1 /* 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2000 Gerard Roudier <groudier@club-internet.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 /* $FreeBSD$ */ 59 60 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 61 62 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 63 64 #include <pci.h> 65 #include <stddef.h> /* For offsetof */ 66 #include <sys/param.h> 67 68 /* 69 * Only use the BUS stuff for PCI under FreeBSD 4 and later versions. 70 * Note that the old BUS stuff also works for FreeBSD 4 and spares 71 * about 1 KB for the driver object file. 72 */ 73 #if __FreeBSD_version >= 400000 74 #define FreeBSD_Bus_Dma_Abstraction 75 #define FreeBSD_Bus_Io_Abstraction 76 #define FreeBSD_Bus_Space_Abstraction 77 #endif 78 79 /* 80 * Driver configuration options. 81 */ 82 #include "opt_sym.h" 83 #include <dev/sym/sym_conf.h> 84 85 #ifndef FreeBSD_Bus_Io_Abstraction 86 #include "ncr.h" /* To know if the ncr has been configured */ 87 #endif 88 89 #include <sys/systm.h> 90 #include <sys/malloc.h> 91 #include <sys/kernel.h> 92 #ifdef FreeBSD_Bus_Io_Abstraction 93 #include <sys/module.h> 94 #include <sys/bus.h> 95 #endif 96 97 #include <sys/proc.h> 98 99 #include <pci/pcireg.h> 100 #include <pci/pcivar.h> 101 102 #ifdef FreeBSD_Bus_Space_Abstraction 103 #include <machine/bus_memio.h> 104 /* 105 * Only include bus_pio if needed. 106 * This avoids bus space primitives to be uselessly bloated 107 * by out-of-age PIO operations. 108 */ 109 #ifdef SYM_CONF_IOMAPPED 110 #include <machine/bus_pio.h> 111 #endif 112 #endif 113 #include <machine/bus.h> 114 115 #ifdef FreeBSD_Bus_Io_Abstraction 116 #include <machine/resource.h> 117 #include <sys/rman.h> 118 #endif 119 120 #include <cam/cam.h> 121 #include <cam/cam_ccb.h> 122 #include <cam/cam_sim.h> 123 #include <cam/cam_xpt_sim.h> 124 #include <cam/cam_debug.h> 125 126 #include <cam/scsi/scsi_all.h> 127 #include <cam/scsi/scsi_message.h> 128 129 #include <vm/vm.h> 130 #include <vm/vm_param.h> 131 #include <vm/pmap.h> 132 133 /* Short and quite clear integer types */ 134 typedef int8_t s8; 135 typedef int16_t s16; 136 typedef int32_t s32; 137 typedef u_int8_t u8; 138 typedef u_int16_t u16; 139 typedef u_int32_t u32; 140 141 /* 142 * Driver definitions. 143 */ 144 #include <dev/sym/sym_defs.h> 145 #include <dev/sym/sym_fw.h> 146 147 /* 148 * IA32 architecture does not reorder STORES and prevents 149 * LOADS from passing STORES. It is called `program order' 150 * by Intel and allows device drivers to deal with memory 151 * ordering by only ensuring that the code is not reordered 152 * by the compiler when ordering is required. 153 * Other architectures implement a weaker ordering that 154 * requires memory barriers (and also IO barriers when they 155 * make sense) to be used. 156 */ 157 158 #if defined __i386__ 159 #define MEMORY_BARRIER() do { ; } while(0) 160 #elif defined __alpha__ 161 #define MEMORY_BARRIER() alpha_mb() 162 #elif defined __powerpc__ 163 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 164 #elif defined __ia64__ 165 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 166 #elif defined __sparc64__ 167 #error "Sorry, but maintainer is ignorant about sparc64 :)" 168 #else 169 #error "Not supported platform" 170 #endif 171 172 /* 173 * Portable but silly implemented byte order primitives. 174 * We define the primitives we need, since FreeBSD doesn't 175 * seem to have them yet. 176 */ 177 #if BYTE_ORDER == BIG_ENDIAN 178 179 #define __revb16(x) ( (((u16)(x) & (u16)0x00ffU) << 8) | \ 180 (((u16)(x) & (u16)0xff00U) >> 8) ) 181 #define __revb32(x) ( (((u32)(x) & 0x000000ffU) << 24) | \ 182 (((u32)(x) & 0x0000ff00U) << 8) | \ 183 (((u32)(x) & 0x00ff0000U) >> 8) | \ 184 (((u32)(x) & 0xff000000U) >> 24) ) 185 186 #define __htole16(v) __revb16(v) 187 #define __htole32(v) __revb32(v) 188 #define __le16toh(v) __htole16(v) 189 #define __le32toh(v) __htole32(v) 190 191 static __inline u16 _htole16(u16 v) { return __htole16(v); } 192 static __inline u32 _htole32(u32 v) { return __htole32(v); } 193 #define _le16toh _htole16 194 #define _le32toh _htole32 195 196 #else /* LITTLE ENDIAN */ 197 198 #define __htole16(v) (v) 199 #define __htole32(v) (v) 200 #define __le16toh(v) (v) 201 #define __le32toh(v) (v) 202 203 #define _htole16(v) (v) 204 #define _htole32(v) (v) 205 #define _le16toh(v) (v) 206 #define _le32toh(v) (v) 207 208 #endif /* BYTE_ORDER */ 209 210 /* 211 * A la VMS/CAM-3 queue management. 212 */ 213 214 typedef struct sym_quehead { 215 struct sym_quehead *flink; /* Forward pointer */ 216 struct sym_quehead *blink; /* Backward pointer */ 217 } SYM_QUEHEAD; 218 219 #define sym_que_init(ptr) do { \ 220 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 221 } while (0) 222 223 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 224 { 225 return (head->flink == head) ? 0 : head->flink; 226 } 227 228 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 229 { 230 return (head->blink == head) ? 0 : head->blink; 231 } 232 233 static __inline void __sym_que_add(struct sym_quehead * new, 234 struct sym_quehead * blink, 235 struct sym_quehead * flink) 236 { 237 flink->blink = new; 238 new->flink = flink; 239 new->blink = blink; 240 blink->flink = new; 241 } 242 243 static __inline void __sym_que_del(struct sym_quehead * blink, 244 struct sym_quehead * flink) 245 { 246 flink->blink = blink; 247 blink->flink = flink; 248 } 249 250 static __inline int sym_que_empty(struct sym_quehead *head) 251 { 252 return head->flink == head; 253 } 254 255 static __inline void sym_que_splice(struct sym_quehead *list, 256 struct sym_quehead *head) 257 { 258 struct sym_quehead *first = list->flink; 259 260 if (first != list) { 261 struct sym_quehead *last = list->blink; 262 struct sym_quehead *at = head->flink; 263 264 first->blink = head; 265 head->flink = first; 266 267 last->flink = at; 268 at->blink = last; 269 } 270 } 271 272 #define sym_que_entry(ptr, type, member) \ 273 ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member))) 274 275 276 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 277 278 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 279 280 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 281 282 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 283 { 284 struct sym_quehead *elem = head->flink; 285 286 if (elem != head) 287 __sym_que_del(head, elem->flink); 288 else 289 elem = 0; 290 return elem; 291 } 292 293 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 294 295 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 296 { 297 struct sym_quehead *elem = head->blink; 298 299 if (elem != head) 300 __sym_que_del(elem->blink, head); 301 else 302 elem = 0; 303 return elem; 304 } 305 306 /* 307 * This one may be useful. 308 */ 309 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 310 for (qp = (head)->flink; qp != (head); qp = qp->flink) 311 /* 312 * FreeBSD does not offer our kind of queue in the CAM CCB. 313 * So, we have to cast. 314 */ 315 #define sym_qptr(p) ((struct sym_quehead *) (p)) 316 317 /* 318 * Simple bitmap operations. 319 */ 320 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 321 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 322 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 323 324 /* 325 * Number of tasks per device we want to handle. 326 */ 327 #if SYM_CONF_MAX_TAG_ORDER > 8 328 #error "more than 256 tags per logical unit not allowed." 329 #endif 330 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 331 332 /* 333 * Donnot use more tasks that we can handle. 334 */ 335 #ifndef SYM_CONF_MAX_TAG 336 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 337 #endif 338 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 339 #undef SYM_CONF_MAX_TAG 340 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 341 #endif 342 343 /* 344 * This one means 'NO TAG for this job' 345 */ 346 #define NO_TAG (256) 347 348 /* 349 * Number of SCSI targets. 350 */ 351 #if SYM_CONF_MAX_TARGET > 16 352 #error "more than 16 targets not allowed." 353 #endif 354 355 /* 356 * Number of logical units per target. 357 */ 358 #if SYM_CONF_MAX_LUN > 64 359 #error "more than 64 logical units per target not allowed." 360 #endif 361 362 /* 363 * Asynchronous pre-scaler (ns). Shall be 40 for 364 * the SCSI timings to be compliant. 365 */ 366 #define SYM_CONF_MIN_ASYNC (40) 367 368 /* 369 * Number of entries in the START and DONE queues. 370 * 371 * We limit to 1 PAGE in order to succeed allocation of 372 * these queues. Each entry is 8 bytes long (2 DWORDS). 373 */ 374 #ifdef SYM_CONF_MAX_START 375 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 376 #else 377 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 378 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 379 #endif 380 381 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 382 #undef SYM_CONF_MAX_QUEUE 383 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 384 #undef SYM_CONF_MAX_START 385 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 386 #endif 387 388 /* 389 * For this one, we want a short name :-) 390 */ 391 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 392 393 /* 394 * These ones should have been already defined. 395 */ 396 #ifndef offsetof 397 #define offsetof(t, m) ((size_t) (&((t *)0)->m)) 398 #endif 399 #ifndef MIN 400 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) 401 #endif 402 403 /* 404 * Active debugging tags and verbosity. 405 */ 406 #define DEBUG_ALLOC (0x0001) 407 #define DEBUG_PHASE (0x0002) 408 #define DEBUG_POLL (0x0004) 409 #define DEBUG_QUEUE (0x0008) 410 #define DEBUG_RESULT (0x0010) 411 #define DEBUG_SCATTER (0x0020) 412 #define DEBUG_SCRIPT (0x0040) 413 #define DEBUG_TINY (0x0080) 414 #define DEBUG_TIMING (0x0100) 415 #define DEBUG_NEGO (0x0200) 416 #define DEBUG_TAGS (0x0400) 417 #define DEBUG_POINTER (0x0800) 418 419 #if 0 420 static int sym_debug = 0; 421 #define DEBUG_FLAGS sym_debug 422 #else 423 /* #define DEBUG_FLAGS (0x0631) */ 424 #define DEBUG_FLAGS (0x0000) 425 426 #endif 427 #define sym_verbose (np->verbose) 428 429 /* 430 * Insert a delay in micro-seconds and milli-seconds. 431 */ 432 static void UDELAY(int us) { DELAY(us); } 433 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 434 435 /* 436 * Simple power of two buddy-like allocator. 437 * 438 * This simple code is not intended to be fast, but to 439 * provide power of 2 aligned memory allocations. 440 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 441 * this allocator allows simple and fast address calculations 442 * from the SCRIPTS code. In addition, cache line alignment 443 * is guaranteed for power of 2 cache line size. 444 * 445 * This allocator has been developped for the Linux sym53c8xx 446 * driver, since this O/S does not provide naturally aligned 447 * allocations. 448 * It has the advantage of allowing the driver to use private 449 * pages of memory that will be useful if we ever need to deal 450 * with IO MMUs for PCI. 451 */ 452 453 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 454 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 455 #if 0 456 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 457 #endif 458 #define MEMO_WARN 1 459 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 460 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 461 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 462 463 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 464 #define free_pages(p) free((p), M_DEVBUF) 465 466 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 467 468 typedef struct m_link { /* Link between free memory chunks */ 469 struct m_link *next; 470 } m_link_s; 471 472 #ifdef FreeBSD_Bus_Dma_Abstraction 473 typedef struct m_vtob { /* Virtual to Bus address translation */ 474 struct m_vtob *next; 475 bus_dmamap_t dmamap; /* Map for this chunk */ 476 m_addr_t vaddr; /* Virtual address */ 477 m_addr_t baddr; /* Bus physical address */ 478 } m_vtob_s; 479 /* Hash this stuff a bit to speed up translations */ 480 #define VTOB_HASH_SHIFT 5 481 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 482 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 483 #define VTOB_HASH_CODE(m) \ 484 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 485 #endif 486 487 typedef struct m_pool { /* Memory pool of a given kind */ 488 #ifdef FreeBSD_Bus_Dma_Abstraction 489 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 490 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 491 m_addr_t (*getp)(struct m_pool *); 492 #ifdef MEMO_FREE_UNUSED 493 void (*freep)(struct m_pool *, m_addr_t); 494 #endif 495 #define M_GETP() mp->getp(mp) 496 #define M_FREEP(p) mp->freep(mp, p) 497 int nump; 498 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 499 struct m_pool *next; 500 #else 501 #define M_GETP() get_pages() 502 #define M_FREEP(p) free_pages(p) 503 #endif /* FreeBSD_Bus_Dma_Abstraction */ 504 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 505 } m_pool_s; 506 507 static void *___sym_malloc(m_pool_s *mp, int size) 508 { 509 int i = 0; 510 int s = (1 << MEMO_SHIFT); 511 int j; 512 m_addr_t a; 513 m_link_s *h = mp->h; 514 515 if (size > MEMO_CLUSTER_SIZE) 516 return 0; 517 518 while (size > s) { 519 s <<= 1; 520 ++i; 521 } 522 523 j = i; 524 while (!h[j].next) { 525 if (s == MEMO_CLUSTER_SIZE) { 526 h[j].next = (m_link_s *) M_GETP(); 527 if (h[j].next) 528 h[j].next->next = 0; 529 break; 530 } 531 ++j; 532 s <<= 1; 533 } 534 a = (m_addr_t) h[j].next; 535 if (a) { 536 h[j].next = h[j].next->next; 537 while (j > i) { 538 j -= 1; 539 s >>= 1; 540 h[j].next = (m_link_s *) (a+s); 541 h[j].next->next = 0; 542 } 543 } 544 #ifdef DEBUG 545 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 546 #endif 547 return (void *) a; 548 } 549 550 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 551 { 552 int i = 0; 553 int s = (1 << MEMO_SHIFT); 554 m_link_s *q; 555 m_addr_t a, b; 556 m_link_s *h = mp->h; 557 558 #ifdef DEBUG 559 printf("___sym_mfree(%p, %d)\n", ptr, size); 560 #endif 561 562 if (size > MEMO_CLUSTER_SIZE) 563 return; 564 565 while (size > s) { 566 s <<= 1; 567 ++i; 568 } 569 570 a = (m_addr_t) ptr; 571 572 while (1) { 573 #ifdef MEMO_FREE_UNUSED 574 if (s == MEMO_CLUSTER_SIZE) { 575 M_FREEP(a); 576 break; 577 } 578 #endif 579 b = a ^ s; 580 q = &h[i]; 581 while (q->next && q->next != (m_link_s *) b) { 582 q = q->next; 583 } 584 if (!q->next) { 585 ((m_link_s *) a)->next = h[i].next; 586 h[i].next = (m_link_s *) a; 587 break; 588 } 589 q->next = q->next->next; 590 a = a & b; 591 s <<= 1; 592 ++i; 593 } 594 } 595 596 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 597 { 598 void *p; 599 600 p = ___sym_malloc(mp, size); 601 602 if (DEBUG_FLAGS & DEBUG_ALLOC) 603 printf ("new %-10s[%4d] @%p.\n", name, size, p); 604 605 if (p) 606 bzero(p, size); 607 else if (uflags & MEMO_WARN) 608 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 609 610 return p; 611 } 612 613 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 614 615 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 616 { 617 if (DEBUG_FLAGS & DEBUG_ALLOC) 618 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 619 620 ___sym_mfree(mp, ptr, size); 621 622 } 623 624 /* 625 * Default memory pool we donnot need to involve in DMA. 626 */ 627 #ifndef FreeBSD_Bus_Dma_Abstraction 628 /* 629 * Without the `bus dma abstraction', all the memory is assumed 630 * DMAable and a single pool is all what we need. 631 */ 632 static m_pool_s mp0; 633 634 #else 635 /* 636 * With the `bus dma abstraction', we use a separate pool for 637 * memory we donnot need to involve in DMA. 638 */ 639 static m_addr_t ___mp0_getp(m_pool_s *mp) 640 { 641 m_addr_t m = (m_addr_t) get_pages(); 642 if (m) 643 ++mp->nump; 644 return m; 645 } 646 647 #ifdef MEMO_FREE_UNUSED 648 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 649 { 650 free_pages(m); 651 --mp->nump; 652 } 653 #endif 654 655 #ifdef MEMO_FREE_UNUSED 656 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 657 #else 658 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 659 #endif 660 661 #endif /* FreeBSD_Bus_Dma_Abstraction */ 662 663 /* 664 * Actual memory allocation routine for non-DMAed memory. 665 */ 666 static void *sym_calloc(int size, char *name) 667 { 668 void *m; 669 /* Lock */ 670 m = __sym_calloc(&mp0, size, name); 671 /* Unlock */ 672 return m; 673 } 674 675 /* 676 * Actual memory allocation routine for non-DMAed memory. 677 */ 678 static void sym_mfree(void *ptr, int size, char *name) 679 { 680 /* Lock */ 681 __sym_mfree(&mp0, ptr, size, name); 682 /* Unlock */ 683 } 684 685 /* 686 * DMAable pools. 687 */ 688 #ifndef FreeBSD_Bus_Dma_Abstraction 689 /* 690 * Without `bus dma abstraction', all the memory is DMAable, and 691 * only a single pool is needed (vtophys() is our friend). 692 */ 693 #define __sym_calloc_dma(b, s, n) sym_calloc(s, n) 694 #define __sym_mfree_dma(b, p, s, n) sym_mfree(p, s, n) 695 #ifdef __alpha__ 696 #define __vtobus(b, p) alpha_XXX_dmamap((vm_offset_t)(p)) 697 #else /*__i386__*/ 698 #define __vtobus(b, p) vtophys(p) 699 #endif 700 701 #else 702 /* 703 * With `bus dma abstraction', we use a separate pool per parent 704 * BUS handle. A reverse table (hashed) is maintained for virtual 705 * to BUS address translation. 706 */ 707 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 708 { 709 bus_addr_t *baddr; 710 baddr = (bus_addr_t *)arg; 711 *baddr = segs->ds_addr; 712 } 713 714 static m_addr_t ___dma_getp(m_pool_s *mp) 715 { 716 m_vtob_s *vbp; 717 void *vaddr = 0; 718 bus_addr_t baddr = 0; 719 720 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 721 if (!vbp) 722 goto out_err; 723 724 if (bus_dmamem_alloc(mp->dmat, &vaddr, 725 BUS_DMA_NOWAIT, &vbp->dmamap)) 726 goto out_err; 727 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 728 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0); 729 if (baddr) { 730 int hc = VTOB_HASH_CODE(vaddr); 731 vbp->vaddr = (m_addr_t) vaddr; 732 vbp->baddr = (m_addr_t) baddr; 733 vbp->next = mp->vtob[hc]; 734 mp->vtob[hc] = vbp; 735 ++mp->nump; 736 return (m_addr_t) vaddr; 737 } 738 out_err: 739 if (baddr) 740 bus_dmamap_unload(mp->dmat, vbp->dmamap); 741 if (vaddr) 742 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 743 if (vbp->dmamap) 744 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 745 if (vbp) 746 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 747 return 0; 748 } 749 750 #ifdef MEMO_FREE_UNUSED 751 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 752 { 753 m_vtob_s **vbpp, *vbp; 754 int hc = VTOB_HASH_CODE(m); 755 756 vbpp = &mp->vtob[hc]; 757 while (*vbpp && (*vbpp)->vaddr != m) 758 vbpp = &(*vbpp)->next; 759 if (*vbpp) { 760 vbp = *vbpp; 761 *vbpp = (*vbpp)->next; 762 bus_dmamap_unload(mp->dmat, vbp->dmamap); 763 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 764 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 765 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 766 --mp->nump; 767 } 768 } 769 #endif 770 771 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 772 { 773 m_pool_s *mp; 774 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 775 return mp; 776 } 777 778 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 779 { 780 m_pool_s *mp = 0; 781 782 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 783 if (mp) { 784 mp->dev_dmat = dev_dmat; 785 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 786 BUS_SPACE_MAXADDR_32BIT, 787 BUS_SPACE_MAXADDR_32BIT, 788 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 789 MEMO_CLUSTER_SIZE, 0, &mp->dmat)) { 790 mp->getp = ___dma_getp; 791 #ifdef MEMO_FREE_UNUSED 792 mp->freep = ___dma_freep; 793 #endif 794 mp->next = mp0.next; 795 mp0.next = mp; 796 return mp; 797 } 798 } 799 if (mp) 800 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 801 return 0; 802 } 803 804 #ifdef MEMO_FREE_UNUSED 805 static void ___del_dma_pool(m_pool_s *p) 806 { 807 struct m_pool **pp = &mp0.next; 808 809 while (*pp && *pp != p) 810 pp = &(*pp)->next; 811 if (*pp) { 812 *pp = (*pp)->next; 813 bus_dma_tag_destroy(p->dmat); 814 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 815 } 816 } 817 #endif 818 819 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 820 { 821 struct m_pool *mp; 822 void *m = 0; 823 824 /* Lock */ 825 mp = ___get_dma_pool(dev_dmat); 826 if (!mp) 827 mp = ___cre_dma_pool(dev_dmat); 828 if (mp) 829 m = __sym_calloc(mp, size, name); 830 #ifdef MEMO_FREE_UNUSED 831 if (mp && !mp->nump) 832 ___del_dma_pool(mp); 833 #endif 834 /* Unlock */ 835 836 return m; 837 } 838 839 static void 840 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 841 { 842 struct m_pool *mp; 843 844 /* Lock */ 845 mp = ___get_dma_pool(dev_dmat); 846 if (mp) 847 __sym_mfree(mp, m, size, name); 848 #ifdef MEMO_FREE_UNUSED 849 if (mp && !mp->nump) 850 ___del_dma_pool(mp); 851 #endif 852 /* Unlock */ 853 } 854 855 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 856 { 857 m_pool_s *mp; 858 int hc = VTOB_HASH_CODE(m); 859 m_vtob_s *vp = 0; 860 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 861 862 /* Lock */ 863 mp = ___get_dma_pool(dev_dmat); 864 if (mp) { 865 vp = mp->vtob[hc]; 866 while (vp && (m_addr_t) vp->vaddr != a) 867 vp = vp->next; 868 } 869 /* Unlock */ 870 if (!vp) 871 panic("sym: VTOBUS FAILED!\n"); 872 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 873 } 874 875 #endif /* FreeBSD_Bus_Dma_Abstraction */ 876 877 /* 878 * Verbs for DMAable memory handling. 879 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 880 * being discarded. 881 */ 882 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 883 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 884 #define _sym_mfree_dma(np, p, s, n) \ 885 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 886 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 887 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 888 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 889 #define vtobus(p) _vtobus(np, p) 890 891 892 /* 893 * Print a buffer in hexadecimal format. 894 */ 895 static void sym_printb_hex (u_char *p, int n) 896 { 897 while (n-- > 0) 898 printf (" %x", *p++); 899 } 900 901 /* 902 * Same with a label at beginning and .\n at end. 903 */ 904 static void sym_printl_hex (char *label, u_char *p, int n) 905 { 906 printf ("%s", label); 907 sym_printb_hex (p, n); 908 printf (".\n"); 909 } 910 911 /* 912 * Return a string for SCSI BUS mode. 913 */ 914 static char *sym_scsi_bus_mode(int mode) 915 { 916 switch(mode) { 917 case SMODE_HVD: return "HVD"; 918 case SMODE_SE: return "SE"; 919 case SMODE_LVD: return "LVD"; 920 } 921 return "??"; 922 } 923 924 /* 925 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 926 */ 927 #ifdef SYM_CONF_NVRAM_SUPPORT 928 static u_char Tekram_sync[16] = 929 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 930 #endif 931 932 /* 933 * Union of supported NVRAM formats. 934 */ 935 struct sym_nvram { 936 int type; 937 #define SYM_SYMBIOS_NVRAM (1) 938 #define SYM_TEKRAM_NVRAM (2) 939 #ifdef SYM_CONF_NVRAM_SUPPORT 940 union { 941 Symbios_nvram Symbios; 942 Tekram_nvram Tekram; 943 } data; 944 #endif 945 }; 946 947 /* 948 * This one is hopefully useless, but actually useful. :-) 949 */ 950 #ifndef assert 951 #define assert(expression) { \ 952 if (!(expression)) { \ 953 (void)panic( \ 954 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 955 #expression, \ 956 __FILE__, __LINE__); \ 957 } \ 958 } 959 #endif 960 961 /* 962 * Some provision for a possible big endian mode supported by 963 * Symbios chips (never seen, by the way). 964 * For now, this stuff does not deserve any comments. :) 965 */ 966 967 #define sym_offb(o) (o) 968 #define sym_offw(o) (o) 969 970 /* 971 * Some provision for support for BIG ENDIAN CPU. 972 * Btw, FreeBSD does not seem to be ready yet for big endian. 973 */ 974 975 #if BYTE_ORDER == BIG_ENDIAN 976 #define cpu_to_scr(dw) _htole32(dw) 977 #define scr_to_cpu(dw) _le32toh(dw) 978 #else 979 #define cpu_to_scr(dw) (dw) 980 #define scr_to_cpu(dw) (dw) 981 #endif 982 983 /* 984 * Access to the chip IO registers and on-chip RAM. 985 * We use the `bus space' interface under FreeBSD-4 and 986 * later kernel versions. 987 */ 988 989 #ifdef FreeBSD_Bus_Space_Abstraction 990 991 #if defined(SYM_CONF_IOMAPPED) 992 993 #define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o) 994 #define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o) 995 #define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o) 996 997 #define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v)) 998 #define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v)) 999 #define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v)) 1000 1001 #else /* Memory mapped IO */ 1002 1003 #define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o) 1004 #define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o) 1005 #define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o) 1006 1007 #define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v)) 1008 #define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v)) 1009 #define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v)) 1010 1011 #endif /* SYM_CONF_IOMAPPED */ 1012 1013 #define OUTRAM_OFF(o, a, l) \ 1014 bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l)) 1015 1016 #else /* not defined FreeBSD_Bus_Space_Abstraction */ 1017 1018 #if BYTE_ORDER == BIG_ENDIAN 1019 #error "BIG ENDIAN support requires bus space kernel interface" 1020 #endif 1021 1022 /* 1023 * Access to the chip IO registers and on-chip RAM. 1024 * We use legacy MMIO and IO interface for FreeBSD 3.X versions. 1025 */ 1026 1027 /* 1028 * Define some understable verbs for IO and MMIO. 1029 */ 1030 #define io_read8(p) scr_to_cpu(inb((p))) 1031 #define io_read16(p) scr_to_cpu(inw((p))) 1032 #define io_read32(p) scr_to_cpu(inl((p))) 1033 #define io_write8(p, v) outb((p), cpu_to_scr(v)) 1034 #define io_write16(p, v) outw((p), cpu_to_scr(v)) 1035 #define io_write32(p, v) outl((p), cpu_to_scr(v)) 1036 1037 #ifdef __alpha__ 1038 1039 #define mmio_read8(a) readb(a) 1040 #define mmio_read16(a) readw(a) 1041 #define mmio_read32(a) readl(a) 1042 #define mmio_write8(a, b) writeb(a, b) 1043 #define mmio_write16(a, b) writew(a, b) 1044 #define mmio_write32(a, b) writel(a, b) 1045 #define memcpy_to_pci(d, s, n) memcpy_toio((u32)(d), (void *)(s), (n)) 1046 1047 #else /*__i386__*/ 1048 1049 #define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a))) 1050 #define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a))) 1051 #define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a))) 1052 #define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b) 1053 #define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b) 1054 #define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b) 1055 #define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n)) 1056 1057 #endif 1058 1059 /* 1060 * Normal IO 1061 */ 1062 #if defined(SYM_CONF_IOMAPPED) 1063 1064 #define INB_OFF(o) io_read8(np->io_port + sym_offb(o)) 1065 #define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v)) 1066 1067 #define INW_OFF(o) io_read16(np->io_port + sym_offw(o)) 1068 #define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v)) 1069 1070 #define INL_OFF(o) io_read32(np->io_port + (o)) 1071 #define OUTL_OFF(o, v) io_write32(np->io_port + (o), (v)) 1072 1073 #else /* Memory mapped IO */ 1074 1075 #define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o)) 1076 #define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v)) 1077 1078 #define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o)) 1079 #define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v)) 1080 1081 #define INL_OFF(o) mmio_read32(np->mmio_va + (o)) 1082 #define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v)) 1083 1084 #endif 1085 1086 #define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l)) 1087 1088 #endif /* FreeBSD_Bus_Space_Abstraction */ 1089 1090 /* 1091 * Common definitions for both bus space and legacy IO methods. 1092 */ 1093 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 1094 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 1095 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 1096 1097 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 1098 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 1099 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 1100 1101 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 1102 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 1103 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 1104 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 1105 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 1106 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 1107 1108 /* 1109 * We normally want the chip to have a consistent view 1110 * of driver internal data structures when we restart it. 1111 * Thus these macros. 1112 */ 1113 #define OUTL_DSP(v) \ 1114 do { \ 1115 MEMORY_BARRIER(); \ 1116 OUTL (nc_dsp, (v)); \ 1117 } while (0) 1118 1119 #define OUTONB_STD() \ 1120 do { \ 1121 MEMORY_BARRIER(); \ 1122 OUTONB (nc_dcntl, (STD|NOCOM)); \ 1123 } while (0) 1124 1125 /* 1126 * Command control block states. 1127 */ 1128 #define HS_IDLE (0) 1129 #define HS_BUSY (1) 1130 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 1131 #define HS_DISCONNECT (3) /* Disconnected by target */ 1132 #define HS_WAIT (4) /* waiting for resource */ 1133 1134 #define HS_DONEMASK (0x80) 1135 #define HS_COMPLETE (4|HS_DONEMASK) 1136 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 1137 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 1138 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 1139 1140 /* 1141 * Software Interrupt Codes 1142 */ 1143 #define SIR_BAD_SCSI_STATUS (1) 1144 #define SIR_SEL_ATN_NO_MSG_OUT (2) 1145 #define SIR_MSG_RECEIVED (3) 1146 #define SIR_MSG_WEIRD (4) 1147 #define SIR_NEGO_FAILED (5) 1148 #define SIR_NEGO_PROTO (6) 1149 #define SIR_SCRIPT_STOPPED (7) 1150 #define SIR_REJECT_TO_SEND (8) 1151 #define SIR_SWIDE_OVERRUN (9) 1152 #define SIR_SODL_UNDERRUN (10) 1153 #define SIR_RESEL_NO_MSG_IN (11) 1154 #define SIR_RESEL_NO_IDENTIFY (12) 1155 #define SIR_RESEL_BAD_LUN (13) 1156 #define SIR_TARGET_SELECTED (14) 1157 #define SIR_RESEL_BAD_I_T_L (15) 1158 #define SIR_RESEL_BAD_I_T_L_Q (16) 1159 #define SIR_ABORT_SENT (17) 1160 #define SIR_RESEL_ABORTED (18) 1161 #define SIR_MSG_OUT_DONE (19) 1162 #define SIR_COMPLETE_ERROR (20) 1163 #define SIR_DATA_OVERRUN (21) 1164 #define SIR_BAD_PHASE (22) 1165 #define SIR_MAX (22) 1166 1167 /* 1168 * Extended error bit codes. 1169 * xerr_status field of struct sym_ccb. 1170 */ 1171 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 1172 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 1173 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 1174 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 1175 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 1176 1177 /* 1178 * Negotiation status. 1179 * nego_status field of struct sym_ccb. 1180 */ 1181 #define NS_SYNC (1) 1182 #define NS_WIDE (2) 1183 #define NS_PPR (3) 1184 1185 /* 1186 * A CCB hashed table is used to retrieve CCB address 1187 * from DSA value. 1188 */ 1189 #define CCB_HASH_SHIFT 8 1190 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1191 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1192 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1193 1194 /* 1195 * Device flags. 1196 */ 1197 #define SYM_DISC_ENABLED (1) 1198 #define SYM_TAGS_ENABLED (1<<1) 1199 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1200 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1201 1202 /* 1203 * Host adapter miscellaneous flags. 1204 */ 1205 #define SYM_AVOID_BUS_RESET (1) 1206 #define SYM_SCAN_TARGETS_HILO (1<<1) 1207 1208 /* 1209 * Device quirks. 1210 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1211 * saving the DATA POINTER then reselects and terminates the IO. 1212 * On reselection, the automatic RESTORE DATA POINTER makes the 1213 * CURRENT DATA POINTER not point at the end of the IO. 1214 * This behaviour just breaks our calculation of the residual. 1215 * For now, we just force an AUTO SAVE on disconnection and will 1216 * fix that in a further driver version. 1217 */ 1218 #define SYM_QUIRK_AUTOSAVE 1 1219 1220 /* 1221 * Misc. 1222 */ 1223 #define SYM_SNOOP_TIMEOUT (10000000) 1224 #define SYM_PCI_IO PCIR_MAPS 1225 #define SYM_PCI_MMIO (PCIR_MAPS + 4) 1226 #define SYM_PCI_RAM (PCIR_MAPS + 8) 1227 #define SYM_PCI_RAM64 (PCIR_MAPS + 12) 1228 1229 /* 1230 * Back-pointer from the CAM CCB to our data structures. 1231 */ 1232 #define sym_hcb_ptr spriv_ptr0 1233 /* #define sym_ccb_ptr spriv_ptr1 */ 1234 1235 /* 1236 * We mostly have to deal with pointers. 1237 * Thus these typedef's. 1238 */ 1239 typedef struct sym_tcb *tcb_p; 1240 typedef struct sym_lcb *lcb_p; 1241 typedef struct sym_ccb *ccb_p; 1242 typedef struct sym_hcb *hcb_p; 1243 1244 /* 1245 * Gather negotiable parameters value 1246 */ 1247 struct sym_trans { 1248 u8 period; 1249 u8 offset; 1250 u8 width; 1251 u8 options; /* PPR options */ 1252 }; 1253 1254 struct sym_tinfo { 1255 struct sym_trans current; 1256 struct sym_trans goal; 1257 struct sym_trans user; 1258 }; 1259 1260 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1261 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1262 1263 /* 1264 * Global TCB HEADER. 1265 * 1266 * Due to lack of indirect addressing on earlier NCR chips, 1267 * this substructure is copied from the TCB to a global 1268 * address after selection. 1269 * For SYMBIOS chips that support LOAD/STORE this copy is 1270 * not needed and thus not performed. 1271 */ 1272 struct sym_tcbh { 1273 /* 1274 * Scripts bus addresses of LUN table accessed from scripts. 1275 * LUN #0 is a special case, since multi-lun devices are rare, 1276 * and we we want to speed-up the general case and not waste 1277 * resources. 1278 */ 1279 u32 luntbl_sa; /* bus address of this table */ 1280 u32 lun0_sa; /* bus address of LCB #0 */ 1281 /* 1282 * Actual SYNC/WIDE IO registers value for this target. 1283 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1284 * so have alignment constraints. 1285 */ 1286 /*0*/ u_char uval; /* -> SCNTL4 register */ 1287 /*1*/ u_char sval; /* -> SXFER io register */ 1288 /*2*/ u_char filler1; 1289 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1290 }; 1291 1292 /* 1293 * Target Control Block 1294 */ 1295 struct sym_tcb { 1296 /* 1297 * TCB header. 1298 * Assumed at offset 0. 1299 */ 1300 /*0*/ struct sym_tcbh head; 1301 1302 /* 1303 * LUN table used by the SCRIPTS processor. 1304 * An array of bus addresses is used on reselection. 1305 */ 1306 u32 *luntbl; /* LCBs bus address table */ 1307 1308 /* 1309 * LUN table used by the C code. 1310 */ 1311 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1312 #if SYM_CONF_MAX_LUN > 1 1313 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1314 #endif 1315 1316 /* 1317 * Bitmap that tells about LUNs that succeeded at least 1318 * 1 IO and therefore assumed to be a real device. 1319 * Avoid useless allocation of the LCB structure. 1320 */ 1321 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1322 1323 /* 1324 * Bitmap that tells about LUNs that haven't yet an LCB 1325 * allocated (not discovered or LCB allocation failed). 1326 */ 1327 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1328 1329 /* 1330 * Transfer capabilities (SIP) 1331 */ 1332 struct sym_tinfo tinfo; 1333 1334 /* 1335 * Keep track of the CCB used for the negotiation in order 1336 * to ensure that only 1 negotiation is queued at a time. 1337 */ 1338 ccb_p nego_cp; /* CCB used for the nego */ 1339 1340 /* 1341 * Set when we want to reset the device. 1342 */ 1343 u_char to_reset; 1344 1345 /* 1346 * Other user settable limits and options. 1347 * These limits are read from the NVRAM if present. 1348 */ 1349 u_char usrflags; 1350 u_short usrtags; 1351 }; 1352 1353 /* 1354 * Global LCB HEADER. 1355 * 1356 * Due to lack of indirect addressing on earlier NCR chips, 1357 * this substructure is copied from the LCB to a global 1358 * address after selection. 1359 * For SYMBIOS chips that support LOAD/STORE this copy is 1360 * not needed and thus not performed. 1361 */ 1362 struct sym_lcbh { 1363 /* 1364 * SCRIPTS address jumped by SCRIPTS on reselection. 1365 * For not probed logical units, this address points to 1366 * SCRIPTS that deal with bad LU handling (must be at 1367 * offset zero of the LCB for that reason). 1368 */ 1369 /*0*/ u32 resel_sa; 1370 1371 /* 1372 * Task (bus address of a CCB) read from SCRIPTS that points 1373 * to the unique ITL nexus allowed to be disconnected. 1374 */ 1375 u32 itl_task_sa; 1376 1377 /* 1378 * Task table bus address (read from SCRIPTS). 1379 */ 1380 u32 itlq_tbl_sa; 1381 }; 1382 1383 /* 1384 * Logical Unit Control Block 1385 */ 1386 struct sym_lcb { 1387 /* 1388 * TCB header. 1389 * Assumed at offset 0. 1390 */ 1391 /*0*/ struct sym_lcbh head; 1392 1393 /* 1394 * Task table read from SCRIPTS that contains pointers to 1395 * ITLQ nexuses. The bus address read from SCRIPTS is 1396 * inside the header. 1397 */ 1398 u32 *itlq_tbl; /* Kernel virtual address */ 1399 1400 /* 1401 * Busy CCBs management. 1402 */ 1403 u_short busy_itlq; /* Number of busy tagged CCBs */ 1404 u_short busy_itl; /* Number of busy untagged CCBs */ 1405 1406 /* 1407 * Circular tag allocation buffer. 1408 */ 1409 u_short ia_tag; /* Tag allocation index */ 1410 u_short if_tag; /* Tag release index */ 1411 u_char *cb_tags; /* Circular tags buffer */ 1412 1413 /* 1414 * Set when we want to clear all tasks. 1415 */ 1416 u_char to_clear; 1417 1418 /* 1419 * Capabilities. 1420 */ 1421 u_char user_flags; 1422 u_char current_flags; 1423 }; 1424 1425 /* 1426 * Action from SCRIPTS on a task. 1427 * Is part of the CCB, but is also used separately to plug 1428 * error handling action to perform from SCRIPTS. 1429 */ 1430 struct sym_actscr { 1431 u32 start; /* Jumped by SCRIPTS after selection */ 1432 u32 restart; /* Jumped by SCRIPTS on relection */ 1433 }; 1434 1435 /* 1436 * Phase mismatch context. 1437 * 1438 * It is part of the CCB and is used as parameters for the 1439 * DATA pointer. We need two contexts to handle correctly the 1440 * SAVED DATA POINTER. 1441 */ 1442 struct sym_pmc { 1443 struct sym_tblmove sg; /* Updated interrupted SG block */ 1444 u32 ret; /* SCRIPT return address */ 1445 }; 1446 1447 /* 1448 * LUN control block lookup. 1449 * We use a direct pointer for LUN #0, and a table of 1450 * pointers which is only allocated for devices that support 1451 * LUN(s) > 0. 1452 */ 1453 #if SYM_CONF_MAX_LUN <= 1 1454 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1455 #else 1456 #define sym_lp(np, tp, lun) \ 1457 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1458 #endif 1459 1460 /* 1461 * Status are used by the host and the script processor. 1462 * 1463 * The last four bytes (status[4]) are copied to the 1464 * scratchb register (declared as scr0..scr3) just after the 1465 * select/reselect, and copied back just after disconnecting. 1466 * Inside the script the XX_REG are used. 1467 */ 1468 1469 /* 1470 * Last four bytes (script) 1471 */ 1472 #define QU_REG scr0 1473 #define HS_REG scr1 1474 #define HS_PRT nc_scr1 1475 #define SS_REG scr2 1476 #define SS_PRT nc_scr2 1477 #define HF_REG scr3 1478 #define HF_PRT nc_scr3 1479 1480 /* 1481 * Last four bytes (host) 1482 */ 1483 #define actualquirks phys.head.status[0] 1484 #define host_status phys.head.status[1] 1485 #define ssss_status phys.head.status[2] 1486 #define host_flags phys.head.status[3] 1487 1488 /* 1489 * Host flags 1490 */ 1491 #define HF_IN_PM0 1u 1492 #define HF_IN_PM1 (1u<<1) 1493 #define HF_ACT_PM (1u<<2) 1494 #define HF_DP_SAVED (1u<<3) 1495 #define HF_SENSE (1u<<4) 1496 #define HF_EXT_ERR (1u<<5) 1497 #define HF_DATA_IN (1u<<6) 1498 #ifdef SYM_CONF_IARB_SUPPORT 1499 #define HF_HINT_IARB (1u<<7) 1500 #endif 1501 1502 /* 1503 * Global CCB HEADER. 1504 * 1505 * Due to lack of indirect addressing on earlier NCR chips, 1506 * this substructure is copied from the ccb to a global 1507 * address after selection (or reselection) and copied back 1508 * before disconnect. 1509 * For SYMBIOS chips that support LOAD/STORE this copy is 1510 * not needed and thus not performed. 1511 */ 1512 1513 struct sym_ccbh { 1514 /* 1515 * Start and restart SCRIPTS addresses (must be at 0). 1516 */ 1517 /*0*/ struct sym_actscr go; 1518 1519 /* 1520 * SCRIPTS jump address that deal with data pointers. 1521 * 'savep' points to the position in the script responsible 1522 * for the actual transfer of data. 1523 * It's written on reception of a SAVE_DATA_POINTER message. 1524 */ 1525 u32 savep; /* Jump address to saved data pointer */ 1526 u32 lastp; /* SCRIPTS address at end of data */ 1527 u32 goalp; /* Not accessed for now from SCRIPTS */ 1528 1529 /* 1530 * Status fields. 1531 */ 1532 u8 status[4]; 1533 }; 1534 1535 /* 1536 * Data Structure Block 1537 * 1538 * During execution of a ccb by the script processor, the 1539 * DSA (data structure address) register points to this 1540 * substructure of the ccb. 1541 */ 1542 struct sym_dsb { 1543 /* 1544 * CCB header. 1545 * Also assumed at offset 0 of the sym_ccb structure. 1546 */ 1547 /*0*/ struct sym_ccbh head; 1548 1549 /* 1550 * Phase mismatch contexts. 1551 * We need two to handle correctly the SAVED DATA POINTER. 1552 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1553 * for address calculation from SCRIPTS. 1554 */ 1555 struct sym_pmc pm0; 1556 struct sym_pmc pm1; 1557 1558 /* 1559 * Table data for Script 1560 */ 1561 struct sym_tblsel select; 1562 struct sym_tblmove smsg; 1563 struct sym_tblmove smsg_ext; 1564 struct sym_tblmove cmd; 1565 struct sym_tblmove sense; 1566 struct sym_tblmove wresid; 1567 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1568 }; 1569 1570 /* 1571 * Our Command Control Block 1572 */ 1573 struct sym_ccb { 1574 /* 1575 * This is the data structure which is pointed by the DSA 1576 * register when it is executed by the script processor. 1577 * It must be the first entry. 1578 */ 1579 struct sym_dsb phys; 1580 1581 /* 1582 * Pointer to CAM ccb and related stuff. 1583 */ 1584 union ccb *cam_ccb; /* CAM scsiio ccb */ 1585 u8 cdb_buf[16]; /* Copy of CDB */ 1586 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1587 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1588 int data_len; /* Total data length */ 1589 int segments; /* Number of SG segments */ 1590 1591 /* 1592 * Miscellaneous status'. 1593 */ 1594 u_char nego_status; /* Negotiation status */ 1595 u_char xerr_status; /* Extended error flags */ 1596 u32 extra_bytes; /* Extraneous bytes transferred */ 1597 1598 /* 1599 * Message areas. 1600 * We prepare a message to be sent after selection. 1601 * We may use a second one if the command is rescheduled 1602 * due to CHECK_CONDITION or COMMAND TERMINATED. 1603 * Contents are IDENTIFY and SIMPLE_TAG. 1604 * While negotiating sync or wide transfer, 1605 * a SDTR or WDTR message is appended. 1606 */ 1607 u_char scsi_smsg [12]; 1608 u_char scsi_smsg2[12]; 1609 1610 /* 1611 * Auto request sense related fields. 1612 */ 1613 u_char sensecmd[6]; /* Request Sense command */ 1614 u_char sv_scsi_status; /* Saved SCSI status */ 1615 u_char sv_xerr_status; /* Saved extended status */ 1616 int sv_resid; /* Saved residual */ 1617 1618 /* 1619 * Map for the DMA of user data. 1620 */ 1621 #ifdef FreeBSD_Bus_Dma_Abstraction 1622 void *arg; /* Argument for some callback */ 1623 bus_dmamap_t dmamap; /* DMA map for user data */ 1624 u_char dmamapped; 1625 #define SYM_DMA_NONE 0 1626 #define SYM_DMA_READ 1 1627 #define SYM_DMA_WRITE 2 1628 #endif 1629 /* 1630 * Other fields. 1631 */ 1632 u32 ccb_ba; /* BUS address of this CCB */ 1633 u_short tag; /* Tag for this transfer */ 1634 /* NO_TAG means no tag */ 1635 u_char target; 1636 u_char lun; 1637 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1638 SYM_QUEHEAD 1639 link_ccbq; /* Link to free/busy CCB queue */ 1640 u32 startp; /* Initial data pointer */ 1641 int ext_sg; /* Extreme data pointer, used */ 1642 int ext_ofs; /* to calculate the residual. */ 1643 u_char to_abort; /* Want this IO to be aborted */ 1644 }; 1645 1646 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1647 1648 /* 1649 * Host Control Block 1650 */ 1651 struct sym_hcb { 1652 /* 1653 * Global headers. 1654 * Due to poorness of addressing capabilities, earlier 1655 * chips (810, 815, 825) copy part of the data structures 1656 * (CCB, TCB and LCB) in fixed areas. 1657 */ 1658 #ifdef SYM_CONF_GENERIC_SUPPORT 1659 struct sym_ccbh ccb_head; 1660 struct sym_tcbh tcb_head; 1661 struct sym_lcbh lcb_head; 1662 #endif 1663 /* 1664 * Idle task and invalid task actions and 1665 * their bus addresses. 1666 */ 1667 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1668 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1669 1670 /* 1671 * Dummy lun table to protect us against target 1672 * returning bad lun number on reselection. 1673 */ 1674 u32 *badluntbl; /* Table physical address */ 1675 u32 badlun_sa; /* SCRIPT handler BUS address */ 1676 1677 /* 1678 * Bus address of this host control block. 1679 */ 1680 u32 hcb_ba; 1681 1682 /* 1683 * Bit 32-63 of the on-chip RAM bus address in LE format. 1684 * The START_RAM64 script loads the MMRS and MMWS from this 1685 * field. 1686 */ 1687 u32 scr_ram_seg; 1688 1689 /* 1690 * Chip and controller indentification. 1691 */ 1692 #ifdef FreeBSD_Bus_Io_Abstraction 1693 device_t device; 1694 #else 1695 pcici_t pci_tag; 1696 #endif 1697 int unit; 1698 char inst_name[8]; 1699 1700 /* 1701 * Initial value of some IO register bits. 1702 * These values are assumed to have been set by BIOS, and may 1703 * be used to probe adapter implementation differences. 1704 */ 1705 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1706 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1707 sv_stest1; 1708 1709 /* 1710 * Actual initial value of IO register bits used by the 1711 * driver. They are loaded at initialisation according to 1712 * features that are to be enabled/disabled. 1713 */ 1714 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1715 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1716 1717 /* 1718 * Target data. 1719 */ 1720 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1721 1722 /* 1723 * Target control block bus address array used by the SCRIPT 1724 * on reselection. 1725 */ 1726 u32 *targtbl; 1727 u32 targtbl_ba; 1728 1729 /* 1730 * CAM SIM information for this instance. 1731 */ 1732 struct cam_sim *sim; 1733 struct cam_path *path; 1734 1735 /* 1736 * Allocated hardware resources. 1737 */ 1738 #ifdef FreeBSD_Bus_Io_Abstraction 1739 struct resource *irq_res; 1740 struct resource *io_res; 1741 struct resource *mmio_res; 1742 struct resource *ram_res; 1743 int ram_id; 1744 void *intr; 1745 #endif 1746 1747 /* 1748 * Bus stuff. 1749 * 1750 * My understanding of PCI is that all agents must share the 1751 * same addressing range and model. 1752 * But some hardware architecture guys provide complex and 1753 * brain-deaded stuff that makes shit. 1754 * This driver only support PCI compliant implementations and 1755 * deals with part of the BUS stuff complexity only to fit O/S 1756 * requirements. 1757 */ 1758 #ifdef FreeBSD_Bus_Io_Abstraction 1759 bus_space_handle_t io_bsh; 1760 bus_space_tag_t io_tag; 1761 bus_space_handle_t mmio_bsh; 1762 bus_space_tag_t mmio_tag; 1763 bus_space_handle_t ram_bsh; 1764 bus_space_tag_t ram_tag; 1765 #endif 1766 1767 /* 1768 * DMA stuff. 1769 */ 1770 #ifdef FreeBSD_Bus_Dma_Abstraction 1771 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1772 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1773 #endif 1774 /* 1775 * Virtual and physical bus addresses of the chip. 1776 */ 1777 vm_offset_t mmio_va; /* MMIO kernel virtual address */ 1778 vm_offset_t mmio_pa; /* MMIO CPU physical address */ 1779 vm_offset_t mmio_ba; /* MMIO BUS address */ 1780 int mmio_ws; /* MMIO Window size */ 1781 1782 vm_offset_t ram_va; /* RAM kernel virtual address */ 1783 vm_offset_t ram_pa; /* RAM CPU physical address */ 1784 vm_offset_t ram_ba; /* RAM BUS address */ 1785 int ram_ws; /* RAM window size */ 1786 u32 io_port; /* IO port address */ 1787 1788 /* 1789 * SCRIPTS virtual and physical bus addresses. 1790 * 'script' is loaded in the on-chip RAM if present. 1791 * 'scripth' stays in main memory for all chips except the 1792 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1793 */ 1794 u_char *scripta0; /* Copies of script and scripth */ 1795 u_char *scriptb0; /* Copies of script and scripth */ 1796 vm_offset_t scripta_ba; /* Actual script and scripth */ 1797 vm_offset_t scriptb_ba; /* bus addresses. */ 1798 vm_offset_t scriptb0_ba; 1799 u_short scripta_sz; /* Actual size of script A */ 1800 u_short scriptb_sz; /* Actual size of script B */ 1801 1802 /* 1803 * Bus addresses, setup and patch methods for 1804 * the selected firmware. 1805 */ 1806 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1807 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1808 void (*fw_setup)(hcb_p np, struct sym_fw *fw); 1809 void (*fw_patch)(hcb_p np); 1810 char *fw_name; 1811 1812 /* 1813 * General controller parameters and configuration. 1814 */ 1815 u_short device_id; /* PCI device id */ 1816 u_char revision_id; /* PCI device revision id */ 1817 u_int features; /* Chip features map */ 1818 u_char myaddr; /* SCSI id of the adapter */ 1819 u_char maxburst; /* log base 2 of dwords burst */ 1820 u_char maxwide; /* Maximum transfer width */ 1821 u_char minsync; /* Min sync period factor (ST) */ 1822 u_char maxsync; /* Max sync period factor (ST) */ 1823 u_char maxoffs; /* Max scsi offset (ST) */ 1824 u_char minsync_dt; /* Min sync period factor (DT) */ 1825 u_char maxsync_dt; /* Max sync period factor (DT) */ 1826 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1827 u_char multiplier; /* Clock multiplier (1,2,4) */ 1828 u_char clock_divn; /* Number of clock divisors */ 1829 u32 clock_khz; /* SCSI clock frequency in KHz */ 1830 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1831 /* 1832 * Start queue management. 1833 * It is filled up by the host processor and accessed by the 1834 * SCRIPTS processor in order to start SCSI commands. 1835 */ 1836 volatile /* Prevent code optimizations */ 1837 u32 *squeue; /* Start queue virtual address */ 1838 u32 squeue_ba; /* Start queue BUS address */ 1839 u_short squeueput; /* Next free slot of the queue */ 1840 u_short actccbs; /* Number of allocated CCBs */ 1841 1842 /* 1843 * Command completion queue. 1844 * It is the same size as the start queue to avoid overflow. 1845 */ 1846 u_short dqueueget; /* Next position to scan */ 1847 volatile /* Prevent code optimizations */ 1848 u32 *dqueue; /* Completion (done) queue */ 1849 u32 dqueue_ba; /* Done queue BUS address */ 1850 1851 /* 1852 * Miscellaneous buffers accessed by the scripts-processor. 1853 * They shall be DWORD aligned, because they may be read or 1854 * written with a script command. 1855 */ 1856 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1857 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1858 u32 lastmsg; /* Last SCSI message sent */ 1859 u_char scratch; /* Scratch for SCSI receive */ 1860 1861 /* 1862 * Miscellaneous configuration and status parameters. 1863 */ 1864 u_char usrflags; /* Miscellaneous user flags */ 1865 u_char scsi_mode; /* Current SCSI BUS mode */ 1866 u_char verbose; /* Verbosity for this controller*/ 1867 u32 cache; /* Used for cache test at init. */ 1868 1869 /* 1870 * CCB lists and queue. 1871 */ 1872 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1873 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1874 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1875 1876 /* 1877 * During error handling and/or recovery, 1878 * active CCBs that are to be completed with 1879 * error or requeued are moved from the busy_ccbq 1880 * to the comp_ccbq prior to completion. 1881 */ 1882 SYM_QUEHEAD comp_ccbq; 1883 1884 /* 1885 * CAM CCB pending queue. 1886 */ 1887 SYM_QUEHEAD cam_ccbq; 1888 1889 /* 1890 * IMMEDIATE ARBITRATION (IARB) control. 1891 * 1892 * We keep track in 'last_cp' of the last CCB that has been 1893 * queued to the SCRIPTS processor and clear 'last_cp' when 1894 * this CCB completes. If last_cp is not zero at the moment 1895 * we queue a new CCB, we set a flag in 'last_cp' that is 1896 * used by the SCRIPTS as a hint for setting IARB. 1897 * We donnot set more than 'iarb_max' consecutive hints for 1898 * IARB in order to leave devices a chance to reselect. 1899 * By the way, any non zero value of 'iarb_max' is unfair. :) 1900 */ 1901 #ifdef SYM_CONF_IARB_SUPPORT 1902 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1903 u_short iarb_count; /* Actual # of these hints */ 1904 ccb_p last_cp; 1905 #endif 1906 1907 /* 1908 * Command abort handling. 1909 * We need to synchronize tightly with the SCRIPTS 1910 * processor in order to handle things correctly. 1911 */ 1912 u_char abrt_msg[4]; /* Message to send buffer */ 1913 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1914 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1915 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1916 }; 1917 1918 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1919 1920 /* 1921 * Return the name of the controller. 1922 */ 1923 static __inline char *sym_name(hcb_p np) 1924 { 1925 return np->inst_name; 1926 } 1927 1928 /*--------------------------------------------------------------------------*/ 1929 /*------------------------------ FIRMWARES ---------------------------------*/ 1930 /*--------------------------------------------------------------------------*/ 1931 1932 /* 1933 * This stuff will be moved to a separate source file when 1934 * the driver will be broken into several source modules. 1935 */ 1936 1937 /* 1938 * Macros used for all firmwares. 1939 */ 1940 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1941 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1942 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1943 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1944 1945 1946 #ifdef SYM_CONF_GENERIC_SUPPORT 1947 /* 1948 * Allocate firmware #1 script area. 1949 */ 1950 #define SYM_FWA_SCR sym_fw1a_scr 1951 #define SYM_FWB_SCR sym_fw1b_scr 1952 #include <dev/sym/sym_fw1.h> 1953 struct sym_fwa_ofs sym_fw1a_ofs = { 1954 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1955 }; 1956 struct sym_fwb_ofs sym_fw1b_ofs = { 1957 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1958 }; 1959 #undef SYM_FWA_SCR 1960 #undef SYM_FWB_SCR 1961 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1962 1963 /* 1964 * Allocate firmware #2 script area. 1965 */ 1966 #define SYM_FWA_SCR sym_fw2a_scr 1967 #define SYM_FWB_SCR sym_fw2b_scr 1968 #include <dev/sym/sym_fw2.h> 1969 struct sym_fwa_ofs sym_fw2a_ofs = { 1970 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1971 }; 1972 struct sym_fwb_ofs sym_fw2b_ofs = { 1973 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1974 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1975 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1976 }; 1977 #undef SYM_FWA_SCR 1978 #undef SYM_FWB_SCR 1979 1980 #undef SYM_GEN_A 1981 #undef SYM_GEN_B 1982 #undef PADDR_A 1983 #undef PADDR_B 1984 1985 #ifdef SYM_CONF_GENERIC_SUPPORT 1986 /* 1987 * Patch routine for firmware #1. 1988 */ 1989 static void 1990 sym_fw1_patch(hcb_p np) 1991 { 1992 struct sym_fw1a_scr *scripta0; 1993 struct sym_fw1b_scr *scriptb0; 1994 1995 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1996 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1997 1998 /* 1999 * Remove LED support if not needed. 2000 */ 2001 if (!(np->features & FE_LED0)) { 2002 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 2003 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 2004 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 2005 } 2006 2007 #ifdef SYM_CONF_IARB_SUPPORT 2008 /* 2009 * If user does not want to use IMMEDIATE ARBITRATION 2010 * when we are reselected while attempting to arbitrate, 2011 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 2012 */ 2013 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 2014 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 2015 #endif 2016 /* 2017 * Patch some data in SCRIPTS. 2018 * - start and done queue initial bus address. 2019 * - target bus address table bus address. 2020 */ 2021 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 2022 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 2023 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 2024 } 2025 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2026 2027 /* 2028 * Patch routine for firmware #2. 2029 */ 2030 static void 2031 sym_fw2_patch(hcb_p np) 2032 { 2033 struct sym_fw2a_scr *scripta0; 2034 struct sym_fw2b_scr *scriptb0; 2035 2036 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2037 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2038 2039 /* 2040 * Remove LED support if not needed. 2041 */ 2042 if (!(np->features & FE_LED0)) { 2043 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 2044 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 2045 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 2046 } 2047 2048 #ifdef SYM_CONF_IARB_SUPPORT 2049 /* 2050 * If user does not want to use IMMEDIATE ARBITRATION 2051 * when we are reselected while attempting to arbitrate, 2052 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 2053 */ 2054 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 2055 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 2056 #endif 2057 /* 2058 * Patch some variable in SCRIPTS. 2059 * - start and done queue initial bus address. 2060 * - target bus address table bus address. 2061 */ 2062 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 2063 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 2064 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 2065 2066 /* 2067 * Remove the load of SCNTL4 on reselection if not a C10. 2068 */ 2069 if (!(np->features & FE_C10)) { 2070 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 2071 scripta0->resel_scntl4[1] = cpu_to_scr(0); 2072 } 2073 2074 /* 2075 * Remove a couple of work-arounds specific to C1010 if 2076 * they are not desirable. See `sym_fw2.h' for more details. 2077 */ 2078 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 2079 /* np->revision_id < 0xff */ 1 && 2080 np->pciclk_khz < 60000)) { 2081 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 2082 scripta0->datao_phase[1] = cpu_to_scr(0); 2083 } 2084 if (!(np->device_id == PCI_ID_LSI53C1010 && 2085 /* np->revision_id < 0xff */ 1)) { 2086 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 2087 scripta0->sel_done[1] = cpu_to_scr(0); 2088 } 2089 2090 /* 2091 * Patch some other variables in SCRIPTS. 2092 * These ones are loaded by the SCRIPTS processor. 2093 */ 2094 scriptb0->pm0_data_addr[0] = 2095 cpu_to_scr(np->scripta_ba + 2096 offsetof(struct sym_fw2a_scr, pm0_data)); 2097 scriptb0->pm1_data_addr[0] = 2098 cpu_to_scr(np->scripta_ba + 2099 offsetof(struct sym_fw2a_scr, pm1_data)); 2100 } 2101 2102 /* 2103 * Fill the data area in scripts. 2104 * To be done for all firmwares. 2105 */ 2106 static void 2107 sym_fw_fill_data (u32 *in, u32 *out) 2108 { 2109 int i; 2110 2111 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 2112 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 2113 *in++ = offsetof (struct sym_dsb, data[i]); 2114 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 2115 *out++ = offsetof (struct sym_dsb, data[i]); 2116 } 2117 } 2118 2119 /* 2120 * Setup useful script bus addresses. 2121 * To be done for all firmwares. 2122 */ 2123 static void 2124 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw) 2125 { 2126 u32 *pa; 2127 u_short *po; 2128 int i; 2129 2130 /* 2131 * Build the bus address table for script A 2132 * from the script A offset table. 2133 */ 2134 po = (u_short *) fw->a_ofs; 2135 pa = (u32 *) &np->fwa_bas; 2136 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 2137 pa[i] = np->scripta_ba + po[i]; 2138 2139 /* 2140 * Same for script B. 2141 */ 2142 po = (u_short *) fw->b_ofs; 2143 pa = (u32 *) &np->fwb_bas; 2144 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 2145 pa[i] = np->scriptb_ba + po[i]; 2146 } 2147 2148 #ifdef SYM_CONF_GENERIC_SUPPORT 2149 /* 2150 * Setup routine for firmware #1. 2151 */ 2152 static void 2153 sym_fw1_setup(hcb_p np, struct sym_fw *fw) 2154 { 2155 struct sym_fw1a_scr *scripta0; 2156 struct sym_fw1b_scr *scriptb0; 2157 2158 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 2159 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 2160 2161 /* 2162 * Fill variable parts in scripts. 2163 */ 2164 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2165 2166 /* 2167 * Setup bus addresses used from the C code.. 2168 */ 2169 sym_fw_setup_bus_addresses(np, fw); 2170 } 2171 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2172 2173 /* 2174 * Setup routine for firmware #2. 2175 */ 2176 static void 2177 sym_fw2_setup(hcb_p np, struct sym_fw *fw) 2178 { 2179 struct sym_fw2a_scr *scripta0; 2180 struct sym_fw2b_scr *scriptb0; 2181 2182 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2183 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2184 2185 /* 2186 * Fill variable parts in scripts. 2187 */ 2188 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2189 2190 /* 2191 * Setup bus addresses used from the C code.. 2192 */ 2193 sym_fw_setup_bus_addresses(np, fw); 2194 } 2195 2196 /* 2197 * Allocate firmware descriptors. 2198 */ 2199 #ifdef SYM_CONF_GENERIC_SUPPORT 2200 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2201 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2202 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2203 2204 /* 2205 * Find the most appropriate firmware for a chip. 2206 */ 2207 static struct sym_fw * 2208 sym_find_firmware(struct sym_pci_chip *chip) 2209 { 2210 if (chip->features & FE_LDSTR) 2211 return &sym_fw2; 2212 #ifdef SYM_CONF_GENERIC_SUPPORT 2213 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2214 return &sym_fw1; 2215 #endif 2216 else 2217 return 0; 2218 } 2219 2220 /* 2221 * Bind a script to physical addresses. 2222 */ 2223 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2224 { 2225 u32 opcode, new, old, tmp1, tmp2; 2226 u32 *end, *cur; 2227 int relocs; 2228 2229 cur = start; 2230 end = start + len/4; 2231 2232 while (cur < end) { 2233 2234 opcode = *cur; 2235 2236 /* 2237 * If we forget to change the length 2238 * in scripts, a field will be 2239 * padded with 0. This is an illegal 2240 * command. 2241 */ 2242 if (opcode == 0) { 2243 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2244 sym_name(np), (int) (cur-start)); 2245 MDELAY (10000); 2246 ++cur; 2247 continue; 2248 }; 2249 2250 /* 2251 * We use the bogus value 0xf00ff00f ;-) 2252 * to reserve data area in SCRIPTS. 2253 */ 2254 if (opcode == SCR_DATA_ZERO) { 2255 *cur++ = 0; 2256 continue; 2257 } 2258 2259 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2260 printf ("%d: <%x>\n", (int) (cur-start), 2261 (unsigned)opcode); 2262 2263 /* 2264 * We don't have to decode ALL commands 2265 */ 2266 switch (opcode >> 28) { 2267 case 0xf: 2268 /* 2269 * LOAD / STORE DSA relative, don't relocate. 2270 */ 2271 relocs = 0; 2272 break; 2273 case 0xe: 2274 /* 2275 * LOAD / STORE absolute. 2276 */ 2277 relocs = 1; 2278 break; 2279 case 0xc: 2280 /* 2281 * COPY has TWO arguments. 2282 */ 2283 relocs = 2; 2284 tmp1 = cur[1]; 2285 tmp2 = cur[2]; 2286 if ((tmp1 ^ tmp2) & 3) { 2287 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2288 sym_name(np), (int) (cur-start)); 2289 MDELAY (10000); 2290 } 2291 /* 2292 * If PREFETCH feature not enabled, remove 2293 * the NO FLUSH bit if present. 2294 */ 2295 if ((opcode & SCR_NO_FLUSH) && 2296 !(np->features & FE_PFEN)) { 2297 opcode = (opcode & ~SCR_NO_FLUSH); 2298 } 2299 break; 2300 case 0x0: 2301 /* 2302 * MOVE/CHMOV (absolute address) 2303 */ 2304 if (!(np->features & FE_WIDE)) 2305 opcode = (opcode | OPC_MOVE); 2306 relocs = 1; 2307 break; 2308 case 0x1: 2309 /* 2310 * MOVE/CHMOV (table indirect) 2311 */ 2312 if (!(np->features & FE_WIDE)) 2313 opcode = (opcode | OPC_MOVE); 2314 relocs = 0; 2315 break; 2316 case 0x8: 2317 /* 2318 * JUMP / CALL 2319 * dont't relocate if relative :-) 2320 */ 2321 if (opcode & 0x00800000) 2322 relocs = 0; 2323 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2324 relocs = 2; 2325 else 2326 relocs = 1; 2327 break; 2328 case 0x4: 2329 case 0x5: 2330 case 0x6: 2331 case 0x7: 2332 relocs = 1; 2333 break; 2334 default: 2335 relocs = 0; 2336 break; 2337 }; 2338 2339 /* 2340 * Scriptify:) the opcode. 2341 */ 2342 *cur++ = cpu_to_scr(opcode); 2343 2344 /* 2345 * If no relocation, assume 1 argument 2346 * and just scriptize:) it. 2347 */ 2348 if (!relocs) { 2349 *cur = cpu_to_scr(*cur); 2350 ++cur; 2351 continue; 2352 } 2353 2354 /* 2355 * Otherwise performs all needed relocations. 2356 */ 2357 while (relocs--) { 2358 old = *cur; 2359 2360 switch (old & RELOC_MASK) { 2361 case RELOC_REGISTER: 2362 new = (old & ~RELOC_MASK) + np->mmio_ba; 2363 break; 2364 case RELOC_LABEL_A: 2365 new = (old & ~RELOC_MASK) + np->scripta_ba; 2366 break; 2367 case RELOC_LABEL_B: 2368 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2369 break; 2370 case RELOC_SOFTC: 2371 new = (old & ~RELOC_MASK) + np->hcb_ba; 2372 break; 2373 case 0: 2374 /* 2375 * Don't relocate a 0 address. 2376 * They are mostly used for patched or 2377 * script self-modified areas. 2378 */ 2379 if (old == 0) { 2380 new = old; 2381 break; 2382 } 2383 /* fall through */ 2384 default: 2385 new = 0; 2386 panic("sym_fw_bind_script: " 2387 "weird relocation %x\n", old); 2388 break; 2389 } 2390 2391 *cur++ = cpu_to_scr(new); 2392 } 2393 }; 2394 } 2395 2396 /*--------------------------------------------------------------------------*/ 2397 /*--------------------------- END OF FIRMARES -----------------------------*/ 2398 /*--------------------------------------------------------------------------*/ 2399 2400 /* 2401 * Function prototypes. 2402 */ 2403 static void sym_save_initial_setting (hcb_p np); 2404 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2405 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2406 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2407 static void sym_chip_reset (hcb_p np); 2408 static void sym_soft_reset (hcb_p np); 2409 static void sym_start_reset (hcb_p np); 2410 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2411 static int sym_wakeup_done (hcb_p np); 2412 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2413 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2414 static void sym_init (hcb_p np, int reason); 2415 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2416 u_char *fakp); 2417 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2418 u_char div, u_char fak); 2419 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2420 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2421 u_char per, u_char wide, u_char div, u_char fak); 2422 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2423 u_char per, u_char wide, u_char div, u_char fak); 2424 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2425 static void sym_intr (void *arg); 2426 static void sym_poll (struct cam_sim *sim); 2427 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2428 static void sym_int_sto (hcb_p np); 2429 static void sym_int_udc (hcb_p np); 2430 static void sym_int_sbmc (hcb_p np); 2431 static void sym_int_par (hcb_p np, u_short sist); 2432 static void sym_int_ma (hcb_p np); 2433 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2434 int task); 2435 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2436 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2437 static void sym_sir_task_recovery (hcb_p np, int num); 2438 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2439 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2440 static int sym_compute_residual (hcb_p np, ccb_p cp); 2441 static int sym_show_msg (u_char * msg); 2442 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2443 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2444 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2445 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2446 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2447 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2448 static void sym_int_sir (hcb_p np); 2449 static void sym_free_ccb (hcb_p np, ccb_p cp); 2450 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2451 static ccb_p sym_alloc_ccb (hcb_p np); 2452 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2453 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2454 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2455 static int sym_snooptest (hcb_p np); 2456 static void sym_selectclock(hcb_p np, u_char scntl3); 2457 static void sym_getclock (hcb_p np, int mult); 2458 static int sym_getpciclock (hcb_p np); 2459 static void sym_complete_ok (hcb_p np, ccb_p cp); 2460 static void sym_complete_error (hcb_p np, ccb_p cp); 2461 static void sym_timeout (void *arg); 2462 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2463 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2464 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2465 static void sym_action1 (struct cam_sim *sim, union ccb *ccb); 2466 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2467 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2468 ccb_p cp); 2469 #ifdef FreeBSD_Bus_Dma_Abstraction 2470 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2471 bus_dma_segment_t *psegs, int nsegs); 2472 #else 2473 static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr, 2474 vm_size_t len); 2475 static int sym_scatter_sg_virtual (hcb_p np, ccb_p cp, 2476 bus_dma_segment_t *psegs, int nsegs); 2477 static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr, 2478 vm_size_t len); 2479 #endif 2480 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2481 bus_dma_segment_t *psegs, int nsegs); 2482 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2483 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2484 struct ccb_trans_settings *cts); 2485 static void sym_update_dflags(hcb_p np, u_char *flags, 2486 struct ccb_trans_settings *cts); 2487 2488 #ifdef FreeBSD_Bus_Io_Abstraction 2489 static struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2490 static int sym_pci_probe (device_t dev); 2491 static int sym_pci_attach (device_t dev); 2492 #else 2493 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag); 2494 static const char *sym_pci_probe (pcici_t tag, pcidi_t type); 2495 static void sym_pci_attach (pcici_t tag, int unit); 2496 static int sym_pci_attach2 (pcici_t tag, int unit); 2497 #endif 2498 2499 static void sym_pci_free (hcb_p np); 2500 static int sym_cam_attach (hcb_p np); 2501 static void sym_cam_free (hcb_p np); 2502 2503 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2504 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2505 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2506 2507 /* 2508 * Print something which allows to retrieve the controler type, 2509 * unit, target, lun concerned by a kernel message. 2510 */ 2511 static void PRINT_TARGET (hcb_p np, int target) 2512 { 2513 printf ("%s:%d:", sym_name(np), target); 2514 } 2515 2516 static void PRINT_LUN(hcb_p np, int target, int lun) 2517 { 2518 printf ("%s:%d:%d:", sym_name(np), target, lun); 2519 } 2520 2521 static void PRINT_ADDR (ccb_p cp) 2522 { 2523 if (cp && cp->cam_ccb) 2524 xpt_print_path(cp->cam_ccb->ccb_h.path); 2525 } 2526 2527 /* 2528 * Take into account this ccb in the freeze count. 2529 */ 2530 static void sym_freeze_cam_ccb(union ccb *ccb) 2531 { 2532 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2533 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2534 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2535 xpt_freeze_devq(ccb->ccb_h.path, 1); 2536 } 2537 } 2538 } 2539 2540 /* 2541 * Set the status field of a CAM CCB. 2542 */ 2543 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2544 { 2545 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2546 ccb->ccb_h.status |= status; 2547 } 2548 2549 /* 2550 * Get the status field of a CAM CCB. 2551 */ 2552 static __inline int sym_get_cam_status(union ccb *ccb) 2553 { 2554 return ccb->ccb_h.status & CAM_STATUS_MASK; 2555 } 2556 2557 /* 2558 * Enqueue a CAM CCB. 2559 */ 2560 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) 2561 { 2562 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2563 ccb->ccb_h.status = CAM_REQ_INPROG; 2564 2565 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 2566 ccb->ccb_h.timeout*hz/1000); 2567 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2568 ccb->ccb_h.sym_hcb_ptr = np; 2569 2570 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2571 } 2572 2573 /* 2574 * Complete a pending CAM CCB. 2575 */ 2576 static void sym_xpt_done(hcb_p np, union ccb *ccb) 2577 { 2578 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2579 untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch); 2580 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2581 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2582 ccb->ccb_h.sym_hcb_ptr = 0; 2583 } 2584 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2585 sym_freeze_cam_ccb(ccb); 2586 xpt_done(ccb); 2587 } 2588 2589 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2590 { 2591 sym_set_cam_status(ccb, cam_status); 2592 sym_xpt_done(np, ccb); 2593 } 2594 2595 /* 2596 * SYMBIOS chip clock divisor table. 2597 * 2598 * Divisors are multiplied by 10,000,000 in order to make 2599 * calculations more simple. 2600 */ 2601 #define _5M 5000000 2602 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2603 2604 /* 2605 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2606 * 128 transfers. All chips support at least 16 transfers 2607 * bursts. The 825A, 875 and 895 chips support bursts of up 2608 * to 128 transfers and the 895A and 896 support bursts of up 2609 * to 64 transfers. All other chips support up to 16 2610 * transfers bursts. 2611 * 2612 * For PCI 32 bit data transfers each transfer is a DWORD. 2613 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2614 * 2615 * We use log base 2 (burst length) as internal code, with 2616 * value 0 meaning "burst disabled". 2617 */ 2618 2619 /* 2620 * Burst length from burst code. 2621 */ 2622 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2623 2624 /* 2625 * Burst code from io register bits. 2626 */ 2627 #define burst_code(dmode, ctest4, ctest5) \ 2628 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2629 2630 /* 2631 * Set initial io register bits from burst code. 2632 */ 2633 static __inline void sym_init_burst(hcb_p np, u_char bc) 2634 { 2635 np->rv_ctest4 &= ~0x80; 2636 np->rv_dmode &= ~(0x3 << 6); 2637 np->rv_ctest5 &= ~0x4; 2638 2639 if (!bc) { 2640 np->rv_ctest4 |= 0x80; 2641 } 2642 else { 2643 --bc; 2644 np->rv_dmode |= ((bc & 0x3) << 6); 2645 np->rv_ctest5 |= (bc & 0x4); 2646 } 2647 } 2648 2649 2650 /* 2651 * Print out the list of targets that have some flag disabled by user. 2652 */ 2653 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2654 { 2655 int cnt; 2656 int i; 2657 2658 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2659 if (i == np->myaddr) 2660 continue; 2661 if (np->target[i].usrflags & mask) { 2662 if (!cnt++) 2663 printf("%s: %s disabled for targets", 2664 sym_name(np), msg); 2665 printf(" %d", i); 2666 } 2667 } 2668 if (cnt) 2669 printf(".\n"); 2670 } 2671 2672 /* 2673 * Save initial settings of some IO registers. 2674 * Assumed to have been set by BIOS. 2675 * We cannot reset the chip prior to reading the 2676 * IO registers, since informations will be lost. 2677 * Since the SCRIPTS processor may be running, this 2678 * is not safe on paper, but it seems to work quite 2679 * well. :) 2680 */ 2681 static void sym_save_initial_setting (hcb_p np) 2682 { 2683 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2684 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2685 np->sv_dmode = INB(nc_dmode) & 0xce; 2686 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2687 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2688 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2689 np->sv_gpcntl = INB(nc_gpcntl); 2690 np->sv_stest1 = INB(nc_stest1); 2691 np->sv_stest2 = INB(nc_stest2) & 0x20; 2692 np->sv_stest4 = INB(nc_stest4); 2693 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2694 np->sv_scntl4 = INB(nc_scntl4); 2695 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2696 } 2697 else 2698 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2699 } 2700 2701 /* 2702 * Prepare io register values used by sym_init() according 2703 * to selected and supported features. 2704 */ 2705 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2706 { 2707 u_char burst_max; 2708 u32 period; 2709 int i; 2710 2711 /* 2712 * Wide ? 2713 */ 2714 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2715 2716 /* 2717 * Get the frequency of the chip's clock. 2718 */ 2719 if (np->features & FE_QUAD) 2720 np->multiplier = 4; 2721 else if (np->features & FE_DBLR) 2722 np->multiplier = 2; 2723 else 2724 np->multiplier = 1; 2725 2726 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2727 np->clock_khz *= np->multiplier; 2728 2729 if (np->clock_khz != 40000) 2730 sym_getclock(np, np->multiplier); 2731 2732 /* 2733 * Divisor to be used for async (timer pre-scaler). 2734 */ 2735 i = np->clock_divn - 1; 2736 while (--i >= 0) { 2737 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2738 ++i; 2739 break; 2740 } 2741 } 2742 np->rv_scntl3 = i+1; 2743 2744 /* 2745 * The C1010 uses hardwired divisors for async. 2746 * So, we just throw away, the async. divisor.:-) 2747 */ 2748 if (np->features & FE_C10) 2749 np->rv_scntl3 = 0; 2750 2751 /* 2752 * Minimum synchronous period factor supported by the chip. 2753 * Btw, 'period' is in tenths of nanoseconds. 2754 */ 2755 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2756 if (period <= 250) np->minsync = 10; 2757 else if (period <= 303) np->minsync = 11; 2758 else if (period <= 500) np->minsync = 12; 2759 else np->minsync = (period + 40 - 1) / 40; 2760 2761 /* 2762 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2763 */ 2764 if (np->minsync < 25 && 2765 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2766 np->minsync = 25; 2767 else if (np->minsync < 12 && 2768 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2769 np->minsync = 12; 2770 2771 /* 2772 * Maximum synchronous period factor supported by the chip. 2773 */ 2774 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2775 np->maxsync = period > 2540 ? 254 : period / 10; 2776 2777 /* 2778 * If chip is a C1010, guess the sync limits in DT mode. 2779 */ 2780 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2781 if (np->clock_khz == 160000) { 2782 np->minsync_dt = 9; 2783 np->maxsync_dt = 50; 2784 np->maxoffs_dt = 62; 2785 } 2786 } 2787 2788 /* 2789 * 64 bit addressing (895A/896/1010) ? 2790 */ 2791 if (np->features & FE_DAC) 2792 #if BITS_PER_LONG > 32 2793 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2794 #else 2795 np->rv_ccntl1 |= (DDAC); 2796 #endif 2797 2798 /* 2799 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2800 */ 2801 if (np->features & FE_NOPM) 2802 np->rv_ccntl0 |= (ENPMJ); 2803 2804 /* 2805 * C1010 Errata. 2806 * In dual channel mode, contention occurs if internal cycles 2807 * are used. Disable internal cycles. 2808 */ 2809 if (np->device_id == PCI_ID_LSI53C1010 && 2810 /* np->revision_id < 0xff */ 1) 2811 np->rv_ccntl0 |= DILS; 2812 2813 /* 2814 * Select burst length (dwords) 2815 */ 2816 burst_max = SYM_SETUP_BURST_ORDER; 2817 if (burst_max == 255) 2818 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2819 np->sv_ctest5); 2820 if (burst_max > 7) 2821 burst_max = 7; 2822 if (burst_max > np->maxburst) 2823 burst_max = np->maxburst; 2824 2825 /* 2826 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2827 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2828 * based transactions on LOAD/STORE instructions. So we have 2829 * to prevent these chips from using such PCI transactions in 2830 * this driver. The generic ncr driver that does not use 2831 * LOAD/STORE instructions does not need this work-around. 2832 */ 2833 if ((np->device_id == PCI_ID_SYM53C810 && 2834 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2835 (np->device_id == PCI_ID_SYM53C860 && 2836 np->revision_id <= 0x1)) 2837 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2838 2839 /* 2840 * Select all supported special features. 2841 * If we are using on-board RAM for scripts, prefetch (PFEN) 2842 * does not help, but burst op fetch (BOF) does. 2843 * Disabling PFEN makes sure BOF will be used. 2844 */ 2845 if (np->features & FE_ERL) 2846 np->rv_dmode |= ERL; /* Enable Read Line */ 2847 if (np->features & FE_BOF) 2848 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2849 if (np->features & FE_ERMP) 2850 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2851 #if 1 2852 if ((np->features & FE_PFEN) && !np->ram_ba) 2853 #else 2854 if (np->features & FE_PFEN) 2855 #endif 2856 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2857 if (np->features & FE_CLSE) 2858 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2859 if (np->features & FE_WRIE) 2860 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2861 if (np->features & FE_DFS) 2862 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2863 2864 /* 2865 * Select some other 2866 */ 2867 if (SYM_SETUP_PCI_PARITY) 2868 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2869 if (SYM_SETUP_SCSI_PARITY) 2870 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2871 2872 /* 2873 * Get parity checking, host ID and verbose mode from NVRAM 2874 */ 2875 np->myaddr = 255; 2876 sym_nvram_setup_host (np, nvram); 2877 2878 /* 2879 * Get SCSI addr of host adapter (set by bios?). 2880 */ 2881 if (np->myaddr == 255) { 2882 np->myaddr = INB(nc_scid) & 0x07; 2883 if (!np->myaddr) 2884 np->myaddr = SYM_SETUP_HOST_ID; 2885 } 2886 2887 /* 2888 * Prepare initial io register bits for burst length 2889 */ 2890 sym_init_burst(np, burst_max); 2891 2892 /* 2893 * Set SCSI BUS mode. 2894 * - LVD capable chips (895/895A/896/1010) report the 2895 * current BUS mode through the STEST4 IO register. 2896 * - For previous generation chips (825/825A/875), 2897 * user has to tell us how to check against HVD, 2898 * since a 100% safe algorithm is not possible. 2899 */ 2900 np->scsi_mode = SMODE_SE; 2901 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2902 np->scsi_mode = (np->sv_stest4 & SMODE); 2903 else if (np->features & FE_DIFF) { 2904 if (SYM_SETUP_SCSI_DIFF == 1) { 2905 if (np->sv_scntl3) { 2906 if (np->sv_stest2 & 0x20) 2907 np->scsi_mode = SMODE_HVD; 2908 } 2909 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2910 if (INB(nc_gpreg) & 0x08) 2911 np->scsi_mode = SMODE_HVD; 2912 } 2913 } 2914 else if (SYM_SETUP_SCSI_DIFF == 2) 2915 np->scsi_mode = SMODE_HVD; 2916 } 2917 if (np->scsi_mode == SMODE_HVD) 2918 np->rv_stest2 |= 0x20; 2919 2920 /* 2921 * Set LED support from SCRIPTS. 2922 * Ignore this feature for boards known to use a 2923 * specific GPIO wiring and for the 895A, 896 2924 * and 1010 that drive the LED directly. 2925 */ 2926 if ((SYM_SETUP_SCSI_LED || nvram->type == SYM_SYMBIOS_NVRAM) && 2927 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2928 np->features |= FE_LED0; 2929 2930 /* 2931 * Set irq mode. 2932 */ 2933 switch(SYM_SETUP_IRQ_MODE & 3) { 2934 case 2: 2935 np->rv_dcntl |= IRQM; 2936 break; 2937 case 1: 2938 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2939 break; 2940 default: 2941 break; 2942 } 2943 2944 /* 2945 * Configure targets according to driver setup. 2946 * If NVRAM present get targets setup from NVRAM. 2947 */ 2948 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2949 tcb_p tp = &np->target[i]; 2950 2951 tp->tinfo.user.period = np->minsync; 2952 tp->tinfo.user.offset = np->maxoffs; 2953 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2954 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2955 tp->usrtags = SYM_SETUP_MAX_TAG; 2956 2957 sym_nvram_setup_target (np, i, nvram); 2958 2959 /* 2960 * For now, guess PPR/DT support from the period 2961 * and BUS width. 2962 */ 2963 if (np->features & FE_ULTRA3) { 2964 if (tp->tinfo.user.period <= 9 && 2965 tp->tinfo.user.width == BUS_16_BIT) { 2966 tp->tinfo.user.options |= PPR_OPT_DT; 2967 tp->tinfo.user.offset = np->maxoffs_dt; 2968 } 2969 } 2970 2971 if (!tp->usrtags) 2972 tp->usrflags &= ~SYM_TAGS_ENABLED; 2973 } 2974 2975 /* 2976 * Let user know about the settings. 2977 */ 2978 i = nvram->type; 2979 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2980 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2981 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2982 np->myaddr, 2983 (np->features & FE_ULTRA3) ? 80 : 2984 (np->features & FE_ULTRA2) ? 40 : 2985 (np->features & FE_ULTRA) ? 20 : 10, 2986 sym_scsi_bus_mode(np->scsi_mode), 2987 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2988 /* 2989 * Tell him more on demand. 2990 */ 2991 if (sym_verbose) { 2992 printf("%s: %s IRQ line driver%s\n", 2993 sym_name(np), 2994 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2995 np->ram_ba ? ", using on-chip SRAM" : ""); 2996 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2997 if (np->features & FE_NOPM) 2998 printf("%s: handling phase mismatch from SCRIPTS.\n", 2999 sym_name(np)); 3000 } 3001 /* 3002 * And still more. 3003 */ 3004 if (sym_verbose > 1) { 3005 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3006 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3007 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 3008 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 3009 3010 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3011 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3012 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 3013 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 3014 } 3015 /* 3016 * Let user be aware of targets that have some disable flags set. 3017 */ 3018 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 3019 if (sym_verbose) 3020 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 3021 "SCAN FOR LUNS"); 3022 3023 return 0; 3024 } 3025 3026 /* 3027 * Prepare the next negotiation message if needed. 3028 * 3029 * Fill in the part of message buffer that contains the 3030 * negotiation and the nego_status field of the CCB. 3031 * Returns the size of the message in bytes. 3032 */ 3033 3034 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 3035 { 3036 tcb_p tp = &np->target[cp->target]; 3037 int msglen = 0; 3038 3039 /* 3040 * Early C1010 chips need a work-around for DT 3041 * data transfer to work. 3042 */ 3043 if (!(np->features & FE_U3EN)) 3044 tp->tinfo.goal.options = 0; 3045 /* 3046 * negotiate using PPR ? 3047 */ 3048 if (tp->tinfo.goal.options & PPR_OPT_MASK) 3049 nego = NS_PPR; 3050 /* 3051 * negotiate wide transfers ? 3052 */ 3053 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 3054 nego = NS_WIDE; 3055 /* 3056 * negotiate synchronous transfers? 3057 */ 3058 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 3059 tp->tinfo.current.offset != tp->tinfo.goal.offset) 3060 nego = NS_SYNC; 3061 3062 switch (nego) { 3063 case NS_SYNC: 3064 msgptr[msglen++] = M_EXTENDED; 3065 msgptr[msglen++] = 3; 3066 msgptr[msglen++] = M_X_SYNC_REQ; 3067 msgptr[msglen++] = tp->tinfo.goal.period; 3068 msgptr[msglen++] = tp->tinfo.goal.offset; 3069 break; 3070 case NS_WIDE: 3071 msgptr[msglen++] = M_EXTENDED; 3072 msgptr[msglen++] = 2; 3073 msgptr[msglen++] = M_X_WIDE_REQ; 3074 msgptr[msglen++] = tp->tinfo.goal.width; 3075 break; 3076 case NS_PPR: 3077 msgptr[msglen++] = M_EXTENDED; 3078 msgptr[msglen++] = 6; 3079 msgptr[msglen++] = M_X_PPR_REQ; 3080 msgptr[msglen++] = tp->tinfo.goal.period; 3081 msgptr[msglen++] = 0; 3082 msgptr[msglen++] = tp->tinfo.goal.offset; 3083 msgptr[msglen++] = tp->tinfo.goal.width; 3084 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 3085 break; 3086 }; 3087 3088 cp->nego_status = nego; 3089 3090 if (nego) { 3091 tp->nego_cp = cp; /* Keep track a nego will be performed */ 3092 if (DEBUG_FLAGS & DEBUG_NEGO) { 3093 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 3094 nego == NS_WIDE ? "wide msgout" : 3095 "ppr msgout", msgptr); 3096 }; 3097 }; 3098 3099 return msglen; 3100 } 3101 3102 /* 3103 * Insert a job into the start queue. 3104 */ 3105 static void sym_put_start_queue(hcb_p np, ccb_p cp) 3106 { 3107 u_short qidx; 3108 3109 #ifdef SYM_CONF_IARB_SUPPORT 3110 /* 3111 * If the previously queued CCB is not yet done, 3112 * set the IARB hint. The SCRIPTS will go with IARB 3113 * for this job when starting the previous one. 3114 * We leave devices a chance to win arbitration by 3115 * not using more than 'iarb_max' consecutive 3116 * immediate arbitrations. 3117 */ 3118 if (np->last_cp && np->iarb_count < np->iarb_max) { 3119 np->last_cp->host_flags |= HF_HINT_IARB; 3120 ++np->iarb_count; 3121 } 3122 else 3123 np->iarb_count = 0; 3124 np->last_cp = cp; 3125 #endif 3126 3127 /* 3128 * Insert first the idle task and then our job. 3129 * The MB should ensure proper ordering. 3130 */ 3131 qidx = np->squeueput + 2; 3132 if (qidx >= MAX_QUEUE*2) qidx = 0; 3133 3134 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 3135 MEMORY_BARRIER(); 3136 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 3137 3138 np->squeueput = qidx; 3139 3140 if (DEBUG_FLAGS & DEBUG_QUEUE) 3141 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 3142 3143 /* 3144 * Script processor may be waiting for reselect. 3145 * Wake it up. 3146 */ 3147 MEMORY_BARRIER(); 3148 OUTB (nc_istat, SIGP|np->istat_sem); 3149 } 3150 3151 3152 /* 3153 * Soft reset the chip. 3154 * 3155 * Raising SRST when the chip is running may cause 3156 * problems on dual function chips (see below). 3157 * On the other hand, LVD devices need some delay 3158 * to settle and report actual BUS mode in STEST4. 3159 */ 3160 static void sym_chip_reset (hcb_p np) 3161 { 3162 OUTB (nc_istat, SRST); 3163 UDELAY (10); 3164 OUTB (nc_istat, 0); 3165 UDELAY(2000); /* For BUS MODE to settle */ 3166 } 3167 3168 /* 3169 * Soft reset the chip. 3170 * 3171 * Some 896 and 876 chip revisions may hang-up if we set 3172 * the SRST (soft reset) bit at the wrong time when SCRIPTS 3173 * are running. 3174 * So, we need to abort the current operation prior to 3175 * soft resetting the chip. 3176 */ 3177 static void sym_soft_reset (hcb_p np) 3178 { 3179 u_char istat; 3180 int i; 3181 3182 OUTB (nc_istat, CABRT); 3183 for (i = 1000000 ; i ; --i) { 3184 istat = INB (nc_istat); 3185 if (istat & SIP) { 3186 INW (nc_sist); 3187 continue; 3188 } 3189 if (istat & DIP) { 3190 OUTB (nc_istat, 0); 3191 INB (nc_dstat); 3192 break; 3193 } 3194 } 3195 if (!i) 3196 printf("%s: unable to abort current chip operation.\n", 3197 sym_name(np)); 3198 sym_chip_reset (np); 3199 } 3200 3201 /* 3202 * Start reset process. 3203 * 3204 * The interrupt handler will reinitialize the chip. 3205 */ 3206 static void sym_start_reset(hcb_p np) 3207 { 3208 (void) sym_reset_scsi_bus(np, 1); 3209 } 3210 3211 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3212 { 3213 u32 term; 3214 int retv = 0; 3215 3216 sym_soft_reset(np); /* Soft reset the chip */ 3217 if (enab_int) 3218 OUTW (nc_sien, RST); 3219 /* 3220 * Enable Tolerant, reset IRQD if present and 3221 * properly set IRQ mode, prior to resetting the bus. 3222 */ 3223 OUTB (nc_stest3, TE); 3224 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3225 OUTB (nc_scntl1, CRST); 3226 UDELAY (200); 3227 3228 if (!SYM_SETUP_SCSI_BUS_CHECK) 3229 goto out; 3230 /* 3231 * Check for no terminators or SCSI bus shorts to ground. 3232 * Read SCSI data bus, data parity bits and control signals. 3233 * We are expecting RESET to be TRUE and other signals to be 3234 * FALSE. 3235 */ 3236 term = INB(nc_sstat0); 3237 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3238 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3239 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3240 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3241 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3242 3243 if (!(np->features & FE_WIDE)) 3244 term &= 0x3ffff; 3245 3246 if (term != (2<<7)) { 3247 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3248 sym_name(np)); 3249 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3250 "0x%lx, expecting 0x%lx\n", 3251 sym_name(np), 3252 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3253 (u_long)term, (u_long)(2<<7)); 3254 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3255 retv = 1; 3256 } 3257 out: 3258 OUTB (nc_scntl1, 0); 3259 /* MDELAY(100); */ 3260 return retv; 3261 } 3262 3263 /* 3264 * The chip may have completed jobs. Look at the DONE QUEUE. 3265 * 3266 * On architectures that may reorder LOAD/STORE operations, 3267 * a memory barrier may be needed after the reading of the 3268 * so-called `flag' and prior to dealing with the data. 3269 */ 3270 static int sym_wakeup_done (hcb_p np) 3271 { 3272 ccb_p cp; 3273 int i, n; 3274 u32 dsa; 3275 3276 n = 0; 3277 i = np->dqueueget; 3278 while (1) { 3279 dsa = scr_to_cpu(np->dqueue[i]); 3280 if (!dsa) 3281 break; 3282 np->dqueue[i] = 0; 3283 if ((i = i+2) >= MAX_QUEUE*2) 3284 i = 0; 3285 3286 cp = sym_ccb_from_dsa(np, dsa); 3287 if (cp) { 3288 MEMORY_BARRIER(); 3289 sym_complete_ok (np, cp); 3290 ++n; 3291 } 3292 else 3293 printf ("%s: bad DSA (%x) in done queue.\n", 3294 sym_name(np), (u_int) dsa); 3295 } 3296 np->dqueueget = i; 3297 3298 return n; 3299 } 3300 3301 /* 3302 * Complete all active CCBs with error. 3303 * Used on CHIP/SCSI RESET. 3304 */ 3305 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3306 { 3307 /* 3308 * Move all active CCBs to the COMP queue 3309 * and flush this queue. 3310 */ 3311 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3312 sym_que_init(&np->busy_ccbq); 3313 sym_flush_comp_queue(np, cam_status); 3314 } 3315 3316 /* 3317 * Start chip. 3318 * 3319 * 'reason' means: 3320 * 0: initialisation. 3321 * 1: SCSI BUS RESET delivered or received. 3322 * 2: SCSI BUS MODE changed. 3323 */ 3324 static void sym_init (hcb_p np, int reason) 3325 { 3326 int i; 3327 u32 phys; 3328 3329 /* 3330 * Reset chip if asked, otherwise just clear fifos. 3331 */ 3332 if (reason == 1) 3333 sym_soft_reset(np); 3334 else { 3335 OUTB (nc_stest3, TE|CSF); 3336 OUTONB (nc_ctest3, CLF); 3337 } 3338 3339 /* 3340 * Clear Start Queue 3341 */ 3342 phys = np->squeue_ba; 3343 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3344 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3345 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3346 } 3347 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3348 3349 /* 3350 * Start at first entry. 3351 */ 3352 np->squeueput = 0; 3353 3354 /* 3355 * Clear Done Queue 3356 */ 3357 phys = np->dqueue_ba; 3358 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3359 np->dqueue[i] = 0; 3360 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3361 } 3362 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3363 3364 /* 3365 * Start at first entry. 3366 */ 3367 np->dqueueget = 0; 3368 3369 /* 3370 * Install patches in scripts. 3371 * This also let point to first position the start 3372 * and done queue pointers used from SCRIPTS. 3373 */ 3374 np->fw_patch(np); 3375 3376 /* 3377 * Wakeup all pending jobs. 3378 */ 3379 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3380 3381 /* 3382 * Init chip. 3383 */ 3384 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3385 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3386 3387 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3388 /* full arb., ena parity, par->ATN */ 3389 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3390 3391 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3392 3393 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3394 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3395 OUTB (nc_istat , SIGP ); /* Signal Process */ 3396 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3397 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3398 3399 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3400 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3401 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3402 3403 /* Extended Sreq/Sack filtering not supported on the C10 */ 3404 if (np->features & FE_C10) 3405 OUTB (nc_stest2, np->rv_stest2); 3406 else 3407 OUTB (nc_stest2, EXT|np->rv_stest2); 3408 3409 OUTB (nc_stest3, TE); /* TolerANT enable */ 3410 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3411 3412 /* 3413 * For now, disable AIP generation on C1010-66. 3414 */ 3415 if (np->device_id == PCI_ID_LSI53C1010_2) 3416 OUTB (nc_aipcntl1, DISAIP); 3417 3418 /* 3419 * C10101 Errata. 3420 * Errant SGE's when in narrow. Write bits 4 & 5 of 3421 * STEST1 register to disable SGE. We probably should do 3422 * that from SCRIPTS for each selection/reselection, but 3423 * I just don't want. :) 3424 */ 3425 if (np->device_id == PCI_ID_LSI53C1010 && 3426 /* np->revision_id < 0xff */ 1) 3427 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3428 3429 /* 3430 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3431 * Disable overlapped arbitration for some dual function devices, 3432 * regardless revision id (kind of post-chip-design feature. ;-)) 3433 */ 3434 if (np->device_id == PCI_ID_SYM53C875) 3435 OUTB (nc_ctest0, (1<<5)); 3436 else if (np->device_id == PCI_ID_SYM53C896) 3437 np->rv_ccntl0 |= DPR; 3438 3439 /* 3440 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3441 * and/or hardware phase mismatch, since only such chips 3442 * seem to support those IO registers. 3443 */ 3444 if (np->features & (FE_DAC|FE_NOPM)) { 3445 OUTB (nc_ccntl0, np->rv_ccntl0); 3446 OUTB (nc_ccntl1, np->rv_ccntl1); 3447 } 3448 3449 /* 3450 * If phase mismatch handled by scripts (895A/896/1010), 3451 * set PM jump addresses. 3452 */ 3453 if (np->features & FE_NOPM) { 3454 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3455 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3456 } 3457 3458 /* 3459 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3460 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3461 */ 3462 if (np->features & FE_LED0) 3463 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3464 else if (np->features & FE_LEDC) 3465 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3466 3467 /* 3468 * enable ints 3469 */ 3470 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3471 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3472 3473 /* 3474 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3475 * Try to eat the spurious SBMC interrupt that may occur when 3476 * we reset the chip but not the SCSI BUS (at initialization). 3477 */ 3478 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3479 OUTONW (nc_sien, SBMC); 3480 if (reason == 0) { 3481 MDELAY(100); 3482 INW (nc_sist); 3483 } 3484 np->scsi_mode = INB (nc_stest4) & SMODE; 3485 } 3486 3487 /* 3488 * Fill in target structure. 3489 * Reinitialize usrsync. 3490 * Reinitialize usrwide. 3491 * Prepare sync negotiation according to actual SCSI bus mode. 3492 */ 3493 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3494 tcb_p tp = &np->target[i]; 3495 3496 tp->to_reset = 0; 3497 tp->head.sval = 0; 3498 tp->head.wval = np->rv_scntl3; 3499 tp->head.uval = 0; 3500 3501 tp->tinfo.current.period = 0; 3502 tp->tinfo.current.offset = 0; 3503 tp->tinfo.current.width = BUS_8_BIT; 3504 tp->tinfo.current.options = 0; 3505 } 3506 3507 /* 3508 * Download SCSI SCRIPTS to on-chip RAM if present, 3509 * and start script processor. 3510 */ 3511 if (np->ram_ba) { 3512 if (sym_verbose > 1) 3513 printf ("%s: Downloading SCSI SCRIPTS.\n", 3514 sym_name(np)); 3515 if (np->ram_ws == 8192) { 3516 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3517 OUTL (nc_mmws, np->scr_ram_seg); 3518 OUTL (nc_mmrs, np->scr_ram_seg); 3519 OUTL (nc_sfs, np->scr_ram_seg); 3520 phys = SCRIPTB_BA (np, start64); 3521 } 3522 else 3523 phys = SCRIPTA_BA (np, init); 3524 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3525 } 3526 else 3527 phys = SCRIPTA_BA (np, init); 3528 3529 np->istat_sem = 0; 3530 3531 OUTL (nc_dsa, np->hcb_ba); 3532 OUTL_DSP (phys); 3533 3534 /* 3535 * Notify the XPT about the RESET condition. 3536 */ 3537 if (reason != 0) 3538 xpt_async(AC_BUS_RESET, np->path, NULL); 3539 } 3540 3541 /* 3542 * Get clock factor and sync divisor for a given 3543 * synchronous factor period. 3544 */ 3545 static int 3546 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3547 { 3548 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3549 int div = np->clock_divn; /* Number of divisors supported */ 3550 u32 fak; /* Sync factor in sxfer */ 3551 u32 per; /* Period in tenths of ns */ 3552 u32 kpc; /* (per * clk) */ 3553 int ret; 3554 3555 /* 3556 * Compute the synchronous period in tenths of nano-seconds 3557 */ 3558 if (dt && sfac <= 9) per = 125; 3559 else if (sfac <= 10) per = 250; 3560 else if (sfac == 11) per = 303; 3561 else if (sfac == 12) per = 500; 3562 else per = 40 * sfac; 3563 ret = per; 3564 3565 kpc = per * clk; 3566 if (dt) 3567 kpc <<= 1; 3568 3569 /* 3570 * For earliest C10 revision 0, we cannot use extra 3571 * clocks for the setting of the SCSI clocking. 3572 * Note that this limits the lowest sync data transfer 3573 * to 5 Mega-transfers per second and may result in 3574 * using higher clock divisors. 3575 */ 3576 #if 1 3577 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3578 /* 3579 * Look for the lowest clock divisor that allows an 3580 * output speed not faster than the period. 3581 */ 3582 while (div > 0) { 3583 --div; 3584 if (kpc > (div_10M[div] << 2)) { 3585 ++div; 3586 break; 3587 } 3588 } 3589 fak = 0; /* No extra clocks */ 3590 if (div == np->clock_divn) { /* Are we too fast ? */ 3591 ret = -1; 3592 } 3593 *divp = div; 3594 *fakp = fak; 3595 return ret; 3596 } 3597 #endif 3598 3599 /* 3600 * Look for the greatest clock divisor that allows an 3601 * input speed faster than the period. 3602 */ 3603 while (div-- > 0) 3604 if (kpc >= (div_10M[div] << 2)) break; 3605 3606 /* 3607 * Calculate the lowest clock factor that allows an output 3608 * speed not faster than the period, and the max output speed. 3609 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3610 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3611 */ 3612 if (dt) { 3613 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3614 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3615 } 3616 else { 3617 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3618 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3619 } 3620 3621 /* 3622 * Check against our hardware limits, or bugs :). 3623 */ 3624 if (fak < 0) {fak = 0; ret = -1;} 3625 if (fak > 2) {fak = 2; ret = -1;} 3626 3627 /* 3628 * Compute and return sync parameters. 3629 */ 3630 *divp = div; 3631 *fakp = fak; 3632 3633 return ret; 3634 } 3635 3636 /* 3637 * We received a WDTR. 3638 * Let everything be aware of the changes. 3639 */ 3640 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3641 { 3642 struct ccb_trans_settings neg; 3643 union ccb *ccb = cp->cam_ccb; 3644 tcb_p tp = &np->target[cp->target]; 3645 3646 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3647 3648 /* 3649 * Tell the SCSI layer about the new transfer parameters. 3650 */ 3651 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3652 tp->tinfo.current.offset = 0; 3653 tp->tinfo.current.period = 0; 3654 tp->tinfo.current.options = 0; 3655 neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT; 3656 neg.sync_period = tp->tinfo.current.period; 3657 neg.sync_offset = tp->tinfo.current.offset; 3658 neg.valid = CCB_TRANS_BUS_WIDTH_VALID 3659 | CCB_TRANS_SYNC_RATE_VALID 3660 | CCB_TRANS_SYNC_OFFSET_VALID; 3661 xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1); 3662 xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg); 3663 } 3664 3665 /* 3666 * We received a SDTR. 3667 * Let everything be aware of the changes. 3668 */ 3669 static void 3670 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3671 { 3672 struct ccb_trans_settings neg; 3673 union ccb *ccb = cp->cam_ccb; 3674 tcb_p tp = &np->target[cp->target]; 3675 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3676 3677 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3678 3679 /* 3680 * Tell the SCSI layer about the new transfer parameters. 3681 */ 3682 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3683 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3684 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3685 neg.sync_period = tp->tinfo.current.period; 3686 neg.sync_offset = tp->tinfo.current.offset; 3687 neg.valid = CCB_TRANS_SYNC_RATE_VALID 3688 | CCB_TRANS_SYNC_OFFSET_VALID; 3689 xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1); 3690 xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg); 3691 } 3692 3693 /* 3694 * We received a PPR. 3695 * Let everything be aware of the changes. 3696 */ 3697 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3698 u_char per, u_char wide, u_char div, u_char fak) 3699 { 3700 struct ccb_trans_settings neg; 3701 union ccb *ccb = cp->cam_ccb; 3702 tcb_p tp = &np->target[cp->target]; 3703 3704 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3705 3706 /* 3707 * Tell the SCSI layer about the new transfer parameters. 3708 */ 3709 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3710 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3711 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3712 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3713 neg.sync_period = tp->tinfo.current.period; 3714 neg.sync_offset = tp->tinfo.current.offset; 3715 neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT; 3716 neg.valid = CCB_TRANS_BUS_WIDTH_VALID 3717 | CCB_TRANS_SYNC_RATE_VALID 3718 | CCB_TRANS_SYNC_OFFSET_VALID; 3719 xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1); 3720 xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg); 3721 } 3722 3723 /* 3724 * Switch trans mode for current job and it's target. 3725 */ 3726 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3727 u_char per, u_char wide, u_char div, u_char fak) 3728 { 3729 SYM_QUEHEAD *qp; 3730 union ccb *ccb; 3731 tcb_p tp; 3732 u_char target = INB (nc_sdid) & 0x0f; 3733 u_char sval, wval, uval; 3734 3735 assert (cp); 3736 if (!cp) return; 3737 ccb = cp->cam_ccb; 3738 assert (ccb); 3739 if (!ccb) return; 3740 assert (target == (cp->target & 0xf)); 3741 tp = &np->target[target]; 3742 3743 sval = tp->head.sval; 3744 wval = tp->head.wval; 3745 uval = tp->head.uval; 3746 3747 #if 0 3748 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3749 sval, wval, uval, np->rv_scntl3); 3750 #endif 3751 /* 3752 * Set the offset. 3753 */ 3754 if (!(np->features & FE_C10)) 3755 sval = (sval & ~0x1f) | ofs; 3756 else 3757 sval = (sval & ~0x3f) | ofs; 3758 3759 /* 3760 * Set the sync divisor and extra clock factor. 3761 */ 3762 if (ofs != 0) { 3763 wval = (wval & ~0x70) | ((div+1) << 4); 3764 if (!(np->features & FE_C10)) 3765 sval = (sval & ~0xe0) | (fak << 5); 3766 else { 3767 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3768 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3769 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3770 } 3771 } 3772 3773 /* 3774 * Set the bus width. 3775 */ 3776 wval = wval & ~EWS; 3777 if (wide != 0) 3778 wval |= EWS; 3779 3780 /* 3781 * Set misc. ultra enable bits. 3782 */ 3783 if (np->features & FE_C10) { 3784 uval = uval & ~(U3EN|AIPCKEN); 3785 if (dt) { 3786 assert(np->features & FE_U3EN); 3787 uval |= U3EN; 3788 } 3789 } 3790 else { 3791 wval = wval & ~ULTRA; 3792 if (per <= 12) wval |= ULTRA; 3793 } 3794 3795 /* 3796 * Stop there if sync parameters are unchanged. 3797 */ 3798 if (tp->head.sval == sval && 3799 tp->head.wval == wval && 3800 tp->head.uval == uval) 3801 return; 3802 tp->head.sval = sval; 3803 tp->head.wval = wval; 3804 tp->head.uval = uval; 3805 3806 /* 3807 * Disable extended Sreq/Sack filtering if per < 50. 3808 * Not supported on the C1010. 3809 */ 3810 if (per < 50 && !(np->features & FE_C10)) 3811 OUTOFFB (nc_stest2, EXT); 3812 3813 /* 3814 * set actual value and sync_status 3815 */ 3816 OUTB (nc_sxfer, tp->head.sval); 3817 OUTB (nc_scntl3, tp->head.wval); 3818 3819 if (np->features & FE_C10) { 3820 OUTB (nc_scntl4, tp->head.uval); 3821 } 3822 3823 /* 3824 * patch ALL busy ccbs of this target. 3825 */ 3826 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3827 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3828 if (cp->target != target) 3829 continue; 3830 cp->phys.select.sel_scntl3 = tp->head.wval; 3831 cp->phys.select.sel_sxfer = tp->head.sval; 3832 if (np->features & FE_C10) { 3833 cp->phys.select.sel_scntl4 = tp->head.uval; 3834 } 3835 } 3836 } 3837 3838 /* 3839 * log message for real hard errors 3840 * 3841 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3842 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3843 * 3844 * exception register: 3845 * ds: dstat 3846 * si: sist 3847 * 3848 * SCSI bus lines: 3849 * so: control lines as driven by chip. 3850 * si: control lines as seen by chip. 3851 * sd: scsi data lines as seen by chip. 3852 * 3853 * wide/fastmode: 3854 * sxfer: (see the manual) 3855 * scntl3: (see the manual) 3856 * 3857 * current script command: 3858 * dsp: script adress (relative to start of script). 3859 * dbc: first word of script command. 3860 * 3861 * First 24 register of the chip: 3862 * r0..rf 3863 */ 3864 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3865 { 3866 u32 dsp; 3867 int script_ofs; 3868 int script_size; 3869 char *script_name; 3870 u_char *script_base; 3871 int i; 3872 3873 dsp = INL (nc_dsp); 3874 3875 if (dsp > np->scripta_ba && 3876 dsp <= np->scripta_ba + np->scripta_sz) { 3877 script_ofs = dsp - np->scripta_ba; 3878 script_size = np->scripta_sz; 3879 script_base = (u_char *) np->scripta0; 3880 script_name = "scripta"; 3881 } 3882 else if (np->scriptb_ba < dsp && 3883 dsp <= np->scriptb_ba + np->scriptb_sz) { 3884 script_ofs = dsp - np->scriptb_ba; 3885 script_size = np->scriptb_sz; 3886 script_base = (u_char *) np->scriptb0; 3887 script_name = "scriptb"; 3888 } else { 3889 script_ofs = dsp; 3890 script_size = 0; 3891 script_base = 0; 3892 script_name = "mem"; 3893 } 3894 3895 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3896 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3897 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3898 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3899 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3900 (unsigned)INL (nc_dbc)); 3901 3902 if (((script_ofs & 3) == 0) && 3903 (unsigned)script_ofs < script_size) { 3904 printf ("%s: script cmd = %08x\n", sym_name(np), 3905 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3906 } 3907 3908 printf ("%s: regdump:", sym_name(np)); 3909 for (i=0; i<24;i++) 3910 printf (" %02x", (unsigned)INB_OFF(i)); 3911 printf (".\n"); 3912 3913 /* 3914 * PCI BUS error, read the PCI ststus register. 3915 */ 3916 if (dstat & (MDPE|BF)) { 3917 u_short pci_sts; 3918 #ifdef FreeBSD_Bus_Io_Abstraction 3919 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3920 #else 3921 pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2); 3922 #endif 3923 if (pci_sts & 0xf900) { 3924 #ifdef FreeBSD_Bus_Io_Abstraction 3925 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3926 #else 3927 pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2); 3928 #endif 3929 printf("%s: PCI STATUS = 0x%04x\n", 3930 sym_name(np), pci_sts & 0xf900); 3931 } 3932 } 3933 } 3934 3935 /* 3936 * chip interrupt handler 3937 * 3938 * In normal situations, interrupt conditions occur one at 3939 * a time. But when something bad happens on the SCSI BUS, 3940 * the chip may raise several interrupt flags before 3941 * stopping and interrupting the CPU. The additionnal 3942 * interrupt flags are stacked in some extra registers 3943 * after the SIP and/or DIP flag has been raised in the 3944 * ISTAT. After the CPU has read the interrupt condition 3945 * flag from SIST or DSTAT, the chip unstacks the other 3946 * interrupt flags and sets the corresponding bits in 3947 * SIST or DSTAT. Since the chip starts stacking once the 3948 * SIP or DIP flag is set, there is a small window of time 3949 * where the stacking does not occur. 3950 * 3951 * Typically, multiple interrupt conditions may happen in 3952 * the following situations: 3953 * 3954 * - SCSI parity error + Phase mismatch (PAR|MA) 3955 * When an parity error is detected in input phase 3956 * and the device switches to msg-in phase inside a 3957 * block MOV. 3958 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3959 * When a stupid device does not want to handle the 3960 * recovery of an SCSI parity error. 3961 * - Some combinations of STO, PAR, UDC, ... 3962 * When using non compliant SCSI stuff, when user is 3963 * doing non compliant hot tampering on the BUS, when 3964 * something really bad happens to a device, etc ... 3965 * 3966 * The heuristic suggested by SYMBIOS to handle 3967 * multiple interrupts is to try unstacking all 3968 * interrupts conditions and to handle them on some 3969 * priority based on error severity. 3970 * This will work when the unstacking has been 3971 * successful, but we cannot be 100 % sure of that, 3972 * since the CPU may have been faster to unstack than 3973 * the chip is able to stack. Hmmm ... But it seems that 3974 * such a situation is very unlikely to happen. 3975 * 3976 * If this happen, for example STO caught by the CPU 3977 * then UDC happenning before the CPU have restarted 3978 * the SCRIPTS, the driver may wrongly complete the 3979 * same command on UDC, since the SCRIPTS didn't restart 3980 * and the DSA still points to the same command. 3981 * We avoid this situation by setting the DSA to an 3982 * invalid value when the CCB is completed and before 3983 * restarting the SCRIPTS. 3984 * 3985 * Another issue is that we need some section of our 3986 * recovery procedures to be somehow uninterruptible but 3987 * the SCRIPTS processor does not provides such a 3988 * feature. For this reason, we handle recovery preferently 3989 * from the C code and check against some SCRIPTS critical 3990 * sections from the C code. 3991 * 3992 * Hopefully, the interrupt handling of the driver is now 3993 * able to resist to weird BUS error conditions, but donnot 3994 * ask me for any guarantee that it will never fail. :-) 3995 * Use at your own decision and risk. 3996 */ 3997 3998 static void sym_intr1 (hcb_p np) 3999 { 4000 u_char istat, istatc; 4001 u_char dstat; 4002 u_short sist; 4003 4004 /* 4005 * interrupt on the fly ? 4006 * 4007 * A `dummy read' is needed to ensure that the 4008 * clear of the INTF flag reaches the device 4009 * before the scanning of the DONE queue. 4010 */ 4011 istat = INB (nc_istat); 4012 if (istat & INTF) { 4013 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 4014 istat = INB (nc_istat); /* DUMMY READ */ 4015 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 4016 (void)sym_wakeup_done (np); 4017 }; 4018 4019 if (!(istat & (SIP|DIP))) 4020 return; 4021 4022 #if 0 /* We should never get this one */ 4023 if (istat & CABRT) 4024 OUTB (nc_istat, CABRT); 4025 #endif 4026 4027 /* 4028 * PAR and MA interrupts may occur at the same time, 4029 * and we need to know of both in order to handle 4030 * this situation properly. We try to unstack SCSI 4031 * interrupts for that reason. BTW, I dislike a LOT 4032 * such a loop inside the interrupt routine. 4033 * Even if DMA interrupt stacking is very unlikely to 4034 * happen, we also try unstacking these ones, since 4035 * this has no performance impact. 4036 */ 4037 sist = 0; 4038 dstat = 0; 4039 istatc = istat; 4040 do { 4041 if (istatc & SIP) 4042 sist |= INW (nc_sist); 4043 if (istatc & DIP) 4044 dstat |= INB (nc_dstat); 4045 istatc = INB (nc_istat); 4046 istat |= istatc; 4047 } while (istatc & (SIP|DIP)); 4048 4049 if (DEBUG_FLAGS & DEBUG_TINY) 4050 printf ("<%d|%x:%x|%x:%x>", 4051 (int)INB(nc_scr0), 4052 dstat,sist, 4053 (unsigned)INL(nc_dsp), 4054 (unsigned)INL(nc_dbc)); 4055 /* 4056 * On paper, a memory barrier may be needed here. 4057 * And since we are paranoid ... :) 4058 */ 4059 MEMORY_BARRIER(); 4060 4061 /* 4062 * First, interrupts we want to service cleanly. 4063 * 4064 * Phase mismatch (MA) is the most frequent interrupt 4065 * for chip earlier than the 896 and so we have to service 4066 * it as quickly as possible. 4067 * A SCSI parity error (PAR) may be combined with a phase 4068 * mismatch condition (MA). 4069 * Programmed interrupts (SIR) are used to call the C code 4070 * from SCRIPTS. 4071 * The single step interrupt (SSI) is not used in this 4072 * driver. 4073 */ 4074 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 4075 !(dstat & (MDPE|BF|ABRT|IID))) { 4076 if (sist & PAR) sym_int_par (np, sist); 4077 else if (sist & MA) sym_int_ma (np); 4078 else if (dstat & SIR) sym_int_sir (np); 4079 else if (dstat & SSI) OUTONB_STD (); 4080 else goto unknown_int; 4081 return; 4082 }; 4083 4084 /* 4085 * Now, interrupts that donnot happen in normal 4086 * situations and that we may need to recover from. 4087 * 4088 * On SCSI RESET (RST), we reset everything. 4089 * On SCSI BUS MODE CHANGE (SBMC), we complete all 4090 * active CCBs with RESET status, prepare all devices 4091 * for negotiating again and restart the SCRIPTS. 4092 * On STO and UDC, we complete the CCB with the corres- 4093 * ponding status and restart the SCRIPTS. 4094 */ 4095 if (sist & RST) { 4096 xpt_print_path(np->path); 4097 printf("SCSI BUS reset detected.\n"); 4098 sym_init (np, 1); 4099 return; 4100 }; 4101 4102 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4103 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4104 4105 if (!(sist & (GEN|HTH|SGE)) && 4106 !(dstat & (MDPE|BF|ABRT|IID))) { 4107 if (sist & SBMC) sym_int_sbmc (np); 4108 else if (sist & STO) sym_int_sto (np); 4109 else if (sist & UDC) sym_int_udc (np); 4110 else goto unknown_int; 4111 return; 4112 }; 4113 4114 /* 4115 * Now, interrupts we are not able to recover cleanly. 4116 * 4117 * Log message for hard errors. 4118 * Reset everything. 4119 */ 4120 4121 sym_log_hard_error(np, sist, dstat); 4122 4123 if ((sist & (GEN|HTH|SGE)) || 4124 (dstat & (MDPE|BF|ABRT|IID))) { 4125 sym_start_reset(np); 4126 return; 4127 }; 4128 4129 unknown_int: 4130 /* 4131 * We just miss the cause of the interrupt. :( 4132 * Print a message. The timeout will do the real work. 4133 */ 4134 printf( "%s: unknown interrupt(s) ignored, " 4135 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 4136 sym_name(np), istat, dstat, sist); 4137 } 4138 4139 static void sym_intr(void *arg) 4140 { 4141 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 4142 sym_intr1((hcb_p) arg); 4143 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 4144 return; 4145 } 4146 4147 static void sym_poll(struct cam_sim *sim) 4148 { 4149 int s = splcam(); 4150 sym_intr(cam_sim_softc(sim)); 4151 splx(s); 4152 } 4153 4154 4155 /* 4156 * generic recovery from scsi interrupt 4157 * 4158 * The doc says that when the chip gets an SCSI interrupt, 4159 * it tries to stop in an orderly fashion, by completing 4160 * an instruction fetch that had started or by flushing 4161 * the DMA fifo for a write to memory that was executing. 4162 * Such a fashion is not enough to know if the instruction 4163 * that was just before the current DSP value has been 4164 * executed or not. 4165 * 4166 * There are some small SCRIPTS sections that deal with 4167 * the start queue and the done queue that may break any 4168 * assomption from the C code if we are interrupted 4169 * inside, so we reset if this happens. Btw, since these 4170 * SCRIPTS sections are executed while the SCRIPTS hasn't 4171 * started SCSI operations, it is very unlikely to happen. 4172 * 4173 * All the driver data structures are supposed to be 4174 * allocated from the same 4 GB memory window, so there 4175 * is a 1 to 1 relationship between DSA and driver data 4176 * structures. Since we are careful :) to invalidate the 4177 * DSA when we complete a command or when the SCRIPTS 4178 * pushes a DSA into a queue, we can trust it when it 4179 * points to a CCB. 4180 */ 4181 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4182 { 4183 u32 dsp = INL (nc_dsp); 4184 u32 dsa = INL (nc_dsa); 4185 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4186 4187 /* 4188 * If we haven't been interrupted inside the SCRIPTS 4189 * critical pathes, we can safely restart the SCRIPTS 4190 * and trust the DSA value if it matches a CCB. 4191 */ 4192 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4193 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4194 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4195 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4196 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4197 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4198 (!(dsp > SCRIPTA_BA (np, done) && 4199 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4200 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4201 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4202 /* 4203 * If we have a CCB, let the SCRIPTS call us back for 4204 * the handling of the error with SCRATCHA filled with 4205 * STARTPOS. This way, we will be able to freeze the 4206 * device queue and requeue awaiting IOs. 4207 */ 4208 if (cp) { 4209 cp->host_status = hsts; 4210 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4211 } 4212 /* 4213 * Otherwise just restart the SCRIPTS. 4214 */ 4215 else { 4216 OUTL (nc_dsa, 0xffffff); 4217 OUTL_DSP (SCRIPTA_BA (np, start)); 4218 } 4219 } 4220 else 4221 goto reset_all; 4222 4223 return; 4224 4225 reset_all: 4226 sym_start_reset(np); 4227 } 4228 4229 /* 4230 * chip exception handler for selection timeout 4231 */ 4232 void sym_int_sto (hcb_p np) 4233 { 4234 u32 dsp = INL (nc_dsp); 4235 4236 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4237 4238 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4239 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4240 else 4241 sym_start_reset(np); 4242 } 4243 4244 /* 4245 * chip exception handler for unexpected disconnect 4246 */ 4247 void sym_int_udc (hcb_p np) 4248 { 4249 printf ("%s: unexpected disconnect\n", sym_name(np)); 4250 sym_recover_scsi_int(np, HS_UNEXPECTED); 4251 } 4252 4253 /* 4254 * chip exception handler for SCSI bus mode change 4255 * 4256 * spi2-r12 11.2.3 says a transceiver mode change must 4257 * generate a reset event and a device that detects a reset 4258 * event shall initiate a hard reset. It says also that a 4259 * device that detects a mode change shall set data transfer 4260 * mode to eight bit asynchronous, etc... 4261 * So, just reinitializing all except chip should be enough. 4262 */ 4263 static void sym_int_sbmc (hcb_p np) 4264 { 4265 u_char scsi_mode = INB (nc_stest4) & SMODE; 4266 4267 /* 4268 * Notify user. 4269 */ 4270 xpt_print_path(np->path); 4271 printf("SCSI BUS mode change from %s to %s.\n", 4272 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4273 4274 /* 4275 * Should suspend command processing for a few seconds and 4276 * reinitialize all except the chip. 4277 */ 4278 sym_init (np, 2); 4279 } 4280 4281 /* 4282 * chip exception handler for SCSI parity error. 4283 * 4284 * When the chip detects a SCSI parity error and is 4285 * currently executing a (CH)MOV instruction, it does 4286 * not interrupt immediately, but tries to finish the 4287 * transfer of the current scatter entry before 4288 * interrupting. The following situations may occur: 4289 * 4290 * - The complete scatter entry has been transferred 4291 * without the device having changed phase. 4292 * The chip will then interrupt with the DSP pointing 4293 * to the instruction that follows the MOV. 4294 * 4295 * - A phase mismatch occurs before the MOV finished 4296 * and phase errors are to be handled by the C code. 4297 * The chip will then interrupt with both PAR and MA 4298 * conditions set. 4299 * 4300 * - A phase mismatch occurs before the MOV finished and 4301 * phase errors are to be handled by SCRIPTS. 4302 * The chip will load the DSP with the phase mismatch 4303 * JUMP address and interrupt the host processor. 4304 */ 4305 static void sym_int_par (hcb_p np, u_short sist) 4306 { 4307 u_char hsts = INB (HS_PRT); 4308 u32 dsp = INL (nc_dsp); 4309 u32 dbc = INL (nc_dbc); 4310 u32 dsa = INL (nc_dsa); 4311 u_char sbcl = INB (nc_sbcl); 4312 u_char cmd = dbc >> 24; 4313 int phase = cmd & 7; 4314 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4315 4316 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4317 sym_name(np), hsts, dbc, sbcl); 4318 4319 /* 4320 * Check that the chip is connected to the SCSI BUS. 4321 */ 4322 if (!(INB (nc_scntl1) & ISCON)) { 4323 sym_recover_scsi_int(np, HS_UNEXPECTED); 4324 return; 4325 } 4326 4327 /* 4328 * If the nexus is not clearly identified, reset the bus. 4329 * We will try to do better later. 4330 */ 4331 if (!cp) 4332 goto reset_all; 4333 4334 /* 4335 * Check instruction was a MOV, direction was INPUT and 4336 * ATN is asserted. 4337 */ 4338 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4339 goto reset_all; 4340 4341 /* 4342 * Keep track of the parity error. 4343 */ 4344 OUTONB (HF_PRT, HF_EXT_ERR); 4345 cp->xerr_status |= XE_PARITY_ERR; 4346 4347 /* 4348 * Prepare the message to send to the device. 4349 */ 4350 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4351 4352 /* 4353 * If the old phase was DATA IN phase, we have to deal with 4354 * the 3 situations described above. 4355 * For other input phases (MSG IN and STATUS), the device 4356 * must resend the whole thing that failed parity checking 4357 * or signal error. So, jumping to dispatcher should be OK. 4358 */ 4359 if (phase == 1 || phase == 5) { 4360 /* Phase mismatch handled by SCRIPTS */ 4361 if (dsp == SCRIPTB_BA (np, pm_handle)) 4362 OUTL_DSP (dsp); 4363 /* Phase mismatch handled by the C code */ 4364 else if (sist & MA) 4365 sym_int_ma (np); 4366 /* No phase mismatch occurred */ 4367 else { 4368 OUTL (nc_temp, dsp); 4369 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4370 } 4371 } 4372 else 4373 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4374 return; 4375 4376 reset_all: 4377 sym_start_reset(np); 4378 return; 4379 } 4380 4381 /* 4382 * chip exception handler for phase errors. 4383 * 4384 * We have to construct a new transfer descriptor, 4385 * to transfer the rest of the current block. 4386 */ 4387 static void sym_int_ma (hcb_p np) 4388 { 4389 u32 dbc; 4390 u32 rest; 4391 u32 dsp; 4392 u32 dsa; 4393 u32 nxtdsp; 4394 u32 *vdsp; 4395 u32 oadr, olen; 4396 u32 *tblp; 4397 u32 newcmd; 4398 u_int delta; 4399 u_char cmd; 4400 u_char hflags, hflags0; 4401 struct sym_pmc *pm; 4402 ccb_p cp; 4403 4404 dsp = INL (nc_dsp); 4405 dbc = INL (nc_dbc); 4406 dsa = INL (nc_dsa); 4407 4408 cmd = dbc >> 24; 4409 rest = dbc & 0xffffff; 4410 delta = 0; 4411 4412 /* 4413 * locate matching cp if any. 4414 */ 4415 cp = sym_ccb_from_dsa(np, dsa); 4416 4417 /* 4418 * Donnot take into account dma fifo and various buffers in 4419 * INPUT phase since the chip flushes everything before 4420 * raising the MA interrupt for interrupted INPUT phases. 4421 * For DATA IN phase, we will check for the SWIDE later. 4422 */ 4423 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4424 u_char ss0, ss2; 4425 4426 if (np->features & FE_DFBC) 4427 delta = INW (nc_dfbc); 4428 else { 4429 u32 dfifo; 4430 4431 /* 4432 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4433 */ 4434 dfifo = INL(nc_dfifo); 4435 4436 /* 4437 * Calculate remaining bytes in DMA fifo. 4438 * (CTEST5 = dfifo >> 16) 4439 */ 4440 if (dfifo & (DFS << 16)) 4441 delta = ((((dfifo >> 8) & 0x300) | 4442 (dfifo & 0xff)) - rest) & 0x3ff; 4443 else 4444 delta = ((dfifo & 0xff) - rest) & 0x7f; 4445 } 4446 4447 /* 4448 * The data in the dma fifo has not been transfered to 4449 * the target -> add the amount to the rest 4450 * and clear the data. 4451 * Check the sstat2 register in case of wide transfer. 4452 */ 4453 rest += delta; 4454 ss0 = INB (nc_sstat0); 4455 if (ss0 & OLF) rest++; 4456 if (!(np->features & FE_C10)) 4457 if (ss0 & ORF) rest++; 4458 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4459 ss2 = INB (nc_sstat2); 4460 if (ss2 & OLF1) rest++; 4461 if (!(np->features & FE_C10)) 4462 if (ss2 & ORF1) rest++; 4463 }; 4464 4465 /* 4466 * Clear fifos. 4467 */ 4468 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4469 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4470 } 4471 4472 /* 4473 * log the information 4474 */ 4475 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4476 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4477 (unsigned) rest, (unsigned) delta); 4478 4479 /* 4480 * try to find the interrupted script command, 4481 * and the address at which to continue. 4482 */ 4483 vdsp = 0; 4484 nxtdsp = 0; 4485 if (dsp > np->scripta_ba && 4486 dsp <= np->scripta_ba + np->scripta_sz) { 4487 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4488 nxtdsp = dsp; 4489 } 4490 else if (dsp > np->scriptb_ba && 4491 dsp <= np->scriptb_ba + np->scriptb_sz) { 4492 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4493 nxtdsp = dsp; 4494 } 4495 4496 /* 4497 * log the information 4498 */ 4499 if (DEBUG_FLAGS & DEBUG_PHASE) { 4500 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4501 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4502 }; 4503 4504 if (!vdsp) { 4505 printf ("%s: interrupted SCRIPT address not found.\n", 4506 sym_name (np)); 4507 goto reset_all; 4508 } 4509 4510 if (!cp) { 4511 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4512 sym_name (np)); 4513 goto reset_all; 4514 } 4515 4516 /* 4517 * get old startaddress and old length. 4518 */ 4519 oadr = scr_to_cpu(vdsp[1]); 4520 4521 if (cmd & 0x10) { /* Table indirect */ 4522 tblp = (u32 *) ((char*) &cp->phys + oadr); 4523 olen = scr_to_cpu(tblp[0]); 4524 oadr = scr_to_cpu(tblp[1]); 4525 } else { 4526 tblp = (u32 *) 0; 4527 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4528 }; 4529 4530 if (DEBUG_FLAGS & DEBUG_PHASE) { 4531 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4532 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4533 tblp, 4534 (unsigned) olen, 4535 (unsigned) oadr); 4536 }; 4537 4538 /* 4539 * check cmd against assumed interrupted script command. 4540 * If dt data phase, the MOVE instruction hasn't bit 4 of 4541 * the phase. 4542 */ 4543 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4544 PRINT_ADDR(cp); 4545 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4546 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4547 4548 goto reset_all; 4549 }; 4550 4551 /* 4552 * if old phase not dataphase, leave here. 4553 */ 4554 if (cmd & 2) { 4555 PRINT_ADDR(cp); 4556 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4557 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4558 (unsigned)oadr, (unsigned)rest); 4559 goto unexpected_phase; 4560 }; 4561 4562 /* 4563 * Choose the correct PM save area. 4564 * 4565 * Look at the PM_SAVE SCRIPT if you want to understand 4566 * this stuff. The equivalent code is implemented in 4567 * SCRIPTS for the 895A, 896 and 1010 that are able to 4568 * handle PM from the SCRIPTS processor. 4569 */ 4570 hflags0 = INB (HF_PRT); 4571 hflags = hflags0; 4572 4573 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4574 if (hflags & HF_IN_PM0) 4575 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4576 else if (hflags & HF_IN_PM1) 4577 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4578 4579 if (hflags & HF_DP_SAVED) 4580 hflags ^= HF_ACT_PM; 4581 } 4582 4583 if (!(hflags & HF_ACT_PM)) { 4584 pm = &cp->phys.pm0; 4585 newcmd = SCRIPTA_BA (np, pm0_data); 4586 } 4587 else { 4588 pm = &cp->phys.pm1; 4589 newcmd = SCRIPTA_BA (np, pm1_data); 4590 } 4591 4592 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4593 if (hflags != hflags0) 4594 OUTB (HF_PRT, hflags); 4595 4596 /* 4597 * fillin the phase mismatch context 4598 */ 4599 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4600 pm->sg.size = cpu_to_scr(rest); 4601 pm->ret = cpu_to_scr(nxtdsp); 4602 4603 /* 4604 * If we have a SWIDE, 4605 * - prepare the address to write the SWIDE from SCRIPTS, 4606 * - compute the SCRIPTS address to restart from, 4607 * - move current data pointer context by one byte. 4608 */ 4609 nxtdsp = SCRIPTA_BA (np, dispatch); 4610 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4611 (INB (nc_scntl2) & WSR)) { 4612 u32 tmp; 4613 4614 /* 4615 * Set up the table indirect for the MOVE 4616 * of the residual byte and adjust the data 4617 * pointer context. 4618 */ 4619 tmp = scr_to_cpu(pm->sg.addr); 4620 cp->phys.wresid.addr = cpu_to_scr(tmp); 4621 pm->sg.addr = cpu_to_scr(tmp + 1); 4622 tmp = scr_to_cpu(pm->sg.size); 4623 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4624 pm->sg.size = cpu_to_scr(tmp - 1); 4625 4626 /* 4627 * If only the residual byte is to be moved, 4628 * no PM context is needed. 4629 */ 4630 if ((tmp&0xffffff) == 1) 4631 newcmd = pm->ret; 4632 4633 /* 4634 * Prepare the address of SCRIPTS that will 4635 * move the residual byte to memory. 4636 */ 4637 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4638 } 4639 4640 if (DEBUG_FLAGS & DEBUG_PHASE) { 4641 PRINT_ADDR(cp); 4642 printf ("PM %x %x %x / %x %x %x.\n", 4643 hflags0, hflags, newcmd, 4644 (unsigned)scr_to_cpu(pm->sg.addr), 4645 (unsigned)scr_to_cpu(pm->sg.size), 4646 (unsigned)scr_to_cpu(pm->ret)); 4647 } 4648 4649 /* 4650 * Restart the SCRIPTS processor. 4651 */ 4652 OUTL (nc_temp, newcmd); 4653 OUTL_DSP (nxtdsp); 4654 return; 4655 4656 /* 4657 * Unexpected phase changes that occurs when the current phase 4658 * is not a DATA IN or DATA OUT phase are due to error conditions. 4659 * Such event may only happen when the SCRIPTS is using a 4660 * multibyte SCSI MOVE. 4661 * 4662 * Phase change Some possible cause 4663 * 4664 * COMMAND --> MSG IN SCSI parity error detected by target. 4665 * COMMAND --> STATUS Bad command or refused by target. 4666 * MSG OUT --> MSG IN Message rejected by target. 4667 * MSG OUT --> COMMAND Bogus target that discards extended 4668 * negotiation messages. 4669 * 4670 * The code below does not care of the new phase and so 4671 * trusts the target. Why to annoy it ? 4672 * If the interrupted phase is COMMAND phase, we restart at 4673 * dispatcher. 4674 * If a target does not get all the messages after selection, 4675 * the code assumes blindly that the target discards extended 4676 * messages and clears the negotiation status. 4677 * If the target does not want all our response to negotiation, 4678 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4679 * bloat for such a should_not_happen situation). 4680 * In all other situation, we reset the BUS. 4681 * Are these assumptions reasonnable ? (Wait and see ...) 4682 */ 4683 unexpected_phase: 4684 dsp -= 8; 4685 nxtdsp = 0; 4686 4687 switch (cmd & 7) { 4688 case 2: /* COMMAND phase */ 4689 nxtdsp = SCRIPTA_BA (np, dispatch); 4690 break; 4691 #if 0 4692 case 3: /* STATUS phase */ 4693 nxtdsp = SCRIPTA_BA (np, dispatch); 4694 break; 4695 #endif 4696 case 6: /* MSG OUT phase */ 4697 /* 4698 * If the device may want to use untagged when we want 4699 * tagged, we prepare an IDENTIFY without disc. granted, 4700 * since we will not be able to handle reselect. 4701 * Otherwise, we just don't care. 4702 */ 4703 if (dsp == SCRIPTA_BA (np, send_ident)) { 4704 if (cp->tag != NO_TAG && olen - rest <= 3) { 4705 cp->host_status = HS_BUSY; 4706 np->msgout[0] = M_IDENTIFY | cp->lun; 4707 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4708 } 4709 else 4710 nxtdsp = SCRIPTB_BA (np, ident_break); 4711 } 4712 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4713 dsp == SCRIPTB_BA (np, send_sdtr) || 4714 dsp == SCRIPTB_BA (np, send_ppr)) { 4715 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4716 } 4717 break; 4718 #if 0 4719 case 7: /* MSG IN phase */ 4720 nxtdsp = SCRIPTA_BA (np, clrack); 4721 break; 4722 #endif 4723 } 4724 4725 if (nxtdsp) { 4726 OUTL_DSP (nxtdsp); 4727 return; 4728 } 4729 4730 reset_all: 4731 sym_start_reset(np); 4732 } 4733 4734 /* 4735 * Dequeue from the START queue all CCBs that match 4736 * a given target/lun/task condition (-1 means all), 4737 * and move them from the BUSY queue to the COMP queue 4738 * with CAM_REQUEUE_REQ status condition. 4739 * This function is used during error handling/recovery. 4740 * It is called with SCRIPTS not running. 4741 */ 4742 static int 4743 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4744 { 4745 int j; 4746 ccb_p cp; 4747 4748 /* 4749 * Make sure the starting index is within range. 4750 */ 4751 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4752 4753 /* 4754 * Walk until end of START queue and dequeue every job 4755 * that matches the target/lun/task condition. 4756 */ 4757 j = i; 4758 while (i != np->squeueput) { 4759 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4760 assert(cp); 4761 #ifdef SYM_CONF_IARB_SUPPORT 4762 /* Forget hints for IARB, they may be no longer relevant */ 4763 cp->host_flags &= ~HF_HINT_IARB; 4764 #endif 4765 if ((target == -1 || cp->target == target) && 4766 (lun == -1 || cp->lun == lun) && 4767 (task == -1 || cp->tag == task)) { 4768 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4769 sym_remque(&cp->link_ccbq); 4770 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4771 } 4772 else { 4773 if (i != j) 4774 np->squeue[j] = np->squeue[i]; 4775 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4776 } 4777 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4778 } 4779 if (i != j) /* Copy back the idle task if needed */ 4780 np->squeue[j] = np->squeue[i]; 4781 np->squeueput = j; /* Update our current start queue pointer */ 4782 4783 return (i - j) / 2; 4784 } 4785 4786 /* 4787 * Complete all CCBs queued to the COMP queue. 4788 * 4789 * These CCBs are assumed: 4790 * - Not to be referenced either by devices or 4791 * SCRIPTS-related queues and datas. 4792 * - To have to be completed with an error condition 4793 * or requeued. 4794 * 4795 * The device queue freeze count is incremented 4796 * for each CCB that does not prevent this. 4797 * This function is called when all CCBs involved 4798 * in error handling/recovery have been reaped. 4799 */ 4800 static void 4801 sym_flush_comp_queue(hcb_p np, int cam_status) 4802 { 4803 SYM_QUEHEAD *qp; 4804 ccb_p cp; 4805 4806 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { 4807 union ccb *ccb; 4808 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4809 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4810 /* Leave quiet CCBs waiting for resources */ 4811 if (cp->host_status == HS_WAIT) 4812 continue; 4813 ccb = cp->cam_ccb; 4814 if (cam_status) 4815 sym_set_cam_status(ccb, cam_status); 4816 sym_free_ccb(np, cp); 4817 sym_freeze_cam_ccb(ccb); 4818 sym_xpt_done(np, ccb); 4819 } 4820 } 4821 4822 /* 4823 * chip handler for bad SCSI status condition 4824 * 4825 * In case of bad SCSI status, we unqueue all the tasks 4826 * currently queued to the controller but not yet started 4827 * and then restart the SCRIPTS processor immediately. 4828 * 4829 * QUEUE FULL and BUSY conditions are handled the same way. 4830 * Basically all the not yet started tasks are requeued in 4831 * device queue and the queue is frozen until a completion. 4832 * 4833 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4834 * the CCB of the failed command to prepare a REQUEST SENSE 4835 * SCSI command and queue it to the controller queue. 4836 * 4837 * SCRATCHA is assumed to have been loaded with STARTPOS 4838 * before the SCRIPTS called the C code. 4839 */ 4840 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4841 { 4842 tcb_p tp = &np->target[cp->target]; 4843 u32 startp; 4844 u_char s_status = cp->ssss_status; 4845 u_char h_flags = cp->host_flags; 4846 int msglen; 4847 int nego; 4848 int i; 4849 4850 /* 4851 * Compute the index of the next job to start from SCRIPTS. 4852 */ 4853 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4854 4855 /* 4856 * The last CCB queued used for IARB hint may be 4857 * no longer relevant. Forget it. 4858 */ 4859 #ifdef SYM_CONF_IARB_SUPPORT 4860 if (np->last_cp) 4861 np->last_cp = 0; 4862 #endif 4863 4864 /* 4865 * Now deal with the SCSI status. 4866 */ 4867 switch(s_status) { 4868 case S_BUSY: 4869 case S_QUEUE_FULL: 4870 if (sym_verbose >= 2) { 4871 PRINT_ADDR(cp); 4872 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4873 } 4874 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4875 sym_complete_error (np, cp); 4876 break; 4877 case S_TERMINATED: 4878 case S_CHECK_COND: 4879 /* 4880 * If we get an SCSI error when requesting sense, give up. 4881 */ 4882 if (h_flags & HF_SENSE) { 4883 sym_complete_error (np, cp); 4884 break; 4885 } 4886 4887 /* 4888 * Dequeue all queued CCBs for that device not yet started, 4889 * and restart the SCRIPTS processor immediately. 4890 */ 4891 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4892 OUTL_DSP (SCRIPTA_BA (np, start)); 4893 4894 /* 4895 * Save some info of the actual IO. 4896 * Compute the data residual. 4897 */ 4898 cp->sv_scsi_status = cp->ssss_status; 4899 cp->sv_xerr_status = cp->xerr_status; 4900 cp->sv_resid = sym_compute_residual(np, cp); 4901 4902 /* 4903 * Prepare all needed data structures for 4904 * requesting sense data. 4905 */ 4906 4907 /* 4908 * identify message 4909 */ 4910 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4911 msglen = 1; 4912 4913 /* 4914 * If we are currently using anything different from 4915 * async. 8 bit data transfers with that target, 4916 * start a negotiation, since the device may want 4917 * to report us a UNIT ATTENTION condition due to 4918 * a cause we currently ignore, and we donnot want 4919 * to be stuck with WIDE and/or SYNC data transfer. 4920 * 4921 * cp->nego_status is filled by sym_prepare_nego(). 4922 */ 4923 cp->nego_status = 0; 4924 nego = 0; 4925 if (tp->tinfo.current.options & PPR_OPT_MASK) 4926 nego = NS_PPR; 4927 else if (tp->tinfo.current.width != BUS_8_BIT) 4928 nego = NS_WIDE; 4929 else if (tp->tinfo.current.offset != 0) 4930 nego = NS_SYNC; 4931 if (nego) 4932 msglen += 4933 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4934 /* 4935 * Message table indirect structure. 4936 */ 4937 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4938 cp->phys.smsg.size = cpu_to_scr(msglen); 4939 4940 /* 4941 * sense command 4942 */ 4943 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4944 cp->phys.cmd.size = cpu_to_scr(6); 4945 4946 /* 4947 * patch requested size into sense command 4948 */ 4949 cp->sensecmd[0] = 0x03; 4950 cp->sensecmd[1] = cp->lun << 5; 4951 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4952 cp->data_len = SYM_SNS_BBUF_LEN; 4953 4954 /* 4955 * sense data 4956 */ 4957 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4958 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4959 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4960 4961 /* 4962 * requeue the command. 4963 */ 4964 startp = SCRIPTB_BA (np, sdata_in); 4965 4966 cp->phys.head.savep = cpu_to_scr(startp); 4967 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4968 cp->phys.head.lastp = cpu_to_scr(startp); 4969 cp->startp = cpu_to_scr(startp); 4970 4971 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4972 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4973 cp->ssss_status = S_ILLEGAL; 4974 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4975 cp->xerr_status = 0; 4976 cp->extra_bytes = 0; 4977 4978 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4979 4980 /* 4981 * Requeue the command. 4982 */ 4983 sym_put_start_queue(np, cp); 4984 4985 /* 4986 * Give back to upper layer everything we have dequeued. 4987 */ 4988 sym_flush_comp_queue(np, 0); 4989 break; 4990 } 4991 } 4992 4993 /* 4994 * After a device has accepted some management message 4995 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4996 * a device signals a UNIT ATTENTION condition, some 4997 * tasks are thrown away by the device. We are required 4998 * to reflect that on our tasks list since the device 4999 * will never complete these tasks. 5000 * 5001 * This function move from the BUSY queue to the COMP 5002 * queue all disconnected CCBs for a given target that 5003 * match the following criteria: 5004 * - lun=-1 means any logical UNIT otherwise a given one. 5005 * - task=-1 means any task, otherwise a given one. 5006 */ 5007 static int 5008 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 5009 { 5010 SYM_QUEHEAD qtmp, *qp; 5011 int i = 0; 5012 ccb_p cp; 5013 5014 /* 5015 * Move the entire BUSY queue to our temporary queue. 5016 */ 5017 sym_que_init(&qtmp); 5018 sym_que_splice(&np->busy_ccbq, &qtmp); 5019 sym_que_init(&np->busy_ccbq); 5020 5021 /* 5022 * Put all CCBs that matches our criteria into 5023 * the COMP queue and put back other ones into 5024 * the BUSY queue. 5025 */ 5026 while ((qp = sym_remque_head(&qtmp)) != 0) { 5027 union ccb *ccb; 5028 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5029 ccb = cp->cam_ccb; 5030 if (cp->host_status != HS_DISCONNECT || 5031 cp->target != target || 5032 (lun != -1 && cp->lun != lun) || 5033 (task != -1 && 5034 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 5035 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 5036 continue; 5037 } 5038 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 5039 5040 /* Preserve the software timeout condition */ 5041 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 5042 sym_set_cam_status(ccb, cam_status); 5043 ++i; 5044 #if 0 5045 printf("XXXX TASK @%p CLEARED\n", cp); 5046 #endif 5047 } 5048 return i; 5049 } 5050 5051 /* 5052 * chip handler for TASKS recovery 5053 * 5054 * We cannot safely abort a command, while the SCRIPTS 5055 * processor is running, since we just would be in race 5056 * with it. 5057 * 5058 * As long as we have tasks to abort, we keep the SEM 5059 * bit set in the ISTAT. When this bit is set, the 5060 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 5061 * each time it enters the scheduler. 5062 * 5063 * If we have to reset a target, clear tasks of a unit, 5064 * or to perform the abort of a disconnected job, we 5065 * restart the SCRIPTS for selecting the target. Once 5066 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 5067 * If it loses arbitration, the SCRIPTS will interrupt again 5068 * the next time it will enter its scheduler, and so on ... 5069 * 5070 * On SIR_TARGET_SELECTED, we scan for the more 5071 * appropriate thing to do: 5072 * 5073 * - If nothing, we just sent a M_ABORT message to the 5074 * target to get rid of the useless SCSI bus ownership. 5075 * According to the specs, no tasks shall be affected. 5076 * - If the target is to be reset, we send it a M_RESET 5077 * message. 5078 * - If a logical UNIT is to be cleared , we send the 5079 * IDENTIFY(lun) + M_ABORT. 5080 * - If an untagged task is to be aborted, we send the 5081 * IDENTIFY(lun) + M_ABORT. 5082 * - If a tagged task is to be aborted, we send the 5083 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 5084 * 5085 * Once our 'kiss of death' :) message has been accepted 5086 * by the target, the SCRIPTS interrupts again 5087 * (SIR_ABORT_SENT). On this interrupt, we complete 5088 * all the CCBs that should have been aborted by the 5089 * target according to our message. 5090 */ 5091 static void sym_sir_task_recovery(hcb_p np, int num) 5092 { 5093 SYM_QUEHEAD *qp; 5094 ccb_p cp; 5095 tcb_p tp; 5096 int target=-1, lun=-1, task; 5097 int i, k; 5098 5099 switch(num) { 5100 /* 5101 * The SCRIPTS processor stopped before starting 5102 * the next command in order to allow us to perform 5103 * some task recovery. 5104 */ 5105 case SIR_SCRIPT_STOPPED: 5106 /* 5107 * Do we have any target to reset or unit to clear ? 5108 */ 5109 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 5110 tp = &np->target[i]; 5111 if (tp->to_reset || 5112 (tp->lun0p && tp->lun0p->to_clear)) { 5113 target = i; 5114 break; 5115 } 5116 if (!tp->lunmp) 5117 continue; 5118 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5119 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5120 target = i; 5121 break; 5122 } 5123 } 5124 if (target != -1) 5125 break; 5126 } 5127 5128 /* 5129 * If not, walk the busy queue for any 5130 * disconnected CCB to be aborted. 5131 */ 5132 if (target == -1) { 5133 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5134 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 5135 if (cp->host_status != HS_DISCONNECT) 5136 continue; 5137 if (cp->to_abort) { 5138 target = cp->target; 5139 break; 5140 } 5141 } 5142 } 5143 5144 /* 5145 * If some target is to be selected, 5146 * prepare and start the selection. 5147 */ 5148 if (target != -1) { 5149 tp = &np->target[target]; 5150 np->abrt_sel.sel_id = target; 5151 np->abrt_sel.sel_scntl3 = tp->head.wval; 5152 np->abrt_sel.sel_sxfer = tp->head.sval; 5153 OUTL(nc_dsa, np->hcb_ba); 5154 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 5155 return; 5156 } 5157 5158 /* 5159 * Now look for a CCB to abort that haven't started yet. 5160 * Btw, the SCRIPTS processor is still stopped, so 5161 * we are not in race. 5162 */ 5163 i = 0; 5164 cp = 0; 5165 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5166 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5167 if (cp->host_status != HS_BUSY && 5168 cp->host_status != HS_NEGOTIATE) 5169 continue; 5170 if (!cp->to_abort) 5171 continue; 5172 #ifdef SYM_CONF_IARB_SUPPORT 5173 /* 5174 * If we are using IMMEDIATE ARBITRATION, we donnot 5175 * want to cancel the last queued CCB, since the 5176 * SCRIPTS may have anticipated the selection. 5177 */ 5178 if (cp == np->last_cp) { 5179 cp->to_abort = 0; 5180 continue; 5181 } 5182 #endif 5183 i = 1; /* Means we have found some */ 5184 break; 5185 } 5186 if (!i) { 5187 /* 5188 * We are done, so we donnot need 5189 * to synchronize with the SCRIPTS anylonger. 5190 * Remove the SEM flag from the ISTAT. 5191 */ 5192 np->istat_sem = 0; 5193 OUTB (nc_istat, SIGP); 5194 break; 5195 } 5196 /* 5197 * Compute index of next position in the start 5198 * queue the SCRIPTS intends to start and dequeue 5199 * all CCBs for that device that haven't been started. 5200 */ 5201 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5202 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5203 5204 /* 5205 * Make sure at least our IO to abort has been dequeued. 5206 */ 5207 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5208 5209 /* 5210 * Keep track in cam status of the reason of the abort. 5211 */ 5212 if (cp->to_abort == 2) 5213 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5214 else 5215 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5216 5217 /* 5218 * Complete with error everything that we have dequeued. 5219 */ 5220 sym_flush_comp_queue(np, 0); 5221 break; 5222 /* 5223 * The SCRIPTS processor has selected a target 5224 * we may have some manual recovery to perform for. 5225 */ 5226 case SIR_TARGET_SELECTED: 5227 target = (INB (nc_sdid) & 0xf); 5228 tp = &np->target[target]; 5229 5230 np->abrt_tbl.addr = vtobus(np->abrt_msg); 5231 5232 /* 5233 * If the target is to be reset, prepare a 5234 * M_RESET message and clear the to_reset flag 5235 * since we donnot expect this operation to fail. 5236 */ 5237 if (tp->to_reset) { 5238 np->abrt_msg[0] = M_RESET; 5239 np->abrt_tbl.size = 1; 5240 tp->to_reset = 0; 5241 break; 5242 } 5243 5244 /* 5245 * Otherwise, look for some logical unit to be cleared. 5246 */ 5247 if (tp->lun0p && tp->lun0p->to_clear) 5248 lun = 0; 5249 else if (tp->lunmp) { 5250 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5251 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5252 lun = k; 5253 break; 5254 } 5255 } 5256 } 5257 5258 /* 5259 * If a logical unit is to be cleared, prepare 5260 * an IDENTIFY(lun) + ABORT MESSAGE. 5261 */ 5262 if (lun != -1) { 5263 lcb_p lp = sym_lp(np, tp, lun); 5264 lp->to_clear = 0; /* We donnot expect to fail here */ 5265 np->abrt_msg[0] = M_IDENTIFY | lun; 5266 np->abrt_msg[1] = M_ABORT; 5267 np->abrt_tbl.size = 2; 5268 break; 5269 } 5270 5271 /* 5272 * Otherwise, look for some disconnected job to 5273 * abort for this target. 5274 */ 5275 i = 0; 5276 cp = 0; 5277 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5278 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5279 if (cp->host_status != HS_DISCONNECT) 5280 continue; 5281 if (cp->target != target) 5282 continue; 5283 if (!cp->to_abort) 5284 continue; 5285 i = 1; /* Means we have some */ 5286 break; 5287 } 5288 5289 /* 5290 * If we have none, probably since the device has 5291 * completed the command before we won abitration, 5292 * send a M_ABORT message without IDENTIFY. 5293 * According to the specs, the device must just 5294 * disconnect the BUS and not abort any task. 5295 */ 5296 if (!i) { 5297 np->abrt_msg[0] = M_ABORT; 5298 np->abrt_tbl.size = 1; 5299 break; 5300 } 5301 5302 /* 5303 * We have some task to abort. 5304 * Set the IDENTIFY(lun) 5305 */ 5306 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5307 5308 /* 5309 * If we want to abort an untagged command, we 5310 * will send a IDENTIFY + M_ABORT. 5311 * Otherwise (tagged command), we will send 5312 * a IDENTITFY + task attributes + ABORT TAG. 5313 */ 5314 if (cp->tag == NO_TAG) { 5315 np->abrt_msg[1] = M_ABORT; 5316 np->abrt_tbl.size = 2; 5317 } 5318 else { 5319 np->abrt_msg[1] = cp->scsi_smsg[1]; 5320 np->abrt_msg[2] = cp->scsi_smsg[2]; 5321 np->abrt_msg[3] = M_ABORT_TAG; 5322 np->abrt_tbl.size = 4; 5323 } 5324 /* 5325 * Keep track of software timeout condition, since the 5326 * peripheral driver may not count retries on abort 5327 * conditions not due to timeout. 5328 */ 5329 if (cp->to_abort == 2) 5330 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5331 cp->to_abort = 0; /* We donnot expect to fail here */ 5332 break; 5333 5334 /* 5335 * The target has accepted our message and switched 5336 * to BUS FREE phase as we expected. 5337 */ 5338 case SIR_ABORT_SENT: 5339 target = (INB (nc_sdid) & 0xf); 5340 tp = &np->target[target]; 5341 5342 /* 5343 ** If we didn't abort anything, leave here. 5344 */ 5345 if (np->abrt_msg[0] == M_ABORT) 5346 break; 5347 5348 /* 5349 * If we sent a M_RESET, then a hardware reset has 5350 * been performed by the target. 5351 * - Reset everything to async 8 bit 5352 * - Tell ourself to negotiate next time :-) 5353 * - Prepare to clear all disconnected CCBs for 5354 * this target from our task list (lun=task=-1) 5355 */ 5356 lun = -1; 5357 task = -1; 5358 if (np->abrt_msg[0] == M_RESET) { 5359 tp->head.sval = 0; 5360 tp->head.wval = np->rv_scntl3; 5361 tp->head.uval = 0; 5362 tp->tinfo.current.period = 0; 5363 tp->tinfo.current.offset = 0; 5364 tp->tinfo.current.width = BUS_8_BIT; 5365 tp->tinfo.current.options = 0; 5366 } 5367 5368 /* 5369 * Otherwise, check for the LUN and TASK(s) 5370 * concerned by the cancelation. 5371 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5372 * or an ABORT message :-) 5373 */ 5374 else { 5375 lun = np->abrt_msg[0] & 0x3f; 5376 if (np->abrt_msg[1] == M_ABORT_TAG) 5377 task = np->abrt_msg[2]; 5378 } 5379 5380 /* 5381 * Complete all the CCBs the device should have 5382 * aborted due to our 'kiss of death' message. 5383 */ 5384 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5385 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5386 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5387 sym_flush_comp_queue(np, 0); 5388 5389 /* 5390 * If we sent a BDR, make uper layer aware of that. 5391 */ 5392 if (np->abrt_msg[0] == M_RESET) 5393 xpt_async(AC_SENT_BDR, np->path, NULL); 5394 break; 5395 } 5396 5397 /* 5398 * Print to the log the message we intend to send. 5399 */ 5400 if (num == SIR_TARGET_SELECTED) { 5401 PRINT_TARGET(np, target); 5402 sym_printl_hex("control msgout:", np->abrt_msg, 5403 np->abrt_tbl.size); 5404 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5405 } 5406 5407 /* 5408 * Let the SCRIPTS processor continue. 5409 */ 5410 OUTONB_STD (); 5411 } 5412 5413 /* 5414 * Gerard's alchemy:) that deals with with the data 5415 * pointer for both MDP and the residual calculation. 5416 * 5417 * I didn't want to bloat the code by more than 200 5418 * lignes for the handling of both MDP and the residual. 5419 * This has been achieved by using a data pointer 5420 * representation consisting in an index in the data 5421 * array (dp_sg) and a negative offset (dp_ofs) that 5422 * have the following meaning: 5423 * 5424 * - dp_sg = SYM_CONF_MAX_SG 5425 * we are at the end of the data script. 5426 * - dp_sg < SYM_CONF_MAX_SG 5427 * dp_sg points to the next entry of the scatter array 5428 * we want to transfer. 5429 * - dp_ofs < 0 5430 * dp_ofs represents the residual of bytes of the 5431 * previous entry scatter entry we will send first. 5432 * - dp_ofs = 0 5433 * no residual to send first. 5434 * 5435 * The function sym_evaluate_dp() accepts an arbitray 5436 * offset (basically from the MDP message) and returns 5437 * the corresponding values of dp_sg and dp_ofs. 5438 */ 5439 5440 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5441 { 5442 u32 dp_scr; 5443 int dp_ofs, dp_sg, dp_sgmin; 5444 int tmp; 5445 struct sym_pmc *pm; 5446 5447 /* 5448 * Compute the resulted data pointer in term of a script 5449 * address within some DATA script and a signed byte offset. 5450 */ 5451 dp_scr = scr; 5452 dp_ofs = *ofs; 5453 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5454 pm = &cp->phys.pm0; 5455 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5456 pm = &cp->phys.pm1; 5457 else 5458 pm = 0; 5459 5460 if (pm) { 5461 dp_scr = scr_to_cpu(pm->ret); 5462 dp_ofs -= scr_to_cpu(pm->sg.size); 5463 } 5464 5465 /* 5466 * If we are auto-sensing, then we are done. 5467 */ 5468 if (cp->host_flags & HF_SENSE) { 5469 *ofs = dp_ofs; 5470 return 0; 5471 } 5472 5473 /* 5474 * Deduce the index of the sg entry. 5475 * Keep track of the index of the first valid entry. 5476 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5477 * end of the data. 5478 */ 5479 tmp = scr_to_cpu(cp->phys.head.goalp); 5480 dp_sg = SYM_CONF_MAX_SG; 5481 if (dp_scr != tmp) 5482 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5483 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5484 5485 /* 5486 * Move to the sg entry the data pointer belongs to. 5487 * 5488 * If we are inside the data area, we expect result to be: 5489 * 5490 * Either, 5491 * dp_ofs = 0 and dp_sg is the index of the sg entry 5492 * the data pointer belongs to (or the end of the data) 5493 * Or, 5494 * dp_ofs < 0 and dp_sg is the index of the sg entry 5495 * the data pointer belongs to + 1. 5496 */ 5497 if (dp_ofs < 0) { 5498 int n; 5499 while (dp_sg > dp_sgmin) { 5500 --dp_sg; 5501 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5502 n = dp_ofs + (tmp & 0xffffff); 5503 if (n > 0) { 5504 ++dp_sg; 5505 break; 5506 } 5507 dp_ofs = n; 5508 } 5509 } 5510 else if (dp_ofs > 0) { 5511 while (dp_sg < SYM_CONF_MAX_SG) { 5512 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5513 dp_ofs -= (tmp & 0xffffff); 5514 ++dp_sg; 5515 if (dp_ofs <= 0) 5516 break; 5517 } 5518 } 5519 5520 /* 5521 * Make sure the data pointer is inside the data area. 5522 * If not, return some error. 5523 */ 5524 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5525 goto out_err; 5526 else if (dp_sg > SYM_CONF_MAX_SG || 5527 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5528 goto out_err; 5529 5530 /* 5531 * Save the extreme pointer if needed. 5532 */ 5533 if (dp_sg > cp->ext_sg || 5534 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5535 cp->ext_sg = dp_sg; 5536 cp->ext_ofs = dp_ofs; 5537 } 5538 5539 /* 5540 * Return data. 5541 */ 5542 *ofs = dp_ofs; 5543 return dp_sg; 5544 5545 out_err: 5546 return -1; 5547 } 5548 5549 /* 5550 * chip handler for MODIFY DATA POINTER MESSAGE 5551 * 5552 * We also call this function on IGNORE WIDE RESIDUE 5553 * messages that do not match a SWIDE full condition. 5554 * Btw, we assume in that situation that such a message 5555 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5556 */ 5557 5558 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5559 { 5560 int dp_ofs = ofs; 5561 u32 dp_scr = INL (nc_temp); 5562 u32 dp_ret; 5563 u32 tmp; 5564 u_char hflags; 5565 int dp_sg; 5566 struct sym_pmc *pm; 5567 5568 /* 5569 * Not supported for auto-sense. 5570 */ 5571 if (cp->host_flags & HF_SENSE) 5572 goto out_reject; 5573 5574 /* 5575 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5576 * to the resulted data pointer. 5577 */ 5578 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5579 if (dp_sg < 0) 5580 goto out_reject; 5581 5582 /* 5583 * And our alchemy:) allows to easily calculate the data 5584 * script address we want to return for the next data phase. 5585 */ 5586 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5587 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5588 5589 /* 5590 * If offset / scatter entry is zero we donnot need 5591 * a context for the new current data pointer. 5592 */ 5593 if (dp_ofs == 0) { 5594 dp_scr = dp_ret; 5595 goto out_ok; 5596 } 5597 5598 /* 5599 * Get a context for the new current data pointer. 5600 */ 5601 hflags = INB (HF_PRT); 5602 5603 if (hflags & HF_DP_SAVED) 5604 hflags ^= HF_ACT_PM; 5605 5606 if (!(hflags & HF_ACT_PM)) { 5607 pm = &cp->phys.pm0; 5608 dp_scr = SCRIPTA_BA (np, pm0_data); 5609 } 5610 else { 5611 pm = &cp->phys.pm1; 5612 dp_scr = SCRIPTA_BA (np, pm1_data); 5613 } 5614 5615 hflags &= ~(HF_DP_SAVED); 5616 5617 OUTB (HF_PRT, hflags); 5618 5619 /* 5620 * Set up the new current data pointer. 5621 * ofs < 0 there, and for the next data phase, we 5622 * want to transfer part of the data of the sg entry 5623 * corresponding to index dp_sg-1 prior to returning 5624 * to the main data script. 5625 */ 5626 pm->ret = cpu_to_scr(dp_ret); 5627 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5628 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5629 pm->sg.addr = cpu_to_scr(tmp); 5630 pm->sg.size = cpu_to_scr(-dp_ofs); 5631 5632 out_ok: 5633 OUTL (nc_temp, dp_scr); 5634 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5635 return; 5636 5637 out_reject: 5638 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5639 } 5640 5641 5642 /* 5643 * chip calculation of the data residual. 5644 * 5645 * As I used to say, the requirement of data residual 5646 * in SCSI is broken, useless and cannot be achieved 5647 * without huge complexity. 5648 * But most OSes and even the official CAM require it. 5649 * When stupidity happens to be so widely spread inside 5650 * a community, it gets hard to convince. 5651 * 5652 * Anyway, I don't care, since I am not going to use 5653 * any software that considers this data residual as 5654 * a relevant information. :) 5655 */ 5656 5657 static int sym_compute_residual(hcb_p np, ccb_p cp) 5658 { 5659 int dp_sg, dp_sgmin, resid = 0; 5660 int dp_ofs = 0; 5661 5662 /* 5663 * Check for some data lost or just thrown away. 5664 * We are not required to be quite accurate in this 5665 * situation. Btw, if we are odd for output and the 5666 * device claims some more data, it may well happen 5667 * than our residual be zero. :-) 5668 */ 5669 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5670 if (cp->xerr_status & XE_EXTRA_DATA) 5671 resid -= cp->extra_bytes; 5672 if (cp->xerr_status & XE_SODL_UNRUN) 5673 ++resid; 5674 if (cp->xerr_status & XE_SWIDE_OVRUN) 5675 --resid; 5676 } 5677 5678 /* 5679 * If all data has been transferred, 5680 * there is no residual. 5681 */ 5682 if (cp->phys.head.lastp == cp->phys.head.goalp) 5683 return resid; 5684 5685 /* 5686 * If no data transfer occurs, or if the data 5687 * pointer is weird, return full residual. 5688 */ 5689 if (cp->startp == cp->phys.head.lastp || 5690 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5691 &dp_ofs) < 0) { 5692 return cp->data_len; 5693 } 5694 5695 /* 5696 * If we were auto-sensing, then we are done. 5697 */ 5698 if (cp->host_flags & HF_SENSE) { 5699 return -dp_ofs; 5700 } 5701 5702 /* 5703 * We are now full comfortable in the computation 5704 * of the data residual (2's complement). 5705 */ 5706 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5707 resid = -cp->ext_ofs; 5708 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5709 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5710 resid += (tmp & 0xffffff); 5711 } 5712 5713 /* 5714 * Hopefully, the result is not too wrong. 5715 */ 5716 return resid; 5717 } 5718 5719 /* 5720 * Print out the content of a SCSI message. 5721 */ 5722 5723 static int sym_show_msg (u_char * msg) 5724 { 5725 u_char i; 5726 printf ("%x",*msg); 5727 if (*msg==M_EXTENDED) { 5728 for (i=1;i<8;i++) { 5729 if (i-1>msg[1]) break; 5730 printf ("-%x",msg[i]); 5731 }; 5732 return (i+1); 5733 } else if ((*msg & 0xf0) == 0x20) { 5734 printf ("-%x",msg[1]); 5735 return (2); 5736 }; 5737 return (1); 5738 } 5739 5740 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5741 { 5742 PRINT_ADDR(cp); 5743 if (label) 5744 printf ("%s: ", label); 5745 5746 (void) sym_show_msg (msg); 5747 printf (".\n"); 5748 } 5749 5750 /* 5751 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5752 * 5753 * When we try to negotiate, we append the negotiation message 5754 * to the identify and (maybe) simple tag message. 5755 * The host status field is set to HS_NEGOTIATE to mark this 5756 * situation. 5757 * 5758 * If the target doesn't answer this message immediately 5759 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5760 * will be raised eventually. 5761 * The handler removes the HS_NEGOTIATE status, and sets the 5762 * negotiated value to the default (async / nowide). 5763 * 5764 * If we receive a matching answer immediately, we check it 5765 * for validity, and set the values. 5766 * 5767 * If we receive a Reject message immediately, we assume the 5768 * negotiation has failed, and fall back to standard values. 5769 * 5770 * If we receive a negotiation message while not in HS_NEGOTIATE 5771 * state, it's a target initiated negotiation. We prepare a 5772 * (hopefully) valid answer, set our parameters, and send back 5773 * this answer to the target. 5774 * 5775 * If the target doesn't fetch the answer (no message out phase), 5776 * we assume the negotiation has failed, and fall back to default 5777 * settings (SIR_NEGO_PROTO interrupt). 5778 * 5779 * When we set the values, we adjust them in all ccbs belonging 5780 * to this target, in the controller's register, and in the "phys" 5781 * field of the controller's struct sym_hcb. 5782 */ 5783 5784 /* 5785 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5786 */ 5787 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5788 { 5789 u_char chg, ofs, per, fak, div; 5790 int req = 1; 5791 5792 /* 5793 * Synchronous request message received. 5794 */ 5795 if (DEBUG_FLAGS & DEBUG_NEGO) { 5796 sym_print_msg(cp, "sync msgin", np->msgin); 5797 }; 5798 5799 /* 5800 * request or answer ? 5801 */ 5802 if (INB (HS_PRT) == HS_NEGOTIATE) { 5803 OUTB (HS_PRT, HS_BUSY); 5804 if (cp->nego_status && cp->nego_status != NS_SYNC) 5805 goto reject_it; 5806 req = 0; 5807 } 5808 5809 /* 5810 * get requested values. 5811 */ 5812 chg = 0; 5813 per = np->msgin[3]; 5814 ofs = np->msgin[4]; 5815 5816 /* 5817 * check values against our limits. 5818 */ 5819 if (ofs) { 5820 if (ofs > np->maxoffs) 5821 {chg = 1; ofs = np->maxoffs;} 5822 if (req) { 5823 if (ofs > tp->tinfo.user.offset) 5824 {chg = 1; ofs = tp->tinfo.user.offset;} 5825 } 5826 } 5827 5828 if (ofs) { 5829 if (per < np->minsync) 5830 {chg = 1; per = np->minsync;} 5831 if (req) { 5832 if (per < tp->tinfo.user.period) 5833 {chg = 1; per = tp->tinfo.user.period;} 5834 } 5835 } 5836 5837 div = fak = 0; 5838 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5839 goto reject_it; 5840 5841 if (DEBUG_FLAGS & DEBUG_NEGO) { 5842 PRINT_ADDR(cp); 5843 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5844 ofs, per, div, fak, chg); 5845 } 5846 5847 /* 5848 * This was an answer message 5849 */ 5850 if (req == 0) { 5851 if (chg) /* Answer wasn't acceptable. */ 5852 goto reject_it; 5853 sym_setsync (np, cp, ofs, per, div, fak); 5854 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5855 return; 5856 } 5857 5858 /* 5859 * It was a request. Set value and 5860 * prepare an answer message 5861 */ 5862 sym_setsync (np, cp, ofs, per, div, fak); 5863 5864 np->msgout[0] = M_EXTENDED; 5865 np->msgout[1] = 3; 5866 np->msgout[2] = M_X_SYNC_REQ; 5867 np->msgout[3] = per; 5868 np->msgout[4] = ofs; 5869 5870 cp->nego_status = NS_SYNC; 5871 5872 if (DEBUG_FLAGS & DEBUG_NEGO) { 5873 sym_print_msg(cp, "sync msgout", np->msgout); 5874 } 5875 5876 np->msgin [0] = M_NOOP; 5877 5878 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5879 return; 5880 reject_it: 5881 sym_setsync (np, cp, 0, 0, 0, 0); 5882 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5883 } 5884 5885 /* 5886 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5887 */ 5888 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5889 { 5890 u_char chg, ofs, per, fak, dt, div, wide; 5891 int req = 1; 5892 5893 /* 5894 * Synchronous request message received. 5895 */ 5896 if (DEBUG_FLAGS & DEBUG_NEGO) { 5897 sym_print_msg(cp, "ppr msgin", np->msgin); 5898 }; 5899 5900 /* 5901 * request or answer ? 5902 */ 5903 if (INB (HS_PRT) == HS_NEGOTIATE) { 5904 OUTB (HS_PRT, HS_BUSY); 5905 if (cp->nego_status && cp->nego_status != NS_PPR) 5906 goto reject_it; 5907 req = 0; 5908 } 5909 5910 /* 5911 * get requested values. 5912 */ 5913 chg = 0; 5914 per = np->msgin[3]; 5915 ofs = np->msgin[5]; 5916 wide = np->msgin[6]; 5917 dt = np->msgin[7] & PPR_OPT_DT; 5918 5919 /* 5920 * check values against our limits. 5921 */ 5922 if (wide > np->maxwide) 5923 {chg = 1; wide = np->maxwide;} 5924 if (!wide || !(np->features & FE_ULTRA3)) 5925 dt &= ~PPR_OPT_DT; 5926 if (req) { 5927 if (wide > tp->tinfo.user.width) 5928 {chg = 1; wide = tp->tinfo.user.width;} 5929 } 5930 5931 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5932 dt &= ~PPR_OPT_DT; 5933 5934 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5935 5936 if (ofs) { 5937 if (dt) { 5938 if (ofs > np->maxoffs_dt) 5939 {chg = 1; ofs = np->maxoffs_dt;} 5940 } 5941 else if (ofs > np->maxoffs) 5942 {chg = 1; ofs = np->maxoffs;} 5943 if (req) { 5944 if (ofs > tp->tinfo.user.offset) 5945 {chg = 1; ofs = tp->tinfo.user.offset;} 5946 } 5947 } 5948 5949 if (ofs) { 5950 if (dt) { 5951 if (per < np->minsync_dt) 5952 {chg = 1; per = np->minsync_dt;} 5953 } 5954 else if (per < np->minsync) 5955 {chg = 1; per = np->minsync;} 5956 if (req) { 5957 if (per < tp->tinfo.user.period) 5958 {chg = 1; per = tp->tinfo.user.period;} 5959 } 5960 } 5961 5962 div = fak = 0; 5963 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5964 goto reject_it; 5965 5966 if (DEBUG_FLAGS & DEBUG_NEGO) { 5967 PRINT_ADDR(cp); 5968 printf ("ppr: " 5969 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5970 dt, ofs, per, wide, div, fak, chg); 5971 } 5972 5973 /* 5974 * It was an answer. 5975 */ 5976 if (req == 0) { 5977 if (chg) /* Answer wasn't acceptable */ 5978 goto reject_it; 5979 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5980 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5981 return; 5982 } 5983 5984 /* 5985 * It was a request. Set value and 5986 * prepare an answer message 5987 */ 5988 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5989 5990 np->msgout[0] = M_EXTENDED; 5991 np->msgout[1] = 6; 5992 np->msgout[2] = M_X_PPR_REQ; 5993 np->msgout[3] = per; 5994 np->msgout[4] = 0; 5995 np->msgout[5] = ofs; 5996 np->msgout[6] = wide; 5997 np->msgout[7] = dt; 5998 5999 cp->nego_status = NS_PPR; 6000 6001 if (DEBUG_FLAGS & DEBUG_NEGO) { 6002 sym_print_msg(cp, "ppr msgout", np->msgout); 6003 } 6004 6005 np->msgin [0] = M_NOOP; 6006 6007 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 6008 return; 6009 reject_it: 6010 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6011 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6012 } 6013 6014 /* 6015 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 6016 */ 6017 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 6018 { 6019 u_char chg, wide; 6020 int req = 1; 6021 6022 /* 6023 * Wide request message received. 6024 */ 6025 if (DEBUG_FLAGS & DEBUG_NEGO) { 6026 sym_print_msg(cp, "wide msgin", np->msgin); 6027 }; 6028 6029 /* 6030 * Is it an request from the device? 6031 */ 6032 if (INB (HS_PRT) == HS_NEGOTIATE) { 6033 OUTB (HS_PRT, HS_BUSY); 6034 if (cp->nego_status && cp->nego_status != NS_WIDE) 6035 goto reject_it; 6036 req = 0; 6037 } 6038 6039 /* 6040 * get requested values. 6041 */ 6042 chg = 0; 6043 wide = np->msgin[3]; 6044 6045 /* 6046 * check values against driver limits. 6047 */ 6048 if (wide > np->maxwide) 6049 {chg = 1; wide = np->maxwide;} 6050 if (req) { 6051 if (wide > tp->tinfo.user.width) 6052 {chg = 1; wide = tp->tinfo.user.width;} 6053 } 6054 6055 if (DEBUG_FLAGS & DEBUG_NEGO) { 6056 PRINT_ADDR(cp); 6057 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 6058 } 6059 6060 /* 6061 * This was an answer message 6062 */ 6063 if (req == 0) { 6064 if (chg) /* Answer wasn't acceptable. */ 6065 goto reject_it; 6066 sym_setwide (np, cp, wide); 6067 6068 /* 6069 * Negotiate for SYNC immediately after WIDE response. 6070 * This allows to negotiate for both WIDE and SYNC on 6071 * a single SCSI command (Suggested by Justin Gibbs). 6072 */ 6073 if (tp->tinfo.goal.offset) { 6074 np->msgout[0] = M_EXTENDED; 6075 np->msgout[1] = 3; 6076 np->msgout[2] = M_X_SYNC_REQ; 6077 np->msgout[3] = tp->tinfo.goal.period; 6078 np->msgout[4] = tp->tinfo.goal.offset; 6079 6080 if (DEBUG_FLAGS & DEBUG_NEGO) { 6081 sym_print_msg(cp, "sync msgout", np->msgout); 6082 } 6083 6084 cp->nego_status = NS_SYNC; 6085 OUTB (HS_PRT, HS_NEGOTIATE); 6086 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 6087 return; 6088 } 6089 6090 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6091 return; 6092 }; 6093 6094 /* 6095 * It was a request, set value and 6096 * prepare an answer message 6097 */ 6098 sym_setwide (np, cp, wide); 6099 6100 np->msgout[0] = M_EXTENDED; 6101 np->msgout[1] = 2; 6102 np->msgout[2] = M_X_WIDE_REQ; 6103 np->msgout[3] = wide; 6104 6105 np->msgin [0] = M_NOOP; 6106 6107 cp->nego_status = NS_WIDE; 6108 6109 if (DEBUG_FLAGS & DEBUG_NEGO) { 6110 sym_print_msg(cp, "wide msgout", np->msgout); 6111 } 6112 6113 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 6114 return; 6115 reject_it: 6116 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6117 } 6118 6119 /* 6120 * Reset SYNC or WIDE to default settings. 6121 * 6122 * Called when a negotiation does not succeed either 6123 * on rejection or on protocol error. 6124 */ 6125 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 6126 { 6127 /* 6128 * any error in negotiation: 6129 * fall back to default mode. 6130 */ 6131 switch (cp->nego_status) { 6132 case NS_PPR: 6133 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6134 break; 6135 case NS_SYNC: 6136 sym_setsync (np, cp, 0, 0, 0, 0); 6137 break; 6138 case NS_WIDE: 6139 sym_setwide (np, cp, 0); 6140 break; 6141 }; 6142 np->msgin [0] = M_NOOP; 6143 np->msgout[0] = M_NOOP; 6144 cp->nego_status = 0; 6145 } 6146 6147 /* 6148 * chip handler for MESSAGE REJECT received in response to 6149 * a WIDE or SYNCHRONOUS negotiation. 6150 */ 6151 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6152 { 6153 sym_nego_default(np, tp, cp); 6154 OUTB (HS_PRT, HS_BUSY); 6155 } 6156 6157 /* 6158 * chip exception handler for programmed interrupts. 6159 */ 6160 void sym_int_sir (hcb_p np) 6161 { 6162 u_char num = INB (nc_dsps); 6163 u32 dsa = INL (nc_dsa); 6164 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6165 u_char target = INB (nc_sdid) & 0x0f; 6166 tcb_p tp = &np->target[target]; 6167 int tmp; 6168 6169 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6170 6171 switch (num) { 6172 /* 6173 * Command has been completed with error condition 6174 * or has been auto-sensed. 6175 */ 6176 case SIR_COMPLETE_ERROR: 6177 sym_complete_error(np, cp); 6178 return; 6179 /* 6180 * The C code is currently trying to recover from something. 6181 * Typically, user want to abort some command. 6182 */ 6183 case SIR_SCRIPT_STOPPED: 6184 case SIR_TARGET_SELECTED: 6185 case SIR_ABORT_SENT: 6186 sym_sir_task_recovery(np, num); 6187 return; 6188 /* 6189 * The device didn't go to MSG OUT phase after having 6190 * been selected with ATN. We donnot want to handle 6191 * that. 6192 */ 6193 case SIR_SEL_ATN_NO_MSG_OUT: 6194 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6195 sym_name (np), target); 6196 goto out_stuck; 6197 /* 6198 * The device didn't switch to MSG IN phase after 6199 * having reseleted the initiator. 6200 */ 6201 case SIR_RESEL_NO_MSG_IN: 6202 printf ("%s:%d: No MSG IN phase after reselection.\n", 6203 sym_name (np), target); 6204 goto out_stuck; 6205 /* 6206 * After reselection, the device sent a message that wasn't 6207 * an IDENTIFY. 6208 */ 6209 case SIR_RESEL_NO_IDENTIFY: 6210 printf ("%s:%d: No IDENTIFY after reselection.\n", 6211 sym_name (np), target); 6212 goto out_stuck; 6213 /* 6214 * The device reselected a LUN we donnot know about. 6215 */ 6216 case SIR_RESEL_BAD_LUN: 6217 np->msgout[0] = M_RESET; 6218 goto out; 6219 /* 6220 * The device reselected for an untagged nexus and we 6221 * haven't any. 6222 */ 6223 case SIR_RESEL_BAD_I_T_L: 6224 np->msgout[0] = M_ABORT; 6225 goto out; 6226 /* 6227 * The device reselected for a tagged nexus that we donnot 6228 * have. 6229 */ 6230 case SIR_RESEL_BAD_I_T_L_Q: 6231 np->msgout[0] = M_ABORT_TAG; 6232 goto out; 6233 /* 6234 * The SCRIPTS let us know that the device has grabbed 6235 * our message and will abort the job. 6236 */ 6237 case SIR_RESEL_ABORTED: 6238 np->lastmsg = np->msgout[0]; 6239 np->msgout[0] = M_NOOP; 6240 printf ("%s:%d: message %x sent on bad reselection.\n", 6241 sym_name (np), target, np->lastmsg); 6242 goto out; 6243 /* 6244 * The SCRIPTS let us know that a message has been 6245 * successfully sent to the device. 6246 */ 6247 case SIR_MSG_OUT_DONE: 6248 np->lastmsg = np->msgout[0]; 6249 np->msgout[0] = M_NOOP; 6250 /* Should we really care of that */ 6251 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6252 if (cp) { 6253 cp->xerr_status &= ~XE_PARITY_ERR; 6254 if (!cp->xerr_status) 6255 OUTOFFB (HF_PRT, HF_EXT_ERR); 6256 } 6257 } 6258 goto out; 6259 /* 6260 * The device didn't send a GOOD SCSI status. 6261 * We may have some work to do prior to allow 6262 * the SCRIPTS processor to continue. 6263 */ 6264 case SIR_BAD_SCSI_STATUS: 6265 if (!cp) 6266 goto out; 6267 sym_sir_bad_scsi_status(np, num, cp); 6268 return; 6269 /* 6270 * We are asked by the SCRIPTS to prepare a 6271 * REJECT message. 6272 */ 6273 case SIR_REJECT_TO_SEND: 6274 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6275 np->msgout[0] = M_REJECT; 6276 goto out; 6277 /* 6278 * We have been ODD at the end of a DATA IN 6279 * transfer and the device didn't send a 6280 * IGNORE WIDE RESIDUE message. 6281 * It is a data overrun condition. 6282 */ 6283 case SIR_SWIDE_OVERRUN: 6284 if (cp) { 6285 OUTONB (HF_PRT, HF_EXT_ERR); 6286 cp->xerr_status |= XE_SWIDE_OVRUN; 6287 } 6288 goto out; 6289 /* 6290 * We have been ODD at the end of a DATA OUT 6291 * transfer. 6292 * It is a data underrun condition. 6293 */ 6294 case SIR_SODL_UNDERRUN: 6295 if (cp) { 6296 OUTONB (HF_PRT, HF_EXT_ERR); 6297 cp->xerr_status |= XE_SODL_UNRUN; 6298 } 6299 goto out; 6300 /* 6301 * The device wants us to tranfer more data than 6302 * expected or in the wrong direction. 6303 * The number of extra bytes is in scratcha. 6304 * It is a data overrun condition. 6305 */ 6306 case SIR_DATA_OVERRUN: 6307 if (cp) { 6308 OUTONB (HF_PRT, HF_EXT_ERR); 6309 cp->xerr_status |= XE_EXTRA_DATA; 6310 cp->extra_bytes += INL (nc_scratcha); 6311 } 6312 goto out; 6313 /* 6314 * The device switched to an illegal phase (4/5). 6315 */ 6316 case SIR_BAD_PHASE: 6317 if (cp) { 6318 OUTONB (HF_PRT, HF_EXT_ERR); 6319 cp->xerr_status |= XE_BAD_PHASE; 6320 } 6321 goto out; 6322 /* 6323 * We received a message. 6324 */ 6325 case SIR_MSG_RECEIVED: 6326 if (!cp) 6327 goto out_stuck; 6328 switch (np->msgin [0]) { 6329 /* 6330 * We received an extended message. 6331 * We handle MODIFY DATA POINTER, SDTR, WDTR 6332 * and reject all other extended messages. 6333 */ 6334 case M_EXTENDED: 6335 switch (np->msgin [2]) { 6336 case M_X_MODIFY_DP: 6337 if (DEBUG_FLAGS & DEBUG_POINTER) 6338 sym_print_msg(cp,"modify DP",np->msgin); 6339 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6340 (np->msgin[5]<<8) + (np->msgin[6]); 6341 sym_modify_dp(np, tp, cp, tmp); 6342 return; 6343 case M_X_SYNC_REQ: 6344 sym_sync_nego(np, tp, cp); 6345 return; 6346 case M_X_PPR_REQ: 6347 sym_ppr_nego(np, tp, cp); 6348 return; 6349 case M_X_WIDE_REQ: 6350 sym_wide_nego(np, tp, cp); 6351 return; 6352 default: 6353 goto out_reject; 6354 } 6355 break; 6356 /* 6357 * We received a 1/2 byte message not handled from SCRIPTS. 6358 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6359 * RESIDUE messages that haven't been anticipated by 6360 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6361 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6362 */ 6363 case M_IGN_RESIDUE: 6364 if (DEBUG_FLAGS & DEBUG_POINTER) 6365 sym_print_msg(cp,"ign wide residue", np->msgin); 6366 sym_modify_dp(np, tp, cp, -1); 6367 return; 6368 case M_REJECT: 6369 if (INB (HS_PRT) == HS_NEGOTIATE) 6370 sym_nego_rejected(np, tp, cp); 6371 else { 6372 PRINT_ADDR(cp); 6373 printf ("M_REJECT received (%x:%x).\n", 6374 scr_to_cpu(np->lastmsg), np->msgout[0]); 6375 } 6376 goto out_clrack; 6377 break; 6378 default: 6379 goto out_reject; 6380 } 6381 break; 6382 /* 6383 * We received an unknown message. 6384 * Ignore all MSG IN phases and reject it. 6385 */ 6386 case SIR_MSG_WEIRD: 6387 sym_print_msg(cp, "WEIRD message received", np->msgin); 6388 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6389 return; 6390 /* 6391 * Negotiation failed. 6392 * Target does not send us the reply. 6393 * Remove the HS_NEGOTIATE status. 6394 */ 6395 case SIR_NEGO_FAILED: 6396 OUTB (HS_PRT, HS_BUSY); 6397 /* 6398 * Negotiation failed. 6399 * Target does not want answer message. 6400 */ 6401 case SIR_NEGO_PROTO: 6402 sym_nego_default(np, tp, cp); 6403 goto out; 6404 }; 6405 6406 out: 6407 OUTONB_STD (); 6408 return; 6409 out_reject: 6410 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6411 return; 6412 out_clrack: 6413 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6414 return; 6415 out_stuck: 6416 } 6417 6418 /* 6419 * Acquire a control block 6420 */ 6421 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6422 { 6423 tcb_p tp = &np->target[tn]; 6424 lcb_p lp = sym_lp(np, tp, ln); 6425 u_short tag = NO_TAG; 6426 SYM_QUEHEAD *qp; 6427 ccb_p cp = (ccb_p) 0; 6428 6429 /* 6430 * Look for a free CCB 6431 */ 6432 if (sym_que_empty(&np->free_ccbq)) 6433 (void) sym_alloc_ccb(np); 6434 qp = sym_remque_head(&np->free_ccbq); 6435 if (!qp) 6436 goto out; 6437 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6438 6439 /* 6440 * If the LCB is not yet available and the LUN 6441 * has been probed ok, try to allocate the LCB. 6442 */ 6443 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6444 lp = sym_alloc_lcb(np, tn, ln); 6445 if (!lp) 6446 goto out_free; 6447 } 6448 6449 /* 6450 * If the LCB is not available here, then the 6451 * logical unit is not yet discovered. For those 6452 * ones only accept 1 SCSI IO per logical unit, 6453 * since we cannot allow disconnections. 6454 */ 6455 if (!lp) { 6456 if (!sym_is_bit(tp->busy0_map, ln)) 6457 sym_set_bit(tp->busy0_map, ln); 6458 else 6459 goto out_free; 6460 } else { 6461 /* 6462 * If we have been asked for a tagged command. 6463 */ 6464 if (tag_order) { 6465 /* 6466 * Debugging purpose. 6467 */ 6468 assert(lp->busy_itl == 0); 6469 /* 6470 * Allocate resources for tags if not yet. 6471 */ 6472 if (!lp->cb_tags) { 6473 sym_alloc_lcb_tags(np, tn, ln); 6474 if (!lp->cb_tags) 6475 goto out_free; 6476 } 6477 /* 6478 * Get a tag for this SCSI IO and set up 6479 * the CCB bus address for reselection, 6480 * and count it for this LUN. 6481 * Toggle reselect path to tagged. 6482 */ 6483 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6484 tag = lp->cb_tags[lp->ia_tag]; 6485 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6486 lp->ia_tag = 0; 6487 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6488 ++lp->busy_itlq; 6489 lp->head.resel_sa = 6490 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6491 } 6492 else 6493 goto out_free; 6494 } 6495 /* 6496 * This command will not be tagged. 6497 * If we already have either a tagged or untagged 6498 * one, refuse to overlap this untagged one. 6499 */ 6500 else { 6501 /* 6502 * Debugging purpose. 6503 */ 6504 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6505 /* 6506 * Count this nexus for this LUN. 6507 * Set up the CCB bus address for reselection. 6508 * Toggle reselect path to untagged. 6509 */ 6510 if (++lp->busy_itl == 1) { 6511 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6512 lp->head.resel_sa = 6513 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6514 } 6515 else 6516 goto out_free; 6517 } 6518 } 6519 /* 6520 * Put the CCB into the busy queue. 6521 */ 6522 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6523 6524 /* 6525 * Remember all informations needed to free this CCB. 6526 */ 6527 cp->to_abort = 0; 6528 cp->tag = tag; 6529 cp->target = tn; 6530 cp->lun = ln; 6531 6532 if (DEBUG_FLAGS & DEBUG_TAGS) { 6533 PRINT_LUN(np, tn, ln); 6534 printf ("ccb @%p using tag %d.\n", cp, tag); 6535 } 6536 6537 out: 6538 return cp; 6539 out_free: 6540 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6541 return (ccb_p) 0; 6542 } 6543 6544 /* 6545 * Release one control block 6546 */ 6547 static void sym_free_ccb (hcb_p np, ccb_p cp) 6548 { 6549 tcb_p tp = &np->target[cp->target]; 6550 lcb_p lp = sym_lp(np, tp, cp->lun); 6551 6552 if (DEBUG_FLAGS & DEBUG_TAGS) { 6553 PRINT_LUN(np, cp->target, cp->lun); 6554 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6555 } 6556 6557 /* 6558 * If LCB available, 6559 */ 6560 if (lp) { 6561 /* 6562 * If tagged, release the tag, set the relect path 6563 */ 6564 if (cp->tag != NO_TAG) { 6565 /* 6566 * Free the tag value. 6567 */ 6568 lp->cb_tags[lp->if_tag] = cp->tag; 6569 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6570 lp->if_tag = 0; 6571 /* 6572 * Make the reselect path invalid, 6573 * and uncount this CCB. 6574 */ 6575 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6576 --lp->busy_itlq; 6577 } else { /* Untagged */ 6578 /* 6579 * Make the reselect path invalid, 6580 * and uncount this CCB. 6581 */ 6582 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6583 --lp->busy_itl; 6584 } 6585 /* 6586 * If no JOB active, make the LUN reselect path invalid. 6587 */ 6588 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6589 lp->head.resel_sa = 6590 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6591 } 6592 /* 6593 * Otherwise, we only accept 1 IO per LUN. 6594 * Clear the bit that keeps track of this IO. 6595 */ 6596 else 6597 sym_clr_bit(tp->busy0_map, cp->lun); 6598 6599 /* 6600 * We donnot queue more than 1 ccb per target 6601 * with negotiation at any time. If this ccb was 6602 * used for negotiation, clear this info in the tcb. 6603 */ 6604 if (cp == tp->nego_cp) 6605 tp->nego_cp = 0; 6606 6607 #ifdef SYM_CONF_IARB_SUPPORT 6608 /* 6609 * If we just complete the last queued CCB, 6610 * clear this info that is no longer relevant. 6611 */ 6612 if (cp == np->last_cp) 6613 np->last_cp = 0; 6614 #endif 6615 6616 #ifdef FreeBSD_Bus_Dma_Abstraction 6617 /* 6618 * Unmap user data from DMA map if needed. 6619 */ 6620 if (cp->dmamapped) { 6621 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6622 cp->dmamapped = 0; 6623 } 6624 #endif 6625 6626 /* 6627 * Make this CCB available. 6628 */ 6629 cp->cam_ccb = 0; 6630 cp->host_status = HS_IDLE; 6631 sym_remque(&cp->link_ccbq); 6632 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6633 } 6634 6635 /* 6636 * Allocate a CCB from memory and initialize its fixed part. 6637 */ 6638 static ccb_p sym_alloc_ccb(hcb_p np) 6639 { 6640 ccb_p cp = 0; 6641 int hcode; 6642 6643 /* 6644 * Prevent from allocating more CCBs than we can 6645 * queue to the controller. 6646 */ 6647 if (np->actccbs >= SYM_CONF_MAX_START) 6648 return 0; 6649 6650 /* 6651 * Allocate memory for this CCB. 6652 */ 6653 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6654 if (!cp) 6655 goto out_free; 6656 6657 /* 6658 * Allocate a bounce buffer for sense data. 6659 */ 6660 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6661 if (!cp->sns_bbuf) 6662 goto out_free; 6663 6664 /* 6665 * Allocate a map for the DMA of user data. 6666 */ 6667 #ifdef FreeBSD_Bus_Dma_Abstraction 6668 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6669 goto out_free; 6670 #endif 6671 /* 6672 * Count it. 6673 */ 6674 np->actccbs++; 6675 6676 /* 6677 * Compute the bus address of this ccb. 6678 */ 6679 cp->ccb_ba = vtobus(cp); 6680 6681 /* 6682 * Insert this ccb into the hashed list. 6683 */ 6684 hcode = CCB_HASH_CODE(cp->ccb_ba); 6685 cp->link_ccbh = np->ccbh[hcode]; 6686 np->ccbh[hcode] = cp; 6687 6688 /* 6689 * Initialyze the start and restart actions. 6690 */ 6691 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6692 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6693 6694 /* 6695 * Initilialyze some other fields. 6696 */ 6697 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6698 6699 /* 6700 * Chain into free ccb queue. 6701 */ 6702 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6703 6704 return cp; 6705 out_free: 6706 if (cp) { 6707 if (cp->sns_bbuf) 6708 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF"); 6709 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6710 } 6711 return 0; 6712 } 6713 6714 /* 6715 * Look up a CCB from a DSA value. 6716 */ 6717 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6718 { 6719 int hcode; 6720 ccb_p cp; 6721 6722 hcode = CCB_HASH_CODE(dsa); 6723 cp = np->ccbh[hcode]; 6724 while (cp) { 6725 if (cp->ccb_ba == dsa) 6726 break; 6727 cp = cp->link_ccbh; 6728 } 6729 6730 return cp; 6731 } 6732 6733 /* 6734 * Target control block initialisation. 6735 * Nothing important to do at the moment. 6736 */ 6737 static void sym_init_tcb (hcb_p np, u_char tn) 6738 { 6739 /* 6740 * Check some alignments required by the chip. 6741 */ 6742 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6743 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6744 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6745 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6746 } 6747 6748 /* 6749 * Lun control block allocation and initialization. 6750 */ 6751 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6752 { 6753 tcb_p tp = &np->target[tn]; 6754 lcb_p lp = sym_lp(np, tp, ln); 6755 6756 /* 6757 * Already done, just return. 6758 */ 6759 if (lp) 6760 return lp; 6761 /* 6762 * Check against some race. 6763 */ 6764 assert(!sym_is_bit(tp->busy0_map, ln)); 6765 6766 /* 6767 * Initialize the target control block if not yet. 6768 */ 6769 sym_init_tcb (np, tn); 6770 6771 /* 6772 * Allocate the LCB bus address array. 6773 * Compute the bus address of this table. 6774 */ 6775 if (ln && !tp->luntbl) { 6776 int i; 6777 6778 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6779 if (!tp->luntbl) 6780 goto fail; 6781 for (i = 0 ; i < 64 ; i++) 6782 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6783 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6784 } 6785 6786 /* 6787 * Allocate the table of pointers for LUN(s) > 0, if needed. 6788 */ 6789 if (ln && !tp->lunmp) { 6790 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6791 "LUNMP"); 6792 if (!tp->lunmp) 6793 goto fail; 6794 } 6795 6796 /* 6797 * Allocate the lcb. 6798 * Make it available to the chip. 6799 */ 6800 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6801 if (!lp) 6802 goto fail; 6803 if (ln) { 6804 tp->lunmp[ln] = lp; 6805 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6806 } 6807 else { 6808 tp->lun0p = lp; 6809 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6810 } 6811 6812 /* 6813 * Let the itl task point to error handling. 6814 */ 6815 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6816 6817 /* 6818 * Set the reselect pattern to our default. :) 6819 */ 6820 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6821 6822 /* 6823 * Set user capabilities. 6824 */ 6825 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6826 6827 fail: 6828 return lp; 6829 } 6830 6831 /* 6832 * Allocate LCB resources for tagged command queuing. 6833 */ 6834 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6835 { 6836 tcb_p tp = &np->target[tn]; 6837 lcb_p lp = sym_lp(np, tp, ln); 6838 int i; 6839 6840 /* 6841 * If LCB not available, try to allocate it. 6842 */ 6843 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6844 goto fail; 6845 6846 /* 6847 * Allocate the task table and and the tag allocation 6848 * circular buffer. We want both or none. 6849 */ 6850 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6851 if (!lp->itlq_tbl) 6852 goto fail; 6853 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6854 if (!lp->cb_tags) { 6855 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6856 lp->itlq_tbl = 0; 6857 goto fail; 6858 } 6859 6860 /* 6861 * Initialize the task table with invalid entries. 6862 */ 6863 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6864 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6865 6866 /* 6867 * Fill up the tag buffer with tag numbers. 6868 */ 6869 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6870 lp->cb_tags[i] = i; 6871 6872 /* 6873 * Make the task table available to SCRIPTS, 6874 * And accept tagged commands now. 6875 */ 6876 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6877 6878 return; 6879 fail: 6880 } 6881 6882 /* 6883 * Test the pci bus snoop logic :-( 6884 * 6885 * Has to be called with interrupts disabled. 6886 */ 6887 #ifndef SYM_CONF_IOMAPPED 6888 static int sym_regtest (hcb_p np) 6889 { 6890 register volatile u32 data; 6891 /* 6892 * chip registers may NOT be cached. 6893 * write 0xffffffff to a read only register area, 6894 * and try to read it back. 6895 */ 6896 data = 0xffffffff; 6897 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6898 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6899 #if 1 6900 if (data == 0xffffffff) { 6901 #else 6902 if ((data & 0xe2f0fffd) != 0x02000080) { 6903 #endif 6904 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6905 (unsigned) data); 6906 return (0x10); 6907 }; 6908 return (0); 6909 } 6910 #endif 6911 6912 static int sym_snooptest (hcb_p np) 6913 { 6914 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6915 int i, err=0; 6916 #ifndef SYM_CONF_IOMAPPED 6917 err |= sym_regtest (np); 6918 if (err) return (err); 6919 #endif 6920 restart_test: 6921 /* 6922 * Enable Master Parity Checking as we intend 6923 * to enable it for normal operations. 6924 */ 6925 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6926 /* 6927 * init 6928 */ 6929 pc = SCRIPTB0_BA (np, snooptest); 6930 host_wr = 1; 6931 sym_wr = 2; 6932 /* 6933 * Set memory and register. 6934 */ 6935 np->cache = cpu_to_scr(host_wr); 6936 OUTL (nc_temp, sym_wr); 6937 /* 6938 * Start script (exchange values) 6939 */ 6940 OUTL (nc_dsa, np->hcb_ba); 6941 OUTL_DSP (pc); 6942 /* 6943 * Wait 'til done (with timeout) 6944 */ 6945 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6946 if (INB(nc_istat) & (INTF|SIP|DIP)) 6947 break; 6948 if (i>=SYM_SNOOP_TIMEOUT) { 6949 printf ("CACHE TEST FAILED: timeout.\n"); 6950 return (0x20); 6951 }; 6952 /* 6953 * Check for fatal DMA errors. 6954 */ 6955 dstat = INB (nc_dstat); 6956 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6957 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6958 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6959 "DISABLING MASTER DATA PARITY CHECKING.\n", 6960 sym_name(np)); 6961 np->rv_ctest4 &= ~MPEE; 6962 goto restart_test; 6963 } 6964 #endif 6965 if (dstat & (MDPE|BF|IID)) { 6966 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6967 return (0x80); 6968 } 6969 /* 6970 * Save termination position. 6971 */ 6972 pc = INL (nc_dsp); 6973 /* 6974 * Read memory and register. 6975 */ 6976 host_rd = scr_to_cpu(np->cache); 6977 sym_rd = INL (nc_scratcha); 6978 sym_bk = INL (nc_temp); 6979 6980 /* 6981 * Check termination position. 6982 */ 6983 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6984 printf ("CACHE TEST FAILED: script execution failed.\n"); 6985 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6986 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6987 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6988 return (0x40); 6989 }; 6990 /* 6991 * Show results. 6992 */ 6993 if (host_wr != sym_rd) { 6994 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6995 (int) host_wr, (int) sym_rd); 6996 err |= 1; 6997 }; 6998 if (host_rd != sym_wr) { 6999 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 7000 (int) sym_wr, (int) host_rd); 7001 err |= 2; 7002 }; 7003 if (sym_bk != sym_wr) { 7004 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 7005 (int) sym_wr, (int) sym_bk); 7006 err |= 4; 7007 }; 7008 7009 return (err); 7010 } 7011 7012 /* 7013 * Determine the chip's clock frequency. 7014 * 7015 * This is essential for the negotiation of the synchronous 7016 * transfer rate. 7017 * 7018 * Note: we have to return the correct value. 7019 * THERE IS NO SAFE DEFAULT VALUE. 7020 * 7021 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 7022 * 53C860 and 53C875 rev. 1 support fast20 transfers but 7023 * do not have a clock doubler and so are provided with a 7024 * 80 MHz clock. All other fast20 boards incorporate a doubler 7025 * and so should be delivered with a 40 MHz clock. 7026 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 7027 * clock and provide a clock quadrupler (160 Mhz). 7028 */ 7029 7030 /* 7031 * Select SCSI clock frequency 7032 */ 7033 static void sym_selectclock(hcb_p np, u_char scntl3) 7034 { 7035 /* 7036 * If multiplier not present or not selected, leave here. 7037 */ 7038 if (np->multiplier <= 1) { 7039 OUTB(nc_scntl3, scntl3); 7040 return; 7041 } 7042 7043 if (sym_verbose >= 2) 7044 printf ("%s: enabling clock multiplier\n", sym_name(np)); 7045 7046 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 7047 /* 7048 * Wait for the LCKFRQ bit to be set if supported by the chip. 7049 * Otherwise wait 20 micro-seconds. 7050 */ 7051 if (np->features & FE_LCKFRQ) { 7052 int i = 20; 7053 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 7054 UDELAY (20); 7055 if (!i) 7056 printf("%s: the chip cannot lock the frequency\n", 7057 sym_name(np)); 7058 } else 7059 UDELAY (20); 7060 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 7061 OUTB(nc_scntl3, scntl3); 7062 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 7063 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 7064 } 7065 7066 /* 7067 * calculate SCSI clock frequency (in KHz) 7068 */ 7069 static unsigned getfreq (hcb_p np, int gen) 7070 { 7071 unsigned int ms = 0; 7072 unsigned int f; 7073 7074 /* 7075 * Measure GEN timer delay in order 7076 * to calculate SCSI clock frequency 7077 * 7078 * This code will never execute too 7079 * many loop iterations (if DELAY is 7080 * reasonably correct). It could get 7081 * too low a delay (too high a freq.) 7082 * if the CPU is slow executing the 7083 * loop for some reason (an NMI, for 7084 * example). For this reason we will 7085 * if multiple measurements are to be 7086 * performed trust the higher delay 7087 * (lower frequency returned). 7088 */ 7089 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 7090 (void) INW (nc_sist); /* clear pending scsi interrupt */ 7091 OUTB (nc_dien , 0); /* mask all dma interrupts */ 7092 (void) INW (nc_sist); /* another one, just to be sure :) */ 7093 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 7094 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7095 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 7096 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 7097 UDELAY (1000); /* count ms */ 7098 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7099 /* 7100 * set prescaler to divide by whatever 0 means 7101 * 0 ought to choose divide by 2, but appears 7102 * to set divide by 3.5 mode in my 53c810 ... 7103 */ 7104 OUTB (nc_scntl3, 0); 7105 7106 /* 7107 * adjust for prescaler, and convert into KHz 7108 */ 7109 f = ms ? ((1 << gen) * 4340) / ms : 0; 7110 7111 if (sym_verbose >= 2) 7112 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 7113 sym_name(np), gen, ms, f); 7114 7115 return f; 7116 } 7117 7118 static unsigned sym_getfreq (hcb_p np) 7119 { 7120 u_int f1, f2; 7121 int gen = 11; 7122 7123 (void) getfreq (np, gen); /* throw away first result */ 7124 f1 = getfreq (np, gen); 7125 f2 = getfreq (np, gen); 7126 if (f1 > f2) f1 = f2; /* trust lower result */ 7127 return f1; 7128 } 7129 7130 /* 7131 * Get/probe chip SCSI clock frequency 7132 */ 7133 static void sym_getclock (hcb_p np, int mult) 7134 { 7135 unsigned char scntl3 = np->sv_scntl3; 7136 unsigned char stest1 = np->sv_stest1; 7137 unsigned f1; 7138 7139 /* 7140 * For the C10 core, assume 40 MHz. 7141 */ 7142 if (np->features & FE_C10) { 7143 np->multiplier = mult; 7144 np->clock_khz = 40000 * mult; 7145 return; 7146 } 7147 7148 np->multiplier = 1; 7149 f1 = 40000; 7150 /* 7151 * True with 875/895/896/895A with clock multiplier selected 7152 */ 7153 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7154 if (sym_verbose >= 2) 7155 printf ("%s: clock multiplier found\n", sym_name(np)); 7156 np->multiplier = mult; 7157 } 7158 7159 /* 7160 * If multiplier not found or scntl3 not 7,5,3, 7161 * reset chip and get frequency from general purpose timer. 7162 * Otherwise trust scntl3 BIOS setting. 7163 */ 7164 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7165 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7166 f1 = sym_getfreq (np); 7167 7168 if (sym_verbose) 7169 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7170 7171 if (f1 < 45000) f1 = 40000; 7172 else if (f1 < 55000) f1 = 50000; 7173 else f1 = 80000; 7174 7175 if (f1 < 80000 && mult > 1) { 7176 if (sym_verbose >= 2) 7177 printf ("%s: clock multiplier assumed\n", 7178 sym_name(np)); 7179 np->multiplier = mult; 7180 } 7181 } else { 7182 if ((scntl3 & 7) == 3) f1 = 40000; 7183 else if ((scntl3 & 7) == 5) f1 = 80000; 7184 else f1 = 160000; 7185 7186 f1 /= np->multiplier; 7187 } 7188 7189 /* 7190 * Compute controller synchronous parameters. 7191 */ 7192 f1 *= np->multiplier; 7193 np->clock_khz = f1; 7194 } 7195 7196 /* 7197 * Get/probe PCI clock frequency 7198 */ 7199 static int sym_getpciclock (hcb_p np) 7200 { 7201 int f = 0; 7202 7203 /* 7204 * For the C1010-33, this doesn't work. 7205 * For the C1010-66, this will be tested when I'll have 7206 * such a beast to play with. 7207 */ 7208 if (!(np->features & FE_C10)) { 7209 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7210 f = (int) sym_getfreq (np); 7211 OUTB (nc_stest1, 0); 7212 } 7213 np->pciclk_khz = f; 7214 7215 return f; 7216 } 7217 7218 /*============= DRIVER ACTION/COMPLETION ====================*/ 7219 7220 /* 7221 * Print something that tells about extended errors. 7222 */ 7223 static void sym_print_xerr(ccb_p cp, int x_status) 7224 { 7225 if (x_status & XE_PARITY_ERR) { 7226 PRINT_ADDR(cp); 7227 printf ("unrecovered SCSI parity error.\n"); 7228 } 7229 if (x_status & XE_EXTRA_DATA) { 7230 PRINT_ADDR(cp); 7231 printf ("extraneous data discarded.\n"); 7232 } 7233 if (x_status & XE_BAD_PHASE) { 7234 PRINT_ADDR(cp); 7235 printf ("illegal scsi phase (4/5).\n"); 7236 } 7237 if (x_status & XE_SODL_UNRUN) { 7238 PRINT_ADDR(cp); 7239 printf ("ODD transfer in DATA OUT phase.\n"); 7240 } 7241 if (x_status & XE_SWIDE_OVRUN) { 7242 PRINT_ADDR(cp); 7243 printf ("ODD transfer in DATA IN phase.\n"); 7244 } 7245 } 7246 7247 /* 7248 * Choose the more appropriate CAM status if 7249 * the IO encountered an extended error. 7250 */ 7251 static int sym_xerr_cam_status(int cam_status, int x_status) 7252 { 7253 if (x_status) { 7254 if (x_status & XE_PARITY_ERR) 7255 cam_status = CAM_UNCOR_PARITY; 7256 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7257 cam_status = CAM_DATA_RUN_ERR; 7258 else if (x_status & XE_BAD_PHASE) 7259 cam_status = CAM_REQ_CMP_ERR; 7260 else 7261 cam_status = CAM_REQ_CMP_ERR; 7262 } 7263 return cam_status; 7264 } 7265 7266 /* 7267 * Complete execution of a SCSI command with extented 7268 * error, SCSI status error, or having been auto-sensed. 7269 * 7270 * The SCRIPTS processor is not running there, so we 7271 * can safely access IO registers and remove JOBs from 7272 * the START queue. 7273 * SCRATCHA is assumed to have been loaded with STARTPOS 7274 * before the SCRIPTS called the C code. 7275 */ 7276 static void sym_complete_error (hcb_p np, ccb_p cp) 7277 { 7278 struct ccb_scsiio *csio; 7279 u_int cam_status; 7280 int i; 7281 7282 /* 7283 * Paranoid check. :) 7284 */ 7285 if (!cp || !cp->cam_ccb) 7286 return; 7287 7288 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7289 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7290 cp->host_status, cp->ssss_status, cp->host_flags, 7291 cp->target, cp->lun); 7292 MDELAY(100); 7293 } 7294 7295 /* 7296 * Get CAM command pointer. 7297 */ 7298 csio = &cp->cam_ccb->csio; 7299 7300 /* 7301 * Check for extended errors. 7302 */ 7303 if (cp->xerr_status) { 7304 if (sym_verbose) 7305 sym_print_xerr(cp, cp->xerr_status); 7306 if (cp->host_status == HS_COMPLETE) 7307 cp->host_status = HS_COMP_ERR; 7308 } 7309 7310 /* 7311 * Calculate the residual. 7312 */ 7313 csio->sense_resid = 0; 7314 csio->resid = sym_compute_residual(np, cp); 7315 7316 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7317 csio->resid = 0; /* throw them away. :) */ 7318 cp->sv_resid = 0; 7319 } 7320 7321 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7322 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7323 csio->sense_resid = csio->resid; /* Swap residuals */ 7324 csio->resid = cp->sv_resid; 7325 cp->sv_resid = 0; 7326 if (sym_verbose && cp->sv_xerr_status) 7327 sym_print_xerr(cp, cp->sv_xerr_status); 7328 if (cp->host_status == HS_COMPLETE && 7329 cp->ssss_status == S_GOOD && 7330 cp->xerr_status == 0) { 7331 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7332 cp->sv_xerr_status); 7333 cam_status |= CAM_AUTOSNS_VALID; 7334 /* 7335 * Bounce back the sense data to user and 7336 * fix the residual. 7337 */ 7338 bzero(&csio->sense_data, csio->sense_len); 7339 bcopy(cp->sns_bbuf, &csio->sense_data, 7340 MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); 7341 csio->sense_resid += csio->sense_len; 7342 csio->sense_resid -= SYM_SNS_BBUF_LEN; 7343 #if 0 7344 /* 7345 * If the device reports a UNIT ATTENTION condition 7346 * due to a RESET condition, we should consider all 7347 * disconnect CCBs for this unit as aborted. 7348 */ 7349 if (1) { 7350 u_char *p; 7351 p = (u_char *) csio->sense_data; 7352 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7353 sym_clear_tasks(np, CAM_REQ_ABORTED, 7354 cp->target,cp->lun, -1); 7355 } 7356 #endif 7357 } 7358 else 7359 cam_status = CAM_AUTOSENSE_FAIL; 7360 } 7361 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7362 csio->scsi_status = cp->ssss_status; 7363 cam_status = CAM_SCSI_STATUS_ERROR; 7364 } 7365 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7366 cam_status = CAM_SEL_TIMEOUT; 7367 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7368 cam_status = CAM_UNEXP_BUSFREE; 7369 else { /* Extended error */ 7370 if (sym_verbose) { 7371 PRINT_ADDR(cp); 7372 printf ("COMMAND FAILED (%x %x %x).\n", 7373 cp->host_status, cp->ssss_status, 7374 cp->xerr_status); 7375 } 7376 csio->scsi_status = cp->ssss_status; 7377 /* 7378 * Set the most appropriate value for CAM status. 7379 */ 7380 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7381 cp->xerr_status); 7382 } 7383 7384 /* 7385 * Dequeue all queued CCBs for that device 7386 * not yet started by SCRIPTS. 7387 */ 7388 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7389 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7390 7391 /* 7392 * Restart the SCRIPTS processor. 7393 */ 7394 OUTL_DSP (SCRIPTA_BA (np, start)); 7395 7396 #ifdef FreeBSD_Bus_Dma_Abstraction 7397 /* 7398 * Synchronize DMA map if needed. 7399 */ 7400 if (cp->dmamapped) { 7401 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7402 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 7403 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7404 } 7405 #endif 7406 /* 7407 * Add this one to the COMP queue. 7408 * Complete all those commands with either error 7409 * or requeue condition. 7410 */ 7411 sym_set_cam_status((union ccb *) csio, cam_status); 7412 sym_remque(&cp->link_ccbq); 7413 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7414 sym_flush_comp_queue(np, 0); 7415 } 7416 7417 /* 7418 * Complete execution of a successful SCSI command. 7419 * 7420 * Only successful commands go to the DONE queue, 7421 * since we need to have the SCRIPTS processor 7422 * stopped on any error condition. 7423 * The SCRIPTS processor is running while we are 7424 * completing successful commands. 7425 */ 7426 static void sym_complete_ok (hcb_p np, ccb_p cp) 7427 { 7428 struct ccb_scsiio *csio; 7429 tcb_p tp; 7430 lcb_p lp; 7431 7432 /* 7433 * Paranoid check. :) 7434 */ 7435 if (!cp || !cp->cam_ccb) 7436 return; 7437 assert (cp->host_status == HS_COMPLETE); 7438 7439 /* 7440 * Get command, target and lun pointers. 7441 */ 7442 csio = &cp->cam_ccb->csio; 7443 tp = &np->target[cp->target]; 7444 lp = sym_lp(np, tp, cp->lun); 7445 7446 /* 7447 * Assume device discovered on first success. 7448 */ 7449 if (!lp) 7450 sym_set_bit(tp->lun_map, cp->lun); 7451 7452 /* 7453 * If all data have been transferred, given than no 7454 * extended error did occur, there is no residual. 7455 */ 7456 csio->resid = 0; 7457 if (cp->phys.head.lastp != cp->phys.head.goalp) 7458 csio->resid = sym_compute_residual(np, cp); 7459 7460 /* 7461 * Wrong transfer residuals may be worse than just always 7462 * returning zero. User can disable this feature from 7463 * sym_conf.h. Residual support is enabled by default. 7464 */ 7465 if (!SYM_CONF_RESIDUAL_SUPPORT) 7466 csio->resid = 0; 7467 7468 #ifdef FreeBSD_Bus_Dma_Abstraction 7469 /* 7470 * Synchronize DMA map if needed. 7471 */ 7472 if (cp->dmamapped) { 7473 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7474 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 7475 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7476 } 7477 #endif 7478 /* 7479 * Set status and complete the command. 7480 */ 7481 csio->scsi_status = cp->ssss_status; 7482 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7483 sym_free_ccb (np, cp); 7484 sym_xpt_done(np, (union ccb *) csio); 7485 } 7486 7487 /* 7488 * Our timeout handler. 7489 */ 7490 static void sym_timeout1(void *arg) 7491 { 7492 union ccb *ccb = (union ccb *) arg; 7493 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7494 7495 /* 7496 * Check that the CAM CCB is still queued. 7497 */ 7498 if (!np) 7499 return; 7500 7501 switch(ccb->ccb_h.func_code) { 7502 case XPT_SCSI_IO: 7503 (void) sym_abort_scsiio(np, ccb, 1); 7504 break; 7505 default: 7506 break; 7507 } 7508 } 7509 7510 static void sym_timeout(void *arg) 7511 { 7512 int s = splcam(); 7513 sym_timeout1(arg); 7514 splx(s); 7515 } 7516 7517 /* 7518 * Abort an SCSI IO. 7519 */ 7520 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7521 { 7522 ccb_p cp; 7523 SYM_QUEHEAD *qp; 7524 7525 /* 7526 * Look up our CCB control block. 7527 */ 7528 cp = 0; 7529 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7530 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7531 if (cp2->cam_ccb == ccb) { 7532 cp = cp2; 7533 break; 7534 } 7535 } 7536 if (!cp || cp->host_status == HS_WAIT) 7537 return -1; 7538 7539 /* 7540 * If a previous abort didn't succeed in time, 7541 * perform a BUS reset. 7542 */ 7543 if (cp->to_abort) { 7544 sym_reset_scsi_bus(np, 1); 7545 return 0; 7546 } 7547 7548 /* 7549 * Mark the CCB for abort and allow time for. 7550 */ 7551 cp->to_abort = timed_out ? 2 : 1; 7552 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz); 7553 7554 /* 7555 * Tell the SCRIPTS processor to stop and synchronize with us. 7556 */ 7557 np->istat_sem = SEM; 7558 OUTB (nc_istat, SIGP|SEM); 7559 return 0; 7560 } 7561 7562 /* 7563 * Reset a SCSI device (all LUNs of a target). 7564 */ 7565 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7566 { 7567 tcb_p tp; 7568 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7569 7570 if (ccb_h->target_id == np->myaddr || 7571 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7572 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7573 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7574 return; 7575 } 7576 7577 tp = &np->target[ccb_h->target_id]; 7578 7579 tp->to_reset = 1; 7580 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7581 7582 np->istat_sem = SEM; 7583 OUTB (nc_istat, SIGP|SEM); 7584 return; 7585 } 7586 7587 /* 7588 * SIM action entry point. 7589 */ 7590 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7591 { 7592 int s = splcam(); 7593 sym_action1(sim, ccb); 7594 splx(s); 7595 } 7596 7597 static void sym_action1(struct cam_sim *sim, union ccb *ccb) 7598 { 7599 hcb_p np; 7600 tcb_p tp; 7601 lcb_p lp; 7602 ccb_p cp; 7603 int tmp; 7604 u_char idmsg, *msgptr; 7605 u_int msglen; 7606 struct ccb_scsiio *csio; 7607 struct ccb_hdr *ccb_h; 7608 7609 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7610 7611 /* 7612 * Retrieve our controller data structure. 7613 */ 7614 np = (hcb_p) cam_sim_softc(sim); 7615 7616 /* 7617 * The common case is SCSI IO. 7618 * We deal with other ones elsewhere. 7619 */ 7620 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7621 sym_action2(sim, ccb); 7622 return; 7623 } 7624 csio = &ccb->csio; 7625 ccb_h = &csio->ccb_h; 7626 7627 /* 7628 * Work around races. 7629 */ 7630 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7631 xpt_done(ccb); 7632 return; 7633 } 7634 7635 /* 7636 * Minimal checkings, so that we will not 7637 * go outside our tables. 7638 */ 7639 if (ccb_h->target_id == np->myaddr || 7640 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7641 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7642 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7643 return; 7644 } 7645 7646 /* 7647 * Retreive the target and lun descriptors. 7648 */ 7649 tp = &np->target[ccb_h->target_id]; 7650 lp = sym_lp(np, tp, ccb_h->target_lun); 7651 7652 /* 7653 * Complete the 1st INQUIRY command with error 7654 * condition if the device is flagged NOSCAN 7655 * at BOOT in the NVRAM. This may speed up 7656 * the boot and maintain coherency with BIOS 7657 * device numbering. Clearing the flag allows 7658 * user to rescan skipped devices later. 7659 * We also return error for devices not flagged 7660 * for SCAN LUNS in the NVRAM since some mono-lun 7661 * devices behave badly when asked for some non 7662 * zero LUN. Btw, this is an absolute hack.:-) 7663 */ 7664 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7665 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7666 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7667 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7668 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7669 ccb_h->target_lun != 0)) { 7670 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7671 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7672 return; 7673 } 7674 } 7675 7676 /* 7677 * Get a control block for this IO. 7678 */ 7679 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7680 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7681 if (!cp) { 7682 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7683 return; 7684 } 7685 7686 /* 7687 * Keep track of the IO in our CCB. 7688 */ 7689 cp->cam_ccb = ccb; 7690 7691 /* 7692 * Build the IDENTIFY message. 7693 */ 7694 idmsg = M_IDENTIFY | cp->lun; 7695 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7696 idmsg |= 0x40; 7697 7698 msgptr = cp->scsi_smsg; 7699 msglen = 0; 7700 msgptr[msglen++] = idmsg; 7701 7702 /* 7703 * Build the tag message if present. 7704 */ 7705 if (cp->tag != NO_TAG) { 7706 u_char order = csio->tag_action; 7707 7708 switch(order) { 7709 case M_ORDERED_TAG: 7710 break; 7711 case M_HEAD_TAG: 7712 break; 7713 default: 7714 order = M_SIMPLE_TAG; 7715 } 7716 msgptr[msglen++] = order; 7717 7718 /* 7719 * For less than 128 tags, actual tags are numbered 7720 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7721 * with devices that have problems with #TAG 0 or too 7722 * great #TAG numbers. For more tags (up to 256), 7723 * we use directly our tag number. 7724 */ 7725 #if SYM_CONF_MAX_TASK > (512/4) 7726 msgptr[msglen++] = cp->tag; 7727 #else 7728 msgptr[msglen++] = (cp->tag << 1) + 1; 7729 #endif 7730 } 7731 7732 /* 7733 * Build a negotiation message if needed. 7734 * (nego_status is filled by sym_prepare_nego()) 7735 */ 7736 cp->nego_status = 0; 7737 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7738 tp->tinfo.current.period != tp->tinfo.goal.period || 7739 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7740 tp->tinfo.current.options != tp->tinfo.goal.options) { 7741 if (!tp->nego_cp && lp) 7742 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7743 } 7744 7745 /* 7746 * Fill in our ccb 7747 */ 7748 7749 /* 7750 * Startqueue 7751 */ 7752 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7753 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7754 7755 /* 7756 * select 7757 */ 7758 cp->phys.select.sel_id = cp->target; 7759 cp->phys.select.sel_scntl3 = tp->head.wval; 7760 cp->phys.select.sel_sxfer = tp->head.sval; 7761 cp->phys.select.sel_scntl4 = tp->head.uval; 7762 7763 /* 7764 * message 7765 */ 7766 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7767 cp->phys.smsg.size = cpu_to_scr(msglen); 7768 7769 /* 7770 * command 7771 */ 7772 if (sym_setup_cdb(np, csio, cp) < 0) { 7773 sym_free_ccb(np, cp); 7774 sym_xpt_done(np, ccb); 7775 return; 7776 } 7777 7778 /* 7779 * status 7780 */ 7781 #if 0 /* Provision */ 7782 cp->actualquirks = tp->quirks; 7783 #endif 7784 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7785 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7786 cp->ssss_status = S_ILLEGAL; 7787 cp->xerr_status = 0; 7788 cp->host_flags = 0; 7789 cp->extra_bytes = 0; 7790 7791 /* 7792 * extreme data pointer. 7793 * shall be positive, so -1 is lower than lowest.:) 7794 */ 7795 cp->ext_sg = -1; 7796 cp->ext_ofs = 0; 7797 7798 /* 7799 * Build the data descriptor block 7800 * and start the IO. 7801 */ 7802 sym_setup_data_and_start(np, csio, cp); 7803 } 7804 7805 /* 7806 * Setup buffers and pointers that address the CDB. 7807 * I bet, physical CDBs will never be used on the planet, 7808 * since they can be bounced without significant overhead. 7809 */ 7810 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7811 { 7812 struct ccb_hdr *ccb_h; 7813 u32 cmd_ba; 7814 int cmd_len; 7815 7816 ccb_h = &csio->ccb_h; 7817 7818 /* 7819 * CDB is 16 bytes max. 7820 */ 7821 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7822 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7823 return -1; 7824 } 7825 cmd_len = csio->cdb_len; 7826 7827 if (ccb_h->flags & CAM_CDB_POINTER) { 7828 /* CDB is a pointer */ 7829 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7830 /* CDB pointer is virtual */ 7831 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7832 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7833 } else { 7834 /* CDB pointer is physical */ 7835 #if 0 7836 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7837 #else 7838 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7839 return -1; 7840 #endif 7841 } 7842 } else { 7843 /* CDB is in the CAM ccb (buffer) */ 7844 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7845 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7846 } 7847 7848 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7849 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7850 7851 return 0; 7852 } 7853 7854 /* 7855 * Set up data pointers used by SCRIPTS. 7856 */ 7857 static void __inline 7858 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7859 { 7860 u32 lastp, goalp; 7861 7862 /* 7863 * No segments means no data. 7864 */ 7865 if (!cp->segments) 7866 dir = CAM_DIR_NONE; 7867 7868 /* 7869 * Set the data pointer. 7870 */ 7871 switch(dir) { 7872 case CAM_DIR_OUT: 7873 goalp = SCRIPTA_BA (np, data_out2) + 8; 7874 lastp = goalp - 8 - (cp->segments * (2*4)); 7875 break; 7876 case CAM_DIR_IN: 7877 cp->host_flags |= HF_DATA_IN; 7878 goalp = SCRIPTA_BA (np, data_in2) + 8; 7879 lastp = goalp - 8 - (cp->segments * (2*4)); 7880 break; 7881 case CAM_DIR_NONE: 7882 default: 7883 lastp = goalp = SCRIPTB_BA (np, no_data); 7884 break; 7885 } 7886 7887 cp->phys.head.lastp = cpu_to_scr(lastp); 7888 cp->phys.head.goalp = cpu_to_scr(goalp); 7889 cp->phys.head.savep = cpu_to_scr(lastp); 7890 cp->startp = cp->phys.head.savep; 7891 } 7892 7893 7894 #ifdef FreeBSD_Bus_Dma_Abstraction 7895 /* 7896 * Call back routine for the DMA map service. 7897 * If bounce buffers are used (why ?), we may sleep and then 7898 * be called there in another context. 7899 */ 7900 static void 7901 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7902 { 7903 ccb_p cp; 7904 hcb_p np; 7905 union ccb *ccb; 7906 int s; 7907 7908 s = splcam(); 7909 7910 cp = (ccb_p) arg; 7911 ccb = cp->cam_ccb; 7912 np = (hcb_p) cp->arg; 7913 7914 /* 7915 * Deal with weird races. 7916 */ 7917 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7918 goto out_abort; 7919 7920 /* 7921 * Deal with weird errors. 7922 */ 7923 if (error) { 7924 cp->dmamapped = 0; 7925 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7926 goto out_abort; 7927 } 7928 7929 /* 7930 * Build the data descriptor for the chip. 7931 */ 7932 if (nsegs) { 7933 int retv; 7934 /* 896 rev 1 requires to be careful about boundaries */ 7935 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7936 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7937 else 7938 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7939 if (retv < 0) { 7940 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7941 goto out_abort; 7942 } 7943 } 7944 7945 /* 7946 * Synchronize the DMA map only if we have 7947 * actually mapped the data. 7948 */ 7949 if (cp->dmamapped) { 7950 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7951 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 7952 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7953 } 7954 7955 /* 7956 * Set host status to busy state. 7957 * May have been set back to HS_WAIT to avoid a race. 7958 */ 7959 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7960 7961 /* 7962 * Set data pointers. 7963 */ 7964 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7965 7966 /* 7967 * Enqueue this IO in our pending queue. 7968 */ 7969 sym_enqueue_cam_ccb(np, ccb); 7970 7971 /* 7972 * When `#ifed 1', the code below makes the driver 7973 * panic on the first attempt to write to a SCSI device. 7974 * It is the first test we want to do after a driver 7975 * change that does not seem obviously safe. :) 7976 */ 7977 #if 0 7978 switch (cp->cdb_buf[0]) { 7979 case 0x0A: case 0x2A: case 0xAA: 7980 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7981 MDELAY(10000); 7982 break; 7983 default: 7984 break; 7985 } 7986 #endif 7987 /* 7988 * Activate this job. 7989 */ 7990 sym_put_start_queue(np, cp); 7991 out: 7992 splx(s); 7993 return; 7994 out_abort: 7995 sym_free_ccb(np, cp); 7996 sym_xpt_done(np, ccb); 7997 goto out; 7998 } 7999 8000 /* 8001 * How complex it gets to deal with the data in CAM. 8002 * The Bus Dma stuff makes things still more complex. 8003 */ 8004 static void 8005 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 8006 { 8007 struct ccb_hdr *ccb_h; 8008 int dir, retv; 8009 8010 ccb_h = &csio->ccb_h; 8011 8012 /* 8013 * Now deal with the data. 8014 */ 8015 cp->data_len = csio->dxfer_len; 8016 cp->arg = np; 8017 8018 /* 8019 * No direction means no data. 8020 */ 8021 dir = (ccb_h->flags & CAM_DIR_MASK); 8022 if (dir == CAM_DIR_NONE) { 8023 sym_execute_ccb(cp, NULL, 0, 0); 8024 return; 8025 } 8026 8027 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 8028 /* Single buffer */ 8029 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8030 /* Buffer is virtual */ 8031 int s; 8032 8033 cp->dmamapped = (dir == CAM_DIR_IN) ? 8034 SYM_DMA_READ : SYM_DMA_WRITE; 8035 s = splsoftvm(); 8036 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 8037 csio->data_ptr, csio->dxfer_len, 8038 sym_execute_ccb, cp, 0); 8039 if (retv == EINPROGRESS) { 8040 cp->host_status = HS_WAIT; 8041 xpt_freeze_simq(np->sim, 1); 8042 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 8043 } 8044 splx(s); 8045 } else { 8046 /* Buffer is physical */ 8047 struct bus_dma_segment seg; 8048 8049 seg.ds_addr = (bus_addr_t) csio->data_ptr; 8050 sym_execute_ccb(cp, &seg, 1, 0); 8051 } 8052 } else { 8053 /* Scatter/gather list */ 8054 struct bus_dma_segment *segs; 8055 8056 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 8057 /* The SG list pointer is physical */ 8058 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8059 goto out_abort; 8060 } 8061 8062 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8063 /* SG buffer pointers are virtual */ 8064 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8065 goto out_abort; 8066 } 8067 8068 /* SG buffer pointers are physical */ 8069 segs = (struct bus_dma_segment *)csio->data_ptr; 8070 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 8071 } 8072 return; 8073 out_abort: 8074 sym_free_ccb(np, cp); 8075 sym_xpt_done(np, (union ccb *) csio); 8076 } 8077 8078 /* 8079 * Move the scatter list to our data block. 8080 */ 8081 static int 8082 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 8083 bus_dma_segment_t *psegs, int nsegs) 8084 { 8085 struct sym_tblmove *data; 8086 bus_dma_segment_t *psegs2; 8087 8088 if (nsegs > SYM_CONF_MAX_SG) 8089 return -1; 8090 8091 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 8092 psegs2 = &psegs[nsegs-1]; 8093 cp->segments = nsegs; 8094 8095 while (1) { 8096 data->addr = cpu_to_scr(psegs2->ds_addr); 8097 data->size = cpu_to_scr(psegs2->ds_len); 8098 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8099 printf ("%s scatter: paddr=%lx len=%ld\n", 8100 sym_name(np), (long) psegs2->ds_addr, 8101 (long) psegs2->ds_len); 8102 } 8103 if (psegs2 != psegs) { 8104 --data; 8105 --psegs2; 8106 continue; 8107 } 8108 break; 8109 } 8110 return 0; 8111 } 8112 8113 #else /* FreeBSD_Bus_Dma_Abstraction */ 8114 8115 /* 8116 * How complex it gets to deal with the data in CAM. 8117 * Variant without the Bus Dma Abstraction option. 8118 */ 8119 static void 8120 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 8121 { 8122 struct ccb_hdr *ccb_h; 8123 int dir, retv; 8124 8125 ccb_h = &csio->ccb_h; 8126 8127 /* 8128 * Now deal with the data. 8129 */ 8130 cp->data_len = 0; 8131 cp->segments = 0; 8132 8133 /* 8134 * No direction means no data. 8135 */ 8136 dir = (ccb_h->flags & CAM_DIR_MASK); 8137 if (dir == CAM_DIR_NONE) 8138 goto end_scatter; 8139 8140 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 8141 /* Single buffer */ 8142 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8143 /* Buffer is virtual */ 8144 retv = sym_scatter_virtual(np, cp, 8145 (vm_offset_t) csio->data_ptr, 8146 (vm_size_t) csio->dxfer_len); 8147 } else { 8148 /* Buffer is physical */ 8149 retv = sym_scatter_physical(np, cp, 8150 (vm_offset_t) csio->data_ptr, 8151 (vm_size_t) csio->dxfer_len); 8152 } 8153 } else { 8154 /* Scatter/gather list */ 8155 int nsegs; 8156 struct bus_dma_segment *segs; 8157 segs = (struct bus_dma_segment *)csio->data_ptr; 8158 nsegs = csio->sglist_cnt; 8159 8160 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 8161 /* The SG list pointer is physical */ 8162 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8163 goto out_abort; 8164 } 8165 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8166 /* SG buffer pointers are virtual */ 8167 retv = sym_scatter_sg_virtual(np, cp, segs, nsegs); 8168 } else { 8169 /* SG buffer pointers are physical */ 8170 retv = sym_scatter_sg_physical(np, cp, segs, nsegs); 8171 } 8172 } 8173 if (retv < 0) { 8174 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 8175 goto out_abort; 8176 } 8177 8178 end_scatter: 8179 /* 8180 * Set data pointers. 8181 */ 8182 sym_setup_data_pointers(np, cp, dir); 8183 8184 /* 8185 * Enqueue this IO in our pending queue. 8186 */ 8187 sym_enqueue_cam_ccb(np, (union ccb *) csio); 8188 8189 /* 8190 * Activate this job. 8191 */ 8192 sym_put_start_queue(np, cp); 8193 8194 /* 8195 * Command is successfully queued. 8196 */ 8197 return; 8198 out_abort: 8199 sym_free_ccb(np, cp); 8200 sym_xpt_done(np, (union ccb *) csio); 8201 } 8202 8203 /* 8204 * Scatter a virtual buffer into bus addressable chunks. 8205 */ 8206 static int 8207 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len) 8208 { 8209 u_long pe, pn; 8210 u_long n, k; 8211 int s; 8212 8213 cp->data_len += len; 8214 8215 pe = vaddr + len; 8216 n = len; 8217 s = SYM_CONF_MAX_SG - 1 - cp->segments; 8218 8219 while (n && s >= 0) { 8220 pn = (pe - 1) & ~PAGE_MASK; 8221 k = pe - pn; 8222 if (k > n) { 8223 k = n; 8224 pn = pe - n; 8225 } 8226 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8227 printf ("%s scatter: va=%lx pa=%lx siz=%ld\n", 8228 sym_name(np), pn, (u_long) vtobus(pn), k); 8229 } 8230 cp->phys.data[s].addr = cpu_to_scr(vtobus(pn)); 8231 cp->phys.data[s].size = cpu_to_scr(k); 8232 pe = pn; 8233 n -= k; 8234 --s; 8235 } 8236 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8237 8238 return n ? -1 : 0; 8239 } 8240 8241 /* 8242 * Scatter a SG list with virtual addresses into bus addressable chunks. 8243 */ 8244 static int 8245 sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8246 { 8247 int i, retv = 0; 8248 8249 for (i = nsegs - 1 ; i >= 0 ; --i) { 8250 retv = sym_scatter_virtual(np, cp, 8251 psegs[i].ds_addr, psegs[i].ds_len); 8252 if (retv < 0) 8253 break; 8254 } 8255 return retv; 8256 } 8257 8258 /* 8259 * Scatter a physical buffer into bus addressable chunks. 8260 */ 8261 static int 8262 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len) 8263 { 8264 struct bus_dma_segment seg; 8265 8266 seg.ds_addr = paddr; 8267 seg.ds_len = len; 8268 return sym_scatter_sg_physical(np, cp, &seg, 1); 8269 } 8270 8271 #endif /* FreeBSD_Bus_Dma_Abstraction */ 8272 8273 /* 8274 * Scatter a SG list with physical addresses into bus addressable chunks. 8275 * We need to ensure 16MB boundaries not to be crossed during DMA of 8276 * each segment, due to some chips being flawed. 8277 */ 8278 #define BOUND_MASK ((1UL<<24)-1) 8279 static int 8280 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8281 { 8282 u_long ps, pe, pn; 8283 u_long k; 8284 int s, t; 8285 8286 #ifndef FreeBSD_Bus_Dma_Abstraction 8287 s = SYM_CONF_MAX_SG - 1 - cp->segments; 8288 #else 8289 s = SYM_CONF_MAX_SG - 1; 8290 #endif 8291 t = nsegs - 1; 8292 ps = psegs[t].ds_addr; 8293 pe = ps + psegs[t].ds_len; 8294 8295 while (s >= 0) { 8296 pn = (pe - 1) & ~BOUND_MASK; 8297 if (pn <= ps) 8298 pn = ps; 8299 k = pe - pn; 8300 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8301 printf ("%s scatter: paddr=%lx len=%ld\n", 8302 sym_name(np), pn, k); 8303 } 8304 cp->phys.data[s].addr = cpu_to_scr(pn); 8305 cp->phys.data[s].size = cpu_to_scr(k); 8306 #ifndef FreeBSD_Bus_Dma_Abstraction 8307 cp->data_len += k; 8308 #endif 8309 --s; 8310 if (pn == ps) { 8311 if (--t < 0) 8312 break; 8313 ps = psegs[t].ds_addr; 8314 pe = ps + psegs[t].ds_len; 8315 } 8316 else 8317 pe = pn; 8318 } 8319 8320 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8321 8322 return t >= 0 ? -1 : 0; 8323 } 8324 #undef BOUND_MASK 8325 8326 /* 8327 * SIM action for non performance critical stuff. 8328 */ 8329 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8330 { 8331 hcb_p np; 8332 tcb_p tp; 8333 lcb_p lp; 8334 struct ccb_hdr *ccb_h; 8335 8336 /* 8337 * Retrieve our controller data structure. 8338 */ 8339 np = (hcb_p) cam_sim_softc(sim); 8340 8341 ccb_h = &ccb->ccb_h; 8342 8343 switch (ccb_h->func_code) { 8344 case XPT_SET_TRAN_SETTINGS: 8345 { 8346 struct ccb_trans_settings *cts; 8347 8348 cts = &ccb->cts; 8349 tp = &np->target[ccb_h->target_id]; 8350 8351 /* 8352 * Update our transfer settings (basically WIDE/SYNC). 8353 * These features are to be handled in a per target 8354 * basis according to SCSI specifications. 8355 */ 8356 if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) 8357 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8358 8359 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) 8360 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8361 8362 /* 8363 * Update our disconnect and tag settings. 8364 * SCSI requires CmdQue feature to be handled in a per 8365 * device (logical unit) basis. 8366 */ 8367 lp = sym_lp(np, tp, ccb_h->target_lun); 8368 if (lp) { 8369 if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) 8370 sym_update_dflags(np, &lp->user_flags, cts); 8371 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) 8372 sym_update_dflags(np, &lp->current_flags, cts); 8373 } 8374 8375 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8376 break; 8377 } 8378 case XPT_GET_TRAN_SETTINGS: 8379 { 8380 struct ccb_trans_settings *cts; 8381 struct sym_trans *tip; 8382 u_char dflags; 8383 8384 cts = &ccb->cts; 8385 tp = &np->target[ccb_h->target_id]; 8386 lp = sym_lp(np, tp, ccb_h->target_lun); 8387 8388 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8389 tip = &tp->tinfo.current; 8390 dflags = lp ? lp->current_flags : 0; 8391 } 8392 else { 8393 tip = &tp->tinfo.user; 8394 dflags = lp ? lp->user_flags : tp->usrflags; 8395 } 8396 8397 cts->sync_period = tip->period; 8398 cts->sync_offset = tip->offset; 8399 cts->bus_width = tip->width; 8400 8401 cts->valid = CCB_TRANS_SYNC_RATE_VALID 8402 | CCB_TRANS_SYNC_OFFSET_VALID 8403 | CCB_TRANS_BUS_WIDTH_VALID; 8404 8405 if (lp) { 8406 cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); 8407 8408 if (dflags & SYM_DISC_ENABLED) 8409 cts->flags |= CCB_TRANS_DISC_ENB; 8410 8411 if (dflags & SYM_TAGS_ENABLED) 8412 cts->flags |= CCB_TRANS_TAG_ENB; 8413 8414 cts->valid |= CCB_TRANS_DISC_VALID; 8415 cts->valid |= CCB_TRANS_TQ_VALID; 8416 } 8417 8418 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8419 break; 8420 } 8421 case XPT_CALC_GEOMETRY: 8422 { 8423 struct ccb_calc_geometry *ccg; 8424 u32 size_mb; 8425 u32 secs_per_cylinder; 8426 int extended; 8427 8428 /* 8429 * Silly DOS geometry. 8430 */ 8431 ccg = &ccb->ccg; 8432 size_mb = ccg->volume_size 8433 / ((1024L * 1024L) / ccg->block_size); 8434 extended = 1; 8435 8436 if (size_mb > 1024 && extended) { 8437 ccg->heads = 255; 8438 ccg->secs_per_track = 63; 8439 } else { 8440 ccg->heads = 64; 8441 ccg->secs_per_track = 32; 8442 } 8443 secs_per_cylinder = ccg->heads * ccg->secs_per_track; 8444 ccg->cylinders = ccg->volume_size / secs_per_cylinder; 8445 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8446 break; 8447 } 8448 case XPT_PATH_INQ: 8449 { 8450 struct ccb_pathinq *cpi = &ccb->cpi; 8451 cpi->version_num = 1; 8452 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8453 if ((np->features & FE_WIDE) != 0) 8454 cpi->hba_inquiry |= PI_WIDE_16; 8455 cpi->target_sprt = 0; 8456 cpi->hba_misc = 0; 8457 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8458 cpi->hba_misc |= PIM_SCANHILO; 8459 if (np->usrflags & SYM_AVOID_BUS_RESET) 8460 cpi->hba_misc |= PIM_NOBUSRESET; 8461 cpi->hba_eng_cnt = 0; 8462 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8463 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8464 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8465 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8466 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8467 cpi->bus_id = cam_sim_bus(sim); 8468 cpi->initiator_id = np->myaddr; 8469 cpi->base_transfer_speed = 3300; 8470 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8471 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8472 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8473 cpi->unit_number = cam_sim_unit(sim); 8474 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8475 break; 8476 } 8477 case XPT_ABORT: 8478 { 8479 union ccb *abort_ccb = ccb->cab.abort_ccb; 8480 switch(abort_ccb->ccb_h.func_code) { 8481 case XPT_SCSI_IO: 8482 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8483 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8484 break; 8485 } 8486 default: 8487 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8488 break; 8489 } 8490 break; 8491 } 8492 case XPT_RESET_DEV: 8493 { 8494 sym_reset_dev(np, ccb); 8495 break; 8496 } 8497 case XPT_RESET_BUS: 8498 { 8499 sym_reset_scsi_bus(np, 0); 8500 if (sym_verbose) { 8501 xpt_print_path(np->path); 8502 printf("SCSI BUS reset delivered.\n"); 8503 } 8504 sym_init (np, 1); 8505 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8506 break; 8507 } 8508 case XPT_ACCEPT_TARGET_IO: 8509 case XPT_CONT_TARGET_IO: 8510 case XPT_EN_LUN: 8511 case XPT_NOTIFY_ACK: 8512 case XPT_IMMED_NOTIFY: 8513 case XPT_TERM_IO: 8514 default: 8515 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8516 break; 8517 } 8518 } 8519 8520 /* 8521 * Asynchronous notification handler. 8522 */ 8523 static void 8524 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8525 { 8526 hcb_p np; 8527 struct cam_sim *sim; 8528 u_int tn; 8529 tcb_p tp; 8530 int s; 8531 8532 s = splcam(); 8533 8534 sim = (struct cam_sim *) cb_arg; 8535 np = (hcb_p) cam_sim_softc(sim); 8536 8537 switch (code) { 8538 case AC_LOST_DEVICE: 8539 tn = xpt_path_target_id(path); 8540 if (tn >= SYM_CONF_MAX_TARGET) 8541 break; 8542 8543 tp = &np->target[tn]; 8544 8545 tp->to_reset = 0; 8546 tp->head.sval = 0; 8547 tp->head.wval = np->rv_scntl3; 8548 tp->head.uval = 0; 8549 8550 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8551 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8552 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8553 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8554 8555 break; 8556 default: 8557 break; 8558 } 8559 8560 splx(s); 8561 } 8562 8563 /* 8564 * Update transfer settings of a target. 8565 */ 8566 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8567 struct ccb_trans_settings *cts) 8568 { 8569 /* 8570 * Update the infos. 8571 */ 8572 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 8573 tip->width = cts->bus_width; 8574 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) 8575 tip->offset = cts->sync_offset; 8576 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) 8577 tip->period = cts->sync_period; 8578 8579 /* 8580 * Scale against driver configuration limits. 8581 */ 8582 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8583 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8584 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8585 8586 /* 8587 * Scale against actual controller BUS width. 8588 */ 8589 if (tip->width > np->maxwide) 8590 tip->width = np->maxwide; 8591 8592 /* 8593 * For now, only assume DT if period <= 9, BUS 16 and offset != 0. 8594 */ 8595 tip->options = 0; 8596 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) && 8597 tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) { 8598 tip->options |= PPR_OPT_DT; 8599 } 8600 8601 /* 8602 * Scale period factor and offset against controller limits. 8603 */ 8604 if (tip->options & PPR_OPT_DT) { 8605 if (tip->period < np->minsync_dt) 8606 tip->period = np->minsync_dt; 8607 if (tip->period > np->maxsync_dt) 8608 tip->period = np->maxsync_dt; 8609 if (tip->offset > np->maxoffs_dt) 8610 tip->offset = np->maxoffs_dt; 8611 } 8612 else { 8613 if (tip->period < np->minsync) 8614 tip->period = np->minsync; 8615 if (tip->period > np->maxsync) 8616 tip->period = np->maxsync; 8617 if (tip->offset > np->maxoffs) 8618 tip->offset = np->maxoffs; 8619 } 8620 } 8621 8622 /* 8623 * Update flags for a device (logical unit). 8624 */ 8625 static void 8626 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8627 { 8628 if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { 8629 if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) 8630 *flags |= SYM_DISC_ENABLED; 8631 else 8632 *flags &= ~SYM_DISC_ENABLED; 8633 } 8634 8635 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 8636 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) 8637 *flags |= SYM_TAGS_ENABLED; 8638 else 8639 *flags &= ~SYM_TAGS_ENABLED; 8640 } 8641 } 8642 8643 8644 /*============= DRIVER INITIALISATION ==================*/ 8645 8646 #ifdef FreeBSD_Bus_Io_Abstraction 8647 8648 static device_method_t sym_pci_methods[] = { 8649 DEVMETHOD(device_probe, sym_pci_probe), 8650 DEVMETHOD(device_attach, sym_pci_attach), 8651 { 0, 0 } 8652 }; 8653 8654 static driver_t sym_pci_driver = { 8655 "sym", 8656 sym_pci_methods, 8657 sizeof(struct sym_hcb) 8658 }; 8659 8660 static devclass_t sym_devclass; 8661 8662 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8663 8664 #else /* Pre-FreeBSD_Bus_Io_Abstraction */ 8665 8666 static u_long sym_unit; 8667 8668 static struct pci_device sym_pci_driver = { 8669 "sym", 8670 sym_pci_probe, 8671 sym_pci_attach, 8672 &sym_unit, 8673 NULL 8674 }; 8675 8676 #if __FreeBSD_version >= 400000 8677 COMPAT_PCI_DRIVER (sym, sym_pci_driver); 8678 #else 8679 DATA_SET (pcidevice_set, sym_pci_driver); 8680 #endif 8681 8682 #endif /* FreeBSD_Bus_Io_Abstraction */ 8683 8684 static struct sym_pci_chip sym_pci_dev_table[] = { 8685 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8686 FE_ERL} 8687 , 8688 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8689 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8690 FE_BOF} 8691 , 8692 #else 8693 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8694 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8695 , 8696 #endif 8697 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8698 FE_BOF|FE_ERL} 8699 , 8700 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8701 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8702 , 8703 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8704 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8705 , 8706 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8707 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8708 , 8709 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8710 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8711 FE_RAM|FE_DIFF} 8712 , 8713 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8714 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8715 FE_RAM|FE_DIFF} 8716 , 8717 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8718 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8719 FE_RAM|FE_DIFF} 8720 , 8721 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8722 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8723 FE_RAM|FE_DIFF} 8724 , 8725 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8726 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8727 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8728 FE_RAM|FE_LCKFRQ} 8729 , 8730 #else 8731 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8732 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8733 FE_RAM|FE_LCKFRQ} 8734 , 8735 #endif 8736 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8737 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8738 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8739 , 8740 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8741 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8742 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8743 , 8744 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8745 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8746 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8747 FE_C10} 8748 , 8749 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8750 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8751 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8752 FE_C10|FE_U3EN} 8753 , 8754 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8755 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8756 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8757 FE_C10|FE_U3EN} 8758 , 8759 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8760 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8761 FE_RAM|FE_IO256|FE_LEDC} 8762 }; 8763 8764 #define sym_pci_num_devs \ 8765 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8766 8767 /* 8768 * Look up the chip table. 8769 * 8770 * Return a pointer to the chip entry if found, 8771 * zero otherwise. 8772 */ 8773 static struct sym_pci_chip * 8774 #ifdef FreeBSD_Bus_Io_Abstraction 8775 sym_find_pci_chip(device_t dev) 8776 #else 8777 sym_find_pci_chip(pcici_t pci_tag) 8778 #endif 8779 { 8780 struct sym_pci_chip *chip; 8781 int i; 8782 u_short device_id; 8783 u_char revision; 8784 8785 #ifdef FreeBSD_Bus_Io_Abstraction 8786 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8787 return 0; 8788 8789 device_id = pci_get_device(dev); 8790 revision = pci_get_revid(dev); 8791 #else 8792 if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR) 8793 return 0; 8794 8795 device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); 8796 revision = pci_cfgread(pci_tag, PCIR_REVID, 1); 8797 #endif 8798 8799 for (i = 0; i < sym_pci_num_devs; i++) { 8800 chip = &sym_pci_dev_table[i]; 8801 if (device_id != chip->device_id) 8802 continue; 8803 if (revision > chip->revision_id) 8804 continue; 8805 return chip; 8806 } 8807 8808 return 0; 8809 } 8810 8811 /* 8812 * Tell upper layer if the chip is supported. 8813 */ 8814 #ifdef FreeBSD_Bus_Io_Abstraction 8815 static int 8816 sym_pci_probe(device_t dev) 8817 { 8818 struct sym_pci_chip *chip; 8819 8820 chip = sym_find_pci_chip(dev); 8821 if (chip && sym_find_firmware(chip)) { 8822 device_set_desc(dev, chip->name); 8823 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0; 8824 } 8825 return ENXIO; 8826 } 8827 #else /* Pre-FreeBSD_Bus_Io_Abstraction */ 8828 static const char * 8829 sym_pci_probe(pcici_t pci_tag, pcidi_t type) 8830 { 8831 struct sym_pci_chip *chip; 8832 8833 chip = sym_find_pci_chip(pci_tag); 8834 if (chip && sym_find_firmware(chip)) { 8835 #if NNCR > 0 8836 /* Only claim chips we are allowed to take precedence over the ncr */ 8837 if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)) 8838 #else 8839 if (1) 8840 #endif 8841 return chip->name; 8842 } 8843 return 0; 8844 } 8845 #endif 8846 8847 /* 8848 * Attach a sym53c8xx device. 8849 */ 8850 #ifdef FreeBSD_Bus_Io_Abstraction 8851 static int 8852 sym_pci_attach(device_t dev) 8853 #else 8854 static void 8855 sym_pci_attach(pcici_t pci_tag, int unit) 8856 { 8857 int err = sym_pci_attach2(pci_tag, unit); 8858 if (err) 8859 printf("sym: failed to attach unit %d - err=%d.\n", unit, err); 8860 } 8861 static int 8862 sym_pci_attach2(pcici_t pci_tag, int unit) 8863 #endif 8864 { 8865 struct sym_pci_chip *chip; 8866 u_short command; 8867 u_char cachelnsz; 8868 struct sym_hcb *np = 0; 8869 struct sym_nvram nvram; 8870 struct sym_fw *fw = 0; 8871 int i; 8872 #ifdef FreeBSD_Bus_Dma_Abstraction 8873 bus_dma_tag_t bus_dmat; 8874 8875 /* 8876 * I expected to be told about a parent 8877 * DMA tag, but didn't find any. 8878 */ 8879 bus_dmat = NULL; 8880 #endif 8881 8882 /* 8883 * Only probed devices should be attached. 8884 * We just enjoy being paranoid. :) 8885 */ 8886 #ifdef FreeBSD_Bus_Io_Abstraction 8887 chip = sym_find_pci_chip(dev); 8888 #else 8889 chip = sym_find_pci_chip(pci_tag); 8890 #endif 8891 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8892 return (ENXIO); 8893 8894 /* 8895 * Allocate immediately the host control block, 8896 * since we are only expecting to succeed. :) 8897 * We keep track in the HCB of all the resources that 8898 * are to be released on error. 8899 */ 8900 #ifdef FreeBSD_Bus_Dma_Abstraction 8901 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8902 if (np) 8903 np->bus_dmat = bus_dmat; 8904 else 8905 goto attach_failed; 8906 #else 8907 np = sym_calloc_dma(sizeof(*np), "HCB"); 8908 if (!np) 8909 goto attach_failed; 8910 #endif 8911 8912 /* 8913 * Copy some useful infos to the HCB. 8914 */ 8915 np->hcb_ba = vtobus(np); 8916 np->verbose = bootverbose; 8917 #ifdef FreeBSD_Bus_Io_Abstraction 8918 np->device = dev; 8919 np->unit = device_get_unit(dev); 8920 np->device_id = pci_get_device(dev); 8921 np->revision_id = pci_get_revid(dev); 8922 #else 8923 np->pci_tag = pci_tag; 8924 np->unit = unit; 8925 np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); 8926 np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1); 8927 #endif 8928 np->features = chip->features; 8929 np->clock_divn = chip->nr_divisor; 8930 np->maxoffs = chip->offset_max; 8931 np->maxburst = chip->burst_max; 8932 np->scripta_sz = fw->a_size; 8933 np->scriptb_sz = fw->b_size; 8934 np->fw_setup = fw->setup; 8935 np->fw_patch = fw->patch; 8936 np->fw_name = fw->name; 8937 8938 /* 8939 * Edit its name. 8940 */ 8941 snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); 8942 8943 /* 8944 * Allocate a tag for the DMA of user data. 8945 */ 8946 #ifdef FreeBSD_Bus_Dma_Abstraction 8947 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 8948 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 8949 NULL, NULL, 8950 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 8951 (1<<24), 0, &np->data_dmat)) { 8952 device_printf(dev, "failed to create DMA tag.\n"); 8953 goto attach_failed; 8954 } 8955 #endif 8956 /* 8957 * Read and apply some fix-ups to the PCI COMMAND 8958 * register. We want the chip to be enabled for: 8959 * - BUS mastering 8960 * - PCI parity checking (reporting would also be fine) 8961 * - Write And Invalidate. 8962 */ 8963 #ifdef FreeBSD_Bus_Io_Abstraction 8964 command = pci_read_config(dev, PCIR_COMMAND, 2); 8965 #else 8966 command = pci_cfgread(pci_tag, PCIR_COMMAND, 2); 8967 #endif 8968 command |= PCIM_CMD_BUSMASTEREN; 8969 command |= PCIM_CMD_PERRESPEN; 8970 command |= /* PCIM_CMD_MWIEN */ 0x0010; 8971 #ifdef FreeBSD_Bus_Io_Abstraction 8972 pci_write_config(dev, PCIR_COMMAND, command, 2); 8973 #else 8974 pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2); 8975 #endif 8976 8977 /* 8978 * Let the device know about the cache line size, 8979 * if it doesn't yet. 8980 */ 8981 #ifdef FreeBSD_Bus_Io_Abstraction 8982 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8983 #else 8984 cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1); 8985 #endif 8986 if (!cachelnsz) { 8987 cachelnsz = 8; 8988 #ifdef FreeBSD_Bus_Io_Abstraction 8989 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8990 #else 8991 pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1); 8992 #endif 8993 } 8994 8995 /* 8996 * Alloc/get/map/retrieve everything that deals with MMIO. 8997 */ 8998 #ifdef FreeBSD_Bus_Io_Abstraction 8999 if ((command & PCIM_CMD_MEMEN) != 0) { 9000 int regs_id = SYM_PCI_MMIO; 9001 np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 9002 0, ~0, 1, RF_ACTIVE); 9003 } 9004 if (!np->mmio_res) { 9005 device_printf(dev, "failed to allocate MMIO resources\n"); 9006 goto attach_failed; 9007 } 9008 np->mmio_bsh = rman_get_bushandle(np->mmio_res); 9009 np->mmio_tag = rman_get_bustag(np->mmio_res); 9010 np->mmio_pa = rman_get_start(np->mmio_res); 9011 np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); 9012 np->mmio_ba = np->mmio_pa; 9013 #else 9014 if ((command & PCIM_CMD_MEMEN) != 0) { 9015 vm_offset_t vaddr, paddr; 9016 if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) { 9017 printf("%s: failed to map MMIO window\n", sym_name(np)); 9018 goto attach_failed; 9019 } 9020 np->mmio_va = vaddr; 9021 np->mmio_pa = paddr; 9022 np->mmio_ba = paddr; 9023 } 9024 #endif 9025 9026 /* 9027 * Allocate the IRQ. 9028 */ 9029 #ifdef FreeBSD_Bus_Io_Abstraction 9030 i = 0; 9031 np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i, 9032 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); 9033 if (!np->irq_res) { 9034 device_printf(dev, "failed to allocate IRQ resource\n"); 9035 goto attach_failed; 9036 } 9037 #endif 9038 9039 #ifdef SYM_CONF_IOMAPPED 9040 /* 9041 * User want us to use normal IO with PCI. 9042 * Alloc/get/map/retrieve everything that deals with IO. 9043 */ 9044 #ifdef FreeBSD_Bus_Io_Abstraction 9045 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 9046 int regs_id = SYM_PCI_IO; 9047 np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, ®s_id, 9048 0, ~0, 1, RF_ACTIVE); 9049 } 9050 if (!np->io_res) { 9051 device_printf(dev, "failed to allocate IO resources\n"); 9052 goto attach_failed; 9053 } 9054 np->io_bsh = rman_get_bushandle(np->io_res); 9055 np->io_tag = rman_get_bustag(np->io_res); 9056 np->io_port = rman_get_start(np->io_res); 9057 #else 9058 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 9059 pci_port_t io_port; 9060 if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) { 9061 printf("%s: failed to map IO window\n", sym_name(np)); 9062 goto attach_failed; 9063 } 9064 np->io_port = io_port; 9065 } 9066 #endif 9067 9068 #endif /* SYM_CONF_IOMAPPED */ 9069 9070 /* 9071 * If the chip has RAM. 9072 * Alloc/get/map/retrieve the corresponding resources. 9073 */ 9074 if ((np->features & (FE_RAM|FE_RAM8K)) && 9075 (command & PCIM_CMD_MEMEN) != 0) { 9076 #ifdef FreeBSD_Bus_Io_Abstraction 9077 int regs_id = SYM_PCI_RAM; 9078 if (np->features & FE_64BIT) 9079 regs_id = SYM_PCI_RAM64; 9080 np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 9081 0, ~0, 1, RF_ACTIVE); 9082 if (!np->ram_res) { 9083 device_printf(dev,"failed to allocate RAM resources\n"); 9084 goto attach_failed; 9085 } 9086 np->ram_id = regs_id; 9087 np->ram_bsh = rman_get_bushandle(np->ram_res); 9088 np->ram_tag = rman_get_bustag(np->ram_res); 9089 np->ram_pa = rman_get_start(np->ram_res); 9090 np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); 9091 np->ram_ba = np->ram_pa; 9092 #else 9093 vm_offset_t vaddr, paddr; 9094 int regs_id = SYM_PCI_RAM; 9095 if (np->features & FE_64BIT) 9096 regs_id = SYM_PCI_RAM64; 9097 if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) { 9098 printf("%s: failed to map RAM window\n", sym_name(np)); 9099 goto attach_failed; 9100 } 9101 np->ram_va = vaddr; 9102 np->ram_pa = paddr; 9103 np->ram_ba = paddr; 9104 #endif 9105 } 9106 9107 /* 9108 * Save setting of some IO registers, so we will 9109 * be able to probe specific implementations. 9110 */ 9111 sym_save_initial_setting (np); 9112 9113 /* 9114 * Reset the chip now, since it has been reported 9115 * that SCSI clock calibration may not work properly 9116 * if the chip is currently active. 9117 */ 9118 sym_chip_reset (np); 9119 9120 /* 9121 * Try to read the user set-up. 9122 */ 9123 (void) sym_read_nvram(np, &nvram); 9124 9125 /* 9126 * Prepare controller and devices settings, according 9127 * to chip features, user set-up and driver set-up. 9128 */ 9129 (void) sym_prepare_setting(np, &nvram); 9130 9131 /* 9132 * Check the PCI clock frequency. 9133 * Must be performed after prepare_setting since it destroys 9134 * STEST1 that is used to probe for the clock doubler. 9135 */ 9136 i = sym_getpciclock(np); 9137 if (i > 37000) 9138 #ifdef FreeBSD_Bus_Io_Abstraction 9139 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 9140 #else 9141 printf("%s: PCI BUS clock seems too high: %u KHz.\n", 9142 sym_name(np), i); 9143 #endif 9144 9145 /* 9146 * Allocate the start queue. 9147 */ 9148 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 9149 if (!np->squeue) 9150 goto attach_failed; 9151 np->squeue_ba = vtobus(np->squeue); 9152 9153 /* 9154 * Allocate the done queue. 9155 */ 9156 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 9157 if (!np->dqueue) 9158 goto attach_failed; 9159 np->dqueue_ba = vtobus(np->dqueue); 9160 9161 /* 9162 * Allocate the target bus address array. 9163 */ 9164 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 9165 if (!np->targtbl) 9166 goto attach_failed; 9167 np->targtbl_ba = cpu_to_scr(vtobus(np->targtbl)); 9168 9169 /* 9170 * Allocate SCRIPTS areas. 9171 */ 9172 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 9173 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 9174 if (!np->scripta0 || !np->scriptb0) 9175 goto attach_failed; 9176 9177 /* 9178 * Initialyze the CCB free and busy queues. 9179 * Allocate some CCB. We need at least ONE. 9180 */ 9181 sym_que_init(&np->free_ccbq); 9182 sym_que_init(&np->busy_ccbq); 9183 sym_que_init(&np->comp_ccbq); 9184 if (!sym_alloc_ccb(np)) 9185 goto attach_failed; 9186 9187 /* 9188 * Initialyze the CAM CCB pending queue. 9189 */ 9190 sym_que_init(&np->cam_ccbq); 9191 9192 /* 9193 * Calculate BUS addresses where we are going 9194 * to load the SCRIPTS. 9195 */ 9196 np->scripta_ba = vtobus(np->scripta0); 9197 np->scriptb_ba = vtobus(np->scriptb0); 9198 np->scriptb0_ba = np->scriptb_ba; 9199 9200 if (np->ram_ba) { 9201 np->scripta_ba = np->ram_ba; 9202 if (np->features & FE_RAM8K) { 9203 np->ram_ws = 8192; 9204 np->scriptb_ba = np->scripta_ba + 4096; 9205 #if BITS_PER_LONG > 32 9206 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 9207 #endif 9208 } 9209 else 9210 np->ram_ws = 4096; 9211 } 9212 9213 /* 9214 * Copy scripts to controller instance. 9215 */ 9216 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 9217 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 9218 9219 /* 9220 * Setup variable parts in scripts and compute 9221 * scripts bus addresses used from the C code. 9222 */ 9223 np->fw_setup(np, fw); 9224 9225 /* 9226 * Bind SCRIPTS with physical addresses usable by the 9227 * SCRIPTS processor (as seen from the BUS = BUS addresses). 9228 */ 9229 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 9230 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 9231 9232 #ifdef SYM_CONF_IARB_SUPPORT 9233 /* 9234 * If user wants IARB to be set when we win arbitration 9235 * and have other jobs, compute the max number of consecutive 9236 * settings of IARB hints before we leave devices a chance to 9237 * arbitrate for reselection. 9238 */ 9239 #ifdef SYM_SETUP_IARB_MAX 9240 np->iarb_max = SYM_SETUP_IARB_MAX; 9241 #else 9242 np->iarb_max = 4; 9243 #endif 9244 #endif 9245 9246 /* 9247 * Prepare the idle and invalid task actions. 9248 */ 9249 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9250 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9251 np->idletask_ba = vtobus(&np->idletask); 9252 9253 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9254 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9255 np->notask_ba = vtobus(&np->notask); 9256 9257 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9258 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9259 np->bad_itl_ba = vtobus(&np->bad_itl); 9260 9261 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9262 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 9263 np->bad_itlq_ba = vtobus(&np->bad_itlq); 9264 9265 /* 9266 * Allocate and prepare the lun JUMP table that is used 9267 * for a target prior the probing of devices (bad lun table). 9268 * A private table will be allocated for the target on the 9269 * first INQUIRY response received. 9270 */ 9271 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 9272 if (!np->badluntbl) 9273 goto attach_failed; 9274 9275 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 9276 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 9277 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 9278 9279 /* 9280 * Prepare the bus address array that contains the bus 9281 * address of each target control block. 9282 * For now, assume all logical units are wrong. :) 9283 */ 9284 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 9285 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 9286 np->target[i].head.luntbl_sa = 9287 cpu_to_scr(vtobus(np->badluntbl)); 9288 np->target[i].head.lun0_sa = 9289 cpu_to_scr(vtobus(&np->badlun_sa)); 9290 } 9291 9292 /* 9293 * Now check the cache handling of the pci chipset. 9294 */ 9295 if (sym_snooptest (np)) { 9296 #ifdef FreeBSD_Bus_Io_Abstraction 9297 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 9298 #else 9299 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); 9300 #endif 9301 goto attach_failed; 9302 }; 9303 9304 /* 9305 * Now deal with CAM. 9306 * Hopefully, we will succeed with that one.:) 9307 */ 9308 if (!sym_cam_attach(np)) 9309 goto attach_failed; 9310 9311 /* 9312 * Sigh! we are done. 9313 */ 9314 return 0; 9315 9316 /* 9317 * We have failed. 9318 * We will try to free all the resources we have 9319 * allocated, but if we are a boot device, this 9320 * will not help that much.;) 9321 */ 9322 attach_failed: 9323 if (np) 9324 sym_pci_free(np); 9325 return ENXIO; 9326 } 9327 9328 /* 9329 * Free everything that have been allocated for this device. 9330 */ 9331 static void sym_pci_free(hcb_p np) 9332 { 9333 SYM_QUEHEAD *qp; 9334 ccb_p cp; 9335 tcb_p tp; 9336 lcb_p lp; 9337 int target, lun; 9338 int s; 9339 9340 /* 9341 * First free CAM resources. 9342 */ 9343 s = splcam(); 9344 sym_cam_free(np); 9345 splx(s); 9346 9347 /* 9348 * Now every should be quiet for us to 9349 * free other resources. 9350 */ 9351 #ifdef FreeBSD_Bus_Io_Abstraction 9352 if (np->ram_res) 9353 bus_release_resource(np->device, SYS_RES_MEMORY, 9354 np->ram_id, np->ram_res); 9355 if (np->mmio_res) 9356 bus_release_resource(np->device, SYS_RES_MEMORY, 9357 SYM_PCI_MMIO, np->mmio_res); 9358 if (np->io_res) 9359 bus_release_resource(np->device, SYS_RES_IOPORT, 9360 SYM_PCI_IO, np->io_res); 9361 if (np->irq_res) 9362 bus_release_resource(np->device, SYS_RES_IRQ, 9363 0, np->irq_res); 9364 #else 9365 /* 9366 * YEAH!!! 9367 * It seems there is no means to free MMIO resources. 9368 */ 9369 #endif 9370 9371 if (np->scriptb0) 9372 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 9373 if (np->scripta0) 9374 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 9375 if (np->squeue) 9376 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 9377 if (np->dqueue) 9378 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 9379 9380 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { 9381 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 9382 #ifdef FreeBSD_Bus_Dma_Abstraction 9383 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 9384 #endif 9385 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 9386 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 9387 } 9388 9389 if (np->badluntbl) 9390 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 9391 9392 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 9393 tp = &np->target[target]; 9394 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 9395 lp = sym_lp(np, tp, lun); 9396 if (!lp) 9397 continue; 9398 if (lp->itlq_tbl) 9399 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 9400 "ITLQ_TBL"); 9401 if (lp->cb_tags) 9402 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 9403 "CB_TAGS"); 9404 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 9405 } 9406 #if SYM_CONF_MAX_LUN > 1 9407 if (tp->lunmp) 9408 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 9409 "LUNMP"); 9410 #endif 9411 } 9412 if (np->targtbl) 9413 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 9414 #ifdef FreeBSD_Bus_Dma_Abstraction 9415 if (np->data_dmat) 9416 bus_dma_tag_destroy(np->data_dmat); 9417 #endif 9418 sym_mfree_dma(np, sizeof(*np), "HCB"); 9419 } 9420 9421 /* 9422 * Allocate CAM resources and register a bus to CAM. 9423 */ 9424 int sym_cam_attach(hcb_p np) 9425 { 9426 struct cam_devq *devq = 0; 9427 struct cam_sim *sim = 0; 9428 struct cam_path *path = 0; 9429 struct ccb_setasync csa; 9430 int err, s; 9431 9432 s = splcam(); 9433 9434 /* 9435 * Establish our interrupt handler. 9436 */ 9437 #ifdef FreeBSD_Bus_Io_Abstraction 9438 err = bus_setup_intr(np->device, np->irq_res, INTR_TYPE_CAM, 9439 sym_intr, np, &np->intr); 9440 if (err) { 9441 device_printf(np->device, "bus_setup_intr() failed: %d\n", 9442 err); 9443 goto fail; 9444 } 9445 #else 9446 err = 0; 9447 if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) { 9448 printf("%s: failed to map interrupt\n", sym_name(np)); 9449 goto fail; 9450 } 9451 #endif 9452 9453 /* 9454 * Create the device queue for our sym SIM. 9455 */ 9456 devq = cam_simq_alloc(SYM_CONF_MAX_START); 9457 if (!devq) 9458 goto fail; 9459 9460 /* 9461 * Construct our SIM entry. 9462 */ 9463 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, 9464 1, SYM_SETUP_MAX_TAG, devq); 9465 if (!sim) 9466 goto fail; 9467 devq = 0; 9468 9469 if (xpt_bus_register(sim, 0) != CAM_SUCCESS) 9470 goto fail; 9471 np->sim = sim; 9472 sim = 0; 9473 9474 if (xpt_create_path(&path, 0, 9475 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 9476 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 9477 goto fail; 9478 } 9479 np->path = path; 9480 9481 /* 9482 * Hmmm... This should be useful, but I donnot want to 9483 * know about. 9484 */ 9485 #if __FreeBSD_version < 400000 9486 #ifdef __alpha__ 9487 #ifdef FreeBSD_Bus_Io_Abstraction 9488 alpha_register_pci_scsi(pci_get_bus(np->device), 9489 pci_get_slot(np->device), np->sim); 9490 #else 9491 alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim); 9492 #endif 9493 #endif 9494 #endif 9495 9496 /* 9497 * Establish our async notification handler. 9498 */ 9499 xpt_setup_ccb(&csa.ccb_h, np->path, 5); 9500 csa.ccb_h.func_code = XPT_SASYNC_CB; 9501 csa.event_enable = AC_LOST_DEVICE; 9502 csa.callback = sym_async; 9503 csa.callback_arg = np->sim; 9504 xpt_action((union ccb *)&csa); 9505 9506 /* 9507 * Start the chip now, without resetting the BUS, since 9508 * it seems that this must stay under control of CAM. 9509 * With LVD/SE capable chips and BUS in SE mode, we may 9510 * get a spurious SMBC interrupt. 9511 */ 9512 sym_init (np, 0); 9513 9514 splx(s); 9515 return 1; 9516 fail: 9517 if (sim) 9518 cam_sim_free(sim, FALSE); 9519 if (devq) 9520 cam_simq_free(devq); 9521 9522 sym_cam_free(np); 9523 9524 splx(s); 9525 return 0; 9526 } 9527 9528 /* 9529 * Free everything that deals with CAM. 9530 */ 9531 void sym_cam_free(hcb_p np) 9532 { 9533 #ifdef FreeBSD_Bus_Io_Abstraction 9534 if (np->intr) 9535 bus_teardown_intr(np->device, np->irq_res, np->intr); 9536 #else 9537 /* pci_unmap_int(np->pci_tag); */ /* Does nothing */ 9538 #endif 9539 9540 if (np->sim) { 9541 xpt_bus_deregister(cam_sim_path(np->sim)); 9542 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9543 } 9544 if (np->path) 9545 xpt_free_path(np->path); 9546 } 9547 9548 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9549 9550 /* 9551 * Get host setup from NVRAM. 9552 */ 9553 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9554 { 9555 #ifdef SYM_CONF_NVRAM_SUPPORT 9556 /* 9557 * Get parity checking, host ID, verbose mode 9558 * and miscellaneous host flags from NVRAM. 9559 */ 9560 switch(nvram->type) { 9561 case SYM_SYMBIOS_NVRAM: 9562 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9563 np->rv_scntl0 &= ~0x0a; 9564 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9565 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9566 np->verbose += 1; 9567 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9568 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9569 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9570 np->usrflags |= SYM_AVOID_BUS_RESET; 9571 break; 9572 case SYM_TEKRAM_NVRAM: 9573 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9574 break; 9575 default: 9576 break; 9577 } 9578 #endif 9579 } 9580 9581 /* 9582 * Get target setup from NVRAM. 9583 */ 9584 #ifdef SYM_CONF_NVRAM_SUPPORT 9585 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9586 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9587 #endif 9588 9589 static void 9590 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9591 { 9592 #ifdef SYM_CONF_NVRAM_SUPPORT 9593 switch(nvp->type) { 9594 case SYM_SYMBIOS_NVRAM: 9595 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9596 break; 9597 case SYM_TEKRAM_NVRAM: 9598 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9599 break; 9600 default: 9601 break; 9602 } 9603 #endif 9604 } 9605 9606 #ifdef SYM_CONF_NVRAM_SUPPORT 9607 /* 9608 * Get target set-up from Symbios format NVRAM. 9609 */ 9610 static void 9611 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9612 { 9613 tcb_p tp = &np->target[target]; 9614 Symbios_target *tn = &nvram->target[target]; 9615 9616 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9617 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9618 tp->usrtags = 9619 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9620 9621 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9622 tp->usrflags &= ~SYM_DISC_ENABLED; 9623 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9624 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9625 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9626 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9627 } 9628 9629 /* 9630 * Get target set-up from Tekram format NVRAM. 9631 */ 9632 static void 9633 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9634 { 9635 tcb_p tp = &np->target[target]; 9636 struct Tekram_target *tn = &nvram->target[target]; 9637 int i; 9638 9639 if (tn->flags & TEKRAM_SYNC_NEGO) { 9640 i = tn->sync_index & 0xf; 9641 tp->tinfo.user.period = Tekram_sync[i]; 9642 } 9643 9644 tp->tinfo.user.width = 9645 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9646 9647 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9648 tp->usrtags = 2 << nvram->max_tags_index; 9649 } 9650 9651 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9652 tp->usrflags |= SYM_DISC_ENABLED; 9653 9654 /* If any device does not support parity, we will not use this option */ 9655 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9656 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9657 } 9658 9659 #ifdef SYM_CONF_DEBUG_NVRAM 9660 /* 9661 * Dump Symbios format NVRAM for debugging purpose. 9662 */ 9663 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9664 { 9665 int i; 9666 9667 /* display Symbios nvram host data */ 9668 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9669 sym_name(np), nvram->host_id & 0x0f, 9670 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9671 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9672 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9673 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9674 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9675 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9676 9677 /* display Symbios nvram drive data */ 9678 for (i = 0 ; i < 15 ; i++) { 9679 struct Symbios_target *tn = &nvram->target[i]; 9680 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9681 sym_name(np), i, 9682 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9683 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9684 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9685 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9686 tn->bus_width, 9687 tn->sync_period / 4, 9688 tn->timeout); 9689 } 9690 } 9691 9692 /* 9693 * Dump TEKRAM format NVRAM for debugging purpose. 9694 */ 9695 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9696 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9697 { 9698 int i, tags, boot_delay; 9699 char *rem; 9700 9701 /* display Tekram nvram host data */ 9702 tags = 2 << nvram->max_tags_index; 9703 boot_delay = 0; 9704 if (nvram->boot_delay_index < 6) 9705 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9706 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9707 default: 9708 case 0: rem = ""; break; 9709 case 1: rem = " REMOVABLE=boot device"; break; 9710 case 2: rem = " REMOVABLE=all"; break; 9711 } 9712 9713 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9714 sym_name(np), nvram->host_id & 0x0f, 9715 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9716 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9717 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9718 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9719 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9720 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9721 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9722 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9723 rem, boot_delay, tags); 9724 9725 /* display Tekram nvram drive data */ 9726 for (i = 0; i <= 15; i++) { 9727 int sync, j; 9728 struct Tekram_target *tn = &nvram->target[i]; 9729 j = tn->sync_index & 0xf; 9730 sync = Tekram_sync[j]; 9731 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9732 sym_name(np), i, 9733 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9734 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9735 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9736 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9737 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9738 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9739 sync); 9740 } 9741 } 9742 #endif /* SYM_CONF_DEBUG_NVRAM */ 9743 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9744 9745 9746 /* 9747 * Try reading Symbios or Tekram NVRAM 9748 */ 9749 #ifdef SYM_CONF_NVRAM_SUPPORT 9750 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9751 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9752 #endif 9753 9754 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9755 { 9756 #ifdef SYM_CONF_NVRAM_SUPPORT 9757 /* 9758 * Try to read SYMBIOS nvram. 9759 * Try to read TEKRAM nvram if Symbios nvram not found. 9760 */ 9761 if (SYM_SETUP_SYMBIOS_NVRAM && 9762 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9763 nvp->type = SYM_SYMBIOS_NVRAM; 9764 #ifdef SYM_CONF_DEBUG_NVRAM 9765 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9766 #endif 9767 } 9768 else if (SYM_SETUP_TEKRAM_NVRAM && 9769 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9770 nvp->type = SYM_TEKRAM_NVRAM; 9771 #ifdef SYM_CONF_DEBUG_NVRAM 9772 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9773 #endif 9774 } 9775 else 9776 nvp->type = 0; 9777 #else 9778 nvp->type = 0; 9779 #endif 9780 return nvp->type; 9781 } 9782 9783 9784 #ifdef SYM_CONF_NVRAM_SUPPORT 9785 /* 9786 * 24C16 EEPROM reading. 9787 * 9788 * GPOI0 - data in/data out 9789 * GPIO1 - clock 9790 * Symbios NVRAM wiring now also used by Tekram. 9791 */ 9792 9793 #define SET_BIT 0 9794 #define CLR_BIT 1 9795 #define SET_CLK 2 9796 #define CLR_CLK 3 9797 9798 /* 9799 * Set/clear data/clock bit in GPIO0 9800 */ 9801 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9802 int bit_mode) 9803 { 9804 UDELAY (5); 9805 switch (bit_mode){ 9806 case SET_BIT: 9807 *gpreg |= write_bit; 9808 break; 9809 case CLR_BIT: 9810 *gpreg &= 0xfe; 9811 break; 9812 case SET_CLK: 9813 *gpreg |= 0x02; 9814 break; 9815 case CLR_CLK: 9816 *gpreg &= 0xfd; 9817 break; 9818 9819 } 9820 OUTB (nc_gpreg, *gpreg); 9821 UDELAY (5); 9822 } 9823 9824 /* 9825 * Send START condition to NVRAM to wake it up. 9826 */ 9827 static void S24C16_start(hcb_p np, u_char *gpreg) 9828 { 9829 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9830 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9831 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9832 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9833 } 9834 9835 /* 9836 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9837 */ 9838 static void S24C16_stop(hcb_p np, u_char *gpreg) 9839 { 9840 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9841 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9842 } 9843 9844 /* 9845 * Read or write a bit to the NVRAM, 9846 * read if GPIO0 input else write if GPIO0 output 9847 */ 9848 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9849 u_char *gpreg) 9850 { 9851 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9852 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9853 if (read_bit) 9854 *read_bit = INB (nc_gpreg); 9855 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9856 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9857 } 9858 9859 /* 9860 * Output an ACK to the NVRAM after reading, 9861 * change GPIO0 to output and when done back to an input 9862 */ 9863 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9864 u_char *gpcntl) 9865 { 9866 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9867 S24C16_do_bit(np, 0, write_bit, gpreg); 9868 OUTB (nc_gpcntl, *gpcntl); 9869 } 9870 9871 /* 9872 * Input an ACK from NVRAM after writing, 9873 * change GPIO0 to input and when done back to an output 9874 */ 9875 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9876 u_char *gpcntl) 9877 { 9878 OUTB (nc_gpcntl, *gpcntl | 0x01); 9879 S24C16_do_bit(np, read_bit, 1, gpreg); 9880 OUTB (nc_gpcntl, *gpcntl); 9881 } 9882 9883 /* 9884 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9885 * GPIO0 must already be set as an output 9886 */ 9887 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9888 u_char *gpreg, u_char *gpcntl) 9889 { 9890 int x; 9891 9892 for (x = 0; x < 8; x++) 9893 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9894 9895 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9896 } 9897 9898 /* 9899 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9900 * GPIO0 must already be set as an input 9901 */ 9902 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9903 u_char *gpreg, u_char *gpcntl) 9904 { 9905 int x; 9906 u_char read_bit; 9907 9908 *read_data = 0; 9909 for (x = 0; x < 8; x++) { 9910 S24C16_do_bit(np, &read_bit, 1, gpreg); 9911 *read_data |= ((read_bit & 0x01) << (7 - x)); 9912 } 9913 9914 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9915 } 9916 9917 /* 9918 * Read 'len' bytes starting at 'offset'. 9919 */ 9920 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9921 { 9922 u_char gpcntl, gpreg; 9923 u_char old_gpcntl, old_gpreg; 9924 u_char ack_data; 9925 int retv = 1; 9926 int x; 9927 9928 /* save current state of GPCNTL and GPREG */ 9929 old_gpreg = INB (nc_gpreg); 9930 old_gpcntl = INB (nc_gpcntl); 9931 gpcntl = old_gpcntl & 0xfc; 9932 9933 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9934 OUTB (nc_gpreg, old_gpreg); 9935 OUTB (nc_gpcntl, gpcntl); 9936 9937 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9938 gpreg = old_gpreg; 9939 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9940 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9941 9942 /* now set NVRAM inactive with GPIO0/1 both high */ 9943 S24C16_stop(np, &gpreg); 9944 9945 /* activate NVRAM */ 9946 S24C16_start(np, &gpreg); 9947 9948 /* write device code and random address MSB */ 9949 S24C16_write_byte(np, &ack_data, 9950 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9951 if (ack_data & 0x01) 9952 goto out; 9953 9954 /* write random address LSB */ 9955 S24C16_write_byte(np, &ack_data, 9956 offset & 0xff, &gpreg, &gpcntl); 9957 if (ack_data & 0x01) 9958 goto out; 9959 9960 /* regenerate START state to set up for reading */ 9961 S24C16_start(np, &gpreg); 9962 9963 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9964 S24C16_write_byte(np, &ack_data, 9965 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9966 if (ack_data & 0x01) 9967 goto out; 9968 9969 /* now set up GPIO0 for inputting data */ 9970 gpcntl |= 0x01; 9971 OUTB (nc_gpcntl, gpcntl); 9972 9973 /* input all requested data - only part of total NVRAM */ 9974 for (x = 0; x < len; x++) 9975 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9976 9977 /* finally put NVRAM back in inactive mode */ 9978 gpcntl &= 0xfe; 9979 OUTB (nc_gpcntl, gpcntl); 9980 S24C16_stop(np, &gpreg); 9981 retv = 0; 9982 out: 9983 /* return GPIO0/1 to original states after having accessed NVRAM */ 9984 OUTB (nc_gpcntl, old_gpcntl); 9985 OUTB (nc_gpreg, old_gpreg); 9986 9987 return retv; 9988 } 9989 9990 #undef SET_BIT 0 9991 #undef CLR_BIT 1 9992 #undef SET_CLK 2 9993 #undef CLR_CLK 3 9994 9995 /* 9996 * Try reading Symbios NVRAM. 9997 * Return 0 if OK. 9998 */ 9999 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 10000 { 10001 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 10002 u_char *data = (u_char *) nvram; 10003 int len = sizeof(*nvram); 10004 u_short csum; 10005 int x; 10006 10007 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 10008 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 10009 return 1; 10010 10011 /* check valid NVRAM signature, verify byte count and checksum */ 10012 if (nvram->type != 0 || 10013 bcmp(nvram->trailer, Symbios_trailer, 6) || 10014 nvram->byte_count != len - 12) 10015 return 1; 10016 10017 /* verify checksum */ 10018 for (x = 6, csum = 0; x < len - 6; x++) 10019 csum += data[x]; 10020 if (csum != nvram->checksum) 10021 return 1; 10022 10023 return 0; 10024 } 10025 10026 /* 10027 * 93C46 EEPROM reading. 10028 * 10029 * GPOI0 - data in 10030 * GPIO1 - data out 10031 * GPIO2 - clock 10032 * GPIO4 - chip select 10033 * 10034 * Used by Tekram. 10035 */ 10036 10037 /* 10038 * Pulse clock bit in GPIO0 10039 */ 10040 static void T93C46_Clk(hcb_p np, u_char *gpreg) 10041 { 10042 OUTB (nc_gpreg, *gpreg | 0x04); 10043 UDELAY (2); 10044 OUTB (nc_gpreg, *gpreg); 10045 } 10046 10047 /* 10048 * Read bit from NVRAM 10049 */ 10050 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 10051 { 10052 UDELAY (2); 10053 T93C46_Clk(np, gpreg); 10054 *read_bit = INB (nc_gpreg); 10055 } 10056 10057 /* 10058 * Write bit to GPIO0 10059 */ 10060 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 10061 { 10062 if (write_bit & 0x01) 10063 *gpreg |= 0x02; 10064 else 10065 *gpreg &= 0xfd; 10066 10067 *gpreg |= 0x10; 10068 10069 OUTB (nc_gpreg, *gpreg); 10070 UDELAY (2); 10071 10072 T93C46_Clk(np, gpreg); 10073 } 10074 10075 /* 10076 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 10077 */ 10078 static void T93C46_Stop(hcb_p np, u_char *gpreg) 10079 { 10080 *gpreg &= 0xef; 10081 OUTB (nc_gpreg, *gpreg); 10082 UDELAY (2); 10083 10084 T93C46_Clk(np, gpreg); 10085 } 10086 10087 /* 10088 * Send read command and address to NVRAM 10089 */ 10090 static void T93C46_Send_Command(hcb_p np, u_short write_data, 10091 u_char *read_bit, u_char *gpreg) 10092 { 10093 int x; 10094 10095 /* send 9 bits, start bit (1), command (2), address (6) */ 10096 for (x = 0; x < 9; x++) 10097 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 10098 10099 *read_bit = INB (nc_gpreg); 10100 } 10101 10102 /* 10103 * READ 2 bytes from the NVRAM 10104 */ 10105 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 10106 { 10107 int x; 10108 u_char read_bit; 10109 10110 *nvram_data = 0; 10111 for (x = 0; x < 16; x++) { 10112 T93C46_Read_Bit(np, &read_bit, gpreg); 10113 10114 if (read_bit & 0x01) 10115 *nvram_data |= (0x01 << (15 - x)); 10116 else 10117 *nvram_data &= ~(0x01 << (15 - x)); 10118 } 10119 } 10120 10121 /* 10122 * Read Tekram NvRAM data. 10123 */ 10124 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 10125 { 10126 u_char read_bit; 10127 int x; 10128 10129 for (x = 0; x < len; x++) { 10130 10131 /* output read command and address */ 10132 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 10133 if (read_bit & 0x01) 10134 return 1; /* Bad */ 10135 T93C46_Read_Word(np, &data[x], gpreg); 10136 T93C46_Stop(np, gpreg); 10137 } 10138 10139 return 0; 10140 } 10141 10142 /* 10143 * Try reading 93C46 Tekram NVRAM. 10144 */ 10145 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 10146 { 10147 u_char gpcntl, gpreg; 10148 u_char old_gpcntl, old_gpreg; 10149 int retv = 1; 10150 10151 /* save current state of GPCNTL and GPREG */ 10152 old_gpreg = INB (nc_gpreg); 10153 old_gpcntl = INB (nc_gpcntl); 10154 10155 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 10156 1/2/4 out */ 10157 gpreg = old_gpreg & 0xe9; 10158 OUTB (nc_gpreg, gpreg); 10159 gpcntl = (old_gpcntl & 0xe9) | 0x09; 10160 OUTB (nc_gpcntl, gpcntl); 10161 10162 /* input all of NVRAM, 64 words */ 10163 retv = T93C46_Read_Data(np, (u_short *) nvram, 10164 sizeof(*nvram) / sizeof(short), &gpreg); 10165 10166 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 10167 OUTB (nc_gpcntl, old_gpcntl); 10168 OUTB (nc_gpreg, old_gpreg); 10169 10170 return retv; 10171 } 10172 10173 /* 10174 * Try reading Tekram NVRAM. 10175 * Return 0 if OK. 10176 */ 10177 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 10178 { 10179 u_char *data = (u_char *) nvram; 10180 int len = sizeof(*nvram); 10181 u_short csum; 10182 int x; 10183 10184 switch (np->device_id) { 10185 case PCI_ID_SYM53C885: 10186 case PCI_ID_SYM53C895: 10187 case PCI_ID_SYM53C896: 10188 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 10189 data, len); 10190 break; 10191 case PCI_ID_SYM53C875: 10192 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 10193 data, len); 10194 if (!x) 10195 break; 10196 default: 10197 x = sym_read_T93C46_nvram(np, nvram); 10198 break; 10199 } 10200 if (x) 10201 return 1; 10202 10203 /* verify checksum */ 10204 for (x = 0, csum = 0; x < len - 1; x += 2) 10205 csum += data[x] + (data[x+1] << 8); 10206 if (csum != 0x1234) 10207 return 1; 10208 10209 return 0; 10210 } 10211 10212 #endif /* SYM_CONF_NVRAM_SUPPORT */ 10213