ccb_h.path, 1); 2388 } 2389 } 2390 } 2391 2392 /* 2393 * Set the status field of a CAM CCB. 2394 */ 2395 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2396 { 2397 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2398 ccb->ccb_h.status |= status; 2399 } 2400 2401 /* 2402 * Get the status field of a CAM CCB. 2403 */ 2404 static __inline int sym_get_cam_status(union ccb *ccb) 2405 { 2406 return ccb->ccb_h.status & CAM_STATUS_MASK; 2407 } 2408 2409 /* 2410 * Enqueue a CAM CCB. 2411 */ 2412 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) 2413 { 2414 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2415 ccb->ccb_h.status = CAM_REQ_INPROG; 2416 2417 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 2418 ccb->ccb_h.timeout*hz/1000); 2419 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2420 ccb->ccb_h.sym_hcb_ptr = np; 2421 2422 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2423 } 2424 2425 /* 2426 * Complete a pending CAM CCB. 2427 */ 2428 static void sym_xpt_done(hcb_p np, union ccb *ccb) 2429 { 2430 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2431 untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch); 2432 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2433 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2434 ccb->ccb_h.sym_hcb_ptr = 0; 2435 } 2436 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2437 sym_freeze_cam_ccb(ccb); 2438 xpt_done(ccb); 2439 } 2440 2441 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2442 { 2443 sym_set_cam_status(ccb, cam_status); 2444 sym_xpt_done(np, ccb); 2445 } 2446 2447 /* 2448 * SYMBIOS chip clock divisor table. 2449 * 2450 * Divisors are multiplied by 10,000,000 in order to make 2451 * calculations more simple. 2452 */ 2453 #define _5M 5000000 2454 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2455 2456 /* 2457 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2458 * 128 transfers. All chips support at least 16 transfers 2459 * bursts. The 825A, 875 and 895 chips support bursts of up 2460 * to 128 transfers and the 895A and 896 support bursts of up 2461 * to 64 transfers. All other chips support up to 16 2462 * transfers bursts. 2463 * 2464 * For PCI 32 bit data transfers each transfer is a DWORD. 2465 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2466 * 2467 * We use log base 2 (burst length) as internal code, with 2468 * value 0 meaning "burst disabled". 2469 */ 2470 2471 /* 2472 * Burst length from burst code. 2473 */ 2474 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2475 2476 /* 2477 * Burst code from io register bits. 2478 */ 2479 #define burst_code(dmode, ctest4, ctest5) \ 2480 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2481 2482 /* 2483 * Set initial io register bits from burst code. 2484 */ 2485 static __inline void sym_init_burst(hcb_p np, u_char bc) 2486 { 2487 np->rv_ctest4 &= ~0x80; 2488 np->rv_dmode &= ~(0x3 << 6); 2489 np->rv_ctest5 &= ~0x4; 2490 2491 if (!bc) { 2492 np->rv_ctest4 |= 0x80; 2493 } 2494 else { 2495 --bc; 2496 np->rv_dmode |= ((bc & 0x3) << 6); 2497 np->rv_ctest5 |= (bc & 0x4); 2498 } 2499 } 2500 2501 2502 /* 2503 * Print out the list of targets that have some flag disabled by user. 2504 */ 2505 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2506 { 2507 int cnt; 2508 int i; 2509 2510 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2511 if (i == np->myaddr) 2512 continue; 2513 if (np->target[i].usrflags & mask) { 2514 if (!cnt++) 2515 printf("%s: %s disabled for targets", 2516 sym_name(np), msg); 2517 printf(" %d", i); 2518 } 2519 } 2520 if (cnt) 2521 printf(".\n"); 2522 } 2523 2524 /* 2525 * Save initial settings of some IO registers. 2526 * Assumed to have been set by BIOS. 2527 * We cannot reset the chip prior to reading the 2528 * IO registers, since informations will be lost. 2529 * Since the SCRIPTS processor may be running, this 2530 * is not safe on paper, but it seems to work quite 2531 * well. :) 2532 */ 2533 static void sym_save_initial_setting (hcb_p np) 2534 { 2535 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2536 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2537 np->sv_dmode = INB(nc_dmode) & 0xce; 2538 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2539 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2540 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2541 np->sv_gpcntl = INB(nc_gpcntl); 2542 np->sv_stest1 = INB(nc_stest1); 2543 np->sv_stest2 = INB(nc_stest2) & 0x20; 2544 np->sv_stest4 = INB(nc_stest4); 2545 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2546 np->sv_scntl4 = INB(nc_scntl4); 2547 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2548 } 2549 else 2550 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2551 } 2552 2553 /* 2554 * Prepare io register values used by sym_init() according 2555 * to selected and supported features. 2556 */ 2557 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2558 { 2559 u_char burst_max; 2560 u32 period; 2561 int i; 2562 2563 /* 2564 * Wide ? 2565 */ 2566 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2567 2568 /* 2569 * Get the frequency of the chip's clock. 2570 */ 2571 if (np->features & FE_QUAD) 2572 np->multiplier = 4; 2573 else if (np->features & FE_DBLR) 2574 np->multiplier = 2; 2575 else 2576 np->multiplier = 1; 2577 2578 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2579 np->clock_khz *= np->multiplier; 2580 2581 if (np->clock_khz != 40000) 2582 sym_getclock(np, np->multiplier); 2583 2584 /* 2585 * Divisor to be used for async (timer pre-scaler). 2586 */ 2587 i = np->clock_divn - 1; 2588 while (--i >= 0) { 2589 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2590 ++i; 2591 break; 2592 } 2593 } 2594 np->rv_scntl3 = i+1; 2595 2596 /* 2597 * The C1010 uses hardwired divisors for async. 2598 * So, we just throw away, the async. divisor.:-) 2599 */ 2600 if (np->features & FE_C10) 2601 np->rv_scntl3 = 0; 2602 2603 /* 2604 * Minimum synchronous period factor supported by the chip. 2605 * Btw, 'period' is in tenths of nanoseconds. 2606 */ 2607 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2608 if (period <= 250) np->minsync = 10; 2609 else if (period <= 303) np->minsync = 11; 2610 else if (period <= 500) np->minsync = 12; 2611 else np->minsync = (period + 40 - 1) / 40; 2612 2613 /* 2614 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2615 */ 2616 if (np->minsync < 25 && 2617 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2618 np->minsync = 25; 2619 else if (np->minsync < 12 && 2620 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2621 np->minsync = 12; 2622 2623 /* 2624 * Maximum synchronous period factor supported by the chip. 2625 */ 2626 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2627 np->maxsync = period > 2540 ? 254 : period / 10; 2628 2629 /* 2630 * If chip is a C1010, guess the sync limits in DT mode. 2631 */ 2632 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2633 if (np->clock_khz == 160000) { 2634 np->minsync_dt = 9; 2635 np->maxsync_dt = 50; 2636 np->maxoffs_dt = 62; 2637 } 2638 } 2639 2640 /* 2641 * 64 bit addressing (895A/896/1010) ? 2642 */ 2643 if (np->features & FE_DAC) 2644 #if BITS_PER_LONG > 32 2645 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2646 #else 2647 np->rv_ccntl1 |= (DDAC); 2648 #endif 2649 2650 /* 2651 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2652 */ 2653 if (np->features & FE_NOPM) 2654 np->rv_ccntl0 |= (ENPMJ); 2655 2656 /* 2657 * C1010 Errata. 2658 * In dual channel mode, contention occurs if internal cycles 2659 * are used. Disable internal cycles. 2660 */ 2661 if (np->device_id == PCI_ID_LSI53C1010 && 2662 np->revision_id < 0x2) 2663 np->rv_ccntl0 |= DILS; 2664 2665 /* 2666 * Select burst length (dwords) 2667 */ 2668 burst_max = SYM_SETUP_BURST_ORDER; 2669 if (burst_max == 255) 2670 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2671 np->sv_ctest5); 2672 if (burst_max > 7) 2673 burst_max = 7; 2674 if (burst_max > np->maxburst) 2675 burst_max = np->maxburst; 2676 2677 /* 2678 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2679 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2680 * based transactions on LOAD/STORE instructions. So we have 2681 * to prevent these chips from using such PCI transactions in 2682 * this driver. The generic ncr driver that does not use 2683 * LOAD/STORE instructions does not need this work-around. 2684 */ 2685 if ((np->device_id == PCI_ID_SYM53C810 && 2686 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2687 (np->device_id == PCI_ID_SYM53C860 && 2688 np->revision_id <= 0x1)) 2689 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2690 2691 /* 2692 * Select all supported special features. 2693 * If we are using on-board RAM for scripts, prefetch (PFEN) 2694 * does not help, but burst op fetch (BOF) does. 2695 * Disabling PFEN makes sure BOF will be used. 2696 */ 2697 if (np->features & FE_ERL) 2698 np->rv_dmode |= ERL; /* Enable Read Line */ 2699 if (np->features & FE_BOF) 2700 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2701 if (np->features & FE_ERMP) 2702 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2703 #if 1 2704 if ((np->features & FE_PFEN) && !np->ram_ba) 2705 #else 2706 if (np->features & FE_PFEN) 2707 #endif 2708 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2709 if (np->features & FE_CLSE) 2710 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2711 if (np->features & FE_WRIE) 2712 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2713 if (np->features & FE_DFS) 2714 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2715 2716 /* 2717 * Select some other 2718 */ 2719 if (SYM_SETUP_PCI_PARITY) 2720 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2721 if (SYM_SETUP_SCSI_PARITY) 2722 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2723 2724 /* 2725 * Get parity checking, host ID and verbose mode from NVRAM 2726 */ 2727 np->myaddr = 255; 2728 sym_nvram_setup_host (np, nvram); 2729 2730 /* 2731 * Get SCSI addr of host adapter (set by bios?). 2732 */ 2733 if (np->myaddr == 255) { 2734 np->myaddr = INB(nc_scid) & 0x07; 2735 if (!np->myaddr) 2736 np->myaddr = SYM_SETUP_HOST_ID; 2737 } 2738 2739 /* 2740 * Prepare initial io register bits for burst length 2741 */ 2742 sym_init_burst(np, burst_max); 2743 2744 /* 2745 * Set SCSI BUS mode. 2746 * - LVD capable chips (895/895A/896/1010) report the 2747 * current BUS mode through the STEST4 IO register. 2748 * - For previous generation chips (825/825A/875), 2749 * user has to tell us how to check against HVD, 2750 * since a 100% safe algorithm is not possible. 2751 */ 2752 np->scsi_mode = SMODE_SE; 2753 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2754 np->scsi_mode = (np->sv_stest4 & SMODE); 2755 else if (np->features & FE_DIFF) { 2756 if (SYM_SETUP_SCSI_DIFF == 1) { 2757 if (np->sv_scntl3) { 2758 if (np->sv_stest2 & 0x20) 2759 np->scsi_mode = SMODE_HVD; 2760 } 2761 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2762 if (!(INB(nc_gpreg) & 0x08)) 2763 np->scsi_mode = SMODE_HVD; 2764 } 2765 } 2766 else if (SYM_SETUP_SCSI_DIFF == 2) 2767 np->scsi_mode = SMODE_HVD; 2768 } 2769 if (np->scsi_mode == SMODE_HVD) 2770 np->rv_stest2 |= 0x20; 2771 2772 /* 2773 * Set LED support from SCRIPTS. 2774 * Ignore this feature for boards known to use a 2775 * specific GPIO wiring and for the 895A, 896 2776 * and 1010 that drive the LED directly. 2777 */ 2778 if ((SYM_SETUP_SCSI_LED || 2779 (nvram->type == SYM_SYMBIOS_NVRAM || 2780 (nvram->type == SYM_TEKRAM_NVRAM && 2781 np->device_id == PCI_ID_SYM53C895))) && 2782 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2783 np->features |= FE_LED0; 2784 2785 /* 2786 * Set irq mode. 2787 */ 2788 switch(SYM_SETUP_IRQ_MODE & 3) { 2789 case 2: 2790 np->rv_dcntl |= IRQM; 2791 break; 2792 case 1: 2793 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2794 break; 2795 default: 2796 break; 2797 } 2798 2799 /* 2800 * Configure targets according to driver setup. 2801 * If NVRAM present get targets setup from NVRAM. 2802 */ 2803 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2804 tcb_p tp = &np->target[i]; 2805 2806 #ifdef FreeBSD_New_Tran_Settings 2807 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2808 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2809 #endif 2810 tp->tinfo.user.period = np->minsync; 2811 tp->tinfo.user.offset = np->maxoffs; 2812 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2813 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2814 tp->usrtags = SYM_SETUP_MAX_TAG; 2815 2816 sym_nvram_setup_target (np, i, nvram); 2817 2818 /* 2819 * For now, guess PPR/DT support from the period 2820 * and BUS width. 2821 */ 2822 if (np->features & FE_ULTRA3) { 2823 if (tp->tinfo.user.period <= 9 && 2824 tp->tinfo.user.width == BUS_16_BIT) { 2825 tp->tinfo.user.options |= PPR_OPT_DT; 2826 tp->tinfo.user.offset = np->maxoffs_dt; 2827 #ifdef FreeBSD_New_Tran_Settings 2828 tp->tinfo.user.spi_version = 3; 2829 #endif 2830 } 2831 } 2832 2833 if (!tp->usrtags) 2834 tp->usrflags &= ~SYM_TAGS_ENABLED; 2835 } 2836 2837 /* 2838 * Let user know about the settings. 2839 */ 2840 i = nvram->type; 2841 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2842 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2843 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2844 np->myaddr, 2845 (np->features & FE_ULTRA3) ? 80 : 2846 (np->features & FE_ULTRA2) ? 40 : 2847 (np->features & FE_ULTRA) ? 20 : 10, 2848 sym_scsi_bus_mode(np->scsi_mode), 2849 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2850 /* 2851 * Tell him more on demand. 2852 */ 2853 if (sym_verbose) { 2854 printf("%s: %s IRQ line driver%s\n", 2855 sym_name(np), 2856 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2857 np->ram_ba ? ", using on-chip SRAM" : ""); 2858 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2859 if (np->features & FE_NOPM) 2860 printf("%s: handling phase mismatch from SCRIPTS.\n", 2861 sym_name(np)); 2862 } 2863 /* 2864 * And still more. 2865 */ 2866 if (sym_verbose > 1) { 2867 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2868 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2869 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2870 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2871 2872 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2873 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2874 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2875 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2876 } 2877 /* 2878 * Let user be aware of targets that have some disable flags set. 2879 */ 2880 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2881 if (sym_verbose) 2882 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2883 "SCAN FOR LUNS"); 2884 2885 return 0; 2886 } 2887 2888 /* 2889 * Prepare the next negotiation message if needed. 2890 * 2891 * Fill in the part of message buffer that contains the 2892 * negotiation and the nego_status field of the CCB. 2893 * Returns the size of the message in bytes. 2894 */ 2895 2896 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2897 { 2898 tcb_p tp = &np->target[cp->target]; 2899 int msglen = 0; 2900 2901 /* 2902 * Early C1010 chips need a work-around for DT 2903 * data transfer to work. 2904 */ 2905 if (!(np->features & FE_U3EN)) 2906 tp->tinfo.goal.options = 0; 2907 /* 2908 * negotiate using PPR ? 2909 */ 2910 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2911 nego = NS_PPR; 2912 /* 2913 * negotiate wide transfers ? 2914 */ 2915 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2916 nego = NS_WIDE; 2917 /* 2918 * negotiate synchronous transfers? 2919 */ 2920 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2921 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2922 nego = NS_SYNC; 2923 2924 switch (nego) { 2925 case NS_SYNC: 2926 msgptr[msglen++] = M_EXTENDED; 2927 msgptr[msglen++] = 3; 2928 msgptr[msglen++] = M_X_SYNC_REQ; 2929 msgptr[msglen++] = tp->tinfo.goal.period; 2930 msgptr[msglen++] = tp->tinfo.goal.offset; 2931 break; 2932 case NS_WIDE: 2933 msgptr[msglen++] = M_EXTENDED; 2934 msgptr[msglen++] = 2; 2935 msgptr[msglen++] = M_X_WIDE_REQ; 2936 msgptr[msglen++] = tp->tinfo.goal.width; 2937 break; 2938 case NS_PPR: 2939 msgptr[msglen++] = M_EXTENDED; 2940 msgptr[msglen++] = 6; 2941 msgptr[msglen++] = M_X_PPR_REQ; 2942 msgptr[msglen++] = tp->tinfo.goal.period; 2943 msgptr[msglen++] = 0; 2944 msgptr[msglen++] = tp->tinfo.goal.offset; 2945 msgptr[msglen++] = tp->tinfo.goal.width; 2946 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2947 break; 2948 }; 2949 2950 cp->nego_status = nego; 2951 2952 if (nego) { 2953 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2954 if (DEBUG_FLAGS & DEBUG_NEGO) { 2955 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2956 nego == NS_WIDE ? "wide msgout" : 2957 "ppr msgout", msgptr); 2958 }; 2959 }; 2960 2961 return msglen; 2962 } 2963 2964 /* 2965 * Insert a job into the start queue. 2966 */ 2967 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2968 { 2969 u_short qidx; 2970 2971 #ifdef SYM_CONF_IARB_SUPPORT 2972 /* 2973 * If the previously queued CCB is not yet done, 2974 * set the IARB hint. The SCRIPTS will go with IARB 2975 * for this job when starting the previous one. 2976 * We leave devices a chance to win arbitration by 2977 * not using more than 'iarb_max' consecutive 2978 * immediate arbitrations. 2979 */ 2980 if (np->last_cp && np->iarb_count < np->iarb_max) { 2981 np->last_cp->host_flags |= HF_HINT_IARB; 2982 ++np->iarb_count; 2983 } 2984 else 2985 np->iarb_count = 0; 2986 np->last_cp = cp; 2987 #endif 2988 2989 /* 2990 * Insert first the idle task and then our job. 2991 * The MB should ensure proper ordering. 2992 */ 2993 qidx = np->squeueput + 2; 2994 if (qidx >= MAX_QUEUE*2) qidx = 0; 2995 2996 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2997 MEMORY_BARRIER(); 2998 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2999 3000 np->squeueput = qidx; 3001 3002 if (DEBUG_FLAGS & DEBUG_QUEUE) 3003 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 3004 3005 /* 3006 * Script processor may be waiting for reselect. 3007 * Wake it up. 3008 */ 3009 MEMORY_BARRIER(); 3010 OUTB (nc_istat, SIGP|np->istat_sem); 3011 } 3012 3013 3014 /* 3015 * Soft reset the chip. 3016 * 3017 * Raising SRST when the chip is running may cause 3018 * problems on dual function chips (see below). 3019 * On the other hand, LVD devices need some delay 3020 * to settle and report actual BUS mode in STEST4. 3021 */ 3022 static void sym_chip_reset (hcb_p np) 3023 { 3024 OUTB (nc_istat, SRST); 3025 UDELAY (10); 3026 OUTB (nc_istat, 0); 3027 UDELAY(2000); /* For BUS MODE to settle */ 3028 } 3029 3030 /* 3031 * Soft reset the chip. 3032 * 3033 * Some 896 and 876 chip revisions may hang-up if we set 3034 * the SRST (soft reset) bit at the wrong time when SCRIPTS 3035 * are running. 3036 * So, we need to abort the current operation prior to 3037 * soft resetting the chip. 3038 */ 3039 static void sym_soft_reset (hcb_p np) 3040 { 3041 u_char istat; 3042 int i; 3043 3044 OUTB (nc_istat, CABRT); 3045 for (i = 1000000 ; i ; --i) { 3046 istat = INB (nc_istat); 3047 if (istat & SIP) { 3048 INW (nc_sist); 3049 continue; 3050 } 3051 if (istat & DIP) { 3052 OUTB (nc_istat, 0); 3053 INB (nc_dstat); 3054 break; 3055 } 3056 } 3057 if (!i) 3058 printf("%s: unable to abort current chip operation.\n", 3059 sym_name(np)); 3060 sym_chip_reset (np); 3061 } 3062 3063 /* 3064 * Start reset process. 3065 * 3066 * The interrupt handler will reinitialize the chip. 3067 */ 3068 static void sym_start_reset(hcb_p np) 3069 { 3070 (void) sym_reset_scsi_bus(np, 1); 3071 } 3072 3073 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3074 { 3075 u32 term; 3076 int retv = 0; 3077 3078 sym_soft_reset(np); /* Soft reset the chip */ 3079 if (enab_int) 3080 OUTW (nc_sien, RST); 3081 /* 3082 * Enable Tolerant, reset IRQD if present and 3083 * properly set IRQ mode, prior to resetting the bus. 3084 */ 3085 OUTB (nc_stest3, TE); 3086 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3087 OUTB (nc_scntl1, CRST); 3088 UDELAY (200); 3089 3090 if (!SYM_SETUP_SCSI_BUS_CHECK) 3091 goto out; 3092 /* 3093 * Check for no terminators or SCSI bus shorts to ground. 3094 * Read SCSI data bus, data parity bits and control signals. 3095 * We are expecting RESET to be TRUE and other signals to be 3096 * FALSE. 3097 */ 3098 term = INB(nc_sstat0); 3099 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3100 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3101 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3102 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3103 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3104 3105 if (!(np->features & FE_WIDE)) 3106 term &= 0x3ffff; 3107 3108 if (term != (2<<7)) { 3109 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3110 sym_name(np)); 3111 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3112 "0x%lx, expecting 0x%lx\n", 3113 sym_name(np), 3114 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3115 (u_long)term, (u_long)(2<<7)); 3116 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3117 retv = 1; 3118 } 3119 out: 3120 OUTB (nc_scntl1, 0); 3121 /* MDELAY(100); */ 3122 return retv; 3123 } 3124 3125 /* 3126 * The chip may have completed jobs. Look at the DONE QUEUE. 3127 * 3128 * On architectures that may reorder LOAD/STORE operations, 3129 * a memory barrier may be needed after the reading of the 3130 * so-called `flag' and prior to dealing with the data. 3131 */ 3132 static int sym_wakeup_done (hcb_p np) 3133 { 3134 ccb_p cp; 3135 int i, n; 3136 u32 dsa; 3137 3138 n = 0; 3139 i = np->dqueueget; 3140 while (1) { 3141 dsa = scr_to_cpu(np->dqueue[i]); 3142 if (!dsa) 3143 break; 3144 np->dqueue[i] = 0; 3145 if ((i = i+2) >= MAX_QUEUE*2) 3146 i = 0; 3147 3148 cp = sym_ccb_from_dsa(np, dsa); 3149 if (cp) { 3150 MEMORY_BARRIER(); 3151 sym_complete_ok (np, cp); 3152 ++n; 3153 } 3154 else 3155 printf ("%s: bad DSA (%x) in done queue.\n", 3156 sym_name(np), (u_int) dsa); 3157 } 3158 np->dqueueget = i; 3159 3160 return n; 3161 } 3162 3163 /* 3164 * Complete all active CCBs with error. 3165 * Used on CHIP/SCSI RESET. 3166 */ 3167 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3168 { 3169 /* 3170 * Move all active CCBs to the COMP queue 3171 * and flush this queue. 3172 */ 3173 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3174 sym_que_init(&np->busy_ccbq); 3175 sym_flush_comp_queue(np, cam_status); 3176 } 3177 3178 /* 3179 * Start chip. 3180 * 3181 * 'reason' means: 3182 * 0: initialisation. 3183 * 1: SCSI BUS RESET delivered or received. 3184 * 2: SCSI BUS MODE changed. 3185 */ 3186 static void sym_init (hcb_p np, int reason) 3187 { 3188 int i; 3189 u32 phys; 3190 3191 /* 3192 * Reset chip if asked, otherwise just clear fifos. 3193 */ 3194 if (reason == 1) 3195 sym_soft_reset(np); 3196 else { 3197 OUTB (nc_stest3, TE|CSF); 3198 OUTONB (nc_ctest3, CLF); 3199 } 3200 3201 /* 3202 * Clear Start Queue 3203 */ 3204 phys = np->squeue_ba; 3205 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3206 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3207 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3208 } 3209 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3210 3211 /* 3212 * Start at first entry. 3213 */ 3214 np->squeueput = 0; 3215 3216 /* 3217 * Clear Done Queue 3218 */ 3219 phys = np->dqueue_ba; 3220 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3221 np->dqueue[i] = 0; 3222 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3223 } 3224 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3225 3226 /* 3227 * Start at first entry. 3228 */ 3229 np->dqueueget = 0; 3230 3231 /* 3232 * Install patches in scripts. 3233 * This also let point to first position the start 3234 * and done queue pointers used from SCRIPTS. 3235 */ 3236 np->fw_patch(np); 3237 3238 /* 3239 * Wakeup all pending jobs. 3240 */ 3241 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3242 3243 /* 3244 * Init chip. 3245 */ 3246 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3247 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3248 3249 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3250 /* full arb., ena parity, par->ATN */ 3251 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3252 3253 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3254 3255 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3256 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3257 OUTB (nc_istat , SIGP ); /* Signal Process */ 3258 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3259 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3260 3261 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3262 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3263 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3264 3265 /* Extended Sreq/Sack filtering not supported on the C10 */ 3266 if (np->features & FE_C10) 3267 OUTB (nc_stest2, np->rv_stest2); 3268 else 3269 OUTB (nc_stest2, EXT|np->rv_stest2); 3270 3271 OUTB (nc_stest3, TE); /* TolerANT enable */ 3272 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3273 3274 /* 3275 * For now, disable AIP generation on C1010-66. 3276 */ 3277 if (np->device_id == PCI_ID_LSI53C1010_2) 3278 OUTB (nc_aipcntl1, DISAIP); 3279 3280 /* 3281 * C10101 Errata. 3282 * Errant SGE's when in narrow. Write bits 4 & 5 of 3283 * STEST1 register to disable SGE. We probably should do 3284 * that from SCRIPTS for each selection/reselection, but 3285 * I just don't want. :) 3286 */ 3287 if (np->device_id == PCI_ID_LSI53C1010 && 3288 /* np->revision_id < 0xff */ 1) 3289 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3290 3291 /* 3292 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3293 * Disable overlapped arbitration for some dual function devices, 3294 * regardless revision id (kind of post-chip-design feature. ;-)) 3295 */ 3296 if (np->device_id == PCI_ID_SYM53C875) 3297 OUTB (nc_ctest0, (1<<5)); 3298 else if (np->device_id == PCI_ID_SYM53C896) 3299 np->rv_ccntl0 |= DPR; 3300 3301 /* 3302 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3303 * and/or hardware phase mismatch, since only such chips 3304 * seem to support those IO registers. 3305 */ 3306 if (np->features & (FE_DAC|FE_NOPM)) { 3307 OUTB (nc_ccntl0, np->rv_ccntl0); 3308 OUTB (nc_ccntl1, np->rv_ccntl1); 3309 } 3310 3311 /* 3312 * If phase mismatch handled by scripts (895A/896/1010), 3313 * set PM jump addresses. 3314 */ 3315 if (np->features & FE_NOPM) { 3316 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3317 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3318 } 3319 3320 /* 3321 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3322 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3323 */ 3324 if (np->features & FE_LED0) 3325 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3326 else if (np->features & FE_LEDC) 3327 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3328 3329 /* 3330 * enable ints 3331 */ 3332 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3333 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3334 3335 /* 3336 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3337 * Try to eat the spurious SBMC interrupt that may occur when 3338 * we reset the chip but not the SCSI BUS (at initialization). 3339 */ 3340 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3341 OUTONW (nc_sien, SBMC); 3342 if (reason == 0) { 3343 MDELAY(100); 3344 INW (nc_sist); 3345 } 3346 np->scsi_mode = INB (nc_stest4) & SMODE; 3347 } 3348 3349 /* 3350 * Fill in target structure. 3351 * Reinitialize usrsync. 3352 * Reinitialize usrwide. 3353 * Prepare sync negotiation according to actual SCSI bus mode. 3354 */ 3355 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3356 tcb_p tp = &np->target[i]; 3357 3358 tp->to_reset = 0; 3359 tp->head.sval = 0; 3360 tp->head.wval = np->rv_scntl3; 3361 tp->head.uval = 0; 3362 3363 tp->tinfo.current.period = 0; 3364 tp->tinfo.current.offset = 0; 3365 tp->tinfo.current.width = BUS_8_BIT; 3366 tp->tinfo.current.options = 0; 3367 } 3368 3369 /* 3370 * Download SCSI SCRIPTS to on-chip RAM if present, 3371 * and start script processor. 3372 */ 3373 if (np->ram_ba) { 3374 if (sym_verbose > 1) 3375 printf ("%s: Downloading SCSI SCRIPTS.\n", 3376 sym_name(np)); 3377 if (np->ram_ws == 8192) { 3378 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3379 OUTL (nc_mmws, np->scr_ram_seg); 3380 OUTL (nc_mmrs, np->scr_ram_seg); 3381 OUTL (nc_sfs, np->scr_ram_seg); 3382 phys = SCRIPTB_BA (np, start64); 3383 } 3384 else 3385 phys = SCRIPTA_BA (np, init); 3386 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3387 } 3388 else 3389 phys = SCRIPTA_BA (np, init); 3390 3391 np->istat_sem = 0; 3392 3393 OUTL (nc_dsa, np->hcb_ba); 3394 OUTL_DSP (phys); 3395 3396 /* 3397 * Notify the XPT about the RESET condition. 3398 */ 3399 if (reason != 0) 3400 xpt_async(AC_BUS_RESET, np->path, NULL); 3401 } 3402 3403 /* 3404 * Get clock factor and sync divisor for a given 3405 * synchronous factor period. 3406 */ 3407 static int 3408 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3409 { 3410 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3411 int div = np->clock_divn; /* Number of divisors supported */ 3412 u32 fak; /* Sync factor in sxfer */ 3413 u32 per; /* Period in tenths of ns */ 3414 u32 kpc; /* (per * clk) */ 3415 int ret; 3416 3417 /* 3418 * Compute the synchronous period in tenths of nano-seconds 3419 */ 3420 if (dt && sfac <= 9) per = 125; 3421 else if (sfac <= 10) per = 250; 3422 else if (sfac == 11) per = 303; 3423 else if (sfac == 12) per = 500; 3424 else per = 40 * sfac; 3425 ret = per; 3426 3427 kpc = per * clk; 3428 if (dt) 3429 kpc <<= 1; 3430 3431 /* 3432 * For earliest C10 revision 0, we cannot use extra 3433 * clocks for the setting of the SCSI clocking. 3434 * Note that this limits the lowest sync data transfer 3435 * to 5 Mega-transfers per second and may result in 3436 * using higher clock divisors. 3437 */ 3438 #if 1 3439 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3440 /* 3441 * Look for the lowest clock divisor that allows an 3442 * output speed not faster than the period. 3443 */ 3444 while (div > 0) { 3445 --div; 3446 if (kpc > (div_10M[div] << 2)) { 3447 ++div; 3448 break; 3449 } 3450 } 3451 fak = 0; /* No extra clocks */ 3452 if (div == np->clock_divn) { /* Are we too fast ? */ 3453 ret = -1; 3454 } 3455 *divp = div; 3456 *fakp = fak; 3457 return ret; 3458 } 3459 #endif 3460 3461 /* 3462 * Look for the greatest clock divisor that allows an 3463 * input speed faster than the period. 3464 */ 3465 while (div-- > 0) 3466 if (kpc >= (div_10M[div] << 2)) break; 3467 3468 /* 3469 * Calculate the lowest clock factor that allows an output 3470 * speed not faster than the period, and the max output speed. 3471 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3472 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3473 */ 3474 if (dt) { 3475 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3476 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3477 } 3478 else { 3479 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3480 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3481 } 3482 3483 /* 3484 * Check against our hardware limits, or bugs :). 3485 */ 3486 if (fak < 0) {fak = 0; ret = -1;} 3487 if (fak > 2) {fak = 2; ret = -1;} 3488 3489 /* 3490 * Compute and return sync parameters. 3491 */ 3492 *divp = div; 3493 *fakp = fak; 3494 3495 return ret; 3496 } 3497 3498 /* 3499 * Tell the SCSI layer about the new transfer parameters. 3500 */ 3501 static void 3502 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3503 { 3504 struct ccb_trans_settings cts; 3505 struct cam_path *path; 3506 int sts; 3507 tcb_p tp = &np->target[target]; 3508 3509 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3510 CAM_LUN_WILDCARD); 3511 if (sts != CAM_REQ_CMP) 3512 return; 3513 3514 bzero(&cts, sizeof(cts)); 3515 3516 #ifdef FreeBSD_New_Tran_Settings 3517 #define cts__scsi (cts.proto_specific.scsi) 3518 #define cts__spi (cts.xport_specific.spi) 3519 3520 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3521 cts.protocol = PROTO_SCSI; 3522 cts.transport = XPORT_SPI; 3523 cts.protocol_version = tp->tinfo.current.scsi_version; 3524 cts.transport_version = tp->tinfo.current.spi_version; 3525 3526 cts__spi.valid = spi_valid; 3527 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3528 cts__spi.sync_period = tp->tinfo.current.period; 3529 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3530 cts__spi.sync_offset = tp->tinfo.current.offset; 3531 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3532 cts__spi.bus_width = tp->tinfo.current.width; 3533 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3534 cts__spi.ppr_options = tp->tinfo.current.options; 3535 #undef cts__spi 3536 #undef cts__scsi 3537 #else 3538 cts.valid = spi_valid; 3539 if (spi_valid & CCB_TRANS_SYNC_RATE_VALID) 3540 cts.sync_period = tp->tinfo.current.period; 3541 if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID) 3542 cts.sync_offset = tp->tinfo.current.offset; 3543 if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID) 3544 cts.bus_width = tp->tinfo.current.width; 3545 #endif 3546 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3547 xpt_async(AC_TRANSFER_NEG, path, &cts); 3548 xpt_free_path(path); 3549 } 3550 3551 #ifdef FreeBSD_New_Tran_Settings 3552 #define SYM_SPI_VALID_WDTR \ 3553 CTS_SPI_VALID_BUS_WIDTH | \ 3554 CTS_SPI_VALID_SYNC_RATE | \ 3555 CTS_SPI_VALID_SYNC_OFFSET 3556 #define SYM_SPI_VALID_SDTR \ 3557 CTS_SPI_VALID_SYNC_RATE | \ 3558 CTS_SPI_VALID_SYNC_OFFSET 3559 #define SYM_SPI_VALID_PPR \ 3560 CTS_SPI_VALID_PPR_OPTIONS | \ 3561 CTS_SPI_VALID_BUS_WIDTH | \ 3562 CTS_SPI_VALID_SYNC_RATE | \ 3563 CTS_SPI_VALID_SYNC_OFFSET 3564 #else 3565 #define SYM_SPI_VALID_WDTR \ 3566 CCB_TRANS_BUS_WIDTH_VALID | \ 3567 CCB_TRANS_SYNC_RATE_VALID | \ 3568 CCB_TRANS_SYNC_OFFSET_VALID 3569 #define SYM_SPI_VALID_SDTR \ 3570 CCB_TRANS_SYNC_RATE_VALID | \ 3571 CCB_TRANS_SYNC_OFFSET_VALID 3572 #define SYM_SPI_VALID_PPR \ 3573 CCB_TRANS_BUS_WIDTH_VALID | \ 3574 CCB_TRANS_SYNC_RATE_VALID | \ 3575 CCB_TRANS_SYNC_OFFSET_VALID 3576 #endif 3577 3578 /* 3579 * We received a WDTR. 3580 * Let everything be aware of the changes. 3581 */ 3582 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3583 { 3584 tcb_p tp = &np->target[cp->target]; 3585 3586 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3587 3588 /* 3589 * Tell the SCSI layer about the new transfer parameters. 3590 */ 3591 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3592 tp->tinfo.current.offset = 0; 3593 tp->tinfo.current.period = 0; 3594 tp->tinfo.current.options = 0; 3595 3596 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3597 } 3598 3599 /* 3600 * We received a SDTR. 3601 * Let everything be aware of the changes. 3602 */ 3603 static void 3604 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3605 { 3606 tcb_p tp = &np->target[cp->target]; 3607 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3608 3609 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3610 3611 /* 3612 * Tell the SCSI layer about the new transfer parameters. 3613 */ 3614 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3615 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3616 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3617 3618 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3619 } 3620 3621 /* 3622 * We received a PPR. 3623 * Let everything be aware of the changes. 3624 */ 3625 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3626 u_char per, u_char wide, u_char div, u_char fak) 3627 { 3628 tcb_p tp = &np->target[cp->target]; 3629 3630 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3631 3632 /* 3633 * Tell the SCSI layer about the new transfer parameters. 3634 */ 3635 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3636 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3637 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3638 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3639 3640 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3641 } 3642 3643 /* 3644 * Switch trans mode for current job and it's target. 3645 */ 3646 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3647 u_char per, u_char wide, u_char div, u_char fak) 3648 { 3649 SYM_QUEHEAD *qp; 3650 union ccb *ccb; 3651 tcb_p tp; 3652 u_char target = INB (nc_sdid) & 0x0f; 3653 u_char sval, wval, uval; 3654 3655 assert (cp); 3656 if (!cp) return; 3657 ccb = cp->cam_ccb; 3658 assert (ccb); 3659 if (!ccb) return; 3660 assert (target == (cp->target & 0xf)); 3661 tp = &np->target[target]; 3662 3663 sval = tp->head.sval; 3664 wval = tp->head.wval; 3665 uval = tp->head.uval; 3666 3667 #if 0 3668 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3669 sval, wval, uval, np->rv_scntl3); 3670 #endif 3671 /* 3672 * Set the offset. 3673 */ 3674 if (!(np->features & FE_C10)) 3675 sval = (sval & ~0x1f) | ofs; 3676 else 3677 sval = (sval & ~0x3f) | ofs; 3678 3679 /* 3680 * Set the sync divisor and extra clock factor. 3681 */ 3682 if (ofs != 0) { 3683 wval = (wval & ~0x70) | ((div+1) << 4); 3684 if (!(np->features & FE_C10)) 3685 sval = (sval & ~0xe0) | (fak << 5); 3686 else { 3687 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3688 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3689 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3690 } 3691 } 3692 3693 /* 3694 * Set the bus width. 3695 */ 3696 wval = wval & ~EWS; 3697 if (wide != 0) 3698 wval |= EWS; 3699 3700 /* 3701 * Set misc. ultra enable bits. 3702 */ 3703 if (np->features & FE_C10) { 3704 uval = uval & ~(U3EN|AIPCKEN); 3705 if (dt) { 3706 assert(np->features & FE_U3EN); 3707 uval |= U3EN; 3708 } 3709 } 3710 else { 3711 wval = wval & ~ULTRA; 3712 if (per <= 12) wval |= ULTRA; 3713 } 3714 3715 /* 3716 * Stop there if sync parameters are unchanged. 3717 */ 3718 if (tp->head.sval == sval && 3719 tp->head.wval == wval && 3720 tp->head.uval == uval) 3721 return; 3722 tp->head.sval = sval; 3723 tp->head.wval = wval; 3724 tp->head.uval = uval; 3725 3726 /* 3727 * Disable extended Sreq/Sack filtering if per < 50. 3728 * Not supported on the C1010. 3729 */ 3730 if (per < 50 && !(np->features & FE_C10)) 3731 OUTOFFB (nc_stest2, EXT); 3732 3733 /* 3734 * set actual value and sync_status 3735 */ 3736 OUTB (nc_sxfer, tp->head.sval); 3737 OUTB (nc_scntl3, tp->head.wval); 3738 3739 if (np->features & FE_C10) { 3740 OUTB (nc_scntl4, tp->head.uval); 3741 } 3742 3743 /* 3744 * patch ALL busy ccbs of this target. 3745 */ 3746 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3747 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3748 if (cp->target != target) 3749 continue; 3750 cp->phys.select.sel_scntl3 = tp->head.wval; 3751 cp->phys.select.sel_sxfer = tp->head.sval; 3752 if (np->features & FE_C10) { 3753 cp->phys.select.sel_scntl4 = tp->head.uval; 3754 } 3755 } 3756 } 3757 3758 /* 3759 * log message for real hard errors 3760 * 3761 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3762 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3763 * 3764 * exception register: 3765 * ds: dstat 3766 * si: sist 3767 * 3768 * SCSI bus lines: 3769 * so: control lines as driven by chip. 3770 * si: control lines as seen by chip. 3771 * sd: scsi data lines as seen by chip. 3772 * 3773 * wide/fastmode: 3774 * sxfer: (see the manual) 3775 * scntl3: (see the manual) 3776 * 3777 * current script command: 3778 * dsp: script address (relative to start of script). 3779 * dbc: first word of script command. 3780 * 3781 * First 24 register of the chip: 3782 * r0..rf 3783 */ 3784 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3785 { 3786 u32 dsp; 3787 int script_ofs; 3788 int script_size; 3789 char *script_name; 3790 u_char *script_base; 3791 int i; 3792 3793 dsp = INL (nc_dsp); 3794 3795 if (dsp > np->scripta_ba && 3796 dsp <= np->scripta_ba + np->scripta_sz) { 3797 script_ofs = dsp - np->scripta_ba; 3798 script_size = np->scripta_sz; 3799 script_base = (u_char *) np->scripta0; 3800 script_name = "scripta"; 3801 } 3802 else if (np->scriptb_ba < dsp && 3803 dsp <= np->scriptb_ba + np->scriptb_sz) { 3804 script_ofs = dsp - np->scriptb_ba; 3805 script_size = np->scriptb_sz; 3806 script_base = (u_char *) np->scriptb0; 3807 script_name = "scriptb"; 3808 } else { 3809 script_ofs = dsp; 3810 script_size = 0; 3811 script_base = 0; 3812 script_name = "mem"; 3813 } 3814 3815 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3816 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3817 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3818 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3819 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3820 (unsigned)INL (nc_dbc)); 3821 3822 if (((script_ofs & 3) == 0) && 3823 (unsigned)script_ofs < script_size) { 3824 printf ("%s: script cmd = %08x\n", sym_name(np), 3825 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3826 } 3827 3828 printf ("%s: regdump:", sym_name(np)); 3829 for (i=0; i<24;i++) 3830 printf (" %02x", (unsigned)INB_OFF(i)); 3831 printf (".\n"); 3832 3833 /* 3834 * PCI BUS error, read the PCI ststus register. 3835 */ 3836 if (dstat & (MDPE|BF)) { 3837 u_short pci_sts; 3838 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3839 if (pci_sts & 0xf900) { 3840 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3841 printf("%s: PCI STATUS = 0x%04x\n", 3842 sym_name(np), pci_sts & 0xf900); 3843 } 3844 } 3845 } 3846 3847 /* 3848 * chip interrupt handler 3849 * 3850 * In normal situations, interrupt conditions occur one at 3851 * a time. But when something bad happens on the SCSI BUS, 3852 * the chip may raise several interrupt flags before 3853 * stopping and interrupting the CPU. The additionnal 3854 * interrupt flags are stacked in some extra registers 3855 * after the SIP and/or DIP flag has been raised in the 3856 * ISTAT. After the CPU has read the interrupt condition 3857 * flag from SIST or DSTAT, the chip unstacks the other 3858 * interrupt flags and sets the corresponding bits in 3859 * SIST or DSTAT. Since the chip starts stacking once the 3860 * SIP or DIP flag is set, there is a small window of time 3861 * where the stacking does not occur. 3862 * 3863 * Typically, multiple interrupt conditions may happen in 3864 * the following situations: 3865 * 3866 * - SCSI parity error + Phase mismatch (PAR|MA) 3867 * When a parity error is detected in input phase 3868 * and the device switches to msg-in phase inside a 3869 * block MOV. 3870 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3871 * When a stupid device does not want to handle the 3872 * recovery of an SCSI parity error. 3873 * - Some combinations of STO, PAR, UDC, ... 3874 * When using non compliant SCSI stuff, when user is 3875 * doing non compliant hot tampering on the BUS, when 3876 * something really bad happens to a device, etc ... 3877 * 3878 * The heuristic suggested by SYMBIOS to handle 3879 * multiple interrupts is to try unstacking all 3880 * interrupts conditions and to handle them on some 3881 * priority based on error severity. 3882 * This will work when the unstacking has been 3883 * successful, but we cannot be 100 % sure of that, 3884 * since the CPU may have been faster to unstack than 3885 * the chip is able to stack. Hmmm ... But it seems that 3886 * such a situation is very unlikely to happen. 3887 * 3888 * If this happen, for example STO caught by the CPU 3889 * then UDC happenning before the CPU have restarted 3890 * the SCRIPTS, the driver may wrongly complete the 3891 * same command on UDC, since the SCRIPTS didn't restart 3892 * and the DSA still points to the same command. 3893 * We avoid this situation by setting the DSA to an 3894 * invalid value when the CCB is completed and before 3895 * restarting the SCRIPTS. 3896 * 3897 * Another issue is that we need some section of our 3898 * recovery procedures to be somehow uninterruptible but 3899 * the SCRIPTS processor does not provides such a 3900 * feature. For this reason, we handle recovery preferently 3901 * from the C code and check against some SCRIPTS critical 3902 * sections from the C code. 3903 * 3904 * Hopefully, the interrupt handling of the driver is now 3905 * able to resist to weird BUS error conditions, but donnot 3906 * ask me for any guarantee that it will never fail. :-) 3907 * Use at your own decision and risk. 3908 */ 3909 3910 static void sym_intr1 (hcb_p np) 3911 { 3912 u_char istat, istatc; 3913 u_char dstat; 3914 u_short sist; 3915 3916 /* 3917 * interrupt on the fly ? 3918 * 3919 * A `dummy read' is needed to ensure that the 3920 * clear of the INTF flag reaches the device 3921 * before the scanning of the DONE queue. 3922 */ 3923 istat = INB (nc_istat); 3924 if (istat & INTF) { 3925 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3926 istat = INB (nc_istat); /* DUMMY READ */ 3927 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3928 (void)sym_wakeup_done (np); 3929 }; 3930 3931 if (!(istat & (SIP|DIP))) 3932 return; 3933 3934 #if 0 /* We should never get this one */ 3935 if (istat & CABRT) 3936 OUTB (nc_istat, CABRT); 3937 #endif 3938 3939 /* 3940 * PAR and MA interrupts may occur at the same time, 3941 * and we need to know of both in order to handle 3942 * this situation properly. We try to unstack SCSI 3943 * interrupts for that reason. BTW, I dislike a LOT 3944 * such a loop inside the interrupt routine. 3945 * Even if DMA interrupt stacking is very unlikely to 3946 * happen, we also try unstacking these ones, since 3947 * this has no performance impact. 3948 */ 3949 sist = 0; 3950 dstat = 0; 3951 istatc = istat; 3952 do { 3953 if (istatc & SIP) 3954 sist |= INW (nc_sist); 3955 if (istatc & DIP) 3956 dstat |= INB (nc_dstat); 3957 istatc = INB (nc_istat); 3958 istat |= istatc; 3959 } while (istatc & (SIP|DIP)); 3960 3961 if (DEBUG_FLAGS & DEBUG_TINY) 3962 printf ("<%d|%x:%x|%x:%x>", 3963 (int)INB(nc_scr0), 3964 dstat,sist, 3965 (unsigned)INL(nc_dsp), 3966 (unsigned)INL(nc_dbc)); 3967 /* 3968 * On paper, a memory barrier may be needed here. 3969 * And since we are paranoid ... :) 3970 */ 3971 MEMORY_BARRIER(); 3972 3973 /* 3974 * First, interrupts we want to service cleanly. 3975 * 3976 * Phase mismatch (MA) is the most frequent interrupt 3977 * for chip earlier than the 896 and so we have to service 3978 * it as quickly as possible. 3979 * A SCSI parity error (PAR) may be combined with a phase 3980 * mismatch condition (MA). 3981 * Programmed interrupts (SIR) are used to call the C code 3982 * from SCRIPTS. 3983 * The single step interrupt (SSI) is not used in this 3984 * driver. 3985 */ 3986 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3987 !(dstat & (MDPE|BF|ABRT|IID))) { 3988 if (sist & PAR) sym_int_par (np, sist); 3989 else if (sist & MA) sym_int_ma (np); 3990 else if (dstat & SIR) sym_int_sir (np); 3991 else if (dstat & SSI) OUTONB_STD (); 3992 else goto unknown_int; 3993 return; 3994 }; 3995 3996 /* 3997 * Now, interrupts that donnot happen in normal 3998 * situations and that we may need to recover from. 3999 * 4000 * On SCSI RESET (RST), we reset everything. 4001 * On SCSI BUS MODE CHANGE (SBMC), we complete all 4002 * active CCBs with RESET status, prepare all devices 4003 * for negotiating again and restart the SCRIPTS. 4004 * On STO and UDC, we complete the CCB with the corres- 4005 * ponding status and restart the SCRIPTS. 4006 */ 4007 if (sist & RST) { 4008 xpt_print_path(np->path); 4009 printf("SCSI BUS reset detected.\n"); 4010 sym_init (np, 1); 4011 return; 4012 }; 4013 4014 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4015 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4016 4017 if (!(sist & (GEN|HTH|SGE)) && 4018 !(dstat & (MDPE|BF|ABRT|IID))) { 4019 if (sist & SBMC) sym_int_sbmc (np); 4020 else if (sist & STO) sym_int_sto (np); 4021 else if (sist & UDC) sym_int_udc (np); 4022 else goto unknown_int; 4023 return; 4024 }; 4025 4026 /* 4027 * Now, interrupts we are not able to recover cleanly. 4028 * 4029 * Log message for hard errors. 4030 * Reset everything. 4031 */ 4032 4033 sym_log_hard_error(np, sist, dstat); 4034 4035 if ((sist & (GEN|HTH|SGE)) || 4036 (dstat & (MDPE|BF|ABRT|IID))) { 4037 sym_start_reset(np); 4038 return; 4039 }; 4040 4041 unknown_int: 4042 /* 4043 * We just miss the cause of the interrupt. :( 4044 * Print a message. The timeout will do the real work. 4045 */ 4046 printf( "%s: unknown interrupt(s) ignored, " 4047 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 4048 sym_name(np), istat, dstat, sist); 4049 } 4050 4051 static void sym_intr(void *arg) 4052 { 4053 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 4054 sym_intr1((hcb_p) arg); 4055 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 4056 return; 4057 } 4058 4059 static void sym_poll(struct cam_sim *sim) 4060 { 4061 int s = splcam(); 4062 sym_intr(cam_sim_softc(sim)); 4063 splx(s); 4064 } 4065 4066 4067 /* 4068 * generic recovery from scsi interrupt 4069 * 4070 * The doc says that when the chip gets an SCSI interrupt, 4071 * it tries to stop in an orderly fashion, by completing 4072 * an instruction fetch that had started or by flushing 4073 * the DMA fifo for a write to memory that was executing. 4074 * Such a fashion is not enough to know if the instruction 4075 * that was just before the current DSP value has been 4076 * executed or not. 4077 * 4078 * There are some small SCRIPTS sections that deal with 4079 * the start queue and the done queue that may break any 4080 * assomption from the C code if we are interrupted 4081 * inside, so we reset if this happens. Btw, since these 4082 * SCRIPTS sections are executed while the SCRIPTS hasn't 4083 * started SCSI operations, it is very unlikely to happen. 4084 * 4085 * All the driver data structures are supposed to be 4086 * allocated from the same 4 GB memory window, so there 4087 * is a 1 to 1 relationship between DSA and driver data 4088 * structures. Since we are careful :) to invalidate the 4089 * DSA when we complete a command or when the SCRIPTS 4090 * pushes a DSA into a queue, we can trust it when it 4091 * points to a CCB. 4092 */ 4093 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4094 { 4095 u32 dsp = INL (nc_dsp); 4096 u32 dsa = INL (nc_dsa); 4097 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4098 4099 /* 4100 * If we haven't been interrupted inside the SCRIPTS 4101 * critical pathes, we can safely restart the SCRIPTS 4102 * and trust the DSA value if it matches a CCB. 4103 */ 4104 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4105 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4106 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4107 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4108 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4109 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4110 (!(dsp > SCRIPTA_BA (np, done) && 4111 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4112 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4113 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4114 /* 4115 * If we have a CCB, let the SCRIPTS call us back for 4116 * the handling of the error with SCRATCHA filled with 4117 * STARTPOS. This way, we will be able to freeze the 4118 * device queue and requeue awaiting IOs. 4119 */ 4120 if (cp) { 4121 cp->host_status = hsts; 4122 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4123 } 4124 /* 4125 * Otherwise just restart the SCRIPTS. 4126 */ 4127 else { 4128 OUTL (nc_dsa, 0xffffff); 4129 OUTL_DSP (SCRIPTA_BA (np, start)); 4130 } 4131 } 4132 else 4133 goto reset_all; 4134 4135 return; 4136 4137 reset_all: 4138 sym_start_reset(np); 4139 } 4140 4141 /* 4142 * chip exception handler for selection timeout 4143 */ 4144 static void sym_int_sto (hcb_p np) 4145 { 4146 u32 dsp = INL (nc_dsp); 4147 4148 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4149 4150 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4151 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4152 else 4153 sym_start_reset(np); 4154 } 4155 4156 /* 4157 * chip exception handler for unexpected disconnect 4158 */ 4159 static void sym_int_udc (hcb_p np) 4160 { 4161 printf ("%s: unexpected disconnect\n", sym_name(np)); 4162 sym_recover_scsi_int(np, HS_UNEXPECTED); 4163 } 4164 4165 /* 4166 * chip exception handler for SCSI bus mode change 4167 * 4168 * spi2-r12 11.2.3 says a transceiver mode change must 4169 * generate a reset event and a device that detects a reset 4170 * event shall initiate a hard reset. It says also that a 4171 * device that detects a mode change shall set data transfer 4172 * mode to eight bit asynchronous, etc... 4173 * So, just reinitializing all except chip should be enough. 4174 */ 4175 static void sym_int_sbmc (hcb_p np) 4176 { 4177 u_char scsi_mode = INB (nc_stest4) & SMODE; 4178 4179 /* 4180 * Notify user. 4181 */ 4182 xpt_print_path(np->path); 4183 printf("SCSI BUS mode change from %s to %s.\n", 4184 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4185 4186 /* 4187 * Should suspend command processing for a few seconds and 4188 * reinitialize all except the chip. 4189 */ 4190 sym_init (np, 2); 4191 } 4192 4193 /* 4194 * chip exception handler for SCSI parity error. 4195 * 4196 * When the chip detects a SCSI parity error and is 4197 * currently executing a (CH)MOV instruction, it does 4198 * not interrupt immediately, but tries to finish the 4199 * transfer of the current scatter entry before 4200 * interrupting. The following situations may occur: 4201 * 4202 * - The complete scatter entry has been transferred 4203 * without the device having changed phase. 4204 * The chip will then interrupt with the DSP pointing 4205 * to the instruction that follows the MOV. 4206 * 4207 * - A phase mismatch occurs before the MOV finished 4208 * and phase errors are to be handled by the C code. 4209 * The chip will then interrupt with both PAR and MA 4210 * conditions set. 4211 * 4212 * - A phase mismatch occurs before the MOV finished and 4213 * phase errors are to be handled by SCRIPTS. 4214 * The chip will load the DSP with the phase mismatch 4215 * JUMP address and interrupt the host processor. 4216 */ 4217 static void sym_int_par (hcb_p np, u_short sist) 4218 { 4219 u_char hsts = INB (HS_PRT); 4220 u32 dsp = INL (nc_dsp); 4221 u32 dbc = INL (nc_dbc); 4222 u32 dsa = INL (nc_dsa); 4223 u_char sbcl = INB (nc_sbcl); 4224 u_char cmd = dbc >> 24; 4225 int phase = cmd & 7; 4226 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4227 4228 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4229 sym_name(np), hsts, dbc, sbcl); 4230 4231 /* 4232 * Check that the chip is connected to the SCSI BUS. 4233 */ 4234 if (!(INB (nc_scntl1) & ISCON)) { 4235 sym_recover_scsi_int(np, HS_UNEXPECTED); 4236 return; 4237 } 4238 4239 /* 4240 * If the nexus is not clearly identified, reset the bus. 4241 * We will try to do better later. 4242 */ 4243 if (!cp) 4244 goto reset_all; 4245 4246 /* 4247 * Check instruction was a MOV, direction was INPUT and 4248 * ATN is asserted. 4249 */ 4250 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4251 goto reset_all; 4252 4253 /* 4254 * Keep track of the parity error. 4255 */ 4256 OUTONB (HF_PRT, HF_EXT_ERR); 4257 cp->xerr_status |= XE_PARITY_ERR; 4258 4259 /* 4260 * Prepare the message to send to the device. 4261 */ 4262 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4263 4264 /* 4265 * If the old phase was DATA IN phase, we have to deal with 4266 * the 3 situations described above. 4267 * For other input phases (MSG IN and STATUS), the device 4268 * must resend the whole thing that failed parity checking 4269 * or signal error. So, jumping to dispatcher should be OK. 4270 */ 4271 if (phase == 1 || phase == 5) { 4272 /* Phase mismatch handled by SCRIPTS */ 4273 if (dsp == SCRIPTB_BA (np, pm_handle)) 4274 OUTL_DSP (dsp); 4275 /* Phase mismatch handled by the C code */ 4276 else if (sist & MA) 4277 sym_int_ma (np); 4278 /* No phase mismatch occurred */ 4279 else { 4280 OUTL (nc_temp, dsp); 4281 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4282 } 4283 } 4284 else 4285 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4286 return; 4287 4288 reset_all: 4289 sym_start_reset(np); 4290 return; 4291 } 4292 4293 /* 4294 * chip exception handler for phase errors. 4295 * 4296 * We have to construct a new transfer descriptor, 4297 * to transfer the rest of the current block. 4298 */ 4299 static void sym_int_ma (hcb_p np) 4300 { 4301 u32 dbc; 4302 u32 rest; 4303 u32 dsp; 4304 u32 dsa; 4305 u32 nxtdsp; 4306 u32 *vdsp; 4307 u32 oadr, olen; 4308 u32 *tblp; 4309 u32 newcmd; 4310 u_int delta; 4311 u_char cmd; 4312 u_char hflags, hflags0; 4313 struct sym_pmc *pm; 4314 ccb_p cp; 4315 4316 dsp = INL (nc_dsp); 4317 dbc = INL (nc_dbc); 4318 dsa = INL (nc_dsa); 4319 4320 cmd = dbc >> 24; 4321 rest = dbc & 0xffffff; 4322 delta = 0; 4323 4324 /* 4325 * locate matching cp if any. 4326 */ 4327 cp = sym_ccb_from_dsa(np, dsa); 4328 4329 /* 4330 * Donnot take into account dma fifo and various buffers in 4331 * INPUT phase since the chip flushes everything before 4332 * raising the MA interrupt for interrupted INPUT phases. 4333 * For DATA IN phase, we will check for the SWIDE later. 4334 */ 4335 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4336 u_char ss0, ss2; 4337 4338 if (np->features & FE_DFBC) 4339 delta = INW (nc_dfbc); 4340 else { 4341 u32 dfifo; 4342 4343 /* 4344 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4345 */ 4346 dfifo = INL(nc_dfifo); 4347 4348 /* 4349 * Calculate remaining bytes in DMA fifo. 4350 * (CTEST5 = dfifo >> 16) 4351 */ 4352 if (dfifo & (DFS << 16)) 4353 delta = ((((dfifo >> 8) & 0x300) | 4354 (dfifo & 0xff)) - rest) & 0x3ff; 4355 else 4356 delta = ((dfifo & 0xff) - rest) & 0x7f; 4357 } 4358 4359 /* 4360 * The data in the dma fifo has not been transfered to 4361 * the target -> add the amount to the rest 4362 * and clear the data. 4363 * Check the sstat2 register in case of wide transfer. 4364 */ 4365 rest += delta; 4366 ss0 = INB (nc_sstat0); 4367 if (ss0 & OLF) rest++; 4368 if (!(np->features & FE_C10)) 4369 if (ss0 & ORF) rest++; 4370 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4371 ss2 = INB (nc_sstat2); 4372 if (ss2 & OLF1) rest++; 4373 if (!(np->features & FE_C10)) 4374 if (ss2 & ORF1) rest++; 4375 }; 4376 4377 /* 4378 * Clear fifos. 4379 */ 4380 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4381 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4382 } 4383 4384 /* 4385 * log the information 4386 */ 4387 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4388 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4389 (unsigned) rest, (unsigned) delta); 4390 4391 /* 4392 * try to find the interrupted script command, 4393 * and the address at which to continue. 4394 */ 4395 vdsp = 0; 4396 nxtdsp = 0; 4397 if (dsp > np->scripta_ba && 4398 dsp <= np->scripta_ba + np->scripta_sz) { 4399 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4400 nxtdsp = dsp; 4401 } 4402 else if (dsp > np->scriptb_ba && 4403 dsp <= np->scriptb_ba + np->scriptb_sz) { 4404 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4405 nxtdsp = dsp; 4406 } 4407 4408 /* 4409 * log the information 4410 */ 4411 if (DEBUG_FLAGS & DEBUG_PHASE) { 4412 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4413 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4414 }; 4415 4416 if (!vdsp) { 4417 printf ("%s: interrupted SCRIPT address not found.\n", 4418 sym_name (np)); 4419 goto reset_all; 4420 } 4421 4422 if (!cp) { 4423 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4424 sym_name (np)); 4425 goto reset_all; 4426 } 4427 4428 /* 4429 * get old startaddress and old length. 4430 */ 4431 oadr = scr_to_cpu(vdsp[1]); 4432 4433 if (cmd & 0x10) { /* Table indirect */ 4434 tblp = (u32 *) ((char*) &cp->phys + oadr); 4435 olen = scr_to_cpu(tblp[0]); 4436 oadr = scr_to_cpu(tblp[1]); 4437 } else { 4438 tblp = (u32 *) 0; 4439 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4440 }; 4441 4442 if (DEBUG_FLAGS & DEBUG_PHASE) { 4443 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4444 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4445 tblp, 4446 (unsigned) olen, 4447 (unsigned) oadr); 4448 }; 4449 4450 /* 4451 * check cmd against assumed interrupted script command. 4452 * If dt data phase, the MOVE instruction hasn't bit 4 of 4453 * the phase. 4454 */ 4455 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4456 PRINT_ADDR(cp); 4457 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4458 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4459 4460 goto reset_all; 4461 }; 4462 4463 /* 4464 * if old phase not dataphase, leave here. 4465 */ 4466 if (cmd & 2) { 4467 PRINT_ADDR(cp); 4468 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4469 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4470 (unsigned)oadr, (unsigned)rest); 4471 goto unexpected_phase; 4472 }; 4473 4474 /* 4475 * Choose the correct PM save area. 4476 * 4477 * Look at the PM_SAVE SCRIPT if you want to understand 4478 * this stuff. The equivalent code is implemented in 4479 * SCRIPTS for the 895A, 896 and 1010 that are able to 4480 * handle PM from the SCRIPTS processor. 4481 */ 4482 hflags0 = INB (HF_PRT); 4483 hflags = hflags0; 4484 4485 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4486 if (hflags & HF_IN_PM0) 4487 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4488 else if (hflags & HF_IN_PM1) 4489 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4490 4491 if (hflags & HF_DP_SAVED) 4492 hflags ^= HF_ACT_PM; 4493 } 4494 4495 if (!(hflags & HF_ACT_PM)) { 4496 pm = &cp->phys.pm0; 4497 newcmd = SCRIPTA_BA (np, pm0_data); 4498 } 4499 else { 4500 pm = &cp->phys.pm1; 4501 newcmd = SCRIPTA_BA (np, pm1_data); 4502 } 4503 4504 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4505 if (hflags != hflags0) 4506 OUTB (HF_PRT, hflags); 4507 4508 /* 4509 * fillin the phase mismatch context 4510 */ 4511 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4512 pm->sg.size = cpu_to_scr(rest); 4513 pm->ret = cpu_to_scr(nxtdsp); 4514 4515 /* 4516 * If we have a SWIDE, 4517 * - prepare the address to write the SWIDE from SCRIPTS, 4518 * - compute the SCRIPTS address to restart from, 4519 * - move current data pointer context by one byte. 4520 */ 4521 nxtdsp = SCRIPTA_BA (np, dispatch); 4522 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4523 (INB (nc_scntl2) & WSR)) { 4524 u32 tmp; 4525 4526 /* 4527 * Set up the table indirect for the MOVE 4528 * of the residual byte and adjust the data 4529 * pointer context. 4530 */ 4531 tmp = scr_to_cpu(pm->sg.addr); 4532 cp->phys.wresid.addr = cpu_to_scr(tmp); 4533 pm->sg.addr = cpu_to_scr(tmp + 1); 4534 tmp = scr_to_cpu(pm->sg.size); 4535 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4536 pm->sg.size = cpu_to_scr(tmp - 1); 4537 4538 /* 4539 * If only the residual byte is to be moved, 4540 * no PM context is needed. 4541 */ 4542 if ((tmp&0xffffff) == 1) 4543 newcmd = pm->ret; 4544 4545 /* 4546 * Prepare the address of SCRIPTS that will 4547 * move the residual byte to memory. 4548 */ 4549 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4550 } 4551 4552 if (DEBUG_FLAGS & DEBUG_PHASE) { 4553 PRINT_ADDR(cp); 4554 printf ("PM %x %x %x / %x %x %x.\n", 4555 hflags0, hflags, newcmd, 4556 (unsigned)scr_to_cpu(pm->sg.addr), 4557 (unsigned)scr_to_cpu(pm->sg.size), 4558 (unsigned)scr_to_cpu(pm->ret)); 4559 } 4560 4561 /* 4562 * Restart the SCRIPTS processor. 4563 */ 4564 OUTL (nc_temp, newcmd); 4565 OUTL_DSP (nxtdsp); 4566 return; 4567 4568 /* 4569 * Unexpected phase changes that occurs when the current phase 4570 * is not a DATA IN or DATA OUT phase are due to error conditions. 4571 * Such event may only happen when the SCRIPTS is using a 4572 * multibyte SCSI MOVE. 4573 * 4574 * Phase change Some possible cause 4575 * 4576 * COMMAND --> MSG IN SCSI parity error detected by target. 4577 * COMMAND --> STATUS Bad command or refused by target. 4578 * MSG OUT --> MSG IN Message rejected by target. 4579 * MSG OUT --> COMMAND Bogus target that discards extended 4580 * negotiation messages. 4581 * 4582 * The code below does not care of the new phase and so 4583 * trusts the target. Why to annoy it ? 4584 * If the interrupted phase is COMMAND phase, we restart at 4585 * dispatcher. 4586 * If a target does not get all the messages after selection, 4587 * the code assumes blindly that the target discards extended 4588 * messages and clears the negotiation status. 4589 * If the target does not want all our response to negotiation, 4590 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4591 * bloat for such a should_not_happen situation). 4592 * In all other situation, we reset the BUS. 4593 * Are these assumptions reasonnable ? (Wait and see ...) 4594 */ 4595 unexpected_phase: 4596 dsp -= 8; 4597 nxtdsp = 0; 4598 4599 switch (cmd & 7) { 4600 case 2: /* COMMAND phase */ 4601 nxtdsp = SCRIPTA_BA (np, dispatch); 4602 break; 4603 #if 0 4604 case 3: /* STATUS phase */ 4605 nxtdsp = SCRIPTA_BA (np, dispatch); 4606 break; 4607 #endif 4608 case 6: /* MSG OUT phase */ 4609 /* 4610 * If the device may want to use untagged when we want 4611 * tagged, we prepare an IDENTIFY without disc. granted, 4612 * since we will not be able to handle reselect. 4613 * Otherwise, we just don't care. 4614 */ 4615 if (dsp == SCRIPTA_BA (np, send_ident)) { 4616 if (cp->tag != NO_TAG && olen - rest <= 3) { 4617 cp->host_status = HS_BUSY; 4618 np->msgout[0] = M_IDENTIFY | cp->lun; 4619 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4620 } 4621 else 4622 nxtdsp = SCRIPTB_BA (np, ident_break); 4623 } 4624 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4625 dsp == SCRIPTB_BA (np, send_sdtr) || 4626 dsp == SCRIPTB_BA (np, send_ppr)) { 4627 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4628 } 4629 break; 4630 #if 0 4631 case 7: /* MSG IN phase */ 4632 nxtdsp = SCRIPTA_BA (np, clrack); 4633 break; 4634 #endif 4635 } 4636 4637 if (nxtdsp) { 4638 OUTL_DSP (nxtdsp); 4639 return; 4640 } 4641 4642 reset_all: 4643 sym_start_reset(np); 4644 } 4645 4646 /* 4647 * Dequeue from the START queue all CCBs that match 4648 * a given target/lun/task condition (-1 means all), 4649 * and move them from the BUSY queue to the COMP queue 4650 * with CAM_REQUEUE_REQ status condition. 4651 * This function is used during error handling/recovery. 4652 * It is called with SCRIPTS not running. 4653 */ 4654 static int 4655 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4656 { 4657 int j; 4658 ccb_p cp; 4659 4660 /* 4661 * Make sure the starting index is within range. 4662 */ 4663 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4664 4665 /* 4666 * Walk until end of START queue and dequeue every job 4667 * that matches the target/lun/task condition. 4668 */ 4669 j = i; 4670 while (i != np->squeueput) { 4671 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4672 assert(cp); 4673 #ifdef SYM_CONF_IARB_SUPPORT 4674 /* Forget hints for IARB, they may be no longer relevant */ 4675 cp->host_flags &= ~HF_HINT_IARB; 4676 #endif 4677 if ((target == -1 || cp->target == target) && 4678 (lun == -1 || cp->lun == lun) && 4679 (task == -1 || cp->tag == task)) { 4680 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4681 sym_remque(&cp->link_ccbq); 4682 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4683 } 4684 else { 4685 if (i != j) 4686 np->squeue[j] = np->squeue[i]; 4687 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4688 } 4689 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4690 } 4691 if (i != j) /* Copy back the idle task if needed */ 4692 np->squeue[j] = np->squeue[i]; 4693 np->squeueput = j; /* Update our current start queue pointer */ 4694 4695 return (i - j) / 2; 4696 } 4697 4698 /* 4699 * Complete all CCBs queued to the COMP queue. 4700 * 4701 * These CCBs are assumed: 4702 * - Not to be referenced either by devices or 4703 * SCRIPTS-related queues and datas. 4704 * - To have to be completed with an error condition 4705 * or requeued. 4706 * 4707 * The device queue freeze count is incremented 4708 * for each CCB that does not prevent this. 4709 * This function is called when all CCBs involved 4710 * in error handling/recovery have been reaped. 4711 */ 4712 static void 4713 sym_flush_comp_queue(hcb_p np, int cam_status) 4714 { 4715 SYM_QUEHEAD *qp; 4716 ccb_p cp; 4717 4718 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { 4719 union ccb *ccb; 4720 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4721 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4722 /* Leave quiet CCBs waiting for resources */ 4723 if (cp->host_status == HS_WAIT) 4724 continue; 4725 ccb = cp->cam_ccb; 4726 if (cam_status) 4727 sym_set_cam_status(ccb, cam_status); 4728 sym_free_ccb(np, cp); 4729 sym_freeze_cam_ccb(ccb); 4730 sym_xpt_done(np, ccb); 4731 } 4732 } 4733 4734 /* 4735 * chip handler for bad SCSI status condition 4736 * 4737 * In case of bad SCSI status, we unqueue all the tasks 4738 * currently queued to the controller but not yet started 4739 * and then restart the SCRIPTS processor immediately. 4740 * 4741 * QUEUE FULL and BUSY conditions are handled the same way. 4742 * Basically all the not yet started tasks are requeued in 4743 * device queue and the queue is frozen until a completion. 4744 * 4745 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4746 * the CCB of the failed command to prepare a REQUEST SENSE 4747 * SCSI command and queue it to the controller queue. 4748 * 4749 * SCRATCHA is assumed to have been loaded with STARTPOS 4750 * before the SCRIPTS called the C code. 4751 */ 4752 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4753 { 4754 tcb_p tp = &np->target[cp->target]; 4755 u32 startp; 4756 u_char s_status = cp->ssss_status; 4757 u_char h_flags = cp->host_flags; 4758 int msglen; 4759 int nego; 4760 int i; 4761 4762 /* 4763 * Compute the index of the next job to start from SCRIPTS. 4764 */ 4765 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4766 4767 /* 4768 * The last CCB queued used for IARB hint may be 4769 * no longer relevant. Forget it. 4770 */ 4771 #ifdef SYM_CONF_IARB_SUPPORT 4772 if (np->last_cp) 4773 np->last_cp = 0; 4774 #endif 4775 4776 /* 4777 * Now deal with the SCSI status. 4778 */ 4779 switch(s_status) { 4780 case S_BUSY: 4781 case S_QUEUE_FULL: 4782 if (sym_verbose >= 2) { 4783 PRINT_ADDR(cp); 4784 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4785 } 4786 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4787 sym_complete_error (np, cp); 4788 break; 4789 case S_TERMINATED: 4790 case S_CHECK_COND: 4791 /* 4792 * If we get an SCSI error when requesting sense, give up. 4793 */ 4794 if (h_flags & HF_SENSE) { 4795 sym_complete_error (np, cp); 4796 break; 4797 } 4798 4799 /* 4800 * Dequeue all queued CCBs for that device not yet started, 4801 * and restart the SCRIPTS processor immediately. 4802 */ 4803 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4804 OUTL_DSP (SCRIPTA_BA (np, start)); 4805 4806 /* 4807 * Save some info of the actual IO. 4808 * Compute the data residual. 4809 */ 4810 cp->sv_scsi_status = cp->ssss_status; 4811 cp->sv_xerr_status = cp->xerr_status; 4812 cp->sv_resid = sym_compute_residual(np, cp); 4813 4814 /* 4815 * Prepare all needed data structures for 4816 * requesting sense data. 4817 */ 4818 4819 /* 4820 * identify message 4821 */ 4822 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4823 msglen = 1; 4824 4825 /* 4826 * If we are currently using anything different from 4827 * async. 8 bit data transfers with that target, 4828 * start a negotiation, since the device may want 4829 * to report us a UNIT ATTENTION condition due to 4830 * a cause we currently ignore, and we donnot want 4831 * to be stuck with WIDE and/or SYNC data transfer. 4832 * 4833 * cp->nego_status is filled by sym_prepare_nego(). 4834 */ 4835 cp->nego_status = 0; 4836 nego = 0; 4837 if (tp->tinfo.current.options & PPR_OPT_MASK) 4838 nego = NS_PPR; 4839 else if (tp->tinfo.current.width != BUS_8_BIT) 4840 nego = NS_WIDE; 4841 else if (tp->tinfo.current.offset != 0) 4842 nego = NS_SYNC; 4843 if (nego) 4844 msglen += 4845 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4846 /* 4847 * Message table indirect structure. 4848 */ 4849 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4850 cp->phys.smsg.size = cpu_to_scr(msglen); 4851 4852 /* 4853 * sense command 4854 */ 4855 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4856 cp->phys.cmd.size = cpu_to_scr(6); 4857 4858 /* 4859 * patch requested size into sense command 4860 */ 4861 cp->sensecmd[0] = 0x03; 4862 cp->sensecmd[1] = cp->lun << 5; 4863 #ifdef FreeBSD_New_Tran_Settings 4864 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4865 cp->sensecmd[1] = 0; 4866 #endif 4867 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4868 cp->data_len = SYM_SNS_BBUF_LEN; 4869 4870 /* 4871 * sense data 4872 */ 4873 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4874 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4875 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4876 4877 /* 4878 * requeue the command. 4879 */ 4880 startp = SCRIPTB_BA (np, sdata_in); 4881 4882 cp->phys.head.savep = cpu_to_scr(startp); 4883 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4884 cp->phys.head.lastp = cpu_to_scr(startp); 4885 cp->startp = cpu_to_scr(startp); 4886 4887 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4888 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4889 cp->ssss_status = S_ILLEGAL; 4890 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4891 cp->xerr_status = 0; 4892 cp->extra_bytes = 0; 4893 4894 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4895 4896 /* 4897 * Requeue the command. 4898 */ 4899 sym_put_start_queue(np, cp); 4900 4901 /* 4902 * Give back to upper layer everything we have dequeued. 4903 */ 4904 sym_flush_comp_queue(np, 0); 4905 break; 4906 } 4907 } 4908 4909 /* 4910 * After a device has accepted some management message 4911 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4912 * a device signals a UNIT ATTENTION condition, some 4913 * tasks are thrown away by the device. We are required 4914 * to reflect that on our tasks list since the device 4915 * will never complete these tasks. 4916 * 4917 * This function move from the BUSY queue to the COMP 4918 * queue all disconnected CCBs for a given target that 4919 * match the following criteria: 4920 * - lun=-1 means any logical UNIT otherwise a given one. 4921 * - task=-1 means any task, otherwise a given one. 4922 */ 4923 static int 4924 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4925 { 4926 SYM_QUEHEAD qtmp, *qp; 4927 int i = 0; 4928 ccb_p cp; 4929 4930 /* 4931 * Move the entire BUSY queue to our temporary queue. 4932 */ 4933 sym_que_init(&qtmp); 4934 sym_que_splice(&np->busy_ccbq, &qtmp); 4935 sym_que_init(&np->busy_ccbq); 4936 4937 /* 4938 * Put all CCBs that matches our criteria into 4939 * the COMP queue and put back other ones into 4940 * the BUSY queue. 4941 */ 4942 while ((qp = sym_remque_head(&qtmp)) != 0) { 4943 union ccb *ccb; 4944 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4945 ccb = cp->cam_ccb; 4946 if (cp->host_status != HS_DISCONNECT || 4947 cp->target != target || 4948 (lun != -1 && cp->lun != lun) || 4949 (task != -1 && 4950 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4951 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4952 continue; 4953 } 4954 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4955 4956 /* Preserve the software timeout condition */ 4957 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4958 sym_set_cam_status(ccb, cam_status); 4959 ++i; 4960 #if 0 4961 printf("XXXX TASK @%p CLEARED\n", cp); 4962 #endif 4963 } 4964 return i; 4965 } 4966 4967 /* 4968 * chip handler for TASKS recovery 4969 * 4970 * We cannot safely abort a command, while the SCRIPTS 4971 * processor is running, since we just would be in race 4972 * with it. 4973 * 4974 * As long as we have tasks to abort, we keep the SEM 4975 * bit set in the ISTAT. When this bit is set, the 4976 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4977 * each time it enters the scheduler. 4978 * 4979 * If we have to reset a target, clear tasks of a unit, 4980 * or to perform the abort of a disconnected job, we 4981 * restart the SCRIPTS for selecting the target. Once 4982 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4983 * If it loses arbitration, the SCRIPTS will interrupt again 4984 * the next time it will enter its scheduler, and so on ... 4985 * 4986 * On SIR_TARGET_SELECTED, we scan for the more 4987 * appropriate thing to do: 4988 * 4989 * - If nothing, we just sent a M_ABORT message to the 4990 * target to get rid of the useless SCSI bus ownership. 4991 * According to the specs, no tasks shall be affected. 4992 * - If the target is to be reset, we send it a M_RESET 4993 * message. 4994 * - If a logical UNIT is to be cleared , we send the 4995 * IDENTIFY(lun) + M_ABORT. 4996 * - If an untagged task is to be aborted, we send the 4997 * IDENTIFY(lun) + M_ABORT. 4998 * - If a tagged task is to be aborted, we send the 4999 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 5000 * 5001 * Once our 'kiss of death' :) message has been accepted 5002 * by the target, the SCRIPTS interrupts again 5003 * (SIR_ABORT_SENT). On this interrupt, we complete 5004 * all the CCBs that should have been aborted by the 5005 * target according to our message. 5006 */ 5007 static void sym_sir_task_recovery(hcb_p np, int num) 5008 { 5009 SYM_QUEHEAD *qp; 5010 ccb_p cp; 5011 tcb_p tp; 5012 int target=-1, lun=-1, task; 5013 int i, k; 5014 5015 switch(num) { 5016 /* 5017 * The SCRIPTS processor stopped before starting 5018 * the next command in order to allow us to perform 5019 * some task recovery. 5020 */ 5021 case SIR_SCRIPT_STOPPED: 5022 /* 5023 * Do we have any target to reset or unit to clear ? 5024 */ 5025 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 5026 tp = &np->target[i]; 5027 if (tp->to_reset || 5028 (tp->lun0p && tp->lun0p->to_clear)) { 5029 target = i; 5030 break; 5031 } 5032 if (!tp->lunmp) 5033 continue; 5034 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5035 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5036 target = i; 5037 break; 5038 } 5039 } 5040 if (target != -1) 5041 break; 5042 } 5043 5044 /* 5045 * If not, walk the busy queue for any 5046 * disconnected CCB to be aborted. 5047 */ 5048 if (target == -1) { 5049 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5050 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 5051 if (cp->host_status != HS_DISCONNECT) 5052 continue; 5053 if (cp->to_abort) { 5054 target = cp->target; 5055 break; 5056 } 5057 } 5058 } 5059 5060 /* 5061 * If some target is to be selected, 5062 * prepare and start the selection. 5063 */ 5064 if (target != -1) { 5065 tp = &np->target[target]; 5066 np->abrt_sel.sel_id = target; 5067 np->abrt_sel.sel_scntl3 = tp->head.wval; 5068 np->abrt_sel.sel_sxfer = tp->head.sval; 5069 OUTL(nc_dsa, np->hcb_ba); 5070 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 5071 return; 5072 } 5073 5074 /* 5075 * Now look for a CCB to abort that haven't started yet. 5076 * Btw, the SCRIPTS processor is still stopped, so 5077 * we are not in race. 5078 */ 5079 i = 0; 5080 cp = 0; 5081 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5082 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5083 if (cp->host_status != HS_BUSY && 5084 cp->host_status != HS_NEGOTIATE) 5085 continue; 5086 if (!cp->to_abort) 5087 continue; 5088 #ifdef SYM_CONF_IARB_SUPPORT 5089 /* 5090 * If we are using IMMEDIATE ARBITRATION, we donnot 5091 * want to cancel the last queued CCB, since the 5092 * SCRIPTS may have anticipated the selection. 5093 */ 5094 if (cp == np->last_cp) { 5095 cp->to_abort = 0; 5096 continue; 5097 } 5098 #endif 5099 i = 1; /* Means we have found some */ 5100 break; 5101 } 5102 if (!i) { 5103 /* 5104 * We are done, so we donnot need 5105 * to synchronize with the SCRIPTS anylonger. 5106 * Remove the SEM flag from the ISTAT. 5107 */ 5108 np->istat_sem = 0; 5109 OUTB (nc_istat, SIGP); 5110 break; 5111 } 5112 /* 5113 * Compute index of next position in the start 5114 * queue the SCRIPTS intends to start and dequeue 5115 * all CCBs for that device that haven't been started. 5116 */ 5117 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5118 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5119 5120 /* 5121 * Make sure at least our IO to abort has been dequeued. 5122 */ 5123 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5124 5125 /* 5126 * Keep track in cam status of the reason of the abort. 5127 */ 5128 if (cp->to_abort == 2) 5129 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5130 else 5131 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5132 5133 /* 5134 * Complete with error everything that we have dequeued. 5135 */ 5136 sym_flush_comp_queue(np, 0); 5137 break; 5138 /* 5139 * The SCRIPTS processor has selected a target 5140 * we may have some manual recovery to perform for. 5141 */ 5142 case SIR_TARGET_SELECTED: 5143 target = (INB (nc_sdid) & 0xf); 5144 tp = &np->target[target]; 5145 5146 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5147 5148 /* 5149 * If the target is to be reset, prepare a 5150 * M_RESET message and clear the to_reset flag 5151 * since we donnot expect this operation to fail. 5152 */ 5153 if (tp->to_reset) { 5154 np->abrt_msg[0] = M_RESET; 5155 np->abrt_tbl.size = 1; 5156 tp->to_reset = 0; 5157 break; 5158 } 5159 5160 /* 5161 * Otherwise, look for some logical unit to be cleared. 5162 */ 5163 if (tp->lun0p && tp->lun0p->to_clear) 5164 lun = 0; 5165 else if (tp->lunmp) { 5166 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5167 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5168 lun = k; 5169 break; 5170 } 5171 } 5172 } 5173 5174 /* 5175 * If a logical unit is to be cleared, prepare 5176 * an IDENTIFY(lun) + ABORT MESSAGE. 5177 */ 5178 if (lun != -1) { 5179 lcb_p lp = sym_lp(np, tp, lun); 5180 lp->to_clear = 0; /* We donnot expect to fail here */ 5181 np->abrt_msg[0] = M_IDENTIFY | lun; 5182 np->abrt_msg[1] = M_ABORT; 5183 np->abrt_tbl.size = 2; 5184 break; 5185 } 5186 5187 /* 5188 * Otherwise, look for some disconnected job to 5189 * abort for this target. 5190 */ 5191 i = 0; 5192 cp = 0; 5193 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5194 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5195 if (cp->host_status != HS_DISCONNECT) 5196 continue; 5197 if (cp->target != target) 5198 continue; 5199 if (!cp->to_abort) 5200 continue; 5201 i = 1; /* Means we have some */ 5202 break; 5203 } 5204 5205 /* 5206 * If we have none, probably since the device has 5207 * completed the command before we won abitration, 5208 * send a M_ABORT message without IDENTIFY. 5209 * According to the specs, the device must just 5210 * disconnect the BUS and not abort any task. 5211 */ 5212 if (!i) { 5213 np->abrt_msg[0] = M_ABORT; 5214 np->abrt_tbl.size = 1; 5215 break; 5216 } 5217 5218 /* 5219 * We have some task to abort. 5220 * Set the IDENTIFY(lun) 5221 */ 5222 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5223 5224 /* 5225 * If we want to abort an untagged command, we 5226 * will send an IDENTIFY + M_ABORT. 5227 * Otherwise (tagged command), we will send 5228 * an IDENTIFY + task attributes + ABORT TAG. 5229 */ 5230 if (cp->tag == NO_TAG) { 5231 np->abrt_msg[1] = M_ABORT; 5232 np->abrt_tbl.size = 2; 5233 } 5234 else { 5235 np->abrt_msg[1] = cp->scsi_smsg[1]; 5236 np->abrt_msg[2] = cp->scsi_smsg[2]; 5237 np->abrt_msg[3] = M_ABORT_TAG; 5238 np->abrt_tbl.size = 4; 5239 } 5240 /* 5241 * Keep track of software timeout condition, since the 5242 * peripheral driver may not count retries on abort 5243 * conditions not due to timeout. 5244 */ 5245 if (cp->to_abort == 2) 5246 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5247 cp->to_abort = 0; /* We donnot expect to fail here */ 5248 break; 5249 5250 /* 5251 * The target has accepted our message and switched 5252 * to BUS FREE phase as we expected. 5253 */ 5254 case SIR_ABORT_SENT: 5255 target = (INB (nc_sdid) & 0xf); 5256 tp = &np->target[target]; 5257 5258 /* 5259 ** If we didn't abort anything, leave here. 5260 */ 5261 if (np->abrt_msg[0] == M_ABORT) 5262 break; 5263 5264 /* 5265 * If we sent a M_RESET, then a hardware reset has 5266 * been performed by the target. 5267 * - Reset everything to async 8 bit 5268 * - Tell ourself to negotiate next time :-) 5269 * - Prepare to clear all disconnected CCBs for 5270 * this target from our task list (lun=task=-1) 5271 */ 5272 lun = -1; 5273 task = -1; 5274 if (np->abrt_msg[0] == M_RESET) { 5275 tp->head.sval = 0; 5276 tp->head.wval = np->rv_scntl3; 5277 tp->head.uval = 0; 5278 tp->tinfo.current.period = 0; 5279 tp->tinfo.current.offset = 0; 5280 tp->tinfo.current.width = BUS_8_BIT; 5281 tp->tinfo.current.options = 0; 5282 } 5283 5284 /* 5285 * Otherwise, check for the LUN and TASK(s) 5286 * concerned by the cancelation. 5287 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5288 * or an ABORT message :-) 5289 */ 5290 else { 5291 lun = np->abrt_msg[0] & 0x3f; 5292 if (np->abrt_msg[1] == M_ABORT_TAG) 5293 task = np->abrt_msg[2]; 5294 } 5295 5296 /* 5297 * Complete all the CCBs the device should have 5298 * aborted due to our 'kiss of death' message. 5299 */ 5300 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5301 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5302 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5303 sym_flush_comp_queue(np, 0); 5304 5305 /* 5306 * If we sent a BDR, make uper layer aware of that. 5307 */ 5308 if (np->abrt_msg[0] == M_RESET) 5309 xpt_async(AC_SENT_BDR, np->path, NULL); 5310 break; 5311 } 5312 5313 /* 5314 * Print to the log the message we intend to send. 5315 */ 5316 if (num == SIR_TARGET_SELECTED) { 5317 PRINT_TARGET(np, target); 5318 sym_printl_hex("control msgout:", np->abrt_msg, 5319 np->abrt_tbl.size); 5320 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5321 } 5322 5323 /* 5324 * Let the SCRIPTS processor continue. 5325 */ 5326 OUTONB_STD (); 5327 } 5328 5329 /* 5330 * Gerard's alchemy:) that deals with with the data 5331 * pointer for both MDP and the residual calculation. 5332 * 5333 * I didn't want to bloat the code by more than 200 5334 * lignes for the handling of both MDP and the residual. 5335 * This has been achieved by using a data pointer 5336 * representation consisting in an index in the data 5337 * array (dp_sg) and a negative offset (dp_ofs) that 5338 * have the following meaning: 5339 * 5340 * - dp_sg = SYM_CONF_MAX_SG 5341 * we are at the end of the data script. 5342 * - dp_sg < SYM_CONF_MAX_SG 5343 * dp_sg points to the next entry of the scatter array 5344 * we want to transfer. 5345 * - dp_ofs < 0 5346 * dp_ofs represents the residual of bytes of the 5347 * previous entry scatter entry we will send first. 5348 * - dp_ofs = 0 5349 * no residual to send first. 5350 * 5351 * The function sym_evaluate_dp() accepts an arbitray 5352 * offset (basically from the MDP message) and returns 5353 * the corresponding values of dp_sg and dp_ofs. 5354 */ 5355 5356 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5357 { 5358 u32 dp_scr; 5359 int dp_ofs, dp_sg, dp_sgmin; 5360 int tmp; 5361 struct sym_pmc *pm; 5362 5363 /* 5364 * Compute the resulted data pointer in term of a script 5365 * address within some DATA script and a signed byte offset. 5366 */ 5367 dp_scr = scr; 5368 dp_ofs = *ofs; 5369 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5370 pm = &cp->phys.pm0; 5371 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5372 pm = &cp->phys.pm1; 5373 else 5374 pm = 0; 5375 5376 if (pm) { 5377 dp_scr = scr_to_cpu(pm->ret); 5378 dp_ofs -= scr_to_cpu(pm->sg.size); 5379 } 5380 5381 /* 5382 * If we are auto-sensing, then we are done. 5383 */ 5384 if (cp->host_flags & HF_SENSE) { 5385 *ofs = dp_ofs; 5386 return 0; 5387 } 5388 5389 /* 5390 * Deduce the index of the sg entry. 5391 * Keep track of the index of the first valid entry. 5392 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5393 * end of the data. 5394 */ 5395 tmp = scr_to_cpu(cp->phys.head.goalp); 5396 dp_sg = SYM_CONF_MAX_SG; 5397 if (dp_scr != tmp) 5398 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5399 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5400 5401 /* 5402 * Move to the sg entry the data pointer belongs to. 5403 * 5404 * If we are inside the data area, we expect result to be: 5405 * 5406 * Either, 5407 * dp_ofs = 0 and dp_sg is the index of the sg entry 5408 * the data pointer belongs to (or the end of the data) 5409 * Or, 5410 * dp_ofs < 0 and dp_sg is the index of the sg entry 5411 * the data pointer belongs to + 1. 5412 */ 5413 if (dp_ofs < 0) { 5414 int n; 5415 while (dp_sg > dp_sgmin) { 5416 --dp_sg; 5417 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5418 n = dp_ofs + (tmp & 0xffffff); 5419 if (n > 0) { 5420 ++dp_sg; 5421 break; 5422 } 5423 dp_ofs = n; 5424 } 5425 } 5426 else if (dp_ofs > 0) { 5427 while (dp_sg < SYM_CONF_MAX_SG) { 5428 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5429 dp_ofs -= (tmp & 0xffffff); 5430 ++dp_sg; 5431 if (dp_ofs <= 0) 5432 break; 5433 } 5434 } 5435 5436 /* 5437 * Make sure the data pointer is inside the data area. 5438 * If not, return some error. 5439 */ 5440 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5441 goto out_err; 5442 else if (dp_sg > SYM_CONF_MAX_SG || 5443 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5444 goto out_err; 5445 5446 /* 5447 * Save the extreme pointer if needed. 5448 */ 5449 if (dp_sg > cp->ext_sg || 5450 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5451 cp->ext_sg = dp_sg; 5452 cp->ext_ofs = dp_ofs; 5453 } 5454 5455 /* 5456 * Return data. 5457 */ 5458 *ofs = dp_ofs; 5459 return dp_sg; 5460 5461 out_err: 5462 return -1; 5463 } 5464 5465 /* 5466 * chip handler for MODIFY DATA POINTER MESSAGE 5467 * 5468 * We also call this function on IGNORE WIDE RESIDUE 5469 * messages that do not match a SWIDE full condition. 5470 * Btw, we assume in that situation that such a message 5471 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5472 */ 5473 5474 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5475 { 5476 int dp_ofs = ofs; 5477 u32 dp_scr = INL (nc_temp); 5478 u32 dp_ret; 5479 u32 tmp; 5480 u_char hflags; 5481 int dp_sg; 5482 struct sym_pmc *pm; 5483 5484 /* 5485 * Not supported for auto-sense. 5486 */ 5487 if (cp->host_flags & HF_SENSE) 5488 goto out_reject; 5489 5490 /* 5491 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5492 * to the resulted data pointer. 5493 */ 5494 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5495 if (dp_sg < 0) 5496 goto out_reject; 5497 5498 /* 5499 * And our alchemy:) allows to easily calculate the data 5500 * script address we want to return for the next data phase. 5501 */ 5502 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5503 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5504 5505 /* 5506 * If offset / scatter entry is zero we donnot need 5507 * a context for the new current data pointer. 5508 */ 5509 if (dp_ofs == 0) { 5510 dp_scr = dp_ret; 5511 goto out_ok; 5512 } 5513 5514 /* 5515 * Get a context for the new current data pointer. 5516 */ 5517 hflags = INB (HF_PRT); 5518 5519 if (hflags & HF_DP_SAVED) 5520 hflags ^= HF_ACT_PM; 5521 5522 if (!(hflags & HF_ACT_PM)) { 5523 pm = &cp->phys.pm0; 5524 dp_scr = SCRIPTA_BA (np, pm0_data); 5525 } 5526 else { 5527 pm = &cp->phys.pm1; 5528 dp_scr = SCRIPTA_BA (np, pm1_data); 5529 } 5530 5531 hflags &= ~(HF_DP_SAVED); 5532 5533 OUTB (HF_PRT, hflags); 5534 5535 /* 5536 * Set up the new current data pointer. 5537 * ofs < 0 there, and for the next data phase, we 5538 * want to transfer part of the data of the sg entry 5539 * corresponding to index dp_sg-1 prior to returning 5540 * to the main data script. 5541 */ 5542 pm->ret = cpu_to_scr(dp_ret); 5543 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5544 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5545 pm->sg.addr = cpu_to_scr(tmp); 5546 pm->sg.size = cpu_to_scr(-dp_ofs); 5547 5548 out_ok: 5549 OUTL (nc_temp, dp_scr); 5550 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5551 return; 5552 5553 out_reject: 5554 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5555 } 5556 5557 5558 /* 5559 * chip calculation of the data residual. 5560 * 5561 * As I used to say, the requirement of data residual 5562 * in SCSI is broken, useless and cannot be achieved 5563 * without huge complexity. 5564 * But most OSes and even the official CAM require it. 5565 * When stupidity happens to be so widely spread inside 5566 * a community, it gets hard to convince. 5567 * 5568 * Anyway, I don't care, since I am not going to use 5569 * any software that considers this data residual as 5570 * a relevant information. :) 5571 */ 5572 5573 static int sym_compute_residual(hcb_p np, ccb_p cp) 5574 { 5575 int dp_sg, dp_sgmin, resid = 0; 5576 int dp_ofs = 0; 5577 5578 /* 5579 * Check for some data lost or just thrown away. 5580 * We are not required to be quite accurate in this 5581 * situation. Btw, if we are odd for output and the 5582 * device claims some more data, it may well happen 5583 * than our residual be zero. :-) 5584 */ 5585 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5586 if (cp->xerr_status & XE_EXTRA_DATA) 5587 resid -= cp->extra_bytes; 5588 if (cp->xerr_status & XE_SODL_UNRUN) 5589 ++resid; 5590 if (cp->xerr_status & XE_SWIDE_OVRUN) 5591 --resid; 5592 } 5593 5594 /* 5595 * If all data has been transferred, 5596 * there is no residual. 5597 */ 5598 if (cp->phys.head.lastp == cp->phys.head.goalp) 5599 return resid; 5600 5601 /* 5602 * If no data transfer occurs, or if the data 5603 * pointer is weird, return full residual. 5604 */ 5605 if (cp->startp == cp->phys.head.lastp || 5606 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5607 &dp_ofs) < 0) { 5608 return cp->data_len; 5609 } 5610 5611 /* 5612 * If we were auto-sensing, then we are done. 5613 */ 5614 if (cp->host_flags & HF_SENSE) { 5615 return -dp_ofs; 5616 } 5617 5618 /* 5619 * We are now full comfortable in the computation 5620 * of the data residual (2's complement). 5621 */ 5622 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5623 resid = -cp->ext_ofs; 5624 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5625 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5626 resid += (tmp & 0xffffff); 5627 } 5628 5629 /* 5630 * Hopefully, the result is not too wrong. 5631 */ 5632 return resid; 5633 } 5634 5635 /* 5636 * Print out the content of a SCSI message. 5637 */ 5638 5639 static int sym_show_msg (u_char * msg) 5640 { 5641 u_char i; 5642 printf ("%x",*msg); 5643 if (*msg==M_EXTENDED) { 5644 for (i=1;i<8;i++) { 5645 if (i-1>msg[1]) break; 5646 printf ("-%x",msg[i]); 5647 }; 5648 return (i+1); 5649 } else if ((*msg & 0xf0) == 0x20) { 5650 printf ("-%x",msg[1]); 5651 return (2); 5652 }; 5653 return (1); 5654 } 5655 5656 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5657 { 5658 PRINT_ADDR(cp); 5659 if (label) 5660 printf ("%s: ", label); 5661 5662 (void) sym_show_msg (msg); 5663 printf (".\n"); 5664 } 5665 5666 /* 5667 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5668 * 5669 * When we try to negotiate, we append the negotiation message 5670 * to the identify and (maybe) simple tag message. 5671 * The host status field is set to HS_NEGOTIATE to mark this 5672 * situation. 5673 * 5674 * If the target doesn't answer this message immediately 5675 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5676 * will be raised eventually. 5677 * The handler removes the HS_NEGOTIATE status, and sets the 5678 * negotiated value to the default (async / nowide). 5679 * 5680 * If we receive a matching answer immediately, we check it 5681 * for validity, and set the values. 5682 * 5683 * If we receive a Reject message immediately, we assume the 5684 * negotiation has failed, and fall back to standard values. 5685 * 5686 * If we receive a negotiation message while not in HS_NEGOTIATE 5687 * state, it's a target initiated negotiation. We prepare a 5688 * (hopefully) valid answer, set our parameters, and send back 5689 * this answer to the target. 5690 * 5691 * If the target doesn't fetch the answer (no message out phase), 5692 * we assume the negotiation has failed, and fall back to default 5693 * settings (SIR_NEGO_PROTO interrupt). 5694 * 5695 * When we set the values, we adjust them in all ccbs belonging 5696 * to this target, in the controller's register, and in the "phys" 5697 * field of the controller's struct sym_hcb. 5698 */ 5699 5700 /* 5701 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5702 */ 5703 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5704 { 5705 u_char chg, ofs, per, fak, div; 5706 int req = 1; 5707 5708 /* 5709 * Synchronous request message received. 5710 */ 5711 if (DEBUG_FLAGS & DEBUG_NEGO) { 5712 sym_print_msg(cp, "sync msgin", np->msgin); 5713 }; 5714 5715 /* 5716 * request or answer ? 5717 */ 5718 if (INB (HS_PRT) == HS_NEGOTIATE) { 5719 OUTB (HS_PRT, HS_BUSY); 5720 if (cp->nego_status && cp->nego_status != NS_SYNC) 5721 goto reject_it; 5722 req = 0; 5723 } 5724 5725 /* 5726 * get requested values. 5727 */ 5728 chg = 0; 5729 per = np->msgin[3]; 5730 ofs = np->msgin[4]; 5731 5732 /* 5733 * check values against our limits. 5734 */ 5735 if (ofs) { 5736 if (ofs > np->maxoffs) 5737 {chg = 1; ofs = np->maxoffs;} 5738 if (req) { 5739 if (ofs > tp->tinfo.user.offset) 5740 {chg = 1; ofs = tp->tinfo.user.offset;} 5741 } 5742 } 5743 5744 if (ofs) { 5745 if (per < np->minsync) 5746 {chg = 1; per = np->minsync;} 5747 if (req) { 5748 if (per < tp->tinfo.user.period) 5749 {chg = 1; per = tp->tinfo.user.period;} 5750 } 5751 } 5752 5753 div = fak = 0; 5754 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5755 goto reject_it; 5756 5757 if (DEBUG_FLAGS & DEBUG_NEGO) { 5758 PRINT_ADDR(cp); 5759 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5760 ofs, per, div, fak, chg); 5761 } 5762 5763 /* 5764 * This was an answer message 5765 */ 5766 if (req == 0) { 5767 if (chg) /* Answer wasn't acceptable. */ 5768 goto reject_it; 5769 sym_setsync (np, cp, ofs, per, div, fak); 5770 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5771 return; 5772 } 5773 5774 /* 5775 * It was a request. Set value and 5776 * prepare an answer message 5777 */ 5778 sym_setsync (np, cp, ofs, per, div, fak); 5779 5780 np->msgout[0] = M_EXTENDED; 5781 np->msgout[1] = 3; 5782 np->msgout[2] = M_X_SYNC_REQ; 5783 np->msgout[3] = per; 5784 np->msgout[4] = ofs; 5785 5786 cp->nego_status = NS_SYNC; 5787 5788 if (DEBUG_FLAGS & DEBUG_NEGO) { 5789 sym_print_msg(cp, "sync msgout", np->msgout); 5790 } 5791 5792 np->msgin [0] = M_NOOP; 5793 5794 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5795 return; 5796 reject_it: 5797 sym_setsync (np, cp, 0, 0, 0, 0); 5798 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5799 } 5800 5801 /* 5802 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5803 */ 5804 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5805 { 5806 u_char chg, ofs, per, fak, dt, div, wide; 5807 int req = 1; 5808 5809 /* 5810 * Synchronous request message received. 5811 */ 5812 if (DEBUG_FLAGS & DEBUG_NEGO) { 5813 sym_print_msg(cp, "ppr msgin", np->msgin); 5814 }; 5815 5816 /* 5817 * get requested values. 5818 */ 5819 chg = 0; 5820 per = np->msgin[3]; 5821 ofs = np->msgin[5]; 5822 wide = np->msgin[6]; 5823 dt = np->msgin[7] & PPR_OPT_DT; 5824 5825 /* 5826 * request or answer ? 5827 */ 5828 if (INB (HS_PRT) == HS_NEGOTIATE) { 5829 OUTB (HS_PRT, HS_BUSY); 5830 if (cp->nego_status && cp->nego_status != NS_PPR) 5831 goto reject_it; 5832 req = 0; 5833 } 5834 5835 /* 5836 * check values against our limits. 5837 */ 5838 if (wide > np->maxwide) 5839 {chg = 1; wide = np->maxwide;} 5840 if (!wide || !(np->features & FE_ULTRA3)) 5841 dt &= ~PPR_OPT_DT; 5842 if (req) { 5843 if (wide > tp->tinfo.user.width) 5844 {chg = 1; wide = tp->tinfo.user.width;} 5845 } 5846 5847 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5848 dt &= ~PPR_OPT_DT; 5849 5850 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5851 5852 if (ofs) { 5853 if (dt) { 5854 if (ofs > np->maxoffs_dt) 5855 {chg = 1; ofs = np->maxoffs_dt;} 5856 } 5857 else if (ofs > np->maxoffs) 5858 {chg = 1; ofs = np->maxoffs;} 5859 if (req) { 5860 if (ofs > tp->tinfo.user.offset) 5861 {chg = 1; ofs = tp->tinfo.user.offset;} 5862 } 5863 } 5864 5865 if (ofs) { 5866 if (dt) { 5867 if (per < np->minsync_dt) 5868 {chg = 1; per = np->minsync_dt;} 5869 } 5870 else if (per < np->minsync) 5871 {chg = 1; per = np->minsync;} 5872 if (req) { 5873 if (per < tp->tinfo.user.period) 5874 {chg = 1; per = tp->tinfo.user.period;} 5875 } 5876 } 5877 5878 div = fak = 0; 5879 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5880 goto reject_it; 5881 5882 if (DEBUG_FLAGS & DEBUG_NEGO) { 5883 PRINT_ADDR(cp); 5884 printf ("ppr: " 5885 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5886 dt, ofs, per, wide, div, fak, chg); 5887 } 5888 5889 /* 5890 * It was an answer. 5891 */ 5892 if (req == 0) { 5893 if (chg) /* Answer wasn't acceptable */ 5894 goto reject_it; 5895 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5896 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5897 return; 5898 } 5899 5900 /* 5901 * It was a request. Set value and 5902 * prepare an answer message 5903 */ 5904 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5905 5906 np->msgout[0] = M_EXTENDED; 5907 np->msgout[1] = 6; 5908 np->msgout[2] = M_X_PPR_REQ; 5909 np->msgout[3] = per; 5910 np->msgout[4] = 0; 5911 np->msgout[5] = ofs; 5912 np->msgout[6] = wide; 5913 np->msgout[7] = dt; 5914 5915 cp->nego_status = NS_PPR; 5916 5917 if (DEBUG_FLAGS & DEBUG_NEGO) { 5918 sym_print_msg(cp, "ppr msgout", np->msgout); 5919 } 5920 5921 np->msgin [0] = M_NOOP; 5922 5923 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5924 return; 5925 reject_it: 5926 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5927 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5928 /* 5929 * If it was a device response that should result in 5930 * ST, we may want to try a legacy negotiation later. 5931 */ 5932 if (!req && !dt) { 5933 tp->tinfo.goal.options = 0; 5934 tp->tinfo.goal.width = wide; 5935 tp->tinfo.goal.period = per; 5936 tp->tinfo.goal.offset = ofs; 5937 } 5938 return; 5939 } 5940 5941 /* 5942 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5943 */ 5944 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5945 { 5946 u_char chg, wide; 5947 int req = 1; 5948 5949 /* 5950 * Wide request message received. 5951 */ 5952 if (DEBUG_FLAGS & DEBUG_NEGO) { 5953 sym_print_msg(cp, "wide msgin", np->msgin); 5954 }; 5955 5956 /* 5957 * Is it a request from the device? 5958 */ 5959 if (INB (HS_PRT) == HS_NEGOTIATE) { 5960 OUTB (HS_PRT, HS_BUSY); 5961 if (cp->nego_status && cp->nego_status != NS_WIDE) 5962 goto reject_it; 5963 req = 0; 5964 } 5965 5966 /* 5967 * get requested values. 5968 */ 5969 chg = 0; 5970 wide = np->msgin[3]; 5971 5972 /* 5973 * check values against driver limits. 5974 */ 5975 if (wide > np->maxwide) 5976 {chg = 1; wide = np->maxwide;} 5977 if (req) { 5978 if (wide > tp->tinfo.user.width) 5979 {chg = 1; wide = tp->tinfo.user.width;} 5980 } 5981 5982 if (DEBUG_FLAGS & DEBUG_NEGO) { 5983 PRINT_ADDR(cp); 5984 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5985 } 5986 5987 /* 5988 * This was an answer message 5989 */ 5990 if (req == 0) { 5991 if (chg) /* Answer wasn't acceptable. */ 5992 goto reject_it; 5993 sym_setwide (np, cp, wide); 5994 5995 /* 5996 * Negotiate for SYNC immediately after WIDE response. 5997 * This allows to negotiate for both WIDE and SYNC on 5998 * a single SCSI command (Suggested by Justin Gibbs). 5999 */ 6000 if (tp->tinfo.goal.offset) { 6001 np->msgout[0] = M_EXTENDED; 6002 np->msgout[1] = 3; 6003 np->msgout[2] = M_X_SYNC_REQ; 6004 np->msgout[3] = tp->tinfo.goal.period; 6005 np->msgout[4] = tp->tinfo.goal.offset; 6006 6007 if (DEBUG_FLAGS & DEBUG_NEGO) { 6008 sym_print_msg(cp, "sync msgout", np->msgout); 6009 } 6010 6011 cp->nego_status = NS_SYNC; 6012 OUTB (HS_PRT, HS_NEGOTIATE); 6013 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 6014 return; 6015 } 6016 6017 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6018 return; 6019 }; 6020 6021 /* 6022 * It was a request, set value and 6023 * prepare an answer message 6024 */ 6025 sym_setwide (np, cp, wide); 6026 6027 np->msgout[0] = M_EXTENDED; 6028 np->msgout[1] = 2; 6029 np->msgout[2] = M_X_WIDE_REQ; 6030 np->msgout[3] = wide; 6031 6032 np->msgin [0] = M_NOOP; 6033 6034 cp->nego_status = NS_WIDE; 6035 6036 if (DEBUG_FLAGS & DEBUG_NEGO) { 6037 sym_print_msg(cp, "wide msgout", np->msgout); 6038 } 6039 6040 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 6041 return; 6042 reject_it: 6043 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6044 } 6045 6046 /* 6047 * Reset SYNC or WIDE to default settings. 6048 * 6049 * Called when a negotiation does not succeed either 6050 * on rejection or on protocol error. 6051 * 6052 * If it was a PPR that made problems, we may want to 6053 * try a legacy negotiation later. 6054 */ 6055 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 6056 { 6057 /* 6058 * any error in negotiation: 6059 * fall back to default mode. 6060 */ 6061 switch (cp->nego_status) { 6062 case NS_PPR: 6063 #if 0 6064 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6065 #else 6066 tp->tinfo.goal.options = 0; 6067 if (tp->tinfo.goal.period < np->minsync) 6068 tp->tinfo.goal.period = np->minsync; 6069 if (tp->tinfo.goal.offset > np->maxoffs) 6070 tp->tinfo.goal.offset = np->maxoffs; 6071 #endif 6072 break; 6073 case NS_SYNC: 6074 sym_setsync (np, cp, 0, 0, 0, 0); 6075 break; 6076 case NS_WIDE: 6077 sym_setwide (np, cp, 0); 6078 break; 6079 }; 6080 np->msgin [0] = M_NOOP; 6081 np->msgout[0] = M_NOOP; 6082 cp->nego_status = 0; 6083 } 6084 6085 /* 6086 * chip handler for MESSAGE REJECT received in response to 6087 * a WIDE or SYNCHRONOUS negotiation. 6088 */ 6089 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6090 { 6091 sym_nego_default(np, tp, cp); 6092 OUTB (HS_PRT, HS_BUSY); 6093 } 6094 6095 /* 6096 * chip exception handler for programmed interrupts. 6097 */ 6098 static void sym_int_sir (hcb_p np) 6099 { 6100 u_char num = INB (nc_dsps); 6101 u32 dsa = INL (nc_dsa); 6102 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6103 u_char target = INB (nc_sdid) & 0x0f; 6104 tcb_p tp = &np->target[target]; 6105 int tmp; 6106 6107 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6108 6109 switch (num) { 6110 /* 6111 * Command has been completed with error condition 6112 * or has been auto-sensed. 6113 */ 6114 case SIR_COMPLETE_ERROR: 6115 sym_complete_error(np, cp); 6116 return; 6117 /* 6118 * The C code is currently trying to recover from something. 6119 * Typically, user want to abort some command. 6120 */ 6121 case SIR_SCRIPT_STOPPED: 6122 case SIR_TARGET_SELECTED: 6123 case SIR_ABORT_SENT: 6124 sym_sir_task_recovery(np, num); 6125 return; 6126 /* 6127 * The device didn't go to MSG OUT phase after having 6128 * been selected with ATN. We donnot want to handle 6129 * that. 6130 */ 6131 case SIR_SEL_ATN_NO_MSG_OUT: 6132 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6133 sym_name (np), target); 6134 goto out_stuck; 6135 /* 6136 * The device didn't switch to MSG IN phase after 6137 * having reseleted the initiator. 6138 */ 6139 case SIR_RESEL_NO_MSG_IN: 6140 printf ("%s:%d: No MSG IN phase after reselection.\n", 6141 sym_name (np), target); 6142 goto out_stuck; 6143 /* 6144 * After reselection, the device sent a message that wasn't 6145 * an IDENTIFY. 6146 */ 6147 case SIR_RESEL_NO_IDENTIFY: 6148 printf ("%s:%d: No IDENTIFY after reselection.\n", 6149 sym_name (np), target); 6150 goto out_stuck; 6151 /* 6152 * The device reselected a LUN we donnot know about. 6153 */ 6154 case SIR_RESEL_BAD_LUN: 6155 np->msgout[0] = M_RESET; 6156 goto out; 6157 /* 6158 * The device reselected for an untagged nexus and we 6159 * haven't any. 6160 */ 6161 case SIR_RESEL_BAD_I_T_L: 6162 np->msgout[0] = M_ABORT; 6163 goto out; 6164 /* 6165 * The device reselected for a tagged nexus that we donnot 6166 * have. 6167 */ 6168 case SIR_RESEL_BAD_I_T_L_Q: 6169 np->msgout[0] = M_ABORT_TAG; 6170 goto out; 6171 /* 6172 * The SCRIPTS let us know that the device has grabbed 6173 * our message and will abort the job. 6174 */ 6175 case SIR_RESEL_ABORTED: 6176 np->lastmsg = np->msgout[0]; 6177 np->msgout[0] = M_NOOP; 6178 printf ("%s:%d: message %x sent on bad reselection.\n", 6179 sym_name (np), target, np->lastmsg); 6180 goto out; 6181 /* 6182 * The SCRIPTS let us know that a message has been 6183 * successfully sent to the device. 6184 */ 6185 case SIR_MSG_OUT_DONE: 6186 np->lastmsg = np->msgout[0]; 6187 np->msgout[0] = M_NOOP; 6188 /* Should we really care of that */ 6189 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6190 if (cp) { 6191 cp->xerr_status &= ~XE_PARITY_ERR; 6192 if (!cp->xerr_status) 6193 OUTOFFB (HF_PRT, HF_EXT_ERR); 6194 } 6195 } 6196 goto out; 6197 /* 6198 * The device didn't send a GOOD SCSI status. 6199 * We may have some work to do prior to allow 6200 * the SCRIPTS processor to continue. 6201 */ 6202 case SIR_BAD_SCSI_STATUS: 6203 if (!cp) 6204 goto out; 6205 sym_sir_bad_scsi_status(np, num, cp); 6206 return; 6207 /* 6208 * We are asked by the SCRIPTS to prepare a 6209 * REJECT message. 6210 */ 6211 case SIR_REJECT_TO_SEND: 6212 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6213 np->msgout[0] = M_REJECT; 6214 goto out; 6215 /* 6216 * We have been ODD at the end of a DATA IN 6217 * transfer and the device didn't send a 6218 * IGNORE WIDE RESIDUE message. 6219 * It is a data overrun condition. 6220 */ 6221 case SIR_SWIDE_OVERRUN: 6222 if (cp) { 6223 OUTONB (HF_PRT, HF_EXT_ERR); 6224 cp->xerr_status |= XE_SWIDE_OVRUN; 6225 } 6226 goto out; 6227 /* 6228 * We have been ODD at the end of a DATA OUT 6229 * transfer. 6230 * It is a data underrun condition. 6231 */ 6232 case SIR_SODL_UNDERRUN: 6233 if (cp) { 6234 OUTONB (HF_PRT, HF_EXT_ERR); 6235 cp->xerr_status |= XE_SODL_UNRUN; 6236 } 6237 goto out; 6238 /* 6239 * The device wants us to tranfer more data than 6240 * expected or in the wrong direction. 6241 * The number of extra bytes is in scratcha. 6242 * It is a data overrun condition. 6243 */ 6244 case SIR_DATA_OVERRUN: 6245 if (cp) { 6246 OUTONB (HF_PRT, HF_EXT_ERR); 6247 cp->xerr_status |= XE_EXTRA_DATA; 6248 cp->extra_bytes += INL (nc_scratcha); 6249 } 6250 goto out; 6251 /* 6252 * The device switched to an illegal phase (4/5). 6253 */ 6254 case SIR_BAD_PHASE: 6255 if (cp) { 6256 OUTONB (HF_PRT, HF_EXT_ERR); 6257 cp->xerr_status |= XE_BAD_PHASE; 6258 } 6259 goto out; 6260 /* 6261 * We received a message. 6262 */ 6263 case SIR_MSG_RECEIVED: 6264 if (!cp) 6265 goto out_stuck; 6266 switch (np->msgin [0]) { 6267 /* 6268 * We received an extended message. 6269 * We handle MODIFY DATA POINTER, SDTR, WDTR 6270 * and reject all other extended messages. 6271 */ 6272 case M_EXTENDED: 6273 switch (np->msgin [2]) { 6274 case M_X_MODIFY_DP: 6275 if (DEBUG_FLAGS & DEBUG_POINTER) 6276 sym_print_msg(cp,"modify DP",np->msgin); 6277 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6278 (np->msgin[5]<<8) + (np->msgin[6]); 6279 sym_modify_dp(np, tp, cp, tmp); 6280 return; 6281 case M_X_SYNC_REQ: 6282 sym_sync_nego(np, tp, cp); 6283 return; 6284 case M_X_PPR_REQ: 6285 sym_ppr_nego(np, tp, cp); 6286 return; 6287 case M_X_WIDE_REQ: 6288 sym_wide_nego(np, tp, cp); 6289 return; 6290 default: 6291 goto out_reject; 6292 } 6293 break; 6294 /* 6295 * We received a 1/2 byte message not handled from SCRIPTS. 6296 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6297 * RESIDUE messages that haven't been anticipated by 6298 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6299 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6300 */ 6301 case M_IGN_RESIDUE: 6302 if (DEBUG_FLAGS & DEBUG_POINTER) 6303 sym_print_msg(cp,"ign wide residue", np->msgin); 6304 sym_modify_dp(np, tp, cp, -1); 6305 return; 6306 case M_REJECT: 6307 if (INB (HS_PRT) == HS_NEGOTIATE) 6308 sym_nego_rejected(np, tp, cp); 6309 else { 6310 PRINT_ADDR(cp); 6311 printf ("M_REJECT received (%x:%x).\n", 6312 scr_to_cpu(np->lastmsg), np->msgout[0]); 6313 } 6314 goto out_clrack; 6315 break; 6316 default: 6317 goto out_reject; 6318 } 6319 break; 6320 /* 6321 * We received an unknown message. 6322 * Ignore all MSG IN phases and reject it. 6323 */ 6324 case SIR_MSG_WEIRD: 6325 sym_print_msg(cp, "WEIRD message received", np->msgin); 6326 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6327 return; 6328 /* 6329 * Negotiation failed. 6330 * Target does not send us the reply. 6331 * Remove the HS_NEGOTIATE status. 6332 */ 6333 case SIR_NEGO_FAILED: 6334 OUTB (HS_PRT, HS_BUSY); 6335 /* 6336 * Negotiation failed. 6337 * Target does not want answer message. 6338 */ 6339 case SIR_NEGO_PROTO: 6340 sym_nego_default(np, tp, cp); 6341 goto out; 6342 }; 6343 6344 out: 6345 OUTONB_STD (); 6346 return; 6347 out_reject: 6348 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6349 return; 6350 out_clrack: 6351 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6352 return; 6353 out_stuck: 6354 return; 6355 } 6356 6357 /* 6358 * Acquire a control block 6359 */ 6360 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6361 { 6362 tcb_p tp = &np->target[tn]; 6363 lcb_p lp = sym_lp(np, tp, ln); 6364 u_short tag = NO_TAG; 6365 SYM_QUEHEAD *qp; 6366 ccb_p cp = (ccb_p) 0; 6367 6368 /* 6369 * Look for a free CCB 6370 */ 6371 if (sym_que_empty(&np->free_ccbq)) 6372 (void) sym_alloc_ccb(np); 6373 qp = sym_remque_head(&np->free_ccbq); 6374 if (!qp) 6375 goto out; 6376 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6377 6378 /* 6379 * If the LCB is not yet available and the LUN 6380 * has been probed ok, try to allocate the LCB. 6381 */ 6382 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6383 lp = sym_alloc_lcb(np, tn, ln); 6384 if (!lp) 6385 goto out_free; 6386 } 6387 6388 /* 6389 * If the LCB is not available here, then the 6390 * logical unit is not yet discovered. For those 6391 * ones only accept 1 SCSI IO per logical unit, 6392 * since we cannot allow disconnections. 6393 */ 6394 if (!lp) { 6395 if (!sym_is_bit(tp->busy0_map, ln)) 6396 sym_set_bit(tp->busy0_map, ln); 6397 else 6398 goto out_free; 6399 } else { 6400 /* 6401 * If we have been asked for a tagged command. 6402 */ 6403 if (tag_order) { 6404 /* 6405 * Debugging purpose. 6406 */ 6407 assert(lp->busy_itl == 0); 6408 /* 6409 * Allocate resources for tags if not yet. 6410 */ 6411 if (!lp->cb_tags) { 6412 sym_alloc_lcb_tags(np, tn, ln); 6413 if (!lp->cb_tags) 6414 goto out_free; 6415 } 6416 /* 6417 * Get a tag for this SCSI IO and set up 6418 * the CCB bus address for reselection, 6419 * and count it for this LUN. 6420 * Toggle reselect path to tagged. 6421 */ 6422 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6423 tag = lp->cb_tags[lp->ia_tag]; 6424 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6425 lp->ia_tag = 0; 6426 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6427 ++lp->busy_itlq; 6428 lp->head.resel_sa = 6429 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6430 } 6431 else 6432 goto out_free; 6433 } 6434 /* 6435 * This command will not be tagged. 6436 * If we already have either a tagged or untagged 6437 * one, refuse to overlap this untagged one. 6438 */ 6439 else { 6440 /* 6441 * Debugging purpose. 6442 */ 6443 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6444 /* 6445 * Count this nexus for this LUN. 6446 * Set up the CCB bus address for reselection. 6447 * Toggle reselect path to untagged. 6448 */ 6449 if (++lp->busy_itl == 1) { 6450 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6451 lp->head.resel_sa = 6452 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6453 } 6454 else 6455 goto out_free; 6456 } 6457 } 6458 /* 6459 * Put the CCB into the busy queue. 6460 */ 6461 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6462 6463 /* 6464 * Remember all informations needed to free this CCB. 6465 */ 6466 cp->to_abort = 0; 6467 cp->tag = tag; 6468 cp->target = tn; 6469 cp->lun = ln; 6470 6471 if (DEBUG_FLAGS & DEBUG_TAGS) { 6472 PRINT_LUN(np, tn, ln); 6473 printf ("ccb @%p using tag %d.\n", cp, tag); 6474 } 6475 6476 out: 6477 return cp; 6478 out_free: 6479 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6480 return (ccb_p) 0; 6481 } 6482 6483 /* 6484 * Release one control block 6485 */ 6486 static void sym_free_ccb (hcb_p np, ccb_p cp) 6487 { 6488 tcb_p tp = &np->target[cp->target]; 6489 lcb_p lp = sym_lp(np, tp, cp->lun); 6490 6491 if (DEBUG_FLAGS & DEBUG_TAGS) { 6492 PRINT_LUN(np, cp->target, cp->lun); 6493 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6494 } 6495 6496 /* 6497 * If LCB available, 6498 */ 6499 if (lp) { 6500 /* 6501 * If tagged, release the tag, set the relect path 6502 */ 6503 if (cp->tag != NO_TAG) { 6504 /* 6505 * Free the tag value. 6506 */ 6507 lp->cb_tags[lp->if_tag] = cp->tag; 6508 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6509 lp->if_tag = 0; 6510 /* 6511 * Make the reselect path invalid, 6512 * and uncount this CCB. 6513 */ 6514 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6515 --lp->busy_itlq; 6516 } else { /* Untagged */ 6517 /* 6518 * Make the reselect path invalid, 6519 * and uncount this CCB. 6520 */ 6521 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6522 --lp->busy_itl; 6523 } 6524 /* 6525 * If no JOB active, make the LUN reselect path invalid. 6526 */ 6527 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6528 lp->head.resel_sa = 6529 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6530 } 6531 /* 6532 * Otherwise, we only accept 1 IO per LUN. 6533 * Clear the bit that keeps track of this IO. 6534 */ 6535 else 6536 sym_clr_bit(tp->busy0_map, cp->lun); 6537 6538 /* 6539 * We donnot queue more than 1 ccb per target 6540 * with negotiation at any time. If this ccb was 6541 * used for negotiation, clear this info in the tcb. 6542 */ 6543 if (cp == tp->nego_cp) 6544 tp->nego_cp = 0; 6545 6546 #ifdef SYM_CONF_IARB_SUPPORT 6547 /* 6548 * If we just complete the last queued CCB, 6549 * clear this info that is no longer relevant. 6550 */ 6551 if (cp == np->last_cp) 6552 np->last_cp = 0; 6553 #endif 6554 6555 /* 6556 * Unmap user data from DMA map if needed. 6557 */ 6558 if (cp->dmamapped) { 6559 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6560 cp->dmamapped = 0; 6561 } 6562 6563 /* 6564 * Make this CCB available. 6565 */ 6566 cp->cam_ccb = 0; 6567 cp->host_status = HS_IDLE; 6568 sym_remque(&cp->link_ccbq); 6569 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6570 } 6571 6572 /* 6573 * Allocate a CCB from memory and initialize its fixed part. 6574 */ 6575 static ccb_p sym_alloc_ccb(hcb_p np) 6576 { 6577 ccb_p cp = 0; 6578 int hcode; 6579 6580 /* 6581 * Prevent from allocating more CCBs than we can 6582 * queue to the controller. 6583 */ 6584 if (np->actccbs >= SYM_CONF_MAX_START) 6585 return 0; 6586 6587 /* 6588 * Allocate memory for this CCB. 6589 */ 6590 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6591 if (!cp) 6592 goto out_free; 6593 6594 /* 6595 * Allocate a bounce buffer for sense data. 6596 */ 6597 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6598 if (!cp->sns_bbuf) 6599 goto out_free; 6600 6601 /* 6602 * Allocate a map for the DMA of user data. 6603 */ 6604 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6605 goto out_free; 6606 /* 6607 * Count it. 6608 */ 6609 np->actccbs++; 6610 6611 /* 6612 * Compute the bus address of this ccb. 6613 */ 6614 cp->ccb_ba = vtobus(cp); 6615 6616 /* 6617 * Insert this ccb into the hashed list. 6618 */ 6619 hcode = CCB_HASH_CODE(cp->ccb_ba); 6620 cp->link_ccbh = np->ccbh[hcode]; 6621 np->ccbh[hcode] = cp; 6622 6623 /* 6624 * Initialyze the start and restart actions. 6625 */ 6626 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6627 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6628 6629 /* 6630 * Initilialyze some other fields. 6631 */ 6632 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6633 6634 /* 6635 * Chain into free ccb queue. 6636 */ 6637 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6638 6639 return cp; 6640 out_free: 6641 if (cp) { 6642 if (cp->sns_bbuf) 6643 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF"); 6644 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6645 } 6646 return 0; 6647 } 6648 6649 /* 6650 * Look up a CCB from a DSA value. 6651 */ 6652 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6653 { 6654 int hcode; 6655 ccb_p cp; 6656 6657 hcode = CCB_HASH_CODE(dsa); 6658 cp = np->ccbh[hcode]; 6659 while (cp) { 6660 if (cp->ccb_ba == dsa) 6661 break; 6662 cp = cp->link_ccbh; 6663 } 6664 6665 return cp; 6666 } 6667 6668 /* 6669 * Target control block initialisation. 6670 * Nothing important to do at the moment. 6671 */ 6672 static void sym_init_tcb (hcb_p np, u_char tn) 6673 { 6674 /* 6675 * Check some alignments required by the chip. 6676 */ 6677 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6678 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6679 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6680 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6681 } 6682 6683 /* 6684 * Lun control block allocation and initialization. 6685 */ 6686 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6687 { 6688 tcb_p tp = &np->target[tn]; 6689 lcb_p lp = sym_lp(np, tp, ln); 6690 6691 /* 6692 * Already done, just return. 6693 */ 6694 if (lp) 6695 return lp; 6696 /* 6697 * Check against some race. 6698 */ 6699 assert(!sym_is_bit(tp->busy0_map, ln)); 6700 6701 /* 6702 * Initialize the target control block if not yet. 6703 */ 6704 sym_init_tcb (np, tn); 6705 6706 /* 6707 * Allocate the LCB bus address array. 6708 * Compute the bus address of this table. 6709 */ 6710 if (ln && !tp->luntbl) { 6711 int i; 6712 6713 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6714 if (!tp->luntbl) 6715 goto fail; 6716 for (i = 0 ; i < 64 ; i++) 6717 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6718 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6719 } 6720 6721 /* 6722 * Allocate the table of pointers for LUN(s) > 0, if needed. 6723 */ 6724 if (ln && !tp->lunmp) { 6725 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6726 "LUNMP"); 6727 if (!tp->lunmp) 6728 goto fail; 6729 } 6730 6731 /* 6732 * Allocate the lcb. 6733 * Make it available to the chip. 6734 */ 6735 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6736 if (!lp) 6737 goto fail; 6738 if (ln) { 6739 tp->lunmp[ln] = lp; 6740 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6741 } 6742 else { 6743 tp->lun0p = lp; 6744 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6745 } 6746 6747 /* 6748 * Let the itl task point to error handling. 6749 */ 6750 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6751 6752 /* 6753 * Set the reselect pattern to our default. :) 6754 */ 6755 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6756 6757 /* 6758 * Set user capabilities. 6759 */ 6760 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6761 6762 fail: 6763 return lp; 6764 } 6765 6766 /* 6767 * Allocate LCB resources for tagged command queuing. 6768 */ 6769 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6770 { 6771 tcb_p tp = &np->target[tn]; 6772 lcb_p lp = sym_lp(np, tp, ln); 6773 int i; 6774 6775 /* 6776 * If LCB not available, try to allocate it. 6777 */ 6778 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6779 goto fail; 6780 6781 /* 6782 * Allocate the task table and and the tag allocation 6783 * circular buffer. We want both or none. 6784 */ 6785 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6786 if (!lp->itlq_tbl) 6787 goto fail; 6788 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6789 if (!lp->cb_tags) { 6790 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6791 lp->itlq_tbl = 0; 6792 goto fail; 6793 } 6794 6795 /* 6796 * Initialize the task table with invalid entries. 6797 */ 6798 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6799 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6800 6801 /* 6802 * Fill up the tag buffer with tag numbers. 6803 */ 6804 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6805 lp->cb_tags[i] = i; 6806 6807 /* 6808 * Make the task table available to SCRIPTS, 6809 * And accept tagged commands now. 6810 */ 6811 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6812 6813 return; 6814 fail: 6815 return; 6816 } 6817 6818 /* 6819 * Test the pci bus snoop logic :-( 6820 * 6821 * Has to be called with interrupts disabled. 6822 */ 6823 #ifndef SYM_CONF_IOMAPPED 6824 static int sym_regtest (hcb_p np) 6825 { 6826 register volatile u32 data; 6827 /* 6828 * chip registers may NOT be cached. 6829 * write 0xffffffff to a read only register area, 6830 * and try to read it back. 6831 */ 6832 data = 0xffffffff; 6833 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6834 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6835 #if 1 6836 if (data == 0xffffffff) { 6837 #else 6838 if ((data & 0xe2f0fffd) != 0x02000080) { 6839 #endif 6840 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6841 (unsigned) data); 6842 return (0x10); 6843 }; 6844 return (0); 6845 } 6846 #endif 6847 6848 static int sym_snooptest (hcb_p np) 6849 { 6850 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6851 int i, err=0; 6852 #ifndef SYM_CONF_IOMAPPED 6853 err |= sym_regtest (np); 6854 if (err) return (err); 6855 #endif 6856 restart_test: 6857 /* 6858 * Enable Master Parity Checking as we intend 6859 * to enable it for normal operations. 6860 */ 6861 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6862 /* 6863 * init 6864 */ 6865 pc = SCRIPTB0_BA (np, snooptest); 6866 host_wr = 1; 6867 sym_wr = 2; 6868 /* 6869 * Set memory and register. 6870 */ 6871 np->cache = cpu_to_scr(host_wr); 6872 OUTL (nc_temp, sym_wr); 6873 /* 6874 * Start script (exchange values) 6875 */ 6876 OUTL (nc_dsa, np->hcb_ba); 6877 OUTL_DSP (pc); 6878 /* 6879 * Wait 'til done (with timeout) 6880 */ 6881 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6882 if (INB(nc_istat) & (INTF|SIP|DIP)) 6883 break; 6884 if (i>=SYM_SNOOP_TIMEOUT) { 6885 printf ("CACHE TEST FAILED: timeout.\n"); 6886 return (0x20); 6887 }; 6888 /* 6889 * Check for fatal DMA errors. 6890 */ 6891 dstat = INB (nc_dstat); 6892 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6893 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6894 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6895 "DISABLING MASTER DATA PARITY CHECKING.\n", 6896 sym_name(np)); 6897 np->rv_ctest4 &= ~MPEE; 6898 goto restart_test; 6899 } 6900 #endif 6901 if (dstat & (MDPE|BF|IID)) { 6902 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6903 return (0x80); 6904 } 6905 /* 6906 * Save termination position. 6907 */ 6908 pc = INL (nc_dsp); 6909 /* 6910 * Read memory and register. 6911 */ 6912 host_rd = scr_to_cpu(np->cache); 6913 sym_rd = INL (nc_scratcha); 6914 sym_bk = INL (nc_temp); 6915 6916 /* 6917 * Check termination position. 6918 */ 6919 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6920 printf ("CACHE TEST FAILED: script execution failed.\n"); 6921 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6922 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6923 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6924 return (0x40); 6925 }; 6926 /* 6927 * Show results. 6928 */ 6929 if (host_wr != sym_rd) { 6930 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6931 (int) host_wr, (int) sym_rd); 6932 err |= 1; 6933 }; 6934 if (host_rd != sym_wr) { 6935 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6936 (int) sym_wr, (int) host_rd); 6937 err |= 2; 6938 }; 6939 if (sym_bk != sym_wr) { 6940 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6941 (int) sym_wr, (int) sym_bk); 6942 err |= 4; 6943 }; 6944 6945 return (err); 6946 } 6947 6948 /* 6949 * Determine the chip's clock frequency. 6950 * 6951 * This is essential for the negotiation of the synchronous 6952 * transfer rate. 6953 * 6954 * Note: we have to return the correct value. 6955 * THERE IS NO SAFE DEFAULT VALUE. 6956 * 6957 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6958 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6959 * do not have a clock doubler and so are provided with a 6960 * 80 MHz clock. All other fast20 boards incorporate a doubler 6961 * and so should be delivered with a 40 MHz clock. 6962 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6963 * clock and provide a clock quadrupler (160 Mhz). 6964 */ 6965 6966 /* 6967 * Select SCSI clock frequency 6968 */ 6969 static void sym_selectclock(hcb_p np, u_char scntl3) 6970 { 6971 /* 6972 * If multiplier not present or not selected, leave here. 6973 */ 6974 if (np->multiplier <= 1) { 6975 OUTB(nc_scntl3, scntl3); 6976 return; 6977 } 6978 6979 if (sym_verbose >= 2) 6980 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6981 6982 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6983 /* 6984 * Wait for the LCKFRQ bit to be set if supported by the chip. 6985 * Otherwise wait 20 micro-seconds. 6986 */ 6987 if (np->features & FE_LCKFRQ) { 6988 int i = 20; 6989 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6990 UDELAY (20); 6991 if (!i) 6992 printf("%s: the chip cannot lock the frequency\n", 6993 sym_name(np)); 6994 } else 6995 UDELAY (20); 6996 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6997 OUTB(nc_scntl3, scntl3); 6998 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6999 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 7000 } 7001 7002 /* 7003 * calculate SCSI clock frequency (in KHz) 7004 */ 7005 static unsigned getfreq (hcb_p np, int gen) 7006 { 7007 unsigned int ms = 0; 7008 unsigned int f; 7009 7010 /* 7011 * Measure GEN timer delay in order 7012 * to calculate SCSI clock frequency 7013 * 7014 * This code will never execute too 7015 * many loop iterations (if DELAY is 7016 * reasonably correct). It could get 7017 * too low a delay (too high a freq.) 7018 * if the CPU is slow executing the 7019 * loop for some reason (an NMI, for 7020 * example). For this reason we will 7021 * if multiple measurements are to be 7022 * performed trust the higher delay 7023 * (lower frequency returned). 7024 */ 7025 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 7026 (void) INW (nc_sist); /* clear pending scsi interrupt */ 7027 OUTB (nc_dien , 0); /* mask all dma interrupts */ 7028 (void) INW (nc_sist); /* another one, just to be sure :) */ 7029 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 7030 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7031 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 7032 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 7033 UDELAY (1000); /* count ms */ 7034 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7035 /* 7036 * set prescaler to divide by whatever 0 means 7037 * 0 ought to choose divide by 2, but appears 7038 * to set divide by 3.5 mode in my 53c810 ... 7039 */ 7040 OUTB (nc_scntl3, 0); 7041 7042 /* 7043 * adjust for prescaler, and convert into KHz 7044 */ 7045 f = ms ? ((1 << gen) * 4340) / ms : 0; 7046 7047 if (sym_verbose >= 2) 7048 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 7049 sym_name(np), gen, ms, f); 7050 7051 return f; 7052 } 7053 7054 static unsigned sym_getfreq (hcb_p np) 7055 { 7056 u_int f1, f2; 7057 int gen = 11; 7058 7059 (void) getfreq (np, gen); /* throw away first result */ 7060 f1 = getfreq (np, gen); 7061 f2 = getfreq (np, gen); 7062 if (f1 > f2) f1 = f2; /* trust lower result */ 7063 return f1; 7064 } 7065 7066 /* 7067 * Get/probe chip SCSI clock frequency 7068 */ 7069 static void sym_getclock (hcb_p np, int mult) 7070 { 7071 unsigned char scntl3 = np->sv_scntl3; 7072 unsigned char stest1 = np->sv_stest1; 7073 unsigned f1; 7074 7075 /* 7076 * For the C10 core, assume 40 MHz. 7077 */ 7078 if (np->features & FE_C10) { 7079 np->multiplier = mult; 7080 np->clock_khz = 40000 * mult; 7081 return; 7082 } 7083 7084 np->multiplier = 1; 7085 f1 = 40000; 7086 /* 7087 * True with 875/895/896/895A with clock multiplier selected 7088 */ 7089 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7090 if (sym_verbose >= 2) 7091 printf ("%s: clock multiplier found\n", sym_name(np)); 7092 np->multiplier = mult; 7093 } 7094 7095 /* 7096 * If multiplier not found or scntl3 not 7,5,3, 7097 * reset chip and get frequency from general purpose timer. 7098 * Otherwise trust scntl3 BIOS setting. 7099 */ 7100 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7101 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7102 f1 = sym_getfreq (np); 7103 7104 if (sym_verbose) 7105 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7106 7107 if (f1 < 45000) f1 = 40000; 7108 else if (f1 < 55000) f1 = 50000; 7109 else f1 = 80000; 7110 7111 if (f1 < 80000 && mult > 1) { 7112 if (sym_verbose >= 2) 7113 printf ("%s: clock multiplier assumed\n", 7114 sym_name(np)); 7115 np->multiplier = mult; 7116 } 7117 } else { 7118 if ((scntl3 & 7) == 3) f1 = 40000; 7119 else if ((scntl3 & 7) == 5) f1 = 80000; 7120 else f1 = 160000; 7121 7122 f1 /= np->multiplier; 7123 } 7124 7125 /* 7126 * Compute controller synchronous parameters. 7127 */ 7128 f1 *= np->multiplier; 7129 np->clock_khz = f1; 7130 } 7131 7132 /* 7133 * Get/probe PCI clock frequency 7134 */ 7135 static int sym_getpciclock (hcb_p np) 7136 { 7137 int f = 0; 7138 7139 /* 7140 * For the C1010-33, this doesn't work. 7141 * For the C1010-66, this will be tested when I'll have 7142 * such a beast to play with. 7143 */ 7144 if (!(np->features & FE_C10)) { 7145 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7146 f = (int) sym_getfreq (np); 7147 OUTB (nc_stest1, 0); 7148 } 7149 np->pciclk_khz = f; 7150 7151 return f; 7152 } 7153 7154 /*============= DRIVER ACTION/COMPLETION ====================*/ 7155 7156 /* 7157 * Print something that tells about extended errors. 7158 */ 7159 static void sym_print_xerr(ccb_p cp, int x_status) 7160 { 7161 if (x_status & XE_PARITY_ERR) { 7162 PRINT_ADDR(cp); 7163 printf ("unrecovered SCSI parity error.\n"); 7164 } 7165 if (x_status & XE_EXTRA_DATA) { 7166 PRINT_ADDR(cp); 7167 printf ("extraneous data discarded.\n"); 7168 } 7169 if (x_status & XE_BAD_PHASE) { 7170 PRINT_ADDR(cp); 7171 printf ("illegal scsi phase (4/5).\n"); 7172 } 7173 if (x_status & XE_SODL_UNRUN) { 7174 PRINT_ADDR(cp); 7175 printf ("ODD transfer in DATA OUT phase.\n"); 7176 } 7177 if (x_status & XE_SWIDE_OVRUN) { 7178 PRINT_ADDR(cp); 7179 printf ("ODD transfer in DATA IN phase.\n"); 7180 } 7181 } 7182 7183 /* 7184 * Choose the more appropriate CAM status if 7185 * the IO encountered an extended error. 7186 */ 7187 static int sym_xerr_cam_status(int cam_status, int x_status) 7188 { 7189 if (x_status) { 7190 if (x_status & XE_PARITY_ERR) 7191 cam_status = CAM_UNCOR_PARITY; 7192 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7193 cam_status = CAM_DATA_RUN_ERR; 7194 else if (x_status & XE_BAD_PHASE) 7195 cam_status = CAM_REQ_CMP_ERR; 7196 else 7197 cam_status = CAM_REQ_CMP_ERR; 7198 } 7199 return cam_status; 7200 } 7201 7202 /* 7203 * Complete execution of a SCSI command with extented 7204 * error, SCSI status error, or having been auto-sensed. 7205 * 7206 * The SCRIPTS processor is not running there, so we 7207 * can safely access IO registers and remove JOBs from 7208 * the START queue. 7209 * SCRATCHA is assumed to have been loaded with STARTPOS 7210 * before the SCRIPTS called the C code. 7211 */ 7212 static void sym_complete_error (hcb_p np, ccb_p cp) 7213 { 7214 struct ccb_scsiio *csio; 7215 u_int cam_status; 7216 int i; 7217 7218 /* 7219 * Paranoid check. :) 7220 */ 7221 if (!cp || !cp->cam_ccb) 7222 return; 7223 7224 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7225 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7226 cp->host_status, cp->ssss_status, cp->host_flags, 7227 cp->target, cp->lun); 7228 MDELAY(100); 7229 } 7230 7231 /* 7232 * Get CAM command pointer. 7233 */ 7234 csio = &cp->cam_ccb->csio; 7235 7236 /* 7237 * Check for extended errors. 7238 */ 7239 if (cp->xerr_status) { 7240 if (sym_verbose) 7241 sym_print_xerr(cp, cp->xerr_status); 7242 if (cp->host_status == HS_COMPLETE) 7243 cp->host_status = HS_COMP_ERR; 7244 } 7245 7246 /* 7247 * Calculate the residual. 7248 */ 7249 csio->sense_resid = 0; 7250 csio->resid = sym_compute_residual(np, cp); 7251 7252 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7253 csio->resid = 0; /* throw them away. :) */ 7254 cp->sv_resid = 0; 7255 } 7256 7257 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7258 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7259 csio->sense_resid = csio->resid; /* Swap residuals */ 7260 csio->resid = cp->sv_resid; 7261 cp->sv_resid = 0; 7262 if (sym_verbose && cp->sv_xerr_status) 7263 sym_print_xerr(cp, cp->sv_xerr_status); 7264 if (cp->host_status == HS_COMPLETE && 7265 cp->ssss_status == S_GOOD && 7266 cp->xerr_status == 0) { 7267 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7268 cp->sv_xerr_status); 7269 cam_status |= CAM_AUTOSNS_VALID; 7270 /* 7271 * Bounce back the sense data to user and 7272 * fix the residual. 7273 */ 7274 bzero(&csio->sense_data, csio->sense_len); 7275 bcopy(cp->sns_bbuf, &csio->sense_data, 7276 MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); 7277 csio->sense_resid += csio->sense_len; 7278 csio->sense_resid -= SYM_SNS_BBUF_LEN; 7279 #if 0 7280 /* 7281 * If the device reports a UNIT ATTENTION condition 7282 * due to a RESET condition, we should consider all 7283 * disconnect CCBs for this unit as aborted. 7284 */ 7285 if (1) { 7286 u_char *p; 7287 p = (u_char *) csio->sense_data; 7288 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7289 sym_clear_tasks(np, CAM_REQ_ABORTED, 7290 cp->target,cp->lun, -1); 7291 } 7292 #endif 7293 } 7294 else 7295 cam_status = CAM_AUTOSENSE_FAIL; 7296 } 7297 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7298 csio->scsi_status = cp->ssss_status; 7299 cam_status = CAM_SCSI_STATUS_ERROR; 7300 } 7301 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7302 cam_status = CAM_SEL_TIMEOUT; 7303 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7304 cam_status = CAM_UNEXP_BUSFREE; 7305 else { /* Extended error */ 7306 if (sym_verbose) { 7307 PRINT_ADDR(cp); 7308 printf ("COMMAND FAILED (%x %x %x).\n", 7309 cp->host_status, cp->ssss_status, 7310 cp->xerr_status); 7311 } 7312 csio->scsi_status = cp->ssss_status; 7313 /* 7314 * Set the most appropriate value for CAM status. 7315 */ 7316 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7317 cp->xerr_status); 7318 } 7319 7320 /* 7321 * Dequeue all queued CCBs for that device 7322 * not yet started by SCRIPTS. 7323 */ 7324 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7325 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7326 7327 /* 7328 * Restart the SCRIPTS processor. 7329 */ 7330 OUTL_DSP (SCRIPTA_BA (np, start)); 7331 7332 /* 7333 * Synchronize DMA map if needed. 7334 */ 7335 if (cp->dmamapped) { 7336 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7337 (cp->dmamapped == SYM_DMA_READ ? 7338 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7339 } 7340 /* 7341 * Add this one to the COMP queue. 7342 * Complete all those commands with either error 7343 * or requeue condition. 7344 */ 7345 sym_set_cam_status((union ccb *) csio, cam_status); 7346 sym_remque(&cp->link_ccbq); 7347 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7348 sym_flush_comp_queue(np, 0); 7349 } 7350 7351 /* 7352 * Complete execution of a successful SCSI command. 7353 * 7354 * Only successful commands go to the DONE queue, 7355 * since we need to have the SCRIPTS processor 7356 * stopped on any error condition. 7357 * The SCRIPTS processor is running while we are 7358 * completing successful commands. 7359 */ 7360 static void sym_complete_ok (hcb_p np, ccb_p cp) 7361 { 7362 struct ccb_scsiio *csio; 7363 tcb_p tp; 7364 lcb_p lp; 7365 7366 /* 7367 * Paranoid check. :) 7368 */ 7369 if (!cp || !cp->cam_ccb) 7370 return; 7371 assert (cp->host_status == HS_COMPLETE); 7372 7373 /* 7374 * Get command, target and lun pointers. 7375 */ 7376 csio = &cp->cam_ccb->csio; 7377 tp = &np->target[cp->target]; 7378 lp = sym_lp(np, tp, cp->lun); 7379 7380 /* 7381 * Assume device discovered on first success. 7382 */ 7383 if (!lp) 7384 sym_set_bit(tp->lun_map, cp->lun); 7385 7386 /* 7387 * If all data have been transferred, given than no 7388 * extended error did occur, there is no residual. 7389 */ 7390 csio->resid = 0; 7391 if (cp->phys.head.lastp != cp->phys.head.goalp) 7392 csio->resid = sym_compute_residual(np, cp); 7393 7394 /* 7395 * Wrong transfer residuals may be worse than just always 7396 * returning zero. User can disable this feature from 7397 * sym_conf.h. Residual support is enabled by default. 7398 */ 7399 if (!SYM_CONF_RESIDUAL_SUPPORT) 7400 csio->resid = 0; 7401 7402 /* 7403 * Synchronize DMA map if needed. 7404 */ 7405 if (cp->dmamapped) { 7406 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7407 (cp->dmamapped == SYM_DMA_READ ? 7408 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7409 } 7410 /* 7411 * Set status and complete the command. 7412 */ 7413 csio->scsi_status = cp->ssss_status; 7414 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7415 sym_free_ccb (np, cp); 7416 sym_xpt_done(np, (union ccb *) csio); 7417 } 7418 7419 /* 7420 * Our timeout handler. 7421 */ 7422 static void sym_timeout1(void *arg) 7423 { 7424 union ccb *ccb = (union ccb *) arg; 7425 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7426 7427 /* 7428 * Check that the CAM CCB is still queued. 7429 */ 7430 if (!np) 7431 return; 7432 7433 switch(ccb->ccb_h.func_code) { 7434 case XPT_SCSI_IO: 7435 (void) sym_abort_scsiio(np, ccb, 1); 7436 break; 7437 default: 7438 break; 7439 } 7440 } 7441 7442 static void sym_timeout(void *arg) 7443 { 7444 int s = splcam(); 7445 sym_timeout1(arg); 7446 splx(s); 7447 } 7448 7449 /* 7450 * Abort an SCSI IO. 7451 */ 7452 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7453 { 7454 ccb_p cp; 7455 SYM_QUEHEAD *qp; 7456 7457 /* 7458 * Look up our CCB control block. 7459 */ 7460 cp = 0; 7461 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7462 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7463 if (cp2->cam_ccb == ccb) { 7464 cp = cp2; 7465 break; 7466 } 7467 } 7468 if (!cp || cp->host_status == HS_WAIT) 7469 return -1; 7470 7471 /* 7472 * If a previous abort didn't succeed in time, 7473 * perform a BUS reset. 7474 */ 7475 if (cp->to_abort) { 7476 sym_reset_scsi_bus(np, 1); 7477 return 0; 7478 } 7479 7480 /* 7481 * Mark the CCB for abort and allow time for. 7482 */ 7483 cp->to_abort = timed_out ? 2 : 1; 7484 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz); 7485 7486 /* 7487 * Tell the SCRIPTS processor to stop and synchronize with us. 7488 */ 7489 np->istat_sem = SEM; 7490 OUTB (nc_istat, SIGP|SEM); 7491 return 0; 7492 } 7493 7494 /* 7495 * Reset a SCSI device (all LUNs of a target). 7496 */ 7497 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7498 { 7499 tcb_p tp; 7500 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7501 7502 if (ccb_h->target_id == np->myaddr || 7503 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7504 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7505 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7506 return; 7507 } 7508 7509 tp = &np->target[ccb_h->target_id]; 7510 7511 tp->to_reset = 1; 7512 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7513 7514 np->istat_sem = SEM; 7515 OUTB (nc_istat, SIGP|SEM); 7516 return; 7517 } 7518 7519 /* 7520 * SIM action entry point. 7521 */ 7522 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7523 { 7524 int s = splcam(); 7525 sym_action1(sim, ccb); 7526 splx(s); 7527 } 7528 7529 static void sym_action1(struct cam_sim *sim, union ccb *ccb) 7530 { 7531 hcb_p np; 7532 tcb_p tp; 7533 lcb_p lp; 7534 ccb_p cp; 7535 int tmp; 7536 u_char idmsg, *msgptr; 7537 u_int msglen; 7538 struct ccb_scsiio *csio; 7539 struct ccb_hdr *ccb_h; 7540 7541 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7542 7543 /* 7544 * Retrieve our controller data structure. 7545 */ 7546 np = (hcb_p) cam_sim_softc(sim); 7547 7548 /* 7549 * The common case is SCSI IO. 7550 * We deal with other ones elsewhere. 7551 */ 7552 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7553 sym_action2(sim, ccb); 7554 return; 7555 } 7556 csio = &ccb->csio; 7557 ccb_h = &csio->ccb_h; 7558 7559 /* 7560 * Work around races. 7561 */ 7562 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7563 xpt_done(ccb); 7564 return; 7565 } 7566 7567 /* 7568 * Minimal checkings, so that we will not 7569 * go outside our tables. 7570 */ 7571 if (ccb_h->target_id == np->myaddr || 7572 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7573 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7574 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7575 return; 7576 } 7577 7578 /* 7579 * Retreive the target and lun descriptors. 7580 */ 7581 tp = &np->target[ccb_h->target_id]; 7582 lp = sym_lp(np, tp, ccb_h->target_lun); 7583 7584 /* 7585 * Complete the 1st INQUIRY command with error 7586 * condition if the device is flagged NOSCAN 7587 * at BOOT in the NVRAM. This may speed up 7588 * the boot and maintain coherency with BIOS 7589 * device numbering. Clearing the flag allows 7590 * user to rescan skipped devices later. 7591 * We also return error for devices not flagged 7592 * for SCAN LUNS in the NVRAM since some mono-lun 7593 * devices behave badly when asked for some non 7594 * zero LUN. Btw, this is an absolute hack.:-) 7595 */ 7596 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7597 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7598 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7599 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7600 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7601 ccb_h->target_lun != 0)) { 7602 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7603 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7604 return; 7605 } 7606 } 7607 7608 /* 7609 * Get a control block for this IO. 7610 */ 7611 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7612 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7613 if (!cp) { 7614 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7615 return; 7616 } 7617 7618 /* 7619 * Keep track of the IO in our CCB. 7620 */ 7621 cp->cam_ccb = ccb; 7622 7623 /* 7624 * Build the IDENTIFY message. 7625 */ 7626 idmsg = M_IDENTIFY | cp->lun; 7627 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7628 idmsg |= 0x40; 7629 7630 msgptr = cp->scsi_smsg; 7631 msglen = 0; 7632 msgptr[msglen++] = idmsg; 7633 7634 /* 7635 * Build the tag message if present. 7636 */ 7637 if (cp->tag != NO_TAG) { 7638 u_char order = csio->tag_action; 7639 7640 switch(order) { 7641 case M_ORDERED_TAG: 7642 break; 7643 case M_HEAD_TAG: 7644 break; 7645 default: 7646 order = M_SIMPLE_TAG; 7647 } 7648 msgptr[msglen++] = order; 7649 7650 /* 7651 * For less than 128 tags, actual tags are numbered 7652 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7653 * with devices that have problems with #TAG 0 or too 7654 * great #TAG numbers. For more tags (up to 256), 7655 * we use directly our tag number. 7656 */ 7657 #if SYM_CONF_MAX_TASK > (512/4) 7658 msgptr[msglen++] = cp->tag; 7659 #else 7660 msgptr[msglen++] = (cp->tag << 1) + 1; 7661 #endif 7662 } 7663 7664 /* 7665 * Build a negotiation message if needed. 7666 * (nego_status is filled by sym_prepare_nego()) 7667 */ 7668 cp->nego_status = 0; 7669 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7670 tp->tinfo.current.period != tp->tinfo.goal.period || 7671 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7672 tp->tinfo.current.options != tp->tinfo.goal.options) { 7673 if (!tp->nego_cp && lp) 7674 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7675 } 7676 7677 /* 7678 * Fill in our ccb 7679 */ 7680 7681 /* 7682 * Startqueue 7683 */ 7684 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7685 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7686 7687 /* 7688 * select 7689 */ 7690 cp->phys.select.sel_id = cp->target; 7691 cp->phys.select.sel_scntl3 = tp->head.wval; 7692 cp->phys.select.sel_sxfer = tp->head.sval; 7693 cp->phys.select.sel_scntl4 = tp->head.uval; 7694 7695 /* 7696 * message 7697 */ 7698 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7699 cp->phys.smsg.size = cpu_to_scr(msglen); 7700 7701 /* 7702 * command 7703 */ 7704 if (sym_setup_cdb(np, csio, cp) < 0) { 7705 sym_free_ccb(np, cp); 7706 sym_xpt_done(np, ccb); 7707 return; 7708 } 7709 7710 /* 7711 * status 7712 */ 7713 #if 0 /* Provision */ 7714 cp->actualquirks = tp->quirks; 7715 #endif 7716 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7717 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7718 cp->ssss_status = S_ILLEGAL; 7719 cp->xerr_status = 0; 7720 cp->host_flags = 0; 7721 cp->extra_bytes = 0; 7722 7723 /* 7724 * extreme data pointer. 7725 * shall be positive, so -1 is lower than lowest.:) 7726 */ 7727 cp->ext_sg = -1; 7728 cp->ext_ofs = 0; 7729 7730 /* 7731 * Build the data descriptor block 7732 * and start the IO. 7733 */ 7734 sym_setup_data_and_start(np, csio, cp); 7735 } 7736 7737 /* 7738 * Setup buffers and pointers that address the CDB. 7739 * I bet, physical CDBs will never be used on the planet, 7740 * since they can be bounced without significant overhead. 7741 */ 7742 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7743 { 7744 struct ccb_hdr *ccb_h; 7745 u32 cmd_ba; 7746 int cmd_len; 7747 7748 ccb_h = &csio->ccb_h; 7749 7750 /* 7751 * CDB is 16 bytes max. 7752 */ 7753 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7754 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7755 return -1; 7756 } 7757 cmd_len = csio->cdb_len; 7758 7759 if (ccb_h->flags & CAM_CDB_POINTER) { 7760 /* CDB is a pointer */ 7761 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7762 /* CDB pointer is virtual */ 7763 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7764 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7765 } else { 7766 /* CDB pointer is physical */ 7767 #if 0 7768 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7769 #else 7770 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7771 return -1; 7772 #endif 7773 } 7774 } else { 7775 /* CDB is in the CAM ccb (buffer) */ 7776 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7777 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7778 } 7779 7780 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7781 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7782 7783 return 0; 7784 } 7785 7786 /* 7787 * Set up data pointers used by SCRIPTS. 7788 */ 7789 static void __inline 7790 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7791 { 7792 u32 lastp, goalp; 7793 7794 /* 7795 * No segments means no data. 7796 */ 7797 if (!cp->segments) 7798 dir = CAM_DIR_NONE; 7799 7800 /* 7801 * Set the data pointer. 7802 */ 7803 switch(dir) { 7804 case CAM_DIR_OUT: 7805 goalp = SCRIPTA_BA (np, data_out2) + 8; 7806 lastp = goalp - 8 - (cp->segments * (2*4)); 7807 break; 7808 case CAM_DIR_IN: 7809 cp->host_flags |= HF_DATA_IN; 7810 goalp = SCRIPTA_BA (np, data_in2) + 8; 7811 lastp = goalp - 8 - (cp->segments * (2*4)); 7812 break; 7813 case CAM_DIR_NONE: 7814 default: 7815 lastp = goalp = SCRIPTB_BA (np, no_data); 7816 break; 7817 } 7818 7819 cp->phys.head.lastp = cpu_to_scr(lastp); 7820 cp->phys.head.goalp = cpu_to_scr(goalp); 7821 cp->phys.head.savep = cpu_to_scr(lastp); 7822 cp->startp = cp->phys.head.savep; 7823 } 7824 7825 7826 /* 7827 * Call back routine for the DMA map service. 7828 * If bounce buffers are used (why ?), we may sleep and then 7829 * be called there in another context. 7830 */ 7831 static void 7832 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7833 { 7834 ccb_p cp; 7835 hcb_p np; 7836 union ccb *ccb; 7837 int s; 7838 7839 s = splcam(); 7840 7841 cp = (ccb_p) arg; 7842 ccb = cp->cam_ccb; 7843 np = (hcb_p) cp->arg; 7844 7845 /* 7846 * Deal with weird races. 7847 */ 7848 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7849 goto out_abort; 7850 7851 /* 7852 * Deal with weird errors. 7853 */ 7854 if (error) { 7855 cp->dmamapped = 0; 7856 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7857 goto out_abort; 7858 } 7859 7860 /* 7861 * Build the data descriptor for the chip. 7862 */ 7863 if (nsegs) { 7864 int retv; 7865 /* 896 rev 1 requires to be careful about boundaries */ 7866 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7867 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7868 else 7869 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7870 if (retv < 0) { 7871 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7872 goto out_abort; 7873 } 7874 } 7875 7876 /* 7877 * Synchronize the DMA map only if we have 7878 * actually mapped the data. 7879 */ 7880 if (cp->dmamapped) { 7881 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7882 (cp->dmamapped == SYM_DMA_READ ? 7883 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7884 } 7885 7886 /* 7887 * Set host status to busy state. 7888 * May have been set back to HS_WAIT to avoid a race. 7889 */ 7890 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7891 7892 /* 7893 * Set data pointers. 7894 */ 7895 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7896 7897 /* 7898 * Enqueue this IO in our pending queue. 7899 */ 7900 sym_enqueue_cam_ccb(np, ccb); 7901 7902 /* 7903 * When `#ifed 1', the code below makes the driver 7904 * panic on the first attempt to write to a SCSI device. 7905 * It is the first test we want to do after a driver 7906 * change that does not seem obviously safe. :) 7907 */ 7908 #if 0 7909 switch (cp->cdb_buf[0]) { 7910 case 0x0A: case 0x2A: case 0xAA: 7911 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7912 MDELAY(10000); 7913 break; 7914 default: 7915 break; 7916 } 7917 #endif 7918 /* 7919 * Activate this job. 7920 */ 7921 sym_put_start_queue(np, cp); 7922 out: 7923 splx(s); 7924 return; 7925 out_abort: 7926 sym_free_ccb(np, cp); 7927 sym_xpt_done(np, ccb); 7928 goto out; 7929 } 7930 7931 /* 7932 * How complex it gets to deal with the data in CAM. 7933 * The Bus Dma stuff makes things still more complex. 7934 */ 7935 static void 7936 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7937 { 7938 struct ccb_hdr *ccb_h; 7939 int dir, retv; 7940 7941 ccb_h = &csio->ccb_h; 7942 7943 /* 7944 * Now deal with the data. 7945 */ 7946 cp->data_len = csio->dxfer_len; 7947 cp->arg = np; 7948 7949 /* 7950 * No direction means no data. 7951 */ 7952 dir = (ccb_h->flags & CAM_DIR_MASK); 7953 if (dir == CAM_DIR_NONE) { 7954 sym_execute_ccb(cp, NULL, 0, 0); 7955 return; 7956 } 7957 7958 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 7959 /* Single buffer */ 7960 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7961 /* Buffer is virtual */ 7962 int s; 7963 7964 cp->dmamapped = (dir == CAM_DIR_IN) ? 7965 SYM_DMA_READ : SYM_DMA_WRITE; 7966 s = splsoftvm(); 7967 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 7968 csio->data_ptr, csio->dxfer_len, 7969 sym_execute_ccb, cp, 0); 7970 if (retv == EINPROGRESS) { 7971 cp->host_status = HS_WAIT; 7972 xpt_freeze_simq(np->sim, 1); 7973 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7974 } 7975 splx(s); 7976 } else { 7977 /* Buffer is physical */ 7978 struct bus_dma_segment seg; 7979 7980 seg.ds_addr = (bus_addr_t) csio->data_ptr; 7981 sym_execute_ccb(cp, &seg, 1, 0); 7982 } 7983 } else { 7984 /* Scatter/gather list */ 7985 struct bus_dma_segment *segs; 7986 7987 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 7988 /* The SG list pointer is physical */ 7989 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7990 goto out_abort; 7991 } 7992 7993 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7994 /* SG buffer pointers are virtual */ 7995 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7996 goto out_abort; 7997 } 7998 7999 /* SG buffer pointers are physical */ 8000 segs = (struct bus_dma_segment *)csio->data_ptr; 8001 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 8002 } 8003 return; 8004 out_abort: 8005 sym_free_ccb(np, cp); 8006 sym_xpt_done(np, (union ccb *) csio); 8007 } 8008 8009 /* 8010 * Move the scatter list to our data block. 8011 */ 8012 static int 8013 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 8014 bus_dma_segment_t *psegs, int nsegs) 8015 { 8016 struct sym_tblmove *data; 8017 bus_dma_segment_t *psegs2; 8018 8019 if (nsegs > SYM_CONF_MAX_SG) 8020 return -1; 8021 8022 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 8023 psegs2 = &psegs[nsegs-1]; 8024 cp->segments = nsegs; 8025 8026 while (1) { 8027 data->addr = cpu_to_scr(psegs2->ds_addr); 8028 data->size = cpu_to_scr(psegs2->ds_len); 8029 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8030 printf ("%s scatter: paddr=%lx len=%ld\n", 8031 sym_name(np), (long) psegs2->ds_addr, 8032 (long) psegs2->ds_len); 8033 } 8034 if (psegs2 != psegs) { 8035 --data; 8036 --psegs2; 8037 continue; 8038 } 8039 break; 8040 } 8041 return 0; 8042 } 8043 8044 8045 /* 8046 * Scatter a SG list with physical addresses into bus addressable chunks. 8047 * We need to ensure 16MB boundaries not to be crossed during DMA of 8048 * each segment, due to some chips being flawed. 8049 */ 8050 #define BOUND_MASK ((1UL<<24)-1) 8051 static int 8052 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8053 { 8054 u_long ps, pe, pn; 8055 u_long k; 8056 int s, t; 8057 8058 s = SYM_CONF_MAX_SG - 1; 8059 t = nsegs - 1; 8060 ps = psegs[t].ds_addr; 8061 pe = ps + psegs[t].ds_len; 8062 8063 while (s >= 0) { 8064 pn = (pe - 1) & ~BOUND_MASK; 8065 if (pn <= ps) 8066 pn = ps; 8067 k = pe - pn; 8068 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8069 printf ("%s scatter: paddr=%lx len=%ld\n", 8070 sym_name(np), pn, k); 8071 } 8072 cp->phys.data[s].addr = cpu_to_scr(pn); 8073 cp->phys.data[s].size = cpu_to_scr(k); 8074 --s; 8075 if (pn == ps) { 8076 if (--t < 0) 8077 break; 8078 ps = psegs[t].ds_addr; 8079 pe = ps + psegs[t].ds_len; 8080 } 8081 else 8082 pe = pn; 8083 } 8084 8085 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8086 8087 return t >= 0 ? -1 : 0; 8088 } 8089 #undef BOUND_MASK 8090 8091 /* 8092 * SIM action for non performance critical stuff. 8093 */ 8094 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8095 { 8096 hcb_p np; 8097 tcb_p tp; 8098 lcb_p lp; 8099 struct ccb_hdr *ccb_h; 8100 8101 /* 8102 * Retrieve our controller data structure. 8103 */ 8104 np = (hcb_p) cam_sim_softc(sim); 8105 8106 ccb_h = &ccb->ccb_h; 8107 8108 switch (ccb_h->func_code) { 8109 case XPT_SET_TRAN_SETTINGS: 8110 { 8111 struct ccb_trans_settings *cts; 8112 8113 cts = &ccb->cts; 8114 tp = &np->target[ccb_h->target_id]; 8115 8116 /* 8117 * Update SPI transport settings in TARGET control block. 8118 * Update SCSI device settings in LUN control block. 8119 */ 8120 lp = sym_lp(np, tp, ccb_h->target_lun); 8121 #ifdef FreeBSD_New_Tran_Settings 8122 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8123 #else 8124 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8125 #endif 8126 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8127 if (lp) 8128 sym_update_dflags(np, &lp->current_flags, cts); 8129 } 8130 #ifdef FreeBSD_New_Tran_Settings 8131 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8132 #else 8133 if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) { 8134 #endif 8135 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8136 if (lp) 8137 sym_update_dflags(np, &lp->user_flags, cts); 8138 } 8139 8140 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8141 break; 8142 } 8143 case XPT_GET_TRAN_SETTINGS: 8144 { 8145 struct ccb_trans_settings *cts; 8146 struct sym_trans *tip; 8147 u_char dflags; 8148 8149 cts = &ccb->cts; 8150 tp = &np->target[ccb_h->target_id]; 8151 lp = sym_lp(np, tp, ccb_h->target_lun); 8152 8153 #ifdef FreeBSD_New_Tran_Settings 8154 #define cts__scsi (&cts->proto_specific.scsi) 8155 #define cts__spi (&cts->xport_specific.spi) 8156 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8157 tip = &tp->tinfo.current; 8158 dflags = lp ? lp->current_flags : 0; 8159 } 8160 else { 8161 tip = &tp->tinfo.user; 8162 dflags = lp ? lp->user_flags : tp->usrflags; 8163 } 8164 8165 cts->protocol = PROTO_SCSI; 8166 cts->transport = XPORT_SPI; 8167 cts->protocol_version = tip->scsi_version; 8168 cts->transport_version = tip->spi_version; 8169 8170 cts__spi->sync_period = tip->period; 8171 cts__spi->sync_offset = tip->offset; 8172 cts__spi->bus_width = tip->width; 8173 cts__spi->ppr_options = tip->options; 8174 8175 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8176 | CTS_SPI_VALID_SYNC_OFFSET 8177 | CTS_SPI_VALID_BUS_WIDTH 8178 | CTS_SPI_VALID_PPR_OPTIONS; 8179 8180 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8181 if (dflags & SYM_DISC_ENABLED) 8182 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8183 cts__spi->valid |= CTS_SPI_VALID_DISC; 8184 8185 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8186 if (dflags & SYM_TAGS_ENABLED) 8187 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8188 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8189 #undef cts__spi 8190 #undef cts__scsi 8191 #else 8192 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8193 tip = &tp->tinfo.current; 8194 dflags = lp ? lp->current_flags : 0; 8195 } 8196 else { 8197 tip = &tp->tinfo.user; 8198 dflags = lp ? lp->user_flags : tp->usrflags; 8199 } 8200 8201 cts->sync_period = tip->period; 8202 cts->sync_offset = tip->offset; 8203 cts->bus_width = tip->width; 8204 8205 cts->valid = CCB_TRANS_SYNC_RATE_VALID 8206 | CCB_TRANS_SYNC_OFFSET_VALID 8207 | CCB_TRANS_BUS_WIDTH_VALID; 8208 8209 cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); 8210 8211 if (dflags & SYM_DISC_ENABLED) 8212 cts->flags |= CCB_TRANS_DISC_ENB; 8213 8214 if (dflags & SYM_TAGS_ENABLED) 8215 cts->flags |= CCB_TRANS_TAG_ENB; 8216 8217 cts->valid |= CCB_TRANS_DISC_VALID; 8218 cts->valid |= CCB_TRANS_TQ_VALID; 8219 #endif 8220 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8221 break; 8222 } 8223 case XPT_CALC_GEOMETRY: 8224 { 8225 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8226 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8227 break; 8228 } 8229 case XPT_PATH_INQ: 8230 { 8231 struct ccb_pathinq *cpi = &ccb->cpi; 8232 cpi->version_num = 1; 8233 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8234 if ((np->features & FE_WIDE) != 0) 8235 cpi->hba_inquiry |= PI_WIDE_16; 8236 cpi->target_sprt = 0; 8237 cpi->hba_misc = 0; 8238 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8239 cpi->hba_misc |= PIM_SCANHILO; 8240 if (np->usrflags & SYM_AVOID_BUS_RESET) 8241 cpi->hba_misc |= PIM_NOBUSRESET; 8242 cpi->hba_eng_cnt = 0; 8243 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8244 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8245 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8246 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8247 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8248 cpi->bus_id = cam_sim_bus(sim); 8249 cpi->initiator_id = np->myaddr; 8250 cpi->base_transfer_speed = 3300; 8251 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8252 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8253 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8254 cpi->unit_number = cam_sim_unit(sim); 8255 8256 #ifdef FreeBSD_New_Tran_Settings 8257 cpi->protocol = PROTO_SCSI; 8258 cpi->protocol_version = SCSI_REV_2; 8259 cpi->transport = XPORT_SPI; 8260 cpi->transport_version = 2; 8261 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8262 if (np->features & FE_ULTRA3) { 8263 cpi->transport_version = 3; 8264 cpi->xport_specific.spi.ppr_options = 8265 SID_SPI_CLOCK_DT_ST; 8266 } 8267 #endif 8268 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8269 break; 8270 } 8271 case XPT_ABORT: 8272 { 8273 union ccb *abort_ccb = ccb->cab.abort_ccb; 8274 switch(abort_ccb->ccb_h.func_code) { 8275 case XPT_SCSI_IO: 8276 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8277 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8278 break; 8279 } 8280 default: 8281 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8282 break; 8283 } 8284 break; 8285 } 8286 case XPT_RESET_DEV: 8287 { 8288 sym_reset_dev(np, ccb); 8289 break; 8290 } 8291 case XPT_RESET_BUS: 8292 { 8293 sym_reset_scsi_bus(np, 0); 8294 if (sym_verbose) { 8295 xpt_print_path(np->path); 8296 printf("SCSI BUS reset delivered.\n"); 8297 } 8298 sym_init (np, 1); 8299 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8300 break; 8301 } 8302 case XPT_ACCEPT_TARGET_IO: 8303 case XPT_CONT_TARGET_IO: 8304 case XPT_EN_LUN: 8305 case XPT_NOTIFY_ACK: 8306 case XPT_IMMED_NOTIFY: 8307 case XPT_TERM_IO: 8308 default: 8309 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8310 break; 8311 } 8312 } 8313 8314 /* 8315 * Asynchronous notification handler. 8316 */ 8317 static void 8318 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8319 { 8320 hcb_p np; 8321 struct cam_sim *sim; 8322 u_int tn; 8323 tcb_p tp; 8324 int s; 8325 8326 s = splcam(); 8327 8328 sim = (struct cam_sim *) cb_arg; 8329 np = (hcb_p) cam_sim_softc(sim); 8330 8331 switch (code) { 8332 case AC_LOST_DEVICE: 8333 tn = xpt_path_target_id(path); 8334 if (tn >= SYM_CONF_MAX_TARGET) 8335 break; 8336 8337 tp = &np->target[tn]; 8338 8339 tp->to_reset = 0; 8340 tp->head.sval = 0; 8341 tp->head.wval = np->rv_scntl3; 8342 tp->head.uval = 0; 8343 8344 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8345 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8346 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8347 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8348 8349 break; 8350 default: 8351 break; 8352 } 8353 8354 splx(s); 8355 } 8356 8357 /* 8358 * Update transfer settings of a target. 8359 */ 8360 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8361 struct ccb_trans_settings *cts) 8362 { 8363 /* 8364 * Update the infos. 8365 */ 8366 #ifdef FreeBSD_New_Tran_Settings 8367 #define cts__spi (&cts->xport_specific.spi) 8368 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8369 tip->width = cts__spi->bus_width; 8370 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8371 tip->offset = cts__spi->sync_offset; 8372 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8373 tip->period = cts__spi->sync_period; 8374 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8375 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8376 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8377 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8378 tip->scsi_version = cts->protocol_version; 8379 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8380 cts->transport_version != XPORT_VERSION_UNKNOWN) 8381 tip->spi_version = cts->transport_version; 8382 #undef cts__spi 8383 #else 8384 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 8385 tip->width = cts->bus_width; 8386 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) 8387 tip->offset = cts->sync_offset; 8388 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) 8389 tip->period = cts->sync_period; 8390 #endif 8391 /* 8392 * Scale against driver configuration limits. 8393 */ 8394 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8395 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8396 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8397 8398 /* 8399 * Scale against actual controller BUS width. 8400 */ 8401 if (tip->width > np->maxwide) 8402 tip->width = np->maxwide; 8403 8404 #ifdef FreeBSD_New_Tran_Settings 8405 /* 8406 * Only accept DT if controller supports and SYNC/WIDE asked. 8407 */ 8408 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8409 !(tip->width == BUS_16_BIT && tip->offset)) { 8410 tip->options &= ~PPR_OPT_DT; 8411 } 8412 #else 8413 /* 8414 * For now, only assume DT if period <= 9, BUS 16 and offset != 0. 8415 */ 8416 tip->options = 0; 8417 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) && 8418 tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) { 8419 tip->options |= PPR_OPT_DT; 8420 } 8421 #endif 8422 8423 /* 8424 * Scale period factor and offset against controller limits. 8425 */ 8426 if (tip->options & PPR_OPT_DT) { 8427 if (tip->period < np->minsync_dt) 8428 tip->period = np->minsync_dt; 8429 if (tip->period > np->maxsync_dt) 8430 tip->period = np->maxsync_dt; 8431 if (tip->offset > np->maxoffs_dt) 8432 tip->offset = np->maxoffs_dt; 8433 } 8434 else { 8435 if (tip->period < np->minsync) 8436 tip->period = np->minsync; 8437 if (tip->period > np->maxsync) 8438 tip->period = np->maxsync; 8439 if (tip->offset > np->maxoffs) 8440 tip->offset = np->maxoffs; 8441 } 8442 } 8443 8444 /* 8445 * Update flags for a device (logical unit). 8446 */ 8447 static void 8448 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8449 { 8450 #ifdef FreeBSD_New_Tran_Settings 8451 #define cts__scsi (&cts->proto_specific.scsi) 8452 #define cts__spi (&cts->xport_specific.spi) 8453 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8454 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8455 *flags |= SYM_DISC_ENABLED; 8456 else 8457 *flags &= ~SYM_DISC_ENABLED; 8458 } 8459 8460 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8461 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8462 *flags |= SYM_TAGS_ENABLED; 8463 else 8464 *flags &= ~SYM_TAGS_ENABLED; 8465 } 8466 #undef cts__spi 8467 #undef cts__scsi 8468 #else 8469 if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { 8470 if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) 8471 *flags |= SYM_DISC_ENABLED; 8472 else 8473 *flags &= ~SYM_DISC_ENABLED; 8474 } 8475 8476 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 8477 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) 8478 *flags |= SYM_TAGS_ENABLED; 8479 else 8480 *flags &= ~SYM_TAGS_ENABLED; 8481 } 8482 #endif 8483 } 8484 8485 8486 /*============= DRIVER INITIALISATION ==================*/ 8487 8488 8489 static device_method_t sym_pci_methods[] = { 8490 DEVMETHOD(device_probe, sym_pci_probe), 8491 DEVMETHOD(device_attach, sym_pci_attach), 8492 { 0, 0 } 8493 }; 8494 8495 static driver_t sym_pci_driver = { 8496 "sym", 8497 sym_pci_methods, 8498 sizeof(struct sym_hcb) 8499 }; 8500 8501 static devclass_t sym_devclass; 8502 8503 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8504 8505 8506 static struct sym_pci_chip sym_pci_dev_table[] = { 8507 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8508 FE_ERL} 8509 , 8510 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8511 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8512 FE_BOF} 8513 , 8514 #else 8515 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8516 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8517 , 8518 #endif 8519 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8520 FE_BOF|FE_ERL} 8521 , 8522 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8523 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8524 , 8525 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8526 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8527 , 8528 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8529 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8530 , 8531 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8532 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8533 FE_RAM|FE_DIFF} 8534 , 8535 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8536 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8537 FE_RAM|FE_DIFF} 8538 , 8539 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8540 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8541 FE_RAM|FE_DIFF} 8542 , 8543 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8544 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8545 FE_RAM|FE_DIFF} 8546 , 8547 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8548 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8549 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8550 FE_RAM|FE_LCKFRQ} 8551 , 8552 #else 8553 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8554 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8555 FE_RAM|FE_LCKFRQ} 8556 , 8557 #endif 8558 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8559 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8560 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8561 , 8562 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8563 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8564 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8565 , 8566 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8567 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8568 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8569 FE_C10} 8570 , 8571 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8572 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8573 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8574 FE_C10|FE_U3EN} 8575 , 8576 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8577 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8578 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8579 FE_C10|FE_U3EN} 8580 , 8581 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8582 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8583 FE_RAM|FE_IO256|FE_LEDC} 8584 }; 8585 8586 #define sym_pci_num_devs \ 8587 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8588 8589 /* 8590 * Look up the chip table. 8591 * 8592 * Return a pointer to the chip entry if found, 8593 * zero otherwise. 8594 */ 8595 static struct sym_pci_chip * 8596 sym_find_pci_chip(device_t dev) 8597 { 8598 struct sym_pci_chip *chip; 8599 int i; 8600 u_short device_id; 8601 u_char revision; 8602 8603 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8604 return 0; 8605 8606 device_id = pci_get_device(dev); 8607 revision = pci_get_revid(dev); 8608 8609 for (i = 0; i < sym_pci_num_devs; i++) { 8610 chip = &sym_pci_dev_table[i]; 8611 if (device_id != chip->device_id) 8612 continue; 8613 if (revision > chip->revision_id) 8614 continue; 8615 return chip; 8616 } 8617 8618 return 0; 8619 } 8620 8621 /* 8622 * Tell upper layer if the chip is supported. 8623 */ 8624 static int 8625 sym_pci_probe(device_t dev) 8626 { 8627 struct sym_pci_chip *chip; 8628 8629 chip = sym_find_pci_chip(dev); 8630 if (chip && sym_find_firmware(chip)) { 8631 device_set_desc(dev, chip->name); 8632 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0; 8633 } 8634 return ENXIO; 8635 } 8636 8637 /* 8638 * Attach a sym53c8xx device. 8639 */ 8640 static int 8641 sym_pci_attach(device_t dev) 8642 { 8643 struct sym_pci_chip *chip; 8644 u_short command; 8645 u_char cachelnsz; 8646 struct sym_hcb *np = 0; 8647 struct sym_nvram nvram; 8648 struct sym_fw *fw = 0; 8649 int i; 8650 bus_dma_tag_t bus_dmat; 8651 8652 /* 8653 * I expected to be told about a parent 8654 * DMA tag, but didn't find any. 8655 */ 8656 bus_dmat = NULL; 8657 8658 /* 8659 * Only probed devices should be attached. 8660 * We just enjoy being paranoid. :) 8661 */ 8662 chip = sym_find_pci_chip(dev); 8663 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8664 return (ENXIO); 8665 8666 /* 8667 * Allocate immediately the host control block, 8668 * since we are only expecting to succeed. :) 8669 * We keep track in the HCB of all the resources that 8670 * are to be released on error. 8671 */ 8672 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8673 if (np) 8674 np->bus_dmat = bus_dmat; 8675 else 8676 goto attach_failed; 8677 8678 /* 8679 * Copy some useful infos to the HCB. 8680 */ 8681 np->hcb_ba = vtobus(np); 8682 np->verbose = bootverbose; 8683 np->device = dev; 8684 np->unit = device_get_unit(dev); 8685 np->device_id = pci_get_device(dev); 8686 np->revision_id = pci_get_revid(dev); 8687 np->features = chip->features; 8688 np->clock_divn = chip->nr_divisor; 8689 np->maxoffs = chip->offset_max; 8690 np->maxburst = chip->burst_max; 8691 np->scripta_sz = fw->a_size; 8692 np->scriptb_sz = fw->b_size; 8693 np->fw_setup = fw->setup; 8694 np->fw_patch = fw->patch; 8695 np->fw_name = fw->name; 8696 8697 /* 8698 * Edit its name. 8699 */ 8700 snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); 8701 8702 /* 8703 * Initialyze the CCB free and busy queues. 8704 */ 8705 sym_que_init(&np->free_ccbq); 8706 sym_que_init(&np->busy_ccbq); 8707 sym_que_init(&np->comp_ccbq); 8708 sym_que_init(&np->cam_ccbq); 8709 8710 /* 8711 * Allocate a tag for the DMA of user data. 8712 */ 8713 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 8714 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 8715 NULL, NULL, 8716 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 8717 (1<<24), 0, busdma_lock_mutex, &Giant, 8718 &np->data_dmat)) { 8719 device_printf(dev, "failed to create DMA tag.\n"); 8720 goto attach_failed; 8721 } 8722 /* 8723 * Read and apply some fix-ups to the PCI COMMAND 8724 * register. We want the chip to be enabled for: 8725 * - BUS mastering 8726 * - PCI parity checking (reporting would also be fine) 8727 * - Write And Invalidate. 8728 */ 8729 command = pci_read_config(dev, PCIR_COMMAND, 2); 8730 command |= PCIM_CMD_BUSMASTEREN; 8731 command |= PCIM_CMD_PERRESPEN; 8732 command |= /* PCIM_CMD_MWIEN */ 0x0010; 8733 pci_write_config(dev, PCIR_COMMAND, command, 2); 8734 8735 /* 8736 * Let the device know about the cache line size, 8737 * if it doesn't yet. 8738 */ 8739 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8740 if (!cachelnsz) { 8741 cachelnsz = 8; 8742 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8743 } 8744 8745 /* 8746 * Alloc/get/map/retrieve everything that deals with MMIO. 8747 */ 8748 if ((command & PCIM_CMD_MEMEN) != 0) { 8749 int regs_id = SYM_PCI_MMIO; 8750 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8751 ®s_id, RF_ACTIVE); 8752 } 8753 if (!np->mmio_res) { 8754 device_printf(dev, "failed to allocate MMIO resources\n"); 8755 goto attach_failed; 8756 } 8757 np->mmio_bsh = rman_get_bushandle(np->mmio_res); 8758 np->mmio_tag = rman_get_bustag(np->mmio_res); 8759 np->mmio_pa = rman_get_start(np->mmio_res); 8760 np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); 8761 np->mmio_ba = np->mmio_pa; 8762 8763 /* 8764 * Allocate the IRQ. 8765 */ 8766 i = 0; 8767 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8768 RF_ACTIVE | RF_SHAREABLE); 8769 if (!np->irq_res) { 8770 device_printf(dev, "failed to allocate IRQ resource\n"); 8771 goto attach_failed; 8772 } 8773 8774 #ifdef SYM_CONF_IOMAPPED 8775 /* 8776 * User want us to use normal IO with PCI. 8777 * Alloc/get/map/retrieve everything that deals with IO. 8778 */ 8779 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 8780 int regs_id = SYM_PCI_IO; 8781 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 8782 ®s_id, RF_ACTIVE); 8783 } 8784 if (!np->io_res) { 8785 device_printf(dev, "failed to allocate IO resources\n"); 8786 goto attach_failed; 8787 } 8788 np->io_bsh = rman_get_bushandle(np->io_res); 8789 np->io_tag = rman_get_bustag(np->io_res); 8790 np->io_port = rman_get_start(np->io_res); 8791 8792 #endif /* SYM_CONF_IOMAPPED */ 8793 8794 /* 8795 * If the chip has RAM. 8796 * Alloc/get/map/retrieve the corresponding resources. 8797 */ 8798 if ((np->features & (FE_RAM|FE_RAM8K)) && 8799 (command & PCIM_CMD_MEMEN) != 0) { 8800 int regs_id = SYM_PCI_RAM; 8801 if (np->features & FE_64BIT) 8802 regs_id = SYM_PCI_RAM64; 8803 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8804 ®s_id, RF_ACTIVE); 8805 if (!np->ram_res) { 8806 device_printf(dev,"failed to allocate RAM resources\n"); 8807 goto attach_failed; 8808 } 8809 np->ram_id = regs_id; 8810 np->ram_bsh = rman_get_bushandle(np->ram_res); 8811 np->ram_tag = rman_get_bustag(np->ram_res); 8812 np->ram_pa = rman_get_start(np->ram_res); 8813 np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); 8814 np->ram_ba = np->ram_pa; 8815 } 8816 8817 /* 8818 * Save setting of some IO registers, so we will 8819 * be able to probe specific implementations. 8820 */ 8821 sym_save_initial_setting (np); 8822 8823 /* 8824 * Reset the chip now, since it has been reported 8825 * that SCSI clock calibration may not work properly 8826 * if the chip is currently active. 8827 */ 8828 sym_chip_reset (np); 8829 8830 /* 8831 * Try to read the user set-up. 8832 */ 8833 (void) sym_read_nvram(np, &nvram); 8834 8835 /* 8836 * Prepare controller and devices settings, according 8837 * to chip features, user set-up and driver set-up. 8838 */ 8839 (void) sym_prepare_setting(np, &nvram); 8840 8841 /* 8842 * Check the PCI clock frequency. 8843 * Must be performed after prepare_setting since it destroys 8844 * STEST1 that is used to probe for the clock doubler. 8845 */ 8846 i = sym_getpciclock(np); 8847 if (i > 37000) 8848 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8849 8850 /* 8851 * Allocate the start queue. 8852 */ 8853 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8854 if (!np->squeue) 8855 goto attach_failed; 8856 np->squeue_ba = vtobus(np->squeue); 8857 8858 /* 8859 * Allocate the done queue. 8860 */ 8861 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8862 if (!np->dqueue) 8863 goto attach_failed; 8864 np->dqueue_ba = vtobus(np->dqueue); 8865 8866 /* 8867 * Allocate the target bus address array. 8868 */ 8869 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8870 if (!np->targtbl) 8871 goto attach_failed; 8872 np->targtbl_ba = vtobus(np->targtbl); 8873 8874 /* 8875 * Allocate SCRIPTS areas. 8876 */ 8877 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8878 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8879 if (!np->scripta0 || !np->scriptb0) 8880 goto attach_failed; 8881 8882 /* 8883 * Allocate some CCB. We need at least ONE. 8884 */ 8885 if (!sym_alloc_ccb(np)) 8886 goto attach_failed; 8887 8888 /* 8889 * Calculate BUS addresses where we are going 8890 * to load the SCRIPTS. 8891 */ 8892 np->scripta_ba = vtobus(np->scripta0); 8893 np->scriptb_ba = vtobus(np->scriptb0); 8894 np->scriptb0_ba = np->scriptb_ba; 8895 8896 if (np->ram_ba) { 8897 np->scripta_ba = np->ram_ba; 8898 if (np->features & FE_RAM8K) { 8899 np->ram_ws = 8192; 8900 np->scriptb_ba = np->scripta_ba + 4096; 8901 #if BITS_PER_LONG > 32 8902 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8903 #endif 8904 } 8905 else 8906 np->ram_ws = 4096; 8907 } 8908 8909 /* 8910 * Copy scripts to controller instance. 8911 */ 8912 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8913 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8914 8915 /* 8916 * Setup variable parts in scripts and compute 8917 * scripts bus addresses used from the C code. 8918 */ 8919 np->fw_setup(np, fw); 8920 8921 /* 8922 * Bind SCRIPTS with physical addresses usable by the 8923 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8924 */ 8925 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8926 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8927 8928 #ifdef SYM_CONF_IARB_SUPPORT 8929 /* 8930 * If user wants IARB to be set when we win arbitration 8931 * and have other jobs, compute the max number of consecutive 8932 * settings of IARB hints before we leave devices a chance to 8933 * arbitrate for reselection. 8934 */ 8935 #ifdef SYM_SETUP_IARB_MAX 8936 np->iarb_max = SYM_SETUP_IARB_MAX; 8937 #else 8938 np->iarb_max = 4; 8939 #endif 8940 #endif 8941 8942 /* 8943 * Prepare the idle and invalid task actions. 8944 */ 8945 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8946 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8947 np->idletask_ba = vtobus(&np->idletask); 8948 8949 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8950 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8951 np->notask_ba = vtobus(&np->notask); 8952 8953 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8954 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8955 np->bad_itl_ba = vtobus(&np->bad_itl); 8956 8957 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8958 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8959 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8960 8961 /* 8962 * Allocate and prepare the lun JUMP table that is used 8963 * for a target prior the probing of devices (bad lun table). 8964 * A private table will be allocated for the target on the 8965 * first INQUIRY response received. 8966 */ 8967 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8968 if (!np->badluntbl) 8969 goto attach_failed; 8970 8971 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8972 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8973 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8974 8975 /* 8976 * Prepare the bus address array that contains the bus 8977 * address of each target control block. 8978 * For now, assume all logical units are wrong. :) 8979 */ 8980 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8981 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8982 np->target[i].head.luntbl_sa = 8983 cpu_to_scr(vtobus(np->badluntbl)); 8984 np->target[i].head.lun0_sa = 8985 cpu_to_scr(vtobus(&np->badlun_sa)); 8986 } 8987 8988 /* 8989 * Now check the cache handling of the pci chipset. 8990 */ 8991 if (sym_snooptest (np)) { 8992 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8993 goto attach_failed; 8994 }; 8995 8996 /* 8997 * Now deal with CAM. 8998 * Hopefully, we will succeed with that one.:) 8999 */ 9000 if (!sym_cam_attach(np)) 9001 goto attach_failed; 9002 9003 /* 9004 * Sigh! we are done. 9005 */ 9006 return 0; 9007 9008 /* 9009 * We have failed. 9010 * We will try to free all the resources we have 9011 * allocated, but if we are a boot device, this 9012 * will not help that much.;) 9013 */ 9014 attach_failed: 9015 if (np) 9016 sym_pci_free(np); 9017 return ENXIO; 9018 } 9019 9020 /* 9021 * Free everything that have been allocated for this device. 9022 */ 9023 static void sym_pci_free(hcb_p np) 9024 { 9025 SYM_QUEHEAD *qp; 9026 ccb_p cp; 9027 tcb_p tp; 9028 lcb_p lp; 9029 int target, lun; 9030 int s; 9031 9032 /* 9033 * First free CAM resources. 9034 */ 9035 s = splcam(); 9036 sym_cam_free(np); 9037 splx(s); 9038 9039 /* 9040 * Now every should be quiet for us to 9041 * free other resources. 9042 */ 9043 if (np->ram_res) 9044 bus_release_resource(np->device, SYS_RES_MEMORY, 9045 np->ram_id, np->ram_res); 9046 if (np->mmio_res) 9047 bus_release_resource(np->device, SYS_RES_MEMORY, 9048 SYM_PCI_MMIO, np->mmio_res); 9049 if (np->io_res) 9050 bus_release_resource(np->device, SYS_RES_IOPORT, 9051 SYM_PCI_IO, np->io_res); 9052 if (np->irq_res) 9053 bus_release_resource(np->device, SYS_RES_IRQ, 9054 0, np->irq_res); 9055 9056 if (np->scriptb0) 9057 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 9058 if (np->scripta0) 9059 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 9060 if (np->squeue) 9061 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 9062 if (np->dqueue) 9063 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 9064 9065 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { 9066 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 9067 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 9068 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 9069 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 9070 } 9071 9072 if (np->badluntbl) 9073 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 9074 9075 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 9076 tp = &np->target[target]; 9077 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 9078 lp = sym_lp(np, tp, lun); 9079 if (!lp) 9080 continue; 9081 if (lp->itlq_tbl) 9082 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 9083 "ITLQ_TBL"); 9084 if (lp->cb_tags) 9085 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 9086 "CB_TAGS"); 9087 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 9088 } 9089 #if SYM_CONF_MAX_LUN > 1 9090 if (tp->lunmp) 9091 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 9092 "LUNMP"); 9093 #endif 9094 } 9095 if (np->targtbl) 9096 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 9097 if (np->data_dmat) 9098 bus_dma_tag_destroy(np->data_dmat); 9099 sym_mfree_dma(np, sizeof(*np), "HCB"); 9100 } 9101 9102 /* 9103 * Allocate CAM resources and register a bus to CAM. 9104 */ 9105 static int sym_cam_attach(hcb_p np) 9106 { 9107 struct cam_devq *devq = 0; 9108 struct cam_sim *sim = 0; 9109 struct cam_path *path = 0; 9110 struct ccb_setasync csa; 9111 int err, s; 9112 9113 s = splcam(); 9114 9115 /* 9116 * Establish our interrupt handler. 9117 */ 9118 err = bus_setup_intr(np->device, np->irq_res, 9119 INTR_TYPE_CAM | INTR_ENTROPY, sym_intr, np, 9120 &np->intr); 9121 if (err) { 9122 device_printf(np->device, "bus_setup_intr() failed: %d\n", 9123 err); 9124 goto fail; 9125 } 9126 9127 /* 9128 * Create the device queue for our sym SIM. 9129 */ 9130 devq = cam_simq_alloc(SYM_CONF_MAX_START); 9131 if (!devq) 9132 goto fail; 9133 9134 /* 9135 * Construct our SIM entry. 9136 */ 9137 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, 9138 1, SYM_SETUP_MAX_TAG, devq); 9139 if (!sim) 9140 goto fail; 9141 devq = 0; 9142 9143 if (xpt_bus_register(sim, 0) != CAM_SUCCESS) 9144 goto fail; 9145 np->sim = sim; 9146 sim = 0; 9147 9148 if (xpt_create_path(&path, 0, 9149 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 9150 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 9151 goto fail; 9152 } 9153 np->path = path; 9154 9155 /* 9156 * Establish our async notification handler. 9157 */ 9158 xpt_setup_ccb(&csa.ccb_h, np->path, 5); 9159 csa.ccb_h.func_code = XPT_SASYNC_CB; 9160 csa.event_enable = AC_LOST_DEVICE; 9161 csa.callback = sym_async; 9162 csa.callback_arg = np->sim; 9163 xpt_action((union ccb *)&csa); 9164 9165 /* 9166 * Start the chip now, without resetting the BUS, since 9167 * it seems that this must stay under control of CAM. 9168 * With LVD/SE capable chips and BUS in SE mode, we may 9169 * get a spurious SMBC interrupt. 9170 */ 9171 sym_init (np, 0); 9172 9173 splx(s); 9174 return 1; 9175 fail: 9176 if (sim) 9177 cam_sim_free(sim, FALSE); 9178 if (devq) 9179 cam_simq_free(devq); 9180 9181 sym_cam_free(np); 9182 9183 splx(s); 9184 return 0; 9185 } 9186 9187 /* 9188 * Free everything that deals with CAM. 9189 */ 9190 static void sym_cam_free(hcb_p np) 9191 { 9192 if (np->intr) 9193 bus_teardown_intr(np->device, np->irq_res, np->intr); 9194 9195 if (np->sim) { 9196 xpt_bus_deregister(cam_sim_path(np->sim)); 9197 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9198 } 9199 if (np->path) 9200 xpt_free_path(np->path); 9201 } 9202 9203 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9204 9205 /* 9206 * Get host setup from NVRAM. 9207 */ 9208 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9209 { 9210 #ifdef SYM_CONF_NVRAM_SUPPORT 9211 /* 9212 * Get parity checking, host ID, verbose mode 9213 * and miscellaneous host flags from NVRAM. 9214 */ 9215 switch(nvram->type) { 9216 case SYM_SYMBIOS_NVRAM: 9217 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9218 np->rv_scntl0 &= ~0x0a; 9219 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9220 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9221 np->verbose += 1; 9222 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9223 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9224 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9225 np->usrflags |= SYM_AVOID_BUS_RESET; 9226 break; 9227 case SYM_TEKRAM_NVRAM: 9228 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9229 break; 9230 default: 9231 break; 9232 } 9233 #endif 9234 } 9235 9236 /* 9237 * Get target setup from NVRAM. 9238 */ 9239 #ifdef SYM_CONF_NVRAM_SUPPORT 9240 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9241 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9242 #endif 9243 9244 static void 9245 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9246 { 9247 #ifdef SYM_CONF_NVRAM_SUPPORT 9248 switch(nvp->type) { 9249 case SYM_SYMBIOS_NVRAM: 9250 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9251 break; 9252 case SYM_TEKRAM_NVRAM: 9253 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9254 break; 9255 default: 9256 break; 9257 } 9258 #endif 9259 } 9260 9261 #ifdef SYM_CONF_NVRAM_SUPPORT 9262 /* 9263 * Get target set-up from Symbios format NVRAM. 9264 */ 9265 static void 9266 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9267 { 9268 tcb_p tp = &np->target[target]; 9269 Symbios_target *tn = &nvram->target[target]; 9270 9271 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9272 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9273 tp->usrtags = 9274 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9275 9276 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9277 tp->usrflags &= ~SYM_DISC_ENABLED; 9278 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9279 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9280 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9281 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9282 } 9283 9284 /* 9285 * Get target set-up from Tekram format NVRAM. 9286 */ 9287 static void 9288 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9289 { 9290 tcb_p tp = &np->target[target]; 9291 struct Tekram_target *tn = &nvram->target[target]; 9292 int i; 9293 9294 if (tn->flags & TEKRAM_SYNC_NEGO) { 9295 i = tn->sync_index & 0xf; 9296 tp->tinfo.user.period = Tekram_sync[i]; 9297 } 9298 9299 tp->tinfo.user.width = 9300 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9301 9302 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9303 tp->usrtags = 2 << nvram->max_tags_index; 9304 } 9305 9306 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9307 tp->usrflags |= SYM_DISC_ENABLED; 9308 9309 /* If any device does not support parity, we will not use this option */ 9310 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9311 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9312 } 9313 9314 #ifdef SYM_CONF_DEBUG_NVRAM 9315 /* 9316 * Dump Symbios format NVRAM for debugging purpose. 9317 */ 9318 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9319 { 9320 int i; 9321 9322 /* display Symbios nvram host data */ 9323 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9324 sym_name(np), nvram->host_id & 0x0f, 9325 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9326 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9327 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9328 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9329 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9330 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9331 9332 /* display Symbios nvram drive data */ 9333 for (i = 0 ; i < 15 ; i++) { 9334 struct Symbios_target *tn = &nvram->target[i]; 9335 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9336 sym_name(np), i, 9337 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9338 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9339 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9340 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9341 tn->bus_width, 9342 tn->sync_period / 4, 9343 tn->timeout); 9344 } 9345 } 9346 9347 /* 9348 * Dump TEKRAM format NVRAM for debugging purpose. 9349 */ 9350 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9351 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9352 { 9353 int i, tags, boot_delay; 9354 char *rem; 9355 9356 /* display Tekram nvram host data */ 9357 tags = 2 << nvram->max_tags_index; 9358 boot_delay = 0; 9359 if (nvram->boot_delay_index < 6) 9360 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9361 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9362 default: 9363 case 0: rem = ""; break; 9364 case 1: rem = " REMOVABLE=boot device"; break; 9365 case 2: rem = " REMOVABLE=all"; break; 9366 } 9367 9368 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9369 sym_name(np), nvram->host_id & 0x0f, 9370 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9371 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9372 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9373 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9374 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9375 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9376 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9377 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9378 rem, boot_delay, tags); 9379 9380 /* display Tekram nvram drive data */ 9381 for (i = 0; i <= 15; i++) { 9382 int sync, j; 9383 struct Tekram_target *tn = &nvram->target[i]; 9384 j = tn->sync_index & 0xf; 9385 sync = Tekram_sync[j]; 9386 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9387 sym_name(np), i, 9388 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9389 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9390 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9391 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9392 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9393 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9394 sync); 9395 } 9396 } 9397 #endif /* SYM_CONF_DEBUG_NVRAM */ 9398 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9399 9400 9401 /* 9402 * Try reading Symbios or Tekram NVRAM 9403 */ 9404 #ifdef SYM_CONF_NVRAM_SUPPORT 9405 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9406 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9407 #endif 9408 9409 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9410 { 9411 #ifdef SYM_CONF_NVRAM_SUPPORT 9412 /* 9413 * Try to read SYMBIOS nvram. 9414 * Try to read TEKRAM nvram if Symbios nvram not found. 9415 */ 9416 if (SYM_SETUP_SYMBIOS_NVRAM && 9417 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9418 nvp->type = SYM_SYMBIOS_NVRAM; 9419 #ifdef SYM_CONF_DEBUG_NVRAM 9420 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9421 #endif 9422 } 9423 else if (SYM_SETUP_TEKRAM_NVRAM && 9424 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9425 nvp->type = SYM_TEKRAM_NVRAM; 9426 #ifdef SYM_CONF_DEBUG_NVRAM 9427 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9428 #endif 9429 } 9430 else 9431 nvp->type = 0; 9432 #else 9433 nvp->type = 0; 9434 #endif 9435 return nvp->type; 9436 } 9437 9438 9439 #ifdef SYM_CONF_NVRAM_SUPPORT 9440 /* 9441 * 24C16 EEPROM reading. 9442 * 9443 * GPOI0 - data in/data out 9444 * GPIO1 - clock 9445 * Symbios NVRAM wiring now also used by Tekram. 9446 */ 9447 9448 #define SET_BIT 0 9449 #define CLR_BIT 1 9450 #define SET_CLK 2 9451 #define CLR_CLK 3 9452 9453 /* 9454 * Set/clear data/clock bit in GPIO0 9455 */ 9456 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9457 int bit_mode) 9458 { 9459 UDELAY (5); 9460 switch (bit_mode){ 9461 case SET_BIT: 9462 *gpreg |= write_bit; 9463 break; 9464 case CLR_BIT: 9465 *gpreg &= 0xfe; 9466 break; 9467 case SET_CLK: 9468 *gpreg |= 0x02; 9469 break; 9470 case CLR_CLK: 9471 *gpreg &= 0xfd; 9472 break; 9473 9474 } 9475 OUTB (nc_gpreg, *gpreg); 9476 UDELAY (5); 9477 } 9478 9479 /* 9480 * Send START condition to NVRAM to wake it up. 9481 */ 9482 static void S24C16_start(hcb_p np, u_char *gpreg) 9483 { 9484 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9485 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9486 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9487 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9488 } 9489 9490 /* 9491 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9492 */ 9493 static void S24C16_stop(hcb_p np, u_char *gpreg) 9494 { 9495 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9496 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9497 } 9498 9499 /* 9500 * Read or write a bit to the NVRAM, 9501 * read if GPIO0 input else write if GPIO0 output 9502 */ 9503 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9504 u_char *gpreg) 9505 { 9506 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9507 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9508 if (read_bit) 9509 *read_bit = INB (nc_gpreg); 9510 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9511 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9512 } 9513 9514 /* 9515 * Output an ACK to the NVRAM after reading, 9516 * change GPIO0 to output and when done back to an input 9517 */ 9518 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9519 u_char *gpcntl) 9520 { 9521 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9522 S24C16_do_bit(np, 0, write_bit, gpreg); 9523 OUTB (nc_gpcntl, *gpcntl); 9524 } 9525 9526 /* 9527 * Input an ACK from NVRAM after writing, 9528 * change GPIO0 to input and when done back to an output 9529 */ 9530 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9531 u_char *gpcntl) 9532 { 9533 OUTB (nc_gpcntl, *gpcntl | 0x01); 9534 S24C16_do_bit(np, read_bit, 1, gpreg); 9535 OUTB (nc_gpcntl, *gpcntl); 9536 } 9537 9538 /* 9539 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9540 * GPIO0 must already be set as an output 9541 */ 9542 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9543 u_char *gpreg, u_char *gpcntl) 9544 { 9545 int x; 9546 9547 for (x = 0; x < 8; x++) 9548 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9549 9550 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9551 } 9552 9553 /* 9554 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9555 * GPIO0 must already be set as an input 9556 */ 9557 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9558 u_char *gpreg, u_char *gpcntl) 9559 { 9560 int x; 9561 u_char read_bit; 9562 9563 *read_data = 0; 9564 for (x = 0; x < 8; x++) { 9565 S24C16_do_bit(np, &read_bit, 1, gpreg); 9566 *read_data |= ((read_bit & 0x01) << (7 - x)); 9567 } 9568 9569 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9570 } 9571 9572 /* 9573 * Read 'len' bytes starting at 'offset'. 9574 */ 9575 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9576 { 9577 u_char gpcntl, gpreg; 9578 u_char old_gpcntl, old_gpreg; 9579 u_char ack_data; 9580 int retv = 1; 9581 int x; 9582 9583 /* save current state of GPCNTL and GPREG */ 9584 old_gpreg = INB (nc_gpreg); 9585 old_gpcntl = INB (nc_gpcntl); 9586 gpcntl = old_gpcntl & 0x1c; 9587 9588 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9589 OUTB (nc_gpreg, old_gpreg); 9590 OUTB (nc_gpcntl, gpcntl); 9591 9592 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9593 gpreg = old_gpreg; 9594 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9595 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9596 9597 /* now set NVRAM inactive with GPIO0/1 both high */ 9598 S24C16_stop(np, &gpreg); 9599 9600 /* activate NVRAM */ 9601 S24C16_start(np, &gpreg); 9602 9603 /* write device code and random address MSB */ 9604 S24C16_write_byte(np, &ack_data, 9605 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9606 if (ack_data & 0x01) 9607 goto out; 9608 9609 /* write random address LSB */ 9610 S24C16_write_byte(np, &ack_data, 9611 offset & 0xff, &gpreg, &gpcntl); 9612 if (ack_data & 0x01) 9613 goto out; 9614 9615 /* regenerate START state to set up for reading */ 9616 S24C16_start(np, &gpreg); 9617 9618 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9619 S24C16_write_byte(np, &ack_data, 9620 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9621 if (ack_data & 0x01) 9622 goto out; 9623 9624 /* now set up GPIO0 for inputting data */ 9625 gpcntl |= 0x01; 9626 OUTB (nc_gpcntl, gpcntl); 9627 9628 /* input all requested data - only part of total NVRAM */ 9629 for (x = 0; x < len; x++) 9630 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9631 9632 /* finally put NVRAM back in inactive mode */ 9633 gpcntl &= 0xfe; 9634 OUTB (nc_gpcntl, gpcntl); 9635 S24C16_stop(np, &gpreg); 9636 retv = 0; 9637 out: 9638 /* return GPIO0/1 to original states after having accessed NVRAM */ 9639 OUTB (nc_gpcntl, old_gpcntl); 9640 OUTB (nc_gpreg, old_gpreg); 9641 9642 return retv; 9643 } 9644 9645 #undef SET_BIT /* 0 */ 9646 #undef CLR_BIT /* 1 */ 9647 #undef SET_CLK /* 2 */ 9648 #undef CLR_CLK /* 3 */ 9649 9650 /* 9651 * Try reading Symbios NVRAM. 9652 * Return 0 if OK. 9653 */ 9654 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9655 { 9656 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9657 u_char *data = (u_char *) nvram; 9658 int len = sizeof(*nvram); 9659 u_short csum; 9660 int x; 9661 9662 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9663 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9664 return 1; 9665 9666 /* check valid NVRAM signature, verify byte count and checksum */ 9667 if (nvram->type != 0 || 9668 bcmp(nvram->trailer, Symbios_trailer, 6) || 9669 nvram->byte_count != len - 12) 9670 return 1; 9671 9672 /* verify checksum */ 9673 for (x = 6, csum = 0; x < len - 6; x++) 9674 csum += data[x]; 9675 if (csum != nvram->checksum) 9676 return 1; 9677 9678 return 0; 9679 } 9680 9681 /* 9682 * 93C46 EEPROM reading. 9683 * 9684 * GPOI0 - data in 9685 * GPIO1 - data out 9686 * GPIO2 - clock 9687 * GPIO4 - chip select 9688 * 9689 * Used by Tekram. 9690 */ 9691 9692 /* 9693 * Pulse clock bit in GPIO0 9694 */ 9695 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9696 { 9697 OUTB (nc_gpreg, *gpreg | 0x04); 9698 UDELAY (2); 9699 OUTB (nc_gpreg, *gpreg); 9700 } 9701 9702 /* 9703 * Read bit from NVRAM 9704 */ 9705 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9706 { 9707 UDELAY (2); 9708 T93C46_Clk(np, gpreg); 9709 *read_bit = INB (nc_gpreg); 9710 } 9711 9712 /* 9713 * Write bit to GPIO0 9714 */ 9715 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9716 { 9717 if (write_bit & 0x01) 9718 *gpreg |= 0x02; 9719 else 9720 *gpreg &= 0xfd; 9721 9722 *gpreg |= 0x10; 9723 9724 OUTB (nc_gpreg, *gpreg); 9725 UDELAY (2); 9726 9727 T93C46_Clk(np, gpreg); 9728 } 9729 9730 /* 9731 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9732 */ 9733 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9734 { 9735 *gpreg &= 0xef; 9736 OUTB (nc_gpreg, *gpreg); 9737 UDELAY (2); 9738 9739 T93C46_Clk(np, gpreg); 9740 } 9741 9742 /* 9743 * Send read command and address to NVRAM 9744 */ 9745 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9746 u_char *read_bit, u_char *gpreg) 9747 { 9748 int x; 9749 9750 /* send 9 bits, start bit (1), command (2), address (6) */ 9751 for (x = 0; x < 9; x++) 9752 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9753 9754 *read_bit = INB (nc_gpreg); 9755 } 9756 9757 /* 9758 * READ 2 bytes from the NVRAM 9759 */ 9760 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9761 { 9762 int x; 9763 u_char read_bit; 9764 9765 *nvram_data = 0; 9766 for (x = 0; x < 16; x++) { 9767 T93C46_Read_Bit(np, &read_bit, gpreg); 9768 9769 if (read_bit & 0x01) 9770 *nvram_data |= (0x01 << (15 - x)); 9771 else 9772 *nvram_data &= ~(0x01 << (15 - x)); 9773 } 9774 } 9775 9776 /* 9777 * Read Tekram NvRAM data. 9778 */ 9779 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9780 { 9781 u_char read_bit; 9782 int x; 9783 9784 for (x = 0; x < len; x++) { 9785 9786 /* output read command and address */ 9787 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9788 if (read_bit & 0x01) 9789 return 1; /* Bad */ 9790 T93C46_Read_Word(np, &data[x], gpreg); 9791 T93C46_Stop(np, gpreg); 9792 } 9793 9794 return 0; 9795 } 9796 9797 /* 9798 * Try reading 93C46 Tekram NVRAM. 9799 */ 9800 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9801 { 9802 u_char gpcntl, gpreg; 9803 u_char old_gpcntl, old_gpreg; 9804 int retv = 1; 9805 9806 /* save current state of GPCNTL and GPREG */ 9807 old_gpreg = INB (nc_gpreg); 9808 old_gpcntl = INB (nc_gpcntl); 9809 9810 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9811 1/2/4 out */ 9812 gpreg = old_gpreg & 0xe9; 9813 OUTB (nc_gpreg, gpreg); 9814 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9815 OUTB (nc_gpcntl, gpcntl); 9816 9817 /* input all of NVRAM, 64 words */ 9818 retv = T93C46_Read_Data(np, (u_short *) nvram, 9819 sizeof(*nvram) / sizeof(short), &gpreg); 9820 9821 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9822 OUTB (nc_gpcntl, old_gpcntl); 9823 OUTB (nc_gpreg, old_gpreg); 9824 9825 return retv; 9826 } 9827 9828 /* 9829 * Try reading Tekram NVRAM. 9830 * Return 0 if OK. 9831 */ 9832 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9833 { 9834 u_char *data = (u_char *) nvram; 9835 int len = sizeof(*nvram); 9836 u_short csum; 9837 int x; 9838 9839 switch (np->device_id) { 9840 case PCI_ID_SYM53C885: 9841 case PCI_ID_SYM53C895: 9842 case PCI_ID_SYM53C896: 9843 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9844 data, len); 9845 break; 9846 case PCI_ID_SYM53C875: 9847 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9848 data, len); 9849 if (!x) 9850 break; 9851 default: 9852 x = sym_read_T93C46_nvram(np, nvram); 9853 break; 9854 } 9855 if (x) 9856 return 1; 9857 9858 /* verify checksum */ 9859 for (x = 0, csum = 0; x < len - 1; x += 2) 9860 csum += data[x] + (data[x+1] << 8); 9861 if (csum != 0x1234) 9862 return 1; 9863 9864 return 0; 9865 } 9866 9867 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9868