1 /* 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 /* $FreeBSD$ */ 59 60 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 61 62 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 63 /* #define CAM_NEW_TRAN_CODE */ 64 65 #include <sys/param.h> 66 67 /* 68 * Only use the BUS stuff for PCI under FreeBSD 4 and later versions. 69 * Note that the old BUS stuff also works for FreeBSD 4 and spares 70 * about 1 KB for the driver object file. 71 */ 72 #if __FreeBSD_version >= 400000 73 #define FreeBSD_Bus_Dma_Abstraction 74 #define FreeBSD_Bus_Io_Abstraction 75 #define FreeBSD_Bus_Space_Abstraction 76 #endif 77 78 /* 79 * Driver configuration options. 80 */ 81 #include "opt_sym.h" 82 #include <dev/sym/sym_conf.h> 83 84 #ifndef FreeBSD_Bus_Io_Abstraction 85 #include "ncr.h" /* To know if the ncr has been configured */ 86 #endif 87 88 #include <sys/systm.h> 89 #include <sys/malloc.h> 90 #include <sys/endian.h> 91 #include <sys/kernel.h> 92 #ifdef FreeBSD_Bus_Io_Abstraction 93 #include <sys/module.h> 94 #include <sys/bus.h> 95 #endif 96 97 #include <sys/proc.h> 98 99 #include <pci/pcireg.h> 100 #include <pci/pcivar.h> 101 102 #ifdef FreeBSD_Bus_Space_Abstraction 103 #include <machine/bus_memio.h> 104 /* 105 * Only include bus_pio if needed. 106 * This avoids bus space primitives to be uselessly bloated 107 * by out-of-age PIO operations. 108 */ 109 #ifdef SYM_CONF_IOMAPPED 110 #include <machine/bus_pio.h> 111 #endif 112 #endif 113 #include <machine/bus.h> 114 115 #ifdef FreeBSD_Bus_Io_Abstraction 116 #include <machine/resource.h> 117 #include <sys/rman.h> 118 #endif 119 120 #include <cam/cam.h> 121 #include <cam/cam_ccb.h> 122 #include <cam/cam_sim.h> 123 #include <cam/cam_xpt_sim.h> 124 #include <cam/cam_debug.h> 125 126 #include <cam/scsi/scsi_all.h> 127 #include <cam/scsi/scsi_message.h> 128 129 #include <vm/vm.h> 130 #include <vm/vm_param.h> 131 #include <vm/pmap.h> 132 133 /* Short and quite clear integer types */ 134 typedef int8_t s8; 135 typedef int16_t s16; 136 typedef int32_t s32; 137 typedef u_int8_t u8; 138 typedef u_int16_t u16; 139 typedef u_int32_t u32; 140 141 /* 142 * From 'cam.error_recovery_diffs.20010313.context' patch. 143 */ 144 #ifdef CAM_NEW_TRAN_CODE 145 #define FreeBSD_New_Tran_Settings 146 #endif /* CAM_NEW_TRAN_CODE */ 147 148 /* 149 * Driver definitions. 150 */ 151 #include <dev/sym/sym_defs.h> 152 #include <dev/sym/sym_fw.h> 153 154 /* 155 * IA32 architecture does not reorder STORES and prevents 156 * LOADS from passing STORES. It is called `program order' 157 * by Intel and allows device drivers to deal with memory 158 * ordering by only ensuring that the code is not reordered 159 * by the compiler when ordering is required. 160 * Other architectures implement a weaker ordering that 161 * requires memory barriers (and also IO barriers when they 162 * make sense) to be used. 163 */ 164 165 #if defined __i386__ 166 #define MEMORY_BARRIER() do { ; } while(0) 167 #elif defined __alpha__ 168 #define MEMORY_BARRIER() alpha_mb() 169 #elif defined __powerpc__ 170 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 171 #elif defined __ia64__ 172 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 173 #elif defined __sparc64__ 174 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 175 #else 176 #error "Not supported platform" 177 #endif 178 179 /* 180 * Portable but silly implemented byte order primitives. 181 * We define the primitives we need, since FreeBSD doesn't 182 * seem to have them yet. 183 */ 184 #if BYTE_ORDER == BIG_ENDIAN 185 186 #define __revb16(x) ( (((u16)(x) & (u16)0x00ffU) << 8) | \ 187 (((u16)(x) & (u16)0xff00U) >> 8) ) 188 #define __revb32(x) ( (((u32)(x) & 0x000000ffU) << 24) | \ 189 (((u32)(x) & 0x0000ff00U) << 8) | \ 190 (((u32)(x) & 0x00ff0000U) >> 8) | \ 191 (((u32)(x) & 0xff000000U) >> 24) ) 192 193 #define __htole16(v) __revb16(v) 194 #define __htole32(v) __revb32(v) 195 #define __le16toh(v) __htole16(v) 196 #define __le32toh(v) __htole32(v) 197 198 static __inline u16 _htole16(u16 v) { return __htole16(v); } 199 static __inline u32 _htole32(u32 v) { return __htole32(v); } 200 #define _le16toh _htole16 201 #define _le32toh _htole32 202 203 #else /* LITTLE ENDIAN */ 204 205 #define __htole16(v) (v) 206 #define __htole32(v) (v) 207 #define __le16toh(v) (v) 208 #define __le32toh(v) (v) 209 210 #define _htole16(v) (v) 211 #define _htole32(v) (v) 212 #define _le16toh(v) (v) 213 #define _le32toh(v) (v) 214 215 #endif /* BYTE_ORDER */ 216 217 /* 218 * A la VMS/CAM-3 queue management. 219 */ 220 221 typedef struct sym_quehead { 222 struct sym_quehead *flink; /* Forward pointer */ 223 struct sym_quehead *blink; /* Backward pointer */ 224 } SYM_QUEHEAD; 225 226 #define sym_que_init(ptr) do { \ 227 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 228 } while (0) 229 230 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 231 { 232 return (head->flink == head) ? 0 : head->flink; 233 } 234 235 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 236 { 237 return (head->blink == head) ? 0 : head->blink; 238 } 239 240 static __inline void __sym_que_add(struct sym_quehead * new, 241 struct sym_quehead * blink, 242 struct sym_quehead * flink) 243 { 244 flink->blink = new; 245 new->flink = flink; 246 new->blink = blink; 247 blink->flink = new; 248 } 249 250 static __inline void __sym_que_del(struct sym_quehead * blink, 251 struct sym_quehead * flink) 252 { 253 flink->blink = blink; 254 blink->flink = flink; 255 } 256 257 static __inline int sym_que_empty(struct sym_quehead *head) 258 { 259 return head->flink == head; 260 } 261 262 static __inline void sym_que_splice(struct sym_quehead *list, 263 struct sym_quehead *head) 264 { 265 struct sym_quehead *first = list->flink; 266 267 if (first != list) { 268 struct sym_quehead *last = list->blink; 269 struct sym_quehead *at = head->flink; 270 271 first->blink = head; 272 head->flink = first; 273 274 last->flink = at; 275 at->blink = last; 276 } 277 } 278 279 #define sym_que_entry(ptr, type, member) \ 280 ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member))) 281 282 283 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 284 285 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 286 287 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 288 289 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 290 { 291 struct sym_quehead *elem = head->flink; 292 293 if (elem != head) 294 __sym_que_del(head, elem->flink); 295 else 296 elem = 0; 297 return elem; 298 } 299 300 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 301 302 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 303 { 304 struct sym_quehead *elem = head->blink; 305 306 if (elem != head) 307 __sym_que_del(elem->blink, head); 308 else 309 elem = 0; 310 return elem; 311 } 312 313 /* 314 * This one may be useful. 315 */ 316 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 317 for (qp = (head)->flink; qp != (head); qp = qp->flink) 318 /* 319 * FreeBSD does not offer our kind of queue in the CAM CCB. 320 * So, we have to cast. 321 */ 322 #define sym_qptr(p) ((struct sym_quehead *) (p)) 323 324 /* 325 * Simple bitmap operations. 326 */ 327 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 328 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 329 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 330 331 /* 332 * Number of tasks per device we want to handle. 333 */ 334 #if SYM_CONF_MAX_TAG_ORDER > 8 335 #error "more than 256 tags per logical unit not allowed." 336 #endif 337 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 338 339 /* 340 * Donnot use more tasks that we can handle. 341 */ 342 #ifndef SYM_CONF_MAX_TAG 343 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 344 #endif 345 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 346 #undef SYM_CONF_MAX_TAG 347 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 348 #endif 349 350 /* 351 * This one means 'NO TAG for this job' 352 */ 353 #define NO_TAG (256) 354 355 /* 356 * Number of SCSI targets. 357 */ 358 #if SYM_CONF_MAX_TARGET > 16 359 #error "more than 16 targets not allowed." 360 #endif 361 362 /* 363 * Number of logical units per target. 364 */ 365 #if SYM_CONF_MAX_LUN > 64 366 #error "more than 64 logical units per target not allowed." 367 #endif 368 369 /* 370 * Asynchronous pre-scaler (ns). Shall be 40 for 371 * the SCSI timings to be compliant. 372 */ 373 #define SYM_CONF_MIN_ASYNC (40) 374 375 /* 376 * Number of entries in the START and DONE queues. 377 * 378 * We limit to 1 PAGE in order to succeed allocation of 379 * these queues. Each entry is 8 bytes long (2 DWORDS). 380 */ 381 #ifdef SYM_CONF_MAX_START 382 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 383 #else 384 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 385 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 386 #endif 387 388 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 389 #undef SYM_CONF_MAX_QUEUE 390 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 391 #undef SYM_CONF_MAX_START 392 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 393 #endif 394 395 /* 396 * For this one, we want a short name :-) 397 */ 398 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 399 400 /* 401 * These ones should have been already defined. 402 */ 403 #ifndef MIN 404 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) 405 #endif 406 407 /* 408 * Active debugging tags and verbosity. 409 */ 410 #define DEBUG_ALLOC (0x0001) 411 #define DEBUG_PHASE (0x0002) 412 #define DEBUG_POLL (0x0004) 413 #define DEBUG_QUEUE (0x0008) 414 #define DEBUG_RESULT (0x0010) 415 #define DEBUG_SCATTER (0x0020) 416 #define DEBUG_SCRIPT (0x0040) 417 #define DEBUG_TINY (0x0080) 418 #define DEBUG_TIMING (0x0100) 419 #define DEBUG_NEGO (0x0200) 420 #define DEBUG_TAGS (0x0400) 421 #define DEBUG_POINTER (0x0800) 422 423 #if 0 424 static int sym_debug = 0; 425 #define DEBUG_FLAGS sym_debug 426 #else 427 /* #define DEBUG_FLAGS (0x0631) */ 428 #define DEBUG_FLAGS (0x0000) 429 430 #endif 431 #define sym_verbose (np->verbose) 432 433 /* 434 * Insert a delay in micro-seconds and milli-seconds. 435 */ 436 static void UDELAY(int us) { DELAY(us); } 437 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 438 439 /* 440 * Simple power of two buddy-like allocator. 441 * 442 * This simple code is not intended to be fast, but to 443 * provide power of 2 aligned memory allocations. 444 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 445 * this allocator allows simple and fast address calculations 446 * from the SCRIPTS code. In addition, cache line alignment 447 * is guaranteed for power of 2 cache line size. 448 * 449 * This allocator has been developped for the Linux sym53c8xx 450 * driver, since this O/S does not provide naturally aligned 451 * allocations. 452 * It has the advantage of allowing the driver to use private 453 * pages of memory that will be useful if we ever need to deal 454 * with IO MMUs for PCI. 455 */ 456 457 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 458 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 459 #if 0 460 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 461 #endif 462 #define MEMO_WARN 1 463 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 464 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 465 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 466 467 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 468 #define free_pages(p) free((p), M_DEVBUF) 469 470 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 471 472 typedef struct m_link { /* Link between free memory chunks */ 473 struct m_link *next; 474 } m_link_s; 475 476 #ifdef FreeBSD_Bus_Dma_Abstraction 477 typedef struct m_vtob { /* Virtual to Bus address translation */ 478 struct m_vtob *next; 479 bus_dmamap_t dmamap; /* Map for this chunk */ 480 m_addr_t vaddr; /* Virtual address */ 481 m_addr_t baddr; /* Bus physical address */ 482 } m_vtob_s; 483 /* Hash this stuff a bit to speed up translations */ 484 #define VTOB_HASH_SHIFT 5 485 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 486 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 487 #define VTOB_HASH_CODE(m) \ 488 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 489 #endif 490 491 typedef struct m_pool { /* Memory pool of a given kind */ 492 #ifdef FreeBSD_Bus_Dma_Abstraction 493 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 494 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 495 m_addr_t (*getp)(struct m_pool *); 496 #ifdef MEMO_FREE_UNUSED 497 void (*freep)(struct m_pool *, m_addr_t); 498 #endif 499 #define M_GETP() mp->getp(mp) 500 #define M_FREEP(p) mp->freep(mp, p) 501 int nump; 502 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 503 struct m_pool *next; 504 #else 505 #define M_GETP() get_pages() 506 #define M_FREEP(p) free_pages(p) 507 #endif /* FreeBSD_Bus_Dma_Abstraction */ 508 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 509 } m_pool_s; 510 511 static void *___sym_malloc(m_pool_s *mp, int size) 512 { 513 int i = 0; 514 int s = (1 << MEMO_SHIFT); 515 int j; 516 m_addr_t a; 517 m_link_s *h = mp->h; 518 519 if (size > MEMO_CLUSTER_SIZE) 520 return 0; 521 522 while (size > s) { 523 s <<= 1; 524 ++i; 525 } 526 527 j = i; 528 while (!h[j].next) { 529 if (s == MEMO_CLUSTER_SIZE) { 530 h[j].next = (m_link_s *) M_GETP(); 531 if (h[j].next) 532 h[j].next->next = 0; 533 break; 534 } 535 ++j; 536 s <<= 1; 537 } 538 a = (m_addr_t) h[j].next; 539 if (a) { 540 h[j].next = h[j].next->next; 541 while (j > i) { 542 j -= 1; 543 s >>= 1; 544 h[j].next = (m_link_s *) (a+s); 545 h[j].next->next = 0; 546 } 547 } 548 #ifdef DEBUG 549 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 550 #endif 551 return (void *) a; 552 } 553 554 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 555 { 556 int i = 0; 557 int s = (1 << MEMO_SHIFT); 558 m_link_s *q; 559 m_addr_t a, b; 560 m_link_s *h = mp->h; 561 562 #ifdef DEBUG 563 printf("___sym_mfree(%p, %d)\n", ptr, size); 564 #endif 565 566 if (size > MEMO_CLUSTER_SIZE) 567 return; 568 569 while (size > s) { 570 s <<= 1; 571 ++i; 572 } 573 574 a = (m_addr_t) ptr; 575 576 while (1) { 577 #ifdef MEMO_FREE_UNUSED 578 if (s == MEMO_CLUSTER_SIZE) { 579 M_FREEP(a); 580 break; 581 } 582 #endif 583 b = a ^ s; 584 q = &h[i]; 585 while (q->next && q->next != (m_link_s *) b) { 586 q = q->next; 587 } 588 if (!q->next) { 589 ((m_link_s *) a)->next = h[i].next; 590 h[i].next = (m_link_s *) a; 591 break; 592 } 593 q->next = q->next->next; 594 a = a & b; 595 s <<= 1; 596 ++i; 597 } 598 } 599 600 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 601 { 602 void *p; 603 604 p = ___sym_malloc(mp, size); 605 606 if (DEBUG_FLAGS & DEBUG_ALLOC) 607 printf ("new %-10s[%4d] @%p.\n", name, size, p); 608 609 if (p) 610 bzero(p, size); 611 else if (uflags & MEMO_WARN) 612 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 613 614 return p; 615 } 616 617 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 618 619 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 620 { 621 if (DEBUG_FLAGS & DEBUG_ALLOC) 622 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 623 624 ___sym_mfree(mp, ptr, size); 625 626 } 627 628 /* 629 * Default memory pool we donnot need to involve in DMA. 630 */ 631 #ifndef FreeBSD_Bus_Dma_Abstraction 632 /* 633 * Without the `bus dma abstraction', all the memory is assumed 634 * DMAable and a single pool is all what we need. 635 */ 636 static m_pool_s mp0; 637 638 #else 639 /* 640 * With the `bus dma abstraction', we use a separate pool for 641 * memory we donnot need to involve in DMA. 642 */ 643 static m_addr_t ___mp0_getp(m_pool_s *mp) 644 { 645 m_addr_t m = (m_addr_t) get_pages(); 646 if (m) 647 ++mp->nump; 648 return m; 649 } 650 651 #ifdef MEMO_FREE_UNUSED 652 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 653 { 654 free_pages(m); 655 --mp->nump; 656 } 657 #endif 658 659 #ifdef MEMO_FREE_UNUSED 660 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 661 #else 662 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 663 #endif 664 665 #endif /* FreeBSD_Bus_Dma_Abstraction */ 666 667 /* 668 * Actual memory allocation routine for non-DMAed memory. 669 */ 670 static void *sym_calloc(int size, char *name) 671 { 672 void *m; 673 /* Lock */ 674 m = __sym_calloc(&mp0, size, name); 675 /* Unlock */ 676 return m; 677 } 678 679 /* 680 * Actual memory allocation routine for non-DMAed memory. 681 */ 682 static void sym_mfree(void *ptr, int size, char *name) 683 { 684 /* Lock */ 685 __sym_mfree(&mp0, ptr, size, name); 686 /* Unlock */ 687 } 688 689 /* 690 * DMAable pools. 691 */ 692 #ifndef FreeBSD_Bus_Dma_Abstraction 693 /* 694 * Without `bus dma abstraction', all the memory is DMAable, and 695 * only a single pool is needed (vtophys() is our friend). 696 */ 697 #define __sym_calloc_dma(b, s, n) sym_calloc(s, n) 698 #define __sym_mfree_dma(b, p, s, n) sym_mfree(p, s, n) 699 #ifdef __alpha__ 700 #define __vtobus(b, p) alpha_XXX_dmamap((vm_offset_t)(p)) 701 #else /*__i386__, __sparc64__*/ 702 #define __vtobus(b, p) vtophys(p) 703 #endif 704 705 #else 706 /* 707 * With `bus dma abstraction', we use a separate pool per parent 708 * BUS handle. A reverse table (hashed) is maintained for virtual 709 * to BUS address translation. 710 */ 711 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 712 { 713 bus_addr_t *baddr; 714 baddr = (bus_addr_t *)arg; 715 *baddr = segs->ds_addr; 716 } 717 718 static m_addr_t ___dma_getp(m_pool_s *mp) 719 { 720 m_vtob_s *vbp; 721 void *vaddr = 0; 722 bus_addr_t baddr = 0; 723 724 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 725 if (!vbp) 726 goto out_err; 727 728 if (bus_dmamem_alloc(mp->dmat, &vaddr, 729 BUS_DMA_NOWAIT, &vbp->dmamap)) 730 goto out_err; 731 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 732 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0); 733 if (baddr) { 734 int hc = VTOB_HASH_CODE(vaddr); 735 vbp->vaddr = (m_addr_t) vaddr; 736 vbp->baddr = (m_addr_t) baddr; 737 vbp->next = mp->vtob[hc]; 738 mp->vtob[hc] = vbp; 739 ++mp->nump; 740 return (m_addr_t) vaddr; 741 } 742 out_err: 743 if (baddr) 744 bus_dmamap_unload(mp->dmat, vbp->dmamap); 745 if (vaddr) 746 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 747 if (vbp->dmamap) 748 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 749 if (vbp) 750 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 751 return 0; 752 } 753 754 #ifdef MEMO_FREE_UNUSED 755 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 756 { 757 m_vtob_s **vbpp, *vbp; 758 int hc = VTOB_HASH_CODE(m); 759 760 vbpp = &mp->vtob[hc]; 761 while (*vbpp && (*vbpp)->vaddr != m) 762 vbpp = &(*vbpp)->next; 763 if (*vbpp) { 764 vbp = *vbpp; 765 *vbpp = (*vbpp)->next; 766 bus_dmamap_unload(mp->dmat, vbp->dmamap); 767 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 768 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 769 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 770 --mp->nump; 771 } 772 } 773 #endif 774 775 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 776 { 777 m_pool_s *mp; 778 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 779 return mp; 780 } 781 782 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 783 { 784 m_pool_s *mp = 0; 785 786 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 787 if (mp) { 788 mp->dev_dmat = dev_dmat; 789 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 790 BUS_SPACE_MAXADDR_32BIT, 791 BUS_SPACE_MAXADDR_32BIT, 792 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 793 MEMO_CLUSTER_SIZE, 0, &mp->dmat)) { 794 mp->getp = ___dma_getp; 795 #ifdef MEMO_FREE_UNUSED 796 mp->freep = ___dma_freep; 797 #endif 798 mp->next = mp0.next; 799 mp0.next = mp; 800 return mp; 801 } 802 } 803 if (mp) 804 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 805 return 0; 806 } 807 808 #ifdef MEMO_FREE_UNUSED 809 static void ___del_dma_pool(m_pool_s *p) 810 { 811 struct m_pool **pp = &mp0.next; 812 813 while (*pp && *pp != p) 814 pp = &(*pp)->next; 815 if (*pp) { 816 *pp = (*pp)->next; 817 bus_dma_tag_destroy(p->dmat); 818 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 819 } 820 } 821 #endif 822 823 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 824 { 825 struct m_pool *mp; 826 void *m = 0; 827 828 /* Lock */ 829 mp = ___get_dma_pool(dev_dmat); 830 if (!mp) 831 mp = ___cre_dma_pool(dev_dmat); 832 if (mp) 833 m = __sym_calloc(mp, size, name); 834 #ifdef MEMO_FREE_UNUSED 835 if (mp && !mp->nump) 836 ___del_dma_pool(mp); 837 #endif 838 /* Unlock */ 839 840 return m; 841 } 842 843 static void 844 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 845 { 846 struct m_pool *mp; 847 848 /* Lock */ 849 mp = ___get_dma_pool(dev_dmat); 850 if (mp) 851 __sym_mfree(mp, m, size, name); 852 #ifdef MEMO_FREE_UNUSED 853 if (mp && !mp->nump) 854 ___del_dma_pool(mp); 855 #endif 856 /* Unlock */ 857 } 858 859 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 860 { 861 m_pool_s *mp; 862 int hc = VTOB_HASH_CODE(m); 863 m_vtob_s *vp = 0; 864 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 865 866 /* Lock */ 867 mp = ___get_dma_pool(dev_dmat); 868 if (mp) { 869 vp = mp->vtob[hc]; 870 while (vp && (m_addr_t) vp->vaddr != a) 871 vp = vp->next; 872 } 873 /* Unlock */ 874 if (!vp) 875 panic("sym: VTOBUS FAILED!\n"); 876 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 877 } 878 879 #endif /* FreeBSD_Bus_Dma_Abstraction */ 880 881 /* 882 * Verbs for DMAable memory handling. 883 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 884 * being discarded. 885 */ 886 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 887 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 888 #define _sym_mfree_dma(np, p, s, n) \ 889 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 890 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 891 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 892 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 893 #define vtobus(p) _vtobus(np, p) 894 895 896 /* 897 * Print a buffer in hexadecimal format. 898 */ 899 static void sym_printb_hex (u_char *p, int n) 900 { 901 while (n-- > 0) 902 printf (" %x", *p++); 903 } 904 905 /* 906 * Same with a label at beginning and .\n at end. 907 */ 908 static void sym_printl_hex (char *label, u_char *p, int n) 909 { 910 printf ("%s", label); 911 sym_printb_hex (p, n); 912 printf (".\n"); 913 } 914 915 /* 916 * Return a string for SCSI BUS mode. 917 */ 918 static char *sym_scsi_bus_mode(int mode) 919 { 920 switch(mode) { 921 case SMODE_HVD: return "HVD"; 922 case SMODE_SE: return "SE"; 923 case SMODE_LVD: return "LVD"; 924 } 925 return "??"; 926 } 927 928 /* 929 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 930 */ 931 #ifdef SYM_CONF_NVRAM_SUPPORT 932 static u_char Tekram_sync[16] = 933 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 934 #endif 935 936 /* 937 * Union of supported NVRAM formats. 938 */ 939 struct sym_nvram { 940 int type; 941 #define SYM_SYMBIOS_NVRAM (1) 942 #define SYM_TEKRAM_NVRAM (2) 943 #ifdef SYM_CONF_NVRAM_SUPPORT 944 union { 945 Symbios_nvram Symbios; 946 Tekram_nvram Tekram; 947 } data; 948 #endif 949 }; 950 951 /* 952 * This one is hopefully useless, but actually useful. :-) 953 */ 954 #ifndef assert 955 #define assert(expression) { \ 956 if (!(expression)) { \ 957 (void)panic( \ 958 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 959 #expression, \ 960 __FILE__, __LINE__); \ 961 } \ 962 } 963 #endif 964 965 /* 966 * Some provision for a possible big endian mode supported by 967 * Symbios chips (never seen, by the way). 968 * For now, this stuff does not deserve any comments. :) 969 */ 970 971 #define sym_offb(o) (o) 972 #define sym_offw(o) (o) 973 974 /* 975 * Some provision for support for BIG ENDIAN CPU. 976 * Btw, FreeBSD does not seem to be ready yet for big endian. 977 */ 978 979 #if BYTE_ORDER == BIG_ENDIAN 980 #define cpu_to_scr(dw) _htole32(dw) 981 #define scr_to_cpu(dw) _le32toh(dw) 982 #else 983 #define cpu_to_scr(dw) (dw) 984 #define scr_to_cpu(dw) (dw) 985 #endif 986 987 /* 988 * Access to the chip IO registers and on-chip RAM. 989 * We use the `bus space' interface under FreeBSD-4 and 990 * later kernel versions. 991 */ 992 993 #ifdef FreeBSD_Bus_Space_Abstraction 994 995 #if defined(SYM_CONF_IOMAPPED) 996 997 #define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o) 998 #define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o) 999 #define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o) 1000 1001 #define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v)) 1002 #define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v)) 1003 #define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v)) 1004 1005 #else /* Memory mapped IO */ 1006 1007 #define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o) 1008 #define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o) 1009 #define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o) 1010 1011 #define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v)) 1012 #define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v)) 1013 #define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v)) 1014 1015 #endif /* SYM_CONF_IOMAPPED */ 1016 1017 #define OUTRAM_OFF(o, a, l) \ 1018 bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l)) 1019 1020 #else /* not defined FreeBSD_Bus_Space_Abstraction */ 1021 1022 #if BYTE_ORDER == BIG_ENDIAN 1023 #error "BIG ENDIAN support requires bus space kernel interface" 1024 #endif 1025 1026 /* 1027 * Access to the chip IO registers and on-chip RAM. 1028 * We use legacy MMIO and IO interface for FreeBSD 3.X versions. 1029 */ 1030 1031 /* 1032 * Define some understable verbs for IO and MMIO. 1033 */ 1034 #define io_read8(p) scr_to_cpu(inb((p))) 1035 #define io_read16(p) scr_to_cpu(inw((p))) 1036 #define io_read32(p) scr_to_cpu(inl((p))) 1037 #define io_write8(p, v) outb((p), cpu_to_scr(v)) 1038 #define io_write16(p, v) outw((p), cpu_to_scr(v)) 1039 #define io_write32(p, v) outl((p), cpu_to_scr(v)) 1040 1041 #ifdef __alpha__ 1042 1043 #define mmio_read8(a) readb(a) 1044 #define mmio_read16(a) readw(a) 1045 #define mmio_read32(a) readl(a) 1046 #define mmio_write8(a, b) writeb(a, b) 1047 #define mmio_write16(a, b) writew(a, b) 1048 #define mmio_write32(a, b) writel(a, b) 1049 #define memcpy_to_pci(d, s, n) memcpy_toio((u32)(d), (void *)(s), (n)) 1050 1051 #else /*__i386__, __sparc64__*/ 1052 1053 #define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a))) 1054 #define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a))) 1055 #define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a))) 1056 #define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b) 1057 #define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b) 1058 #define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b) 1059 #define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n)) 1060 1061 #endif 1062 1063 /* 1064 * Normal IO 1065 */ 1066 #if defined(SYM_CONF_IOMAPPED) 1067 1068 #define INB_OFF(o) io_read8(np->io_port + sym_offb(o)) 1069 #define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v)) 1070 1071 #define INW_OFF(o) io_read16(np->io_port + sym_offw(o)) 1072 #define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v)) 1073 1074 #define INL_OFF(o) io_read32(np->io_port + (o)) 1075 #define OUTL_OFF(o, v) io_write32(np->io_port + (o), (v)) 1076 1077 #else /* Memory mapped IO */ 1078 1079 #define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o)) 1080 #define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v)) 1081 1082 #define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o)) 1083 #define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v)) 1084 1085 #define INL_OFF(o) mmio_read32(np->mmio_va + (o)) 1086 #define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v)) 1087 1088 #endif 1089 1090 #define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l)) 1091 1092 #endif /* FreeBSD_Bus_Space_Abstraction */ 1093 1094 /* 1095 * Common definitions for both bus space and legacy IO methods. 1096 */ 1097 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 1098 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 1099 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 1100 1101 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 1102 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 1103 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 1104 1105 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 1106 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 1107 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 1108 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 1109 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 1110 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 1111 1112 /* 1113 * We normally want the chip to have a consistent view 1114 * of driver internal data structures when we restart it. 1115 * Thus these macros. 1116 */ 1117 #define OUTL_DSP(v) \ 1118 do { \ 1119 MEMORY_BARRIER(); \ 1120 OUTL (nc_dsp, (v)); \ 1121 } while (0) 1122 1123 #define OUTONB_STD() \ 1124 do { \ 1125 MEMORY_BARRIER(); \ 1126 OUTONB (nc_dcntl, (STD|NOCOM)); \ 1127 } while (0) 1128 1129 /* 1130 * Command control block states. 1131 */ 1132 #define HS_IDLE (0) 1133 #define HS_BUSY (1) 1134 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 1135 #define HS_DISCONNECT (3) /* Disconnected by target */ 1136 #define HS_WAIT (4) /* waiting for resource */ 1137 1138 #define HS_DONEMASK (0x80) 1139 #define HS_COMPLETE (4|HS_DONEMASK) 1140 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 1141 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 1142 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 1143 1144 /* 1145 * Software Interrupt Codes 1146 */ 1147 #define SIR_BAD_SCSI_STATUS (1) 1148 #define SIR_SEL_ATN_NO_MSG_OUT (2) 1149 #define SIR_MSG_RECEIVED (3) 1150 #define SIR_MSG_WEIRD (4) 1151 #define SIR_NEGO_FAILED (5) 1152 #define SIR_NEGO_PROTO (6) 1153 #define SIR_SCRIPT_STOPPED (7) 1154 #define SIR_REJECT_TO_SEND (8) 1155 #define SIR_SWIDE_OVERRUN (9) 1156 #define SIR_SODL_UNDERRUN (10) 1157 #define SIR_RESEL_NO_MSG_IN (11) 1158 #define SIR_RESEL_NO_IDENTIFY (12) 1159 #define SIR_RESEL_BAD_LUN (13) 1160 #define SIR_TARGET_SELECTED (14) 1161 #define SIR_RESEL_BAD_I_T_L (15) 1162 #define SIR_RESEL_BAD_I_T_L_Q (16) 1163 #define SIR_ABORT_SENT (17) 1164 #define SIR_RESEL_ABORTED (18) 1165 #define SIR_MSG_OUT_DONE (19) 1166 #define SIR_COMPLETE_ERROR (20) 1167 #define SIR_DATA_OVERRUN (21) 1168 #define SIR_BAD_PHASE (22) 1169 #define SIR_MAX (22) 1170 1171 /* 1172 * Extended error bit codes. 1173 * xerr_status field of struct sym_ccb. 1174 */ 1175 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 1176 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 1177 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 1178 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 1179 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 1180 1181 /* 1182 * Negotiation status. 1183 * nego_status field of struct sym_ccb. 1184 */ 1185 #define NS_SYNC (1) 1186 #define NS_WIDE (2) 1187 #define NS_PPR (3) 1188 1189 /* 1190 * A CCB hashed table is used to retrieve CCB address 1191 * from DSA value. 1192 */ 1193 #define CCB_HASH_SHIFT 8 1194 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1195 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1196 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1197 1198 /* 1199 * Device flags. 1200 */ 1201 #define SYM_DISC_ENABLED (1) 1202 #define SYM_TAGS_ENABLED (1<<1) 1203 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1204 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1205 1206 /* 1207 * Host adapter miscellaneous flags. 1208 */ 1209 #define SYM_AVOID_BUS_RESET (1) 1210 #define SYM_SCAN_TARGETS_HILO (1<<1) 1211 1212 /* 1213 * Device quirks. 1214 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1215 * saving the DATA POINTER then reselects and terminates the IO. 1216 * On reselection, the automatic RESTORE DATA POINTER makes the 1217 * CURRENT DATA POINTER not point at the end of the IO. 1218 * This behaviour just breaks our calculation of the residual. 1219 * For now, we just force an AUTO SAVE on disconnection and will 1220 * fix that in a further driver version. 1221 */ 1222 #define SYM_QUIRK_AUTOSAVE 1 1223 1224 /* 1225 * Misc. 1226 */ 1227 #define SYM_SNOOP_TIMEOUT (10000000) 1228 #define SYM_PCI_IO PCIR_MAPS 1229 #define SYM_PCI_MMIO (PCIR_MAPS + 4) 1230 #define SYM_PCI_RAM (PCIR_MAPS + 8) 1231 #define SYM_PCI_RAM64 (PCIR_MAPS + 12) 1232 1233 /* 1234 * Back-pointer from the CAM CCB to our data structures. 1235 */ 1236 #define sym_hcb_ptr spriv_ptr0 1237 /* #define sym_ccb_ptr spriv_ptr1 */ 1238 1239 /* 1240 * We mostly have to deal with pointers. 1241 * Thus these typedef's. 1242 */ 1243 typedef struct sym_tcb *tcb_p; 1244 typedef struct sym_lcb *lcb_p; 1245 typedef struct sym_ccb *ccb_p; 1246 typedef struct sym_hcb *hcb_p; 1247 1248 /* 1249 * Gather negotiable parameters value 1250 */ 1251 struct sym_trans { 1252 #ifdef FreeBSD_New_Tran_Settings 1253 u8 scsi_version; 1254 u8 spi_version; 1255 #endif 1256 u8 period; 1257 u8 offset; 1258 u8 width; 1259 u8 options; /* PPR options */ 1260 }; 1261 1262 struct sym_tinfo { 1263 struct sym_trans current; 1264 struct sym_trans goal; 1265 struct sym_trans user; 1266 }; 1267 1268 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1269 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1270 1271 /* 1272 * Global TCB HEADER. 1273 * 1274 * Due to lack of indirect addressing on earlier NCR chips, 1275 * this substructure is copied from the TCB to a global 1276 * address after selection. 1277 * For SYMBIOS chips that support LOAD/STORE this copy is 1278 * not needed and thus not performed. 1279 */ 1280 struct sym_tcbh { 1281 /* 1282 * Scripts bus addresses of LUN table accessed from scripts. 1283 * LUN #0 is a special case, since multi-lun devices are rare, 1284 * and we we want to speed-up the general case and not waste 1285 * resources. 1286 */ 1287 u32 luntbl_sa; /* bus address of this table */ 1288 u32 lun0_sa; /* bus address of LCB #0 */ 1289 /* 1290 * Actual SYNC/WIDE IO registers value for this target. 1291 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1292 * so have alignment constraints. 1293 */ 1294 /*0*/ u_char uval; /* -> SCNTL4 register */ 1295 /*1*/ u_char sval; /* -> SXFER io register */ 1296 /*2*/ u_char filler1; 1297 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1298 }; 1299 1300 /* 1301 * Target Control Block 1302 */ 1303 struct sym_tcb { 1304 /* 1305 * TCB header. 1306 * Assumed at offset 0. 1307 */ 1308 /*0*/ struct sym_tcbh head; 1309 1310 /* 1311 * LUN table used by the SCRIPTS processor. 1312 * An array of bus addresses is used on reselection. 1313 */ 1314 u32 *luntbl; /* LCBs bus address table */ 1315 1316 /* 1317 * LUN table used by the C code. 1318 */ 1319 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1320 #if SYM_CONF_MAX_LUN > 1 1321 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1322 #endif 1323 1324 /* 1325 * Bitmap that tells about LUNs that succeeded at least 1326 * 1 IO and therefore assumed to be a real device. 1327 * Avoid useless allocation of the LCB structure. 1328 */ 1329 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1330 1331 /* 1332 * Bitmap that tells about LUNs that haven't yet an LCB 1333 * allocated (not discovered or LCB allocation failed). 1334 */ 1335 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1336 1337 /* 1338 * Transfer capabilities (SIP) 1339 */ 1340 struct sym_tinfo tinfo; 1341 1342 /* 1343 * Keep track of the CCB used for the negotiation in order 1344 * to ensure that only 1 negotiation is queued at a time. 1345 */ 1346 ccb_p nego_cp; /* CCB used for the nego */ 1347 1348 /* 1349 * Set when we want to reset the device. 1350 */ 1351 u_char to_reset; 1352 1353 /* 1354 * Other user settable limits and options. 1355 * These limits are read from the NVRAM if present. 1356 */ 1357 u_char usrflags; 1358 u_short usrtags; 1359 }; 1360 1361 /* 1362 * Global LCB HEADER. 1363 * 1364 * Due to lack of indirect addressing on earlier NCR chips, 1365 * this substructure is copied from the LCB to a global 1366 * address after selection. 1367 * For SYMBIOS chips that support LOAD/STORE this copy is 1368 * not needed and thus not performed. 1369 */ 1370 struct sym_lcbh { 1371 /* 1372 * SCRIPTS address jumped by SCRIPTS on reselection. 1373 * For not probed logical units, this address points to 1374 * SCRIPTS that deal with bad LU handling (must be at 1375 * offset zero of the LCB for that reason). 1376 */ 1377 /*0*/ u32 resel_sa; 1378 1379 /* 1380 * Task (bus address of a CCB) read from SCRIPTS that points 1381 * to the unique ITL nexus allowed to be disconnected. 1382 */ 1383 u32 itl_task_sa; 1384 1385 /* 1386 * Task table bus address (read from SCRIPTS). 1387 */ 1388 u32 itlq_tbl_sa; 1389 }; 1390 1391 /* 1392 * Logical Unit Control Block 1393 */ 1394 struct sym_lcb { 1395 /* 1396 * TCB header. 1397 * Assumed at offset 0. 1398 */ 1399 /*0*/ struct sym_lcbh head; 1400 1401 /* 1402 * Task table read from SCRIPTS that contains pointers to 1403 * ITLQ nexuses. The bus address read from SCRIPTS is 1404 * inside the header. 1405 */ 1406 u32 *itlq_tbl; /* Kernel virtual address */ 1407 1408 /* 1409 * Busy CCBs management. 1410 */ 1411 u_short busy_itlq; /* Number of busy tagged CCBs */ 1412 u_short busy_itl; /* Number of busy untagged CCBs */ 1413 1414 /* 1415 * Circular tag allocation buffer. 1416 */ 1417 u_short ia_tag; /* Tag allocation index */ 1418 u_short if_tag; /* Tag release index */ 1419 u_char *cb_tags; /* Circular tags buffer */ 1420 1421 /* 1422 * Set when we want to clear all tasks. 1423 */ 1424 u_char to_clear; 1425 1426 /* 1427 * Capabilities. 1428 */ 1429 u_char user_flags; 1430 u_char current_flags; 1431 }; 1432 1433 /* 1434 * Action from SCRIPTS on a task. 1435 * Is part of the CCB, but is also used separately to plug 1436 * error handling action to perform from SCRIPTS. 1437 */ 1438 struct sym_actscr { 1439 u32 start; /* Jumped by SCRIPTS after selection */ 1440 u32 restart; /* Jumped by SCRIPTS on relection */ 1441 }; 1442 1443 /* 1444 * Phase mismatch context. 1445 * 1446 * It is part of the CCB and is used as parameters for the 1447 * DATA pointer. We need two contexts to handle correctly the 1448 * SAVED DATA POINTER. 1449 */ 1450 struct sym_pmc { 1451 struct sym_tblmove sg; /* Updated interrupted SG block */ 1452 u32 ret; /* SCRIPT return address */ 1453 }; 1454 1455 /* 1456 * LUN control block lookup. 1457 * We use a direct pointer for LUN #0, and a table of 1458 * pointers which is only allocated for devices that support 1459 * LUN(s) > 0. 1460 */ 1461 #if SYM_CONF_MAX_LUN <= 1 1462 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1463 #else 1464 #define sym_lp(np, tp, lun) \ 1465 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1466 #endif 1467 1468 /* 1469 * Status are used by the host and the script processor. 1470 * 1471 * The last four bytes (status[4]) are copied to the 1472 * scratchb register (declared as scr0..scr3) just after the 1473 * select/reselect, and copied back just after disconnecting. 1474 * Inside the script the XX_REG are used. 1475 */ 1476 1477 /* 1478 * Last four bytes (script) 1479 */ 1480 #define QU_REG scr0 1481 #define HS_REG scr1 1482 #define HS_PRT nc_scr1 1483 #define SS_REG scr2 1484 #define SS_PRT nc_scr2 1485 #define HF_REG scr3 1486 #define HF_PRT nc_scr3 1487 1488 /* 1489 * Last four bytes (host) 1490 */ 1491 #define actualquirks phys.head.status[0] 1492 #define host_status phys.head.status[1] 1493 #define ssss_status phys.head.status[2] 1494 #define host_flags phys.head.status[3] 1495 1496 /* 1497 * Host flags 1498 */ 1499 #define HF_IN_PM0 1u 1500 #define HF_IN_PM1 (1u<<1) 1501 #define HF_ACT_PM (1u<<2) 1502 #define HF_DP_SAVED (1u<<3) 1503 #define HF_SENSE (1u<<4) 1504 #define HF_EXT_ERR (1u<<5) 1505 #define HF_DATA_IN (1u<<6) 1506 #ifdef SYM_CONF_IARB_SUPPORT 1507 #define HF_HINT_IARB (1u<<7) 1508 #endif 1509 1510 /* 1511 * Global CCB HEADER. 1512 * 1513 * Due to lack of indirect addressing on earlier NCR chips, 1514 * this substructure is copied from the ccb to a global 1515 * address after selection (or reselection) and copied back 1516 * before disconnect. 1517 * For SYMBIOS chips that support LOAD/STORE this copy is 1518 * not needed and thus not performed. 1519 */ 1520 1521 struct sym_ccbh { 1522 /* 1523 * Start and restart SCRIPTS addresses (must be at 0). 1524 */ 1525 /*0*/ struct sym_actscr go; 1526 1527 /* 1528 * SCRIPTS jump address that deal with data pointers. 1529 * 'savep' points to the position in the script responsible 1530 * for the actual transfer of data. 1531 * It's written on reception of a SAVE_DATA_POINTER message. 1532 */ 1533 u32 savep; /* Jump address to saved data pointer */ 1534 u32 lastp; /* SCRIPTS address at end of data */ 1535 u32 goalp; /* Not accessed for now from SCRIPTS */ 1536 1537 /* 1538 * Status fields. 1539 */ 1540 u8 status[4]; 1541 }; 1542 1543 /* 1544 * Data Structure Block 1545 * 1546 * During execution of a ccb by the script processor, the 1547 * DSA (data structure address) register points to this 1548 * substructure of the ccb. 1549 */ 1550 struct sym_dsb { 1551 /* 1552 * CCB header. 1553 * Also assumed at offset 0 of the sym_ccb structure. 1554 */ 1555 /*0*/ struct sym_ccbh head; 1556 1557 /* 1558 * Phase mismatch contexts. 1559 * We need two to handle correctly the SAVED DATA POINTER. 1560 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1561 * for address calculation from SCRIPTS. 1562 */ 1563 struct sym_pmc pm0; 1564 struct sym_pmc pm1; 1565 1566 /* 1567 * Table data for Script 1568 */ 1569 struct sym_tblsel select; 1570 struct sym_tblmove smsg; 1571 struct sym_tblmove smsg_ext; 1572 struct sym_tblmove cmd; 1573 struct sym_tblmove sense; 1574 struct sym_tblmove wresid; 1575 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1576 }; 1577 1578 /* 1579 * Our Command Control Block 1580 */ 1581 struct sym_ccb { 1582 /* 1583 * This is the data structure which is pointed by the DSA 1584 * register when it is executed by the script processor. 1585 * It must be the first entry. 1586 */ 1587 struct sym_dsb phys; 1588 1589 /* 1590 * Pointer to CAM ccb and related stuff. 1591 */ 1592 union ccb *cam_ccb; /* CAM scsiio ccb */ 1593 u8 cdb_buf[16]; /* Copy of CDB */ 1594 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1595 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1596 int data_len; /* Total data length */ 1597 int segments; /* Number of SG segments */ 1598 1599 /* 1600 * Miscellaneous status'. 1601 */ 1602 u_char nego_status; /* Negotiation status */ 1603 u_char xerr_status; /* Extended error flags */ 1604 u32 extra_bytes; /* Extraneous bytes transferred */ 1605 1606 /* 1607 * Message areas. 1608 * We prepare a message to be sent after selection. 1609 * We may use a second one if the command is rescheduled 1610 * due to CHECK_CONDITION or COMMAND TERMINATED. 1611 * Contents are IDENTIFY and SIMPLE_TAG. 1612 * While negotiating sync or wide transfer, 1613 * a SDTR or WDTR message is appended. 1614 */ 1615 u_char scsi_smsg [12]; 1616 u_char scsi_smsg2[12]; 1617 1618 /* 1619 * Auto request sense related fields. 1620 */ 1621 u_char sensecmd[6]; /* Request Sense command */ 1622 u_char sv_scsi_status; /* Saved SCSI status */ 1623 u_char sv_xerr_status; /* Saved extended status */ 1624 int sv_resid; /* Saved residual */ 1625 1626 /* 1627 * Map for the DMA of user data. 1628 */ 1629 #ifdef FreeBSD_Bus_Dma_Abstraction 1630 void *arg; /* Argument for some callback */ 1631 bus_dmamap_t dmamap; /* DMA map for user data */ 1632 u_char dmamapped; 1633 #define SYM_DMA_NONE 0 1634 #define SYM_DMA_READ 1 1635 #define SYM_DMA_WRITE 2 1636 #endif 1637 /* 1638 * Other fields. 1639 */ 1640 u32 ccb_ba; /* BUS address of this CCB */ 1641 u_short tag; /* Tag for this transfer */ 1642 /* NO_TAG means no tag */ 1643 u_char target; 1644 u_char lun; 1645 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1646 SYM_QUEHEAD 1647 link_ccbq; /* Link to free/busy CCB queue */ 1648 u32 startp; /* Initial data pointer */ 1649 int ext_sg; /* Extreme data pointer, used */ 1650 int ext_ofs; /* to calculate the residual. */ 1651 u_char to_abort; /* Want this IO to be aborted */ 1652 }; 1653 1654 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1655 1656 /* 1657 * Host Control Block 1658 */ 1659 struct sym_hcb { 1660 /* 1661 * Global headers. 1662 * Due to poorness of addressing capabilities, earlier 1663 * chips (810, 815, 825) copy part of the data structures 1664 * (CCB, TCB and LCB) in fixed areas. 1665 */ 1666 #ifdef SYM_CONF_GENERIC_SUPPORT 1667 struct sym_ccbh ccb_head; 1668 struct sym_tcbh tcb_head; 1669 struct sym_lcbh lcb_head; 1670 #endif 1671 /* 1672 * Idle task and invalid task actions and 1673 * their bus addresses. 1674 */ 1675 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1676 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1677 1678 /* 1679 * Dummy lun table to protect us against target 1680 * returning bad lun number on reselection. 1681 */ 1682 u32 *badluntbl; /* Table physical address */ 1683 u32 badlun_sa; /* SCRIPT handler BUS address */ 1684 1685 /* 1686 * Bus address of this host control block. 1687 */ 1688 u32 hcb_ba; 1689 1690 /* 1691 * Bit 32-63 of the on-chip RAM bus address in LE format. 1692 * The START_RAM64 script loads the MMRS and MMWS from this 1693 * field. 1694 */ 1695 u32 scr_ram_seg; 1696 1697 /* 1698 * Chip and controller indentification. 1699 */ 1700 #ifdef FreeBSD_Bus_Io_Abstraction 1701 device_t device; 1702 #else 1703 pcici_t pci_tag; 1704 #endif 1705 int unit; 1706 char inst_name[8]; 1707 1708 /* 1709 * Initial value of some IO register bits. 1710 * These values are assumed to have been set by BIOS, and may 1711 * be used to probe adapter implementation differences. 1712 */ 1713 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1714 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1715 sv_stest1; 1716 1717 /* 1718 * Actual initial value of IO register bits used by the 1719 * driver. They are loaded at initialisation according to 1720 * features that are to be enabled/disabled. 1721 */ 1722 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1723 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1724 1725 /* 1726 * Target data. 1727 */ 1728 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1729 1730 /* 1731 * Target control block bus address array used by the SCRIPT 1732 * on reselection. 1733 */ 1734 u32 *targtbl; 1735 u32 targtbl_ba; 1736 1737 /* 1738 * CAM SIM information for this instance. 1739 */ 1740 struct cam_sim *sim; 1741 struct cam_path *path; 1742 1743 /* 1744 * Allocated hardware resources. 1745 */ 1746 #ifdef FreeBSD_Bus_Io_Abstraction 1747 struct resource *irq_res; 1748 struct resource *io_res; 1749 struct resource *mmio_res; 1750 struct resource *ram_res; 1751 int ram_id; 1752 void *intr; 1753 #endif 1754 1755 /* 1756 * Bus stuff. 1757 * 1758 * My understanding of PCI is that all agents must share the 1759 * same addressing range and model. 1760 * But some hardware architecture guys provide complex and 1761 * brain-deaded stuff that makes shit. 1762 * This driver only support PCI compliant implementations and 1763 * deals with part of the BUS stuff complexity only to fit O/S 1764 * requirements. 1765 */ 1766 #ifdef FreeBSD_Bus_Io_Abstraction 1767 bus_space_handle_t io_bsh; 1768 bus_space_tag_t io_tag; 1769 bus_space_handle_t mmio_bsh; 1770 bus_space_tag_t mmio_tag; 1771 bus_space_handle_t ram_bsh; 1772 bus_space_tag_t ram_tag; 1773 #endif 1774 1775 /* 1776 * DMA stuff. 1777 */ 1778 #ifdef FreeBSD_Bus_Dma_Abstraction 1779 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1780 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1781 #endif 1782 /* 1783 * Virtual and physical bus addresses of the chip. 1784 */ 1785 vm_offset_t mmio_va; /* MMIO kernel virtual address */ 1786 vm_offset_t mmio_pa; /* MMIO CPU physical address */ 1787 vm_offset_t mmio_ba; /* MMIO BUS address */ 1788 int mmio_ws; /* MMIO Window size */ 1789 1790 vm_offset_t ram_va; /* RAM kernel virtual address */ 1791 vm_offset_t ram_pa; /* RAM CPU physical address */ 1792 vm_offset_t ram_ba; /* RAM BUS address */ 1793 int ram_ws; /* RAM window size */ 1794 u32 io_port; /* IO port address */ 1795 1796 /* 1797 * SCRIPTS virtual and physical bus addresses. 1798 * 'script' is loaded in the on-chip RAM if present. 1799 * 'scripth' stays in main memory for all chips except the 1800 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1801 */ 1802 u_char *scripta0; /* Copies of script and scripth */ 1803 u_char *scriptb0; /* Copies of script and scripth */ 1804 vm_offset_t scripta_ba; /* Actual script and scripth */ 1805 vm_offset_t scriptb_ba; /* bus addresses. */ 1806 vm_offset_t scriptb0_ba; 1807 u_short scripta_sz; /* Actual size of script A */ 1808 u_short scriptb_sz; /* Actual size of script B */ 1809 1810 /* 1811 * Bus addresses, setup and patch methods for 1812 * the selected firmware. 1813 */ 1814 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1815 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1816 void (*fw_setup)(hcb_p np, struct sym_fw *fw); 1817 void (*fw_patch)(hcb_p np); 1818 char *fw_name; 1819 1820 /* 1821 * General controller parameters and configuration. 1822 */ 1823 u_short device_id; /* PCI device id */ 1824 u_char revision_id; /* PCI device revision id */ 1825 u_int features; /* Chip features map */ 1826 u_char myaddr; /* SCSI id of the adapter */ 1827 u_char maxburst; /* log base 2 of dwords burst */ 1828 u_char maxwide; /* Maximum transfer width */ 1829 u_char minsync; /* Min sync period factor (ST) */ 1830 u_char maxsync; /* Max sync period factor (ST) */ 1831 u_char maxoffs; /* Max scsi offset (ST) */ 1832 u_char minsync_dt; /* Min sync period factor (DT) */ 1833 u_char maxsync_dt; /* Max sync period factor (DT) */ 1834 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1835 u_char multiplier; /* Clock multiplier (1,2,4) */ 1836 u_char clock_divn; /* Number of clock divisors */ 1837 u32 clock_khz; /* SCSI clock frequency in KHz */ 1838 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1839 /* 1840 * Start queue management. 1841 * It is filled up by the host processor and accessed by the 1842 * SCRIPTS processor in order to start SCSI commands. 1843 */ 1844 volatile /* Prevent code optimizations */ 1845 u32 *squeue; /* Start queue virtual address */ 1846 u32 squeue_ba; /* Start queue BUS address */ 1847 u_short squeueput; /* Next free slot of the queue */ 1848 u_short actccbs; /* Number of allocated CCBs */ 1849 1850 /* 1851 * Command completion queue. 1852 * It is the same size as the start queue to avoid overflow. 1853 */ 1854 u_short dqueueget; /* Next position to scan */ 1855 volatile /* Prevent code optimizations */ 1856 u32 *dqueue; /* Completion (done) queue */ 1857 u32 dqueue_ba; /* Done queue BUS address */ 1858 1859 /* 1860 * Miscellaneous buffers accessed by the scripts-processor. 1861 * They shall be DWORD aligned, because they may be read or 1862 * written with a script command. 1863 */ 1864 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1865 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1866 u32 lastmsg; /* Last SCSI message sent */ 1867 u_char scratch; /* Scratch for SCSI receive */ 1868 1869 /* 1870 * Miscellaneous configuration and status parameters. 1871 */ 1872 u_char usrflags; /* Miscellaneous user flags */ 1873 u_char scsi_mode; /* Current SCSI BUS mode */ 1874 u_char verbose; /* Verbosity for this controller*/ 1875 u32 cache; /* Used for cache test at init. */ 1876 1877 /* 1878 * CCB lists and queue. 1879 */ 1880 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1881 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1882 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1883 1884 /* 1885 * During error handling and/or recovery, 1886 * active CCBs that are to be completed with 1887 * error or requeued are moved from the busy_ccbq 1888 * to the comp_ccbq prior to completion. 1889 */ 1890 SYM_QUEHEAD comp_ccbq; 1891 1892 /* 1893 * CAM CCB pending queue. 1894 */ 1895 SYM_QUEHEAD cam_ccbq; 1896 1897 /* 1898 * IMMEDIATE ARBITRATION (IARB) control. 1899 * 1900 * We keep track in 'last_cp' of the last CCB that has been 1901 * queued to the SCRIPTS processor and clear 'last_cp' when 1902 * this CCB completes. If last_cp is not zero at the moment 1903 * we queue a new CCB, we set a flag in 'last_cp' that is 1904 * used by the SCRIPTS as a hint for setting IARB. 1905 * We donnot set more than 'iarb_max' consecutive hints for 1906 * IARB in order to leave devices a chance to reselect. 1907 * By the way, any non zero value of 'iarb_max' is unfair. :) 1908 */ 1909 #ifdef SYM_CONF_IARB_SUPPORT 1910 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1911 u_short iarb_count; /* Actual # of these hints */ 1912 ccb_p last_cp; 1913 #endif 1914 1915 /* 1916 * Command abort handling. 1917 * We need to synchronize tightly with the SCRIPTS 1918 * processor in order to handle things correctly. 1919 */ 1920 u_char abrt_msg[4]; /* Message to send buffer */ 1921 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1922 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1923 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1924 }; 1925 1926 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1927 1928 /* 1929 * Return the name of the controller. 1930 */ 1931 static __inline char *sym_name(hcb_p np) 1932 { 1933 return np->inst_name; 1934 } 1935 1936 /*--------------------------------------------------------------------------*/ 1937 /*------------------------------ FIRMWARES ---------------------------------*/ 1938 /*--------------------------------------------------------------------------*/ 1939 1940 /* 1941 * This stuff will be moved to a separate source file when 1942 * the driver will be broken into several source modules. 1943 */ 1944 1945 /* 1946 * Macros used for all firmwares. 1947 */ 1948 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1949 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1950 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1951 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1952 1953 1954 #ifdef SYM_CONF_GENERIC_SUPPORT 1955 /* 1956 * Allocate firmware #1 script area. 1957 */ 1958 #define SYM_FWA_SCR sym_fw1a_scr 1959 #define SYM_FWB_SCR sym_fw1b_scr 1960 #include <dev/sym/sym_fw1.h> 1961 struct sym_fwa_ofs sym_fw1a_ofs = { 1962 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1963 }; 1964 struct sym_fwb_ofs sym_fw1b_ofs = { 1965 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1966 }; 1967 #undef SYM_FWA_SCR 1968 #undef SYM_FWB_SCR 1969 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1970 1971 /* 1972 * Allocate firmware #2 script area. 1973 */ 1974 #define SYM_FWA_SCR sym_fw2a_scr 1975 #define SYM_FWB_SCR sym_fw2b_scr 1976 #include <dev/sym/sym_fw2.h> 1977 struct sym_fwa_ofs sym_fw2a_ofs = { 1978 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1979 }; 1980 struct sym_fwb_ofs sym_fw2b_ofs = { 1981 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1982 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1983 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1984 }; 1985 #undef SYM_FWA_SCR 1986 #undef SYM_FWB_SCR 1987 1988 #undef SYM_GEN_A 1989 #undef SYM_GEN_B 1990 #undef PADDR_A 1991 #undef PADDR_B 1992 1993 #ifdef SYM_CONF_GENERIC_SUPPORT 1994 /* 1995 * Patch routine for firmware #1. 1996 */ 1997 static void 1998 sym_fw1_patch(hcb_p np) 1999 { 2000 struct sym_fw1a_scr *scripta0; 2001 struct sym_fw1b_scr *scriptb0; 2002 2003 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 2004 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 2005 2006 /* 2007 * Remove LED support if not needed. 2008 */ 2009 if (!(np->features & FE_LED0)) { 2010 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 2011 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 2012 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 2013 } 2014 2015 #ifdef SYM_CONF_IARB_SUPPORT 2016 /* 2017 * If user does not want to use IMMEDIATE ARBITRATION 2018 * when we are reselected while attempting to arbitrate, 2019 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 2020 */ 2021 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 2022 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 2023 #endif 2024 /* 2025 * Patch some data in SCRIPTS. 2026 * - start and done queue initial bus address. 2027 * - target bus address table bus address. 2028 */ 2029 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 2030 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 2031 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 2032 } 2033 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2034 2035 /* 2036 * Patch routine for firmware #2. 2037 */ 2038 static void 2039 sym_fw2_patch(hcb_p np) 2040 { 2041 struct sym_fw2a_scr *scripta0; 2042 struct sym_fw2b_scr *scriptb0; 2043 2044 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2045 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2046 2047 /* 2048 * Remove LED support if not needed. 2049 */ 2050 if (!(np->features & FE_LED0)) { 2051 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 2052 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 2053 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 2054 } 2055 2056 #ifdef SYM_CONF_IARB_SUPPORT 2057 /* 2058 * If user does not want to use IMMEDIATE ARBITRATION 2059 * when we are reselected while attempting to arbitrate, 2060 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 2061 */ 2062 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 2063 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 2064 #endif 2065 /* 2066 * Patch some variable in SCRIPTS. 2067 * - start and done queue initial bus address. 2068 * - target bus address table bus address. 2069 */ 2070 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 2071 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 2072 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 2073 2074 /* 2075 * Remove the load of SCNTL4 on reselection if not a C10. 2076 */ 2077 if (!(np->features & FE_C10)) { 2078 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 2079 scripta0->resel_scntl4[1] = cpu_to_scr(0); 2080 } 2081 2082 /* 2083 * Remove a couple of work-arounds specific to C1010 if 2084 * they are not desirable. See `sym_fw2.h' for more details. 2085 */ 2086 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 2087 np->revision_id < 0x1 && 2088 np->pciclk_khz < 60000)) { 2089 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 2090 scripta0->datao_phase[1] = cpu_to_scr(0); 2091 } 2092 if (!(np->device_id == PCI_ID_LSI53C1010 && 2093 /* np->revision_id < 0xff */ 1)) { 2094 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 2095 scripta0->sel_done[1] = cpu_to_scr(0); 2096 } 2097 2098 /* 2099 * Patch some other variables in SCRIPTS. 2100 * These ones are loaded by the SCRIPTS processor. 2101 */ 2102 scriptb0->pm0_data_addr[0] = 2103 cpu_to_scr(np->scripta_ba + 2104 offsetof(struct sym_fw2a_scr, pm0_data)); 2105 scriptb0->pm1_data_addr[0] = 2106 cpu_to_scr(np->scripta_ba + 2107 offsetof(struct sym_fw2a_scr, pm1_data)); 2108 } 2109 2110 /* 2111 * Fill the data area in scripts. 2112 * To be done for all firmwares. 2113 */ 2114 static void 2115 sym_fw_fill_data (u32 *in, u32 *out) 2116 { 2117 int i; 2118 2119 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 2120 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 2121 *in++ = offsetof (struct sym_dsb, data[i]); 2122 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 2123 *out++ = offsetof (struct sym_dsb, data[i]); 2124 } 2125 } 2126 2127 /* 2128 * Setup useful script bus addresses. 2129 * To be done for all firmwares. 2130 */ 2131 static void 2132 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw) 2133 { 2134 u32 *pa; 2135 u_short *po; 2136 int i; 2137 2138 /* 2139 * Build the bus address table for script A 2140 * from the script A offset table. 2141 */ 2142 po = (u_short *) fw->a_ofs; 2143 pa = (u32 *) &np->fwa_bas; 2144 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 2145 pa[i] = np->scripta_ba + po[i]; 2146 2147 /* 2148 * Same for script B. 2149 */ 2150 po = (u_short *) fw->b_ofs; 2151 pa = (u32 *) &np->fwb_bas; 2152 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 2153 pa[i] = np->scriptb_ba + po[i]; 2154 } 2155 2156 #ifdef SYM_CONF_GENERIC_SUPPORT 2157 /* 2158 * Setup routine for firmware #1. 2159 */ 2160 static void 2161 sym_fw1_setup(hcb_p np, struct sym_fw *fw) 2162 { 2163 struct sym_fw1a_scr *scripta0; 2164 struct sym_fw1b_scr *scriptb0; 2165 2166 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 2167 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 2168 2169 /* 2170 * Fill variable parts in scripts. 2171 */ 2172 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2173 2174 /* 2175 * Setup bus addresses used from the C code.. 2176 */ 2177 sym_fw_setup_bus_addresses(np, fw); 2178 } 2179 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2180 2181 /* 2182 * Setup routine for firmware #2. 2183 */ 2184 static void 2185 sym_fw2_setup(hcb_p np, struct sym_fw *fw) 2186 { 2187 struct sym_fw2a_scr *scripta0; 2188 struct sym_fw2b_scr *scriptb0; 2189 2190 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2191 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2192 2193 /* 2194 * Fill variable parts in scripts. 2195 */ 2196 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2197 2198 /* 2199 * Setup bus addresses used from the C code.. 2200 */ 2201 sym_fw_setup_bus_addresses(np, fw); 2202 } 2203 2204 /* 2205 * Allocate firmware descriptors. 2206 */ 2207 #ifdef SYM_CONF_GENERIC_SUPPORT 2208 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2209 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2210 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2211 2212 /* 2213 * Find the most appropriate firmware for a chip. 2214 */ 2215 static struct sym_fw * 2216 sym_find_firmware(struct sym_pci_chip *chip) 2217 { 2218 if (chip->features & FE_LDSTR) 2219 return &sym_fw2; 2220 #ifdef SYM_CONF_GENERIC_SUPPORT 2221 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2222 return &sym_fw1; 2223 #endif 2224 else 2225 return 0; 2226 } 2227 2228 /* 2229 * Bind a script to physical addresses. 2230 */ 2231 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2232 { 2233 u32 opcode, new, old, tmp1, tmp2; 2234 u32 *end, *cur; 2235 int relocs; 2236 2237 cur = start; 2238 end = start + len/4; 2239 2240 while (cur < end) { 2241 2242 opcode = *cur; 2243 2244 /* 2245 * If we forget to change the length 2246 * in scripts, a field will be 2247 * padded with 0. This is an illegal 2248 * command. 2249 */ 2250 if (opcode == 0) { 2251 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2252 sym_name(np), (int) (cur-start)); 2253 MDELAY (10000); 2254 ++cur; 2255 continue; 2256 }; 2257 2258 /* 2259 * We use the bogus value 0xf00ff00f ;-) 2260 * to reserve data area in SCRIPTS. 2261 */ 2262 if (opcode == SCR_DATA_ZERO) { 2263 *cur++ = 0; 2264 continue; 2265 } 2266 2267 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2268 printf ("%d: <%x>\n", (int) (cur-start), 2269 (unsigned)opcode); 2270 2271 /* 2272 * We don't have to decode ALL commands 2273 */ 2274 switch (opcode >> 28) { 2275 case 0xf: 2276 /* 2277 * LOAD / STORE DSA relative, don't relocate. 2278 */ 2279 relocs = 0; 2280 break; 2281 case 0xe: 2282 /* 2283 * LOAD / STORE absolute. 2284 */ 2285 relocs = 1; 2286 break; 2287 case 0xc: 2288 /* 2289 * COPY has TWO arguments. 2290 */ 2291 relocs = 2; 2292 tmp1 = cur[1]; 2293 tmp2 = cur[2]; 2294 if ((tmp1 ^ tmp2) & 3) { 2295 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2296 sym_name(np), (int) (cur-start)); 2297 MDELAY (10000); 2298 } 2299 /* 2300 * If PREFETCH feature not enabled, remove 2301 * the NO FLUSH bit if present. 2302 */ 2303 if ((opcode & SCR_NO_FLUSH) && 2304 !(np->features & FE_PFEN)) { 2305 opcode = (opcode & ~SCR_NO_FLUSH); 2306 } 2307 break; 2308 case 0x0: 2309 /* 2310 * MOVE/CHMOV (absolute address) 2311 */ 2312 if (!(np->features & FE_WIDE)) 2313 opcode = (opcode | OPC_MOVE); 2314 relocs = 1; 2315 break; 2316 case 0x1: 2317 /* 2318 * MOVE/CHMOV (table indirect) 2319 */ 2320 if (!(np->features & FE_WIDE)) 2321 opcode = (opcode | OPC_MOVE); 2322 relocs = 0; 2323 break; 2324 case 0x8: 2325 /* 2326 * JUMP / CALL 2327 * dont't relocate if relative :-) 2328 */ 2329 if (opcode & 0x00800000) 2330 relocs = 0; 2331 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2332 relocs = 2; 2333 else 2334 relocs = 1; 2335 break; 2336 case 0x4: 2337 case 0x5: 2338 case 0x6: 2339 case 0x7: 2340 relocs = 1; 2341 break; 2342 default: 2343 relocs = 0; 2344 break; 2345 }; 2346 2347 /* 2348 * Scriptify:) the opcode. 2349 */ 2350 *cur++ = cpu_to_scr(opcode); 2351 2352 /* 2353 * If no relocation, assume 1 argument 2354 * and just scriptize:) it. 2355 */ 2356 if (!relocs) { 2357 *cur = cpu_to_scr(*cur); 2358 ++cur; 2359 continue; 2360 } 2361 2362 /* 2363 * Otherwise performs all needed relocations. 2364 */ 2365 while (relocs--) { 2366 old = *cur; 2367 2368 switch (old & RELOC_MASK) { 2369 case RELOC_REGISTER: 2370 new = (old & ~RELOC_MASK) + np->mmio_ba; 2371 break; 2372 case RELOC_LABEL_A: 2373 new = (old & ~RELOC_MASK) + np->scripta_ba; 2374 break; 2375 case RELOC_LABEL_B: 2376 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2377 break; 2378 case RELOC_SOFTC: 2379 new = (old & ~RELOC_MASK) + np->hcb_ba; 2380 break; 2381 case 0: 2382 /* 2383 * Don't relocate a 0 address. 2384 * They are mostly used for patched or 2385 * script self-modified areas. 2386 */ 2387 if (old == 0) { 2388 new = old; 2389 break; 2390 } 2391 /* fall through */ 2392 default: 2393 new = 0; 2394 panic("sym_fw_bind_script: " 2395 "weird relocation %x\n", old); 2396 break; 2397 } 2398 2399 *cur++ = cpu_to_scr(new); 2400 } 2401 }; 2402 } 2403 2404 /*--------------------------------------------------------------------------*/ 2405 /*--------------------------- END OF FIRMARES -----------------------------*/ 2406 /*--------------------------------------------------------------------------*/ 2407 2408 /* 2409 * Function prototypes. 2410 */ 2411 static void sym_save_initial_setting (hcb_p np); 2412 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2413 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2414 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2415 static void sym_chip_reset (hcb_p np); 2416 static void sym_soft_reset (hcb_p np); 2417 static void sym_start_reset (hcb_p np); 2418 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2419 static int sym_wakeup_done (hcb_p np); 2420 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2421 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2422 static void sym_init (hcb_p np, int reason); 2423 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2424 u_char *fakp); 2425 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2426 u_char div, u_char fak); 2427 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2428 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2429 u_char per, u_char wide, u_char div, u_char fak); 2430 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2431 u_char per, u_char wide, u_char div, u_char fak); 2432 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2433 static void sym_intr (void *arg); 2434 static void sym_poll (struct cam_sim *sim); 2435 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2436 static void sym_int_sto (hcb_p np); 2437 static void sym_int_udc (hcb_p np); 2438 static void sym_int_sbmc (hcb_p np); 2439 static void sym_int_par (hcb_p np, u_short sist); 2440 static void sym_int_ma (hcb_p np); 2441 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2442 int task); 2443 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2444 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2445 static void sym_sir_task_recovery (hcb_p np, int num); 2446 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2447 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2448 static int sym_compute_residual (hcb_p np, ccb_p cp); 2449 static int sym_show_msg (u_char * msg); 2450 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2451 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2452 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2453 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2454 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2455 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2456 static void sym_int_sir (hcb_p np); 2457 static void sym_free_ccb (hcb_p np, ccb_p cp); 2458 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2459 static ccb_p sym_alloc_ccb (hcb_p np); 2460 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2461 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2462 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2463 static int sym_snooptest (hcb_p np); 2464 static void sym_selectclock(hcb_p np, u_char scntl3); 2465 static void sym_getclock (hcb_p np, int mult); 2466 static int sym_getpciclock (hcb_p np); 2467 static void sym_complete_ok (hcb_p np, ccb_p cp); 2468 static void sym_complete_error (hcb_p np, ccb_p cp); 2469 static void sym_timeout (void *arg); 2470 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2471 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2472 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2473 static void sym_action1 (struct cam_sim *sim, union ccb *ccb); 2474 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2475 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2476 ccb_p cp); 2477 #ifdef FreeBSD_Bus_Dma_Abstraction 2478 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2479 bus_dma_segment_t *psegs, int nsegs); 2480 #else 2481 static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr, 2482 vm_size_t len); 2483 static int sym_scatter_sg_virtual (hcb_p np, ccb_p cp, 2484 bus_dma_segment_t *psegs, int nsegs); 2485 static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr, 2486 vm_size_t len); 2487 #endif 2488 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2489 bus_dma_segment_t *psegs, int nsegs); 2490 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2491 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2492 struct ccb_trans_settings *cts); 2493 static void sym_update_dflags(hcb_p np, u_char *flags, 2494 struct ccb_trans_settings *cts); 2495 2496 #ifdef FreeBSD_Bus_Io_Abstraction 2497 static struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2498 static int sym_pci_probe (device_t dev); 2499 static int sym_pci_attach (device_t dev); 2500 #else 2501 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag); 2502 static const char *sym_pci_probe (pcici_t tag, pcidi_t type); 2503 static void sym_pci_attach (pcici_t tag, int unit); 2504 static int sym_pci_attach2 (pcici_t tag, int unit); 2505 #endif 2506 2507 static void sym_pci_free (hcb_p np); 2508 static int sym_cam_attach (hcb_p np); 2509 static void sym_cam_free (hcb_p np); 2510 2511 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2512 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2513 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2514 2515 /* 2516 * Print something which allows to retrieve the controler type, 2517 * unit, target, lun concerned by a kernel message. 2518 */ 2519 static void PRINT_TARGET (hcb_p np, int target) 2520 { 2521 printf ("%s:%d:", sym_name(np), target); 2522 } 2523 2524 static void PRINT_LUN(hcb_p np, int target, int lun) 2525 { 2526 printf ("%s:%d:%d:", sym_name(np), target, lun); 2527 } 2528 2529 static void PRINT_ADDR (ccb_p cp) 2530 { 2531 if (cp && cp->cam_ccb) 2532 xpt_print_path(cp->cam_ccb->ccb_h.path); 2533 } 2534 2535 /* 2536 * Take into account this ccb in the freeze count. 2537 */ 2538 static void sym_freeze_cam_ccb(union ccb *ccb) 2539 { 2540 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2541 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2542 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2543 xpt_freeze_devq(ccb->ccb_h.path, 1); 2544 } 2545 } 2546 } 2547 2548 /* 2549 * Set the status field of a CAM CCB. 2550 */ 2551 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2552 { 2553 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2554 ccb->ccb_h.status |= status; 2555 } 2556 2557 /* 2558 * Get the status field of a CAM CCB. 2559 */ 2560 static __inline int sym_get_cam_status(union ccb *ccb) 2561 { 2562 return ccb->ccb_h.status & CAM_STATUS_MASK; 2563 } 2564 2565 /* 2566 * Enqueue a CAM CCB. 2567 */ 2568 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) 2569 { 2570 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2571 ccb->ccb_h.status = CAM_REQ_INPROG; 2572 2573 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 2574 ccb->ccb_h.timeout*hz/1000); 2575 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2576 ccb->ccb_h.sym_hcb_ptr = np; 2577 2578 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2579 } 2580 2581 /* 2582 * Complete a pending CAM CCB. 2583 */ 2584 static void sym_xpt_done(hcb_p np, union ccb *ccb) 2585 { 2586 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2587 untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch); 2588 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2589 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2590 ccb->ccb_h.sym_hcb_ptr = 0; 2591 } 2592 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2593 sym_freeze_cam_ccb(ccb); 2594 xpt_done(ccb); 2595 } 2596 2597 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2598 { 2599 sym_set_cam_status(ccb, cam_status); 2600 sym_xpt_done(np, ccb); 2601 } 2602 2603 /* 2604 * SYMBIOS chip clock divisor table. 2605 * 2606 * Divisors are multiplied by 10,000,000 in order to make 2607 * calculations more simple. 2608 */ 2609 #define _5M 5000000 2610 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2611 2612 /* 2613 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2614 * 128 transfers. All chips support at least 16 transfers 2615 * bursts. The 825A, 875 and 895 chips support bursts of up 2616 * to 128 transfers and the 895A and 896 support bursts of up 2617 * to 64 transfers. All other chips support up to 16 2618 * transfers bursts. 2619 * 2620 * For PCI 32 bit data transfers each transfer is a DWORD. 2621 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2622 * 2623 * We use log base 2 (burst length) as internal code, with 2624 * value 0 meaning "burst disabled". 2625 */ 2626 2627 /* 2628 * Burst length from burst code. 2629 */ 2630 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2631 2632 /* 2633 * Burst code from io register bits. 2634 */ 2635 #define burst_code(dmode, ctest4, ctest5) \ 2636 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2637 2638 /* 2639 * Set initial io register bits from burst code. 2640 */ 2641 static __inline void sym_init_burst(hcb_p np, u_char bc) 2642 { 2643 np->rv_ctest4 &= ~0x80; 2644 np->rv_dmode &= ~(0x3 << 6); 2645 np->rv_ctest5 &= ~0x4; 2646 2647 if (!bc) { 2648 np->rv_ctest4 |= 0x80; 2649 } 2650 else { 2651 --bc; 2652 np->rv_dmode |= ((bc & 0x3) << 6); 2653 np->rv_ctest5 |= (bc & 0x4); 2654 } 2655 } 2656 2657 2658 /* 2659 * Print out the list of targets that have some flag disabled by user. 2660 */ 2661 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2662 { 2663 int cnt; 2664 int i; 2665 2666 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2667 if (i == np->myaddr) 2668 continue; 2669 if (np->target[i].usrflags & mask) { 2670 if (!cnt++) 2671 printf("%s: %s disabled for targets", 2672 sym_name(np), msg); 2673 printf(" %d", i); 2674 } 2675 } 2676 if (cnt) 2677 printf(".\n"); 2678 } 2679 2680 /* 2681 * Save initial settings of some IO registers. 2682 * Assumed to have been set by BIOS. 2683 * We cannot reset the chip prior to reading the 2684 * IO registers, since informations will be lost. 2685 * Since the SCRIPTS processor may be running, this 2686 * is not safe on paper, but it seems to work quite 2687 * well. :) 2688 */ 2689 static void sym_save_initial_setting (hcb_p np) 2690 { 2691 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2692 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2693 np->sv_dmode = INB(nc_dmode) & 0xce; 2694 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2695 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2696 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2697 np->sv_gpcntl = INB(nc_gpcntl); 2698 np->sv_stest1 = INB(nc_stest1); 2699 np->sv_stest2 = INB(nc_stest2) & 0x20; 2700 np->sv_stest4 = INB(nc_stest4); 2701 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2702 np->sv_scntl4 = INB(nc_scntl4); 2703 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2704 } 2705 else 2706 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2707 } 2708 2709 /* 2710 * Prepare io register values used by sym_init() according 2711 * to selected and supported features. 2712 */ 2713 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2714 { 2715 u_char burst_max; 2716 u32 period; 2717 int i; 2718 2719 /* 2720 * Wide ? 2721 */ 2722 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2723 2724 /* 2725 * Get the frequency of the chip's clock. 2726 */ 2727 if (np->features & FE_QUAD) 2728 np->multiplier = 4; 2729 else if (np->features & FE_DBLR) 2730 np->multiplier = 2; 2731 else 2732 np->multiplier = 1; 2733 2734 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2735 np->clock_khz *= np->multiplier; 2736 2737 if (np->clock_khz != 40000) 2738 sym_getclock(np, np->multiplier); 2739 2740 /* 2741 * Divisor to be used for async (timer pre-scaler). 2742 */ 2743 i = np->clock_divn - 1; 2744 while (--i >= 0) { 2745 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2746 ++i; 2747 break; 2748 } 2749 } 2750 np->rv_scntl3 = i+1; 2751 2752 /* 2753 * The C1010 uses hardwired divisors for async. 2754 * So, we just throw away, the async. divisor.:-) 2755 */ 2756 if (np->features & FE_C10) 2757 np->rv_scntl3 = 0; 2758 2759 /* 2760 * Minimum synchronous period factor supported by the chip. 2761 * Btw, 'period' is in tenths of nanoseconds. 2762 */ 2763 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2764 if (period <= 250) np->minsync = 10; 2765 else if (period <= 303) np->minsync = 11; 2766 else if (period <= 500) np->minsync = 12; 2767 else np->minsync = (period + 40 - 1) / 40; 2768 2769 /* 2770 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2771 */ 2772 if (np->minsync < 25 && 2773 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2774 np->minsync = 25; 2775 else if (np->minsync < 12 && 2776 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2777 np->minsync = 12; 2778 2779 /* 2780 * Maximum synchronous period factor supported by the chip. 2781 */ 2782 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2783 np->maxsync = period > 2540 ? 254 : period / 10; 2784 2785 /* 2786 * If chip is a C1010, guess the sync limits in DT mode. 2787 */ 2788 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2789 if (np->clock_khz == 160000) { 2790 np->minsync_dt = 9; 2791 np->maxsync_dt = 50; 2792 np->maxoffs_dt = 62; 2793 } 2794 } 2795 2796 /* 2797 * 64 bit addressing (895A/896/1010) ? 2798 */ 2799 if (np->features & FE_DAC) 2800 #if BITS_PER_LONG > 32 2801 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2802 #else 2803 np->rv_ccntl1 |= (DDAC); 2804 #endif 2805 2806 /* 2807 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2808 */ 2809 if (np->features & FE_NOPM) 2810 np->rv_ccntl0 |= (ENPMJ); 2811 2812 /* 2813 * C1010 Errata. 2814 * In dual channel mode, contention occurs if internal cycles 2815 * are used. Disable internal cycles. 2816 */ 2817 if (np->device_id == PCI_ID_LSI53C1010 && 2818 np->revision_id < 0x2) 2819 np->rv_ccntl0 |= DILS; 2820 2821 /* 2822 * Select burst length (dwords) 2823 */ 2824 burst_max = SYM_SETUP_BURST_ORDER; 2825 if (burst_max == 255) 2826 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2827 np->sv_ctest5); 2828 if (burst_max > 7) 2829 burst_max = 7; 2830 if (burst_max > np->maxburst) 2831 burst_max = np->maxburst; 2832 2833 /* 2834 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2835 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2836 * based transactions on LOAD/STORE instructions. So we have 2837 * to prevent these chips from using such PCI transactions in 2838 * this driver. The generic ncr driver that does not use 2839 * LOAD/STORE instructions does not need this work-around. 2840 */ 2841 if ((np->device_id == PCI_ID_SYM53C810 && 2842 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2843 (np->device_id == PCI_ID_SYM53C860 && 2844 np->revision_id <= 0x1)) 2845 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2846 2847 /* 2848 * Select all supported special features. 2849 * If we are using on-board RAM for scripts, prefetch (PFEN) 2850 * does not help, but burst op fetch (BOF) does. 2851 * Disabling PFEN makes sure BOF will be used. 2852 */ 2853 if (np->features & FE_ERL) 2854 np->rv_dmode |= ERL; /* Enable Read Line */ 2855 if (np->features & FE_BOF) 2856 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2857 if (np->features & FE_ERMP) 2858 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2859 #if 1 2860 if ((np->features & FE_PFEN) && !np->ram_ba) 2861 #else 2862 if (np->features & FE_PFEN) 2863 #endif 2864 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2865 if (np->features & FE_CLSE) 2866 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2867 if (np->features & FE_WRIE) 2868 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2869 if (np->features & FE_DFS) 2870 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2871 2872 /* 2873 * Select some other 2874 */ 2875 if (SYM_SETUP_PCI_PARITY) 2876 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2877 if (SYM_SETUP_SCSI_PARITY) 2878 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2879 2880 /* 2881 * Get parity checking, host ID and verbose mode from NVRAM 2882 */ 2883 np->myaddr = 255; 2884 sym_nvram_setup_host (np, nvram); 2885 2886 /* 2887 * Get SCSI addr of host adapter (set by bios?). 2888 */ 2889 if (np->myaddr == 255) { 2890 np->myaddr = INB(nc_scid) & 0x07; 2891 if (!np->myaddr) 2892 np->myaddr = SYM_SETUP_HOST_ID; 2893 } 2894 2895 /* 2896 * Prepare initial io register bits for burst length 2897 */ 2898 sym_init_burst(np, burst_max); 2899 2900 /* 2901 * Set SCSI BUS mode. 2902 * - LVD capable chips (895/895A/896/1010) report the 2903 * current BUS mode through the STEST4 IO register. 2904 * - For previous generation chips (825/825A/875), 2905 * user has to tell us how to check against HVD, 2906 * since a 100% safe algorithm is not possible. 2907 */ 2908 np->scsi_mode = SMODE_SE; 2909 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2910 np->scsi_mode = (np->sv_stest4 & SMODE); 2911 else if (np->features & FE_DIFF) { 2912 if (SYM_SETUP_SCSI_DIFF == 1) { 2913 if (np->sv_scntl3) { 2914 if (np->sv_stest2 & 0x20) 2915 np->scsi_mode = SMODE_HVD; 2916 } 2917 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2918 if (!(INB(nc_gpreg) & 0x08)) 2919 np->scsi_mode = SMODE_HVD; 2920 } 2921 } 2922 else if (SYM_SETUP_SCSI_DIFF == 2) 2923 np->scsi_mode = SMODE_HVD; 2924 } 2925 if (np->scsi_mode == SMODE_HVD) 2926 np->rv_stest2 |= 0x20; 2927 2928 /* 2929 * Set LED support from SCRIPTS. 2930 * Ignore this feature for boards known to use a 2931 * specific GPIO wiring and for the 895A, 896 2932 * and 1010 that drive the LED directly. 2933 */ 2934 if ((SYM_SETUP_SCSI_LED || 2935 (nvram->type == SYM_SYMBIOS_NVRAM || 2936 (nvram->type == SYM_TEKRAM_NVRAM && 2937 np->device_id == PCI_ID_SYM53C895))) && 2938 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2939 np->features |= FE_LED0; 2940 2941 /* 2942 * Set irq mode. 2943 */ 2944 switch(SYM_SETUP_IRQ_MODE & 3) { 2945 case 2: 2946 np->rv_dcntl |= IRQM; 2947 break; 2948 case 1: 2949 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2950 break; 2951 default: 2952 break; 2953 } 2954 2955 /* 2956 * Configure targets according to driver setup. 2957 * If NVRAM present get targets setup from NVRAM. 2958 */ 2959 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2960 tcb_p tp = &np->target[i]; 2961 2962 #ifdef FreeBSD_New_Tran_Settings 2963 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2964 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2965 #endif 2966 tp->tinfo.user.period = np->minsync; 2967 tp->tinfo.user.offset = np->maxoffs; 2968 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2969 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2970 tp->usrtags = SYM_SETUP_MAX_TAG; 2971 2972 sym_nvram_setup_target (np, i, nvram); 2973 2974 /* 2975 * For now, guess PPR/DT support from the period 2976 * and BUS width. 2977 */ 2978 if (np->features & FE_ULTRA3) { 2979 if (tp->tinfo.user.period <= 9 && 2980 tp->tinfo.user.width == BUS_16_BIT) { 2981 tp->tinfo.user.options |= PPR_OPT_DT; 2982 tp->tinfo.user.offset = np->maxoffs_dt; 2983 #ifdef FreeBSD_New_Tran_Settings 2984 tp->tinfo.user.spi_version = 3; 2985 #endif 2986 } 2987 } 2988 2989 if (!tp->usrtags) 2990 tp->usrflags &= ~SYM_TAGS_ENABLED; 2991 } 2992 2993 /* 2994 * Let user know about the settings. 2995 */ 2996 i = nvram->type; 2997 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2998 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2999 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 3000 np->myaddr, 3001 (np->features & FE_ULTRA3) ? 80 : 3002 (np->features & FE_ULTRA2) ? 40 : 3003 (np->features & FE_ULTRA) ? 20 : 10, 3004 sym_scsi_bus_mode(np->scsi_mode), 3005 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 3006 /* 3007 * Tell him more on demand. 3008 */ 3009 if (sym_verbose) { 3010 printf("%s: %s IRQ line driver%s\n", 3011 sym_name(np), 3012 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 3013 np->ram_ba ? ", using on-chip SRAM" : ""); 3014 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 3015 if (np->features & FE_NOPM) 3016 printf("%s: handling phase mismatch from SCRIPTS.\n", 3017 sym_name(np)); 3018 } 3019 /* 3020 * And still more. 3021 */ 3022 if (sym_verbose > 1) { 3023 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3024 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3025 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 3026 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 3027 3028 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3029 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3030 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 3031 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 3032 } 3033 /* 3034 * Let user be aware of targets that have some disable flags set. 3035 */ 3036 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 3037 if (sym_verbose) 3038 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 3039 "SCAN FOR LUNS"); 3040 3041 return 0; 3042 } 3043 3044 /* 3045 * Prepare the next negotiation message if needed. 3046 * 3047 * Fill in the part of message buffer that contains the 3048 * negotiation and the nego_status field of the CCB. 3049 * Returns the size of the message in bytes. 3050 */ 3051 3052 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 3053 { 3054 tcb_p tp = &np->target[cp->target]; 3055 int msglen = 0; 3056 3057 /* 3058 * Early C1010 chips need a work-around for DT 3059 * data transfer to work. 3060 */ 3061 if (!(np->features & FE_U3EN)) 3062 tp->tinfo.goal.options = 0; 3063 /* 3064 * negotiate using PPR ? 3065 */ 3066 if (tp->tinfo.goal.options & PPR_OPT_MASK) 3067 nego = NS_PPR; 3068 /* 3069 * negotiate wide transfers ? 3070 */ 3071 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 3072 nego = NS_WIDE; 3073 /* 3074 * negotiate synchronous transfers? 3075 */ 3076 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 3077 tp->tinfo.current.offset != tp->tinfo.goal.offset) 3078 nego = NS_SYNC; 3079 3080 switch (nego) { 3081 case NS_SYNC: 3082 msgptr[msglen++] = M_EXTENDED; 3083 msgptr[msglen++] = 3; 3084 msgptr[msglen++] = M_X_SYNC_REQ; 3085 msgptr[msglen++] = tp->tinfo.goal.period; 3086 msgptr[msglen++] = tp->tinfo.goal.offset; 3087 break; 3088 case NS_WIDE: 3089 msgptr[msglen++] = M_EXTENDED; 3090 msgptr[msglen++] = 2; 3091 msgptr[msglen++] = M_X_WIDE_REQ; 3092 msgptr[msglen++] = tp->tinfo.goal.width; 3093 break; 3094 case NS_PPR: 3095 msgptr[msglen++] = M_EXTENDED; 3096 msgptr[msglen++] = 6; 3097 msgptr[msglen++] = M_X_PPR_REQ; 3098 msgptr[msglen++] = tp->tinfo.goal.period; 3099 msgptr[msglen++] = 0; 3100 msgptr[msglen++] = tp->tinfo.goal.offset; 3101 msgptr[msglen++] = tp->tinfo.goal.width; 3102 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 3103 break; 3104 }; 3105 3106 cp->nego_status = nego; 3107 3108 if (nego) { 3109 tp->nego_cp = cp; /* Keep track a nego will be performed */ 3110 if (DEBUG_FLAGS & DEBUG_NEGO) { 3111 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 3112 nego == NS_WIDE ? "wide msgout" : 3113 "ppr msgout", msgptr); 3114 }; 3115 }; 3116 3117 return msglen; 3118 } 3119 3120 /* 3121 * Insert a job into the start queue. 3122 */ 3123 static void sym_put_start_queue(hcb_p np, ccb_p cp) 3124 { 3125 u_short qidx; 3126 3127 #ifdef SYM_CONF_IARB_SUPPORT 3128 /* 3129 * If the previously queued CCB is not yet done, 3130 * set the IARB hint. The SCRIPTS will go with IARB 3131 * for this job when starting the previous one. 3132 * We leave devices a chance to win arbitration by 3133 * not using more than 'iarb_max' consecutive 3134 * immediate arbitrations. 3135 */ 3136 if (np->last_cp && np->iarb_count < np->iarb_max) { 3137 np->last_cp->host_flags |= HF_HINT_IARB; 3138 ++np->iarb_count; 3139 } 3140 else 3141 np->iarb_count = 0; 3142 np->last_cp = cp; 3143 #endif 3144 3145 /* 3146 * Insert first the idle task and then our job. 3147 * The MB should ensure proper ordering. 3148 */ 3149 qidx = np->squeueput + 2; 3150 if (qidx >= MAX_QUEUE*2) qidx = 0; 3151 3152 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 3153 MEMORY_BARRIER(); 3154 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 3155 3156 np->squeueput = qidx; 3157 3158 if (DEBUG_FLAGS & DEBUG_QUEUE) 3159 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 3160 3161 /* 3162 * Script processor may be waiting for reselect. 3163 * Wake it up. 3164 */ 3165 MEMORY_BARRIER(); 3166 OUTB (nc_istat, SIGP|np->istat_sem); 3167 } 3168 3169 3170 /* 3171 * Soft reset the chip. 3172 * 3173 * Raising SRST when the chip is running may cause 3174 * problems on dual function chips (see below). 3175 * On the other hand, LVD devices need some delay 3176 * to settle and report actual BUS mode in STEST4. 3177 */ 3178 static void sym_chip_reset (hcb_p np) 3179 { 3180 OUTB (nc_istat, SRST); 3181 UDELAY (10); 3182 OUTB (nc_istat, 0); 3183 UDELAY(2000); /* For BUS MODE to settle */ 3184 } 3185 3186 /* 3187 * Soft reset the chip. 3188 * 3189 * Some 896 and 876 chip revisions may hang-up if we set 3190 * the SRST (soft reset) bit at the wrong time when SCRIPTS 3191 * are running. 3192 * So, we need to abort the current operation prior to 3193 * soft resetting the chip. 3194 */ 3195 static void sym_soft_reset (hcb_p np) 3196 { 3197 u_char istat; 3198 int i; 3199 3200 OUTB (nc_istat, CABRT); 3201 for (i = 1000000 ; i ; --i) { 3202 istat = INB (nc_istat); 3203 if (istat & SIP) { 3204 INW (nc_sist); 3205 continue; 3206 } 3207 if (istat & DIP) { 3208 OUTB (nc_istat, 0); 3209 INB (nc_dstat); 3210 break; 3211 } 3212 } 3213 if (!i) 3214 printf("%s: unable to abort current chip operation.\n", 3215 sym_name(np)); 3216 sym_chip_reset (np); 3217 } 3218 3219 /* 3220 * Start reset process. 3221 * 3222 * The interrupt handler will reinitialize the chip. 3223 */ 3224 static void sym_start_reset(hcb_p np) 3225 { 3226 (void) sym_reset_scsi_bus(np, 1); 3227 } 3228 3229 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3230 { 3231 u32 term; 3232 int retv = 0; 3233 3234 sym_soft_reset(np); /* Soft reset the chip */ 3235 if (enab_int) 3236 OUTW (nc_sien, RST); 3237 /* 3238 * Enable Tolerant, reset IRQD if present and 3239 * properly set IRQ mode, prior to resetting the bus. 3240 */ 3241 OUTB (nc_stest3, TE); 3242 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3243 OUTB (nc_scntl1, CRST); 3244 UDELAY (200); 3245 3246 if (!SYM_SETUP_SCSI_BUS_CHECK) 3247 goto out; 3248 /* 3249 * Check for no terminators or SCSI bus shorts to ground. 3250 * Read SCSI data bus, data parity bits and control signals. 3251 * We are expecting RESET to be TRUE and other signals to be 3252 * FALSE. 3253 */ 3254 term = INB(nc_sstat0); 3255 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3256 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3257 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3258 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3259 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3260 3261 if (!(np->features & FE_WIDE)) 3262 term &= 0x3ffff; 3263 3264 if (term != (2<<7)) { 3265 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3266 sym_name(np)); 3267 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3268 "0x%lx, expecting 0x%lx\n", 3269 sym_name(np), 3270 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3271 (u_long)term, (u_long)(2<<7)); 3272 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3273 retv = 1; 3274 } 3275 out: 3276 OUTB (nc_scntl1, 0); 3277 /* MDELAY(100); */ 3278 return retv; 3279 } 3280 3281 /* 3282 * The chip may have completed jobs. Look at the DONE QUEUE. 3283 * 3284 * On architectures that may reorder LOAD/STORE operations, 3285 * a memory barrier may be needed after the reading of the 3286 * so-called `flag' and prior to dealing with the data. 3287 */ 3288 static int sym_wakeup_done (hcb_p np) 3289 { 3290 ccb_p cp; 3291 int i, n; 3292 u32 dsa; 3293 3294 n = 0; 3295 i = np->dqueueget; 3296 while (1) { 3297 dsa = scr_to_cpu(np->dqueue[i]); 3298 if (!dsa) 3299 break; 3300 np->dqueue[i] = 0; 3301 if ((i = i+2) >= MAX_QUEUE*2) 3302 i = 0; 3303 3304 cp = sym_ccb_from_dsa(np, dsa); 3305 if (cp) { 3306 MEMORY_BARRIER(); 3307 sym_complete_ok (np, cp); 3308 ++n; 3309 } 3310 else 3311 printf ("%s: bad DSA (%x) in done queue.\n", 3312 sym_name(np), (u_int) dsa); 3313 } 3314 np->dqueueget = i; 3315 3316 return n; 3317 } 3318 3319 /* 3320 * Complete all active CCBs with error. 3321 * Used on CHIP/SCSI RESET. 3322 */ 3323 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3324 { 3325 /* 3326 * Move all active CCBs to the COMP queue 3327 * and flush this queue. 3328 */ 3329 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3330 sym_que_init(&np->busy_ccbq); 3331 sym_flush_comp_queue(np, cam_status); 3332 } 3333 3334 /* 3335 * Start chip. 3336 * 3337 * 'reason' means: 3338 * 0: initialisation. 3339 * 1: SCSI BUS RESET delivered or received. 3340 * 2: SCSI BUS MODE changed. 3341 */ 3342 static void sym_init (hcb_p np, int reason) 3343 { 3344 int i; 3345 u32 phys; 3346 3347 /* 3348 * Reset chip if asked, otherwise just clear fifos. 3349 */ 3350 if (reason == 1) 3351 sym_soft_reset(np); 3352 else { 3353 OUTB (nc_stest3, TE|CSF); 3354 OUTONB (nc_ctest3, CLF); 3355 } 3356 3357 /* 3358 * Clear Start Queue 3359 */ 3360 phys = np->squeue_ba; 3361 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3362 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3363 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3364 } 3365 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3366 3367 /* 3368 * Start at first entry. 3369 */ 3370 np->squeueput = 0; 3371 3372 /* 3373 * Clear Done Queue 3374 */ 3375 phys = np->dqueue_ba; 3376 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3377 np->dqueue[i] = 0; 3378 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3379 } 3380 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3381 3382 /* 3383 * Start at first entry. 3384 */ 3385 np->dqueueget = 0; 3386 3387 /* 3388 * Install patches in scripts. 3389 * This also let point to first position the start 3390 * and done queue pointers used from SCRIPTS. 3391 */ 3392 np->fw_patch(np); 3393 3394 /* 3395 * Wakeup all pending jobs. 3396 */ 3397 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3398 3399 /* 3400 * Init chip. 3401 */ 3402 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3403 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3404 3405 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3406 /* full arb., ena parity, par->ATN */ 3407 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3408 3409 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3410 3411 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3412 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3413 OUTB (nc_istat , SIGP ); /* Signal Process */ 3414 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3415 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3416 3417 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3418 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3419 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3420 3421 /* Extended Sreq/Sack filtering not supported on the C10 */ 3422 if (np->features & FE_C10) 3423 OUTB (nc_stest2, np->rv_stest2); 3424 else 3425 OUTB (nc_stest2, EXT|np->rv_stest2); 3426 3427 OUTB (nc_stest3, TE); /* TolerANT enable */ 3428 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3429 3430 /* 3431 * For now, disable AIP generation on C1010-66. 3432 */ 3433 if (np->device_id == PCI_ID_LSI53C1010_2) 3434 OUTB (nc_aipcntl1, DISAIP); 3435 3436 /* 3437 * C10101 Errata. 3438 * Errant SGE's when in narrow. Write bits 4 & 5 of 3439 * STEST1 register to disable SGE. We probably should do 3440 * that from SCRIPTS for each selection/reselection, but 3441 * I just don't want. :) 3442 */ 3443 if (np->device_id == PCI_ID_LSI53C1010 && 3444 /* np->revision_id < 0xff */ 1) 3445 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3446 3447 /* 3448 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3449 * Disable overlapped arbitration for some dual function devices, 3450 * regardless revision id (kind of post-chip-design feature. ;-)) 3451 */ 3452 if (np->device_id == PCI_ID_SYM53C875) 3453 OUTB (nc_ctest0, (1<<5)); 3454 else if (np->device_id == PCI_ID_SYM53C896) 3455 np->rv_ccntl0 |= DPR; 3456 3457 /* 3458 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3459 * and/or hardware phase mismatch, since only such chips 3460 * seem to support those IO registers. 3461 */ 3462 if (np->features & (FE_DAC|FE_NOPM)) { 3463 OUTB (nc_ccntl0, np->rv_ccntl0); 3464 OUTB (nc_ccntl1, np->rv_ccntl1); 3465 } 3466 3467 /* 3468 * If phase mismatch handled by scripts (895A/896/1010), 3469 * set PM jump addresses. 3470 */ 3471 if (np->features & FE_NOPM) { 3472 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3473 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3474 } 3475 3476 /* 3477 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3478 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3479 */ 3480 if (np->features & FE_LED0) 3481 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3482 else if (np->features & FE_LEDC) 3483 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3484 3485 /* 3486 * enable ints 3487 */ 3488 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3489 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3490 3491 /* 3492 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3493 * Try to eat the spurious SBMC interrupt that may occur when 3494 * we reset the chip but not the SCSI BUS (at initialization). 3495 */ 3496 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3497 OUTONW (nc_sien, SBMC); 3498 if (reason == 0) { 3499 MDELAY(100); 3500 INW (nc_sist); 3501 } 3502 np->scsi_mode = INB (nc_stest4) & SMODE; 3503 } 3504 3505 /* 3506 * Fill in target structure. 3507 * Reinitialize usrsync. 3508 * Reinitialize usrwide. 3509 * Prepare sync negotiation according to actual SCSI bus mode. 3510 */ 3511 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3512 tcb_p tp = &np->target[i]; 3513 3514 tp->to_reset = 0; 3515 tp->head.sval = 0; 3516 tp->head.wval = np->rv_scntl3; 3517 tp->head.uval = 0; 3518 3519 tp->tinfo.current.period = 0; 3520 tp->tinfo.current.offset = 0; 3521 tp->tinfo.current.width = BUS_8_BIT; 3522 tp->tinfo.current.options = 0; 3523 } 3524 3525 /* 3526 * Download SCSI SCRIPTS to on-chip RAM if present, 3527 * and start script processor. 3528 */ 3529 if (np->ram_ba) { 3530 if (sym_verbose > 1) 3531 printf ("%s: Downloading SCSI SCRIPTS.\n", 3532 sym_name(np)); 3533 if (np->ram_ws == 8192) { 3534 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3535 OUTL (nc_mmws, np->scr_ram_seg); 3536 OUTL (nc_mmrs, np->scr_ram_seg); 3537 OUTL (nc_sfs, np->scr_ram_seg); 3538 phys = SCRIPTB_BA (np, start64); 3539 } 3540 else 3541 phys = SCRIPTA_BA (np, init); 3542 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3543 } 3544 else 3545 phys = SCRIPTA_BA (np, init); 3546 3547 np->istat_sem = 0; 3548 3549 OUTL (nc_dsa, np->hcb_ba); 3550 OUTL_DSP (phys); 3551 3552 /* 3553 * Notify the XPT about the RESET condition. 3554 */ 3555 if (reason != 0) 3556 xpt_async(AC_BUS_RESET, np->path, NULL); 3557 } 3558 3559 /* 3560 * Get clock factor and sync divisor for a given 3561 * synchronous factor period. 3562 */ 3563 static int 3564 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3565 { 3566 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3567 int div = np->clock_divn; /* Number of divisors supported */ 3568 u32 fak; /* Sync factor in sxfer */ 3569 u32 per; /* Period in tenths of ns */ 3570 u32 kpc; /* (per * clk) */ 3571 int ret; 3572 3573 /* 3574 * Compute the synchronous period in tenths of nano-seconds 3575 */ 3576 if (dt && sfac <= 9) per = 125; 3577 else if (sfac <= 10) per = 250; 3578 else if (sfac == 11) per = 303; 3579 else if (sfac == 12) per = 500; 3580 else per = 40 * sfac; 3581 ret = per; 3582 3583 kpc = per * clk; 3584 if (dt) 3585 kpc <<= 1; 3586 3587 /* 3588 * For earliest C10 revision 0, we cannot use extra 3589 * clocks for the setting of the SCSI clocking. 3590 * Note that this limits the lowest sync data transfer 3591 * to 5 Mega-transfers per second and may result in 3592 * using higher clock divisors. 3593 */ 3594 #if 1 3595 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3596 /* 3597 * Look for the lowest clock divisor that allows an 3598 * output speed not faster than the period. 3599 */ 3600 while (div > 0) { 3601 --div; 3602 if (kpc > (div_10M[div] << 2)) { 3603 ++div; 3604 break; 3605 } 3606 } 3607 fak = 0; /* No extra clocks */ 3608 if (div == np->clock_divn) { /* Are we too fast ? */ 3609 ret = -1; 3610 } 3611 *divp = div; 3612 *fakp = fak; 3613 return ret; 3614 } 3615 #endif 3616 3617 /* 3618 * Look for the greatest clock divisor that allows an 3619 * input speed faster than the period. 3620 */ 3621 while (div-- > 0) 3622 if (kpc >= (div_10M[div] << 2)) break; 3623 3624 /* 3625 * Calculate the lowest clock factor that allows an output 3626 * speed not faster than the period, and the max output speed. 3627 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3628 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3629 */ 3630 if (dt) { 3631 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3632 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3633 } 3634 else { 3635 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3636 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3637 } 3638 3639 /* 3640 * Check against our hardware limits, or bugs :). 3641 */ 3642 if (fak < 0) {fak = 0; ret = -1;} 3643 if (fak > 2) {fak = 2; ret = -1;} 3644 3645 /* 3646 * Compute and return sync parameters. 3647 */ 3648 *divp = div; 3649 *fakp = fak; 3650 3651 return ret; 3652 } 3653 3654 /* 3655 * Tell the SCSI layer about the new transfer parameters. 3656 */ 3657 static void 3658 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3659 { 3660 struct ccb_trans_settings cts; 3661 struct cam_path *path; 3662 int sts; 3663 tcb_p tp = &np->target[target]; 3664 3665 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3666 CAM_LUN_WILDCARD); 3667 if (sts != CAM_REQ_CMP) 3668 return; 3669 3670 bzero(&cts, sizeof(cts)); 3671 3672 #ifdef FreeBSD_New_Tran_Settings 3673 #define cts__scsi (cts.proto_specific.scsi) 3674 #define cts__spi (cts.xport_specific.spi) 3675 3676 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3677 cts.protocol = PROTO_SCSI; 3678 cts.transport = XPORT_SPI; 3679 cts.protocol_version = tp->tinfo.current.scsi_version; 3680 cts.transport_version = tp->tinfo.current.spi_version; 3681 3682 cts__spi.valid = spi_valid; 3683 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3684 cts__spi.sync_period = tp->tinfo.current.period; 3685 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3686 cts__spi.sync_offset = tp->tinfo.current.offset; 3687 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3688 cts__spi.bus_width = tp->tinfo.current.width; 3689 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3690 cts__spi.ppr_options = tp->tinfo.current.options; 3691 #undef cts__spi 3692 #undef cts__scsi 3693 #else 3694 cts.valid = spi_valid; 3695 if (spi_valid & CCB_TRANS_SYNC_RATE_VALID) 3696 cts.sync_period = tp->tinfo.current.period; 3697 if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID) 3698 cts.sync_offset = tp->tinfo.current.offset; 3699 if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID) 3700 cts.bus_width = tp->tinfo.current.width; 3701 #endif 3702 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3703 xpt_async(AC_TRANSFER_NEG, path, &cts); 3704 xpt_free_path(path); 3705 } 3706 3707 #ifdef FreeBSD_New_Tran_Settings 3708 #define SYM_SPI_VALID_WDTR \ 3709 CTS_SPI_VALID_BUS_WIDTH | \ 3710 CTS_SPI_VALID_SYNC_RATE | \ 3711 CTS_SPI_VALID_SYNC_OFFSET 3712 #define SYM_SPI_VALID_SDTR \ 3713 CTS_SPI_VALID_SYNC_RATE | \ 3714 CTS_SPI_VALID_SYNC_OFFSET 3715 #define SYM_SPI_VALID_PPR \ 3716 CTS_SPI_VALID_PPR_OPTIONS | \ 3717 CTS_SPI_VALID_BUS_WIDTH | \ 3718 CTS_SPI_VALID_SYNC_RATE | \ 3719 CTS_SPI_VALID_SYNC_OFFSET 3720 #else 3721 #define SYM_SPI_VALID_WDTR \ 3722 CCB_TRANS_BUS_WIDTH_VALID | \ 3723 CCB_TRANS_SYNC_RATE_VALID | \ 3724 CCB_TRANS_SYNC_OFFSET_VALID 3725 #define SYM_SPI_VALID_SDTR \ 3726 CCB_TRANS_SYNC_RATE_VALID | \ 3727 CCB_TRANS_SYNC_OFFSET_VALID 3728 #define SYM_SPI_VALID_PPR \ 3729 CCB_TRANS_BUS_WIDTH_VALID | \ 3730 CCB_TRANS_SYNC_RATE_VALID | \ 3731 CCB_TRANS_SYNC_OFFSET_VALID 3732 #endif 3733 3734 /* 3735 * We received a WDTR. 3736 * Let everything be aware of the changes. 3737 */ 3738 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3739 { 3740 tcb_p tp = &np->target[cp->target]; 3741 3742 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3743 3744 /* 3745 * Tell the SCSI layer about the new transfer parameters. 3746 */ 3747 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3748 tp->tinfo.current.offset = 0; 3749 tp->tinfo.current.period = 0; 3750 tp->tinfo.current.options = 0; 3751 3752 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3753 } 3754 3755 /* 3756 * We received a SDTR. 3757 * Let everything be aware of the changes. 3758 */ 3759 static void 3760 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3761 { 3762 tcb_p tp = &np->target[cp->target]; 3763 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3764 3765 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3766 3767 /* 3768 * Tell the SCSI layer about the new transfer parameters. 3769 */ 3770 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3771 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3772 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3773 3774 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3775 } 3776 3777 /* 3778 * We received a PPR. 3779 * Let everything be aware of the changes. 3780 */ 3781 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3782 u_char per, u_char wide, u_char div, u_char fak) 3783 { 3784 tcb_p tp = &np->target[cp->target]; 3785 3786 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3787 3788 /* 3789 * Tell the SCSI layer about the new transfer parameters. 3790 */ 3791 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3792 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3793 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3794 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3795 3796 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3797 } 3798 3799 /* 3800 * Switch trans mode for current job and it's target. 3801 */ 3802 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3803 u_char per, u_char wide, u_char div, u_char fak) 3804 { 3805 SYM_QUEHEAD *qp; 3806 union ccb *ccb; 3807 tcb_p tp; 3808 u_char target = INB (nc_sdid) & 0x0f; 3809 u_char sval, wval, uval; 3810 3811 assert (cp); 3812 if (!cp) return; 3813 ccb = cp->cam_ccb; 3814 assert (ccb); 3815 if (!ccb) return; 3816 assert (target == (cp->target & 0xf)); 3817 tp = &np->target[target]; 3818 3819 sval = tp->head.sval; 3820 wval = tp->head.wval; 3821 uval = tp->head.uval; 3822 3823 #if 0 3824 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3825 sval, wval, uval, np->rv_scntl3); 3826 #endif 3827 /* 3828 * Set the offset. 3829 */ 3830 if (!(np->features & FE_C10)) 3831 sval = (sval & ~0x1f) | ofs; 3832 else 3833 sval = (sval & ~0x3f) | ofs; 3834 3835 /* 3836 * Set the sync divisor and extra clock factor. 3837 */ 3838 if (ofs != 0) { 3839 wval = (wval & ~0x70) | ((div+1) << 4); 3840 if (!(np->features & FE_C10)) 3841 sval = (sval & ~0xe0) | (fak << 5); 3842 else { 3843 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3844 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3845 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3846 } 3847 } 3848 3849 /* 3850 * Set the bus width. 3851 */ 3852 wval = wval & ~EWS; 3853 if (wide != 0) 3854 wval |= EWS; 3855 3856 /* 3857 * Set misc. ultra enable bits. 3858 */ 3859 if (np->features & FE_C10) { 3860 uval = uval & ~(U3EN|AIPCKEN); 3861 if (dt) { 3862 assert(np->features & FE_U3EN); 3863 uval |= U3EN; 3864 } 3865 } 3866 else { 3867 wval = wval & ~ULTRA; 3868 if (per <= 12) wval |= ULTRA; 3869 } 3870 3871 /* 3872 * Stop there if sync parameters are unchanged. 3873 */ 3874 if (tp->head.sval == sval && 3875 tp->head.wval == wval && 3876 tp->head.uval == uval) 3877 return; 3878 tp->head.sval = sval; 3879 tp->head.wval = wval; 3880 tp->head.uval = uval; 3881 3882 /* 3883 * Disable extended Sreq/Sack filtering if per < 50. 3884 * Not supported on the C1010. 3885 */ 3886 if (per < 50 && !(np->features & FE_C10)) 3887 OUTOFFB (nc_stest2, EXT); 3888 3889 /* 3890 * set actual value and sync_status 3891 */ 3892 OUTB (nc_sxfer, tp->head.sval); 3893 OUTB (nc_scntl3, tp->head.wval); 3894 3895 if (np->features & FE_C10) { 3896 OUTB (nc_scntl4, tp->head.uval); 3897 } 3898 3899 /* 3900 * patch ALL busy ccbs of this target. 3901 */ 3902 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3903 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3904 if (cp->target != target) 3905 continue; 3906 cp->phys.select.sel_scntl3 = tp->head.wval; 3907 cp->phys.select.sel_sxfer = tp->head.sval; 3908 if (np->features & FE_C10) { 3909 cp->phys.select.sel_scntl4 = tp->head.uval; 3910 } 3911 } 3912 } 3913 3914 /* 3915 * log message for real hard errors 3916 * 3917 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3918 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3919 * 3920 * exception register: 3921 * ds: dstat 3922 * si: sist 3923 * 3924 * SCSI bus lines: 3925 * so: control lines as driven by chip. 3926 * si: control lines as seen by chip. 3927 * sd: scsi data lines as seen by chip. 3928 * 3929 * wide/fastmode: 3930 * sxfer: (see the manual) 3931 * scntl3: (see the manual) 3932 * 3933 * current script command: 3934 * dsp: script address (relative to start of script). 3935 * dbc: first word of script command. 3936 * 3937 * First 24 register of the chip: 3938 * r0..rf 3939 */ 3940 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3941 { 3942 u32 dsp; 3943 int script_ofs; 3944 int script_size; 3945 char *script_name; 3946 u_char *script_base; 3947 int i; 3948 3949 dsp = INL (nc_dsp); 3950 3951 if (dsp > np->scripta_ba && 3952 dsp <= np->scripta_ba + np->scripta_sz) { 3953 script_ofs = dsp - np->scripta_ba; 3954 script_size = np->scripta_sz; 3955 script_base = (u_char *) np->scripta0; 3956 script_name = "scripta"; 3957 } 3958 else if (np->scriptb_ba < dsp && 3959 dsp <= np->scriptb_ba + np->scriptb_sz) { 3960 script_ofs = dsp - np->scriptb_ba; 3961 script_size = np->scriptb_sz; 3962 script_base = (u_char *) np->scriptb0; 3963 script_name = "scriptb"; 3964 } else { 3965 script_ofs = dsp; 3966 script_size = 0; 3967 script_base = 0; 3968 script_name = "mem"; 3969 } 3970 3971 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3972 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3973 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3974 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3975 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3976 (unsigned)INL (nc_dbc)); 3977 3978 if (((script_ofs & 3) == 0) && 3979 (unsigned)script_ofs < script_size) { 3980 printf ("%s: script cmd = %08x\n", sym_name(np), 3981 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3982 } 3983 3984 printf ("%s: regdump:", sym_name(np)); 3985 for (i=0; i<24;i++) 3986 printf (" %02x", (unsigned)INB_OFF(i)); 3987 printf (".\n"); 3988 3989 /* 3990 * PCI BUS error, read the PCI ststus register. 3991 */ 3992 if (dstat & (MDPE|BF)) { 3993 u_short pci_sts; 3994 #ifdef FreeBSD_Bus_Io_Abstraction 3995 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3996 #else 3997 pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2); 3998 #endif 3999 if (pci_sts & 0xf900) { 4000 #ifdef FreeBSD_Bus_Io_Abstraction 4001 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 4002 #else 4003 pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2); 4004 #endif 4005 printf("%s: PCI STATUS = 0x%04x\n", 4006 sym_name(np), pci_sts & 0xf900); 4007 } 4008 } 4009 } 4010 4011 /* 4012 * chip interrupt handler 4013 * 4014 * In normal situations, interrupt conditions occur one at 4015 * a time. But when something bad happens on the SCSI BUS, 4016 * the chip may raise several interrupt flags before 4017 * stopping and interrupting the CPU. The additionnal 4018 * interrupt flags are stacked in some extra registers 4019 * after the SIP and/or DIP flag has been raised in the 4020 * ISTAT. After the CPU has read the interrupt condition 4021 * flag from SIST or DSTAT, the chip unstacks the other 4022 * interrupt flags and sets the corresponding bits in 4023 * SIST or DSTAT. Since the chip starts stacking once the 4024 * SIP or DIP flag is set, there is a small window of time 4025 * where the stacking does not occur. 4026 * 4027 * Typically, multiple interrupt conditions may happen in 4028 * the following situations: 4029 * 4030 * - SCSI parity error + Phase mismatch (PAR|MA) 4031 * When an parity error is detected in input phase 4032 * and the device switches to msg-in phase inside a 4033 * block MOV. 4034 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 4035 * When a stupid device does not want to handle the 4036 * recovery of an SCSI parity error. 4037 * - Some combinations of STO, PAR, UDC, ... 4038 * When using non compliant SCSI stuff, when user is 4039 * doing non compliant hot tampering on the BUS, when 4040 * something really bad happens to a device, etc ... 4041 * 4042 * The heuristic suggested by SYMBIOS to handle 4043 * multiple interrupts is to try unstacking all 4044 * interrupts conditions and to handle them on some 4045 * priority based on error severity. 4046 * This will work when the unstacking has been 4047 * successful, but we cannot be 100 % sure of that, 4048 * since the CPU may have been faster to unstack than 4049 * the chip is able to stack. Hmmm ... But it seems that 4050 * such a situation is very unlikely to happen. 4051 * 4052 * If this happen, for example STO caught by the CPU 4053 * then UDC happenning before the CPU have restarted 4054 * the SCRIPTS, the driver may wrongly complete the 4055 * same command on UDC, since the SCRIPTS didn't restart 4056 * and the DSA still points to the same command. 4057 * We avoid this situation by setting the DSA to an 4058 * invalid value when the CCB is completed and before 4059 * restarting the SCRIPTS. 4060 * 4061 * Another issue is that we need some section of our 4062 * recovery procedures to be somehow uninterruptible but 4063 * the SCRIPTS processor does not provides such a 4064 * feature. For this reason, we handle recovery preferently 4065 * from the C code and check against some SCRIPTS critical 4066 * sections from the C code. 4067 * 4068 * Hopefully, the interrupt handling of the driver is now 4069 * able to resist to weird BUS error conditions, but donnot 4070 * ask me for any guarantee that it will never fail. :-) 4071 * Use at your own decision and risk. 4072 */ 4073 4074 static void sym_intr1 (hcb_p np) 4075 { 4076 u_char istat, istatc; 4077 u_char dstat; 4078 u_short sist; 4079 4080 /* 4081 * interrupt on the fly ? 4082 * 4083 * A `dummy read' is needed to ensure that the 4084 * clear of the INTF flag reaches the device 4085 * before the scanning of the DONE queue. 4086 */ 4087 istat = INB (nc_istat); 4088 if (istat & INTF) { 4089 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 4090 istat = INB (nc_istat); /* DUMMY READ */ 4091 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 4092 (void)sym_wakeup_done (np); 4093 }; 4094 4095 if (!(istat & (SIP|DIP))) 4096 return; 4097 4098 #if 0 /* We should never get this one */ 4099 if (istat & CABRT) 4100 OUTB (nc_istat, CABRT); 4101 #endif 4102 4103 /* 4104 * PAR and MA interrupts may occur at the same time, 4105 * and we need to know of both in order to handle 4106 * this situation properly. We try to unstack SCSI 4107 * interrupts for that reason. BTW, I dislike a LOT 4108 * such a loop inside the interrupt routine. 4109 * Even if DMA interrupt stacking is very unlikely to 4110 * happen, we also try unstacking these ones, since 4111 * this has no performance impact. 4112 */ 4113 sist = 0; 4114 dstat = 0; 4115 istatc = istat; 4116 do { 4117 if (istatc & SIP) 4118 sist |= INW (nc_sist); 4119 if (istatc & DIP) 4120 dstat |= INB (nc_dstat); 4121 istatc = INB (nc_istat); 4122 istat |= istatc; 4123 } while (istatc & (SIP|DIP)); 4124 4125 if (DEBUG_FLAGS & DEBUG_TINY) 4126 printf ("<%d|%x:%x|%x:%x>", 4127 (int)INB(nc_scr0), 4128 dstat,sist, 4129 (unsigned)INL(nc_dsp), 4130 (unsigned)INL(nc_dbc)); 4131 /* 4132 * On paper, a memory barrier may be needed here. 4133 * And since we are paranoid ... :) 4134 */ 4135 MEMORY_BARRIER(); 4136 4137 /* 4138 * First, interrupts we want to service cleanly. 4139 * 4140 * Phase mismatch (MA) is the most frequent interrupt 4141 * for chip earlier than the 896 and so we have to service 4142 * it as quickly as possible. 4143 * A SCSI parity error (PAR) may be combined with a phase 4144 * mismatch condition (MA). 4145 * Programmed interrupts (SIR) are used to call the C code 4146 * from SCRIPTS. 4147 * The single step interrupt (SSI) is not used in this 4148 * driver. 4149 */ 4150 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 4151 !(dstat & (MDPE|BF|ABRT|IID))) { 4152 if (sist & PAR) sym_int_par (np, sist); 4153 else if (sist & MA) sym_int_ma (np); 4154 else if (dstat & SIR) sym_int_sir (np); 4155 else if (dstat & SSI) OUTONB_STD (); 4156 else goto unknown_int; 4157 return; 4158 }; 4159 4160 /* 4161 * Now, interrupts that donnot happen in normal 4162 * situations and that we may need to recover from. 4163 * 4164 * On SCSI RESET (RST), we reset everything. 4165 * On SCSI BUS MODE CHANGE (SBMC), we complete all 4166 * active CCBs with RESET status, prepare all devices 4167 * for negotiating again and restart the SCRIPTS. 4168 * On STO and UDC, we complete the CCB with the corres- 4169 * ponding status and restart the SCRIPTS. 4170 */ 4171 if (sist & RST) { 4172 xpt_print_path(np->path); 4173 printf("SCSI BUS reset detected.\n"); 4174 sym_init (np, 1); 4175 return; 4176 }; 4177 4178 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4179 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4180 4181 if (!(sist & (GEN|HTH|SGE)) && 4182 !(dstat & (MDPE|BF|ABRT|IID))) { 4183 if (sist & SBMC) sym_int_sbmc (np); 4184 else if (sist & STO) sym_int_sto (np); 4185 else if (sist & UDC) sym_int_udc (np); 4186 else goto unknown_int; 4187 return; 4188 }; 4189 4190 /* 4191 * Now, interrupts we are not able to recover cleanly. 4192 * 4193 * Log message for hard errors. 4194 * Reset everything. 4195 */ 4196 4197 sym_log_hard_error(np, sist, dstat); 4198 4199 if ((sist & (GEN|HTH|SGE)) || 4200 (dstat & (MDPE|BF|ABRT|IID))) { 4201 sym_start_reset(np); 4202 return; 4203 }; 4204 4205 unknown_int: 4206 /* 4207 * We just miss the cause of the interrupt. :( 4208 * Print a message. The timeout will do the real work. 4209 */ 4210 printf( "%s: unknown interrupt(s) ignored, " 4211 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 4212 sym_name(np), istat, dstat, sist); 4213 } 4214 4215 static void sym_intr(void *arg) 4216 { 4217 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 4218 sym_intr1((hcb_p) arg); 4219 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 4220 return; 4221 } 4222 4223 static void sym_poll(struct cam_sim *sim) 4224 { 4225 int s = splcam(); 4226 sym_intr(cam_sim_softc(sim)); 4227 splx(s); 4228 } 4229 4230 4231 /* 4232 * generic recovery from scsi interrupt 4233 * 4234 * The doc says that when the chip gets an SCSI interrupt, 4235 * it tries to stop in an orderly fashion, by completing 4236 * an instruction fetch that had started or by flushing 4237 * the DMA fifo for a write to memory that was executing. 4238 * Such a fashion is not enough to know if the instruction 4239 * that was just before the current DSP value has been 4240 * executed or not. 4241 * 4242 * There are some small SCRIPTS sections that deal with 4243 * the start queue and the done queue that may break any 4244 * assomption from the C code if we are interrupted 4245 * inside, so we reset if this happens. Btw, since these 4246 * SCRIPTS sections are executed while the SCRIPTS hasn't 4247 * started SCSI operations, it is very unlikely to happen. 4248 * 4249 * All the driver data structures are supposed to be 4250 * allocated from the same 4 GB memory window, so there 4251 * is a 1 to 1 relationship between DSA and driver data 4252 * structures. Since we are careful :) to invalidate the 4253 * DSA when we complete a command or when the SCRIPTS 4254 * pushes a DSA into a queue, we can trust it when it 4255 * points to a CCB. 4256 */ 4257 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4258 { 4259 u32 dsp = INL (nc_dsp); 4260 u32 dsa = INL (nc_dsa); 4261 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4262 4263 /* 4264 * If we haven't been interrupted inside the SCRIPTS 4265 * critical pathes, we can safely restart the SCRIPTS 4266 * and trust the DSA value if it matches a CCB. 4267 */ 4268 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4269 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4270 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4271 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4272 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4273 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4274 (!(dsp > SCRIPTA_BA (np, done) && 4275 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4276 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4277 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4278 /* 4279 * If we have a CCB, let the SCRIPTS call us back for 4280 * the handling of the error with SCRATCHA filled with 4281 * STARTPOS. This way, we will be able to freeze the 4282 * device queue and requeue awaiting IOs. 4283 */ 4284 if (cp) { 4285 cp->host_status = hsts; 4286 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4287 } 4288 /* 4289 * Otherwise just restart the SCRIPTS. 4290 */ 4291 else { 4292 OUTL (nc_dsa, 0xffffff); 4293 OUTL_DSP (SCRIPTA_BA (np, start)); 4294 } 4295 } 4296 else 4297 goto reset_all; 4298 4299 return; 4300 4301 reset_all: 4302 sym_start_reset(np); 4303 } 4304 4305 /* 4306 * chip exception handler for selection timeout 4307 */ 4308 void sym_int_sto (hcb_p np) 4309 { 4310 u32 dsp = INL (nc_dsp); 4311 4312 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4313 4314 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4315 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4316 else 4317 sym_start_reset(np); 4318 } 4319 4320 /* 4321 * chip exception handler for unexpected disconnect 4322 */ 4323 void sym_int_udc (hcb_p np) 4324 { 4325 printf ("%s: unexpected disconnect\n", sym_name(np)); 4326 sym_recover_scsi_int(np, HS_UNEXPECTED); 4327 } 4328 4329 /* 4330 * chip exception handler for SCSI bus mode change 4331 * 4332 * spi2-r12 11.2.3 says a transceiver mode change must 4333 * generate a reset event and a device that detects a reset 4334 * event shall initiate a hard reset. It says also that a 4335 * device that detects a mode change shall set data transfer 4336 * mode to eight bit asynchronous, etc... 4337 * So, just reinitializing all except chip should be enough. 4338 */ 4339 static void sym_int_sbmc (hcb_p np) 4340 { 4341 u_char scsi_mode = INB (nc_stest4) & SMODE; 4342 4343 /* 4344 * Notify user. 4345 */ 4346 xpt_print_path(np->path); 4347 printf("SCSI BUS mode change from %s to %s.\n", 4348 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4349 4350 /* 4351 * Should suspend command processing for a few seconds and 4352 * reinitialize all except the chip. 4353 */ 4354 sym_init (np, 2); 4355 } 4356 4357 /* 4358 * chip exception handler for SCSI parity error. 4359 * 4360 * When the chip detects a SCSI parity error and is 4361 * currently executing a (CH)MOV instruction, it does 4362 * not interrupt immediately, but tries to finish the 4363 * transfer of the current scatter entry before 4364 * interrupting. The following situations may occur: 4365 * 4366 * - The complete scatter entry has been transferred 4367 * without the device having changed phase. 4368 * The chip will then interrupt with the DSP pointing 4369 * to the instruction that follows the MOV. 4370 * 4371 * - A phase mismatch occurs before the MOV finished 4372 * and phase errors are to be handled by the C code. 4373 * The chip will then interrupt with both PAR and MA 4374 * conditions set. 4375 * 4376 * - A phase mismatch occurs before the MOV finished and 4377 * phase errors are to be handled by SCRIPTS. 4378 * The chip will load the DSP with the phase mismatch 4379 * JUMP address and interrupt the host processor. 4380 */ 4381 static void sym_int_par (hcb_p np, u_short sist) 4382 { 4383 u_char hsts = INB (HS_PRT); 4384 u32 dsp = INL (nc_dsp); 4385 u32 dbc = INL (nc_dbc); 4386 u32 dsa = INL (nc_dsa); 4387 u_char sbcl = INB (nc_sbcl); 4388 u_char cmd = dbc >> 24; 4389 int phase = cmd & 7; 4390 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4391 4392 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4393 sym_name(np), hsts, dbc, sbcl); 4394 4395 /* 4396 * Check that the chip is connected to the SCSI BUS. 4397 */ 4398 if (!(INB (nc_scntl1) & ISCON)) { 4399 sym_recover_scsi_int(np, HS_UNEXPECTED); 4400 return; 4401 } 4402 4403 /* 4404 * If the nexus is not clearly identified, reset the bus. 4405 * We will try to do better later. 4406 */ 4407 if (!cp) 4408 goto reset_all; 4409 4410 /* 4411 * Check instruction was a MOV, direction was INPUT and 4412 * ATN is asserted. 4413 */ 4414 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4415 goto reset_all; 4416 4417 /* 4418 * Keep track of the parity error. 4419 */ 4420 OUTONB (HF_PRT, HF_EXT_ERR); 4421 cp->xerr_status |= XE_PARITY_ERR; 4422 4423 /* 4424 * Prepare the message to send to the device. 4425 */ 4426 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4427 4428 /* 4429 * If the old phase was DATA IN phase, we have to deal with 4430 * the 3 situations described above. 4431 * For other input phases (MSG IN and STATUS), the device 4432 * must resend the whole thing that failed parity checking 4433 * or signal error. So, jumping to dispatcher should be OK. 4434 */ 4435 if (phase == 1 || phase == 5) { 4436 /* Phase mismatch handled by SCRIPTS */ 4437 if (dsp == SCRIPTB_BA (np, pm_handle)) 4438 OUTL_DSP (dsp); 4439 /* Phase mismatch handled by the C code */ 4440 else if (sist & MA) 4441 sym_int_ma (np); 4442 /* No phase mismatch occurred */ 4443 else { 4444 OUTL (nc_temp, dsp); 4445 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4446 } 4447 } 4448 else 4449 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4450 return; 4451 4452 reset_all: 4453 sym_start_reset(np); 4454 return; 4455 } 4456 4457 /* 4458 * chip exception handler for phase errors. 4459 * 4460 * We have to construct a new transfer descriptor, 4461 * to transfer the rest of the current block. 4462 */ 4463 static void sym_int_ma (hcb_p np) 4464 { 4465 u32 dbc; 4466 u32 rest; 4467 u32 dsp; 4468 u32 dsa; 4469 u32 nxtdsp; 4470 u32 *vdsp; 4471 u32 oadr, olen; 4472 u32 *tblp; 4473 u32 newcmd; 4474 u_int delta; 4475 u_char cmd; 4476 u_char hflags, hflags0; 4477 struct sym_pmc *pm; 4478 ccb_p cp; 4479 4480 dsp = INL (nc_dsp); 4481 dbc = INL (nc_dbc); 4482 dsa = INL (nc_dsa); 4483 4484 cmd = dbc >> 24; 4485 rest = dbc & 0xffffff; 4486 delta = 0; 4487 4488 /* 4489 * locate matching cp if any. 4490 */ 4491 cp = sym_ccb_from_dsa(np, dsa); 4492 4493 /* 4494 * Donnot take into account dma fifo and various buffers in 4495 * INPUT phase since the chip flushes everything before 4496 * raising the MA interrupt for interrupted INPUT phases. 4497 * For DATA IN phase, we will check for the SWIDE later. 4498 */ 4499 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4500 u_char ss0, ss2; 4501 4502 if (np->features & FE_DFBC) 4503 delta = INW (nc_dfbc); 4504 else { 4505 u32 dfifo; 4506 4507 /* 4508 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4509 */ 4510 dfifo = INL(nc_dfifo); 4511 4512 /* 4513 * Calculate remaining bytes in DMA fifo. 4514 * (CTEST5 = dfifo >> 16) 4515 */ 4516 if (dfifo & (DFS << 16)) 4517 delta = ((((dfifo >> 8) & 0x300) | 4518 (dfifo & 0xff)) - rest) & 0x3ff; 4519 else 4520 delta = ((dfifo & 0xff) - rest) & 0x7f; 4521 } 4522 4523 /* 4524 * The data in the dma fifo has not been transfered to 4525 * the target -> add the amount to the rest 4526 * and clear the data. 4527 * Check the sstat2 register in case of wide transfer. 4528 */ 4529 rest += delta; 4530 ss0 = INB (nc_sstat0); 4531 if (ss0 & OLF) rest++; 4532 if (!(np->features & FE_C10)) 4533 if (ss0 & ORF) rest++; 4534 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4535 ss2 = INB (nc_sstat2); 4536 if (ss2 & OLF1) rest++; 4537 if (!(np->features & FE_C10)) 4538 if (ss2 & ORF1) rest++; 4539 }; 4540 4541 /* 4542 * Clear fifos. 4543 */ 4544 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4545 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4546 } 4547 4548 /* 4549 * log the information 4550 */ 4551 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4552 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4553 (unsigned) rest, (unsigned) delta); 4554 4555 /* 4556 * try to find the interrupted script command, 4557 * and the address at which to continue. 4558 */ 4559 vdsp = 0; 4560 nxtdsp = 0; 4561 if (dsp > np->scripta_ba && 4562 dsp <= np->scripta_ba + np->scripta_sz) { 4563 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4564 nxtdsp = dsp; 4565 } 4566 else if (dsp > np->scriptb_ba && 4567 dsp <= np->scriptb_ba + np->scriptb_sz) { 4568 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4569 nxtdsp = dsp; 4570 } 4571 4572 /* 4573 * log the information 4574 */ 4575 if (DEBUG_FLAGS & DEBUG_PHASE) { 4576 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4577 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4578 }; 4579 4580 if (!vdsp) { 4581 printf ("%s: interrupted SCRIPT address not found.\n", 4582 sym_name (np)); 4583 goto reset_all; 4584 } 4585 4586 if (!cp) { 4587 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4588 sym_name (np)); 4589 goto reset_all; 4590 } 4591 4592 /* 4593 * get old startaddress and old length. 4594 */ 4595 oadr = scr_to_cpu(vdsp[1]); 4596 4597 if (cmd & 0x10) { /* Table indirect */ 4598 tblp = (u32 *) ((char*) &cp->phys + oadr); 4599 olen = scr_to_cpu(tblp[0]); 4600 oadr = scr_to_cpu(tblp[1]); 4601 } else { 4602 tblp = (u32 *) 0; 4603 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4604 }; 4605 4606 if (DEBUG_FLAGS & DEBUG_PHASE) { 4607 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4608 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4609 tblp, 4610 (unsigned) olen, 4611 (unsigned) oadr); 4612 }; 4613 4614 /* 4615 * check cmd against assumed interrupted script command. 4616 * If dt data phase, the MOVE instruction hasn't bit 4 of 4617 * the phase. 4618 */ 4619 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4620 PRINT_ADDR(cp); 4621 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4622 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4623 4624 goto reset_all; 4625 }; 4626 4627 /* 4628 * if old phase not dataphase, leave here. 4629 */ 4630 if (cmd & 2) { 4631 PRINT_ADDR(cp); 4632 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4633 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4634 (unsigned)oadr, (unsigned)rest); 4635 goto unexpected_phase; 4636 }; 4637 4638 /* 4639 * Choose the correct PM save area. 4640 * 4641 * Look at the PM_SAVE SCRIPT if you want to understand 4642 * this stuff. The equivalent code is implemented in 4643 * SCRIPTS for the 895A, 896 and 1010 that are able to 4644 * handle PM from the SCRIPTS processor. 4645 */ 4646 hflags0 = INB (HF_PRT); 4647 hflags = hflags0; 4648 4649 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4650 if (hflags & HF_IN_PM0) 4651 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4652 else if (hflags & HF_IN_PM1) 4653 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4654 4655 if (hflags & HF_DP_SAVED) 4656 hflags ^= HF_ACT_PM; 4657 } 4658 4659 if (!(hflags & HF_ACT_PM)) { 4660 pm = &cp->phys.pm0; 4661 newcmd = SCRIPTA_BA (np, pm0_data); 4662 } 4663 else { 4664 pm = &cp->phys.pm1; 4665 newcmd = SCRIPTA_BA (np, pm1_data); 4666 } 4667 4668 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4669 if (hflags != hflags0) 4670 OUTB (HF_PRT, hflags); 4671 4672 /* 4673 * fillin the phase mismatch context 4674 */ 4675 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4676 pm->sg.size = cpu_to_scr(rest); 4677 pm->ret = cpu_to_scr(nxtdsp); 4678 4679 /* 4680 * If we have a SWIDE, 4681 * - prepare the address to write the SWIDE from SCRIPTS, 4682 * - compute the SCRIPTS address to restart from, 4683 * - move current data pointer context by one byte. 4684 */ 4685 nxtdsp = SCRIPTA_BA (np, dispatch); 4686 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4687 (INB (nc_scntl2) & WSR)) { 4688 u32 tmp; 4689 4690 /* 4691 * Set up the table indirect for the MOVE 4692 * of the residual byte and adjust the data 4693 * pointer context. 4694 */ 4695 tmp = scr_to_cpu(pm->sg.addr); 4696 cp->phys.wresid.addr = cpu_to_scr(tmp); 4697 pm->sg.addr = cpu_to_scr(tmp + 1); 4698 tmp = scr_to_cpu(pm->sg.size); 4699 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4700 pm->sg.size = cpu_to_scr(tmp - 1); 4701 4702 /* 4703 * If only the residual byte is to be moved, 4704 * no PM context is needed. 4705 */ 4706 if ((tmp&0xffffff) == 1) 4707 newcmd = pm->ret; 4708 4709 /* 4710 * Prepare the address of SCRIPTS that will 4711 * move the residual byte to memory. 4712 */ 4713 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4714 } 4715 4716 if (DEBUG_FLAGS & DEBUG_PHASE) { 4717 PRINT_ADDR(cp); 4718 printf ("PM %x %x %x / %x %x %x.\n", 4719 hflags0, hflags, newcmd, 4720 (unsigned)scr_to_cpu(pm->sg.addr), 4721 (unsigned)scr_to_cpu(pm->sg.size), 4722 (unsigned)scr_to_cpu(pm->ret)); 4723 } 4724 4725 /* 4726 * Restart the SCRIPTS processor. 4727 */ 4728 OUTL (nc_temp, newcmd); 4729 OUTL_DSP (nxtdsp); 4730 return; 4731 4732 /* 4733 * Unexpected phase changes that occurs when the current phase 4734 * is not a DATA IN or DATA OUT phase are due to error conditions. 4735 * Such event may only happen when the SCRIPTS is using a 4736 * multibyte SCSI MOVE. 4737 * 4738 * Phase change Some possible cause 4739 * 4740 * COMMAND --> MSG IN SCSI parity error detected by target. 4741 * COMMAND --> STATUS Bad command or refused by target. 4742 * MSG OUT --> MSG IN Message rejected by target. 4743 * MSG OUT --> COMMAND Bogus target that discards extended 4744 * negotiation messages. 4745 * 4746 * The code below does not care of the new phase and so 4747 * trusts the target. Why to annoy it ? 4748 * If the interrupted phase is COMMAND phase, we restart at 4749 * dispatcher. 4750 * If a target does not get all the messages after selection, 4751 * the code assumes blindly that the target discards extended 4752 * messages and clears the negotiation status. 4753 * If the target does not want all our response to negotiation, 4754 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4755 * bloat for such a should_not_happen situation). 4756 * In all other situation, we reset the BUS. 4757 * Are these assumptions reasonnable ? (Wait and see ...) 4758 */ 4759 unexpected_phase: 4760 dsp -= 8; 4761 nxtdsp = 0; 4762 4763 switch (cmd & 7) { 4764 case 2: /* COMMAND phase */ 4765 nxtdsp = SCRIPTA_BA (np, dispatch); 4766 break; 4767 #if 0 4768 case 3: /* STATUS phase */ 4769 nxtdsp = SCRIPTA_BA (np, dispatch); 4770 break; 4771 #endif 4772 case 6: /* MSG OUT phase */ 4773 /* 4774 * If the device may want to use untagged when we want 4775 * tagged, we prepare an IDENTIFY without disc. granted, 4776 * since we will not be able to handle reselect. 4777 * Otherwise, we just don't care. 4778 */ 4779 if (dsp == SCRIPTA_BA (np, send_ident)) { 4780 if (cp->tag != NO_TAG && olen - rest <= 3) { 4781 cp->host_status = HS_BUSY; 4782 np->msgout[0] = M_IDENTIFY | cp->lun; 4783 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4784 } 4785 else 4786 nxtdsp = SCRIPTB_BA (np, ident_break); 4787 } 4788 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4789 dsp == SCRIPTB_BA (np, send_sdtr) || 4790 dsp == SCRIPTB_BA (np, send_ppr)) { 4791 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4792 } 4793 break; 4794 #if 0 4795 case 7: /* MSG IN phase */ 4796 nxtdsp = SCRIPTA_BA (np, clrack); 4797 break; 4798 #endif 4799 } 4800 4801 if (nxtdsp) { 4802 OUTL_DSP (nxtdsp); 4803 return; 4804 } 4805 4806 reset_all: 4807 sym_start_reset(np); 4808 } 4809 4810 /* 4811 * Dequeue from the START queue all CCBs that match 4812 * a given target/lun/task condition (-1 means all), 4813 * and move them from the BUSY queue to the COMP queue 4814 * with CAM_REQUEUE_REQ status condition. 4815 * This function is used during error handling/recovery. 4816 * It is called with SCRIPTS not running. 4817 */ 4818 static int 4819 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4820 { 4821 int j; 4822 ccb_p cp; 4823 4824 /* 4825 * Make sure the starting index is within range. 4826 */ 4827 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4828 4829 /* 4830 * Walk until end of START queue and dequeue every job 4831 * that matches the target/lun/task condition. 4832 */ 4833 j = i; 4834 while (i != np->squeueput) { 4835 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4836 assert(cp); 4837 #ifdef SYM_CONF_IARB_SUPPORT 4838 /* Forget hints for IARB, they may be no longer relevant */ 4839 cp->host_flags &= ~HF_HINT_IARB; 4840 #endif 4841 if ((target == -1 || cp->target == target) && 4842 (lun == -1 || cp->lun == lun) && 4843 (task == -1 || cp->tag == task)) { 4844 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4845 sym_remque(&cp->link_ccbq); 4846 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4847 } 4848 else { 4849 if (i != j) 4850 np->squeue[j] = np->squeue[i]; 4851 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4852 } 4853 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4854 } 4855 if (i != j) /* Copy back the idle task if needed */ 4856 np->squeue[j] = np->squeue[i]; 4857 np->squeueput = j; /* Update our current start queue pointer */ 4858 4859 return (i - j) / 2; 4860 } 4861 4862 /* 4863 * Complete all CCBs queued to the COMP queue. 4864 * 4865 * These CCBs are assumed: 4866 * - Not to be referenced either by devices or 4867 * SCRIPTS-related queues and datas. 4868 * - To have to be completed with an error condition 4869 * or requeued. 4870 * 4871 * The device queue freeze count is incremented 4872 * for each CCB that does not prevent this. 4873 * This function is called when all CCBs involved 4874 * in error handling/recovery have been reaped. 4875 */ 4876 static void 4877 sym_flush_comp_queue(hcb_p np, int cam_status) 4878 { 4879 SYM_QUEHEAD *qp; 4880 ccb_p cp; 4881 4882 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { 4883 union ccb *ccb; 4884 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4885 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4886 /* Leave quiet CCBs waiting for resources */ 4887 if (cp->host_status == HS_WAIT) 4888 continue; 4889 ccb = cp->cam_ccb; 4890 if (cam_status) 4891 sym_set_cam_status(ccb, cam_status); 4892 sym_free_ccb(np, cp); 4893 sym_freeze_cam_ccb(ccb); 4894 sym_xpt_done(np, ccb); 4895 } 4896 } 4897 4898 /* 4899 * chip handler for bad SCSI status condition 4900 * 4901 * In case of bad SCSI status, we unqueue all the tasks 4902 * currently queued to the controller but not yet started 4903 * and then restart the SCRIPTS processor immediately. 4904 * 4905 * QUEUE FULL and BUSY conditions are handled the same way. 4906 * Basically all the not yet started tasks are requeued in 4907 * device queue and the queue is frozen until a completion. 4908 * 4909 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4910 * the CCB of the failed command to prepare a REQUEST SENSE 4911 * SCSI command and queue it to the controller queue. 4912 * 4913 * SCRATCHA is assumed to have been loaded with STARTPOS 4914 * before the SCRIPTS called the C code. 4915 */ 4916 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4917 { 4918 tcb_p tp = &np->target[cp->target]; 4919 u32 startp; 4920 u_char s_status = cp->ssss_status; 4921 u_char h_flags = cp->host_flags; 4922 int msglen; 4923 int nego; 4924 int i; 4925 4926 /* 4927 * Compute the index of the next job to start from SCRIPTS. 4928 */ 4929 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4930 4931 /* 4932 * The last CCB queued used for IARB hint may be 4933 * no longer relevant. Forget it. 4934 */ 4935 #ifdef SYM_CONF_IARB_SUPPORT 4936 if (np->last_cp) 4937 np->last_cp = 0; 4938 #endif 4939 4940 /* 4941 * Now deal with the SCSI status. 4942 */ 4943 switch(s_status) { 4944 case S_BUSY: 4945 case S_QUEUE_FULL: 4946 if (sym_verbose >= 2) { 4947 PRINT_ADDR(cp); 4948 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4949 } 4950 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4951 sym_complete_error (np, cp); 4952 break; 4953 case S_TERMINATED: 4954 case S_CHECK_COND: 4955 /* 4956 * If we get an SCSI error when requesting sense, give up. 4957 */ 4958 if (h_flags & HF_SENSE) { 4959 sym_complete_error (np, cp); 4960 break; 4961 } 4962 4963 /* 4964 * Dequeue all queued CCBs for that device not yet started, 4965 * and restart the SCRIPTS processor immediately. 4966 */ 4967 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4968 OUTL_DSP (SCRIPTA_BA (np, start)); 4969 4970 /* 4971 * Save some info of the actual IO. 4972 * Compute the data residual. 4973 */ 4974 cp->sv_scsi_status = cp->ssss_status; 4975 cp->sv_xerr_status = cp->xerr_status; 4976 cp->sv_resid = sym_compute_residual(np, cp); 4977 4978 /* 4979 * Prepare all needed data structures for 4980 * requesting sense data. 4981 */ 4982 4983 /* 4984 * identify message 4985 */ 4986 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4987 msglen = 1; 4988 4989 /* 4990 * If we are currently using anything different from 4991 * async. 8 bit data transfers with that target, 4992 * start a negotiation, since the device may want 4993 * to report us a UNIT ATTENTION condition due to 4994 * a cause we currently ignore, and we donnot want 4995 * to be stuck with WIDE and/or SYNC data transfer. 4996 * 4997 * cp->nego_status is filled by sym_prepare_nego(). 4998 */ 4999 cp->nego_status = 0; 5000 nego = 0; 5001 if (tp->tinfo.current.options & PPR_OPT_MASK) 5002 nego = NS_PPR; 5003 else if (tp->tinfo.current.width != BUS_8_BIT) 5004 nego = NS_WIDE; 5005 else if (tp->tinfo.current.offset != 0) 5006 nego = NS_SYNC; 5007 if (nego) 5008 msglen += 5009 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 5010 /* 5011 * Message table indirect structure. 5012 */ 5013 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 5014 cp->phys.smsg.size = cpu_to_scr(msglen); 5015 5016 /* 5017 * sense command 5018 */ 5019 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 5020 cp->phys.cmd.size = cpu_to_scr(6); 5021 5022 /* 5023 * patch requested size into sense command 5024 */ 5025 cp->sensecmd[0] = 0x03; 5026 cp->sensecmd[1] = cp->lun << 5; 5027 #ifdef FreeBSD_New_Tran_Settings 5028 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 5029 cp->sensecmd[1] = 0; 5030 #endif 5031 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 5032 cp->data_len = SYM_SNS_BBUF_LEN; 5033 5034 /* 5035 * sense data 5036 */ 5037 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 5038 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 5039 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 5040 5041 /* 5042 * requeue the command. 5043 */ 5044 startp = SCRIPTB_BA (np, sdata_in); 5045 5046 cp->phys.head.savep = cpu_to_scr(startp); 5047 cp->phys.head.goalp = cpu_to_scr(startp + 16); 5048 cp->phys.head.lastp = cpu_to_scr(startp); 5049 cp->startp = cpu_to_scr(startp); 5050 5051 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 5052 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 5053 cp->ssss_status = S_ILLEGAL; 5054 cp->host_flags = (HF_SENSE|HF_DATA_IN); 5055 cp->xerr_status = 0; 5056 cp->extra_bytes = 0; 5057 5058 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 5059 5060 /* 5061 * Requeue the command. 5062 */ 5063 sym_put_start_queue(np, cp); 5064 5065 /* 5066 * Give back to upper layer everything we have dequeued. 5067 */ 5068 sym_flush_comp_queue(np, 0); 5069 break; 5070 } 5071 } 5072 5073 /* 5074 * After a device has accepted some management message 5075 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 5076 * a device signals a UNIT ATTENTION condition, some 5077 * tasks are thrown away by the device. We are required 5078 * to reflect that on our tasks list since the device 5079 * will never complete these tasks. 5080 * 5081 * This function move from the BUSY queue to the COMP 5082 * queue all disconnected CCBs for a given target that 5083 * match the following criteria: 5084 * - lun=-1 means any logical UNIT otherwise a given one. 5085 * - task=-1 means any task, otherwise a given one. 5086 */ 5087 static int 5088 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 5089 { 5090 SYM_QUEHEAD qtmp, *qp; 5091 int i = 0; 5092 ccb_p cp; 5093 5094 /* 5095 * Move the entire BUSY queue to our temporary queue. 5096 */ 5097 sym_que_init(&qtmp); 5098 sym_que_splice(&np->busy_ccbq, &qtmp); 5099 sym_que_init(&np->busy_ccbq); 5100 5101 /* 5102 * Put all CCBs that matches our criteria into 5103 * the COMP queue and put back other ones into 5104 * the BUSY queue. 5105 */ 5106 while ((qp = sym_remque_head(&qtmp)) != 0) { 5107 union ccb *ccb; 5108 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5109 ccb = cp->cam_ccb; 5110 if (cp->host_status != HS_DISCONNECT || 5111 cp->target != target || 5112 (lun != -1 && cp->lun != lun) || 5113 (task != -1 && 5114 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 5115 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 5116 continue; 5117 } 5118 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 5119 5120 /* Preserve the software timeout condition */ 5121 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 5122 sym_set_cam_status(ccb, cam_status); 5123 ++i; 5124 #if 0 5125 printf("XXXX TASK @%p CLEARED\n", cp); 5126 #endif 5127 } 5128 return i; 5129 } 5130 5131 /* 5132 * chip handler for TASKS recovery 5133 * 5134 * We cannot safely abort a command, while the SCRIPTS 5135 * processor is running, since we just would be in race 5136 * with it. 5137 * 5138 * As long as we have tasks to abort, we keep the SEM 5139 * bit set in the ISTAT. When this bit is set, the 5140 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 5141 * each time it enters the scheduler. 5142 * 5143 * If we have to reset a target, clear tasks of a unit, 5144 * or to perform the abort of a disconnected job, we 5145 * restart the SCRIPTS for selecting the target. Once 5146 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 5147 * If it loses arbitration, the SCRIPTS will interrupt again 5148 * the next time it will enter its scheduler, and so on ... 5149 * 5150 * On SIR_TARGET_SELECTED, we scan for the more 5151 * appropriate thing to do: 5152 * 5153 * - If nothing, we just sent a M_ABORT message to the 5154 * target to get rid of the useless SCSI bus ownership. 5155 * According to the specs, no tasks shall be affected. 5156 * - If the target is to be reset, we send it a M_RESET 5157 * message. 5158 * - If a logical UNIT is to be cleared , we send the 5159 * IDENTIFY(lun) + M_ABORT. 5160 * - If an untagged task is to be aborted, we send the 5161 * IDENTIFY(lun) + M_ABORT. 5162 * - If a tagged task is to be aborted, we send the 5163 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 5164 * 5165 * Once our 'kiss of death' :) message has been accepted 5166 * by the target, the SCRIPTS interrupts again 5167 * (SIR_ABORT_SENT). On this interrupt, we complete 5168 * all the CCBs that should have been aborted by the 5169 * target according to our message. 5170 */ 5171 static void sym_sir_task_recovery(hcb_p np, int num) 5172 { 5173 SYM_QUEHEAD *qp; 5174 ccb_p cp; 5175 tcb_p tp; 5176 int target=-1, lun=-1, task; 5177 int i, k; 5178 5179 switch(num) { 5180 /* 5181 * The SCRIPTS processor stopped before starting 5182 * the next command in order to allow us to perform 5183 * some task recovery. 5184 */ 5185 case SIR_SCRIPT_STOPPED: 5186 /* 5187 * Do we have any target to reset or unit to clear ? 5188 */ 5189 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 5190 tp = &np->target[i]; 5191 if (tp->to_reset || 5192 (tp->lun0p && tp->lun0p->to_clear)) { 5193 target = i; 5194 break; 5195 } 5196 if (!tp->lunmp) 5197 continue; 5198 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5199 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5200 target = i; 5201 break; 5202 } 5203 } 5204 if (target != -1) 5205 break; 5206 } 5207 5208 /* 5209 * If not, walk the busy queue for any 5210 * disconnected CCB to be aborted. 5211 */ 5212 if (target == -1) { 5213 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5214 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 5215 if (cp->host_status != HS_DISCONNECT) 5216 continue; 5217 if (cp->to_abort) { 5218 target = cp->target; 5219 break; 5220 } 5221 } 5222 } 5223 5224 /* 5225 * If some target is to be selected, 5226 * prepare and start the selection. 5227 */ 5228 if (target != -1) { 5229 tp = &np->target[target]; 5230 np->abrt_sel.sel_id = target; 5231 np->abrt_sel.sel_scntl3 = tp->head.wval; 5232 np->abrt_sel.sel_sxfer = tp->head.sval; 5233 OUTL(nc_dsa, np->hcb_ba); 5234 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 5235 return; 5236 } 5237 5238 /* 5239 * Now look for a CCB to abort that haven't started yet. 5240 * Btw, the SCRIPTS processor is still stopped, so 5241 * we are not in race. 5242 */ 5243 i = 0; 5244 cp = 0; 5245 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5246 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5247 if (cp->host_status != HS_BUSY && 5248 cp->host_status != HS_NEGOTIATE) 5249 continue; 5250 if (!cp->to_abort) 5251 continue; 5252 #ifdef SYM_CONF_IARB_SUPPORT 5253 /* 5254 * If we are using IMMEDIATE ARBITRATION, we donnot 5255 * want to cancel the last queued CCB, since the 5256 * SCRIPTS may have anticipated the selection. 5257 */ 5258 if (cp == np->last_cp) { 5259 cp->to_abort = 0; 5260 continue; 5261 } 5262 #endif 5263 i = 1; /* Means we have found some */ 5264 break; 5265 } 5266 if (!i) { 5267 /* 5268 * We are done, so we donnot need 5269 * to synchronize with the SCRIPTS anylonger. 5270 * Remove the SEM flag from the ISTAT. 5271 */ 5272 np->istat_sem = 0; 5273 OUTB (nc_istat, SIGP); 5274 break; 5275 } 5276 /* 5277 * Compute index of next position in the start 5278 * queue the SCRIPTS intends to start and dequeue 5279 * all CCBs for that device that haven't been started. 5280 */ 5281 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5282 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5283 5284 /* 5285 * Make sure at least our IO to abort has been dequeued. 5286 */ 5287 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5288 5289 /* 5290 * Keep track in cam status of the reason of the abort. 5291 */ 5292 if (cp->to_abort == 2) 5293 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5294 else 5295 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5296 5297 /* 5298 * Complete with error everything that we have dequeued. 5299 */ 5300 sym_flush_comp_queue(np, 0); 5301 break; 5302 /* 5303 * The SCRIPTS processor has selected a target 5304 * we may have some manual recovery to perform for. 5305 */ 5306 case SIR_TARGET_SELECTED: 5307 target = (INB (nc_sdid) & 0xf); 5308 tp = &np->target[target]; 5309 5310 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5311 5312 /* 5313 * If the target is to be reset, prepare a 5314 * M_RESET message and clear the to_reset flag 5315 * since we donnot expect this operation to fail. 5316 */ 5317 if (tp->to_reset) { 5318 np->abrt_msg[0] = M_RESET; 5319 np->abrt_tbl.size = 1; 5320 tp->to_reset = 0; 5321 break; 5322 } 5323 5324 /* 5325 * Otherwise, look for some logical unit to be cleared. 5326 */ 5327 if (tp->lun0p && tp->lun0p->to_clear) 5328 lun = 0; 5329 else if (tp->lunmp) { 5330 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5331 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5332 lun = k; 5333 break; 5334 } 5335 } 5336 } 5337 5338 /* 5339 * If a logical unit is to be cleared, prepare 5340 * an IDENTIFY(lun) + ABORT MESSAGE. 5341 */ 5342 if (lun != -1) { 5343 lcb_p lp = sym_lp(np, tp, lun); 5344 lp->to_clear = 0; /* We donnot expect to fail here */ 5345 np->abrt_msg[0] = M_IDENTIFY | lun; 5346 np->abrt_msg[1] = M_ABORT; 5347 np->abrt_tbl.size = 2; 5348 break; 5349 } 5350 5351 /* 5352 * Otherwise, look for some disconnected job to 5353 * abort for this target. 5354 */ 5355 i = 0; 5356 cp = 0; 5357 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5358 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5359 if (cp->host_status != HS_DISCONNECT) 5360 continue; 5361 if (cp->target != target) 5362 continue; 5363 if (!cp->to_abort) 5364 continue; 5365 i = 1; /* Means we have some */ 5366 break; 5367 } 5368 5369 /* 5370 * If we have none, probably since the device has 5371 * completed the command before we won abitration, 5372 * send a M_ABORT message without IDENTIFY. 5373 * According to the specs, the device must just 5374 * disconnect the BUS and not abort any task. 5375 */ 5376 if (!i) { 5377 np->abrt_msg[0] = M_ABORT; 5378 np->abrt_tbl.size = 1; 5379 break; 5380 } 5381 5382 /* 5383 * We have some task to abort. 5384 * Set the IDENTIFY(lun) 5385 */ 5386 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5387 5388 /* 5389 * If we want to abort an untagged command, we 5390 * will send a IDENTIFY + M_ABORT. 5391 * Otherwise (tagged command), we will send 5392 * a IDENTITFY + task attributes + ABORT TAG. 5393 */ 5394 if (cp->tag == NO_TAG) { 5395 np->abrt_msg[1] = M_ABORT; 5396 np->abrt_tbl.size = 2; 5397 } 5398 else { 5399 np->abrt_msg[1] = cp->scsi_smsg[1]; 5400 np->abrt_msg[2] = cp->scsi_smsg[2]; 5401 np->abrt_msg[3] = M_ABORT_TAG; 5402 np->abrt_tbl.size = 4; 5403 } 5404 /* 5405 * Keep track of software timeout condition, since the 5406 * peripheral driver may not count retries on abort 5407 * conditions not due to timeout. 5408 */ 5409 if (cp->to_abort == 2) 5410 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5411 cp->to_abort = 0; /* We donnot expect to fail here */ 5412 break; 5413 5414 /* 5415 * The target has accepted our message and switched 5416 * to BUS FREE phase as we expected. 5417 */ 5418 case SIR_ABORT_SENT: 5419 target = (INB (nc_sdid) & 0xf); 5420 tp = &np->target[target]; 5421 5422 /* 5423 ** If we didn't abort anything, leave here. 5424 */ 5425 if (np->abrt_msg[0] == M_ABORT) 5426 break; 5427 5428 /* 5429 * If we sent a M_RESET, then a hardware reset has 5430 * been performed by the target. 5431 * - Reset everything to async 8 bit 5432 * - Tell ourself to negotiate next time :-) 5433 * - Prepare to clear all disconnected CCBs for 5434 * this target from our task list (lun=task=-1) 5435 */ 5436 lun = -1; 5437 task = -1; 5438 if (np->abrt_msg[0] == M_RESET) { 5439 tp->head.sval = 0; 5440 tp->head.wval = np->rv_scntl3; 5441 tp->head.uval = 0; 5442 tp->tinfo.current.period = 0; 5443 tp->tinfo.current.offset = 0; 5444 tp->tinfo.current.width = BUS_8_BIT; 5445 tp->tinfo.current.options = 0; 5446 } 5447 5448 /* 5449 * Otherwise, check for the LUN and TASK(s) 5450 * concerned by the cancelation. 5451 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5452 * or an ABORT message :-) 5453 */ 5454 else { 5455 lun = np->abrt_msg[0] & 0x3f; 5456 if (np->abrt_msg[1] == M_ABORT_TAG) 5457 task = np->abrt_msg[2]; 5458 } 5459 5460 /* 5461 * Complete all the CCBs the device should have 5462 * aborted due to our 'kiss of death' message. 5463 */ 5464 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5465 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5466 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5467 sym_flush_comp_queue(np, 0); 5468 5469 /* 5470 * If we sent a BDR, make uper layer aware of that. 5471 */ 5472 if (np->abrt_msg[0] == M_RESET) 5473 xpt_async(AC_SENT_BDR, np->path, NULL); 5474 break; 5475 } 5476 5477 /* 5478 * Print to the log the message we intend to send. 5479 */ 5480 if (num == SIR_TARGET_SELECTED) { 5481 PRINT_TARGET(np, target); 5482 sym_printl_hex("control msgout:", np->abrt_msg, 5483 np->abrt_tbl.size); 5484 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5485 } 5486 5487 /* 5488 * Let the SCRIPTS processor continue. 5489 */ 5490 OUTONB_STD (); 5491 } 5492 5493 /* 5494 * Gerard's alchemy:) that deals with with the data 5495 * pointer for both MDP and the residual calculation. 5496 * 5497 * I didn't want to bloat the code by more than 200 5498 * lignes for the handling of both MDP and the residual. 5499 * This has been achieved by using a data pointer 5500 * representation consisting in an index in the data 5501 * array (dp_sg) and a negative offset (dp_ofs) that 5502 * have the following meaning: 5503 * 5504 * - dp_sg = SYM_CONF_MAX_SG 5505 * we are at the end of the data script. 5506 * - dp_sg < SYM_CONF_MAX_SG 5507 * dp_sg points to the next entry of the scatter array 5508 * we want to transfer. 5509 * - dp_ofs < 0 5510 * dp_ofs represents the residual of bytes of the 5511 * previous entry scatter entry we will send first. 5512 * - dp_ofs = 0 5513 * no residual to send first. 5514 * 5515 * The function sym_evaluate_dp() accepts an arbitray 5516 * offset (basically from the MDP message) and returns 5517 * the corresponding values of dp_sg and dp_ofs. 5518 */ 5519 5520 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5521 { 5522 u32 dp_scr; 5523 int dp_ofs, dp_sg, dp_sgmin; 5524 int tmp; 5525 struct sym_pmc *pm; 5526 5527 /* 5528 * Compute the resulted data pointer in term of a script 5529 * address within some DATA script and a signed byte offset. 5530 */ 5531 dp_scr = scr; 5532 dp_ofs = *ofs; 5533 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5534 pm = &cp->phys.pm0; 5535 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5536 pm = &cp->phys.pm1; 5537 else 5538 pm = 0; 5539 5540 if (pm) { 5541 dp_scr = scr_to_cpu(pm->ret); 5542 dp_ofs -= scr_to_cpu(pm->sg.size); 5543 } 5544 5545 /* 5546 * If we are auto-sensing, then we are done. 5547 */ 5548 if (cp->host_flags & HF_SENSE) { 5549 *ofs = dp_ofs; 5550 return 0; 5551 } 5552 5553 /* 5554 * Deduce the index of the sg entry. 5555 * Keep track of the index of the first valid entry. 5556 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5557 * end of the data. 5558 */ 5559 tmp = scr_to_cpu(cp->phys.head.goalp); 5560 dp_sg = SYM_CONF_MAX_SG; 5561 if (dp_scr != tmp) 5562 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5563 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5564 5565 /* 5566 * Move to the sg entry the data pointer belongs to. 5567 * 5568 * If we are inside the data area, we expect result to be: 5569 * 5570 * Either, 5571 * dp_ofs = 0 and dp_sg is the index of the sg entry 5572 * the data pointer belongs to (or the end of the data) 5573 * Or, 5574 * dp_ofs < 0 and dp_sg is the index of the sg entry 5575 * the data pointer belongs to + 1. 5576 */ 5577 if (dp_ofs < 0) { 5578 int n; 5579 while (dp_sg > dp_sgmin) { 5580 --dp_sg; 5581 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5582 n = dp_ofs + (tmp & 0xffffff); 5583 if (n > 0) { 5584 ++dp_sg; 5585 break; 5586 } 5587 dp_ofs = n; 5588 } 5589 } 5590 else if (dp_ofs > 0) { 5591 while (dp_sg < SYM_CONF_MAX_SG) { 5592 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5593 dp_ofs -= (tmp & 0xffffff); 5594 ++dp_sg; 5595 if (dp_ofs <= 0) 5596 break; 5597 } 5598 } 5599 5600 /* 5601 * Make sure the data pointer is inside the data area. 5602 * If not, return some error. 5603 */ 5604 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5605 goto out_err; 5606 else if (dp_sg > SYM_CONF_MAX_SG || 5607 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5608 goto out_err; 5609 5610 /* 5611 * Save the extreme pointer if needed. 5612 */ 5613 if (dp_sg > cp->ext_sg || 5614 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5615 cp->ext_sg = dp_sg; 5616 cp->ext_ofs = dp_ofs; 5617 } 5618 5619 /* 5620 * Return data. 5621 */ 5622 *ofs = dp_ofs; 5623 return dp_sg; 5624 5625 out_err: 5626 return -1; 5627 } 5628 5629 /* 5630 * chip handler for MODIFY DATA POINTER MESSAGE 5631 * 5632 * We also call this function on IGNORE WIDE RESIDUE 5633 * messages that do not match a SWIDE full condition. 5634 * Btw, we assume in that situation that such a message 5635 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5636 */ 5637 5638 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5639 { 5640 int dp_ofs = ofs; 5641 u32 dp_scr = INL (nc_temp); 5642 u32 dp_ret; 5643 u32 tmp; 5644 u_char hflags; 5645 int dp_sg; 5646 struct sym_pmc *pm; 5647 5648 /* 5649 * Not supported for auto-sense. 5650 */ 5651 if (cp->host_flags & HF_SENSE) 5652 goto out_reject; 5653 5654 /* 5655 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5656 * to the resulted data pointer. 5657 */ 5658 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5659 if (dp_sg < 0) 5660 goto out_reject; 5661 5662 /* 5663 * And our alchemy:) allows to easily calculate the data 5664 * script address we want to return for the next data phase. 5665 */ 5666 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5667 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5668 5669 /* 5670 * If offset / scatter entry is zero we donnot need 5671 * a context for the new current data pointer. 5672 */ 5673 if (dp_ofs == 0) { 5674 dp_scr = dp_ret; 5675 goto out_ok; 5676 } 5677 5678 /* 5679 * Get a context for the new current data pointer. 5680 */ 5681 hflags = INB (HF_PRT); 5682 5683 if (hflags & HF_DP_SAVED) 5684 hflags ^= HF_ACT_PM; 5685 5686 if (!(hflags & HF_ACT_PM)) { 5687 pm = &cp->phys.pm0; 5688 dp_scr = SCRIPTA_BA (np, pm0_data); 5689 } 5690 else { 5691 pm = &cp->phys.pm1; 5692 dp_scr = SCRIPTA_BA (np, pm1_data); 5693 } 5694 5695 hflags &= ~(HF_DP_SAVED); 5696 5697 OUTB (HF_PRT, hflags); 5698 5699 /* 5700 * Set up the new current data pointer. 5701 * ofs < 0 there, and for the next data phase, we 5702 * want to transfer part of the data of the sg entry 5703 * corresponding to index dp_sg-1 prior to returning 5704 * to the main data script. 5705 */ 5706 pm->ret = cpu_to_scr(dp_ret); 5707 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5708 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5709 pm->sg.addr = cpu_to_scr(tmp); 5710 pm->sg.size = cpu_to_scr(-dp_ofs); 5711 5712 out_ok: 5713 OUTL (nc_temp, dp_scr); 5714 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5715 return; 5716 5717 out_reject: 5718 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5719 } 5720 5721 5722 /* 5723 * chip calculation of the data residual. 5724 * 5725 * As I used to say, the requirement of data residual 5726 * in SCSI is broken, useless and cannot be achieved 5727 * without huge complexity. 5728 * But most OSes and even the official CAM require it. 5729 * When stupidity happens to be so widely spread inside 5730 * a community, it gets hard to convince. 5731 * 5732 * Anyway, I don't care, since I am not going to use 5733 * any software that considers this data residual as 5734 * a relevant information. :) 5735 */ 5736 5737 static int sym_compute_residual(hcb_p np, ccb_p cp) 5738 { 5739 int dp_sg, dp_sgmin, resid = 0; 5740 int dp_ofs = 0; 5741 5742 /* 5743 * Check for some data lost or just thrown away. 5744 * We are not required to be quite accurate in this 5745 * situation. Btw, if we are odd for output and the 5746 * device claims some more data, it may well happen 5747 * than our residual be zero. :-) 5748 */ 5749 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5750 if (cp->xerr_status & XE_EXTRA_DATA) 5751 resid -= cp->extra_bytes; 5752 if (cp->xerr_status & XE_SODL_UNRUN) 5753 ++resid; 5754 if (cp->xerr_status & XE_SWIDE_OVRUN) 5755 --resid; 5756 } 5757 5758 /* 5759 * If all data has been transferred, 5760 * there is no residual. 5761 */ 5762 if (cp->phys.head.lastp == cp->phys.head.goalp) 5763 return resid; 5764 5765 /* 5766 * If no data transfer occurs, or if the data 5767 * pointer is weird, return full residual. 5768 */ 5769 if (cp->startp == cp->phys.head.lastp || 5770 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5771 &dp_ofs) < 0) { 5772 return cp->data_len; 5773 } 5774 5775 /* 5776 * If we were auto-sensing, then we are done. 5777 */ 5778 if (cp->host_flags & HF_SENSE) { 5779 return -dp_ofs; 5780 } 5781 5782 /* 5783 * We are now full comfortable in the computation 5784 * of the data residual (2's complement). 5785 */ 5786 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5787 resid = -cp->ext_ofs; 5788 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5789 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5790 resid += (tmp & 0xffffff); 5791 } 5792 5793 /* 5794 * Hopefully, the result is not too wrong. 5795 */ 5796 return resid; 5797 } 5798 5799 /* 5800 * Print out the content of a SCSI message. 5801 */ 5802 5803 static int sym_show_msg (u_char * msg) 5804 { 5805 u_char i; 5806 printf ("%x",*msg); 5807 if (*msg==M_EXTENDED) { 5808 for (i=1;i<8;i++) { 5809 if (i-1>msg[1]) break; 5810 printf ("-%x",msg[i]); 5811 }; 5812 return (i+1); 5813 } else if ((*msg & 0xf0) == 0x20) { 5814 printf ("-%x",msg[1]); 5815 return (2); 5816 }; 5817 return (1); 5818 } 5819 5820 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5821 { 5822 PRINT_ADDR(cp); 5823 if (label) 5824 printf ("%s: ", label); 5825 5826 (void) sym_show_msg (msg); 5827 printf (".\n"); 5828 } 5829 5830 /* 5831 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5832 * 5833 * When we try to negotiate, we append the negotiation message 5834 * to the identify and (maybe) simple tag message. 5835 * The host status field is set to HS_NEGOTIATE to mark this 5836 * situation. 5837 * 5838 * If the target doesn't answer this message immediately 5839 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5840 * will be raised eventually. 5841 * The handler removes the HS_NEGOTIATE status, and sets the 5842 * negotiated value to the default (async / nowide). 5843 * 5844 * If we receive a matching answer immediately, we check it 5845 * for validity, and set the values. 5846 * 5847 * If we receive a Reject message immediately, we assume the 5848 * negotiation has failed, and fall back to standard values. 5849 * 5850 * If we receive a negotiation message while not in HS_NEGOTIATE 5851 * state, it's a target initiated negotiation. We prepare a 5852 * (hopefully) valid answer, set our parameters, and send back 5853 * this answer to the target. 5854 * 5855 * If the target doesn't fetch the answer (no message out phase), 5856 * we assume the negotiation has failed, and fall back to default 5857 * settings (SIR_NEGO_PROTO interrupt). 5858 * 5859 * When we set the values, we adjust them in all ccbs belonging 5860 * to this target, in the controller's register, and in the "phys" 5861 * field of the controller's struct sym_hcb. 5862 */ 5863 5864 /* 5865 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5866 */ 5867 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5868 { 5869 u_char chg, ofs, per, fak, div; 5870 int req = 1; 5871 5872 /* 5873 * Synchronous request message received. 5874 */ 5875 if (DEBUG_FLAGS & DEBUG_NEGO) { 5876 sym_print_msg(cp, "sync msgin", np->msgin); 5877 }; 5878 5879 /* 5880 * request or answer ? 5881 */ 5882 if (INB (HS_PRT) == HS_NEGOTIATE) { 5883 OUTB (HS_PRT, HS_BUSY); 5884 if (cp->nego_status && cp->nego_status != NS_SYNC) 5885 goto reject_it; 5886 req = 0; 5887 } 5888 5889 /* 5890 * get requested values. 5891 */ 5892 chg = 0; 5893 per = np->msgin[3]; 5894 ofs = np->msgin[4]; 5895 5896 /* 5897 * check values against our limits. 5898 */ 5899 if (ofs) { 5900 if (ofs > np->maxoffs) 5901 {chg = 1; ofs = np->maxoffs;} 5902 if (req) { 5903 if (ofs > tp->tinfo.user.offset) 5904 {chg = 1; ofs = tp->tinfo.user.offset;} 5905 } 5906 } 5907 5908 if (ofs) { 5909 if (per < np->minsync) 5910 {chg = 1; per = np->minsync;} 5911 if (req) { 5912 if (per < tp->tinfo.user.period) 5913 {chg = 1; per = tp->tinfo.user.period;} 5914 } 5915 } 5916 5917 div = fak = 0; 5918 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5919 goto reject_it; 5920 5921 if (DEBUG_FLAGS & DEBUG_NEGO) { 5922 PRINT_ADDR(cp); 5923 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5924 ofs, per, div, fak, chg); 5925 } 5926 5927 /* 5928 * This was an answer message 5929 */ 5930 if (req == 0) { 5931 if (chg) /* Answer wasn't acceptable. */ 5932 goto reject_it; 5933 sym_setsync (np, cp, ofs, per, div, fak); 5934 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5935 return; 5936 } 5937 5938 /* 5939 * It was a request. Set value and 5940 * prepare an answer message 5941 */ 5942 sym_setsync (np, cp, ofs, per, div, fak); 5943 5944 np->msgout[0] = M_EXTENDED; 5945 np->msgout[1] = 3; 5946 np->msgout[2] = M_X_SYNC_REQ; 5947 np->msgout[3] = per; 5948 np->msgout[4] = ofs; 5949 5950 cp->nego_status = NS_SYNC; 5951 5952 if (DEBUG_FLAGS & DEBUG_NEGO) { 5953 sym_print_msg(cp, "sync msgout", np->msgout); 5954 } 5955 5956 np->msgin [0] = M_NOOP; 5957 5958 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5959 return; 5960 reject_it: 5961 sym_setsync (np, cp, 0, 0, 0, 0); 5962 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5963 } 5964 5965 /* 5966 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5967 */ 5968 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5969 { 5970 u_char chg, ofs, per, fak, dt, div, wide; 5971 int req = 1; 5972 5973 /* 5974 * Synchronous request message received. 5975 */ 5976 if (DEBUG_FLAGS & DEBUG_NEGO) { 5977 sym_print_msg(cp, "ppr msgin", np->msgin); 5978 }; 5979 5980 /* 5981 * get requested values. 5982 */ 5983 chg = 0; 5984 per = np->msgin[3]; 5985 ofs = np->msgin[5]; 5986 wide = np->msgin[6]; 5987 dt = np->msgin[7] & PPR_OPT_DT; 5988 5989 /* 5990 * request or answer ? 5991 */ 5992 if (INB (HS_PRT) == HS_NEGOTIATE) { 5993 OUTB (HS_PRT, HS_BUSY); 5994 if (cp->nego_status && cp->nego_status != NS_PPR) 5995 goto reject_it; 5996 req = 0; 5997 } 5998 5999 /* 6000 * check values against our limits. 6001 */ 6002 if (wide > np->maxwide) 6003 {chg = 1; wide = np->maxwide;} 6004 if (!wide || !(np->features & FE_ULTRA3)) 6005 dt &= ~PPR_OPT_DT; 6006 if (req) { 6007 if (wide > tp->tinfo.user.width) 6008 {chg = 1; wide = tp->tinfo.user.width;} 6009 } 6010 6011 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 6012 dt &= ~PPR_OPT_DT; 6013 6014 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 6015 6016 if (ofs) { 6017 if (dt) { 6018 if (ofs > np->maxoffs_dt) 6019 {chg = 1; ofs = np->maxoffs_dt;} 6020 } 6021 else if (ofs > np->maxoffs) 6022 {chg = 1; ofs = np->maxoffs;} 6023 if (req) { 6024 if (ofs > tp->tinfo.user.offset) 6025 {chg = 1; ofs = tp->tinfo.user.offset;} 6026 } 6027 } 6028 6029 if (ofs) { 6030 if (dt) { 6031 if (per < np->minsync_dt) 6032 {chg = 1; per = np->minsync_dt;} 6033 } 6034 else if (per < np->minsync) 6035 {chg = 1; per = np->minsync;} 6036 if (req) { 6037 if (per < tp->tinfo.user.period) 6038 {chg = 1; per = tp->tinfo.user.period;} 6039 } 6040 } 6041 6042 div = fak = 0; 6043 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 6044 goto reject_it; 6045 6046 if (DEBUG_FLAGS & DEBUG_NEGO) { 6047 PRINT_ADDR(cp); 6048 printf ("ppr: " 6049 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 6050 dt, ofs, per, wide, div, fak, chg); 6051 } 6052 6053 /* 6054 * It was an answer. 6055 */ 6056 if (req == 0) { 6057 if (chg) /* Answer wasn't acceptable */ 6058 goto reject_it; 6059 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 6060 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6061 return; 6062 } 6063 6064 /* 6065 * It was a request. Set value and 6066 * prepare an answer message 6067 */ 6068 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 6069 6070 np->msgout[0] = M_EXTENDED; 6071 np->msgout[1] = 6; 6072 np->msgout[2] = M_X_PPR_REQ; 6073 np->msgout[3] = per; 6074 np->msgout[4] = 0; 6075 np->msgout[5] = ofs; 6076 np->msgout[6] = wide; 6077 np->msgout[7] = dt; 6078 6079 cp->nego_status = NS_PPR; 6080 6081 if (DEBUG_FLAGS & DEBUG_NEGO) { 6082 sym_print_msg(cp, "ppr msgout", np->msgout); 6083 } 6084 6085 np->msgin [0] = M_NOOP; 6086 6087 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 6088 return; 6089 reject_it: 6090 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6091 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6092 /* 6093 * If it was a device response that should result in 6094 * ST, we may want to try a legacy negotiation later. 6095 */ 6096 if (!req && !dt) { 6097 tp->tinfo.goal.options = 0; 6098 tp->tinfo.goal.width = wide; 6099 tp->tinfo.goal.period = per; 6100 tp->tinfo.goal.offset = ofs; 6101 } 6102 return; 6103 } 6104 6105 /* 6106 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 6107 */ 6108 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 6109 { 6110 u_char chg, wide; 6111 int req = 1; 6112 6113 /* 6114 * Wide request message received. 6115 */ 6116 if (DEBUG_FLAGS & DEBUG_NEGO) { 6117 sym_print_msg(cp, "wide msgin", np->msgin); 6118 }; 6119 6120 /* 6121 * Is it an request from the device? 6122 */ 6123 if (INB (HS_PRT) == HS_NEGOTIATE) { 6124 OUTB (HS_PRT, HS_BUSY); 6125 if (cp->nego_status && cp->nego_status != NS_WIDE) 6126 goto reject_it; 6127 req = 0; 6128 } 6129 6130 /* 6131 * get requested values. 6132 */ 6133 chg = 0; 6134 wide = np->msgin[3]; 6135 6136 /* 6137 * check values against driver limits. 6138 */ 6139 if (wide > np->maxwide) 6140 {chg = 1; wide = np->maxwide;} 6141 if (req) { 6142 if (wide > tp->tinfo.user.width) 6143 {chg = 1; wide = tp->tinfo.user.width;} 6144 } 6145 6146 if (DEBUG_FLAGS & DEBUG_NEGO) { 6147 PRINT_ADDR(cp); 6148 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 6149 } 6150 6151 /* 6152 * This was an answer message 6153 */ 6154 if (req == 0) { 6155 if (chg) /* Answer wasn't acceptable. */ 6156 goto reject_it; 6157 sym_setwide (np, cp, wide); 6158 6159 /* 6160 * Negotiate for SYNC immediately after WIDE response. 6161 * This allows to negotiate for both WIDE and SYNC on 6162 * a single SCSI command (Suggested by Justin Gibbs). 6163 */ 6164 if (tp->tinfo.goal.offset) { 6165 np->msgout[0] = M_EXTENDED; 6166 np->msgout[1] = 3; 6167 np->msgout[2] = M_X_SYNC_REQ; 6168 np->msgout[3] = tp->tinfo.goal.period; 6169 np->msgout[4] = tp->tinfo.goal.offset; 6170 6171 if (DEBUG_FLAGS & DEBUG_NEGO) { 6172 sym_print_msg(cp, "sync msgout", np->msgout); 6173 } 6174 6175 cp->nego_status = NS_SYNC; 6176 OUTB (HS_PRT, HS_NEGOTIATE); 6177 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 6178 return; 6179 } 6180 6181 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6182 return; 6183 }; 6184 6185 /* 6186 * It was a request, set value and 6187 * prepare an answer message 6188 */ 6189 sym_setwide (np, cp, wide); 6190 6191 np->msgout[0] = M_EXTENDED; 6192 np->msgout[1] = 2; 6193 np->msgout[2] = M_X_WIDE_REQ; 6194 np->msgout[3] = wide; 6195 6196 np->msgin [0] = M_NOOP; 6197 6198 cp->nego_status = NS_WIDE; 6199 6200 if (DEBUG_FLAGS & DEBUG_NEGO) { 6201 sym_print_msg(cp, "wide msgout", np->msgout); 6202 } 6203 6204 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 6205 return; 6206 reject_it: 6207 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6208 } 6209 6210 /* 6211 * Reset SYNC or WIDE to default settings. 6212 * 6213 * Called when a negotiation does not succeed either 6214 * on rejection or on protocol error. 6215 * 6216 * If it was a PPR that made problems, we may want to 6217 * try a legacy negotiation later. 6218 */ 6219 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 6220 { 6221 /* 6222 * any error in negotiation: 6223 * fall back to default mode. 6224 */ 6225 switch (cp->nego_status) { 6226 case NS_PPR: 6227 #if 0 6228 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6229 #else 6230 tp->tinfo.goal.options = 0; 6231 if (tp->tinfo.goal.period < np->minsync) 6232 tp->tinfo.goal.period = np->minsync; 6233 if (tp->tinfo.goal.offset > np->maxoffs) 6234 tp->tinfo.goal.offset = np->maxoffs; 6235 #endif 6236 break; 6237 case NS_SYNC: 6238 sym_setsync (np, cp, 0, 0, 0, 0); 6239 break; 6240 case NS_WIDE: 6241 sym_setwide (np, cp, 0); 6242 break; 6243 }; 6244 np->msgin [0] = M_NOOP; 6245 np->msgout[0] = M_NOOP; 6246 cp->nego_status = 0; 6247 } 6248 6249 /* 6250 * chip handler for MESSAGE REJECT received in response to 6251 * a WIDE or SYNCHRONOUS negotiation. 6252 */ 6253 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6254 { 6255 sym_nego_default(np, tp, cp); 6256 OUTB (HS_PRT, HS_BUSY); 6257 } 6258 6259 /* 6260 * chip exception handler for programmed interrupts. 6261 */ 6262 void sym_int_sir (hcb_p np) 6263 { 6264 u_char num = INB (nc_dsps); 6265 u32 dsa = INL (nc_dsa); 6266 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6267 u_char target = INB (nc_sdid) & 0x0f; 6268 tcb_p tp = &np->target[target]; 6269 int tmp; 6270 6271 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6272 6273 switch (num) { 6274 /* 6275 * Command has been completed with error condition 6276 * or has been auto-sensed. 6277 */ 6278 case SIR_COMPLETE_ERROR: 6279 sym_complete_error(np, cp); 6280 return; 6281 /* 6282 * The C code is currently trying to recover from something. 6283 * Typically, user want to abort some command. 6284 */ 6285 case SIR_SCRIPT_STOPPED: 6286 case SIR_TARGET_SELECTED: 6287 case SIR_ABORT_SENT: 6288 sym_sir_task_recovery(np, num); 6289 return; 6290 /* 6291 * The device didn't go to MSG OUT phase after having 6292 * been selected with ATN. We donnot want to handle 6293 * that. 6294 */ 6295 case SIR_SEL_ATN_NO_MSG_OUT: 6296 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6297 sym_name (np), target); 6298 goto out_stuck; 6299 /* 6300 * The device didn't switch to MSG IN phase after 6301 * having reseleted the initiator. 6302 */ 6303 case SIR_RESEL_NO_MSG_IN: 6304 printf ("%s:%d: No MSG IN phase after reselection.\n", 6305 sym_name (np), target); 6306 goto out_stuck; 6307 /* 6308 * After reselection, the device sent a message that wasn't 6309 * an IDENTIFY. 6310 */ 6311 case SIR_RESEL_NO_IDENTIFY: 6312 printf ("%s:%d: No IDENTIFY after reselection.\n", 6313 sym_name (np), target); 6314 goto out_stuck; 6315 /* 6316 * The device reselected a LUN we donnot know about. 6317 */ 6318 case SIR_RESEL_BAD_LUN: 6319 np->msgout[0] = M_RESET; 6320 goto out; 6321 /* 6322 * The device reselected for an untagged nexus and we 6323 * haven't any. 6324 */ 6325 case SIR_RESEL_BAD_I_T_L: 6326 np->msgout[0] = M_ABORT; 6327 goto out; 6328 /* 6329 * The device reselected for a tagged nexus that we donnot 6330 * have. 6331 */ 6332 case SIR_RESEL_BAD_I_T_L_Q: 6333 np->msgout[0] = M_ABORT_TAG; 6334 goto out; 6335 /* 6336 * The SCRIPTS let us know that the device has grabbed 6337 * our message and will abort the job. 6338 */ 6339 case SIR_RESEL_ABORTED: 6340 np->lastmsg = np->msgout[0]; 6341 np->msgout[0] = M_NOOP; 6342 printf ("%s:%d: message %x sent on bad reselection.\n", 6343 sym_name (np), target, np->lastmsg); 6344 goto out; 6345 /* 6346 * The SCRIPTS let us know that a message has been 6347 * successfully sent to the device. 6348 */ 6349 case SIR_MSG_OUT_DONE: 6350 np->lastmsg = np->msgout[0]; 6351 np->msgout[0] = M_NOOP; 6352 /* Should we really care of that */ 6353 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6354 if (cp) { 6355 cp->xerr_status &= ~XE_PARITY_ERR; 6356 if (!cp->xerr_status) 6357 OUTOFFB (HF_PRT, HF_EXT_ERR); 6358 } 6359 } 6360 goto out; 6361 /* 6362 * The device didn't send a GOOD SCSI status. 6363 * We may have some work to do prior to allow 6364 * the SCRIPTS processor to continue. 6365 */ 6366 case SIR_BAD_SCSI_STATUS: 6367 if (!cp) 6368 goto out; 6369 sym_sir_bad_scsi_status(np, num, cp); 6370 return; 6371 /* 6372 * We are asked by the SCRIPTS to prepare a 6373 * REJECT message. 6374 */ 6375 case SIR_REJECT_TO_SEND: 6376 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6377 np->msgout[0] = M_REJECT; 6378 goto out; 6379 /* 6380 * We have been ODD at the end of a DATA IN 6381 * transfer and the device didn't send a 6382 * IGNORE WIDE RESIDUE message. 6383 * It is a data overrun condition. 6384 */ 6385 case SIR_SWIDE_OVERRUN: 6386 if (cp) { 6387 OUTONB (HF_PRT, HF_EXT_ERR); 6388 cp->xerr_status |= XE_SWIDE_OVRUN; 6389 } 6390 goto out; 6391 /* 6392 * We have been ODD at the end of a DATA OUT 6393 * transfer. 6394 * It is a data underrun condition. 6395 */ 6396 case SIR_SODL_UNDERRUN: 6397 if (cp) { 6398 OUTONB (HF_PRT, HF_EXT_ERR); 6399 cp->xerr_status |= XE_SODL_UNRUN; 6400 } 6401 goto out; 6402 /* 6403 * The device wants us to tranfer more data than 6404 * expected or in the wrong direction. 6405 * The number of extra bytes is in scratcha. 6406 * It is a data overrun condition. 6407 */ 6408 case SIR_DATA_OVERRUN: 6409 if (cp) { 6410 OUTONB (HF_PRT, HF_EXT_ERR); 6411 cp->xerr_status |= XE_EXTRA_DATA; 6412 cp->extra_bytes += INL (nc_scratcha); 6413 } 6414 goto out; 6415 /* 6416 * The device switched to an illegal phase (4/5). 6417 */ 6418 case SIR_BAD_PHASE: 6419 if (cp) { 6420 OUTONB (HF_PRT, HF_EXT_ERR); 6421 cp->xerr_status |= XE_BAD_PHASE; 6422 } 6423 goto out; 6424 /* 6425 * We received a message. 6426 */ 6427 case SIR_MSG_RECEIVED: 6428 if (!cp) 6429 goto out_stuck; 6430 switch (np->msgin [0]) { 6431 /* 6432 * We received an extended message. 6433 * We handle MODIFY DATA POINTER, SDTR, WDTR 6434 * and reject all other extended messages. 6435 */ 6436 case M_EXTENDED: 6437 switch (np->msgin [2]) { 6438 case M_X_MODIFY_DP: 6439 if (DEBUG_FLAGS & DEBUG_POINTER) 6440 sym_print_msg(cp,"modify DP",np->msgin); 6441 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6442 (np->msgin[5]<<8) + (np->msgin[6]); 6443 sym_modify_dp(np, tp, cp, tmp); 6444 return; 6445 case M_X_SYNC_REQ: 6446 sym_sync_nego(np, tp, cp); 6447 return; 6448 case M_X_PPR_REQ: 6449 sym_ppr_nego(np, tp, cp); 6450 return; 6451 case M_X_WIDE_REQ: 6452 sym_wide_nego(np, tp, cp); 6453 return; 6454 default: 6455 goto out_reject; 6456 } 6457 break; 6458 /* 6459 * We received a 1/2 byte message not handled from SCRIPTS. 6460 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6461 * RESIDUE messages that haven't been anticipated by 6462 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6463 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6464 */ 6465 case M_IGN_RESIDUE: 6466 if (DEBUG_FLAGS & DEBUG_POINTER) 6467 sym_print_msg(cp,"ign wide residue", np->msgin); 6468 sym_modify_dp(np, tp, cp, -1); 6469 return; 6470 case M_REJECT: 6471 if (INB (HS_PRT) == HS_NEGOTIATE) 6472 sym_nego_rejected(np, tp, cp); 6473 else { 6474 PRINT_ADDR(cp); 6475 printf ("M_REJECT received (%x:%x).\n", 6476 scr_to_cpu(np->lastmsg), np->msgout[0]); 6477 } 6478 goto out_clrack; 6479 break; 6480 default: 6481 goto out_reject; 6482 } 6483 break; 6484 /* 6485 * We received an unknown message. 6486 * Ignore all MSG IN phases and reject it. 6487 */ 6488 case SIR_MSG_WEIRD: 6489 sym_print_msg(cp, "WEIRD message received", np->msgin); 6490 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6491 return; 6492 /* 6493 * Negotiation failed. 6494 * Target does not send us the reply. 6495 * Remove the HS_NEGOTIATE status. 6496 */ 6497 case SIR_NEGO_FAILED: 6498 OUTB (HS_PRT, HS_BUSY); 6499 /* 6500 * Negotiation failed. 6501 * Target does not want answer message. 6502 */ 6503 case SIR_NEGO_PROTO: 6504 sym_nego_default(np, tp, cp); 6505 goto out; 6506 }; 6507 6508 out: 6509 OUTONB_STD (); 6510 return; 6511 out_reject: 6512 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6513 return; 6514 out_clrack: 6515 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6516 return; 6517 out_stuck: 6518 return; 6519 } 6520 6521 /* 6522 * Acquire a control block 6523 */ 6524 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6525 { 6526 tcb_p tp = &np->target[tn]; 6527 lcb_p lp = sym_lp(np, tp, ln); 6528 u_short tag = NO_TAG; 6529 SYM_QUEHEAD *qp; 6530 ccb_p cp = (ccb_p) 0; 6531 6532 /* 6533 * Look for a free CCB 6534 */ 6535 if (sym_que_empty(&np->free_ccbq)) 6536 (void) sym_alloc_ccb(np); 6537 qp = sym_remque_head(&np->free_ccbq); 6538 if (!qp) 6539 goto out; 6540 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6541 6542 /* 6543 * If the LCB is not yet available and the LUN 6544 * has been probed ok, try to allocate the LCB. 6545 */ 6546 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6547 lp = sym_alloc_lcb(np, tn, ln); 6548 if (!lp) 6549 goto out_free; 6550 } 6551 6552 /* 6553 * If the LCB is not available here, then the 6554 * logical unit is not yet discovered. For those 6555 * ones only accept 1 SCSI IO per logical unit, 6556 * since we cannot allow disconnections. 6557 */ 6558 if (!lp) { 6559 if (!sym_is_bit(tp->busy0_map, ln)) 6560 sym_set_bit(tp->busy0_map, ln); 6561 else 6562 goto out_free; 6563 } else { 6564 /* 6565 * If we have been asked for a tagged command. 6566 */ 6567 if (tag_order) { 6568 /* 6569 * Debugging purpose. 6570 */ 6571 assert(lp->busy_itl == 0); 6572 /* 6573 * Allocate resources for tags if not yet. 6574 */ 6575 if (!lp->cb_tags) { 6576 sym_alloc_lcb_tags(np, tn, ln); 6577 if (!lp->cb_tags) 6578 goto out_free; 6579 } 6580 /* 6581 * Get a tag for this SCSI IO and set up 6582 * the CCB bus address for reselection, 6583 * and count it for this LUN. 6584 * Toggle reselect path to tagged. 6585 */ 6586 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6587 tag = lp->cb_tags[lp->ia_tag]; 6588 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6589 lp->ia_tag = 0; 6590 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6591 ++lp->busy_itlq; 6592 lp->head.resel_sa = 6593 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6594 } 6595 else 6596 goto out_free; 6597 } 6598 /* 6599 * This command will not be tagged. 6600 * If we already have either a tagged or untagged 6601 * one, refuse to overlap this untagged one. 6602 */ 6603 else { 6604 /* 6605 * Debugging purpose. 6606 */ 6607 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6608 /* 6609 * Count this nexus for this LUN. 6610 * Set up the CCB bus address for reselection. 6611 * Toggle reselect path to untagged. 6612 */ 6613 if (++lp->busy_itl == 1) { 6614 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6615 lp->head.resel_sa = 6616 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6617 } 6618 else 6619 goto out_free; 6620 } 6621 } 6622 /* 6623 * Put the CCB into the busy queue. 6624 */ 6625 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6626 6627 /* 6628 * Remember all informations needed to free this CCB. 6629 */ 6630 cp->to_abort = 0; 6631 cp->tag = tag; 6632 cp->target = tn; 6633 cp->lun = ln; 6634 6635 if (DEBUG_FLAGS & DEBUG_TAGS) { 6636 PRINT_LUN(np, tn, ln); 6637 printf ("ccb @%p using tag %d.\n", cp, tag); 6638 } 6639 6640 out: 6641 return cp; 6642 out_free: 6643 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6644 return (ccb_p) 0; 6645 } 6646 6647 /* 6648 * Release one control block 6649 */ 6650 static void sym_free_ccb (hcb_p np, ccb_p cp) 6651 { 6652 tcb_p tp = &np->target[cp->target]; 6653 lcb_p lp = sym_lp(np, tp, cp->lun); 6654 6655 if (DEBUG_FLAGS & DEBUG_TAGS) { 6656 PRINT_LUN(np, cp->target, cp->lun); 6657 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6658 } 6659 6660 /* 6661 * If LCB available, 6662 */ 6663 if (lp) { 6664 /* 6665 * If tagged, release the tag, set the relect path 6666 */ 6667 if (cp->tag != NO_TAG) { 6668 /* 6669 * Free the tag value. 6670 */ 6671 lp->cb_tags[lp->if_tag] = cp->tag; 6672 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6673 lp->if_tag = 0; 6674 /* 6675 * Make the reselect path invalid, 6676 * and uncount this CCB. 6677 */ 6678 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6679 --lp->busy_itlq; 6680 } else { /* Untagged */ 6681 /* 6682 * Make the reselect path invalid, 6683 * and uncount this CCB. 6684 */ 6685 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6686 --lp->busy_itl; 6687 } 6688 /* 6689 * If no JOB active, make the LUN reselect path invalid. 6690 */ 6691 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6692 lp->head.resel_sa = 6693 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6694 } 6695 /* 6696 * Otherwise, we only accept 1 IO per LUN. 6697 * Clear the bit that keeps track of this IO. 6698 */ 6699 else 6700 sym_clr_bit(tp->busy0_map, cp->lun); 6701 6702 /* 6703 * We donnot queue more than 1 ccb per target 6704 * with negotiation at any time. If this ccb was 6705 * used for negotiation, clear this info in the tcb. 6706 */ 6707 if (cp == tp->nego_cp) 6708 tp->nego_cp = 0; 6709 6710 #ifdef SYM_CONF_IARB_SUPPORT 6711 /* 6712 * If we just complete the last queued CCB, 6713 * clear this info that is no longer relevant. 6714 */ 6715 if (cp == np->last_cp) 6716 np->last_cp = 0; 6717 #endif 6718 6719 #ifdef FreeBSD_Bus_Dma_Abstraction 6720 /* 6721 * Unmap user data from DMA map if needed. 6722 */ 6723 if (cp->dmamapped) { 6724 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6725 cp->dmamapped = 0; 6726 } 6727 #endif 6728 6729 /* 6730 * Make this CCB available. 6731 */ 6732 cp->cam_ccb = 0; 6733 cp->host_status = HS_IDLE; 6734 sym_remque(&cp->link_ccbq); 6735 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6736 } 6737 6738 /* 6739 * Allocate a CCB from memory and initialize its fixed part. 6740 */ 6741 static ccb_p sym_alloc_ccb(hcb_p np) 6742 { 6743 ccb_p cp = 0; 6744 int hcode; 6745 6746 /* 6747 * Prevent from allocating more CCBs than we can 6748 * queue to the controller. 6749 */ 6750 if (np->actccbs >= SYM_CONF_MAX_START) 6751 return 0; 6752 6753 /* 6754 * Allocate memory for this CCB. 6755 */ 6756 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6757 if (!cp) 6758 goto out_free; 6759 6760 /* 6761 * Allocate a bounce buffer for sense data. 6762 */ 6763 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6764 if (!cp->sns_bbuf) 6765 goto out_free; 6766 6767 /* 6768 * Allocate a map for the DMA of user data. 6769 */ 6770 #ifdef FreeBSD_Bus_Dma_Abstraction 6771 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6772 goto out_free; 6773 #endif 6774 /* 6775 * Count it. 6776 */ 6777 np->actccbs++; 6778 6779 /* 6780 * Compute the bus address of this ccb. 6781 */ 6782 cp->ccb_ba = vtobus(cp); 6783 6784 /* 6785 * Insert this ccb into the hashed list. 6786 */ 6787 hcode = CCB_HASH_CODE(cp->ccb_ba); 6788 cp->link_ccbh = np->ccbh[hcode]; 6789 np->ccbh[hcode] = cp; 6790 6791 /* 6792 * Initialyze the start and restart actions. 6793 */ 6794 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6795 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6796 6797 /* 6798 * Initilialyze some other fields. 6799 */ 6800 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6801 6802 /* 6803 * Chain into free ccb queue. 6804 */ 6805 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6806 6807 return cp; 6808 out_free: 6809 if (cp) { 6810 if (cp->sns_bbuf) 6811 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF"); 6812 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6813 } 6814 return 0; 6815 } 6816 6817 /* 6818 * Look up a CCB from a DSA value. 6819 */ 6820 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6821 { 6822 int hcode; 6823 ccb_p cp; 6824 6825 hcode = CCB_HASH_CODE(dsa); 6826 cp = np->ccbh[hcode]; 6827 while (cp) { 6828 if (cp->ccb_ba == dsa) 6829 break; 6830 cp = cp->link_ccbh; 6831 } 6832 6833 return cp; 6834 } 6835 6836 /* 6837 * Target control block initialisation. 6838 * Nothing important to do at the moment. 6839 */ 6840 static void sym_init_tcb (hcb_p np, u_char tn) 6841 { 6842 /* 6843 * Check some alignments required by the chip. 6844 */ 6845 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6846 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6847 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6848 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6849 } 6850 6851 /* 6852 * Lun control block allocation and initialization. 6853 */ 6854 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6855 { 6856 tcb_p tp = &np->target[tn]; 6857 lcb_p lp = sym_lp(np, tp, ln); 6858 6859 /* 6860 * Already done, just return. 6861 */ 6862 if (lp) 6863 return lp; 6864 /* 6865 * Check against some race. 6866 */ 6867 assert(!sym_is_bit(tp->busy0_map, ln)); 6868 6869 /* 6870 * Initialize the target control block if not yet. 6871 */ 6872 sym_init_tcb (np, tn); 6873 6874 /* 6875 * Allocate the LCB bus address array. 6876 * Compute the bus address of this table. 6877 */ 6878 if (ln && !tp->luntbl) { 6879 int i; 6880 6881 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6882 if (!tp->luntbl) 6883 goto fail; 6884 for (i = 0 ; i < 64 ; i++) 6885 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6886 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6887 } 6888 6889 /* 6890 * Allocate the table of pointers for LUN(s) > 0, if needed. 6891 */ 6892 if (ln && !tp->lunmp) { 6893 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6894 "LUNMP"); 6895 if (!tp->lunmp) 6896 goto fail; 6897 } 6898 6899 /* 6900 * Allocate the lcb. 6901 * Make it available to the chip. 6902 */ 6903 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6904 if (!lp) 6905 goto fail; 6906 if (ln) { 6907 tp->lunmp[ln] = lp; 6908 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6909 } 6910 else { 6911 tp->lun0p = lp; 6912 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6913 } 6914 6915 /* 6916 * Let the itl task point to error handling. 6917 */ 6918 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6919 6920 /* 6921 * Set the reselect pattern to our default. :) 6922 */ 6923 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6924 6925 /* 6926 * Set user capabilities. 6927 */ 6928 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6929 6930 fail: 6931 return lp; 6932 } 6933 6934 /* 6935 * Allocate LCB resources for tagged command queuing. 6936 */ 6937 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6938 { 6939 tcb_p tp = &np->target[tn]; 6940 lcb_p lp = sym_lp(np, tp, ln); 6941 int i; 6942 6943 /* 6944 * If LCB not available, try to allocate it. 6945 */ 6946 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6947 goto fail; 6948 6949 /* 6950 * Allocate the task table and and the tag allocation 6951 * circular buffer. We want both or none. 6952 */ 6953 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6954 if (!lp->itlq_tbl) 6955 goto fail; 6956 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6957 if (!lp->cb_tags) { 6958 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6959 lp->itlq_tbl = 0; 6960 goto fail; 6961 } 6962 6963 /* 6964 * Initialize the task table with invalid entries. 6965 */ 6966 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6967 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6968 6969 /* 6970 * Fill up the tag buffer with tag numbers. 6971 */ 6972 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6973 lp->cb_tags[i] = i; 6974 6975 /* 6976 * Make the task table available to SCRIPTS, 6977 * And accept tagged commands now. 6978 */ 6979 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6980 6981 return; 6982 fail: 6983 return; 6984 } 6985 6986 /* 6987 * Test the pci bus snoop logic :-( 6988 * 6989 * Has to be called with interrupts disabled. 6990 */ 6991 #ifndef SYM_CONF_IOMAPPED 6992 static int sym_regtest (hcb_p np) 6993 { 6994 register volatile u32 data; 6995 /* 6996 * chip registers may NOT be cached. 6997 * write 0xffffffff to a read only register area, 6998 * and try to read it back. 6999 */ 7000 data = 0xffffffff; 7001 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 7002 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 7003 #if 1 7004 if (data == 0xffffffff) { 7005 #else 7006 if ((data & 0xe2f0fffd) != 0x02000080) { 7007 #endif 7008 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 7009 (unsigned) data); 7010 return (0x10); 7011 }; 7012 return (0); 7013 } 7014 #endif 7015 7016 static int sym_snooptest (hcb_p np) 7017 { 7018 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 7019 int i, err=0; 7020 #ifndef SYM_CONF_IOMAPPED 7021 err |= sym_regtest (np); 7022 if (err) return (err); 7023 #endif 7024 restart_test: 7025 /* 7026 * Enable Master Parity Checking as we intend 7027 * to enable it for normal operations. 7028 */ 7029 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 7030 /* 7031 * init 7032 */ 7033 pc = SCRIPTB0_BA (np, snooptest); 7034 host_wr = 1; 7035 sym_wr = 2; 7036 /* 7037 * Set memory and register. 7038 */ 7039 np->cache = cpu_to_scr(host_wr); 7040 OUTL (nc_temp, sym_wr); 7041 /* 7042 * Start script (exchange values) 7043 */ 7044 OUTL (nc_dsa, np->hcb_ba); 7045 OUTL_DSP (pc); 7046 /* 7047 * Wait 'til done (with timeout) 7048 */ 7049 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 7050 if (INB(nc_istat) & (INTF|SIP|DIP)) 7051 break; 7052 if (i>=SYM_SNOOP_TIMEOUT) { 7053 printf ("CACHE TEST FAILED: timeout.\n"); 7054 return (0x20); 7055 }; 7056 /* 7057 * Check for fatal DMA errors. 7058 */ 7059 dstat = INB (nc_dstat); 7060 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 7061 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 7062 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 7063 "DISABLING MASTER DATA PARITY CHECKING.\n", 7064 sym_name(np)); 7065 np->rv_ctest4 &= ~MPEE; 7066 goto restart_test; 7067 } 7068 #endif 7069 if (dstat & (MDPE|BF|IID)) { 7070 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 7071 return (0x80); 7072 } 7073 /* 7074 * Save termination position. 7075 */ 7076 pc = INL (nc_dsp); 7077 /* 7078 * Read memory and register. 7079 */ 7080 host_rd = scr_to_cpu(np->cache); 7081 sym_rd = INL (nc_scratcha); 7082 sym_bk = INL (nc_temp); 7083 7084 /* 7085 * Check termination position. 7086 */ 7087 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 7088 printf ("CACHE TEST FAILED: script execution failed.\n"); 7089 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 7090 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 7091 (u_long) SCRIPTB0_BA (np, snoopend) +8); 7092 return (0x40); 7093 }; 7094 /* 7095 * Show results. 7096 */ 7097 if (host_wr != sym_rd) { 7098 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 7099 (int) host_wr, (int) sym_rd); 7100 err |= 1; 7101 }; 7102 if (host_rd != sym_wr) { 7103 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 7104 (int) sym_wr, (int) host_rd); 7105 err |= 2; 7106 }; 7107 if (sym_bk != sym_wr) { 7108 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 7109 (int) sym_wr, (int) sym_bk); 7110 err |= 4; 7111 }; 7112 7113 return (err); 7114 } 7115 7116 /* 7117 * Determine the chip's clock frequency. 7118 * 7119 * This is essential for the negotiation of the synchronous 7120 * transfer rate. 7121 * 7122 * Note: we have to return the correct value. 7123 * THERE IS NO SAFE DEFAULT VALUE. 7124 * 7125 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 7126 * 53C860 and 53C875 rev. 1 support fast20 transfers but 7127 * do not have a clock doubler and so are provided with a 7128 * 80 MHz clock. All other fast20 boards incorporate a doubler 7129 * and so should be delivered with a 40 MHz clock. 7130 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 7131 * clock and provide a clock quadrupler (160 Mhz). 7132 */ 7133 7134 /* 7135 * Select SCSI clock frequency 7136 */ 7137 static void sym_selectclock(hcb_p np, u_char scntl3) 7138 { 7139 /* 7140 * If multiplier not present or not selected, leave here. 7141 */ 7142 if (np->multiplier <= 1) { 7143 OUTB(nc_scntl3, scntl3); 7144 return; 7145 } 7146 7147 if (sym_verbose >= 2) 7148 printf ("%s: enabling clock multiplier\n", sym_name(np)); 7149 7150 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 7151 /* 7152 * Wait for the LCKFRQ bit to be set if supported by the chip. 7153 * Otherwise wait 20 micro-seconds. 7154 */ 7155 if (np->features & FE_LCKFRQ) { 7156 int i = 20; 7157 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 7158 UDELAY (20); 7159 if (!i) 7160 printf("%s: the chip cannot lock the frequency\n", 7161 sym_name(np)); 7162 } else 7163 UDELAY (20); 7164 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 7165 OUTB(nc_scntl3, scntl3); 7166 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 7167 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 7168 } 7169 7170 /* 7171 * calculate SCSI clock frequency (in KHz) 7172 */ 7173 static unsigned getfreq (hcb_p np, int gen) 7174 { 7175 unsigned int ms = 0; 7176 unsigned int f; 7177 7178 /* 7179 * Measure GEN timer delay in order 7180 * to calculate SCSI clock frequency 7181 * 7182 * This code will never execute too 7183 * many loop iterations (if DELAY is 7184 * reasonably correct). It could get 7185 * too low a delay (too high a freq.) 7186 * if the CPU is slow executing the 7187 * loop for some reason (an NMI, for 7188 * example). For this reason we will 7189 * if multiple measurements are to be 7190 * performed trust the higher delay 7191 * (lower frequency returned). 7192 */ 7193 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 7194 (void) INW (nc_sist); /* clear pending scsi interrupt */ 7195 OUTB (nc_dien , 0); /* mask all dma interrupts */ 7196 (void) INW (nc_sist); /* another one, just to be sure :) */ 7197 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 7198 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7199 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 7200 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 7201 UDELAY (1000); /* count ms */ 7202 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7203 /* 7204 * set prescaler to divide by whatever 0 means 7205 * 0 ought to choose divide by 2, but appears 7206 * to set divide by 3.5 mode in my 53c810 ... 7207 */ 7208 OUTB (nc_scntl3, 0); 7209 7210 /* 7211 * adjust for prescaler, and convert into KHz 7212 */ 7213 f = ms ? ((1 << gen) * 4340) / ms : 0; 7214 7215 if (sym_verbose >= 2) 7216 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 7217 sym_name(np), gen, ms, f); 7218 7219 return f; 7220 } 7221 7222 static unsigned sym_getfreq (hcb_p np) 7223 { 7224 u_int f1, f2; 7225 int gen = 11; 7226 7227 (void) getfreq (np, gen); /* throw away first result */ 7228 f1 = getfreq (np, gen); 7229 f2 = getfreq (np, gen); 7230 if (f1 > f2) f1 = f2; /* trust lower result */ 7231 return f1; 7232 } 7233 7234 /* 7235 * Get/probe chip SCSI clock frequency 7236 */ 7237 static void sym_getclock (hcb_p np, int mult) 7238 { 7239 unsigned char scntl3 = np->sv_scntl3; 7240 unsigned char stest1 = np->sv_stest1; 7241 unsigned f1; 7242 7243 /* 7244 * For the C10 core, assume 40 MHz. 7245 */ 7246 if (np->features & FE_C10) { 7247 np->multiplier = mult; 7248 np->clock_khz = 40000 * mult; 7249 return; 7250 } 7251 7252 np->multiplier = 1; 7253 f1 = 40000; 7254 /* 7255 * True with 875/895/896/895A with clock multiplier selected 7256 */ 7257 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7258 if (sym_verbose >= 2) 7259 printf ("%s: clock multiplier found\n", sym_name(np)); 7260 np->multiplier = mult; 7261 } 7262 7263 /* 7264 * If multiplier not found or scntl3 not 7,5,3, 7265 * reset chip and get frequency from general purpose timer. 7266 * Otherwise trust scntl3 BIOS setting. 7267 */ 7268 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7269 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7270 f1 = sym_getfreq (np); 7271 7272 if (sym_verbose) 7273 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7274 7275 if (f1 < 45000) f1 = 40000; 7276 else if (f1 < 55000) f1 = 50000; 7277 else f1 = 80000; 7278 7279 if (f1 < 80000 && mult > 1) { 7280 if (sym_verbose >= 2) 7281 printf ("%s: clock multiplier assumed\n", 7282 sym_name(np)); 7283 np->multiplier = mult; 7284 } 7285 } else { 7286 if ((scntl3 & 7) == 3) f1 = 40000; 7287 else if ((scntl3 & 7) == 5) f1 = 80000; 7288 else f1 = 160000; 7289 7290 f1 /= np->multiplier; 7291 } 7292 7293 /* 7294 * Compute controller synchronous parameters. 7295 */ 7296 f1 *= np->multiplier; 7297 np->clock_khz = f1; 7298 } 7299 7300 /* 7301 * Get/probe PCI clock frequency 7302 */ 7303 static int sym_getpciclock (hcb_p np) 7304 { 7305 int f = 0; 7306 7307 /* 7308 * For the C1010-33, this doesn't work. 7309 * For the C1010-66, this will be tested when I'll have 7310 * such a beast to play with. 7311 */ 7312 if (!(np->features & FE_C10)) { 7313 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7314 f = (int) sym_getfreq (np); 7315 OUTB (nc_stest1, 0); 7316 } 7317 np->pciclk_khz = f; 7318 7319 return f; 7320 } 7321 7322 /*============= DRIVER ACTION/COMPLETION ====================*/ 7323 7324 /* 7325 * Print something that tells about extended errors. 7326 */ 7327 static void sym_print_xerr(ccb_p cp, int x_status) 7328 { 7329 if (x_status & XE_PARITY_ERR) { 7330 PRINT_ADDR(cp); 7331 printf ("unrecovered SCSI parity error.\n"); 7332 } 7333 if (x_status & XE_EXTRA_DATA) { 7334 PRINT_ADDR(cp); 7335 printf ("extraneous data discarded.\n"); 7336 } 7337 if (x_status & XE_BAD_PHASE) { 7338 PRINT_ADDR(cp); 7339 printf ("illegal scsi phase (4/5).\n"); 7340 } 7341 if (x_status & XE_SODL_UNRUN) { 7342 PRINT_ADDR(cp); 7343 printf ("ODD transfer in DATA OUT phase.\n"); 7344 } 7345 if (x_status & XE_SWIDE_OVRUN) { 7346 PRINT_ADDR(cp); 7347 printf ("ODD transfer in DATA IN phase.\n"); 7348 } 7349 } 7350 7351 /* 7352 * Choose the more appropriate CAM status if 7353 * the IO encountered an extended error. 7354 */ 7355 static int sym_xerr_cam_status(int cam_status, int x_status) 7356 { 7357 if (x_status) { 7358 if (x_status & XE_PARITY_ERR) 7359 cam_status = CAM_UNCOR_PARITY; 7360 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7361 cam_status = CAM_DATA_RUN_ERR; 7362 else if (x_status & XE_BAD_PHASE) 7363 cam_status = CAM_REQ_CMP_ERR; 7364 else 7365 cam_status = CAM_REQ_CMP_ERR; 7366 } 7367 return cam_status; 7368 } 7369 7370 /* 7371 * Complete execution of a SCSI command with extented 7372 * error, SCSI status error, or having been auto-sensed. 7373 * 7374 * The SCRIPTS processor is not running there, so we 7375 * can safely access IO registers and remove JOBs from 7376 * the START queue. 7377 * SCRATCHA is assumed to have been loaded with STARTPOS 7378 * before the SCRIPTS called the C code. 7379 */ 7380 static void sym_complete_error (hcb_p np, ccb_p cp) 7381 { 7382 struct ccb_scsiio *csio; 7383 u_int cam_status; 7384 int i; 7385 7386 /* 7387 * Paranoid check. :) 7388 */ 7389 if (!cp || !cp->cam_ccb) 7390 return; 7391 7392 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7393 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7394 cp->host_status, cp->ssss_status, cp->host_flags, 7395 cp->target, cp->lun); 7396 MDELAY(100); 7397 } 7398 7399 /* 7400 * Get CAM command pointer. 7401 */ 7402 csio = &cp->cam_ccb->csio; 7403 7404 /* 7405 * Check for extended errors. 7406 */ 7407 if (cp->xerr_status) { 7408 if (sym_verbose) 7409 sym_print_xerr(cp, cp->xerr_status); 7410 if (cp->host_status == HS_COMPLETE) 7411 cp->host_status = HS_COMP_ERR; 7412 } 7413 7414 /* 7415 * Calculate the residual. 7416 */ 7417 csio->sense_resid = 0; 7418 csio->resid = sym_compute_residual(np, cp); 7419 7420 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7421 csio->resid = 0; /* throw them away. :) */ 7422 cp->sv_resid = 0; 7423 } 7424 7425 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7426 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7427 csio->sense_resid = csio->resid; /* Swap residuals */ 7428 csio->resid = cp->sv_resid; 7429 cp->sv_resid = 0; 7430 if (sym_verbose && cp->sv_xerr_status) 7431 sym_print_xerr(cp, cp->sv_xerr_status); 7432 if (cp->host_status == HS_COMPLETE && 7433 cp->ssss_status == S_GOOD && 7434 cp->xerr_status == 0) { 7435 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7436 cp->sv_xerr_status); 7437 cam_status |= CAM_AUTOSNS_VALID; 7438 /* 7439 * Bounce back the sense data to user and 7440 * fix the residual. 7441 */ 7442 bzero(&csio->sense_data, csio->sense_len); 7443 bcopy(cp->sns_bbuf, &csio->sense_data, 7444 MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); 7445 csio->sense_resid += csio->sense_len; 7446 csio->sense_resid -= SYM_SNS_BBUF_LEN; 7447 #if 0 7448 /* 7449 * If the device reports a UNIT ATTENTION condition 7450 * due to a RESET condition, we should consider all 7451 * disconnect CCBs for this unit as aborted. 7452 */ 7453 if (1) { 7454 u_char *p; 7455 p = (u_char *) csio->sense_data; 7456 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7457 sym_clear_tasks(np, CAM_REQ_ABORTED, 7458 cp->target,cp->lun, -1); 7459 } 7460 #endif 7461 } 7462 else 7463 cam_status = CAM_AUTOSENSE_FAIL; 7464 } 7465 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7466 csio->scsi_status = cp->ssss_status; 7467 cam_status = CAM_SCSI_STATUS_ERROR; 7468 } 7469 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7470 cam_status = CAM_SEL_TIMEOUT; 7471 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7472 cam_status = CAM_UNEXP_BUSFREE; 7473 else { /* Extended error */ 7474 if (sym_verbose) { 7475 PRINT_ADDR(cp); 7476 printf ("COMMAND FAILED (%x %x %x).\n", 7477 cp->host_status, cp->ssss_status, 7478 cp->xerr_status); 7479 } 7480 csio->scsi_status = cp->ssss_status; 7481 /* 7482 * Set the most appropriate value for CAM status. 7483 */ 7484 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7485 cp->xerr_status); 7486 } 7487 7488 /* 7489 * Dequeue all queued CCBs for that device 7490 * not yet started by SCRIPTS. 7491 */ 7492 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7493 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7494 7495 /* 7496 * Restart the SCRIPTS processor. 7497 */ 7498 OUTL_DSP (SCRIPTA_BA (np, start)); 7499 7500 #ifdef FreeBSD_Bus_Dma_Abstraction 7501 /* 7502 * Synchronize DMA map if needed. 7503 */ 7504 if (cp->dmamapped) { 7505 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7506 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 7507 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7508 } 7509 #endif 7510 /* 7511 * Add this one to the COMP queue. 7512 * Complete all those commands with either error 7513 * or requeue condition. 7514 */ 7515 sym_set_cam_status((union ccb *) csio, cam_status); 7516 sym_remque(&cp->link_ccbq); 7517 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7518 sym_flush_comp_queue(np, 0); 7519 } 7520 7521 /* 7522 * Complete execution of a successful SCSI command. 7523 * 7524 * Only successful commands go to the DONE queue, 7525 * since we need to have the SCRIPTS processor 7526 * stopped on any error condition. 7527 * The SCRIPTS processor is running while we are 7528 * completing successful commands. 7529 */ 7530 static void sym_complete_ok (hcb_p np, ccb_p cp) 7531 { 7532 struct ccb_scsiio *csio; 7533 tcb_p tp; 7534 lcb_p lp; 7535 7536 /* 7537 * Paranoid check. :) 7538 */ 7539 if (!cp || !cp->cam_ccb) 7540 return; 7541 assert (cp->host_status == HS_COMPLETE); 7542 7543 /* 7544 * Get command, target and lun pointers. 7545 */ 7546 csio = &cp->cam_ccb->csio; 7547 tp = &np->target[cp->target]; 7548 lp = sym_lp(np, tp, cp->lun); 7549 7550 /* 7551 * Assume device discovered on first success. 7552 */ 7553 if (!lp) 7554 sym_set_bit(tp->lun_map, cp->lun); 7555 7556 /* 7557 * If all data have been transferred, given than no 7558 * extended error did occur, there is no residual. 7559 */ 7560 csio->resid = 0; 7561 if (cp->phys.head.lastp != cp->phys.head.goalp) 7562 csio->resid = sym_compute_residual(np, cp); 7563 7564 /* 7565 * Wrong transfer residuals may be worse than just always 7566 * returning zero. User can disable this feature from 7567 * sym_conf.h. Residual support is enabled by default. 7568 */ 7569 if (!SYM_CONF_RESIDUAL_SUPPORT) 7570 csio->resid = 0; 7571 7572 #ifdef FreeBSD_Bus_Dma_Abstraction 7573 /* 7574 * Synchronize DMA map if needed. 7575 */ 7576 if (cp->dmamapped) { 7577 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7578 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 7579 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7580 } 7581 #endif 7582 /* 7583 * Set status and complete the command. 7584 */ 7585 csio->scsi_status = cp->ssss_status; 7586 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7587 sym_free_ccb (np, cp); 7588 sym_xpt_done(np, (union ccb *) csio); 7589 } 7590 7591 /* 7592 * Our timeout handler. 7593 */ 7594 static void sym_timeout1(void *arg) 7595 { 7596 union ccb *ccb = (union ccb *) arg; 7597 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7598 7599 /* 7600 * Check that the CAM CCB is still queued. 7601 */ 7602 if (!np) 7603 return; 7604 7605 switch(ccb->ccb_h.func_code) { 7606 case XPT_SCSI_IO: 7607 (void) sym_abort_scsiio(np, ccb, 1); 7608 break; 7609 default: 7610 break; 7611 } 7612 } 7613 7614 static void sym_timeout(void *arg) 7615 { 7616 int s = splcam(); 7617 sym_timeout1(arg); 7618 splx(s); 7619 } 7620 7621 /* 7622 * Abort an SCSI IO. 7623 */ 7624 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7625 { 7626 ccb_p cp; 7627 SYM_QUEHEAD *qp; 7628 7629 /* 7630 * Look up our CCB control block. 7631 */ 7632 cp = 0; 7633 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7634 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7635 if (cp2->cam_ccb == ccb) { 7636 cp = cp2; 7637 break; 7638 } 7639 } 7640 if (!cp || cp->host_status == HS_WAIT) 7641 return -1; 7642 7643 /* 7644 * If a previous abort didn't succeed in time, 7645 * perform a BUS reset. 7646 */ 7647 if (cp->to_abort) { 7648 sym_reset_scsi_bus(np, 1); 7649 return 0; 7650 } 7651 7652 /* 7653 * Mark the CCB for abort and allow time for. 7654 */ 7655 cp->to_abort = timed_out ? 2 : 1; 7656 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz); 7657 7658 /* 7659 * Tell the SCRIPTS processor to stop and synchronize with us. 7660 */ 7661 np->istat_sem = SEM; 7662 OUTB (nc_istat, SIGP|SEM); 7663 return 0; 7664 } 7665 7666 /* 7667 * Reset a SCSI device (all LUNs of a target). 7668 */ 7669 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7670 { 7671 tcb_p tp; 7672 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7673 7674 if (ccb_h->target_id == np->myaddr || 7675 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7676 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7677 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7678 return; 7679 } 7680 7681 tp = &np->target[ccb_h->target_id]; 7682 7683 tp->to_reset = 1; 7684 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7685 7686 np->istat_sem = SEM; 7687 OUTB (nc_istat, SIGP|SEM); 7688 return; 7689 } 7690 7691 /* 7692 * SIM action entry point. 7693 */ 7694 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7695 { 7696 int s = splcam(); 7697 sym_action1(sim, ccb); 7698 splx(s); 7699 } 7700 7701 static void sym_action1(struct cam_sim *sim, union ccb *ccb) 7702 { 7703 hcb_p np; 7704 tcb_p tp; 7705 lcb_p lp; 7706 ccb_p cp; 7707 int tmp; 7708 u_char idmsg, *msgptr; 7709 u_int msglen; 7710 struct ccb_scsiio *csio; 7711 struct ccb_hdr *ccb_h; 7712 7713 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7714 7715 /* 7716 * Retrieve our controller data structure. 7717 */ 7718 np = (hcb_p) cam_sim_softc(sim); 7719 7720 /* 7721 * The common case is SCSI IO. 7722 * We deal with other ones elsewhere. 7723 */ 7724 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7725 sym_action2(sim, ccb); 7726 return; 7727 } 7728 csio = &ccb->csio; 7729 ccb_h = &csio->ccb_h; 7730 7731 /* 7732 * Work around races. 7733 */ 7734 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7735 xpt_done(ccb); 7736 return; 7737 } 7738 7739 /* 7740 * Minimal checkings, so that we will not 7741 * go outside our tables. 7742 */ 7743 if (ccb_h->target_id == np->myaddr || 7744 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7745 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7746 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7747 return; 7748 } 7749 7750 /* 7751 * Retreive the target and lun descriptors. 7752 */ 7753 tp = &np->target[ccb_h->target_id]; 7754 lp = sym_lp(np, tp, ccb_h->target_lun); 7755 7756 /* 7757 * Complete the 1st INQUIRY command with error 7758 * condition if the device is flagged NOSCAN 7759 * at BOOT in the NVRAM. This may speed up 7760 * the boot and maintain coherency with BIOS 7761 * device numbering. Clearing the flag allows 7762 * user to rescan skipped devices later. 7763 * We also return error for devices not flagged 7764 * for SCAN LUNS in the NVRAM since some mono-lun 7765 * devices behave badly when asked for some non 7766 * zero LUN. Btw, this is an absolute hack.:-) 7767 */ 7768 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7769 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7770 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7771 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7772 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7773 ccb_h->target_lun != 0)) { 7774 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7775 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7776 return; 7777 } 7778 } 7779 7780 /* 7781 * Get a control block for this IO. 7782 */ 7783 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7784 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7785 if (!cp) { 7786 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7787 return; 7788 } 7789 7790 /* 7791 * Keep track of the IO in our CCB. 7792 */ 7793 cp->cam_ccb = ccb; 7794 7795 /* 7796 * Build the IDENTIFY message. 7797 */ 7798 idmsg = M_IDENTIFY | cp->lun; 7799 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7800 idmsg |= 0x40; 7801 7802 msgptr = cp->scsi_smsg; 7803 msglen = 0; 7804 msgptr[msglen++] = idmsg; 7805 7806 /* 7807 * Build the tag message if present. 7808 */ 7809 if (cp->tag != NO_TAG) { 7810 u_char order = csio->tag_action; 7811 7812 switch(order) { 7813 case M_ORDERED_TAG: 7814 break; 7815 case M_HEAD_TAG: 7816 break; 7817 default: 7818 order = M_SIMPLE_TAG; 7819 } 7820 msgptr[msglen++] = order; 7821 7822 /* 7823 * For less than 128 tags, actual tags are numbered 7824 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7825 * with devices that have problems with #TAG 0 or too 7826 * great #TAG numbers. For more tags (up to 256), 7827 * we use directly our tag number. 7828 */ 7829 #if SYM_CONF_MAX_TASK > (512/4) 7830 msgptr[msglen++] = cp->tag; 7831 #else 7832 msgptr[msglen++] = (cp->tag << 1) + 1; 7833 #endif 7834 } 7835 7836 /* 7837 * Build a negotiation message if needed. 7838 * (nego_status is filled by sym_prepare_nego()) 7839 */ 7840 cp->nego_status = 0; 7841 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7842 tp->tinfo.current.period != tp->tinfo.goal.period || 7843 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7844 tp->tinfo.current.options != tp->tinfo.goal.options) { 7845 if (!tp->nego_cp && lp) 7846 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7847 } 7848 7849 /* 7850 * Fill in our ccb 7851 */ 7852 7853 /* 7854 * Startqueue 7855 */ 7856 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7857 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7858 7859 /* 7860 * select 7861 */ 7862 cp->phys.select.sel_id = cp->target; 7863 cp->phys.select.sel_scntl3 = tp->head.wval; 7864 cp->phys.select.sel_sxfer = tp->head.sval; 7865 cp->phys.select.sel_scntl4 = tp->head.uval; 7866 7867 /* 7868 * message 7869 */ 7870 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7871 cp->phys.smsg.size = cpu_to_scr(msglen); 7872 7873 /* 7874 * command 7875 */ 7876 if (sym_setup_cdb(np, csio, cp) < 0) { 7877 sym_free_ccb(np, cp); 7878 sym_xpt_done(np, ccb); 7879 return; 7880 } 7881 7882 /* 7883 * status 7884 */ 7885 #if 0 /* Provision */ 7886 cp->actualquirks = tp->quirks; 7887 #endif 7888 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7889 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7890 cp->ssss_status = S_ILLEGAL; 7891 cp->xerr_status = 0; 7892 cp->host_flags = 0; 7893 cp->extra_bytes = 0; 7894 7895 /* 7896 * extreme data pointer. 7897 * shall be positive, so -1 is lower than lowest.:) 7898 */ 7899 cp->ext_sg = -1; 7900 cp->ext_ofs = 0; 7901 7902 /* 7903 * Build the data descriptor block 7904 * and start the IO. 7905 */ 7906 sym_setup_data_and_start(np, csio, cp); 7907 } 7908 7909 /* 7910 * Setup buffers and pointers that address the CDB. 7911 * I bet, physical CDBs will never be used on the planet, 7912 * since they can be bounced without significant overhead. 7913 */ 7914 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7915 { 7916 struct ccb_hdr *ccb_h; 7917 u32 cmd_ba; 7918 int cmd_len; 7919 7920 ccb_h = &csio->ccb_h; 7921 7922 /* 7923 * CDB is 16 bytes max. 7924 */ 7925 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7926 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7927 return -1; 7928 } 7929 cmd_len = csio->cdb_len; 7930 7931 if (ccb_h->flags & CAM_CDB_POINTER) { 7932 /* CDB is a pointer */ 7933 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7934 /* CDB pointer is virtual */ 7935 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7936 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7937 } else { 7938 /* CDB pointer is physical */ 7939 #if 0 7940 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7941 #else 7942 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7943 return -1; 7944 #endif 7945 } 7946 } else { 7947 /* CDB is in the CAM ccb (buffer) */ 7948 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7949 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7950 } 7951 7952 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7953 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7954 7955 return 0; 7956 } 7957 7958 /* 7959 * Set up data pointers used by SCRIPTS. 7960 */ 7961 static void __inline 7962 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7963 { 7964 u32 lastp, goalp; 7965 7966 /* 7967 * No segments means no data. 7968 */ 7969 if (!cp->segments) 7970 dir = CAM_DIR_NONE; 7971 7972 /* 7973 * Set the data pointer. 7974 */ 7975 switch(dir) { 7976 case CAM_DIR_OUT: 7977 goalp = SCRIPTA_BA (np, data_out2) + 8; 7978 lastp = goalp - 8 - (cp->segments * (2*4)); 7979 break; 7980 case CAM_DIR_IN: 7981 cp->host_flags |= HF_DATA_IN; 7982 goalp = SCRIPTA_BA (np, data_in2) + 8; 7983 lastp = goalp - 8 - (cp->segments * (2*4)); 7984 break; 7985 case CAM_DIR_NONE: 7986 default: 7987 lastp = goalp = SCRIPTB_BA (np, no_data); 7988 break; 7989 } 7990 7991 cp->phys.head.lastp = cpu_to_scr(lastp); 7992 cp->phys.head.goalp = cpu_to_scr(goalp); 7993 cp->phys.head.savep = cpu_to_scr(lastp); 7994 cp->startp = cp->phys.head.savep; 7995 } 7996 7997 7998 #ifdef FreeBSD_Bus_Dma_Abstraction 7999 /* 8000 * Call back routine for the DMA map service. 8001 * If bounce buffers are used (why ?), we may sleep and then 8002 * be called there in another context. 8003 */ 8004 static void 8005 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 8006 { 8007 ccb_p cp; 8008 hcb_p np; 8009 union ccb *ccb; 8010 int s; 8011 8012 s = splcam(); 8013 8014 cp = (ccb_p) arg; 8015 ccb = cp->cam_ccb; 8016 np = (hcb_p) cp->arg; 8017 8018 /* 8019 * Deal with weird races. 8020 */ 8021 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 8022 goto out_abort; 8023 8024 /* 8025 * Deal with weird errors. 8026 */ 8027 if (error) { 8028 cp->dmamapped = 0; 8029 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 8030 goto out_abort; 8031 } 8032 8033 /* 8034 * Build the data descriptor for the chip. 8035 */ 8036 if (nsegs) { 8037 int retv; 8038 /* 896 rev 1 requires to be careful about boundaries */ 8039 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 8040 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 8041 else 8042 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 8043 if (retv < 0) { 8044 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 8045 goto out_abort; 8046 } 8047 } 8048 8049 /* 8050 * Synchronize the DMA map only if we have 8051 * actually mapped the data. 8052 */ 8053 if (cp->dmamapped) { 8054 bus_dmamap_sync(np->data_dmat, cp->dmamap, 8055 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 8056 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 8057 } 8058 8059 /* 8060 * Set host status to busy state. 8061 * May have been set back to HS_WAIT to avoid a race. 8062 */ 8063 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 8064 8065 /* 8066 * Set data pointers. 8067 */ 8068 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 8069 8070 /* 8071 * Enqueue this IO in our pending queue. 8072 */ 8073 sym_enqueue_cam_ccb(np, ccb); 8074 8075 /* 8076 * When `#ifed 1', the code below makes the driver 8077 * panic on the first attempt to write to a SCSI device. 8078 * It is the first test we want to do after a driver 8079 * change that does not seem obviously safe. :) 8080 */ 8081 #if 0 8082 switch (cp->cdb_buf[0]) { 8083 case 0x0A: case 0x2A: case 0xAA: 8084 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 8085 MDELAY(10000); 8086 break; 8087 default: 8088 break; 8089 } 8090 #endif 8091 /* 8092 * Activate this job. 8093 */ 8094 sym_put_start_queue(np, cp); 8095 out: 8096 splx(s); 8097 return; 8098 out_abort: 8099 sym_free_ccb(np, cp); 8100 sym_xpt_done(np, ccb); 8101 goto out; 8102 } 8103 8104 /* 8105 * How complex it gets to deal with the data in CAM. 8106 * The Bus Dma stuff makes things still more complex. 8107 */ 8108 static void 8109 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 8110 { 8111 struct ccb_hdr *ccb_h; 8112 int dir, retv; 8113 8114 ccb_h = &csio->ccb_h; 8115 8116 /* 8117 * Now deal with the data. 8118 */ 8119 cp->data_len = csio->dxfer_len; 8120 cp->arg = np; 8121 8122 /* 8123 * No direction means no data. 8124 */ 8125 dir = (ccb_h->flags & CAM_DIR_MASK); 8126 if (dir == CAM_DIR_NONE) { 8127 sym_execute_ccb(cp, NULL, 0, 0); 8128 return; 8129 } 8130 8131 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 8132 /* Single buffer */ 8133 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8134 /* Buffer is virtual */ 8135 int s; 8136 8137 cp->dmamapped = (dir == CAM_DIR_IN) ? 8138 SYM_DMA_READ : SYM_DMA_WRITE; 8139 s = splsoftvm(); 8140 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 8141 csio->data_ptr, csio->dxfer_len, 8142 sym_execute_ccb, cp, 0); 8143 if (retv == EINPROGRESS) { 8144 cp->host_status = HS_WAIT; 8145 xpt_freeze_simq(np->sim, 1); 8146 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 8147 } 8148 splx(s); 8149 } else { 8150 /* Buffer is physical */ 8151 struct bus_dma_segment seg; 8152 8153 seg.ds_addr = (bus_addr_t) csio->data_ptr; 8154 sym_execute_ccb(cp, &seg, 1, 0); 8155 } 8156 } else { 8157 /* Scatter/gather list */ 8158 struct bus_dma_segment *segs; 8159 8160 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 8161 /* The SG list pointer is physical */ 8162 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8163 goto out_abort; 8164 } 8165 8166 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8167 /* SG buffer pointers are virtual */ 8168 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8169 goto out_abort; 8170 } 8171 8172 /* SG buffer pointers are physical */ 8173 segs = (struct bus_dma_segment *)csio->data_ptr; 8174 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 8175 } 8176 return; 8177 out_abort: 8178 sym_free_ccb(np, cp); 8179 sym_xpt_done(np, (union ccb *) csio); 8180 } 8181 8182 /* 8183 * Move the scatter list to our data block. 8184 */ 8185 static int 8186 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 8187 bus_dma_segment_t *psegs, int nsegs) 8188 { 8189 struct sym_tblmove *data; 8190 bus_dma_segment_t *psegs2; 8191 8192 if (nsegs > SYM_CONF_MAX_SG) 8193 return -1; 8194 8195 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 8196 psegs2 = &psegs[nsegs-1]; 8197 cp->segments = nsegs; 8198 8199 while (1) { 8200 data->addr = cpu_to_scr(psegs2->ds_addr); 8201 data->size = cpu_to_scr(psegs2->ds_len); 8202 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8203 printf ("%s scatter: paddr=%lx len=%ld\n", 8204 sym_name(np), (long) psegs2->ds_addr, 8205 (long) psegs2->ds_len); 8206 } 8207 if (psegs2 != psegs) { 8208 --data; 8209 --psegs2; 8210 continue; 8211 } 8212 break; 8213 } 8214 return 0; 8215 } 8216 8217 #else /* FreeBSD_Bus_Dma_Abstraction */ 8218 8219 /* 8220 * How complex it gets to deal with the data in CAM. 8221 * Variant without the Bus Dma Abstraction option. 8222 */ 8223 static void 8224 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 8225 { 8226 struct ccb_hdr *ccb_h; 8227 int dir, retv; 8228 8229 ccb_h = &csio->ccb_h; 8230 8231 /* 8232 * Now deal with the data. 8233 */ 8234 cp->data_len = 0; 8235 cp->segments = 0; 8236 8237 /* 8238 * No direction means no data. 8239 */ 8240 dir = (ccb_h->flags & CAM_DIR_MASK); 8241 if (dir == CAM_DIR_NONE) 8242 goto end_scatter; 8243 8244 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 8245 /* Single buffer */ 8246 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8247 /* Buffer is virtual */ 8248 retv = sym_scatter_virtual(np, cp, 8249 (vm_offset_t) csio->data_ptr, 8250 (vm_size_t) csio->dxfer_len); 8251 } else { 8252 /* Buffer is physical */ 8253 retv = sym_scatter_physical(np, cp, 8254 (vm_offset_t) csio->data_ptr, 8255 (vm_size_t) csio->dxfer_len); 8256 } 8257 } else { 8258 /* Scatter/gather list */ 8259 int nsegs; 8260 struct bus_dma_segment *segs; 8261 segs = (struct bus_dma_segment *)csio->data_ptr; 8262 nsegs = csio->sglist_cnt; 8263 8264 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 8265 /* The SG list pointer is physical */ 8266 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8267 goto out_abort; 8268 } 8269 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8270 /* SG buffer pointers are virtual */ 8271 retv = sym_scatter_sg_virtual(np, cp, segs, nsegs); 8272 } else { 8273 /* SG buffer pointers are physical */ 8274 retv = sym_scatter_sg_physical(np, cp, segs, nsegs); 8275 } 8276 } 8277 if (retv < 0) { 8278 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 8279 goto out_abort; 8280 } 8281 8282 end_scatter: 8283 /* 8284 * Set data pointers. 8285 */ 8286 sym_setup_data_pointers(np, cp, dir); 8287 8288 /* 8289 * Enqueue this IO in our pending queue. 8290 */ 8291 sym_enqueue_cam_ccb(np, (union ccb *) csio); 8292 8293 /* 8294 * Activate this job. 8295 */ 8296 sym_put_start_queue(np, cp); 8297 8298 /* 8299 * Command is successfully queued. 8300 */ 8301 return; 8302 out_abort: 8303 sym_free_ccb(np, cp); 8304 sym_xpt_done(np, (union ccb *) csio); 8305 } 8306 8307 /* 8308 * Scatter a virtual buffer into bus addressable chunks. 8309 */ 8310 static int 8311 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len) 8312 { 8313 u_long pe, pn; 8314 u_long n, k; 8315 int s; 8316 8317 cp->data_len += len; 8318 8319 pe = vaddr + len; 8320 n = len; 8321 s = SYM_CONF_MAX_SG - 1 - cp->segments; 8322 8323 while (n && s >= 0) { 8324 pn = (pe - 1) & ~PAGE_MASK; 8325 k = pe - pn; 8326 if (k > n) { 8327 k = n; 8328 pn = pe - n; 8329 } 8330 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8331 printf ("%s scatter: va=%lx pa=%lx siz=%ld\n", 8332 sym_name(np), pn, (u_long) vtobus(pn), k); 8333 } 8334 cp->phys.data[s].addr = cpu_to_scr(vtobus(pn)); 8335 cp->phys.data[s].size = cpu_to_scr(k); 8336 pe = pn; 8337 n -= k; 8338 --s; 8339 } 8340 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8341 8342 return n ? -1 : 0; 8343 } 8344 8345 /* 8346 * Scatter a SG list with virtual addresses into bus addressable chunks. 8347 */ 8348 static int 8349 sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8350 { 8351 int i, retv = 0; 8352 8353 for (i = nsegs - 1 ; i >= 0 ; --i) { 8354 retv = sym_scatter_virtual(np, cp, 8355 psegs[i].ds_addr, psegs[i].ds_len); 8356 if (retv < 0) 8357 break; 8358 } 8359 return retv; 8360 } 8361 8362 /* 8363 * Scatter a physical buffer into bus addressable chunks. 8364 */ 8365 static int 8366 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len) 8367 { 8368 struct bus_dma_segment seg; 8369 8370 seg.ds_addr = paddr; 8371 seg.ds_len = len; 8372 return sym_scatter_sg_physical(np, cp, &seg, 1); 8373 } 8374 8375 #endif /* FreeBSD_Bus_Dma_Abstraction */ 8376 8377 /* 8378 * Scatter a SG list with physical addresses into bus addressable chunks. 8379 * We need to ensure 16MB boundaries not to be crossed during DMA of 8380 * each segment, due to some chips being flawed. 8381 */ 8382 #define BOUND_MASK ((1UL<<24)-1) 8383 static int 8384 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8385 { 8386 u_long ps, pe, pn; 8387 u_long k; 8388 int s, t; 8389 8390 #ifndef FreeBSD_Bus_Dma_Abstraction 8391 s = SYM_CONF_MAX_SG - 1 - cp->segments; 8392 #else 8393 s = SYM_CONF_MAX_SG - 1; 8394 #endif 8395 t = nsegs - 1; 8396 ps = psegs[t].ds_addr; 8397 pe = ps + psegs[t].ds_len; 8398 8399 while (s >= 0) { 8400 pn = (pe - 1) & ~BOUND_MASK; 8401 if (pn <= ps) 8402 pn = ps; 8403 k = pe - pn; 8404 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8405 printf ("%s scatter: paddr=%lx len=%ld\n", 8406 sym_name(np), pn, k); 8407 } 8408 cp->phys.data[s].addr = cpu_to_scr(pn); 8409 cp->phys.data[s].size = cpu_to_scr(k); 8410 #ifndef FreeBSD_Bus_Dma_Abstraction 8411 cp->data_len += k; 8412 #endif 8413 --s; 8414 if (pn == ps) { 8415 if (--t < 0) 8416 break; 8417 ps = psegs[t].ds_addr; 8418 pe = ps + psegs[t].ds_len; 8419 } 8420 else 8421 pe = pn; 8422 } 8423 8424 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8425 8426 return t >= 0 ? -1 : 0; 8427 } 8428 #undef BOUND_MASK 8429 8430 /* 8431 * SIM action for non performance critical stuff. 8432 */ 8433 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8434 { 8435 hcb_p np; 8436 tcb_p tp; 8437 lcb_p lp; 8438 struct ccb_hdr *ccb_h; 8439 8440 /* 8441 * Retrieve our controller data structure. 8442 */ 8443 np = (hcb_p) cam_sim_softc(sim); 8444 8445 ccb_h = &ccb->ccb_h; 8446 8447 switch (ccb_h->func_code) { 8448 case XPT_SET_TRAN_SETTINGS: 8449 { 8450 struct ccb_trans_settings *cts; 8451 8452 cts = &ccb->cts; 8453 tp = &np->target[ccb_h->target_id]; 8454 8455 /* 8456 * Update SPI transport settings in TARGET control block. 8457 * Update SCSI device settings in LUN control block. 8458 */ 8459 lp = sym_lp(np, tp, ccb_h->target_lun); 8460 #ifdef FreeBSD_New_Tran_Settings 8461 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8462 #else 8463 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8464 #endif 8465 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8466 if (lp) 8467 sym_update_dflags(np, &lp->current_flags, cts); 8468 } 8469 #ifdef FreeBSD_New_Tran_Settings 8470 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8471 #else 8472 if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) { 8473 #endif 8474 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8475 if (lp) 8476 sym_update_dflags(np, &lp->user_flags, cts); 8477 } 8478 8479 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8480 break; 8481 } 8482 case XPT_GET_TRAN_SETTINGS: 8483 { 8484 struct ccb_trans_settings *cts; 8485 struct sym_trans *tip; 8486 u_char dflags; 8487 8488 cts = &ccb->cts; 8489 tp = &np->target[ccb_h->target_id]; 8490 lp = sym_lp(np, tp, ccb_h->target_lun); 8491 8492 #ifdef FreeBSD_New_Tran_Settings 8493 #define cts__scsi (&cts->proto_specific.scsi) 8494 #define cts__spi (&cts->xport_specific.spi) 8495 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8496 tip = &tp->tinfo.current; 8497 dflags = lp ? lp->current_flags : 0; 8498 } 8499 else { 8500 tip = &tp->tinfo.user; 8501 dflags = lp ? lp->user_flags : tp->usrflags; 8502 } 8503 8504 cts->protocol = PROTO_SCSI; 8505 cts->transport = XPORT_SPI; 8506 cts->protocol_version = tip->scsi_version; 8507 cts->transport_version = tip->spi_version; 8508 8509 cts__spi->sync_period = tip->period; 8510 cts__spi->sync_offset = tip->offset; 8511 cts__spi->bus_width = tip->width; 8512 cts__spi->ppr_options = tip->options; 8513 8514 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8515 | CTS_SPI_VALID_SYNC_OFFSET 8516 | CTS_SPI_VALID_BUS_WIDTH 8517 | CTS_SPI_VALID_PPR_OPTIONS; 8518 8519 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8520 if (dflags & SYM_DISC_ENABLED) 8521 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8522 cts__spi->valid |= CTS_SPI_VALID_DISC; 8523 8524 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8525 if (dflags & SYM_TAGS_ENABLED) 8526 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8527 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8528 #undef cts__spi 8529 #undef cts__scsi 8530 #else 8531 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8532 tip = &tp->tinfo.current; 8533 dflags = lp ? lp->current_flags : 0; 8534 } 8535 else { 8536 tip = &tp->tinfo.user; 8537 dflags = lp ? lp->user_flags : tp->usrflags; 8538 } 8539 8540 cts->sync_period = tip->period; 8541 cts->sync_offset = tip->offset; 8542 cts->bus_width = tip->width; 8543 8544 cts->valid = CCB_TRANS_SYNC_RATE_VALID 8545 | CCB_TRANS_SYNC_OFFSET_VALID 8546 | CCB_TRANS_BUS_WIDTH_VALID; 8547 8548 cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); 8549 8550 if (dflags & SYM_DISC_ENABLED) 8551 cts->flags |= CCB_TRANS_DISC_ENB; 8552 8553 if (dflags & SYM_TAGS_ENABLED) 8554 cts->flags |= CCB_TRANS_TAG_ENB; 8555 8556 cts->valid |= CCB_TRANS_DISC_VALID; 8557 cts->valid |= CCB_TRANS_TQ_VALID; 8558 #endif 8559 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8560 break; 8561 } 8562 case XPT_CALC_GEOMETRY: 8563 { 8564 struct ccb_calc_geometry *ccg; 8565 u32 size_mb; 8566 u32 secs_per_cylinder; 8567 int extended; 8568 8569 /* 8570 * Silly DOS geometry. 8571 */ 8572 ccg = &ccb->ccg; 8573 size_mb = ccg->volume_size 8574 / ((1024L * 1024L) / ccg->block_size); 8575 extended = 1; 8576 8577 if (size_mb > 1024 && extended) { 8578 ccg->heads = 255; 8579 ccg->secs_per_track = 63; 8580 } else { 8581 ccg->heads = 64; 8582 ccg->secs_per_track = 32; 8583 } 8584 secs_per_cylinder = ccg->heads * ccg->secs_per_track; 8585 ccg->cylinders = ccg->volume_size / secs_per_cylinder; 8586 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8587 break; 8588 } 8589 case XPT_PATH_INQ: 8590 { 8591 struct ccb_pathinq *cpi = &ccb->cpi; 8592 cpi->version_num = 1; 8593 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8594 if ((np->features & FE_WIDE) != 0) 8595 cpi->hba_inquiry |= PI_WIDE_16; 8596 cpi->target_sprt = 0; 8597 cpi->hba_misc = 0; 8598 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8599 cpi->hba_misc |= PIM_SCANHILO; 8600 if (np->usrflags & SYM_AVOID_BUS_RESET) 8601 cpi->hba_misc |= PIM_NOBUSRESET; 8602 cpi->hba_eng_cnt = 0; 8603 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8604 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8605 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8606 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8607 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8608 cpi->bus_id = cam_sim_bus(sim); 8609 cpi->initiator_id = np->myaddr; 8610 cpi->base_transfer_speed = 3300; 8611 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8612 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8613 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8614 cpi->unit_number = cam_sim_unit(sim); 8615 8616 #ifdef FreeBSD_New_Tran_Settings 8617 cpi->protocol = PROTO_SCSI; 8618 cpi->protocol_version = SCSI_REV_2; 8619 cpi->transport = XPORT_SPI; 8620 cpi->transport_version = 2; 8621 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8622 if (np->features & FE_ULTRA3) { 8623 cpi->transport_version = 3; 8624 cpi->xport_specific.spi.ppr_options = 8625 SID_SPI_CLOCK_DT_ST; 8626 } 8627 #endif 8628 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8629 break; 8630 } 8631 case XPT_ABORT: 8632 { 8633 union ccb *abort_ccb = ccb->cab.abort_ccb; 8634 switch(abort_ccb->ccb_h.func_code) { 8635 case XPT_SCSI_IO: 8636 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8637 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8638 break; 8639 } 8640 default: 8641 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8642 break; 8643 } 8644 break; 8645 } 8646 case XPT_RESET_DEV: 8647 { 8648 sym_reset_dev(np, ccb); 8649 break; 8650 } 8651 case XPT_RESET_BUS: 8652 { 8653 sym_reset_scsi_bus(np, 0); 8654 if (sym_verbose) { 8655 xpt_print_path(np->path); 8656 printf("SCSI BUS reset delivered.\n"); 8657 } 8658 sym_init (np, 1); 8659 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8660 break; 8661 } 8662 case XPT_ACCEPT_TARGET_IO: 8663 case XPT_CONT_TARGET_IO: 8664 case XPT_EN_LUN: 8665 case XPT_NOTIFY_ACK: 8666 case XPT_IMMED_NOTIFY: 8667 case XPT_TERM_IO: 8668 default: 8669 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8670 break; 8671 } 8672 } 8673 8674 /* 8675 * Asynchronous notification handler. 8676 */ 8677 static void 8678 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8679 { 8680 hcb_p np; 8681 struct cam_sim *sim; 8682 u_int tn; 8683 tcb_p tp; 8684 int s; 8685 8686 s = splcam(); 8687 8688 sim = (struct cam_sim *) cb_arg; 8689 np = (hcb_p) cam_sim_softc(sim); 8690 8691 switch (code) { 8692 case AC_LOST_DEVICE: 8693 tn = xpt_path_target_id(path); 8694 if (tn >= SYM_CONF_MAX_TARGET) 8695 break; 8696 8697 tp = &np->target[tn]; 8698 8699 tp->to_reset = 0; 8700 tp->head.sval = 0; 8701 tp->head.wval = np->rv_scntl3; 8702 tp->head.uval = 0; 8703 8704 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8705 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8706 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8707 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8708 8709 break; 8710 default: 8711 break; 8712 } 8713 8714 splx(s); 8715 } 8716 8717 /* 8718 * Update transfer settings of a target. 8719 */ 8720 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8721 struct ccb_trans_settings *cts) 8722 { 8723 /* 8724 * Update the infos. 8725 */ 8726 #ifdef FreeBSD_New_Tran_Settings 8727 #define cts__spi (&cts->xport_specific.spi) 8728 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8729 tip->width = cts__spi->bus_width; 8730 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8731 tip->offset = cts__spi->sync_offset; 8732 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8733 tip->period = cts__spi->sync_period; 8734 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8735 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8736 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8737 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8738 tip->scsi_version = cts->protocol_version; 8739 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8740 cts->transport_version != XPORT_VERSION_UNKNOWN) 8741 tip->spi_version = cts->transport_version; 8742 #undef cts__spi 8743 #else 8744 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 8745 tip->width = cts->bus_width; 8746 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) 8747 tip->offset = cts->sync_offset; 8748 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) 8749 tip->period = cts->sync_period; 8750 #endif 8751 /* 8752 * Scale against driver configuration limits. 8753 */ 8754 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8755 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8756 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8757 8758 /* 8759 * Scale against actual controller BUS width. 8760 */ 8761 if (tip->width > np->maxwide) 8762 tip->width = np->maxwide; 8763 8764 #ifdef FreeBSD_New_Tran_Settings 8765 /* 8766 * Only accept DT if controller supports and SYNC/WIDE asked. 8767 */ 8768 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8769 !(tip->width == BUS_16_BIT && tip->offset)) { 8770 tip->options &= ~PPR_OPT_DT; 8771 } 8772 #else 8773 /* 8774 * For now, only assume DT if period <= 9, BUS 16 and offset != 0. 8775 */ 8776 tip->options = 0; 8777 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) && 8778 tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) { 8779 tip->options |= PPR_OPT_DT; 8780 } 8781 #endif 8782 8783 /* 8784 * Scale period factor and offset against controller limits. 8785 */ 8786 if (tip->options & PPR_OPT_DT) { 8787 if (tip->period < np->minsync_dt) 8788 tip->period = np->minsync_dt; 8789 if (tip->period > np->maxsync_dt) 8790 tip->period = np->maxsync_dt; 8791 if (tip->offset > np->maxoffs_dt) 8792 tip->offset = np->maxoffs_dt; 8793 } 8794 else { 8795 if (tip->period < np->minsync) 8796 tip->period = np->minsync; 8797 if (tip->period > np->maxsync) 8798 tip->period = np->maxsync; 8799 if (tip->offset > np->maxoffs) 8800 tip->offset = np->maxoffs; 8801 } 8802 } 8803 8804 /* 8805 * Update flags for a device (logical unit). 8806 */ 8807 static void 8808 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8809 { 8810 #ifdef FreeBSD_New_Tran_Settings 8811 #define cts__scsi (&cts->proto_specific.scsi) 8812 #define cts__spi (&cts->xport_specific.spi) 8813 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8814 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8815 *flags |= SYM_DISC_ENABLED; 8816 else 8817 *flags &= ~SYM_DISC_ENABLED; 8818 } 8819 8820 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8821 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8822 *flags |= SYM_TAGS_ENABLED; 8823 else 8824 *flags &= ~SYM_TAGS_ENABLED; 8825 } 8826 #undef cts__spi 8827 #undef cts__scsi 8828 #else 8829 if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { 8830 if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) 8831 *flags |= SYM_DISC_ENABLED; 8832 else 8833 *flags &= ~SYM_DISC_ENABLED; 8834 } 8835 8836 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 8837 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) 8838 *flags |= SYM_TAGS_ENABLED; 8839 else 8840 *flags &= ~SYM_TAGS_ENABLED; 8841 } 8842 #endif 8843 } 8844 8845 8846 /*============= DRIVER INITIALISATION ==================*/ 8847 8848 #ifdef FreeBSD_Bus_Io_Abstraction 8849 8850 static device_method_t sym_pci_methods[] = { 8851 DEVMETHOD(device_probe, sym_pci_probe), 8852 DEVMETHOD(device_attach, sym_pci_attach), 8853 { 0, 0 } 8854 }; 8855 8856 static driver_t sym_pci_driver = { 8857 "sym", 8858 sym_pci_methods, 8859 sizeof(struct sym_hcb) 8860 }; 8861 8862 static devclass_t sym_devclass; 8863 8864 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8865 8866 #else /* Pre-FreeBSD_Bus_Io_Abstraction */ 8867 8868 static u_long sym_unit; 8869 8870 static struct pci_device sym_pci_driver = { 8871 "sym", 8872 sym_pci_probe, 8873 sym_pci_attach, 8874 &sym_unit, 8875 NULL 8876 }; 8877 8878 #if __FreeBSD_version >= 400000 8879 COMPAT_PCI_DRIVER (sym, sym_pci_driver); 8880 #else 8881 DATA_SET (pcidevice_set, sym_pci_driver); 8882 #endif 8883 8884 #endif /* FreeBSD_Bus_Io_Abstraction */ 8885 8886 static struct sym_pci_chip sym_pci_dev_table[] = { 8887 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8888 FE_ERL} 8889 , 8890 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8891 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8892 FE_BOF} 8893 , 8894 #else 8895 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8896 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8897 , 8898 #endif 8899 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8900 FE_BOF|FE_ERL} 8901 , 8902 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8903 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8904 , 8905 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8906 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8907 , 8908 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8909 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8910 , 8911 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8912 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8913 FE_RAM|FE_DIFF} 8914 , 8915 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8916 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8917 FE_RAM|FE_DIFF} 8918 , 8919 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8920 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8921 FE_RAM|FE_DIFF} 8922 , 8923 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8924 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8925 FE_RAM|FE_DIFF} 8926 , 8927 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8928 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8929 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8930 FE_RAM|FE_LCKFRQ} 8931 , 8932 #else 8933 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8934 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8935 FE_RAM|FE_LCKFRQ} 8936 , 8937 #endif 8938 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8939 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8940 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8941 , 8942 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8943 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8944 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8945 , 8946 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8947 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8948 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8949 FE_C10} 8950 , 8951 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8952 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8953 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8954 FE_C10|FE_U3EN} 8955 , 8956 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8957 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8958 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8959 FE_C10|FE_U3EN} 8960 , 8961 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8962 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8963 FE_RAM|FE_IO256|FE_LEDC} 8964 }; 8965 8966 #define sym_pci_num_devs \ 8967 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8968 8969 /* 8970 * Look up the chip table. 8971 * 8972 * Return a pointer to the chip entry if found, 8973 * zero otherwise. 8974 */ 8975 static struct sym_pci_chip * 8976 #ifdef FreeBSD_Bus_Io_Abstraction 8977 sym_find_pci_chip(device_t dev) 8978 #else 8979 sym_find_pci_chip(pcici_t pci_tag) 8980 #endif 8981 { 8982 struct sym_pci_chip *chip; 8983 int i; 8984 u_short device_id; 8985 u_char revision; 8986 8987 #ifdef FreeBSD_Bus_Io_Abstraction 8988 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8989 return 0; 8990 8991 device_id = pci_get_device(dev); 8992 revision = pci_get_revid(dev); 8993 #else 8994 if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR) 8995 return 0; 8996 8997 device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); 8998 revision = pci_cfgread(pci_tag, PCIR_REVID, 1); 8999 #endif 9000 9001 for (i = 0; i < sym_pci_num_devs; i++) { 9002 chip = &sym_pci_dev_table[i]; 9003 if (device_id != chip->device_id) 9004 continue; 9005 if (revision > chip->revision_id) 9006 continue; 9007 return chip; 9008 } 9009 9010 return 0; 9011 } 9012 9013 /* 9014 * Tell upper layer if the chip is supported. 9015 */ 9016 #ifdef FreeBSD_Bus_Io_Abstraction 9017 static int 9018 sym_pci_probe(device_t dev) 9019 { 9020 struct sym_pci_chip *chip; 9021 9022 chip = sym_find_pci_chip(dev); 9023 if (chip && sym_find_firmware(chip)) { 9024 device_set_desc(dev, chip->name); 9025 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0; 9026 } 9027 return ENXIO; 9028 } 9029 #else /* Pre-FreeBSD_Bus_Io_Abstraction */ 9030 static const char * 9031 sym_pci_probe(pcici_t pci_tag, pcidi_t type) 9032 { 9033 struct sym_pci_chip *chip; 9034 9035 chip = sym_find_pci_chip(pci_tag); 9036 if (chip && sym_find_firmware(chip)) { 9037 #if NNCR > 0 9038 /* Only claim chips we are allowed to take precedence over the ncr */ 9039 if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)) 9040 #else 9041 if (1) 9042 #endif 9043 return chip->name; 9044 } 9045 return 0; 9046 } 9047 #endif 9048 9049 /* 9050 * Attach a sym53c8xx device. 9051 */ 9052 #ifdef FreeBSD_Bus_Io_Abstraction 9053 static int 9054 sym_pci_attach(device_t dev) 9055 #else 9056 static void 9057 sym_pci_attach(pcici_t pci_tag, int unit) 9058 { 9059 int err = sym_pci_attach2(pci_tag, unit); 9060 if (err) 9061 printf("sym: failed to attach unit %d - err=%d.\n", unit, err); 9062 } 9063 static int 9064 sym_pci_attach2(pcici_t pci_tag, int unit) 9065 #endif 9066 { 9067 struct sym_pci_chip *chip; 9068 u_short command; 9069 u_char cachelnsz; 9070 struct sym_hcb *np = 0; 9071 struct sym_nvram nvram; 9072 struct sym_fw *fw = 0; 9073 int i; 9074 #ifdef FreeBSD_Bus_Dma_Abstraction 9075 bus_dma_tag_t bus_dmat; 9076 9077 /* 9078 * I expected to be told about a parent 9079 * DMA tag, but didn't find any. 9080 */ 9081 bus_dmat = NULL; 9082 #endif 9083 9084 /* 9085 * Only probed devices should be attached. 9086 * We just enjoy being paranoid. :) 9087 */ 9088 #ifdef FreeBSD_Bus_Io_Abstraction 9089 chip = sym_find_pci_chip(dev); 9090 #else 9091 chip = sym_find_pci_chip(pci_tag); 9092 #endif 9093 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 9094 return (ENXIO); 9095 9096 /* 9097 * Allocate immediately the host control block, 9098 * since we are only expecting to succeed. :) 9099 * We keep track in the HCB of all the resources that 9100 * are to be released on error. 9101 */ 9102 #ifdef FreeBSD_Bus_Dma_Abstraction 9103 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 9104 if (np) 9105 np->bus_dmat = bus_dmat; 9106 else 9107 goto attach_failed; 9108 #else 9109 np = sym_calloc_dma(sizeof(*np), "HCB"); 9110 if (!np) 9111 goto attach_failed; 9112 #endif 9113 9114 /* 9115 * Copy some useful infos to the HCB. 9116 */ 9117 np->hcb_ba = vtobus(np); 9118 np->verbose = bootverbose; 9119 #ifdef FreeBSD_Bus_Io_Abstraction 9120 np->device = dev; 9121 np->unit = device_get_unit(dev); 9122 np->device_id = pci_get_device(dev); 9123 np->revision_id = pci_get_revid(dev); 9124 #else 9125 np->pci_tag = pci_tag; 9126 np->unit = unit; 9127 np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); 9128 np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1); 9129 #endif 9130 np->features = chip->features; 9131 np->clock_divn = chip->nr_divisor; 9132 np->maxoffs = chip->offset_max; 9133 np->maxburst = chip->burst_max; 9134 np->scripta_sz = fw->a_size; 9135 np->scriptb_sz = fw->b_size; 9136 np->fw_setup = fw->setup; 9137 np->fw_patch = fw->patch; 9138 np->fw_name = fw->name; 9139 9140 /* 9141 * Edit its name. 9142 */ 9143 snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); 9144 9145 /* 9146 * Initialyze the CCB free and busy queues. 9147 */ 9148 sym_que_init(&np->free_ccbq); 9149 sym_que_init(&np->busy_ccbq); 9150 sym_que_init(&np->comp_ccbq); 9151 sym_que_init(&np->cam_ccbq); 9152 9153 /* 9154 * Allocate a tag for the DMA of user data. 9155 */ 9156 #ifdef FreeBSD_Bus_Dma_Abstraction 9157 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 9158 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 9159 NULL, NULL, 9160 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 9161 (1<<24), 0, &np->data_dmat)) { 9162 device_printf(dev, "failed to create DMA tag.\n"); 9163 goto attach_failed; 9164 } 9165 #endif 9166 /* 9167 * Read and apply some fix-ups to the PCI COMMAND 9168 * register. We want the chip to be enabled for: 9169 * - BUS mastering 9170 * - PCI parity checking (reporting would also be fine) 9171 * - Write And Invalidate. 9172 */ 9173 #ifdef FreeBSD_Bus_Io_Abstraction 9174 command = pci_read_config(dev, PCIR_COMMAND, 2); 9175 #else 9176 command = pci_cfgread(pci_tag, PCIR_COMMAND, 2); 9177 #endif 9178 command |= PCIM_CMD_BUSMASTEREN; 9179 command |= PCIM_CMD_PERRESPEN; 9180 command |= /* PCIM_CMD_MWIEN */ 0x0010; 9181 #ifdef FreeBSD_Bus_Io_Abstraction 9182 pci_write_config(dev, PCIR_COMMAND, command, 2); 9183 #else 9184 pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2); 9185 #endif 9186 9187 /* 9188 * Let the device know about the cache line size, 9189 * if it doesn't yet. 9190 */ 9191 #ifdef FreeBSD_Bus_Io_Abstraction 9192 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 9193 #else 9194 cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1); 9195 #endif 9196 if (!cachelnsz) { 9197 cachelnsz = 8; 9198 #ifdef FreeBSD_Bus_Io_Abstraction 9199 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 9200 #else 9201 pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1); 9202 #endif 9203 } 9204 9205 /* 9206 * Alloc/get/map/retrieve everything that deals with MMIO. 9207 */ 9208 #ifdef FreeBSD_Bus_Io_Abstraction 9209 if ((command & PCIM_CMD_MEMEN) != 0) { 9210 int regs_id = SYM_PCI_MMIO; 9211 np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 9212 0, ~0, 1, RF_ACTIVE); 9213 } 9214 if (!np->mmio_res) { 9215 device_printf(dev, "failed to allocate MMIO resources\n"); 9216 goto attach_failed; 9217 } 9218 np->mmio_bsh = rman_get_bushandle(np->mmio_res); 9219 np->mmio_tag = rman_get_bustag(np->mmio_res); 9220 np->mmio_pa = rman_get_start(np->mmio_res); 9221 np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); 9222 np->mmio_ba = np->mmio_pa; 9223 #else 9224 if ((command & PCIM_CMD_MEMEN) != 0) { 9225 vm_offset_t vaddr, paddr; 9226 if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) { 9227 printf("%s: failed to map MMIO window\n", sym_name(np)); 9228 goto attach_failed; 9229 } 9230 np->mmio_va = vaddr; 9231 np->mmio_pa = paddr; 9232 np->mmio_ba = paddr; 9233 } 9234 #endif 9235 9236 /* 9237 * Allocate the IRQ. 9238 */ 9239 #ifdef FreeBSD_Bus_Io_Abstraction 9240 i = 0; 9241 np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i, 9242 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); 9243 if (!np->irq_res) { 9244 device_printf(dev, "failed to allocate IRQ resource\n"); 9245 goto attach_failed; 9246 } 9247 #endif 9248 9249 #ifdef SYM_CONF_IOMAPPED 9250 /* 9251 * User want us to use normal IO with PCI. 9252 * Alloc/get/map/retrieve everything that deals with IO. 9253 */ 9254 #ifdef FreeBSD_Bus_Io_Abstraction 9255 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 9256 int regs_id = SYM_PCI_IO; 9257 np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, ®s_id, 9258 0, ~0, 1, RF_ACTIVE); 9259 } 9260 if (!np->io_res) { 9261 device_printf(dev, "failed to allocate IO resources\n"); 9262 goto attach_failed; 9263 } 9264 np->io_bsh = rman_get_bushandle(np->io_res); 9265 np->io_tag = rman_get_bustag(np->io_res); 9266 np->io_port = rman_get_start(np->io_res); 9267 #else 9268 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 9269 pci_port_t io_port; 9270 if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) { 9271 printf("%s: failed to map IO window\n", sym_name(np)); 9272 goto attach_failed; 9273 } 9274 np->io_port = io_port; 9275 } 9276 #endif 9277 9278 #endif /* SYM_CONF_IOMAPPED */ 9279 9280 /* 9281 * If the chip has RAM. 9282 * Alloc/get/map/retrieve the corresponding resources. 9283 */ 9284 if ((np->features & (FE_RAM|FE_RAM8K)) && 9285 (command & PCIM_CMD_MEMEN) != 0) { 9286 #ifdef FreeBSD_Bus_Io_Abstraction 9287 int regs_id = SYM_PCI_RAM; 9288 if (np->features & FE_64BIT) 9289 regs_id = SYM_PCI_RAM64; 9290 np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 9291 0, ~0, 1, RF_ACTIVE); 9292 if (!np->ram_res) { 9293 device_printf(dev,"failed to allocate RAM resources\n"); 9294 goto attach_failed; 9295 } 9296 np->ram_id = regs_id; 9297 np->ram_bsh = rman_get_bushandle(np->ram_res); 9298 np->ram_tag = rman_get_bustag(np->ram_res); 9299 np->ram_pa = rman_get_start(np->ram_res); 9300 np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); 9301 np->ram_ba = np->ram_pa; 9302 #else 9303 vm_offset_t vaddr, paddr; 9304 int regs_id = SYM_PCI_RAM; 9305 if (np->features & FE_64BIT) 9306 regs_id = SYM_PCI_RAM64; 9307 if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) { 9308 printf("%s: failed to map RAM window\n", sym_name(np)); 9309 goto attach_failed; 9310 } 9311 np->ram_va = vaddr; 9312 np->ram_pa = paddr; 9313 np->ram_ba = paddr; 9314 #endif 9315 } 9316 9317 /* 9318 * Save setting of some IO registers, so we will 9319 * be able to probe specific implementations. 9320 */ 9321 sym_save_initial_setting (np); 9322 9323 /* 9324 * Reset the chip now, since it has been reported 9325 * that SCSI clock calibration may not work properly 9326 * if the chip is currently active. 9327 */ 9328 sym_chip_reset (np); 9329 9330 /* 9331 * Try to read the user set-up. 9332 */ 9333 (void) sym_read_nvram(np, &nvram); 9334 9335 /* 9336 * Prepare controller and devices settings, according 9337 * to chip features, user set-up and driver set-up. 9338 */ 9339 (void) sym_prepare_setting(np, &nvram); 9340 9341 /* 9342 * Check the PCI clock frequency. 9343 * Must be performed after prepare_setting since it destroys 9344 * STEST1 that is used to probe for the clock doubler. 9345 */ 9346 i = sym_getpciclock(np); 9347 if (i > 37000) 9348 #ifdef FreeBSD_Bus_Io_Abstraction 9349 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 9350 #else 9351 printf("%s: PCI BUS clock seems too high: %u KHz.\n", 9352 sym_name(np), i); 9353 #endif 9354 9355 /* 9356 * Allocate the start queue. 9357 */ 9358 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 9359 if (!np->squeue) 9360 goto attach_failed; 9361 np->squeue_ba = vtobus(np->squeue); 9362 9363 /* 9364 * Allocate the done queue. 9365 */ 9366 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 9367 if (!np->dqueue) 9368 goto attach_failed; 9369 np->dqueue_ba = vtobus(np->dqueue); 9370 9371 /* 9372 * Allocate the target bus address array. 9373 */ 9374 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 9375 if (!np->targtbl) 9376 goto attach_failed; 9377 np->targtbl_ba = vtobus(np->targtbl); 9378 9379 /* 9380 * Allocate SCRIPTS areas. 9381 */ 9382 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 9383 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 9384 if (!np->scripta0 || !np->scriptb0) 9385 goto attach_failed; 9386 9387 /* 9388 * Allocate some CCB. We need at least ONE. 9389 */ 9390 if (!sym_alloc_ccb(np)) 9391 goto attach_failed; 9392 9393 /* 9394 * Calculate BUS addresses where we are going 9395 * to load the SCRIPTS. 9396 */ 9397 np->scripta_ba = vtobus(np->scripta0); 9398 np->scriptb_ba = vtobus(np->scriptb0); 9399 np->scriptb0_ba = np->scriptb_ba; 9400 9401 if (np->ram_ba) { 9402 np->scripta_ba = np->ram_ba; 9403 if (np->features & FE_RAM8K) { 9404 np->ram_ws = 8192; 9405 np->scriptb_ba = np->scripta_ba + 4096; 9406 #if BITS_PER_LONG > 32 9407 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 9408 #endif 9409 } 9410 else 9411 np->ram_ws = 4096; 9412 } 9413 9414 /* 9415 * Copy scripts to controller instance. 9416 */ 9417 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 9418 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 9419 9420 /* 9421 * Setup variable parts in scripts and compute 9422 * scripts bus addresses used from the C code. 9423 */ 9424 np->fw_setup(np, fw); 9425 9426 /* 9427 * Bind SCRIPTS with physical addresses usable by the 9428 * SCRIPTS processor (as seen from the BUS = BUS addresses). 9429 */ 9430 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 9431 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 9432 9433 #ifdef SYM_CONF_IARB_SUPPORT 9434 /* 9435 * If user wants IARB to be set when we win arbitration 9436 * and have other jobs, compute the max number of consecutive 9437 * settings of IARB hints before we leave devices a chance to 9438 * arbitrate for reselection. 9439 */ 9440 #ifdef SYM_SETUP_IARB_MAX 9441 np->iarb_max = SYM_SETUP_IARB_MAX; 9442 #else 9443 np->iarb_max = 4; 9444 #endif 9445 #endif 9446 9447 /* 9448 * Prepare the idle and invalid task actions. 9449 */ 9450 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9451 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9452 np->idletask_ba = vtobus(&np->idletask); 9453 9454 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9455 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9456 np->notask_ba = vtobus(&np->notask); 9457 9458 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9459 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9460 np->bad_itl_ba = vtobus(&np->bad_itl); 9461 9462 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9463 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 9464 np->bad_itlq_ba = vtobus(&np->bad_itlq); 9465 9466 /* 9467 * Allocate and prepare the lun JUMP table that is used 9468 * for a target prior the probing of devices (bad lun table). 9469 * A private table will be allocated for the target on the 9470 * first INQUIRY response received. 9471 */ 9472 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 9473 if (!np->badluntbl) 9474 goto attach_failed; 9475 9476 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 9477 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 9478 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 9479 9480 /* 9481 * Prepare the bus address array that contains the bus 9482 * address of each target control block. 9483 * For now, assume all logical units are wrong. :) 9484 */ 9485 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 9486 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 9487 np->target[i].head.luntbl_sa = 9488 cpu_to_scr(vtobus(np->badluntbl)); 9489 np->target[i].head.lun0_sa = 9490 cpu_to_scr(vtobus(&np->badlun_sa)); 9491 } 9492 9493 /* 9494 * Now check the cache handling of the pci chipset. 9495 */ 9496 if (sym_snooptest (np)) { 9497 #ifdef FreeBSD_Bus_Io_Abstraction 9498 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 9499 #else 9500 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); 9501 #endif 9502 goto attach_failed; 9503 }; 9504 9505 /* 9506 * Now deal with CAM. 9507 * Hopefully, we will succeed with that one.:) 9508 */ 9509 if (!sym_cam_attach(np)) 9510 goto attach_failed; 9511 9512 /* 9513 * Sigh! we are done. 9514 */ 9515 return 0; 9516 9517 /* 9518 * We have failed. 9519 * We will try to free all the resources we have 9520 * allocated, but if we are a boot device, this 9521 * will not help that much.;) 9522 */ 9523 attach_failed: 9524 if (np) 9525 sym_pci_free(np); 9526 return ENXIO; 9527 } 9528 9529 /* 9530 * Free everything that have been allocated for this device. 9531 */ 9532 static void sym_pci_free(hcb_p np) 9533 { 9534 SYM_QUEHEAD *qp; 9535 ccb_p cp; 9536 tcb_p tp; 9537 lcb_p lp; 9538 int target, lun; 9539 int s; 9540 9541 /* 9542 * First free CAM resources. 9543 */ 9544 s = splcam(); 9545 sym_cam_free(np); 9546 splx(s); 9547 9548 /* 9549 * Now every should be quiet for us to 9550 * free other resources. 9551 */ 9552 #ifdef FreeBSD_Bus_Io_Abstraction 9553 if (np->ram_res) 9554 bus_release_resource(np->device, SYS_RES_MEMORY, 9555 np->ram_id, np->ram_res); 9556 if (np->mmio_res) 9557 bus_release_resource(np->device, SYS_RES_MEMORY, 9558 SYM_PCI_MMIO, np->mmio_res); 9559 if (np->io_res) 9560 bus_release_resource(np->device, SYS_RES_IOPORT, 9561 SYM_PCI_IO, np->io_res); 9562 if (np->irq_res) 9563 bus_release_resource(np->device, SYS_RES_IRQ, 9564 0, np->irq_res); 9565 #else 9566 /* 9567 * YEAH!!! 9568 * It seems there is no means to free MMIO resources. 9569 */ 9570 #endif 9571 9572 if (np->scriptb0) 9573 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 9574 if (np->scripta0) 9575 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 9576 if (np->squeue) 9577 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 9578 if (np->dqueue) 9579 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 9580 9581 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { 9582 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 9583 #ifdef FreeBSD_Bus_Dma_Abstraction 9584 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 9585 #endif 9586 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 9587 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 9588 } 9589 9590 if (np->badluntbl) 9591 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 9592 9593 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 9594 tp = &np->target[target]; 9595 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 9596 lp = sym_lp(np, tp, lun); 9597 if (!lp) 9598 continue; 9599 if (lp->itlq_tbl) 9600 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 9601 "ITLQ_TBL"); 9602 if (lp->cb_tags) 9603 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 9604 "CB_TAGS"); 9605 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 9606 } 9607 #if SYM_CONF_MAX_LUN > 1 9608 if (tp->lunmp) 9609 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 9610 "LUNMP"); 9611 #endif 9612 } 9613 if (np->targtbl) 9614 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 9615 #ifdef FreeBSD_Bus_Dma_Abstraction 9616 if (np->data_dmat) 9617 bus_dma_tag_destroy(np->data_dmat); 9618 #endif 9619 sym_mfree_dma(np, sizeof(*np), "HCB"); 9620 } 9621 9622 /* 9623 * Allocate CAM resources and register a bus to CAM. 9624 */ 9625 int sym_cam_attach(hcb_p np) 9626 { 9627 struct cam_devq *devq = 0; 9628 struct cam_sim *sim = 0; 9629 struct cam_path *path = 0; 9630 struct ccb_setasync csa; 9631 int err, s; 9632 9633 s = splcam(); 9634 9635 /* 9636 * Establish our interrupt handler. 9637 */ 9638 #ifdef FreeBSD_Bus_Io_Abstraction 9639 err = bus_setup_intr(np->device, np->irq_res, 9640 INTR_TYPE_CAM | INTR_ENTROPY, sym_intr, np, 9641 &np->intr); 9642 if (err) { 9643 device_printf(np->device, "bus_setup_intr() failed: %d\n", 9644 err); 9645 goto fail; 9646 } 9647 #else 9648 err = 0; 9649 if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) { 9650 printf("%s: failed to map interrupt\n", sym_name(np)); 9651 goto fail; 9652 } 9653 #endif 9654 9655 /* 9656 * Create the device queue for our sym SIM. 9657 */ 9658 devq = cam_simq_alloc(SYM_CONF_MAX_START); 9659 if (!devq) 9660 goto fail; 9661 9662 /* 9663 * Construct our SIM entry. 9664 */ 9665 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, 9666 1, SYM_SETUP_MAX_TAG, devq); 9667 if (!sim) 9668 goto fail; 9669 devq = 0; 9670 9671 if (xpt_bus_register(sim, 0) != CAM_SUCCESS) 9672 goto fail; 9673 np->sim = sim; 9674 sim = 0; 9675 9676 if (xpt_create_path(&path, 0, 9677 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 9678 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 9679 goto fail; 9680 } 9681 np->path = path; 9682 9683 /* 9684 * Hmmm... This should be useful, but I donnot want to 9685 * know about. 9686 */ 9687 #if __FreeBSD_version < 400000 9688 #ifdef __alpha__ 9689 #ifdef FreeBSD_Bus_Io_Abstraction 9690 alpha_register_pci_scsi(pci_get_bus(np->device), 9691 pci_get_slot(np->device), np->sim); 9692 #else 9693 alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim); 9694 #endif 9695 #endif 9696 #endif 9697 9698 /* 9699 * Establish our async notification handler. 9700 */ 9701 xpt_setup_ccb(&csa.ccb_h, np->path, 5); 9702 csa.ccb_h.func_code = XPT_SASYNC_CB; 9703 csa.event_enable = AC_LOST_DEVICE; 9704 csa.callback = sym_async; 9705 csa.callback_arg = np->sim; 9706 xpt_action((union ccb *)&csa); 9707 9708 /* 9709 * Start the chip now, without resetting the BUS, since 9710 * it seems that this must stay under control of CAM. 9711 * With LVD/SE capable chips and BUS in SE mode, we may 9712 * get a spurious SMBC interrupt. 9713 */ 9714 sym_init (np, 0); 9715 9716 splx(s); 9717 return 1; 9718 fail: 9719 if (sim) 9720 cam_sim_free(sim, FALSE); 9721 if (devq) 9722 cam_simq_free(devq); 9723 9724 sym_cam_free(np); 9725 9726 splx(s); 9727 return 0; 9728 } 9729 9730 /* 9731 * Free everything that deals with CAM. 9732 */ 9733 void sym_cam_free(hcb_p np) 9734 { 9735 #ifdef FreeBSD_Bus_Io_Abstraction 9736 if (np->intr) 9737 bus_teardown_intr(np->device, np->irq_res, np->intr); 9738 #else 9739 /* pci_unmap_int(np->pci_tag); */ /* Does nothing */ 9740 #endif 9741 9742 if (np->sim) { 9743 xpt_bus_deregister(cam_sim_path(np->sim)); 9744 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9745 } 9746 if (np->path) 9747 xpt_free_path(np->path); 9748 } 9749 9750 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9751 9752 /* 9753 * Get host setup from NVRAM. 9754 */ 9755 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9756 { 9757 #ifdef SYM_CONF_NVRAM_SUPPORT 9758 /* 9759 * Get parity checking, host ID, verbose mode 9760 * and miscellaneous host flags from NVRAM. 9761 */ 9762 switch(nvram->type) { 9763 case SYM_SYMBIOS_NVRAM: 9764 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9765 np->rv_scntl0 &= ~0x0a; 9766 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9767 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9768 np->verbose += 1; 9769 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9770 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9771 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9772 np->usrflags |= SYM_AVOID_BUS_RESET; 9773 break; 9774 case SYM_TEKRAM_NVRAM: 9775 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9776 break; 9777 default: 9778 break; 9779 } 9780 #endif 9781 } 9782 9783 /* 9784 * Get target setup from NVRAM. 9785 */ 9786 #ifdef SYM_CONF_NVRAM_SUPPORT 9787 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9788 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9789 #endif 9790 9791 static void 9792 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9793 { 9794 #ifdef SYM_CONF_NVRAM_SUPPORT 9795 switch(nvp->type) { 9796 case SYM_SYMBIOS_NVRAM: 9797 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9798 break; 9799 case SYM_TEKRAM_NVRAM: 9800 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9801 break; 9802 default: 9803 break; 9804 } 9805 #endif 9806 } 9807 9808 #ifdef SYM_CONF_NVRAM_SUPPORT 9809 /* 9810 * Get target set-up from Symbios format NVRAM. 9811 */ 9812 static void 9813 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9814 { 9815 tcb_p tp = &np->target[target]; 9816 Symbios_target *tn = &nvram->target[target]; 9817 9818 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9819 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9820 tp->usrtags = 9821 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9822 9823 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9824 tp->usrflags &= ~SYM_DISC_ENABLED; 9825 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9826 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9827 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9828 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9829 } 9830 9831 /* 9832 * Get target set-up from Tekram format NVRAM. 9833 */ 9834 static void 9835 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9836 { 9837 tcb_p tp = &np->target[target]; 9838 struct Tekram_target *tn = &nvram->target[target]; 9839 int i; 9840 9841 if (tn->flags & TEKRAM_SYNC_NEGO) { 9842 i = tn->sync_index & 0xf; 9843 tp->tinfo.user.period = Tekram_sync[i]; 9844 } 9845 9846 tp->tinfo.user.width = 9847 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9848 9849 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9850 tp->usrtags = 2 << nvram->max_tags_index; 9851 } 9852 9853 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9854 tp->usrflags |= SYM_DISC_ENABLED; 9855 9856 /* If any device does not support parity, we will not use this option */ 9857 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9858 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9859 } 9860 9861 #ifdef SYM_CONF_DEBUG_NVRAM 9862 /* 9863 * Dump Symbios format NVRAM for debugging purpose. 9864 */ 9865 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9866 { 9867 int i; 9868 9869 /* display Symbios nvram host data */ 9870 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9871 sym_name(np), nvram->host_id & 0x0f, 9872 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9873 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9874 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9875 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9876 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9877 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9878 9879 /* display Symbios nvram drive data */ 9880 for (i = 0 ; i < 15 ; i++) { 9881 struct Symbios_target *tn = &nvram->target[i]; 9882 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9883 sym_name(np), i, 9884 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9885 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9886 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9887 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9888 tn->bus_width, 9889 tn->sync_period / 4, 9890 tn->timeout); 9891 } 9892 } 9893 9894 /* 9895 * Dump TEKRAM format NVRAM for debugging purpose. 9896 */ 9897 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9898 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9899 { 9900 int i, tags, boot_delay; 9901 char *rem; 9902 9903 /* display Tekram nvram host data */ 9904 tags = 2 << nvram->max_tags_index; 9905 boot_delay = 0; 9906 if (nvram->boot_delay_index < 6) 9907 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9908 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9909 default: 9910 case 0: rem = ""; break; 9911 case 1: rem = " REMOVABLE=boot device"; break; 9912 case 2: rem = " REMOVABLE=all"; break; 9913 } 9914 9915 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9916 sym_name(np), nvram->host_id & 0x0f, 9917 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9918 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9919 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9920 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9921 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9922 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9923 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9924 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9925 rem, boot_delay, tags); 9926 9927 /* display Tekram nvram drive data */ 9928 for (i = 0; i <= 15; i++) { 9929 int sync, j; 9930 struct Tekram_target *tn = &nvram->target[i]; 9931 j = tn->sync_index & 0xf; 9932 sync = Tekram_sync[j]; 9933 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9934 sym_name(np), i, 9935 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9936 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9937 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9938 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9939 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9940 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9941 sync); 9942 } 9943 } 9944 #endif /* SYM_CONF_DEBUG_NVRAM */ 9945 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9946 9947 9948 /* 9949 * Try reading Symbios or Tekram NVRAM 9950 */ 9951 #ifdef SYM_CONF_NVRAM_SUPPORT 9952 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9953 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9954 #endif 9955 9956 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9957 { 9958 #ifdef SYM_CONF_NVRAM_SUPPORT 9959 /* 9960 * Try to read SYMBIOS nvram. 9961 * Try to read TEKRAM nvram if Symbios nvram not found. 9962 */ 9963 if (SYM_SETUP_SYMBIOS_NVRAM && 9964 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9965 nvp->type = SYM_SYMBIOS_NVRAM; 9966 #ifdef SYM_CONF_DEBUG_NVRAM 9967 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9968 #endif 9969 } 9970 else if (SYM_SETUP_TEKRAM_NVRAM && 9971 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9972 nvp->type = SYM_TEKRAM_NVRAM; 9973 #ifdef SYM_CONF_DEBUG_NVRAM 9974 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9975 #endif 9976 } 9977 else 9978 nvp->type = 0; 9979 #else 9980 nvp->type = 0; 9981 #endif 9982 return nvp->type; 9983 } 9984 9985 9986 #ifdef SYM_CONF_NVRAM_SUPPORT 9987 /* 9988 * 24C16 EEPROM reading. 9989 * 9990 * GPOI0 - data in/data out 9991 * GPIO1 - clock 9992 * Symbios NVRAM wiring now also used by Tekram. 9993 */ 9994 9995 #define SET_BIT 0 9996 #define CLR_BIT 1 9997 #define SET_CLK 2 9998 #define CLR_CLK 3 9999 10000 /* 10001 * Set/clear data/clock bit in GPIO0 10002 */ 10003 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 10004 int bit_mode) 10005 { 10006 UDELAY (5); 10007 switch (bit_mode){ 10008 case SET_BIT: 10009 *gpreg |= write_bit; 10010 break; 10011 case CLR_BIT: 10012 *gpreg &= 0xfe; 10013 break; 10014 case SET_CLK: 10015 *gpreg |= 0x02; 10016 break; 10017 case CLR_CLK: 10018 *gpreg &= 0xfd; 10019 break; 10020 10021 } 10022 OUTB (nc_gpreg, *gpreg); 10023 UDELAY (5); 10024 } 10025 10026 /* 10027 * Send START condition to NVRAM to wake it up. 10028 */ 10029 static void S24C16_start(hcb_p np, u_char *gpreg) 10030 { 10031 S24C16_set_bit(np, 1, gpreg, SET_BIT); 10032 S24C16_set_bit(np, 0, gpreg, SET_CLK); 10033 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 10034 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 10035 } 10036 10037 /* 10038 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 10039 */ 10040 static void S24C16_stop(hcb_p np, u_char *gpreg) 10041 { 10042 S24C16_set_bit(np, 0, gpreg, SET_CLK); 10043 S24C16_set_bit(np, 1, gpreg, SET_BIT); 10044 } 10045 10046 /* 10047 * Read or write a bit to the NVRAM, 10048 * read if GPIO0 input else write if GPIO0 output 10049 */ 10050 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 10051 u_char *gpreg) 10052 { 10053 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 10054 S24C16_set_bit(np, 0, gpreg, SET_CLK); 10055 if (read_bit) 10056 *read_bit = INB (nc_gpreg); 10057 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 10058 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 10059 } 10060 10061 /* 10062 * Output an ACK to the NVRAM after reading, 10063 * change GPIO0 to output and when done back to an input 10064 */ 10065 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 10066 u_char *gpcntl) 10067 { 10068 OUTB (nc_gpcntl, *gpcntl & 0xfe); 10069 S24C16_do_bit(np, 0, write_bit, gpreg); 10070 OUTB (nc_gpcntl, *gpcntl); 10071 } 10072 10073 /* 10074 * Input an ACK from NVRAM after writing, 10075 * change GPIO0 to input and when done back to an output 10076 */ 10077 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 10078 u_char *gpcntl) 10079 { 10080 OUTB (nc_gpcntl, *gpcntl | 0x01); 10081 S24C16_do_bit(np, read_bit, 1, gpreg); 10082 OUTB (nc_gpcntl, *gpcntl); 10083 } 10084 10085 /* 10086 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 10087 * GPIO0 must already be set as an output 10088 */ 10089 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 10090 u_char *gpreg, u_char *gpcntl) 10091 { 10092 int x; 10093 10094 for (x = 0; x < 8; x++) 10095 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 10096 10097 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 10098 } 10099 10100 /* 10101 * READ a byte from the NVRAM and then send an ACK to say we have got it, 10102 * GPIO0 must already be set as an input 10103 */ 10104 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 10105 u_char *gpreg, u_char *gpcntl) 10106 { 10107 int x; 10108 u_char read_bit; 10109 10110 *read_data = 0; 10111 for (x = 0; x < 8; x++) { 10112 S24C16_do_bit(np, &read_bit, 1, gpreg); 10113 *read_data |= ((read_bit & 0x01) << (7 - x)); 10114 } 10115 10116 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 10117 } 10118 10119 /* 10120 * Read 'len' bytes starting at 'offset'. 10121 */ 10122 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 10123 { 10124 u_char gpcntl, gpreg; 10125 u_char old_gpcntl, old_gpreg; 10126 u_char ack_data; 10127 int retv = 1; 10128 int x; 10129 10130 /* save current state of GPCNTL and GPREG */ 10131 old_gpreg = INB (nc_gpreg); 10132 old_gpcntl = INB (nc_gpcntl); 10133 gpcntl = old_gpcntl & 0x1c; 10134 10135 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 10136 OUTB (nc_gpreg, old_gpreg); 10137 OUTB (nc_gpcntl, gpcntl); 10138 10139 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 10140 gpreg = old_gpreg; 10141 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 10142 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 10143 10144 /* now set NVRAM inactive with GPIO0/1 both high */ 10145 S24C16_stop(np, &gpreg); 10146 10147 /* activate NVRAM */ 10148 S24C16_start(np, &gpreg); 10149 10150 /* write device code and random address MSB */ 10151 S24C16_write_byte(np, &ack_data, 10152 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 10153 if (ack_data & 0x01) 10154 goto out; 10155 10156 /* write random address LSB */ 10157 S24C16_write_byte(np, &ack_data, 10158 offset & 0xff, &gpreg, &gpcntl); 10159 if (ack_data & 0x01) 10160 goto out; 10161 10162 /* regenerate START state to set up for reading */ 10163 S24C16_start(np, &gpreg); 10164 10165 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 10166 S24C16_write_byte(np, &ack_data, 10167 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 10168 if (ack_data & 0x01) 10169 goto out; 10170 10171 /* now set up GPIO0 for inputting data */ 10172 gpcntl |= 0x01; 10173 OUTB (nc_gpcntl, gpcntl); 10174 10175 /* input all requested data - only part of total NVRAM */ 10176 for (x = 0; x < len; x++) 10177 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 10178 10179 /* finally put NVRAM back in inactive mode */ 10180 gpcntl &= 0xfe; 10181 OUTB (nc_gpcntl, gpcntl); 10182 S24C16_stop(np, &gpreg); 10183 retv = 0; 10184 out: 10185 /* return GPIO0/1 to original states after having accessed NVRAM */ 10186 OUTB (nc_gpcntl, old_gpcntl); 10187 OUTB (nc_gpreg, old_gpreg); 10188 10189 return retv; 10190 } 10191 10192 #undef SET_BIT /* 0 */ 10193 #undef CLR_BIT /* 1 */ 10194 #undef SET_CLK /* 2 */ 10195 #undef CLR_CLK /* 3 */ 10196 10197 /* 10198 * Try reading Symbios NVRAM. 10199 * Return 0 if OK. 10200 */ 10201 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 10202 { 10203 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 10204 u_char *data = (u_char *) nvram; 10205 int len = sizeof(*nvram); 10206 u_short csum; 10207 int x; 10208 10209 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 10210 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 10211 return 1; 10212 10213 /* check valid NVRAM signature, verify byte count and checksum */ 10214 if (nvram->type != 0 || 10215 bcmp(nvram->trailer, Symbios_trailer, 6) || 10216 nvram->byte_count != len - 12) 10217 return 1; 10218 10219 /* verify checksum */ 10220 for (x = 6, csum = 0; x < len - 6; x++) 10221 csum += data[x]; 10222 if (csum != nvram->checksum) 10223 return 1; 10224 10225 return 0; 10226 } 10227 10228 /* 10229 * 93C46 EEPROM reading. 10230 * 10231 * GPOI0 - data in 10232 * GPIO1 - data out 10233 * GPIO2 - clock 10234 * GPIO4 - chip select 10235 * 10236 * Used by Tekram. 10237 */ 10238 10239 /* 10240 * Pulse clock bit in GPIO0 10241 */ 10242 static void T93C46_Clk(hcb_p np, u_char *gpreg) 10243 { 10244 OUTB (nc_gpreg, *gpreg | 0x04); 10245 UDELAY (2); 10246 OUTB (nc_gpreg, *gpreg); 10247 } 10248 10249 /* 10250 * Read bit from NVRAM 10251 */ 10252 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 10253 { 10254 UDELAY (2); 10255 T93C46_Clk(np, gpreg); 10256 *read_bit = INB (nc_gpreg); 10257 } 10258 10259 /* 10260 * Write bit to GPIO0 10261 */ 10262 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 10263 { 10264 if (write_bit & 0x01) 10265 *gpreg |= 0x02; 10266 else 10267 *gpreg &= 0xfd; 10268 10269 *gpreg |= 0x10; 10270 10271 OUTB (nc_gpreg, *gpreg); 10272 UDELAY (2); 10273 10274 T93C46_Clk(np, gpreg); 10275 } 10276 10277 /* 10278 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 10279 */ 10280 static void T93C46_Stop(hcb_p np, u_char *gpreg) 10281 { 10282 *gpreg &= 0xef; 10283 OUTB (nc_gpreg, *gpreg); 10284 UDELAY (2); 10285 10286 T93C46_Clk(np, gpreg); 10287 } 10288 10289 /* 10290 * Send read command and address to NVRAM 10291 */ 10292 static void T93C46_Send_Command(hcb_p np, u_short write_data, 10293 u_char *read_bit, u_char *gpreg) 10294 { 10295 int x; 10296 10297 /* send 9 bits, start bit (1), command (2), address (6) */ 10298 for (x = 0; x < 9; x++) 10299 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 10300 10301 *read_bit = INB (nc_gpreg); 10302 } 10303 10304 /* 10305 * READ 2 bytes from the NVRAM 10306 */ 10307 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 10308 { 10309 int x; 10310 u_char read_bit; 10311 10312 *nvram_data = 0; 10313 for (x = 0; x < 16; x++) { 10314 T93C46_Read_Bit(np, &read_bit, gpreg); 10315 10316 if (read_bit & 0x01) 10317 *nvram_data |= (0x01 << (15 - x)); 10318 else 10319 *nvram_data &= ~(0x01 << (15 - x)); 10320 } 10321 } 10322 10323 /* 10324 * Read Tekram NvRAM data. 10325 */ 10326 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 10327 { 10328 u_char read_bit; 10329 int x; 10330 10331 for (x = 0; x < len; x++) { 10332 10333 /* output read command and address */ 10334 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 10335 if (read_bit & 0x01) 10336 return 1; /* Bad */ 10337 T93C46_Read_Word(np, &data[x], gpreg); 10338 T93C46_Stop(np, gpreg); 10339 } 10340 10341 return 0; 10342 } 10343 10344 /* 10345 * Try reading 93C46 Tekram NVRAM. 10346 */ 10347 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 10348 { 10349 u_char gpcntl, gpreg; 10350 u_char old_gpcntl, old_gpreg; 10351 int retv = 1; 10352 10353 /* save current state of GPCNTL and GPREG */ 10354 old_gpreg = INB (nc_gpreg); 10355 old_gpcntl = INB (nc_gpcntl); 10356 10357 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 10358 1/2/4 out */ 10359 gpreg = old_gpreg & 0xe9; 10360 OUTB (nc_gpreg, gpreg); 10361 gpcntl = (old_gpcntl & 0xe9) | 0x09; 10362 OUTB (nc_gpcntl, gpcntl); 10363 10364 /* input all of NVRAM, 64 words */ 10365 retv = T93C46_Read_Data(np, (u_short *) nvram, 10366 sizeof(*nvram) / sizeof(short), &gpreg); 10367 10368 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 10369 OUTB (nc_gpcntl, old_gpcntl); 10370 OUTB (nc_gpreg, old_gpreg); 10371 10372 return retv; 10373 } 10374 10375 /* 10376 * Try reading Tekram NVRAM. 10377 * Return 0 if OK. 10378 */ 10379 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 10380 { 10381 u_char *data = (u_char *) nvram; 10382 int len = sizeof(*nvram); 10383 u_short csum; 10384 int x; 10385 10386 switch (np->device_id) { 10387 case PCI_ID_SYM53C885: 10388 case PCI_ID_SYM53C895: 10389 case PCI_ID_SYM53C896: 10390 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 10391 data, len); 10392 break; 10393 case PCI_ID_SYM53C875: 10394 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 10395 data, len); 10396 if (!x) 10397 break; 10398 default: 10399 x = sym_read_T93C46_nvram(np, nvram); 10400 break; 10401 } 10402 if (x) 10403 return 1; 10404 10405 /* verify checksum */ 10406 for (x = 0, csum = 0; x < len - 1; x += 2) 10407 csum += data[x] + (data[x+1] << 8); 10408 if (csum != 0x1234) 10409 return 1; 10410 10411 return 0; 10412 } 10413 10414 #endif /* SYM_CONF_NVRAM_SUPPORT */ 10415