xref: /freebsd/sys/dev/sym/sym_hipd.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /* $FreeBSD$ */
59 
60 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
61 
62 /* #define SYM_DEBUG_GENERIC_SUPPORT */
63 /* #define CAM_NEW_TRAN_CODE */
64 
65 #include <sys/param.h>
66 
67 /*
68  *  Only use the BUS stuff for PCI under FreeBSD 4 and later versions.
69  *  Note that the old BUS stuff also works for FreeBSD 4 and spares
70  *  about 1 KB for the driver object file.
71  */
72 #if 	__FreeBSD_version >= 400000
73 #define	FreeBSD_Bus_Dma_Abstraction
74 #define	FreeBSD_Bus_Io_Abstraction
75 #define	FreeBSD_Bus_Space_Abstraction
76 #endif
77 
78 /*
79  *  Driver configuration options.
80  */
81 #include "opt_sym.h"
82 #include <dev/sym/sym_conf.h>
83 
84 #ifndef FreeBSD_Bus_Io_Abstraction
85 #include "ncr.h"	/* To know if the ncr has been configured */
86 #endif
87 
88 #include <sys/systm.h>
89 #include <sys/malloc.h>
90 #include <sys/endian.h>
91 #include <sys/kernel.h>
92 #ifdef FreeBSD_Bus_Io_Abstraction
93 #include <sys/module.h>
94 #include <sys/bus.h>
95 #endif
96 
97 #include <sys/proc.h>
98 
99 #include <pci/pcireg.h>
100 #include <pci/pcivar.h>
101 
102 #ifdef	FreeBSD_Bus_Space_Abstraction
103 #include <machine/bus_memio.h>
104 /*
105  *  Only include bus_pio if needed.
106  *  This avoids bus space primitives to be uselessly bloated
107  *  by out-of-age PIO operations.
108  */
109 #ifdef	SYM_CONF_IOMAPPED
110 #include <machine/bus_pio.h>
111 #endif
112 #endif
113 #include <machine/bus.h>
114 
115 #ifdef FreeBSD_Bus_Io_Abstraction
116 #include <machine/resource.h>
117 #include <sys/rman.h>
118 #endif
119 
120 #include <cam/cam.h>
121 #include <cam/cam_ccb.h>
122 #include <cam/cam_sim.h>
123 #include <cam/cam_xpt_sim.h>
124 #include <cam/cam_debug.h>
125 
126 #include <cam/scsi/scsi_all.h>
127 #include <cam/scsi/scsi_message.h>
128 
129 #include <vm/vm.h>
130 #include <vm/vm_param.h>
131 #include <vm/pmap.h>
132 
133 /* Short and quite clear integer types */
134 typedef int8_t    s8;
135 typedef int16_t   s16;
136 typedef	int32_t   s32;
137 typedef u_int8_t  u8;
138 typedef u_int16_t u16;
139 typedef	u_int32_t u32;
140 
141 /*
142  *  From 'cam.error_recovery_diffs.20010313.context' patch.
143  */
144 #ifdef  CAM_NEW_TRAN_CODE
145 #define FreeBSD_New_Tran_Settings
146 #endif  /* CAM_NEW_TRAN_CODE */
147 
148 /*
149  *  Driver definitions.
150  */
151 #include <dev/sym/sym_defs.h>
152 #include <dev/sym/sym_fw.h>
153 
154 /*
155  *  IA32 architecture does not reorder STORES and prevents
156  *  LOADS from passing STORES. It is called `program order'
157  *  by Intel and allows device drivers to deal with memory
158  *  ordering by only ensuring that the code is not reordered
159  *  by the compiler when ordering is required.
160  *  Other architectures implement a weaker ordering that
161  *  requires memory barriers (and also IO barriers when they
162  *  make sense) to be used.
163  */
164 
165 #if	defined	__i386__
166 #define MEMORY_BARRIER()	do { ; } while(0)
167 #elif	defined	__alpha__
168 #define MEMORY_BARRIER()	alpha_mb()
169 #elif	defined	__powerpc__
170 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
171 #elif	defined	__ia64__
172 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
173 #elif	defined	__sparc64__
174 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
175 #else
176 #error	"Not supported platform"
177 #endif
178 
179 /*
180  *  Portable but silly implemented byte order primitives.
181  *  We define the primitives we need, since FreeBSD doesn't
182  *  seem to have them yet.
183  */
184 #if	BYTE_ORDER == BIG_ENDIAN
185 
186 #define __revb16(x) (	(((u16)(x) & (u16)0x00ffU) << 8) | \
187 			(((u16)(x) & (u16)0xff00U) >> 8) 	)
188 #define __revb32(x) (	(((u32)(x) & 0x000000ffU) << 24) | \
189 			(((u32)(x) & 0x0000ff00U) <<  8) | \
190 			(((u32)(x) & 0x00ff0000U) >>  8) | \
191 			(((u32)(x) & 0xff000000U) >> 24)	)
192 
193 #define __htole16(v)	__revb16(v)
194 #define __htole32(v)	__revb32(v)
195 #define __le16toh(v)	__htole16(v)
196 #define __le32toh(v)	__htole32(v)
197 
198 static __inline u16	_htole16(u16 v) { return __htole16(v); }
199 static __inline u32	_htole32(u32 v) { return __htole32(v); }
200 #define _le16toh	_htole16
201 #define _le32toh	_htole32
202 
203 #else	/* LITTLE ENDIAN */
204 
205 #define __htole16(v)	(v)
206 #define __htole32(v)	(v)
207 #define __le16toh(v)	(v)
208 #define __le32toh(v)	(v)
209 
210 #define _htole16(v)	(v)
211 #define _htole32(v)	(v)
212 #define _le16toh(v)	(v)
213 #define _le32toh(v)	(v)
214 
215 #endif	/* BYTE_ORDER */
216 
217 /*
218  *  A la VMS/CAM-3 queue management.
219  */
220 
221 typedef struct sym_quehead {
222 	struct sym_quehead *flink;	/* Forward  pointer */
223 	struct sym_quehead *blink;	/* Backward pointer */
224 } SYM_QUEHEAD;
225 
226 #define sym_que_init(ptr) do { \
227 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
228 } while (0)
229 
230 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
231 {
232 	return (head->flink == head) ? 0 : head->flink;
233 }
234 
235 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
236 {
237 	return (head->blink == head) ? 0 : head->blink;
238 }
239 
240 static __inline void __sym_que_add(struct sym_quehead * new,
241 	struct sym_quehead * blink,
242 	struct sym_quehead * flink)
243 {
244 	flink->blink	= new;
245 	new->flink	= flink;
246 	new->blink	= blink;
247 	blink->flink	= new;
248 }
249 
250 static __inline void __sym_que_del(struct sym_quehead * blink,
251 	struct sym_quehead * flink)
252 {
253 	flink->blink = blink;
254 	blink->flink = flink;
255 }
256 
257 static __inline int sym_que_empty(struct sym_quehead *head)
258 {
259 	return head->flink == head;
260 }
261 
262 static __inline void sym_que_splice(struct sym_quehead *list,
263 	struct sym_quehead *head)
264 {
265 	struct sym_quehead *first = list->flink;
266 
267 	if (first != list) {
268 		struct sym_quehead *last = list->blink;
269 		struct sym_quehead *at   = head->flink;
270 
271 		first->blink = head;
272 		head->flink  = first;
273 
274 		last->flink = at;
275 		at->blink   = last;
276 	}
277 }
278 
279 #define sym_que_entry(ptr, type, member) \
280 	((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
281 
282 
283 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
284 
285 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
286 
287 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
288 
289 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
290 {
291 	struct sym_quehead *elem = head->flink;
292 
293 	if (elem != head)
294 		__sym_que_del(head, elem->flink);
295 	else
296 		elem = 0;
297 	return elem;
298 }
299 
300 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
301 
302 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
303 {
304 	struct sym_quehead *elem = head->blink;
305 
306 	if (elem != head)
307 		__sym_que_del(elem->blink, head);
308 	else
309 		elem = 0;
310 	return elem;
311 }
312 
313 /*
314  *  This one may be useful.
315  */
316 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
317 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
318 /*
319  *  FreeBSD does not offer our kind of queue in the CAM CCB.
320  *  So, we have to cast.
321  */
322 #define sym_qptr(p)	((struct sym_quehead *) (p))
323 
324 /*
325  *  Simple bitmap operations.
326  */
327 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
328 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
329 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
330 
331 /*
332  *  Number of tasks per device we want to handle.
333  */
334 #if	SYM_CONF_MAX_TAG_ORDER > 8
335 #error	"more than 256 tags per logical unit not allowed."
336 #endif
337 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
338 
339 /*
340  *  Donnot use more tasks that we can handle.
341  */
342 #ifndef	SYM_CONF_MAX_TAG
343 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
344 #endif
345 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
346 #undef	SYM_CONF_MAX_TAG
347 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
348 #endif
349 
350 /*
351  *    This one means 'NO TAG for this job'
352  */
353 #define NO_TAG	(256)
354 
355 /*
356  *  Number of SCSI targets.
357  */
358 #if	SYM_CONF_MAX_TARGET > 16
359 #error	"more than 16 targets not allowed."
360 #endif
361 
362 /*
363  *  Number of logical units per target.
364  */
365 #if	SYM_CONF_MAX_LUN > 64
366 #error	"more than 64 logical units per target not allowed."
367 #endif
368 
369 /*
370  *    Asynchronous pre-scaler (ns). Shall be 40 for
371  *    the SCSI timings to be compliant.
372  */
373 #define	SYM_CONF_MIN_ASYNC (40)
374 
375 /*
376  *  Number of entries in the START and DONE queues.
377  *
378  *  We limit to 1 PAGE in order to succeed allocation of
379  *  these queues. Each entry is 8 bytes long (2 DWORDS).
380  */
381 #ifdef	SYM_CONF_MAX_START
382 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
383 #else
384 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
385 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
386 #endif
387 
388 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
389 #undef	SYM_CONF_MAX_QUEUE
390 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
391 #undef	SYM_CONF_MAX_START
392 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
393 #endif
394 
395 /*
396  *  For this one, we want a short name :-)
397  */
398 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
399 
400 /*
401  *  These ones should have been already defined.
402  */
403 #ifndef MIN
404 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
405 #endif
406 
407 /*
408  *  Active debugging tags and verbosity.
409  */
410 #define DEBUG_ALLOC	(0x0001)
411 #define DEBUG_PHASE	(0x0002)
412 #define DEBUG_POLL	(0x0004)
413 #define DEBUG_QUEUE	(0x0008)
414 #define DEBUG_RESULT	(0x0010)
415 #define DEBUG_SCATTER	(0x0020)
416 #define DEBUG_SCRIPT	(0x0040)
417 #define DEBUG_TINY	(0x0080)
418 #define DEBUG_TIMING	(0x0100)
419 #define DEBUG_NEGO	(0x0200)
420 #define DEBUG_TAGS	(0x0400)
421 #define DEBUG_POINTER	(0x0800)
422 
423 #if 0
424 static int sym_debug = 0;
425 	#define DEBUG_FLAGS sym_debug
426 #else
427 /*	#define DEBUG_FLAGS (0x0631) */
428 	#define DEBUG_FLAGS (0x0000)
429 
430 #endif
431 #define sym_verbose	(np->verbose)
432 
433 /*
434  *  Insert a delay in micro-seconds and milli-seconds.
435  */
436 static void UDELAY(int us) { DELAY(us); }
437 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
438 
439 /*
440  *  Simple power of two buddy-like allocator.
441  *
442  *  This simple code is not intended to be fast, but to
443  *  provide power of 2 aligned memory allocations.
444  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
445  *  this allocator allows simple and fast address calculations
446  *  from the SCRIPTS code. In addition, cache line alignment
447  *  is guaranteed for power of 2 cache line size.
448  *
449  *  This allocator has been developped for the Linux sym53c8xx
450  *  driver, since this O/S does not provide naturally aligned
451  *  allocations.
452  *  It has the advantage of allowing the driver to use private
453  *  pages of memory that will be useful if we ever need to deal
454  *  with IO MMUs for PCI.
455  */
456 
457 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
458 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
459 #if 0
460 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
461 #endif
462 #define MEMO_WARN	1
463 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
464 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
465 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
466 
467 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
468 #define free_pages(p)		free((p), M_DEVBUF)
469 
470 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
471 
472 typedef struct m_link {		/* Link between free memory chunks */
473 	struct m_link *next;
474 } m_link_s;
475 
476 #ifdef	FreeBSD_Bus_Dma_Abstraction
477 typedef struct m_vtob {		/* Virtual to Bus address translation */
478 	struct m_vtob	*next;
479 	bus_dmamap_t	dmamap;	/* Map for this chunk */
480 	m_addr_t	vaddr;	/* Virtual address */
481 	m_addr_t	baddr;	/* Bus physical address */
482 } m_vtob_s;
483 /* Hash this stuff a bit to speed up translations */
484 #define VTOB_HASH_SHIFT		5
485 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
486 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
487 #define VTOB_HASH_CODE(m)	\
488 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
489 #endif
490 
491 typedef struct m_pool {		/* Memory pool of a given kind */
492 #ifdef	FreeBSD_Bus_Dma_Abstraction
493 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
494 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
495 	m_addr_t (*getp)(struct m_pool *);
496 #ifdef	MEMO_FREE_UNUSED
497 	void (*freep)(struct m_pool *, m_addr_t);
498 #endif
499 #define M_GETP()		mp->getp(mp)
500 #define M_FREEP(p)		mp->freep(mp, p)
501 	int nump;
502 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
503 	struct m_pool *next;
504 #else
505 #define M_GETP()		get_pages()
506 #define M_FREEP(p)		free_pages(p)
507 #endif	/* FreeBSD_Bus_Dma_Abstraction */
508 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
509 } m_pool_s;
510 
511 static void *___sym_malloc(m_pool_s *mp, int size)
512 {
513 	int i = 0;
514 	int s = (1 << MEMO_SHIFT);
515 	int j;
516 	m_addr_t a;
517 	m_link_s *h = mp->h;
518 
519 	if (size > MEMO_CLUSTER_SIZE)
520 		return 0;
521 
522 	while (size > s) {
523 		s <<= 1;
524 		++i;
525 	}
526 
527 	j = i;
528 	while (!h[j].next) {
529 		if (s == MEMO_CLUSTER_SIZE) {
530 			h[j].next = (m_link_s *) M_GETP();
531 			if (h[j].next)
532 				h[j].next->next = 0;
533 			break;
534 		}
535 		++j;
536 		s <<= 1;
537 	}
538 	a = (m_addr_t) h[j].next;
539 	if (a) {
540 		h[j].next = h[j].next->next;
541 		while (j > i) {
542 			j -= 1;
543 			s >>= 1;
544 			h[j].next = (m_link_s *) (a+s);
545 			h[j].next->next = 0;
546 		}
547 	}
548 #ifdef DEBUG
549 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
550 #endif
551 	return (void *) a;
552 }
553 
554 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
555 {
556 	int i = 0;
557 	int s = (1 << MEMO_SHIFT);
558 	m_link_s *q;
559 	m_addr_t a, b;
560 	m_link_s *h = mp->h;
561 
562 #ifdef DEBUG
563 	printf("___sym_mfree(%p, %d)\n", ptr, size);
564 #endif
565 
566 	if (size > MEMO_CLUSTER_SIZE)
567 		return;
568 
569 	while (size > s) {
570 		s <<= 1;
571 		++i;
572 	}
573 
574 	a = (m_addr_t) ptr;
575 
576 	while (1) {
577 #ifdef MEMO_FREE_UNUSED
578 		if (s == MEMO_CLUSTER_SIZE) {
579 			M_FREEP(a);
580 			break;
581 		}
582 #endif
583 		b = a ^ s;
584 		q = &h[i];
585 		while (q->next && q->next != (m_link_s *) b) {
586 			q = q->next;
587 		}
588 		if (!q->next) {
589 			((m_link_s *) a)->next = h[i].next;
590 			h[i].next = (m_link_s *) a;
591 			break;
592 		}
593 		q->next = q->next->next;
594 		a = a & b;
595 		s <<= 1;
596 		++i;
597 	}
598 }
599 
600 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
601 {
602 	void *p;
603 
604 	p = ___sym_malloc(mp, size);
605 
606 	if (DEBUG_FLAGS & DEBUG_ALLOC)
607 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
608 
609 	if (p)
610 		bzero(p, size);
611 	else if (uflags & MEMO_WARN)
612 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
613 
614 	return p;
615 }
616 
617 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
618 
619 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
620 {
621 	if (DEBUG_FLAGS & DEBUG_ALLOC)
622 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
623 
624 	___sym_mfree(mp, ptr, size);
625 
626 }
627 
628 /*
629  * Default memory pool we donnot need to involve in DMA.
630  */
631 #ifndef	FreeBSD_Bus_Dma_Abstraction
632 /*
633  * Without the `bus dma abstraction', all the memory is assumed
634  * DMAable and a single pool is all what we need.
635  */
636 static m_pool_s mp0;
637 
638 #else
639 /*
640  * With the `bus dma abstraction', we use a separate pool for
641  * memory we donnot need to involve in DMA.
642  */
643 static m_addr_t ___mp0_getp(m_pool_s *mp)
644 {
645 	m_addr_t m = (m_addr_t) get_pages();
646 	if (m)
647 		++mp->nump;
648 	return m;
649 }
650 
651 #ifdef	MEMO_FREE_UNUSED
652 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
653 {
654 	free_pages(m);
655 	--mp->nump;
656 }
657 #endif
658 
659 #ifdef	MEMO_FREE_UNUSED
660 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
661 #else
662 static m_pool_s mp0 = {0, 0, ___mp0_getp};
663 #endif
664 
665 #endif	/* FreeBSD_Bus_Dma_Abstraction */
666 
667 /*
668  * Actual memory allocation routine for non-DMAed memory.
669  */
670 static void *sym_calloc(int size, char *name)
671 {
672 	void *m;
673 	/* Lock */
674 	m = __sym_calloc(&mp0, size, name);
675 	/* Unlock */
676 	return m;
677 }
678 
679 /*
680  * Actual memory allocation routine for non-DMAed memory.
681  */
682 static void sym_mfree(void *ptr, int size, char *name)
683 {
684 	/* Lock */
685 	__sym_mfree(&mp0, ptr, size, name);
686 	/* Unlock */
687 }
688 
689 /*
690  * DMAable pools.
691  */
692 #ifndef	FreeBSD_Bus_Dma_Abstraction
693 /*
694  * Without `bus dma abstraction', all the memory is DMAable, and
695  * only a single pool is needed (vtophys() is our friend).
696  */
697 #define __sym_calloc_dma(b, s, n)	sym_calloc(s, n)
698 #define __sym_mfree_dma(b, p, s, n)	sym_mfree(p, s, n)
699 #ifdef	__alpha__
700 #define	__vtobus(b, p)	alpha_XXX_dmamap((vm_offset_t)(p))
701 #else /*__i386__, __sparc64__*/
702 #define __vtobus(b, p)	vtophys(p)
703 #endif
704 
705 #else
706 /*
707  * With `bus dma abstraction', we use a separate pool per parent
708  * BUS handle. A reverse table (hashed) is maintained for virtual
709  * to BUS address translation.
710  */
711 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
712 {
713 	bus_addr_t *baddr;
714 	baddr = (bus_addr_t *)arg;
715 	*baddr = segs->ds_addr;
716 }
717 
718 static m_addr_t ___dma_getp(m_pool_s *mp)
719 {
720 	m_vtob_s *vbp;
721 	void *vaddr = 0;
722 	bus_addr_t baddr = 0;
723 
724 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
725 	if (!vbp)
726 		goto out_err;
727 
728 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
729 			      BUS_DMA_NOWAIT, &vbp->dmamap))
730 		goto out_err;
731 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
732 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0);
733 	if (baddr) {
734 		int hc = VTOB_HASH_CODE(vaddr);
735 		vbp->vaddr = (m_addr_t) vaddr;
736 		vbp->baddr = (m_addr_t) baddr;
737 		vbp->next = mp->vtob[hc];
738 		mp->vtob[hc] = vbp;
739 		++mp->nump;
740 		return (m_addr_t) vaddr;
741 	}
742 out_err:
743 	if (baddr)
744 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
745 	if (vaddr)
746 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
747 	if (vbp->dmamap)
748 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
749 	if (vbp)
750 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
751 	return 0;
752 }
753 
754 #ifdef	MEMO_FREE_UNUSED
755 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
756 {
757 	m_vtob_s **vbpp, *vbp;
758 	int hc = VTOB_HASH_CODE(m);
759 
760 	vbpp = &mp->vtob[hc];
761 	while (*vbpp && (*vbpp)->vaddr != m)
762 		vbpp = &(*vbpp)->next;
763 	if (*vbpp) {
764 		vbp = *vbpp;
765 		*vbpp = (*vbpp)->next;
766 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
767 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
768 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
769 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
770 		--mp->nump;
771 	}
772 }
773 #endif
774 
775 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
776 {
777 	m_pool_s *mp;
778 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
779 	return mp;
780 }
781 
782 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
783 {
784 	m_pool_s *mp = 0;
785 
786 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
787 	if (mp) {
788 		mp->dev_dmat = dev_dmat;
789 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
790 			       BUS_SPACE_MAXADDR_32BIT,
791 			       BUS_SPACE_MAXADDR_32BIT,
792 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
793 			       MEMO_CLUSTER_SIZE, 0, &mp->dmat)) {
794 			mp->getp = ___dma_getp;
795 #ifdef	MEMO_FREE_UNUSED
796 			mp->freep = ___dma_freep;
797 #endif
798 			mp->next = mp0.next;
799 			mp0.next = mp;
800 			return mp;
801 		}
802 	}
803 	if (mp)
804 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
805 	return 0;
806 }
807 
808 #ifdef	MEMO_FREE_UNUSED
809 static void ___del_dma_pool(m_pool_s *p)
810 {
811 	struct m_pool **pp = &mp0.next;
812 
813 	while (*pp && *pp != p)
814 		pp = &(*pp)->next;
815 	if (*pp) {
816 		*pp = (*pp)->next;
817 		bus_dma_tag_destroy(p->dmat);
818 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
819 	}
820 }
821 #endif
822 
823 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
824 {
825 	struct m_pool *mp;
826 	void *m = 0;
827 
828 	/* Lock */
829 	mp = ___get_dma_pool(dev_dmat);
830 	if (!mp)
831 		mp = ___cre_dma_pool(dev_dmat);
832 	if (mp)
833 		m = __sym_calloc(mp, size, name);
834 #ifdef	MEMO_FREE_UNUSED
835 	if (mp && !mp->nump)
836 		___del_dma_pool(mp);
837 #endif
838 	/* Unlock */
839 
840 	return m;
841 }
842 
843 static void
844 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
845 {
846 	struct m_pool *mp;
847 
848 	/* Lock */
849 	mp = ___get_dma_pool(dev_dmat);
850 	if (mp)
851 		__sym_mfree(mp, m, size, name);
852 #ifdef	MEMO_FREE_UNUSED
853 	if (mp && !mp->nump)
854 		___del_dma_pool(mp);
855 #endif
856 	/* Unlock */
857 }
858 
859 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
860 {
861 	m_pool_s *mp;
862 	int hc = VTOB_HASH_CODE(m);
863 	m_vtob_s *vp = 0;
864 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
865 
866 	/* Lock */
867 	mp = ___get_dma_pool(dev_dmat);
868 	if (mp) {
869 		vp = mp->vtob[hc];
870 		while (vp && (m_addr_t) vp->vaddr != a)
871 			vp = vp->next;
872 	}
873 	/* Unlock */
874 	if (!vp)
875 		panic("sym: VTOBUS FAILED!\n");
876 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
877 }
878 
879 #endif	/* FreeBSD_Bus_Dma_Abstraction */
880 
881 /*
882  * Verbs for DMAable memory handling.
883  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
884  * being discarded.
885  */
886 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
887 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
888 #define _sym_mfree_dma(np, p, s, n)	\
889 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
890 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
891 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
892 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
893 #define vtobus(p)			_vtobus(np, p)
894 
895 
896 /*
897  *  Print a buffer in hexadecimal format.
898  */
899 static void sym_printb_hex (u_char *p, int n)
900 {
901 	while (n-- > 0)
902 		printf (" %x", *p++);
903 }
904 
905 /*
906  *  Same with a label at beginning and .\n at end.
907  */
908 static void sym_printl_hex (char *label, u_char *p, int n)
909 {
910 	printf ("%s", label);
911 	sym_printb_hex (p, n);
912 	printf (".\n");
913 }
914 
915 /*
916  *  Return a string for SCSI BUS mode.
917  */
918 static char *sym_scsi_bus_mode(int mode)
919 {
920 	switch(mode) {
921 	case SMODE_HVD:	return "HVD";
922 	case SMODE_SE:	return "SE";
923 	case SMODE_LVD: return "LVD";
924 	}
925 	return "??";
926 }
927 
928 /*
929  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
930  */
931 #ifdef SYM_CONF_NVRAM_SUPPORT
932 static u_char Tekram_sync[16] =
933 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
934 #endif
935 
936 /*
937  *  Union of supported NVRAM formats.
938  */
939 struct sym_nvram {
940 	int type;
941 #define	SYM_SYMBIOS_NVRAM	(1)
942 #define	SYM_TEKRAM_NVRAM	(2)
943 #ifdef	SYM_CONF_NVRAM_SUPPORT
944 	union {
945 		Symbios_nvram Symbios;
946 		Tekram_nvram Tekram;
947 	} data;
948 #endif
949 };
950 
951 /*
952  *  This one is hopefully useless, but actually useful. :-)
953  */
954 #ifndef assert
955 #define	assert(expression) { \
956 	if (!(expression)) { \
957 		(void)panic( \
958 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
959 			#expression, \
960 			__FILE__, __LINE__); \
961 	} \
962 }
963 #endif
964 
965 /*
966  *  Some provision for a possible big endian mode supported by
967  *  Symbios chips (never seen, by the way).
968  *  For now, this stuff does not deserve any comments. :)
969  */
970 
971 #define sym_offb(o)	(o)
972 #define sym_offw(o)	(o)
973 
974 /*
975  *  Some provision for support for BIG ENDIAN CPU.
976  *  Btw, FreeBSD does not seem to be ready yet for big endian.
977  */
978 
979 #if	BYTE_ORDER == BIG_ENDIAN
980 #define cpu_to_scr(dw)	_htole32(dw)
981 #define scr_to_cpu(dw)	_le32toh(dw)
982 #else
983 #define cpu_to_scr(dw)	(dw)
984 #define scr_to_cpu(dw)	(dw)
985 #endif
986 
987 /*
988  *  Access to the chip IO registers and on-chip RAM.
989  *  We use the `bus space' interface under FreeBSD-4 and
990  *  later kernel versions.
991  */
992 
993 #ifdef	FreeBSD_Bus_Space_Abstraction
994 
995 #if defined(SYM_CONF_IOMAPPED)
996 
997 #define INB_OFF(o)	bus_space_read_1(np->io_tag, np->io_bsh, o)
998 #define INW_OFF(o)	bus_space_read_2(np->io_tag, np->io_bsh, o)
999 #define INL_OFF(o)	bus_space_read_4(np->io_tag, np->io_bsh, o)
1000 
1001 #define OUTB_OFF(o, v)	bus_space_write_1(np->io_tag, np->io_bsh, o, (v))
1002 #define OUTW_OFF(o, v)	bus_space_write_2(np->io_tag, np->io_bsh, o, (v))
1003 #define OUTL_OFF(o, v)	bus_space_write_4(np->io_tag, np->io_bsh, o, (v))
1004 
1005 #else	/* Memory mapped IO */
1006 
1007 #define INB_OFF(o)	bus_space_read_1(np->mmio_tag, np->mmio_bsh, o)
1008 #define INW_OFF(o)	bus_space_read_2(np->mmio_tag, np->mmio_bsh, o)
1009 #define INL_OFF(o)	bus_space_read_4(np->mmio_tag, np->mmio_bsh, o)
1010 
1011 #define OUTB_OFF(o, v)	bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v))
1012 #define OUTW_OFF(o, v)	bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v))
1013 #define OUTL_OFF(o, v)	bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v))
1014 
1015 #endif	/* SYM_CONF_IOMAPPED */
1016 
1017 #define OUTRAM_OFF(o, a, l)	\
1018 	bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l))
1019 
1020 #else	/* not defined FreeBSD_Bus_Space_Abstraction */
1021 
1022 #if	BYTE_ORDER == BIG_ENDIAN
1023 #error	"BIG ENDIAN support requires bus space kernel interface"
1024 #endif
1025 
1026 /*
1027  *  Access to the chip IO registers and on-chip RAM.
1028  *  We use legacy MMIO and IO interface for FreeBSD 3.X versions.
1029  */
1030 
1031 /*
1032  *  Define some understable verbs for IO and MMIO.
1033  */
1034 #define io_read8(p)	 scr_to_cpu(inb((p)))
1035 #define	io_read16(p)	 scr_to_cpu(inw((p)))
1036 #define io_read32(p)	 scr_to_cpu(inl((p)))
1037 #define	io_write8(p, v)	 outb((p), cpu_to_scr(v))
1038 #define io_write16(p, v) outw((p), cpu_to_scr(v))
1039 #define io_write32(p, v) outl((p), cpu_to_scr(v))
1040 
1041 #ifdef	__alpha__
1042 
1043 #define mmio_read8(a)	     readb(a)
1044 #define mmio_read16(a)	     readw(a)
1045 #define mmio_read32(a)	     readl(a)
1046 #define mmio_write8(a, b)    writeb(a, b)
1047 #define mmio_write16(a, b)   writew(a, b)
1048 #define mmio_write32(a, b)   writel(a, b)
1049 #define memcpy_to_pci(d, s, n)	memcpy_toio((u32)(d), (void *)(s), (n))
1050 
1051 #else /*__i386__, __sparc64__*/
1052 
1053 #define mmio_read8(a)	     scr_to_cpu((*(volatile unsigned char *) (a)))
1054 #define mmio_read16(a)	     scr_to_cpu((*(volatile unsigned short *) (a)))
1055 #define mmio_read32(a)	     scr_to_cpu((*(volatile unsigned int *) (a)))
1056 #define mmio_write8(a, b)   (*(volatile unsigned char *) (a)) = cpu_to_scr(b)
1057 #define mmio_write16(a, b)  (*(volatile unsigned short *) (a)) = cpu_to_scr(b)
1058 #define mmio_write32(a, b)  (*(volatile unsigned int *) (a)) = cpu_to_scr(b)
1059 #define memcpy_to_pci(d, s, n)	bcopy((s), (void *)(d), (n))
1060 
1061 #endif
1062 
1063 /*
1064  *  Normal IO
1065  */
1066 #if defined(SYM_CONF_IOMAPPED)
1067 
1068 #define	INB_OFF(o)	io_read8(np->io_port + sym_offb(o))
1069 #define	OUTB_OFF(o, v)	io_write8(np->io_port + sym_offb(o), (v))
1070 
1071 #define	INW_OFF(o)	io_read16(np->io_port + sym_offw(o))
1072 #define	OUTW_OFF(o, v)	io_write16(np->io_port + sym_offw(o), (v))
1073 
1074 #define	INL_OFF(o)	io_read32(np->io_port + (o))
1075 #define	OUTL_OFF(o, v)	io_write32(np->io_port + (o), (v))
1076 
1077 #else	/* Memory mapped IO */
1078 
1079 #define	INB_OFF(o)	mmio_read8(np->mmio_va + sym_offb(o))
1080 #define	OUTB_OFF(o, v)	mmio_write8(np->mmio_va + sym_offb(o), (v))
1081 
1082 #define	INW_OFF(o)	mmio_read16(np->mmio_va + sym_offw(o))
1083 #define	OUTW_OFF(o, v)	mmio_write16(np->mmio_va + sym_offw(o), (v))
1084 
1085 #define	INL_OFF(o)	mmio_read32(np->mmio_va + (o))
1086 #define	OUTL_OFF(o, v)	mmio_write32(np->mmio_va + (o), (v))
1087 
1088 #endif
1089 
1090 #define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l))
1091 
1092 #endif	/* FreeBSD_Bus_Space_Abstraction */
1093 
1094 /*
1095  *  Common definitions for both bus space and legacy IO methods.
1096  */
1097 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
1098 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
1099 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
1100 
1101 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
1102 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
1103 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
1104 
1105 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
1106 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
1107 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
1108 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
1109 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
1110 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
1111 
1112 /*
1113  *  We normally want the chip to have a consistent view
1114  *  of driver internal data structures when we restart it.
1115  *  Thus these macros.
1116  */
1117 #define OUTL_DSP(v)				\
1118 	do {					\
1119 		MEMORY_BARRIER();		\
1120 		OUTL (nc_dsp, (v));		\
1121 	} while (0)
1122 
1123 #define OUTONB_STD()				\
1124 	do {					\
1125 		MEMORY_BARRIER();		\
1126 		OUTONB (nc_dcntl, (STD|NOCOM));	\
1127 	} while (0)
1128 
1129 /*
1130  *  Command control block states.
1131  */
1132 #define HS_IDLE		(0)
1133 #define HS_BUSY		(1)
1134 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1135 #define HS_DISCONNECT	(3)	/* Disconnected by target */
1136 #define HS_WAIT		(4)	/* waiting for resource	  */
1137 
1138 #define HS_DONEMASK	(0x80)
1139 #define HS_COMPLETE	(4|HS_DONEMASK)
1140 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1141 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
1142 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
1143 
1144 /*
1145  *  Software Interrupt Codes
1146  */
1147 #define	SIR_BAD_SCSI_STATUS	(1)
1148 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
1149 #define	SIR_MSG_RECEIVED	(3)
1150 #define	SIR_MSG_WEIRD		(4)
1151 #define	SIR_NEGO_FAILED		(5)
1152 #define	SIR_NEGO_PROTO		(6)
1153 #define	SIR_SCRIPT_STOPPED	(7)
1154 #define	SIR_REJECT_TO_SEND	(8)
1155 #define	SIR_SWIDE_OVERRUN	(9)
1156 #define	SIR_SODL_UNDERRUN	(10)
1157 #define	SIR_RESEL_NO_MSG_IN	(11)
1158 #define	SIR_RESEL_NO_IDENTIFY	(12)
1159 #define	SIR_RESEL_BAD_LUN	(13)
1160 #define	SIR_TARGET_SELECTED	(14)
1161 #define	SIR_RESEL_BAD_I_T_L	(15)
1162 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
1163 #define	SIR_ABORT_SENT		(17)
1164 #define	SIR_RESEL_ABORTED	(18)
1165 #define	SIR_MSG_OUT_DONE	(19)
1166 #define	SIR_COMPLETE_ERROR	(20)
1167 #define	SIR_DATA_OVERRUN	(21)
1168 #define	SIR_BAD_PHASE		(22)
1169 #define	SIR_MAX			(22)
1170 
1171 /*
1172  *  Extended error bit codes.
1173  *  xerr_status field of struct sym_ccb.
1174  */
1175 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
1176 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
1177 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
1178 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
1179 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
1180 
1181 /*
1182  *  Negotiation status.
1183  *  nego_status field of struct sym_ccb.
1184  */
1185 #define NS_SYNC		(1)
1186 #define NS_WIDE		(2)
1187 #define NS_PPR		(3)
1188 
1189 /*
1190  *  A CCB hashed table is used to retrieve CCB address
1191  *  from DSA value.
1192  */
1193 #define CCB_HASH_SHIFT		8
1194 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1195 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1196 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1197 
1198 /*
1199  *  Device flags.
1200  */
1201 #define SYM_DISC_ENABLED	(1)
1202 #define SYM_TAGS_ENABLED	(1<<1)
1203 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1204 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1205 
1206 /*
1207  *  Host adapter miscellaneous flags.
1208  */
1209 #define SYM_AVOID_BUS_RESET	(1)
1210 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1211 
1212 /*
1213  *  Device quirks.
1214  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1215  *  saving the DATA POINTER then reselects and terminates the IO.
1216  *  On reselection, the automatic RESTORE DATA POINTER makes the
1217  *  CURRENT DATA POINTER not point at the end of the IO.
1218  *  This behaviour just breaks our calculation of the residual.
1219  *  For now, we just force an AUTO SAVE on disconnection and will
1220  *  fix that in a further driver version.
1221  */
1222 #define SYM_QUIRK_AUTOSAVE 1
1223 
1224 /*
1225  *  Misc.
1226  */
1227 #define SYM_SNOOP_TIMEOUT (10000000)
1228 #define SYM_PCI_IO	PCIR_MAPS
1229 #define SYM_PCI_MMIO	(PCIR_MAPS + 4)
1230 #define SYM_PCI_RAM	(PCIR_MAPS + 8)
1231 #define SYM_PCI_RAM64	(PCIR_MAPS + 12)
1232 
1233 /*
1234  *  Back-pointer from the CAM CCB to our data structures.
1235  */
1236 #define sym_hcb_ptr	spriv_ptr0
1237 /* #define sym_ccb_ptr	spriv_ptr1 */
1238 
1239 /*
1240  *  We mostly have to deal with pointers.
1241  *  Thus these typedef's.
1242  */
1243 typedef struct sym_tcb *tcb_p;
1244 typedef struct sym_lcb *lcb_p;
1245 typedef struct sym_ccb *ccb_p;
1246 typedef struct sym_hcb *hcb_p;
1247 
1248 /*
1249  *  Gather negotiable parameters value
1250  */
1251 struct sym_trans {
1252 #ifdef	FreeBSD_New_Tran_Settings
1253 	u8 scsi_version;
1254 	u8 spi_version;
1255 #endif
1256 	u8 period;
1257 	u8 offset;
1258 	u8 width;
1259 	u8 options;	/* PPR options */
1260 };
1261 
1262 struct sym_tinfo {
1263 	struct sym_trans current;
1264 	struct sym_trans goal;
1265 	struct sym_trans user;
1266 };
1267 
1268 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1269 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1270 
1271 /*
1272  *  Global TCB HEADER.
1273  *
1274  *  Due to lack of indirect addressing on earlier NCR chips,
1275  *  this substructure is copied from the TCB to a global
1276  *  address after selection.
1277  *  For SYMBIOS chips that support LOAD/STORE this copy is
1278  *  not needed and thus not performed.
1279  */
1280 struct sym_tcbh {
1281 	/*
1282 	 *  Scripts bus addresses of LUN table accessed from scripts.
1283 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1284 	 *  and we we want to speed-up the general case and not waste
1285 	 *  resources.
1286 	 */
1287 	u32	luntbl_sa;	/* bus address of this table	*/
1288 	u32	lun0_sa;	/* bus address of LCB #0	*/
1289 	/*
1290 	 *  Actual SYNC/WIDE IO registers value for this target.
1291 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1292 	 *  so have alignment constraints.
1293 	 */
1294 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1295 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1296 /*2*/	u_char	filler1;
1297 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1298 };
1299 
1300 /*
1301  *  Target Control Block
1302  */
1303 struct sym_tcb {
1304 	/*
1305 	 *  TCB header.
1306 	 *  Assumed at offset 0.
1307 	 */
1308 /*0*/	struct sym_tcbh head;
1309 
1310 	/*
1311 	 *  LUN table used by the SCRIPTS processor.
1312 	 *  An array of bus addresses is used on reselection.
1313 	 */
1314 	u32	*luntbl;	/* LCBs bus address table	*/
1315 
1316 	/*
1317 	 *  LUN table used by the C code.
1318 	 */
1319 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1320 #if SYM_CONF_MAX_LUN > 1
1321 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1322 #endif
1323 
1324 	/*
1325 	 *  Bitmap that tells about LUNs that succeeded at least
1326 	 *  1 IO and therefore assumed to be a real device.
1327 	 *  Avoid useless allocation of the LCB structure.
1328 	 */
1329 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1330 
1331 	/*
1332 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1333 	 *  allocated (not discovered or LCB allocation failed).
1334 	 */
1335 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1336 
1337 	/*
1338 	 *  Transfer capabilities (SIP)
1339 	 */
1340 	struct sym_tinfo tinfo;
1341 
1342 	/*
1343 	 * Keep track of the CCB used for the negotiation in order
1344 	 * to ensure that only 1 negotiation is queued at a time.
1345 	 */
1346 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1347 
1348 	/*
1349 	 *  Set when we want to reset the device.
1350 	 */
1351 	u_char	to_reset;
1352 
1353 	/*
1354 	 *  Other user settable limits and options.
1355 	 *  These limits are read from the NVRAM if present.
1356 	 */
1357 	u_char	usrflags;
1358 	u_short	usrtags;
1359 };
1360 
1361 /*
1362  *  Global LCB HEADER.
1363  *
1364  *  Due to lack of indirect addressing on earlier NCR chips,
1365  *  this substructure is copied from the LCB to a global
1366  *  address after selection.
1367  *  For SYMBIOS chips that support LOAD/STORE this copy is
1368  *  not needed and thus not performed.
1369  */
1370 struct sym_lcbh {
1371 	/*
1372 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1373 	 *  For not probed logical units, this address points to
1374 	 *  SCRIPTS that deal with bad LU handling (must be at
1375 	 *  offset zero of the LCB for that reason).
1376 	 */
1377 /*0*/	u32	resel_sa;
1378 
1379 	/*
1380 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1381 	 *  to the unique ITL nexus allowed to be disconnected.
1382 	 */
1383 	u32	itl_task_sa;
1384 
1385 	/*
1386 	 *  Task table bus address (read from SCRIPTS).
1387 	 */
1388 	u32	itlq_tbl_sa;
1389 };
1390 
1391 /*
1392  *  Logical Unit Control Block
1393  */
1394 struct sym_lcb {
1395 	/*
1396 	 *  TCB header.
1397 	 *  Assumed at offset 0.
1398 	 */
1399 /*0*/	struct sym_lcbh head;
1400 
1401 	/*
1402 	 *  Task table read from SCRIPTS that contains pointers to
1403 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1404 	 *  inside the header.
1405 	 */
1406 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1407 
1408 	/*
1409 	 *  Busy CCBs management.
1410 	 */
1411 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1412 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1413 
1414 	/*
1415 	 *  Circular tag allocation buffer.
1416 	 */
1417 	u_short	ia_tag;		/* Tag allocation index		*/
1418 	u_short	if_tag;		/* Tag release index		*/
1419 	u_char	*cb_tags;	/* Circular tags buffer		*/
1420 
1421 	/*
1422 	 *  Set when we want to clear all tasks.
1423 	 */
1424 	u_char to_clear;
1425 
1426 	/*
1427 	 *  Capabilities.
1428 	 */
1429 	u_char	user_flags;
1430 	u_char	current_flags;
1431 };
1432 
1433 /*
1434  *  Action from SCRIPTS on a task.
1435  *  Is part of the CCB, but is also used separately to plug
1436  *  error handling action to perform from SCRIPTS.
1437  */
1438 struct sym_actscr {
1439 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1440 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1441 };
1442 
1443 /*
1444  *  Phase mismatch context.
1445  *
1446  *  It is part of the CCB and is used as parameters for the
1447  *  DATA pointer. We need two contexts to handle correctly the
1448  *  SAVED DATA POINTER.
1449  */
1450 struct sym_pmc {
1451 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1452 	u32	ret;		/* SCRIPT return address	*/
1453 };
1454 
1455 /*
1456  *  LUN control block lookup.
1457  *  We use a direct pointer for LUN #0, and a table of
1458  *  pointers which is only allocated for devices that support
1459  *  LUN(s) > 0.
1460  */
1461 #if SYM_CONF_MAX_LUN <= 1
1462 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1463 #else
1464 #define sym_lp(np, tp, lun) \
1465 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1466 #endif
1467 
1468 /*
1469  *  Status are used by the host and the script processor.
1470  *
1471  *  The last four bytes (status[4]) are copied to the
1472  *  scratchb register (declared as scr0..scr3) just after the
1473  *  select/reselect, and copied back just after disconnecting.
1474  *  Inside the script the XX_REG are used.
1475  */
1476 
1477 /*
1478  *  Last four bytes (script)
1479  */
1480 #define  QU_REG	scr0
1481 #define  HS_REG	scr1
1482 #define  HS_PRT	nc_scr1
1483 #define  SS_REG	scr2
1484 #define  SS_PRT	nc_scr2
1485 #define  HF_REG	scr3
1486 #define  HF_PRT	nc_scr3
1487 
1488 /*
1489  *  Last four bytes (host)
1490  */
1491 #define  actualquirks  phys.head.status[0]
1492 #define  host_status   phys.head.status[1]
1493 #define  ssss_status   phys.head.status[2]
1494 #define  host_flags    phys.head.status[3]
1495 
1496 /*
1497  *  Host flags
1498  */
1499 #define HF_IN_PM0	1u
1500 #define HF_IN_PM1	(1u<<1)
1501 #define HF_ACT_PM	(1u<<2)
1502 #define HF_DP_SAVED	(1u<<3)
1503 #define HF_SENSE	(1u<<4)
1504 #define HF_EXT_ERR	(1u<<5)
1505 #define HF_DATA_IN	(1u<<6)
1506 #ifdef SYM_CONF_IARB_SUPPORT
1507 #define HF_HINT_IARB	(1u<<7)
1508 #endif
1509 
1510 /*
1511  *  Global CCB HEADER.
1512  *
1513  *  Due to lack of indirect addressing on earlier NCR chips,
1514  *  this substructure is copied from the ccb to a global
1515  *  address after selection (or reselection) and copied back
1516  *  before disconnect.
1517  *  For SYMBIOS chips that support LOAD/STORE this copy is
1518  *  not needed and thus not performed.
1519  */
1520 
1521 struct sym_ccbh {
1522 	/*
1523 	 *  Start and restart SCRIPTS addresses (must be at 0).
1524 	 */
1525 /*0*/	struct sym_actscr go;
1526 
1527 	/*
1528 	 *  SCRIPTS jump address that deal with data pointers.
1529 	 *  'savep' points to the position in the script responsible
1530 	 *  for the actual transfer of data.
1531 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1532 	 */
1533 	u32	savep;		/* Jump address to saved data pointer	*/
1534 	u32	lastp;		/* SCRIPTS address at end of data	*/
1535 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1536 
1537 	/*
1538 	 *  Status fields.
1539 	 */
1540 	u8	status[4];
1541 };
1542 
1543 /*
1544  *  Data Structure Block
1545  *
1546  *  During execution of a ccb by the script processor, the
1547  *  DSA (data structure address) register points to this
1548  *  substructure of the ccb.
1549  */
1550 struct sym_dsb {
1551 	/*
1552 	 *  CCB header.
1553 	 *  Also assumed at offset 0 of the sym_ccb structure.
1554 	 */
1555 /*0*/	struct sym_ccbh head;
1556 
1557 	/*
1558 	 *  Phase mismatch contexts.
1559 	 *  We need two to handle correctly the SAVED DATA POINTER.
1560 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1561 	 *  for address calculation from SCRIPTS.
1562 	 */
1563 	struct sym_pmc pm0;
1564 	struct sym_pmc pm1;
1565 
1566 	/*
1567 	 *  Table data for Script
1568 	 */
1569 	struct sym_tblsel  select;
1570 	struct sym_tblmove smsg;
1571 	struct sym_tblmove smsg_ext;
1572 	struct sym_tblmove cmd;
1573 	struct sym_tblmove sense;
1574 	struct sym_tblmove wresid;
1575 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1576 };
1577 
1578 /*
1579  *  Our Command Control Block
1580  */
1581 struct sym_ccb {
1582 	/*
1583 	 *  This is the data structure which is pointed by the DSA
1584 	 *  register when it is executed by the script processor.
1585 	 *  It must be the first entry.
1586 	 */
1587 	struct sym_dsb phys;
1588 
1589 	/*
1590 	 *  Pointer to CAM ccb and related stuff.
1591 	 */
1592 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1593 	u8	cdb_buf[16];	/* Copy of CDB			*/
1594 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1595 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1596 	int	data_len;	/* Total data length		*/
1597 	int	segments;	/* Number of SG segments	*/
1598 
1599 	/*
1600 	 *  Miscellaneous status'.
1601 	 */
1602 	u_char	nego_status;	/* Negotiation status		*/
1603 	u_char	xerr_status;	/* Extended error flags		*/
1604 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1605 
1606 	/*
1607 	 *  Message areas.
1608 	 *  We prepare a message to be sent after selection.
1609 	 *  We may use a second one if the command is rescheduled
1610 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1611 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1612 	 *  While negotiating sync or wide transfer,
1613 	 *  a SDTR or WDTR message is appended.
1614 	 */
1615 	u_char	scsi_smsg [12];
1616 	u_char	scsi_smsg2[12];
1617 
1618 	/*
1619 	 *  Auto request sense related fields.
1620 	 */
1621 	u_char	sensecmd[6];	/* Request Sense command	*/
1622 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1623 	u_char	sv_xerr_status;	/* Saved extended status	*/
1624 	int	sv_resid;	/* Saved residual		*/
1625 
1626 	/*
1627 	 *  Map for the DMA of user data.
1628 	 */
1629 #ifdef	FreeBSD_Bus_Dma_Abstraction
1630 	void		*arg;	/* Argument for some callback	*/
1631 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1632 	u_char		dmamapped;
1633 #define SYM_DMA_NONE	0
1634 #define SYM_DMA_READ	1
1635 #define SYM_DMA_WRITE	2
1636 #endif
1637 	/*
1638 	 *  Other fields.
1639 	 */
1640 	u32	ccb_ba;		/* BUS address of this CCB	*/
1641 	u_short	tag;		/* Tag for this transfer	*/
1642 				/*  NO_TAG means no tag		*/
1643 	u_char	target;
1644 	u_char	lun;
1645 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1646 	SYM_QUEHEAD
1647 		link_ccbq;	/* Link to free/busy CCB queue	*/
1648 	u32	startp;		/* Initial data pointer		*/
1649 	int	ext_sg;		/* Extreme data pointer, used	*/
1650 	int	ext_ofs;	/*  to calculate the residual.	*/
1651 	u_char	to_abort;	/* Want this IO to be aborted	*/
1652 };
1653 
1654 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1655 
1656 /*
1657  *  Host Control Block
1658  */
1659 struct sym_hcb {
1660 	/*
1661 	 *  Global headers.
1662 	 *  Due to poorness of addressing capabilities, earlier
1663 	 *  chips (810, 815, 825) copy part of the data structures
1664 	 *  (CCB, TCB and LCB) in fixed areas.
1665 	 */
1666 #ifdef	SYM_CONF_GENERIC_SUPPORT
1667 	struct sym_ccbh	ccb_head;
1668 	struct sym_tcbh	tcb_head;
1669 	struct sym_lcbh	lcb_head;
1670 #endif
1671 	/*
1672 	 *  Idle task and invalid task actions and
1673 	 *  their bus addresses.
1674 	 */
1675 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1676 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1677 
1678 	/*
1679 	 *  Dummy lun table to protect us against target
1680 	 *  returning bad lun number on reselection.
1681 	 */
1682 	u32	*badluntbl;	/* Table physical address	*/
1683 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1684 
1685 	/*
1686 	 *  Bus address of this host control block.
1687 	 */
1688 	u32	hcb_ba;
1689 
1690 	/*
1691 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1692 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1693 	 *  field.
1694 	 */
1695 	u32	scr_ram_seg;
1696 
1697 	/*
1698 	 *  Chip and controller indentification.
1699 	 */
1700 #ifdef FreeBSD_Bus_Io_Abstraction
1701 	device_t device;
1702 #else
1703 	pcici_t	pci_tag;
1704 #endif
1705 	int	unit;
1706 	char	inst_name[8];
1707 
1708 	/*
1709 	 *  Initial value of some IO register bits.
1710 	 *  These values are assumed to have been set by BIOS, and may
1711 	 *  be used to probe adapter implementation differences.
1712 	 */
1713 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1714 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1715 		sv_stest1;
1716 
1717 	/*
1718 	 *  Actual initial value of IO register bits used by the
1719 	 *  driver. They are loaded at initialisation according to
1720 	 *  features that are to be enabled/disabled.
1721 	 */
1722 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1723 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1724 
1725 	/*
1726 	 *  Target data.
1727 	 */
1728 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1729 
1730 	/*
1731 	 *  Target control block bus address array used by the SCRIPT
1732 	 *  on reselection.
1733 	 */
1734 	u32		*targtbl;
1735 	u32		targtbl_ba;
1736 
1737 	/*
1738 	 *  CAM SIM information for this instance.
1739 	 */
1740 	struct		cam_sim  *sim;
1741 	struct		cam_path *path;
1742 
1743 	/*
1744 	 *  Allocated hardware resources.
1745 	 */
1746 #ifdef FreeBSD_Bus_Io_Abstraction
1747 	struct resource	*irq_res;
1748 	struct resource	*io_res;
1749 	struct resource	*mmio_res;
1750 	struct resource	*ram_res;
1751 	int		ram_id;
1752 	void *intr;
1753 #endif
1754 
1755 	/*
1756 	 *  Bus stuff.
1757 	 *
1758 	 *  My understanding of PCI is that all agents must share the
1759 	 *  same addressing range and model.
1760 	 *  But some hardware architecture guys provide complex and
1761 	 *  brain-deaded stuff that makes shit.
1762 	 *  This driver only support PCI compliant implementations and
1763 	 *  deals with part of the BUS stuff complexity only to fit O/S
1764 	 *  requirements.
1765 	 */
1766 #ifdef FreeBSD_Bus_Io_Abstraction
1767 	bus_space_handle_t	io_bsh;
1768 	bus_space_tag_t		io_tag;
1769 	bus_space_handle_t	mmio_bsh;
1770 	bus_space_tag_t		mmio_tag;
1771 	bus_space_handle_t	ram_bsh;
1772 	bus_space_tag_t		ram_tag;
1773 #endif
1774 
1775 	/*
1776 	 *  DMA stuff.
1777 	 */
1778 #ifdef	FreeBSD_Bus_Dma_Abstraction
1779 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1780 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1781 #endif
1782 	/*
1783 	 *  Virtual and physical bus addresses of the chip.
1784 	 */
1785 	vm_offset_t	mmio_va;	/* MMIO kernel virtual address	*/
1786 	vm_offset_t	mmio_pa;	/* MMIO CPU physical address	*/
1787 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1788 	int		mmio_ws;	/* MMIO Window size		*/
1789 
1790 	vm_offset_t	ram_va;		/* RAM kernel virtual address	*/
1791 	vm_offset_t	ram_pa;		/* RAM CPU physical address	*/
1792 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1793 	int		ram_ws;		/* RAM window size		*/
1794 	u32		io_port;	/* IO port address		*/
1795 
1796 	/*
1797 	 *  SCRIPTS virtual and physical bus addresses.
1798 	 *  'script'  is loaded in the on-chip RAM if present.
1799 	 *  'scripth' stays in main memory for all chips except the
1800 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1801 	 */
1802 	u_char		*scripta0;	/* Copies of script and scripth	*/
1803 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1804 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1805 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1806 	vm_offset_t	scriptb0_ba;
1807 	u_short		scripta_sz;	/* Actual size of script A	*/
1808 	u_short		scriptb_sz;	/* Actual size of script B	*/
1809 
1810 	/*
1811 	 *  Bus addresses, setup and patch methods for
1812 	 *  the selected firmware.
1813 	 */
1814 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1815 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1816 	void		(*fw_setup)(hcb_p np, struct sym_fw *fw);
1817 	void		(*fw_patch)(hcb_p np);
1818 	char		*fw_name;
1819 
1820 	/*
1821 	 *  General controller parameters and configuration.
1822 	 */
1823 	u_short	device_id;	/* PCI device id		*/
1824 	u_char	revision_id;	/* PCI device revision id	*/
1825 	u_int	features;	/* Chip features map		*/
1826 	u_char	myaddr;		/* SCSI id of the adapter	*/
1827 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1828 	u_char	maxwide;	/* Maximum transfer width	*/
1829 	u_char	minsync;	/* Min sync period factor (ST)	*/
1830 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1831 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1832 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1833 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1834 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1835 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1836 	u_char	clock_divn;	/* Number of clock divisors	*/
1837 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1838 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1839 	/*
1840 	 *  Start queue management.
1841 	 *  It is filled up by the host processor and accessed by the
1842 	 *  SCRIPTS processor in order to start SCSI commands.
1843 	 */
1844 	volatile		/* Prevent code optimizations	*/
1845 	u32	*squeue;	/* Start queue virtual address	*/
1846 	u32	squeue_ba;	/* Start queue BUS address	*/
1847 	u_short	squeueput;	/* Next free slot of the queue	*/
1848 	u_short	actccbs;	/* Number of allocated CCBs	*/
1849 
1850 	/*
1851 	 *  Command completion queue.
1852 	 *  It is the same size as the start queue to avoid overflow.
1853 	 */
1854 	u_short	dqueueget;	/* Next position to scan	*/
1855 	volatile		/* Prevent code optimizations	*/
1856 	u32	*dqueue;	/* Completion (done) queue	*/
1857 	u32	dqueue_ba;	/* Done queue BUS address	*/
1858 
1859 	/*
1860 	 *  Miscellaneous buffers accessed by the scripts-processor.
1861 	 *  They shall be DWORD aligned, because they may be read or
1862 	 *  written with a script command.
1863 	 */
1864 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1865 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1866 	u32		lastmsg;	/* Last SCSI message sent	*/
1867 	u_char		scratch;	/* Scratch for SCSI receive	*/
1868 
1869 	/*
1870 	 *  Miscellaneous configuration and status parameters.
1871 	 */
1872 	u_char		usrflags;	/* Miscellaneous user flags	*/
1873 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1874 	u_char		verbose;	/* Verbosity for this controller*/
1875 	u32		cache;		/* Used for cache test at init.	*/
1876 
1877 	/*
1878 	 *  CCB lists and queue.
1879 	 */
1880 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1881 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1882 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1883 
1884 	/*
1885 	 *  During error handling and/or recovery,
1886 	 *  active CCBs that are to be completed with
1887 	 *  error or requeued are moved from the busy_ccbq
1888 	 *  to the comp_ccbq prior to completion.
1889 	 */
1890 	SYM_QUEHEAD	comp_ccbq;
1891 
1892 	/*
1893 	 *  CAM CCB pending queue.
1894 	 */
1895 	SYM_QUEHEAD	cam_ccbq;
1896 
1897 	/*
1898 	 *  IMMEDIATE ARBITRATION (IARB) control.
1899 	 *
1900 	 *  We keep track in 'last_cp' of the last CCB that has been
1901 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1902 	 *  this CCB completes. If last_cp is not zero at the moment
1903 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1904 	 *  used by the SCRIPTS as a hint for setting IARB.
1905 	 *  We donnot set more than 'iarb_max' consecutive hints for
1906 	 *  IARB in order to leave devices a chance to reselect.
1907 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1908 	 */
1909 #ifdef SYM_CONF_IARB_SUPPORT
1910 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1911 	u_short		iarb_count;	/* Actual # of these hints	*/
1912 	ccb_p		last_cp;
1913 #endif
1914 
1915 	/*
1916 	 *  Command abort handling.
1917 	 *  We need to synchronize tightly with the SCRIPTS
1918 	 *  processor in order to handle things correctly.
1919 	 */
1920 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1921 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1922 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1923 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1924 };
1925 
1926 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1927 
1928 /*
1929  *  Return the name of the controller.
1930  */
1931 static __inline char *sym_name(hcb_p np)
1932 {
1933 	return np->inst_name;
1934 }
1935 
1936 /*--------------------------------------------------------------------------*/
1937 /*------------------------------ FIRMWARES ---------------------------------*/
1938 /*--------------------------------------------------------------------------*/
1939 
1940 /*
1941  *  This stuff will be moved to a separate source file when
1942  *  the driver will be broken into several source modules.
1943  */
1944 
1945 /*
1946  *  Macros used for all firmwares.
1947  */
1948 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1949 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1950 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1951 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1952 
1953 
1954 #ifdef	SYM_CONF_GENERIC_SUPPORT
1955 /*
1956  *  Allocate firmware #1 script area.
1957  */
1958 #define	SYM_FWA_SCR		sym_fw1a_scr
1959 #define	SYM_FWB_SCR		sym_fw1b_scr
1960 #include <dev/sym/sym_fw1.h>
1961 struct sym_fwa_ofs sym_fw1a_ofs = {
1962 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1963 };
1964 struct sym_fwb_ofs sym_fw1b_ofs = {
1965 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1966 };
1967 #undef	SYM_FWA_SCR
1968 #undef	SYM_FWB_SCR
1969 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1970 
1971 /*
1972  *  Allocate firmware #2 script area.
1973  */
1974 #define	SYM_FWA_SCR		sym_fw2a_scr
1975 #define	SYM_FWB_SCR		sym_fw2b_scr
1976 #include <dev/sym/sym_fw2.h>
1977 struct sym_fwa_ofs sym_fw2a_ofs = {
1978 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1979 };
1980 struct sym_fwb_ofs sym_fw2b_ofs = {
1981 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1982 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1983 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1984 };
1985 #undef	SYM_FWA_SCR
1986 #undef	SYM_FWB_SCR
1987 
1988 #undef	SYM_GEN_A
1989 #undef	SYM_GEN_B
1990 #undef	PADDR_A
1991 #undef	PADDR_B
1992 
1993 #ifdef	SYM_CONF_GENERIC_SUPPORT
1994 /*
1995  *  Patch routine for firmware #1.
1996  */
1997 static void
1998 sym_fw1_patch(hcb_p np)
1999 {
2000 	struct sym_fw1a_scr *scripta0;
2001 	struct sym_fw1b_scr *scriptb0;
2002 
2003 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
2004 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
2005 
2006 	/*
2007 	 *  Remove LED support if not needed.
2008 	 */
2009 	if (!(np->features & FE_LED0)) {
2010 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
2011 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
2012 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
2013 	}
2014 
2015 #ifdef SYM_CONF_IARB_SUPPORT
2016 	/*
2017 	 *    If user does not want to use IMMEDIATE ARBITRATION
2018 	 *    when we are reselected while attempting to arbitrate,
2019 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
2020 	 */
2021 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
2022 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
2023 #endif
2024 	/*
2025 	 *  Patch some data in SCRIPTS.
2026 	 *  - start and done queue initial bus address.
2027 	 *  - target bus address table bus address.
2028 	 */
2029 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
2030 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
2031 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
2032 }
2033 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2034 
2035 /*
2036  *  Patch routine for firmware #2.
2037  */
2038 static void
2039 sym_fw2_patch(hcb_p np)
2040 {
2041 	struct sym_fw2a_scr *scripta0;
2042 	struct sym_fw2b_scr *scriptb0;
2043 
2044 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
2045 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
2046 
2047 	/*
2048 	 *  Remove LED support if not needed.
2049 	 */
2050 	if (!(np->features & FE_LED0)) {
2051 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
2052 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
2053 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
2054 	}
2055 
2056 #ifdef SYM_CONF_IARB_SUPPORT
2057 	/*
2058 	 *    If user does not want to use IMMEDIATE ARBITRATION
2059 	 *    when we are reselected while attempting to arbitrate,
2060 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
2061 	 */
2062 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
2063 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
2064 #endif
2065 	/*
2066 	 *  Patch some variable in SCRIPTS.
2067 	 *  - start and done queue initial bus address.
2068 	 *  - target bus address table bus address.
2069 	 */
2070 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
2071 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
2072 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
2073 
2074 	/*
2075 	 *  Remove the load of SCNTL4 on reselection if not a C10.
2076 	 */
2077 	if (!(np->features & FE_C10)) {
2078 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
2079 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
2080 	}
2081 
2082 	/*
2083 	 *  Remove a couple of work-arounds specific to C1010 if
2084 	 *  they are not desirable. See `sym_fw2.h' for more details.
2085 	 */
2086 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
2087 	      np->revision_id < 0x1 &&
2088 	      np->pciclk_khz < 60000)) {
2089 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
2090 		scripta0->datao_phase[1] = cpu_to_scr(0);
2091 	}
2092 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
2093 	      /* np->revision_id < 0xff */ 1)) {
2094 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
2095 		scripta0->sel_done[1] = cpu_to_scr(0);
2096 	}
2097 
2098 	/*
2099 	 *  Patch some other variables in SCRIPTS.
2100 	 *  These ones are loaded by the SCRIPTS processor.
2101 	 */
2102 	scriptb0->pm0_data_addr[0] =
2103 		cpu_to_scr(np->scripta_ba +
2104 			   offsetof(struct sym_fw2a_scr, pm0_data));
2105 	scriptb0->pm1_data_addr[0] =
2106 		cpu_to_scr(np->scripta_ba +
2107 			   offsetof(struct sym_fw2a_scr, pm1_data));
2108 }
2109 
2110 /*
2111  *  Fill the data area in scripts.
2112  *  To be done for all firmwares.
2113  */
2114 static void
2115 sym_fw_fill_data (u32 *in, u32 *out)
2116 {
2117 	int	i;
2118 
2119 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
2120 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
2121 		*in++  = offsetof (struct sym_dsb, data[i]);
2122 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
2123 		*out++ = offsetof (struct sym_dsb, data[i]);
2124 	}
2125 }
2126 
2127 /*
2128  *  Setup useful script bus addresses.
2129  *  To be done for all firmwares.
2130  */
2131 static void
2132 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
2133 {
2134 	u32 *pa;
2135 	u_short *po;
2136 	int i;
2137 
2138 	/*
2139 	 *  Build the bus address table for script A
2140 	 *  from the script A offset table.
2141 	 */
2142 	po = (u_short *) fw->a_ofs;
2143 	pa = (u32 *) &np->fwa_bas;
2144 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
2145 		pa[i] = np->scripta_ba + po[i];
2146 
2147 	/*
2148 	 *  Same for script B.
2149 	 */
2150 	po = (u_short *) fw->b_ofs;
2151 	pa = (u32 *) &np->fwb_bas;
2152 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
2153 		pa[i] = np->scriptb_ba + po[i];
2154 }
2155 
2156 #ifdef	SYM_CONF_GENERIC_SUPPORT
2157 /*
2158  *  Setup routine for firmware #1.
2159  */
2160 static void
2161 sym_fw1_setup(hcb_p np, struct sym_fw *fw)
2162 {
2163 	struct sym_fw1a_scr *scripta0;
2164 	struct sym_fw1b_scr *scriptb0;
2165 
2166 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
2167 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
2168 
2169 	/*
2170 	 *  Fill variable parts in scripts.
2171 	 */
2172 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2173 
2174 	/*
2175 	 *  Setup bus addresses used from the C code..
2176 	 */
2177 	sym_fw_setup_bus_addresses(np, fw);
2178 }
2179 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2180 
2181 /*
2182  *  Setup routine for firmware #2.
2183  */
2184 static void
2185 sym_fw2_setup(hcb_p np, struct sym_fw *fw)
2186 {
2187 	struct sym_fw2a_scr *scripta0;
2188 	struct sym_fw2b_scr *scriptb0;
2189 
2190 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
2191 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
2192 
2193 	/*
2194 	 *  Fill variable parts in scripts.
2195 	 */
2196 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2197 
2198 	/*
2199 	 *  Setup bus addresses used from the C code..
2200 	 */
2201 	sym_fw_setup_bus_addresses(np, fw);
2202 }
2203 
2204 /*
2205  *  Allocate firmware descriptors.
2206  */
2207 #ifdef	SYM_CONF_GENERIC_SUPPORT
2208 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2209 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2210 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2211 
2212 /*
2213  *  Find the most appropriate firmware for a chip.
2214  */
2215 static struct sym_fw *
2216 sym_find_firmware(struct sym_pci_chip *chip)
2217 {
2218 	if (chip->features & FE_LDSTR)
2219 		return &sym_fw2;
2220 #ifdef	SYM_CONF_GENERIC_SUPPORT
2221 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2222 		return &sym_fw1;
2223 #endif
2224 	else
2225 		return 0;
2226 }
2227 
2228 /*
2229  *  Bind a script to physical addresses.
2230  */
2231 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2232 {
2233 	u32 opcode, new, old, tmp1, tmp2;
2234 	u32 *end, *cur;
2235 	int relocs;
2236 
2237 	cur = start;
2238 	end = start + len/4;
2239 
2240 	while (cur < end) {
2241 
2242 		opcode = *cur;
2243 
2244 		/*
2245 		 *  If we forget to change the length
2246 		 *  in scripts, a field will be
2247 		 *  padded with 0. This is an illegal
2248 		 *  command.
2249 		 */
2250 		if (opcode == 0) {
2251 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2252 				sym_name(np), (int) (cur-start));
2253 			MDELAY (10000);
2254 			++cur;
2255 			continue;
2256 		};
2257 
2258 		/*
2259 		 *  We use the bogus value 0xf00ff00f ;-)
2260 		 *  to reserve data area in SCRIPTS.
2261 		 */
2262 		if (opcode == SCR_DATA_ZERO) {
2263 			*cur++ = 0;
2264 			continue;
2265 		}
2266 
2267 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2268 			printf ("%d:  <%x>\n", (int) (cur-start),
2269 				(unsigned)opcode);
2270 
2271 		/*
2272 		 *  We don't have to decode ALL commands
2273 		 */
2274 		switch (opcode >> 28) {
2275 		case 0xf:
2276 			/*
2277 			 *  LOAD / STORE DSA relative, don't relocate.
2278 			 */
2279 			relocs = 0;
2280 			break;
2281 		case 0xe:
2282 			/*
2283 			 *  LOAD / STORE absolute.
2284 			 */
2285 			relocs = 1;
2286 			break;
2287 		case 0xc:
2288 			/*
2289 			 *  COPY has TWO arguments.
2290 			 */
2291 			relocs = 2;
2292 			tmp1 = cur[1];
2293 			tmp2 = cur[2];
2294 			if ((tmp1 ^ tmp2) & 3) {
2295 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2296 					sym_name(np), (int) (cur-start));
2297 				MDELAY (10000);
2298 			}
2299 			/*
2300 			 *  If PREFETCH feature not enabled, remove
2301 			 *  the NO FLUSH bit if present.
2302 			 */
2303 			if ((opcode & SCR_NO_FLUSH) &&
2304 			    !(np->features & FE_PFEN)) {
2305 				opcode = (opcode & ~SCR_NO_FLUSH);
2306 			}
2307 			break;
2308 		case 0x0:
2309 			/*
2310 			 *  MOVE/CHMOV (absolute address)
2311 			 */
2312 			if (!(np->features & FE_WIDE))
2313 				opcode = (opcode | OPC_MOVE);
2314 			relocs = 1;
2315 			break;
2316 		case 0x1:
2317 			/*
2318 			 *  MOVE/CHMOV (table indirect)
2319 			 */
2320 			if (!(np->features & FE_WIDE))
2321 				opcode = (opcode | OPC_MOVE);
2322 			relocs = 0;
2323 			break;
2324 		case 0x8:
2325 			/*
2326 			 *  JUMP / CALL
2327 			 *  dont't relocate if relative :-)
2328 			 */
2329 			if (opcode & 0x00800000)
2330 				relocs = 0;
2331 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2332 				relocs = 2;
2333 			else
2334 				relocs = 1;
2335 			break;
2336 		case 0x4:
2337 		case 0x5:
2338 		case 0x6:
2339 		case 0x7:
2340 			relocs = 1;
2341 			break;
2342 		default:
2343 			relocs = 0;
2344 			break;
2345 		};
2346 
2347 		/*
2348 		 *  Scriptify:) the opcode.
2349 		 */
2350 		*cur++ = cpu_to_scr(opcode);
2351 
2352 		/*
2353 		 *  If no relocation, assume 1 argument
2354 		 *  and just scriptize:) it.
2355 		 */
2356 		if (!relocs) {
2357 			*cur = cpu_to_scr(*cur);
2358 			++cur;
2359 			continue;
2360 		}
2361 
2362 		/*
2363 		 *  Otherwise performs all needed relocations.
2364 		 */
2365 		while (relocs--) {
2366 			old = *cur;
2367 
2368 			switch (old & RELOC_MASK) {
2369 			case RELOC_REGISTER:
2370 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2371 				break;
2372 			case RELOC_LABEL_A:
2373 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2374 				break;
2375 			case RELOC_LABEL_B:
2376 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2377 				break;
2378 			case RELOC_SOFTC:
2379 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2380 				break;
2381 			case 0:
2382 				/*
2383 				 *  Don't relocate a 0 address.
2384 				 *  They are mostly used for patched or
2385 				 *  script self-modified areas.
2386 				 */
2387 				if (old == 0) {
2388 					new = old;
2389 					break;
2390 				}
2391 				/* fall through */
2392 			default:
2393 				new = 0;
2394 				panic("sym_fw_bind_script: "
2395 				      "weird relocation %x\n", old);
2396 				break;
2397 			}
2398 
2399 			*cur++ = cpu_to_scr(new);
2400 		}
2401 	};
2402 }
2403 
2404 /*--------------------------------------------------------------------------*/
2405 /*--------------------------- END OF FIRMARES  -----------------------------*/
2406 /*--------------------------------------------------------------------------*/
2407 
2408 /*
2409  *  Function prototypes.
2410  */
2411 static void sym_save_initial_setting (hcb_p np);
2412 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2413 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2414 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2415 static void sym_chip_reset (hcb_p np);
2416 static void sym_soft_reset (hcb_p np);
2417 static void sym_start_reset (hcb_p np);
2418 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2419 static int  sym_wakeup_done (hcb_p np);
2420 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2421 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2422 static void sym_init (hcb_p np, int reason);
2423 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2424 		        u_char *fakp);
2425 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2426 			 u_char div, u_char fak);
2427 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2428 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2429 			 u_char per, u_char wide, u_char div, u_char fak);
2430 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2431 			 u_char per, u_char wide, u_char div, u_char fak);
2432 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2433 static void sym_intr (void *arg);
2434 static void sym_poll (struct cam_sim *sim);
2435 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2436 static void sym_int_sto (hcb_p np);
2437 static void sym_int_udc (hcb_p np);
2438 static void sym_int_sbmc (hcb_p np);
2439 static void sym_int_par (hcb_p np, u_short sist);
2440 static void sym_int_ma (hcb_p np);
2441 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2442 				    int task);
2443 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2444 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2445 static void sym_sir_task_recovery (hcb_p np, int num);
2446 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2447 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2448 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2449 static int  sym_show_msg (u_char * msg);
2450 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2451 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2452 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2453 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2454 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2455 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2456 static void sym_int_sir (hcb_p np);
2457 static void sym_free_ccb (hcb_p np, ccb_p cp);
2458 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2459 static ccb_p sym_alloc_ccb (hcb_p np);
2460 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2461 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2462 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2463 static int  sym_snooptest (hcb_p np);
2464 static void sym_selectclock(hcb_p np, u_char scntl3);
2465 static void sym_getclock (hcb_p np, int mult);
2466 static int  sym_getpciclock (hcb_p np);
2467 static void sym_complete_ok (hcb_p np, ccb_p cp);
2468 static void sym_complete_error (hcb_p np, ccb_p cp);
2469 static void sym_timeout (void *arg);
2470 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2471 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2472 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2473 static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
2474 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2475 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2476 				      ccb_p cp);
2477 #ifdef	FreeBSD_Bus_Dma_Abstraction
2478 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2479 					bus_dma_segment_t *psegs, int nsegs);
2480 #else
2481 static int  sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr,
2482 				 vm_size_t len);
2483 static int  sym_scatter_sg_virtual (hcb_p np, ccb_p cp,
2484 				    bus_dma_segment_t *psegs, int nsegs);
2485 static int  sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr,
2486 				  vm_size_t len);
2487 #endif
2488 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2489 				    bus_dma_segment_t *psegs, int nsegs);
2490 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2491 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2492 			      struct ccb_trans_settings *cts);
2493 static void sym_update_dflags(hcb_p np, u_char *flags,
2494 			      struct ccb_trans_settings *cts);
2495 
2496 #ifdef FreeBSD_Bus_Io_Abstraction
2497 static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2498 static int  sym_pci_probe (device_t dev);
2499 static int  sym_pci_attach (device_t dev);
2500 #else
2501 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag);
2502 static const char *sym_pci_probe (pcici_t tag, pcidi_t type);
2503 static void sym_pci_attach (pcici_t tag, int unit);
2504 static int sym_pci_attach2 (pcici_t tag, int unit);
2505 #endif
2506 
2507 static void sym_pci_free (hcb_p np);
2508 static int  sym_cam_attach (hcb_p np);
2509 static void sym_cam_free (hcb_p np);
2510 
2511 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2512 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2513 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2514 
2515 /*
2516  *  Print something which allows to retrieve the controler type,
2517  *  unit, target, lun concerned by a kernel message.
2518  */
2519 static void PRINT_TARGET (hcb_p np, int target)
2520 {
2521 	printf ("%s:%d:", sym_name(np), target);
2522 }
2523 
2524 static void PRINT_LUN(hcb_p np, int target, int lun)
2525 {
2526 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2527 }
2528 
2529 static void PRINT_ADDR (ccb_p cp)
2530 {
2531 	if (cp && cp->cam_ccb)
2532 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2533 }
2534 
2535 /*
2536  *  Take into account this ccb in the freeze count.
2537  */
2538 static void sym_freeze_cam_ccb(union ccb *ccb)
2539 {
2540 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2541 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2542 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2543 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2544 		}
2545 	}
2546 }
2547 
2548 /*
2549  *  Set the status field of a CAM CCB.
2550  */
2551 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2552 {
2553 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2554 	ccb->ccb_h.status |= status;
2555 }
2556 
2557 /*
2558  *  Get the status field of a CAM CCB.
2559  */
2560 static __inline int sym_get_cam_status(union ccb *ccb)
2561 {
2562 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2563 }
2564 
2565 /*
2566  *  Enqueue a CAM CCB.
2567  */
2568 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
2569 {
2570 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2571 	ccb->ccb_h.status = CAM_REQ_INPROG;
2572 
2573 	ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb,
2574 				       ccb->ccb_h.timeout*hz/1000);
2575 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2576 	ccb->ccb_h.sym_hcb_ptr = np;
2577 
2578 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2579 }
2580 
2581 /*
2582  *  Complete a pending CAM CCB.
2583  */
2584 static void sym_xpt_done(hcb_p np, union ccb *ccb)
2585 {
2586 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2587 		untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch);
2588 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2589 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2590 		ccb->ccb_h.sym_hcb_ptr = 0;
2591 	}
2592 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2593 		sym_freeze_cam_ccb(ccb);
2594 	xpt_done(ccb);
2595 }
2596 
2597 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2598 {
2599 	sym_set_cam_status(ccb, cam_status);
2600 	sym_xpt_done(np, ccb);
2601 }
2602 
2603 /*
2604  *  SYMBIOS chip clock divisor table.
2605  *
2606  *  Divisors are multiplied by 10,000,000 in order to make
2607  *  calculations more simple.
2608  */
2609 #define _5M 5000000
2610 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2611 
2612 /*
2613  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2614  *  128 transfers. All chips support at least 16 transfers
2615  *  bursts. The 825A, 875 and 895 chips support bursts of up
2616  *  to 128 transfers and the 895A and 896 support bursts of up
2617  *  to 64 transfers. All other chips support up to 16
2618  *  transfers bursts.
2619  *
2620  *  For PCI 32 bit data transfers each transfer is a DWORD.
2621  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2622  *
2623  *  We use log base 2 (burst length) as internal code, with
2624  *  value 0 meaning "burst disabled".
2625  */
2626 
2627 /*
2628  *  Burst length from burst code.
2629  */
2630 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2631 
2632 /*
2633  *  Burst code from io register bits.
2634  */
2635 #define burst_code(dmode, ctest4, ctest5) \
2636 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2637 
2638 /*
2639  *  Set initial io register bits from burst code.
2640  */
2641 static __inline void sym_init_burst(hcb_p np, u_char bc)
2642 {
2643 	np->rv_ctest4	&= ~0x80;
2644 	np->rv_dmode	&= ~(0x3 << 6);
2645 	np->rv_ctest5	&= ~0x4;
2646 
2647 	if (!bc) {
2648 		np->rv_ctest4	|= 0x80;
2649 	}
2650 	else {
2651 		--bc;
2652 		np->rv_dmode	|= ((bc & 0x3) << 6);
2653 		np->rv_ctest5	|= (bc & 0x4);
2654 	}
2655 }
2656 
2657 
2658 /*
2659  * Print out the list of targets that have some flag disabled by user.
2660  */
2661 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2662 {
2663 	int cnt;
2664 	int i;
2665 
2666 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2667 		if (i == np->myaddr)
2668 			continue;
2669 		if (np->target[i].usrflags & mask) {
2670 			if (!cnt++)
2671 				printf("%s: %s disabled for targets",
2672 					sym_name(np), msg);
2673 			printf(" %d", i);
2674 		}
2675 	}
2676 	if (cnt)
2677 		printf(".\n");
2678 }
2679 
2680 /*
2681  *  Save initial settings of some IO registers.
2682  *  Assumed to have been set by BIOS.
2683  *  We cannot reset the chip prior to reading the
2684  *  IO registers, since informations will be lost.
2685  *  Since the SCRIPTS processor may be running, this
2686  *  is not safe on paper, but it seems to work quite
2687  *  well. :)
2688  */
2689 static void sym_save_initial_setting (hcb_p np)
2690 {
2691 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2692 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2693 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2694 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2695 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2696 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2697 	np->sv_gpcntl	= INB(nc_gpcntl);
2698 	np->sv_stest1	= INB(nc_stest1);
2699 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2700 	np->sv_stest4	= INB(nc_stest4);
2701 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2702 		np->sv_scntl4	= INB(nc_scntl4);
2703 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2704 	}
2705 	else
2706 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2707 }
2708 
2709 /*
2710  *  Prepare io register values used by sym_init() according
2711  *  to selected and supported features.
2712  */
2713 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2714 {
2715 	u_char	burst_max;
2716 	u32	period;
2717 	int i;
2718 
2719 	/*
2720 	 *  Wide ?
2721 	 */
2722 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2723 
2724 	/*
2725 	 *  Get the frequency of the chip's clock.
2726 	 */
2727 	if	(np->features & FE_QUAD)
2728 		np->multiplier	= 4;
2729 	else if	(np->features & FE_DBLR)
2730 		np->multiplier	= 2;
2731 	else
2732 		np->multiplier	= 1;
2733 
2734 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2735 	np->clock_khz	*= np->multiplier;
2736 
2737 	if (np->clock_khz != 40000)
2738 		sym_getclock(np, np->multiplier);
2739 
2740 	/*
2741 	 * Divisor to be used for async (timer pre-scaler).
2742 	 */
2743 	i = np->clock_divn - 1;
2744 	while (--i >= 0) {
2745 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2746 			++i;
2747 			break;
2748 		}
2749 	}
2750 	np->rv_scntl3 = i+1;
2751 
2752 	/*
2753 	 * The C1010 uses hardwired divisors for async.
2754 	 * So, we just throw away, the async. divisor.:-)
2755 	 */
2756 	if (np->features & FE_C10)
2757 		np->rv_scntl3 = 0;
2758 
2759 	/*
2760 	 * Minimum synchronous period factor supported by the chip.
2761 	 * Btw, 'period' is in tenths of nanoseconds.
2762 	 */
2763 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2764 	if	(period <= 250)		np->minsync = 10;
2765 	else if	(period <= 303)		np->minsync = 11;
2766 	else if	(period <= 500)		np->minsync = 12;
2767 	else				np->minsync = (period + 40 - 1) / 40;
2768 
2769 	/*
2770 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2771 	 */
2772 	if	(np->minsync < 25 &&
2773 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2774 		np->minsync = 25;
2775 	else if	(np->minsync < 12 &&
2776 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2777 		np->minsync = 12;
2778 
2779 	/*
2780 	 * Maximum synchronous period factor supported by the chip.
2781 	 */
2782 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2783 	np->maxsync = period > 2540 ? 254 : period / 10;
2784 
2785 	/*
2786 	 * If chip is a C1010, guess the sync limits in DT mode.
2787 	 */
2788 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2789 		if (np->clock_khz == 160000) {
2790 			np->minsync_dt = 9;
2791 			np->maxsync_dt = 50;
2792 			np->maxoffs_dt = 62;
2793 		}
2794 	}
2795 
2796 	/*
2797 	 *  64 bit addressing  (895A/896/1010) ?
2798 	 */
2799 	if (np->features & FE_DAC)
2800 #if BITS_PER_LONG > 32
2801 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2802 #else
2803 		np->rv_ccntl1	|= (DDAC);
2804 #endif
2805 
2806 	/*
2807 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2808   	 */
2809 	if (np->features & FE_NOPM)
2810 		np->rv_ccntl0	|= (ENPMJ);
2811 
2812  	/*
2813 	 *  C1010 Errata.
2814 	 *  In dual channel mode, contention occurs if internal cycles
2815 	 *  are used. Disable internal cycles.
2816 	 */
2817 	if (np->device_id == PCI_ID_LSI53C1010 &&
2818 	    np->revision_id < 0x2)
2819 		np->rv_ccntl0	|=  DILS;
2820 
2821 	/*
2822 	 *  Select burst length (dwords)
2823 	 */
2824 	burst_max	= SYM_SETUP_BURST_ORDER;
2825 	if (burst_max == 255)
2826 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2827 				       np->sv_ctest5);
2828 	if (burst_max > 7)
2829 		burst_max = 7;
2830 	if (burst_max > np->maxburst)
2831 		burst_max = np->maxburst;
2832 
2833 	/*
2834 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2835 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2836 	 *  based transactions on LOAD/STORE instructions. So we have
2837 	 *  to prevent these chips from using such PCI transactions in
2838 	 *  this driver. The generic ncr driver that does not use
2839 	 *  LOAD/STORE instructions does not need this work-around.
2840 	 */
2841 	if ((np->device_id == PCI_ID_SYM53C810 &&
2842 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2843 	    (np->device_id == PCI_ID_SYM53C860 &&
2844 	     np->revision_id <= 0x1))
2845 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2846 
2847 	/*
2848 	 *  Select all supported special features.
2849 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2850 	 *  does not help, but burst op fetch (BOF) does.
2851 	 *  Disabling PFEN makes sure BOF will be used.
2852 	 */
2853 	if (np->features & FE_ERL)
2854 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2855 	if (np->features & FE_BOF)
2856 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2857 	if (np->features & FE_ERMP)
2858 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2859 #if 1
2860 	if ((np->features & FE_PFEN) && !np->ram_ba)
2861 #else
2862 	if (np->features & FE_PFEN)
2863 #endif
2864 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2865 	if (np->features & FE_CLSE)
2866 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2867 	if (np->features & FE_WRIE)
2868 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2869 	if (np->features & FE_DFS)
2870 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2871 
2872 	/*
2873 	 *  Select some other
2874 	 */
2875 	if (SYM_SETUP_PCI_PARITY)
2876 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2877 	if (SYM_SETUP_SCSI_PARITY)
2878 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2879 
2880 	/*
2881 	 *  Get parity checking, host ID and verbose mode from NVRAM
2882 	 */
2883 	np->myaddr = 255;
2884 	sym_nvram_setup_host (np, nvram);
2885 
2886 	/*
2887 	 *  Get SCSI addr of host adapter (set by bios?).
2888 	 */
2889 	if (np->myaddr == 255) {
2890 		np->myaddr = INB(nc_scid) & 0x07;
2891 		if (!np->myaddr)
2892 			np->myaddr = SYM_SETUP_HOST_ID;
2893 	}
2894 
2895 	/*
2896 	 *  Prepare initial io register bits for burst length
2897 	 */
2898 	sym_init_burst(np, burst_max);
2899 
2900 	/*
2901 	 *  Set SCSI BUS mode.
2902 	 *  - LVD capable chips (895/895A/896/1010) report the
2903 	 *    current BUS mode through the STEST4 IO register.
2904 	 *  - For previous generation chips (825/825A/875),
2905 	 *    user has to tell us how to check against HVD,
2906 	 *    since a 100% safe algorithm is not possible.
2907 	 */
2908 	np->scsi_mode = SMODE_SE;
2909 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2910 		np->scsi_mode = (np->sv_stest4 & SMODE);
2911 	else if	(np->features & FE_DIFF) {
2912 		if (SYM_SETUP_SCSI_DIFF == 1) {
2913 			if (np->sv_scntl3) {
2914 				if (np->sv_stest2 & 0x20)
2915 					np->scsi_mode = SMODE_HVD;
2916 			}
2917 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2918 				if (!(INB(nc_gpreg) & 0x08))
2919 					np->scsi_mode = SMODE_HVD;
2920 			}
2921 		}
2922 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2923 			np->scsi_mode = SMODE_HVD;
2924 	}
2925 	if (np->scsi_mode == SMODE_HVD)
2926 		np->rv_stest2 |= 0x20;
2927 
2928 	/*
2929 	 *  Set LED support from SCRIPTS.
2930 	 *  Ignore this feature for boards known to use a
2931 	 *  specific GPIO wiring and for the 895A, 896
2932 	 *  and 1010 that drive the LED directly.
2933 	 */
2934 	if ((SYM_SETUP_SCSI_LED ||
2935 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2936 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2937 	       np->device_id == PCI_ID_SYM53C895))) &&
2938 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2939 		np->features |= FE_LED0;
2940 
2941 	/*
2942 	 *  Set irq mode.
2943 	 */
2944 	switch(SYM_SETUP_IRQ_MODE & 3) {
2945 	case 2:
2946 		np->rv_dcntl	|= IRQM;
2947 		break;
2948 	case 1:
2949 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2950 		break;
2951 	default:
2952 		break;
2953 	}
2954 
2955 	/*
2956 	 *  Configure targets according to driver setup.
2957 	 *  If NVRAM present get targets setup from NVRAM.
2958 	 */
2959 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2960 		tcb_p tp = &np->target[i];
2961 
2962 #ifdef	FreeBSD_New_Tran_Settings
2963 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2964 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2965 #endif
2966 		tp->tinfo.user.period = np->minsync;
2967 		tp->tinfo.user.offset = np->maxoffs;
2968 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2969 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2970 		tp->usrtags = SYM_SETUP_MAX_TAG;
2971 
2972 		sym_nvram_setup_target (np, i, nvram);
2973 
2974 		/*
2975 		 *  For now, guess PPR/DT support from the period
2976 		 *  and BUS width.
2977 		 */
2978 		if (np->features & FE_ULTRA3) {
2979 			if (tp->tinfo.user.period <= 9	&&
2980 			    tp->tinfo.user.width == BUS_16_BIT) {
2981 				tp->tinfo.user.options |= PPR_OPT_DT;
2982 				tp->tinfo.user.offset   = np->maxoffs_dt;
2983 #ifdef	FreeBSD_New_Tran_Settings
2984 				tp->tinfo.user.spi_version = 3;
2985 #endif
2986 			}
2987 		}
2988 
2989 		if (!tp->usrtags)
2990 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2991 	}
2992 
2993 	/*
2994 	 *  Let user know about the settings.
2995 	 */
2996 	i = nvram->type;
2997 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2998 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2999 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
3000 		np->myaddr,
3001 		(np->features & FE_ULTRA3) ? 80 :
3002 		(np->features & FE_ULTRA2) ? 40 :
3003 		(np->features & FE_ULTRA)  ? 20 : 10,
3004 		sym_scsi_bus_mode(np->scsi_mode),
3005 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
3006 	/*
3007 	 *  Tell him more on demand.
3008 	 */
3009 	if (sym_verbose) {
3010 		printf("%s: %s IRQ line driver%s\n",
3011 			sym_name(np),
3012 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
3013 			np->ram_ba ? ", using on-chip SRAM" : "");
3014 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
3015 		if (np->features & FE_NOPM)
3016 			printf("%s: handling phase mismatch from SCRIPTS.\n",
3017 			       sym_name(np));
3018 	}
3019 	/*
3020 	 *  And still more.
3021 	 */
3022 	if (sym_verbose > 1) {
3023 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3024 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3025 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3026 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3027 
3028 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3029 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3030 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
3031 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
3032 	}
3033 	/*
3034 	 *  Let user be aware of targets that have some disable flags set.
3035 	 */
3036 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
3037 	if (sym_verbose)
3038 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
3039 				       "SCAN FOR LUNS");
3040 
3041 	return 0;
3042 }
3043 
3044 /*
3045  *  Prepare the next negotiation message if needed.
3046  *
3047  *  Fill in the part of message buffer that contains the
3048  *  negotiation and the nego_status field of the CCB.
3049  *  Returns the size of the message in bytes.
3050  */
3051 
3052 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
3053 {
3054 	tcb_p tp = &np->target[cp->target];
3055 	int msglen = 0;
3056 
3057 	/*
3058 	 *  Early C1010 chips need a work-around for DT
3059 	 *  data transfer to work.
3060 	 */
3061 	if (!(np->features & FE_U3EN))
3062 		tp->tinfo.goal.options = 0;
3063 	/*
3064 	 *  negotiate using PPR ?
3065 	 */
3066 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
3067 		nego = NS_PPR;
3068 	/*
3069 	 *  negotiate wide transfers ?
3070 	 */
3071 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
3072 		nego = NS_WIDE;
3073 	/*
3074 	 *  negotiate synchronous transfers?
3075 	 */
3076 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
3077 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
3078 		nego = NS_SYNC;
3079 
3080 	switch (nego) {
3081 	case NS_SYNC:
3082 		msgptr[msglen++] = M_EXTENDED;
3083 		msgptr[msglen++] = 3;
3084 		msgptr[msglen++] = M_X_SYNC_REQ;
3085 		msgptr[msglen++] = tp->tinfo.goal.period;
3086 		msgptr[msglen++] = tp->tinfo.goal.offset;
3087 		break;
3088 	case NS_WIDE:
3089 		msgptr[msglen++] = M_EXTENDED;
3090 		msgptr[msglen++] = 2;
3091 		msgptr[msglen++] = M_X_WIDE_REQ;
3092 		msgptr[msglen++] = tp->tinfo.goal.width;
3093 		break;
3094 	case NS_PPR:
3095 		msgptr[msglen++] = M_EXTENDED;
3096 		msgptr[msglen++] = 6;
3097 		msgptr[msglen++] = M_X_PPR_REQ;
3098 		msgptr[msglen++] = tp->tinfo.goal.period;
3099 		msgptr[msglen++] = 0;
3100 		msgptr[msglen++] = tp->tinfo.goal.offset;
3101 		msgptr[msglen++] = tp->tinfo.goal.width;
3102 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
3103 		break;
3104 	};
3105 
3106 	cp->nego_status = nego;
3107 
3108 	if (nego) {
3109 		tp->nego_cp = cp; /* Keep track a nego will be performed */
3110 		if (DEBUG_FLAGS & DEBUG_NEGO) {
3111 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
3112 					  nego == NS_WIDE ? "wide msgout" :
3113 					  "ppr msgout", msgptr);
3114 		};
3115 	};
3116 
3117 	return msglen;
3118 }
3119 
3120 /*
3121  *  Insert a job into the start queue.
3122  */
3123 static void sym_put_start_queue(hcb_p np, ccb_p cp)
3124 {
3125 	u_short	qidx;
3126 
3127 #ifdef SYM_CONF_IARB_SUPPORT
3128 	/*
3129 	 *  If the previously queued CCB is not yet done,
3130 	 *  set the IARB hint. The SCRIPTS will go with IARB
3131 	 *  for this job when starting the previous one.
3132 	 *  We leave devices a chance to win arbitration by
3133 	 *  not using more than 'iarb_max' consecutive
3134 	 *  immediate arbitrations.
3135 	 */
3136 	if (np->last_cp && np->iarb_count < np->iarb_max) {
3137 		np->last_cp->host_flags |= HF_HINT_IARB;
3138 		++np->iarb_count;
3139 	}
3140 	else
3141 		np->iarb_count = 0;
3142 	np->last_cp = cp;
3143 #endif
3144 
3145 	/*
3146 	 *  Insert first the idle task and then our job.
3147 	 *  The MB should ensure proper ordering.
3148 	 */
3149 	qidx = np->squeueput + 2;
3150 	if (qidx >= MAX_QUEUE*2) qidx = 0;
3151 
3152 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
3153 	MEMORY_BARRIER();
3154 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
3155 
3156 	np->squeueput = qidx;
3157 
3158 	if (DEBUG_FLAGS & DEBUG_QUEUE)
3159 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
3160 
3161 	/*
3162 	 *  Script processor may be waiting for reselect.
3163 	 *  Wake it up.
3164 	 */
3165 	MEMORY_BARRIER();
3166 	OUTB (nc_istat, SIGP|np->istat_sem);
3167 }
3168 
3169 
3170 /*
3171  *  Soft reset the chip.
3172  *
3173  *  Raising SRST when the chip is running may cause
3174  *  problems on dual function chips (see below).
3175  *  On the other hand, LVD devices need some delay
3176  *  to settle and report actual BUS mode in STEST4.
3177  */
3178 static void sym_chip_reset (hcb_p np)
3179 {
3180 	OUTB (nc_istat, SRST);
3181 	UDELAY (10);
3182 	OUTB (nc_istat, 0);
3183 	UDELAY(2000);	/* For BUS MODE to settle */
3184 }
3185 
3186 /*
3187  *  Soft reset the chip.
3188  *
3189  *  Some 896 and 876 chip revisions may hang-up if we set
3190  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
3191  *  are running.
3192  *  So, we need to abort the current operation prior to
3193  *  soft resetting the chip.
3194  */
3195 static void sym_soft_reset (hcb_p np)
3196 {
3197 	u_char istat;
3198 	int i;
3199 
3200 	OUTB (nc_istat, CABRT);
3201 	for (i = 1000000 ; i ; --i) {
3202 		istat = INB (nc_istat);
3203 		if (istat & SIP) {
3204 			INW (nc_sist);
3205 			continue;
3206 		}
3207 		if (istat & DIP) {
3208 			OUTB (nc_istat, 0);
3209 			INB (nc_dstat);
3210 			break;
3211 		}
3212 	}
3213 	if (!i)
3214 		printf("%s: unable to abort current chip operation.\n",
3215 			sym_name(np));
3216 	sym_chip_reset (np);
3217 }
3218 
3219 /*
3220  *  Start reset process.
3221  *
3222  *  The interrupt handler will reinitialize the chip.
3223  */
3224 static void sym_start_reset(hcb_p np)
3225 {
3226 	(void) sym_reset_scsi_bus(np, 1);
3227 }
3228 
3229 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3230 {
3231 	u32 term;
3232 	int retv = 0;
3233 
3234 	sym_soft_reset(np);	/* Soft reset the chip */
3235 	if (enab_int)
3236 		OUTW (nc_sien, RST);
3237 	/*
3238 	 *  Enable Tolerant, reset IRQD if present and
3239 	 *  properly set IRQ mode, prior to resetting the bus.
3240 	 */
3241 	OUTB (nc_stest3, TE);
3242 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3243 	OUTB (nc_scntl1, CRST);
3244 	UDELAY (200);
3245 
3246 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3247 		goto out;
3248 	/*
3249 	 *  Check for no terminators or SCSI bus shorts to ground.
3250 	 *  Read SCSI data bus, data parity bits and control signals.
3251 	 *  We are expecting RESET to be TRUE and other signals to be
3252 	 *  FALSE.
3253 	 */
3254 	term =	INB(nc_sstat0);
3255 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3256 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3257 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3258 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3259 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3260 
3261 	if (!(np->features & FE_WIDE))
3262 		term &= 0x3ffff;
3263 
3264 	if (term != (2<<7)) {
3265 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3266 			sym_name(np));
3267 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3268 			"0x%lx, expecting 0x%lx\n",
3269 			sym_name(np),
3270 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3271 			(u_long)term, (u_long)(2<<7));
3272 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3273 			retv = 1;
3274 	}
3275 out:
3276 	OUTB (nc_scntl1, 0);
3277 	/* MDELAY(100); */
3278 	return retv;
3279 }
3280 
3281 /*
3282  *  The chip may have completed jobs. Look at the DONE QUEUE.
3283  *
3284  *  On architectures that may reorder LOAD/STORE operations,
3285  *  a memory barrier may be needed after the reading of the
3286  *  so-called `flag' and prior to dealing with the data.
3287  */
3288 static int sym_wakeup_done (hcb_p np)
3289 {
3290 	ccb_p cp;
3291 	int i, n;
3292 	u32 dsa;
3293 
3294 	n = 0;
3295 	i = np->dqueueget;
3296 	while (1) {
3297 		dsa = scr_to_cpu(np->dqueue[i]);
3298 		if (!dsa)
3299 			break;
3300 		np->dqueue[i] = 0;
3301 		if ((i = i+2) >= MAX_QUEUE*2)
3302 			i = 0;
3303 
3304 		cp = sym_ccb_from_dsa(np, dsa);
3305 		if (cp) {
3306 			MEMORY_BARRIER();
3307 			sym_complete_ok (np, cp);
3308 			++n;
3309 		}
3310 		else
3311 			printf ("%s: bad DSA (%x) in done queue.\n",
3312 				sym_name(np), (u_int) dsa);
3313 	}
3314 	np->dqueueget = i;
3315 
3316 	return n;
3317 }
3318 
3319 /*
3320  *  Complete all active CCBs with error.
3321  *  Used on CHIP/SCSI RESET.
3322  */
3323 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3324 {
3325 	/*
3326 	 *  Move all active CCBs to the COMP queue
3327 	 *  and flush this queue.
3328 	 */
3329 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3330 	sym_que_init(&np->busy_ccbq);
3331 	sym_flush_comp_queue(np, cam_status);
3332 }
3333 
3334 /*
3335  *  Start chip.
3336  *
3337  *  'reason' means:
3338  *     0: initialisation.
3339  *     1: SCSI BUS RESET delivered or received.
3340  *     2: SCSI BUS MODE changed.
3341  */
3342 static void sym_init (hcb_p np, int reason)
3343 {
3344  	int	i;
3345 	u32	phys;
3346 
3347  	/*
3348 	 *  Reset chip if asked, otherwise just clear fifos.
3349  	 */
3350 	if (reason == 1)
3351 		sym_soft_reset(np);
3352 	else {
3353 		OUTB (nc_stest3, TE|CSF);
3354 		OUTONB (nc_ctest3, CLF);
3355 	}
3356 
3357 	/*
3358 	 *  Clear Start Queue
3359 	 */
3360 	phys = np->squeue_ba;
3361 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3362 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3363 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3364 	}
3365 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3366 
3367 	/*
3368 	 *  Start at first entry.
3369 	 */
3370 	np->squeueput = 0;
3371 
3372 	/*
3373 	 *  Clear Done Queue
3374 	 */
3375 	phys = np->dqueue_ba;
3376 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3377 		np->dqueue[i]   = 0;
3378 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3379 	}
3380 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3381 
3382 	/*
3383 	 *  Start at first entry.
3384 	 */
3385 	np->dqueueget = 0;
3386 
3387 	/*
3388 	 *  Install patches in scripts.
3389 	 *  This also let point to first position the start
3390 	 *  and done queue pointers used from SCRIPTS.
3391 	 */
3392 	np->fw_patch(np);
3393 
3394 	/*
3395 	 *  Wakeup all pending jobs.
3396 	 */
3397 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3398 
3399 	/*
3400 	 *  Init chip.
3401 	 */
3402 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3403 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3404 
3405 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3406 					/*  full arb., ena parity, par->ATN  */
3407 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3408 
3409 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3410 
3411 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3412 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3413 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3414 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3415 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3416 
3417 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3418 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3419 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3420 
3421 	/* Extended Sreq/Sack filtering not supported on the C10 */
3422 	if (np->features & FE_C10)
3423 		OUTB (nc_stest2, np->rv_stest2);
3424 	else
3425 		OUTB (nc_stest2, EXT|np->rv_stest2);
3426 
3427 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3428 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3429 
3430 	/*
3431 	 *  For now, disable AIP generation on C1010-66.
3432 	 */
3433 	if (np->device_id == PCI_ID_LSI53C1010_2)
3434 		OUTB (nc_aipcntl1, DISAIP);
3435 
3436 	/*
3437 	 *  C10101 Errata.
3438 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3439 	 *  STEST1 register to disable SGE. We probably should do
3440 	 *  that from SCRIPTS for each selection/reselection, but
3441 	 *  I just don't want. :)
3442 	 */
3443 	if (np->device_id == PCI_ID_LSI53C1010 &&
3444 	    /* np->revision_id < 0xff */ 1)
3445 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3446 
3447 	/*
3448 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3449 	 *  Disable overlapped arbitration for some dual function devices,
3450 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3451 	 */
3452 	if (np->device_id == PCI_ID_SYM53C875)
3453 		OUTB (nc_ctest0, (1<<5));
3454 	else if (np->device_id == PCI_ID_SYM53C896)
3455 		np->rv_ccntl0 |= DPR;
3456 
3457 	/*
3458 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3459 	 *  and/or hardware phase mismatch, since only such chips
3460 	 *  seem to support those IO registers.
3461 	 */
3462 	if (np->features & (FE_DAC|FE_NOPM)) {
3463 		OUTB (nc_ccntl0, np->rv_ccntl0);
3464 		OUTB (nc_ccntl1, np->rv_ccntl1);
3465 	}
3466 
3467 	/*
3468 	 *  If phase mismatch handled by scripts (895A/896/1010),
3469 	 *  set PM jump addresses.
3470 	 */
3471 	if (np->features & FE_NOPM) {
3472 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3473 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3474 	}
3475 
3476 	/*
3477 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3478 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3479 	 */
3480 	if (np->features & FE_LED0)
3481 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3482 	else if (np->features & FE_LEDC)
3483 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3484 
3485 	/*
3486 	 *      enable ints
3487 	 */
3488 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3489 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3490 
3491 	/*
3492 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3493 	 *  Try to eat the spurious SBMC interrupt that may occur when
3494 	 *  we reset the chip but not the SCSI BUS (at initialization).
3495 	 */
3496 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3497 		OUTONW (nc_sien, SBMC);
3498 		if (reason == 0) {
3499 			MDELAY(100);
3500 			INW (nc_sist);
3501 		}
3502 		np->scsi_mode = INB (nc_stest4) & SMODE;
3503 	}
3504 
3505 	/*
3506 	 *  Fill in target structure.
3507 	 *  Reinitialize usrsync.
3508 	 *  Reinitialize usrwide.
3509 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3510 	 */
3511 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3512 		tcb_p tp = &np->target[i];
3513 
3514 		tp->to_reset  = 0;
3515 		tp->head.sval = 0;
3516 		tp->head.wval = np->rv_scntl3;
3517 		tp->head.uval = 0;
3518 
3519 		tp->tinfo.current.period = 0;
3520 		tp->tinfo.current.offset = 0;
3521 		tp->tinfo.current.width  = BUS_8_BIT;
3522 		tp->tinfo.current.options = 0;
3523 	}
3524 
3525 	/*
3526 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3527 	 *  and start script processor.
3528 	 */
3529 	if (np->ram_ba) {
3530 		if (sym_verbose > 1)
3531 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3532 				sym_name(np));
3533 		if (np->ram_ws == 8192) {
3534 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3535 			OUTL (nc_mmws, np->scr_ram_seg);
3536 			OUTL (nc_mmrs, np->scr_ram_seg);
3537 			OUTL (nc_sfs,  np->scr_ram_seg);
3538 			phys = SCRIPTB_BA (np, start64);
3539 		}
3540 		else
3541 			phys = SCRIPTA_BA (np, init);
3542 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3543 	}
3544 	else
3545 		phys = SCRIPTA_BA (np, init);
3546 
3547 	np->istat_sem = 0;
3548 
3549 	OUTL (nc_dsa, np->hcb_ba);
3550 	OUTL_DSP (phys);
3551 
3552 	/*
3553 	 *  Notify the XPT about the RESET condition.
3554 	 */
3555 	if (reason != 0)
3556 		xpt_async(AC_BUS_RESET, np->path, NULL);
3557 }
3558 
3559 /*
3560  *  Get clock factor and sync divisor for a given
3561  *  synchronous factor period.
3562  */
3563 static int
3564 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3565 {
3566 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3567 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3568 	u32	fak;			/* Sync factor in sxfer		*/
3569 	u32	per;			/* Period in tenths of ns	*/
3570 	u32	kpc;			/* (per * clk)			*/
3571 	int	ret;
3572 
3573 	/*
3574 	 *  Compute the synchronous period in tenths of nano-seconds
3575 	 */
3576 	if (dt && sfac <= 9)	per = 125;
3577 	else if	(sfac <= 10)	per = 250;
3578 	else if	(sfac == 11)	per = 303;
3579 	else if	(sfac == 12)	per = 500;
3580 	else			per = 40 * sfac;
3581 	ret = per;
3582 
3583 	kpc = per * clk;
3584 	if (dt)
3585 		kpc <<= 1;
3586 
3587 	/*
3588 	 *  For earliest C10 revision 0, we cannot use extra
3589 	 *  clocks for the setting of the SCSI clocking.
3590 	 *  Note that this limits the lowest sync data transfer
3591 	 *  to 5 Mega-transfers per second and may result in
3592 	 *  using higher clock divisors.
3593 	 */
3594 #if 1
3595 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3596 		/*
3597 		 *  Look for the lowest clock divisor that allows an
3598 		 *  output speed not faster than the period.
3599 		 */
3600 		while (div > 0) {
3601 			--div;
3602 			if (kpc > (div_10M[div] << 2)) {
3603 				++div;
3604 				break;
3605 			}
3606 		}
3607 		fak = 0;			/* No extra clocks */
3608 		if (div == np->clock_divn) {	/* Are we too fast ? */
3609 			ret = -1;
3610 		}
3611 		*divp = div;
3612 		*fakp = fak;
3613 		return ret;
3614 	}
3615 #endif
3616 
3617 	/*
3618 	 *  Look for the greatest clock divisor that allows an
3619 	 *  input speed faster than the period.
3620 	 */
3621 	while (div-- > 0)
3622 		if (kpc >= (div_10M[div] << 2)) break;
3623 
3624 	/*
3625 	 *  Calculate the lowest clock factor that allows an output
3626 	 *  speed not faster than the period, and the max output speed.
3627 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3628 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3629 	 */
3630 	if (dt) {
3631 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3632 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3633 	}
3634 	else {
3635 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3636 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3637 	}
3638 
3639 	/*
3640 	 *  Check against our hardware limits, or bugs :).
3641 	 */
3642 	if (fak < 0)	{fak = 0; ret = -1;}
3643 	if (fak > 2)	{fak = 2; ret = -1;}
3644 
3645 	/*
3646 	 *  Compute and return sync parameters.
3647 	 */
3648 	*divp = div;
3649 	*fakp = fak;
3650 
3651 	return ret;
3652 }
3653 
3654 /*
3655  *  Tell the SCSI layer about the new transfer parameters.
3656  */
3657 static void
3658 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3659 {
3660 	struct ccb_trans_settings cts;
3661 	struct cam_path *path;
3662 	int sts;
3663 	tcb_p tp = &np->target[target];
3664 
3665 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3666 	                      CAM_LUN_WILDCARD);
3667 	if (sts != CAM_REQ_CMP)
3668 		return;
3669 
3670 	bzero(&cts, sizeof(cts));
3671 
3672 #ifdef	FreeBSD_New_Tran_Settings
3673 #define	cts__scsi (cts.proto_specific.scsi)
3674 #define	cts__spi  (cts.xport_specific.spi)
3675 
3676 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3677 	cts.protocol  = PROTO_SCSI;
3678 	cts.transport = XPORT_SPI;
3679 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3680 	cts.transport_version = tp->tinfo.current.spi_version;
3681 
3682 	cts__spi.valid = spi_valid;
3683 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3684 		cts__spi.sync_period = tp->tinfo.current.period;
3685 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3686 		cts__spi.sync_offset = tp->tinfo.current.offset;
3687 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3688 		cts__spi.bus_width   = tp->tinfo.current.width;
3689 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3690 		cts__spi.ppr_options = tp->tinfo.current.options;
3691 #undef cts__spi
3692 #undef cts__scsi
3693 #else
3694 	cts.valid = spi_valid;
3695 	if (spi_valid & CCB_TRANS_SYNC_RATE_VALID)
3696 		cts.sync_period = tp->tinfo.current.period;
3697 	if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID)
3698 		cts.sync_offset = tp->tinfo.current.offset;
3699 	if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID)
3700 		cts.bus_width   = tp->tinfo.current.width;
3701 #endif
3702 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3703 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3704 	xpt_free_path(path);
3705 }
3706 
3707 #ifdef	FreeBSD_New_Tran_Settings
3708 #define SYM_SPI_VALID_WDTR		\
3709 	CTS_SPI_VALID_BUS_WIDTH |	\
3710 	CTS_SPI_VALID_SYNC_RATE |	\
3711 	CTS_SPI_VALID_SYNC_OFFSET
3712 #define SYM_SPI_VALID_SDTR		\
3713 	CTS_SPI_VALID_SYNC_RATE |	\
3714 	CTS_SPI_VALID_SYNC_OFFSET
3715 #define SYM_SPI_VALID_PPR		\
3716 	CTS_SPI_VALID_PPR_OPTIONS |	\
3717 	CTS_SPI_VALID_BUS_WIDTH |	\
3718 	CTS_SPI_VALID_SYNC_RATE |	\
3719 	CTS_SPI_VALID_SYNC_OFFSET
3720 #else
3721 #define SYM_SPI_VALID_WDTR		\
3722 	CCB_TRANS_BUS_WIDTH_VALID |	\
3723 	CCB_TRANS_SYNC_RATE_VALID |	\
3724 	CCB_TRANS_SYNC_OFFSET_VALID
3725 #define SYM_SPI_VALID_SDTR		\
3726 	CCB_TRANS_SYNC_RATE_VALID |	\
3727 	CCB_TRANS_SYNC_OFFSET_VALID
3728 #define SYM_SPI_VALID_PPR		\
3729 	CCB_TRANS_BUS_WIDTH_VALID |	\
3730 	CCB_TRANS_SYNC_RATE_VALID |	\
3731 	CCB_TRANS_SYNC_OFFSET_VALID
3732 #endif
3733 
3734 /*
3735  *  We received a WDTR.
3736  *  Let everything be aware of the changes.
3737  */
3738 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3739 {
3740 	tcb_p tp = &np->target[cp->target];
3741 
3742 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3743 
3744 	/*
3745 	 *  Tell the SCSI layer about the new transfer parameters.
3746 	 */
3747 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3748 	tp->tinfo.current.offset = 0;
3749 	tp->tinfo.current.period = 0;
3750 	tp->tinfo.current.options = 0;
3751 
3752 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3753 }
3754 
3755 /*
3756  *  We received a SDTR.
3757  *  Let everything be aware of the changes.
3758  */
3759 static void
3760 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3761 {
3762 	tcb_p tp = &np->target[cp->target];
3763 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3764 
3765 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3766 
3767 	/*
3768 	 *  Tell the SCSI layer about the new transfer parameters.
3769 	 */
3770 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3771 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3772 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3773 
3774 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3775 }
3776 
3777 /*
3778  *  We received a PPR.
3779  *  Let everything be aware of the changes.
3780  */
3781 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3782 			 u_char per, u_char wide, u_char div, u_char fak)
3783 {
3784 	tcb_p tp = &np->target[cp->target];
3785 
3786 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3787 
3788 	/*
3789 	 *  Tell the SCSI layer about the new transfer parameters.
3790 	 */
3791 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3792 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3793 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3794 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3795 
3796 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3797 }
3798 
3799 /*
3800  *  Switch trans mode for current job and it's target.
3801  */
3802 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3803 			 u_char per, u_char wide, u_char div, u_char fak)
3804 {
3805 	SYM_QUEHEAD *qp;
3806 	union	ccb *ccb;
3807 	tcb_p tp;
3808 	u_char target = INB (nc_sdid) & 0x0f;
3809 	u_char sval, wval, uval;
3810 
3811 	assert (cp);
3812 	if (!cp) return;
3813 	ccb = cp->cam_ccb;
3814 	assert (ccb);
3815 	if (!ccb) return;
3816 	assert (target == (cp->target & 0xf));
3817 	tp = &np->target[target];
3818 
3819 	sval = tp->head.sval;
3820 	wval = tp->head.wval;
3821 	uval = tp->head.uval;
3822 
3823 #if 0
3824 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3825 		sval, wval, uval, np->rv_scntl3);
3826 #endif
3827 	/*
3828 	 *  Set the offset.
3829 	 */
3830 	if (!(np->features & FE_C10))
3831 		sval = (sval & ~0x1f) | ofs;
3832 	else
3833 		sval = (sval & ~0x3f) | ofs;
3834 
3835 	/*
3836 	 *  Set the sync divisor and extra clock factor.
3837 	 */
3838 	if (ofs != 0) {
3839 		wval = (wval & ~0x70) | ((div+1) << 4);
3840 		if (!(np->features & FE_C10))
3841 			sval = (sval & ~0xe0) | (fak << 5);
3842 		else {
3843 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3844 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3845 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3846 		}
3847 	}
3848 
3849 	/*
3850 	 *  Set the bus width.
3851 	 */
3852 	wval = wval & ~EWS;
3853 	if (wide != 0)
3854 		wval |= EWS;
3855 
3856 	/*
3857 	 *  Set misc. ultra enable bits.
3858 	 */
3859 	if (np->features & FE_C10) {
3860 		uval = uval & ~(U3EN|AIPCKEN);
3861 		if (dt)	{
3862 			assert(np->features & FE_U3EN);
3863 			uval |= U3EN;
3864 		}
3865 	}
3866 	else {
3867 		wval = wval & ~ULTRA;
3868 		if (per <= 12)	wval |= ULTRA;
3869 	}
3870 
3871 	/*
3872 	 *   Stop there if sync parameters are unchanged.
3873 	 */
3874 	if (tp->head.sval == sval &&
3875 	    tp->head.wval == wval &&
3876 	    tp->head.uval == uval)
3877 		return;
3878 	tp->head.sval = sval;
3879 	tp->head.wval = wval;
3880 	tp->head.uval = uval;
3881 
3882 	/*
3883 	 *  Disable extended Sreq/Sack filtering if per < 50.
3884 	 *  Not supported on the C1010.
3885 	 */
3886 	if (per < 50 && !(np->features & FE_C10))
3887 		OUTOFFB (nc_stest2, EXT);
3888 
3889 	/*
3890 	 *  set actual value and sync_status
3891 	 */
3892 	OUTB (nc_sxfer,  tp->head.sval);
3893 	OUTB (nc_scntl3, tp->head.wval);
3894 
3895 	if (np->features & FE_C10) {
3896 		OUTB (nc_scntl4, tp->head.uval);
3897 	}
3898 
3899 	/*
3900 	 *  patch ALL busy ccbs of this target.
3901 	 */
3902 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3903 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3904 		if (cp->target != target)
3905 			continue;
3906 		cp->phys.select.sel_scntl3 = tp->head.wval;
3907 		cp->phys.select.sel_sxfer  = tp->head.sval;
3908 		if (np->features & FE_C10) {
3909 			cp->phys.select.sel_scntl4 = tp->head.uval;
3910 		}
3911 	}
3912 }
3913 
3914 /*
3915  *  log message for real hard errors
3916  *
3917  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3918  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3919  *
3920  *  exception register:
3921  *  	ds:	dstat
3922  *  	si:	sist
3923  *
3924  *  SCSI bus lines:
3925  *  	so:	control lines as driven by chip.
3926  *  	si:	control lines as seen by chip.
3927  *  	sd:	scsi data lines as seen by chip.
3928  *
3929  *  wide/fastmode:
3930  *  	sxfer:	(see the manual)
3931  *  	scntl3:	(see the manual)
3932  *
3933  *  current script command:
3934  *  	dsp:	script address (relative to start of script).
3935  *  	dbc:	first word of script command.
3936  *
3937  *  First 24 register of the chip:
3938  *  	r0..rf
3939  */
3940 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3941 {
3942 	u32	dsp;
3943 	int	script_ofs;
3944 	int	script_size;
3945 	char	*script_name;
3946 	u_char	*script_base;
3947 	int	i;
3948 
3949 	dsp	= INL (nc_dsp);
3950 
3951 	if	(dsp > np->scripta_ba &&
3952 		 dsp <= np->scripta_ba + np->scripta_sz) {
3953 		script_ofs	= dsp - np->scripta_ba;
3954 		script_size	= np->scripta_sz;
3955 		script_base	= (u_char *) np->scripta0;
3956 		script_name	= "scripta";
3957 	}
3958 	else if (np->scriptb_ba < dsp &&
3959 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3960 		script_ofs	= dsp - np->scriptb_ba;
3961 		script_size	= np->scriptb_sz;
3962 		script_base	= (u_char *) np->scriptb0;
3963 		script_name	= "scriptb";
3964 	} else {
3965 		script_ofs	= dsp;
3966 		script_size	= 0;
3967 		script_base	= 0;
3968 		script_name	= "mem";
3969 	}
3970 
3971 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3972 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3973 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3974 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3975 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3976 		(unsigned)INL (nc_dbc));
3977 
3978 	if (((script_ofs & 3) == 0) &&
3979 	    (unsigned)script_ofs < script_size) {
3980 		printf ("%s: script cmd = %08x\n", sym_name(np),
3981 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3982 	}
3983 
3984         printf ("%s: regdump:", sym_name(np));
3985         for (i=0; i<24;i++)
3986             printf (" %02x", (unsigned)INB_OFF(i));
3987         printf (".\n");
3988 
3989 	/*
3990 	 *  PCI BUS error, read the PCI ststus register.
3991 	 */
3992 	if (dstat & (MDPE|BF)) {
3993 		u_short pci_sts;
3994 #ifdef FreeBSD_Bus_Io_Abstraction
3995 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3996 #else
3997 		pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2);
3998 #endif
3999 		if (pci_sts & 0xf900) {
4000 #ifdef FreeBSD_Bus_Io_Abstraction
4001 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
4002 #else
4003 			pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2);
4004 #endif
4005 			printf("%s: PCI STATUS = 0x%04x\n",
4006 				sym_name(np), pci_sts & 0xf900);
4007 		}
4008 	}
4009 }
4010 
4011 /*
4012  *  chip interrupt handler
4013  *
4014  *  In normal situations, interrupt conditions occur one at
4015  *  a time. But when something bad happens on the SCSI BUS,
4016  *  the chip may raise several interrupt flags before
4017  *  stopping and interrupting the CPU. The additionnal
4018  *  interrupt flags are stacked in some extra registers
4019  *  after the SIP and/or DIP flag has been raised in the
4020  *  ISTAT. After the CPU has read the interrupt condition
4021  *  flag from SIST or DSTAT, the chip unstacks the other
4022  *  interrupt flags and sets the corresponding bits in
4023  *  SIST or DSTAT. Since the chip starts stacking once the
4024  *  SIP or DIP flag is set, there is a small window of time
4025  *  where the stacking does not occur.
4026  *
4027  *  Typically, multiple interrupt conditions may happen in
4028  *  the following situations:
4029  *
4030  *  - SCSI parity error + Phase mismatch  (PAR|MA)
4031  *    When an parity error is detected in input phase
4032  *    and the device switches to msg-in phase inside a
4033  *    block MOV.
4034  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
4035  *    When a stupid device does not want to handle the
4036  *    recovery of an SCSI parity error.
4037  *  - Some combinations of STO, PAR, UDC, ...
4038  *    When using non compliant SCSI stuff, when user is
4039  *    doing non compliant hot tampering on the BUS, when
4040  *    something really bad happens to a device, etc ...
4041  *
4042  *  The heuristic suggested by SYMBIOS to handle
4043  *  multiple interrupts is to try unstacking all
4044  *  interrupts conditions and to handle them on some
4045  *  priority based on error severity.
4046  *  This will work when the unstacking has been
4047  *  successful, but we cannot be 100 % sure of that,
4048  *  since the CPU may have been faster to unstack than
4049  *  the chip is able to stack. Hmmm ... But it seems that
4050  *  such a situation is very unlikely to happen.
4051  *
4052  *  If this happen, for example STO caught by the CPU
4053  *  then UDC happenning before the CPU have restarted
4054  *  the SCRIPTS, the driver may wrongly complete the
4055  *  same command on UDC, since the SCRIPTS didn't restart
4056  *  and the DSA still points to the same command.
4057  *  We avoid this situation by setting the DSA to an
4058  *  invalid value when the CCB is completed and before
4059  *  restarting the SCRIPTS.
4060  *
4061  *  Another issue is that we need some section of our
4062  *  recovery procedures to be somehow uninterruptible but
4063  *  the SCRIPTS processor does not provides such a
4064  *  feature. For this reason, we handle recovery preferently
4065  *  from the C code and check against some SCRIPTS critical
4066  *  sections from the C code.
4067  *
4068  *  Hopefully, the interrupt handling of the driver is now
4069  *  able to resist to weird BUS error conditions, but donnot
4070  *  ask me for any guarantee that it will never fail. :-)
4071  *  Use at your own decision and risk.
4072  */
4073 
4074 static void sym_intr1 (hcb_p np)
4075 {
4076 	u_char	istat, istatc;
4077 	u_char	dstat;
4078 	u_short	sist;
4079 
4080 	/*
4081 	 *  interrupt on the fly ?
4082 	 *
4083 	 *  A `dummy read' is needed to ensure that the
4084 	 *  clear of the INTF flag reaches the device
4085 	 *  before the scanning of the DONE queue.
4086 	 */
4087 	istat = INB (nc_istat);
4088 	if (istat & INTF) {
4089 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
4090 		istat = INB (nc_istat);		/* DUMMY READ */
4091 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
4092 		(void)sym_wakeup_done (np);
4093 	};
4094 
4095 	if (!(istat & (SIP|DIP)))
4096 		return;
4097 
4098 #if 0	/* We should never get this one */
4099 	if (istat & CABRT)
4100 		OUTB (nc_istat, CABRT);
4101 #endif
4102 
4103 	/*
4104 	 *  PAR and MA interrupts may occur at the same time,
4105 	 *  and we need to know of both in order to handle
4106 	 *  this situation properly. We try to unstack SCSI
4107 	 *  interrupts for that reason. BTW, I dislike a LOT
4108 	 *  such a loop inside the interrupt routine.
4109 	 *  Even if DMA interrupt stacking is very unlikely to
4110 	 *  happen, we also try unstacking these ones, since
4111 	 *  this has no performance impact.
4112 	 */
4113 	sist	= 0;
4114 	dstat	= 0;
4115 	istatc	= istat;
4116 	do {
4117 		if (istatc & SIP)
4118 			sist  |= INW (nc_sist);
4119 		if (istatc & DIP)
4120 			dstat |= INB (nc_dstat);
4121 		istatc = INB (nc_istat);
4122 		istat |= istatc;
4123 	} while (istatc & (SIP|DIP));
4124 
4125 	if (DEBUG_FLAGS & DEBUG_TINY)
4126 		printf ("<%d|%x:%x|%x:%x>",
4127 			(int)INB(nc_scr0),
4128 			dstat,sist,
4129 			(unsigned)INL(nc_dsp),
4130 			(unsigned)INL(nc_dbc));
4131 	/*
4132 	 *  On paper, a memory barrier may be needed here.
4133 	 *  And since we are paranoid ... :)
4134 	 */
4135 	MEMORY_BARRIER();
4136 
4137 	/*
4138 	 *  First, interrupts we want to service cleanly.
4139 	 *
4140 	 *  Phase mismatch (MA) is the most frequent interrupt
4141 	 *  for chip earlier than the 896 and so we have to service
4142 	 *  it as quickly as possible.
4143 	 *  A SCSI parity error (PAR) may be combined with a phase
4144 	 *  mismatch condition (MA).
4145 	 *  Programmed interrupts (SIR) are used to call the C code
4146 	 *  from SCRIPTS.
4147 	 *  The single step interrupt (SSI) is not used in this
4148 	 *  driver.
4149 	 */
4150 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
4151 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4152 		if	(sist & PAR)	sym_int_par (np, sist);
4153 		else if (sist & MA)	sym_int_ma (np);
4154 		else if (dstat & SIR)	sym_int_sir (np);
4155 		else if (dstat & SSI)	OUTONB_STD ();
4156 		else			goto unknown_int;
4157 		return;
4158 	};
4159 
4160 	/*
4161 	 *  Now, interrupts that donnot happen in normal
4162 	 *  situations and that we may need to recover from.
4163 	 *
4164 	 *  On SCSI RESET (RST), we reset everything.
4165 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
4166 	 *  active CCBs with RESET status, prepare all devices
4167 	 *  for negotiating again and restart the SCRIPTS.
4168 	 *  On STO and UDC, we complete the CCB with the corres-
4169 	 *  ponding status and restart the SCRIPTS.
4170 	 */
4171 	if (sist & RST) {
4172 		xpt_print_path(np->path);
4173 		printf("SCSI BUS reset detected.\n");
4174 		sym_init (np, 1);
4175 		return;
4176 	};
4177 
4178 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4179 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4180 
4181 	if (!(sist  & (GEN|HTH|SGE)) &&
4182 	    !(dstat & (MDPE|BF|ABRT|IID))) {
4183 		if	(sist & SBMC)	sym_int_sbmc (np);
4184 		else if (sist & STO)	sym_int_sto (np);
4185 		else if (sist & UDC)	sym_int_udc (np);
4186 		else			goto unknown_int;
4187 		return;
4188 	};
4189 
4190 	/*
4191 	 *  Now, interrupts we are not able to recover cleanly.
4192 	 *
4193 	 *  Log message for hard errors.
4194 	 *  Reset everything.
4195 	 */
4196 
4197 	sym_log_hard_error(np, sist, dstat);
4198 
4199 	if ((sist & (GEN|HTH|SGE)) ||
4200 		(dstat & (MDPE|BF|ABRT|IID))) {
4201 		sym_start_reset(np);
4202 		return;
4203 	};
4204 
4205 unknown_int:
4206 	/*
4207 	 *  We just miss the cause of the interrupt. :(
4208 	 *  Print a message. The timeout will do the real work.
4209 	 */
4210 	printf(	"%s: unknown interrupt(s) ignored, "
4211 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
4212 		sym_name(np), istat, dstat, sist);
4213 }
4214 
4215 static void sym_intr(void *arg)
4216 {
4217 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
4218 	sym_intr1((hcb_p) arg);
4219 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
4220 	return;
4221 }
4222 
4223 static void sym_poll(struct cam_sim *sim)
4224 {
4225 	int s = splcam();
4226 	sym_intr(cam_sim_softc(sim));
4227 	splx(s);
4228 }
4229 
4230 
4231 /*
4232  *  generic recovery from scsi interrupt
4233  *
4234  *  The doc says that when the chip gets an SCSI interrupt,
4235  *  it tries to stop in an orderly fashion, by completing
4236  *  an instruction fetch that had started or by flushing
4237  *  the DMA fifo for a write to memory that was executing.
4238  *  Such a fashion is not enough to know if the instruction
4239  *  that was just before the current DSP value has been
4240  *  executed or not.
4241  *
4242  *  There are some small SCRIPTS sections that deal with
4243  *  the start queue and the done queue that may break any
4244  *  assomption from the C code if we are interrupted
4245  *  inside, so we reset if this happens. Btw, since these
4246  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4247  *  started SCSI operations, it is very unlikely to happen.
4248  *
4249  *  All the driver data structures are supposed to be
4250  *  allocated from the same 4 GB memory window, so there
4251  *  is a 1 to 1 relationship between DSA and driver data
4252  *  structures. Since we are careful :) to invalidate the
4253  *  DSA when we complete a command or when the SCRIPTS
4254  *  pushes a DSA into a queue, we can trust it when it
4255  *  points to a CCB.
4256  */
4257 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4258 {
4259 	u32	dsp	= INL (nc_dsp);
4260 	u32	dsa	= INL (nc_dsa);
4261 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4262 
4263 	/*
4264 	 *  If we haven't been interrupted inside the SCRIPTS
4265 	 *  critical pathes, we can safely restart the SCRIPTS
4266 	 *  and trust the DSA value if it matches a CCB.
4267 	 */
4268 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4269 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4270 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4271 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4272 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4273 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4274 	    (!(dsp > SCRIPTA_BA (np, done) &&
4275 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4276 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4277 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4278 		/*
4279 		 *  If we have a CCB, let the SCRIPTS call us back for
4280 		 *  the handling of the error with SCRATCHA filled with
4281 		 *  STARTPOS. This way, we will be able to freeze the
4282 		 *  device queue and requeue awaiting IOs.
4283 		 */
4284 		if (cp) {
4285 			cp->host_status = hsts;
4286 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4287 		}
4288 		/*
4289 		 *  Otherwise just restart the SCRIPTS.
4290 		 */
4291 		else {
4292 			OUTL (nc_dsa, 0xffffff);
4293 			OUTL_DSP (SCRIPTA_BA (np, start));
4294 		}
4295 	}
4296 	else
4297 		goto reset_all;
4298 
4299 	return;
4300 
4301 reset_all:
4302 	sym_start_reset(np);
4303 }
4304 
4305 /*
4306  *  chip exception handler for selection timeout
4307  */
4308 void sym_int_sto (hcb_p np)
4309 {
4310 	u32 dsp	= INL (nc_dsp);
4311 
4312 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4313 
4314 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4315 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4316 	else
4317 		sym_start_reset(np);
4318 }
4319 
4320 /*
4321  *  chip exception handler for unexpected disconnect
4322  */
4323 void sym_int_udc (hcb_p np)
4324 {
4325 	printf ("%s: unexpected disconnect\n", sym_name(np));
4326 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4327 }
4328 
4329 /*
4330  *  chip exception handler for SCSI bus mode change
4331  *
4332  *  spi2-r12 11.2.3 says a transceiver mode change must
4333  *  generate a reset event and a device that detects a reset
4334  *  event shall initiate a hard reset. It says also that a
4335  *  device that detects a mode change shall set data transfer
4336  *  mode to eight bit asynchronous, etc...
4337  *  So, just reinitializing all except chip should be enough.
4338  */
4339 static void sym_int_sbmc (hcb_p np)
4340 {
4341 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4342 
4343 	/*
4344 	 *  Notify user.
4345 	 */
4346 	xpt_print_path(np->path);
4347 	printf("SCSI BUS mode change from %s to %s.\n",
4348 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4349 
4350 	/*
4351 	 *  Should suspend command processing for a few seconds and
4352 	 *  reinitialize all except the chip.
4353 	 */
4354 	sym_init (np, 2);
4355 }
4356 
4357 /*
4358  *  chip exception handler for SCSI parity error.
4359  *
4360  *  When the chip detects a SCSI parity error and is
4361  *  currently executing a (CH)MOV instruction, it does
4362  *  not interrupt immediately, but tries to finish the
4363  *  transfer of the current scatter entry before
4364  *  interrupting. The following situations may occur:
4365  *
4366  *  - The complete scatter entry has been transferred
4367  *    without the device having changed phase.
4368  *    The chip will then interrupt with the DSP pointing
4369  *    to the instruction that follows the MOV.
4370  *
4371  *  - A phase mismatch occurs before the MOV finished
4372  *    and phase errors are to be handled by the C code.
4373  *    The chip will then interrupt with both PAR and MA
4374  *    conditions set.
4375  *
4376  *  - A phase mismatch occurs before the MOV finished and
4377  *    phase errors are to be handled by SCRIPTS.
4378  *    The chip will load the DSP with the phase mismatch
4379  *    JUMP address and interrupt the host processor.
4380  */
4381 static void sym_int_par (hcb_p np, u_short sist)
4382 {
4383 	u_char	hsts	= INB (HS_PRT);
4384 	u32	dsp	= INL (nc_dsp);
4385 	u32	dbc	= INL (nc_dbc);
4386 	u32	dsa	= INL (nc_dsa);
4387 	u_char	sbcl	= INB (nc_sbcl);
4388 	u_char	cmd	= dbc >> 24;
4389 	int phase	= cmd & 7;
4390 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4391 
4392 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4393 		sym_name(np), hsts, dbc, sbcl);
4394 
4395 	/*
4396 	 *  Check that the chip is connected to the SCSI BUS.
4397 	 */
4398 	if (!(INB (nc_scntl1) & ISCON)) {
4399 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4400 		return;
4401 	}
4402 
4403 	/*
4404 	 *  If the nexus is not clearly identified, reset the bus.
4405 	 *  We will try to do better later.
4406 	 */
4407 	if (!cp)
4408 		goto reset_all;
4409 
4410 	/*
4411 	 *  Check instruction was a MOV, direction was INPUT and
4412 	 *  ATN is asserted.
4413 	 */
4414 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4415 		goto reset_all;
4416 
4417 	/*
4418 	 *  Keep track of the parity error.
4419 	 */
4420 	OUTONB (HF_PRT, HF_EXT_ERR);
4421 	cp->xerr_status |= XE_PARITY_ERR;
4422 
4423 	/*
4424 	 *  Prepare the message to send to the device.
4425 	 */
4426 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4427 
4428 	/*
4429 	 *  If the old phase was DATA IN phase, we have to deal with
4430 	 *  the 3 situations described above.
4431 	 *  For other input phases (MSG IN and STATUS), the device
4432 	 *  must resend the whole thing that failed parity checking
4433 	 *  or signal error. So, jumping to dispatcher should be OK.
4434 	 */
4435 	if (phase == 1 || phase == 5) {
4436 		/* Phase mismatch handled by SCRIPTS */
4437 		if (dsp == SCRIPTB_BA (np, pm_handle))
4438 			OUTL_DSP (dsp);
4439 		/* Phase mismatch handled by the C code */
4440 		else if (sist & MA)
4441 			sym_int_ma (np);
4442 		/* No phase mismatch occurred */
4443 		else {
4444 			OUTL (nc_temp, dsp);
4445 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4446 		}
4447 	}
4448 	else
4449 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4450 	return;
4451 
4452 reset_all:
4453 	sym_start_reset(np);
4454 	return;
4455 }
4456 
4457 /*
4458  *  chip exception handler for phase errors.
4459  *
4460  *  We have to construct a new transfer descriptor,
4461  *  to transfer the rest of the current block.
4462  */
4463 static void sym_int_ma (hcb_p np)
4464 {
4465 	u32	dbc;
4466 	u32	rest;
4467 	u32	dsp;
4468 	u32	dsa;
4469 	u32	nxtdsp;
4470 	u32	*vdsp;
4471 	u32	oadr, olen;
4472 	u32	*tblp;
4473         u32	newcmd;
4474 	u_int	delta;
4475 	u_char	cmd;
4476 	u_char	hflags, hflags0;
4477 	struct	sym_pmc *pm;
4478 	ccb_p	cp;
4479 
4480 	dsp	= INL (nc_dsp);
4481 	dbc	= INL (nc_dbc);
4482 	dsa	= INL (nc_dsa);
4483 
4484 	cmd	= dbc >> 24;
4485 	rest	= dbc & 0xffffff;
4486 	delta	= 0;
4487 
4488 	/*
4489 	 *  locate matching cp if any.
4490 	 */
4491 	cp = sym_ccb_from_dsa(np, dsa);
4492 
4493 	/*
4494 	 *  Donnot take into account dma fifo and various buffers in
4495 	 *  INPUT phase since the chip flushes everything before
4496 	 *  raising the MA interrupt for interrupted INPUT phases.
4497 	 *  For DATA IN phase, we will check for the SWIDE later.
4498 	 */
4499 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4500 		u_char ss0, ss2;
4501 
4502 		if (np->features & FE_DFBC)
4503 			delta = INW (nc_dfbc);
4504 		else {
4505 			u32 dfifo;
4506 
4507 			/*
4508 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4509 			 */
4510 			dfifo = INL(nc_dfifo);
4511 
4512 			/*
4513 			 *  Calculate remaining bytes in DMA fifo.
4514 			 *  (CTEST5 = dfifo >> 16)
4515 			 */
4516 			if (dfifo & (DFS << 16))
4517 				delta = ((((dfifo >> 8) & 0x300) |
4518 				          (dfifo & 0xff)) - rest) & 0x3ff;
4519 			else
4520 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4521 		}
4522 
4523 		/*
4524 		 *  The data in the dma fifo has not been transfered to
4525 		 *  the target -> add the amount to the rest
4526 		 *  and clear the data.
4527 		 *  Check the sstat2 register in case of wide transfer.
4528 		 */
4529 		rest += delta;
4530 		ss0  = INB (nc_sstat0);
4531 		if (ss0 & OLF) rest++;
4532 		if (!(np->features & FE_C10))
4533 			if (ss0 & ORF) rest++;
4534 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4535 			ss2 = INB (nc_sstat2);
4536 			if (ss2 & OLF1) rest++;
4537 			if (!(np->features & FE_C10))
4538 				if (ss2 & ORF1) rest++;
4539 		};
4540 
4541 		/*
4542 		 *  Clear fifos.
4543 		 */
4544 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4545 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4546 	}
4547 
4548 	/*
4549 	 *  log the information
4550 	 */
4551 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4552 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4553 			(unsigned) rest, (unsigned) delta);
4554 
4555 	/*
4556 	 *  try to find the interrupted script command,
4557 	 *  and the address at which to continue.
4558 	 */
4559 	vdsp	= 0;
4560 	nxtdsp	= 0;
4561 	if	(dsp >  np->scripta_ba &&
4562 		 dsp <= np->scripta_ba + np->scripta_sz) {
4563 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4564 		nxtdsp = dsp;
4565 	}
4566 	else if	(dsp >  np->scriptb_ba &&
4567 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4568 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4569 		nxtdsp = dsp;
4570 	}
4571 
4572 	/*
4573 	 *  log the information
4574 	 */
4575 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4576 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4577 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4578 	};
4579 
4580 	if (!vdsp) {
4581 		printf ("%s: interrupted SCRIPT address not found.\n",
4582 			sym_name (np));
4583 		goto reset_all;
4584 	}
4585 
4586 	if (!cp) {
4587 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4588 			sym_name (np));
4589 		goto reset_all;
4590 	}
4591 
4592 	/*
4593 	 *  get old startaddress and old length.
4594 	 */
4595 	oadr = scr_to_cpu(vdsp[1]);
4596 
4597 	if (cmd & 0x10) {	/* Table indirect */
4598 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4599 		olen = scr_to_cpu(tblp[0]);
4600 		oadr = scr_to_cpu(tblp[1]);
4601 	} else {
4602 		tblp = (u32 *) 0;
4603 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4604 	};
4605 
4606 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4607 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4608 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4609 			tblp,
4610 			(unsigned) olen,
4611 			(unsigned) oadr);
4612 	};
4613 
4614 	/*
4615 	 *  check cmd against assumed interrupted script command.
4616 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4617 	 *  the phase.
4618 	 */
4619 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4620 		PRINT_ADDR(cp);
4621 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4622 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4623 
4624 		goto reset_all;
4625 	};
4626 
4627 	/*
4628 	 *  if old phase not dataphase, leave here.
4629 	 */
4630 	if (cmd & 2) {
4631 		PRINT_ADDR(cp);
4632 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4633 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4634 			(unsigned)oadr, (unsigned)rest);
4635 		goto unexpected_phase;
4636 	};
4637 
4638 	/*
4639 	 *  Choose the correct PM save area.
4640 	 *
4641 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4642 	 *  this stuff. The equivalent code is implemented in
4643 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4644 	 *  handle PM from the SCRIPTS processor.
4645 	 */
4646 	hflags0 = INB (HF_PRT);
4647 	hflags = hflags0;
4648 
4649 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4650 		if (hflags & HF_IN_PM0)
4651 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4652 		else if	(hflags & HF_IN_PM1)
4653 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4654 
4655 		if (hflags & HF_DP_SAVED)
4656 			hflags ^= HF_ACT_PM;
4657 	}
4658 
4659 	if (!(hflags & HF_ACT_PM)) {
4660 		pm = &cp->phys.pm0;
4661 		newcmd = SCRIPTA_BA (np, pm0_data);
4662 	}
4663 	else {
4664 		pm = &cp->phys.pm1;
4665 		newcmd = SCRIPTA_BA (np, pm1_data);
4666 	}
4667 
4668 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4669 	if (hflags != hflags0)
4670 		OUTB (HF_PRT, hflags);
4671 
4672 	/*
4673 	 *  fillin the phase mismatch context
4674 	 */
4675 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4676 	pm->sg.size = cpu_to_scr(rest);
4677 	pm->ret     = cpu_to_scr(nxtdsp);
4678 
4679 	/*
4680 	 *  If we have a SWIDE,
4681 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4682 	 *  - compute the SCRIPTS address to restart from,
4683 	 *  - move current data pointer context by one byte.
4684 	 */
4685 	nxtdsp = SCRIPTA_BA (np, dispatch);
4686 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4687 	    (INB (nc_scntl2) & WSR)) {
4688 		u32 tmp;
4689 
4690 		/*
4691 		 *  Set up the table indirect for the MOVE
4692 		 *  of the residual byte and adjust the data
4693 		 *  pointer context.
4694 		 */
4695 		tmp = scr_to_cpu(pm->sg.addr);
4696 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4697 		pm->sg.addr = cpu_to_scr(tmp + 1);
4698 		tmp = scr_to_cpu(pm->sg.size);
4699 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4700 		pm->sg.size = cpu_to_scr(tmp - 1);
4701 
4702 		/*
4703 		 *  If only the residual byte is to be moved,
4704 		 *  no PM context is needed.
4705 		 */
4706 		if ((tmp&0xffffff) == 1)
4707 			newcmd = pm->ret;
4708 
4709 		/*
4710 		 *  Prepare the address of SCRIPTS that will
4711 		 *  move the residual byte to memory.
4712 		 */
4713 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4714 	}
4715 
4716 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4717 		PRINT_ADDR(cp);
4718 		printf ("PM %x %x %x / %x %x %x.\n",
4719 			hflags0, hflags, newcmd,
4720 			(unsigned)scr_to_cpu(pm->sg.addr),
4721 			(unsigned)scr_to_cpu(pm->sg.size),
4722 			(unsigned)scr_to_cpu(pm->ret));
4723 	}
4724 
4725 	/*
4726 	 *  Restart the SCRIPTS processor.
4727 	 */
4728 	OUTL (nc_temp, newcmd);
4729 	OUTL_DSP (nxtdsp);
4730 	return;
4731 
4732 	/*
4733 	 *  Unexpected phase changes that occurs when the current phase
4734 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4735 	 *  Such event may only happen when the SCRIPTS is using a
4736 	 *  multibyte SCSI MOVE.
4737 	 *
4738 	 *  Phase change		Some possible cause
4739 	 *
4740 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4741 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4742 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4743 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4744 	 *  			negotiation messages.
4745 	 *
4746 	 *  The code below does not care of the new phase and so
4747 	 *  trusts the target. Why to annoy it ?
4748 	 *  If the interrupted phase is COMMAND phase, we restart at
4749 	 *  dispatcher.
4750 	 *  If a target does not get all the messages after selection,
4751 	 *  the code assumes blindly that the target discards extended
4752 	 *  messages and clears the negotiation status.
4753 	 *  If the target does not want all our response to negotiation,
4754 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4755 	 *  bloat for such a should_not_happen situation).
4756 	 *  In all other situation, we reset the BUS.
4757 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4758 	 */
4759 unexpected_phase:
4760 	dsp -= 8;
4761 	nxtdsp = 0;
4762 
4763 	switch (cmd & 7) {
4764 	case 2:	/* COMMAND phase */
4765 		nxtdsp = SCRIPTA_BA (np, dispatch);
4766 		break;
4767 #if 0
4768 	case 3:	/* STATUS  phase */
4769 		nxtdsp = SCRIPTA_BA (np, dispatch);
4770 		break;
4771 #endif
4772 	case 6:	/* MSG OUT phase */
4773 		/*
4774 		 *  If the device may want to use untagged when we want
4775 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4776 		 *  since we will not be able to handle reselect.
4777 		 *  Otherwise, we just don't care.
4778 		 */
4779 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4780 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4781 				cp->host_status = HS_BUSY;
4782 				np->msgout[0] = M_IDENTIFY | cp->lun;
4783 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4784 			}
4785 			else
4786 				nxtdsp = SCRIPTB_BA (np, ident_break);
4787 		}
4788 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4789 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4790 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4791 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4792 		}
4793 		break;
4794 #if 0
4795 	case 7:	/* MSG IN  phase */
4796 		nxtdsp = SCRIPTA_BA (np, clrack);
4797 		break;
4798 #endif
4799 	}
4800 
4801 	if (nxtdsp) {
4802 		OUTL_DSP (nxtdsp);
4803 		return;
4804 	}
4805 
4806 reset_all:
4807 	sym_start_reset(np);
4808 }
4809 
4810 /*
4811  *  Dequeue from the START queue all CCBs that match
4812  *  a given target/lun/task condition (-1 means all),
4813  *  and move them from the BUSY queue to the COMP queue
4814  *  with CAM_REQUEUE_REQ status condition.
4815  *  This function is used during error handling/recovery.
4816  *  It is called with SCRIPTS not running.
4817  */
4818 static int
4819 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4820 {
4821 	int j;
4822 	ccb_p cp;
4823 
4824 	/*
4825 	 *  Make sure the starting index is within range.
4826 	 */
4827 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4828 
4829 	/*
4830 	 *  Walk until end of START queue and dequeue every job
4831 	 *  that matches the target/lun/task condition.
4832 	 */
4833 	j = i;
4834 	while (i != np->squeueput) {
4835 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4836 		assert(cp);
4837 #ifdef SYM_CONF_IARB_SUPPORT
4838 		/* Forget hints for IARB, they may be no longer relevant */
4839 		cp->host_flags &= ~HF_HINT_IARB;
4840 #endif
4841 		if ((target == -1 || cp->target == target) &&
4842 		    (lun    == -1 || cp->lun    == lun)    &&
4843 		    (task   == -1 || cp->tag    == task)) {
4844 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4845 			sym_remque(&cp->link_ccbq);
4846 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4847 		}
4848 		else {
4849 			if (i != j)
4850 				np->squeue[j] = np->squeue[i];
4851 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4852 		}
4853 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4854 	}
4855 	if (i != j)		/* Copy back the idle task if needed */
4856 		np->squeue[j] = np->squeue[i];
4857 	np->squeueput = j;	/* Update our current start queue pointer */
4858 
4859 	return (i - j) / 2;
4860 }
4861 
4862 /*
4863  *  Complete all CCBs queued to the COMP queue.
4864  *
4865  *  These CCBs are assumed:
4866  *  - Not to be referenced either by devices or
4867  *    SCRIPTS-related queues and datas.
4868  *  - To have to be completed with an error condition
4869  *    or requeued.
4870  *
4871  *  The device queue freeze count is incremented
4872  *  for each CCB that does not prevent this.
4873  *  This function is called when all CCBs involved
4874  *  in error handling/recovery have been reaped.
4875  */
4876 static void
4877 sym_flush_comp_queue(hcb_p np, int cam_status)
4878 {
4879 	SYM_QUEHEAD *qp;
4880 	ccb_p cp;
4881 
4882 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
4883 		union ccb *ccb;
4884 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4885 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4886 		/* Leave quiet CCBs waiting for resources */
4887 		if (cp->host_status == HS_WAIT)
4888 			continue;
4889 		ccb = cp->cam_ccb;
4890 		if (cam_status)
4891 			sym_set_cam_status(ccb, cam_status);
4892 		sym_free_ccb(np, cp);
4893 		sym_freeze_cam_ccb(ccb);
4894 		sym_xpt_done(np, ccb);
4895 	}
4896 }
4897 
4898 /*
4899  *  chip handler for bad SCSI status condition
4900  *
4901  *  In case of bad SCSI status, we unqueue all the tasks
4902  *  currently queued to the controller but not yet started
4903  *  and then restart the SCRIPTS processor immediately.
4904  *
4905  *  QUEUE FULL and BUSY conditions are handled the same way.
4906  *  Basically all the not yet started tasks are requeued in
4907  *  device queue and the queue is frozen until a completion.
4908  *
4909  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4910  *  the CCB of the failed command to prepare a REQUEST SENSE
4911  *  SCSI command and queue it to the controller queue.
4912  *
4913  *  SCRATCHA is assumed to have been loaded with STARTPOS
4914  *  before the SCRIPTS called the C code.
4915  */
4916 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4917 {
4918 	tcb_p tp	= &np->target[cp->target];
4919 	u32		startp;
4920 	u_char		s_status = cp->ssss_status;
4921 	u_char		h_flags  = cp->host_flags;
4922 	int		msglen;
4923 	int		nego;
4924 	int		i;
4925 
4926 	/*
4927 	 *  Compute the index of the next job to start from SCRIPTS.
4928 	 */
4929 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4930 
4931 	/*
4932 	 *  The last CCB queued used for IARB hint may be
4933 	 *  no longer relevant. Forget it.
4934 	 */
4935 #ifdef SYM_CONF_IARB_SUPPORT
4936 	if (np->last_cp)
4937 		np->last_cp = 0;
4938 #endif
4939 
4940 	/*
4941 	 *  Now deal with the SCSI status.
4942 	 */
4943 	switch(s_status) {
4944 	case S_BUSY:
4945 	case S_QUEUE_FULL:
4946 		if (sym_verbose >= 2) {
4947 			PRINT_ADDR(cp);
4948 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4949 		}
4950 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4951 		sym_complete_error (np, cp);
4952 		break;
4953 	case S_TERMINATED:
4954 	case S_CHECK_COND:
4955 		/*
4956 		 *  If we get an SCSI error when requesting sense, give up.
4957 		 */
4958 		if (h_flags & HF_SENSE) {
4959 			sym_complete_error (np, cp);
4960 			break;
4961 		}
4962 
4963 		/*
4964 		 *  Dequeue all queued CCBs for that device not yet started,
4965 		 *  and restart the SCRIPTS processor immediately.
4966 		 */
4967 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4968 		OUTL_DSP (SCRIPTA_BA (np, start));
4969 
4970  		/*
4971 		 *  Save some info of the actual IO.
4972 		 *  Compute the data residual.
4973 		 */
4974 		cp->sv_scsi_status = cp->ssss_status;
4975 		cp->sv_xerr_status = cp->xerr_status;
4976 		cp->sv_resid = sym_compute_residual(np, cp);
4977 
4978 		/*
4979 		 *  Prepare all needed data structures for
4980 		 *  requesting sense data.
4981 		 */
4982 
4983 		/*
4984 		 *  identify message
4985 		 */
4986 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4987 		msglen = 1;
4988 
4989 		/*
4990 		 *  If we are currently using anything different from
4991 		 *  async. 8 bit data transfers with that target,
4992 		 *  start a negotiation, since the device may want
4993 		 *  to report us a UNIT ATTENTION condition due to
4994 		 *  a cause we currently ignore, and we donnot want
4995 		 *  to be stuck with WIDE and/or SYNC data transfer.
4996 		 *
4997 		 *  cp->nego_status is filled by sym_prepare_nego().
4998 		 */
4999 		cp->nego_status = 0;
5000 		nego = 0;
5001 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
5002 			nego = NS_PPR;
5003 		else if	(tp->tinfo.current.width != BUS_8_BIT)
5004 			nego = NS_WIDE;
5005 		else if (tp->tinfo.current.offset != 0)
5006 			nego = NS_SYNC;
5007 		if (nego)
5008 			msglen +=
5009 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
5010 		/*
5011 		 *  Message table indirect structure.
5012 		 */
5013 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
5014 		cp->phys.smsg.size	= cpu_to_scr(msglen);
5015 
5016 		/*
5017 		 *  sense command
5018 		 */
5019 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
5020 		cp->phys.cmd.size	= cpu_to_scr(6);
5021 
5022 		/*
5023 		 *  patch requested size into sense command
5024 		 */
5025 		cp->sensecmd[0]		= 0x03;
5026 		cp->sensecmd[1]		= cp->lun << 5;
5027 #ifdef	FreeBSD_New_Tran_Settings
5028 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
5029 			cp->sensecmd[1]	= 0;
5030 #endif
5031 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
5032 		cp->data_len		= SYM_SNS_BBUF_LEN;
5033 
5034 		/*
5035 		 *  sense data
5036 		 */
5037 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
5038 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
5039 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
5040 
5041 		/*
5042 		 *  requeue the command.
5043 		 */
5044 		startp = SCRIPTB_BA (np, sdata_in);
5045 
5046 		cp->phys.head.savep	= cpu_to_scr(startp);
5047 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
5048 		cp->phys.head.lastp	= cpu_to_scr(startp);
5049 		cp->startp	= cpu_to_scr(startp);
5050 
5051 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
5052 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5053 		cp->ssss_status = S_ILLEGAL;
5054 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
5055 		cp->xerr_status = 0;
5056 		cp->extra_bytes = 0;
5057 
5058 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
5059 
5060 		/*
5061 		 *  Requeue the command.
5062 		 */
5063 		sym_put_start_queue(np, cp);
5064 
5065 		/*
5066 		 *  Give back to upper layer everything we have dequeued.
5067 		 */
5068 		sym_flush_comp_queue(np, 0);
5069 		break;
5070 	}
5071 }
5072 
5073 /*
5074  *  After a device has accepted some management message
5075  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
5076  *  a device signals a UNIT ATTENTION condition, some
5077  *  tasks are thrown away by the device. We are required
5078  *  to reflect that on our tasks list since the device
5079  *  will never complete these tasks.
5080  *
5081  *  This function move from the BUSY queue to the COMP
5082  *  queue all disconnected CCBs for a given target that
5083  *  match the following criteria:
5084  *  - lun=-1  means any logical UNIT otherwise a given one.
5085  *  - task=-1 means any task, otherwise a given one.
5086  */
5087 static int
5088 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
5089 {
5090 	SYM_QUEHEAD qtmp, *qp;
5091 	int i = 0;
5092 	ccb_p cp;
5093 
5094 	/*
5095 	 *  Move the entire BUSY queue to our temporary queue.
5096 	 */
5097 	sym_que_init(&qtmp);
5098 	sym_que_splice(&np->busy_ccbq, &qtmp);
5099 	sym_que_init(&np->busy_ccbq);
5100 
5101 	/*
5102 	 *  Put all CCBs that matches our criteria into
5103 	 *  the COMP queue and put back other ones into
5104 	 *  the BUSY queue.
5105 	 */
5106 	while ((qp = sym_remque_head(&qtmp)) != 0) {
5107 		union ccb *ccb;
5108 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5109 		ccb = cp->cam_ccb;
5110 		if (cp->host_status != HS_DISCONNECT ||
5111 		    cp->target != target	     ||
5112 		    (lun  != -1 && cp->lun != lun)   ||
5113 		    (task != -1 &&
5114 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
5115 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
5116 			continue;
5117 		}
5118 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
5119 
5120 		/* Preserve the software timeout condition */
5121 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
5122 			sym_set_cam_status(ccb, cam_status);
5123 		++i;
5124 #if 0
5125 printf("XXXX TASK @%p CLEARED\n", cp);
5126 #endif
5127 	}
5128 	return i;
5129 }
5130 
5131 /*
5132  *  chip handler for TASKS recovery
5133  *
5134  *  We cannot safely abort a command, while the SCRIPTS
5135  *  processor is running, since we just would be in race
5136  *  with it.
5137  *
5138  *  As long as we have tasks to abort, we keep the SEM
5139  *  bit set in the ISTAT. When this bit is set, the
5140  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
5141  *  each time it enters the scheduler.
5142  *
5143  *  If we have to reset a target, clear tasks of a unit,
5144  *  or to perform the abort of a disconnected job, we
5145  *  restart the SCRIPTS for selecting the target. Once
5146  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
5147  *  If it loses arbitration, the SCRIPTS will interrupt again
5148  *  the next time it will enter its scheduler, and so on ...
5149  *
5150  *  On SIR_TARGET_SELECTED, we scan for the more
5151  *  appropriate thing to do:
5152  *
5153  *  - If nothing, we just sent a M_ABORT message to the
5154  *    target to get rid of the useless SCSI bus ownership.
5155  *    According to the specs, no tasks shall be affected.
5156  *  - If the target is to be reset, we send it a M_RESET
5157  *    message.
5158  *  - If a logical UNIT is to be cleared , we send the
5159  *    IDENTIFY(lun) + M_ABORT.
5160  *  - If an untagged task is to be aborted, we send the
5161  *    IDENTIFY(lun) + M_ABORT.
5162  *  - If a tagged task is to be aborted, we send the
5163  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
5164  *
5165  *  Once our 'kiss of death' :) message has been accepted
5166  *  by the target, the SCRIPTS interrupts again
5167  *  (SIR_ABORT_SENT). On this interrupt, we complete
5168  *  all the CCBs that should have been aborted by the
5169  *  target according to our message.
5170  */
5171 static void sym_sir_task_recovery(hcb_p np, int num)
5172 {
5173 	SYM_QUEHEAD *qp;
5174 	ccb_p cp;
5175 	tcb_p tp;
5176 	int target=-1, lun=-1, task;
5177 	int i, k;
5178 
5179 	switch(num) {
5180 	/*
5181 	 *  The SCRIPTS processor stopped before starting
5182 	 *  the next command in order to allow us to perform
5183 	 *  some task recovery.
5184 	 */
5185 	case SIR_SCRIPT_STOPPED:
5186 		/*
5187 		 *  Do we have any target to reset or unit to clear ?
5188 		 */
5189 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5190 			tp = &np->target[i];
5191 			if (tp->to_reset ||
5192 			    (tp->lun0p && tp->lun0p->to_clear)) {
5193 				target = i;
5194 				break;
5195 			}
5196 			if (!tp->lunmp)
5197 				continue;
5198 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5199 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5200 					target	= i;
5201 					break;
5202 				}
5203 			}
5204 			if (target != -1)
5205 				break;
5206 		}
5207 
5208 		/*
5209 		 *  If not, walk the busy queue for any
5210 		 *  disconnected CCB to be aborted.
5211 		 */
5212 		if (target == -1) {
5213 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5214 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
5215 				if (cp->host_status != HS_DISCONNECT)
5216 					continue;
5217 				if (cp->to_abort) {
5218 					target = cp->target;
5219 					break;
5220 				}
5221 			}
5222 		}
5223 
5224 		/*
5225 		 *  If some target is to be selected,
5226 		 *  prepare and start the selection.
5227 		 */
5228 		if (target != -1) {
5229 			tp = &np->target[target];
5230 			np->abrt_sel.sel_id	= target;
5231 			np->abrt_sel.sel_scntl3 = tp->head.wval;
5232 			np->abrt_sel.sel_sxfer  = tp->head.sval;
5233 			OUTL(nc_dsa, np->hcb_ba);
5234 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
5235 			return;
5236 		}
5237 
5238 		/*
5239 		 *  Now look for a CCB to abort that haven't started yet.
5240 		 *  Btw, the SCRIPTS processor is still stopped, so
5241 		 *  we are not in race.
5242 		 */
5243 		i = 0;
5244 		cp = 0;
5245 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5246 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5247 			if (cp->host_status != HS_BUSY &&
5248 			    cp->host_status != HS_NEGOTIATE)
5249 				continue;
5250 			if (!cp->to_abort)
5251 				continue;
5252 #ifdef SYM_CONF_IARB_SUPPORT
5253 			/*
5254 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5255 			 *    want to cancel the last queued CCB, since the
5256 			 *    SCRIPTS may have anticipated the selection.
5257 			 */
5258 			if (cp == np->last_cp) {
5259 				cp->to_abort = 0;
5260 				continue;
5261 			}
5262 #endif
5263 			i = 1;	/* Means we have found some */
5264 			break;
5265 		}
5266 		if (!i) {
5267 			/*
5268 			 *  We are done, so we donnot need
5269 			 *  to synchronize with the SCRIPTS anylonger.
5270 			 *  Remove the SEM flag from the ISTAT.
5271 			 */
5272 			np->istat_sem = 0;
5273 			OUTB (nc_istat, SIGP);
5274 			break;
5275 		}
5276 		/*
5277 		 *  Compute index of next position in the start
5278 		 *  queue the SCRIPTS intends to start and dequeue
5279 		 *  all CCBs for that device that haven't been started.
5280 		 */
5281 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5282 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5283 
5284 		/*
5285 		 *  Make sure at least our IO to abort has been dequeued.
5286 		 */
5287 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5288 
5289 		/*
5290 		 *  Keep track in cam status of the reason of the abort.
5291 		 */
5292 		if (cp->to_abort == 2)
5293 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5294 		else
5295 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5296 
5297 		/*
5298 		 *  Complete with error everything that we have dequeued.
5299 	 	 */
5300 		sym_flush_comp_queue(np, 0);
5301 		break;
5302 	/*
5303 	 *  The SCRIPTS processor has selected a target
5304 	 *  we may have some manual recovery to perform for.
5305 	 */
5306 	case SIR_TARGET_SELECTED:
5307 		target = (INB (nc_sdid) & 0xf);
5308 		tp = &np->target[target];
5309 
5310 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5311 
5312 		/*
5313 		 *  If the target is to be reset, prepare a
5314 		 *  M_RESET message and clear the to_reset flag
5315 		 *  since we donnot expect this operation to fail.
5316 		 */
5317 		if (tp->to_reset) {
5318 			np->abrt_msg[0] = M_RESET;
5319 			np->abrt_tbl.size = 1;
5320 			tp->to_reset = 0;
5321 			break;
5322 		}
5323 
5324 		/*
5325 		 *  Otherwise, look for some logical unit to be cleared.
5326 		 */
5327 		if (tp->lun0p && tp->lun0p->to_clear)
5328 			lun = 0;
5329 		else if (tp->lunmp) {
5330 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5331 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5332 					lun = k;
5333 					break;
5334 				}
5335 			}
5336 		}
5337 
5338 		/*
5339 		 *  If a logical unit is to be cleared, prepare
5340 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5341 		 */
5342 		if (lun != -1) {
5343 			lcb_p lp = sym_lp(np, tp, lun);
5344 			lp->to_clear = 0; /* We donnot expect to fail here */
5345 			np->abrt_msg[0] = M_IDENTIFY | lun;
5346 			np->abrt_msg[1] = M_ABORT;
5347 			np->abrt_tbl.size = 2;
5348 			break;
5349 		}
5350 
5351 		/*
5352 		 *  Otherwise, look for some disconnected job to
5353 		 *  abort for this target.
5354 		 */
5355 		i = 0;
5356 		cp = 0;
5357 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5358 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5359 			if (cp->host_status != HS_DISCONNECT)
5360 				continue;
5361 			if (cp->target != target)
5362 				continue;
5363 			if (!cp->to_abort)
5364 				continue;
5365 			i = 1;	/* Means we have some */
5366 			break;
5367 		}
5368 
5369 		/*
5370 		 *  If we have none, probably since the device has
5371 		 *  completed the command before we won abitration,
5372 		 *  send a M_ABORT message without IDENTIFY.
5373 		 *  According to the specs, the device must just
5374 		 *  disconnect the BUS and not abort any task.
5375 		 */
5376 		if (!i) {
5377 			np->abrt_msg[0] = M_ABORT;
5378 			np->abrt_tbl.size = 1;
5379 			break;
5380 		}
5381 
5382 		/*
5383 		 *  We have some task to abort.
5384 		 *  Set the IDENTIFY(lun)
5385 		 */
5386 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5387 
5388 		/*
5389 		 *  If we want to abort an untagged command, we
5390 		 *  will send a IDENTIFY + M_ABORT.
5391 		 *  Otherwise (tagged command), we will send
5392 		 *  a IDENTITFY + task attributes + ABORT TAG.
5393 		 */
5394 		if (cp->tag == NO_TAG) {
5395 			np->abrt_msg[1] = M_ABORT;
5396 			np->abrt_tbl.size = 2;
5397 		}
5398 		else {
5399 			np->abrt_msg[1] = cp->scsi_smsg[1];
5400 			np->abrt_msg[2] = cp->scsi_smsg[2];
5401 			np->abrt_msg[3] = M_ABORT_TAG;
5402 			np->abrt_tbl.size = 4;
5403 		}
5404 		/*
5405 		 *  Keep track of software timeout condition, since the
5406 		 *  peripheral driver may not count retries on abort
5407 		 *  conditions not due to timeout.
5408 		 */
5409 		if (cp->to_abort == 2)
5410 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5411 		cp->to_abort = 0; /* We donnot expect to fail here */
5412 		break;
5413 
5414 	/*
5415 	 *  The target has accepted our message and switched
5416 	 *  to BUS FREE phase as we expected.
5417 	 */
5418 	case SIR_ABORT_SENT:
5419 		target = (INB (nc_sdid) & 0xf);
5420 		tp = &np->target[target];
5421 
5422 		/*
5423 		**  If we didn't abort anything, leave here.
5424 		*/
5425 		if (np->abrt_msg[0] == M_ABORT)
5426 			break;
5427 
5428 		/*
5429 		 *  If we sent a M_RESET, then a hardware reset has
5430 		 *  been performed by the target.
5431 		 *  - Reset everything to async 8 bit
5432 		 *  - Tell ourself to negotiate next time :-)
5433 		 *  - Prepare to clear all disconnected CCBs for
5434 		 *    this target from our task list (lun=task=-1)
5435 		 */
5436 		lun = -1;
5437 		task = -1;
5438 		if (np->abrt_msg[0] == M_RESET) {
5439 			tp->head.sval = 0;
5440 			tp->head.wval = np->rv_scntl3;
5441 			tp->head.uval = 0;
5442 			tp->tinfo.current.period = 0;
5443 			tp->tinfo.current.offset = 0;
5444 			tp->tinfo.current.width  = BUS_8_BIT;
5445 			tp->tinfo.current.options = 0;
5446 		}
5447 
5448 		/*
5449 		 *  Otherwise, check for the LUN and TASK(s)
5450 		 *  concerned by the cancelation.
5451 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5452 		 *  or an ABORT message :-)
5453 		 */
5454 		else {
5455 			lun = np->abrt_msg[0] & 0x3f;
5456 			if (np->abrt_msg[1] == M_ABORT_TAG)
5457 				task = np->abrt_msg[2];
5458 		}
5459 
5460 		/*
5461 		 *  Complete all the CCBs the device should have
5462 		 *  aborted due to our 'kiss of death' message.
5463 		 */
5464 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5465 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5466 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5467 		sym_flush_comp_queue(np, 0);
5468 
5469 		/*
5470 		 *  If we sent a BDR, make uper layer aware of that.
5471 		 */
5472 		if (np->abrt_msg[0] == M_RESET)
5473 			xpt_async(AC_SENT_BDR, np->path, NULL);
5474 		break;
5475 	}
5476 
5477 	/*
5478 	 *  Print to the log the message we intend to send.
5479 	 */
5480 	if (num == SIR_TARGET_SELECTED) {
5481 		PRINT_TARGET(np, target);
5482 		sym_printl_hex("control msgout:", np->abrt_msg,
5483 			      np->abrt_tbl.size);
5484 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5485 	}
5486 
5487 	/*
5488 	 *  Let the SCRIPTS processor continue.
5489 	 */
5490 	OUTONB_STD ();
5491 }
5492 
5493 /*
5494  *  Gerard's alchemy:) that deals with with the data
5495  *  pointer for both MDP and the residual calculation.
5496  *
5497  *  I didn't want to bloat the code by more than 200
5498  *  lignes for the handling of both MDP and the residual.
5499  *  This has been achieved by using a data pointer
5500  *  representation consisting in an index in the data
5501  *  array (dp_sg) and a negative offset (dp_ofs) that
5502  *  have the following meaning:
5503  *
5504  *  - dp_sg = SYM_CONF_MAX_SG
5505  *    we are at the end of the data script.
5506  *  - dp_sg < SYM_CONF_MAX_SG
5507  *    dp_sg points to the next entry of the scatter array
5508  *    we want to transfer.
5509  *  - dp_ofs < 0
5510  *    dp_ofs represents the residual of bytes of the
5511  *    previous entry scatter entry we will send first.
5512  *  - dp_ofs = 0
5513  *    no residual to send first.
5514  *
5515  *  The function sym_evaluate_dp() accepts an arbitray
5516  *  offset (basically from the MDP message) and returns
5517  *  the corresponding values of dp_sg and dp_ofs.
5518  */
5519 
5520 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5521 {
5522 	u32	dp_scr;
5523 	int	dp_ofs, dp_sg, dp_sgmin;
5524 	int	tmp;
5525 	struct sym_pmc *pm;
5526 
5527 	/*
5528 	 *  Compute the resulted data pointer in term of a script
5529 	 *  address within some DATA script and a signed byte offset.
5530 	 */
5531 	dp_scr = scr;
5532 	dp_ofs = *ofs;
5533 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5534 		pm = &cp->phys.pm0;
5535 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5536 		pm = &cp->phys.pm1;
5537 	else
5538 		pm = 0;
5539 
5540 	if (pm) {
5541 		dp_scr  = scr_to_cpu(pm->ret);
5542 		dp_ofs -= scr_to_cpu(pm->sg.size);
5543 	}
5544 
5545 	/*
5546 	 *  If we are auto-sensing, then we are done.
5547 	 */
5548 	if (cp->host_flags & HF_SENSE) {
5549 		*ofs = dp_ofs;
5550 		return 0;
5551 	}
5552 
5553 	/*
5554 	 *  Deduce the index of the sg entry.
5555 	 *  Keep track of the index of the first valid entry.
5556 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5557 	 *  end of the data.
5558 	 */
5559 	tmp = scr_to_cpu(cp->phys.head.goalp);
5560 	dp_sg = SYM_CONF_MAX_SG;
5561 	if (dp_scr != tmp)
5562 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5563 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5564 
5565 	/*
5566 	 *  Move to the sg entry the data pointer belongs to.
5567 	 *
5568 	 *  If we are inside the data area, we expect result to be:
5569 	 *
5570 	 *  Either,
5571 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5572 	 *      the data pointer belongs to (or the end of the data)
5573 	 *  Or,
5574 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5575 	 *      the data pointer belongs to + 1.
5576 	 */
5577 	if (dp_ofs < 0) {
5578 		int n;
5579 		while (dp_sg > dp_sgmin) {
5580 			--dp_sg;
5581 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5582 			n = dp_ofs + (tmp & 0xffffff);
5583 			if (n > 0) {
5584 				++dp_sg;
5585 				break;
5586 			}
5587 			dp_ofs = n;
5588 		}
5589 	}
5590 	else if (dp_ofs > 0) {
5591 		while (dp_sg < SYM_CONF_MAX_SG) {
5592 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5593 			dp_ofs -= (tmp & 0xffffff);
5594 			++dp_sg;
5595 			if (dp_ofs <= 0)
5596 				break;
5597 		}
5598 	}
5599 
5600 	/*
5601 	 *  Make sure the data pointer is inside the data area.
5602 	 *  If not, return some error.
5603 	 */
5604 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5605 		goto out_err;
5606 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5607 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5608 		goto out_err;
5609 
5610 	/*
5611 	 *  Save the extreme pointer if needed.
5612 	 */
5613 	if (dp_sg > cp->ext_sg ||
5614             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5615 		cp->ext_sg  = dp_sg;
5616 		cp->ext_ofs = dp_ofs;
5617 	}
5618 
5619 	/*
5620 	 *  Return data.
5621 	 */
5622 	*ofs = dp_ofs;
5623 	return dp_sg;
5624 
5625 out_err:
5626 	return -1;
5627 }
5628 
5629 /*
5630  *  chip handler for MODIFY DATA POINTER MESSAGE
5631  *
5632  *  We also call this function on IGNORE WIDE RESIDUE
5633  *  messages that do not match a SWIDE full condition.
5634  *  Btw, we assume in that situation that such a message
5635  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5636  */
5637 
5638 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5639 {
5640 	int dp_ofs	= ofs;
5641 	u32	dp_scr	= INL (nc_temp);
5642 	u32	dp_ret;
5643 	u32	tmp;
5644 	u_char	hflags;
5645 	int	dp_sg;
5646 	struct	sym_pmc *pm;
5647 
5648 	/*
5649 	 *  Not supported for auto-sense.
5650 	 */
5651 	if (cp->host_flags & HF_SENSE)
5652 		goto out_reject;
5653 
5654 	/*
5655 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5656 	 *  to the resulted data pointer.
5657 	 */
5658 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5659 	if (dp_sg < 0)
5660 		goto out_reject;
5661 
5662 	/*
5663 	 *  And our alchemy:) allows to easily calculate the data
5664 	 *  script address we want to return for the next data phase.
5665 	 */
5666 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5667 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5668 
5669 	/*
5670 	 *  If offset / scatter entry is zero we donnot need
5671 	 *  a context for the new current data pointer.
5672 	 */
5673 	if (dp_ofs == 0) {
5674 		dp_scr = dp_ret;
5675 		goto out_ok;
5676 	}
5677 
5678 	/*
5679 	 *  Get a context for the new current data pointer.
5680 	 */
5681 	hflags = INB (HF_PRT);
5682 
5683 	if (hflags & HF_DP_SAVED)
5684 		hflags ^= HF_ACT_PM;
5685 
5686 	if (!(hflags & HF_ACT_PM)) {
5687 		pm  = &cp->phys.pm0;
5688 		dp_scr = SCRIPTA_BA (np, pm0_data);
5689 	}
5690 	else {
5691 		pm = &cp->phys.pm1;
5692 		dp_scr = SCRIPTA_BA (np, pm1_data);
5693 	}
5694 
5695 	hflags &= ~(HF_DP_SAVED);
5696 
5697 	OUTB (HF_PRT, hflags);
5698 
5699 	/*
5700 	 *  Set up the new current data pointer.
5701 	 *  ofs < 0 there, and for the next data phase, we
5702 	 *  want to transfer part of the data of the sg entry
5703 	 *  corresponding to index dp_sg-1 prior to returning
5704 	 *  to the main data script.
5705 	 */
5706 	pm->ret = cpu_to_scr(dp_ret);
5707 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5708 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5709 	pm->sg.addr = cpu_to_scr(tmp);
5710 	pm->sg.size = cpu_to_scr(-dp_ofs);
5711 
5712 out_ok:
5713 	OUTL (nc_temp, dp_scr);
5714 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5715 	return;
5716 
5717 out_reject:
5718 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5719 }
5720 
5721 
5722 /*
5723  *  chip calculation of the data residual.
5724  *
5725  *  As I used to say, the requirement of data residual
5726  *  in SCSI is broken, useless and cannot be achieved
5727  *  without huge complexity.
5728  *  But most OSes and even the official CAM require it.
5729  *  When stupidity happens to be so widely spread inside
5730  *  a community, it gets hard to convince.
5731  *
5732  *  Anyway, I don't care, since I am not going to use
5733  *  any software that considers this data residual as
5734  *  a relevant information. :)
5735  */
5736 
5737 static int sym_compute_residual(hcb_p np, ccb_p cp)
5738 {
5739 	int dp_sg, dp_sgmin, resid = 0;
5740 	int dp_ofs = 0;
5741 
5742 	/*
5743 	 *  Check for some data lost or just thrown away.
5744 	 *  We are not required to be quite accurate in this
5745 	 *  situation. Btw, if we are odd for output and the
5746 	 *  device claims some more data, it may well happen
5747 	 *  than our residual be zero. :-)
5748 	 */
5749 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5750 		if (cp->xerr_status & XE_EXTRA_DATA)
5751 			resid -= cp->extra_bytes;
5752 		if (cp->xerr_status & XE_SODL_UNRUN)
5753 			++resid;
5754 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5755 			--resid;
5756 	}
5757 
5758 	/*
5759 	 *  If all data has been transferred,
5760 	 *  there is no residual.
5761 	 */
5762 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5763 		return resid;
5764 
5765 	/*
5766 	 *  If no data transfer occurs, or if the data
5767 	 *  pointer is weird, return full residual.
5768 	 */
5769 	if (cp->startp == cp->phys.head.lastp ||
5770 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5771 			    &dp_ofs) < 0) {
5772 		return cp->data_len;
5773 	}
5774 
5775 	/*
5776 	 *  If we were auto-sensing, then we are done.
5777 	 */
5778 	if (cp->host_flags & HF_SENSE) {
5779 		return -dp_ofs;
5780 	}
5781 
5782 	/*
5783 	 *  We are now full comfortable in the computation
5784 	 *  of the data residual (2's complement).
5785 	 */
5786 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5787 	resid = -cp->ext_ofs;
5788 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5789 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5790 		resid += (tmp & 0xffffff);
5791 	}
5792 
5793 	/*
5794 	 *  Hopefully, the result is not too wrong.
5795 	 */
5796 	return resid;
5797 }
5798 
5799 /*
5800  *  Print out the content of a SCSI message.
5801  */
5802 
5803 static int sym_show_msg (u_char * msg)
5804 {
5805 	u_char i;
5806 	printf ("%x",*msg);
5807 	if (*msg==M_EXTENDED) {
5808 		for (i=1;i<8;i++) {
5809 			if (i-1>msg[1]) break;
5810 			printf ("-%x",msg[i]);
5811 		};
5812 		return (i+1);
5813 	} else if ((*msg & 0xf0) == 0x20) {
5814 		printf ("-%x",msg[1]);
5815 		return (2);
5816 	};
5817 	return (1);
5818 }
5819 
5820 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5821 {
5822 	PRINT_ADDR(cp);
5823 	if (label)
5824 		printf ("%s: ", label);
5825 
5826 	(void) sym_show_msg (msg);
5827 	printf (".\n");
5828 }
5829 
5830 /*
5831  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5832  *
5833  *  When we try to negotiate, we append the negotiation message
5834  *  to the identify and (maybe) simple tag message.
5835  *  The host status field is set to HS_NEGOTIATE to mark this
5836  *  situation.
5837  *
5838  *  If the target doesn't answer this message immediately
5839  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5840  *  will be raised eventually.
5841  *  The handler removes the HS_NEGOTIATE status, and sets the
5842  *  negotiated value to the default (async / nowide).
5843  *
5844  *  If we receive a matching answer immediately, we check it
5845  *  for validity, and set the values.
5846  *
5847  *  If we receive a Reject message immediately, we assume the
5848  *  negotiation has failed, and fall back to standard values.
5849  *
5850  *  If we receive a negotiation message while not in HS_NEGOTIATE
5851  *  state, it's a target initiated negotiation. We prepare a
5852  *  (hopefully) valid answer, set our parameters, and send back
5853  *  this answer to the target.
5854  *
5855  *  If the target doesn't fetch the answer (no message out phase),
5856  *  we assume the negotiation has failed, and fall back to default
5857  *  settings (SIR_NEGO_PROTO interrupt).
5858  *
5859  *  When we set the values, we adjust them in all ccbs belonging
5860  *  to this target, in the controller's register, and in the "phys"
5861  *  field of the controller's struct sym_hcb.
5862  */
5863 
5864 /*
5865  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5866  */
5867 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5868 {
5869 	u_char	chg, ofs, per, fak, div;
5870 	int	req = 1;
5871 
5872 	/*
5873 	 *  Synchronous request message received.
5874 	 */
5875 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5876 		sym_print_msg(cp, "sync msgin", np->msgin);
5877 	};
5878 
5879 	/*
5880 	 * request or answer ?
5881 	 */
5882 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5883 		OUTB (HS_PRT, HS_BUSY);
5884 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5885 			goto reject_it;
5886 		req = 0;
5887 	}
5888 
5889 	/*
5890 	 *  get requested values.
5891 	 */
5892 	chg = 0;
5893 	per = np->msgin[3];
5894 	ofs = np->msgin[4];
5895 
5896 	/*
5897 	 *  check values against our limits.
5898 	 */
5899 	if (ofs) {
5900 		if (ofs > np->maxoffs)
5901 			{chg = 1; ofs = np->maxoffs;}
5902 		if (req) {
5903 			if (ofs > tp->tinfo.user.offset)
5904 				{chg = 1; ofs = tp->tinfo.user.offset;}
5905 		}
5906 	}
5907 
5908 	if (ofs) {
5909 		if (per < np->minsync)
5910 			{chg = 1; per = np->minsync;}
5911 		if (req) {
5912 			if (per < tp->tinfo.user.period)
5913 				{chg = 1; per = tp->tinfo.user.period;}
5914 		}
5915 	}
5916 
5917 	div = fak = 0;
5918 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5919 		goto reject_it;
5920 
5921 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5922 		PRINT_ADDR(cp);
5923 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5924 			ofs, per, div, fak, chg);
5925 	}
5926 
5927 	/*
5928 	 *  This was an answer message
5929 	 */
5930 	if (req == 0) {
5931 		if (chg) 	/* Answer wasn't acceptable. */
5932 			goto reject_it;
5933 		sym_setsync (np, cp, ofs, per, div, fak);
5934 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5935 		return;
5936 	}
5937 
5938 	/*
5939 	 *  It was a request. Set value and
5940 	 *  prepare an answer message
5941 	 */
5942 	sym_setsync (np, cp, ofs, per, div, fak);
5943 
5944 	np->msgout[0] = M_EXTENDED;
5945 	np->msgout[1] = 3;
5946 	np->msgout[2] = M_X_SYNC_REQ;
5947 	np->msgout[3] = per;
5948 	np->msgout[4] = ofs;
5949 
5950 	cp->nego_status = NS_SYNC;
5951 
5952 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5953 		sym_print_msg(cp, "sync msgout", np->msgout);
5954 	}
5955 
5956 	np->msgin [0] = M_NOOP;
5957 
5958 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5959 	return;
5960 reject_it:
5961 	sym_setsync (np, cp, 0, 0, 0, 0);
5962 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5963 }
5964 
5965 /*
5966  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5967  */
5968 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5969 {
5970 	u_char	chg, ofs, per, fak, dt, div, wide;
5971 	int	req = 1;
5972 
5973 	/*
5974 	 * Synchronous request message received.
5975 	 */
5976 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5977 		sym_print_msg(cp, "ppr msgin", np->msgin);
5978 	};
5979 
5980 	/*
5981 	 *  get requested values.
5982 	 */
5983 	chg  = 0;
5984 	per  = np->msgin[3];
5985 	ofs  = np->msgin[5];
5986 	wide = np->msgin[6];
5987 	dt   = np->msgin[7] & PPR_OPT_DT;
5988 
5989 	/*
5990 	 * request or answer ?
5991 	 */
5992 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5993 		OUTB (HS_PRT, HS_BUSY);
5994 		if (cp->nego_status && cp->nego_status != NS_PPR)
5995 			goto reject_it;
5996 		req = 0;
5997 	}
5998 
5999 	/*
6000 	 *  check values against our limits.
6001 	 */
6002 	if (wide > np->maxwide)
6003 		{chg = 1; wide = np->maxwide;}
6004 	if (!wide || !(np->features & FE_ULTRA3))
6005 		dt &= ~PPR_OPT_DT;
6006 	if (req) {
6007 		if (wide > tp->tinfo.user.width)
6008 			{chg = 1; wide = tp->tinfo.user.width;}
6009 	}
6010 
6011 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
6012 		dt &= ~PPR_OPT_DT;
6013 
6014 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
6015 
6016 	if (ofs) {
6017 		if (dt) {
6018 			if (ofs > np->maxoffs_dt)
6019 				{chg = 1; ofs = np->maxoffs_dt;}
6020 		}
6021 		else if (ofs > np->maxoffs)
6022 			{chg = 1; ofs = np->maxoffs;}
6023 		if (req) {
6024 			if (ofs > tp->tinfo.user.offset)
6025 				{chg = 1; ofs = tp->tinfo.user.offset;}
6026 		}
6027 	}
6028 
6029 	if (ofs) {
6030 		if (dt) {
6031 			if (per < np->minsync_dt)
6032 				{chg = 1; per = np->minsync_dt;}
6033 		}
6034 		else if (per < np->minsync)
6035 			{chg = 1; per = np->minsync;}
6036 		if (req) {
6037 			if (per < tp->tinfo.user.period)
6038 				{chg = 1; per = tp->tinfo.user.period;}
6039 		}
6040 	}
6041 
6042 	div = fak = 0;
6043 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
6044 		goto reject_it;
6045 
6046 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6047 		PRINT_ADDR(cp);
6048 		printf ("ppr: "
6049 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
6050 			dt, ofs, per, wide, div, fak, chg);
6051 	}
6052 
6053 	/*
6054 	 *  It was an answer.
6055 	 */
6056 	if (req == 0) {
6057 		if (chg) 	/* Answer wasn't acceptable */
6058 			goto reject_it;
6059 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
6060 		OUTL_DSP (SCRIPTA_BA (np, clrack));
6061 		return;
6062 	}
6063 
6064 	/*
6065 	 *  It was a request. Set value and
6066 	 *  prepare an answer message
6067 	 */
6068 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
6069 
6070 	np->msgout[0] = M_EXTENDED;
6071 	np->msgout[1] = 6;
6072 	np->msgout[2] = M_X_PPR_REQ;
6073 	np->msgout[3] = per;
6074 	np->msgout[4] = 0;
6075 	np->msgout[5] = ofs;
6076 	np->msgout[6] = wide;
6077 	np->msgout[7] = dt;
6078 
6079 	cp->nego_status = NS_PPR;
6080 
6081 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6082 		sym_print_msg(cp, "ppr msgout", np->msgout);
6083 	}
6084 
6085 	np->msgin [0] = M_NOOP;
6086 
6087 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
6088 	return;
6089 reject_it:
6090 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6091 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6092 	/*
6093 	 *  If it was a device response that should result in
6094 	 *  ST, we may want to try a legacy negotiation later.
6095 	 */
6096 	if (!req && !dt) {
6097 		tp->tinfo.goal.options = 0;
6098 		tp->tinfo.goal.width   = wide;
6099 		tp->tinfo.goal.period  = per;
6100 		tp->tinfo.goal.offset  = ofs;
6101 	}
6102 	return;
6103 }
6104 
6105 /*
6106  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
6107  */
6108 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
6109 {
6110 	u_char	chg, wide;
6111 	int	req = 1;
6112 
6113 	/*
6114 	 *  Wide request message received.
6115 	 */
6116 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6117 		sym_print_msg(cp, "wide msgin", np->msgin);
6118 	};
6119 
6120 	/*
6121 	 * Is it an request from the device?
6122 	 */
6123 	if (INB (HS_PRT) == HS_NEGOTIATE) {
6124 		OUTB (HS_PRT, HS_BUSY);
6125 		if (cp->nego_status && cp->nego_status != NS_WIDE)
6126 			goto reject_it;
6127 		req = 0;
6128 	}
6129 
6130 	/*
6131 	 *  get requested values.
6132 	 */
6133 	chg  = 0;
6134 	wide = np->msgin[3];
6135 
6136 	/*
6137 	 *  check values against driver limits.
6138 	 */
6139 	if (wide > np->maxwide)
6140 		{chg = 1; wide = np->maxwide;}
6141 	if (req) {
6142 		if (wide > tp->tinfo.user.width)
6143 			{chg = 1; wide = tp->tinfo.user.width;}
6144 	}
6145 
6146 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6147 		PRINT_ADDR(cp);
6148 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
6149 	}
6150 
6151 	/*
6152 	 * This was an answer message
6153 	 */
6154 	if (req == 0) {
6155 		if (chg)	/*  Answer wasn't acceptable. */
6156 			goto reject_it;
6157 		sym_setwide (np, cp, wide);
6158 
6159 		/*
6160 		 * Negotiate for SYNC immediately after WIDE response.
6161 		 * This allows to negotiate for both WIDE and SYNC on
6162 		 * a single SCSI command (Suggested by Justin Gibbs).
6163 		 */
6164 		if (tp->tinfo.goal.offset) {
6165 			np->msgout[0] = M_EXTENDED;
6166 			np->msgout[1] = 3;
6167 			np->msgout[2] = M_X_SYNC_REQ;
6168 			np->msgout[3] = tp->tinfo.goal.period;
6169 			np->msgout[4] = tp->tinfo.goal.offset;
6170 
6171 			if (DEBUG_FLAGS & DEBUG_NEGO) {
6172 				sym_print_msg(cp, "sync msgout", np->msgout);
6173 			}
6174 
6175 			cp->nego_status = NS_SYNC;
6176 			OUTB (HS_PRT, HS_NEGOTIATE);
6177 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
6178 			return;
6179 		}
6180 
6181 		OUTL_DSP (SCRIPTA_BA (np, clrack));
6182 		return;
6183 	};
6184 
6185 	/*
6186 	 *  It was a request, set value and
6187 	 *  prepare an answer message
6188 	 */
6189 	sym_setwide (np, cp, wide);
6190 
6191 	np->msgout[0] = M_EXTENDED;
6192 	np->msgout[1] = 2;
6193 	np->msgout[2] = M_X_WIDE_REQ;
6194 	np->msgout[3] = wide;
6195 
6196 	np->msgin [0] = M_NOOP;
6197 
6198 	cp->nego_status = NS_WIDE;
6199 
6200 	if (DEBUG_FLAGS & DEBUG_NEGO) {
6201 		sym_print_msg(cp, "wide msgout", np->msgout);
6202 	}
6203 
6204 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
6205 	return;
6206 reject_it:
6207 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6208 }
6209 
6210 /*
6211  *  Reset SYNC or WIDE to default settings.
6212  *
6213  *  Called when a negotiation does not succeed either
6214  *  on rejection or on protocol error.
6215  *
6216  *  If it was a PPR that made problems, we may want to
6217  *  try a legacy negotiation later.
6218  */
6219 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
6220 {
6221 	/*
6222 	 *  any error in negotiation:
6223 	 *  fall back to default mode.
6224 	 */
6225 	switch (cp->nego_status) {
6226 	case NS_PPR:
6227 #if 0
6228 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6229 #else
6230 		tp->tinfo.goal.options = 0;
6231 		if (tp->tinfo.goal.period < np->minsync)
6232 			tp->tinfo.goal.period = np->minsync;
6233 		if (tp->tinfo.goal.offset > np->maxoffs)
6234 			tp->tinfo.goal.offset = np->maxoffs;
6235 #endif
6236 		break;
6237 	case NS_SYNC:
6238 		sym_setsync (np, cp, 0, 0, 0, 0);
6239 		break;
6240 	case NS_WIDE:
6241 		sym_setwide (np, cp, 0);
6242 		break;
6243 	};
6244 	np->msgin [0] = M_NOOP;
6245 	np->msgout[0] = M_NOOP;
6246 	cp->nego_status = 0;
6247 }
6248 
6249 /*
6250  *  chip handler for MESSAGE REJECT received in response to
6251  *  a WIDE or SYNCHRONOUS negotiation.
6252  */
6253 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6254 {
6255 	sym_nego_default(np, tp, cp);
6256 	OUTB (HS_PRT, HS_BUSY);
6257 }
6258 
6259 /*
6260  *  chip exception handler for programmed interrupts.
6261  */
6262 void sym_int_sir (hcb_p np)
6263 {
6264 	u_char	num	= INB (nc_dsps);
6265 	u32	dsa	= INL (nc_dsa);
6266 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6267 	u_char	target	= INB (nc_sdid) & 0x0f;
6268 	tcb_p	tp	= &np->target[target];
6269 	int	tmp;
6270 
6271 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6272 
6273 	switch (num) {
6274 	/*
6275 	 *  Command has been completed with error condition
6276 	 *  or has been auto-sensed.
6277 	 */
6278 	case SIR_COMPLETE_ERROR:
6279 		sym_complete_error(np, cp);
6280 		return;
6281 	/*
6282 	 *  The C code is currently trying to recover from something.
6283 	 *  Typically, user want to abort some command.
6284 	 */
6285 	case SIR_SCRIPT_STOPPED:
6286 	case SIR_TARGET_SELECTED:
6287 	case SIR_ABORT_SENT:
6288 		sym_sir_task_recovery(np, num);
6289 		return;
6290 	/*
6291 	 *  The device didn't go to MSG OUT phase after having
6292 	 *  been selected with ATN. We donnot want to handle
6293 	 *  that.
6294 	 */
6295 	case SIR_SEL_ATN_NO_MSG_OUT:
6296 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6297 			sym_name (np), target);
6298 		goto out_stuck;
6299 	/*
6300 	 *  The device didn't switch to MSG IN phase after
6301 	 *  having reseleted the initiator.
6302 	 */
6303 	case SIR_RESEL_NO_MSG_IN:
6304 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6305 			sym_name (np), target);
6306 		goto out_stuck;
6307 	/*
6308 	 *  After reselection, the device sent a message that wasn't
6309 	 *  an IDENTIFY.
6310 	 */
6311 	case SIR_RESEL_NO_IDENTIFY:
6312 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6313 			sym_name (np), target);
6314 		goto out_stuck;
6315 	/*
6316 	 *  The device reselected a LUN we donnot know about.
6317 	 */
6318 	case SIR_RESEL_BAD_LUN:
6319 		np->msgout[0] = M_RESET;
6320 		goto out;
6321 	/*
6322 	 *  The device reselected for an untagged nexus and we
6323 	 *  haven't any.
6324 	 */
6325 	case SIR_RESEL_BAD_I_T_L:
6326 		np->msgout[0] = M_ABORT;
6327 		goto out;
6328 	/*
6329 	 *  The device reselected for a tagged nexus that we donnot
6330 	 *  have.
6331 	 */
6332 	case SIR_RESEL_BAD_I_T_L_Q:
6333 		np->msgout[0] = M_ABORT_TAG;
6334 		goto out;
6335 	/*
6336 	 *  The SCRIPTS let us know that the device has grabbed
6337 	 *  our message and will abort the job.
6338 	 */
6339 	case SIR_RESEL_ABORTED:
6340 		np->lastmsg = np->msgout[0];
6341 		np->msgout[0] = M_NOOP;
6342 		printf ("%s:%d: message %x sent on bad reselection.\n",
6343 			sym_name (np), target, np->lastmsg);
6344 		goto out;
6345 	/*
6346 	 *  The SCRIPTS let us know that a message has been
6347 	 *  successfully sent to the device.
6348 	 */
6349 	case SIR_MSG_OUT_DONE:
6350 		np->lastmsg = np->msgout[0];
6351 		np->msgout[0] = M_NOOP;
6352 		/* Should we really care of that */
6353 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6354 			if (cp) {
6355 				cp->xerr_status &= ~XE_PARITY_ERR;
6356 				if (!cp->xerr_status)
6357 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6358 			}
6359 		}
6360 		goto out;
6361 	/*
6362 	 *  The device didn't send a GOOD SCSI status.
6363 	 *  We may have some work to do prior to allow
6364 	 *  the SCRIPTS processor to continue.
6365 	 */
6366 	case SIR_BAD_SCSI_STATUS:
6367 		if (!cp)
6368 			goto out;
6369 		sym_sir_bad_scsi_status(np, num, cp);
6370 		return;
6371 	/*
6372 	 *  We are asked by the SCRIPTS to prepare a
6373 	 *  REJECT message.
6374 	 */
6375 	case SIR_REJECT_TO_SEND:
6376 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6377 		np->msgout[0] = M_REJECT;
6378 		goto out;
6379 	/*
6380 	 *  We have been ODD at the end of a DATA IN
6381 	 *  transfer and the device didn't send a
6382 	 *  IGNORE WIDE RESIDUE message.
6383 	 *  It is a data overrun condition.
6384 	 */
6385 	case SIR_SWIDE_OVERRUN:
6386 		if (cp) {
6387 			OUTONB (HF_PRT, HF_EXT_ERR);
6388 			cp->xerr_status |= XE_SWIDE_OVRUN;
6389 		}
6390 		goto out;
6391 	/*
6392 	 *  We have been ODD at the end of a DATA OUT
6393 	 *  transfer.
6394 	 *  It is a data underrun condition.
6395 	 */
6396 	case SIR_SODL_UNDERRUN:
6397 		if (cp) {
6398 			OUTONB (HF_PRT, HF_EXT_ERR);
6399 			cp->xerr_status |= XE_SODL_UNRUN;
6400 		}
6401 		goto out;
6402 	/*
6403 	 *  The device wants us to tranfer more data than
6404 	 *  expected or in the wrong direction.
6405 	 *  The number of extra bytes is in scratcha.
6406 	 *  It is a data overrun condition.
6407 	 */
6408 	case SIR_DATA_OVERRUN:
6409 		if (cp) {
6410 			OUTONB (HF_PRT, HF_EXT_ERR);
6411 			cp->xerr_status |= XE_EXTRA_DATA;
6412 			cp->extra_bytes += INL (nc_scratcha);
6413 		}
6414 		goto out;
6415 	/*
6416 	 *  The device switched to an illegal phase (4/5).
6417 	 */
6418 	case SIR_BAD_PHASE:
6419 		if (cp) {
6420 			OUTONB (HF_PRT, HF_EXT_ERR);
6421 			cp->xerr_status |= XE_BAD_PHASE;
6422 		}
6423 		goto out;
6424 	/*
6425 	 *  We received a message.
6426 	 */
6427 	case SIR_MSG_RECEIVED:
6428 		if (!cp)
6429 			goto out_stuck;
6430 		switch (np->msgin [0]) {
6431 		/*
6432 		 *  We received an extended message.
6433 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6434 		 *  and reject all other extended messages.
6435 		 */
6436 		case M_EXTENDED:
6437 			switch (np->msgin [2]) {
6438 			case M_X_MODIFY_DP:
6439 				if (DEBUG_FLAGS & DEBUG_POINTER)
6440 					sym_print_msg(cp,"modify DP",np->msgin);
6441 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6442 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6443 				sym_modify_dp(np, tp, cp, tmp);
6444 				return;
6445 			case M_X_SYNC_REQ:
6446 				sym_sync_nego(np, tp, cp);
6447 				return;
6448 			case M_X_PPR_REQ:
6449 				sym_ppr_nego(np, tp, cp);
6450 				return;
6451 			case M_X_WIDE_REQ:
6452 				sym_wide_nego(np, tp, cp);
6453 				return;
6454 			default:
6455 				goto out_reject;
6456 			}
6457 			break;
6458 		/*
6459 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6460 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6461 		 *  RESIDUE messages that haven't been anticipated by
6462 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6463 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6464 		 */
6465 		case M_IGN_RESIDUE:
6466 			if (DEBUG_FLAGS & DEBUG_POINTER)
6467 				sym_print_msg(cp,"ign wide residue", np->msgin);
6468 			sym_modify_dp(np, tp, cp, -1);
6469 			return;
6470 		case M_REJECT:
6471 			if (INB (HS_PRT) == HS_NEGOTIATE)
6472 				sym_nego_rejected(np, tp, cp);
6473 			else {
6474 				PRINT_ADDR(cp);
6475 				printf ("M_REJECT received (%x:%x).\n",
6476 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6477 			}
6478 			goto out_clrack;
6479 			break;
6480 		default:
6481 			goto out_reject;
6482 		}
6483 		break;
6484 	/*
6485 	 *  We received an unknown message.
6486 	 *  Ignore all MSG IN phases and reject it.
6487 	 */
6488 	case SIR_MSG_WEIRD:
6489 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6490 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6491 		return;
6492 	/*
6493 	 *  Negotiation failed.
6494 	 *  Target does not send us the reply.
6495 	 *  Remove the HS_NEGOTIATE status.
6496 	 */
6497 	case SIR_NEGO_FAILED:
6498 		OUTB (HS_PRT, HS_BUSY);
6499 	/*
6500 	 *  Negotiation failed.
6501 	 *  Target does not want answer message.
6502 	 */
6503 	case SIR_NEGO_PROTO:
6504 		sym_nego_default(np, tp, cp);
6505 		goto out;
6506 	};
6507 
6508 out:
6509 	OUTONB_STD ();
6510 	return;
6511 out_reject:
6512 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6513 	return;
6514 out_clrack:
6515 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6516 	return;
6517 out_stuck:
6518 	return;
6519 }
6520 
6521 /*
6522  *  Acquire a control block
6523  */
6524 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6525 {
6526 	tcb_p tp = &np->target[tn];
6527 	lcb_p lp = sym_lp(np, tp, ln);
6528 	u_short tag = NO_TAG;
6529 	SYM_QUEHEAD *qp;
6530 	ccb_p cp = (ccb_p) 0;
6531 
6532 	/*
6533 	 *  Look for a free CCB
6534 	 */
6535 	if (sym_que_empty(&np->free_ccbq))
6536 		(void) sym_alloc_ccb(np);
6537 	qp = sym_remque_head(&np->free_ccbq);
6538 	if (!qp)
6539 		goto out;
6540 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6541 
6542 	/*
6543 	 *  If the LCB is not yet available and the LUN
6544 	 *  has been probed ok, try to allocate the LCB.
6545 	 */
6546 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6547 		lp = sym_alloc_lcb(np, tn, ln);
6548 		if (!lp)
6549 			goto out_free;
6550 	}
6551 
6552 	/*
6553 	 *  If the LCB is not available here, then the
6554 	 *  logical unit is not yet discovered. For those
6555 	 *  ones only accept 1 SCSI IO per logical unit,
6556 	 *  since we cannot allow disconnections.
6557 	 */
6558 	if (!lp) {
6559 		if (!sym_is_bit(tp->busy0_map, ln))
6560 			sym_set_bit(tp->busy0_map, ln);
6561 		else
6562 			goto out_free;
6563 	} else {
6564 		/*
6565 		 *  If we have been asked for a tagged command.
6566 		 */
6567 		if (tag_order) {
6568 			/*
6569 			 *  Debugging purpose.
6570 			 */
6571 			assert(lp->busy_itl == 0);
6572 			/*
6573 			 *  Allocate resources for tags if not yet.
6574 			 */
6575 			if (!lp->cb_tags) {
6576 				sym_alloc_lcb_tags(np, tn, ln);
6577 				if (!lp->cb_tags)
6578 					goto out_free;
6579 			}
6580 			/*
6581 			 *  Get a tag for this SCSI IO and set up
6582 			 *  the CCB bus address for reselection,
6583 			 *  and count it for this LUN.
6584 			 *  Toggle reselect path to tagged.
6585 			 */
6586 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6587 				tag = lp->cb_tags[lp->ia_tag];
6588 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6589 					lp->ia_tag = 0;
6590 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6591 				++lp->busy_itlq;
6592 				lp->head.resel_sa =
6593 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6594 			}
6595 			else
6596 				goto out_free;
6597 		}
6598 		/*
6599 		 *  This command will not be tagged.
6600 		 *  If we already have either a tagged or untagged
6601 		 *  one, refuse to overlap this untagged one.
6602 		 */
6603 		else {
6604 			/*
6605 			 *  Debugging purpose.
6606 			 */
6607 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6608 			/*
6609 			 *  Count this nexus for this LUN.
6610 			 *  Set up the CCB bus address for reselection.
6611 			 *  Toggle reselect path to untagged.
6612 			 */
6613 			if (++lp->busy_itl == 1) {
6614 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6615 				lp->head.resel_sa =
6616 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6617 			}
6618 			else
6619 				goto out_free;
6620 		}
6621 	}
6622 	/*
6623 	 *  Put the CCB into the busy queue.
6624 	 */
6625 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6626 
6627 	/*
6628 	 *  Remember all informations needed to free this CCB.
6629 	 */
6630 	cp->to_abort = 0;
6631 	cp->tag	   = tag;
6632 	cp->target = tn;
6633 	cp->lun    = ln;
6634 
6635 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6636 		PRINT_LUN(np, tn, ln);
6637 		printf ("ccb @%p using tag %d.\n", cp, tag);
6638 	}
6639 
6640 out:
6641 	return cp;
6642 out_free:
6643 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6644 	return (ccb_p) 0;
6645 }
6646 
6647 /*
6648  *  Release one control block
6649  */
6650 static void sym_free_ccb (hcb_p np, ccb_p cp)
6651 {
6652 	tcb_p tp = &np->target[cp->target];
6653 	lcb_p lp = sym_lp(np, tp, cp->lun);
6654 
6655 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6656 		PRINT_LUN(np, cp->target, cp->lun);
6657 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6658 	}
6659 
6660 	/*
6661 	 *  If LCB available,
6662 	 */
6663 	if (lp) {
6664 		/*
6665 		 *  If tagged, release the tag, set the relect path
6666 		 */
6667 		if (cp->tag != NO_TAG) {
6668 			/*
6669 			 *  Free the tag value.
6670 			 */
6671 			lp->cb_tags[lp->if_tag] = cp->tag;
6672 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6673 				lp->if_tag = 0;
6674 			/*
6675 			 *  Make the reselect path invalid,
6676 			 *  and uncount this CCB.
6677 			 */
6678 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6679 			--lp->busy_itlq;
6680 		} else {	/* Untagged */
6681 			/*
6682 			 *  Make the reselect path invalid,
6683 			 *  and uncount this CCB.
6684 			 */
6685 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6686 			--lp->busy_itl;
6687 		}
6688 		/*
6689 		 *  If no JOB active, make the LUN reselect path invalid.
6690 		 */
6691 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6692 			lp->head.resel_sa =
6693 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6694 	}
6695 	/*
6696 	 *  Otherwise, we only accept 1 IO per LUN.
6697 	 *  Clear the bit that keeps track of this IO.
6698 	 */
6699 	else
6700 		sym_clr_bit(tp->busy0_map, cp->lun);
6701 
6702 	/*
6703 	 *  We donnot queue more than 1 ccb per target
6704 	 *  with negotiation at any time. If this ccb was
6705 	 *  used for negotiation, clear this info in the tcb.
6706 	 */
6707 	if (cp == tp->nego_cp)
6708 		tp->nego_cp = 0;
6709 
6710 #ifdef SYM_CONF_IARB_SUPPORT
6711 	/*
6712 	 *  If we just complete the last queued CCB,
6713 	 *  clear this info that is no longer relevant.
6714 	 */
6715 	if (cp == np->last_cp)
6716 		np->last_cp = 0;
6717 #endif
6718 
6719 #ifdef	FreeBSD_Bus_Dma_Abstraction
6720 	/*
6721 	 *  Unmap user data from DMA map if needed.
6722 	 */
6723 	if (cp->dmamapped) {
6724 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6725 		cp->dmamapped = 0;
6726 	}
6727 #endif
6728 
6729 	/*
6730 	 *  Make this CCB available.
6731 	 */
6732 	cp->cam_ccb = 0;
6733 	cp->host_status = HS_IDLE;
6734 	sym_remque(&cp->link_ccbq);
6735 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6736 }
6737 
6738 /*
6739  *  Allocate a CCB from memory and initialize its fixed part.
6740  */
6741 static ccb_p sym_alloc_ccb(hcb_p np)
6742 {
6743 	ccb_p cp = 0;
6744 	int hcode;
6745 
6746 	/*
6747 	 *  Prevent from allocating more CCBs than we can
6748 	 *  queue to the controller.
6749 	 */
6750 	if (np->actccbs >= SYM_CONF_MAX_START)
6751 		return 0;
6752 
6753 	/*
6754 	 *  Allocate memory for this CCB.
6755 	 */
6756 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6757 	if (!cp)
6758 		goto out_free;
6759 
6760 	/*
6761 	 *  Allocate a bounce buffer for sense data.
6762 	 */
6763 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6764 	if (!cp->sns_bbuf)
6765 		goto out_free;
6766 
6767 	/*
6768 	 *  Allocate a map for the DMA of user data.
6769 	 */
6770 #ifdef	FreeBSD_Bus_Dma_Abstraction
6771 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6772 		goto out_free;
6773 #endif
6774 	/*
6775 	 *  Count it.
6776 	 */
6777 	np->actccbs++;
6778 
6779 	/*
6780 	 *  Compute the bus address of this ccb.
6781 	 */
6782 	cp->ccb_ba = vtobus(cp);
6783 
6784 	/*
6785 	 *  Insert this ccb into the hashed list.
6786 	 */
6787 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6788 	cp->link_ccbh = np->ccbh[hcode];
6789 	np->ccbh[hcode] = cp;
6790 
6791 	/*
6792 	 *  Initialyze the start and restart actions.
6793 	 */
6794 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6795 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6796 
6797  	/*
6798 	 *  Initilialyze some other fields.
6799 	 */
6800 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6801 
6802 	/*
6803 	 *  Chain into free ccb queue.
6804 	 */
6805 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6806 
6807 	return cp;
6808 out_free:
6809 	if (cp) {
6810 		if (cp->sns_bbuf)
6811 			sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
6812 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
6813 	}
6814 	return 0;
6815 }
6816 
6817 /*
6818  *  Look up a CCB from a DSA value.
6819  */
6820 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6821 {
6822 	int hcode;
6823 	ccb_p cp;
6824 
6825 	hcode = CCB_HASH_CODE(dsa);
6826 	cp = np->ccbh[hcode];
6827 	while (cp) {
6828 		if (cp->ccb_ba == dsa)
6829 			break;
6830 		cp = cp->link_ccbh;
6831 	}
6832 
6833 	return cp;
6834 }
6835 
6836 /*
6837  *  Target control block initialisation.
6838  *  Nothing important to do at the moment.
6839  */
6840 static void sym_init_tcb (hcb_p np, u_char tn)
6841 {
6842 	/*
6843 	 *  Check some alignments required by the chip.
6844 	 */
6845 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6846 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6847 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6848 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6849 }
6850 
6851 /*
6852  *  Lun control block allocation and initialization.
6853  */
6854 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6855 {
6856 	tcb_p tp = &np->target[tn];
6857 	lcb_p lp = sym_lp(np, tp, ln);
6858 
6859 	/*
6860 	 *  Already done, just return.
6861 	 */
6862 	if (lp)
6863 		return lp;
6864 	/*
6865 	 *  Check against some race.
6866 	 */
6867 	assert(!sym_is_bit(tp->busy0_map, ln));
6868 
6869 	/*
6870 	 *  Initialize the target control block if not yet.
6871 	 */
6872 	sym_init_tcb (np, tn);
6873 
6874 	/*
6875 	 *  Allocate the LCB bus address array.
6876 	 *  Compute the bus address of this table.
6877 	 */
6878 	if (ln && !tp->luntbl) {
6879 		int i;
6880 
6881 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6882 		if (!tp->luntbl)
6883 			goto fail;
6884 		for (i = 0 ; i < 64 ; i++)
6885 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6886 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6887 	}
6888 
6889 	/*
6890 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6891 	 */
6892 	if (ln && !tp->lunmp) {
6893 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6894 				   "LUNMP");
6895 		if (!tp->lunmp)
6896 			goto fail;
6897 	}
6898 
6899 	/*
6900 	 *  Allocate the lcb.
6901 	 *  Make it available to the chip.
6902 	 */
6903 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6904 	if (!lp)
6905 		goto fail;
6906 	if (ln) {
6907 		tp->lunmp[ln] = lp;
6908 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6909 	}
6910 	else {
6911 		tp->lun0p = lp;
6912 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6913 	}
6914 
6915 	/*
6916 	 *  Let the itl task point to error handling.
6917 	 */
6918 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6919 
6920 	/*
6921 	 *  Set the reselect pattern to our default. :)
6922 	 */
6923 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6924 
6925 	/*
6926 	 *  Set user capabilities.
6927 	 */
6928 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6929 
6930 fail:
6931 	return lp;
6932 }
6933 
6934 /*
6935  *  Allocate LCB resources for tagged command queuing.
6936  */
6937 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6938 {
6939 	tcb_p tp = &np->target[tn];
6940 	lcb_p lp = sym_lp(np, tp, ln);
6941 	int i;
6942 
6943 	/*
6944 	 *  If LCB not available, try to allocate it.
6945 	 */
6946 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6947 		goto fail;
6948 
6949 	/*
6950 	 *  Allocate the task table and and the tag allocation
6951 	 *  circular buffer. We want both or none.
6952 	 */
6953 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6954 	if (!lp->itlq_tbl)
6955 		goto fail;
6956 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6957 	if (!lp->cb_tags) {
6958 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6959 		lp->itlq_tbl = 0;
6960 		goto fail;
6961 	}
6962 
6963 	/*
6964 	 *  Initialize the task table with invalid entries.
6965 	 */
6966 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6967 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6968 
6969 	/*
6970 	 *  Fill up the tag buffer with tag numbers.
6971 	 */
6972 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6973 		lp->cb_tags[i] = i;
6974 
6975 	/*
6976 	 *  Make the task table available to SCRIPTS,
6977 	 *  And accept tagged commands now.
6978 	 */
6979 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6980 
6981 	return;
6982 fail:
6983 	return;
6984 }
6985 
6986 /*
6987  *  Test the pci bus snoop logic :-(
6988  *
6989  *  Has to be called with interrupts disabled.
6990  */
6991 #ifndef SYM_CONF_IOMAPPED
6992 static int sym_regtest (hcb_p np)
6993 {
6994 	register volatile u32 data;
6995 	/*
6996 	 *  chip registers may NOT be cached.
6997 	 *  write 0xffffffff to a read only register area,
6998 	 *  and try to read it back.
6999 	 */
7000 	data = 0xffffffff;
7001 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
7002 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
7003 #if 1
7004 	if (data == 0xffffffff) {
7005 #else
7006 	if ((data & 0xe2f0fffd) != 0x02000080) {
7007 #endif
7008 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7009 			(unsigned) data);
7010 		return (0x10);
7011 	};
7012 	return (0);
7013 }
7014 #endif
7015 
7016 static int sym_snooptest (hcb_p np)
7017 {
7018 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
7019 	int	i, err=0;
7020 #ifndef SYM_CONF_IOMAPPED
7021 	err |= sym_regtest (np);
7022 	if (err) return (err);
7023 #endif
7024 restart_test:
7025 	/*
7026 	 *  Enable Master Parity Checking as we intend
7027 	 *  to enable it for normal operations.
7028 	 */
7029 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
7030 	/*
7031 	 *  init
7032 	 */
7033 	pc  = SCRIPTB0_BA (np, snooptest);
7034 	host_wr = 1;
7035 	sym_wr  = 2;
7036 	/*
7037 	 *  Set memory and register.
7038 	 */
7039 	np->cache = cpu_to_scr(host_wr);
7040 	OUTL (nc_temp, sym_wr);
7041 	/*
7042 	 *  Start script (exchange values)
7043 	 */
7044 	OUTL (nc_dsa, np->hcb_ba);
7045 	OUTL_DSP (pc);
7046 	/*
7047 	 *  Wait 'til done (with timeout)
7048 	 */
7049 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
7050 		if (INB(nc_istat) & (INTF|SIP|DIP))
7051 			break;
7052 	if (i>=SYM_SNOOP_TIMEOUT) {
7053 		printf ("CACHE TEST FAILED: timeout.\n");
7054 		return (0x20);
7055 	};
7056 	/*
7057 	 *  Check for fatal DMA errors.
7058 	 */
7059 	dstat = INB (nc_dstat);
7060 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
7061 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
7062 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
7063 			"DISABLING MASTER DATA PARITY CHECKING.\n",
7064 			sym_name(np));
7065 		np->rv_ctest4 &= ~MPEE;
7066 		goto restart_test;
7067 	}
7068 #endif
7069 	if (dstat & (MDPE|BF|IID)) {
7070 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
7071 		return (0x80);
7072 	}
7073 	/*
7074 	 *  Save termination position.
7075 	 */
7076 	pc = INL (nc_dsp);
7077 	/*
7078 	 *  Read memory and register.
7079 	 */
7080 	host_rd = scr_to_cpu(np->cache);
7081 	sym_rd  = INL (nc_scratcha);
7082 	sym_bk  = INL (nc_temp);
7083 
7084 	/*
7085 	 *  Check termination position.
7086 	 */
7087 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
7088 		printf ("CACHE TEST FAILED: script execution failed.\n");
7089 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
7090 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
7091 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
7092 		return (0x40);
7093 	};
7094 	/*
7095 	 *  Show results.
7096 	 */
7097 	if (host_wr != sym_rd) {
7098 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
7099 			(int) host_wr, (int) sym_rd);
7100 		err |= 1;
7101 	};
7102 	if (host_rd != sym_wr) {
7103 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
7104 			(int) sym_wr, (int) host_rd);
7105 		err |= 2;
7106 	};
7107 	if (sym_bk != sym_wr) {
7108 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
7109 			(int) sym_wr, (int) sym_bk);
7110 		err |= 4;
7111 	};
7112 
7113 	return (err);
7114 }
7115 
7116 /*
7117  *  Determine the chip's clock frequency.
7118  *
7119  *  This is essential for the negotiation of the synchronous
7120  *  transfer rate.
7121  *
7122  *  Note: we have to return the correct value.
7123  *  THERE IS NO SAFE DEFAULT VALUE.
7124  *
7125  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7126  *  53C860 and 53C875 rev. 1 support fast20 transfers but
7127  *  do not have a clock doubler and so are provided with a
7128  *  80 MHz clock. All other fast20 boards incorporate a doubler
7129  *  and so should be delivered with a 40 MHz clock.
7130  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
7131  *  clock and provide a clock quadrupler (160 Mhz).
7132  */
7133 
7134 /*
7135  *  Select SCSI clock frequency
7136  */
7137 static void sym_selectclock(hcb_p np, u_char scntl3)
7138 {
7139 	/*
7140 	 *  If multiplier not present or not selected, leave here.
7141 	 */
7142 	if (np->multiplier <= 1) {
7143 		OUTB(nc_scntl3,	scntl3);
7144 		return;
7145 	}
7146 
7147 	if (sym_verbose >= 2)
7148 		printf ("%s: enabling clock multiplier\n", sym_name(np));
7149 
7150 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7151 	/*
7152 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
7153 	 *  Otherwise wait 20 micro-seconds.
7154 	 */
7155 	if (np->features & FE_LCKFRQ) {
7156 		int i = 20;
7157 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7158 			UDELAY (20);
7159 		if (!i)
7160 			printf("%s: the chip cannot lock the frequency\n",
7161 				sym_name(np));
7162 	} else
7163 		UDELAY (20);
7164 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7165 	OUTB(nc_scntl3,	scntl3);
7166 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7167 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7168 }
7169 
7170 /*
7171  *  calculate SCSI clock frequency (in KHz)
7172  */
7173 static unsigned getfreq (hcb_p np, int gen)
7174 {
7175 	unsigned int ms = 0;
7176 	unsigned int f;
7177 
7178 	/*
7179 	 * Measure GEN timer delay in order
7180 	 * to calculate SCSI clock frequency
7181 	 *
7182 	 * This code will never execute too
7183 	 * many loop iterations (if DELAY is
7184 	 * reasonably correct). It could get
7185 	 * too low a delay (too high a freq.)
7186 	 * if the CPU is slow executing the
7187 	 * loop for some reason (an NMI, for
7188 	 * example). For this reason we will
7189 	 * if multiple measurements are to be
7190 	 * performed trust the higher delay
7191 	 * (lower frequency returned).
7192 	 */
7193 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7194 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7195 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7196 	(void) INW (nc_sist);	/* another one, just to be sure :) */
7197 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7198 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7199 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7200 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
7201 		UDELAY (1000);	/* count ms */
7202 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7203  	/*
7204  	 * set prescaler to divide by whatever 0 means
7205  	 * 0 ought to choose divide by 2, but appears
7206  	 * to set divide by 3.5 mode in my 53c810 ...
7207  	 */
7208  	OUTB (nc_scntl3, 0);
7209 
7210   	/*
7211  	 * adjust for prescaler, and convert into KHz
7212   	 */
7213 	f = ms ? ((1 << gen) * 4340) / ms : 0;
7214 
7215 	if (sym_verbose >= 2)
7216 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
7217 			sym_name(np), gen, ms, f);
7218 
7219 	return f;
7220 }
7221 
7222 static unsigned sym_getfreq (hcb_p np)
7223 {
7224 	u_int f1, f2;
7225 	int gen = 11;
7226 
7227 	(void) getfreq (np, gen);	/* throw away first result */
7228 	f1 = getfreq (np, gen);
7229 	f2 = getfreq (np, gen);
7230 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
7231 	return f1;
7232 }
7233 
7234 /*
7235  *  Get/probe chip SCSI clock frequency
7236  */
7237 static void sym_getclock (hcb_p np, int mult)
7238 {
7239 	unsigned char scntl3 = np->sv_scntl3;
7240 	unsigned char stest1 = np->sv_stest1;
7241 	unsigned f1;
7242 
7243 	/*
7244 	 *  For the C10 core, assume 40 MHz.
7245 	 */
7246 	if (np->features & FE_C10) {
7247 		np->multiplier = mult;
7248 		np->clock_khz = 40000 * mult;
7249 		return;
7250 	}
7251 
7252 	np->multiplier = 1;
7253 	f1 = 40000;
7254 	/*
7255 	 *  True with 875/895/896/895A with clock multiplier selected
7256 	 */
7257 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7258 		if (sym_verbose >= 2)
7259 			printf ("%s: clock multiplier found\n", sym_name(np));
7260 		np->multiplier = mult;
7261 	}
7262 
7263 	/*
7264 	 *  If multiplier not found or scntl3 not 7,5,3,
7265 	 *  reset chip and get frequency from general purpose timer.
7266 	 *  Otherwise trust scntl3 BIOS setting.
7267 	 */
7268 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7269 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7270 		f1 = sym_getfreq (np);
7271 
7272 		if (sym_verbose)
7273 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7274 
7275 		if	(f1 <	45000)		f1 =  40000;
7276 		else if (f1 <	55000)		f1 =  50000;
7277 		else				f1 =  80000;
7278 
7279 		if (f1 < 80000 && mult > 1) {
7280 			if (sym_verbose >= 2)
7281 				printf ("%s: clock multiplier assumed\n",
7282 					sym_name(np));
7283 			np->multiplier	= mult;
7284 		}
7285 	} else {
7286 		if	((scntl3 & 7) == 3)	f1 =  40000;
7287 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7288 		else 				f1 = 160000;
7289 
7290 		f1 /= np->multiplier;
7291 	}
7292 
7293 	/*
7294 	 *  Compute controller synchronous parameters.
7295 	 */
7296 	f1		*= np->multiplier;
7297 	np->clock_khz	= f1;
7298 }
7299 
7300 /*
7301  *  Get/probe PCI clock frequency
7302  */
7303 static int sym_getpciclock (hcb_p np)
7304 {
7305 	int f = 0;
7306 
7307 	/*
7308 	 *  For the C1010-33, this doesn't work.
7309 	 *  For the C1010-66, this will be tested when I'll have
7310 	 *  such a beast to play with.
7311 	 */
7312 	if (!(np->features & FE_C10)) {
7313 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7314 		f = (int) sym_getfreq (np);
7315 		OUTB (nc_stest1, 0);
7316 	}
7317 	np->pciclk_khz = f;
7318 
7319 	return f;
7320 }
7321 
7322 /*============= DRIVER ACTION/COMPLETION ====================*/
7323 
7324 /*
7325  *  Print something that tells about extended errors.
7326  */
7327 static void sym_print_xerr(ccb_p cp, int x_status)
7328 {
7329 	if (x_status & XE_PARITY_ERR) {
7330 		PRINT_ADDR(cp);
7331 		printf ("unrecovered SCSI parity error.\n");
7332 	}
7333 	if (x_status & XE_EXTRA_DATA) {
7334 		PRINT_ADDR(cp);
7335 		printf ("extraneous data discarded.\n");
7336 	}
7337 	if (x_status & XE_BAD_PHASE) {
7338 		PRINT_ADDR(cp);
7339 		printf ("illegal scsi phase (4/5).\n");
7340 	}
7341 	if (x_status & XE_SODL_UNRUN) {
7342 		PRINT_ADDR(cp);
7343 		printf ("ODD transfer in DATA OUT phase.\n");
7344 	}
7345 	if (x_status & XE_SWIDE_OVRUN) {
7346 		PRINT_ADDR(cp);
7347 		printf ("ODD transfer in DATA IN phase.\n");
7348 	}
7349 }
7350 
7351 /*
7352  *  Choose the more appropriate CAM status if
7353  *  the IO encountered an extended error.
7354  */
7355 static int sym_xerr_cam_status(int cam_status, int x_status)
7356 {
7357 	if (x_status) {
7358 		if	(x_status & XE_PARITY_ERR)
7359 			cam_status = CAM_UNCOR_PARITY;
7360 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7361 			cam_status = CAM_DATA_RUN_ERR;
7362 		else if	(x_status & XE_BAD_PHASE)
7363 			cam_status = CAM_REQ_CMP_ERR;
7364 		else
7365 			cam_status = CAM_REQ_CMP_ERR;
7366 	}
7367 	return cam_status;
7368 }
7369 
7370 /*
7371  *  Complete execution of a SCSI command with extented
7372  *  error, SCSI status error, or having been auto-sensed.
7373  *
7374  *  The SCRIPTS processor is not running there, so we
7375  *  can safely access IO registers and remove JOBs from
7376  *  the START queue.
7377  *  SCRATCHA is assumed to have been loaded with STARTPOS
7378  *  before the SCRIPTS called the C code.
7379  */
7380 static void sym_complete_error (hcb_p np, ccb_p cp)
7381 {
7382 	struct ccb_scsiio *csio;
7383 	u_int cam_status;
7384 	int i;
7385 
7386 	/*
7387 	 *  Paranoid check. :)
7388 	 */
7389 	if (!cp || !cp->cam_ccb)
7390 		return;
7391 
7392 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7393 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7394 			cp->host_status, cp->ssss_status, cp->host_flags,
7395 			cp->target, cp->lun);
7396 		MDELAY(100);
7397 	}
7398 
7399 	/*
7400 	 *  Get CAM command pointer.
7401 	 */
7402 	csio = &cp->cam_ccb->csio;
7403 
7404 	/*
7405 	 *  Check for extended errors.
7406 	 */
7407 	if (cp->xerr_status) {
7408 		if (sym_verbose)
7409 			sym_print_xerr(cp, cp->xerr_status);
7410 		if (cp->host_status == HS_COMPLETE)
7411 			cp->host_status = HS_COMP_ERR;
7412 	}
7413 
7414 	/*
7415 	 *  Calculate the residual.
7416 	 */
7417 	csio->sense_resid = 0;
7418 	csio->resid = sym_compute_residual(np, cp);
7419 
7420 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7421 		csio->resid  = 0;	/* throw them away. :)		   */
7422 		cp->sv_resid = 0;
7423 	}
7424 
7425 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7426 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7427 		csio->sense_resid = csio->resid;	/* Swap residuals */
7428 		csio->resid       = cp->sv_resid;
7429 		cp->sv_resid	  = 0;
7430 		if (sym_verbose && cp->sv_xerr_status)
7431 			sym_print_xerr(cp, cp->sv_xerr_status);
7432 		if (cp->host_status == HS_COMPLETE &&
7433 		    cp->ssss_status == S_GOOD &&
7434 		    cp->xerr_status == 0) {
7435 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7436 							 cp->sv_xerr_status);
7437 			cam_status |= CAM_AUTOSNS_VALID;
7438 			/*
7439 			 *  Bounce back the sense data to user and
7440 			 *  fix the residual.
7441 			 */
7442 			bzero(&csio->sense_data, csio->sense_len);
7443 			bcopy(cp->sns_bbuf, &csio->sense_data,
7444 			      MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7445 			csio->sense_resid += csio->sense_len;
7446 			csio->sense_resid -= SYM_SNS_BBUF_LEN;
7447 #if 0
7448 			/*
7449 			 *  If the device reports a UNIT ATTENTION condition
7450 			 *  due to a RESET condition, we should consider all
7451 			 *  disconnect CCBs for this unit as aborted.
7452 			 */
7453 			if (1) {
7454 				u_char *p;
7455 				p  = (u_char *) csio->sense_data;
7456 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7457 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7458 							cp->target,cp->lun, -1);
7459 			}
7460 #endif
7461 		}
7462 		else
7463 			cam_status = CAM_AUTOSENSE_FAIL;
7464 	}
7465 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7466 		csio->scsi_status = cp->ssss_status;
7467 		cam_status = CAM_SCSI_STATUS_ERROR;
7468 	}
7469 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7470 		cam_status = CAM_SEL_TIMEOUT;
7471 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7472 		cam_status = CAM_UNEXP_BUSFREE;
7473 	else {						/* Extended error */
7474 		if (sym_verbose) {
7475 			PRINT_ADDR(cp);
7476 			printf ("COMMAND FAILED (%x %x %x).\n",
7477 				cp->host_status, cp->ssss_status,
7478 				cp->xerr_status);
7479 		}
7480 		csio->scsi_status = cp->ssss_status;
7481 		/*
7482 		 *  Set the most appropriate value for CAM status.
7483 		 */
7484 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7485 						 cp->xerr_status);
7486 	}
7487 
7488 	/*
7489 	 *  Dequeue all queued CCBs for that device
7490 	 *  not yet started by SCRIPTS.
7491 	 */
7492 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7493 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7494 
7495 	/*
7496 	 *  Restart the SCRIPTS processor.
7497 	 */
7498 	OUTL_DSP (SCRIPTA_BA (np, start));
7499 
7500 #ifdef	FreeBSD_Bus_Dma_Abstraction
7501 	/*
7502 	 *  Synchronize DMA map if needed.
7503 	 */
7504 	if (cp->dmamapped) {
7505 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7506 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7507 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7508 	}
7509 #endif
7510 	/*
7511 	 *  Add this one to the COMP queue.
7512 	 *  Complete all those commands with either error
7513 	 *  or requeue condition.
7514 	 */
7515 	sym_set_cam_status((union ccb *) csio, cam_status);
7516 	sym_remque(&cp->link_ccbq);
7517 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7518 	sym_flush_comp_queue(np, 0);
7519 }
7520 
7521 /*
7522  *  Complete execution of a successful SCSI command.
7523  *
7524  *  Only successful commands go to the DONE queue,
7525  *  since we need to have the SCRIPTS processor
7526  *  stopped on any error condition.
7527  *  The SCRIPTS processor is running while we are
7528  *  completing successful commands.
7529  */
7530 static void sym_complete_ok (hcb_p np, ccb_p cp)
7531 {
7532 	struct ccb_scsiio *csio;
7533 	tcb_p tp;
7534 	lcb_p lp;
7535 
7536 	/*
7537 	 *  Paranoid check. :)
7538 	 */
7539 	if (!cp || !cp->cam_ccb)
7540 		return;
7541 	assert (cp->host_status == HS_COMPLETE);
7542 
7543 	/*
7544 	 *  Get command, target and lun pointers.
7545 	 */
7546 	csio = &cp->cam_ccb->csio;
7547 	tp = &np->target[cp->target];
7548 	lp = sym_lp(np, tp, cp->lun);
7549 
7550 	/*
7551 	 *  Assume device discovered on first success.
7552 	 */
7553 	if (!lp)
7554 		sym_set_bit(tp->lun_map, cp->lun);
7555 
7556 	/*
7557 	 *  If all data have been transferred, given than no
7558 	 *  extended error did occur, there is no residual.
7559 	 */
7560 	csio->resid = 0;
7561 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7562 		csio->resid = sym_compute_residual(np, cp);
7563 
7564 	/*
7565 	 *  Wrong transfer residuals may be worse than just always
7566 	 *  returning zero. User can disable this feature from
7567 	 *  sym_conf.h. Residual support is enabled by default.
7568 	 */
7569 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7570 		csio->resid  = 0;
7571 
7572 #ifdef	FreeBSD_Bus_Dma_Abstraction
7573 	/*
7574 	 *  Synchronize DMA map if needed.
7575 	 */
7576 	if (cp->dmamapped) {
7577 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7578 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
7579 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7580 	}
7581 #endif
7582 	/*
7583 	 *  Set status and complete the command.
7584 	 */
7585 	csio->scsi_status = cp->ssss_status;
7586 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7587 	sym_free_ccb (np, cp);
7588 	sym_xpt_done(np, (union ccb *) csio);
7589 }
7590 
7591 /*
7592  *  Our timeout handler.
7593  */
7594 static void sym_timeout1(void *arg)
7595 {
7596 	union ccb *ccb = (union ccb *) arg;
7597 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7598 
7599 	/*
7600 	 *  Check that the CAM CCB is still queued.
7601 	 */
7602 	if (!np)
7603 		return;
7604 
7605 	switch(ccb->ccb_h.func_code) {
7606 	case XPT_SCSI_IO:
7607 		(void) sym_abort_scsiio(np, ccb, 1);
7608 		break;
7609 	default:
7610 		break;
7611 	}
7612 }
7613 
7614 static void sym_timeout(void *arg)
7615 {
7616 	int s = splcam();
7617 	sym_timeout1(arg);
7618 	splx(s);
7619 }
7620 
7621 /*
7622  *  Abort an SCSI IO.
7623  */
7624 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7625 {
7626 	ccb_p cp;
7627 	SYM_QUEHEAD *qp;
7628 
7629 	/*
7630 	 *  Look up our CCB control block.
7631 	 */
7632 	cp = 0;
7633 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7634 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7635 		if (cp2->cam_ccb == ccb) {
7636 			cp = cp2;
7637 			break;
7638 		}
7639 	}
7640 	if (!cp || cp->host_status == HS_WAIT)
7641 		return -1;
7642 
7643 	/*
7644 	 *  If a previous abort didn't succeed in time,
7645 	 *  perform a BUS reset.
7646 	 */
7647 	if (cp->to_abort) {
7648 		sym_reset_scsi_bus(np, 1);
7649 		return 0;
7650 	}
7651 
7652 	/*
7653 	 *  Mark the CCB for abort and allow time for.
7654 	 */
7655 	cp->to_abort = timed_out ? 2 : 1;
7656 	ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz);
7657 
7658 	/*
7659 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7660 	 */
7661 	np->istat_sem = SEM;
7662 	OUTB (nc_istat, SIGP|SEM);
7663 	return 0;
7664 }
7665 
7666 /*
7667  *  Reset a SCSI device (all LUNs of a target).
7668  */
7669 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7670 {
7671 	tcb_p tp;
7672 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7673 
7674 	if (ccb_h->target_id   == np->myaddr ||
7675 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7676 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7677 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7678 		return;
7679 	}
7680 
7681 	tp = &np->target[ccb_h->target_id];
7682 
7683 	tp->to_reset = 1;
7684 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7685 
7686 	np->istat_sem = SEM;
7687 	OUTB (nc_istat, SIGP|SEM);
7688 	return;
7689 }
7690 
7691 /*
7692  *  SIM action entry point.
7693  */
7694 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7695 {
7696 	int s = splcam();
7697 	sym_action1(sim, ccb);
7698 	splx(s);
7699 }
7700 
7701 static void sym_action1(struct cam_sim *sim, union ccb *ccb)
7702 {
7703 	hcb_p	np;
7704 	tcb_p	tp;
7705 	lcb_p	lp;
7706 	ccb_p	cp;
7707 	int 	tmp;
7708 	u_char	idmsg, *msgptr;
7709 	u_int   msglen;
7710 	struct	ccb_scsiio *csio;
7711 	struct	ccb_hdr  *ccb_h;
7712 
7713 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7714 
7715 	/*
7716 	 *  Retrieve our controller data structure.
7717 	 */
7718 	np = (hcb_p) cam_sim_softc(sim);
7719 
7720 	/*
7721 	 *  The common case is SCSI IO.
7722 	 *  We deal with other ones elsewhere.
7723 	 */
7724 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7725 		sym_action2(sim, ccb);
7726 		return;
7727 	}
7728 	csio  = &ccb->csio;
7729 	ccb_h = &csio->ccb_h;
7730 
7731 	/*
7732 	 *  Work around races.
7733 	 */
7734 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7735 		xpt_done(ccb);
7736 		return;
7737 	}
7738 
7739 	/*
7740 	 *  Minimal checkings, so that we will not
7741 	 *  go outside our tables.
7742 	 */
7743 	if (ccb_h->target_id   == np->myaddr ||
7744 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7745 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7746 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7747 		return;
7748         }
7749 
7750 	/*
7751 	 *  Retreive the target and lun descriptors.
7752 	 */
7753 	tp = &np->target[ccb_h->target_id];
7754 	lp = sym_lp(np, tp, ccb_h->target_lun);
7755 
7756 	/*
7757 	 *  Complete the 1st INQUIRY command with error
7758 	 *  condition if the device is flagged NOSCAN
7759 	 *  at BOOT in the NVRAM. This may speed up
7760 	 *  the boot and maintain coherency with BIOS
7761 	 *  device numbering. Clearing the flag allows
7762 	 *  user to rescan skipped devices later.
7763 	 *  We also return error for devices not flagged
7764 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7765 	 *  devices behave badly when asked for some non
7766 	 *  zero LUN. Btw, this is an absolute hack.:-)
7767 	 */
7768 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7769 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7770 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7771 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7772 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7773 		     ccb_h->target_lun != 0)) {
7774 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7775 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7776 			return;
7777 		}
7778 	}
7779 
7780 	/*
7781 	 *  Get a control block for this IO.
7782 	 */
7783 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7784 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7785 	if (!cp) {
7786 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7787 		return;
7788 	}
7789 
7790 	/*
7791 	 *  Keep track of the IO in our CCB.
7792 	 */
7793 	cp->cam_ccb = ccb;
7794 
7795 	/*
7796 	 *  Build the IDENTIFY message.
7797 	 */
7798 	idmsg = M_IDENTIFY | cp->lun;
7799 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7800 		idmsg |= 0x40;
7801 
7802 	msgptr = cp->scsi_smsg;
7803 	msglen = 0;
7804 	msgptr[msglen++] = idmsg;
7805 
7806 	/*
7807 	 *  Build the tag message if present.
7808 	 */
7809 	if (cp->tag != NO_TAG) {
7810 		u_char order = csio->tag_action;
7811 
7812 		switch(order) {
7813 		case M_ORDERED_TAG:
7814 			break;
7815 		case M_HEAD_TAG:
7816 			break;
7817 		default:
7818 			order = M_SIMPLE_TAG;
7819 		}
7820 		msgptr[msglen++] = order;
7821 
7822 		/*
7823 		 *  For less than 128 tags, actual tags are numbered
7824 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7825 		 *  with devices that have problems with #TAG 0 or too
7826 		 *  great #TAG numbers. For more tags (up to 256),
7827 		 *  we use directly our tag number.
7828 		 */
7829 #if SYM_CONF_MAX_TASK > (512/4)
7830 		msgptr[msglen++] = cp->tag;
7831 #else
7832 		msgptr[msglen++] = (cp->tag << 1) + 1;
7833 #endif
7834 	}
7835 
7836 	/*
7837 	 *  Build a negotiation message if needed.
7838 	 *  (nego_status is filled by sym_prepare_nego())
7839 	 */
7840 	cp->nego_status = 0;
7841 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7842 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7843 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7844 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7845 		if (!tp->nego_cp && lp)
7846 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7847 	}
7848 
7849 	/*
7850 	 *  Fill in our ccb
7851 	 */
7852 
7853 	/*
7854 	 *  Startqueue
7855 	 */
7856 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7857 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7858 
7859 	/*
7860 	 *  select
7861 	 */
7862 	cp->phys.select.sel_id		= cp->target;
7863 	cp->phys.select.sel_scntl3	= tp->head.wval;
7864 	cp->phys.select.sel_sxfer	= tp->head.sval;
7865 	cp->phys.select.sel_scntl4	= tp->head.uval;
7866 
7867 	/*
7868 	 *  message
7869 	 */
7870 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7871 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7872 
7873 	/*
7874 	 *  command
7875 	 */
7876 	if (sym_setup_cdb(np, csio, cp) < 0) {
7877 		sym_free_ccb(np, cp);
7878 		sym_xpt_done(np, ccb);
7879 		return;
7880 	}
7881 
7882 	/*
7883 	 *  status
7884 	 */
7885 #if	0	/* Provision */
7886 	cp->actualquirks	= tp->quirks;
7887 #endif
7888 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7889 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7890 	cp->ssss_status		= S_ILLEGAL;
7891 	cp->xerr_status		= 0;
7892 	cp->host_flags		= 0;
7893 	cp->extra_bytes		= 0;
7894 
7895 	/*
7896 	 *  extreme data pointer.
7897 	 *  shall be positive, so -1 is lower than lowest.:)
7898 	 */
7899 	cp->ext_sg  = -1;
7900 	cp->ext_ofs = 0;
7901 
7902 	/*
7903 	 *  Build the data descriptor block
7904 	 *  and start the IO.
7905 	 */
7906 	sym_setup_data_and_start(np, csio, cp);
7907 }
7908 
7909 /*
7910  *  Setup buffers and pointers that address the CDB.
7911  *  I bet, physical CDBs will never be used on the planet,
7912  *  since they can be bounced without significant overhead.
7913  */
7914 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7915 {
7916 	struct ccb_hdr *ccb_h;
7917 	u32	cmd_ba;
7918 	int	cmd_len;
7919 
7920 	ccb_h = &csio->ccb_h;
7921 
7922 	/*
7923 	 *  CDB is 16 bytes max.
7924 	 */
7925 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7926 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7927 		return -1;
7928 	}
7929 	cmd_len = csio->cdb_len;
7930 
7931 	if (ccb_h->flags & CAM_CDB_POINTER) {
7932 		/* CDB is a pointer */
7933 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7934 			/* CDB pointer is virtual */
7935 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7936 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7937 		} else {
7938 			/* CDB pointer is physical */
7939 #if 0
7940 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7941 #else
7942 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7943 			return -1;
7944 #endif
7945 		}
7946 	} else {
7947 		/* CDB is in the CAM ccb (buffer) */
7948 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7949 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7950 	}
7951 
7952 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7953 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7954 
7955 	return 0;
7956 }
7957 
7958 /*
7959  *  Set up data pointers used by SCRIPTS.
7960  */
7961 static void __inline
7962 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7963 {
7964 	u32 lastp, goalp;
7965 
7966 	/*
7967 	 *  No segments means no data.
7968 	 */
7969 	if (!cp->segments)
7970 		dir = CAM_DIR_NONE;
7971 
7972 	/*
7973 	 *  Set the data pointer.
7974 	 */
7975 	switch(dir) {
7976 	case CAM_DIR_OUT:
7977 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7978 		lastp = goalp - 8 - (cp->segments * (2*4));
7979 		break;
7980 	case CAM_DIR_IN:
7981 		cp->host_flags |= HF_DATA_IN;
7982 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7983 		lastp = goalp - 8 - (cp->segments * (2*4));
7984 		break;
7985 	case CAM_DIR_NONE:
7986 	default:
7987 		lastp = goalp = SCRIPTB_BA (np, no_data);
7988 		break;
7989 	}
7990 
7991 	cp->phys.head.lastp = cpu_to_scr(lastp);
7992 	cp->phys.head.goalp = cpu_to_scr(goalp);
7993 	cp->phys.head.savep = cpu_to_scr(lastp);
7994 	cp->startp	    = cp->phys.head.savep;
7995 }
7996 
7997 
7998 #ifdef	FreeBSD_Bus_Dma_Abstraction
7999 /*
8000  *  Call back routine for the DMA map service.
8001  *  If bounce buffers are used (why ?), we may sleep and then
8002  *  be called there in another context.
8003  */
8004 static void
8005 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
8006 {
8007 	ccb_p	cp;
8008 	hcb_p	np;
8009 	union	ccb *ccb;
8010 	int	s;
8011 
8012 	s = splcam();
8013 
8014 	cp  = (ccb_p) arg;
8015 	ccb = cp->cam_ccb;
8016 	np  = (hcb_p) cp->arg;
8017 
8018 	/*
8019 	 *  Deal with weird races.
8020 	 */
8021 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
8022 		goto out_abort;
8023 
8024 	/*
8025 	 *  Deal with weird errors.
8026 	 */
8027 	if (error) {
8028 		cp->dmamapped = 0;
8029 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
8030 		goto out_abort;
8031 	}
8032 
8033 	/*
8034 	 *  Build the data descriptor for the chip.
8035 	 */
8036 	if (nsegs) {
8037 		int retv;
8038 		/* 896 rev 1 requires to be careful about boundaries */
8039 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
8040 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
8041 		else
8042 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
8043 		if (retv < 0) {
8044 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
8045 			goto out_abort;
8046 		}
8047 	}
8048 
8049 	/*
8050 	 *  Synchronize the DMA map only if we have
8051 	 *  actually mapped the data.
8052 	 */
8053 	if (cp->dmamapped) {
8054 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
8055 			(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
8056 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
8057 	}
8058 
8059 	/*
8060 	 *  Set host status to busy state.
8061 	 *  May have been set back to HS_WAIT to avoid a race.
8062 	 */
8063 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
8064 
8065 	/*
8066 	 *  Set data pointers.
8067 	 */
8068 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
8069 
8070 	/*
8071 	 *  Enqueue this IO in our pending queue.
8072 	 */
8073 	sym_enqueue_cam_ccb(np, ccb);
8074 
8075 	/*
8076 	 *  When `#ifed 1', the code below makes the driver
8077 	 *  panic on the first attempt to write to a SCSI device.
8078 	 *  It is the first test we want to do after a driver
8079 	 *  change that does not seem obviously safe. :)
8080 	 */
8081 #if 0
8082 	switch (cp->cdb_buf[0]) {
8083 	case 0x0A: case 0x2A: case 0xAA:
8084 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
8085 		MDELAY(10000);
8086 		break;
8087 	default:
8088 		break;
8089 	}
8090 #endif
8091 	/*
8092 	 *  Activate this job.
8093 	 */
8094 	sym_put_start_queue(np, cp);
8095 out:
8096 	splx(s);
8097 	return;
8098 out_abort:
8099 	sym_free_ccb(np, cp);
8100 	sym_xpt_done(np, ccb);
8101 	goto out;
8102 }
8103 
8104 /*
8105  *  How complex it gets to deal with the data in CAM.
8106  *  The Bus Dma stuff makes things still more complex.
8107  */
8108 static void
8109 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8110 {
8111 	struct ccb_hdr *ccb_h;
8112 	int dir, retv;
8113 
8114 	ccb_h = &csio->ccb_h;
8115 
8116 	/*
8117 	 *  Now deal with the data.
8118 	 */
8119 	cp->data_len = csio->dxfer_len;
8120 	cp->arg      = np;
8121 
8122 	/*
8123 	 *  No direction means no data.
8124 	 */
8125 	dir = (ccb_h->flags & CAM_DIR_MASK);
8126 	if (dir == CAM_DIR_NONE) {
8127 		sym_execute_ccb(cp, NULL, 0, 0);
8128 		return;
8129 	}
8130 
8131 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8132 		/* Single buffer */
8133 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8134 			/* Buffer is virtual */
8135 			int s;
8136 
8137 			cp->dmamapped = (dir == CAM_DIR_IN) ?
8138 						SYM_DMA_READ : SYM_DMA_WRITE;
8139 			s = splsoftvm();
8140 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
8141 					       csio->data_ptr, csio->dxfer_len,
8142 					       sym_execute_ccb, cp, 0);
8143 			if (retv == EINPROGRESS) {
8144 				cp->host_status	= HS_WAIT;
8145 				xpt_freeze_simq(np->sim, 1);
8146 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
8147 			}
8148 			splx(s);
8149 		} else {
8150 			/* Buffer is physical */
8151 			struct bus_dma_segment seg;
8152 
8153 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
8154 			sym_execute_ccb(cp, &seg, 1, 0);
8155 		}
8156 	} else {
8157 		/* Scatter/gather list */
8158 		struct bus_dma_segment *segs;
8159 
8160 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8161 			/* The SG list pointer is physical */
8162 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8163 			goto out_abort;
8164 		}
8165 
8166 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8167 			/* SG buffer pointers are virtual */
8168 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8169 			goto out_abort;
8170 		}
8171 
8172 		/* SG buffer pointers are physical */
8173 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8174 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
8175 	}
8176 	return;
8177 out_abort:
8178 	sym_free_ccb(np, cp);
8179 	sym_xpt_done(np, (union ccb *) csio);
8180 }
8181 
8182 /*
8183  *  Move the scatter list to our data block.
8184  */
8185 static int
8186 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
8187 			     bus_dma_segment_t *psegs, int nsegs)
8188 {
8189 	struct sym_tblmove *data;
8190 	bus_dma_segment_t *psegs2;
8191 
8192 	if (nsegs > SYM_CONF_MAX_SG)
8193 		return -1;
8194 
8195 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
8196 	psegs2 = &psegs[nsegs-1];
8197 	cp->segments = nsegs;
8198 
8199 	while (1) {
8200 		data->addr = cpu_to_scr(psegs2->ds_addr);
8201 		data->size = cpu_to_scr(psegs2->ds_len);
8202 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8203 			printf ("%s scatter: paddr=%lx len=%ld\n",
8204 				sym_name(np), (long) psegs2->ds_addr,
8205 				(long) psegs2->ds_len);
8206 		}
8207 		if (psegs2 != psegs) {
8208 			--data;
8209 			--psegs2;
8210 			continue;
8211 		}
8212 		break;
8213 	}
8214 	return 0;
8215 }
8216 
8217 #else	/* FreeBSD_Bus_Dma_Abstraction */
8218 
8219 /*
8220  *  How complex it gets to deal with the data in CAM.
8221  *  Variant without the Bus Dma Abstraction option.
8222  */
8223 static void
8224 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
8225 {
8226 	struct ccb_hdr *ccb_h;
8227 	int dir, retv;
8228 
8229 	ccb_h = &csio->ccb_h;
8230 
8231 	/*
8232 	 *  Now deal with the data.
8233 	 */
8234 	cp->data_len = 0;
8235 	cp->segments = 0;
8236 
8237 	/*
8238 	 *  No direction means no data.
8239 	 */
8240 	dir = (ccb_h->flags & CAM_DIR_MASK);
8241 	if (dir == CAM_DIR_NONE)
8242 		goto end_scatter;
8243 
8244 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
8245 		/* Single buffer */
8246 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8247 			/* Buffer is virtual */
8248 			retv = sym_scatter_virtual(np, cp,
8249 						(vm_offset_t) csio->data_ptr,
8250 						(vm_size_t) csio->dxfer_len);
8251 		} else {
8252 			/* Buffer is physical */
8253 			retv = sym_scatter_physical(np, cp,
8254 						(vm_offset_t) csio->data_ptr,
8255 						(vm_size_t) csio->dxfer_len);
8256 		}
8257 	} else {
8258 		/* Scatter/gather list */
8259 		int nsegs;
8260 		struct bus_dma_segment *segs;
8261 		segs  = (struct bus_dma_segment *)csio->data_ptr;
8262 		nsegs = csio->sglist_cnt;
8263 
8264 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
8265 			/* The SG list pointer is physical */
8266 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
8267 			goto out_abort;
8268 		}
8269 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
8270 			/* SG buffer pointers are virtual */
8271 			retv = sym_scatter_sg_virtual(np, cp, segs, nsegs);
8272 		} else {
8273 			/* SG buffer pointers are physical */
8274 			retv = sym_scatter_sg_physical(np, cp, segs, nsegs);
8275 		}
8276 	}
8277 	if (retv < 0) {
8278 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
8279 		goto out_abort;
8280 	}
8281 
8282 end_scatter:
8283 	/*
8284 	 *  Set data pointers.
8285 	 */
8286 	sym_setup_data_pointers(np, cp, dir);
8287 
8288 	/*
8289 	 *  Enqueue this IO in our pending queue.
8290 	 */
8291 	sym_enqueue_cam_ccb(np, (union ccb *) csio);
8292 
8293 	/*
8294 	 *  Activate this job.
8295 	 */
8296 	sym_put_start_queue(np, cp);
8297 
8298 	/*
8299 	 *  Command is successfully queued.
8300 	 */
8301 	return;
8302 out_abort:
8303 	sym_free_ccb(np, cp);
8304 	sym_xpt_done(np, (union ccb *) csio);
8305 }
8306 
8307 /*
8308  *  Scatter a virtual buffer into bus addressable chunks.
8309  */
8310 static int
8311 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
8312 {
8313 	u_long	pe, pn;
8314 	u_long	n, k;
8315 	int s;
8316 
8317 	cp->data_len += len;
8318 
8319 	pe = vaddr + len;
8320 	n  = len;
8321 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8322 
8323 	while (n && s >= 0) {
8324 		pn = (pe - 1) & ~PAGE_MASK;
8325 		k = pe - pn;
8326 		if (k > n) {
8327 			k  = n;
8328 			pn = pe - n;
8329 		}
8330 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8331 			printf ("%s scatter: va=%lx pa=%lx siz=%ld\n",
8332 				sym_name(np), pn, (u_long) vtobus(pn), k);
8333 		}
8334 		cp->phys.data[s].addr = cpu_to_scr(vtobus(pn));
8335 		cp->phys.data[s].size = cpu_to_scr(k);
8336 		pe = pn;
8337 		n -= k;
8338 		--s;
8339 	}
8340 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8341 
8342 	return n ? -1 : 0;
8343 }
8344 
8345 /*
8346  *  Scatter a SG list with virtual addresses into bus addressable chunks.
8347  */
8348 static int
8349 sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8350 {
8351 	int i, retv = 0;
8352 
8353 	for (i = nsegs - 1 ;  i >= 0 ; --i) {
8354 		retv = sym_scatter_virtual(np, cp,
8355 					   psegs[i].ds_addr, psegs[i].ds_len);
8356 		if (retv < 0)
8357 			break;
8358 	}
8359 	return retv;
8360 }
8361 
8362 /*
8363  *  Scatter a physical buffer into bus addressable chunks.
8364  */
8365 static int
8366 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len)
8367 {
8368 	struct bus_dma_segment seg;
8369 
8370 	seg.ds_addr = paddr;
8371 	seg.ds_len  = len;
8372 	return sym_scatter_sg_physical(np, cp, &seg, 1);
8373 }
8374 
8375 #endif	/* FreeBSD_Bus_Dma_Abstraction */
8376 
8377 /*
8378  *  Scatter a SG list with physical addresses into bus addressable chunks.
8379  *  We need to ensure 16MB boundaries not to be crossed during DMA of
8380  *  each segment, due to some chips being flawed.
8381  */
8382 #define BOUND_MASK ((1UL<<24)-1)
8383 static int
8384 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8385 {
8386 	u_long	ps, pe, pn;
8387 	u_long	k;
8388 	int s, t;
8389 
8390 #ifndef	FreeBSD_Bus_Dma_Abstraction
8391 	s  = SYM_CONF_MAX_SG - 1 - cp->segments;
8392 #else
8393 	s  = SYM_CONF_MAX_SG - 1;
8394 #endif
8395 	t  = nsegs - 1;
8396 	ps = psegs[t].ds_addr;
8397 	pe = ps + psegs[t].ds_len;
8398 
8399 	while (s >= 0) {
8400 		pn = (pe - 1) & ~BOUND_MASK;
8401 		if (pn <= ps)
8402 			pn = ps;
8403 		k = pe - pn;
8404 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8405 			printf ("%s scatter: paddr=%lx len=%ld\n",
8406 				sym_name(np), pn, k);
8407 		}
8408 		cp->phys.data[s].addr = cpu_to_scr(pn);
8409 		cp->phys.data[s].size = cpu_to_scr(k);
8410 #ifndef	FreeBSD_Bus_Dma_Abstraction
8411 		cp->data_len += k;
8412 #endif
8413 		--s;
8414 		if (pn == ps) {
8415 			if (--t < 0)
8416 				break;
8417 			ps = psegs[t].ds_addr;
8418 			pe = ps + psegs[t].ds_len;
8419 		}
8420 		else
8421 			pe = pn;
8422 	}
8423 
8424 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8425 
8426 	return t >= 0 ? -1 : 0;
8427 }
8428 #undef BOUND_MASK
8429 
8430 /*
8431  *  SIM action for non performance critical stuff.
8432  */
8433 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8434 {
8435 	hcb_p	np;
8436 	tcb_p	tp;
8437 	lcb_p	lp;
8438 	struct	ccb_hdr  *ccb_h;
8439 
8440 	/*
8441 	 *  Retrieve our controller data structure.
8442 	 */
8443 	np = (hcb_p) cam_sim_softc(sim);
8444 
8445 	ccb_h = &ccb->ccb_h;
8446 
8447 	switch (ccb_h->func_code) {
8448 	case XPT_SET_TRAN_SETTINGS:
8449 	{
8450 		struct ccb_trans_settings *cts;
8451 
8452 		cts  = &ccb->cts;
8453 		tp = &np->target[ccb_h->target_id];
8454 
8455 		/*
8456 		 *  Update SPI transport settings in TARGET control block.
8457 		 *  Update SCSI device settings in LUN control block.
8458 		 */
8459 		lp = sym_lp(np, tp, ccb_h->target_lun);
8460 #ifdef	FreeBSD_New_Tran_Settings
8461 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8462 #else
8463 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
8464 #endif
8465 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8466 			if (lp)
8467 				sym_update_dflags(np, &lp->current_flags, cts);
8468 		}
8469 #ifdef	FreeBSD_New_Tran_Settings
8470 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8471 #else
8472 		if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
8473 #endif
8474 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8475 			if (lp)
8476 				sym_update_dflags(np, &lp->user_flags, cts);
8477 		}
8478 
8479 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8480 		break;
8481 	}
8482 	case XPT_GET_TRAN_SETTINGS:
8483 	{
8484 		struct ccb_trans_settings *cts;
8485 		struct sym_trans *tip;
8486 		u_char dflags;
8487 
8488 		cts = &ccb->cts;
8489 		tp = &np->target[ccb_h->target_id];
8490 		lp = sym_lp(np, tp, ccb_h->target_lun);
8491 
8492 #ifdef	FreeBSD_New_Tran_Settings
8493 #define	cts__scsi (&cts->proto_specific.scsi)
8494 #define	cts__spi  (&cts->xport_specific.spi)
8495 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8496 			tip = &tp->tinfo.current;
8497 			dflags = lp ? lp->current_flags : 0;
8498 		}
8499 		else {
8500 			tip = &tp->tinfo.user;
8501 			dflags = lp ? lp->user_flags : tp->usrflags;
8502 		}
8503 
8504 		cts->protocol  = PROTO_SCSI;
8505 		cts->transport = XPORT_SPI;
8506 		cts->protocol_version  = tip->scsi_version;
8507 		cts->transport_version = tip->spi_version;
8508 
8509 		cts__spi->sync_period = tip->period;
8510 		cts__spi->sync_offset = tip->offset;
8511 		cts__spi->bus_width   = tip->width;
8512 		cts__spi->ppr_options = tip->options;
8513 
8514 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8515 		                | CTS_SPI_VALID_SYNC_OFFSET
8516 		                | CTS_SPI_VALID_BUS_WIDTH
8517 		                | CTS_SPI_VALID_PPR_OPTIONS;
8518 
8519 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8520 		if (dflags & SYM_DISC_ENABLED)
8521 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8522 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8523 
8524 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8525 		if (dflags & SYM_TAGS_ENABLED)
8526 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8527 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8528 #undef	cts__spi
8529 #undef	cts__scsi
8530 #else
8531 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
8532 			tip = &tp->tinfo.current;
8533 			dflags = lp ? lp->current_flags : 0;
8534 		}
8535 		else {
8536 			tip = &tp->tinfo.user;
8537 			dflags = lp ? lp->user_flags : tp->usrflags;
8538 		}
8539 
8540 		cts->sync_period = tip->period;
8541 		cts->sync_offset = tip->offset;
8542 		cts->bus_width   = tip->width;
8543 
8544 		cts->valid = CCB_TRANS_SYNC_RATE_VALID
8545 			   | CCB_TRANS_SYNC_OFFSET_VALID
8546 			   | CCB_TRANS_BUS_WIDTH_VALID;
8547 
8548 		cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
8549 
8550 		if (dflags & SYM_DISC_ENABLED)
8551 			cts->flags |= CCB_TRANS_DISC_ENB;
8552 
8553 		if (dflags & SYM_TAGS_ENABLED)
8554 			cts->flags |= CCB_TRANS_TAG_ENB;
8555 
8556 		cts->valid |= CCB_TRANS_DISC_VALID;
8557 		cts->valid |= CCB_TRANS_TQ_VALID;
8558 #endif
8559 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8560 		break;
8561 	}
8562 	case XPT_CALC_GEOMETRY:
8563 	{
8564 		struct ccb_calc_geometry *ccg;
8565 		u32 size_mb;
8566 		u32 secs_per_cylinder;
8567 		int extended;
8568 
8569 		/*
8570 		 *  Silly DOS geometry.
8571 		 */
8572 		ccg = &ccb->ccg;
8573 		size_mb = ccg->volume_size
8574 			/ ((1024L * 1024L) / ccg->block_size);
8575 		extended = 1;
8576 
8577 		if (size_mb > 1024 && extended) {
8578 			ccg->heads = 255;
8579 			ccg->secs_per_track = 63;
8580 		} else {
8581 			ccg->heads = 64;
8582 			ccg->secs_per_track = 32;
8583 		}
8584 		secs_per_cylinder = ccg->heads * ccg->secs_per_track;
8585 		ccg->cylinders = ccg->volume_size / secs_per_cylinder;
8586 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8587 		break;
8588 	}
8589 	case XPT_PATH_INQ:
8590 	{
8591 		struct ccb_pathinq *cpi = &ccb->cpi;
8592 		cpi->version_num = 1;
8593 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8594 		if ((np->features & FE_WIDE) != 0)
8595 			cpi->hba_inquiry |= PI_WIDE_16;
8596 		cpi->target_sprt = 0;
8597 		cpi->hba_misc = 0;
8598 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8599 			cpi->hba_misc |= PIM_SCANHILO;
8600 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8601 			cpi->hba_misc |= PIM_NOBUSRESET;
8602 		cpi->hba_eng_cnt = 0;
8603 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8604 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8605 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8606 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8607 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8608 		cpi->bus_id = cam_sim_bus(sim);
8609 		cpi->initiator_id = np->myaddr;
8610 		cpi->base_transfer_speed = 3300;
8611 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8612 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8613 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8614 		cpi->unit_number = cam_sim_unit(sim);
8615 
8616 #ifdef	FreeBSD_New_Tran_Settings
8617 		cpi->protocol = PROTO_SCSI;
8618 		cpi->protocol_version = SCSI_REV_2;
8619 		cpi->transport = XPORT_SPI;
8620 		cpi->transport_version = 2;
8621 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8622 		if (np->features & FE_ULTRA3) {
8623 			cpi->transport_version = 3;
8624 			cpi->xport_specific.spi.ppr_options =
8625 			    SID_SPI_CLOCK_DT_ST;
8626 		}
8627 #endif
8628 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8629 		break;
8630 	}
8631 	case XPT_ABORT:
8632 	{
8633 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8634 		switch(abort_ccb->ccb_h.func_code) {
8635 		case XPT_SCSI_IO:
8636 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8637 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8638 				break;
8639 			}
8640 		default:
8641 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8642 			break;
8643 		}
8644 		break;
8645 	}
8646 	case XPT_RESET_DEV:
8647 	{
8648 		sym_reset_dev(np, ccb);
8649 		break;
8650 	}
8651 	case XPT_RESET_BUS:
8652 	{
8653 		sym_reset_scsi_bus(np, 0);
8654 		if (sym_verbose) {
8655 			xpt_print_path(np->path);
8656 			printf("SCSI BUS reset delivered.\n");
8657 		}
8658 		sym_init (np, 1);
8659 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8660 		break;
8661 	}
8662 	case XPT_ACCEPT_TARGET_IO:
8663 	case XPT_CONT_TARGET_IO:
8664 	case XPT_EN_LUN:
8665 	case XPT_NOTIFY_ACK:
8666 	case XPT_IMMED_NOTIFY:
8667 	case XPT_TERM_IO:
8668 	default:
8669 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8670 		break;
8671 	}
8672 }
8673 
8674 /*
8675  *  Asynchronous notification handler.
8676  */
8677 static void
8678 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8679 {
8680 	hcb_p np;
8681 	struct cam_sim *sim;
8682 	u_int tn;
8683 	tcb_p tp;
8684 	int s;
8685 
8686 	s = splcam();
8687 
8688 	sim = (struct cam_sim *) cb_arg;
8689 	np  = (hcb_p) cam_sim_softc(sim);
8690 
8691 	switch (code) {
8692 	case AC_LOST_DEVICE:
8693 		tn = xpt_path_target_id(path);
8694 		if (tn >= SYM_CONF_MAX_TARGET)
8695 			break;
8696 
8697 		tp = &np->target[tn];
8698 
8699 		tp->to_reset  = 0;
8700 		tp->head.sval = 0;
8701 		tp->head.wval = np->rv_scntl3;
8702 		tp->head.uval = 0;
8703 
8704 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8705 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8706 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8707 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8708 
8709 		break;
8710 	default:
8711 		break;
8712 	}
8713 
8714 	splx(s);
8715 }
8716 
8717 /*
8718  *  Update transfer settings of a target.
8719  */
8720 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8721 			    struct ccb_trans_settings *cts)
8722 {
8723 	/*
8724 	 *  Update the infos.
8725 	 */
8726 #ifdef	FreeBSD_New_Tran_Settings
8727 #define cts__spi (&cts->xport_specific.spi)
8728 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8729 		tip->width = cts__spi->bus_width;
8730 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8731 		tip->offset = cts__spi->sync_offset;
8732 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8733 		tip->period = cts__spi->sync_period;
8734 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8735 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8736 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8737 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8738 		tip->scsi_version = cts->protocol_version;
8739 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8740 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8741 		tip->spi_version = cts->transport_version;
8742 #undef cts__spi
8743 #else
8744 	if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
8745 		tip->width = cts->bus_width;
8746 	if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
8747 		tip->offset = cts->sync_offset;
8748 	if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
8749 		tip->period = cts->sync_period;
8750 #endif
8751 	/*
8752 	 *  Scale against driver configuration limits.
8753 	 */
8754 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8755 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8756 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8757 
8758 	/*
8759 	 *  Scale against actual controller BUS width.
8760 	 */
8761 	if (tip->width > np->maxwide)
8762 		tip->width  = np->maxwide;
8763 
8764 #ifdef	FreeBSD_New_Tran_Settings
8765 	/*
8766 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8767 	 */
8768 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8769 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8770 		tip->options &= ~PPR_OPT_DT;
8771 	}
8772 #else
8773 	/*
8774 	 *  For now, only assume DT if period <= 9, BUS 16 and offset != 0.
8775 	 */
8776 	tip->options = 0;
8777 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) &&
8778 	    tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) {
8779 		tip->options |= PPR_OPT_DT;
8780 	}
8781 #endif
8782 
8783 	/*
8784 	 *  Scale period factor and offset against controller limits.
8785 	 */
8786 	if (tip->options & PPR_OPT_DT) {
8787 		if (tip->period < np->minsync_dt)
8788 			tip->period = np->minsync_dt;
8789 		if (tip->period > np->maxsync_dt)
8790 			tip->period = np->maxsync_dt;
8791 		if (tip->offset > np->maxoffs_dt)
8792 			tip->offset = np->maxoffs_dt;
8793 	}
8794 	else {
8795 		if (tip->period < np->minsync)
8796 			tip->period = np->minsync;
8797 		if (tip->period > np->maxsync)
8798 			tip->period = np->maxsync;
8799 		if (tip->offset > np->maxoffs)
8800 			tip->offset = np->maxoffs;
8801 	}
8802 }
8803 
8804 /*
8805  *  Update flags for a device (logical unit).
8806  */
8807 static void
8808 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8809 {
8810 #ifdef	FreeBSD_New_Tran_Settings
8811 #define	cts__scsi (&cts->proto_specific.scsi)
8812 #define	cts__spi  (&cts->xport_specific.spi)
8813 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8814 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8815 			*flags |= SYM_DISC_ENABLED;
8816 		else
8817 			*flags &= ~SYM_DISC_ENABLED;
8818 	}
8819 
8820 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8821 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8822 			*flags |= SYM_TAGS_ENABLED;
8823 		else
8824 			*flags &= ~SYM_TAGS_ENABLED;
8825 	}
8826 #undef	cts__spi
8827 #undef	cts__scsi
8828 #else
8829 	if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
8830 		if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
8831 			*flags |= SYM_DISC_ENABLED;
8832 		else
8833 			*flags &= ~SYM_DISC_ENABLED;
8834 	}
8835 
8836 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
8837 		if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
8838 			*flags |= SYM_TAGS_ENABLED;
8839 		else
8840 			*flags &= ~SYM_TAGS_ENABLED;
8841 	}
8842 #endif
8843 }
8844 
8845 
8846 /*============= DRIVER INITIALISATION ==================*/
8847 
8848 #ifdef FreeBSD_Bus_Io_Abstraction
8849 
8850 static device_method_t sym_pci_methods[] = {
8851 	DEVMETHOD(device_probe,	 sym_pci_probe),
8852 	DEVMETHOD(device_attach, sym_pci_attach),
8853 	{ 0, 0 }
8854 };
8855 
8856 static driver_t sym_pci_driver = {
8857 	"sym",
8858 	sym_pci_methods,
8859 	sizeof(struct sym_hcb)
8860 };
8861 
8862 static devclass_t sym_devclass;
8863 
8864 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8865 
8866 #else	/* Pre-FreeBSD_Bus_Io_Abstraction */
8867 
8868 static u_long sym_unit;
8869 
8870 static struct	pci_device sym_pci_driver = {
8871 	"sym",
8872 	sym_pci_probe,
8873 	sym_pci_attach,
8874 	&sym_unit,
8875 	NULL
8876 };
8877 
8878 #if 	__FreeBSD_version >= 400000
8879 COMPAT_PCI_DRIVER (sym, sym_pci_driver);
8880 #else
8881 DATA_SET (pcidevice_set, sym_pci_driver);
8882 #endif
8883 
8884 #endif /* FreeBSD_Bus_Io_Abstraction */
8885 
8886 static struct sym_pci_chip sym_pci_dev_table[] = {
8887  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8888  FE_ERL}
8889  ,
8890 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8891  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8892  FE_BOF}
8893  ,
8894 #else
8895  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8896  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8897  ,
8898 #endif
8899  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8900  FE_BOF|FE_ERL}
8901  ,
8902  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8903  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8904  ,
8905  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8906  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8907  ,
8908  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8909  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8910  ,
8911  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8912  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8913  FE_RAM|FE_DIFF}
8914  ,
8915  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8916  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8917  FE_RAM|FE_DIFF}
8918  ,
8919  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8920  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8921  FE_RAM|FE_DIFF}
8922  ,
8923  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8924  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8925  FE_RAM|FE_DIFF}
8926  ,
8927 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8928  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8929  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8930  FE_RAM|FE_LCKFRQ}
8931  ,
8932 #else
8933  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8934  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8935  FE_RAM|FE_LCKFRQ}
8936  ,
8937 #endif
8938  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8939  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8940  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8941  ,
8942  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8943  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8944  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8945  ,
8946  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8947  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8948  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8949  FE_C10}
8950  ,
8951  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8952  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8953  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8954  FE_C10|FE_U3EN}
8955  ,
8956  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8957  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8958  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8959  FE_C10|FE_U3EN}
8960  ,
8961  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8962  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8963  FE_RAM|FE_IO256|FE_LEDC}
8964 };
8965 
8966 #define sym_pci_num_devs \
8967 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8968 
8969 /*
8970  *  Look up the chip table.
8971  *
8972  *  Return a pointer to the chip entry if found,
8973  *  zero otherwise.
8974  */
8975 static struct sym_pci_chip *
8976 #ifdef FreeBSD_Bus_Io_Abstraction
8977 sym_find_pci_chip(device_t dev)
8978 #else
8979 sym_find_pci_chip(pcici_t pci_tag)
8980 #endif
8981 {
8982 	struct	sym_pci_chip *chip;
8983 	int	i;
8984 	u_short	device_id;
8985 	u_char	revision;
8986 
8987 #ifdef FreeBSD_Bus_Io_Abstraction
8988 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8989 		return 0;
8990 
8991 	device_id = pci_get_device(dev);
8992 	revision  = pci_get_revid(dev);
8993 #else
8994 	if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR)
8995 		return 0;
8996 
8997 	device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
8998 	revision  = pci_cfgread(pci_tag, PCIR_REVID,  1);
8999 #endif
9000 
9001 	for (i = 0; i < sym_pci_num_devs; i++) {
9002 		chip = &sym_pci_dev_table[i];
9003 		if (device_id != chip->device_id)
9004 			continue;
9005 		if (revision > chip->revision_id)
9006 			continue;
9007 		return chip;
9008 	}
9009 
9010 	return 0;
9011 }
9012 
9013 /*
9014  *  Tell upper layer if the chip is supported.
9015  */
9016 #ifdef FreeBSD_Bus_Io_Abstraction
9017 static int
9018 sym_pci_probe(device_t dev)
9019 {
9020 	struct	sym_pci_chip *chip;
9021 
9022 	chip = sym_find_pci_chip(dev);
9023 	if (chip && sym_find_firmware(chip)) {
9024 		device_set_desc(dev, chip->name);
9025 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0;
9026 	}
9027 	return ENXIO;
9028 }
9029 #else /* Pre-FreeBSD_Bus_Io_Abstraction */
9030 static const char *
9031 sym_pci_probe(pcici_t pci_tag, pcidi_t type)
9032 {
9033 	struct	sym_pci_chip *chip;
9034 
9035 	chip = sym_find_pci_chip(pci_tag);
9036 	if (chip && sym_find_firmware(chip)) {
9037 #if NNCR > 0
9038 	/* Only claim chips we are allowed to take precedence over the ncr */
9039 	if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP))
9040 #else
9041 	if (1)
9042 #endif
9043 		return chip->name;
9044 	}
9045 	return 0;
9046 }
9047 #endif
9048 
9049 /*
9050  *  Attach a sym53c8xx device.
9051  */
9052 #ifdef FreeBSD_Bus_Io_Abstraction
9053 static int
9054 sym_pci_attach(device_t dev)
9055 #else
9056 static void
9057 sym_pci_attach(pcici_t pci_tag, int unit)
9058 {
9059 	int err = sym_pci_attach2(pci_tag, unit);
9060 	if (err)
9061 		printf("sym: failed to attach unit %d - err=%d.\n", unit, err);
9062 }
9063 static int
9064 sym_pci_attach2(pcici_t pci_tag, int unit)
9065 #endif
9066 {
9067 	struct	sym_pci_chip *chip;
9068 	u_short	command;
9069 	u_char	cachelnsz;
9070 	struct	sym_hcb *np = 0;
9071 	struct	sym_nvram nvram;
9072 	struct	sym_fw *fw = 0;
9073 	int 	i;
9074 #ifdef	FreeBSD_Bus_Dma_Abstraction
9075 	bus_dma_tag_t	bus_dmat;
9076 
9077 	/*
9078 	 *  I expected to be told about a parent
9079 	 *  DMA tag, but didn't find any.
9080 	 */
9081 	bus_dmat = NULL;
9082 #endif
9083 
9084 	/*
9085 	 *  Only probed devices should be attached.
9086 	 *  We just enjoy being paranoid. :)
9087 	 */
9088 #ifdef FreeBSD_Bus_Io_Abstraction
9089 	chip = sym_find_pci_chip(dev);
9090 #else
9091 	chip = sym_find_pci_chip(pci_tag);
9092 #endif
9093 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
9094 		return (ENXIO);
9095 
9096 	/*
9097 	 *  Allocate immediately the host control block,
9098 	 *  since we are only expecting to succeed. :)
9099 	 *  We keep track in the HCB of all the resources that
9100 	 *  are to be released on error.
9101 	 */
9102 #ifdef	FreeBSD_Bus_Dma_Abstraction
9103 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
9104 	if (np)
9105 		np->bus_dmat = bus_dmat;
9106 	else
9107 		goto attach_failed;
9108 #else
9109 	np = sym_calloc_dma(sizeof(*np), "HCB");
9110 	if (!np)
9111 		goto attach_failed;
9112 #endif
9113 
9114 	/*
9115 	 *  Copy some useful infos to the HCB.
9116 	 */
9117 	np->hcb_ba	 = vtobus(np);
9118 	np->verbose	 = bootverbose;
9119 #ifdef FreeBSD_Bus_Io_Abstraction
9120 	np->device	 = dev;
9121 	np->unit	 = device_get_unit(dev);
9122 	np->device_id	 = pci_get_device(dev);
9123 	np->revision_id  = pci_get_revid(dev);
9124 #else
9125 	np->pci_tag	 = pci_tag;
9126 	np->unit	 = unit;
9127 	np->device_id	 = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
9128 	np->revision_id  = pci_cfgread(pci_tag, PCIR_REVID,  1);
9129 #endif
9130 	np->features	 = chip->features;
9131 	np->clock_divn	 = chip->nr_divisor;
9132 	np->maxoffs	 = chip->offset_max;
9133 	np->maxburst	 = chip->burst_max;
9134 	np->scripta_sz	 = fw->a_size;
9135 	np->scriptb_sz	 = fw->b_size;
9136 	np->fw_setup	 = fw->setup;
9137 	np->fw_patch	 = fw->patch;
9138 	np->fw_name	 = fw->name;
9139 
9140 	/*
9141 	 * Edit its name.
9142 	 */
9143 	snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
9144 
9145 	/*
9146 	 *  Initialyze the CCB free and busy queues.
9147 	 */
9148 	sym_que_init(&np->free_ccbq);
9149 	sym_que_init(&np->busy_ccbq);
9150 	sym_que_init(&np->comp_ccbq);
9151 	sym_que_init(&np->cam_ccbq);
9152 
9153 	/*
9154 	 *  Allocate a tag for the DMA of user data.
9155 	 */
9156 #ifdef	FreeBSD_Bus_Dma_Abstraction
9157 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
9158 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
9159 				NULL, NULL,
9160 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
9161 				(1<<24), 0, &np->data_dmat)) {
9162 		device_printf(dev, "failed to create DMA tag.\n");
9163 		goto attach_failed;
9164 	}
9165 #endif
9166 	/*
9167 	 *  Read and apply some fix-ups to the PCI COMMAND
9168 	 *  register. We want the chip to be enabled for:
9169 	 *  - BUS mastering
9170 	 *  - PCI parity checking (reporting would also be fine)
9171 	 *  - Write And Invalidate.
9172 	 */
9173 #ifdef FreeBSD_Bus_Io_Abstraction
9174 	command = pci_read_config(dev, PCIR_COMMAND, 2);
9175 #else
9176 	command = pci_cfgread(pci_tag, PCIR_COMMAND, 2);
9177 #endif
9178 	command |= PCIM_CMD_BUSMASTEREN;
9179 	command |= PCIM_CMD_PERRESPEN;
9180 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
9181 #ifdef FreeBSD_Bus_Io_Abstraction
9182 	pci_write_config(dev, PCIR_COMMAND, command, 2);
9183 #else
9184 	pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2);
9185 #endif
9186 
9187 	/*
9188 	 *  Let the device know about the cache line size,
9189 	 *  if it doesn't yet.
9190 	 */
9191 #ifdef FreeBSD_Bus_Io_Abstraction
9192 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
9193 #else
9194 	cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1);
9195 #endif
9196 	if (!cachelnsz) {
9197 		cachelnsz = 8;
9198 #ifdef FreeBSD_Bus_Io_Abstraction
9199 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
9200 #else
9201 		pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1);
9202 #endif
9203 	}
9204 
9205 	/*
9206 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
9207 	 */
9208 #ifdef FreeBSD_Bus_Io_Abstraction
9209 	if ((command & PCIM_CMD_MEMEN) != 0) {
9210 		int regs_id = SYM_PCI_MMIO;
9211 		np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9212 						  0, ~0, 1, RF_ACTIVE);
9213 	}
9214 	if (!np->mmio_res) {
9215 		device_printf(dev, "failed to allocate MMIO resources\n");
9216 		goto attach_failed;
9217 	}
9218 	np->mmio_bsh = rman_get_bushandle(np->mmio_res);
9219 	np->mmio_tag = rman_get_bustag(np->mmio_res);
9220 	np->mmio_pa  = rman_get_start(np->mmio_res);
9221 	np->mmio_va  = (vm_offset_t) rman_get_virtual(np->mmio_res);
9222 	np->mmio_ba  = np->mmio_pa;
9223 #else
9224 	if ((command & PCIM_CMD_MEMEN) != 0) {
9225 		vm_offset_t vaddr, paddr;
9226 		if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) {
9227 			printf("%s: failed to map MMIO window\n", sym_name(np));
9228 			goto attach_failed;
9229 		}
9230 		np->mmio_va = vaddr;
9231 		np->mmio_pa = paddr;
9232 		np->mmio_ba = paddr;
9233 	}
9234 #endif
9235 
9236 	/*
9237 	 *  Allocate the IRQ.
9238 	 */
9239 #ifdef FreeBSD_Bus_Io_Abstraction
9240 	i = 0;
9241 	np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i,
9242 					 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
9243 	if (!np->irq_res) {
9244 		device_printf(dev, "failed to allocate IRQ resource\n");
9245 		goto attach_failed;
9246 	}
9247 #endif
9248 
9249 #ifdef	SYM_CONF_IOMAPPED
9250 	/*
9251 	 *  User want us to use normal IO with PCI.
9252 	 *  Alloc/get/map/retrieve everything that deals with IO.
9253 	 */
9254 #ifdef FreeBSD_Bus_Io_Abstraction
9255 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9256 		int regs_id = SYM_PCI_IO;
9257 		np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &regs_id,
9258 						0, ~0, 1, RF_ACTIVE);
9259 	}
9260 	if (!np->io_res) {
9261 		device_printf(dev, "failed to allocate IO resources\n");
9262 		goto attach_failed;
9263 	}
9264 	np->io_bsh  = rman_get_bushandle(np->io_res);
9265 	np->io_tag  = rman_get_bustag(np->io_res);
9266 	np->io_port = rman_get_start(np->io_res);
9267 #else
9268 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
9269 		pci_port_t io_port;
9270 		if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) {
9271 			printf("%s: failed to map IO window\n", sym_name(np));
9272 			goto attach_failed;
9273 		}
9274 		np->io_port = io_port;
9275 	}
9276 #endif
9277 
9278 #endif /* SYM_CONF_IOMAPPED */
9279 
9280 	/*
9281 	 *  If the chip has RAM.
9282 	 *  Alloc/get/map/retrieve the corresponding resources.
9283 	 */
9284 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
9285 	    (command & PCIM_CMD_MEMEN) != 0) {
9286 #ifdef FreeBSD_Bus_Io_Abstraction
9287 		int regs_id = SYM_PCI_RAM;
9288 		if (np->features & FE_64BIT)
9289 			regs_id = SYM_PCI_RAM64;
9290 		np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &regs_id,
9291 						 0, ~0, 1, RF_ACTIVE);
9292 		if (!np->ram_res) {
9293 			device_printf(dev,"failed to allocate RAM resources\n");
9294 			goto attach_failed;
9295 		}
9296 		np->ram_id  = regs_id;
9297 		np->ram_bsh = rman_get_bushandle(np->ram_res);
9298 		np->ram_tag = rman_get_bustag(np->ram_res);
9299 		np->ram_pa  = rman_get_start(np->ram_res);
9300 		np->ram_va  = (vm_offset_t) rman_get_virtual(np->ram_res);
9301 		np->ram_ba  = np->ram_pa;
9302 #else
9303 		vm_offset_t vaddr, paddr;
9304 		int regs_id = SYM_PCI_RAM;
9305 		if (np->features & FE_64BIT)
9306 			regs_id = SYM_PCI_RAM64;
9307 		if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) {
9308 			printf("%s: failed to map RAM window\n", sym_name(np));
9309 			goto attach_failed;
9310 		}
9311 		np->ram_va = vaddr;
9312 		np->ram_pa = paddr;
9313 		np->ram_ba = paddr;
9314 #endif
9315 	}
9316 
9317 	/*
9318 	 *  Save setting of some IO registers, so we will
9319 	 *  be able to probe specific implementations.
9320 	 */
9321 	sym_save_initial_setting (np);
9322 
9323 	/*
9324 	 *  Reset the chip now, since it has been reported
9325 	 *  that SCSI clock calibration may not work properly
9326 	 *  if the chip is currently active.
9327 	 */
9328 	sym_chip_reset (np);
9329 
9330 	/*
9331 	 *  Try to read the user set-up.
9332 	 */
9333 	(void) sym_read_nvram(np, &nvram);
9334 
9335 	/*
9336 	 *  Prepare controller and devices settings, according
9337 	 *  to chip features, user set-up and driver set-up.
9338 	 */
9339 	(void) sym_prepare_setting(np, &nvram);
9340 
9341 	/*
9342 	 *  Check the PCI clock frequency.
9343 	 *  Must be performed after prepare_setting since it destroys
9344 	 *  STEST1 that is used to probe for the clock doubler.
9345 	 */
9346 	i = sym_getpciclock(np);
9347 	if (i > 37000)
9348 #ifdef FreeBSD_Bus_Io_Abstraction
9349 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
9350 #else
9351 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
9352 			sym_name(np), i);
9353 #endif
9354 
9355 	/*
9356 	 *  Allocate the start queue.
9357 	 */
9358 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
9359 	if (!np->squeue)
9360 		goto attach_failed;
9361 	np->squeue_ba = vtobus(np->squeue);
9362 
9363 	/*
9364 	 *  Allocate the done queue.
9365 	 */
9366 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
9367 	if (!np->dqueue)
9368 		goto attach_failed;
9369 	np->dqueue_ba = vtobus(np->dqueue);
9370 
9371 	/*
9372 	 *  Allocate the target bus address array.
9373 	 */
9374 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
9375 	if (!np->targtbl)
9376 		goto attach_failed;
9377 	np->targtbl_ba = vtobus(np->targtbl);
9378 
9379 	/*
9380 	 *  Allocate SCRIPTS areas.
9381 	 */
9382 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
9383 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
9384 	if (!np->scripta0 || !np->scriptb0)
9385 		goto attach_failed;
9386 
9387 	/*
9388 	 *  Allocate some CCB. We need at least ONE.
9389 	 */
9390 	if (!sym_alloc_ccb(np))
9391 		goto attach_failed;
9392 
9393 	/*
9394 	 *  Calculate BUS addresses where we are going
9395 	 *  to load the SCRIPTS.
9396 	 */
9397 	np->scripta_ba	= vtobus(np->scripta0);
9398 	np->scriptb_ba	= vtobus(np->scriptb0);
9399 	np->scriptb0_ba	= np->scriptb_ba;
9400 
9401 	if (np->ram_ba) {
9402 		np->scripta_ba	= np->ram_ba;
9403 		if (np->features & FE_RAM8K) {
9404 			np->ram_ws = 8192;
9405 			np->scriptb_ba = np->scripta_ba + 4096;
9406 #if BITS_PER_LONG > 32
9407 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
9408 #endif
9409 		}
9410 		else
9411 			np->ram_ws = 4096;
9412 	}
9413 
9414 	/*
9415 	 *  Copy scripts to controller instance.
9416 	 */
9417 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
9418 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
9419 
9420 	/*
9421 	 *  Setup variable parts in scripts and compute
9422 	 *  scripts bus addresses used from the C code.
9423 	 */
9424 	np->fw_setup(np, fw);
9425 
9426 	/*
9427 	 *  Bind SCRIPTS with physical addresses usable by the
9428 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
9429 	 */
9430 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
9431 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
9432 
9433 #ifdef SYM_CONF_IARB_SUPPORT
9434 	/*
9435 	 *    If user wants IARB to be set when we win arbitration
9436 	 *    and have other jobs, compute the max number of consecutive
9437 	 *    settings of IARB hints before we leave devices a chance to
9438 	 *    arbitrate for reselection.
9439 	 */
9440 #ifdef	SYM_SETUP_IARB_MAX
9441 	np->iarb_max = SYM_SETUP_IARB_MAX;
9442 #else
9443 	np->iarb_max = 4;
9444 #endif
9445 #endif
9446 
9447 	/*
9448 	 *  Prepare the idle and invalid task actions.
9449 	 */
9450 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9451 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9452 	np->idletask_ba		= vtobus(&np->idletask);
9453 
9454 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9455 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9456 	np->notask_ba		= vtobus(&np->notask);
9457 
9458 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9459 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
9460 	np->bad_itl_ba		= vtobus(&np->bad_itl);
9461 
9462 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
9463 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
9464 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
9465 
9466 	/*
9467 	 *  Allocate and prepare the lun JUMP table that is used
9468 	 *  for a target prior the probing of devices (bad lun table).
9469 	 *  A private table will be allocated for the target on the
9470 	 *  first INQUIRY response received.
9471 	 */
9472 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
9473 	if (!np->badluntbl)
9474 		goto attach_failed;
9475 
9476 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
9477 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
9478 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
9479 
9480 	/*
9481 	 *  Prepare the bus address array that contains the bus
9482 	 *  address of each target control block.
9483 	 *  For now, assume all logical units are wrong. :)
9484 	 */
9485 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
9486 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
9487 		np->target[i].head.luntbl_sa =
9488 				cpu_to_scr(vtobus(np->badluntbl));
9489 		np->target[i].head.lun0_sa =
9490 				cpu_to_scr(vtobus(&np->badlun_sa));
9491 	}
9492 
9493 	/*
9494 	 *  Now check the cache handling of the pci chipset.
9495 	 */
9496 	if (sym_snooptest (np)) {
9497 #ifdef FreeBSD_Bus_Io_Abstraction
9498 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
9499 #else
9500 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
9501 #endif
9502 		goto attach_failed;
9503 	};
9504 
9505 	/*
9506 	 *  Now deal with CAM.
9507 	 *  Hopefully, we will succeed with that one.:)
9508 	 */
9509 	if (!sym_cam_attach(np))
9510 		goto attach_failed;
9511 
9512 	/*
9513 	 *  Sigh! we are done.
9514 	 */
9515 	return 0;
9516 
9517 	/*
9518 	 *  We have failed.
9519 	 *  We will try to free all the resources we have
9520 	 *  allocated, but if we are a boot device, this
9521 	 *  will not help that much.;)
9522 	 */
9523 attach_failed:
9524 	if (np)
9525 		sym_pci_free(np);
9526 	return ENXIO;
9527 }
9528 
9529 /*
9530  *  Free everything that have been allocated for this device.
9531  */
9532 static void sym_pci_free(hcb_p np)
9533 {
9534 	SYM_QUEHEAD *qp;
9535 	ccb_p cp;
9536 	tcb_p tp;
9537 	lcb_p lp;
9538 	int target, lun;
9539 	int s;
9540 
9541 	/*
9542 	 *  First free CAM resources.
9543 	 */
9544 	s = splcam();
9545 	sym_cam_free(np);
9546 	splx(s);
9547 
9548 	/*
9549 	 *  Now every should be quiet for us to
9550 	 *  free other resources.
9551 	 */
9552 #ifdef FreeBSD_Bus_Io_Abstraction
9553 	if (np->ram_res)
9554 		bus_release_resource(np->device, SYS_RES_MEMORY,
9555 				     np->ram_id, np->ram_res);
9556 	if (np->mmio_res)
9557 		bus_release_resource(np->device, SYS_RES_MEMORY,
9558 				     SYM_PCI_MMIO, np->mmio_res);
9559 	if (np->io_res)
9560 		bus_release_resource(np->device, SYS_RES_IOPORT,
9561 				     SYM_PCI_IO, np->io_res);
9562 	if (np->irq_res)
9563 		bus_release_resource(np->device, SYS_RES_IRQ,
9564 				     0, np->irq_res);
9565 #else
9566 	/*
9567 	 *  YEAH!!!
9568 	 *  It seems there is no means to free MMIO resources.
9569 	 */
9570 #endif
9571 
9572 	if (np->scriptb0)
9573 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
9574 	if (np->scripta0)
9575 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
9576 	if (np->squeue)
9577 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
9578 	if (np->dqueue)
9579 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
9580 
9581 	while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
9582 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
9583 #ifdef	FreeBSD_Bus_Dma_Abstraction
9584 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
9585 #endif
9586 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
9587 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
9588 	}
9589 
9590 	if (np->badluntbl)
9591 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
9592 
9593 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
9594 		tp = &np->target[target];
9595 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
9596 			lp = sym_lp(np, tp, lun);
9597 			if (!lp)
9598 				continue;
9599 			if (lp->itlq_tbl)
9600 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
9601 				       "ITLQ_TBL");
9602 			if (lp->cb_tags)
9603 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
9604 				       "CB_TAGS");
9605 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
9606 		}
9607 #if SYM_CONF_MAX_LUN > 1
9608 		if (tp->lunmp)
9609 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
9610 			       "LUNMP");
9611 #endif
9612 	}
9613 	if (np->targtbl)
9614 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
9615 #ifdef	FreeBSD_Bus_Dma_Abstraction
9616 	if (np->data_dmat)
9617 		bus_dma_tag_destroy(np->data_dmat);
9618 #endif
9619 	sym_mfree_dma(np, sizeof(*np), "HCB");
9620 }
9621 
9622 /*
9623  *  Allocate CAM resources and register a bus to CAM.
9624  */
9625 int sym_cam_attach(hcb_p np)
9626 {
9627 	struct cam_devq *devq = 0;
9628 	struct cam_sim *sim = 0;
9629 	struct cam_path *path = 0;
9630 	struct ccb_setasync csa;
9631 	int err, s;
9632 
9633 	s = splcam();
9634 
9635 	/*
9636 	 *  Establish our interrupt handler.
9637 	 */
9638 #ifdef FreeBSD_Bus_Io_Abstraction
9639 	err = bus_setup_intr(np->device, np->irq_res,
9640 			     INTR_TYPE_CAM | INTR_ENTROPY, sym_intr, np,
9641 			     &np->intr);
9642 	if (err) {
9643 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
9644 			      err);
9645 		goto fail;
9646 	}
9647 #else
9648 	err = 0;
9649 	if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) {
9650 		printf("%s: failed to map interrupt\n", sym_name(np));
9651 		goto fail;
9652 	}
9653 #endif
9654 
9655 	/*
9656 	 *  Create the device queue for our sym SIM.
9657 	 */
9658 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
9659 	if (!devq)
9660 		goto fail;
9661 
9662 	/*
9663 	 *  Construct our SIM entry.
9664 	 */
9665 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
9666 			    1, SYM_SETUP_MAX_TAG, devq);
9667 	if (!sim)
9668 		goto fail;
9669 	devq = 0;
9670 
9671 	if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
9672 		goto fail;
9673 	np->sim = sim;
9674 	sim = 0;
9675 
9676 	if (xpt_create_path(&path, 0,
9677 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9678 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9679 		goto fail;
9680 	}
9681 	np->path = path;
9682 
9683 	/*
9684 	 *  Hmmm... This should be useful, but I donnot want to
9685 	 *  know about.
9686 	 */
9687 #if 	__FreeBSD_version < 400000
9688 #ifdef	__alpha__
9689 #ifdef	FreeBSD_Bus_Io_Abstraction
9690 	alpha_register_pci_scsi(pci_get_bus(np->device),
9691 				pci_get_slot(np->device), np->sim);
9692 #else
9693 	alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim);
9694 #endif
9695 #endif
9696 #endif
9697 
9698 	/*
9699 	 *  Establish our async notification handler.
9700 	 */
9701 	xpt_setup_ccb(&csa.ccb_h, np->path, 5);
9702 	csa.ccb_h.func_code = XPT_SASYNC_CB;
9703 	csa.event_enable    = AC_LOST_DEVICE;
9704 	csa.callback	    = sym_async;
9705 	csa.callback_arg    = np->sim;
9706 	xpt_action((union ccb *)&csa);
9707 
9708 	/*
9709 	 *  Start the chip now, without resetting the BUS, since
9710 	 *  it seems that this must stay under control of CAM.
9711 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9712 	 *  get a spurious SMBC interrupt.
9713 	 */
9714 	sym_init (np, 0);
9715 
9716 	splx(s);
9717 	return 1;
9718 fail:
9719 	if (sim)
9720 		cam_sim_free(sim, FALSE);
9721 	if (devq)
9722 		cam_simq_free(devq);
9723 
9724 	sym_cam_free(np);
9725 
9726 	splx(s);
9727 	return 0;
9728 }
9729 
9730 /*
9731  *  Free everything that deals with CAM.
9732  */
9733 void sym_cam_free(hcb_p np)
9734 {
9735 #ifdef FreeBSD_Bus_Io_Abstraction
9736 	if (np->intr)
9737 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9738 #else
9739 	/* pci_unmap_int(np->pci_tag); */	/* Does nothing */
9740 #endif
9741 
9742 	if (np->sim) {
9743 		xpt_bus_deregister(cam_sim_path(np->sim));
9744 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
9745 	}
9746 	if (np->path)
9747 		xpt_free_path(np->path);
9748 }
9749 
9750 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9751 
9752 /*
9753  *  Get host setup from NVRAM.
9754  */
9755 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9756 {
9757 #ifdef SYM_CONF_NVRAM_SUPPORT
9758 	/*
9759 	 *  Get parity checking, host ID, verbose mode
9760 	 *  and miscellaneous host flags from NVRAM.
9761 	 */
9762 	switch(nvram->type) {
9763 	case SYM_SYMBIOS_NVRAM:
9764 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9765 			np->rv_scntl0  &= ~0x0a;
9766 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9767 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9768 			np->verbose += 1;
9769 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9770 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9771 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9772 			np->usrflags |= SYM_AVOID_BUS_RESET;
9773 		break;
9774 	case SYM_TEKRAM_NVRAM:
9775 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9776 		break;
9777 	default:
9778 		break;
9779 	}
9780 #endif
9781 }
9782 
9783 /*
9784  *  Get target setup from NVRAM.
9785  */
9786 #ifdef SYM_CONF_NVRAM_SUPPORT
9787 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9788 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9789 #endif
9790 
9791 static void
9792 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9793 {
9794 #ifdef SYM_CONF_NVRAM_SUPPORT
9795 	switch(nvp->type) {
9796 	case SYM_SYMBIOS_NVRAM:
9797 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9798 		break;
9799 	case SYM_TEKRAM_NVRAM:
9800 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9801 		break;
9802 	default:
9803 		break;
9804 	}
9805 #endif
9806 }
9807 
9808 #ifdef SYM_CONF_NVRAM_SUPPORT
9809 /*
9810  *  Get target set-up from Symbios format NVRAM.
9811  */
9812 static void
9813 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9814 {
9815 	tcb_p tp = &np->target[target];
9816 	Symbios_target *tn = &nvram->target[target];
9817 
9818 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9819 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9820 	tp->usrtags =
9821 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9822 
9823 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9824 		tp->usrflags &= ~SYM_DISC_ENABLED;
9825 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9826 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9827 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9828 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9829 }
9830 
9831 /*
9832  *  Get target set-up from Tekram format NVRAM.
9833  */
9834 static void
9835 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9836 {
9837 	tcb_p tp = &np->target[target];
9838 	struct Tekram_target *tn = &nvram->target[target];
9839 	int i;
9840 
9841 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9842 		i = tn->sync_index & 0xf;
9843 		tp->tinfo.user.period = Tekram_sync[i];
9844 	}
9845 
9846 	tp->tinfo.user.width =
9847 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9848 
9849 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9850 		tp->usrtags = 2 << nvram->max_tags_index;
9851 	}
9852 
9853 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9854 		tp->usrflags |= SYM_DISC_ENABLED;
9855 
9856 	/* If any device does not support parity, we will not use this option */
9857 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9858 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9859 }
9860 
9861 #ifdef	SYM_CONF_DEBUG_NVRAM
9862 /*
9863  *  Dump Symbios format NVRAM for debugging purpose.
9864  */
9865 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9866 {
9867 	int i;
9868 
9869 	/* display Symbios nvram host data */
9870 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9871 		sym_name(np), nvram->host_id & 0x0f,
9872 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9873 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9874 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9875 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9876 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9877 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9878 
9879 	/* display Symbios nvram drive data */
9880 	for (i = 0 ; i < 15 ; i++) {
9881 		struct Symbios_target *tn = &nvram->target[i];
9882 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9883 		sym_name(np), i,
9884 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9885 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9886 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9887 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9888 		tn->bus_width,
9889 		tn->sync_period / 4,
9890 		tn->timeout);
9891 	}
9892 }
9893 
9894 /*
9895  *  Dump TEKRAM format NVRAM for debugging purpose.
9896  */
9897 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9898 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9899 {
9900 	int i, tags, boot_delay;
9901 	char *rem;
9902 
9903 	/* display Tekram nvram host data */
9904 	tags = 2 << nvram->max_tags_index;
9905 	boot_delay = 0;
9906 	if (nvram->boot_delay_index < 6)
9907 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9908 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9909 	default:
9910 	case 0:	rem = "";			break;
9911 	case 1: rem = " REMOVABLE=boot device";	break;
9912 	case 2: rem = " REMOVABLE=all";		break;
9913 	}
9914 
9915 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9916 		sym_name(np), nvram->host_id & 0x0f,
9917 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9918 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9919 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9920 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9921 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9922 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9923 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9924 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9925 		rem, boot_delay, tags);
9926 
9927 	/* display Tekram nvram drive data */
9928 	for (i = 0; i <= 15; i++) {
9929 		int sync, j;
9930 		struct Tekram_target *tn = &nvram->target[i];
9931 		j = tn->sync_index & 0xf;
9932 		sync = Tekram_sync[j];
9933 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9934 		sym_name(np), i,
9935 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9936 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9937 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9938 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9939 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9940 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9941 		sync);
9942 	}
9943 }
9944 #endif	/* SYM_CONF_DEBUG_NVRAM */
9945 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9946 
9947 
9948 /*
9949  *  Try reading Symbios or Tekram NVRAM
9950  */
9951 #ifdef SYM_CONF_NVRAM_SUPPORT
9952 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9953 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9954 #endif
9955 
9956 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9957 {
9958 #ifdef SYM_CONF_NVRAM_SUPPORT
9959 	/*
9960 	 *  Try to read SYMBIOS nvram.
9961 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9962 	 */
9963 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9964 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9965 		nvp->type = SYM_SYMBIOS_NVRAM;
9966 #ifdef SYM_CONF_DEBUG_NVRAM
9967 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9968 #endif
9969 	}
9970 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9971 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9972 		nvp->type = SYM_TEKRAM_NVRAM;
9973 #ifdef SYM_CONF_DEBUG_NVRAM
9974 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9975 #endif
9976 	}
9977 	else
9978 		nvp->type = 0;
9979 #else
9980 	nvp->type = 0;
9981 #endif
9982 	return nvp->type;
9983 }
9984 
9985 
9986 #ifdef SYM_CONF_NVRAM_SUPPORT
9987 /*
9988  *  24C16 EEPROM reading.
9989  *
9990  *  GPOI0 - data in/data out
9991  *  GPIO1 - clock
9992  *  Symbios NVRAM wiring now also used by Tekram.
9993  */
9994 
9995 #define SET_BIT 0
9996 #define CLR_BIT 1
9997 #define SET_CLK 2
9998 #define CLR_CLK 3
9999 
10000 /*
10001  *  Set/clear data/clock bit in GPIO0
10002  */
10003 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
10004 			  int bit_mode)
10005 {
10006 	UDELAY (5);
10007 	switch (bit_mode){
10008 	case SET_BIT:
10009 		*gpreg |= write_bit;
10010 		break;
10011 	case CLR_BIT:
10012 		*gpreg &= 0xfe;
10013 		break;
10014 	case SET_CLK:
10015 		*gpreg |= 0x02;
10016 		break;
10017 	case CLR_CLK:
10018 		*gpreg &= 0xfd;
10019 		break;
10020 
10021 	}
10022 	OUTB (nc_gpreg, *gpreg);
10023 	UDELAY (5);
10024 }
10025 
10026 /*
10027  *  Send START condition to NVRAM to wake it up.
10028  */
10029 static void S24C16_start(hcb_p np, u_char *gpreg)
10030 {
10031 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
10032 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10033 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
10034 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
10035 }
10036 
10037 /*
10038  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
10039  */
10040 static void S24C16_stop(hcb_p np, u_char *gpreg)
10041 {
10042 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10043 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
10044 }
10045 
10046 /*
10047  *  Read or write a bit to the NVRAM,
10048  *  read if GPIO0 input else write if GPIO0 output
10049  */
10050 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
10051 			 u_char *gpreg)
10052 {
10053 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
10054 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
10055 	if (read_bit)
10056 		*read_bit = INB (nc_gpreg);
10057 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
10058 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
10059 }
10060 
10061 /*
10062  *  Output an ACK to the NVRAM after reading,
10063  *  change GPIO0 to output and when done back to an input
10064  */
10065 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
10066 			    u_char *gpcntl)
10067 {
10068 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
10069 	S24C16_do_bit(np, 0, write_bit, gpreg);
10070 	OUTB (nc_gpcntl, *gpcntl);
10071 }
10072 
10073 /*
10074  *  Input an ACK from NVRAM after writing,
10075  *  change GPIO0 to input and when done back to an output
10076  */
10077 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
10078 			   u_char *gpcntl)
10079 {
10080 	OUTB (nc_gpcntl, *gpcntl | 0x01);
10081 	S24C16_do_bit(np, read_bit, 1, gpreg);
10082 	OUTB (nc_gpcntl, *gpcntl);
10083 }
10084 
10085 /*
10086  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
10087  *  GPIO0 must already be set as an output
10088  */
10089 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
10090 			     u_char *gpreg, u_char *gpcntl)
10091 {
10092 	int x;
10093 
10094 	for (x = 0; x < 8; x++)
10095 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
10096 
10097 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
10098 }
10099 
10100 /*
10101  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
10102  *  GPIO0 must already be set as an input
10103  */
10104 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
10105 			    u_char *gpreg, u_char *gpcntl)
10106 {
10107 	int x;
10108 	u_char read_bit;
10109 
10110 	*read_data = 0;
10111 	for (x = 0; x < 8; x++) {
10112 		S24C16_do_bit(np, &read_bit, 1, gpreg);
10113 		*read_data |= ((read_bit & 0x01) << (7 - x));
10114 	}
10115 
10116 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
10117 }
10118 
10119 /*
10120  *  Read 'len' bytes starting at 'offset'.
10121  */
10122 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
10123 {
10124 	u_char	gpcntl, gpreg;
10125 	u_char	old_gpcntl, old_gpreg;
10126 	u_char	ack_data;
10127 	int	retv = 1;
10128 	int	x;
10129 
10130 	/* save current state of GPCNTL and GPREG */
10131 	old_gpreg	= INB (nc_gpreg);
10132 	old_gpcntl	= INB (nc_gpcntl);
10133 	gpcntl		= old_gpcntl & 0x1c;
10134 
10135 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
10136 	OUTB (nc_gpreg,  old_gpreg);
10137 	OUTB (nc_gpcntl, gpcntl);
10138 
10139 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
10140 	gpreg = old_gpreg;
10141 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
10142 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
10143 
10144 	/* now set NVRAM inactive with GPIO0/1 both high */
10145 	S24C16_stop(np, &gpreg);
10146 
10147 	/* activate NVRAM */
10148 	S24C16_start(np, &gpreg);
10149 
10150 	/* write device code and random address MSB */
10151 	S24C16_write_byte(np, &ack_data,
10152 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
10153 	if (ack_data & 0x01)
10154 		goto out;
10155 
10156 	/* write random address LSB */
10157 	S24C16_write_byte(np, &ack_data,
10158 		offset & 0xff, &gpreg, &gpcntl);
10159 	if (ack_data & 0x01)
10160 		goto out;
10161 
10162 	/* regenerate START state to set up for reading */
10163 	S24C16_start(np, &gpreg);
10164 
10165 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
10166 	S24C16_write_byte(np, &ack_data,
10167 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
10168 	if (ack_data & 0x01)
10169 		goto out;
10170 
10171 	/* now set up GPIO0 for inputting data */
10172 	gpcntl |= 0x01;
10173 	OUTB (nc_gpcntl, gpcntl);
10174 
10175 	/* input all requested data - only part of total NVRAM */
10176 	for (x = 0; x < len; x++)
10177 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
10178 
10179 	/* finally put NVRAM back in inactive mode */
10180 	gpcntl &= 0xfe;
10181 	OUTB (nc_gpcntl, gpcntl);
10182 	S24C16_stop(np, &gpreg);
10183 	retv = 0;
10184 out:
10185 	/* return GPIO0/1 to original states after having accessed NVRAM */
10186 	OUTB (nc_gpcntl, old_gpcntl);
10187 	OUTB (nc_gpreg,  old_gpreg);
10188 
10189 	return retv;
10190 }
10191 
10192 #undef SET_BIT /* 0 */
10193 #undef CLR_BIT /* 1 */
10194 #undef SET_CLK /* 2 */
10195 #undef CLR_CLK /* 3 */
10196 
10197 /*
10198  *  Try reading Symbios NVRAM.
10199  *  Return 0 if OK.
10200  */
10201 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
10202 {
10203 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
10204 	u_char *data = (u_char *) nvram;
10205 	int len  = sizeof(*nvram);
10206 	u_short	csum;
10207 	int x;
10208 
10209 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
10210 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
10211 		return 1;
10212 
10213 	/* check valid NVRAM signature, verify byte count and checksum */
10214 	if (nvram->type != 0 ||
10215 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
10216 	    nvram->byte_count != len - 12)
10217 		return 1;
10218 
10219 	/* verify checksum */
10220 	for (x = 6, csum = 0; x < len - 6; x++)
10221 		csum += data[x];
10222 	if (csum != nvram->checksum)
10223 		return 1;
10224 
10225 	return 0;
10226 }
10227 
10228 /*
10229  *  93C46 EEPROM reading.
10230  *
10231  *  GPOI0 - data in
10232  *  GPIO1 - data out
10233  *  GPIO2 - clock
10234  *  GPIO4 - chip select
10235  *
10236  *  Used by Tekram.
10237  */
10238 
10239 /*
10240  *  Pulse clock bit in GPIO0
10241  */
10242 static void T93C46_Clk(hcb_p np, u_char *gpreg)
10243 {
10244 	OUTB (nc_gpreg, *gpreg | 0x04);
10245 	UDELAY (2);
10246 	OUTB (nc_gpreg, *gpreg);
10247 }
10248 
10249 /*
10250  *  Read bit from NVRAM
10251  */
10252 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
10253 {
10254 	UDELAY (2);
10255 	T93C46_Clk(np, gpreg);
10256 	*read_bit = INB (nc_gpreg);
10257 }
10258 
10259 /*
10260  *  Write bit to GPIO0
10261  */
10262 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
10263 {
10264 	if (write_bit & 0x01)
10265 		*gpreg |= 0x02;
10266 	else
10267 		*gpreg &= 0xfd;
10268 
10269 	*gpreg |= 0x10;
10270 
10271 	OUTB (nc_gpreg, *gpreg);
10272 	UDELAY (2);
10273 
10274 	T93C46_Clk(np, gpreg);
10275 }
10276 
10277 /*
10278  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
10279  */
10280 static void T93C46_Stop(hcb_p np, u_char *gpreg)
10281 {
10282 	*gpreg &= 0xef;
10283 	OUTB (nc_gpreg, *gpreg);
10284 	UDELAY (2);
10285 
10286 	T93C46_Clk(np, gpreg);
10287 }
10288 
10289 /*
10290  *  Send read command and address to NVRAM
10291  */
10292 static void T93C46_Send_Command(hcb_p np, u_short write_data,
10293 				u_char *read_bit, u_char *gpreg)
10294 {
10295 	int x;
10296 
10297 	/* send 9 bits, start bit (1), command (2), address (6)  */
10298 	for (x = 0; x < 9; x++)
10299 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
10300 
10301 	*read_bit = INB (nc_gpreg);
10302 }
10303 
10304 /*
10305  *  READ 2 bytes from the NVRAM
10306  */
10307 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
10308 {
10309 	int x;
10310 	u_char read_bit;
10311 
10312 	*nvram_data = 0;
10313 	for (x = 0; x < 16; x++) {
10314 		T93C46_Read_Bit(np, &read_bit, gpreg);
10315 
10316 		if (read_bit & 0x01)
10317 			*nvram_data |=  (0x01 << (15 - x));
10318 		else
10319 			*nvram_data &= ~(0x01 << (15 - x));
10320 	}
10321 }
10322 
10323 /*
10324  *  Read Tekram NvRAM data.
10325  */
10326 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
10327 {
10328 	u_char	read_bit;
10329 	int	x;
10330 
10331 	for (x = 0; x < len; x++)  {
10332 
10333 		/* output read command and address */
10334 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
10335 		if (read_bit & 0x01)
10336 			return 1; /* Bad */
10337 		T93C46_Read_Word(np, &data[x], gpreg);
10338 		T93C46_Stop(np, gpreg);
10339 	}
10340 
10341 	return 0;
10342 }
10343 
10344 /*
10345  *  Try reading 93C46 Tekram NVRAM.
10346  */
10347 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
10348 {
10349 	u_char gpcntl, gpreg;
10350 	u_char old_gpcntl, old_gpreg;
10351 	int retv = 1;
10352 
10353 	/* save current state of GPCNTL and GPREG */
10354 	old_gpreg	= INB (nc_gpreg);
10355 	old_gpcntl	= INB (nc_gpcntl);
10356 
10357 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
10358 	   1/2/4 out */
10359 	gpreg = old_gpreg & 0xe9;
10360 	OUTB (nc_gpreg, gpreg);
10361 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
10362 	OUTB (nc_gpcntl, gpcntl);
10363 
10364 	/* input all of NVRAM, 64 words */
10365 	retv = T93C46_Read_Data(np, (u_short *) nvram,
10366 				sizeof(*nvram) / sizeof(short), &gpreg);
10367 
10368 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
10369 	OUTB (nc_gpcntl, old_gpcntl);
10370 	OUTB (nc_gpreg,  old_gpreg);
10371 
10372 	return retv;
10373 }
10374 
10375 /*
10376  *  Try reading Tekram NVRAM.
10377  *  Return 0 if OK.
10378  */
10379 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
10380 {
10381 	u_char *data = (u_char *) nvram;
10382 	int len = sizeof(*nvram);
10383 	u_short	csum;
10384 	int x;
10385 
10386 	switch (np->device_id) {
10387 	case PCI_ID_SYM53C885:
10388 	case PCI_ID_SYM53C895:
10389 	case PCI_ID_SYM53C896:
10390 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10391 					  data, len);
10392 		break;
10393 	case PCI_ID_SYM53C875:
10394 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
10395 					  data, len);
10396 		if (!x)
10397 			break;
10398 	default:
10399 		x = sym_read_T93C46_nvram(np, nvram);
10400 		break;
10401 	}
10402 	if (x)
10403 		return 1;
10404 
10405 	/* verify checksum */
10406 	for (x = 0, csum = 0; x < len - 1; x += 2)
10407 		csum += data[x] + (data[x+1] << 8);
10408 	if (csum != 0x1234)
10409 		return 1;
10410 
10411 	return 0;
10412 }
10413 
10414 #endif	/* SYM_CONF_NVRAM_SUPPORT */
10415