xref: /freebsd/sys/dev/sym/sym_hipd.c (revision ca53e5aedfebcc1b4091b68e01b2d5cae923f85e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5  *  PCI-SCSI controllers.
6  *
7  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
8  *
9  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
10  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
12  *
13  *
14  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15  *  Copyright (C) 1998-1999  Gerard Roudier
16  *
17  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
19  *
20  *  The original ncr driver has been written for 386bsd and FreeBSD by
21  *          Wolfgang Stanglmeier        <wolf@cologne.de>
22  *          Stefan Esser                <se@mi.Uni-Koeln.de>
23  *  Copyright (C) 1994  Wolfgang Stanglmeier
24  *
25  *  The initialisation code, and part of the code that addresses
26  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27  *  written by Justin T. Gibbs.
28  *
29  *  Other major contributions:
30  *
31  *  NVRAM detection and reading.
32  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33  *
34  *-----------------------------------------------------------------------------
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
64 
65 /* #define SYM_DEBUG_GENERIC_SUPPORT */
66 
67 #include <sys/param.h>
68 
69 /*
70  *  Driver configuration options.
71  */
72 #include "opt_sym.h"
73 #include <dev/sym/sym_conf.h>
74 
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mutex.h>
81 #include <sys/module.h>
82 #include <sys/bus.h>
83 
84 #include <sys/proc.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <machine/atomic.h>
92 
93 #include <sys/rman.h>
94 
95 #include <cam/cam.h>
96 #include <cam/cam_ccb.h>
97 #include <cam/cam_sim.h>
98 #include <cam/cam_xpt_sim.h>
99 #include <cam/cam_debug.h>
100 
101 #include <cam/scsi/scsi_all.h>
102 #include <cam/scsi/scsi_message.h>
103 
104 /* Short and quite clear integer types */
105 typedef int8_t    s8;
106 typedef int16_t   s16;
107 typedef	int32_t   s32;
108 typedef u_int8_t  u8;
109 typedef u_int16_t u16;
110 typedef	u_int32_t u32;
111 
112 /*
113  *  Driver definitions.
114  */
115 #include <dev/sym/sym_defs.h>
116 #include <dev/sym/sym_fw.h>
117 
118 /*
119  *  IA32 architecture does not reorder STORES and prevents
120  *  LOADS from passing STORES. It is called `program order'
121  *  by Intel and allows device drivers to deal with memory
122  *  ordering by only ensuring that the code is not reordered
123  *  by the compiler when ordering is required.
124  *  Other architectures implement a weaker ordering that
125  *  requires memory barriers (and also IO barriers when they
126  *  make sense) to be used.
127  */
128 #if	defined	__i386__ || defined __amd64__
129 #define MEMORY_BARRIER()	do { ; } while(0)
130 #elif	defined	__powerpc__
131 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
132 #elif	defined	__arm__
133 #define MEMORY_BARRIER()	dmb()
134 #elif	defined	__aarch64__
135 #define MEMORY_BARRIER()	dmb(sy)
136 #elif	defined __riscv
137 #define MEMORY_BARRIER()	fence()
138 #else
139 #error	"Not supported platform"
140 #endif
141 
142 /*
143  *  A la VMS/CAM-3 queue management.
144  */
145 typedef struct sym_quehead {
146 	struct sym_quehead *flink;	/* Forward  pointer */
147 	struct sym_quehead *blink;	/* Backward pointer */
148 } SYM_QUEHEAD;
149 
150 #define sym_que_init(ptr) do { \
151 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
152 } while (0)
153 
154 static __inline void __sym_que_add(struct sym_quehead * new,
155 	struct sym_quehead * blink,
156 	struct sym_quehead * flink)
157 {
158 	flink->blink	= new;
159 	new->flink	= flink;
160 	new->blink	= blink;
161 	blink->flink	= new;
162 }
163 
164 static __inline void __sym_que_del(struct sym_quehead * blink,
165 	struct sym_quehead * flink)
166 {
167 	flink->blink = blink;
168 	blink->flink = flink;
169 }
170 
171 static __inline int sym_que_empty(struct sym_quehead *head)
172 {
173 	return head->flink == head;
174 }
175 
176 static __inline void sym_que_splice(struct sym_quehead *list,
177 	struct sym_quehead *head)
178 {
179 	struct sym_quehead *first = list->flink;
180 
181 	if (first != list) {
182 		struct sym_quehead *last = list->blink;
183 		struct sym_quehead *at   = head->flink;
184 
185 		first->blink = head;
186 		head->flink  = first;
187 
188 		last->flink = at;
189 		at->blink   = last;
190 	}
191 }
192 
193 #define sym_que_entry(ptr, type, member) \
194 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
195 
196 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
197 
198 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
199 
200 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
201 
202 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
203 {
204 	struct sym_quehead *elem = head->flink;
205 
206 	if (elem != head)
207 		__sym_que_del(head, elem->flink);
208 	else
209 		elem = NULL;
210 	return elem;
211 }
212 
213 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
214 
215 /*
216  *  This one may be useful.
217  */
218 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
219 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
220 /*
221  *  FreeBSD does not offer our kind of queue in the CAM CCB.
222  *  So, we have to cast.
223  */
224 #define sym_qptr(p)	((struct sym_quehead *) (p))
225 
226 /*
227  *  Simple bitmap operations.
228  */
229 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
230 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
231 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
232 
233 /*
234  *  Number of tasks per device we want to handle.
235  */
236 #if	SYM_CONF_MAX_TAG_ORDER > 8
237 #error	"more than 256 tags per logical unit not allowed."
238 #endif
239 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
240 
241 /*
242  *  Donnot use more tasks that we can handle.
243  */
244 #ifndef	SYM_CONF_MAX_TAG
245 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
246 #endif
247 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
248 #undef	SYM_CONF_MAX_TAG
249 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
250 #endif
251 
252 /*
253  *    This one means 'NO TAG for this job'
254  */
255 #define NO_TAG	(256)
256 
257 /*
258  *  Number of SCSI targets.
259  */
260 #if	SYM_CONF_MAX_TARGET > 16
261 #error	"more than 16 targets not allowed."
262 #endif
263 
264 /*
265  *  Number of logical units per target.
266  */
267 #if	SYM_CONF_MAX_LUN > 64
268 #error	"more than 64 logical units per target not allowed."
269 #endif
270 
271 /*
272  *    Asynchronous pre-scaler (ns). Shall be 40 for
273  *    the SCSI timings to be compliant.
274  */
275 #define	SYM_CONF_MIN_ASYNC (40)
276 
277 /*
278  *  Number of entries in the START and DONE queues.
279  *
280  *  We limit to 1 PAGE in order to succeed allocation of
281  *  these queues. Each entry is 8 bytes long (2 DWORDS).
282  */
283 #ifdef	SYM_CONF_MAX_START
284 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
285 #else
286 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
287 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
288 #endif
289 
290 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
291 #undef	SYM_CONF_MAX_QUEUE
292 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
293 #undef	SYM_CONF_MAX_START
294 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
295 #endif
296 
297 /*
298  *  For this one, we want a short name :-)
299  */
300 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
301 
302 /*
303  *  Active debugging tags and verbosity.
304  */
305 #define DEBUG_ALLOC	(0x0001)
306 #define DEBUG_PHASE	(0x0002)
307 #define DEBUG_POLL	(0x0004)
308 #define DEBUG_QUEUE	(0x0008)
309 #define DEBUG_RESULT	(0x0010)
310 #define DEBUG_SCATTER	(0x0020)
311 #define DEBUG_SCRIPT	(0x0040)
312 #define DEBUG_TINY	(0x0080)
313 #define DEBUG_TIMING	(0x0100)
314 #define DEBUG_NEGO	(0x0200)
315 #define DEBUG_TAGS	(0x0400)
316 #define DEBUG_POINTER	(0x0800)
317 
318 #if 0
319 static int sym_debug = 0;
320 	#define DEBUG_FLAGS sym_debug
321 #else
322 /*	#define DEBUG_FLAGS (0x0631) */
323 	#define DEBUG_FLAGS (0x0000)
324 
325 #endif
326 #define sym_verbose	(np->verbose)
327 
328 /*
329  *  Insert a delay in micro-seconds and milli-seconds.
330  */
331 static void UDELAY(int us) { DELAY(us); }
332 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
333 
334 /*
335  *  Simple power of two buddy-like allocator.
336  *
337  *  This simple code is not intended to be fast, but to
338  *  provide power of 2 aligned memory allocations.
339  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
340  *  this allocator allows simple and fast address calculations
341  *  from the SCRIPTS code. In addition, cache line alignment
342  *  is guaranteed for power of 2 cache line size.
343  *
344  *  This allocator has been developed for the Linux sym53c8xx
345  *  driver, since this O/S does not provide naturally aligned
346  *  allocations.
347  *  It has the advantage of allowing the driver to use private
348  *  pages of memory that will be useful if we ever need to deal
349  *  with IO MMUs for PCI.
350  */
351 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
352 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
353 #if 0
354 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
355 #endif
356 #define MEMO_WARN	1
357 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
358 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
359 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
360 
361 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
362 #define free_pages(p)		free((p), M_DEVBUF)
363 
364 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
365 
366 typedef struct m_link {		/* Link between free memory chunks */
367 	struct m_link *next;
368 } m_link_s;
369 
370 typedef struct m_vtob {		/* Virtual to Bus address translation */
371 	struct m_vtob	*next;
372 	bus_dmamap_t	dmamap;	/* Map for this chunk */
373 	m_addr_t	vaddr;	/* Virtual address */
374 	m_addr_t	baddr;	/* Bus physical address */
375 } m_vtob_s;
376 /* Hash this stuff a bit to speed up translations */
377 #define VTOB_HASH_SHIFT		5
378 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
379 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
380 #define VTOB_HASH_CODE(m)	\
381 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
382 
383 typedef struct m_pool {		/* Memory pool of a given kind */
384 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
385 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
386 	m_addr_t (*getp)(struct m_pool *);
387 #ifdef	MEMO_FREE_UNUSED
388 	void (*freep)(struct m_pool *, m_addr_t);
389 #endif
390 #define M_GETP()		mp->getp(mp)
391 #define M_FREEP(p)		mp->freep(mp, p)
392 	int nump;
393 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
394 	struct m_pool *next;
395 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
396 } m_pool_s;
397 
398 static void *___sym_malloc(m_pool_s *mp, int size)
399 {
400 	int i = 0;
401 	int s = (1 << MEMO_SHIFT);
402 	int j;
403 	m_addr_t a;
404 	m_link_s *h = mp->h;
405 
406 	if (size > MEMO_CLUSTER_SIZE)
407 		return NULL;
408 
409 	while (size > s) {
410 		s <<= 1;
411 		++i;
412 	}
413 
414 	j = i;
415 	while (!h[j].next) {
416 		if (s == MEMO_CLUSTER_SIZE) {
417 			h[j].next = (m_link_s *) M_GETP();
418 			if (h[j].next)
419 				h[j].next->next = NULL;
420 			break;
421 		}
422 		++j;
423 		s <<= 1;
424 	}
425 	a = (m_addr_t) h[j].next;
426 	if (a) {
427 		h[j].next = h[j].next->next;
428 		while (j > i) {
429 			j -= 1;
430 			s >>= 1;
431 			h[j].next = (m_link_s *) (a+s);
432 			h[j].next->next = NULL;
433 		}
434 	}
435 #ifdef DEBUG
436 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
437 #endif
438 	return (void *) a;
439 }
440 
441 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
442 {
443 	int i = 0;
444 	int s = (1 << MEMO_SHIFT);
445 	m_link_s *q;
446 	m_addr_t a, b;
447 	m_link_s *h = mp->h;
448 
449 #ifdef DEBUG
450 	printf("___sym_mfree(%p, %d)\n", ptr, size);
451 #endif
452 
453 	if (size > MEMO_CLUSTER_SIZE)
454 		return;
455 
456 	while (size > s) {
457 		s <<= 1;
458 		++i;
459 	}
460 
461 	a = (m_addr_t) ptr;
462 
463 	while (1) {
464 #ifdef MEMO_FREE_UNUSED
465 		if (s == MEMO_CLUSTER_SIZE) {
466 			M_FREEP(a);
467 			break;
468 		}
469 #endif
470 		b = a ^ s;
471 		q = &h[i];
472 		while (q->next && q->next != (m_link_s *) b) {
473 			q = q->next;
474 		}
475 		if (!q->next) {
476 			((m_link_s *) a)->next = h[i].next;
477 			h[i].next = (m_link_s *) a;
478 			break;
479 		}
480 		q->next = q->next->next;
481 		a = a & b;
482 		s <<= 1;
483 		++i;
484 	}
485 }
486 
487 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
488 {
489 	void *p;
490 
491 	p = ___sym_malloc(mp, size);
492 
493 	if (DEBUG_FLAGS & DEBUG_ALLOC)
494 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
495 
496 	if (p)
497 		bzero(p, size);
498 	else if (uflags & MEMO_WARN)
499 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
500 
501 	return p;
502 }
503 
504 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
505 
506 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
507 {
508 	if (DEBUG_FLAGS & DEBUG_ALLOC)
509 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
510 
511 	___sym_mfree(mp, ptr, size);
512 
513 }
514 
515 /*
516  * Default memory pool we donnot need to involve in DMA.
517  */
518 /*
519  * With the `bus dma abstraction', we use a separate pool for
520  * memory we donnot need to involve in DMA.
521  */
522 static m_addr_t ___mp0_getp(m_pool_s *mp)
523 {
524 	m_addr_t m = (m_addr_t) get_pages();
525 	if (m)
526 		++mp->nump;
527 	return m;
528 }
529 
530 #ifdef	MEMO_FREE_UNUSED
531 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
532 {
533 	free_pages(m);
534 	--mp->nump;
535 }
536 #endif
537 
538 #ifdef	MEMO_FREE_UNUSED
539 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
540 #else
541 static m_pool_s mp0 = {0, 0, ___mp0_getp};
542 #endif
543 
544 /*
545  * Actual memory allocation routine for non-DMAed memory.
546  */
547 static void *sym_calloc(int size, char *name)
548 {
549 	void *m;
550 	/* Lock */
551 	m = __sym_calloc(&mp0, size, name);
552 	/* Unlock */
553 	return m;
554 }
555 
556 /*
557  * Actual memory allocation routine for non-DMAed memory.
558  */
559 static void sym_mfree(void *ptr, int size, char *name)
560 {
561 	/* Lock */
562 	__sym_mfree(&mp0, ptr, size, name);
563 	/* Unlock */
564 }
565 
566 /*
567  * DMAable pools.
568  */
569 /*
570  * With `bus dma abstraction', we use a separate pool per parent
571  * BUS handle. A reverse table (hashed) is maintained for virtual
572  * to BUS address translation.
573  */
574 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused,
575     int error)
576 {
577 	bus_addr_t *baddr;
578 
579 	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
580 
581 	baddr = (bus_addr_t *)arg;
582 	if (error)
583 		*baddr = 0;
584 	else
585 		*baddr = segs->ds_addr;
586 }
587 
588 static m_addr_t ___dma_getp(m_pool_s *mp)
589 {
590 	m_vtob_s *vbp;
591 	void *vaddr = NULL;
592 	bus_addr_t baddr = 0;
593 
594 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
595 	if (!vbp)
596 		goto out_err;
597 
598 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
599 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
600 		goto out_err;
601 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
602 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
603 	if (baddr) {
604 		int hc = VTOB_HASH_CODE(vaddr);
605 		vbp->vaddr = (m_addr_t) vaddr;
606 		vbp->baddr = (m_addr_t) baddr;
607 		vbp->next = mp->vtob[hc];
608 		mp->vtob[hc] = vbp;
609 		++mp->nump;
610 		return (m_addr_t) vaddr;
611 	}
612 out_err:
613 	if (baddr)
614 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
615 	if (vaddr)
616 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
617 	if (vbp)
618 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
619 	return 0;
620 }
621 
622 #ifdef	MEMO_FREE_UNUSED
623 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
624 {
625 	m_vtob_s **vbpp, *vbp;
626 	int hc = VTOB_HASH_CODE(m);
627 
628 	vbpp = &mp->vtob[hc];
629 	while (*vbpp && (*vbpp)->vaddr != m)
630 		vbpp = &(*vbpp)->next;
631 	if (*vbpp) {
632 		vbp = *vbpp;
633 		*vbpp = (*vbpp)->next;
634 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
635 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
636 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
637 		--mp->nump;
638 	}
639 }
640 #endif
641 
642 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
643 {
644 	m_pool_s *mp;
645 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
646 	return mp;
647 }
648 
649 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
650 {
651 	m_pool_s *mp = NULL;
652 
653 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
654 	if (mp) {
655 		mp->dev_dmat = dev_dmat;
656 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
657 			       BUS_SPACE_MAXADDR_32BIT,
658 			       BUS_SPACE_MAXADDR,
659 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
660 			       MEMO_CLUSTER_SIZE, 0,
661 			       NULL, NULL, &mp->dmat)) {
662 			mp->getp = ___dma_getp;
663 #ifdef	MEMO_FREE_UNUSED
664 			mp->freep = ___dma_freep;
665 #endif
666 			mp->next = mp0.next;
667 			mp0.next = mp;
668 			return mp;
669 		}
670 	}
671 	if (mp)
672 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
673 	return NULL;
674 }
675 
676 #ifdef	MEMO_FREE_UNUSED
677 static void ___del_dma_pool(m_pool_s *p)
678 {
679 	struct m_pool **pp = &mp0.next;
680 
681 	while (*pp && *pp != p)
682 		pp = &(*pp)->next;
683 	if (*pp) {
684 		*pp = (*pp)->next;
685 		bus_dma_tag_destroy(p->dmat);
686 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
687 	}
688 }
689 #endif
690 
691 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
692 {
693 	struct m_pool *mp;
694 	void *m = NULL;
695 
696 	/* Lock */
697 	mp = ___get_dma_pool(dev_dmat);
698 	if (!mp)
699 		mp = ___cre_dma_pool(dev_dmat);
700 	if (mp)
701 		m = __sym_calloc(mp, size, name);
702 #ifdef	MEMO_FREE_UNUSED
703 	if (mp && !mp->nump)
704 		___del_dma_pool(mp);
705 #endif
706 	/* Unlock */
707 
708 	return m;
709 }
710 
711 static void
712 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
713 {
714 	struct m_pool *mp;
715 
716 	/* Lock */
717 	mp = ___get_dma_pool(dev_dmat);
718 	if (mp)
719 		__sym_mfree(mp, m, size, name);
720 #ifdef	MEMO_FREE_UNUSED
721 	if (mp && !mp->nump)
722 		___del_dma_pool(mp);
723 #endif
724 	/* Unlock */
725 }
726 
727 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
728 {
729 	m_pool_s *mp;
730 	int hc = VTOB_HASH_CODE(m);
731 	m_vtob_s *vp = NULL;
732 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
733 
734 	/* Lock */
735 	mp = ___get_dma_pool(dev_dmat);
736 	if (mp) {
737 		vp = mp->vtob[hc];
738 		while (vp && (m_addr_t) vp->vaddr != a)
739 			vp = vp->next;
740 	}
741 	/* Unlock */
742 	if (!vp)
743 		panic("sym: VTOBUS FAILED!\n");
744 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
745 }
746 
747 /*
748  * Verbs for DMAable memory handling.
749  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
750  * being discarded.
751  */
752 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
753 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
754 #define _sym_mfree_dma(np, p, s, n)	\
755 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
756 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
757 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
758 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
759 #define vtobus(p)			_vtobus(np, p)
760 
761 /*
762  *  Print a buffer in hexadecimal format.
763  */
764 static void sym_printb_hex (u_char *p, int n)
765 {
766 	while (n-- > 0)
767 		printf (" %x", *p++);
768 }
769 
770 /*
771  *  Same with a label at beginning and .\n at end.
772  */
773 static void sym_printl_hex (char *label, u_char *p, int n)
774 {
775 	printf ("%s", label);
776 	sym_printb_hex (p, n);
777 	printf (".\n");
778 }
779 
780 /*
781  *  Return a string for SCSI BUS mode.
782  */
783 static const char *sym_scsi_bus_mode(int mode)
784 {
785 	switch(mode) {
786 	case SMODE_HVD:	return "HVD";
787 	case SMODE_SE:	return "SE";
788 	case SMODE_LVD: return "LVD";
789 	}
790 	return "??";
791 }
792 
793 /*
794  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
795  */
796 #ifdef SYM_CONF_NVRAM_SUPPORT
797 static const u_char Tekram_sync[16] =
798 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
799 #endif
800 
801 /*
802  *  Union of supported NVRAM formats.
803  */
804 struct sym_nvram {
805 	int type;
806 #define	SYM_SYMBIOS_NVRAM	(1)
807 #define	SYM_TEKRAM_NVRAM	(2)
808 #ifdef	SYM_CONF_NVRAM_SUPPORT
809 	union {
810 		Symbios_nvram Symbios;
811 		Tekram_nvram Tekram;
812 	} data;
813 #endif
814 };
815 
816 /*
817  *  This one is hopefully useless, but actually useful. :-)
818  */
819 #ifndef assert
820 #define	assert(expression) { \
821 	if (!(expression)) { \
822 		(void)panic( \
823 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
824 			#expression, \
825 			__FILE__, __LINE__); \
826 	} \
827 }
828 #endif
829 
830 /*
831  *  Some provision for a possible big endian mode supported by
832  *  Symbios chips (never seen, by the way).
833  *  For now, this stuff does not deserve any comments. :)
834  */
835 #define sym_offb(o)	(o)
836 #define sym_offw(o)	(o)
837 
838 /*
839  *  Some provision for support for BIG ENDIAN CPU.
840  */
841 #define cpu_to_scr(dw)	htole32(dw)
842 #define scr_to_cpu(dw)	le32toh(dw)
843 
844 /*
845  *  Access to the chip IO registers and on-chip RAM.
846  *  We use the `bus space' interface under FreeBSD-4 and
847  *  later kernel versions.
848  */
849 #if defined(SYM_CONF_IOMAPPED)
850 
851 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
852 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
853 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
854 
855 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
856 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
857 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
858 
859 #else	/* Memory mapped IO */
860 
861 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
862 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
863 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
864 
865 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
866 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
867 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
868 
869 #endif	/* SYM_CONF_IOMAPPED */
870 
871 #define OUTRAM_OFF(o, a, l)	\
872 	bus_write_region_1(np->ram_res, (o), (a), (l))
873 
874 /*
875  *  Common definitions for both bus space and legacy IO methods.
876  */
877 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
878 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
879 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
880 
881 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
882 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
883 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
884 
885 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
886 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
887 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
888 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
889 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
890 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
891 
892 /*
893  *  We normally want the chip to have a consistent view
894  *  of driver internal data structures when we restart it.
895  *  Thus these macros.
896  */
897 #define OUTL_DSP(v)				\
898 	do {					\
899 		MEMORY_BARRIER();		\
900 		OUTL (nc_dsp, (v));		\
901 	} while (0)
902 
903 #define OUTONB_STD()				\
904 	do {					\
905 		MEMORY_BARRIER();		\
906 		OUTONB (nc_dcntl, (STD|NOCOM));	\
907 	} while (0)
908 
909 /*
910  *  Command control block states.
911  */
912 #define HS_IDLE		(0)
913 #define HS_BUSY		(1)
914 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
915 #define HS_DISCONNECT	(3)	/* Disconnected by target */
916 #define HS_WAIT		(4)	/* waiting for resource	  */
917 
918 #define HS_DONEMASK	(0x80)
919 #define HS_COMPLETE	(4|HS_DONEMASK)
920 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
921 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
922 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
923 
924 /*
925  *  Software Interrupt Codes
926  */
927 #define	SIR_BAD_SCSI_STATUS	(1)
928 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
929 #define	SIR_MSG_RECEIVED	(3)
930 #define	SIR_MSG_WEIRD		(4)
931 #define	SIR_NEGO_FAILED		(5)
932 #define	SIR_NEGO_PROTO		(6)
933 #define	SIR_SCRIPT_STOPPED	(7)
934 #define	SIR_REJECT_TO_SEND	(8)
935 #define	SIR_SWIDE_OVERRUN	(9)
936 #define	SIR_SODL_UNDERRUN	(10)
937 #define	SIR_RESEL_NO_MSG_IN	(11)
938 #define	SIR_RESEL_NO_IDENTIFY	(12)
939 #define	SIR_RESEL_BAD_LUN	(13)
940 #define	SIR_TARGET_SELECTED	(14)
941 #define	SIR_RESEL_BAD_I_T_L	(15)
942 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
943 #define	SIR_ABORT_SENT		(17)
944 #define	SIR_RESEL_ABORTED	(18)
945 #define	SIR_MSG_OUT_DONE	(19)
946 #define	SIR_COMPLETE_ERROR	(20)
947 #define	SIR_DATA_OVERRUN	(21)
948 #define	SIR_BAD_PHASE		(22)
949 #define	SIR_MAX			(22)
950 
951 /*
952  *  Extended error bit codes.
953  *  xerr_status field of struct sym_ccb.
954  */
955 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
956 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
957 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
958 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
959 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
960 
961 /*
962  *  Negotiation status.
963  *  nego_status field of struct sym_ccb.
964  */
965 #define NS_SYNC		(1)
966 #define NS_WIDE		(2)
967 #define NS_PPR		(3)
968 
969 /*
970  *  A CCB hashed table is used to retrieve CCB address
971  *  from DSA value.
972  */
973 #define CCB_HASH_SHIFT		8
974 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
975 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
976 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
977 
978 /*
979  *  Device flags.
980  */
981 #define SYM_DISC_ENABLED	(1)
982 #define SYM_TAGS_ENABLED	(1<<1)
983 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
984 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
985 
986 /*
987  *  Host adapter miscellaneous flags.
988  */
989 #define SYM_AVOID_BUS_RESET	(1)
990 #define SYM_SCAN_TARGETS_HILO	(1<<1)
991 
992 /*
993  *  Device quirks.
994  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
995  *  saving the DATA POINTER then reselects and terminates the IO.
996  *  On reselection, the automatic RESTORE DATA POINTER makes the
997  *  CURRENT DATA POINTER not point at the end of the IO.
998  *  This behaviour just breaks our calculation of the residual.
999  *  For now, we just force an AUTO SAVE on disconnection and will
1000  *  fix that in a further driver version.
1001  */
1002 #define SYM_QUIRK_AUTOSAVE 1
1003 
1004 /*
1005  *  Misc.
1006  */
1007 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1008 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1009 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1010 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1011 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1012 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1013 
1014 #define SYM_SNOOP_TIMEOUT (10000000)
1015 #define SYM_PCI_IO	PCIR_BAR(0)
1016 #define SYM_PCI_MMIO	PCIR_BAR(1)
1017 #define SYM_PCI_RAM	PCIR_BAR(2)
1018 #define SYM_PCI_RAM64	PCIR_BAR(3)
1019 
1020 /*
1021  *  Back-pointer from the CAM CCB to our data structures.
1022  */
1023 #define sym_hcb_ptr	spriv_ptr0
1024 /* #define sym_ccb_ptr	spriv_ptr1 */
1025 
1026 /*
1027  *  We mostly have to deal with pointers.
1028  *  Thus these typedef's.
1029  */
1030 typedef struct sym_tcb *tcb_p;
1031 typedef struct sym_lcb *lcb_p;
1032 typedef struct sym_ccb *ccb_p;
1033 typedef struct sym_hcb *hcb_p;
1034 
1035 /*
1036  *  Gather negotiable parameters value
1037  */
1038 struct sym_trans {
1039 	u8 scsi_version;
1040 	u8 spi_version;
1041 	u8 period;
1042 	u8 offset;
1043 	u8 width;
1044 	u8 options;	/* PPR options */
1045 };
1046 
1047 struct sym_tinfo {
1048 	struct sym_trans current;
1049 	struct sym_trans goal;
1050 	struct sym_trans user;
1051 };
1052 
1053 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1054 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1055 
1056 /*
1057  *  Global TCB HEADER.
1058  *
1059  *  Due to lack of indirect addressing on earlier NCR chips,
1060  *  this substructure is copied from the TCB to a global
1061  *  address after selection.
1062  *  For SYMBIOS chips that support LOAD/STORE this copy is
1063  *  not needed and thus not performed.
1064  */
1065 struct sym_tcbh {
1066 	/*
1067 	 *  Scripts bus addresses of LUN table accessed from scripts.
1068 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1069 	 *  and we we want to speed-up the general case and not waste
1070 	 *  resources.
1071 	 */
1072 	u32	luntbl_sa;	/* bus address of this table	*/
1073 	u32	lun0_sa;	/* bus address of LCB #0	*/
1074 	/*
1075 	 *  Actual SYNC/WIDE IO registers value for this target.
1076 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1077 	 *  so have alignment constraints.
1078 	 */
1079 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1080 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1081 /*2*/	u_char	filler1;
1082 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1083 };
1084 
1085 /*
1086  *  Target Control Block
1087  */
1088 struct sym_tcb {
1089 	/*
1090 	 *  TCB header.
1091 	 *  Assumed at offset 0.
1092 	 */
1093 /*0*/	struct sym_tcbh head;
1094 
1095 	/*
1096 	 *  LUN table used by the SCRIPTS processor.
1097 	 *  An array of bus addresses is used on reselection.
1098 	 */
1099 	u32	*luntbl;	/* LCBs bus address table	*/
1100 
1101 	/*
1102 	 *  LUN table used by the C code.
1103 	 */
1104 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1105 #if SYM_CONF_MAX_LUN > 1
1106 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1107 #endif
1108 
1109 	/*
1110 	 *  Bitmap that tells about LUNs that succeeded at least
1111 	 *  1 IO and therefore assumed to be a real device.
1112 	 *  Avoid useless allocation of the LCB structure.
1113 	 */
1114 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1115 
1116 	/*
1117 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1118 	 *  allocated (not discovered or LCB allocation failed).
1119 	 */
1120 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1121 
1122 	/*
1123 	 *  Transfer capabilities (SIP)
1124 	 */
1125 	struct sym_tinfo tinfo;
1126 
1127 	/*
1128 	 * Keep track of the CCB used for the negotiation in order
1129 	 * to ensure that only 1 negotiation is queued at a time.
1130 	 */
1131 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1132 
1133 	/*
1134 	 *  Set when we want to reset the device.
1135 	 */
1136 	u_char	to_reset;
1137 
1138 	/*
1139 	 *  Other user settable limits and options.
1140 	 *  These limits are read from the NVRAM if present.
1141 	 */
1142 	u_char	usrflags;
1143 	u_short	usrtags;
1144 };
1145 
1146 /*
1147  *  Assert some alignments required by the chip.
1148  */
1149 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1150     offsetof(struct sym_tcb, head.sval)) &3) == 0);
1151 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1152     offsetof(struct sym_tcb, head.wval)) &3) == 0);
1153 
1154 /*
1155  *  Global LCB HEADER.
1156  *
1157  *  Due to lack of indirect addressing on earlier NCR chips,
1158  *  this substructure is copied from the LCB to a global
1159  *  address after selection.
1160  *  For SYMBIOS chips that support LOAD/STORE this copy is
1161  *  not needed and thus not performed.
1162  */
1163 struct sym_lcbh {
1164 	/*
1165 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1166 	 *  For not probed logical units, this address points to
1167 	 *  SCRIPTS that deal with bad LU handling (must be at
1168 	 *  offset zero of the LCB for that reason).
1169 	 */
1170 /*0*/	u32	resel_sa;
1171 
1172 	/*
1173 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1174 	 *  to the unique ITL nexus allowed to be disconnected.
1175 	 */
1176 	u32	itl_task_sa;
1177 
1178 	/*
1179 	 *  Task table bus address (read from SCRIPTS).
1180 	 */
1181 	u32	itlq_tbl_sa;
1182 };
1183 
1184 /*
1185  *  Logical Unit Control Block
1186  */
1187 struct sym_lcb {
1188 	/*
1189 	 *  TCB header.
1190 	 *  Assumed at offset 0.
1191 	 */
1192 /*0*/	struct sym_lcbh head;
1193 
1194 	/*
1195 	 *  Task table read from SCRIPTS that contains pointers to
1196 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1197 	 *  inside the header.
1198 	 */
1199 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1200 
1201 	/*
1202 	 *  Busy CCBs management.
1203 	 */
1204 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1205 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1206 
1207 	/*
1208 	 *  Circular tag allocation buffer.
1209 	 */
1210 	u_short	ia_tag;		/* Tag allocation index		*/
1211 	u_short	if_tag;		/* Tag release index		*/
1212 	u_char	*cb_tags;	/* Circular tags buffer		*/
1213 
1214 	/*
1215 	 *  Set when we want to clear all tasks.
1216 	 */
1217 	u_char to_clear;
1218 
1219 	/*
1220 	 *  Capabilities.
1221 	 */
1222 	u_char	user_flags;
1223 	u_char	current_flags;
1224 };
1225 
1226 /*
1227  *  Action from SCRIPTS on a task.
1228  *  Is part of the CCB, but is also used separately to plug
1229  *  error handling action to perform from SCRIPTS.
1230  */
1231 struct sym_actscr {
1232 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1233 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1234 };
1235 
1236 /*
1237  *  Phase mismatch context.
1238  *
1239  *  It is part of the CCB and is used as parameters for the
1240  *  DATA pointer. We need two contexts to handle correctly the
1241  *  SAVED DATA POINTER.
1242  */
1243 struct sym_pmc {
1244 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1245 	u32	ret;		/* SCRIPT return address	*/
1246 };
1247 
1248 /*
1249  *  LUN control block lookup.
1250  *  We use a direct pointer for LUN #0, and a table of
1251  *  pointers which is only allocated for devices that support
1252  *  LUN(s) > 0.
1253  */
1254 #if SYM_CONF_MAX_LUN <= 1
1255 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1256 #else
1257 #define sym_lp(tp, lun) \
1258 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1259 #endif
1260 
1261 /*
1262  *  Status are used by the host and the script processor.
1263  *
1264  *  The last four bytes (status[4]) are copied to the
1265  *  scratchb register (declared as scr0..scr3) just after the
1266  *  select/reselect, and copied back just after disconnecting.
1267  *  Inside the script the XX_REG are used.
1268  */
1269 
1270 /*
1271  *  Last four bytes (script)
1272  */
1273 #define  QU_REG	scr0
1274 #define  HS_REG	scr1
1275 #define  HS_PRT	nc_scr1
1276 #define  SS_REG	scr2
1277 #define  SS_PRT	nc_scr2
1278 #define  HF_REG	scr3
1279 #define  HF_PRT	nc_scr3
1280 
1281 /*
1282  *  Last four bytes (host)
1283  */
1284 #define  actualquirks  phys.head.status[0]
1285 #define  host_status   phys.head.status[1]
1286 #define  ssss_status   phys.head.status[2]
1287 #define  host_flags    phys.head.status[3]
1288 
1289 /*
1290  *  Host flags
1291  */
1292 #define HF_IN_PM0	1u
1293 #define HF_IN_PM1	(1u<<1)
1294 #define HF_ACT_PM	(1u<<2)
1295 #define HF_DP_SAVED	(1u<<3)
1296 #define HF_SENSE	(1u<<4)
1297 #define HF_EXT_ERR	(1u<<5)
1298 #define HF_DATA_IN	(1u<<6)
1299 #ifdef SYM_CONF_IARB_SUPPORT
1300 #define HF_HINT_IARB	(1u<<7)
1301 #endif
1302 
1303 /*
1304  *  Global CCB HEADER.
1305  *
1306  *  Due to lack of indirect addressing on earlier NCR chips,
1307  *  this substructure is copied from the ccb to a global
1308  *  address after selection (or reselection) and copied back
1309  *  before disconnect.
1310  *  For SYMBIOS chips that support LOAD/STORE this copy is
1311  *  not needed and thus not performed.
1312  */
1313 struct sym_ccbh {
1314 	/*
1315 	 *  Start and restart SCRIPTS addresses (must be at 0).
1316 	 */
1317 /*0*/	struct sym_actscr go;
1318 
1319 	/*
1320 	 *  SCRIPTS jump address that deal with data pointers.
1321 	 *  'savep' points to the position in the script responsible
1322 	 *  for the actual transfer of data.
1323 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1324 	 */
1325 	u32	savep;		/* Jump address to saved data pointer	*/
1326 	u32	lastp;		/* SCRIPTS address at end of data	*/
1327 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1328 
1329 	/*
1330 	 *  Status fields.
1331 	 */
1332 	u8	status[4];
1333 };
1334 
1335 /*
1336  *  Data Structure Block
1337  *
1338  *  During execution of a ccb by the script processor, the
1339  *  DSA (data structure address) register points to this
1340  *  substructure of the ccb.
1341  */
1342 struct sym_dsb {
1343 	/*
1344 	 *  CCB header.
1345 	 *  Also assumed at offset 0 of the sym_ccb structure.
1346 	 */
1347 /*0*/	struct sym_ccbh head;
1348 
1349 	/*
1350 	 *  Phase mismatch contexts.
1351 	 *  We need two to handle correctly the SAVED DATA POINTER.
1352 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1353 	 *  for address calculation from SCRIPTS.
1354 	 */
1355 	struct sym_pmc pm0;
1356 	struct sym_pmc pm1;
1357 
1358 	/*
1359 	 *  Table data for Script
1360 	 */
1361 	struct sym_tblsel  select;
1362 	struct sym_tblmove smsg;
1363 	struct sym_tblmove smsg_ext;
1364 	struct sym_tblmove cmd;
1365 	struct sym_tblmove sense;
1366 	struct sym_tblmove wresid;
1367 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1368 };
1369 
1370 /*
1371  *  Our Command Control Block
1372  */
1373 struct sym_ccb {
1374 	/*
1375 	 *  This is the data structure which is pointed by the DSA
1376 	 *  register when it is executed by the script processor.
1377 	 *  It must be the first entry.
1378 	 */
1379 	struct sym_dsb phys;
1380 
1381 	/*
1382 	 *  Pointer to CAM ccb and related stuff.
1383 	 */
1384 	struct callout ch;	/* callout handle		*/
1385 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1386 	u8	cdb_buf[16];	/* Copy of CDB			*/
1387 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1388 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1389 	int	data_len;	/* Total data length		*/
1390 	int	segments;	/* Number of SG segments	*/
1391 
1392 	/*
1393 	 *  Miscellaneous status'.
1394 	 */
1395 	u_char	nego_status;	/* Negotiation status		*/
1396 	u_char	xerr_status;	/* Extended error flags		*/
1397 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1398 
1399 	/*
1400 	 *  Message areas.
1401 	 *  We prepare a message to be sent after selection.
1402 	 *  We may use a second one if the command is rescheduled
1403 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1404 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1405 	 *  While negotiating sync or wide transfer,
1406 	 *  a SDTR or WDTR message is appended.
1407 	 */
1408 	u_char	scsi_smsg [12];
1409 	u_char	scsi_smsg2[12];
1410 
1411 	/*
1412 	 *  Auto request sense related fields.
1413 	 */
1414 	u_char	sensecmd[6];	/* Request Sense command	*/
1415 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1416 	u_char	sv_xerr_status;	/* Saved extended status	*/
1417 	int	sv_resid;	/* Saved residual		*/
1418 
1419 	/*
1420 	 *  Map for the DMA of user data.
1421 	 */
1422 	void		*arg;	/* Argument for some callback	*/
1423 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1424 	u_char		dmamapped;
1425 #define SYM_DMA_NONE	0
1426 #define SYM_DMA_READ	1
1427 #define SYM_DMA_WRITE	2
1428 	/*
1429 	 *  Other fields.
1430 	 */
1431 	u32	ccb_ba;		/* BUS address of this CCB	*/
1432 	u_short	tag;		/* Tag for this transfer	*/
1433 				/*  NO_TAG means no tag		*/
1434 	u_char	target;
1435 	u_char	lun;
1436 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1437 	SYM_QUEHEAD
1438 		link_ccbq;	/* Link to free/busy CCB queue	*/
1439 	u32	startp;		/* Initial data pointer		*/
1440 	int	ext_sg;		/* Extreme data pointer, used	*/
1441 	int	ext_ofs;	/*  to calculate the residual.	*/
1442 	u_char	to_abort;	/* Want this IO to be aborted	*/
1443 };
1444 
1445 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1446 
1447 /*
1448  *  Host Control Block
1449  */
1450 struct sym_hcb {
1451 	struct mtx	mtx;
1452 
1453 	/*
1454 	 *  Global headers.
1455 	 *  Due to poorness of addressing capabilities, earlier
1456 	 *  chips (810, 815, 825) copy part of the data structures
1457 	 *  (CCB, TCB and LCB) in fixed areas.
1458 	 */
1459 #ifdef	SYM_CONF_GENERIC_SUPPORT
1460 	struct sym_ccbh	ccb_head;
1461 	struct sym_tcbh	tcb_head;
1462 	struct sym_lcbh	lcb_head;
1463 #endif
1464 	/*
1465 	 *  Idle task and invalid task actions and
1466 	 *  their bus addresses.
1467 	 */
1468 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1469 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1470 
1471 	/*
1472 	 *  Dummy lun table to protect us against target
1473 	 *  returning bad lun number on reselection.
1474 	 */
1475 	u32	*badluntbl;	/* Table physical address	*/
1476 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1477 
1478 	/*
1479 	 *  Bus address of this host control block.
1480 	 */
1481 	u32	hcb_ba;
1482 
1483 	/*
1484 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1485 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1486 	 *  field.
1487 	 */
1488 	u32	scr_ram_seg;
1489 
1490 	/*
1491 	 *  Chip and controller indentification.
1492 	 */
1493 	device_t device;
1494 
1495 	/*
1496 	 *  Initial value of some IO register bits.
1497 	 *  These values are assumed to have been set by BIOS, and may
1498 	 *  be used to probe adapter implementation differences.
1499 	 */
1500 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1501 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1502 		sv_stest1;
1503 
1504 	/*
1505 	 *  Actual initial value of IO register bits used by the
1506 	 *  driver. They are loaded at initialisation according to
1507 	 *  features that are to be enabled/disabled.
1508 	 */
1509 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1510 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1511 
1512 	/*
1513 	 *  Target data.
1514 	 */
1515 #ifdef __amd64__
1516 	struct sym_tcb	*target;
1517 #else
1518 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1519 #endif
1520 
1521 	/*
1522 	 *  Target control block bus address array used by the SCRIPT
1523 	 *  on reselection.
1524 	 */
1525 	u32		*targtbl;
1526 	u32		targtbl_ba;
1527 
1528 	/*
1529 	 *  CAM SIM information for this instance.
1530 	 */
1531 	struct		cam_sim  *sim;
1532 	struct		cam_path *path;
1533 
1534 	/*
1535 	 *  Allocated hardware resources.
1536 	 */
1537 	struct resource	*irq_res;
1538 	struct resource	*io_res;
1539 	struct resource	*mmio_res;
1540 	struct resource	*ram_res;
1541 	int		ram_id;
1542 	void *intr;
1543 
1544 	/*
1545 	 *  Bus stuff.
1546 	 *
1547 	 *  My understanding of PCI is that all agents must share the
1548 	 *  same addressing range and model.
1549 	 *  But some hardware architecture guys provide complex and
1550 	 *  brain-deaded stuff that makes shit.
1551 	 *  This driver only support PCI compliant implementations and
1552 	 *  deals with part of the BUS stuff complexity only to fit O/S
1553 	 *  requirements.
1554 	 */
1555 
1556 	/*
1557 	 *  DMA stuff.
1558 	 */
1559 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1560 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1561 	/*
1562 	 *  BUS addresses of the chip
1563 	 */
1564 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1565 	int		mmio_ws;	/* MMIO Window size		*/
1566 
1567 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1568 	int		ram_ws;		/* RAM window size		*/
1569 
1570 	/*
1571 	 *  SCRIPTS virtual and physical bus addresses.
1572 	 *  'script'  is loaded in the on-chip RAM if present.
1573 	 *  'scripth' stays in main memory for all chips except the
1574 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1575 	 */
1576 	u_char		*scripta0;	/* Copies of script and scripth	*/
1577 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1578 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1579 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1580 	vm_offset_t	scriptb0_ba;
1581 	u_short		scripta_sz;	/* Actual size of script A	*/
1582 	u_short		scriptb_sz;	/* Actual size of script B	*/
1583 
1584 	/*
1585 	 *  Bus addresses, setup and patch methods for
1586 	 *  the selected firmware.
1587 	 */
1588 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1589 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1590 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1591 	void		(*fw_patch)(hcb_p np);
1592 	const char	*fw_name;
1593 
1594 	/*
1595 	 *  General controller parameters and configuration.
1596 	 */
1597 	u_short	device_id;	/* PCI device id		*/
1598 	u_char	revision_id;	/* PCI device revision id	*/
1599 	u_int	features;	/* Chip features map		*/
1600 	u_char	myaddr;		/* SCSI id of the adapter	*/
1601 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1602 	u_char	maxwide;	/* Maximum transfer width	*/
1603 	u_char	minsync;	/* Min sync period factor (ST)	*/
1604 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1605 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1606 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1607 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1608 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1609 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1610 	u_char	clock_divn;	/* Number of clock divisors	*/
1611 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1612 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1613 	/*
1614 	 *  Start queue management.
1615 	 *  It is filled up by the host processor and accessed by the
1616 	 *  SCRIPTS processor in order to start SCSI commands.
1617 	 */
1618 	volatile		/* Prevent code optimizations	*/
1619 	u32	*squeue;	/* Start queue virtual address	*/
1620 	u32	squeue_ba;	/* Start queue BUS address	*/
1621 	u_short	squeueput;	/* Next free slot of the queue	*/
1622 	u_short	actccbs;	/* Number of allocated CCBs	*/
1623 
1624 	/*
1625 	 *  Command completion queue.
1626 	 *  It is the same size as the start queue to avoid overflow.
1627 	 */
1628 	u_short	dqueueget;	/* Next position to scan	*/
1629 	volatile		/* Prevent code optimizations	*/
1630 	u32	*dqueue;	/* Completion (done) queue	*/
1631 	u32	dqueue_ba;	/* Done queue BUS address	*/
1632 
1633 	/*
1634 	 *  Miscellaneous buffers accessed by the scripts-processor.
1635 	 *  They shall be DWORD aligned, because they may be read or
1636 	 *  written with a script command.
1637 	 */
1638 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1639 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1640 	u32		lastmsg;	/* Last SCSI message sent	*/
1641 	u_char		scratch;	/* Scratch for SCSI receive	*/
1642 
1643 	/*
1644 	 *  Miscellaneous configuration and status parameters.
1645 	 */
1646 	u_char		usrflags;	/* Miscellaneous user flags	*/
1647 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1648 	u_char		verbose;	/* Verbosity for this controller*/
1649 	u32		cache;		/* Used for cache test at init.	*/
1650 
1651 	/*
1652 	 *  CCB lists and queue.
1653 	 */
1654 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1655 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1656 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1657 
1658 	/*
1659 	 *  During error handling and/or recovery,
1660 	 *  active CCBs that are to be completed with
1661 	 *  error or requeued are moved from the busy_ccbq
1662 	 *  to the comp_ccbq prior to completion.
1663 	 */
1664 	SYM_QUEHEAD	comp_ccbq;
1665 
1666 	/*
1667 	 *  CAM CCB pending queue.
1668 	 */
1669 	SYM_QUEHEAD	cam_ccbq;
1670 
1671 	/*
1672 	 *  IMMEDIATE ARBITRATION (IARB) control.
1673 	 *
1674 	 *  We keep track in 'last_cp' of the last CCB that has been
1675 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1676 	 *  this CCB completes. If last_cp is not zero at the moment
1677 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1678 	 *  used by the SCRIPTS as a hint for setting IARB.
1679 	 *  We donnot set more than 'iarb_max' consecutive hints for
1680 	 *  IARB in order to leave devices a chance to reselect.
1681 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1682 	 */
1683 #ifdef SYM_CONF_IARB_SUPPORT
1684 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1685 	u_short		iarb_count;	/* Actual # of these hints	*/
1686 	ccb_p		last_cp;
1687 #endif
1688 
1689 	/*
1690 	 *  Command abort handling.
1691 	 *  We need to synchronize tightly with the SCRIPTS
1692 	 *  processor in order to handle things correctly.
1693 	 */
1694 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1695 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1696 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1697 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1698 };
1699 
1700 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1701 
1702 /*
1703  *  Return the name of the controller.
1704  */
1705 static __inline const char *sym_name(hcb_p np)
1706 {
1707 	return device_get_nameunit(np->device);
1708 }
1709 
1710 /*--------------------------------------------------------------------------*/
1711 /*------------------------------ FIRMWARES ---------------------------------*/
1712 /*--------------------------------------------------------------------------*/
1713 
1714 /*
1715  *  This stuff will be moved to a separate source file when
1716  *  the driver will be broken into several source modules.
1717  */
1718 
1719 /*
1720  *  Macros used for all firmwares.
1721  */
1722 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1723 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1724 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1725 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1726 
1727 #ifdef	SYM_CONF_GENERIC_SUPPORT
1728 /*
1729  *  Allocate firmware #1 script area.
1730  */
1731 #define	SYM_FWA_SCR		sym_fw1a_scr
1732 #define	SYM_FWB_SCR		sym_fw1b_scr
1733 #include <dev/sym/sym_fw1.h>
1734 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1735 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1736 };
1737 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1738 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1739 };
1740 #undef	SYM_FWA_SCR
1741 #undef	SYM_FWB_SCR
1742 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1743 
1744 /*
1745  *  Allocate firmware #2 script area.
1746  */
1747 #define	SYM_FWA_SCR		sym_fw2a_scr
1748 #define	SYM_FWB_SCR		sym_fw2b_scr
1749 #include <dev/sym/sym_fw2.h>
1750 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1751 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1752 };
1753 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1754 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1755 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1756 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1757 };
1758 #undef	SYM_FWA_SCR
1759 #undef	SYM_FWB_SCR
1760 
1761 #undef	SYM_GEN_A
1762 #undef	SYM_GEN_B
1763 #undef	PADDR_A
1764 #undef	PADDR_B
1765 
1766 #ifdef	SYM_CONF_GENERIC_SUPPORT
1767 /*
1768  *  Patch routine for firmware #1.
1769  */
1770 static void
1771 sym_fw1_patch(hcb_p np)
1772 {
1773 	struct sym_fw1a_scr *scripta0;
1774 	struct sym_fw1b_scr *scriptb0;
1775 
1776 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1777 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1778 
1779 	/*
1780 	 *  Remove LED support if not needed.
1781 	 */
1782 	if (!(np->features & FE_LED0)) {
1783 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1784 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1785 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1786 	}
1787 
1788 #ifdef SYM_CONF_IARB_SUPPORT
1789 	/*
1790 	 *    If user does not want to use IMMEDIATE ARBITRATION
1791 	 *    when we are reselected while attempting to arbitrate,
1792 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1793 	 */
1794 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1795 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1796 #endif
1797 	/*
1798 	 *  Patch some data in SCRIPTS.
1799 	 *  - start and done queue initial bus address.
1800 	 *  - target bus address table bus address.
1801 	 */
1802 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1803 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1804 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1805 }
1806 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1807 
1808 /*
1809  *  Patch routine for firmware #2.
1810  */
1811 static void
1812 sym_fw2_patch(hcb_p np)
1813 {
1814 	struct sym_fw2a_scr *scripta0;
1815 	struct sym_fw2b_scr *scriptb0;
1816 
1817 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1818 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1819 
1820 	/*
1821 	 *  Remove LED support if not needed.
1822 	 */
1823 	if (!(np->features & FE_LED0)) {
1824 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1825 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1826 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1827 	}
1828 
1829 #ifdef SYM_CONF_IARB_SUPPORT
1830 	/*
1831 	 *    If user does not want to use IMMEDIATE ARBITRATION
1832 	 *    when we are reselected while attempting to arbitrate,
1833 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1834 	 */
1835 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1836 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1837 #endif
1838 	/*
1839 	 *  Patch some variable in SCRIPTS.
1840 	 *  - start and done queue initial bus address.
1841 	 *  - target bus address table bus address.
1842 	 */
1843 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1844 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1845 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1846 
1847 	/*
1848 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1849 	 */
1850 	if (!(np->features & FE_C10)) {
1851 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1852 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1853 	}
1854 
1855 	/*
1856 	 *  Remove a couple of work-arounds specific to C1010 if
1857 	 *  they are not desirable. See `sym_fw2.h' for more details.
1858 	 */
1859 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1860 	      np->revision_id < 0x1 &&
1861 	      np->pciclk_khz < 60000)) {
1862 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1863 		scripta0->datao_phase[1] = cpu_to_scr(0);
1864 	}
1865 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1866 	      /* np->revision_id < 0xff */ 1)) {
1867 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1868 		scripta0->sel_done[1] = cpu_to_scr(0);
1869 	}
1870 
1871 	/*
1872 	 *  Patch some other variables in SCRIPTS.
1873 	 *  These ones are loaded by the SCRIPTS processor.
1874 	 */
1875 	scriptb0->pm0_data_addr[0] =
1876 		cpu_to_scr(np->scripta_ba +
1877 			   offsetof(struct sym_fw2a_scr, pm0_data));
1878 	scriptb0->pm1_data_addr[0] =
1879 		cpu_to_scr(np->scripta_ba +
1880 			   offsetof(struct sym_fw2a_scr, pm1_data));
1881 }
1882 
1883 /*
1884  *  Fill the data area in scripts.
1885  *  To be done for all firmwares.
1886  */
1887 static void
1888 sym_fw_fill_data (u32 *in, u32 *out)
1889 {
1890 	int	i;
1891 
1892 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1893 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1894 		*in++  = offsetof (struct sym_dsb, data[i]);
1895 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1896 		*out++ = offsetof (struct sym_dsb, data[i]);
1897 	}
1898 }
1899 
1900 /*
1901  *  Setup useful script bus addresses.
1902  *  To be done for all firmwares.
1903  */
1904 static void
1905 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1906 {
1907 	u32 *pa;
1908 	const u_short *po;
1909 	int i;
1910 
1911 	/*
1912 	 *  Build the bus address table for script A
1913 	 *  from the script A offset table.
1914 	 */
1915 	po = (const u_short *) fw->a_ofs;
1916 	pa = (u32 *) &np->fwa_bas;
1917 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1918 		pa[i] = np->scripta_ba + po[i];
1919 
1920 	/*
1921 	 *  Same for script B.
1922 	 */
1923 	po = (const u_short *) fw->b_ofs;
1924 	pa = (u32 *) &np->fwb_bas;
1925 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1926 		pa[i] = np->scriptb_ba + po[i];
1927 }
1928 
1929 #ifdef	SYM_CONF_GENERIC_SUPPORT
1930 /*
1931  *  Setup routine for firmware #1.
1932  */
1933 static void
1934 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1935 {
1936 	struct sym_fw1a_scr *scripta0;
1937 
1938 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1939 
1940 	/*
1941 	 *  Fill variable parts in scripts.
1942 	 */
1943 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1944 
1945 	/*
1946 	 *  Setup bus addresses used from the C code..
1947 	 */
1948 	sym_fw_setup_bus_addresses(np, fw);
1949 }
1950 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1951 
1952 /*
1953  *  Setup routine for firmware #2.
1954  */
1955 static void
1956 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1957 {
1958 	struct sym_fw2a_scr *scripta0;
1959 
1960 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1961 
1962 	/*
1963 	 *  Fill variable parts in scripts.
1964 	 */
1965 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1966 
1967 	/*
1968 	 *  Setup bus addresses used from the C code..
1969 	 */
1970 	sym_fw_setup_bus_addresses(np, fw);
1971 }
1972 
1973 /*
1974  *  Allocate firmware descriptors.
1975  */
1976 #ifdef	SYM_CONF_GENERIC_SUPPORT
1977 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1978 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1979 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1980 
1981 /*
1982  *  Find the most appropriate firmware for a chip.
1983  */
1984 static const struct sym_fw *
1985 sym_find_firmware(const struct sym_pci_chip *chip)
1986 {
1987 	if (chip->features & FE_LDSTR)
1988 		return &sym_fw2;
1989 #ifdef	SYM_CONF_GENERIC_SUPPORT
1990 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1991 		return &sym_fw1;
1992 #endif
1993 	else
1994 		return NULL;
1995 }
1996 
1997 /*
1998  *  Bind a script to physical addresses.
1999  */
2000 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2001 {
2002 	u32 opcode, new, old, tmp1, tmp2;
2003 	u32 *end, *cur;
2004 	int relocs;
2005 
2006 	cur = start;
2007 	end = start + len/4;
2008 
2009 	while (cur < end) {
2010 		opcode = *cur;
2011 
2012 		/*
2013 		 *  If we forget to change the length
2014 		 *  in scripts, a field will be
2015 		 *  padded with 0. This is an illegal
2016 		 *  command.
2017 		 */
2018 		if (opcode == 0) {
2019 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2020 				sym_name(np), (int) (cur-start));
2021 			MDELAY (10000);
2022 			++cur;
2023 			continue;
2024 		}
2025 
2026 		/*
2027 		 *  We use the bogus value 0xf00ff00f ;-)
2028 		 *  to reserve data area in SCRIPTS.
2029 		 */
2030 		if (opcode == SCR_DATA_ZERO) {
2031 			*cur++ = 0;
2032 			continue;
2033 		}
2034 
2035 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2036 			printf ("%d:  <%x>\n", (int) (cur-start),
2037 				(unsigned)opcode);
2038 
2039 		/*
2040 		 *  We don't have to decode ALL commands
2041 		 */
2042 		switch (opcode >> 28) {
2043 		case 0xf:
2044 			/*
2045 			 *  LOAD / STORE DSA relative, don't relocate.
2046 			 */
2047 			relocs = 0;
2048 			break;
2049 		case 0xe:
2050 			/*
2051 			 *  LOAD / STORE absolute.
2052 			 */
2053 			relocs = 1;
2054 			break;
2055 		case 0xc:
2056 			/*
2057 			 *  COPY has TWO arguments.
2058 			 */
2059 			relocs = 2;
2060 			tmp1 = cur[1];
2061 			tmp2 = cur[2];
2062 			if ((tmp1 ^ tmp2) & 3) {
2063 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2064 					sym_name(np), (int) (cur-start));
2065 				MDELAY (10000);
2066 			}
2067 			/*
2068 			 *  If PREFETCH feature not enabled, remove
2069 			 *  the NO FLUSH bit if present.
2070 			 */
2071 			if ((opcode & SCR_NO_FLUSH) &&
2072 			    !(np->features & FE_PFEN)) {
2073 				opcode = (opcode & ~SCR_NO_FLUSH);
2074 			}
2075 			break;
2076 		case 0x0:
2077 			/*
2078 			 *  MOVE/CHMOV (absolute address)
2079 			 */
2080 			if (!(np->features & FE_WIDE))
2081 				opcode = (opcode | OPC_MOVE);
2082 			relocs = 1;
2083 			break;
2084 		case 0x1:
2085 			/*
2086 			 *  MOVE/CHMOV (table indirect)
2087 			 */
2088 			if (!(np->features & FE_WIDE))
2089 				opcode = (opcode | OPC_MOVE);
2090 			relocs = 0;
2091 			break;
2092 		case 0x8:
2093 			/*
2094 			 *  JUMP / CALL
2095 			 *  dont't relocate if relative :-)
2096 			 */
2097 			if (opcode & 0x00800000)
2098 				relocs = 0;
2099 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2100 				relocs = 2;
2101 			else
2102 				relocs = 1;
2103 			break;
2104 		case 0x4:
2105 		case 0x5:
2106 		case 0x6:
2107 		case 0x7:
2108 			relocs = 1;
2109 			break;
2110 		default:
2111 			relocs = 0;
2112 			break;
2113 		}
2114 
2115 		/*
2116 		 *  Scriptify:) the opcode.
2117 		 */
2118 		*cur++ = cpu_to_scr(opcode);
2119 
2120 		/*
2121 		 *  If no relocation, assume 1 argument
2122 		 *  and just scriptize:) it.
2123 		 */
2124 		if (!relocs) {
2125 			*cur = cpu_to_scr(*cur);
2126 			++cur;
2127 			continue;
2128 		}
2129 
2130 		/*
2131 		 *  Otherwise performs all needed relocations.
2132 		 */
2133 		while (relocs--) {
2134 			old = *cur;
2135 
2136 			switch (old & RELOC_MASK) {
2137 			case RELOC_REGISTER:
2138 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2139 				break;
2140 			case RELOC_LABEL_A:
2141 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2142 				break;
2143 			case RELOC_LABEL_B:
2144 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2145 				break;
2146 			case RELOC_SOFTC:
2147 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2148 				break;
2149 			case 0:
2150 				/*
2151 				 *  Don't relocate a 0 address.
2152 				 *  They are mostly used for patched or
2153 				 *  script self-modified areas.
2154 				 */
2155 				if (old == 0) {
2156 					new = old;
2157 					break;
2158 				}
2159 				/* fall through */
2160 			default:
2161 				new = 0;
2162 				panic("sym_fw_bind_script: "
2163 				      "weird relocation %x\n", old);
2164 				break;
2165 			}
2166 
2167 			*cur++ = cpu_to_scr(new);
2168 		}
2169 	}
2170 }
2171 
2172 /*---------------------------------------------------------------------------*/
2173 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2174 /*---------------------------------------------------------------------------*/
2175 
2176 /*
2177  *  Function prototypes.
2178  */
2179 static void sym_save_initial_setting (hcb_p np);
2180 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2181 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2182 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2183 static void sym_chip_reset (hcb_p np);
2184 static void sym_soft_reset (hcb_p np);
2185 static void sym_start_reset (hcb_p np);
2186 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2187 static int  sym_wakeup_done (hcb_p np);
2188 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2189 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2190 static void sym_init (hcb_p np, int reason);
2191 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2192 		        u_char *fakp);
2193 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2194 			 u_char div, u_char fak);
2195 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2196 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2197 			 u_char per, u_char wide, u_char div, u_char fak);
2198 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2199 			 u_char per, u_char wide, u_char div, u_char fak);
2200 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2201 static void sym_intr (void *arg);
2202 static void sym_poll (struct cam_sim *sim);
2203 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2204 static void sym_int_sto (hcb_p np);
2205 static void sym_int_udc (hcb_p np);
2206 static void sym_int_sbmc (hcb_p np);
2207 static void sym_int_par (hcb_p np, u_short sist);
2208 static void sym_int_ma (hcb_p np);
2209 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2210 				    int task);
2211 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2212 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2213 static void sym_sir_task_recovery (hcb_p np, int num);
2214 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2215 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2216 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2217 static int  sym_show_msg (u_char * msg);
2218 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2219 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2220 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2221 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2222 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2223 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2224 static void sym_int_sir (hcb_p np);
2225 static void sym_free_ccb (hcb_p np, ccb_p cp);
2226 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2227 static ccb_p sym_alloc_ccb (hcb_p np);
2228 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2229 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2230 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2231 static int  sym_snooptest (hcb_p np);
2232 static void sym_selectclock(hcb_p np, u_char scntl3);
2233 static void sym_getclock (hcb_p np, int mult);
2234 static int  sym_getpciclock (hcb_p np);
2235 static void sym_complete_ok (hcb_p np, ccb_p cp);
2236 static void sym_complete_error (hcb_p np, ccb_p cp);
2237 static void sym_callout (void *arg);
2238 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2239 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2240 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2241 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2242 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2243 				      ccb_p cp);
2244 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2245 					bus_dma_segment_t *psegs, int nsegs);
2246 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2247 				    bus_dma_segment_t *psegs, int nsegs);
2248 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2249 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2250 			      struct ccb_trans_settings *cts);
2251 static void sym_update_dflags(hcb_p np, u_char *flags,
2252 			      struct ccb_trans_settings *cts);
2253 
2254 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2255 static int  sym_pci_probe (device_t dev);
2256 static int  sym_pci_attach (device_t dev);
2257 
2258 static void sym_pci_free (hcb_p np);
2259 static int  sym_cam_attach (hcb_p np);
2260 static void sym_cam_free (hcb_p np);
2261 
2262 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2263 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2264 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2265 
2266 /*
2267  *  Print something which allows to retrieve the controller type,
2268  *  unit, target, lun concerned by a kernel message.
2269  */
2270 static void PRINT_TARGET (hcb_p np, int target)
2271 {
2272 	printf ("%s:%d:", sym_name(np), target);
2273 }
2274 
2275 static void PRINT_LUN(hcb_p np, int target, int lun)
2276 {
2277 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2278 }
2279 
2280 static void PRINT_ADDR (ccb_p cp)
2281 {
2282 	if (cp && cp->cam_ccb)
2283 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2284 }
2285 
2286 /*
2287  *  Take into account this ccb in the freeze count.
2288  */
2289 static void sym_freeze_cam_ccb(union ccb *ccb)
2290 {
2291 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2292 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2293 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2294 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2295 		}
2296 	}
2297 }
2298 
2299 /*
2300  *  Set the status field of a CAM CCB.
2301  */
2302 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2303 {
2304 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2305 	ccb->ccb_h.status |= status;
2306 }
2307 
2308 /*
2309  *  Get the status field of a CAM CCB.
2310  */
2311 static __inline int sym_get_cam_status(union ccb *ccb)
2312 {
2313 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2314 }
2315 
2316 /*
2317  *  Enqueue a CAM CCB.
2318  */
2319 static void sym_enqueue_cam_ccb(ccb_p cp)
2320 {
2321 	hcb_p np;
2322 	union ccb *ccb;
2323 
2324 	ccb = cp->cam_ccb;
2325 	np = (hcb_p) cp->arg;
2326 
2327 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2328 	ccb->ccb_h.status = CAM_REQ_INPROG;
2329 
2330 	callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2331 	    (caddr_t)ccb, 0);
2332 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2333 	ccb->ccb_h.sym_hcb_ptr = np;
2334 
2335 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2336 }
2337 
2338 /*
2339  *  Complete a pending CAM CCB.
2340  */
2341 
2342 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2343 {
2344 
2345 	SYM_LOCK_ASSERT(MA_OWNED);
2346 
2347 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2348 		callout_stop(&cp->ch);
2349 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2350 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2351 		ccb->ccb_h.sym_hcb_ptr = NULL;
2352 	}
2353 	xpt_done(ccb);
2354 }
2355 
2356 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2357 {
2358 
2359 	SYM_LOCK_ASSERT(MA_OWNED);
2360 
2361 	sym_set_cam_status(ccb, cam_status);
2362 	xpt_done(ccb);
2363 }
2364 
2365 /*
2366  *  SYMBIOS chip clock divisor table.
2367  *
2368  *  Divisors are multiplied by 10,000,000 in order to make
2369  *  calculations more simple.
2370  */
2371 #define _5M 5000000
2372 static const u32 div_10M[] =
2373 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2374 
2375 /*
2376  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2377  *  128 transfers. All chips support at least 16 transfers
2378  *  bursts. The 825A, 875 and 895 chips support bursts of up
2379  *  to 128 transfers and the 895A and 896 support bursts of up
2380  *  to 64 transfers. All other chips support up to 16
2381  *  transfers bursts.
2382  *
2383  *  For PCI 32 bit data transfers each transfer is a DWORD.
2384  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2385  *
2386  *  We use log base 2 (burst length) as internal code, with
2387  *  value 0 meaning "burst disabled".
2388  */
2389 
2390 /*
2391  *  Burst length from burst code.
2392  */
2393 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2394 
2395 /*
2396  *  Burst code from io register bits.
2397  */
2398 #define burst_code(dmode, ctest4, ctest5) \
2399 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2400 
2401 /*
2402  *  Set initial io register bits from burst code.
2403  */
2404 static __inline void sym_init_burst(hcb_p np, u_char bc)
2405 {
2406 	np->rv_ctest4	&= ~0x80;
2407 	np->rv_dmode	&= ~(0x3 << 6);
2408 	np->rv_ctest5	&= ~0x4;
2409 
2410 	if (!bc) {
2411 		np->rv_ctest4	|= 0x80;
2412 	}
2413 	else {
2414 		--bc;
2415 		np->rv_dmode	|= ((bc & 0x3) << 6);
2416 		np->rv_ctest5	|= (bc & 0x4);
2417 	}
2418 }
2419 
2420 /*
2421  * Print out the list of targets that have some flag disabled by user.
2422  */
2423 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2424 {
2425 	int cnt;
2426 	int i;
2427 
2428 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2429 		if (i == np->myaddr)
2430 			continue;
2431 		if (np->target[i].usrflags & mask) {
2432 			if (!cnt++)
2433 				printf("%s: %s disabled for targets",
2434 					sym_name(np), msg);
2435 			printf(" %d", i);
2436 		}
2437 	}
2438 	if (cnt)
2439 		printf(".\n");
2440 }
2441 
2442 /*
2443  *  Save initial settings of some IO registers.
2444  *  Assumed to have been set by BIOS.
2445  *  We cannot reset the chip prior to reading the
2446  *  IO registers, since informations will be lost.
2447  *  Since the SCRIPTS processor may be running, this
2448  *  is not safe on paper, but it seems to work quite
2449  *  well. :)
2450  */
2451 static void sym_save_initial_setting (hcb_p np)
2452 {
2453 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2454 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2455 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2456 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2457 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2458 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2459 	np->sv_gpcntl	= INB(nc_gpcntl);
2460 	np->sv_stest1	= INB(nc_stest1);
2461 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2462 	np->sv_stest4	= INB(nc_stest4);
2463 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2464 		np->sv_scntl4	= INB(nc_scntl4);
2465 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2466 	}
2467 	else
2468 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2469 }
2470 
2471 /*
2472  *  Prepare io register values used by sym_init() according
2473  *  to selected and supported features.
2474  */
2475 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2476 {
2477 	u_char	burst_max;
2478 	u32	period;
2479 	int i;
2480 
2481 	/*
2482 	 *  Wide ?
2483 	 */
2484 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2485 
2486 	/*
2487 	 *  Get the frequency of the chip's clock.
2488 	 */
2489 	if	(np->features & FE_QUAD)
2490 		np->multiplier	= 4;
2491 	else if	(np->features & FE_DBLR)
2492 		np->multiplier	= 2;
2493 	else
2494 		np->multiplier	= 1;
2495 
2496 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2497 	np->clock_khz	*= np->multiplier;
2498 
2499 	if (np->clock_khz != 40000)
2500 		sym_getclock(np, np->multiplier);
2501 
2502 	/*
2503 	 * Divisor to be used for async (timer pre-scaler).
2504 	 */
2505 	i = np->clock_divn - 1;
2506 	while (--i >= 0) {
2507 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2508 			++i;
2509 			break;
2510 		}
2511 	}
2512 	np->rv_scntl3 = i+1;
2513 
2514 	/*
2515 	 * The C1010 uses hardwired divisors for async.
2516 	 * So, we just throw away, the async. divisor.:-)
2517 	 */
2518 	if (np->features & FE_C10)
2519 		np->rv_scntl3 = 0;
2520 
2521 	/*
2522 	 * Minimum synchronous period factor supported by the chip.
2523 	 * Btw, 'period' is in tenths of nanoseconds.
2524 	 */
2525 	period = howmany(4 * div_10M[0], np->clock_khz);
2526 	if	(period <= 250)		np->minsync = 10;
2527 	else if	(period <= 303)		np->minsync = 11;
2528 	else if	(period <= 500)		np->minsync = 12;
2529 	else				np->minsync = howmany(period, 40);
2530 
2531 	/*
2532 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2533 	 */
2534 	if	(np->minsync < 25 &&
2535 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2536 		np->minsync = 25;
2537 	else if	(np->minsync < 12 &&
2538 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2539 		np->minsync = 12;
2540 
2541 	/*
2542 	 * Maximum synchronous period factor supported by the chip.
2543 	 */
2544 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2545 	np->maxsync = period > 2540 ? 254 : period / 10;
2546 
2547 	/*
2548 	 * If chip is a C1010, guess the sync limits in DT mode.
2549 	 */
2550 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2551 		if (np->clock_khz == 160000) {
2552 			np->minsync_dt = 9;
2553 			np->maxsync_dt = 50;
2554 			np->maxoffs_dt = 62;
2555 		}
2556 	}
2557 
2558 	/*
2559 	 *  64 bit addressing  (895A/896/1010) ?
2560 	 */
2561 	if (np->features & FE_DAC)
2562 #ifdef __LP64__
2563 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2564 #else
2565 		np->rv_ccntl1	|= (DDAC);
2566 #endif
2567 
2568 	/*
2569 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2570   	 */
2571 	if (np->features & FE_NOPM)
2572 		np->rv_ccntl0	|= (ENPMJ);
2573 
2574  	/*
2575 	 *  C1010 Errata.
2576 	 *  In dual channel mode, contention occurs if internal cycles
2577 	 *  are used. Disable internal cycles.
2578 	 */
2579 	if (np->device_id == PCI_ID_LSI53C1010 &&
2580 	    np->revision_id < 0x2)
2581 		np->rv_ccntl0	|=  DILS;
2582 
2583 	/*
2584 	 *  Select burst length (dwords)
2585 	 */
2586 	burst_max	= SYM_SETUP_BURST_ORDER;
2587 	if (burst_max == 255)
2588 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2589 				       np->sv_ctest5);
2590 	if (burst_max > 7)
2591 		burst_max = 7;
2592 	if (burst_max > np->maxburst)
2593 		burst_max = np->maxburst;
2594 
2595 	/*
2596 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2597 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2598 	 *  based transactions on LOAD/STORE instructions. So we have
2599 	 *  to prevent these chips from using such PCI transactions in
2600 	 *  this driver. The generic ncr driver that does not use
2601 	 *  LOAD/STORE instructions does not need this work-around.
2602 	 */
2603 	if ((np->device_id == PCI_ID_SYM53C810 &&
2604 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2605 	    (np->device_id == PCI_ID_SYM53C860 &&
2606 	     np->revision_id <= 0x1))
2607 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2608 
2609 	/*
2610 	 *  Select all supported special features.
2611 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2612 	 *  does not help, but burst op fetch (BOF) does.
2613 	 *  Disabling PFEN makes sure BOF will be used.
2614 	 */
2615 	if (np->features & FE_ERL)
2616 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2617 	if (np->features & FE_BOF)
2618 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2619 	if (np->features & FE_ERMP)
2620 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2621 #if 1
2622 	if ((np->features & FE_PFEN) && !np->ram_ba)
2623 #else
2624 	if (np->features & FE_PFEN)
2625 #endif
2626 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2627 	if (np->features & FE_CLSE)
2628 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2629 	if (np->features & FE_WRIE)
2630 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2631 	if (np->features & FE_DFS)
2632 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2633 
2634 	/*
2635 	 *  Select some other
2636 	 */
2637 	if (SYM_SETUP_PCI_PARITY)
2638 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2639 	if (SYM_SETUP_SCSI_PARITY)
2640 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2641 
2642 	/*
2643 	 *  Get parity checking, host ID and verbose mode from NVRAM
2644 	 */
2645 	np->myaddr = 255;
2646 	sym_nvram_setup_host (np, nvram);
2647 
2648 	/*
2649 	 *  Get SCSI addr of host adapter (set by bios?).
2650 	 */
2651 	if (np->myaddr == 255) {
2652 		np->myaddr = INB(nc_scid) & 0x07;
2653 		if (!np->myaddr)
2654 			np->myaddr = SYM_SETUP_HOST_ID;
2655 	}
2656 
2657 	/*
2658 	 *  Prepare initial io register bits for burst length
2659 	 */
2660 	sym_init_burst(np, burst_max);
2661 
2662 	/*
2663 	 *  Set SCSI BUS mode.
2664 	 *  - LVD capable chips (895/895A/896/1010) report the
2665 	 *    current BUS mode through the STEST4 IO register.
2666 	 *  - For previous generation chips (825/825A/875),
2667 	 *    user has to tell us how to check against HVD,
2668 	 *    since a 100% safe algorithm is not possible.
2669 	 */
2670 	np->scsi_mode = SMODE_SE;
2671 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2672 		np->scsi_mode = (np->sv_stest4 & SMODE);
2673 	else if	(np->features & FE_DIFF) {
2674 		if (SYM_SETUP_SCSI_DIFF == 1) {
2675 			if (np->sv_scntl3) {
2676 				if (np->sv_stest2 & 0x20)
2677 					np->scsi_mode = SMODE_HVD;
2678 			}
2679 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2680 				if (!(INB(nc_gpreg) & 0x08))
2681 					np->scsi_mode = SMODE_HVD;
2682 			}
2683 		}
2684 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2685 			np->scsi_mode = SMODE_HVD;
2686 	}
2687 	if (np->scsi_mode == SMODE_HVD)
2688 		np->rv_stest2 |= 0x20;
2689 
2690 	/*
2691 	 *  Set LED support from SCRIPTS.
2692 	 *  Ignore this feature for boards known to use a
2693 	 *  specific GPIO wiring and for the 895A, 896
2694 	 *  and 1010 that drive the LED directly.
2695 	 */
2696 	if ((SYM_SETUP_SCSI_LED ||
2697 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2698 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2699 	       np->device_id == PCI_ID_SYM53C895))) &&
2700 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2701 		np->features |= FE_LED0;
2702 
2703 	/*
2704 	 *  Set irq mode.
2705 	 */
2706 	switch(SYM_SETUP_IRQ_MODE & 3) {
2707 	case 2:
2708 		np->rv_dcntl	|= IRQM;
2709 		break;
2710 	case 1:
2711 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2712 		break;
2713 	default:
2714 		break;
2715 	}
2716 
2717 	/*
2718 	 *  Configure targets according to driver setup.
2719 	 *  If NVRAM present get targets setup from NVRAM.
2720 	 */
2721 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2722 		tcb_p tp = &np->target[i];
2723 
2724 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2725 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2726 		tp->tinfo.user.period = np->minsync;
2727 		if (np->features & FE_ULTRA3)
2728 			tp->tinfo.user.period = np->minsync_dt;
2729 		tp->tinfo.user.offset = np->maxoffs;
2730 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2731 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2732 		tp->usrtags = SYM_SETUP_MAX_TAG;
2733 
2734 		sym_nvram_setup_target (np, i, nvram);
2735 
2736 		/*
2737 		 *  For now, guess PPR/DT support from the period
2738 		 *  and BUS width.
2739 		 */
2740 		if (np->features & FE_ULTRA3) {
2741 			if (tp->tinfo.user.period <= 9	&&
2742 			    tp->tinfo.user.width == BUS_16_BIT) {
2743 				tp->tinfo.user.options |= PPR_OPT_DT;
2744 				tp->tinfo.user.offset   = np->maxoffs_dt;
2745 				tp->tinfo.user.spi_version = 3;
2746 			}
2747 		}
2748 
2749 		if (!tp->usrtags)
2750 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2751 	}
2752 
2753 	/*
2754 	 *  Let user know about the settings.
2755 	 */
2756 	i = nvram->type;
2757 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2758 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2759 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2760 		np->myaddr,
2761 		(np->features & FE_ULTRA3) ? 80 :
2762 		(np->features & FE_ULTRA2) ? 40 :
2763 		(np->features & FE_ULTRA)  ? 20 : 10,
2764 		sym_scsi_bus_mode(np->scsi_mode),
2765 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2766 	/*
2767 	 *  Tell him more on demand.
2768 	 */
2769 	if (sym_verbose) {
2770 		printf("%s: %s IRQ line driver%s\n",
2771 			sym_name(np),
2772 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2773 			np->ram_ba ? ", using on-chip SRAM" : "");
2774 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2775 		if (np->features & FE_NOPM)
2776 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2777 			       sym_name(np));
2778 	}
2779 	/*
2780 	 *  And still more.
2781 	 */
2782 	if (sym_verbose > 1) {
2783 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2784 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2785 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2786 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2787 
2788 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2789 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2790 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2791 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2792 	}
2793 	/*
2794 	 *  Let user be aware of targets that have some disable flags set.
2795 	 */
2796 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2797 	if (sym_verbose)
2798 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2799 				       "SCAN FOR LUNS");
2800 
2801 	return 0;
2802 }
2803 
2804 /*
2805  *  Prepare the next negotiation message if needed.
2806  *
2807  *  Fill in the part of message buffer that contains the
2808  *  negotiation and the nego_status field of the CCB.
2809  *  Returns the size of the message in bytes.
2810  */
2811 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2812 {
2813 	tcb_p tp = &np->target[cp->target];
2814 	int msglen = 0;
2815 
2816 	/*
2817 	 *  Early C1010 chips need a work-around for DT
2818 	 *  data transfer to work.
2819 	 */
2820 	if (!(np->features & FE_U3EN))
2821 		tp->tinfo.goal.options = 0;
2822 	/*
2823 	 *  negotiate using PPR ?
2824 	 */
2825 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2826 		nego = NS_PPR;
2827 	/*
2828 	 *  negotiate wide transfers ?
2829 	 */
2830 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2831 		nego = NS_WIDE;
2832 	/*
2833 	 *  negotiate synchronous transfers?
2834 	 */
2835 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2836 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2837 		nego = NS_SYNC;
2838 
2839 	switch (nego) {
2840 	case NS_SYNC:
2841 		msgptr[msglen++] = M_EXTENDED;
2842 		msgptr[msglen++] = 3;
2843 		msgptr[msglen++] = M_X_SYNC_REQ;
2844 		msgptr[msglen++] = tp->tinfo.goal.period;
2845 		msgptr[msglen++] = tp->tinfo.goal.offset;
2846 		break;
2847 	case NS_WIDE:
2848 		msgptr[msglen++] = M_EXTENDED;
2849 		msgptr[msglen++] = 2;
2850 		msgptr[msglen++] = M_X_WIDE_REQ;
2851 		msgptr[msglen++] = tp->tinfo.goal.width;
2852 		break;
2853 	case NS_PPR:
2854 		msgptr[msglen++] = M_EXTENDED;
2855 		msgptr[msglen++] = 6;
2856 		msgptr[msglen++] = M_X_PPR_REQ;
2857 		msgptr[msglen++] = tp->tinfo.goal.period;
2858 		msgptr[msglen++] = 0;
2859 		msgptr[msglen++] = tp->tinfo.goal.offset;
2860 		msgptr[msglen++] = tp->tinfo.goal.width;
2861 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2862 		break;
2863 	}
2864 
2865 	cp->nego_status = nego;
2866 
2867 	if (nego) {
2868 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2869 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2870 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2871 					  nego == NS_WIDE ? "wide msgout" :
2872 					  "ppr msgout", msgptr);
2873 		}
2874 	}
2875 
2876 	return msglen;
2877 }
2878 
2879 /*
2880  *  Insert a job into the start queue.
2881  */
2882 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2883 {
2884 	u_short	qidx;
2885 
2886 #ifdef SYM_CONF_IARB_SUPPORT
2887 	/*
2888 	 *  If the previously queued CCB is not yet done,
2889 	 *  set the IARB hint. The SCRIPTS will go with IARB
2890 	 *  for this job when starting the previous one.
2891 	 *  We leave devices a chance to win arbitration by
2892 	 *  not using more than 'iarb_max' consecutive
2893 	 *  immediate arbitrations.
2894 	 */
2895 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2896 		np->last_cp->host_flags |= HF_HINT_IARB;
2897 		++np->iarb_count;
2898 	}
2899 	else
2900 		np->iarb_count = 0;
2901 	np->last_cp = cp;
2902 #endif
2903 
2904 	/*
2905 	 *  Insert first the idle task and then our job.
2906 	 *  The MB should ensure proper ordering.
2907 	 */
2908 	qidx = np->squeueput + 2;
2909 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2910 
2911 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2912 	MEMORY_BARRIER();
2913 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2914 
2915 	np->squeueput = qidx;
2916 
2917 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2918 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2919 
2920 	/*
2921 	 *  Script processor may be waiting for reselect.
2922 	 *  Wake it up.
2923 	 */
2924 	MEMORY_BARRIER();
2925 	OUTB (nc_istat, SIGP|np->istat_sem);
2926 }
2927 
2928 /*
2929  *  Soft reset the chip.
2930  *
2931  *  Raising SRST when the chip is running may cause
2932  *  problems on dual function chips (see below).
2933  *  On the other hand, LVD devices need some delay
2934  *  to settle and report actual BUS mode in STEST4.
2935  */
2936 static void sym_chip_reset (hcb_p np)
2937 {
2938 	OUTB (nc_istat, SRST);
2939 	UDELAY (10);
2940 	OUTB (nc_istat, 0);
2941 	UDELAY(2000);	/* For BUS MODE to settle */
2942 }
2943 
2944 /*
2945  *  Soft reset the chip.
2946  *
2947  *  Some 896 and 876 chip revisions may hang-up if we set
2948  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2949  *  are running.
2950  *  So, we need to abort the current operation prior to
2951  *  soft resetting the chip.
2952  */
2953 static void sym_soft_reset (hcb_p np)
2954 {
2955 	u_char istat;
2956 	int i;
2957 
2958 	OUTB (nc_istat, CABRT);
2959 	for (i = 1000000 ; i ; --i) {
2960 		istat = INB (nc_istat);
2961 		if (istat & SIP) {
2962 			INW (nc_sist);
2963 			continue;
2964 		}
2965 		if (istat & DIP) {
2966 			OUTB (nc_istat, 0);
2967 			INB (nc_dstat);
2968 			break;
2969 		}
2970 	}
2971 	if (!i)
2972 		printf("%s: unable to abort current chip operation.\n",
2973 			sym_name(np));
2974 	sym_chip_reset (np);
2975 }
2976 
2977 /*
2978  *  Start reset process.
2979  *
2980  *  The interrupt handler will reinitialize the chip.
2981  */
2982 static void sym_start_reset(hcb_p np)
2983 {
2984 	(void) sym_reset_scsi_bus(np, 1);
2985 }
2986 
2987 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2988 {
2989 	u32 term;
2990 	int retv = 0;
2991 
2992 	sym_soft_reset(np);	/* Soft reset the chip */
2993 	if (enab_int)
2994 		OUTW (nc_sien, RST);
2995 	/*
2996 	 *  Enable Tolerant, reset IRQD if present and
2997 	 *  properly set IRQ mode, prior to resetting the bus.
2998 	 */
2999 	OUTB (nc_stest3, TE);
3000 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3001 	OUTB (nc_scntl1, CRST);
3002 	UDELAY (200);
3003 
3004 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3005 		goto out;
3006 	/*
3007 	 *  Check for no terminators or SCSI bus shorts to ground.
3008 	 *  Read SCSI data bus, data parity bits and control signals.
3009 	 *  We are expecting RESET to be TRUE and other signals to be
3010 	 *  FALSE.
3011 	 */
3012 	term =	INB(nc_sstat0);
3013 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3014 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3015 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3016 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3017 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3018 
3019 	if (!(np->features & FE_WIDE))
3020 		term &= 0x3ffff;
3021 
3022 	if (term != (2<<7)) {
3023 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3024 			sym_name(np));
3025 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3026 			"0x%lx, expecting 0x%lx\n",
3027 			sym_name(np),
3028 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3029 			(u_long)term, (u_long)(2<<7));
3030 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3031 			retv = 1;
3032 	}
3033 out:
3034 	OUTB (nc_scntl1, 0);
3035 	/* MDELAY(100); */
3036 	return retv;
3037 }
3038 
3039 /*
3040  *  The chip may have completed jobs. Look at the DONE QUEUE.
3041  *
3042  *  On architectures that may reorder LOAD/STORE operations,
3043  *  a memory barrier may be needed after the reading of the
3044  *  so-called `flag' and prior to dealing with the data.
3045  */
3046 static int sym_wakeup_done (hcb_p np)
3047 {
3048 	ccb_p cp;
3049 	int i, n;
3050 	u32 dsa;
3051 
3052 	SYM_LOCK_ASSERT(MA_OWNED);
3053 
3054 	n = 0;
3055 	i = np->dqueueget;
3056 	while (1) {
3057 		dsa = scr_to_cpu(np->dqueue[i]);
3058 		if (!dsa)
3059 			break;
3060 		np->dqueue[i] = 0;
3061 		if ((i = i+2) >= MAX_QUEUE*2)
3062 			i = 0;
3063 
3064 		cp = sym_ccb_from_dsa(np, dsa);
3065 		if (cp) {
3066 			MEMORY_BARRIER();
3067 			sym_complete_ok (np, cp);
3068 			++n;
3069 		}
3070 		else
3071 			printf ("%s: bad DSA (%x) in done queue.\n",
3072 				sym_name(np), (u_int) dsa);
3073 	}
3074 	np->dqueueget = i;
3075 
3076 	return n;
3077 }
3078 
3079 /*
3080  *  Complete all active CCBs with error.
3081  *  Used on CHIP/SCSI RESET.
3082  */
3083 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3084 {
3085 	/*
3086 	 *  Move all active CCBs to the COMP queue
3087 	 *  and flush this queue.
3088 	 */
3089 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3090 	sym_que_init(&np->busy_ccbq);
3091 	sym_flush_comp_queue(np, cam_status);
3092 }
3093 
3094 /*
3095  *  Start chip.
3096  *
3097  *  'reason' means:
3098  *     0: initialisation.
3099  *     1: SCSI BUS RESET delivered or received.
3100  *     2: SCSI BUS MODE changed.
3101  */
3102 static void sym_init (hcb_p np, int reason)
3103 {
3104  	int	i;
3105 	u32	phys;
3106 
3107 	SYM_LOCK_ASSERT(MA_OWNED);
3108 
3109  	/*
3110 	 *  Reset chip if asked, otherwise just clear fifos.
3111  	 */
3112 	if (reason == 1)
3113 		sym_soft_reset(np);
3114 	else {
3115 		OUTB (nc_stest3, TE|CSF);
3116 		OUTONB (nc_ctest3, CLF);
3117 	}
3118 
3119 	/*
3120 	 *  Clear Start Queue
3121 	 */
3122 	phys = np->squeue_ba;
3123 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3124 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3125 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3126 	}
3127 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3128 
3129 	/*
3130 	 *  Start at first entry.
3131 	 */
3132 	np->squeueput = 0;
3133 
3134 	/*
3135 	 *  Clear Done Queue
3136 	 */
3137 	phys = np->dqueue_ba;
3138 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3139 		np->dqueue[i]   = 0;
3140 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3141 	}
3142 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3143 
3144 	/*
3145 	 *  Start at first entry.
3146 	 */
3147 	np->dqueueget = 0;
3148 
3149 	/*
3150 	 *  Install patches in scripts.
3151 	 *  This also let point to first position the start
3152 	 *  and done queue pointers used from SCRIPTS.
3153 	 */
3154 	np->fw_patch(np);
3155 
3156 	/*
3157 	 *  Wakeup all pending jobs.
3158 	 */
3159 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3160 
3161 	/*
3162 	 *  Init chip.
3163 	 */
3164 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3165 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3166 
3167 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3168 					/*  full arb., ena parity, par->ATN  */
3169 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3170 
3171 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3172 
3173 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3174 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3175 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3176 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3177 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3178 
3179 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3180 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3181 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3182 
3183 	/* Extended Sreq/Sack filtering not supported on the C10 */
3184 	if (np->features & FE_C10)
3185 		OUTB (nc_stest2, np->rv_stest2);
3186 	else
3187 		OUTB (nc_stest2, EXT|np->rv_stest2);
3188 
3189 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3190 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3191 
3192 	/*
3193 	 *  For now, disable AIP generation on C1010-66.
3194 	 */
3195 	if (np->device_id == PCI_ID_LSI53C1010_2)
3196 		OUTB (nc_aipcntl1, DISAIP);
3197 
3198 	/*
3199 	 *  C10101 Errata.
3200 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3201 	 *  STEST1 register to disable SGE. We probably should do
3202 	 *  that from SCRIPTS for each selection/reselection, but
3203 	 *  I just don't want. :)
3204 	 */
3205 	if (np->device_id == PCI_ID_LSI53C1010 &&
3206 	    /* np->revision_id < 0xff */ 1)
3207 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3208 
3209 	/*
3210 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3211 	 *  Disable overlapped arbitration for some dual function devices,
3212 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3213 	 */
3214 	if (np->device_id == PCI_ID_SYM53C875)
3215 		OUTB (nc_ctest0, (1<<5));
3216 	else if (np->device_id == PCI_ID_SYM53C896)
3217 		np->rv_ccntl0 |= DPR;
3218 
3219 	/*
3220 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3221 	 *  and/or hardware phase mismatch, since only such chips
3222 	 *  seem to support those IO registers.
3223 	 */
3224 	if (np->features & (FE_DAC|FE_NOPM)) {
3225 		OUTB (nc_ccntl0, np->rv_ccntl0);
3226 		OUTB (nc_ccntl1, np->rv_ccntl1);
3227 	}
3228 
3229 	/*
3230 	 *  If phase mismatch handled by scripts (895A/896/1010),
3231 	 *  set PM jump addresses.
3232 	 */
3233 	if (np->features & FE_NOPM) {
3234 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3235 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3236 	}
3237 
3238 	/*
3239 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3240 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3241 	 */
3242 	if (np->features & FE_LED0)
3243 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3244 	else if (np->features & FE_LEDC)
3245 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3246 
3247 	/*
3248 	 *      enable ints
3249 	 */
3250 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3251 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3252 
3253 	/*
3254 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3255 	 *  Try to eat the spurious SBMC interrupt that may occur when
3256 	 *  we reset the chip but not the SCSI BUS (at initialization).
3257 	 */
3258 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3259 		OUTONW (nc_sien, SBMC);
3260 		if (reason == 0) {
3261 			MDELAY(100);
3262 			INW (nc_sist);
3263 		}
3264 		np->scsi_mode = INB (nc_stest4) & SMODE;
3265 	}
3266 
3267 	/*
3268 	 *  Fill in target structure.
3269 	 *  Reinitialize usrsync.
3270 	 *  Reinitialize usrwide.
3271 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3272 	 */
3273 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3274 		tcb_p tp = &np->target[i];
3275 
3276 		tp->to_reset  = 0;
3277 		tp->head.sval = 0;
3278 		tp->head.wval = np->rv_scntl3;
3279 		tp->head.uval = 0;
3280 
3281 		tp->tinfo.current.period = 0;
3282 		tp->tinfo.current.offset = 0;
3283 		tp->tinfo.current.width  = BUS_8_BIT;
3284 		tp->tinfo.current.options = 0;
3285 	}
3286 
3287 	/*
3288 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3289 	 *  and start script processor.
3290 	 */
3291 	if (np->ram_ba) {
3292 		if (sym_verbose > 1)
3293 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3294 				sym_name(np));
3295 		if (np->ram_ws == 8192) {
3296 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3297 			OUTL (nc_mmws, np->scr_ram_seg);
3298 			OUTL (nc_mmrs, np->scr_ram_seg);
3299 			OUTL (nc_sfs,  np->scr_ram_seg);
3300 			phys = SCRIPTB_BA (np, start64);
3301 		}
3302 		else
3303 			phys = SCRIPTA_BA (np, init);
3304 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3305 	}
3306 	else
3307 		phys = SCRIPTA_BA (np, init);
3308 
3309 	np->istat_sem = 0;
3310 
3311 	OUTL (nc_dsa, np->hcb_ba);
3312 	OUTL_DSP (phys);
3313 
3314 	/*
3315 	 *  Notify the XPT about the RESET condition.
3316 	 */
3317 	if (reason != 0)
3318 		xpt_async(AC_BUS_RESET, np->path, NULL);
3319 }
3320 
3321 /*
3322  *  Get clock factor and sync divisor for a given
3323  *  synchronous factor period.
3324  */
3325 static int
3326 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3327 {
3328 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3329 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3330 	u32	fak;			/* Sync factor in sxfer		*/
3331 	u32	per;			/* Period in tenths of ns	*/
3332 	u32	kpc;			/* (per * clk)			*/
3333 	int	ret;
3334 
3335 	/*
3336 	 *  Compute the synchronous period in tenths of nano-seconds
3337 	 */
3338 	if (dt && sfac <= 9)	per = 125;
3339 	else if	(sfac <= 10)	per = 250;
3340 	else if	(sfac == 11)	per = 303;
3341 	else if	(sfac == 12)	per = 500;
3342 	else			per = 40 * sfac;
3343 	ret = per;
3344 
3345 	kpc = per * clk;
3346 	if (dt)
3347 		kpc <<= 1;
3348 
3349 	/*
3350 	 *  For earliest C10 revision 0, we cannot use extra
3351 	 *  clocks for the setting of the SCSI clocking.
3352 	 *  Note that this limits the lowest sync data transfer
3353 	 *  to 5 Mega-transfers per second and may result in
3354 	 *  using higher clock divisors.
3355 	 */
3356 #if 1
3357 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3358 		/*
3359 		 *  Look for the lowest clock divisor that allows an
3360 		 *  output speed not faster than the period.
3361 		 */
3362 		while (div > 0) {
3363 			--div;
3364 			if (kpc > (div_10M[div] << 2)) {
3365 				++div;
3366 				break;
3367 			}
3368 		}
3369 		fak = 0;			/* No extra clocks */
3370 		if (div == np->clock_divn) {	/* Are we too fast ? */
3371 			ret = -1;
3372 		}
3373 		*divp = div;
3374 		*fakp = fak;
3375 		return ret;
3376 	}
3377 #endif
3378 
3379 	/*
3380 	 *  Look for the greatest clock divisor that allows an
3381 	 *  input speed faster than the period.
3382 	 */
3383 	while (div-- > 0)
3384 		if (kpc >= (div_10M[div] << 2)) break;
3385 
3386 	/*
3387 	 *  Calculate the lowest clock factor that allows an output
3388 	 *  speed not faster than the period, and the max output speed.
3389 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3390 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3391 	 */
3392 	if (dt) {
3393 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3394 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3395 	}
3396 	else {
3397 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3398 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3399 	}
3400 
3401 	/*
3402 	 *  Check against our hardware limits, or bugs :).
3403 	 */
3404 	if (fak > 2)	{fak = 2; ret = -1;}
3405 
3406 	/*
3407 	 *  Compute and return sync parameters.
3408 	 */
3409 	*divp = div;
3410 	*fakp = fak;
3411 
3412 	return ret;
3413 }
3414 
3415 /*
3416  *  Tell the SCSI layer about the new transfer parameters.
3417  */
3418 static void
3419 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3420 {
3421 	struct ccb_trans_settings cts;
3422 	struct cam_path *path;
3423 	int sts;
3424 	tcb_p tp = &np->target[target];
3425 
3426 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3427 	                      CAM_LUN_WILDCARD);
3428 	if (sts != CAM_REQ_CMP)
3429 		return;
3430 
3431 	bzero(&cts, sizeof(cts));
3432 
3433 #define	cts__scsi (cts.proto_specific.scsi)
3434 #define	cts__spi  (cts.xport_specific.spi)
3435 
3436 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3437 	cts.protocol  = PROTO_SCSI;
3438 	cts.transport = XPORT_SPI;
3439 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3440 	cts.transport_version = tp->tinfo.current.spi_version;
3441 
3442 	cts__spi.valid = spi_valid;
3443 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3444 		cts__spi.sync_period = tp->tinfo.current.period;
3445 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3446 		cts__spi.sync_offset = tp->tinfo.current.offset;
3447 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3448 		cts__spi.bus_width   = tp->tinfo.current.width;
3449 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3450 		cts__spi.ppr_options = tp->tinfo.current.options;
3451 #undef cts__spi
3452 #undef cts__scsi
3453 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3454 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3455 	xpt_free_path(path);
3456 }
3457 
3458 #define SYM_SPI_VALID_WDTR		\
3459 	CTS_SPI_VALID_BUS_WIDTH |	\
3460 	CTS_SPI_VALID_SYNC_RATE |	\
3461 	CTS_SPI_VALID_SYNC_OFFSET
3462 #define SYM_SPI_VALID_SDTR		\
3463 	CTS_SPI_VALID_SYNC_RATE |	\
3464 	CTS_SPI_VALID_SYNC_OFFSET
3465 #define SYM_SPI_VALID_PPR		\
3466 	CTS_SPI_VALID_PPR_OPTIONS |	\
3467 	CTS_SPI_VALID_BUS_WIDTH |	\
3468 	CTS_SPI_VALID_SYNC_RATE |	\
3469 	CTS_SPI_VALID_SYNC_OFFSET
3470 
3471 /*
3472  *  We received a WDTR.
3473  *  Let everything be aware of the changes.
3474  */
3475 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3476 {
3477 	tcb_p tp = &np->target[cp->target];
3478 
3479 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3480 
3481 	/*
3482 	 *  Tell the SCSI layer about the new transfer parameters.
3483 	 */
3484 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3485 	tp->tinfo.current.offset = 0;
3486 	tp->tinfo.current.period = 0;
3487 	tp->tinfo.current.options = 0;
3488 
3489 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3490 }
3491 
3492 /*
3493  *  We received a SDTR.
3494  *  Let everything be aware of the changes.
3495  */
3496 static void
3497 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3498 {
3499 	tcb_p tp = &np->target[cp->target];
3500 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3501 
3502 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3503 
3504 	/*
3505 	 *  Tell the SCSI layer about the new transfer parameters.
3506 	 */
3507 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3508 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3509 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3510 
3511 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3512 }
3513 
3514 /*
3515  *  We received a PPR.
3516  *  Let everything be aware of the changes.
3517  */
3518 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3519 			 u_char per, u_char wide, u_char div, u_char fak)
3520 {
3521 	tcb_p tp = &np->target[cp->target];
3522 
3523 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3524 
3525 	/*
3526 	 *  Tell the SCSI layer about the new transfer parameters.
3527 	 */
3528 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3529 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3530 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3531 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3532 
3533 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3534 }
3535 
3536 /*
3537  *  Switch trans mode for current job and it's target.
3538  */
3539 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3540 			 u_char per, u_char wide, u_char div, u_char fak)
3541 {
3542 	SYM_QUEHEAD *qp;
3543 	union	ccb *ccb;
3544 	tcb_p tp;
3545 	u_char target = INB (nc_sdid) & 0x0f;
3546 	u_char sval, wval, uval;
3547 
3548 	assert (cp);
3549 	if (!cp) return;
3550 	ccb = cp->cam_ccb;
3551 	assert (ccb);
3552 	if (!ccb) return;
3553 	assert (target == (cp->target & 0xf));
3554 	tp = &np->target[target];
3555 
3556 	sval = tp->head.sval;
3557 	wval = tp->head.wval;
3558 	uval = tp->head.uval;
3559 
3560 #if 0
3561 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3562 		sval, wval, uval, np->rv_scntl3);
3563 #endif
3564 	/*
3565 	 *  Set the offset.
3566 	 */
3567 	if (!(np->features & FE_C10))
3568 		sval = (sval & ~0x1f) | ofs;
3569 	else
3570 		sval = (sval & ~0x3f) | ofs;
3571 
3572 	/*
3573 	 *  Set the sync divisor and extra clock factor.
3574 	 */
3575 	if (ofs != 0) {
3576 		wval = (wval & ~0x70) | ((div+1) << 4);
3577 		if (!(np->features & FE_C10))
3578 			sval = (sval & ~0xe0) | (fak << 5);
3579 		else {
3580 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3581 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3582 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3583 		}
3584 	}
3585 
3586 	/*
3587 	 *  Set the bus width.
3588 	 */
3589 	wval = wval & ~EWS;
3590 	if (wide != 0)
3591 		wval |= EWS;
3592 
3593 	/*
3594 	 *  Set misc. ultra enable bits.
3595 	 */
3596 	if (np->features & FE_C10) {
3597 		uval = uval & ~(U3EN|AIPCKEN);
3598 		if (dt)	{
3599 			assert(np->features & FE_U3EN);
3600 			uval |= U3EN;
3601 		}
3602 	}
3603 	else {
3604 		wval = wval & ~ULTRA;
3605 		if (per <= 12)	wval |= ULTRA;
3606 	}
3607 
3608 	/*
3609 	 *   Stop there if sync parameters are unchanged.
3610 	 */
3611 	if (tp->head.sval == sval &&
3612 	    tp->head.wval == wval &&
3613 	    tp->head.uval == uval)
3614 		return;
3615 	tp->head.sval = sval;
3616 	tp->head.wval = wval;
3617 	tp->head.uval = uval;
3618 
3619 	/*
3620 	 *  Disable extended Sreq/Sack filtering if per < 50.
3621 	 *  Not supported on the C1010.
3622 	 */
3623 	if (per < 50 && !(np->features & FE_C10))
3624 		OUTOFFB (nc_stest2, EXT);
3625 
3626 	/*
3627 	 *  set actual value and sync_status
3628 	 */
3629 	OUTB (nc_sxfer,  tp->head.sval);
3630 	OUTB (nc_scntl3, tp->head.wval);
3631 
3632 	if (np->features & FE_C10) {
3633 		OUTB (nc_scntl4, tp->head.uval);
3634 	}
3635 
3636 	/*
3637 	 *  patch ALL busy ccbs of this target.
3638 	 */
3639 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3640 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3641 		if (cp->target != target)
3642 			continue;
3643 		cp->phys.select.sel_scntl3 = tp->head.wval;
3644 		cp->phys.select.sel_sxfer  = tp->head.sval;
3645 		if (np->features & FE_C10) {
3646 			cp->phys.select.sel_scntl4 = tp->head.uval;
3647 		}
3648 	}
3649 }
3650 
3651 /*
3652  *  log message for real hard errors
3653  *
3654  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3655  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3656  *
3657  *  exception register:
3658  *  	ds:	dstat
3659  *  	si:	sist
3660  *
3661  *  SCSI bus lines:
3662  *  	so:	control lines as driven by chip.
3663  *  	si:	control lines as seen by chip.
3664  *  	sd:	scsi data lines as seen by chip.
3665  *
3666  *  wide/fastmode:
3667  *  	sxfer:	(see the manual)
3668  *  	scntl3:	(see the manual)
3669  *
3670  *  current script command:
3671  *  	dsp:	script address (relative to start of script).
3672  *  	dbc:	first word of script command.
3673  *
3674  *  First 24 register of the chip:
3675  *  	r0..rf
3676  */
3677 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3678 {
3679 	u32	dsp;
3680 	int	script_ofs;
3681 	int	script_size;
3682 	char	*script_name;
3683 	u_char	*script_base;
3684 	int	i;
3685 
3686 	dsp	= INL (nc_dsp);
3687 
3688 	if	(dsp > np->scripta_ba &&
3689 		 dsp <= np->scripta_ba + np->scripta_sz) {
3690 		script_ofs	= dsp - np->scripta_ba;
3691 		script_size	= np->scripta_sz;
3692 		script_base	= (u_char *) np->scripta0;
3693 		script_name	= "scripta";
3694 	}
3695 	else if (np->scriptb_ba < dsp &&
3696 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3697 		script_ofs	= dsp - np->scriptb_ba;
3698 		script_size	= np->scriptb_sz;
3699 		script_base	= (u_char *) np->scriptb0;
3700 		script_name	= "scriptb";
3701 	} else {
3702 		script_ofs	= dsp;
3703 		script_size	= 0;
3704 		script_base	= NULL;
3705 		script_name	= "mem";
3706 	}
3707 
3708 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3709 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3710 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3711 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3712 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3713 		(unsigned)INL (nc_dbc));
3714 
3715 	if (((script_ofs & 3) == 0) &&
3716 	    (unsigned)script_ofs < script_size) {
3717 		printf ("%s: script cmd = %08x\n", sym_name(np),
3718 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3719 	}
3720 
3721         printf ("%s: regdump:", sym_name(np));
3722         for (i=0; i<24;i++)
3723             printf (" %02x", (unsigned)INB_OFF(i));
3724         printf (".\n");
3725 
3726 	/*
3727 	 *  PCI BUS error, read the PCI ststus register.
3728 	 */
3729 	if (dstat & (MDPE|BF)) {
3730 		u_short pci_sts;
3731 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3732 		if (pci_sts & 0xf900) {
3733 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3734 			printf("%s: PCI STATUS = 0x%04x\n",
3735 				sym_name(np), pci_sts & 0xf900);
3736 		}
3737 	}
3738 }
3739 
3740 /*
3741  *  chip interrupt handler
3742  *
3743  *  In normal situations, interrupt conditions occur one at
3744  *  a time. But when something bad happens on the SCSI BUS,
3745  *  the chip may raise several interrupt flags before
3746  *  stopping and interrupting the CPU. The additionnal
3747  *  interrupt flags are stacked in some extra registers
3748  *  after the SIP and/or DIP flag has been raised in the
3749  *  ISTAT. After the CPU has read the interrupt condition
3750  *  flag from SIST or DSTAT, the chip unstacks the other
3751  *  interrupt flags and sets the corresponding bits in
3752  *  SIST or DSTAT. Since the chip starts stacking once the
3753  *  SIP or DIP flag is set, there is a small window of time
3754  *  where the stacking does not occur.
3755  *
3756  *  Typically, multiple interrupt conditions may happen in
3757  *  the following situations:
3758  *
3759  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3760  *    When a parity error is detected in input phase
3761  *    and the device switches to msg-in phase inside a
3762  *    block MOV.
3763  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3764  *    When a stupid device does not want to handle the
3765  *    recovery of an SCSI parity error.
3766  *  - Some combinations of STO, PAR, UDC, ...
3767  *    When using non compliant SCSI stuff, when user is
3768  *    doing non compliant hot tampering on the BUS, when
3769  *    something really bad happens to a device, etc ...
3770  *
3771  *  The heuristic suggested by SYMBIOS to handle
3772  *  multiple interrupts is to try unstacking all
3773  *  interrupts conditions and to handle them on some
3774  *  priority based on error severity.
3775  *  This will work when the unstacking has been
3776  *  successful, but we cannot be 100 % sure of that,
3777  *  since the CPU may have been faster to unstack than
3778  *  the chip is able to stack. Hmmm ... But it seems that
3779  *  such a situation is very unlikely to happen.
3780  *
3781  *  If this happen, for example STO caught by the CPU
3782  *  then UDC happenning before the CPU have restarted
3783  *  the SCRIPTS, the driver may wrongly complete the
3784  *  same command on UDC, since the SCRIPTS didn't restart
3785  *  and the DSA still points to the same command.
3786  *  We avoid this situation by setting the DSA to an
3787  *  invalid value when the CCB is completed and before
3788  *  restarting the SCRIPTS.
3789  *
3790  *  Another issue is that we need some section of our
3791  *  recovery procedures to be somehow uninterruptible but
3792  *  the SCRIPTS processor does not provides such a
3793  *  feature. For this reason, we handle recovery preferently
3794  *  from the C code and check against some SCRIPTS critical
3795  *  sections from the C code.
3796  *
3797  *  Hopefully, the interrupt handling of the driver is now
3798  *  able to resist to weird BUS error conditions, but donnot
3799  *  ask me for any guarantee that it will never fail. :-)
3800  *  Use at your own decision and risk.
3801  */
3802 static void sym_intr1 (hcb_p np)
3803 {
3804 	u_char	istat, istatc;
3805 	u_char	dstat;
3806 	u_short	sist;
3807 
3808 	SYM_LOCK_ASSERT(MA_OWNED);
3809 
3810 	/*
3811 	 *  interrupt on the fly ?
3812 	 *
3813 	 *  A `dummy read' is needed to ensure that the
3814 	 *  clear of the INTF flag reaches the device
3815 	 *  before the scanning of the DONE queue.
3816 	 */
3817 	istat = INB (nc_istat);
3818 	if (istat & INTF) {
3819 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3820 		istat = INB (nc_istat);		/* DUMMY READ */
3821 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3822 		(void)sym_wakeup_done (np);
3823 	}
3824 
3825 	if (!(istat & (SIP|DIP)))
3826 		return;
3827 
3828 #if 0	/* We should never get this one */
3829 	if (istat & CABRT)
3830 		OUTB (nc_istat, CABRT);
3831 #endif
3832 
3833 	/*
3834 	 *  PAR and MA interrupts may occur at the same time,
3835 	 *  and we need to know of both in order to handle
3836 	 *  this situation properly. We try to unstack SCSI
3837 	 *  interrupts for that reason. BTW, I dislike a LOT
3838 	 *  such a loop inside the interrupt routine.
3839 	 *  Even if DMA interrupt stacking is very unlikely to
3840 	 *  happen, we also try unstacking these ones, since
3841 	 *  this has no performance impact.
3842 	 */
3843 	sist	= 0;
3844 	dstat	= 0;
3845 	istatc	= istat;
3846 	do {
3847 		if (istatc & SIP)
3848 			sist  |= INW (nc_sist);
3849 		if (istatc & DIP)
3850 			dstat |= INB (nc_dstat);
3851 		istatc = INB (nc_istat);
3852 		istat |= istatc;
3853 	} while (istatc & (SIP|DIP));
3854 
3855 	if (DEBUG_FLAGS & DEBUG_TINY)
3856 		printf ("<%d|%x:%x|%x:%x>",
3857 			(int)INB(nc_scr0),
3858 			dstat,sist,
3859 			(unsigned)INL(nc_dsp),
3860 			(unsigned)INL(nc_dbc));
3861 	/*
3862 	 *  On paper, a memory barrier may be needed here.
3863 	 *  And since we are paranoid ... :)
3864 	 */
3865 	MEMORY_BARRIER();
3866 
3867 	/*
3868 	 *  First, interrupts we want to service cleanly.
3869 	 *
3870 	 *  Phase mismatch (MA) is the most frequent interrupt
3871 	 *  for chip earlier than the 896 and so we have to service
3872 	 *  it as quickly as possible.
3873 	 *  A SCSI parity error (PAR) may be combined with a phase
3874 	 *  mismatch condition (MA).
3875 	 *  Programmed interrupts (SIR) are used to call the C code
3876 	 *  from SCRIPTS.
3877 	 *  The single step interrupt (SSI) is not used in this
3878 	 *  driver.
3879 	 */
3880 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3881 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3882 		if	(sist & PAR)	sym_int_par (np, sist);
3883 		else if (sist & MA)	sym_int_ma (np);
3884 		else if (dstat & SIR)	sym_int_sir (np);
3885 		else if (dstat & SSI)	OUTONB_STD ();
3886 		else			goto unknown_int;
3887 		return;
3888 	}
3889 
3890 	/*
3891 	 *  Now, interrupts that donnot happen in normal
3892 	 *  situations and that we may need to recover from.
3893 	 *
3894 	 *  On SCSI RESET (RST), we reset everything.
3895 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3896 	 *  active CCBs with RESET status, prepare all devices
3897 	 *  for negotiating again and restart the SCRIPTS.
3898 	 *  On STO and UDC, we complete the CCB with the corres-
3899 	 *  ponding status and restart the SCRIPTS.
3900 	 */
3901 	if (sist & RST) {
3902 		xpt_print_path(np->path);
3903 		printf("SCSI BUS reset detected.\n");
3904 		sym_init (np, 1);
3905 		return;
3906 	}
3907 
3908 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3909 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3910 
3911 	if (!(sist  & (GEN|HTH|SGE)) &&
3912 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3913 		if	(sist & SBMC)	sym_int_sbmc (np);
3914 		else if (sist & STO)	sym_int_sto (np);
3915 		else if (sist & UDC)	sym_int_udc (np);
3916 		else			goto unknown_int;
3917 		return;
3918 	}
3919 
3920 	/*
3921 	 *  Now, interrupts we are not able to recover cleanly.
3922 	 *
3923 	 *  Log message for hard errors.
3924 	 *  Reset everything.
3925 	 */
3926 
3927 	sym_log_hard_error(np, sist, dstat);
3928 
3929 	if ((sist & (GEN|HTH|SGE)) ||
3930 		(dstat & (MDPE|BF|ABRT|IID))) {
3931 		sym_start_reset(np);
3932 		return;
3933 	}
3934 
3935 unknown_int:
3936 	/*
3937 	 *  We just miss the cause of the interrupt. :(
3938 	 *  Print a message. The timeout will do the real work.
3939 	 */
3940 	printf(	"%s: unknown interrupt(s) ignored, "
3941 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3942 		sym_name(np), istat, dstat, sist);
3943 }
3944 
3945 static void sym_intr(void *arg)
3946 {
3947 	hcb_p np = arg;
3948 
3949 	SYM_LOCK();
3950 
3951 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3952 	sym_intr1((hcb_p) arg);
3953 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3954 
3955 	SYM_UNLOCK();
3956 }
3957 
3958 static void sym_poll(struct cam_sim *sim)
3959 {
3960 	sym_intr1(cam_sim_softc(sim));
3961 }
3962 
3963 /*
3964  *  generic recovery from scsi interrupt
3965  *
3966  *  The doc says that when the chip gets an SCSI interrupt,
3967  *  it tries to stop in an orderly fashion, by completing
3968  *  an instruction fetch that had started or by flushing
3969  *  the DMA fifo for a write to memory that was executing.
3970  *  Such a fashion is not enough to know if the instruction
3971  *  that was just before the current DSP value has been
3972  *  executed or not.
3973  *
3974  *  There are some small SCRIPTS sections that deal with
3975  *  the start queue and the done queue that may break any
3976  *  assomption from the C code if we are interrupted
3977  *  inside, so we reset if this happens. Btw, since these
3978  *  SCRIPTS sections are executed while the SCRIPTS hasn't
3979  *  started SCSI operations, it is very unlikely to happen.
3980  *
3981  *  All the driver data structures are supposed to be
3982  *  allocated from the same 4 GB memory window, so there
3983  *  is a 1 to 1 relationship between DSA and driver data
3984  *  structures. Since we are careful :) to invalidate the
3985  *  DSA when we complete a command or when the SCRIPTS
3986  *  pushes a DSA into a queue, we can trust it when it
3987  *  points to a CCB.
3988  */
3989 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
3990 {
3991 	u32	dsp	= INL (nc_dsp);
3992 	u32	dsa	= INL (nc_dsa);
3993 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
3994 
3995 	/*
3996 	 *  If we haven't been interrupted inside the SCRIPTS
3997 	 *  critical paths, we can safely restart the SCRIPTS
3998 	 *  and trust the DSA value if it matches a CCB.
3999 	 */
4000 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4001 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4002 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4003 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4004 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4005 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4006 	    (!(dsp > SCRIPTA_BA (np, done) &&
4007 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4008 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4009 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4010 		/*
4011 		 *  If we have a CCB, let the SCRIPTS call us back for
4012 		 *  the handling of the error with SCRATCHA filled with
4013 		 *  STARTPOS. This way, we will be able to freeze the
4014 		 *  device queue and requeue awaiting IOs.
4015 		 */
4016 		if (cp) {
4017 			cp->host_status = hsts;
4018 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4019 		}
4020 		/*
4021 		 *  Otherwise just restart the SCRIPTS.
4022 		 */
4023 		else {
4024 			OUTL (nc_dsa, 0xffffff);
4025 			OUTL_DSP (SCRIPTA_BA (np, start));
4026 		}
4027 	}
4028 	else
4029 		goto reset_all;
4030 
4031 	return;
4032 
4033 reset_all:
4034 	sym_start_reset(np);
4035 }
4036 
4037 /*
4038  *  chip exception handler for selection timeout
4039  */
4040 static void sym_int_sto (hcb_p np)
4041 {
4042 	u32 dsp	= INL (nc_dsp);
4043 
4044 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4045 
4046 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4047 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4048 	else
4049 		sym_start_reset(np);
4050 }
4051 
4052 /*
4053  *  chip exception handler for unexpected disconnect
4054  */
4055 static void sym_int_udc (hcb_p np)
4056 {
4057 	printf ("%s: unexpected disconnect\n", sym_name(np));
4058 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4059 }
4060 
4061 /*
4062  *  chip exception handler for SCSI bus mode change
4063  *
4064  *  spi2-r12 11.2.3 says a transceiver mode change must
4065  *  generate a reset event and a device that detects a reset
4066  *  event shall initiate a hard reset. It says also that a
4067  *  device that detects a mode change shall set data transfer
4068  *  mode to eight bit asynchronous, etc...
4069  *  So, just reinitializing all except chip should be enough.
4070  */
4071 static void sym_int_sbmc (hcb_p np)
4072 {
4073 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4074 
4075 	/*
4076 	 *  Notify user.
4077 	 */
4078 	xpt_print_path(np->path);
4079 	printf("SCSI BUS mode change from %s to %s.\n",
4080 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4081 
4082 	/*
4083 	 *  Should suspend command processing for a few seconds and
4084 	 *  reinitialize all except the chip.
4085 	 */
4086 	sym_init (np, 2);
4087 }
4088 
4089 /*
4090  *  chip exception handler for SCSI parity error.
4091  *
4092  *  When the chip detects a SCSI parity error and is
4093  *  currently executing a (CH)MOV instruction, it does
4094  *  not interrupt immediately, but tries to finish the
4095  *  transfer of the current scatter entry before
4096  *  interrupting. The following situations may occur:
4097  *
4098  *  - The complete scatter entry has been transferred
4099  *    without the device having changed phase.
4100  *    The chip will then interrupt with the DSP pointing
4101  *    to the instruction that follows the MOV.
4102  *
4103  *  - A phase mismatch occurs before the MOV finished
4104  *    and phase errors are to be handled by the C code.
4105  *    The chip will then interrupt with both PAR and MA
4106  *    conditions set.
4107  *
4108  *  - A phase mismatch occurs before the MOV finished and
4109  *    phase errors are to be handled by SCRIPTS.
4110  *    The chip will load the DSP with the phase mismatch
4111  *    JUMP address and interrupt the host processor.
4112  */
4113 static void sym_int_par (hcb_p np, u_short sist)
4114 {
4115 	u_char	hsts	= INB (HS_PRT);
4116 	u32	dsp	= INL (nc_dsp);
4117 	u32	dbc	= INL (nc_dbc);
4118 	u32	dsa	= INL (nc_dsa);
4119 	u_char	sbcl	= INB (nc_sbcl);
4120 	u_char	cmd	= dbc >> 24;
4121 	int phase	= cmd & 7;
4122 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4123 
4124 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4125 		sym_name(np), hsts, dbc, sbcl);
4126 
4127 	/*
4128 	 *  Check that the chip is connected to the SCSI BUS.
4129 	 */
4130 	if (!(INB (nc_scntl1) & ISCON)) {
4131 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4132 		return;
4133 	}
4134 
4135 	/*
4136 	 *  If the nexus is not clearly identified, reset the bus.
4137 	 *  We will try to do better later.
4138 	 */
4139 	if (!cp)
4140 		goto reset_all;
4141 
4142 	/*
4143 	 *  Check instruction was a MOV, direction was INPUT and
4144 	 *  ATN is asserted.
4145 	 */
4146 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4147 		goto reset_all;
4148 
4149 	/*
4150 	 *  Keep track of the parity error.
4151 	 */
4152 	OUTONB (HF_PRT, HF_EXT_ERR);
4153 	cp->xerr_status |= XE_PARITY_ERR;
4154 
4155 	/*
4156 	 *  Prepare the message to send to the device.
4157 	 */
4158 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4159 
4160 	/*
4161 	 *  If the old phase was DATA IN phase, we have to deal with
4162 	 *  the 3 situations described above.
4163 	 *  For other input phases (MSG IN and STATUS), the device
4164 	 *  must resend the whole thing that failed parity checking
4165 	 *  or signal error. So, jumping to dispatcher should be OK.
4166 	 */
4167 	if (phase == 1 || phase == 5) {
4168 		/* Phase mismatch handled by SCRIPTS */
4169 		if (dsp == SCRIPTB_BA (np, pm_handle))
4170 			OUTL_DSP (dsp);
4171 		/* Phase mismatch handled by the C code */
4172 		else if (sist & MA)
4173 			sym_int_ma (np);
4174 		/* No phase mismatch occurred */
4175 		else {
4176 			OUTL (nc_temp, dsp);
4177 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4178 		}
4179 	}
4180 	else
4181 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4182 	return;
4183 
4184 reset_all:
4185 	sym_start_reset(np);
4186 }
4187 
4188 /*
4189  *  chip exception handler for phase errors.
4190  *
4191  *  We have to construct a new transfer descriptor,
4192  *  to transfer the rest of the current block.
4193  */
4194 static void sym_int_ma (hcb_p np)
4195 {
4196 	u32	dbc;
4197 	u32	rest;
4198 	u32	dsp;
4199 	u32	dsa;
4200 	u32	nxtdsp;
4201 	u32	*vdsp;
4202 	u32	oadr, olen;
4203 	u32	*tblp;
4204         u32	newcmd;
4205 	u_int	delta;
4206 	u_char	cmd;
4207 	u_char	hflags, hflags0;
4208 	struct	sym_pmc *pm;
4209 	ccb_p	cp;
4210 
4211 	dsp	= INL (nc_dsp);
4212 	dbc	= INL (nc_dbc);
4213 	dsa	= INL (nc_dsa);
4214 
4215 	cmd	= dbc >> 24;
4216 	rest	= dbc & 0xffffff;
4217 	delta	= 0;
4218 
4219 	/*
4220 	 *  locate matching cp if any.
4221 	 */
4222 	cp = sym_ccb_from_dsa(np, dsa);
4223 
4224 	/*
4225 	 *  Donnot take into account dma fifo and various buffers in
4226 	 *  INPUT phase since the chip flushes everything before
4227 	 *  raising the MA interrupt for interrupted INPUT phases.
4228 	 *  For DATA IN phase, we will check for the SWIDE later.
4229 	 */
4230 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4231 		u_char ss0, ss2;
4232 
4233 		if (np->features & FE_DFBC)
4234 			delta = INW (nc_dfbc);
4235 		else {
4236 			u32 dfifo;
4237 
4238 			/*
4239 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4240 			 */
4241 			dfifo = INL(nc_dfifo);
4242 
4243 			/*
4244 			 *  Calculate remaining bytes in DMA fifo.
4245 			 *  (CTEST5 = dfifo >> 16)
4246 			 */
4247 			if (dfifo & (DFS << 16))
4248 				delta = ((((dfifo >> 8) & 0x300) |
4249 				          (dfifo & 0xff)) - rest) & 0x3ff;
4250 			else
4251 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4252 		}
4253 
4254 		/*
4255 		 *  The data in the dma fifo has not been transferred to
4256 		 *  the target -> add the amount to the rest
4257 		 *  and clear the data.
4258 		 *  Check the sstat2 register in case of wide transfer.
4259 		 */
4260 		rest += delta;
4261 		ss0  = INB (nc_sstat0);
4262 		if (ss0 & OLF) rest++;
4263 		if (!(np->features & FE_C10))
4264 			if (ss0 & ORF) rest++;
4265 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4266 			ss2 = INB (nc_sstat2);
4267 			if (ss2 & OLF1) rest++;
4268 			if (!(np->features & FE_C10))
4269 				if (ss2 & ORF1) rest++;
4270 		}
4271 
4272 		/*
4273 		 *  Clear fifos.
4274 		 */
4275 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4276 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4277 	}
4278 
4279 	/*
4280 	 *  log the information
4281 	 */
4282 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4283 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4284 			(unsigned) rest, (unsigned) delta);
4285 
4286 	/*
4287 	 *  try to find the interrupted script command,
4288 	 *  and the address at which to continue.
4289 	 */
4290 	vdsp	= NULL;
4291 	nxtdsp	= 0;
4292 	if	(dsp >  np->scripta_ba &&
4293 		 dsp <= np->scripta_ba + np->scripta_sz) {
4294 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4295 		nxtdsp = dsp;
4296 	}
4297 	else if	(dsp >  np->scriptb_ba &&
4298 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4299 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4300 		nxtdsp = dsp;
4301 	}
4302 
4303 	/*
4304 	 *  log the information
4305 	 */
4306 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4307 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4308 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4309 	}
4310 
4311 	if (!vdsp) {
4312 		printf ("%s: interrupted SCRIPT address not found.\n",
4313 			sym_name (np));
4314 		goto reset_all;
4315 	}
4316 
4317 	if (!cp) {
4318 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4319 			sym_name (np));
4320 		goto reset_all;
4321 	}
4322 
4323 	/*
4324 	 *  get old startaddress and old length.
4325 	 */
4326 	oadr = scr_to_cpu(vdsp[1]);
4327 
4328 	if (cmd & 0x10) {	/* Table indirect */
4329 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4330 		olen = scr_to_cpu(tblp[0]);
4331 		oadr = scr_to_cpu(tblp[1]);
4332 	} else {
4333 		tblp = (u32 *) 0;
4334 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4335 	}
4336 
4337 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4338 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4339 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4340 			tblp,
4341 			(unsigned) olen,
4342 			(unsigned) oadr);
4343 	}
4344 
4345 	/*
4346 	 *  check cmd against assumed interrupted script command.
4347 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4348 	 *  the phase.
4349 	 */
4350 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4351 		PRINT_ADDR(cp);
4352 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4353 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4354 
4355 		goto reset_all;
4356 	}
4357 
4358 	/*
4359 	 *  if old phase not dataphase, leave here.
4360 	 */
4361 	if (cmd & 2) {
4362 		PRINT_ADDR(cp);
4363 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4364 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4365 			(unsigned)oadr, (unsigned)rest);
4366 		goto unexpected_phase;
4367 	}
4368 
4369 	/*
4370 	 *  Choose the correct PM save area.
4371 	 *
4372 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4373 	 *  this stuff. The equivalent code is implemented in
4374 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4375 	 *  handle PM from the SCRIPTS processor.
4376 	 */
4377 	hflags0 = INB (HF_PRT);
4378 	hflags = hflags0;
4379 
4380 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4381 		if (hflags & HF_IN_PM0)
4382 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4383 		else if	(hflags & HF_IN_PM1)
4384 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4385 
4386 		if (hflags & HF_DP_SAVED)
4387 			hflags ^= HF_ACT_PM;
4388 	}
4389 
4390 	if (!(hflags & HF_ACT_PM)) {
4391 		pm = &cp->phys.pm0;
4392 		newcmd = SCRIPTA_BA (np, pm0_data);
4393 	}
4394 	else {
4395 		pm = &cp->phys.pm1;
4396 		newcmd = SCRIPTA_BA (np, pm1_data);
4397 	}
4398 
4399 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4400 	if (hflags != hflags0)
4401 		OUTB (HF_PRT, hflags);
4402 
4403 	/*
4404 	 *  fillin the phase mismatch context
4405 	 */
4406 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4407 	pm->sg.size = cpu_to_scr(rest);
4408 	pm->ret     = cpu_to_scr(nxtdsp);
4409 
4410 	/*
4411 	 *  If we have a SWIDE,
4412 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4413 	 *  - compute the SCRIPTS address to restart from,
4414 	 *  - move current data pointer context by one byte.
4415 	 */
4416 	nxtdsp = SCRIPTA_BA (np, dispatch);
4417 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4418 	    (INB (nc_scntl2) & WSR)) {
4419 		u32 tmp;
4420 
4421 		/*
4422 		 *  Set up the table indirect for the MOVE
4423 		 *  of the residual byte and adjust the data
4424 		 *  pointer context.
4425 		 */
4426 		tmp = scr_to_cpu(pm->sg.addr);
4427 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4428 		pm->sg.addr = cpu_to_scr(tmp + 1);
4429 		tmp = scr_to_cpu(pm->sg.size);
4430 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4431 		pm->sg.size = cpu_to_scr(tmp - 1);
4432 
4433 		/*
4434 		 *  If only the residual byte is to be moved,
4435 		 *  no PM context is needed.
4436 		 */
4437 		if ((tmp&0xffffff) == 1)
4438 			newcmd = pm->ret;
4439 
4440 		/*
4441 		 *  Prepare the address of SCRIPTS that will
4442 		 *  move the residual byte to memory.
4443 		 */
4444 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4445 	}
4446 
4447 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4448 		PRINT_ADDR(cp);
4449 		printf ("PM %x %x %x / %x %x %x.\n",
4450 			hflags0, hflags, newcmd,
4451 			(unsigned)scr_to_cpu(pm->sg.addr),
4452 			(unsigned)scr_to_cpu(pm->sg.size),
4453 			(unsigned)scr_to_cpu(pm->ret));
4454 	}
4455 
4456 	/*
4457 	 *  Restart the SCRIPTS processor.
4458 	 */
4459 	OUTL (nc_temp, newcmd);
4460 	OUTL_DSP (nxtdsp);
4461 	return;
4462 
4463 	/*
4464 	 *  Unexpected phase changes that occurs when the current phase
4465 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4466 	 *  Such event may only happen when the SCRIPTS is using a
4467 	 *  multibyte SCSI MOVE.
4468 	 *
4469 	 *  Phase change		Some possible cause
4470 	 *
4471 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4472 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4473 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4474 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4475 	 *  			negotiation messages.
4476 	 *
4477 	 *  The code below does not care of the new phase and so
4478 	 *  trusts the target. Why to annoy it ?
4479 	 *  If the interrupted phase is COMMAND phase, we restart at
4480 	 *  dispatcher.
4481 	 *  If a target does not get all the messages after selection,
4482 	 *  the code assumes blindly that the target discards extended
4483 	 *  messages and clears the negotiation status.
4484 	 *  If the target does not want all our response to negotiation,
4485 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4486 	 *  bloat for such a should_not_happen situation).
4487 	 *  In all other situation, we reset the BUS.
4488 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4489 	 */
4490 unexpected_phase:
4491 	dsp -= 8;
4492 	nxtdsp = 0;
4493 
4494 	switch (cmd & 7) {
4495 	case 2:	/* COMMAND phase */
4496 		nxtdsp = SCRIPTA_BA (np, dispatch);
4497 		break;
4498 #if 0
4499 	case 3:	/* STATUS  phase */
4500 		nxtdsp = SCRIPTA_BA (np, dispatch);
4501 		break;
4502 #endif
4503 	case 6:	/* MSG OUT phase */
4504 		/*
4505 		 *  If the device may want to use untagged when we want
4506 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4507 		 *  since we will not be able to handle reselect.
4508 		 *  Otherwise, we just don't care.
4509 		 */
4510 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4511 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4512 				cp->host_status = HS_BUSY;
4513 				np->msgout[0] = M_IDENTIFY | cp->lun;
4514 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4515 			}
4516 			else
4517 				nxtdsp = SCRIPTB_BA (np, ident_break);
4518 		}
4519 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4520 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4521 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4522 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4523 		}
4524 		break;
4525 #if 0
4526 	case 7:	/* MSG IN  phase */
4527 		nxtdsp = SCRIPTA_BA (np, clrack);
4528 		break;
4529 #endif
4530 	}
4531 
4532 	if (nxtdsp) {
4533 		OUTL_DSP (nxtdsp);
4534 		return;
4535 	}
4536 
4537 reset_all:
4538 	sym_start_reset(np);
4539 }
4540 
4541 /*
4542  *  Dequeue from the START queue all CCBs that match
4543  *  a given target/lun/task condition (-1 means all),
4544  *  and move them from the BUSY queue to the COMP queue
4545  *  with CAM_REQUEUE_REQ status condition.
4546  *  This function is used during error handling/recovery.
4547  *  It is called with SCRIPTS not running.
4548  */
4549 static int
4550 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4551 {
4552 	int j;
4553 	ccb_p cp;
4554 
4555 	/*
4556 	 *  Make sure the starting index is within range.
4557 	 */
4558 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4559 
4560 	/*
4561 	 *  Walk until end of START queue and dequeue every job
4562 	 *  that matches the target/lun/task condition.
4563 	 */
4564 	j = i;
4565 	while (i != np->squeueput) {
4566 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4567 		assert(cp);
4568 #ifdef SYM_CONF_IARB_SUPPORT
4569 		/* Forget hints for IARB, they may be no longer relevant */
4570 		cp->host_flags &= ~HF_HINT_IARB;
4571 #endif
4572 		if ((target == -1 || cp->target == target) &&
4573 		    (lun    == -1 || cp->lun    == lun)    &&
4574 		    (task   == -1 || cp->tag    == task)) {
4575 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4576 			sym_remque(&cp->link_ccbq);
4577 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4578 		}
4579 		else {
4580 			if (i != j)
4581 				np->squeue[j] = np->squeue[i];
4582 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4583 		}
4584 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4585 	}
4586 	if (i != j)		/* Copy back the idle task if needed */
4587 		np->squeue[j] = np->squeue[i];
4588 	np->squeueput = j;	/* Update our current start queue pointer */
4589 
4590 	return (i - j) / 2;
4591 }
4592 
4593 /*
4594  *  Complete all CCBs queued to the COMP queue.
4595  *
4596  *  These CCBs are assumed:
4597  *  - Not to be referenced either by devices or
4598  *    SCRIPTS-related queues and datas.
4599  *  - To have to be completed with an error condition
4600  *    or requeued.
4601  *
4602  *  The device queue freeze count is incremented
4603  *  for each CCB that does not prevent this.
4604  *  This function is called when all CCBs involved
4605  *  in error handling/recovery have been reaped.
4606  */
4607 static void
4608 sym_flush_comp_queue(hcb_p np, int cam_status)
4609 {
4610 	SYM_QUEHEAD *qp;
4611 	ccb_p cp;
4612 
4613 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4614 		union ccb *ccb;
4615 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4616 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4617 		/* Leave quiet CCBs waiting for resources */
4618 		if (cp->host_status == HS_WAIT)
4619 			continue;
4620 		ccb = cp->cam_ccb;
4621 		if (cam_status)
4622 			sym_set_cam_status(ccb, cam_status);
4623 		sym_freeze_cam_ccb(ccb);
4624 		sym_xpt_done(np, ccb, cp);
4625 		sym_free_ccb(np, cp);
4626 	}
4627 }
4628 
4629 /*
4630  *  chip handler for bad SCSI status condition
4631  *
4632  *  In case of bad SCSI status, we unqueue all the tasks
4633  *  currently queued to the controller but not yet started
4634  *  and then restart the SCRIPTS processor immediately.
4635  *
4636  *  QUEUE FULL and BUSY conditions are handled the same way.
4637  *  Basically all the not yet started tasks are requeued in
4638  *  device queue and the queue is frozen until a completion.
4639  *
4640  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4641  *  the CCB of the failed command to prepare a REQUEST SENSE
4642  *  SCSI command and queue it to the controller queue.
4643  *
4644  *  SCRATCHA is assumed to have been loaded with STARTPOS
4645  *  before the SCRIPTS called the C code.
4646  */
4647 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4648 {
4649 	tcb_p tp	= &np->target[cp->target];
4650 	u32		startp;
4651 	u_char		s_status = cp->ssss_status;
4652 	u_char		h_flags  = cp->host_flags;
4653 	int		msglen;
4654 	int		nego;
4655 	int		i;
4656 
4657 	SYM_LOCK_ASSERT(MA_OWNED);
4658 
4659 	/*
4660 	 *  Compute the index of the next job to start from SCRIPTS.
4661 	 */
4662 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4663 
4664 	/*
4665 	 *  The last CCB queued used for IARB hint may be
4666 	 *  no longer relevant. Forget it.
4667 	 */
4668 #ifdef SYM_CONF_IARB_SUPPORT
4669 	if (np->last_cp)
4670 		np->last_cp = NULL;
4671 #endif
4672 
4673 	/*
4674 	 *  Now deal with the SCSI status.
4675 	 */
4676 	switch(s_status) {
4677 	case S_BUSY:
4678 	case S_QUEUE_FULL:
4679 		if (sym_verbose >= 2) {
4680 			PRINT_ADDR(cp);
4681 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4682 		}
4683 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4684 		sym_complete_error (np, cp);
4685 		break;
4686 	case S_TERMINATED:
4687 	case S_CHECK_COND:
4688 		/*
4689 		 *  If we get an SCSI error when requesting sense, give up.
4690 		 */
4691 		if (h_flags & HF_SENSE) {
4692 			sym_complete_error (np, cp);
4693 			break;
4694 		}
4695 
4696 		/*
4697 		 *  Dequeue all queued CCBs for that device not yet started,
4698 		 *  and restart the SCRIPTS processor immediately.
4699 		 */
4700 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4701 		OUTL_DSP (SCRIPTA_BA (np, start));
4702 
4703  		/*
4704 		 *  Save some info of the actual IO.
4705 		 *  Compute the data residual.
4706 		 */
4707 		cp->sv_scsi_status = cp->ssss_status;
4708 		cp->sv_xerr_status = cp->xerr_status;
4709 		cp->sv_resid = sym_compute_residual(np, cp);
4710 
4711 		/*
4712 		 *  Prepare all needed data structures for
4713 		 *  requesting sense data.
4714 		 */
4715 
4716 		/*
4717 		 *  identify message
4718 		 */
4719 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4720 		msglen = 1;
4721 
4722 		/*
4723 		 *  If we are currently using anything different from
4724 		 *  async. 8 bit data transfers with that target,
4725 		 *  start a negotiation, since the device may want
4726 		 *  to report us a UNIT ATTENTION condition due to
4727 		 *  a cause we currently ignore, and we donnot want
4728 		 *  to be stuck with WIDE and/or SYNC data transfer.
4729 		 *
4730 		 *  cp->nego_status is filled by sym_prepare_nego().
4731 		 */
4732 		cp->nego_status = 0;
4733 		nego = 0;
4734 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4735 			nego = NS_PPR;
4736 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4737 			nego = NS_WIDE;
4738 		else if (tp->tinfo.current.offset != 0)
4739 			nego = NS_SYNC;
4740 		if (nego)
4741 			msglen +=
4742 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4743 		/*
4744 		 *  Message table indirect structure.
4745 		 */
4746 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4747 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4748 
4749 		/*
4750 		 *  sense command
4751 		 */
4752 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4753 		cp->phys.cmd.size	= cpu_to_scr(6);
4754 
4755 		/*
4756 		 *  patch requested size into sense command
4757 		 */
4758 		cp->sensecmd[0]		= 0x03;
4759 		cp->sensecmd[1]		= cp->lun << 5;
4760 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4761 			cp->sensecmd[1]	= 0;
4762 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4763 		cp->data_len		= SYM_SNS_BBUF_LEN;
4764 
4765 		/*
4766 		 *  sense data
4767 		 */
4768 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4769 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4770 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4771 
4772 		/*
4773 		 *  requeue the command.
4774 		 */
4775 		startp = SCRIPTB_BA (np, sdata_in);
4776 
4777 		cp->phys.head.savep	= cpu_to_scr(startp);
4778 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4779 		cp->phys.head.lastp	= cpu_to_scr(startp);
4780 		cp->startp	= cpu_to_scr(startp);
4781 
4782 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4783 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4784 		cp->ssss_status = S_ILLEGAL;
4785 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4786 		cp->xerr_status = 0;
4787 		cp->extra_bytes = 0;
4788 
4789 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4790 
4791 		/*
4792 		 *  Requeue the command.
4793 		 */
4794 		sym_put_start_queue(np, cp);
4795 
4796 		/*
4797 		 *  Give back to upper layer everything we have dequeued.
4798 		 */
4799 		sym_flush_comp_queue(np, 0);
4800 		break;
4801 	}
4802 }
4803 
4804 /*
4805  *  After a device has accepted some management message
4806  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4807  *  a device signals a UNIT ATTENTION condition, some
4808  *  tasks are thrown away by the device. We are required
4809  *  to reflect that on our tasks list since the device
4810  *  will never complete these tasks.
4811  *
4812  *  This function move from the BUSY queue to the COMP
4813  *  queue all disconnected CCBs for a given target that
4814  *  match the following criteria:
4815  *  - lun=-1  means any logical UNIT otherwise a given one.
4816  *  - task=-1 means any task, otherwise a given one.
4817  */
4818 static int
4819 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4820 {
4821 	SYM_QUEHEAD qtmp, *qp;
4822 	int i = 0;
4823 	ccb_p cp;
4824 
4825 	/*
4826 	 *  Move the entire BUSY queue to our temporary queue.
4827 	 */
4828 	sym_que_init(&qtmp);
4829 	sym_que_splice(&np->busy_ccbq, &qtmp);
4830 	sym_que_init(&np->busy_ccbq);
4831 
4832 	/*
4833 	 *  Put all CCBs that matches our criteria into
4834 	 *  the COMP queue and put back other ones into
4835 	 *  the BUSY queue.
4836 	 */
4837 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4838 		union ccb *ccb;
4839 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4840 		ccb = cp->cam_ccb;
4841 		if (cp->host_status != HS_DISCONNECT ||
4842 		    cp->target != target	     ||
4843 		    (lun  != -1 && cp->lun != lun)   ||
4844 		    (task != -1 &&
4845 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4846 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4847 			continue;
4848 		}
4849 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4850 
4851 		/* Preserve the software timeout condition */
4852 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4853 			sym_set_cam_status(ccb, cam_status);
4854 		++i;
4855 #if 0
4856 printf("XXXX TASK @%p CLEARED\n", cp);
4857 #endif
4858 	}
4859 	return i;
4860 }
4861 
4862 /*
4863  *  chip handler for TASKS recovery
4864  *
4865  *  We cannot safely abort a command, while the SCRIPTS
4866  *  processor is running, since we just would be in race
4867  *  with it.
4868  *
4869  *  As long as we have tasks to abort, we keep the SEM
4870  *  bit set in the ISTAT. When this bit is set, the
4871  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4872  *  each time it enters the scheduler.
4873  *
4874  *  If we have to reset a target, clear tasks of a unit,
4875  *  or to perform the abort of a disconnected job, we
4876  *  restart the SCRIPTS for selecting the target. Once
4877  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4878  *  If it loses arbitration, the SCRIPTS will interrupt again
4879  *  the next time it will enter its scheduler, and so on ...
4880  *
4881  *  On SIR_TARGET_SELECTED, we scan for the more
4882  *  appropriate thing to do:
4883  *
4884  *  - If nothing, we just sent a M_ABORT message to the
4885  *    target to get rid of the useless SCSI bus ownership.
4886  *    According to the specs, no tasks shall be affected.
4887  *  - If the target is to be reset, we send it a M_RESET
4888  *    message.
4889  *  - If a logical UNIT is to be cleared , we send the
4890  *    IDENTIFY(lun) + M_ABORT.
4891  *  - If an untagged task is to be aborted, we send the
4892  *    IDENTIFY(lun) + M_ABORT.
4893  *  - If a tagged task is to be aborted, we send the
4894  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4895  *
4896  *  Once our 'kiss of death' :) message has been accepted
4897  *  by the target, the SCRIPTS interrupts again
4898  *  (SIR_ABORT_SENT). On this interrupt, we complete
4899  *  all the CCBs that should have been aborted by the
4900  *  target according to our message.
4901  */
4902 static void sym_sir_task_recovery(hcb_p np, int num)
4903 {
4904 	SYM_QUEHEAD *qp;
4905 	ccb_p cp;
4906 	tcb_p tp;
4907 	int target=-1, lun=-1, task;
4908 	int i, k;
4909 
4910 	switch(num) {
4911 	/*
4912 	 *  The SCRIPTS processor stopped before starting
4913 	 *  the next command in order to allow us to perform
4914 	 *  some task recovery.
4915 	 */
4916 	case SIR_SCRIPT_STOPPED:
4917 		/*
4918 		 *  Do we have any target to reset or unit to clear ?
4919 		 */
4920 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4921 			tp = &np->target[i];
4922 			if (tp->to_reset ||
4923 			    (tp->lun0p && tp->lun0p->to_clear)) {
4924 				target = i;
4925 				break;
4926 			}
4927 			if (!tp->lunmp)
4928 				continue;
4929 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4930 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4931 					target	= i;
4932 					break;
4933 				}
4934 			}
4935 			if (target != -1)
4936 				break;
4937 		}
4938 
4939 		/*
4940 		 *  If not, walk the busy queue for any
4941 		 *  disconnected CCB to be aborted.
4942 		 */
4943 		if (target == -1) {
4944 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4945 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4946 				if (cp->host_status != HS_DISCONNECT)
4947 					continue;
4948 				if (cp->to_abort) {
4949 					target = cp->target;
4950 					break;
4951 				}
4952 			}
4953 		}
4954 
4955 		/*
4956 		 *  If some target is to be selected,
4957 		 *  prepare and start the selection.
4958 		 */
4959 		if (target != -1) {
4960 			tp = &np->target[target];
4961 			np->abrt_sel.sel_id	= target;
4962 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4963 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4964 			OUTL(nc_dsa, np->hcb_ba);
4965 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4966 			return;
4967 		}
4968 
4969 		/*
4970 		 *  Now look for a CCB to abort that haven't started yet.
4971 		 *  Btw, the SCRIPTS processor is still stopped, so
4972 		 *  we are not in race.
4973 		 */
4974 		i = 0;
4975 		cp = NULL;
4976 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4977 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4978 			if (cp->host_status != HS_BUSY &&
4979 			    cp->host_status != HS_NEGOTIATE)
4980 				continue;
4981 			if (!cp->to_abort)
4982 				continue;
4983 #ifdef SYM_CONF_IARB_SUPPORT
4984 			/*
4985 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4986 			 *    want to cancel the last queued CCB, since the
4987 			 *    SCRIPTS may have anticipated the selection.
4988 			 */
4989 			if (cp == np->last_cp) {
4990 				cp->to_abort = 0;
4991 				continue;
4992 			}
4993 #endif
4994 			i = 1;	/* Means we have found some */
4995 			break;
4996 		}
4997 		if (!i) {
4998 			/*
4999 			 *  We are done, so we donnot need
5000 			 *  to synchronize with the SCRIPTS anylonger.
5001 			 *  Remove the SEM flag from the ISTAT.
5002 			 */
5003 			np->istat_sem = 0;
5004 			OUTB (nc_istat, SIGP);
5005 			break;
5006 		}
5007 		/*
5008 		 *  Compute index of next position in the start
5009 		 *  queue the SCRIPTS intends to start and dequeue
5010 		 *  all CCBs for that device that haven't been started.
5011 		 */
5012 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5013 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5014 
5015 		/*
5016 		 *  Make sure at least our IO to abort has been dequeued.
5017 		 */
5018 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5019 
5020 		/*
5021 		 *  Keep track in cam status of the reason of the abort.
5022 		 */
5023 		if (cp->to_abort == 2)
5024 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5025 		else
5026 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5027 
5028 		/*
5029 		 *  Complete with error everything that we have dequeued.
5030 	 	 */
5031 		sym_flush_comp_queue(np, 0);
5032 		break;
5033 	/*
5034 	 *  The SCRIPTS processor has selected a target
5035 	 *  we may have some manual recovery to perform for.
5036 	 */
5037 	case SIR_TARGET_SELECTED:
5038 		target = (INB (nc_sdid) & 0xf);
5039 		tp = &np->target[target];
5040 
5041 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5042 
5043 		/*
5044 		 *  If the target is to be reset, prepare a
5045 		 *  M_RESET message and clear the to_reset flag
5046 		 *  since we donnot expect this operation to fail.
5047 		 */
5048 		if (tp->to_reset) {
5049 			np->abrt_msg[0] = M_RESET;
5050 			np->abrt_tbl.size = 1;
5051 			tp->to_reset = 0;
5052 			break;
5053 		}
5054 
5055 		/*
5056 		 *  Otherwise, look for some logical unit to be cleared.
5057 		 */
5058 		if (tp->lun0p && tp->lun0p->to_clear)
5059 			lun = 0;
5060 		else if (tp->lunmp) {
5061 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5062 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5063 					lun = k;
5064 					break;
5065 				}
5066 			}
5067 		}
5068 
5069 		/*
5070 		 *  If a logical unit is to be cleared, prepare
5071 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5072 		 */
5073 		if (lun != -1) {
5074 			lcb_p lp = sym_lp(tp, lun);
5075 			lp->to_clear = 0; /* We donnot expect to fail here */
5076 			np->abrt_msg[0] = M_IDENTIFY | lun;
5077 			np->abrt_msg[1] = M_ABORT;
5078 			np->abrt_tbl.size = 2;
5079 			break;
5080 		}
5081 
5082 		/*
5083 		 *  Otherwise, look for some disconnected job to
5084 		 *  abort for this target.
5085 		 */
5086 		i = 0;
5087 		cp = NULL;
5088 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5089 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5090 			if (cp->host_status != HS_DISCONNECT)
5091 				continue;
5092 			if (cp->target != target)
5093 				continue;
5094 			if (!cp->to_abort)
5095 				continue;
5096 			i = 1;	/* Means we have some */
5097 			break;
5098 		}
5099 
5100 		/*
5101 		 *  If we have none, probably since the device has
5102 		 *  completed the command before we won abitration,
5103 		 *  send a M_ABORT message without IDENTIFY.
5104 		 *  According to the specs, the device must just
5105 		 *  disconnect the BUS and not abort any task.
5106 		 */
5107 		if (!i) {
5108 			np->abrt_msg[0] = M_ABORT;
5109 			np->abrt_tbl.size = 1;
5110 			break;
5111 		}
5112 
5113 		/*
5114 		 *  We have some task to abort.
5115 		 *  Set the IDENTIFY(lun)
5116 		 */
5117 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5118 
5119 		/*
5120 		 *  If we want to abort an untagged command, we
5121 		 *  will send an IDENTIFY + M_ABORT.
5122 		 *  Otherwise (tagged command), we will send
5123 		 *  an IDENTIFY + task attributes + ABORT TAG.
5124 		 */
5125 		if (cp->tag == NO_TAG) {
5126 			np->abrt_msg[1] = M_ABORT;
5127 			np->abrt_tbl.size = 2;
5128 		}
5129 		else {
5130 			np->abrt_msg[1] = cp->scsi_smsg[1];
5131 			np->abrt_msg[2] = cp->scsi_smsg[2];
5132 			np->abrt_msg[3] = M_ABORT_TAG;
5133 			np->abrt_tbl.size = 4;
5134 		}
5135 		/*
5136 		 *  Keep track of software timeout condition, since the
5137 		 *  peripheral driver may not count retries on abort
5138 		 *  conditions not due to timeout.
5139 		 */
5140 		if (cp->to_abort == 2)
5141 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5142 		cp->to_abort = 0; /* We donnot expect to fail here */
5143 		break;
5144 
5145 	/*
5146 	 *  The target has accepted our message and switched
5147 	 *  to BUS FREE phase as we expected.
5148 	 */
5149 	case SIR_ABORT_SENT:
5150 		target = (INB (nc_sdid) & 0xf);
5151 		tp = &np->target[target];
5152 
5153 		/*
5154 		**  If we didn't abort anything, leave here.
5155 		*/
5156 		if (np->abrt_msg[0] == M_ABORT)
5157 			break;
5158 
5159 		/*
5160 		 *  If we sent a M_RESET, then a hardware reset has
5161 		 *  been performed by the target.
5162 		 *  - Reset everything to async 8 bit
5163 		 *  - Tell ourself to negotiate next time :-)
5164 		 *  - Prepare to clear all disconnected CCBs for
5165 		 *    this target from our task list (lun=task=-1)
5166 		 */
5167 		lun = -1;
5168 		task = -1;
5169 		if (np->abrt_msg[0] == M_RESET) {
5170 			tp->head.sval = 0;
5171 			tp->head.wval = np->rv_scntl3;
5172 			tp->head.uval = 0;
5173 			tp->tinfo.current.period = 0;
5174 			tp->tinfo.current.offset = 0;
5175 			tp->tinfo.current.width  = BUS_8_BIT;
5176 			tp->tinfo.current.options = 0;
5177 		}
5178 
5179 		/*
5180 		 *  Otherwise, check for the LUN and TASK(s)
5181 		 *  concerned by the cancellation.
5182 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5183 		 *  or an ABORT message :-)
5184 		 */
5185 		else {
5186 			lun = np->abrt_msg[0] & 0x3f;
5187 			if (np->abrt_msg[1] == M_ABORT_TAG)
5188 				task = np->abrt_msg[2];
5189 		}
5190 
5191 		/*
5192 		 *  Complete all the CCBs the device should have
5193 		 *  aborted due to our 'kiss of death' message.
5194 		 */
5195 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5196 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5197 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5198 		sym_flush_comp_queue(np, 0);
5199 
5200 		/*
5201 		 *  If we sent a BDR, make uper layer aware of that.
5202 		 */
5203 		if (np->abrt_msg[0] == M_RESET)
5204 			xpt_async(AC_SENT_BDR, np->path, NULL);
5205 		break;
5206 	}
5207 
5208 	/*
5209 	 *  Print to the log the message we intend to send.
5210 	 */
5211 	if (num == SIR_TARGET_SELECTED) {
5212 		PRINT_TARGET(np, target);
5213 		sym_printl_hex("control msgout:", np->abrt_msg,
5214 			      np->abrt_tbl.size);
5215 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5216 	}
5217 
5218 	/*
5219 	 *  Let the SCRIPTS processor continue.
5220 	 */
5221 	OUTONB_STD ();
5222 }
5223 
5224 /*
5225  *  Gerard's alchemy:) that deals with with the data
5226  *  pointer for both MDP and the residual calculation.
5227  *
5228  *  I didn't want to bloat the code by more than 200
5229  *  lignes for the handling of both MDP and the residual.
5230  *  This has been achieved by using a data pointer
5231  *  representation consisting in an index in the data
5232  *  array (dp_sg) and a negative offset (dp_ofs) that
5233  *  have the following meaning:
5234  *
5235  *  - dp_sg = SYM_CONF_MAX_SG
5236  *    we are at the end of the data script.
5237  *  - dp_sg < SYM_CONF_MAX_SG
5238  *    dp_sg points to the next entry of the scatter array
5239  *    we want to transfer.
5240  *  - dp_ofs < 0
5241  *    dp_ofs represents the residual of bytes of the
5242  *    previous entry scatter entry we will send first.
5243  *  - dp_ofs = 0
5244  *    no residual to send first.
5245  *
5246  *  The function sym_evaluate_dp() accepts an arbitray
5247  *  offset (basically from the MDP message) and returns
5248  *  the corresponding values of dp_sg and dp_ofs.
5249  */
5250 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5251 {
5252 	u32	dp_scr;
5253 	int	dp_ofs, dp_sg, dp_sgmin;
5254 	int	tmp;
5255 	struct sym_pmc *pm;
5256 
5257 	/*
5258 	 *  Compute the resulted data pointer in term of a script
5259 	 *  address within some DATA script and a signed byte offset.
5260 	 */
5261 	dp_scr = scr;
5262 	dp_ofs = *ofs;
5263 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5264 		pm = &cp->phys.pm0;
5265 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5266 		pm = &cp->phys.pm1;
5267 	else
5268 		pm = NULL;
5269 
5270 	if (pm) {
5271 		dp_scr  = scr_to_cpu(pm->ret);
5272 		dp_ofs -= scr_to_cpu(pm->sg.size);
5273 	}
5274 
5275 	/*
5276 	 *  If we are auto-sensing, then we are done.
5277 	 */
5278 	if (cp->host_flags & HF_SENSE) {
5279 		*ofs = dp_ofs;
5280 		return 0;
5281 	}
5282 
5283 	/*
5284 	 *  Deduce the index of the sg entry.
5285 	 *  Keep track of the index of the first valid entry.
5286 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5287 	 *  end of the data.
5288 	 */
5289 	tmp = scr_to_cpu(cp->phys.head.goalp);
5290 	dp_sg = SYM_CONF_MAX_SG;
5291 	if (dp_scr != tmp)
5292 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5293 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5294 
5295 	/*
5296 	 *  Move to the sg entry the data pointer belongs to.
5297 	 *
5298 	 *  If we are inside the data area, we expect result to be:
5299 	 *
5300 	 *  Either,
5301 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5302 	 *      the data pointer belongs to (or the end of the data)
5303 	 *  Or,
5304 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5305 	 *      the data pointer belongs to + 1.
5306 	 */
5307 	if (dp_ofs < 0) {
5308 		int n;
5309 		while (dp_sg > dp_sgmin) {
5310 			--dp_sg;
5311 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5312 			n = dp_ofs + (tmp & 0xffffff);
5313 			if (n > 0) {
5314 				++dp_sg;
5315 				break;
5316 			}
5317 			dp_ofs = n;
5318 		}
5319 	}
5320 	else if (dp_ofs > 0) {
5321 		while (dp_sg < SYM_CONF_MAX_SG) {
5322 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5323 			dp_ofs -= (tmp & 0xffffff);
5324 			++dp_sg;
5325 			if (dp_ofs <= 0)
5326 				break;
5327 		}
5328 	}
5329 
5330 	/*
5331 	 *  Make sure the data pointer is inside the data area.
5332 	 *  If not, return some error.
5333 	 */
5334 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5335 		goto out_err;
5336 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5337 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5338 		goto out_err;
5339 
5340 	/*
5341 	 *  Save the extreme pointer if needed.
5342 	 */
5343 	if (dp_sg > cp->ext_sg ||
5344             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5345 		cp->ext_sg  = dp_sg;
5346 		cp->ext_ofs = dp_ofs;
5347 	}
5348 
5349 	/*
5350 	 *  Return data.
5351 	 */
5352 	*ofs = dp_ofs;
5353 	return dp_sg;
5354 
5355 out_err:
5356 	return -1;
5357 }
5358 
5359 /*
5360  *  chip handler for MODIFY DATA POINTER MESSAGE
5361  *
5362  *  We also call this function on IGNORE WIDE RESIDUE
5363  *  messages that do not match a SWIDE full condition.
5364  *  Btw, we assume in that situation that such a message
5365  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5366  */
5367 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5368 {
5369 	int dp_ofs	= ofs;
5370 	u32	dp_scr	= INL (nc_temp);
5371 	u32	dp_ret;
5372 	u32	tmp;
5373 	u_char	hflags;
5374 	int	dp_sg;
5375 	struct	sym_pmc *pm;
5376 
5377 	/*
5378 	 *  Not supported for auto-sense.
5379 	 */
5380 	if (cp->host_flags & HF_SENSE)
5381 		goto out_reject;
5382 
5383 	/*
5384 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5385 	 *  to the resulted data pointer.
5386 	 */
5387 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5388 	if (dp_sg < 0)
5389 		goto out_reject;
5390 
5391 	/*
5392 	 *  And our alchemy:) allows to easily calculate the data
5393 	 *  script address we want to return for the next data phase.
5394 	 */
5395 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5396 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5397 
5398 	/*
5399 	 *  If offset / scatter entry is zero we donnot need
5400 	 *  a context for the new current data pointer.
5401 	 */
5402 	if (dp_ofs == 0) {
5403 		dp_scr = dp_ret;
5404 		goto out_ok;
5405 	}
5406 
5407 	/*
5408 	 *  Get a context for the new current data pointer.
5409 	 */
5410 	hflags = INB (HF_PRT);
5411 
5412 	if (hflags & HF_DP_SAVED)
5413 		hflags ^= HF_ACT_PM;
5414 
5415 	if (!(hflags & HF_ACT_PM)) {
5416 		pm  = &cp->phys.pm0;
5417 		dp_scr = SCRIPTA_BA (np, pm0_data);
5418 	}
5419 	else {
5420 		pm = &cp->phys.pm1;
5421 		dp_scr = SCRIPTA_BA (np, pm1_data);
5422 	}
5423 
5424 	hflags &= ~(HF_DP_SAVED);
5425 
5426 	OUTB (HF_PRT, hflags);
5427 
5428 	/*
5429 	 *  Set up the new current data pointer.
5430 	 *  ofs < 0 there, and for the next data phase, we
5431 	 *  want to transfer part of the data of the sg entry
5432 	 *  corresponding to index dp_sg-1 prior to returning
5433 	 *  to the main data script.
5434 	 */
5435 	pm->ret = cpu_to_scr(dp_ret);
5436 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5437 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5438 	pm->sg.addr = cpu_to_scr(tmp);
5439 	pm->sg.size = cpu_to_scr(-dp_ofs);
5440 
5441 out_ok:
5442 	OUTL (nc_temp, dp_scr);
5443 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5444 	return;
5445 
5446 out_reject:
5447 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5448 }
5449 
5450 /*
5451  *  chip calculation of the data residual.
5452  *
5453  *  As I used to say, the requirement of data residual
5454  *  in SCSI is broken, useless and cannot be achieved
5455  *  without huge complexity.
5456  *  But most OSes and even the official CAM require it.
5457  *  When stupidity happens to be so widely spread inside
5458  *  a community, it gets hard to convince.
5459  *
5460  *  Anyway, I don't care, since I am not going to use
5461  *  any software that considers this data residual as
5462  *  a relevant information. :)
5463  */
5464 static int sym_compute_residual(hcb_p np, ccb_p cp)
5465 {
5466 	int dp_sg, dp_sgmin, resid = 0;
5467 	int dp_ofs = 0;
5468 
5469 	/*
5470 	 *  Check for some data lost or just thrown away.
5471 	 *  We are not required to be quite accurate in this
5472 	 *  situation. Btw, if we are odd for output and the
5473 	 *  device claims some more data, it may well happen
5474 	 *  than our residual be zero. :-)
5475 	 */
5476 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5477 		if (cp->xerr_status & XE_EXTRA_DATA)
5478 			resid -= cp->extra_bytes;
5479 		if (cp->xerr_status & XE_SODL_UNRUN)
5480 			++resid;
5481 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5482 			--resid;
5483 	}
5484 
5485 	/*
5486 	 *  If all data has been transferred,
5487 	 *  there is no residual.
5488 	 */
5489 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5490 		return resid;
5491 
5492 	/*
5493 	 *  If no data transfer occurs, or if the data
5494 	 *  pointer is weird, return full residual.
5495 	 */
5496 	if (cp->startp == cp->phys.head.lastp ||
5497 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5498 			    &dp_ofs) < 0) {
5499 		return cp->data_len;
5500 	}
5501 
5502 	/*
5503 	 *  If we were auto-sensing, then we are done.
5504 	 */
5505 	if (cp->host_flags & HF_SENSE) {
5506 		return -dp_ofs;
5507 	}
5508 
5509 	/*
5510 	 *  We are now full comfortable in the computation
5511 	 *  of the data residual (2's complement).
5512 	 */
5513 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5514 	resid = -cp->ext_ofs;
5515 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5516 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5517 		resid += (tmp & 0xffffff);
5518 	}
5519 
5520 	/*
5521 	 *  Hopefully, the result is not too wrong.
5522 	 */
5523 	return resid;
5524 }
5525 
5526 /*
5527  *  Print out the content of a SCSI message.
5528  */
5529 static int sym_show_msg (u_char * msg)
5530 {
5531 	u_char i;
5532 	printf ("%x",*msg);
5533 	if (*msg==M_EXTENDED) {
5534 		for (i=1;i<8;i++) {
5535 			if (i-1>msg[1]) break;
5536 			printf ("-%x",msg[i]);
5537 		}
5538 		return (i+1);
5539 	} else if ((*msg & 0xf0) == 0x20) {
5540 		printf ("-%x",msg[1]);
5541 		return (2);
5542 	}
5543 	return (1);
5544 }
5545 
5546 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5547 {
5548 	PRINT_ADDR(cp);
5549 	if (label)
5550 		printf ("%s: ", label);
5551 
5552 	(void) sym_show_msg (msg);
5553 	printf (".\n");
5554 }
5555 
5556 /*
5557  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5558  *
5559  *  When we try to negotiate, we append the negotiation message
5560  *  to the identify and (maybe) simple tag message.
5561  *  The host status field is set to HS_NEGOTIATE to mark this
5562  *  situation.
5563  *
5564  *  If the target doesn't answer this message immediately
5565  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5566  *  will be raised eventually.
5567  *  The handler removes the HS_NEGOTIATE status, and sets the
5568  *  negotiated value to the default (async / nowide).
5569  *
5570  *  If we receive a matching answer immediately, we check it
5571  *  for validity, and set the values.
5572  *
5573  *  If we receive a Reject message immediately, we assume the
5574  *  negotiation has failed, and fall back to standard values.
5575  *
5576  *  If we receive a negotiation message while not in HS_NEGOTIATE
5577  *  state, it's a target initiated negotiation. We prepare a
5578  *  (hopefully) valid answer, set our parameters, and send back
5579  *  this answer to the target.
5580  *
5581  *  If the target doesn't fetch the answer (no message out phase),
5582  *  we assume the negotiation has failed, and fall back to default
5583  *  settings (SIR_NEGO_PROTO interrupt).
5584  *
5585  *  When we set the values, we adjust them in all ccbs belonging
5586  *  to this target, in the controller's register, and in the "phys"
5587  *  field of the controller's struct sym_hcb.
5588  */
5589 
5590 /*
5591  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5592  */
5593 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5594 {
5595 	u_char	chg, ofs, per, fak, div;
5596 	int	req = 1;
5597 
5598 	/*
5599 	 *  Synchronous request message received.
5600 	 */
5601 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5602 		sym_print_msg(cp, "sync msgin", np->msgin);
5603 	}
5604 
5605 	/*
5606 	 * request or answer ?
5607 	 */
5608 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5609 		OUTB (HS_PRT, HS_BUSY);
5610 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5611 			goto reject_it;
5612 		req = 0;
5613 	}
5614 
5615 	/*
5616 	 *  get requested values.
5617 	 */
5618 	chg = 0;
5619 	per = np->msgin[3];
5620 	ofs = np->msgin[4];
5621 
5622 	/*
5623 	 *  check values against our limits.
5624 	 */
5625 	if (ofs) {
5626 		if (ofs > np->maxoffs)
5627 			{chg = 1; ofs = np->maxoffs;}
5628 		if (req) {
5629 			if (ofs > tp->tinfo.user.offset)
5630 				{chg = 1; ofs = tp->tinfo.user.offset;}
5631 		}
5632 	}
5633 
5634 	if (ofs) {
5635 		if (per < np->minsync)
5636 			{chg = 1; per = np->minsync;}
5637 		if (req) {
5638 			if (per < tp->tinfo.user.period)
5639 				{chg = 1; per = tp->tinfo.user.period;}
5640 		}
5641 	}
5642 
5643 	div = fak = 0;
5644 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5645 		goto reject_it;
5646 
5647 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5648 		PRINT_ADDR(cp);
5649 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5650 			ofs, per, div, fak, chg);
5651 	}
5652 
5653 	/*
5654 	 *  This was an answer message
5655 	 */
5656 	if (req == 0) {
5657 		if (chg) 	/* Answer wasn't acceptable. */
5658 			goto reject_it;
5659 		sym_setsync (np, cp, ofs, per, div, fak);
5660 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5661 		return;
5662 	}
5663 
5664 	/*
5665 	 *  It was a request. Set value and
5666 	 *  prepare an answer message
5667 	 */
5668 	sym_setsync (np, cp, ofs, per, div, fak);
5669 
5670 	np->msgout[0] = M_EXTENDED;
5671 	np->msgout[1] = 3;
5672 	np->msgout[2] = M_X_SYNC_REQ;
5673 	np->msgout[3] = per;
5674 	np->msgout[4] = ofs;
5675 
5676 	cp->nego_status = NS_SYNC;
5677 
5678 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5679 		sym_print_msg(cp, "sync msgout", np->msgout);
5680 	}
5681 
5682 	np->msgin [0] = M_NOOP;
5683 
5684 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5685 	return;
5686 reject_it:
5687 	sym_setsync (np, cp, 0, 0, 0, 0);
5688 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5689 }
5690 
5691 /*
5692  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5693  */
5694 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5695 {
5696 	u_char	chg, ofs, per, fak, dt, div, wide;
5697 	int	req = 1;
5698 
5699 	/*
5700 	 * Synchronous request message received.
5701 	 */
5702 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5703 		sym_print_msg(cp, "ppr msgin", np->msgin);
5704 	}
5705 
5706 	/*
5707 	 *  get requested values.
5708 	 */
5709 	chg  = 0;
5710 	per  = np->msgin[3];
5711 	ofs  = np->msgin[5];
5712 	wide = np->msgin[6];
5713 	dt   = np->msgin[7] & PPR_OPT_DT;
5714 
5715 	/*
5716 	 * request or answer ?
5717 	 */
5718 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5719 		OUTB (HS_PRT, HS_BUSY);
5720 		if (cp->nego_status && cp->nego_status != NS_PPR)
5721 			goto reject_it;
5722 		req = 0;
5723 	}
5724 
5725 	/*
5726 	 *  check values against our limits.
5727 	 */
5728 	if (wide > np->maxwide)
5729 		{chg = 1; wide = np->maxwide;}
5730 	if (!wide || !(np->features & FE_ULTRA3))
5731 		dt &= ~PPR_OPT_DT;
5732 	if (req) {
5733 		if (wide > tp->tinfo.user.width)
5734 			{chg = 1; wide = tp->tinfo.user.width;}
5735 	}
5736 
5737 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5738 		dt &= ~PPR_OPT_DT;
5739 
5740 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5741 
5742 	if (ofs) {
5743 		if (dt) {
5744 			if (ofs > np->maxoffs_dt)
5745 				{chg = 1; ofs = np->maxoffs_dt;}
5746 		}
5747 		else if (ofs > np->maxoffs)
5748 			{chg = 1; ofs = np->maxoffs;}
5749 		if (req) {
5750 			if (ofs > tp->tinfo.user.offset)
5751 				{chg = 1; ofs = tp->tinfo.user.offset;}
5752 		}
5753 	}
5754 
5755 	if (ofs) {
5756 		if (dt) {
5757 			if (per < np->minsync_dt)
5758 				{chg = 1; per = np->minsync_dt;}
5759 		}
5760 		else if (per < np->minsync)
5761 			{chg = 1; per = np->minsync;}
5762 		if (req) {
5763 			if (per < tp->tinfo.user.period)
5764 				{chg = 1; per = tp->tinfo.user.period;}
5765 		}
5766 	}
5767 
5768 	div = fak = 0;
5769 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5770 		goto reject_it;
5771 
5772 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5773 		PRINT_ADDR(cp);
5774 		printf ("ppr: "
5775 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5776 			dt, ofs, per, wide, div, fak, chg);
5777 	}
5778 
5779 	/*
5780 	 *  It was an answer.
5781 	 */
5782 	if (req == 0) {
5783 		if (chg) 	/* Answer wasn't acceptable */
5784 			goto reject_it;
5785 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5786 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5787 		return;
5788 	}
5789 
5790 	/*
5791 	 *  It was a request. Set value and
5792 	 *  prepare an answer message
5793 	 */
5794 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5795 
5796 	np->msgout[0] = M_EXTENDED;
5797 	np->msgout[1] = 6;
5798 	np->msgout[2] = M_X_PPR_REQ;
5799 	np->msgout[3] = per;
5800 	np->msgout[4] = 0;
5801 	np->msgout[5] = ofs;
5802 	np->msgout[6] = wide;
5803 	np->msgout[7] = dt;
5804 
5805 	cp->nego_status = NS_PPR;
5806 
5807 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5808 		sym_print_msg(cp, "ppr msgout", np->msgout);
5809 	}
5810 
5811 	np->msgin [0] = M_NOOP;
5812 
5813 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5814 	return;
5815 reject_it:
5816 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5817 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5818 	/*
5819 	 *  If it was a device response that should result in
5820 	 *  ST, we may want to try a legacy negotiation later.
5821 	 */
5822 	if (!req && !dt) {
5823 		tp->tinfo.goal.options = 0;
5824 		tp->tinfo.goal.width   = wide;
5825 		tp->tinfo.goal.period  = per;
5826 		tp->tinfo.goal.offset  = ofs;
5827 	}
5828 }
5829 
5830 /*
5831  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5832  */
5833 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5834 {
5835 	u_char	chg, wide;
5836 	int	req = 1;
5837 
5838 	/*
5839 	 *  Wide request message received.
5840 	 */
5841 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5842 		sym_print_msg(cp, "wide msgin", np->msgin);
5843 	}
5844 
5845 	/*
5846 	 * Is it a request from the device?
5847 	 */
5848 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5849 		OUTB (HS_PRT, HS_BUSY);
5850 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5851 			goto reject_it;
5852 		req = 0;
5853 	}
5854 
5855 	/*
5856 	 *  get requested values.
5857 	 */
5858 	chg  = 0;
5859 	wide = np->msgin[3];
5860 
5861 	/*
5862 	 *  check values against driver limits.
5863 	 */
5864 	if (wide > np->maxwide)
5865 		{chg = 1; wide = np->maxwide;}
5866 	if (req) {
5867 		if (wide > tp->tinfo.user.width)
5868 			{chg = 1; wide = tp->tinfo.user.width;}
5869 	}
5870 
5871 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5872 		PRINT_ADDR(cp);
5873 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5874 	}
5875 
5876 	/*
5877 	 * This was an answer message
5878 	 */
5879 	if (req == 0) {
5880 		if (chg)	/*  Answer wasn't acceptable. */
5881 			goto reject_it;
5882 		sym_setwide (np, cp, wide);
5883 
5884 		/*
5885 		 * Negotiate for SYNC immediately after WIDE response.
5886 		 * This allows to negotiate for both WIDE and SYNC on
5887 		 * a single SCSI command (Suggested by Justin Gibbs).
5888 		 */
5889 		if (tp->tinfo.goal.offset) {
5890 			np->msgout[0] = M_EXTENDED;
5891 			np->msgout[1] = 3;
5892 			np->msgout[2] = M_X_SYNC_REQ;
5893 			np->msgout[3] = tp->tinfo.goal.period;
5894 			np->msgout[4] = tp->tinfo.goal.offset;
5895 
5896 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5897 				sym_print_msg(cp, "sync msgout", np->msgout);
5898 			}
5899 
5900 			cp->nego_status = NS_SYNC;
5901 			OUTB (HS_PRT, HS_NEGOTIATE);
5902 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5903 			return;
5904 		}
5905 
5906 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5907 		return;
5908 	}
5909 
5910 	/*
5911 	 *  It was a request, set value and
5912 	 *  prepare an answer message
5913 	 */
5914 	sym_setwide (np, cp, wide);
5915 
5916 	np->msgout[0] = M_EXTENDED;
5917 	np->msgout[1] = 2;
5918 	np->msgout[2] = M_X_WIDE_REQ;
5919 	np->msgout[3] = wide;
5920 
5921 	np->msgin [0] = M_NOOP;
5922 
5923 	cp->nego_status = NS_WIDE;
5924 
5925 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5926 		sym_print_msg(cp, "wide msgout", np->msgout);
5927 	}
5928 
5929 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5930 	return;
5931 reject_it:
5932 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5933 }
5934 
5935 /*
5936  *  Reset SYNC or WIDE to default settings.
5937  *
5938  *  Called when a negotiation does not succeed either
5939  *  on rejection or on protocol error.
5940  *
5941  *  If it was a PPR that made problems, we may want to
5942  *  try a legacy negotiation later.
5943  */
5944 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5945 {
5946 	/*
5947 	 *  any error in negotiation:
5948 	 *  fall back to default mode.
5949 	 */
5950 	switch (cp->nego_status) {
5951 	case NS_PPR:
5952 #if 0
5953 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5954 #else
5955 		tp->tinfo.goal.options = 0;
5956 		if (tp->tinfo.goal.period < np->minsync)
5957 			tp->tinfo.goal.period = np->minsync;
5958 		if (tp->tinfo.goal.offset > np->maxoffs)
5959 			tp->tinfo.goal.offset = np->maxoffs;
5960 #endif
5961 		break;
5962 	case NS_SYNC:
5963 		sym_setsync (np, cp, 0, 0, 0, 0);
5964 		break;
5965 	case NS_WIDE:
5966 		sym_setwide (np, cp, 0);
5967 		break;
5968 	}
5969 	np->msgin [0] = M_NOOP;
5970 	np->msgout[0] = M_NOOP;
5971 	cp->nego_status = 0;
5972 }
5973 
5974 /*
5975  *  chip handler for MESSAGE REJECT received in response to
5976  *  a WIDE or SYNCHRONOUS negotiation.
5977  */
5978 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5979 {
5980 	sym_nego_default(np, tp, cp);
5981 	OUTB (HS_PRT, HS_BUSY);
5982 }
5983 
5984 /*
5985  *  chip exception handler for programmed interrupts.
5986  */
5987 static void sym_int_sir (hcb_p np)
5988 {
5989 	u_char	num	= INB (nc_dsps);
5990 	u32	dsa	= INL (nc_dsa);
5991 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
5992 	u_char	target	= INB (nc_sdid) & 0x0f;
5993 	tcb_p	tp	= &np->target[target];
5994 	int	tmp;
5995 
5996 	SYM_LOCK_ASSERT(MA_OWNED);
5997 
5998 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
5999 
6000 	switch (num) {
6001 	/*
6002 	 *  Command has been completed with error condition
6003 	 *  or has been auto-sensed.
6004 	 */
6005 	case SIR_COMPLETE_ERROR:
6006 		sym_complete_error(np, cp);
6007 		return;
6008 	/*
6009 	 *  The C code is currently trying to recover from something.
6010 	 *  Typically, user want to abort some command.
6011 	 */
6012 	case SIR_SCRIPT_STOPPED:
6013 	case SIR_TARGET_SELECTED:
6014 	case SIR_ABORT_SENT:
6015 		sym_sir_task_recovery(np, num);
6016 		return;
6017 	/*
6018 	 *  The device didn't go to MSG OUT phase after having
6019 	 *  been selected with ATN. We donnot want to handle
6020 	 *  that.
6021 	 */
6022 	case SIR_SEL_ATN_NO_MSG_OUT:
6023 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6024 			sym_name (np), target);
6025 		goto out_stuck;
6026 	/*
6027 	 *  The device didn't switch to MSG IN phase after
6028 	 *  having reseleted the initiator.
6029 	 */
6030 	case SIR_RESEL_NO_MSG_IN:
6031 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6032 			sym_name (np), target);
6033 		goto out_stuck;
6034 	/*
6035 	 *  After reselection, the device sent a message that wasn't
6036 	 *  an IDENTIFY.
6037 	 */
6038 	case SIR_RESEL_NO_IDENTIFY:
6039 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6040 			sym_name (np), target);
6041 		goto out_stuck;
6042 	/*
6043 	 *  The device reselected a LUN we donnot know about.
6044 	 */
6045 	case SIR_RESEL_BAD_LUN:
6046 		np->msgout[0] = M_RESET;
6047 		goto out;
6048 	/*
6049 	 *  The device reselected for an untagged nexus and we
6050 	 *  haven't any.
6051 	 */
6052 	case SIR_RESEL_BAD_I_T_L:
6053 		np->msgout[0] = M_ABORT;
6054 		goto out;
6055 	/*
6056 	 *  The device reselected for a tagged nexus that we donnot
6057 	 *  have.
6058 	 */
6059 	case SIR_RESEL_BAD_I_T_L_Q:
6060 		np->msgout[0] = M_ABORT_TAG;
6061 		goto out;
6062 	/*
6063 	 *  The SCRIPTS let us know that the device has grabbed
6064 	 *  our message and will abort the job.
6065 	 */
6066 	case SIR_RESEL_ABORTED:
6067 		np->lastmsg = np->msgout[0];
6068 		np->msgout[0] = M_NOOP;
6069 		printf ("%s:%d: message %x sent on bad reselection.\n",
6070 			sym_name (np), target, np->lastmsg);
6071 		goto out;
6072 	/*
6073 	 *  The SCRIPTS let us know that a message has been
6074 	 *  successfully sent to the device.
6075 	 */
6076 	case SIR_MSG_OUT_DONE:
6077 		np->lastmsg = np->msgout[0];
6078 		np->msgout[0] = M_NOOP;
6079 		/* Should we really care of that */
6080 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6081 			if (cp) {
6082 				cp->xerr_status &= ~XE_PARITY_ERR;
6083 				if (!cp->xerr_status)
6084 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6085 			}
6086 		}
6087 		goto out;
6088 	/*
6089 	 *  The device didn't send a GOOD SCSI status.
6090 	 *  We may have some work to do prior to allow
6091 	 *  the SCRIPTS processor to continue.
6092 	 */
6093 	case SIR_BAD_SCSI_STATUS:
6094 		if (!cp)
6095 			goto out;
6096 		sym_sir_bad_scsi_status(np, cp);
6097 		return;
6098 	/*
6099 	 *  We are asked by the SCRIPTS to prepare a
6100 	 *  REJECT message.
6101 	 */
6102 	case SIR_REJECT_TO_SEND:
6103 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6104 		np->msgout[0] = M_REJECT;
6105 		goto out;
6106 	/*
6107 	 *  We have been ODD at the end of a DATA IN
6108 	 *  transfer and the device didn't send a
6109 	 *  IGNORE WIDE RESIDUE message.
6110 	 *  It is a data overrun condition.
6111 	 */
6112 	case SIR_SWIDE_OVERRUN:
6113 		if (cp) {
6114 			OUTONB (HF_PRT, HF_EXT_ERR);
6115 			cp->xerr_status |= XE_SWIDE_OVRUN;
6116 		}
6117 		goto out;
6118 	/*
6119 	 *  We have been ODD at the end of a DATA OUT
6120 	 *  transfer.
6121 	 *  It is a data underrun condition.
6122 	 */
6123 	case SIR_SODL_UNDERRUN:
6124 		if (cp) {
6125 			OUTONB (HF_PRT, HF_EXT_ERR);
6126 			cp->xerr_status |= XE_SODL_UNRUN;
6127 		}
6128 		goto out;
6129 	/*
6130 	 *  The device wants us to transfer more data than
6131 	 *  expected or in the wrong direction.
6132 	 *  The number of extra bytes is in scratcha.
6133 	 *  It is a data overrun condition.
6134 	 */
6135 	case SIR_DATA_OVERRUN:
6136 		if (cp) {
6137 			OUTONB (HF_PRT, HF_EXT_ERR);
6138 			cp->xerr_status |= XE_EXTRA_DATA;
6139 			cp->extra_bytes += INL (nc_scratcha);
6140 		}
6141 		goto out;
6142 	/*
6143 	 *  The device switched to an illegal phase (4/5).
6144 	 */
6145 	case SIR_BAD_PHASE:
6146 		if (cp) {
6147 			OUTONB (HF_PRT, HF_EXT_ERR);
6148 			cp->xerr_status |= XE_BAD_PHASE;
6149 		}
6150 		goto out;
6151 	/*
6152 	 *  We received a message.
6153 	 */
6154 	case SIR_MSG_RECEIVED:
6155 		if (!cp)
6156 			goto out_stuck;
6157 		switch (np->msgin [0]) {
6158 		/*
6159 		 *  We received an extended message.
6160 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6161 		 *  and reject all other extended messages.
6162 		 */
6163 		case M_EXTENDED:
6164 			switch (np->msgin [2]) {
6165 			case M_X_MODIFY_DP:
6166 				if (DEBUG_FLAGS & DEBUG_POINTER)
6167 					sym_print_msg(cp,"modify DP",np->msgin);
6168 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6169 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6170 				sym_modify_dp(np, cp, tmp);
6171 				return;
6172 			case M_X_SYNC_REQ:
6173 				sym_sync_nego(np, tp, cp);
6174 				return;
6175 			case M_X_PPR_REQ:
6176 				sym_ppr_nego(np, tp, cp);
6177 				return;
6178 			case M_X_WIDE_REQ:
6179 				sym_wide_nego(np, tp, cp);
6180 				return;
6181 			default:
6182 				goto out_reject;
6183 			}
6184 			break;
6185 		/*
6186 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6187 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6188 		 *  RESIDUE messages that haven't been anticipated by
6189 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6190 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6191 		 */
6192 		case M_IGN_RESIDUE:
6193 			if (DEBUG_FLAGS & DEBUG_POINTER)
6194 				sym_print_msg(cp,"ign wide residue", np->msgin);
6195 			sym_modify_dp(np, cp, -1);
6196 			return;
6197 		case M_REJECT:
6198 			if (INB (HS_PRT) == HS_NEGOTIATE)
6199 				sym_nego_rejected(np, tp, cp);
6200 			else {
6201 				PRINT_ADDR(cp);
6202 				printf ("M_REJECT received (%x:%x).\n",
6203 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6204 			}
6205 			goto out_clrack;
6206 			break;
6207 		default:
6208 			goto out_reject;
6209 		}
6210 		break;
6211 	/*
6212 	 *  We received an unknown message.
6213 	 *  Ignore all MSG IN phases and reject it.
6214 	 */
6215 	case SIR_MSG_WEIRD:
6216 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6217 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6218 		return;
6219 	/*
6220 	 *  Negotiation failed.
6221 	 *  Target does not send us the reply.
6222 	 *  Remove the HS_NEGOTIATE status.
6223 	 */
6224 	case SIR_NEGO_FAILED:
6225 		OUTB (HS_PRT, HS_BUSY);
6226 	/*
6227 	 *  Negotiation failed.
6228 	 *  Target does not want answer message.
6229 	 */
6230 	case SIR_NEGO_PROTO:
6231 		sym_nego_default(np, tp, cp);
6232 		goto out;
6233 	}
6234 
6235 out:
6236 	OUTONB_STD ();
6237 	return;
6238 out_reject:
6239 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6240 	return;
6241 out_clrack:
6242 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6243 	return;
6244 out_stuck:
6245 	return;
6246 }
6247 
6248 /*
6249  *  Acquire a control block
6250  */
6251 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6252 {
6253 	tcb_p tp = &np->target[tn];
6254 	lcb_p lp = sym_lp(tp, ln);
6255 	u_short tag = NO_TAG;
6256 	SYM_QUEHEAD *qp;
6257 	ccb_p cp = (ccb_p) NULL;
6258 
6259 	/*
6260 	 *  Look for a free CCB
6261 	 */
6262 	if (sym_que_empty(&np->free_ccbq))
6263 		goto out;
6264 	qp = sym_remque_head(&np->free_ccbq);
6265 	if (!qp)
6266 		goto out;
6267 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6268 
6269 	/*
6270 	 *  If the LCB is not yet available and the LUN
6271 	 *  has been probed ok, try to allocate the LCB.
6272 	 */
6273 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6274 		lp = sym_alloc_lcb(np, tn, ln);
6275 		if (!lp)
6276 			goto out_free;
6277 	}
6278 
6279 	/*
6280 	 *  If the LCB is not available here, then the
6281 	 *  logical unit is not yet discovered. For those
6282 	 *  ones only accept 1 SCSI IO per logical unit,
6283 	 *  since we cannot allow disconnections.
6284 	 */
6285 	if (!lp) {
6286 		if (!sym_is_bit(tp->busy0_map, ln))
6287 			sym_set_bit(tp->busy0_map, ln);
6288 		else
6289 			goto out_free;
6290 	} else {
6291 		/*
6292 		 *  If we have been asked for a tagged command.
6293 		 */
6294 		if (tag_order) {
6295 			/*
6296 			 *  Debugging purpose.
6297 			 */
6298 			assert(lp->busy_itl == 0);
6299 			/*
6300 			 *  Allocate resources for tags if not yet.
6301 			 */
6302 			if (!lp->cb_tags) {
6303 				sym_alloc_lcb_tags(np, tn, ln);
6304 				if (!lp->cb_tags)
6305 					goto out_free;
6306 			}
6307 			/*
6308 			 *  Get a tag for this SCSI IO and set up
6309 			 *  the CCB bus address for reselection,
6310 			 *  and count it for this LUN.
6311 			 *  Toggle reselect path to tagged.
6312 			 */
6313 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6314 				tag = lp->cb_tags[lp->ia_tag];
6315 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6316 					lp->ia_tag = 0;
6317 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6318 				++lp->busy_itlq;
6319 				lp->head.resel_sa =
6320 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6321 			}
6322 			else
6323 				goto out_free;
6324 		}
6325 		/*
6326 		 *  This command will not be tagged.
6327 		 *  If we already have either a tagged or untagged
6328 		 *  one, refuse to overlap this untagged one.
6329 		 */
6330 		else {
6331 			/*
6332 			 *  Debugging purpose.
6333 			 */
6334 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6335 			/*
6336 			 *  Count this nexus for this LUN.
6337 			 *  Set up the CCB bus address for reselection.
6338 			 *  Toggle reselect path to untagged.
6339 			 */
6340 			if (++lp->busy_itl == 1) {
6341 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6342 				lp->head.resel_sa =
6343 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6344 			}
6345 			else
6346 				goto out_free;
6347 		}
6348 	}
6349 	/*
6350 	 *  Put the CCB into the busy queue.
6351 	 */
6352 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6353 
6354 	/*
6355 	 *  Remember all informations needed to free this CCB.
6356 	 */
6357 	cp->to_abort = 0;
6358 	cp->tag	   = tag;
6359 	cp->target = tn;
6360 	cp->lun    = ln;
6361 
6362 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6363 		PRINT_LUN(np, tn, ln);
6364 		printf ("ccb @%p using tag %d.\n", cp, tag);
6365 	}
6366 
6367 out:
6368 	return cp;
6369 out_free:
6370 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6371 	return NULL;
6372 }
6373 
6374 /*
6375  *  Release one control block
6376  */
6377 static void sym_free_ccb(hcb_p np, ccb_p cp)
6378 {
6379 	tcb_p tp = &np->target[cp->target];
6380 	lcb_p lp = sym_lp(tp, cp->lun);
6381 
6382 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6383 		PRINT_LUN(np, cp->target, cp->lun);
6384 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6385 	}
6386 
6387 	/*
6388 	 *  If LCB available,
6389 	 */
6390 	if (lp) {
6391 		/*
6392 		 *  If tagged, release the tag, set the relect path
6393 		 */
6394 		if (cp->tag != NO_TAG) {
6395 			/*
6396 			 *  Free the tag value.
6397 			 */
6398 			lp->cb_tags[lp->if_tag] = cp->tag;
6399 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6400 				lp->if_tag = 0;
6401 			/*
6402 			 *  Make the reselect path invalid,
6403 			 *  and uncount this CCB.
6404 			 */
6405 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6406 			--lp->busy_itlq;
6407 		} else {	/* Untagged */
6408 			/*
6409 			 *  Make the reselect path invalid,
6410 			 *  and uncount this CCB.
6411 			 */
6412 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6413 			--lp->busy_itl;
6414 		}
6415 		/*
6416 		 *  If no JOB active, make the LUN reselect path invalid.
6417 		 */
6418 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6419 			lp->head.resel_sa =
6420 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6421 	}
6422 	/*
6423 	 *  Otherwise, we only accept 1 IO per LUN.
6424 	 *  Clear the bit that keeps track of this IO.
6425 	 */
6426 	else
6427 		sym_clr_bit(tp->busy0_map, cp->lun);
6428 
6429 	/*
6430 	 *  We donnot queue more than 1 ccb per target
6431 	 *  with negotiation at any time. If this ccb was
6432 	 *  used for negotiation, clear this info in the tcb.
6433 	 */
6434 	if (cp == tp->nego_cp)
6435 		tp->nego_cp = NULL;
6436 
6437 #ifdef SYM_CONF_IARB_SUPPORT
6438 	/*
6439 	 *  If we just complete the last queued CCB,
6440 	 *  clear this info that is no longer relevant.
6441 	 */
6442 	if (cp == np->last_cp)
6443 		np->last_cp = NULL;
6444 #endif
6445 
6446 	/*
6447 	 *  Unmap user data from DMA map if needed.
6448 	 */
6449 	if (cp->dmamapped) {
6450 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6451 		cp->dmamapped = 0;
6452 	}
6453 
6454 	/*
6455 	 *  Make this CCB available.
6456 	 */
6457 	cp->cam_ccb = NULL;
6458 	cp->host_status = HS_IDLE;
6459 	sym_remque(&cp->link_ccbq);
6460 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6461 }
6462 
6463 /*
6464  *  Allocate a CCB from memory and initialize its fixed part.
6465  */
6466 static ccb_p sym_alloc_ccb(hcb_p np)
6467 {
6468 	ccb_p cp = NULL;
6469 	int hcode;
6470 
6471 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6472 
6473 	/*
6474 	 *  Prevent from allocating more CCBs than we can
6475 	 *  queue to the controller.
6476 	 */
6477 	if (np->actccbs >= SYM_CONF_MAX_START)
6478 		return NULL;
6479 
6480 	/*
6481 	 *  Allocate memory for this CCB.
6482 	 */
6483 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6484 	if (!cp)
6485 		return NULL;
6486 
6487 	/*
6488 	 *  Allocate a bounce buffer for sense data.
6489 	 */
6490 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6491 	if (!cp->sns_bbuf)
6492 		goto out_free;
6493 
6494 	/*
6495 	 *  Allocate a map for the DMA of user data.
6496 	 */
6497 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6498 		goto out_free;
6499 	/*
6500 	 *  Count it.
6501 	 */
6502 	np->actccbs++;
6503 
6504 	/*
6505 	 * Initialize the callout.
6506 	 */
6507 	callout_init(&cp->ch, 1);
6508 
6509 	/*
6510 	 *  Compute the bus address of this ccb.
6511 	 */
6512 	cp->ccb_ba = vtobus(cp);
6513 
6514 	/*
6515 	 *  Insert this ccb into the hashed list.
6516 	 */
6517 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6518 	cp->link_ccbh = np->ccbh[hcode];
6519 	np->ccbh[hcode] = cp;
6520 
6521 	/*
6522 	 *  Initialize the start and restart actions.
6523 	 */
6524 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6525 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6526 
6527  	/*
6528 	 *  Initilialyze some other fields.
6529 	 */
6530 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6531 
6532 	/*
6533 	 *  Chain into free ccb queue.
6534 	 */
6535 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6536 
6537 	return cp;
6538 out_free:
6539 	if (cp->sns_bbuf)
6540 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6541 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6542 	return NULL;
6543 }
6544 
6545 /*
6546  *  Look up a CCB from a DSA value.
6547  */
6548 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6549 {
6550 	int hcode;
6551 	ccb_p cp;
6552 
6553 	hcode = CCB_HASH_CODE(dsa);
6554 	cp = np->ccbh[hcode];
6555 	while (cp) {
6556 		if (cp->ccb_ba == dsa)
6557 			break;
6558 		cp = cp->link_ccbh;
6559 	}
6560 
6561 	return cp;
6562 }
6563 
6564 /*
6565  *  Lun control block allocation and initialization.
6566  */
6567 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6568 {
6569 	tcb_p tp = &np->target[tn];
6570 	lcb_p lp = sym_lp(tp, ln);
6571 
6572 	/*
6573 	 *  Already done, just return.
6574 	 */
6575 	if (lp)
6576 		return lp;
6577 	/*
6578 	 *  Check against some race.
6579 	 */
6580 	assert(!sym_is_bit(tp->busy0_map, ln));
6581 
6582 	/*
6583 	 *  Allocate the LCB bus address array.
6584 	 *  Compute the bus address of this table.
6585 	 */
6586 	if (ln && !tp->luntbl) {
6587 		int i;
6588 
6589 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6590 		if (!tp->luntbl)
6591 			goto fail;
6592 		for (i = 0 ; i < 64 ; i++)
6593 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6594 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6595 	}
6596 
6597 	/*
6598 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6599 	 */
6600 	if (ln && !tp->lunmp) {
6601 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6602 				   "LUNMP");
6603 		if (!tp->lunmp)
6604 			goto fail;
6605 	}
6606 
6607 	/*
6608 	 *  Allocate the lcb.
6609 	 *  Make it available to the chip.
6610 	 */
6611 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6612 	if (!lp)
6613 		goto fail;
6614 	if (ln) {
6615 		tp->lunmp[ln] = lp;
6616 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6617 	}
6618 	else {
6619 		tp->lun0p = lp;
6620 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6621 	}
6622 
6623 	/*
6624 	 *  Let the itl task point to error handling.
6625 	 */
6626 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6627 
6628 	/*
6629 	 *  Set the reselect pattern to our default. :)
6630 	 */
6631 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6632 
6633 	/*
6634 	 *  Set user capabilities.
6635 	 */
6636 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6637 
6638 fail:
6639 	return lp;
6640 }
6641 
6642 /*
6643  *  Allocate LCB resources for tagged command queuing.
6644  */
6645 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6646 {
6647 	tcb_p tp = &np->target[tn];
6648 	lcb_p lp = sym_lp(tp, ln);
6649 	int i;
6650 
6651 	/*
6652 	 *  If LCB not available, try to allocate it.
6653 	 */
6654 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6655 		return;
6656 
6657 	/*
6658 	 *  Allocate the task table and and the tag allocation
6659 	 *  circular buffer. We want both or none.
6660 	 */
6661 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6662 	if (!lp->itlq_tbl)
6663 		return;
6664 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6665 	if (!lp->cb_tags) {
6666 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6667 		lp->itlq_tbl = NULL;
6668 		return;
6669 	}
6670 
6671 	/*
6672 	 *  Initialize the task table with invalid entries.
6673 	 */
6674 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6675 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6676 
6677 	/*
6678 	 *  Fill up the tag buffer with tag numbers.
6679 	 */
6680 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6681 		lp->cb_tags[i] = i;
6682 
6683 	/*
6684 	 *  Make the task table available to SCRIPTS,
6685 	 *  And accept tagged commands now.
6686 	 */
6687 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6688 }
6689 
6690 /*
6691  *  Test the pci bus snoop logic :-(
6692  *
6693  *  Has to be called with interrupts disabled.
6694  */
6695 #ifndef SYM_CONF_IOMAPPED
6696 static int sym_regtest (hcb_p np)
6697 {
6698 	register volatile u32 data;
6699 	/*
6700 	 *  chip registers may NOT be cached.
6701 	 *  write 0xffffffff to a read only register area,
6702 	 *  and try to read it back.
6703 	 */
6704 	data = 0xffffffff;
6705 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6706 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6707 #if 1
6708 	if (data == 0xffffffff) {
6709 #else
6710 	if ((data & 0xe2f0fffd) != 0x02000080) {
6711 #endif
6712 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6713 			(unsigned) data);
6714 		return (0x10);
6715 	}
6716 	return (0);
6717 }
6718 #endif
6719 
6720 static int sym_snooptest (hcb_p np)
6721 {
6722 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6723 	int	i, err=0;
6724 #ifndef SYM_CONF_IOMAPPED
6725 	err |= sym_regtest (np);
6726 	if (err) return (err);
6727 #endif
6728 restart_test:
6729 	/*
6730 	 *  Enable Master Parity Checking as we intend
6731 	 *  to enable it for normal operations.
6732 	 */
6733 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6734 	/*
6735 	 *  init
6736 	 */
6737 	pc  = SCRIPTB0_BA (np, snooptest);
6738 	host_wr = 1;
6739 	sym_wr  = 2;
6740 	/*
6741 	 *  Set memory and register.
6742 	 */
6743 	np->cache = cpu_to_scr(host_wr);
6744 	OUTL (nc_temp, sym_wr);
6745 	/*
6746 	 *  Start script (exchange values)
6747 	 */
6748 	OUTL (nc_dsa, np->hcb_ba);
6749 	OUTL_DSP (pc);
6750 	/*
6751 	 *  Wait 'til done (with timeout)
6752 	 */
6753 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6754 		if (INB(nc_istat) & (INTF|SIP|DIP))
6755 			break;
6756 	if (i>=SYM_SNOOP_TIMEOUT) {
6757 		printf ("CACHE TEST FAILED: timeout.\n");
6758 		return (0x20);
6759 	}
6760 	/*
6761 	 *  Check for fatal DMA errors.
6762 	 */
6763 	dstat = INB (nc_dstat);
6764 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6765 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6766 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6767 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6768 			sym_name(np));
6769 		np->rv_ctest4 &= ~MPEE;
6770 		goto restart_test;
6771 	}
6772 #endif
6773 	if (dstat & (MDPE|BF|IID)) {
6774 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6775 		return (0x80);
6776 	}
6777 	/*
6778 	 *  Save termination position.
6779 	 */
6780 	pc = INL (nc_dsp);
6781 	/*
6782 	 *  Read memory and register.
6783 	 */
6784 	host_rd = scr_to_cpu(np->cache);
6785 	sym_rd  = INL (nc_scratcha);
6786 	sym_bk  = INL (nc_temp);
6787 
6788 	/*
6789 	 *  Check termination position.
6790 	 */
6791 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6792 		printf ("CACHE TEST FAILED: script execution failed.\n");
6793 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6794 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6795 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6796 		return (0x40);
6797 	}
6798 	/*
6799 	 *  Show results.
6800 	 */
6801 	if (host_wr != sym_rd) {
6802 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6803 			(int) host_wr, (int) sym_rd);
6804 		err |= 1;
6805 	}
6806 	if (host_rd != sym_wr) {
6807 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6808 			(int) sym_wr, (int) host_rd);
6809 		err |= 2;
6810 	}
6811 	if (sym_bk != sym_wr) {
6812 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6813 			(int) sym_wr, (int) sym_bk);
6814 		err |= 4;
6815 	}
6816 
6817 	return (err);
6818 }
6819 
6820 /*
6821  *  Determine the chip's clock frequency.
6822  *
6823  *  This is essential for the negotiation of the synchronous
6824  *  transfer rate.
6825  *
6826  *  Note: we have to return the correct value.
6827  *  THERE IS NO SAFE DEFAULT VALUE.
6828  *
6829  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6830  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6831  *  do not have a clock doubler and so are provided with a
6832  *  80 MHz clock. All other fast20 boards incorporate a doubler
6833  *  and so should be delivered with a 40 MHz clock.
6834  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6835  *  clock and provide a clock quadrupler (160 Mhz).
6836  */
6837 
6838 /*
6839  *  Select SCSI clock frequency
6840  */
6841 static void sym_selectclock(hcb_p np, u_char scntl3)
6842 {
6843 	/*
6844 	 *  If multiplier not present or not selected, leave here.
6845 	 */
6846 	if (np->multiplier <= 1) {
6847 		OUTB(nc_scntl3,	scntl3);
6848 		return;
6849 	}
6850 
6851 	if (sym_verbose >= 2)
6852 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6853 
6854 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6855 	/*
6856 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6857 	 *  Otherwise wait 20 micro-seconds.
6858 	 */
6859 	if (np->features & FE_LCKFRQ) {
6860 		int i = 20;
6861 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6862 			UDELAY (20);
6863 		if (!i)
6864 			printf("%s: the chip cannot lock the frequency\n",
6865 				sym_name(np));
6866 	} else
6867 		UDELAY (20);
6868 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6869 	OUTB(nc_scntl3,	scntl3);
6870 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6871 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6872 }
6873 
6874 /*
6875  *  calculate SCSI clock frequency (in KHz)
6876  */
6877 static unsigned getfreq (hcb_p np, int gen)
6878 {
6879 	unsigned int ms = 0;
6880 	unsigned int f;
6881 
6882 	/*
6883 	 * Measure GEN timer delay in order
6884 	 * to calculate SCSI clock frequency
6885 	 *
6886 	 * This code will never execute too
6887 	 * many loop iterations (if DELAY is
6888 	 * reasonably correct). It could get
6889 	 * too low a delay (too high a freq.)
6890 	 * if the CPU is slow executing the
6891 	 * loop for some reason (an NMI, for
6892 	 * example). For this reason we will
6893 	 * if multiple measurements are to be
6894 	 * performed trust the higher delay
6895 	 * (lower frequency returned).
6896 	 */
6897 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6898 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6899 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6900 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6901 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6902 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6903 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6904 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6905 		UDELAY (1000);	/* count ms */
6906 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6907  	/*
6908  	 * set prescaler to divide by whatever 0 means
6909  	 * 0 ought to choose divide by 2, but appears
6910  	 * to set divide by 3.5 mode in my 53c810 ...
6911  	 */
6912  	OUTB (nc_scntl3, 0);
6913 
6914   	/*
6915  	 * adjust for prescaler, and convert into KHz
6916   	 */
6917 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6918 
6919 	if (sym_verbose >= 2)
6920 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6921 			sym_name(np), gen, ms, f);
6922 
6923 	return f;
6924 }
6925 
6926 static unsigned sym_getfreq (hcb_p np)
6927 {
6928 	u_int f1, f2;
6929 	int gen = 11;
6930 
6931 	(void) getfreq (np, gen);	/* throw away first result */
6932 	f1 = getfreq (np, gen);
6933 	f2 = getfreq (np, gen);
6934 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6935 	return f1;
6936 }
6937 
6938 /*
6939  *  Get/probe chip SCSI clock frequency
6940  */
6941 static void sym_getclock (hcb_p np, int mult)
6942 {
6943 	unsigned char scntl3 = np->sv_scntl3;
6944 	unsigned char stest1 = np->sv_stest1;
6945 	unsigned f1;
6946 
6947 	/*
6948 	 *  For the C10 core, assume 40 MHz.
6949 	 */
6950 	if (np->features & FE_C10) {
6951 		np->multiplier = mult;
6952 		np->clock_khz = 40000 * mult;
6953 		return;
6954 	}
6955 
6956 	np->multiplier = 1;
6957 	f1 = 40000;
6958 	/*
6959 	 *  True with 875/895/896/895A with clock multiplier selected
6960 	 */
6961 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6962 		if (sym_verbose >= 2)
6963 			printf ("%s: clock multiplier found\n", sym_name(np));
6964 		np->multiplier = mult;
6965 	}
6966 
6967 	/*
6968 	 *  If multiplier not found or scntl3 not 7,5,3,
6969 	 *  reset chip and get frequency from general purpose timer.
6970 	 *  Otherwise trust scntl3 BIOS setting.
6971 	 */
6972 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6973 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6974 		f1 = sym_getfreq (np);
6975 
6976 		if (sym_verbose)
6977 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
6978 
6979 		if	(f1 <	45000)		f1 =  40000;
6980 		else if (f1 <	55000)		f1 =  50000;
6981 		else				f1 =  80000;
6982 
6983 		if (f1 < 80000 && mult > 1) {
6984 			if (sym_verbose >= 2)
6985 				printf ("%s: clock multiplier assumed\n",
6986 					sym_name(np));
6987 			np->multiplier	= mult;
6988 		}
6989 	} else {
6990 		if	((scntl3 & 7) == 3)	f1 =  40000;
6991 		else if	((scntl3 & 7) == 5)	f1 =  80000;
6992 		else 				f1 = 160000;
6993 
6994 		f1 /= np->multiplier;
6995 	}
6996 
6997 	/*
6998 	 *  Compute controller synchronous parameters.
6999 	 */
7000 	f1		*= np->multiplier;
7001 	np->clock_khz	= f1;
7002 }
7003 
7004 /*
7005  *  Get/probe PCI clock frequency
7006  */
7007 static int sym_getpciclock (hcb_p np)
7008 {
7009 	int f = 0;
7010 
7011 	/*
7012 	 *  For the C1010-33, this doesn't work.
7013 	 *  For the C1010-66, this will be tested when I'll have
7014 	 *  such a beast to play with.
7015 	 */
7016 	if (!(np->features & FE_C10)) {
7017 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7018 		f = (int) sym_getfreq (np);
7019 		OUTB (nc_stest1, 0);
7020 	}
7021 	np->pciclk_khz = f;
7022 
7023 	return f;
7024 }
7025 
7026 /*============= DRIVER ACTION/COMPLETION ====================*/
7027 
7028 /*
7029  *  Print something that tells about extended errors.
7030  */
7031 static void sym_print_xerr(ccb_p cp, int x_status)
7032 {
7033 	if (x_status & XE_PARITY_ERR) {
7034 		PRINT_ADDR(cp);
7035 		printf ("unrecovered SCSI parity error.\n");
7036 	}
7037 	if (x_status & XE_EXTRA_DATA) {
7038 		PRINT_ADDR(cp);
7039 		printf ("extraneous data discarded.\n");
7040 	}
7041 	if (x_status & XE_BAD_PHASE) {
7042 		PRINT_ADDR(cp);
7043 		printf ("illegal scsi phase (4/5).\n");
7044 	}
7045 	if (x_status & XE_SODL_UNRUN) {
7046 		PRINT_ADDR(cp);
7047 		printf ("ODD transfer in DATA OUT phase.\n");
7048 	}
7049 	if (x_status & XE_SWIDE_OVRUN) {
7050 		PRINT_ADDR(cp);
7051 		printf ("ODD transfer in DATA IN phase.\n");
7052 	}
7053 }
7054 
7055 /*
7056  *  Choose the more appropriate CAM status if
7057  *  the IO encountered an extended error.
7058  */
7059 static int sym_xerr_cam_status(int cam_status, int x_status)
7060 {
7061 	if (x_status) {
7062 		if	(x_status & XE_PARITY_ERR)
7063 			cam_status = CAM_UNCOR_PARITY;
7064 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7065 			cam_status = CAM_DATA_RUN_ERR;
7066 		else if	(x_status & XE_BAD_PHASE)
7067 			cam_status = CAM_REQ_CMP_ERR;
7068 		else
7069 			cam_status = CAM_REQ_CMP_ERR;
7070 	}
7071 	return cam_status;
7072 }
7073 
7074 /*
7075  *  Complete execution of a SCSI command with extented
7076  *  error, SCSI status error, or having been auto-sensed.
7077  *
7078  *  The SCRIPTS processor is not running there, so we
7079  *  can safely access IO registers and remove JOBs from
7080  *  the START queue.
7081  *  SCRATCHA is assumed to have been loaded with STARTPOS
7082  *  before the SCRIPTS called the C code.
7083  */
7084 static void sym_complete_error (hcb_p np, ccb_p cp)
7085 {
7086 	struct ccb_scsiio *csio;
7087 	u_int cam_status;
7088 	int i, sense_returned;
7089 
7090 	SYM_LOCK_ASSERT(MA_OWNED);
7091 
7092 	/*
7093 	 *  Paranoid check. :)
7094 	 */
7095 	if (!cp || !cp->cam_ccb)
7096 		return;
7097 
7098 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7099 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7100 			cp->host_status, cp->ssss_status, cp->host_flags,
7101 			cp->target, cp->lun);
7102 		MDELAY(100);
7103 	}
7104 
7105 	/*
7106 	 *  Get CAM command pointer.
7107 	 */
7108 	csio = &cp->cam_ccb->csio;
7109 
7110 	/*
7111 	 *  Check for extended errors.
7112 	 */
7113 	if (cp->xerr_status) {
7114 		if (sym_verbose)
7115 			sym_print_xerr(cp, cp->xerr_status);
7116 		if (cp->host_status == HS_COMPLETE)
7117 			cp->host_status = HS_COMP_ERR;
7118 	}
7119 
7120 	/*
7121 	 *  Calculate the residual.
7122 	 */
7123 	csio->sense_resid = 0;
7124 	csio->resid = sym_compute_residual(np, cp);
7125 
7126 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7127 		csio->resid  = 0;	/* throw them away. :)		   */
7128 		cp->sv_resid = 0;
7129 	}
7130 
7131 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7132 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7133 		csio->sense_resid = csio->resid;	/* Swap residuals */
7134 		csio->resid       = cp->sv_resid;
7135 		cp->sv_resid	  = 0;
7136 		if (sym_verbose && cp->sv_xerr_status)
7137 			sym_print_xerr(cp, cp->sv_xerr_status);
7138 		if (cp->host_status == HS_COMPLETE &&
7139 		    cp->ssss_status == S_GOOD &&
7140 		    cp->xerr_status == 0) {
7141 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7142 							 cp->sv_xerr_status);
7143 			cam_status |= CAM_AUTOSNS_VALID;
7144 			/*
7145 			 *  Bounce back the sense data to user and
7146 			 *  fix the residual.
7147 			 */
7148 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7149 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7150 			if (sense_returned < csio->sense_len)
7151 				csio->sense_resid = csio->sense_len -
7152 				    sense_returned;
7153 			else
7154 				csio->sense_resid = 0;
7155 			bcopy(cp->sns_bbuf, &csio->sense_data,
7156 			    MIN(csio->sense_len, sense_returned));
7157 #if 0
7158 			/*
7159 			 *  If the device reports a UNIT ATTENTION condition
7160 			 *  due to a RESET condition, we should consider all
7161 			 *  disconnect CCBs for this unit as aborted.
7162 			 */
7163 			if (1) {
7164 				u_char *p;
7165 				p  = (u_char *) csio->sense_data;
7166 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7167 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7168 							cp->target,cp->lun, -1);
7169 			}
7170 #endif
7171 		}
7172 		else
7173 			cam_status = CAM_AUTOSENSE_FAIL;
7174 	}
7175 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7176 		csio->scsi_status = cp->ssss_status;
7177 		cam_status = CAM_SCSI_STATUS_ERROR;
7178 	}
7179 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7180 		cam_status = CAM_SEL_TIMEOUT;
7181 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7182 		cam_status = CAM_UNEXP_BUSFREE;
7183 	else {						/* Extended error */
7184 		if (sym_verbose) {
7185 			PRINT_ADDR(cp);
7186 			printf ("COMMAND FAILED (%x %x %x).\n",
7187 				cp->host_status, cp->ssss_status,
7188 				cp->xerr_status);
7189 		}
7190 		csio->scsi_status = cp->ssss_status;
7191 		/*
7192 		 *  Set the most appropriate value for CAM status.
7193 		 */
7194 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7195 						 cp->xerr_status);
7196 	}
7197 
7198 	/*
7199 	 *  Dequeue all queued CCBs for that device
7200 	 *  not yet started by SCRIPTS.
7201 	 */
7202 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7203 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7204 
7205 	/*
7206 	 *  Restart the SCRIPTS processor.
7207 	 */
7208 	OUTL_DSP (SCRIPTA_BA (np, start));
7209 
7210 	/*
7211 	 *  Synchronize DMA map if needed.
7212 	 */
7213 	if (cp->dmamapped) {
7214 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7215 			(cp->dmamapped == SYM_DMA_READ ?
7216 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7217 	}
7218 	/*
7219 	 *  Add this one to the COMP queue.
7220 	 *  Complete all those commands with either error
7221 	 *  or requeue condition.
7222 	 */
7223 	sym_set_cam_status((union ccb *) csio, cam_status);
7224 	sym_remque(&cp->link_ccbq);
7225 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7226 	sym_flush_comp_queue(np, 0);
7227 }
7228 
7229 /*
7230  *  Complete execution of a successful SCSI command.
7231  *
7232  *  Only successful commands go to the DONE queue,
7233  *  since we need to have the SCRIPTS processor
7234  *  stopped on any error condition.
7235  *  The SCRIPTS processor is running while we are
7236  *  completing successful commands.
7237  */
7238 static void sym_complete_ok (hcb_p np, ccb_p cp)
7239 {
7240 	struct ccb_scsiio *csio;
7241 	tcb_p tp;
7242 	lcb_p lp;
7243 
7244 	SYM_LOCK_ASSERT(MA_OWNED);
7245 
7246 	/*
7247 	 *  Paranoid check. :)
7248 	 */
7249 	if (!cp || !cp->cam_ccb)
7250 		return;
7251 	assert (cp->host_status == HS_COMPLETE);
7252 
7253 	/*
7254 	 *  Get command, target and lun pointers.
7255 	 */
7256 	csio = &cp->cam_ccb->csio;
7257 	tp = &np->target[cp->target];
7258 	lp = sym_lp(tp, cp->lun);
7259 
7260 	/*
7261 	 *  Assume device discovered on first success.
7262 	 */
7263 	if (!lp)
7264 		sym_set_bit(tp->lun_map, cp->lun);
7265 
7266 	/*
7267 	 *  If all data have been transferred, given than no
7268 	 *  extended error did occur, there is no residual.
7269 	 */
7270 	csio->resid = 0;
7271 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7272 		csio->resid = sym_compute_residual(np, cp);
7273 
7274 	/*
7275 	 *  Wrong transfer residuals may be worse than just always
7276 	 *  returning zero. User can disable this feature from
7277 	 *  sym_conf.h. Residual support is enabled by default.
7278 	 */
7279 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7280 		csio->resid  = 0;
7281 
7282 	/*
7283 	 *  Synchronize DMA map if needed.
7284 	 */
7285 	if (cp->dmamapped) {
7286 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7287 			(cp->dmamapped == SYM_DMA_READ ?
7288 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7289 	}
7290 	/*
7291 	 *  Set status and complete the command.
7292 	 */
7293 	csio->scsi_status = cp->ssss_status;
7294 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7295 	sym_xpt_done(np, (union ccb *) csio, cp);
7296 	sym_free_ccb(np, cp);
7297 }
7298 
7299 /*
7300  *  Our callout handler
7301  */
7302 static void sym_callout(void *arg)
7303 {
7304 	union ccb *ccb = (union ccb *) arg;
7305 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7306 
7307 	/*
7308 	 *  Check that the CAM CCB is still queued.
7309 	 */
7310 	if (!np)
7311 		return;
7312 
7313 	SYM_LOCK();
7314 
7315 	switch(ccb->ccb_h.func_code) {
7316 	case XPT_SCSI_IO:
7317 		(void) sym_abort_scsiio(np, ccb, 1);
7318 		break;
7319 	default:
7320 		break;
7321 	}
7322 
7323 	SYM_UNLOCK();
7324 }
7325 
7326 /*
7327  *  Abort an SCSI IO.
7328  */
7329 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7330 {
7331 	ccb_p cp;
7332 	SYM_QUEHEAD *qp;
7333 
7334 	SYM_LOCK_ASSERT(MA_OWNED);
7335 
7336 	/*
7337 	 *  Look up our CCB control block.
7338 	 */
7339 	cp = NULL;
7340 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7341 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7342 		if (cp2->cam_ccb == ccb) {
7343 			cp = cp2;
7344 			break;
7345 		}
7346 	}
7347 	if (!cp || cp->host_status == HS_WAIT)
7348 		return -1;
7349 
7350 	/*
7351 	 *  If a previous abort didn't succeed in time,
7352 	 *  perform a BUS reset.
7353 	 */
7354 	if (cp->to_abort) {
7355 		sym_reset_scsi_bus(np, 1);
7356 		return 0;
7357 	}
7358 
7359 	/*
7360 	 *  Mark the CCB for abort and allow time for.
7361 	 */
7362 	cp->to_abort = timed_out ? 2 : 1;
7363 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7364 
7365 	/*
7366 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7367 	 */
7368 	np->istat_sem = SEM;
7369 	OUTB (nc_istat, SIGP|SEM);
7370 	return 0;
7371 }
7372 
7373 /*
7374  *  Reset a SCSI device (all LUNs of a target).
7375  */
7376 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7377 {
7378 	tcb_p tp;
7379 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7380 
7381 	SYM_LOCK_ASSERT(MA_OWNED);
7382 
7383 	if (ccb_h->target_id   == np->myaddr ||
7384 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7385 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7386 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7387 		return;
7388 	}
7389 
7390 	tp = &np->target[ccb_h->target_id];
7391 
7392 	tp->to_reset = 1;
7393 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7394 
7395 	np->istat_sem = SEM;
7396 	OUTB (nc_istat, SIGP|SEM);
7397 }
7398 
7399 /*
7400  *  SIM action entry point.
7401  */
7402 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7403 {
7404 	hcb_p	np;
7405 	tcb_p	tp;
7406 	lcb_p	lp;
7407 	ccb_p	cp;
7408 	int 	tmp;
7409 	u_char	idmsg, *msgptr;
7410 	u_int   msglen;
7411 	struct	ccb_scsiio *csio;
7412 	struct	ccb_hdr  *ccb_h;
7413 
7414 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7415 
7416 	/*
7417 	 *  Retrieve our controller data structure.
7418 	 */
7419 	np = (hcb_p) cam_sim_softc(sim);
7420 
7421 	SYM_LOCK_ASSERT(MA_OWNED);
7422 
7423 	/*
7424 	 *  The common case is SCSI IO.
7425 	 *  We deal with other ones elsewhere.
7426 	 */
7427 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7428 		sym_action2(sim, ccb);
7429 		return;
7430 	}
7431 	csio  = &ccb->csio;
7432 	ccb_h = &csio->ccb_h;
7433 
7434 	/*
7435 	 *  Work around races.
7436 	 */
7437 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7438 		xpt_done(ccb);
7439 		return;
7440 	}
7441 
7442 	/*
7443 	 *  Minimal checkings, so that we will not
7444 	 *  go outside our tables.
7445 	 */
7446 	if (ccb_h->target_id   == np->myaddr ||
7447 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7448 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7449 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7450 		return;
7451         }
7452 
7453 	/*
7454 	 *  Retrieve the target and lun descriptors.
7455 	 */
7456 	tp = &np->target[ccb_h->target_id];
7457 	lp = sym_lp(tp, ccb_h->target_lun);
7458 
7459 	/*
7460 	 *  Complete the 1st INQUIRY command with error
7461 	 *  condition if the device is flagged NOSCAN
7462 	 *  at BOOT in the NVRAM. This may speed up
7463 	 *  the boot and maintain coherency with BIOS
7464 	 *  device numbering. Clearing the flag allows
7465 	 *  user to rescan skipped devices later.
7466 	 *  We also return error for devices not flagged
7467 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7468 	 *  devices behave badly when asked for some non
7469 	 *  zero LUN. Btw, this is an absolute hack.:-)
7470 	 */
7471 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7472 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7473 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7474 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7475 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7476 		     ccb_h->target_lun != 0)) {
7477 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7478 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7479 			return;
7480 		}
7481 	}
7482 
7483 	/*
7484 	 *  Get a control block for this IO.
7485 	 */
7486 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7487 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7488 	if (!cp) {
7489 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7490 		return;
7491 	}
7492 
7493 	/*
7494 	 *  Keep track of the IO in our CCB.
7495 	 */
7496 	cp->cam_ccb = ccb;
7497 
7498 	/*
7499 	 *  Build the IDENTIFY message.
7500 	 */
7501 	idmsg = M_IDENTIFY | cp->lun;
7502 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7503 		idmsg |= 0x40;
7504 
7505 	msgptr = cp->scsi_smsg;
7506 	msglen = 0;
7507 	msgptr[msglen++] = idmsg;
7508 
7509 	/*
7510 	 *  Build the tag message if present.
7511 	 */
7512 	if (cp->tag != NO_TAG) {
7513 		u_char order = csio->tag_action;
7514 
7515 		switch(order) {
7516 		case M_ORDERED_TAG:
7517 			break;
7518 		case M_HEAD_TAG:
7519 			break;
7520 		default:
7521 			order = M_SIMPLE_TAG;
7522 		}
7523 		msgptr[msglen++] = order;
7524 
7525 		/*
7526 		 *  For less than 128 tags, actual tags are numbered
7527 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7528 		 *  with devices that have problems with #TAG 0 or too
7529 		 *  great #TAG numbers. For more tags (up to 256),
7530 		 *  we use directly our tag number.
7531 		 */
7532 #if SYM_CONF_MAX_TASK > (512/4)
7533 		msgptr[msglen++] = cp->tag;
7534 #else
7535 		msgptr[msglen++] = (cp->tag << 1) + 1;
7536 #endif
7537 	}
7538 
7539 	/*
7540 	 *  Build a negotiation message if needed.
7541 	 *  (nego_status is filled by sym_prepare_nego())
7542 	 */
7543 	cp->nego_status = 0;
7544 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7545 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7546 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7547 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7548 		if (!tp->nego_cp && lp)
7549 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7550 	}
7551 
7552 	/*
7553 	 *  Fill in our ccb
7554 	 */
7555 
7556 	/*
7557 	 *  Startqueue
7558 	 */
7559 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7560 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7561 
7562 	/*
7563 	 *  select
7564 	 */
7565 	cp->phys.select.sel_id		= cp->target;
7566 	cp->phys.select.sel_scntl3	= tp->head.wval;
7567 	cp->phys.select.sel_sxfer	= tp->head.sval;
7568 	cp->phys.select.sel_scntl4	= tp->head.uval;
7569 
7570 	/*
7571 	 *  message
7572 	 */
7573 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7574 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7575 
7576 	/*
7577 	 *  command
7578 	 */
7579 	if (sym_setup_cdb(np, csio, cp) < 0) {
7580 		sym_xpt_done(np, ccb, cp);
7581 		sym_free_ccb(np, cp);
7582 		return;
7583 	}
7584 
7585 	/*
7586 	 *  status
7587 	 */
7588 #if	0	/* Provision */
7589 	cp->actualquirks	= tp->quirks;
7590 #endif
7591 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7592 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7593 	cp->ssss_status		= S_ILLEGAL;
7594 	cp->xerr_status		= 0;
7595 	cp->host_flags		= 0;
7596 	cp->extra_bytes		= 0;
7597 
7598 	/*
7599 	 *  extreme data pointer.
7600 	 *  shall be positive, so -1 is lower than lowest.:)
7601 	 */
7602 	cp->ext_sg  = -1;
7603 	cp->ext_ofs = 0;
7604 
7605 	/*
7606 	 *  Build the data descriptor block
7607 	 *  and start the IO.
7608 	 */
7609 	sym_setup_data_and_start(np, csio, cp);
7610 }
7611 
7612 /*
7613  *  Setup buffers and pointers that address the CDB.
7614  *  I bet, physical CDBs will never be used on the planet,
7615  *  since they can be bounced without significant overhead.
7616  */
7617 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7618 {
7619 	struct ccb_hdr *ccb_h;
7620 	u32	cmd_ba;
7621 	int	cmd_len;
7622 
7623 	SYM_LOCK_ASSERT(MA_OWNED);
7624 
7625 	ccb_h = &csio->ccb_h;
7626 
7627 	/*
7628 	 *  CDB is 16 bytes max.
7629 	 */
7630 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7631 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7632 		return -1;
7633 	}
7634 	cmd_len = csio->cdb_len;
7635 
7636 	if (ccb_h->flags & CAM_CDB_POINTER) {
7637 		/* CDB is a pointer */
7638 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7639 			/* CDB pointer is virtual */
7640 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7641 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7642 		} else {
7643 			/* CDB pointer is physical */
7644 #if 0
7645 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7646 #else
7647 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7648 			return -1;
7649 #endif
7650 		}
7651 	} else {
7652 		/* CDB is in the CAM ccb (buffer) */
7653 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7654 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7655 	}
7656 
7657 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7658 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7659 
7660 	return 0;
7661 }
7662 
7663 /*
7664  *  Set up data pointers used by SCRIPTS.
7665  */
7666 static void __inline
7667 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7668 {
7669 	u32 lastp, goalp;
7670 
7671 	SYM_LOCK_ASSERT(MA_OWNED);
7672 
7673 	/*
7674 	 *  No segments means no data.
7675 	 */
7676 	if (!cp->segments)
7677 		dir = CAM_DIR_NONE;
7678 
7679 	/*
7680 	 *  Set the data pointer.
7681 	 */
7682 	switch(dir) {
7683 	case CAM_DIR_OUT:
7684 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7685 		lastp = goalp - 8 - (cp->segments * (2*4));
7686 		break;
7687 	case CAM_DIR_IN:
7688 		cp->host_flags |= HF_DATA_IN;
7689 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7690 		lastp = goalp - 8 - (cp->segments * (2*4));
7691 		break;
7692 	case CAM_DIR_NONE:
7693 	default:
7694 		lastp = goalp = SCRIPTB_BA (np, no_data);
7695 		break;
7696 	}
7697 
7698 	cp->phys.head.lastp = cpu_to_scr(lastp);
7699 	cp->phys.head.goalp = cpu_to_scr(goalp);
7700 	cp->phys.head.savep = cpu_to_scr(lastp);
7701 	cp->startp	    = cp->phys.head.savep;
7702 }
7703 
7704 /*
7705  *  Call back routine for the DMA map service.
7706  *  If bounce buffers are used (why ?), we may sleep and then
7707  *  be called there in another context.
7708  */
7709 static void
7710 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7711 {
7712 	ccb_p	cp;
7713 	hcb_p	np;
7714 	union	ccb *ccb;
7715 
7716 	cp  = (ccb_p) arg;
7717 	ccb = cp->cam_ccb;
7718 	np  = (hcb_p) cp->arg;
7719 
7720 	SYM_LOCK_ASSERT(MA_OWNED);
7721 
7722 	/*
7723 	 *  Deal with weird races.
7724 	 */
7725 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7726 		goto out_abort;
7727 
7728 	/*
7729 	 *  Deal with weird errors.
7730 	 */
7731 	if (error) {
7732 		cp->dmamapped = 0;
7733 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7734 		goto out_abort;
7735 	}
7736 
7737 	/*
7738 	 *  Build the data descriptor for the chip.
7739 	 */
7740 	if (nsegs) {
7741 		int retv;
7742 		/* 896 rev 1 requires to be careful about boundaries */
7743 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7744 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7745 		else
7746 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7747 		if (retv < 0) {
7748 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7749 			goto out_abort;
7750 		}
7751 	}
7752 
7753 	/*
7754 	 *  Synchronize the DMA map only if we have
7755 	 *  actually mapped the data.
7756 	 */
7757 	if (cp->dmamapped) {
7758 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7759 			(cp->dmamapped == SYM_DMA_READ ?
7760 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7761 	}
7762 
7763 	/*
7764 	 *  Set host status to busy state.
7765 	 *  May have been set back to HS_WAIT to avoid a race.
7766 	 */
7767 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7768 
7769 	/*
7770 	 *  Set data pointers.
7771 	 */
7772 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7773 
7774 	/*
7775 	 *  Enqueue this IO in our pending queue.
7776 	 */
7777 	sym_enqueue_cam_ccb(cp);
7778 
7779 	/*
7780 	 *  When `#ifed 1', the code below makes the driver
7781 	 *  panic on the first attempt to write to a SCSI device.
7782 	 *  It is the first test we want to do after a driver
7783 	 *  change that does not seem obviously safe. :)
7784 	 */
7785 #if 0
7786 	switch (cp->cdb_buf[0]) {
7787 	case 0x0A: case 0x2A: case 0xAA:
7788 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7789 		MDELAY(10000);
7790 		break;
7791 	default:
7792 		break;
7793 	}
7794 #endif
7795 	/*
7796 	 *  Activate this job.
7797 	 */
7798 	sym_put_start_queue(np, cp);
7799 	return;
7800 out_abort:
7801 	sym_xpt_done(np, ccb, cp);
7802 	sym_free_ccb(np, cp);
7803 }
7804 
7805 /*
7806  *  How complex it gets to deal with the data in CAM.
7807  *  The Bus Dma stuff makes things still more complex.
7808  */
7809 static void
7810 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7811 {
7812 	struct ccb_hdr *ccb_h;
7813 	int dir, retv;
7814 
7815 	SYM_LOCK_ASSERT(MA_OWNED);
7816 
7817 	ccb_h = &csio->ccb_h;
7818 
7819 	/*
7820 	 *  Now deal with the data.
7821 	 */
7822 	cp->data_len = csio->dxfer_len;
7823 	cp->arg      = np;
7824 
7825 	/*
7826 	 *  No direction means no data.
7827 	 */
7828 	dir = (ccb_h->flags & CAM_DIR_MASK);
7829 	if (dir == CAM_DIR_NONE) {
7830 		sym_execute_ccb(cp, NULL, 0, 0);
7831 		return;
7832 	}
7833 
7834 	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7835 	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7836 			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7837 	if (retv == EINPROGRESS) {
7838 		cp->host_status	= HS_WAIT;
7839 		xpt_freeze_simq(np->sim, 1);
7840 		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7841 	}
7842 }
7843 
7844 /*
7845  *  Move the scatter list to our data block.
7846  */
7847 static int
7848 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7849 			     bus_dma_segment_t *psegs, int nsegs)
7850 {
7851 	struct sym_tblmove *data;
7852 	bus_dma_segment_t *psegs2;
7853 
7854 	SYM_LOCK_ASSERT(MA_OWNED);
7855 
7856 	if (nsegs > SYM_CONF_MAX_SG)
7857 		return -1;
7858 
7859 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7860 	psegs2 = &psegs[nsegs-1];
7861 	cp->segments = nsegs;
7862 
7863 	while (1) {
7864 		data->addr = cpu_to_scr(psegs2->ds_addr);
7865 		data->size = cpu_to_scr(psegs2->ds_len);
7866 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7867 			printf ("%s scatter: paddr=%lx len=%ld\n",
7868 				sym_name(np), (long) psegs2->ds_addr,
7869 				(long) psegs2->ds_len);
7870 		}
7871 		if (psegs2 != psegs) {
7872 			--data;
7873 			--psegs2;
7874 			continue;
7875 		}
7876 		break;
7877 	}
7878 	return 0;
7879 }
7880 
7881 /*
7882  *  Scatter a SG list with physical addresses into bus addressable chunks.
7883  */
7884 static int
7885 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7886 {
7887 	u_long	ps, pe, pn;
7888 	u_long	k;
7889 	int s, t;
7890 
7891 	SYM_LOCK_ASSERT(MA_OWNED);
7892 
7893 	s  = SYM_CONF_MAX_SG - 1;
7894 	t  = nsegs - 1;
7895 	ps = psegs[t].ds_addr;
7896 	pe = ps + psegs[t].ds_len;
7897 
7898 	while (s >= 0) {
7899 		pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY);
7900 		if (pn <= ps)
7901 			pn = ps;
7902 		k = pe - pn;
7903 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7904 			printf ("%s scatter: paddr=%lx len=%ld\n",
7905 				sym_name(np), pn, k);
7906 		}
7907 		cp->phys.data[s].addr = cpu_to_scr(pn);
7908 		cp->phys.data[s].size = cpu_to_scr(k);
7909 		--s;
7910 		if (pn == ps) {
7911 			if (--t < 0)
7912 				break;
7913 			ps = psegs[t].ds_addr;
7914 			pe = ps + psegs[t].ds_len;
7915 		}
7916 		else
7917 			pe = pn;
7918 	}
7919 
7920 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7921 
7922 	return t >= 0 ? -1 : 0;
7923 }
7924 
7925 /*
7926  *  SIM action for non performance critical stuff.
7927  */
7928 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7929 {
7930 	union ccb *abort_ccb;
7931 	struct ccb_hdr *ccb_h;
7932 	struct ccb_pathinq *cpi;
7933 	struct ccb_trans_settings *cts;
7934 	struct sym_trans *tip;
7935 	hcb_p	np;
7936 	tcb_p	tp;
7937 	lcb_p	lp;
7938 	u_char dflags;
7939 
7940 	/*
7941 	 *  Retrieve our controller data structure.
7942 	 */
7943 	np = (hcb_p) cam_sim_softc(sim);
7944 
7945 	SYM_LOCK_ASSERT(MA_OWNED);
7946 
7947 	ccb_h = &ccb->ccb_h;
7948 
7949 	switch (ccb_h->func_code) {
7950 	case XPT_SET_TRAN_SETTINGS:
7951 		cts  = &ccb->cts;
7952 		tp = &np->target[ccb_h->target_id];
7953 
7954 		/*
7955 		 *  Update SPI transport settings in TARGET control block.
7956 		 *  Update SCSI device settings in LUN control block.
7957 		 */
7958 		lp = sym_lp(tp, ccb_h->target_lun);
7959 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7960 			sym_update_trans(np, &tp->tinfo.goal, cts);
7961 			if (lp)
7962 				sym_update_dflags(np, &lp->current_flags, cts);
7963 		}
7964 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7965 			sym_update_trans(np, &tp->tinfo.user, cts);
7966 			if (lp)
7967 				sym_update_dflags(np, &lp->user_flags, cts);
7968 		}
7969 
7970 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7971 		break;
7972 	case XPT_GET_TRAN_SETTINGS:
7973 		cts = &ccb->cts;
7974 		tp = &np->target[ccb_h->target_id];
7975 		lp = sym_lp(tp, ccb_h->target_lun);
7976 
7977 #define	cts__scsi (&cts->proto_specific.scsi)
7978 #define	cts__spi  (&cts->xport_specific.spi)
7979 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7980 			tip = &tp->tinfo.current;
7981 			dflags = lp ? lp->current_flags : 0;
7982 		}
7983 		else {
7984 			tip = &tp->tinfo.user;
7985 			dflags = lp ? lp->user_flags : tp->usrflags;
7986 		}
7987 
7988 		cts->protocol  = PROTO_SCSI;
7989 		cts->transport = XPORT_SPI;
7990 		cts->protocol_version  = tip->scsi_version;
7991 		cts->transport_version = tip->spi_version;
7992 
7993 		cts__spi->sync_period = tip->period;
7994 		cts__spi->sync_offset = tip->offset;
7995 		cts__spi->bus_width   = tip->width;
7996 		cts__spi->ppr_options = tip->options;
7997 
7998 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
7999 		                | CTS_SPI_VALID_SYNC_OFFSET
8000 		                | CTS_SPI_VALID_BUS_WIDTH
8001 		                | CTS_SPI_VALID_PPR_OPTIONS;
8002 
8003 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8004 		if (dflags & SYM_DISC_ENABLED)
8005 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8006 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8007 
8008 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8009 		if (dflags & SYM_TAGS_ENABLED)
8010 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8011 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8012 #undef	cts__spi
8013 #undef	cts__scsi
8014 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8015 		break;
8016 	case XPT_CALC_GEOMETRY:
8017 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8018 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8019 		break;
8020 	case XPT_PATH_INQ:
8021 		cpi = &ccb->cpi;
8022 		cpi->version_num = 1;
8023 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8024 		if ((np->features & FE_WIDE) != 0)
8025 			cpi->hba_inquiry |= PI_WIDE_16;
8026 		cpi->target_sprt = 0;
8027 		cpi->hba_misc = PIM_UNMAPPED;
8028 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8029 			cpi->hba_misc |= PIM_SCANHILO;
8030 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8031 			cpi->hba_misc |= PIM_NOBUSRESET;
8032 		cpi->hba_eng_cnt = 0;
8033 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8034 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8035 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8036 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8037 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8038 		cpi->bus_id = cam_sim_bus(sim);
8039 		cpi->initiator_id = np->myaddr;
8040 		cpi->base_transfer_speed = 3300;
8041 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8042 		strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8043 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8044 		cpi->unit_number = cam_sim_unit(sim);
8045 
8046 		cpi->protocol = PROTO_SCSI;
8047 		cpi->protocol_version = SCSI_REV_2;
8048 		cpi->transport = XPORT_SPI;
8049 		cpi->transport_version = 2;
8050 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8051 		if (np->features & FE_ULTRA3) {
8052 			cpi->transport_version = 3;
8053 			cpi->xport_specific.spi.ppr_options =
8054 			    SID_SPI_CLOCK_DT_ST;
8055 		}
8056 		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8057 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8058 		break;
8059 	case XPT_ABORT:
8060 		abort_ccb = ccb->cab.abort_ccb;
8061 		switch(abort_ccb->ccb_h.func_code) {
8062 		case XPT_SCSI_IO:
8063 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8064 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8065 				break;
8066 			}
8067 		default:
8068 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8069 			break;
8070 		}
8071 		break;
8072 	case XPT_RESET_DEV:
8073 		sym_reset_dev(np, ccb);
8074 		break;
8075 	case XPT_RESET_BUS:
8076 		sym_reset_scsi_bus(np, 0);
8077 		if (sym_verbose) {
8078 			xpt_print_path(np->path);
8079 			printf("SCSI BUS reset delivered.\n");
8080 		}
8081 		sym_init (np, 1);
8082 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8083 		break;
8084 	case XPT_TERM_IO:
8085 	default:
8086 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8087 		break;
8088 	}
8089 }
8090 
8091 /*
8092  *  Asynchronous notification handler.
8093  */
8094 static void
8095 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8096 {
8097 	hcb_p np;
8098 	struct cam_sim *sim;
8099 	u_int tn;
8100 	tcb_p tp;
8101 
8102 	sim = (struct cam_sim *) cb_arg;
8103 	np  = (hcb_p) cam_sim_softc(sim);
8104 
8105 	SYM_LOCK_ASSERT(MA_OWNED);
8106 
8107 	switch (code) {
8108 	case AC_LOST_DEVICE:
8109 		tn = xpt_path_target_id(path);
8110 		if (tn >= SYM_CONF_MAX_TARGET)
8111 			break;
8112 
8113 		tp = &np->target[tn];
8114 
8115 		tp->to_reset  = 0;
8116 		tp->head.sval = 0;
8117 		tp->head.wval = np->rv_scntl3;
8118 		tp->head.uval = 0;
8119 
8120 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8121 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8122 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8123 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8124 
8125 		break;
8126 	default:
8127 		break;
8128 	}
8129 }
8130 
8131 /*
8132  *  Update transfer settings of a target.
8133  */
8134 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8135     struct ccb_trans_settings *cts)
8136 {
8137 
8138 	SYM_LOCK_ASSERT(MA_OWNED);
8139 
8140 	/*
8141 	 *  Update the infos.
8142 	 */
8143 #define cts__spi (&cts->xport_specific.spi)
8144 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8145 		tip->width = cts__spi->bus_width;
8146 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8147 		tip->offset = cts__spi->sync_offset;
8148 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8149 		tip->period = cts__spi->sync_period;
8150 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8151 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8152 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8153 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8154 		tip->scsi_version = cts->protocol_version;
8155 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8156 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8157 		tip->spi_version = cts->transport_version;
8158 #undef cts__spi
8159 	/*
8160 	 *  Scale against driver configuration limits.
8161 	 */
8162 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8163 	if (tip->period && tip->offset) {
8164 		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8165 		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8166 	} else {
8167 		tip->offset = 0;
8168 		tip->period = 0;
8169 	}
8170 
8171 	/*
8172 	 *  Scale against actual controller BUS width.
8173 	 */
8174 	if (tip->width > np->maxwide)
8175 		tip->width  = np->maxwide;
8176 
8177 	/*
8178 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8179 	 */
8180 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8181 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8182 		tip->options &= ~PPR_OPT_DT;
8183 	}
8184 
8185 	/*
8186 	 *  Scale period factor and offset against controller limits.
8187 	 */
8188 	if (tip->offset && tip->period) {
8189 		if (tip->options & PPR_OPT_DT) {
8190 			if (tip->period < np->minsync_dt)
8191 				tip->period = np->minsync_dt;
8192 			if (tip->period > np->maxsync_dt)
8193 				tip->period = np->maxsync_dt;
8194 			if (tip->offset > np->maxoffs_dt)
8195 				tip->offset = np->maxoffs_dt;
8196 		}
8197 		else {
8198 			if (tip->period < np->minsync)
8199 				tip->period = np->minsync;
8200 			if (tip->period > np->maxsync)
8201 				tip->period = np->maxsync;
8202 			if (tip->offset > np->maxoffs)
8203 				tip->offset = np->maxoffs;
8204 		}
8205 	}
8206 }
8207 
8208 /*
8209  *  Update flags for a device (logical unit).
8210  */
8211 static void
8212 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8213 {
8214 
8215 	SYM_LOCK_ASSERT(MA_OWNED);
8216 
8217 #define	cts__scsi (&cts->proto_specific.scsi)
8218 #define	cts__spi  (&cts->xport_specific.spi)
8219 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8220 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8221 			*flags |= SYM_DISC_ENABLED;
8222 		else
8223 			*flags &= ~SYM_DISC_ENABLED;
8224 	}
8225 
8226 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8227 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8228 			*flags |= SYM_TAGS_ENABLED;
8229 		else
8230 			*flags &= ~SYM_TAGS_ENABLED;
8231 	}
8232 #undef	cts__spi
8233 #undef	cts__scsi
8234 }
8235 
8236 /*============= DRIVER INITIALISATION ==================*/
8237 
8238 static device_method_t sym_pci_methods[] = {
8239 	DEVMETHOD(device_probe,	 sym_pci_probe),
8240 	DEVMETHOD(device_attach, sym_pci_attach),
8241 	DEVMETHOD_END
8242 };
8243 
8244 static driver_t sym_pci_driver = {
8245 	"sym",
8246 	sym_pci_methods,
8247 	1	/* no softc */
8248 };
8249 
8250 static devclass_t sym_devclass;
8251 
8252 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL);
8253 MODULE_DEPEND(sym, cam, 1, 1, 1);
8254 MODULE_DEPEND(sym, pci, 1, 1, 1);
8255 
8256 static const struct sym_pci_chip sym_pci_dev_table[] = {
8257  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8258  FE_ERL}
8259  ,
8260 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8261  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8262  FE_BOF}
8263  ,
8264 #else
8265  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8266  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8267  ,
8268 #endif
8269  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8270  FE_BOF|FE_ERL}
8271  ,
8272  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8273  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8274  ,
8275  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8276  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8277  ,
8278  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8279  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8280  ,
8281  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8282  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8283  FE_RAM|FE_DIFF}
8284  ,
8285  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8286  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8287  FE_RAM|FE_DIFF}
8288  ,
8289  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8290  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8291  FE_RAM|FE_DIFF}
8292  ,
8293  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8294  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8295  FE_RAM|FE_DIFF}
8296  ,
8297 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8298  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8299  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8300  FE_RAM|FE_LCKFRQ}
8301  ,
8302 #else
8303  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8304  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8305  FE_RAM|FE_LCKFRQ}
8306  ,
8307 #endif
8308  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8309  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8310  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8311  ,
8312  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8313  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8314  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8315  ,
8316  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8317  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8318  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8319  FE_C10}
8320  ,
8321  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8322  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8323  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8324  FE_C10|FE_U3EN}
8325  ,
8326  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8327  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8328  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8329  FE_C10|FE_U3EN}
8330  ,
8331  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8332  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8333  FE_RAM|FE_IO256|FE_LEDC}
8334 };
8335 
8336 /*
8337  *  Look up the chip table.
8338  *
8339  *  Return a pointer to the chip entry if found,
8340  *  zero otherwise.
8341  */
8342 static const struct sym_pci_chip *
8343 sym_find_pci_chip(device_t dev)
8344 {
8345 	const struct	sym_pci_chip *chip;
8346 	int	i;
8347 	u_short	device_id;
8348 	u_char	revision;
8349 
8350 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8351 		return NULL;
8352 
8353 	device_id = pci_get_device(dev);
8354 	revision  = pci_get_revid(dev);
8355 
8356 	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8357 		chip = &sym_pci_dev_table[i];
8358 		if (device_id != chip->device_id)
8359 			continue;
8360 		if (revision > chip->revision_id)
8361 			continue;
8362 		return chip;
8363 	}
8364 
8365 	return NULL;
8366 }
8367 
8368 /*
8369  *  Tell upper layer if the chip is supported.
8370  */
8371 static int
8372 sym_pci_probe(device_t dev)
8373 {
8374 	const struct	sym_pci_chip *chip;
8375 
8376 	chip = sym_find_pci_chip(dev);
8377 	if (chip && sym_find_firmware(chip)) {
8378 		device_set_desc(dev, chip->name);
8379 		return BUS_PROBE_DEFAULT;
8380 	}
8381 	return ENXIO;
8382 }
8383 
8384 /*
8385  *  Attach a sym53c8xx device.
8386  */
8387 static int
8388 sym_pci_attach(device_t dev)
8389 {
8390 	const struct	sym_pci_chip *chip;
8391 	u_short	command;
8392 	u_char	cachelnsz;
8393 	struct	sym_hcb *np = NULL;
8394 	struct	sym_nvram nvram;
8395 	const struct	sym_fw *fw = NULL;
8396 	int 	i;
8397 	bus_dma_tag_t	bus_dmat;
8398 
8399 	bus_dmat = bus_get_dma_tag(dev);
8400 
8401 	/*
8402 	 *  Only probed devices should be attached.
8403 	 *  We just enjoy being paranoid. :)
8404 	 */
8405 	chip = sym_find_pci_chip(dev);
8406 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8407 		return (ENXIO);
8408 
8409 	/*
8410 	 *  Allocate immediately the host control block,
8411 	 *  since we are only expecting to succeed. :)
8412 	 *  We keep track in the HCB of all the resources that
8413 	 *  are to be released on error.
8414 	 */
8415 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8416 	if (np)
8417 		np->bus_dmat = bus_dmat;
8418 	else
8419 		return (ENXIO);
8420 	device_set_softc(dev, np);
8421 
8422 	SYM_LOCK_INIT();
8423 
8424 	/*
8425 	 *  Copy some useful infos to the HCB.
8426 	 */
8427 	np->hcb_ba	 = vtobus(np);
8428 	np->verbose	 = bootverbose;
8429 	np->device	 = dev;
8430 	np->device_id	 = pci_get_device(dev);
8431 	np->revision_id  = pci_get_revid(dev);
8432 	np->features	 = chip->features;
8433 	np->clock_divn	 = chip->nr_divisor;
8434 	np->maxoffs	 = chip->offset_max;
8435 	np->maxburst	 = chip->burst_max;
8436 	np->scripta_sz	 = fw->a_size;
8437 	np->scriptb_sz	 = fw->b_size;
8438 	np->fw_setup	 = fw->setup;
8439 	np->fw_patch	 = fw->patch;
8440 	np->fw_name	 = fw->name;
8441 
8442 #ifdef __amd64__
8443 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8444 			"TARGET");
8445 	if (!np->target)
8446 		goto attach_failed;
8447 #endif
8448 
8449 	/*
8450 	 *  Initialize the CCB free and busy queues.
8451 	 */
8452 	sym_que_init(&np->free_ccbq);
8453 	sym_que_init(&np->busy_ccbq);
8454 	sym_que_init(&np->comp_ccbq);
8455 	sym_que_init(&np->cam_ccbq);
8456 
8457 	/*
8458 	 *  Allocate a tag for the DMA of user data.
8459 	 */
8460 	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8461 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8462 	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8463 	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8464 		device_printf(dev, "failed to create DMA tag.\n");
8465 		goto attach_failed;
8466 	}
8467 
8468 	/*
8469 	 *  Read and apply some fix-ups to the PCI COMMAND
8470 	 *  register. We want the chip to be enabled for:
8471 	 *  - BUS mastering
8472 	 *  - PCI parity checking (reporting would also be fine)
8473 	 *  - Write And Invalidate.
8474 	 */
8475 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8476 	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8477 	    PCIM_CMD_MWRICEN;
8478 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8479 
8480 	/*
8481 	 *  Let the device know about the cache line size,
8482 	 *  if it doesn't yet.
8483 	 */
8484 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8485 	if (!cachelnsz) {
8486 		cachelnsz = 8;
8487 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8488 	}
8489 
8490 	/*
8491 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8492 	 */
8493 	i = SYM_PCI_MMIO;
8494 	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8495 	    RF_ACTIVE);
8496 	if (!np->mmio_res) {
8497 		device_printf(dev, "failed to allocate MMIO resources\n");
8498 		goto attach_failed;
8499 	}
8500 	np->mmio_ba = rman_get_start(np->mmio_res);
8501 
8502 	/*
8503 	 *  Allocate the IRQ.
8504 	 */
8505 	i = 0;
8506 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8507 					     RF_ACTIVE | RF_SHAREABLE);
8508 	if (!np->irq_res) {
8509 		device_printf(dev, "failed to allocate IRQ resource\n");
8510 		goto attach_failed;
8511 	}
8512 
8513 #ifdef	SYM_CONF_IOMAPPED
8514 	/*
8515 	 *  User want us to use normal IO with PCI.
8516 	 *  Alloc/get/map/retrieve everything that deals with IO.
8517 	 */
8518 	i = SYM_PCI_IO;
8519 	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8520 	if (!np->io_res) {
8521 		device_printf(dev, "failed to allocate IO resources\n");
8522 		goto attach_failed;
8523 	}
8524 
8525 #endif /* SYM_CONF_IOMAPPED */
8526 
8527 	/*
8528 	 *  If the chip has RAM.
8529 	 *  Alloc/get/map/retrieve the corresponding resources.
8530 	 */
8531 	if (np->features & (FE_RAM|FE_RAM8K)) {
8532 		int regs_id = SYM_PCI_RAM;
8533 		if (np->features & FE_64BIT)
8534 			regs_id = SYM_PCI_RAM64;
8535 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8536 						     &regs_id, RF_ACTIVE);
8537 		if (!np->ram_res) {
8538 			device_printf(dev,"failed to allocate RAM resources\n");
8539 			goto attach_failed;
8540 		}
8541 		np->ram_id  = regs_id;
8542 		np->ram_ba = rman_get_start(np->ram_res);
8543 	}
8544 
8545 	/*
8546 	 *  Save setting of some IO registers, so we will
8547 	 *  be able to probe specific implementations.
8548 	 */
8549 	sym_save_initial_setting (np);
8550 
8551 	/*
8552 	 *  Reset the chip now, since it has been reported
8553 	 *  that SCSI clock calibration may not work properly
8554 	 *  if the chip is currently active.
8555 	 */
8556 	sym_chip_reset (np);
8557 
8558 	/*
8559 	 *  Try to read the user set-up.
8560 	 */
8561 	(void) sym_read_nvram(np, &nvram);
8562 
8563 	/*
8564 	 *  Prepare controller and devices settings, according
8565 	 *  to chip features, user set-up and driver set-up.
8566 	 */
8567 	(void) sym_prepare_setting(np, &nvram);
8568 
8569 	/*
8570 	 *  Check the PCI clock frequency.
8571 	 *  Must be performed after prepare_setting since it destroys
8572 	 *  STEST1 that is used to probe for the clock doubler.
8573 	 */
8574 	i = sym_getpciclock(np);
8575 	if (i > 37000)
8576 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8577 
8578 	/*
8579 	 *  Allocate the start queue.
8580 	 */
8581 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8582 	if (!np->squeue)
8583 		goto attach_failed;
8584 	np->squeue_ba = vtobus(np->squeue);
8585 
8586 	/*
8587 	 *  Allocate the done queue.
8588 	 */
8589 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8590 	if (!np->dqueue)
8591 		goto attach_failed;
8592 	np->dqueue_ba = vtobus(np->dqueue);
8593 
8594 	/*
8595 	 *  Allocate the target bus address array.
8596 	 */
8597 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8598 	if (!np->targtbl)
8599 		goto attach_failed;
8600 	np->targtbl_ba = vtobus(np->targtbl);
8601 
8602 	/*
8603 	 *  Allocate SCRIPTS areas.
8604 	 */
8605 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8606 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8607 	if (!np->scripta0 || !np->scriptb0)
8608 		goto attach_failed;
8609 
8610 	/*
8611 	 *  Allocate the CCBs. We need at least ONE.
8612 	 */
8613 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8614 		;
8615 	if (i < 1)
8616 		goto attach_failed;
8617 
8618 	/*
8619 	 *  Calculate BUS addresses where we are going
8620 	 *  to load the SCRIPTS.
8621 	 */
8622 	np->scripta_ba	= vtobus(np->scripta0);
8623 	np->scriptb_ba	= vtobus(np->scriptb0);
8624 	np->scriptb0_ba	= np->scriptb_ba;
8625 
8626 	if (np->ram_ba) {
8627 		np->scripta_ba	= np->ram_ba;
8628 		if (np->features & FE_RAM8K) {
8629 			np->ram_ws = 8192;
8630 			np->scriptb_ba = np->scripta_ba + 4096;
8631 #ifdef __LP64__
8632 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8633 #endif
8634 		}
8635 		else
8636 			np->ram_ws = 4096;
8637 	}
8638 
8639 	/*
8640 	 *  Copy scripts to controller instance.
8641 	 */
8642 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8643 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8644 
8645 	/*
8646 	 *  Setup variable parts in scripts and compute
8647 	 *  scripts bus addresses used from the C code.
8648 	 */
8649 	np->fw_setup(np, fw);
8650 
8651 	/*
8652 	 *  Bind SCRIPTS with physical addresses usable by the
8653 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8654 	 */
8655 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8656 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8657 
8658 #ifdef SYM_CONF_IARB_SUPPORT
8659 	/*
8660 	 *    If user wants IARB to be set when we win arbitration
8661 	 *    and have other jobs, compute the max number of consecutive
8662 	 *    settings of IARB hints before we leave devices a chance to
8663 	 *    arbitrate for reselection.
8664 	 */
8665 #ifdef	SYM_SETUP_IARB_MAX
8666 	np->iarb_max = SYM_SETUP_IARB_MAX;
8667 #else
8668 	np->iarb_max = 4;
8669 #endif
8670 #endif
8671 
8672 	/*
8673 	 *  Prepare the idle and invalid task actions.
8674 	 */
8675 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8676 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8677 	np->idletask_ba		= vtobus(&np->idletask);
8678 
8679 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8680 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8681 	np->notask_ba		= vtobus(&np->notask);
8682 
8683 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8684 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8685 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8686 
8687 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8688 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8689 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8690 
8691 	/*
8692 	 *  Allocate and prepare the lun JUMP table that is used
8693 	 *  for a target prior the probing of devices (bad lun table).
8694 	 *  A private table will be allocated for the target on the
8695 	 *  first INQUIRY response received.
8696 	 */
8697 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8698 	if (!np->badluntbl)
8699 		goto attach_failed;
8700 
8701 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8702 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8703 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8704 
8705 	/*
8706 	 *  Prepare the bus address array that contains the bus
8707 	 *  address of each target control block.
8708 	 *  For now, assume all logical units are wrong. :)
8709 	 */
8710 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8711 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8712 		np->target[i].head.luntbl_sa =
8713 				cpu_to_scr(vtobus(np->badluntbl));
8714 		np->target[i].head.lun0_sa =
8715 				cpu_to_scr(vtobus(&np->badlun_sa));
8716 	}
8717 
8718 	/*
8719 	 *  Now check the cache handling of the pci chipset.
8720 	 */
8721 	if (sym_snooptest (np)) {
8722 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8723 		goto attach_failed;
8724 	}
8725 
8726 	/*
8727 	 *  Now deal with CAM.
8728 	 *  Hopefully, we will succeed with that one.:)
8729 	 */
8730 	if (!sym_cam_attach(np))
8731 		goto attach_failed;
8732 
8733 	/*
8734 	 *  Sigh! we are done.
8735 	 */
8736 	return 0;
8737 
8738 	/*
8739 	 *  We have failed.
8740 	 *  We will try to free all the resources we have
8741 	 *  allocated, but if we are a boot device, this
8742 	 *  will not help that much.;)
8743 	 */
8744 attach_failed:
8745 	if (np)
8746 		sym_pci_free(np);
8747 	return ENXIO;
8748 }
8749 
8750 /*
8751  *  Free everything that have been allocated for this device.
8752  */
8753 static void sym_pci_free(hcb_p np)
8754 {
8755 	SYM_QUEHEAD *qp;
8756 	ccb_p cp;
8757 	tcb_p tp;
8758 	lcb_p lp;
8759 	int target, lun;
8760 
8761 	/*
8762 	 *  First free CAM resources.
8763 	 */
8764 	sym_cam_free(np);
8765 
8766 	/*
8767 	 *  Now every should be quiet for us to
8768 	 *  free other resources.
8769 	 */
8770 	if (np->ram_res)
8771 		bus_release_resource(np->device, SYS_RES_MEMORY,
8772 				     np->ram_id, np->ram_res);
8773 	if (np->mmio_res)
8774 		bus_release_resource(np->device, SYS_RES_MEMORY,
8775 				     SYM_PCI_MMIO, np->mmio_res);
8776 	if (np->io_res)
8777 		bus_release_resource(np->device, SYS_RES_IOPORT,
8778 				     SYM_PCI_IO, np->io_res);
8779 	if (np->irq_res)
8780 		bus_release_resource(np->device, SYS_RES_IRQ,
8781 				     0, np->irq_res);
8782 
8783 	if (np->scriptb0)
8784 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8785 	if (np->scripta0)
8786 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8787 	if (np->squeue)
8788 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8789 	if (np->dqueue)
8790 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8791 
8792 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8793 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8794 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8795 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8796 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8797 	}
8798 
8799 	if (np->badluntbl)
8800 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8801 
8802 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8803 		tp = &np->target[target];
8804 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8805 			lp = sym_lp(tp, lun);
8806 			if (!lp)
8807 				continue;
8808 			if (lp->itlq_tbl)
8809 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8810 				       "ITLQ_TBL");
8811 			if (lp->cb_tags)
8812 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8813 				       "CB_TAGS");
8814 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8815 		}
8816 #if SYM_CONF_MAX_LUN > 1
8817 		if (tp->lunmp)
8818 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8819 			       "LUNMP");
8820 #endif
8821 	}
8822 #ifdef __amd64__
8823 	if (np->target)
8824 		sym_mfree_dma(np->target,
8825 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8826 #endif
8827 	if (np->targtbl)
8828 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8829 	if (np->data_dmat)
8830 		bus_dma_tag_destroy(np->data_dmat);
8831 	if (SYM_LOCK_INITIALIZED() != 0)
8832 		SYM_LOCK_DESTROY();
8833 	device_set_softc(np->device, NULL);
8834 	sym_mfree_dma(np, sizeof(*np), "HCB");
8835 }
8836 
8837 /*
8838  *  Allocate CAM resources and register a bus to CAM.
8839  */
8840 static int sym_cam_attach(hcb_p np)
8841 {
8842 	struct cam_devq *devq = NULL;
8843 	struct cam_sim *sim = NULL;
8844 	struct cam_path *path = NULL;
8845 	int err;
8846 
8847 	/*
8848 	 *  Establish our interrupt handler.
8849 	 */
8850 	err = bus_setup_intr(np->device, np->irq_res,
8851 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8852 			NULL, sym_intr, np, &np->intr);
8853 	if (err) {
8854 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8855 			      err);
8856 		goto fail;
8857 	}
8858 
8859 	/*
8860 	 *  Create the device queue for our sym SIM.
8861 	 */
8862 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8863 	if (!devq)
8864 		goto fail;
8865 
8866 	/*
8867 	 *  Construct our SIM entry.
8868 	 */
8869 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8870 			device_get_unit(np->device),
8871 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8872 	if (!sim)
8873 		goto fail;
8874 
8875 	SYM_LOCK();
8876 
8877 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8878 		goto fail;
8879 	np->sim = sim;
8880 	sim = NULL;
8881 
8882 	if (xpt_create_path(&path, NULL,
8883 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8884 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8885 		goto fail;
8886 	}
8887 	np->path = path;
8888 
8889 	/*
8890 	 *  Establish our async notification handler.
8891 	 */
8892 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) !=
8893 	    CAM_REQ_CMP)
8894 		goto fail;
8895 
8896 	/*
8897 	 *  Start the chip now, without resetting the BUS, since
8898 	 *  it seems that this must stay under control of CAM.
8899 	 *  With LVD/SE capable chips and BUS in SE mode, we may
8900 	 *  get a spurious SMBC interrupt.
8901 	 */
8902 	sym_init (np, 0);
8903 
8904 	SYM_UNLOCK();
8905 
8906 	return 1;
8907 fail:
8908 	if (sim)
8909 		cam_sim_free(sim, FALSE);
8910 	if (devq)
8911 		cam_simq_free(devq);
8912 
8913 	SYM_UNLOCK();
8914 
8915 	sym_cam_free(np);
8916 
8917 	return 0;
8918 }
8919 
8920 /*
8921  *  Free everything that deals with CAM.
8922  */
8923 static void sym_cam_free(hcb_p np)
8924 {
8925 
8926 	SYM_LOCK_ASSERT(MA_NOTOWNED);
8927 
8928 	if (np->intr) {
8929 		bus_teardown_intr(np->device, np->irq_res, np->intr);
8930 		np->intr = NULL;
8931 	}
8932 
8933 	SYM_LOCK();
8934 
8935 	if (np->sim) {
8936 		xpt_bus_deregister(cam_sim_path(np->sim));
8937 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8938 		np->sim = NULL;
8939 	}
8940 	if (np->path) {
8941 		xpt_free_path(np->path);
8942 		np->path = NULL;
8943 	}
8944 
8945 	SYM_UNLOCK();
8946 }
8947 
8948 /*============ OPTIONNAL NVRAM SUPPORT =================*/
8949 
8950 /*
8951  *  Get host setup from NVRAM.
8952  */
8953 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8954 {
8955 #ifdef SYM_CONF_NVRAM_SUPPORT
8956 	/*
8957 	 *  Get parity checking, host ID, verbose mode
8958 	 *  and miscellaneous host flags from NVRAM.
8959 	 */
8960 	switch(nvram->type) {
8961 	case SYM_SYMBIOS_NVRAM:
8962 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8963 			np->rv_scntl0  &= ~0x0a;
8964 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8965 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8966 			np->verbose += 1;
8967 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8968 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8969 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8970 			np->usrflags |= SYM_AVOID_BUS_RESET;
8971 		break;
8972 	case SYM_TEKRAM_NVRAM:
8973 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8974 		break;
8975 	default:
8976 		break;
8977 	}
8978 #endif
8979 }
8980 
8981 /*
8982  *  Get target setup from NVRAM.
8983  */
8984 #ifdef SYM_CONF_NVRAM_SUPPORT
8985 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8986 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8987 #endif
8988 
8989 static void
8990 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
8991 {
8992 #ifdef SYM_CONF_NVRAM_SUPPORT
8993 	switch(nvp->type) {
8994 	case SYM_SYMBIOS_NVRAM:
8995 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
8996 		break;
8997 	case SYM_TEKRAM_NVRAM:
8998 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
8999 		break;
9000 	default:
9001 		break;
9002 	}
9003 #endif
9004 }
9005 
9006 #ifdef SYM_CONF_NVRAM_SUPPORT
9007 /*
9008  *  Get target set-up from Symbios format NVRAM.
9009  */
9010 static void
9011 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9012 {
9013 	tcb_p tp = &np->target[target];
9014 	Symbios_target *tn = &nvram->target[target];
9015 
9016 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9017 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9018 	tp->usrtags =
9019 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9020 
9021 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9022 		tp->usrflags &= ~SYM_DISC_ENABLED;
9023 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9024 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9025 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9026 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9027 }
9028 
9029 /*
9030  *  Get target set-up from Tekram format NVRAM.
9031  */
9032 static void
9033 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9034 {
9035 	tcb_p tp = &np->target[target];
9036 	struct Tekram_target *tn = &nvram->target[target];
9037 	int i;
9038 
9039 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9040 		i = tn->sync_index & 0xf;
9041 		tp->tinfo.user.period = Tekram_sync[i];
9042 	}
9043 
9044 	tp->tinfo.user.width =
9045 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9046 
9047 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9048 		tp->usrtags = 2 << nvram->max_tags_index;
9049 	}
9050 
9051 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9052 		tp->usrflags |= SYM_DISC_ENABLED;
9053 
9054 	/* If any device does not support parity, we will not use this option */
9055 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9056 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9057 }
9058 
9059 #ifdef	SYM_CONF_DEBUG_NVRAM
9060 /*
9061  *  Dump Symbios format NVRAM for debugging purpose.
9062  */
9063 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9064 {
9065 	int i;
9066 
9067 	/* display Symbios nvram host data */
9068 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9069 		sym_name(np), nvram->host_id & 0x0f,
9070 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9071 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9072 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9073 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9074 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9075 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9076 
9077 	/* display Symbios nvram drive data */
9078 	for (i = 0 ; i < 15 ; i++) {
9079 		struct Symbios_target *tn = &nvram->target[i];
9080 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9081 		sym_name(np), i,
9082 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9083 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9084 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9085 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9086 		tn->bus_width,
9087 		tn->sync_period / 4,
9088 		tn->timeout);
9089 	}
9090 }
9091 
9092 /*
9093  *  Dump TEKRAM format NVRAM for debugging purpose.
9094  */
9095 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9096 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9097 {
9098 	int i, tags, boot_delay;
9099 	char *rem;
9100 
9101 	/* display Tekram nvram host data */
9102 	tags = 2 << nvram->max_tags_index;
9103 	boot_delay = 0;
9104 	if (nvram->boot_delay_index < 6)
9105 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9106 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9107 	default:
9108 	case 0:	rem = "";			break;
9109 	case 1: rem = " REMOVABLE=boot device";	break;
9110 	case 2: rem = " REMOVABLE=all";		break;
9111 	}
9112 
9113 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9114 		sym_name(np), nvram->host_id & 0x0f,
9115 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9116 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9117 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9118 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9119 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9120 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9121 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9122 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9123 		rem, boot_delay, tags);
9124 
9125 	/* display Tekram nvram drive data */
9126 	for (i = 0; i <= 15; i++) {
9127 		int sync, j;
9128 		struct Tekram_target *tn = &nvram->target[i];
9129 		j = tn->sync_index & 0xf;
9130 		sync = Tekram_sync[j];
9131 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9132 		sym_name(np), i,
9133 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9134 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9135 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9136 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9137 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9138 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9139 		sync);
9140 	}
9141 }
9142 #endif	/* SYM_CONF_DEBUG_NVRAM */
9143 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9144 
9145 /*
9146  *  Try reading Symbios or Tekram NVRAM
9147  */
9148 #ifdef SYM_CONF_NVRAM_SUPPORT
9149 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9150 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9151 #endif
9152 
9153 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9154 {
9155 #ifdef SYM_CONF_NVRAM_SUPPORT
9156 	/*
9157 	 *  Try to read SYMBIOS nvram.
9158 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9159 	 */
9160 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9161 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9162 		nvp->type = SYM_SYMBIOS_NVRAM;
9163 #ifdef SYM_CONF_DEBUG_NVRAM
9164 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9165 #endif
9166 	}
9167 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9168 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9169 		nvp->type = SYM_TEKRAM_NVRAM;
9170 #ifdef SYM_CONF_DEBUG_NVRAM
9171 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9172 #endif
9173 	}
9174 	else
9175 		nvp->type = 0;
9176 #else
9177 	nvp->type = 0;
9178 #endif
9179 	return nvp->type;
9180 }
9181 
9182 #ifdef SYM_CONF_NVRAM_SUPPORT
9183 /*
9184  *  24C16 EEPROM reading.
9185  *
9186  *  GPOI0 - data in/data out
9187  *  GPIO1 - clock
9188  *  Symbios NVRAM wiring now also used by Tekram.
9189  */
9190 
9191 #define SET_BIT 0
9192 #define CLR_BIT 1
9193 #define SET_CLK 2
9194 #define CLR_CLK 3
9195 
9196 /*
9197  *  Set/clear data/clock bit in GPIO0
9198  */
9199 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9200 			  int bit_mode)
9201 {
9202 	UDELAY (5);
9203 	switch (bit_mode){
9204 	case SET_BIT:
9205 		*gpreg |= write_bit;
9206 		break;
9207 	case CLR_BIT:
9208 		*gpreg &= 0xfe;
9209 		break;
9210 	case SET_CLK:
9211 		*gpreg |= 0x02;
9212 		break;
9213 	case CLR_CLK:
9214 		*gpreg &= 0xfd;
9215 		break;
9216 	}
9217 	OUTB (nc_gpreg, *gpreg);
9218 	UDELAY (5);
9219 }
9220 
9221 /*
9222  *  Send START condition to NVRAM to wake it up.
9223  */
9224 static void S24C16_start(hcb_p np, u_char *gpreg)
9225 {
9226 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9227 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9228 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9229 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9230 }
9231 
9232 /*
9233  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9234  */
9235 static void S24C16_stop(hcb_p np, u_char *gpreg)
9236 {
9237 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9238 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9239 }
9240 
9241 /*
9242  *  Read or write a bit to the NVRAM,
9243  *  read if GPIO0 input else write if GPIO0 output
9244  */
9245 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9246 			 u_char *gpreg)
9247 {
9248 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9249 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9250 	if (read_bit)
9251 		*read_bit = INB (nc_gpreg);
9252 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9253 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9254 }
9255 
9256 /*
9257  *  Output an ACK to the NVRAM after reading,
9258  *  change GPIO0 to output and when done back to an input
9259  */
9260 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9261 			    u_char *gpcntl)
9262 {
9263 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9264 	S24C16_do_bit(np, 0, write_bit, gpreg);
9265 	OUTB (nc_gpcntl, *gpcntl);
9266 }
9267 
9268 /*
9269  *  Input an ACK from NVRAM after writing,
9270  *  change GPIO0 to input and when done back to an output
9271  */
9272 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9273 			   u_char *gpcntl)
9274 {
9275 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9276 	S24C16_do_bit(np, read_bit, 1, gpreg);
9277 	OUTB (nc_gpcntl, *gpcntl);
9278 }
9279 
9280 /*
9281  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9282  *  GPIO0 must already be set as an output
9283  */
9284 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9285 			     u_char *gpreg, u_char *gpcntl)
9286 {
9287 	int x;
9288 
9289 	for (x = 0; x < 8; x++)
9290 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9291 
9292 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9293 }
9294 
9295 /*
9296  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9297  *  GPIO0 must already be set as an input
9298  */
9299 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9300 			    u_char *gpreg, u_char *gpcntl)
9301 {
9302 	int x;
9303 	u_char read_bit;
9304 
9305 	*read_data = 0;
9306 	for (x = 0; x < 8; x++) {
9307 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9308 		*read_data |= ((read_bit & 0x01) << (7 - x));
9309 	}
9310 
9311 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9312 }
9313 
9314 /*
9315  *  Read 'len' bytes starting at 'offset'.
9316  */
9317 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9318 {
9319 	u_char	gpcntl, gpreg;
9320 	u_char	old_gpcntl, old_gpreg;
9321 	u_char	ack_data;
9322 	int	retv = 1;
9323 	int	x;
9324 
9325 	/* save current state of GPCNTL and GPREG */
9326 	old_gpreg	= INB (nc_gpreg);
9327 	old_gpcntl	= INB (nc_gpcntl);
9328 	gpcntl		= old_gpcntl & 0x1c;
9329 
9330 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9331 	OUTB (nc_gpreg,  old_gpreg);
9332 	OUTB (nc_gpcntl, gpcntl);
9333 
9334 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9335 	gpreg = old_gpreg;
9336 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9337 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9338 
9339 	/* now set NVRAM inactive with GPIO0/1 both high */
9340 	S24C16_stop(np, &gpreg);
9341 
9342 	/* activate NVRAM */
9343 	S24C16_start(np, &gpreg);
9344 
9345 	/* write device code and random address MSB */
9346 	S24C16_write_byte(np, &ack_data,
9347 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9348 	if (ack_data & 0x01)
9349 		goto out;
9350 
9351 	/* write random address LSB */
9352 	S24C16_write_byte(np, &ack_data,
9353 		offset & 0xff, &gpreg, &gpcntl);
9354 	if (ack_data & 0x01)
9355 		goto out;
9356 
9357 	/* regenerate START state to set up for reading */
9358 	S24C16_start(np, &gpreg);
9359 
9360 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9361 	S24C16_write_byte(np, &ack_data,
9362 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9363 	if (ack_data & 0x01)
9364 		goto out;
9365 
9366 	/* now set up GPIO0 for inputting data */
9367 	gpcntl |= 0x01;
9368 	OUTB (nc_gpcntl, gpcntl);
9369 
9370 	/* input all requested data - only part of total NVRAM */
9371 	for (x = 0; x < len; x++)
9372 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9373 
9374 	/* finally put NVRAM back in inactive mode */
9375 	gpcntl &= 0xfe;
9376 	OUTB (nc_gpcntl, gpcntl);
9377 	S24C16_stop(np, &gpreg);
9378 	retv = 0;
9379 out:
9380 	/* return GPIO0/1 to original states after having accessed NVRAM */
9381 	OUTB (nc_gpcntl, old_gpcntl);
9382 	OUTB (nc_gpreg,  old_gpreg);
9383 
9384 	return retv;
9385 }
9386 
9387 #undef SET_BIT /* 0 */
9388 #undef CLR_BIT /* 1 */
9389 #undef SET_CLK /* 2 */
9390 #undef CLR_CLK /* 3 */
9391 
9392 /*
9393  *  Try reading Symbios NVRAM.
9394  *  Return 0 if OK.
9395  */
9396 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9397 {
9398 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9399 	u_char *data = (u_char *) nvram;
9400 	int len  = sizeof(*nvram);
9401 	u_short	csum;
9402 	int x;
9403 
9404 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9405 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9406 		return 1;
9407 
9408 	/* check valid NVRAM signature, verify byte count and checksum */
9409 	if (nvram->type != 0 ||
9410 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9411 	    nvram->byte_count != len - 12)
9412 		return 1;
9413 
9414 	/* verify checksum */
9415 	for (x = 6, csum = 0; x < len - 6; x++)
9416 		csum += data[x];
9417 	if (csum != nvram->checksum)
9418 		return 1;
9419 
9420 	return 0;
9421 }
9422 
9423 /*
9424  *  93C46 EEPROM reading.
9425  *
9426  *  GPOI0 - data in
9427  *  GPIO1 - data out
9428  *  GPIO2 - clock
9429  *  GPIO4 - chip select
9430  *
9431  *  Used by Tekram.
9432  */
9433 
9434 /*
9435  *  Pulse clock bit in GPIO0
9436  */
9437 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9438 {
9439 	OUTB (nc_gpreg, *gpreg | 0x04);
9440 	UDELAY (2);
9441 	OUTB (nc_gpreg, *gpreg);
9442 }
9443 
9444 /*
9445  *  Read bit from NVRAM
9446  */
9447 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9448 {
9449 	UDELAY (2);
9450 	T93C46_Clk(np, gpreg);
9451 	*read_bit = INB (nc_gpreg);
9452 }
9453 
9454 /*
9455  *  Write bit to GPIO0
9456  */
9457 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9458 {
9459 	if (write_bit & 0x01)
9460 		*gpreg |= 0x02;
9461 	else
9462 		*gpreg &= 0xfd;
9463 
9464 	*gpreg |= 0x10;
9465 
9466 	OUTB (nc_gpreg, *gpreg);
9467 	UDELAY (2);
9468 
9469 	T93C46_Clk(np, gpreg);
9470 }
9471 
9472 /*
9473  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9474  */
9475 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9476 {
9477 	*gpreg &= 0xef;
9478 	OUTB (nc_gpreg, *gpreg);
9479 	UDELAY (2);
9480 
9481 	T93C46_Clk(np, gpreg);
9482 }
9483 
9484 /*
9485  *  Send read command and address to NVRAM
9486  */
9487 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9488 				u_char *read_bit, u_char *gpreg)
9489 {
9490 	int x;
9491 
9492 	/* send 9 bits, start bit (1), command (2), address (6)  */
9493 	for (x = 0; x < 9; x++)
9494 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9495 
9496 	*read_bit = INB (nc_gpreg);
9497 }
9498 
9499 /*
9500  *  READ 2 bytes from the NVRAM
9501  */
9502 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9503 {
9504 	int x;
9505 	u_char read_bit;
9506 
9507 	*nvram_data = 0;
9508 	for (x = 0; x < 16; x++) {
9509 		T93C46_Read_Bit(np, &read_bit, gpreg);
9510 
9511 		if (read_bit & 0x01)
9512 			*nvram_data |=  (0x01 << (15 - x));
9513 		else
9514 			*nvram_data &= ~(0x01 << (15 - x));
9515 	}
9516 }
9517 
9518 /*
9519  *  Read Tekram NvRAM data.
9520  */
9521 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9522 {
9523 	u_char	read_bit;
9524 	int	x;
9525 
9526 	for (x = 0; x < len; x++)  {
9527 		/* output read command and address */
9528 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9529 		if (read_bit & 0x01)
9530 			return 1; /* Bad */
9531 		T93C46_Read_Word(np, &data[x], gpreg);
9532 		T93C46_Stop(np, gpreg);
9533 	}
9534 
9535 	return 0;
9536 }
9537 
9538 /*
9539  *  Try reading 93C46 Tekram NVRAM.
9540  */
9541 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9542 {
9543 	u_char gpcntl, gpreg;
9544 	u_char old_gpcntl, old_gpreg;
9545 	int retv = 1;
9546 
9547 	/* save current state of GPCNTL and GPREG */
9548 	old_gpreg	= INB (nc_gpreg);
9549 	old_gpcntl	= INB (nc_gpcntl);
9550 
9551 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9552 	   1/2/4 out */
9553 	gpreg = old_gpreg & 0xe9;
9554 	OUTB (nc_gpreg, gpreg);
9555 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9556 	OUTB (nc_gpcntl, gpcntl);
9557 
9558 	/* input all of NVRAM, 64 words */
9559 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9560 				sizeof(*nvram) / sizeof(short), &gpreg);
9561 
9562 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9563 	OUTB (nc_gpcntl, old_gpcntl);
9564 	OUTB (nc_gpreg,  old_gpreg);
9565 
9566 	return retv;
9567 }
9568 
9569 /*
9570  *  Try reading Tekram NVRAM.
9571  *  Return 0 if OK.
9572  */
9573 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9574 {
9575 	u_char *data = (u_char *) nvram;
9576 	int len = sizeof(*nvram);
9577 	u_short	csum;
9578 	int x;
9579 
9580 	switch (np->device_id) {
9581 	case PCI_ID_SYM53C885:
9582 	case PCI_ID_SYM53C895:
9583 	case PCI_ID_SYM53C896:
9584 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9585 					  data, len);
9586 		break;
9587 	case PCI_ID_SYM53C875:
9588 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9589 					  data, len);
9590 		if (!x)
9591 			break;
9592 	default:
9593 		x = sym_read_T93C46_nvram(np, nvram);
9594 		break;
9595 	}
9596 	if (x)
9597 		return 1;
9598 
9599 	/* verify checksum */
9600 	for (x = 0, csum = 0; x < len - 1; x += 2)
9601 		csum += data[x] + (data[x+1] << 8);
9602 	if (csum != 0x1234)
9603 		return 1;
9604 
9605 	return 0;
9606 }
9607 
9608 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9609