1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 #include <sys/systm.h> 74 #include <sys/malloc.h> 75 #include <sys/endian.h> 76 #include <sys/kernel.h> 77 #include <sys/lock.h> 78 #include <sys/mutex.h> 79 #include <sys/module.h> 80 #include <sys/bus.h> 81 82 #include <sys/proc.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <machine/bus.h> 88 #include <machine/resource.h> 89 #include <machine/atomic.h> 90 91 #ifdef __sparc64__ 92 #include <dev/ofw/openfirm.h> 93 #include <machine/ofw_machdep.h> 94 #endif 95 96 #include <sys/rman.h> 97 98 #include <cam/cam.h> 99 #include <cam/cam_ccb.h> 100 #include <cam/cam_sim.h> 101 #include <cam/cam_xpt_sim.h> 102 #include <cam/cam_debug.h> 103 104 #include <cam/scsi/scsi_all.h> 105 #include <cam/scsi/scsi_message.h> 106 107 /* Short and quite clear integer types */ 108 typedef int8_t s8; 109 typedef int16_t s16; 110 typedef int32_t s32; 111 typedef u_int8_t u8; 112 typedef u_int16_t u16; 113 typedef u_int32_t u32; 114 115 /* 116 * Driver definitions. 117 */ 118 #include <dev/sym/sym_defs.h> 119 #include <dev/sym/sym_fw.h> 120 121 /* 122 * IA32 architecture does not reorder STORES and prevents 123 * LOADS from passing STORES. It is called `program order' 124 * by Intel and allows device drivers to deal with memory 125 * ordering by only ensuring that the code is not reordered 126 * by the compiler when ordering is required. 127 * Other architectures implement a weaker ordering that 128 * requires memory barriers (and also IO barriers when they 129 * make sense) to be used. 130 */ 131 #if defined __i386__ || defined __amd64__ 132 #define MEMORY_BARRIER() do { ; } while(0) 133 #elif defined __powerpc__ 134 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 135 #elif defined __ia64__ 136 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 137 #elif defined __sparc64__ 138 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 139 #elif defined __arm__ 140 #define MEMORY_BARRIER() dmb() 141 #else 142 #error "Not supported platform" 143 #endif 144 145 /* 146 * A la VMS/CAM-3 queue management. 147 */ 148 typedef struct sym_quehead { 149 struct sym_quehead *flink; /* Forward pointer */ 150 struct sym_quehead *blink; /* Backward pointer */ 151 } SYM_QUEHEAD; 152 153 #define sym_que_init(ptr) do { \ 154 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 155 } while (0) 156 157 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 158 { 159 return (head->flink == head) ? NULL : head->flink; 160 } 161 162 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 163 { 164 return (head->blink == head) ? NULL : head->blink; 165 } 166 167 static __inline void __sym_que_add(struct sym_quehead * new, 168 struct sym_quehead * blink, 169 struct sym_quehead * flink) 170 { 171 flink->blink = new; 172 new->flink = flink; 173 new->blink = blink; 174 blink->flink = new; 175 } 176 177 static __inline void __sym_que_del(struct sym_quehead * blink, 178 struct sym_quehead * flink) 179 { 180 flink->blink = blink; 181 blink->flink = flink; 182 } 183 184 static __inline int sym_que_empty(struct sym_quehead *head) 185 { 186 return head->flink == head; 187 } 188 189 static __inline void sym_que_splice(struct sym_quehead *list, 190 struct sym_quehead *head) 191 { 192 struct sym_quehead *first = list->flink; 193 194 if (first != list) { 195 struct sym_quehead *last = list->blink; 196 struct sym_quehead *at = head->flink; 197 198 first->blink = head; 199 head->flink = first; 200 201 last->flink = at; 202 at->blink = last; 203 } 204 } 205 206 #define sym_que_entry(ptr, type, member) \ 207 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 208 209 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 210 211 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 212 213 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 214 215 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 216 { 217 struct sym_quehead *elem = head->flink; 218 219 if (elem != head) 220 __sym_que_del(head, elem->flink); 221 else 222 elem = NULL; 223 return elem; 224 } 225 226 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 227 228 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 229 { 230 struct sym_quehead *elem = head->blink; 231 232 if (elem != head) 233 __sym_que_del(elem->blink, head); 234 else 235 elem = NULL; 236 return elem; 237 } 238 239 /* 240 * This one may be useful. 241 */ 242 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 243 for (qp = (head)->flink; qp != (head); qp = qp->flink) 244 /* 245 * FreeBSD does not offer our kind of queue in the CAM CCB. 246 * So, we have to cast. 247 */ 248 #define sym_qptr(p) ((struct sym_quehead *) (p)) 249 250 /* 251 * Simple bitmap operations. 252 */ 253 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 254 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 255 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 256 257 /* 258 * Number of tasks per device we want to handle. 259 */ 260 #if SYM_CONF_MAX_TAG_ORDER > 8 261 #error "more than 256 tags per logical unit not allowed." 262 #endif 263 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 264 265 /* 266 * Donnot use more tasks that we can handle. 267 */ 268 #ifndef SYM_CONF_MAX_TAG 269 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 270 #endif 271 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 272 #undef SYM_CONF_MAX_TAG 273 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 274 #endif 275 276 /* 277 * This one means 'NO TAG for this job' 278 */ 279 #define NO_TAG (256) 280 281 /* 282 * Number of SCSI targets. 283 */ 284 #if SYM_CONF_MAX_TARGET > 16 285 #error "more than 16 targets not allowed." 286 #endif 287 288 /* 289 * Number of logical units per target. 290 */ 291 #if SYM_CONF_MAX_LUN > 64 292 #error "more than 64 logical units per target not allowed." 293 #endif 294 295 /* 296 * Asynchronous pre-scaler (ns). Shall be 40 for 297 * the SCSI timings to be compliant. 298 */ 299 #define SYM_CONF_MIN_ASYNC (40) 300 301 /* 302 * Number of entries in the START and DONE queues. 303 * 304 * We limit to 1 PAGE in order to succeed allocation of 305 * these queues. Each entry is 8 bytes long (2 DWORDS). 306 */ 307 #ifdef SYM_CONF_MAX_START 308 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 309 #else 310 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 311 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 312 #endif 313 314 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 315 #undef SYM_CONF_MAX_QUEUE 316 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 317 #undef SYM_CONF_MAX_START 318 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 319 #endif 320 321 /* 322 * For this one, we want a short name :-) 323 */ 324 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 325 326 /* 327 * Active debugging tags and verbosity. 328 */ 329 #define DEBUG_ALLOC (0x0001) 330 #define DEBUG_PHASE (0x0002) 331 #define DEBUG_POLL (0x0004) 332 #define DEBUG_QUEUE (0x0008) 333 #define DEBUG_RESULT (0x0010) 334 #define DEBUG_SCATTER (0x0020) 335 #define DEBUG_SCRIPT (0x0040) 336 #define DEBUG_TINY (0x0080) 337 #define DEBUG_TIMING (0x0100) 338 #define DEBUG_NEGO (0x0200) 339 #define DEBUG_TAGS (0x0400) 340 #define DEBUG_POINTER (0x0800) 341 342 #if 0 343 static int sym_debug = 0; 344 #define DEBUG_FLAGS sym_debug 345 #else 346 /* #define DEBUG_FLAGS (0x0631) */ 347 #define DEBUG_FLAGS (0x0000) 348 349 #endif 350 #define sym_verbose (np->verbose) 351 352 /* 353 * Insert a delay in micro-seconds and milli-seconds. 354 */ 355 static void UDELAY(int us) { DELAY(us); } 356 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 357 358 /* 359 * Simple power of two buddy-like allocator. 360 * 361 * This simple code is not intended to be fast, but to 362 * provide power of 2 aligned memory allocations. 363 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 364 * this allocator allows simple and fast address calculations 365 * from the SCRIPTS code. In addition, cache line alignment 366 * is guaranteed for power of 2 cache line size. 367 * 368 * This allocator has been developed for the Linux sym53c8xx 369 * driver, since this O/S does not provide naturally aligned 370 * allocations. 371 * It has the advantage of allowing the driver to use private 372 * pages of memory that will be useful if we ever need to deal 373 * with IO MMUs for PCI. 374 */ 375 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 376 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 377 #if 0 378 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 379 #endif 380 #define MEMO_WARN 1 381 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 382 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 383 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 384 385 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 386 #define free_pages(p) free((p), M_DEVBUF) 387 388 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 389 390 typedef struct m_link { /* Link between free memory chunks */ 391 struct m_link *next; 392 } m_link_s; 393 394 typedef struct m_vtob { /* Virtual to Bus address translation */ 395 struct m_vtob *next; 396 bus_dmamap_t dmamap; /* Map for this chunk */ 397 m_addr_t vaddr; /* Virtual address */ 398 m_addr_t baddr; /* Bus physical address */ 399 } m_vtob_s; 400 /* Hash this stuff a bit to speed up translations */ 401 #define VTOB_HASH_SHIFT 5 402 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 403 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 404 #define VTOB_HASH_CODE(m) \ 405 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 406 407 typedef struct m_pool { /* Memory pool of a given kind */ 408 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 409 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 410 m_addr_t (*getp)(struct m_pool *); 411 #ifdef MEMO_FREE_UNUSED 412 void (*freep)(struct m_pool *, m_addr_t); 413 #endif 414 #define M_GETP() mp->getp(mp) 415 #define M_FREEP(p) mp->freep(mp, p) 416 int nump; 417 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 418 struct m_pool *next; 419 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 420 } m_pool_s; 421 422 static void *___sym_malloc(m_pool_s *mp, int size) 423 { 424 int i = 0; 425 int s = (1 << MEMO_SHIFT); 426 int j; 427 m_addr_t a; 428 m_link_s *h = mp->h; 429 430 if (size > MEMO_CLUSTER_SIZE) 431 return NULL; 432 433 while (size > s) { 434 s <<= 1; 435 ++i; 436 } 437 438 j = i; 439 while (!h[j].next) { 440 if (s == MEMO_CLUSTER_SIZE) { 441 h[j].next = (m_link_s *) M_GETP(); 442 if (h[j].next) 443 h[j].next->next = NULL; 444 break; 445 } 446 ++j; 447 s <<= 1; 448 } 449 a = (m_addr_t) h[j].next; 450 if (a) { 451 h[j].next = h[j].next->next; 452 while (j > i) { 453 j -= 1; 454 s >>= 1; 455 h[j].next = (m_link_s *) (a+s); 456 h[j].next->next = NULL; 457 } 458 } 459 #ifdef DEBUG 460 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 461 #endif 462 return (void *) a; 463 } 464 465 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 466 { 467 int i = 0; 468 int s = (1 << MEMO_SHIFT); 469 m_link_s *q; 470 m_addr_t a, b; 471 m_link_s *h = mp->h; 472 473 #ifdef DEBUG 474 printf("___sym_mfree(%p, %d)\n", ptr, size); 475 #endif 476 477 if (size > MEMO_CLUSTER_SIZE) 478 return; 479 480 while (size > s) { 481 s <<= 1; 482 ++i; 483 } 484 485 a = (m_addr_t) ptr; 486 487 while (1) { 488 #ifdef MEMO_FREE_UNUSED 489 if (s == MEMO_CLUSTER_SIZE) { 490 M_FREEP(a); 491 break; 492 } 493 #endif 494 b = a ^ s; 495 q = &h[i]; 496 while (q->next && q->next != (m_link_s *) b) { 497 q = q->next; 498 } 499 if (!q->next) { 500 ((m_link_s *) a)->next = h[i].next; 501 h[i].next = (m_link_s *) a; 502 break; 503 } 504 q->next = q->next->next; 505 a = a & b; 506 s <<= 1; 507 ++i; 508 } 509 } 510 511 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 512 { 513 void *p; 514 515 p = ___sym_malloc(mp, size); 516 517 if (DEBUG_FLAGS & DEBUG_ALLOC) 518 printf ("new %-10s[%4d] @%p.\n", name, size, p); 519 520 if (p) 521 bzero(p, size); 522 else if (uflags & MEMO_WARN) 523 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 524 525 return p; 526 } 527 528 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 529 530 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 531 { 532 if (DEBUG_FLAGS & DEBUG_ALLOC) 533 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 534 535 ___sym_mfree(mp, ptr, size); 536 537 } 538 539 /* 540 * Default memory pool we donnot need to involve in DMA. 541 */ 542 /* 543 * With the `bus dma abstraction', we use a separate pool for 544 * memory we donnot need to involve in DMA. 545 */ 546 static m_addr_t ___mp0_getp(m_pool_s *mp) 547 { 548 m_addr_t m = (m_addr_t) get_pages(); 549 if (m) 550 ++mp->nump; 551 return m; 552 } 553 554 #ifdef MEMO_FREE_UNUSED 555 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 556 { 557 free_pages(m); 558 --mp->nump; 559 } 560 #endif 561 562 #ifdef MEMO_FREE_UNUSED 563 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 564 #else 565 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 566 #endif 567 568 /* 569 * Actual memory allocation routine for non-DMAed memory. 570 */ 571 static void *sym_calloc(int size, char *name) 572 { 573 void *m; 574 /* Lock */ 575 m = __sym_calloc(&mp0, size, name); 576 /* Unlock */ 577 return m; 578 } 579 580 /* 581 * Actual memory allocation routine for non-DMAed memory. 582 */ 583 static void sym_mfree(void *ptr, int size, char *name) 584 { 585 /* Lock */ 586 __sym_mfree(&mp0, ptr, size, name); 587 /* Unlock */ 588 } 589 590 /* 591 * DMAable pools. 592 */ 593 /* 594 * With `bus dma abstraction', we use a separate pool per parent 595 * BUS handle. A reverse table (hashed) is maintained for virtual 596 * to BUS address translation. 597 */ 598 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused, 599 int error) 600 { 601 bus_addr_t *baddr; 602 603 KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg)); 604 605 baddr = (bus_addr_t *)arg; 606 if (error) 607 *baddr = 0; 608 else 609 *baddr = segs->ds_addr; 610 } 611 612 static m_addr_t ___dma_getp(m_pool_s *mp) 613 { 614 m_vtob_s *vbp; 615 void *vaddr = NULL; 616 bus_addr_t baddr = 0; 617 618 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 619 if (!vbp) 620 goto out_err; 621 622 if (bus_dmamem_alloc(mp->dmat, &vaddr, 623 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 624 goto out_err; 625 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 626 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 627 if (baddr) { 628 int hc = VTOB_HASH_CODE(vaddr); 629 vbp->vaddr = (m_addr_t) vaddr; 630 vbp->baddr = (m_addr_t) baddr; 631 vbp->next = mp->vtob[hc]; 632 mp->vtob[hc] = vbp; 633 ++mp->nump; 634 return (m_addr_t) vaddr; 635 } 636 out_err: 637 if (baddr) 638 bus_dmamap_unload(mp->dmat, vbp->dmamap); 639 if (vaddr) 640 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 641 if (vbp) { 642 if (vbp->dmamap) 643 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 644 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 645 } 646 return 0; 647 } 648 649 #ifdef MEMO_FREE_UNUSED 650 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 651 { 652 m_vtob_s **vbpp, *vbp; 653 int hc = VTOB_HASH_CODE(m); 654 655 vbpp = &mp->vtob[hc]; 656 while (*vbpp && (*vbpp)->vaddr != m) 657 vbpp = &(*vbpp)->next; 658 if (*vbpp) { 659 vbp = *vbpp; 660 *vbpp = (*vbpp)->next; 661 bus_dmamap_unload(mp->dmat, vbp->dmamap); 662 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 663 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 664 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 665 --mp->nump; 666 } 667 } 668 #endif 669 670 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 671 { 672 m_pool_s *mp; 673 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 674 return mp; 675 } 676 677 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 678 { 679 m_pool_s *mp = NULL; 680 681 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 682 if (mp) { 683 mp->dev_dmat = dev_dmat; 684 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 685 BUS_SPACE_MAXADDR_32BIT, 686 BUS_SPACE_MAXADDR, 687 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 688 MEMO_CLUSTER_SIZE, 0, 689 NULL, NULL, &mp->dmat)) { 690 mp->getp = ___dma_getp; 691 #ifdef MEMO_FREE_UNUSED 692 mp->freep = ___dma_freep; 693 #endif 694 mp->next = mp0.next; 695 mp0.next = mp; 696 return mp; 697 } 698 } 699 if (mp) 700 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 701 return NULL; 702 } 703 704 #ifdef MEMO_FREE_UNUSED 705 static void ___del_dma_pool(m_pool_s *p) 706 { 707 struct m_pool **pp = &mp0.next; 708 709 while (*pp && *pp != p) 710 pp = &(*pp)->next; 711 if (*pp) { 712 *pp = (*pp)->next; 713 bus_dma_tag_destroy(p->dmat); 714 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 715 } 716 } 717 #endif 718 719 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 720 { 721 struct m_pool *mp; 722 void *m = NULL; 723 724 /* Lock */ 725 mp = ___get_dma_pool(dev_dmat); 726 if (!mp) 727 mp = ___cre_dma_pool(dev_dmat); 728 if (mp) 729 m = __sym_calloc(mp, size, name); 730 #ifdef MEMO_FREE_UNUSED 731 if (mp && !mp->nump) 732 ___del_dma_pool(mp); 733 #endif 734 /* Unlock */ 735 736 return m; 737 } 738 739 static void 740 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 741 { 742 struct m_pool *mp; 743 744 /* Lock */ 745 mp = ___get_dma_pool(dev_dmat); 746 if (mp) 747 __sym_mfree(mp, m, size, name); 748 #ifdef MEMO_FREE_UNUSED 749 if (mp && !mp->nump) 750 ___del_dma_pool(mp); 751 #endif 752 /* Unlock */ 753 } 754 755 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 756 { 757 m_pool_s *mp; 758 int hc = VTOB_HASH_CODE(m); 759 m_vtob_s *vp = NULL; 760 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 761 762 /* Lock */ 763 mp = ___get_dma_pool(dev_dmat); 764 if (mp) { 765 vp = mp->vtob[hc]; 766 while (vp && (m_addr_t) vp->vaddr != a) 767 vp = vp->next; 768 } 769 /* Unlock */ 770 if (!vp) 771 panic("sym: VTOBUS FAILED!\n"); 772 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 773 } 774 775 /* 776 * Verbs for DMAable memory handling. 777 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 778 * being discarded. 779 */ 780 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 781 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 782 #define _sym_mfree_dma(np, p, s, n) \ 783 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 784 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 785 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 786 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 787 #define vtobus(p) _vtobus(np, p) 788 789 /* 790 * Print a buffer in hexadecimal format. 791 */ 792 static void sym_printb_hex (u_char *p, int n) 793 { 794 while (n-- > 0) 795 printf (" %x", *p++); 796 } 797 798 /* 799 * Same with a label at beginning and .\n at end. 800 */ 801 static void sym_printl_hex (char *label, u_char *p, int n) 802 { 803 printf ("%s", label); 804 sym_printb_hex (p, n); 805 printf (".\n"); 806 } 807 808 /* 809 * Return a string for SCSI BUS mode. 810 */ 811 static const char *sym_scsi_bus_mode(int mode) 812 { 813 switch(mode) { 814 case SMODE_HVD: return "HVD"; 815 case SMODE_SE: return "SE"; 816 case SMODE_LVD: return "LVD"; 817 } 818 return "??"; 819 } 820 821 /* 822 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 823 */ 824 #ifdef SYM_CONF_NVRAM_SUPPORT 825 static const u_char Tekram_sync[16] = 826 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 827 #endif 828 829 /* 830 * Union of supported NVRAM formats. 831 */ 832 struct sym_nvram { 833 int type; 834 #define SYM_SYMBIOS_NVRAM (1) 835 #define SYM_TEKRAM_NVRAM (2) 836 #ifdef SYM_CONF_NVRAM_SUPPORT 837 union { 838 Symbios_nvram Symbios; 839 Tekram_nvram Tekram; 840 } data; 841 #endif 842 }; 843 844 /* 845 * This one is hopefully useless, but actually useful. :-) 846 */ 847 #ifndef assert 848 #define assert(expression) { \ 849 if (!(expression)) { \ 850 (void)panic( \ 851 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 852 #expression, \ 853 __FILE__, __LINE__); \ 854 } \ 855 } 856 #endif 857 858 /* 859 * Some provision for a possible big endian mode supported by 860 * Symbios chips (never seen, by the way). 861 * For now, this stuff does not deserve any comments. :) 862 */ 863 #define sym_offb(o) (o) 864 #define sym_offw(o) (o) 865 866 /* 867 * Some provision for support for BIG ENDIAN CPU. 868 */ 869 #define cpu_to_scr(dw) htole32(dw) 870 #define scr_to_cpu(dw) le32toh(dw) 871 872 /* 873 * Access to the chip IO registers and on-chip RAM. 874 * We use the `bus space' interface under FreeBSD-4 and 875 * later kernel versions. 876 */ 877 #if defined(SYM_CONF_IOMAPPED) 878 879 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 880 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 881 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 882 883 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 884 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 885 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 886 887 #else /* Memory mapped IO */ 888 889 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 890 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 891 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 892 893 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 894 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 895 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 896 897 #endif /* SYM_CONF_IOMAPPED */ 898 899 #define OUTRAM_OFF(o, a, l) \ 900 bus_write_region_1(np->ram_res, (o), (a), (l)) 901 902 /* 903 * Common definitions for both bus space and legacy IO methods. 904 */ 905 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 906 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 907 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 908 909 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 910 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 911 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 912 913 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 914 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 915 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 916 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 917 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 918 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 919 920 /* 921 * We normally want the chip to have a consistent view 922 * of driver internal data structures when we restart it. 923 * Thus these macros. 924 */ 925 #define OUTL_DSP(v) \ 926 do { \ 927 MEMORY_BARRIER(); \ 928 OUTL (nc_dsp, (v)); \ 929 } while (0) 930 931 #define OUTONB_STD() \ 932 do { \ 933 MEMORY_BARRIER(); \ 934 OUTONB (nc_dcntl, (STD|NOCOM)); \ 935 } while (0) 936 937 /* 938 * Command control block states. 939 */ 940 #define HS_IDLE (0) 941 #define HS_BUSY (1) 942 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 943 #define HS_DISCONNECT (3) /* Disconnected by target */ 944 #define HS_WAIT (4) /* waiting for resource */ 945 946 #define HS_DONEMASK (0x80) 947 #define HS_COMPLETE (4|HS_DONEMASK) 948 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 949 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 950 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 951 952 /* 953 * Software Interrupt Codes 954 */ 955 #define SIR_BAD_SCSI_STATUS (1) 956 #define SIR_SEL_ATN_NO_MSG_OUT (2) 957 #define SIR_MSG_RECEIVED (3) 958 #define SIR_MSG_WEIRD (4) 959 #define SIR_NEGO_FAILED (5) 960 #define SIR_NEGO_PROTO (6) 961 #define SIR_SCRIPT_STOPPED (7) 962 #define SIR_REJECT_TO_SEND (8) 963 #define SIR_SWIDE_OVERRUN (9) 964 #define SIR_SODL_UNDERRUN (10) 965 #define SIR_RESEL_NO_MSG_IN (11) 966 #define SIR_RESEL_NO_IDENTIFY (12) 967 #define SIR_RESEL_BAD_LUN (13) 968 #define SIR_TARGET_SELECTED (14) 969 #define SIR_RESEL_BAD_I_T_L (15) 970 #define SIR_RESEL_BAD_I_T_L_Q (16) 971 #define SIR_ABORT_SENT (17) 972 #define SIR_RESEL_ABORTED (18) 973 #define SIR_MSG_OUT_DONE (19) 974 #define SIR_COMPLETE_ERROR (20) 975 #define SIR_DATA_OVERRUN (21) 976 #define SIR_BAD_PHASE (22) 977 #define SIR_MAX (22) 978 979 /* 980 * Extended error bit codes. 981 * xerr_status field of struct sym_ccb. 982 */ 983 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 984 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 985 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 986 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 987 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 988 989 /* 990 * Negotiation status. 991 * nego_status field of struct sym_ccb. 992 */ 993 #define NS_SYNC (1) 994 #define NS_WIDE (2) 995 #define NS_PPR (3) 996 997 /* 998 * A CCB hashed table is used to retrieve CCB address 999 * from DSA value. 1000 */ 1001 #define CCB_HASH_SHIFT 8 1002 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1003 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1004 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1005 1006 /* 1007 * Device flags. 1008 */ 1009 #define SYM_DISC_ENABLED (1) 1010 #define SYM_TAGS_ENABLED (1<<1) 1011 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1012 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1013 1014 /* 1015 * Host adapter miscellaneous flags. 1016 */ 1017 #define SYM_AVOID_BUS_RESET (1) 1018 #define SYM_SCAN_TARGETS_HILO (1<<1) 1019 1020 /* 1021 * Device quirks. 1022 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1023 * saving the DATA POINTER then reselects and terminates the IO. 1024 * On reselection, the automatic RESTORE DATA POINTER makes the 1025 * CURRENT DATA POINTER not point at the end of the IO. 1026 * This behaviour just breaks our calculation of the residual. 1027 * For now, we just force an AUTO SAVE on disconnection and will 1028 * fix that in a further driver version. 1029 */ 1030 #define SYM_QUIRK_AUTOSAVE 1 1031 1032 /* 1033 * Misc. 1034 */ 1035 #define SYM_LOCK() mtx_lock(&np->mtx) 1036 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1037 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1038 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1039 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1040 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1041 1042 #define SYM_SNOOP_TIMEOUT (10000000) 1043 #define SYM_PCI_IO PCIR_BAR(0) 1044 #define SYM_PCI_MMIO PCIR_BAR(1) 1045 #define SYM_PCI_RAM PCIR_BAR(2) 1046 #define SYM_PCI_RAM64 PCIR_BAR(3) 1047 1048 /* 1049 * Back-pointer from the CAM CCB to our data structures. 1050 */ 1051 #define sym_hcb_ptr spriv_ptr0 1052 /* #define sym_ccb_ptr spriv_ptr1 */ 1053 1054 /* 1055 * We mostly have to deal with pointers. 1056 * Thus these typedef's. 1057 */ 1058 typedef struct sym_tcb *tcb_p; 1059 typedef struct sym_lcb *lcb_p; 1060 typedef struct sym_ccb *ccb_p; 1061 typedef struct sym_hcb *hcb_p; 1062 1063 /* 1064 * Gather negotiable parameters value 1065 */ 1066 struct sym_trans { 1067 u8 scsi_version; 1068 u8 spi_version; 1069 u8 period; 1070 u8 offset; 1071 u8 width; 1072 u8 options; /* PPR options */ 1073 }; 1074 1075 struct sym_tinfo { 1076 struct sym_trans current; 1077 struct sym_trans goal; 1078 struct sym_trans user; 1079 }; 1080 1081 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1082 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1083 1084 /* 1085 * Global TCB HEADER. 1086 * 1087 * Due to lack of indirect addressing on earlier NCR chips, 1088 * this substructure is copied from the TCB to a global 1089 * address after selection. 1090 * For SYMBIOS chips that support LOAD/STORE this copy is 1091 * not needed and thus not performed. 1092 */ 1093 struct sym_tcbh { 1094 /* 1095 * Scripts bus addresses of LUN table accessed from scripts. 1096 * LUN #0 is a special case, since multi-lun devices are rare, 1097 * and we we want to speed-up the general case and not waste 1098 * resources. 1099 */ 1100 u32 luntbl_sa; /* bus address of this table */ 1101 u32 lun0_sa; /* bus address of LCB #0 */ 1102 /* 1103 * Actual SYNC/WIDE IO registers value for this target. 1104 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1105 * so have alignment constraints. 1106 */ 1107 /*0*/ u_char uval; /* -> SCNTL4 register */ 1108 /*1*/ u_char sval; /* -> SXFER io register */ 1109 /*2*/ u_char filler1; 1110 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1111 }; 1112 1113 /* 1114 * Target Control Block 1115 */ 1116 struct sym_tcb { 1117 /* 1118 * TCB header. 1119 * Assumed at offset 0. 1120 */ 1121 /*0*/ struct sym_tcbh head; 1122 1123 /* 1124 * LUN table used by the SCRIPTS processor. 1125 * An array of bus addresses is used on reselection. 1126 */ 1127 u32 *luntbl; /* LCBs bus address table */ 1128 1129 /* 1130 * LUN table used by the C code. 1131 */ 1132 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1133 #if SYM_CONF_MAX_LUN > 1 1134 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1135 #endif 1136 1137 /* 1138 * Bitmap that tells about LUNs that succeeded at least 1139 * 1 IO and therefore assumed to be a real device. 1140 * Avoid useless allocation of the LCB structure. 1141 */ 1142 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1143 1144 /* 1145 * Bitmap that tells about LUNs that haven't yet an LCB 1146 * allocated (not discovered or LCB allocation failed). 1147 */ 1148 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1149 1150 /* 1151 * Transfer capabilities (SIP) 1152 */ 1153 struct sym_tinfo tinfo; 1154 1155 /* 1156 * Keep track of the CCB used for the negotiation in order 1157 * to ensure that only 1 negotiation is queued at a time. 1158 */ 1159 ccb_p nego_cp; /* CCB used for the nego */ 1160 1161 /* 1162 * Set when we want to reset the device. 1163 */ 1164 u_char to_reset; 1165 1166 /* 1167 * Other user settable limits and options. 1168 * These limits are read from the NVRAM if present. 1169 */ 1170 u_char usrflags; 1171 u_short usrtags; 1172 }; 1173 1174 /* 1175 * Assert some alignments required by the chip. 1176 */ 1177 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^ 1178 offsetof(struct sym_tcb, head.sval)) &3) == 0); 1179 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^ 1180 offsetof(struct sym_tcb, head.wval)) &3) == 0); 1181 1182 /* 1183 * Global LCB HEADER. 1184 * 1185 * Due to lack of indirect addressing on earlier NCR chips, 1186 * this substructure is copied from the LCB to a global 1187 * address after selection. 1188 * For SYMBIOS chips that support LOAD/STORE this copy is 1189 * not needed and thus not performed. 1190 */ 1191 struct sym_lcbh { 1192 /* 1193 * SCRIPTS address jumped by SCRIPTS on reselection. 1194 * For not probed logical units, this address points to 1195 * SCRIPTS that deal with bad LU handling (must be at 1196 * offset zero of the LCB for that reason). 1197 */ 1198 /*0*/ u32 resel_sa; 1199 1200 /* 1201 * Task (bus address of a CCB) read from SCRIPTS that points 1202 * to the unique ITL nexus allowed to be disconnected. 1203 */ 1204 u32 itl_task_sa; 1205 1206 /* 1207 * Task table bus address (read from SCRIPTS). 1208 */ 1209 u32 itlq_tbl_sa; 1210 }; 1211 1212 /* 1213 * Logical Unit Control Block 1214 */ 1215 struct sym_lcb { 1216 /* 1217 * TCB header. 1218 * Assumed at offset 0. 1219 */ 1220 /*0*/ struct sym_lcbh head; 1221 1222 /* 1223 * Task table read from SCRIPTS that contains pointers to 1224 * ITLQ nexuses. The bus address read from SCRIPTS is 1225 * inside the header. 1226 */ 1227 u32 *itlq_tbl; /* Kernel virtual address */ 1228 1229 /* 1230 * Busy CCBs management. 1231 */ 1232 u_short busy_itlq; /* Number of busy tagged CCBs */ 1233 u_short busy_itl; /* Number of busy untagged CCBs */ 1234 1235 /* 1236 * Circular tag allocation buffer. 1237 */ 1238 u_short ia_tag; /* Tag allocation index */ 1239 u_short if_tag; /* Tag release index */ 1240 u_char *cb_tags; /* Circular tags buffer */ 1241 1242 /* 1243 * Set when we want to clear all tasks. 1244 */ 1245 u_char to_clear; 1246 1247 /* 1248 * Capabilities. 1249 */ 1250 u_char user_flags; 1251 u_char current_flags; 1252 }; 1253 1254 /* 1255 * Action from SCRIPTS on a task. 1256 * Is part of the CCB, but is also used separately to plug 1257 * error handling action to perform from SCRIPTS. 1258 */ 1259 struct sym_actscr { 1260 u32 start; /* Jumped by SCRIPTS after selection */ 1261 u32 restart; /* Jumped by SCRIPTS on relection */ 1262 }; 1263 1264 /* 1265 * Phase mismatch context. 1266 * 1267 * It is part of the CCB and is used as parameters for the 1268 * DATA pointer. We need two contexts to handle correctly the 1269 * SAVED DATA POINTER. 1270 */ 1271 struct sym_pmc { 1272 struct sym_tblmove sg; /* Updated interrupted SG block */ 1273 u32 ret; /* SCRIPT return address */ 1274 }; 1275 1276 /* 1277 * LUN control block lookup. 1278 * We use a direct pointer for LUN #0, and a table of 1279 * pointers which is only allocated for devices that support 1280 * LUN(s) > 0. 1281 */ 1282 #if SYM_CONF_MAX_LUN <= 1 1283 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0 1284 #else 1285 #define sym_lp(tp, lun) \ 1286 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1287 #endif 1288 1289 /* 1290 * Status are used by the host and the script processor. 1291 * 1292 * The last four bytes (status[4]) are copied to the 1293 * scratchb register (declared as scr0..scr3) just after the 1294 * select/reselect, and copied back just after disconnecting. 1295 * Inside the script the XX_REG are used. 1296 */ 1297 1298 /* 1299 * Last four bytes (script) 1300 */ 1301 #define QU_REG scr0 1302 #define HS_REG scr1 1303 #define HS_PRT nc_scr1 1304 #define SS_REG scr2 1305 #define SS_PRT nc_scr2 1306 #define HF_REG scr3 1307 #define HF_PRT nc_scr3 1308 1309 /* 1310 * Last four bytes (host) 1311 */ 1312 #define actualquirks phys.head.status[0] 1313 #define host_status phys.head.status[1] 1314 #define ssss_status phys.head.status[2] 1315 #define host_flags phys.head.status[3] 1316 1317 /* 1318 * Host flags 1319 */ 1320 #define HF_IN_PM0 1u 1321 #define HF_IN_PM1 (1u<<1) 1322 #define HF_ACT_PM (1u<<2) 1323 #define HF_DP_SAVED (1u<<3) 1324 #define HF_SENSE (1u<<4) 1325 #define HF_EXT_ERR (1u<<5) 1326 #define HF_DATA_IN (1u<<6) 1327 #ifdef SYM_CONF_IARB_SUPPORT 1328 #define HF_HINT_IARB (1u<<7) 1329 #endif 1330 1331 /* 1332 * Global CCB HEADER. 1333 * 1334 * Due to lack of indirect addressing on earlier NCR chips, 1335 * this substructure is copied from the ccb to a global 1336 * address after selection (or reselection) and copied back 1337 * before disconnect. 1338 * For SYMBIOS chips that support LOAD/STORE this copy is 1339 * not needed and thus not performed. 1340 */ 1341 struct sym_ccbh { 1342 /* 1343 * Start and restart SCRIPTS addresses (must be at 0). 1344 */ 1345 /*0*/ struct sym_actscr go; 1346 1347 /* 1348 * SCRIPTS jump address that deal with data pointers. 1349 * 'savep' points to the position in the script responsible 1350 * for the actual transfer of data. 1351 * It's written on reception of a SAVE_DATA_POINTER message. 1352 */ 1353 u32 savep; /* Jump address to saved data pointer */ 1354 u32 lastp; /* SCRIPTS address at end of data */ 1355 u32 goalp; /* Not accessed for now from SCRIPTS */ 1356 1357 /* 1358 * Status fields. 1359 */ 1360 u8 status[4]; 1361 }; 1362 1363 /* 1364 * Data Structure Block 1365 * 1366 * During execution of a ccb by the script processor, the 1367 * DSA (data structure address) register points to this 1368 * substructure of the ccb. 1369 */ 1370 struct sym_dsb { 1371 /* 1372 * CCB header. 1373 * Also assumed at offset 0 of the sym_ccb structure. 1374 */ 1375 /*0*/ struct sym_ccbh head; 1376 1377 /* 1378 * Phase mismatch contexts. 1379 * We need two to handle correctly the SAVED DATA POINTER. 1380 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1381 * for address calculation from SCRIPTS. 1382 */ 1383 struct sym_pmc pm0; 1384 struct sym_pmc pm1; 1385 1386 /* 1387 * Table data for Script 1388 */ 1389 struct sym_tblsel select; 1390 struct sym_tblmove smsg; 1391 struct sym_tblmove smsg_ext; 1392 struct sym_tblmove cmd; 1393 struct sym_tblmove sense; 1394 struct sym_tblmove wresid; 1395 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1396 }; 1397 1398 /* 1399 * Our Command Control Block 1400 */ 1401 struct sym_ccb { 1402 /* 1403 * This is the data structure which is pointed by the DSA 1404 * register when it is executed by the script processor. 1405 * It must be the first entry. 1406 */ 1407 struct sym_dsb phys; 1408 1409 /* 1410 * Pointer to CAM ccb and related stuff. 1411 */ 1412 struct callout ch; /* callout handle */ 1413 union ccb *cam_ccb; /* CAM scsiio ccb */ 1414 u8 cdb_buf[16]; /* Copy of CDB */ 1415 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1416 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1417 int data_len; /* Total data length */ 1418 int segments; /* Number of SG segments */ 1419 1420 /* 1421 * Miscellaneous status'. 1422 */ 1423 u_char nego_status; /* Negotiation status */ 1424 u_char xerr_status; /* Extended error flags */ 1425 u32 extra_bytes; /* Extraneous bytes transferred */ 1426 1427 /* 1428 * Message areas. 1429 * We prepare a message to be sent after selection. 1430 * We may use a second one if the command is rescheduled 1431 * due to CHECK_CONDITION or COMMAND TERMINATED. 1432 * Contents are IDENTIFY and SIMPLE_TAG. 1433 * While negotiating sync or wide transfer, 1434 * a SDTR or WDTR message is appended. 1435 */ 1436 u_char scsi_smsg [12]; 1437 u_char scsi_smsg2[12]; 1438 1439 /* 1440 * Auto request sense related fields. 1441 */ 1442 u_char sensecmd[6]; /* Request Sense command */ 1443 u_char sv_scsi_status; /* Saved SCSI status */ 1444 u_char sv_xerr_status; /* Saved extended status */ 1445 int sv_resid; /* Saved residual */ 1446 1447 /* 1448 * Map for the DMA of user data. 1449 */ 1450 void *arg; /* Argument for some callback */ 1451 bus_dmamap_t dmamap; /* DMA map for user data */ 1452 u_char dmamapped; 1453 #define SYM_DMA_NONE 0 1454 #define SYM_DMA_READ 1 1455 #define SYM_DMA_WRITE 2 1456 /* 1457 * Other fields. 1458 */ 1459 u32 ccb_ba; /* BUS address of this CCB */ 1460 u_short tag; /* Tag for this transfer */ 1461 /* NO_TAG means no tag */ 1462 u_char target; 1463 u_char lun; 1464 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1465 SYM_QUEHEAD 1466 link_ccbq; /* Link to free/busy CCB queue */ 1467 u32 startp; /* Initial data pointer */ 1468 int ext_sg; /* Extreme data pointer, used */ 1469 int ext_ofs; /* to calculate the residual. */ 1470 u_char to_abort; /* Want this IO to be aborted */ 1471 }; 1472 1473 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1474 1475 /* 1476 * Host Control Block 1477 */ 1478 struct sym_hcb { 1479 struct mtx mtx; 1480 1481 /* 1482 * Global headers. 1483 * Due to poorness of addressing capabilities, earlier 1484 * chips (810, 815, 825) copy part of the data structures 1485 * (CCB, TCB and LCB) in fixed areas. 1486 */ 1487 #ifdef SYM_CONF_GENERIC_SUPPORT 1488 struct sym_ccbh ccb_head; 1489 struct sym_tcbh tcb_head; 1490 struct sym_lcbh lcb_head; 1491 #endif 1492 /* 1493 * Idle task and invalid task actions and 1494 * their bus addresses. 1495 */ 1496 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1497 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1498 1499 /* 1500 * Dummy lun table to protect us against target 1501 * returning bad lun number on reselection. 1502 */ 1503 u32 *badluntbl; /* Table physical address */ 1504 u32 badlun_sa; /* SCRIPT handler BUS address */ 1505 1506 /* 1507 * Bus address of this host control block. 1508 */ 1509 u32 hcb_ba; 1510 1511 /* 1512 * Bit 32-63 of the on-chip RAM bus address in LE format. 1513 * The START_RAM64 script loads the MMRS and MMWS from this 1514 * field. 1515 */ 1516 u32 scr_ram_seg; 1517 1518 /* 1519 * Chip and controller indentification. 1520 */ 1521 device_t device; 1522 1523 /* 1524 * Initial value of some IO register bits. 1525 * These values are assumed to have been set by BIOS, and may 1526 * be used to probe adapter implementation differences. 1527 */ 1528 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1529 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1530 sv_stest1; 1531 1532 /* 1533 * Actual initial value of IO register bits used by the 1534 * driver. They are loaded at initialisation according to 1535 * features that are to be enabled/disabled. 1536 */ 1537 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1538 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1539 1540 /* 1541 * Target data. 1542 */ 1543 #ifdef __amd64__ 1544 struct sym_tcb *target; 1545 #else 1546 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1547 #endif 1548 1549 /* 1550 * Target control block bus address array used by the SCRIPT 1551 * on reselection. 1552 */ 1553 u32 *targtbl; 1554 u32 targtbl_ba; 1555 1556 /* 1557 * CAM SIM information for this instance. 1558 */ 1559 struct cam_sim *sim; 1560 struct cam_path *path; 1561 1562 /* 1563 * Allocated hardware resources. 1564 */ 1565 struct resource *irq_res; 1566 struct resource *io_res; 1567 struct resource *mmio_res; 1568 struct resource *ram_res; 1569 int ram_id; 1570 void *intr; 1571 1572 /* 1573 * Bus stuff. 1574 * 1575 * My understanding of PCI is that all agents must share the 1576 * same addressing range and model. 1577 * But some hardware architecture guys provide complex and 1578 * brain-deaded stuff that makes shit. 1579 * This driver only support PCI compliant implementations and 1580 * deals with part of the BUS stuff complexity only to fit O/S 1581 * requirements. 1582 */ 1583 1584 /* 1585 * DMA stuff. 1586 */ 1587 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1588 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1589 /* 1590 * BUS addresses of the chip 1591 */ 1592 vm_offset_t mmio_ba; /* MMIO BUS address */ 1593 int mmio_ws; /* MMIO Window size */ 1594 1595 vm_offset_t ram_ba; /* RAM BUS address */ 1596 int ram_ws; /* RAM window size */ 1597 1598 /* 1599 * SCRIPTS virtual and physical bus addresses. 1600 * 'script' is loaded in the on-chip RAM if present. 1601 * 'scripth' stays in main memory for all chips except the 1602 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1603 */ 1604 u_char *scripta0; /* Copies of script and scripth */ 1605 u_char *scriptb0; /* Copies of script and scripth */ 1606 vm_offset_t scripta_ba; /* Actual script and scripth */ 1607 vm_offset_t scriptb_ba; /* bus addresses. */ 1608 vm_offset_t scriptb0_ba; 1609 u_short scripta_sz; /* Actual size of script A */ 1610 u_short scriptb_sz; /* Actual size of script B */ 1611 1612 /* 1613 * Bus addresses, setup and patch methods for 1614 * the selected firmware. 1615 */ 1616 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1617 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1618 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1619 void (*fw_patch)(hcb_p np); 1620 const char *fw_name; 1621 1622 /* 1623 * General controller parameters and configuration. 1624 */ 1625 u_short device_id; /* PCI device id */ 1626 u_char revision_id; /* PCI device revision id */ 1627 u_int features; /* Chip features map */ 1628 u_char myaddr; /* SCSI id of the adapter */ 1629 u_char maxburst; /* log base 2 of dwords burst */ 1630 u_char maxwide; /* Maximum transfer width */ 1631 u_char minsync; /* Min sync period factor (ST) */ 1632 u_char maxsync; /* Max sync period factor (ST) */ 1633 u_char maxoffs; /* Max scsi offset (ST) */ 1634 u_char minsync_dt; /* Min sync period factor (DT) */ 1635 u_char maxsync_dt; /* Max sync period factor (DT) */ 1636 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1637 u_char multiplier; /* Clock multiplier (1,2,4) */ 1638 u_char clock_divn; /* Number of clock divisors */ 1639 u32 clock_khz; /* SCSI clock frequency in KHz */ 1640 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1641 /* 1642 * Start queue management. 1643 * It is filled up by the host processor and accessed by the 1644 * SCRIPTS processor in order to start SCSI commands. 1645 */ 1646 volatile /* Prevent code optimizations */ 1647 u32 *squeue; /* Start queue virtual address */ 1648 u32 squeue_ba; /* Start queue BUS address */ 1649 u_short squeueput; /* Next free slot of the queue */ 1650 u_short actccbs; /* Number of allocated CCBs */ 1651 1652 /* 1653 * Command completion queue. 1654 * It is the same size as the start queue to avoid overflow. 1655 */ 1656 u_short dqueueget; /* Next position to scan */ 1657 volatile /* Prevent code optimizations */ 1658 u32 *dqueue; /* Completion (done) queue */ 1659 u32 dqueue_ba; /* Done queue BUS address */ 1660 1661 /* 1662 * Miscellaneous buffers accessed by the scripts-processor. 1663 * They shall be DWORD aligned, because they may be read or 1664 * written with a script command. 1665 */ 1666 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1667 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1668 u32 lastmsg; /* Last SCSI message sent */ 1669 u_char scratch; /* Scratch for SCSI receive */ 1670 1671 /* 1672 * Miscellaneous configuration and status parameters. 1673 */ 1674 u_char usrflags; /* Miscellaneous user flags */ 1675 u_char scsi_mode; /* Current SCSI BUS mode */ 1676 u_char verbose; /* Verbosity for this controller*/ 1677 u32 cache; /* Used for cache test at init. */ 1678 1679 /* 1680 * CCB lists and queue. 1681 */ 1682 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1683 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1684 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1685 1686 /* 1687 * During error handling and/or recovery, 1688 * active CCBs that are to be completed with 1689 * error or requeued are moved from the busy_ccbq 1690 * to the comp_ccbq prior to completion. 1691 */ 1692 SYM_QUEHEAD comp_ccbq; 1693 1694 /* 1695 * CAM CCB pending queue. 1696 */ 1697 SYM_QUEHEAD cam_ccbq; 1698 1699 /* 1700 * IMMEDIATE ARBITRATION (IARB) control. 1701 * 1702 * We keep track in 'last_cp' of the last CCB that has been 1703 * queued to the SCRIPTS processor and clear 'last_cp' when 1704 * this CCB completes. If last_cp is not zero at the moment 1705 * we queue a new CCB, we set a flag in 'last_cp' that is 1706 * used by the SCRIPTS as a hint for setting IARB. 1707 * We donnot set more than 'iarb_max' consecutive hints for 1708 * IARB in order to leave devices a chance to reselect. 1709 * By the way, any non zero value of 'iarb_max' is unfair. :) 1710 */ 1711 #ifdef SYM_CONF_IARB_SUPPORT 1712 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1713 u_short iarb_count; /* Actual # of these hints */ 1714 ccb_p last_cp; 1715 #endif 1716 1717 /* 1718 * Command abort handling. 1719 * We need to synchronize tightly with the SCRIPTS 1720 * processor in order to handle things correctly. 1721 */ 1722 u_char abrt_msg[4]; /* Message to send buffer */ 1723 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1724 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1725 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1726 }; 1727 1728 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1729 1730 /* 1731 * Return the name of the controller. 1732 */ 1733 static __inline const char *sym_name(hcb_p np) 1734 { 1735 return device_get_nameunit(np->device); 1736 } 1737 1738 /*--------------------------------------------------------------------------*/ 1739 /*------------------------------ FIRMWARES ---------------------------------*/ 1740 /*--------------------------------------------------------------------------*/ 1741 1742 /* 1743 * This stuff will be moved to a separate source file when 1744 * the driver will be broken into several source modules. 1745 */ 1746 1747 /* 1748 * Macros used for all firmwares. 1749 */ 1750 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1751 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1752 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1753 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1754 1755 #ifdef SYM_CONF_GENERIC_SUPPORT 1756 /* 1757 * Allocate firmware #1 script area. 1758 */ 1759 #define SYM_FWA_SCR sym_fw1a_scr 1760 #define SYM_FWB_SCR sym_fw1b_scr 1761 #include <dev/sym/sym_fw1.h> 1762 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1763 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1764 }; 1765 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1766 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1767 }; 1768 #undef SYM_FWA_SCR 1769 #undef SYM_FWB_SCR 1770 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1771 1772 /* 1773 * Allocate firmware #2 script area. 1774 */ 1775 #define SYM_FWA_SCR sym_fw2a_scr 1776 #define SYM_FWB_SCR sym_fw2b_scr 1777 #include <dev/sym/sym_fw2.h> 1778 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1779 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1780 }; 1781 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1782 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1783 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1784 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1785 }; 1786 #undef SYM_FWA_SCR 1787 #undef SYM_FWB_SCR 1788 1789 #undef SYM_GEN_A 1790 #undef SYM_GEN_B 1791 #undef PADDR_A 1792 #undef PADDR_B 1793 1794 #ifdef SYM_CONF_GENERIC_SUPPORT 1795 /* 1796 * Patch routine for firmware #1. 1797 */ 1798 static void 1799 sym_fw1_patch(hcb_p np) 1800 { 1801 struct sym_fw1a_scr *scripta0; 1802 struct sym_fw1b_scr *scriptb0; 1803 1804 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1805 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1806 1807 /* 1808 * Remove LED support if not needed. 1809 */ 1810 if (!(np->features & FE_LED0)) { 1811 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1812 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1813 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1814 } 1815 1816 #ifdef SYM_CONF_IARB_SUPPORT 1817 /* 1818 * If user does not want to use IMMEDIATE ARBITRATION 1819 * when we are reselected while attempting to arbitrate, 1820 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1821 */ 1822 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1823 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1824 #endif 1825 /* 1826 * Patch some data in SCRIPTS. 1827 * - start and done queue initial bus address. 1828 * - target bus address table bus address. 1829 */ 1830 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1831 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1832 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1833 } 1834 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1835 1836 /* 1837 * Patch routine for firmware #2. 1838 */ 1839 static void 1840 sym_fw2_patch(hcb_p np) 1841 { 1842 struct sym_fw2a_scr *scripta0; 1843 struct sym_fw2b_scr *scriptb0; 1844 1845 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1846 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1847 1848 /* 1849 * Remove LED support if not needed. 1850 */ 1851 if (!(np->features & FE_LED0)) { 1852 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1853 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1854 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1855 } 1856 1857 #ifdef SYM_CONF_IARB_SUPPORT 1858 /* 1859 * If user does not want to use IMMEDIATE ARBITRATION 1860 * when we are reselected while attempting to arbitrate, 1861 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1862 */ 1863 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1864 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1865 #endif 1866 /* 1867 * Patch some variable in SCRIPTS. 1868 * - start and done queue initial bus address. 1869 * - target bus address table bus address. 1870 */ 1871 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1872 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1873 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1874 1875 /* 1876 * Remove the load of SCNTL4 on reselection if not a C10. 1877 */ 1878 if (!(np->features & FE_C10)) { 1879 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1880 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1881 } 1882 1883 /* 1884 * Remove a couple of work-arounds specific to C1010 if 1885 * they are not desirable. See `sym_fw2.h' for more details. 1886 */ 1887 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1888 np->revision_id < 0x1 && 1889 np->pciclk_khz < 60000)) { 1890 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1891 scripta0->datao_phase[1] = cpu_to_scr(0); 1892 } 1893 if (!(np->device_id == PCI_ID_LSI53C1010 && 1894 /* np->revision_id < 0xff */ 1)) { 1895 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1896 scripta0->sel_done[1] = cpu_to_scr(0); 1897 } 1898 1899 /* 1900 * Patch some other variables in SCRIPTS. 1901 * These ones are loaded by the SCRIPTS processor. 1902 */ 1903 scriptb0->pm0_data_addr[0] = 1904 cpu_to_scr(np->scripta_ba + 1905 offsetof(struct sym_fw2a_scr, pm0_data)); 1906 scriptb0->pm1_data_addr[0] = 1907 cpu_to_scr(np->scripta_ba + 1908 offsetof(struct sym_fw2a_scr, pm1_data)); 1909 } 1910 1911 /* 1912 * Fill the data area in scripts. 1913 * To be done for all firmwares. 1914 */ 1915 static void 1916 sym_fw_fill_data (u32 *in, u32 *out) 1917 { 1918 int i; 1919 1920 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1921 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1922 *in++ = offsetof (struct sym_dsb, data[i]); 1923 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1924 *out++ = offsetof (struct sym_dsb, data[i]); 1925 } 1926 } 1927 1928 /* 1929 * Setup useful script bus addresses. 1930 * To be done for all firmwares. 1931 */ 1932 static void 1933 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1934 { 1935 u32 *pa; 1936 const u_short *po; 1937 int i; 1938 1939 /* 1940 * Build the bus address table for script A 1941 * from the script A offset table. 1942 */ 1943 po = (const u_short *) fw->a_ofs; 1944 pa = (u32 *) &np->fwa_bas; 1945 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1946 pa[i] = np->scripta_ba + po[i]; 1947 1948 /* 1949 * Same for script B. 1950 */ 1951 po = (const u_short *) fw->b_ofs; 1952 pa = (u32 *) &np->fwb_bas; 1953 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1954 pa[i] = np->scriptb_ba + po[i]; 1955 } 1956 1957 #ifdef SYM_CONF_GENERIC_SUPPORT 1958 /* 1959 * Setup routine for firmware #1. 1960 */ 1961 static void 1962 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1963 { 1964 struct sym_fw1a_scr *scripta0; 1965 1966 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1967 1968 /* 1969 * Fill variable parts in scripts. 1970 */ 1971 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1972 1973 /* 1974 * Setup bus addresses used from the C code.. 1975 */ 1976 sym_fw_setup_bus_addresses(np, fw); 1977 } 1978 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1979 1980 /* 1981 * Setup routine for firmware #2. 1982 */ 1983 static void 1984 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1985 { 1986 struct sym_fw2a_scr *scripta0; 1987 1988 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1989 1990 /* 1991 * Fill variable parts in scripts. 1992 */ 1993 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1994 1995 /* 1996 * Setup bus addresses used from the C code.. 1997 */ 1998 sym_fw_setup_bus_addresses(np, fw); 1999 } 2000 2001 /* 2002 * Allocate firmware descriptors. 2003 */ 2004 #ifdef SYM_CONF_GENERIC_SUPPORT 2005 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2006 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2007 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2008 2009 /* 2010 * Find the most appropriate firmware for a chip. 2011 */ 2012 static const struct sym_fw * 2013 sym_find_firmware(const struct sym_pci_chip *chip) 2014 { 2015 if (chip->features & FE_LDSTR) 2016 return &sym_fw2; 2017 #ifdef SYM_CONF_GENERIC_SUPPORT 2018 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2019 return &sym_fw1; 2020 #endif 2021 else 2022 return NULL; 2023 } 2024 2025 /* 2026 * Bind a script to physical addresses. 2027 */ 2028 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2029 { 2030 u32 opcode, new, old, tmp1, tmp2; 2031 u32 *end, *cur; 2032 int relocs; 2033 2034 cur = start; 2035 end = start + len/4; 2036 2037 while (cur < end) { 2038 2039 opcode = *cur; 2040 2041 /* 2042 * If we forget to change the length 2043 * in scripts, a field will be 2044 * padded with 0. This is an illegal 2045 * command. 2046 */ 2047 if (opcode == 0) { 2048 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2049 sym_name(np), (int) (cur-start)); 2050 MDELAY (10000); 2051 ++cur; 2052 continue; 2053 }; 2054 2055 /* 2056 * We use the bogus value 0xf00ff00f ;-) 2057 * to reserve data area in SCRIPTS. 2058 */ 2059 if (opcode == SCR_DATA_ZERO) { 2060 *cur++ = 0; 2061 continue; 2062 } 2063 2064 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2065 printf ("%d: <%x>\n", (int) (cur-start), 2066 (unsigned)opcode); 2067 2068 /* 2069 * We don't have to decode ALL commands 2070 */ 2071 switch (opcode >> 28) { 2072 case 0xf: 2073 /* 2074 * LOAD / STORE DSA relative, don't relocate. 2075 */ 2076 relocs = 0; 2077 break; 2078 case 0xe: 2079 /* 2080 * LOAD / STORE absolute. 2081 */ 2082 relocs = 1; 2083 break; 2084 case 0xc: 2085 /* 2086 * COPY has TWO arguments. 2087 */ 2088 relocs = 2; 2089 tmp1 = cur[1]; 2090 tmp2 = cur[2]; 2091 if ((tmp1 ^ tmp2) & 3) { 2092 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2093 sym_name(np), (int) (cur-start)); 2094 MDELAY (10000); 2095 } 2096 /* 2097 * If PREFETCH feature not enabled, remove 2098 * the NO FLUSH bit if present. 2099 */ 2100 if ((opcode & SCR_NO_FLUSH) && 2101 !(np->features & FE_PFEN)) { 2102 opcode = (opcode & ~SCR_NO_FLUSH); 2103 } 2104 break; 2105 case 0x0: 2106 /* 2107 * MOVE/CHMOV (absolute address) 2108 */ 2109 if (!(np->features & FE_WIDE)) 2110 opcode = (opcode | OPC_MOVE); 2111 relocs = 1; 2112 break; 2113 case 0x1: 2114 /* 2115 * MOVE/CHMOV (table indirect) 2116 */ 2117 if (!(np->features & FE_WIDE)) 2118 opcode = (opcode | OPC_MOVE); 2119 relocs = 0; 2120 break; 2121 case 0x8: 2122 /* 2123 * JUMP / CALL 2124 * dont't relocate if relative :-) 2125 */ 2126 if (opcode & 0x00800000) 2127 relocs = 0; 2128 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2129 relocs = 2; 2130 else 2131 relocs = 1; 2132 break; 2133 case 0x4: 2134 case 0x5: 2135 case 0x6: 2136 case 0x7: 2137 relocs = 1; 2138 break; 2139 default: 2140 relocs = 0; 2141 break; 2142 }; 2143 2144 /* 2145 * Scriptify:) the opcode. 2146 */ 2147 *cur++ = cpu_to_scr(opcode); 2148 2149 /* 2150 * If no relocation, assume 1 argument 2151 * and just scriptize:) it. 2152 */ 2153 if (!relocs) { 2154 *cur = cpu_to_scr(*cur); 2155 ++cur; 2156 continue; 2157 } 2158 2159 /* 2160 * Otherwise performs all needed relocations. 2161 */ 2162 while (relocs--) { 2163 old = *cur; 2164 2165 switch (old & RELOC_MASK) { 2166 case RELOC_REGISTER: 2167 new = (old & ~RELOC_MASK) + np->mmio_ba; 2168 break; 2169 case RELOC_LABEL_A: 2170 new = (old & ~RELOC_MASK) + np->scripta_ba; 2171 break; 2172 case RELOC_LABEL_B: 2173 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2174 break; 2175 case RELOC_SOFTC: 2176 new = (old & ~RELOC_MASK) + np->hcb_ba; 2177 break; 2178 case 0: 2179 /* 2180 * Don't relocate a 0 address. 2181 * They are mostly used for patched or 2182 * script self-modified areas. 2183 */ 2184 if (old == 0) { 2185 new = old; 2186 break; 2187 } 2188 /* fall through */ 2189 default: 2190 new = 0; 2191 panic("sym_fw_bind_script: " 2192 "weird relocation %x\n", old); 2193 break; 2194 } 2195 2196 *cur++ = cpu_to_scr(new); 2197 } 2198 }; 2199 } 2200 2201 /*---------------------------------------------------------------------------*/ 2202 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2203 /*---------------------------------------------------------------------------*/ 2204 2205 /* 2206 * Function prototypes. 2207 */ 2208 static void sym_save_initial_setting (hcb_p np); 2209 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2210 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2211 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2212 static void sym_chip_reset (hcb_p np); 2213 static void sym_soft_reset (hcb_p np); 2214 static void sym_start_reset (hcb_p np); 2215 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2216 static int sym_wakeup_done (hcb_p np); 2217 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2218 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2219 static void sym_init (hcb_p np, int reason); 2220 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2221 u_char *fakp); 2222 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2223 u_char div, u_char fak); 2224 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2225 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2226 u_char per, u_char wide, u_char div, u_char fak); 2227 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2228 u_char per, u_char wide, u_char div, u_char fak); 2229 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2230 static void sym_intr (void *arg); 2231 static void sym_poll (struct cam_sim *sim); 2232 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2233 static void sym_int_sto (hcb_p np); 2234 static void sym_int_udc (hcb_p np); 2235 static void sym_int_sbmc (hcb_p np); 2236 static void sym_int_par (hcb_p np, u_short sist); 2237 static void sym_int_ma (hcb_p np); 2238 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2239 int task); 2240 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp); 2241 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2242 static void sym_sir_task_recovery (hcb_p np, int num); 2243 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2244 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs); 2245 static int sym_compute_residual (hcb_p np, ccb_p cp); 2246 static int sym_show_msg (u_char * msg); 2247 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2248 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2249 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2250 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2251 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2252 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2253 static void sym_int_sir (hcb_p np); 2254 static void sym_free_ccb (hcb_p np, ccb_p cp); 2255 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2256 static ccb_p sym_alloc_ccb (hcb_p np); 2257 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2258 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2259 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2260 static int sym_snooptest (hcb_p np); 2261 static void sym_selectclock(hcb_p np, u_char scntl3); 2262 static void sym_getclock (hcb_p np, int mult); 2263 static int sym_getpciclock (hcb_p np); 2264 static void sym_complete_ok (hcb_p np, ccb_p cp); 2265 static void sym_complete_error (hcb_p np, ccb_p cp); 2266 static void sym_callout (void *arg); 2267 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2268 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2269 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2270 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2271 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2272 ccb_p cp); 2273 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2274 bus_dma_segment_t *psegs, int nsegs); 2275 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2276 bus_dma_segment_t *psegs, int nsegs); 2277 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2278 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 2279 struct ccb_trans_settings *cts); 2280 static void sym_update_dflags(hcb_p np, u_char *flags, 2281 struct ccb_trans_settings *cts); 2282 2283 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2284 static int sym_pci_probe (device_t dev); 2285 static int sym_pci_attach (device_t dev); 2286 2287 static void sym_pci_free (hcb_p np); 2288 static int sym_cam_attach (hcb_p np); 2289 static void sym_cam_free (hcb_p np); 2290 2291 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2292 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2293 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2294 2295 /* 2296 * Print something which allows to retrieve the controller type, 2297 * unit, target, lun concerned by a kernel message. 2298 */ 2299 static void PRINT_TARGET (hcb_p np, int target) 2300 { 2301 printf ("%s:%d:", sym_name(np), target); 2302 } 2303 2304 static void PRINT_LUN(hcb_p np, int target, int lun) 2305 { 2306 printf ("%s:%d:%d:", sym_name(np), target, lun); 2307 } 2308 2309 static void PRINT_ADDR (ccb_p cp) 2310 { 2311 if (cp && cp->cam_ccb) 2312 xpt_print_path(cp->cam_ccb->ccb_h.path); 2313 } 2314 2315 /* 2316 * Take into account this ccb in the freeze count. 2317 */ 2318 static void sym_freeze_cam_ccb(union ccb *ccb) 2319 { 2320 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2321 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2322 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2323 xpt_freeze_devq(ccb->ccb_h.path, 1); 2324 } 2325 } 2326 } 2327 2328 /* 2329 * Set the status field of a CAM CCB. 2330 */ 2331 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2332 { 2333 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2334 ccb->ccb_h.status |= status; 2335 } 2336 2337 /* 2338 * Get the status field of a CAM CCB. 2339 */ 2340 static __inline int sym_get_cam_status(union ccb *ccb) 2341 { 2342 return ccb->ccb_h.status & CAM_STATUS_MASK; 2343 } 2344 2345 /* 2346 * Enqueue a CAM CCB. 2347 */ 2348 static void sym_enqueue_cam_ccb(ccb_p cp) 2349 { 2350 hcb_p np; 2351 union ccb *ccb; 2352 2353 ccb = cp->cam_ccb; 2354 np = (hcb_p) cp->arg; 2355 2356 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2357 ccb->ccb_h.status = CAM_REQ_INPROG; 2358 2359 callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout, 2360 (caddr_t) ccb); 2361 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2362 ccb->ccb_h.sym_hcb_ptr = np; 2363 2364 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2365 } 2366 2367 /* 2368 * Complete a pending CAM CCB. 2369 */ 2370 2371 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2372 { 2373 2374 SYM_LOCK_ASSERT(MA_OWNED); 2375 2376 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2377 callout_stop(&cp->ch); 2378 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2379 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2380 ccb->ccb_h.sym_hcb_ptr = NULL; 2381 } 2382 xpt_done(ccb); 2383 } 2384 2385 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2386 { 2387 2388 SYM_LOCK_ASSERT(MA_OWNED); 2389 2390 sym_set_cam_status(ccb, cam_status); 2391 xpt_done(ccb); 2392 } 2393 2394 /* 2395 * SYMBIOS chip clock divisor table. 2396 * 2397 * Divisors are multiplied by 10,000,000 in order to make 2398 * calculations more simple. 2399 */ 2400 #define _5M 5000000 2401 static const u32 div_10M[] = 2402 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2403 2404 /* 2405 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2406 * 128 transfers. All chips support at least 16 transfers 2407 * bursts. The 825A, 875 and 895 chips support bursts of up 2408 * to 128 transfers and the 895A and 896 support bursts of up 2409 * to 64 transfers. All other chips support up to 16 2410 * transfers bursts. 2411 * 2412 * For PCI 32 bit data transfers each transfer is a DWORD. 2413 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2414 * 2415 * We use log base 2 (burst length) as internal code, with 2416 * value 0 meaning "burst disabled". 2417 */ 2418 2419 /* 2420 * Burst length from burst code. 2421 */ 2422 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2423 2424 /* 2425 * Burst code from io register bits. 2426 */ 2427 #define burst_code(dmode, ctest4, ctest5) \ 2428 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2429 2430 /* 2431 * Set initial io register bits from burst code. 2432 */ 2433 static __inline void sym_init_burst(hcb_p np, u_char bc) 2434 { 2435 np->rv_ctest4 &= ~0x80; 2436 np->rv_dmode &= ~(0x3 << 6); 2437 np->rv_ctest5 &= ~0x4; 2438 2439 if (!bc) { 2440 np->rv_ctest4 |= 0x80; 2441 } 2442 else { 2443 --bc; 2444 np->rv_dmode |= ((bc & 0x3) << 6); 2445 np->rv_ctest5 |= (bc & 0x4); 2446 } 2447 } 2448 2449 /* 2450 * Print out the list of targets that have some flag disabled by user. 2451 */ 2452 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2453 { 2454 int cnt; 2455 int i; 2456 2457 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2458 if (i == np->myaddr) 2459 continue; 2460 if (np->target[i].usrflags & mask) { 2461 if (!cnt++) 2462 printf("%s: %s disabled for targets", 2463 sym_name(np), msg); 2464 printf(" %d", i); 2465 } 2466 } 2467 if (cnt) 2468 printf(".\n"); 2469 } 2470 2471 /* 2472 * Save initial settings of some IO registers. 2473 * Assumed to have been set by BIOS. 2474 * We cannot reset the chip prior to reading the 2475 * IO registers, since informations will be lost. 2476 * Since the SCRIPTS processor may be running, this 2477 * is not safe on paper, but it seems to work quite 2478 * well. :) 2479 */ 2480 static void sym_save_initial_setting (hcb_p np) 2481 { 2482 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2483 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2484 np->sv_dmode = INB(nc_dmode) & 0xce; 2485 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2486 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2487 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2488 np->sv_gpcntl = INB(nc_gpcntl); 2489 np->sv_stest1 = INB(nc_stest1); 2490 np->sv_stest2 = INB(nc_stest2) & 0x20; 2491 np->sv_stest4 = INB(nc_stest4); 2492 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2493 np->sv_scntl4 = INB(nc_scntl4); 2494 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2495 } 2496 else 2497 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2498 } 2499 2500 /* 2501 * Prepare io register values used by sym_init() according 2502 * to selected and supported features. 2503 */ 2504 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2505 { 2506 u_char burst_max; 2507 u32 period; 2508 int i; 2509 2510 /* 2511 * Wide ? 2512 */ 2513 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2514 2515 /* 2516 * Get the frequency of the chip's clock. 2517 */ 2518 if (np->features & FE_QUAD) 2519 np->multiplier = 4; 2520 else if (np->features & FE_DBLR) 2521 np->multiplier = 2; 2522 else 2523 np->multiplier = 1; 2524 2525 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2526 np->clock_khz *= np->multiplier; 2527 2528 if (np->clock_khz != 40000) 2529 sym_getclock(np, np->multiplier); 2530 2531 /* 2532 * Divisor to be used for async (timer pre-scaler). 2533 */ 2534 i = np->clock_divn - 1; 2535 while (--i >= 0) { 2536 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2537 ++i; 2538 break; 2539 } 2540 } 2541 np->rv_scntl3 = i+1; 2542 2543 /* 2544 * The C1010 uses hardwired divisors for async. 2545 * So, we just throw away, the async. divisor.:-) 2546 */ 2547 if (np->features & FE_C10) 2548 np->rv_scntl3 = 0; 2549 2550 /* 2551 * Minimum synchronous period factor supported by the chip. 2552 * Btw, 'period' is in tenths of nanoseconds. 2553 */ 2554 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2555 if (period <= 250) np->minsync = 10; 2556 else if (period <= 303) np->minsync = 11; 2557 else if (period <= 500) np->minsync = 12; 2558 else np->minsync = (period + 40 - 1) / 40; 2559 2560 /* 2561 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2562 */ 2563 if (np->minsync < 25 && 2564 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2565 np->minsync = 25; 2566 else if (np->minsync < 12 && 2567 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2568 np->minsync = 12; 2569 2570 /* 2571 * Maximum synchronous period factor supported by the chip. 2572 */ 2573 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2574 np->maxsync = period > 2540 ? 254 : period / 10; 2575 2576 /* 2577 * If chip is a C1010, guess the sync limits in DT mode. 2578 */ 2579 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2580 if (np->clock_khz == 160000) { 2581 np->minsync_dt = 9; 2582 np->maxsync_dt = 50; 2583 np->maxoffs_dt = 62; 2584 } 2585 } 2586 2587 /* 2588 * 64 bit addressing (895A/896/1010) ? 2589 */ 2590 if (np->features & FE_DAC) 2591 #ifdef __LP64__ 2592 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2593 #else 2594 np->rv_ccntl1 |= (DDAC); 2595 #endif 2596 2597 /* 2598 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2599 */ 2600 if (np->features & FE_NOPM) 2601 np->rv_ccntl0 |= (ENPMJ); 2602 2603 /* 2604 * C1010 Errata. 2605 * In dual channel mode, contention occurs if internal cycles 2606 * are used. Disable internal cycles. 2607 */ 2608 if (np->device_id == PCI_ID_LSI53C1010 && 2609 np->revision_id < 0x2) 2610 np->rv_ccntl0 |= DILS; 2611 2612 /* 2613 * Select burst length (dwords) 2614 */ 2615 burst_max = SYM_SETUP_BURST_ORDER; 2616 if (burst_max == 255) 2617 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2618 np->sv_ctest5); 2619 if (burst_max > 7) 2620 burst_max = 7; 2621 if (burst_max > np->maxburst) 2622 burst_max = np->maxburst; 2623 2624 /* 2625 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2626 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2627 * based transactions on LOAD/STORE instructions. So we have 2628 * to prevent these chips from using such PCI transactions in 2629 * this driver. The generic ncr driver that does not use 2630 * LOAD/STORE instructions does not need this work-around. 2631 */ 2632 if ((np->device_id == PCI_ID_SYM53C810 && 2633 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2634 (np->device_id == PCI_ID_SYM53C860 && 2635 np->revision_id <= 0x1)) 2636 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2637 2638 /* 2639 * Select all supported special features. 2640 * If we are using on-board RAM for scripts, prefetch (PFEN) 2641 * does not help, but burst op fetch (BOF) does. 2642 * Disabling PFEN makes sure BOF will be used. 2643 */ 2644 if (np->features & FE_ERL) 2645 np->rv_dmode |= ERL; /* Enable Read Line */ 2646 if (np->features & FE_BOF) 2647 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2648 if (np->features & FE_ERMP) 2649 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2650 #if 1 2651 if ((np->features & FE_PFEN) && !np->ram_ba) 2652 #else 2653 if (np->features & FE_PFEN) 2654 #endif 2655 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2656 if (np->features & FE_CLSE) 2657 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2658 if (np->features & FE_WRIE) 2659 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2660 if (np->features & FE_DFS) 2661 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2662 2663 /* 2664 * Select some other 2665 */ 2666 if (SYM_SETUP_PCI_PARITY) 2667 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2668 if (SYM_SETUP_SCSI_PARITY) 2669 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2670 2671 /* 2672 * Get parity checking, host ID and verbose mode from NVRAM 2673 */ 2674 np->myaddr = 255; 2675 sym_nvram_setup_host (np, nvram); 2676 #ifdef __sparc64__ 2677 np->myaddr = OF_getscsinitid(np->device); 2678 #endif 2679 2680 /* 2681 * Get SCSI addr of host adapter (set by bios?). 2682 */ 2683 if (np->myaddr == 255) { 2684 np->myaddr = INB(nc_scid) & 0x07; 2685 if (!np->myaddr) 2686 np->myaddr = SYM_SETUP_HOST_ID; 2687 } 2688 2689 /* 2690 * Prepare initial io register bits for burst length 2691 */ 2692 sym_init_burst(np, burst_max); 2693 2694 /* 2695 * Set SCSI BUS mode. 2696 * - LVD capable chips (895/895A/896/1010) report the 2697 * current BUS mode through the STEST4 IO register. 2698 * - For previous generation chips (825/825A/875), 2699 * user has to tell us how to check against HVD, 2700 * since a 100% safe algorithm is not possible. 2701 */ 2702 np->scsi_mode = SMODE_SE; 2703 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2704 np->scsi_mode = (np->sv_stest4 & SMODE); 2705 else if (np->features & FE_DIFF) { 2706 if (SYM_SETUP_SCSI_DIFF == 1) { 2707 if (np->sv_scntl3) { 2708 if (np->sv_stest2 & 0x20) 2709 np->scsi_mode = SMODE_HVD; 2710 } 2711 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2712 if (!(INB(nc_gpreg) & 0x08)) 2713 np->scsi_mode = SMODE_HVD; 2714 } 2715 } 2716 else if (SYM_SETUP_SCSI_DIFF == 2) 2717 np->scsi_mode = SMODE_HVD; 2718 } 2719 if (np->scsi_mode == SMODE_HVD) 2720 np->rv_stest2 |= 0x20; 2721 2722 /* 2723 * Set LED support from SCRIPTS. 2724 * Ignore this feature for boards known to use a 2725 * specific GPIO wiring and for the 895A, 896 2726 * and 1010 that drive the LED directly. 2727 */ 2728 if ((SYM_SETUP_SCSI_LED || 2729 (nvram->type == SYM_SYMBIOS_NVRAM || 2730 (nvram->type == SYM_TEKRAM_NVRAM && 2731 np->device_id == PCI_ID_SYM53C895))) && 2732 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2733 np->features |= FE_LED0; 2734 2735 /* 2736 * Set irq mode. 2737 */ 2738 switch(SYM_SETUP_IRQ_MODE & 3) { 2739 case 2: 2740 np->rv_dcntl |= IRQM; 2741 break; 2742 case 1: 2743 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2744 break; 2745 default: 2746 break; 2747 } 2748 2749 /* 2750 * Configure targets according to driver setup. 2751 * If NVRAM present get targets setup from NVRAM. 2752 */ 2753 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2754 tcb_p tp = &np->target[i]; 2755 2756 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2757 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2758 tp->tinfo.user.period = np->minsync; 2759 if (np->features & FE_ULTRA3) 2760 tp->tinfo.user.period = np->minsync_dt; 2761 tp->tinfo.user.offset = np->maxoffs; 2762 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2763 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2764 tp->usrtags = SYM_SETUP_MAX_TAG; 2765 2766 sym_nvram_setup_target (np, i, nvram); 2767 2768 /* 2769 * For now, guess PPR/DT support from the period 2770 * and BUS width. 2771 */ 2772 if (np->features & FE_ULTRA3) { 2773 if (tp->tinfo.user.period <= 9 && 2774 tp->tinfo.user.width == BUS_16_BIT) { 2775 tp->tinfo.user.options |= PPR_OPT_DT; 2776 tp->tinfo.user.offset = np->maxoffs_dt; 2777 tp->tinfo.user.spi_version = 3; 2778 } 2779 } 2780 2781 if (!tp->usrtags) 2782 tp->usrflags &= ~SYM_TAGS_ENABLED; 2783 } 2784 2785 /* 2786 * Let user know about the settings. 2787 */ 2788 i = nvram->type; 2789 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2790 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2791 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2792 np->myaddr, 2793 (np->features & FE_ULTRA3) ? 80 : 2794 (np->features & FE_ULTRA2) ? 40 : 2795 (np->features & FE_ULTRA) ? 20 : 10, 2796 sym_scsi_bus_mode(np->scsi_mode), 2797 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2798 /* 2799 * Tell him more on demand. 2800 */ 2801 if (sym_verbose) { 2802 printf("%s: %s IRQ line driver%s\n", 2803 sym_name(np), 2804 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2805 np->ram_ba ? ", using on-chip SRAM" : ""); 2806 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2807 if (np->features & FE_NOPM) 2808 printf("%s: handling phase mismatch from SCRIPTS.\n", 2809 sym_name(np)); 2810 } 2811 /* 2812 * And still more. 2813 */ 2814 if (sym_verbose > 1) { 2815 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2816 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2817 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2818 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2819 2820 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2821 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2822 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2823 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2824 } 2825 /* 2826 * Let user be aware of targets that have some disable flags set. 2827 */ 2828 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2829 if (sym_verbose) 2830 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2831 "SCAN FOR LUNS"); 2832 2833 return 0; 2834 } 2835 2836 /* 2837 * Prepare the next negotiation message if needed. 2838 * 2839 * Fill in the part of message buffer that contains the 2840 * negotiation and the nego_status field of the CCB. 2841 * Returns the size of the message in bytes. 2842 */ 2843 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2844 { 2845 tcb_p tp = &np->target[cp->target]; 2846 int msglen = 0; 2847 2848 /* 2849 * Early C1010 chips need a work-around for DT 2850 * data transfer to work. 2851 */ 2852 if (!(np->features & FE_U3EN)) 2853 tp->tinfo.goal.options = 0; 2854 /* 2855 * negotiate using PPR ? 2856 */ 2857 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2858 nego = NS_PPR; 2859 /* 2860 * negotiate wide transfers ? 2861 */ 2862 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2863 nego = NS_WIDE; 2864 /* 2865 * negotiate synchronous transfers? 2866 */ 2867 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2868 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2869 nego = NS_SYNC; 2870 2871 switch (nego) { 2872 case NS_SYNC: 2873 msgptr[msglen++] = M_EXTENDED; 2874 msgptr[msglen++] = 3; 2875 msgptr[msglen++] = M_X_SYNC_REQ; 2876 msgptr[msglen++] = tp->tinfo.goal.period; 2877 msgptr[msglen++] = tp->tinfo.goal.offset; 2878 break; 2879 case NS_WIDE: 2880 msgptr[msglen++] = M_EXTENDED; 2881 msgptr[msglen++] = 2; 2882 msgptr[msglen++] = M_X_WIDE_REQ; 2883 msgptr[msglen++] = tp->tinfo.goal.width; 2884 break; 2885 case NS_PPR: 2886 msgptr[msglen++] = M_EXTENDED; 2887 msgptr[msglen++] = 6; 2888 msgptr[msglen++] = M_X_PPR_REQ; 2889 msgptr[msglen++] = tp->tinfo.goal.period; 2890 msgptr[msglen++] = 0; 2891 msgptr[msglen++] = tp->tinfo.goal.offset; 2892 msgptr[msglen++] = tp->tinfo.goal.width; 2893 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2894 break; 2895 }; 2896 2897 cp->nego_status = nego; 2898 2899 if (nego) { 2900 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2901 if (DEBUG_FLAGS & DEBUG_NEGO) { 2902 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2903 nego == NS_WIDE ? "wide msgout" : 2904 "ppr msgout", msgptr); 2905 }; 2906 }; 2907 2908 return msglen; 2909 } 2910 2911 /* 2912 * Insert a job into the start queue. 2913 */ 2914 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2915 { 2916 u_short qidx; 2917 2918 #ifdef SYM_CONF_IARB_SUPPORT 2919 /* 2920 * If the previously queued CCB is not yet done, 2921 * set the IARB hint. The SCRIPTS will go with IARB 2922 * for this job when starting the previous one. 2923 * We leave devices a chance to win arbitration by 2924 * not using more than 'iarb_max' consecutive 2925 * immediate arbitrations. 2926 */ 2927 if (np->last_cp && np->iarb_count < np->iarb_max) { 2928 np->last_cp->host_flags |= HF_HINT_IARB; 2929 ++np->iarb_count; 2930 } 2931 else 2932 np->iarb_count = 0; 2933 np->last_cp = cp; 2934 #endif 2935 2936 /* 2937 * Insert first the idle task and then our job. 2938 * The MB should ensure proper ordering. 2939 */ 2940 qidx = np->squeueput + 2; 2941 if (qidx >= MAX_QUEUE*2) qidx = 0; 2942 2943 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2944 MEMORY_BARRIER(); 2945 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2946 2947 np->squeueput = qidx; 2948 2949 if (DEBUG_FLAGS & DEBUG_QUEUE) 2950 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2951 2952 /* 2953 * Script processor may be waiting for reselect. 2954 * Wake it up. 2955 */ 2956 MEMORY_BARRIER(); 2957 OUTB (nc_istat, SIGP|np->istat_sem); 2958 } 2959 2960 /* 2961 * Soft reset the chip. 2962 * 2963 * Raising SRST when the chip is running may cause 2964 * problems on dual function chips (see below). 2965 * On the other hand, LVD devices need some delay 2966 * to settle and report actual BUS mode in STEST4. 2967 */ 2968 static void sym_chip_reset (hcb_p np) 2969 { 2970 OUTB (nc_istat, SRST); 2971 UDELAY (10); 2972 OUTB (nc_istat, 0); 2973 UDELAY(2000); /* For BUS MODE to settle */ 2974 } 2975 2976 /* 2977 * Soft reset the chip. 2978 * 2979 * Some 896 and 876 chip revisions may hang-up if we set 2980 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2981 * are running. 2982 * So, we need to abort the current operation prior to 2983 * soft resetting the chip. 2984 */ 2985 static void sym_soft_reset (hcb_p np) 2986 { 2987 u_char istat; 2988 int i; 2989 2990 OUTB (nc_istat, CABRT); 2991 for (i = 1000000 ; i ; --i) { 2992 istat = INB (nc_istat); 2993 if (istat & SIP) { 2994 INW (nc_sist); 2995 continue; 2996 } 2997 if (istat & DIP) { 2998 OUTB (nc_istat, 0); 2999 INB (nc_dstat); 3000 break; 3001 } 3002 } 3003 if (!i) 3004 printf("%s: unable to abort current chip operation.\n", 3005 sym_name(np)); 3006 sym_chip_reset (np); 3007 } 3008 3009 /* 3010 * Start reset process. 3011 * 3012 * The interrupt handler will reinitialize the chip. 3013 */ 3014 static void sym_start_reset(hcb_p np) 3015 { 3016 (void) sym_reset_scsi_bus(np, 1); 3017 } 3018 3019 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3020 { 3021 u32 term; 3022 int retv = 0; 3023 3024 sym_soft_reset(np); /* Soft reset the chip */ 3025 if (enab_int) 3026 OUTW (nc_sien, RST); 3027 /* 3028 * Enable Tolerant, reset IRQD if present and 3029 * properly set IRQ mode, prior to resetting the bus. 3030 */ 3031 OUTB (nc_stest3, TE); 3032 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3033 OUTB (nc_scntl1, CRST); 3034 UDELAY (200); 3035 3036 if (!SYM_SETUP_SCSI_BUS_CHECK) 3037 goto out; 3038 /* 3039 * Check for no terminators or SCSI bus shorts to ground. 3040 * Read SCSI data bus, data parity bits and control signals. 3041 * We are expecting RESET to be TRUE and other signals to be 3042 * FALSE. 3043 */ 3044 term = INB(nc_sstat0); 3045 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3046 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3047 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3048 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3049 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3050 3051 if (!(np->features & FE_WIDE)) 3052 term &= 0x3ffff; 3053 3054 if (term != (2<<7)) { 3055 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3056 sym_name(np)); 3057 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3058 "0x%lx, expecting 0x%lx\n", 3059 sym_name(np), 3060 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3061 (u_long)term, (u_long)(2<<7)); 3062 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3063 retv = 1; 3064 } 3065 out: 3066 OUTB (nc_scntl1, 0); 3067 /* MDELAY(100); */ 3068 return retv; 3069 } 3070 3071 /* 3072 * The chip may have completed jobs. Look at the DONE QUEUE. 3073 * 3074 * On architectures that may reorder LOAD/STORE operations, 3075 * a memory barrier may be needed after the reading of the 3076 * so-called `flag' and prior to dealing with the data. 3077 */ 3078 static int sym_wakeup_done (hcb_p np) 3079 { 3080 ccb_p cp; 3081 int i, n; 3082 u32 dsa; 3083 3084 SYM_LOCK_ASSERT(MA_OWNED); 3085 3086 n = 0; 3087 i = np->dqueueget; 3088 while (1) { 3089 dsa = scr_to_cpu(np->dqueue[i]); 3090 if (!dsa) 3091 break; 3092 np->dqueue[i] = 0; 3093 if ((i = i+2) >= MAX_QUEUE*2) 3094 i = 0; 3095 3096 cp = sym_ccb_from_dsa(np, dsa); 3097 if (cp) { 3098 MEMORY_BARRIER(); 3099 sym_complete_ok (np, cp); 3100 ++n; 3101 } 3102 else 3103 printf ("%s: bad DSA (%x) in done queue.\n", 3104 sym_name(np), (u_int) dsa); 3105 } 3106 np->dqueueget = i; 3107 3108 return n; 3109 } 3110 3111 /* 3112 * Complete all active CCBs with error. 3113 * Used on CHIP/SCSI RESET. 3114 */ 3115 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3116 { 3117 /* 3118 * Move all active CCBs to the COMP queue 3119 * and flush this queue. 3120 */ 3121 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3122 sym_que_init(&np->busy_ccbq); 3123 sym_flush_comp_queue(np, cam_status); 3124 } 3125 3126 /* 3127 * Start chip. 3128 * 3129 * 'reason' means: 3130 * 0: initialisation. 3131 * 1: SCSI BUS RESET delivered or received. 3132 * 2: SCSI BUS MODE changed. 3133 */ 3134 static void sym_init (hcb_p np, int reason) 3135 { 3136 int i; 3137 u32 phys; 3138 3139 SYM_LOCK_ASSERT(MA_OWNED); 3140 3141 /* 3142 * Reset chip if asked, otherwise just clear fifos. 3143 */ 3144 if (reason == 1) 3145 sym_soft_reset(np); 3146 else { 3147 OUTB (nc_stest3, TE|CSF); 3148 OUTONB (nc_ctest3, CLF); 3149 } 3150 3151 /* 3152 * Clear Start Queue 3153 */ 3154 phys = np->squeue_ba; 3155 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3156 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3157 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3158 } 3159 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3160 3161 /* 3162 * Start at first entry. 3163 */ 3164 np->squeueput = 0; 3165 3166 /* 3167 * Clear Done Queue 3168 */ 3169 phys = np->dqueue_ba; 3170 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3171 np->dqueue[i] = 0; 3172 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3173 } 3174 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3175 3176 /* 3177 * Start at first entry. 3178 */ 3179 np->dqueueget = 0; 3180 3181 /* 3182 * Install patches in scripts. 3183 * This also let point to first position the start 3184 * and done queue pointers used from SCRIPTS. 3185 */ 3186 np->fw_patch(np); 3187 3188 /* 3189 * Wakeup all pending jobs. 3190 */ 3191 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3192 3193 /* 3194 * Init chip. 3195 */ 3196 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3197 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3198 3199 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3200 /* full arb., ena parity, par->ATN */ 3201 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3202 3203 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3204 3205 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3206 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3207 OUTB (nc_istat , SIGP ); /* Signal Process */ 3208 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3209 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3210 3211 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3212 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3213 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3214 3215 /* Extended Sreq/Sack filtering not supported on the C10 */ 3216 if (np->features & FE_C10) 3217 OUTB (nc_stest2, np->rv_stest2); 3218 else 3219 OUTB (nc_stest2, EXT|np->rv_stest2); 3220 3221 OUTB (nc_stest3, TE); /* TolerANT enable */ 3222 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3223 3224 /* 3225 * For now, disable AIP generation on C1010-66. 3226 */ 3227 if (np->device_id == PCI_ID_LSI53C1010_2) 3228 OUTB (nc_aipcntl1, DISAIP); 3229 3230 /* 3231 * C10101 Errata. 3232 * Errant SGE's when in narrow. Write bits 4 & 5 of 3233 * STEST1 register to disable SGE. We probably should do 3234 * that from SCRIPTS for each selection/reselection, but 3235 * I just don't want. :) 3236 */ 3237 if (np->device_id == PCI_ID_LSI53C1010 && 3238 /* np->revision_id < 0xff */ 1) 3239 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3240 3241 /* 3242 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3243 * Disable overlapped arbitration for some dual function devices, 3244 * regardless revision id (kind of post-chip-design feature. ;-)) 3245 */ 3246 if (np->device_id == PCI_ID_SYM53C875) 3247 OUTB (nc_ctest0, (1<<5)); 3248 else if (np->device_id == PCI_ID_SYM53C896) 3249 np->rv_ccntl0 |= DPR; 3250 3251 /* 3252 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3253 * and/or hardware phase mismatch, since only such chips 3254 * seem to support those IO registers. 3255 */ 3256 if (np->features & (FE_DAC|FE_NOPM)) { 3257 OUTB (nc_ccntl0, np->rv_ccntl0); 3258 OUTB (nc_ccntl1, np->rv_ccntl1); 3259 } 3260 3261 /* 3262 * If phase mismatch handled by scripts (895A/896/1010), 3263 * set PM jump addresses. 3264 */ 3265 if (np->features & FE_NOPM) { 3266 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3267 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3268 } 3269 3270 /* 3271 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3272 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3273 */ 3274 if (np->features & FE_LED0) 3275 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3276 else if (np->features & FE_LEDC) 3277 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3278 3279 /* 3280 * enable ints 3281 */ 3282 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3283 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3284 3285 /* 3286 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3287 * Try to eat the spurious SBMC interrupt that may occur when 3288 * we reset the chip but not the SCSI BUS (at initialization). 3289 */ 3290 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3291 OUTONW (nc_sien, SBMC); 3292 if (reason == 0) { 3293 MDELAY(100); 3294 INW (nc_sist); 3295 } 3296 np->scsi_mode = INB (nc_stest4) & SMODE; 3297 } 3298 3299 /* 3300 * Fill in target structure. 3301 * Reinitialize usrsync. 3302 * Reinitialize usrwide. 3303 * Prepare sync negotiation according to actual SCSI bus mode. 3304 */ 3305 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3306 tcb_p tp = &np->target[i]; 3307 3308 tp->to_reset = 0; 3309 tp->head.sval = 0; 3310 tp->head.wval = np->rv_scntl3; 3311 tp->head.uval = 0; 3312 3313 tp->tinfo.current.period = 0; 3314 tp->tinfo.current.offset = 0; 3315 tp->tinfo.current.width = BUS_8_BIT; 3316 tp->tinfo.current.options = 0; 3317 } 3318 3319 /* 3320 * Download SCSI SCRIPTS to on-chip RAM if present, 3321 * and start script processor. 3322 */ 3323 if (np->ram_ba) { 3324 if (sym_verbose > 1) 3325 printf ("%s: Downloading SCSI SCRIPTS.\n", 3326 sym_name(np)); 3327 if (np->ram_ws == 8192) { 3328 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3329 OUTL (nc_mmws, np->scr_ram_seg); 3330 OUTL (nc_mmrs, np->scr_ram_seg); 3331 OUTL (nc_sfs, np->scr_ram_seg); 3332 phys = SCRIPTB_BA (np, start64); 3333 } 3334 else 3335 phys = SCRIPTA_BA (np, init); 3336 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3337 } 3338 else 3339 phys = SCRIPTA_BA (np, init); 3340 3341 np->istat_sem = 0; 3342 3343 OUTL (nc_dsa, np->hcb_ba); 3344 OUTL_DSP (phys); 3345 3346 /* 3347 * Notify the XPT about the RESET condition. 3348 */ 3349 if (reason != 0) 3350 xpt_async(AC_BUS_RESET, np->path, NULL); 3351 } 3352 3353 /* 3354 * Get clock factor and sync divisor for a given 3355 * synchronous factor period. 3356 */ 3357 static int 3358 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3359 { 3360 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3361 int div = np->clock_divn; /* Number of divisors supported */ 3362 u32 fak; /* Sync factor in sxfer */ 3363 u32 per; /* Period in tenths of ns */ 3364 u32 kpc; /* (per * clk) */ 3365 int ret; 3366 3367 /* 3368 * Compute the synchronous period in tenths of nano-seconds 3369 */ 3370 if (dt && sfac <= 9) per = 125; 3371 else if (sfac <= 10) per = 250; 3372 else if (sfac == 11) per = 303; 3373 else if (sfac == 12) per = 500; 3374 else per = 40 * sfac; 3375 ret = per; 3376 3377 kpc = per * clk; 3378 if (dt) 3379 kpc <<= 1; 3380 3381 /* 3382 * For earliest C10 revision 0, we cannot use extra 3383 * clocks for the setting of the SCSI clocking. 3384 * Note that this limits the lowest sync data transfer 3385 * to 5 Mega-transfers per second and may result in 3386 * using higher clock divisors. 3387 */ 3388 #if 1 3389 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3390 /* 3391 * Look for the lowest clock divisor that allows an 3392 * output speed not faster than the period. 3393 */ 3394 while (div > 0) { 3395 --div; 3396 if (kpc > (div_10M[div] << 2)) { 3397 ++div; 3398 break; 3399 } 3400 } 3401 fak = 0; /* No extra clocks */ 3402 if (div == np->clock_divn) { /* Are we too fast ? */ 3403 ret = -1; 3404 } 3405 *divp = div; 3406 *fakp = fak; 3407 return ret; 3408 } 3409 #endif 3410 3411 /* 3412 * Look for the greatest clock divisor that allows an 3413 * input speed faster than the period. 3414 */ 3415 while (div-- > 0) 3416 if (kpc >= (div_10M[div] << 2)) break; 3417 3418 /* 3419 * Calculate the lowest clock factor that allows an output 3420 * speed not faster than the period, and the max output speed. 3421 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3422 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3423 */ 3424 if (dt) { 3425 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3426 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3427 } 3428 else { 3429 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3430 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3431 } 3432 3433 /* 3434 * Check against our hardware limits, or bugs :). 3435 */ 3436 if (fak > 2) {fak = 2; ret = -1;} 3437 3438 /* 3439 * Compute and return sync parameters. 3440 */ 3441 *divp = div; 3442 *fakp = fak; 3443 3444 return ret; 3445 } 3446 3447 /* 3448 * Tell the SCSI layer about the new transfer parameters. 3449 */ 3450 static void 3451 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3452 { 3453 struct ccb_trans_settings cts; 3454 struct cam_path *path; 3455 int sts; 3456 tcb_p tp = &np->target[target]; 3457 3458 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3459 CAM_LUN_WILDCARD); 3460 if (sts != CAM_REQ_CMP) 3461 return; 3462 3463 bzero(&cts, sizeof(cts)); 3464 3465 #define cts__scsi (cts.proto_specific.scsi) 3466 #define cts__spi (cts.xport_specific.spi) 3467 3468 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3469 cts.protocol = PROTO_SCSI; 3470 cts.transport = XPORT_SPI; 3471 cts.protocol_version = tp->tinfo.current.scsi_version; 3472 cts.transport_version = tp->tinfo.current.spi_version; 3473 3474 cts__spi.valid = spi_valid; 3475 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3476 cts__spi.sync_period = tp->tinfo.current.period; 3477 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3478 cts__spi.sync_offset = tp->tinfo.current.offset; 3479 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3480 cts__spi.bus_width = tp->tinfo.current.width; 3481 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3482 cts__spi.ppr_options = tp->tinfo.current.options; 3483 #undef cts__spi 3484 #undef cts__scsi 3485 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3486 xpt_async(AC_TRANSFER_NEG, path, &cts); 3487 xpt_free_path(path); 3488 } 3489 3490 #define SYM_SPI_VALID_WDTR \ 3491 CTS_SPI_VALID_BUS_WIDTH | \ 3492 CTS_SPI_VALID_SYNC_RATE | \ 3493 CTS_SPI_VALID_SYNC_OFFSET 3494 #define SYM_SPI_VALID_SDTR \ 3495 CTS_SPI_VALID_SYNC_RATE | \ 3496 CTS_SPI_VALID_SYNC_OFFSET 3497 #define SYM_SPI_VALID_PPR \ 3498 CTS_SPI_VALID_PPR_OPTIONS | \ 3499 CTS_SPI_VALID_BUS_WIDTH | \ 3500 CTS_SPI_VALID_SYNC_RATE | \ 3501 CTS_SPI_VALID_SYNC_OFFSET 3502 3503 /* 3504 * We received a WDTR. 3505 * Let everything be aware of the changes. 3506 */ 3507 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3508 { 3509 tcb_p tp = &np->target[cp->target]; 3510 3511 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3512 3513 /* 3514 * Tell the SCSI layer about the new transfer parameters. 3515 */ 3516 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3517 tp->tinfo.current.offset = 0; 3518 tp->tinfo.current.period = 0; 3519 tp->tinfo.current.options = 0; 3520 3521 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3522 } 3523 3524 /* 3525 * We received a SDTR. 3526 * Let everything be aware of the changes. 3527 */ 3528 static void 3529 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3530 { 3531 tcb_p tp = &np->target[cp->target]; 3532 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3533 3534 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3535 3536 /* 3537 * Tell the SCSI layer about the new transfer parameters. 3538 */ 3539 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3540 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3541 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3542 3543 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3544 } 3545 3546 /* 3547 * We received a PPR. 3548 * Let everything be aware of the changes. 3549 */ 3550 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3551 u_char per, u_char wide, u_char div, u_char fak) 3552 { 3553 tcb_p tp = &np->target[cp->target]; 3554 3555 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3556 3557 /* 3558 * Tell the SCSI layer about the new transfer parameters. 3559 */ 3560 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3561 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3562 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3563 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3564 3565 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3566 } 3567 3568 /* 3569 * Switch trans mode for current job and it's target. 3570 */ 3571 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3572 u_char per, u_char wide, u_char div, u_char fak) 3573 { 3574 SYM_QUEHEAD *qp; 3575 union ccb *ccb; 3576 tcb_p tp; 3577 u_char target = INB (nc_sdid) & 0x0f; 3578 u_char sval, wval, uval; 3579 3580 assert (cp); 3581 if (!cp) return; 3582 ccb = cp->cam_ccb; 3583 assert (ccb); 3584 if (!ccb) return; 3585 assert (target == (cp->target & 0xf)); 3586 tp = &np->target[target]; 3587 3588 sval = tp->head.sval; 3589 wval = tp->head.wval; 3590 uval = tp->head.uval; 3591 3592 #if 0 3593 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3594 sval, wval, uval, np->rv_scntl3); 3595 #endif 3596 /* 3597 * Set the offset. 3598 */ 3599 if (!(np->features & FE_C10)) 3600 sval = (sval & ~0x1f) | ofs; 3601 else 3602 sval = (sval & ~0x3f) | ofs; 3603 3604 /* 3605 * Set the sync divisor and extra clock factor. 3606 */ 3607 if (ofs != 0) { 3608 wval = (wval & ~0x70) | ((div+1) << 4); 3609 if (!(np->features & FE_C10)) 3610 sval = (sval & ~0xe0) | (fak << 5); 3611 else { 3612 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3613 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3614 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3615 } 3616 } 3617 3618 /* 3619 * Set the bus width. 3620 */ 3621 wval = wval & ~EWS; 3622 if (wide != 0) 3623 wval |= EWS; 3624 3625 /* 3626 * Set misc. ultra enable bits. 3627 */ 3628 if (np->features & FE_C10) { 3629 uval = uval & ~(U3EN|AIPCKEN); 3630 if (dt) { 3631 assert(np->features & FE_U3EN); 3632 uval |= U3EN; 3633 } 3634 } 3635 else { 3636 wval = wval & ~ULTRA; 3637 if (per <= 12) wval |= ULTRA; 3638 } 3639 3640 /* 3641 * Stop there if sync parameters are unchanged. 3642 */ 3643 if (tp->head.sval == sval && 3644 tp->head.wval == wval && 3645 tp->head.uval == uval) 3646 return; 3647 tp->head.sval = sval; 3648 tp->head.wval = wval; 3649 tp->head.uval = uval; 3650 3651 /* 3652 * Disable extended Sreq/Sack filtering if per < 50. 3653 * Not supported on the C1010. 3654 */ 3655 if (per < 50 && !(np->features & FE_C10)) 3656 OUTOFFB (nc_stest2, EXT); 3657 3658 /* 3659 * set actual value and sync_status 3660 */ 3661 OUTB (nc_sxfer, tp->head.sval); 3662 OUTB (nc_scntl3, tp->head.wval); 3663 3664 if (np->features & FE_C10) { 3665 OUTB (nc_scntl4, tp->head.uval); 3666 } 3667 3668 /* 3669 * patch ALL busy ccbs of this target. 3670 */ 3671 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3672 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3673 if (cp->target != target) 3674 continue; 3675 cp->phys.select.sel_scntl3 = tp->head.wval; 3676 cp->phys.select.sel_sxfer = tp->head.sval; 3677 if (np->features & FE_C10) { 3678 cp->phys.select.sel_scntl4 = tp->head.uval; 3679 } 3680 } 3681 } 3682 3683 /* 3684 * log message for real hard errors 3685 * 3686 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3687 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3688 * 3689 * exception register: 3690 * ds: dstat 3691 * si: sist 3692 * 3693 * SCSI bus lines: 3694 * so: control lines as driven by chip. 3695 * si: control lines as seen by chip. 3696 * sd: scsi data lines as seen by chip. 3697 * 3698 * wide/fastmode: 3699 * sxfer: (see the manual) 3700 * scntl3: (see the manual) 3701 * 3702 * current script command: 3703 * dsp: script address (relative to start of script). 3704 * dbc: first word of script command. 3705 * 3706 * First 24 register of the chip: 3707 * r0..rf 3708 */ 3709 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3710 { 3711 u32 dsp; 3712 int script_ofs; 3713 int script_size; 3714 char *script_name; 3715 u_char *script_base; 3716 int i; 3717 3718 dsp = INL (nc_dsp); 3719 3720 if (dsp > np->scripta_ba && 3721 dsp <= np->scripta_ba + np->scripta_sz) { 3722 script_ofs = dsp - np->scripta_ba; 3723 script_size = np->scripta_sz; 3724 script_base = (u_char *) np->scripta0; 3725 script_name = "scripta"; 3726 } 3727 else if (np->scriptb_ba < dsp && 3728 dsp <= np->scriptb_ba + np->scriptb_sz) { 3729 script_ofs = dsp - np->scriptb_ba; 3730 script_size = np->scriptb_sz; 3731 script_base = (u_char *) np->scriptb0; 3732 script_name = "scriptb"; 3733 } else { 3734 script_ofs = dsp; 3735 script_size = 0; 3736 script_base = 0; 3737 script_name = "mem"; 3738 } 3739 3740 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3741 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3742 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3743 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3744 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3745 (unsigned)INL (nc_dbc)); 3746 3747 if (((script_ofs & 3) == 0) && 3748 (unsigned)script_ofs < script_size) { 3749 printf ("%s: script cmd = %08x\n", sym_name(np), 3750 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3751 } 3752 3753 printf ("%s: regdump:", sym_name(np)); 3754 for (i=0; i<24;i++) 3755 printf (" %02x", (unsigned)INB_OFF(i)); 3756 printf (".\n"); 3757 3758 /* 3759 * PCI BUS error, read the PCI ststus register. 3760 */ 3761 if (dstat & (MDPE|BF)) { 3762 u_short pci_sts; 3763 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3764 if (pci_sts & 0xf900) { 3765 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3766 printf("%s: PCI STATUS = 0x%04x\n", 3767 sym_name(np), pci_sts & 0xf900); 3768 } 3769 } 3770 } 3771 3772 /* 3773 * chip interrupt handler 3774 * 3775 * In normal situations, interrupt conditions occur one at 3776 * a time. But when something bad happens on the SCSI BUS, 3777 * the chip may raise several interrupt flags before 3778 * stopping and interrupting the CPU. The additionnal 3779 * interrupt flags are stacked in some extra registers 3780 * after the SIP and/or DIP flag has been raised in the 3781 * ISTAT. After the CPU has read the interrupt condition 3782 * flag from SIST or DSTAT, the chip unstacks the other 3783 * interrupt flags and sets the corresponding bits in 3784 * SIST or DSTAT. Since the chip starts stacking once the 3785 * SIP or DIP flag is set, there is a small window of time 3786 * where the stacking does not occur. 3787 * 3788 * Typically, multiple interrupt conditions may happen in 3789 * the following situations: 3790 * 3791 * - SCSI parity error + Phase mismatch (PAR|MA) 3792 * When a parity error is detected in input phase 3793 * and the device switches to msg-in phase inside a 3794 * block MOV. 3795 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3796 * When a stupid device does not want to handle the 3797 * recovery of an SCSI parity error. 3798 * - Some combinations of STO, PAR, UDC, ... 3799 * When using non compliant SCSI stuff, when user is 3800 * doing non compliant hot tampering on the BUS, when 3801 * something really bad happens to a device, etc ... 3802 * 3803 * The heuristic suggested by SYMBIOS to handle 3804 * multiple interrupts is to try unstacking all 3805 * interrupts conditions and to handle them on some 3806 * priority based on error severity. 3807 * This will work when the unstacking has been 3808 * successful, but we cannot be 100 % sure of that, 3809 * since the CPU may have been faster to unstack than 3810 * the chip is able to stack. Hmmm ... But it seems that 3811 * such a situation is very unlikely to happen. 3812 * 3813 * If this happen, for example STO caught by the CPU 3814 * then UDC happenning before the CPU have restarted 3815 * the SCRIPTS, the driver may wrongly complete the 3816 * same command on UDC, since the SCRIPTS didn't restart 3817 * and the DSA still points to the same command. 3818 * We avoid this situation by setting the DSA to an 3819 * invalid value when the CCB is completed and before 3820 * restarting the SCRIPTS. 3821 * 3822 * Another issue is that we need some section of our 3823 * recovery procedures to be somehow uninterruptible but 3824 * the SCRIPTS processor does not provides such a 3825 * feature. For this reason, we handle recovery preferently 3826 * from the C code and check against some SCRIPTS critical 3827 * sections from the C code. 3828 * 3829 * Hopefully, the interrupt handling of the driver is now 3830 * able to resist to weird BUS error conditions, but donnot 3831 * ask me for any guarantee that it will never fail. :-) 3832 * Use at your own decision and risk. 3833 */ 3834 static void sym_intr1 (hcb_p np) 3835 { 3836 u_char istat, istatc; 3837 u_char dstat; 3838 u_short sist; 3839 3840 SYM_LOCK_ASSERT(MA_OWNED); 3841 3842 /* 3843 * interrupt on the fly ? 3844 * 3845 * A `dummy read' is needed to ensure that the 3846 * clear of the INTF flag reaches the device 3847 * before the scanning of the DONE queue. 3848 */ 3849 istat = INB (nc_istat); 3850 if (istat & INTF) { 3851 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3852 istat = INB (nc_istat); /* DUMMY READ */ 3853 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3854 (void)sym_wakeup_done (np); 3855 }; 3856 3857 if (!(istat & (SIP|DIP))) 3858 return; 3859 3860 #if 0 /* We should never get this one */ 3861 if (istat & CABRT) 3862 OUTB (nc_istat, CABRT); 3863 #endif 3864 3865 /* 3866 * PAR and MA interrupts may occur at the same time, 3867 * and we need to know of both in order to handle 3868 * this situation properly. We try to unstack SCSI 3869 * interrupts for that reason. BTW, I dislike a LOT 3870 * such a loop inside the interrupt routine. 3871 * Even if DMA interrupt stacking is very unlikely to 3872 * happen, we also try unstacking these ones, since 3873 * this has no performance impact. 3874 */ 3875 sist = 0; 3876 dstat = 0; 3877 istatc = istat; 3878 do { 3879 if (istatc & SIP) 3880 sist |= INW (nc_sist); 3881 if (istatc & DIP) 3882 dstat |= INB (nc_dstat); 3883 istatc = INB (nc_istat); 3884 istat |= istatc; 3885 } while (istatc & (SIP|DIP)); 3886 3887 if (DEBUG_FLAGS & DEBUG_TINY) 3888 printf ("<%d|%x:%x|%x:%x>", 3889 (int)INB(nc_scr0), 3890 dstat,sist, 3891 (unsigned)INL(nc_dsp), 3892 (unsigned)INL(nc_dbc)); 3893 /* 3894 * On paper, a memory barrier may be needed here. 3895 * And since we are paranoid ... :) 3896 */ 3897 MEMORY_BARRIER(); 3898 3899 /* 3900 * First, interrupts we want to service cleanly. 3901 * 3902 * Phase mismatch (MA) is the most frequent interrupt 3903 * for chip earlier than the 896 and so we have to service 3904 * it as quickly as possible. 3905 * A SCSI parity error (PAR) may be combined with a phase 3906 * mismatch condition (MA). 3907 * Programmed interrupts (SIR) are used to call the C code 3908 * from SCRIPTS. 3909 * The single step interrupt (SSI) is not used in this 3910 * driver. 3911 */ 3912 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3913 !(dstat & (MDPE|BF|ABRT|IID))) { 3914 if (sist & PAR) sym_int_par (np, sist); 3915 else if (sist & MA) sym_int_ma (np); 3916 else if (dstat & SIR) sym_int_sir (np); 3917 else if (dstat & SSI) OUTONB_STD (); 3918 else goto unknown_int; 3919 return; 3920 }; 3921 3922 /* 3923 * Now, interrupts that donnot happen in normal 3924 * situations and that we may need to recover from. 3925 * 3926 * On SCSI RESET (RST), we reset everything. 3927 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3928 * active CCBs with RESET status, prepare all devices 3929 * for negotiating again and restart the SCRIPTS. 3930 * On STO and UDC, we complete the CCB with the corres- 3931 * ponding status and restart the SCRIPTS. 3932 */ 3933 if (sist & RST) { 3934 xpt_print_path(np->path); 3935 printf("SCSI BUS reset detected.\n"); 3936 sym_init (np, 1); 3937 return; 3938 }; 3939 3940 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3941 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3942 3943 if (!(sist & (GEN|HTH|SGE)) && 3944 !(dstat & (MDPE|BF|ABRT|IID))) { 3945 if (sist & SBMC) sym_int_sbmc (np); 3946 else if (sist & STO) sym_int_sto (np); 3947 else if (sist & UDC) sym_int_udc (np); 3948 else goto unknown_int; 3949 return; 3950 }; 3951 3952 /* 3953 * Now, interrupts we are not able to recover cleanly. 3954 * 3955 * Log message for hard errors. 3956 * Reset everything. 3957 */ 3958 3959 sym_log_hard_error(np, sist, dstat); 3960 3961 if ((sist & (GEN|HTH|SGE)) || 3962 (dstat & (MDPE|BF|ABRT|IID))) { 3963 sym_start_reset(np); 3964 return; 3965 }; 3966 3967 unknown_int: 3968 /* 3969 * We just miss the cause of the interrupt. :( 3970 * Print a message. The timeout will do the real work. 3971 */ 3972 printf( "%s: unknown interrupt(s) ignored, " 3973 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3974 sym_name(np), istat, dstat, sist); 3975 } 3976 3977 static void sym_intr(void *arg) 3978 { 3979 hcb_p np = arg; 3980 3981 SYM_LOCK(); 3982 3983 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3984 sym_intr1((hcb_p) arg); 3985 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3986 3987 SYM_UNLOCK(); 3988 } 3989 3990 static void sym_poll(struct cam_sim *sim) 3991 { 3992 sym_intr1(cam_sim_softc(sim)); 3993 } 3994 3995 /* 3996 * generic recovery from scsi interrupt 3997 * 3998 * The doc says that when the chip gets an SCSI interrupt, 3999 * it tries to stop in an orderly fashion, by completing 4000 * an instruction fetch that had started or by flushing 4001 * the DMA fifo for a write to memory that was executing. 4002 * Such a fashion is not enough to know if the instruction 4003 * that was just before the current DSP value has been 4004 * executed or not. 4005 * 4006 * There are some small SCRIPTS sections that deal with 4007 * the start queue and the done queue that may break any 4008 * assomption from the C code if we are interrupted 4009 * inside, so we reset if this happens. Btw, since these 4010 * SCRIPTS sections are executed while the SCRIPTS hasn't 4011 * started SCSI operations, it is very unlikely to happen. 4012 * 4013 * All the driver data structures are supposed to be 4014 * allocated from the same 4 GB memory window, so there 4015 * is a 1 to 1 relationship between DSA and driver data 4016 * structures. Since we are careful :) to invalidate the 4017 * DSA when we complete a command or when the SCRIPTS 4018 * pushes a DSA into a queue, we can trust it when it 4019 * points to a CCB. 4020 */ 4021 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4022 { 4023 u32 dsp = INL (nc_dsp); 4024 u32 dsa = INL (nc_dsa); 4025 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4026 4027 /* 4028 * If we haven't been interrupted inside the SCRIPTS 4029 * critical pathes, we can safely restart the SCRIPTS 4030 * and trust the DSA value if it matches a CCB. 4031 */ 4032 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4033 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4034 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4035 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4036 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4037 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4038 (!(dsp > SCRIPTA_BA (np, done) && 4039 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4040 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4041 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4042 /* 4043 * If we have a CCB, let the SCRIPTS call us back for 4044 * the handling of the error with SCRATCHA filled with 4045 * STARTPOS. This way, we will be able to freeze the 4046 * device queue and requeue awaiting IOs. 4047 */ 4048 if (cp) { 4049 cp->host_status = hsts; 4050 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4051 } 4052 /* 4053 * Otherwise just restart the SCRIPTS. 4054 */ 4055 else { 4056 OUTL (nc_dsa, 0xffffff); 4057 OUTL_DSP (SCRIPTA_BA (np, start)); 4058 } 4059 } 4060 else 4061 goto reset_all; 4062 4063 return; 4064 4065 reset_all: 4066 sym_start_reset(np); 4067 } 4068 4069 /* 4070 * chip exception handler for selection timeout 4071 */ 4072 static void sym_int_sto (hcb_p np) 4073 { 4074 u32 dsp = INL (nc_dsp); 4075 4076 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4077 4078 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4079 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4080 else 4081 sym_start_reset(np); 4082 } 4083 4084 /* 4085 * chip exception handler for unexpected disconnect 4086 */ 4087 static void sym_int_udc (hcb_p np) 4088 { 4089 printf ("%s: unexpected disconnect\n", sym_name(np)); 4090 sym_recover_scsi_int(np, HS_UNEXPECTED); 4091 } 4092 4093 /* 4094 * chip exception handler for SCSI bus mode change 4095 * 4096 * spi2-r12 11.2.3 says a transceiver mode change must 4097 * generate a reset event and a device that detects a reset 4098 * event shall initiate a hard reset. It says also that a 4099 * device that detects a mode change shall set data transfer 4100 * mode to eight bit asynchronous, etc... 4101 * So, just reinitializing all except chip should be enough. 4102 */ 4103 static void sym_int_sbmc (hcb_p np) 4104 { 4105 u_char scsi_mode = INB (nc_stest4) & SMODE; 4106 4107 /* 4108 * Notify user. 4109 */ 4110 xpt_print_path(np->path); 4111 printf("SCSI BUS mode change from %s to %s.\n", 4112 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4113 4114 /* 4115 * Should suspend command processing for a few seconds and 4116 * reinitialize all except the chip. 4117 */ 4118 sym_init (np, 2); 4119 } 4120 4121 /* 4122 * chip exception handler for SCSI parity error. 4123 * 4124 * When the chip detects a SCSI parity error and is 4125 * currently executing a (CH)MOV instruction, it does 4126 * not interrupt immediately, but tries to finish the 4127 * transfer of the current scatter entry before 4128 * interrupting. The following situations may occur: 4129 * 4130 * - The complete scatter entry has been transferred 4131 * without the device having changed phase. 4132 * The chip will then interrupt with the DSP pointing 4133 * to the instruction that follows the MOV. 4134 * 4135 * - A phase mismatch occurs before the MOV finished 4136 * and phase errors are to be handled by the C code. 4137 * The chip will then interrupt with both PAR and MA 4138 * conditions set. 4139 * 4140 * - A phase mismatch occurs before the MOV finished and 4141 * phase errors are to be handled by SCRIPTS. 4142 * The chip will load the DSP with the phase mismatch 4143 * JUMP address and interrupt the host processor. 4144 */ 4145 static void sym_int_par (hcb_p np, u_short sist) 4146 { 4147 u_char hsts = INB (HS_PRT); 4148 u32 dsp = INL (nc_dsp); 4149 u32 dbc = INL (nc_dbc); 4150 u32 dsa = INL (nc_dsa); 4151 u_char sbcl = INB (nc_sbcl); 4152 u_char cmd = dbc >> 24; 4153 int phase = cmd & 7; 4154 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4155 4156 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4157 sym_name(np), hsts, dbc, sbcl); 4158 4159 /* 4160 * Check that the chip is connected to the SCSI BUS. 4161 */ 4162 if (!(INB (nc_scntl1) & ISCON)) { 4163 sym_recover_scsi_int(np, HS_UNEXPECTED); 4164 return; 4165 } 4166 4167 /* 4168 * If the nexus is not clearly identified, reset the bus. 4169 * We will try to do better later. 4170 */ 4171 if (!cp) 4172 goto reset_all; 4173 4174 /* 4175 * Check instruction was a MOV, direction was INPUT and 4176 * ATN is asserted. 4177 */ 4178 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4179 goto reset_all; 4180 4181 /* 4182 * Keep track of the parity error. 4183 */ 4184 OUTONB (HF_PRT, HF_EXT_ERR); 4185 cp->xerr_status |= XE_PARITY_ERR; 4186 4187 /* 4188 * Prepare the message to send to the device. 4189 */ 4190 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4191 4192 /* 4193 * If the old phase was DATA IN phase, we have to deal with 4194 * the 3 situations described above. 4195 * For other input phases (MSG IN and STATUS), the device 4196 * must resend the whole thing that failed parity checking 4197 * or signal error. So, jumping to dispatcher should be OK. 4198 */ 4199 if (phase == 1 || phase == 5) { 4200 /* Phase mismatch handled by SCRIPTS */ 4201 if (dsp == SCRIPTB_BA (np, pm_handle)) 4202 OUTL_DSP (dsp); 4203 /* Phase mismatch handled by the C code */ 4204 else if (sist & MA) 4205 sym_int_ma (np); 4206 /* No phase mismatch occurred */ 4207 else { 4208 OUTL (nc_temp, dsp); 4209 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4210 } 4211 } 4212 else 4213 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4214 return; 4215 4216 reset_all: 4217 sym_start_reset(np); 4218 } 4219 4220 /* 4221 * chip exception handler for phase errors. 4222 * 4223 * We have to construct a new transfer descriptor, 4224 * to transfer the rest of the current block. 4225 */ 4226 static void sym_int_ma (hcb_p np) 4227 { 4228 u32 dbc; 4229 u32 rest; 4230 u32 dsp; 4231 u32 dsa; 4232 u32 nxtdsp; 4233 u32 *vdsp; 4234 u32 oadr, olen; 4235 u32 *tblp; 4236 u32 newcmd; 4237 u_int delta; 4238 u_char cmd; 4239 u_char hflags, hflags0; 4240 struct sym_pmc *pm; 4241 ccb_p cp; 4242 4243 dsp = INL (nc_dsp); 4244 dbc = INL (nc_dbc); 4245 dsa = INL (nc_dsa); 4246 4247 cmd = dbc >> 24; 4248 rest = dbc & 0xffffff; 4249 delta = 0; 4250 4251 /* 4252 * locate matching cp if any. 4253 */ 4254 cp = sym_ccb_from_dsa(np, dsa); 4255 4256 /* 4257 * Donnot take into account dma fifo and various buffers in 4258 * INPUT phase since the chip flushes everything before 4259 * raising the MA interrupt for interrupted INPUT phases. 4260 * For DATA IN phase, we will check for the SWIDE later. 4261 */ 4262 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4263 u_char ss0, ss2; 4264 4265 if (np->features & FE_DFBC) 4266 delta = INW (nc_dfbc); 4267 else { 4268 u32 dfifo; 4269 4270 /* 4271 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4272 */ 4273 dfifo = INL(nc_dfifo); 4274 4275 /* 4276 * Calculate remaining bytes in DMA fifo. 4277 * (CTEST5 = dfifo >> 16) 4278 */ 4279 if (dfifo & (DFS << 16)) 4280 delta = ((((dfifo >> 8) & 0x300) | 4281 (dfifo & 0xff)) - rest) & 0x3ff; 4282 else 4283 delta = ((dfifo & 0xff) - rest) & 0x7f; 4284 } 4285 4286 /* 4287 * The data in the dma fifo has not been transferred to 4288 * the target -> add the amount to the rest 4289 * and clear the data. 4290 * Check the sstat2 register in case of wide transfer. 4291 */ 4292 rest += delta; 4293 ss0 = INB (nc_sstat0); 4294 if (ss0 & OLF) rest++; 4295 if (!(np->features & FE_C10)) 4296 if (ss0 & ORF) rest++; 4297 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4298 ss2 = INB (nc_sstat2); 4299 if (ss2 & OLF1) rest++; 4300 if (!(np->features & FE_C10)) 4301 if (ss2 & ORF1) rest++; 4302 }; 4303 4304 /* 4305 * Clear fifos. 4306 */ 4307 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4308 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4309 } 4310 4311 /* 4312 * log the information 4313 */ 4314 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4315 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4316 (unsigned) rest, (unsigned) delta); 4317 4318 /* 4319 * try to find the interrupted script command, 4320 * and the address at which to continue. 4321 */ 4322 vdsp = 0; 4323 nxtdsp = 0; 4324 if (dsp > np->scripta_ba && 4325 dsp <= np->scripta_ba + np->scripta_sz) { 4326 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4327 nxtdsp = dsp; 4328 } 4329 else if (dsp > np->scriptb_ba && 4330 dsp <= np->scriptb_ba + np->scriptb_sz) { 4331 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4332 nxtdsp = dsp; 4333 } 4334 4335 /* 4336 * log the information 4337 */ 4338 if (DEBUG_FLAGS & DEBUG_PHASE) { 4339 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4340 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4341 }; 4342 4343 if (!vdsp) { 4344 printf ("%s: interrupted SCRIPT address not found.\n", 4345 sym_name (np)); 4346 goto reset_all; 4347 } 4348 4349 if (!cp) { 4350 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4351 sym_name (np)); 4352 goto reset_all; 4353 } 4354 4355 /* 4356 * get old startaddress and old length. 4357 */ 4358 oadr = scr_to_cpu(vdsp[1]); 4359 4360 if (cmd & 0x10) { /* Table indirect */ 4361 tblp = (u32 *) ((char*) &cp->phys + oadr); 4362 olen = scr_to_cpu(tblp[0]); 4363 oadr = scr_to_cpu(tblp[1]); 4364 } else { 4365 tblp = (u32 *) 0; 4366 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4367 }; 4368 4369 if (DEBUG_FLAGS & DEBUG_PHASE) { 4370 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4371 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4372 tblp, 4373 (unsigned) olen, 4374 (unsigned) oadr); 4375 }; 4376 4377 /* 4378 * check cmd against assumed interrupted script command. 4379 * If dt data phase, the MOVE instruction hasn't bit 4 of 4380 * the phase. 4381 */ 4382 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4383 PRINT_ADDR(cp); 4384 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4385 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4386 4387 goto reset_all; 4388 }; 4389 4390 /* 4391 * if old phase not dataphase, leave here. 4392 */ 4393 if (cmd & 2) { 4394 PRINT_ADDR(cp); 4395 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4396 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4397 (unsigned)oadr, (unsigned)rest); 4398 goto unexpected_phase; 4399 }; 4400 4401 /* 4402 * Choose the correct PM save area. 4403 * 4404 * Look at the PM_SAVE SCRIPT if you want to understand 4405 * this stuff. The equivalent code is implemented in 4406 * SCRIPTS for the 895A, 896 and 1010 that are able to 4407 * handle PM from the SCRIPTS processor. 4408 */ 4409 hflags0 = INB (HF_PRT); 4410 hflags = hflags0; 4411 4412 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4413 if (hflags & HF_IN_PM0) 4414 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4415 else if (hflags & HF_IN_PM1) 4416 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4417 4418 if (hflags & HF_DP_SAVED) 4419 hflags ^= HF_ACT_PM; 4420 } 4421 4422 if (!(hflags & HF_ACT_PM)) { 4423 pm = &cp->phys.pm0; 4424 newcmd = SCRIPTA_BA (np, pm0_data); 4425 } 4426 else { 4427 pm = &cp->phys.pm1; 4428 newcmd = SCRIPTA_BA (np, pm1_data); 4429 } 4430 4431 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4432 if (hflags != hflags0) 4433 OUTB (HF_PRT, hflags); 4434 4435 /* 4436 * fillin the phase mismatch context 4437 */ 4438 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4439 pm->sg.size = cpu_to_scr(rest); 4440 pm->ret = cpu_to_scr(nxtdsp); 4441 4442 /* 4443 * If we have a SWIDE, 4444 * - prepare the address to write the SWIDE from SCRIPTS, 4445 * - compute the SCRIPTS address to restart from, 4446 * - move current data pointer context by one byte. 4447 */ 4448 nxtdsp = SCRIPTA_BA (np, dispatch); 4449 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4450 (INB (nc_scntl2) & WSR)) { 4451 u32 tmp; 4452 4453 /* 4454 * Set up the table indirect for the MOVE 4455 * of the residual byte and adjust the data 4456 * pointer context. 4457 */ 4458 tmp = scr_to_cpu(pm->sg.addr); 4459 cp->phys.wresid.addr = cpu_to_scr(tmp); 4460 pm->sg.addr = cpu_to_scr(tmp + 1); 4461 tmp = scr_to_cpu(pm->sg.size); 4462 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4463 pm->sg.size = cpu_to_scr(tmp - 1); 4464 4465 /* 4466 * If only the residual byte is to be moved, 4467 * no PM context is needed. 4468 */ 4469 if ((tmp&0xffffff) == 1) 4470 newcmd = pm->ret; 4471 4472 /* 4473 * Prepare the address of SCRIPTS that will 4474 * move the residual byte to memory. 4475 */ 4476 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4477 } 4478 4479 if (DEBUG_FLAGS & DEBUG_PHASE) { 4480 PRINT_ADDR(cp); 4481 printf ("PM %x %x %x / %x %x %x.\n", 4482 hflags0, hflags, newcmd, 4483 (unsigned)scr_to_cpu(pm->sg.addr), 4484 (unsigned)scr_to_cpu(pm->sg.size), 4485 (unsigned)scr_to_cpu(pm->ret)); 4486 } 4487 4488 /* 4489 * Restart the SCRIPTS processor. 4490 */ 4491 OUTL (nc_temp, newcmd); 4492 OUTL_DSP (nxtdsp); 4493 return; 4494 4495 /* 4496 * Unexpected phase changes that occurs when the current phase 4497 * is not a DATA IN or DATA OUT phase are due to error conditions. 4498 * Such event may only happen when the SCRIPTS is using a 4499 * multibyte SCSI MOVE. 4500 * 4501 * Phase change Some possible cause 4502 * 4503 * COMMAND --> MSG IN SCSI parity error detected by target. 4504 * COMMAND --> STATUS Bad command or refused by target. 4505 * MSG OUT --> MSG IN Message rejected by target. 4506 * MSG OUT --> COMMAND Bogus target that discards extended 4507 * negotiation messages. 4508 * 4509 * The code below does not care of the new phase and so 4510 * trusts the target. Why to annoy it ? 4511 * If the interrupted phase is COMMAND phase, we restart at 4512 * dispatcher. 4513 * If a target does not get all the messages after selection, 4514 * the code assumes blindly that the target discards extended 4515 * messages and clears the negotiation status. 4516 * If the target does not want all our response to negotiation, 4517 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4518 * bloat for such a should_not_happen situation). 4519 * In all other situation, we reset the BUS. 4520 * Are these assumptions reasonnable ? (Wait and see ...) 4521 */ 4522 unexpected_phase: 4523 dsp -= 8; 4524 nxtdsp = 0; 4525 4526 switch (cmd & 7) { 4527 case 2: /* COMMAND phase */ 4528 nxtdsp = SCRIPTA_BA (np, dispatch); 4529 break; 4530 #if 0 4531 case 3: /* STATUS phase */ 4532 nxtdsp = SCRIPTA_BA (np, dispatch); 4533 break; 4534 #endif 4535 case 6: /* MSG OUT phase */ 4536 /* 4537 * If the device may want to use untagged when we want 4538 * tagged, we prepare an IDENTIFY without disc. granted, 4539 * since we will not be able to handle reselect. 4540 * Otherwise, we just don't care. 4541 */ 4542 if (dsp == SCRIPTA_BA (np, send_ident)) { 4543 if (cp->tag != NO_TAG && olen - rest <= 3) { 4544 cp->host_status = HS_BUSY; 4545 np->msgout[0] = M_IDENTIFY | cp->lun; 4546 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4547 } 4548 else 4549 nxtdsp = SCRIPTB_BA (np, ident_break); 4550 } 4551 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4552 dsp == SCRIPTB_BA (np, send_sdtr) || 4553 dsp == SCRIPTB_BA (np, send_ppr)) { 4554 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4555 } 4556 break; 4557 #if 0 4558 case 7: /* MSG IN phase */ 4559 nxtdsp = SCRIPTA_BA (np, clrack); 4560 break; 4561 #endif 4562 } 4563 4564 if (nxtdsp) { 4565 OUTL_DSP (nxtdsp); 4566 return; 4567 } 4568 4569 reset_all: 4570 sym_start_reset(np); 4571 } 4572 4573 /* 4574 * Dequeue from the START queue all CCBs that match 4575 * a given target/lun/task condition (-1 means all), 4576 * and move them from the BUSY queue to the COMP queue 4577 * with CAM_REQUEUE_REQ status condition. 4578 * This function is used during error handling/recovery. 4579 * It is called with SCRIPTS not running. 4580 */ 4581 static int 4582 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4583 { 4584 int j; 4585 ccb_p cp; 4586 4587 /* 4588 * Make sure the starting index is within range. 4589 */ 4590 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4591 4592 /* 4593 * Walk until end of START queue and dequeue every job 4594 * that matches the target/lun/task condition. 4595 */ 4596 j = i; 4597 while (i != np->squeueput) { 4598 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4599 assert(cp); 4600 #ifdef SYM_CONF_IARB_SUPPORT 4601 /* Forget hints for IARB, they may be no longer relevant */ 4602 cp->host_flags &= ~HF_HINT_IARB; 4603 #endif 4604 if ((target == -1 || cp->target == target) && 4605 (lun == -1 || cp->lun == lun) && 4606 (task == -1 || cp->tag == task)) { 4607 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4608 sym_remque(&cp->link_ccbq); 4609 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4610 } 4611 else { 4612 if (i != j) 4613 np->squeue[j] = np->squeue[i]; 4614 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4615 } 4616 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4617 } 4618 if (i != j) /* Copy back the idle task if needed */ 4619 np->squeue[j] = np->squeue[i]; 4620 np->squeueput = j; /* Update our current start queue pointer */ 4621 4622 return (i - j) / 2; 4623 } 4624 4625 /* 4626 * Complete all CCBs queued to the COMP queue. 4627 * 4628 * These CCBs are assumed: 4629 * - Not to be referenced either by devices or 4630 * SCRIPTS-related queues and datas. 4631 * - To have to be completed with an error condition 4632 * or requeued. 4633 * 4634 * The device queue freeze count is incremented 4635 * for each CCB that does not prevent this. 4636 * This function is called when all CCBs involved 4637 * in error handling/recovery have been reaped. 4638 */ 4639 static void 4640 sym_flush_comp_queue(hcb_p np, int cam_status) 4641 { 4642 SYM_QUEHEAD *qp; 4643 ccb_p cp; 4644 4645 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4646 union ccb *ccb; 4647 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4648 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4649 /* Leave quiet CCBs waiting for resources */ 4650 if (cp->host_status == HS_WAIT) 4651 continue; 4652 ccb = cp->cam_ccb; 4653 if (cam_status) 4654 sym_set_cam_status(ccb, cam_status); 4655 sym_freeze_cam_ccb(ccb); 4656 sym_xpt_done(np, ccb, cp); 4657 sym_free_ccb(np, cp); 4658 } 4659 } 4660 4661 /* 4662 * chip handler for bad SCSI status condition 4663 * 4664 * In case of bad SCSI status, we unqueue all the tasks 4665 * currently queued to the controller but not yet started 4666 * and then restart the SCRIPTS processor immediately. 4667 * 4668 * QUEUE FULL and BUSY conditions are handled the same way. 4669 * Basically all the not yet started tasks are requeued in 4670 * device queue and the queue is frozen until a completion. 4671 * 4672 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4673 * the CCB of the failed command to prepare a REQUEST SENSE 4674 * SCSI command and queue it to the controller queue. 4675 * 4676 * SCRATCHA is assumed to have been loaded with STARTPOS 4677 * before the SCRIPTS called the C code. 4678 */ 4679 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp) 4680 { 4681 tcb_p tp = &np->target[cp->target]; 4682 u32 startp; 4683 u_char s_status = cp->ssss_status; 4684 u_char h_flags = cp->host_flags; 4685 int msglen; 4686 int nego; 4687 int i; 4688 4689 SYM_LOCK_ASSERT(MA_OWNED); 4690 4691 /* 4692 * Compute the index of the next job to start from SCRIPTS. 4693 */ 4694 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4695 4696 /* 4697 * The last CCB queued used for IARB hint may be 4698 * no longer relevant. Forget it. 4699 */ 4700 #ifdef SYM_CONF_IARB_SUPPORT 4701 if (np->last_cp) 4702 np->last_cp = NULL; 4703 #endif 4704 4705 /* 4706 * Now deal with the SCSI status. 4707 */ 4708 switch(s_status) { 4709 case S_BUSY: 4710 case S_QUEUE_FULL: 4711 if (sym_verbose >= 2) { 4712 PRINT_ADDR(cp); 4713 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4714 } 4715 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4716 sym_complete_error (np, cp); 4717 break; 4718 case S_TERMINATED: 4719 case S_CHECK_COND: 4720 /* 4721 * If we get an SCSI error when requesting sense, give up. 4722 */ 4723 if (h_flags & HF_SENSE) { 4724 sym_complete_error (np, cp); 4725 break; 4726 } 4727 4728 /* 4729 * Dequeue all queued CCBs for that device not yet started, 4730 * and restart the SCRIPTS processor immediately. 4731 */ 4732 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4733 OUTL_DSP (SCRIPTA_BA (np, start)); 4734 4735 /* 4736 * Save some info of the actual IO. 4737 * Compute the data residual. 4738 */ 4739 cp->sv_scsi_status = cp->ssss_status; 4740 cp->sv_xerr_status = cp->xerr_status; 4741 cp->sv_resid = sym_compute_residual(np, cp); 4742 4743 /* 4744 * Prepare all needed data structures for 4745 * requesting sense data. 4746 */ 4747 4748 /* 4749 * identify message 4750 */ 4751 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4752 msglen = 1; 4753 4754 /* 4755 * If we are currently using anything different from 4756 * async. 8 bit data transfers with that target, 4757 * start a negotiation, since the device may want 4758 * to report us a UNIT ATTENTION condition due to 4759 * a cause we currently ignore, and we donnot want 4760 * to be stuck with WIDE and/or SYNC data transfer. 4761 * 4762 * cp->nego_status is filled by sym_prepare_nego(). 4763 */ 4764 cp->nego_status = 0; 4765 nego = 0; 4766 if (tp->tinfo.current.options & PPR_OPT_MASK) 4767 nego = NS_PPR; 4768 else if (tp->tinfo.current.width != BUS_8_BIT) 4769 nego = NS_WIDE; 4770 else if (tp->tinfo.current.offset != 0) 4771 nego = NS_SYNC; 4772 if (nego) 4773 msglen += 4774 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4775 /* 4776 * Message table indirect structure. 4777 */ 4778 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4779 cp->phys.smsg.size = cpu_to_scr(msglen); 4780 4781 /* 4782 * sense command 4783 */ 4784 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4785 cp->phys.cmd.size = cpu_to_scr(6); 4786 4787 /* 4788 * patch requested size into sense command 4789 */ 4790 cp->sensecmd[0] = 0x03; 4791 cp->sensecmd[1] = cp->lun << 5; 4792 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4793 cp->sensecmd[1] = 0; 4794 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4795 cp->data_len = SYM_SNS_BBUF_LEN; 4796 4797 /* 4798 * sense data 4799 */ 4800 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4801 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4802 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4803 4804 /* 4805 * requeue the command. 4806 */ 4807 startp = SCRIPTB_BA (np, sdata_in); 4808 4809 cp->phys.head.savep = cpu_to_scr(startp); 4810 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4811 cp->phys.head.lastp = cpu_to_scr(startp); 4812 cp->startp = cpu_to_scr(startp); 4813 4814 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4815 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4816 cp->ssss_status = S_ILLEGAL; 4817 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4818 cp->xerr_status = 0; 4819 cp->extra_bytes = 0; 4820 4821 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4822 4823 /* 4824 * Requeue the command. 4825 */ 4826 sym_put_start_queue(np, cp); 4827 4828 /* 4829 * Give back to upper layer everything we have dequeued. 4830 */ 4831 sym_flush_comp_queue(np, 0); 4832 break; 4833 } 4834 } 4835 4836 /* 4837 * After a device has accepted some management message 4838 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4839 * a device signals a UNIT ATTENTION condition, some 4840 * tasks are thrown away by the device. We are required 4841 * to reflect that on our tasks list since the device 4842 * will never complete these tasks. 4843 * 4844 * This function move from the BUSY queue to the COMP 4845 * queue all disconnected CCBs for a given target that 4846 * match the following criteria: 4847 * - lun=-1 means any logical UNIT otherwise a given one. 4848 * - task=-1 means any task, otherwise a given one. 4849 */ 4850 static int 4851 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4852 { 4853 SYM_QUEHEAD qtmp, *qp; 4854 int i = 0; 4855 ccb_p cp; 4856 4857 /* 4858 * Move the entire BUSY queue to our temporary queue. 4859 */ 4860 sym_que_init(&qtmp); 4861 sym_que_splice(&np->busy_ccbq, &qtmp); 4862 sym_que_init(&np->busy_ccbq); 4863 4864 /* 4865 * Put all CCBs that matches our criteria into 4866 * the COMP queue and put back other ones into 4867 * the BUSY queue. 4868 */ 4869 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4870 union ccb *ccb; 4871 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4872 ccb = cp->cam_ccb; 4873 if (cp->host_status != HS_DISCONNECT || 4874 cp->target != target || 4875 (lun != -1 && cp->lun != lun) || 4876 (task != -1 && 4877 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4878 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4879 continue; 4880 } 4881 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4882 4883 /* Preserve the software timeout condition */ 4884 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4885 sym_set_cam_status(ccb, cam_status); 4886 ++i; 4887 #if 0 4888 printf("XXXX TASK @%p CLEARED\n", cp); 4889 #endif 4890 } 4891 return i; 4892 } 4893 4894 /* 4895 * chip handler for TASKS recovery 4896 * 4897 * We cannot safely abort a command, while the SCRIPTS 4898 * processor is running, since we just would be in race 4899 * with it. 4900 * 4901 * As long as we have tasks to abort, we keep the SEM 4902 * bit set in the ISTAT. When this bit is set, the 4903 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4904 * each time it enters the scheduler. 4905 * 4906 * If we have to reset a target, clear tasks of a unit, 4907 * or to perform the abort of a disconnected job, we 4908 * restart the SCRIPTS for selecting the target. Once 4909 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4910 * If it loses arbitration, the SCRIPTS will interrupt again 4911 * the next time it will enter its scheduler, and so on ... 4912 * 4913 * On SIR_TARGET_SELECTED, we scan for the more 4914 * appropriate thing to do: 4915 * 4916 * - If nothing, we just sent a M_ABORT message to the 4917 * target to get rid of the useless SCSI bus ownership. 4918 * According to the specs, no tasks shall be affected. 4919 * - If the target is to be reset, we send it a M_RESET 4920 * message. 4921 * - If a logical UNIT is to be cleared , we send the 4922 * IDENTIFY(lun) + M_ABORT. 4923 * - If an untagged task is to be aborted, we send the 4924 * IDENTIFY(lun) + M_ABORT. 4925 * - If a tagged task is to be aborted, we send the 4926 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4927 * 4928 * Once our 'kiss of death' :) message has been accepted 4929 * by the target, the SCRIPTS interrupts again 4930 * (SIR_ABORT_SENT). On this interrupt, we complete 4931 * all the CCBs that should have been aborted by the 4932 * target according to our message. 4933 */ 4934 static void sym_sir_task_recovery(hcb_p np, int num) 4935 { 4936 SYM_QUEHEAD *qp; 4937 ccb_p cp; 4938 tcb_p tp; 4939 int target=-1, lun=-1, task; 4940 int i, k; 4941 4942 switch(num) { 4943 /* 4944 * The SCRIPTS processor stopped before starting 4945 * the next command in order to allow us to perform 4946 * some task recovery. 4947 */ 4948 case SIR_SCRIPT_STOPPED: 4949 /* 4950 * Do we have any target to reset or unit to clear ? 4951 */ 4952 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4953 tp = &np->target[i]; 4954 if (tp->to_reset || 4955 (tp->lun0p && tp->lun0p->to_clear)) { 4956 target = i; 4957 break; 4958 } 4959 if (!tp->lunmp) 4960 continue; 4961 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4962 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4963 target = i; 4964 break; 4965 } 4966 } 4967 if (target != -1) 4968 break; 4969 } 4970 4971 /* 4972 * If not, walk the busy queue for any 4973 * disconnected CCB to be aborted. 4974 */ 4975 if (target == -1) { 4976 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4977 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4978 if (cp->host_status != HS_DISCONNECT) 4979 continue; 4980 if (cp->to_abort) { 4981 target = cp->target; 4982 break; 4983 } 4984 } 4985 } 4986 4987 /* 4988 * If some target is to be selected, 4989 * prepare and start the selection. 4990 */ 4991 if (target != -1) { 4992 tp = &np->target[target]; 4993 np->abrt_sel.sel_id = target; 4994 np->abrt_sel.sel_scntl3 = tp->head.wval; 4995 np->abrt_sel.sel_sxfer = tp->head.sval; 4996 OUTL(nc_dsa, np->hcb_ba); 4997 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 4998 return; 4999 } 5000 5001 /* 5002 * Now look for a CCB to abort that haven't started yet. 5003 * Btw, the SCRIPTS processor is still stopped, so 5004 * we are not in race. 5005 */ 5006 i = 0; 5007 cp = NULL; 5008 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5009 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5010 if (cp->host_status != HS_BUSY && 5011 cp->host_status != HS_NEGOTIATE) 5012 continue; 5013 if (!cp->to_abort) 5014 continue; 5015 #ifdef SYM_CONF_IARB_SUPPORT 5016 /* 5017 * If we are using IMMEDIATE ARBITRATION, we donnot 5018 * want to cancel the last queued CCB, since the 5019 * SCRIPTS may have anticipated the selection. 5020 */ 5021 if (cp == np->last_cp) { 5022 cp->to_abort = 0; 5023 continue; 5024 } 5025 #endif 5026 i = 1; /* Means we have found some */ 5027 break; 5028 } 5029 if (!i) { 5030 /* 5031 * We are done, so we donnot need 5032 * to synchronize with the SCRIPTS anylonger. 5033 * Remove the SEM flag from the ISTAT. 5034 */ 5035 np->istat_sem = 0; 5036 OUTB (nc_istat, SIGP); 5037 break; 5038 } 5039 /* 5040 * Compute index of next position in the start 5041 * queue the SCRIPTS intends to start and dequeue 5042 * all CCBs for that device that haven't been started. 5043 */ 5044 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5045 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5046 5047 /* 5048 * Make sure at least our IO to abort has been dequeued. 5049 */ 5050 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5051 5052 /* 5053 * Keep track in cam status of the reason of the abort. 5054 */ 5055 if (cp->to_abort == 2) 5056 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5057 else 5058 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5059 5060 /* 5061 * Complete with error everything that we have dequeued. 5062 */ 5063 sym_flush_comp_queue(np, 0); 5064 break; 5065 /* 5066 * The SCRIPTS processor has selected a target 5067 * we may have some manual recovery to perform for. 5068 */ 5069 case SIR_TARGET_SELECTED: 5070 target = (INB (nc_sdid) & 0xf); 5071 tp = &np->target[target]; 5072 5073 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5074 5075 /* 5076 * If the target is to be reset, prepare a 5077 * M_RESET message and clear the to_reset flag 5078 * since we donnot expect this operation to fail. 5079 */ 5080 if (tp->to_reset) { 5081 np->abrt_msg[0] = M_RESET; 5082 np->abrt_tbl.size = 1; 5083 tp->to_reset = 0; 5084 break; 5085 } 5086 5087 /* 5088 * Otherwise, look for some logical unit to be cleared. 5089 */ 5090 if (tp->lun0p && tp->lun0p->to_clear) 5091 lun = 0; 5092 else if (tp->lunmp) { 5093 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5094 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5095 lun = k; 5096 break; 5097 } 5098 } 5099 } 5100 5101 /* 5102 * If a logical unit is to be cleared, prepare 5103 * an IDENTIFY(lun) + ABORT MESSAGE. 5104 */ 5105 if (lun != -1) { 5106 lcb_p lp = sym_lp(tp, lun); 5107 lp->to_clear = 0; /* We donnot expect to fail here */ 5108 np->abrt_msg[0] = M_IDENTIFY | lun; 5109 np->abrt_msg[1] = M_ABORT; 5110 np->abrt_tbl.size = 2; 5111 break; 5112 } 5113 5114 /* 5115 * Otherwise, look for some disconnected job to 5116 * abort for this target. 5117 */ 5118 i = 0; 5119 cp = NULL; 5120 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5121 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5122 if (cp->host_status != HS_DISCONNECT) 5123 continue; 5124 if (cp->target != target) 5125 continue; 5126 if (!cp->to_abort) 5127 continue; 5128 i = 1; /* Means we have some */ 5129 break; 5130 } 5131 5132 /* 5133 * If we have none, probably since the device has 5134 * completed the command before we won abitration, 5135 * send a M_ABORT message without IDENTIFY. 5136 * According to the specs, the device must just 5137 * disconnect the BUS and not abort any task. 5138 */ 5139 if (!i) { 5140 np->abrt_msg[0] = M_ABORT; 5141 np->abrt_tbl.size = 1; 5142 break; 5143 } 5144 5145 /* 5146 * We have some task to abort. 5147 * Set the IDENTIFY(lun) 5148 */ 5149 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5150 5151 /* 5152 * If we want to abort an untagged command, we 5153 * will send an IDENTIFY + M_ABORT. 5154 * Otherwise (tagged command), we will send 5155 * an IDENTIFY + task attributes + ABORT TAG. 5156 */ 5157 if (cp->tag == NO_TAG) { 5158 np->abrt_msg[1] = M_ABORT; 5159 np->abrt_tbl.size = 2; 5160 } 5161 else { 5162 np->abrt_msg[1] = cp->scsi_smsg[1]; 5163 np->abrt_msg[2] = cp->scsi_smsg[2]; 5164 np->abrt_msg[3] = M_ABORT_TAG; 5165 np->abrt_tbl.size = 4; 5166 } 5167 /* 5168 * Keep track of software timeout condition, since the 5169 * peripheral driver may not count retries on abort 5170 * conditions not due to timeout. 5171 */ 5172 if (cp->to_abort == 2) 5173 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5174 cp->to_abort = 0; /* We donnot expect to fail here */ 5175 break; 5176 5177 /* 5178 * The target has accepted our message and switched 5179 * to BUS FREE phase as we expected. 5180 */ 5181 case SIR_ABORT_SENT: 5182 target = (INB (nc_sdid) & 0xf); 5183 tp = &np->target[target]; 5184 5185 /* 5186 ** If we didn't abort anything, leave here. 5187 */ 5188 if (np->abrt_msg[0] == M_ABORT) 5189 break; 5190 5191 /* 5192 * If we sent a M_RESET, then a hardware reset has 5193 * been performed by the target. 5194 * - Reset everything to async 8 bit 5195 * - Tell ourself to negotiate next time :-) 5196 * - Prepare to clear all disconnected CCBs for 5197 * this target from our task list (lun=task=-1) 5198 */ 5199 lun = -1; 5200 task = -1; 5201 if (np->abrt_msg[0] == M_RESET) { 5202 tp->head.sval = 0; 5203 tp->head.wval = np->rv_scntl3; 5204 tp->head.uval = 0; 5205 tp->tinfo.current.period = 0; 5206 tp->tinfo.current.offset = 0; 5207 tp->tinfo.current.width = BUS_8_BIT; 5208 tp->tinfo.current.options = 0; 5209 } 5210 5211 /* 5212 * Otherwise, check for the LUN and TASK(s) 5213 * concerned by the cancelation. 5214 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5215 * or an ABORT message :-) 5216 */ 5217 else { 5218 lun = np->abrt_msg[0] & 0x3f; 5219 if (np->abrt_msg[1] == M_ABORT_TAG) 5220 task = np->abrt_msg[2]; 5221 } 5222 5223 /* 5224 * Complete all the CCBs the device should have 5225 * aborted due to our 'kiss of death' message. 5226 */ 5227 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5228 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5229 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5230 sym_flush_comp_queue(np, 0); 5231 5232 /* 5233 * If we sent a BDR, make uper layer aware of that. 5234 */ 5235 if (np->abrt_msg[0] == M_RESET) 5236 xpt_async(AC_SENT_BDR, np->path, NULL); 5237 break; 5238 } 5239 5240 /* 5241 * Print to the log the message we intend to send. 5242 */ 5243 if (num == SIR_TARGET_SELECTED) { 5244 PRINT_TARGET(np, target); 5245 sym_printl_hex("control msgout:", np->abrt_msg, 5246 np->abrt_tbl.size); 5247 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5248 } 5249 5250 /* 5251 * Let the SCRIPTS processor continue. 5252 */ 5253 OUTONB_STD (); 5254 } 5255 5256 /* 5257 * Gerard's alchemy:) that deals with with the data 5258 * pointer for both MDP and the residual calculation. 5259 * 5260 * I didn't want to bloat the code by more than 200 5261 * lignes for the handling of both MDP and the residual. 5262 * This has been achieved by using a data pointer 5263 * representation consisting in an index in the data 5264 * array (dp_sg) and a negative offset (dp_ofs) that 5265 * have the following meaning: 5266 * 5267 * - dp_sg = SYM_CONF_MAX_SG 5268 * we are at the end of the data script. 5269 * - dp_sg < SYM_CONF_MAX_SG 5270 * dp_sg points to the next entry of the scatter array 5271 * we want to transfer. 5272 * - dp_ofs < 0 5273 * dp_ofs represents the residual of bytes of the 5274 * previous entry scatter entry we will send first. 5275 * - dp_ofs = 0 5276 * no residual to send first. 5277 * 5278 * The function sym_evaluate_dp() accepts an arbitray 5279 * offset (basically from the MDP message) and returns 5280 * the corresponding values of dp_sg and dp_ofs. 5281 */ 5282 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5283 { 5284 u32 dp_scr; 5285 int dp_ofs, dp_sg, dp_sgmin; 5286 int tmp; 5287 struct sym_pmc *pm; 5288 5289 /* 5290 * Compute the resulted data pointer in term of a script 5291 * address within some DATA script and a signed byte offset. 5292 */ 5293 dp_scr = scr; 5294 dp_ofs = *ofs; 5295 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5296 pm = &cp->phys.pm0; 5297 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5298 pm = &cp->phys.pm1; 5299 else 5300 pm = NULL; 5301 5302 if (pm) { 5303 dp_scr = scr_to_cpu(pm->ret); 5304 dp_ofs -= scr_to_cpu(pm->sg.size); 5305 } 5306 5307 /* 5308 * If we are auto-sensing, then we are done. 5309 */ 5310 if (cp->host_flags & HF_SENSE) { 5311 *ofs = dp_ofs; 5312 return 0; 5313 } 5314 5315 /* 5316 * Deduce the index of the sg entry. 5317 * Keep track of the index of the first valid entry. 5318 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5319 * end of the data. 5320 */ 5321 tmp = scr_to_cpu(cp->phys.head.goalp); 5322 dp_sg = SYM_CONF_MAX_SG; 5323 if (dp_scr != tmp) 5324 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5325 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5326 5327 /* 5328 * Move to the sg entry the data pointer belongs to. 5329 * 5330 * If we are inside the data area, we expect result to be: 5331 * 5332 * Either, 5333 * dp_ofs = 0 and dp_sg is the index of the sg entry 5334 * the data pointer belongs to (or the end of the data) 5335 * Or, 5336 * dp_ofs < 0 and dp_sg is the index of the sg entry 5337 * the data pointer belongs to + 1. 5338 */ 5339 if (dp_ofs < 0) { 5340 int n; 5341 while (dp_sg > dp_sgmin) { 5342 --dp_sg; 5343 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5344 n = dp_ofs + (tmp & 0xffffff); 5345 if (n > 0) { 5346 ++dp_sg; 5347 break; 5348 } 5349 dp_ofs = n; 5350 } 5351 } 5352 else if (dp_ofs > 0) { 5353 while (dp_sg < SYM_CONF_MAX_SG) { 5354 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5355 dp_ofs -= (tmp & 0xffffff); 5356 ++dp_sg; 5357 if (dp_ofs <= 0) 5358 break; 5359 } 5360 } 5361 5362 /* 5363 * Make sure the data pointer is inside the data area. 5364 * If not, return some error. 5365 */ 5366 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5367 goto out_err; 5368 else if (dp_sg > SYM_CONF_MAX_SG || 5369 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5370 goto out_err; 5371 5372 /* 5373 * Save the extreme pointer if needed. 5374 */ 5375 if (dp_sg > cp->ext_sg || 5376 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5377 cp->ext_sg = dp_sg; 5378 cp->ext_ofs = dp_ofs; 5379 } 5380 5381 /* 5382 * Return data. 5383 */ 5384 *ofs = dp_ofs; 5385 return dp_sg; 5386 5387 out_err: 5388 return -1; 5389 } 5390 5391 /* 5392 * chip handler for MODIFY DATA POINTER MESSAGE 5393 * 5394 * We also call this function on IGNORE WIDE RESIDUE 5395 * messages that do not match a SWIDE full condition. 5396 * Btw, we assume in that situation that such a message 5397 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5398 */ 5399 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs) 5400 { 5401 int dp_ofs = ofs; 5402 u32 dp_scr = INL (nc_temp); 5403 u32 dp_ret; 5404 u32 tmp; 5405 u_char hflags; 5406 int dp_sg; 5407 struct sym_pmc *pm; 5408 5409 /* 5410 * Not supported for auto-sense. 5411 */ 5412 if (cp->host_flags & HF_SENSE) 5413 goto out_reject; 5414 5415 /* 5416 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5417 * to the resulted data pointer. 5418 */ 5419 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5420 if (dp_sg < 0) 5421 goto out_reject; 5422 5423 /* 5424 * And our alchemy:) allows to easily calculate the data 5425 * script address we want to return for the next data phase. 5426 */ 5427 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5428 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5429 5430 /* 5431 * If offset / scatter entry is zero we donnot need 5432 * a context for the new current data pointer. 5433 */ 5434 if (dp_ofs == 0) { 5435 dp_scr = dp_ret; 5436 goto out_ok; 5437 } 5438 5439 /* 5440 * Get a context for the new current data pointer. 5441 */ 5442 hflags = INB (HF_PRT); 5443 5444 if (hflags & HF_DP_SAVED) 5445 hflags ^= HF_ACT_PM; 5446 5447 if (!(hflags & HF_ACT_PM)) { 5448 pm = &cp->phys.pm0; 5449 dp_scr = SCRIPTA_BA (np, pm0_data); 5450 } 5451 else { 5452 pm = &cp->phys.pm1; 5453 dp_scr = SCRIPTA_BA (np, pm1_data); 5454 } 5455 5456 hflags &= ~(HF_DP_SAVED); 5457 5458 OUTB (HF_PRT, hflags); 5459 5460 /* 5461 * Set up the new current data pointer. 5462 * ofs < 0 there, and for the next data phase, we 5463 * want to transfer part of the data of the sg entry 5464 * corresponding to index dp_sg-1 prior to returning 5465 * to the main data script. 5466 */ 5467 pm->ret = cpu_to_scr(dp_ret); 5468 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5469 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5470 pm->sg.addr = cpu_to_scr(tmp); 5471 pm->sg.size = cpu_to_scr(-dp_ofs); 5472 5473 out_ok: 5474 OUTL (nc_temp, dp_scr); 5475 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5476 return; 5477 5478 out_reject: 5479 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5480 } 5481 5482 /* 5483 * chip calculation of the data residual. 5484 * 5485 * As I used to say, the requirement of data residual 5486 * in SCSI is broken, useless and cannot be achieved 5487 * without huge complexity. 5488 * But most OSes and even the official CAM require it. 5489 * When stupidity happens to be so widely spread inside 5490 * a community, it gets hard to convince. 5491 * 5492 * Anyway, I don't care, since I am not going to use 5493 * any software that considers this data residual as 5494 * a relevant information. :) 5495 */ 5496 static int sym_compute_residual(hcb_p np, ccb_p cp) 5497 { 5498 int dp_sg, dp_sgmin, resid = 0; 5499 int dp_ofs = 0; 5500 5501 /* 5502 * Check for some data lost or just thrown away. 5503 * We are not required to be quite accurate in this 5504 * situation. Btw, if we are odd for output and the 5505 * device claims some more data, it may well happen 5506 * than our residual be zero. :-) 5507 */ 5508 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5509 if (cp->xerr_status & XE_EXTRA_DATA) 5510 resid -= cp->extra_bytes; 5511 if (cp->xerr_status & XE_SODL_UNRUN) 5512 ++resid; 5513 if (cp->xerr_status & XE_SWIDE_OVRUN) 5514 --resid; 5515 } 5516 5517 /* 5518 * If all data has been transferred, 5519 * there is no residual. 5520 */ 5521 if (cp->phys.head.lastp == cp->phys.head.goalp) 5522 return resid; 5523 5524 /* 5525 * If no data transfer occurs, or if the data 5526 * pointer is weird, return full residual. 5527 */ 5528 if (cp->startp == cp->phys.head.lastp || 5529 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5530 &dp_ofs) < 0) { 5531 return cp->data_len; 5532 } 5533 5534 /* 5535 * If we were auto-sensing, then we are done. 5536 */ 5537 if (cp->host_flags & HF_SENSE) { 5538 return -dp_ofs; 5539 } 5540 5541 /* 5542 * We are now full comfortable in the computation 5543 * of the data residual (2's complement). 5544 */ 5545 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5546 resid = -cp->ext_ofs; 5547 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5548 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5549 resid += (tmp & 0xffffff); 5550 } 5551 5552 /* 5553 * Hopefully, the result is not too wrong. 5554 */ 5555 return resid; 5556 } 5557 5558 /* 5559 * Print out the content of a SCSI message. 5560 */ 5561 static int sym_show_msg (u_char * msg) 5562 { 5563 u_char i; 5564 printf ("%x",*msg); 5565 if (*msg==M_EXTENDED) { 5566 for (i=1;i<8;i++) { 5567 if (i-1>msg[1]) break; 5568 printf ("-%x",msg[i]); 5569 }; 5570 return (i+1); 5571 } else if ((*msg & 0xf0) == 0x20) { 5572 printf ("-%x",msg[1]); 5573 return (2); 5574 }; 5575 return (1); 5576 } 5577 5578 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5579 { 5580 PRINT_ADDR(cp); 5581 if (label) 5582 printf ("%s: ", label); 5583 5584 (void) sym_show_msg (msg); 5585 printf (".\n"); 5586 } 5587 5588 /* 5589 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5590 * 5591 * When we try to negotiate, we append the negotiation message 5592 * to the identify and (maybe) simple tag message. 5593 * The host status field is set to HS_NEGOTIATE to mark this 5594 * situation. 5595 * 5596 * If the target doesn't answer this message immediately 5597 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5598 * will be raised eventually. 5599 * The handler removes the HS_NEGOTIATE status, and sets the 5600 * negotiated value to the default (async / nowide). 5601 * 5602 * If we receive a matching answer immediately, we check it 5603 * for validity, and set the values. 5604 * 5605 * If we receive a Reject message immediately, we assume the 5606 * negotiation has failed, and fall back to standard values. 5607 * 5608 * If we receive a negotiation message while not in HS_NEGOTIATE 5609 * state, it's a target initiated negotiation. We prepare a 5610 * (hopefully) valid answer, set our parameters, and send back 5611 * this answer to the target. 5612 * 5613 * If the target doesn't fetch the answer (no message out phase), 5614 * we assume the negotiation has failed, and fall back to default 5615 * settings (SIR_NEGO_PROTO interrupt). 5616 * 5617 * When we set the values, we adjust them in all ccbs belonging 5618 * to this target, in the controller's register, and in the "phys" 5619 * field of the controller's struct sym_hcb. 5620 */ 5621 5622 /* 5623 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5624 */ 5625 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5626 { 5627 u_char chg, ofs, per, fak, div; 5628 int req = 1; 5629 5630 /* 5631 * Synchronous request message received. 5632 */ 5633 if (DEBUG_FLAGS & DEBUG_NEGO) { 5634 sym_print_msg(cp, "sync msgin", np->msgin); 5635 }; 5636 5637 /* 5638 * request or answer ? 5639 */ 5640 if (INB (HS_PRT) == HS_NEGOTIATE) { 5641 OUTB (HS_PRT, HS_BUSY); 5642 if (cp->nego_status && cp->nego_status != NS_SYNC) 5643 goto reject_it; 5644 req = 0; 5645 } 5646 5647 /* 5648 * get requested values. 5649 */ 5650 chg = 0; 5651 per = np->msgin[3]; 5652 ofs = np->msgin[4]; 5653 5654 /* 5655 * check values against our limits. 5656 */ 5657 if (ofs) { 5658 if (ofs > np->maxoffs) 5659 {chg = 1; ofs = np->maxoffs;} 5660 if (req) { 5661 if (ofs > tp->tinfo.user.offset) 5662 {chg = 1; ofs = tp->tinfo.user.offset;} 5663 } 5664 } 5665 5666 if (ofs) { 5667 if (per < np->minsync) 5668 {chg = 1; per = np->minsync;} 5669 if (req) { 5670 if (per < tp->tinfo.user.period) 5671 {chg = 1; per = tp->tinfo.user.period;} 5672 } 5673 } 5674 5675 div = fak = 0; 5676 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5677 goto reject_it; 5678 5679 if (DEBUG_FLAGS & DEBUG_NEGO) { 5680 PRINT_ADDR(cp); 5681 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5682 ofs, per, div, fak, chg); 5683 } 5684 5685 /* 5686 * This was an answer message 5687 */ 5688 if (req == 0) { 5689 if (chg) /* Answer wasn't acceptable. */ 5690 goto reject_it; 5691 sym_setsync (np, cp, ofs, per, div, fak); 5692 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5693 return; 5694 } 5695 5696 /* 5697 * It was a request. Set value and 5698 * prepare an answer message 5699 */ 5700 sym_setsync (np, cp, ofs, per, div, fak); 5701 5702 np->msgout[0] = M_EXTENDED; 5703 np->msgout[1] = 3; 5704 np->msgout[2] = M_X_SYNC_REQ; 5705 np->msgout[3] = per; 5706 np->msgout[4] = ofs; 5707 5708 cp->nego_status = NS_SYNC; 5709 5710 if (DEBUG_FLAGS & DEBUG_NEGO) { 5711 sym_print_msg(cp, "sync msgout", np->msgout); 5712 } 5713 5714 np->msgin [0] = M_NOOP; 5715 5716 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5717 return; 5718 reject_it: 5719 sym_setsync (np, cp, 0, 0, 0, 0); 5720 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5721 } 5722 5723 /* 5724 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5725 */ 5726 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5727 { 5728 u_char chg, ofs, per, fak, dt, div, wide; 5729 int req = 1; 5730 5731 /* 5732 * Synchronous request message received. 5733 */ 5734 if (DEBUG_FLAGS & DEBUG_NEGO) { 5735 sym_print_msg(cp, "ppr msgin", np->msgin); 5736 }; 5737 5738 /* 5739 * get requested values. 5740 */ 5741 chg = 0; 5742 per = np->msgin[3]; 5743 ofs = np->msgin[5]; 5744 wide = np->msgin[6]; 5745 dt = np->msgin[7] & PPR_OPT_DT; 5746 5747 /* 5748 * request or answer ? 5749 */ 5750 if (INB (HS_PRT) == HS_NEGOTIATE) { 5751 OUTB (HS_PRT, HS_BUSY); 5752 if (cp->nego_status && cp->nego_status != NS_PPR) 5753 goto reject_it; 5754 req = 0; 5755 } 5756 5757 /* 5758 * check values against our limits. 5759 */ 5760 if (wide > np->maxwide) 5761 {chg = 1; wide = np->maxwide;} 5762 if (!wide || !(np->features & FE_ULTRA3)) 5763 dt &= ~PPR_OPT_DT; 5764 if (req) { 5765 if (wide > tp->tinfo.user.width) 5766 {chg = 1; wide = tp->tinfo.user.width;} 5767 } 5768 5769 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5770 dt &= ~PPR_OPT_DT; 5771 5772 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5773 5774 if (ofs) { 5775 if (dt) { 5776 if (ofs > np->maxoffs_dt) 5777 {chg = 1; ofs = np->maxoffs_dt;} 5778 } 5779 else if (ofs > np->maxoffs) 5780 {chg = 1; ofs = np->maxoffs;} 5781 if (req) { 5782 if (ofs > tp->tinfo.user.offset) 5783 {chg = 1; ofs = tp->tinfo.user.offset;} 5784 } 5785 } 5786 5787 if (ofs) { 5788 if (dt) { 5789 if (per < np->minsync_dt) 5790 {chg = 1; per = np->minsync_dt;} 5791 } 5792 else if (per < np->minsync) 5793 {chg = 1; per = np->minsync;} 5794 if (req) { 5795 if (per < tp->tinfo.user.period) 5796 {chg = 1; per = tp->tinfo.user.period;} 5797 } 5798 } 5799 5800 div = fak = 0; 5801 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5802 goto reject_it; 5803 5804 if (DEBUG_FLAGS & DEBUG_NEGO) { 5805 PRINT_ADDR(cp); 5806 printf ("ppr: " 5807 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5808 dt, ofs, per, wide, div, fak, chg); 5809 } 5810 5811 /* 5812 * It was an answer. 5813 */ 5814 if (req == 0) { 5815 if (chg) /* Answer wasn't acceptable */ 5816 goto reject_it; 5817 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5818 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5819 return; 5820 } 5821 5822 /* 5823 * It was a request. Set value and 5824 * prepare an answer message 5825 */ 5826 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5827 5828 np->msgout[0] = M_EXTENDED; 5829 np->msgout[1] = 6; 5830 np->msgout[2] = M_X_PPR_REQ; 5831 np->msgout[3] = per; 5832 np->msgout[4] = 0; 5833 np->msgout[5] = ofs; 5834 np->msgout[6] = wide; 5835 np->msgout[7] = dt; 5836 5837 cp->nego_status = NS_PPR; 5838 5839 if (DEBUG_FLAGS & DEBUG_NEGO) { 5840 sym_print_msg(cp, "ppr msgout", np->msgout); 5841 } 5842 5843 np->msgin [0] = M_NOOP; 5844 5845 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5846 return; 5847 reject_it: 5848 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5849 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5850 /* 5851 * If it was a device response that should result in 5852 * ST, we may want to try a legacy negotiation later. 5853 */ 5854 if (!req && !dt) { 5855 tp->tinfo.goal.options = 0; 5856 tp->tinfo.goal.width = wide; 5857 tp->tinfo.goal.period = per; 5858 tp->tinfo.goal.offset = ofs; 5859 } 5860 } 5861 5862 /* 5863 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5864 */ 5865 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5866 { 5867 u_char chg, wide; 5868 int req = 1; 5869 5870 /* 5871 * Wide request message received. 5872 */ 5873 if (DEBUG_FLAGS & DEBUG_NEGO) { 5874 sym_print_msg(cp, "wide msgin", np->msgin); 5875 }; 5876 5877 /* 5878 * Is it a request from the device? 5879 */ 5880 if (INB (HS_PRT) == HS_NEGOTIATE) { 5881 OUTB (HS_PRT, HS_BUSY); 5882 if (cp->nego_status && cp->nego_status != NS_WIDE) 5883 goto reject_it; 5884 req = 0; 5885 } 5886 5887 /* 5888 * get requested values. 5889 */ 5890 chg = 0; 5891 wide = np->msgin[3]; 5892 5893 /* 5894 * check values against driver limits. 5895 */ 5896 if (wide > np->maxwide) 5897 {chg = 1; wide = np->maxwide;} 5898 if (req) { 5899 if (wide > tp->tinfo.user.width) 5900 {chg = 1; wide = tp->tinfo.user.width;} 5901 } 5902 5903 if (DEBUG_FLAGS & DEBUG_NEGO) { 5904 PRINT_ADDR(cp); 5905 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5906 } 5907 5908 /* 5909 * This was an answer message 5910 */ 5911 if (req == 0) { 5912 if (chg) /* Answer wasn't acceptable. */ 5913 goto reject_it; 5914 sym_setwide (np, cp, wide); 5915 5916 /* 5917 * Negotiate for SYNC immediately after WIDE response. 5918 * This allows to negotiate for both WIDE and SYNC on 5919 * a single SCSI command (Suggested by Justin Gibbs). 5920 */ 5921 if (tp->tinfo.goal.offset) { 5922 np->msgout[0] = M_EXTENDED; 5923 np->msgout[1] = 3; 5924 np->msgout[2] = M_X_SYNC_REQ; 5925 np->msgout[3] = tp->tinfo.goal.period; 5926 np->msgout[4] = tp->tinfo.goal.offset; 5927 5928 if (DEBUG_FLAGS & DEBUG_NEGO) { 5929 sym_print_msg(cp, "sync msgout", np->msgout); 5930 } 5931 5932 cp->nego_status = NS_SYNC; 5933 OUTB (HS_PRT, HS_NEGOTIATE); 5934 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5935 return; 5936 } 5937 5938 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5939 return; 5940 }; 5941 5942 /* 5943 * It was a request, set value and 5944 * prepare an answer message 5945 */ 5946 sym_setwide (np, cp, wide); 5947 5948 np->msgout[0] = M_EXTENDED; 5949 np->msgout[1] = 2; 5950 np->msgout[2] = M_X_WIDE_REQ; 5951 np->msgout[3] = wide; 5952 5953 np->msgin [0] = M_NOOP; 5954 5955 cp->nego_status = NS_WIDE; 5956 5957 if (DEBUG_FLAGS & DEBUG_NEGO) { 5958 sym_print_msg(cp, "wide msgout", np->msgout); 5959 } 5960 5961 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5962 return; 5963 reject_it: 5964 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5965 } 5966 5967 /* 5968 * Reset SYNC or WIDE to default settings. 5969 * 5970 * Called when a negotiation does not succeed either 5971 * on rejection or on protocol error. 5972 * 5973 * If it was a PPR that made problems, we may want to 5974 * try a legacy negotiation later. 5975 */ 5976 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5977 { 5978 /* 5979 * any error in negotiation: 5980 * fall back to default mode. 5981 */ 5982 switch (cp->nego_status) { 5983 case NS_PPR: 5984 #if 0 5985 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5986 #else 5987 tp->tinfo.goal.options = 0; 5988 if (tp->tinfo.goal.period < np->minsync) 5989 tp->tinfo.goal.period = np->minsync; 5990 if (tp->tinfo.goal.offset > np->maxoffs) 5991 tp->tinfo.goal.offset = np->maxoffs; 5992 #endif 5993 break; 5994 case NS_SYNC: 5995 sym_setsync (np, cp, 0, 0, 0, 0); 5996 break; 5997 case NS_WIDE: 5998 sym_setwide (np, cp, 0); 5999 break; 6000 }; 6001 np->msgin [0] = M_NOOP; 6002 np->msgout[0] = M_NOOP; 6003 cp->nego_status = 0; 6004 } 6005 6006 /* 6007 * chip handler for MESSAGE REJECT received in response to 6008 * a WIDE or SYNCHRONOUS negotiation. 6009 */ 6010 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6011 { 6012 sym_nego_default(np, tp, cp); 6013 OUTB (HS_PRT, HS_BUSY); 6014 } 6015 6016 /* 6017 * chip exception handler for programmed interrupts. 6018 */ 6019 static void sym_int_sir (hcb_p np) 6020 { 6021 u_char num = INB (nc_dsps); 6022 u32 dsa = INL (nc_dsa); 6023 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6024 u_char target = INB (nc_sdid) & 0x0f; 6025 tcb_p tp = &np->target[target]; 6026 int tmp; 6027 6028 SYM_LOCK_ASSERT(MA_OWNED); 6029 6030 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6031 6032 switch (num) { 6033 /* 6034 * Command has been completed with error condition 6035 * or has been auto-sensed. 6036 */ 6037 case SIR_COMPLETE_ERROR: 6038 sym_complete_error(np, cp); 6039 return; 6040 /* 6041 * The C code is currently trying to recover from something. 6042 * Typically, user want to abort some command. 6043 */ 6044 case SIR_SCRIPT_STOPPED: 6045 case SIR_TARGET_SELECTED: 6046 case SIR_ABORT_SENT: 6047 sym_sir_task_recovery(np, num); 6048 return; 6049 /* 6050 * The device didn't go to MSG OUT phase after having 6051 * been selected with ATN. We donnot want to handle 6052 * that. 6053 */ 6054 case SIR_SEL_ATN_NO_MSG_OUT: 6055 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6056 sym_name (np), target); 6057 goto out_stuck; 6058 /* 6059 * The device didn't switch to MSG IN phase after 6060 * having reseleted the initiator. 6061 */ 6062 case SIR_RESEL_NO_MSG_IN: 6063 printf ("%s:%d: No MSG IN phase after reselection.\n", 6064 sym_name (np), target); 6065 goto out_stuck; 6066 /* 6067 * After reselection, the device sent a message that wasn't 6068 * an IDENTIFY. 6069 */ 6070 case SIR_RESEL_NO_IDENTIFY: 6071 printf ("%s:%d: No IDENTIFY after reselection.\n", 6072 sym_name (np), target); 6073 goto out_stuck; 6074 /* 6075 * The device reselected a LUN we donnot know about. 6076 */ 6077 case SIR_RESEL_BAD_LUN: 6078 np->msgout[0] = M_RESET; 6079 goto out; 6080 /* 6081 * The device reselected for an untagged nexus and we 6082 * haven't any. 6083 */ 6084 case SIR_RESEL_BAD_I_T_L: 6085 np->msgout[0] = M_ABORT; 6086 goto out; 6087 /* 6088 * The device reselected for a tagged nexus that we donnot 6089 * have. 6090 */ 6091 case SIR_RESEL_BAD_I_T_L_Q: 6092 np->msgout[0] = M_ABORT_TAG; 6093 goto out; 6094 /* 6095 * The SCRIPTS let us know that the device has grabbed 6096 * our message and will abort the job. 6097 */ 6098 case SIR_RESEL_ABORTED: 6099 np->lastmsg = np->msgout[0]; 6100 np->msgout[0] = M_NOOP; 6101 printf ("%s:%d: message %x sent on bad reselection.\n", 6102 sym_name (np), target, np->lastmsg); 6103 goto out; 6104 /* 6105 * The SCRIPTS let us know that a message has been 6106 * successfully sent to the device. 6107 */ 6108 case SIR_MSG_OUT_DONE: 6109 np->lastmsg = np->msgout[0]; 6110 np->msgout[0] = M_NOOP; 6111 /* Should we really care of that */ 6112 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6113 if (cp) { 6114 cp->xerr_status &= ~XE_PARITY_ERR; 6115 if (!cp->xerr_status) 6116 OUTOFFB (HF_PRT, HF_EXT_ERR); 6117 } 6118 } 6119 goto out; 6120 /* 6121 * The device didn't send a GOOD SCSI status. 6122 * We may have some work to do prior to allow 6123 * the SCRIPTS processor to continue. 6124 */ 6125 case SIR_BAD_SCSI_STATUS: 6126 if (!cp) 6127 goto out; 6128 sym_sir_bad_scsi_status(np, cp); 6129 return; 6130 /* 6131 * We are asked by the SCRIPTS to prepare a 6132 * REJECT message. 6133 */ 6134 case SIR_REJECT_TO_SEND: 6135 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6136 np->msgout[0] = M_REJECT; 6137 goto out; 6138 /* 6139 * We have been ODD at the end of a DATA IN 6140 * transfer and the device didn't send a 6141 * IGNORE WIDE RESIDUE message. 6142 * It is a data overrun condition. 6143 */ 6144 case SIR_SWIDE_OVERRUN: 6145 if (cp) { 6146 OUTONB (HF_PRT, HF_EXT_ERR); 6147 cp->xerr_status |= XE_SWIDE_OVRUN; 6148 } 6149 goto out; 6150 /* 6151 * We have been ODD at the end of a DATA OUT 6152 * transfer. 6153 * It is a data underrun condition. 6154 */ 6155 case SIR_SODL_UNDERRUN: 6156 if (cp) { 6157 OUTONB (HF_PRT, HF_EXT_ERR); 6158 cp->xerr_status |= XE_SODL_UNRUN; 6159 } 6160 goto out; 6161 /* 6162 * The device wants us to tranfer more data than 6163 * expected or in the wrong direction. 6164 * The number of extra bytes is in scratcha. 6165 * It is a data overrun condition. 6166 */ 6167 case SIR_DATA_OVERRUN: 6168 if (cp) { 6169 OUTONB (HF_PRT, HF_EXT_ERR); 6170 cp->xerr_status |= XE_EXTRA_DATA; 6171 cp->extra_bytes += INL (nc_scratcha); 6172 } 6173 goto out; 6174 /* 6175 * The device switched to an illegal phase (4/5). 6176 */ 6177 case SIR_BAD_PHASE: 6178 if (cp) { 6179 OUTONB (HF_PRT, HF_EXT_ERR); 6180 cp->xerr_status |= XE_BAD_PHASE; 6181 } 6182 goto out; 6183 /* 6184 * We received a message. 6185 */ 6186 case SIR_MSG_RECEIVED: 6187 if (!cp) 6188 goto out_stuck; 6189 switch (np->msgin [0]) { 6190 /* 6191 * We received an extended message. 6192 * We handle MODIFY DATA POINTER, SDTR, WDTR 6193 * and reject all other extended messages. 6194 */ 6195 case M_EXTENDED: 6196 switch (np->msgin [2]) { 6197 case M_X_MODIFY_DP: 6198 if (DEBUG_FLAGS & DEBUG_POINTER) 6199 sym_print_msg(cp,"modify DP",np->msgin); 6200 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6201 (np->msgin[5]<<8) + (np->msgin[6]); 6202 sym_modify_dp(np, cp, tmp); 6203 return; 6204 case M_X_SYNC_REQ: 6205 sym_sync_nego(np, tp, cp); 6206 return; 6207 case M_X_PPR_REQ: 6208 sym_ppr_nego(np, tp, cp); 6209 return; 6210 case M_X_WIDE_REQ: 6211 sym_wide_nego(np, tp, cp); 6212 return; 6213 default: 6214 goto out_reject; 6215 } 6216 break; 6217 /* 6218 * We received a 1/2 byte message not handled from SCRIPTS. 6219 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6220 * RESIDUE messages that haven't been anticipated by 6221 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6222 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6223 */ 6224 case M_IGN_RESIDUE: 6225 if (DEBUG_FLAGS & DEBUG_POINTER) 6226 sym_print_msg(cp,"ign wide residue", np->msgin); 6227 sym_modify_dp(np, cp, -1); 6228 return; 6229 case M_REJECT: 6230 if (INB (HS_PRT) == HS_NEGOTIATE) 6231 sym_nego_rejected(np, tp, cp); 6232 else { 6233 PRINT_ADDR(cp); 6234 printf ("M_REJECT received (%x:%x).\n", 6235 scr_to_cpu(np->lastmsg), np->msgout[0]); 6236 } 6237 goto out_clrack; 6238 break; 6239 default: 6240 goto out_reject; 6241 } 6242 break; 6243 /* 6244 * We received an unknown message. 6245 * Ignore all MSG IN phases and reject it. 6246 */ 6247 case SIR_MSG_WEIRD: 6248 sym_print_msg(cp, "WEIRD message received", np->msgin); 6249 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6250 return; 6251 /* 6252 * Negotiation failed. 6253 * Target does not send us the reply. 6254 * Remove the HS_NEGOTIATE status. 6255 */ 6256 case SIR_NEGO_FAILED: 6257 OUTB (HS_PRT, HS_BUSY); 6258 /* 6259 * Negotiation failed. 6260 * Target does not want answer message. 6261 */ 6262 case SIR_NEGO_PROTO: 6263 sym_nego_default(np, tp, cp); 6264 goto out; 6265 }; 6266 6267 out: 6268 OUTONB_STD (); 6269 return; 6270 out_reject: 6271 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6272 return; 6273 out_clrack: 6274 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6275 return; 6276 out_stuck: 6277 return; 6278 } 6279 6280 /* 6281 * Acquire a control block 6282 */ 6283 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6284 { 6285 tcb_p tp = &np->target[tn]; 6286 lcb_p lp = sym_lp(tp, ln); 6287 u_short tag = NO_TAG; 6288 SYM_QUEHEAD *qp; 6289 ccb_p cp = (ccb_p) NULL; 6290 6291 /* 6292 * Look for a free CCB 6293 */ 6294 if (sym_que_empty(&np->free_ccbq)) 6295 goto out; 6296 qp = sym_remque_head(&np->free_ccbq); 6297 if (!qp) 6298 goto out; 6299 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6300 6301 /* 6302 * If the LCB is not yet available and the LUN 6303 * has been probed ok, try to allocate the LCB. 6304 */ 6305 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6306 lp = sym_alloc_lcb(np, tn, ln); 6307 if (!lp) 6308 goto out_free; 6309 } 6310 6311 /* 6312 * If the LCB is not available here, then the 6313 * logical unit is not yet discovered. For those 6314 * ones only accept 1 SCSI IO per logical unit, 6315 * since we cannot allow disconnections. 6316 */ 6317 if (!lp) { 6318 if (!sym_is_bit(tp->busy0_map, ln)) 6319 sym_set_bit(tp->busy0_map, ln); 6320 else 6321 goto out_free; 6322 } else { 6323 /* 6324 * If we have been asked for a tagged command. 6325 */ 6326 if (tag_order) { 6327 /* 6328 * Debugging purpose. 6329 */ 6330 assert(lp->busy_itl == 0); 6331 /* 6332 * Allocate resources for tags if not yet. 6333 */ 6334 if (!lp->cb_tags) { 6335 sym_alloc_lcb_tags(np, tn, ln); 6336 if (!lp->cb_tags) 6337 goto out_free; 6338 } 6339 /* 6340 * Get a tag for this SCSI IO and set up 6341 * the CCB bus address for reselection, 6342 * and count it for this LUN. 6343 * Toggle reselect path to tagged. 6344 */ 6345 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6346 tag = lp->cb_tags[lp->ia_tag]; 6347 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6348 lp->ia_tag = 0; 6349 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6350 ++lp->busy_itlq; 6351 lp->head.resel_sa = 6352 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6353 } 6354 else 6355 goto out_free; 6356 } 6357 /* 6358 * This command will not be tagged. 6359 * If we already have either a tagged or untagged 6360 * one, refuse to overlap this untagged one. 6361 */ 6362 else { 6363 /* 6364 * Debugging purpose. 6365 */ 6366 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6367 /* 6368 * Count this nexus for this LUN. 6369 * Set up the CCB bus address for reselection. 6370 * Toggle reselect path to untagged. 6371 */ 6372 if (++lp->busy_itl == 1) { 6373 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6374 lp->head.resel_sa = 6375 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6376 } 6377 else 6378 goto out_free; 6379 } 6380 } 6381 /* 6382 * Put the CCB into the busy queue. 6383 */ 6384 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6385 6386 /* 6387 * Remember all informations needed to free this CCB. 6388 */ 6389 cp->to_abort = 0; 6390 cp->tag = tag; 6391 cp->target = tn; 6392 cp->lun = ln; 6393 6394 if (DEBUG_FLAGS & DEBUG_TAGS) { 6395 PRINT_LUN(np, tn, ln); 6396 printf ("ccb @%p using tag %d.\n", cp, tag); 6397 } 6398 6399 out: 6400 return cp; 6401 out_free: 6402 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6403 return NULL; 6404 } 6405 6406 /* 6407 * Release one control block 6408 */ 6409 static void sym_free_ccb(hcb_p np, ccb_p cp) 6410 { 6411 tcb_p tp = &np->target[cp->target]; 6412 lcb_p lp = sym_lp(tp, cp->lun); 6413 6414 if (DEBUG_FLAGS & DEBUG_TAGS) { 6415 PRINT_LUN(np, cp->target, cp->lun); 6416 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6417 } 6418 6419 /* 6420 * If LCB available, 6421 */ 6422 if (lp) { 6423 /* 6424 * If tagged, release the tag, set the relect path 6425 */ 6426 if (cp->tag != NO_TAG) { 6427 /* 6428 * Free the tag value. 6429 */ 6430 lp->cb_tags[lp->if_tag] = cp->tag; 6431 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6432 lp->if_tag = 0; 6433 /* 6434 * Make the reselect path invalid, 6435 * and uncount this CCB. 6436 */ 6437 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6438 --lp->busy_itlq; 6439 } else { /* Untagged */ 6440 /* 6441 * Make the reselect path invalid, 6442 * and uncount this CCB. 6443 */ 6444 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6445 --lp->busy_itl; 6446 } 6447 /* 6448 * If no JOB active, make the LUN reselect path invalid. 6449 */ 6450 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6451 lp->head.resel_sa = 6452 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6453 } 6454 /* 6455 * Otherwise, we only accept 1 IO per LUN. 6456 * Clear the bit that keeps track of this IO. 6457 */ 6458 else 6459 sym_clr_bit(tp->busy0_map, cp->lun); 6460 6461 /* 6462 * We donnot queue more than 1 ccb per target 6463 * with negotiation at any time. If this ccb was 6464 * used for negotiation, clear this info in the tcb. 6465 */ 6466 if (cp == tp->nego_cp) 6467 tp->nego_cp = NULL; 6468 6469 #ifdef SYM_CONF_IARB_SUPPORT 6470 /* 6471 * If we just complete the last queued CCB, 6472 * clear this info that is no longer relevant. 6473 */ 6474 if (cp == np->last_cp) 6475 np->last_cp = NULL; 6476 #endif 6477 6478 /* 6479 * Unmap user data from DMA map if needed. 6480 */ 6481 if (cp->dmamapped) { 6482 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6483 cp->dmamapped = 0; 6484 } 6485 6486 /* 6487 * Make this CCB available. 6488 */ 6489 cp->cam_ccb = NULL; 6490 cp->host_status = HS_IDLE; 6491 sym_remque(&cp->link_ccbq); 6492 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6493 } 6494 6495 /* 6496 * Allocate a CCB from memory and initialize its fixed part. 6497 */ 6498 static ccb_p sym_alloc_ccb(hcb_p np) 6499 { 6500 ccb_p cp = NULL; 6501 int hcode; 6502 6503 SYM_LOCK_ASSERT(MA_NOTOWNED); 6504 6505 /* 6506 * Prevent from allocating more CCBs than we can 6507 * queue to the controller. 6508 */ 6509 if (np->actccbs >= SYM_CONF_MAX_START) 6510 return NULL; 6511 6512 /* 6513 * Allocate memory for this CCB. 6514 */ 6515 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6516 if (!cp) 6517 return NULL; 6518 6519 /* 6520 * Allocate a bounce buffer for sense data. 6521 */ 6522 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6523 if (!cp->sns_bbuf) 6524 goto out_free; 6525 6526 /* 6527 * Allocate a map for the DMA of user data. 6528 */ 6529 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6530 goto out_free; 6531 /* 6532 * Count it. 6533 */ 6534 np->actccbs++; 6535 6536 /* 6537 * Initialize the callout. 6538 */ 6539 callout_init(&cp->ch, 1); 6540 6541 /* 6542 * Compute the bus address of this ccb. 6543 */ 6544 cp->ccb_ba = vtobus(cp); 6545 6546 /* 6547 * Insert this ccb into the hashed list. 6548 */ 6549 hcode = CCB_HASH_CODE(cp->ccb_ba); 6550 cp->link_ccbh = np->ccbh[hcode]; 6551 np->ccbh[hcode] = cp; 6552 6553 /* 6554 * Initialize the start and restart actions. 6555 */ 6556 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6557 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6558 6559 /* 6560 * Initilialyze some other fields. 6561 */ 6562 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6563 6564 /* 6565 * Chain into free ccb queue. 6566 */ 6567 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6568 6569 return cp; 6570 out_free: 6571 if (cp->sns_bbuf) 6572 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6573 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6574 return NULL; 6575 } 6576 6577 /* 6578 * Look up a CCB from a DSA value. 6579 */ 6580 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6581 { 6582 int hcode; 6583 ccb_p cp; 6584 6585 hcode = CCB_HASH_CODE(dsa); 6586 cp = np->ccbh[hcode]; 6587 while (cp) { 6588 if (cp->ccb_ba == dsa) 6589 break; 6590 cp = cp->link_ccbh; 6591 } 6592 6593 return cp; 6594 } 6595 6596 /* 6597 * Lun control block allocation and initialization. 6598 */ 6599 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6600 { 6601 tcb_p tp = &np->target[tn]; 6602 lcb_p lp = sym_lp(tp, ln); 6603 6604 /* 6605 * Already done, just return. 6606 */ 6607 if (lp) 6608 return lp; 6609 /* 6610 * Check against some race. 6611 */ 6612 assert(!sym_is_bit(tp->busy0_map, ln)); 6613 6614 /* 6615 * Allocate the LCB bus address array. 6616 * Compute the bus address of this table. 6617 */ 6618 if (ln && !tp->luntbl) { 6619 int i; 6620 6621 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6622 if (!tp->luntbl) 6623 goto fail; 6624 for (i = 0 ; i < 64 ; i++) 6625 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6626 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6627 } 6628 6629 /* 6630 * Allocate the table of pointers for LUN(s) > 0, if needed. 6631 */ 6632 if (ln && !tp->lunmp) { 6633 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6634 "LUNMP"); 6635 if (!tp->lunmp) 6636 goto fail; 6637 } 6638 6639 /* 6640 * Allocate the lcb. 6641 * Make it available to the chip. 6642 */ 6643 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6644 if (!lp) 6645 goto fail; 6646 if (ln) { 6647 tp->lunmp[ln] = lp; 6648 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6649 } 6650 else { 6651 tp->lun0p = lp; 6652 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6653 } 6654 6655 /* 6656 * Let the itl task point to error handling. 6657 */ 6658 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6659 6660 /* 6661 * Set the reselect pattern to our default. :) 6662 */ 6663 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6664 6665 /* 6666 * Set user capabilities. 6667 */ 6668 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6669 6670 fail: 6671 return lp; 6672 } 6673 6674 /* 6675 * Allocate LCB resources for tagged command queuing. 6676 */ 6677 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6678 { 6679 tcb_p tp = &np->target[tn]; 6680 lcb_p lp = sym_lp(tp, ln); 6681 int i; 6682 6683 /* 6684 * If LCB not available, try to allocate it. 6685 */ 6686 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6687 return; 6688 6689 /* 6690 * Allocate the task table and and the tag allocation 6691 * circular buffer. We want both or none. 6692 */ 6693 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6694 if (!lp->itlq_tbl) 6695 return; 6696 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6697 if (!lp->cb_tags) { 6698 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6699 lp->itlq_tbl = 0; 6700 return; 6701 } 6702 6703 /* 6704 * Initialize the task table with invalid entries. 6705 */ 6706 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6707 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6708 6709 /* 6710 * Fill up the tag buffer with tag numbers. 6711 */ 6712 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6713 lp->cb_tags[i] = i; 6714 6715 /* 6716 * Make the task table available to SCRIPTS, 6717 * And accept tagged commands now. 6718 */ 6719 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6720 } 6721 6722 /* 6723 * Test the pci bus snoop logic :-( 6724 * 6725 * Has to be called with interrupts disabled. 6726 */ 6727 #ifndef SYM_CONF_IOMAPPED 6728 static int sym_regtest (hcb_p np) 6729 { 6730 register volatile u32 data; 6731 /* 6732 * chip registers may NOT be cached. 6733 * write 0xffffffff to a read only register area, 6734 * and try to read it back. 6735 */ 6736 data = 0xffffffff; 6737 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6738 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6739 #if 1 6740 if (data == 0xffffffff) { 6741 #else 6742 if ((data & 0xe2f0fffd) != 0x02000080) { 6743 #endif 6744 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6745 (unsigned) data); 6746 return (0x10); 6747 }; 6748 return (0); 6749 } 6750 #endif 6751 6752 static int sym_snooptest (hcb_p np) 6753 { 6754 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6755 int i, err=0; 6756 #ifndef SYM_CONF_IOMAPPED 6757 err |= sym_regtest (np); 6758 if (err) return (err); 6759 #endif 6760 restart_test: 6761 /* 6762 * Enable Master Parity Checking as we intend 6763 * to enable it for normal operations. 6764 */ 6765 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6766 /* 6767 * init 6768 */ 6769 pc = SCRIPTB0_BA (np, snooptest); 6770 host_wr = 1; 6771 sym_wr = 2; 6772 /* 6773 * Set memory and register. 6774 */ 6775 np->cache = cpu_to_scr(host_wr); 6776 OUTL (nc_temp, sym_wr); 6777 /* 6778 * Start script (exchange values) 6779 */ 6780 OUTL (nc_dsa, np->hcb_ba); 6781 OUTL_DSP (pc); 6782 /* 6783 * Wait 'til done (with timeout) 6784 */ 6785 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6786 if (INB(nc_istat) & (INTF|SIP|DIP)) 6787 break; 6788 if (i>=SYM_SNOOP_TIMEOUT) { 6789 printf ("CACHE TEST FAILED: timeout.\n"); 6790 return (0x20); 6791 }; 6792 /* 6793 * Check for fatal DMA errors. 6794 */ 6795 dstat = INB (nc_dstat); 6796 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6797 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6798 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6799 "DISABLING MASTER DATA PARITY CHECKING.\n", 6800 sym_name(np)); 6801 np->rv_ctest4 &= ~MPEE; 6802 goto restart_test; 6803 } 6804 #endif 6805 if (dstat & (MDPE|BF|IID)) { 6806 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6807 return (0x80); 6808 } 6809 /* 6810 * Save termination position. 6811 */ 6812 pc = INL (nc_dsp); 6813 /* 6814 * Read memory and register. 6815 */ 6816 host_rd = scr_to_cpu(np->cache); 6817 sym_rd = INL (nc_scratcha); 6818 sym_bk = INL (nc_temp); 6819 6820 /* 6821 * Check termination position. 6822 */ 6823 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6824 printf ("CACHE TEST FAILED: script execution failed.\n"); 6825 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6826 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6827 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6828 return (0x40); 6829 }; 6830 /* 6831 * Show results. 6832 */ 6833 if (host_wr != sym_rd) { 6834 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6835 (int) host_wr, (int) sym_rd); 6836 err |= 1; 6837 }; 6838 if (host_rd != sym_wr) { 6839 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6840 (int) sym_wr, (int) host_rd); 6841 err |= 2; 6842 }; 6843 if (sym_bk != sym_wr) { 6844 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6845 (int) sym_wr, (int) sym_bk); 6846 err |= 4; 6847 }; 6848 6849 return (err); 6850 } 6851 6852 /* 6853 * Determine the chip's clock frequency. 6854 * 6855 * This is essential for the negotiation of the synchronous 6856 * transfer rate. 6857 * 6858 * Note: we have to return the correct value. 6859 * THERE IS NO SAFE DEFAULT VALUE. 6860 * 6861 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6862 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6863 * do not have a clock doubler and so are provided with a 6864 * 80 MHz clock. All other fast20 boards incorporate a doubler 6865 * and so should be delivered with a 40 MHz clock. 6866 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6867 * clock and provide a clock quadrupler (160 Mhz). 6868 */ 6869 6870 /* 6871 * Select SCSI clock frequency 6872 */ 6873 static void sym_selectclock(hcb_p np, u_char scntl3) 6874 { 6875 /* 6876 * If multiplier not present or not selected, leave here. 6877 */ 6878 if (np->multiplier <= 1) { 6879 OUTB(nc_scntl3, scntl3); 6880 return; 6881 } 6882 6883 if (sym_verbose >= 2) 6884 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6885 6886 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6887 /* 6888 * Wait for the LCKFRQ bit to be set if supported by the chip. 6889 * Otherwise wait 20 micro-seconds. 6890 */ 6891 if (np->features & FE_LCKFRQ) { 6892 int i = 20; 6893 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6894 UDELAY (20); 6895 if (!i) 6896 printf("%s: the chip cannot lock the frequency\n", 6897 sym_name(np)); 6898 } else 6899 UDELAY (20); 6900 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6901 OUTB(nc_scntl3, scntl3); 6902 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6903 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6904 } 6905 6906 /* 6907 * calculate SCSI clock frequency (in KHz) 6908 */ 6909 static unsigned getfreq (hcb_p np, int gen) 6910 { 6911 unsigned int ms = 0; 6912 unsigned int f; 6913 6914 /* 6915 * Measure GEN timer delay in order 6916 * to calculate SCSI clock frequency 6917 * 6918 * This code will never execute too 6919 * many loop iterations (if DELAY is 6920 * reasonably correct). It could get 6921 * too low a delay (too high a freq.) 6922 * if the CPU is slow executing the 6923 * loop for some reason (an NMI, for 6924 * example). For this reason we will 6925 * if multiple measurements are to be 6926 * performed trust the higher delay 6927 * (lower frequency returned). 6928 */ 6929 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6930 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6931 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6932 (void) INW (nc_sist); /* another one, just to be sure :) */ 6933 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6934 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6935 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6936 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6937 UDELAY (1000); /* count ms */ 6938 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6939 /* 6940 * set prescaler to divide by whatever 0 means 6941 * 0 ought to choose divide by 2, but appears 6942 * to set divide by 3.5 mode in my 53c810 ... 6943 */ 6944 OUTB (nc_scntl3, 0); 6945 6946 /* 6947 * adjust for prescaler, and convert into KHz 6948 */ 6949 f = ms ? ((1 << gen) * 4340) / ms : 0; 6950 6951 if (sym_verbose >= 2) 6952 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6953 sym_name(np), gen, ms, f); 6954 6955 return f; 6956 } 6957 6958 static unsigned sym_getfreq (hcb_p np) 6959 { 6960 u_int f1, f2; 6961 int gen = 11; 6962 6963 (void) getfreq (np, gen); /* throw away first result */ 6964 f1 = getfreq (np, gen); 6965 f2 = getfreq (np, gen); 6966 if (f1 > f2) f1 = f2; /* trust lower result */ 6967 return f1; 6968 } 6969 6970 /* 6971 * Get/probe chip SCSI clock frequency 6972 */ 6973 static void sym_getclock (hcb_p np, int mult) 6974 { 6975 unsigned char scntl3 = np->sv_scntl3; 6976 unsigned char stest1 = np->sv_stest1; 6977 unsigned f1; 6978 6979 /* 6980 * For the C10 core, assume 40 MHz. 6981 */ 6982 if (np->features & FE_C10) { 6983 np->multiplier = mult; 6984 np->clock_khz = 40000 * mult; 6985 return; 6986 } 6987 6988 np->multiplier = 1; 6989 f1 = 40000; 6990 /* 6991 * True with 875/895/896/895A with clock multiplier selected 6992 */ 6993 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 6994 if (sym_verbose >= 2) 6995 printf ("%s: clock multiplier found\n", sym_name(np)); 6996 np->multiplier = mult; 6997 } 6998 6999 /* 7000 * If multiplier not found or scntl3 not 7,5,3, 7001 * reset chip and get frequency from general purpose timer. 7002 * Otherwise trust scntl3 BIOS setting. 7003 */ 7004 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7005 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7006 f1 = sym_getfreq (np); 7007 7008 if (sym_verbose) 7009 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7010 7011 if (f1 < 45000) f1 = 40000; 7012 else if (f1 < 55000) f1 = 50000; 7013 else f1 = 80000; 7014 7015 if (f1 < 80000 && mult > 1) { 7016 if (sym_verbose >= 2) 7017 printf ("%s: clock multiplier assumed\n", 7018 sym_name(np)); 7019 np->multiplier = mult; 7020 } 7021 } else { 7022 if ((scntl3 & 7) == 3) f1 = 40000; 7023 else if ((scntl3 & 7) == 5) f1 = 80000; 7024 else f1 = 160000; 7025 7026 f1 /= np->multiplier; 7027 } 7028 7029 /* 7030 * Compute controller synchronous parameters. 7031 */ 7032 f1 *= np->multiplier; 7033 np->clock_khz = f1; 7034 } 7035 7036 /* 7037 * Get/probe PCI clock frequency 7038 */ 7039 static int sym_getpciclock (hcb_p np) 7040 { 7041 int f = 0; 7042 7043 /* 7044 * For the C1010-33, this doesn't work. 7045 * For the C1010-66, this will be tested when I'll have 7046 * such a beast to play with. 7047 */ 7048 if (!(np->features & FE_C10)) { 7049 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7050 f = (int) sym_getfreq (np); 7051 OUTB (nc_stest1, 0); 7052 } 7053 np->pciclk_khz = f; 7054 7055 return f; 7056 } 7057 7058 /*============= DRIVER ACTION/COMPLETION ====================*/ 7059 7060 /* 7061 * Print something that tells about extended errors. 7062 */ 7063 static void sym_print_xerr(ccb_p cp, int x_status) 7064 { 7065 if (x_status & XE_PARITY_ERR) { 7066 PRINT_ADDR(cp); 7067 printf ("unrecovered SCSI parity error.\n"); 7068 } 7069 if (x_status & XE_EXTRA_DATA) { 7070 PRINT_ADDR(cp); 7071 printf ("extraneous data discarded.\n"); 7072 } 7073 if (x_status & XE_BAD_PHASE) { 7074 PRINT_ADDR(cp); 7075 printf ("illegal scsi phase (4/5).\n"); 7076 } 7077 if (x_status & XE_SODL_UNRUN) { 7078 PRINT_ADDR(cp); 7079 printf ("ODD transfer in DATA OUT phase.\n"); 7080 } 7081 if (x_status & XE_SWIDE_OVRUN) { 7082 PRINT_ADDR(cp); 7083 printf ("ODD transfer in DATA IN phase.\n"); 7084 } 7085 } 7086 7087 /* 7088 * Choose the more appropriate CAM status if 7089 * the IO encountered an extended error. 7090 */ 7091 static int sym_xerr_cam_status(int cam_status, int x_status) 7092 { 7093 if (x_status) { 7094 if (x_status & XE_PARITY_ERR) 7095 cam_status = CAM_UNCOR_PARITY; 7096 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7097 cam_status = CAM_DATA_RUN_ERR; 7098 else if (x_status & XE_BAD_PHASE) 7099 cam_status = CAM_REQ_CMP_ERR; 7100 else 7101 cam_status = CAM_REQ_CMP_ERR; 7102 } 7103 return cam_status; 7104 } 7105 7106 /* 7107 * Complete execution of a SCSI command with extented 7108 * error, SCSI status error, or having been auto-sensed. 7109 * 7110 * The SCRIPTS processor is not running there, so we 7111 * can safely access IO registers and remove JOBs from 7112 * the START queue. 7113 * SCRATCHA is assumed to have been loaded with STARTPOS 7114 * before the SCRIPTS called the C code. 7115 */ 7116 static void sym_complete_error (hcb_p np, ccb_p cp) 7117 { 7118 struct ccb_scsiio *csio; 7119 u_int cam_status; 7120 int i, sense_returned; 7121 7122 SYM_LOCK_ASSERT(MA_OWNED); 7123 7124 /* 7125 * Paranoid check. :) 7126 */ 7127 if (!cp || !cp->cam_ccb) 7128 return; 7129 7130 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7131 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7132 cp->host_status, cp->ssss_status, cp->host_flags, 7133 cp->target, cp->lun); 7134 MDELAY(100); 7135 } 7136 7137 /* 7138 * Get CAM command pointer. 7139 */ 7140 csio = &cp->cam_ccb->csio; 7141 7142 /* 7143 * Check for extended errors. 7144 */ 7145 if (cp->xerr_status) { 7146 if (sym_verbose) 7147 sym_print_xerr(cp, cp->xerr_status); 7148 if (cp->host_status == HS_COMPLETE) 7149 cp->host_status = HS_COMP_ERR; 7150 } 7151 7152 /* 7153 * Calculate the residual. 7154 */ 7155 csio->sense_resid = 0; 7156 csio->resid = sym_compute_residual(np, cp); 7157 7158 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7159 csio->resid = 0; /* throw them away. :) */ 7160 cp->sv_resid = 0; 7161 } 7162 7163 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7164 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7165 csio->sense_resid = csio->resid; /* Swap residuals */ 7166 csio->resid = cp->sv_resid; 7167 cp->sv_resid = 0; 7168 if (sym_verbose && cp->sv_xerr_status) 7169 sym_print_xerr(cp, cp->sv_xerr_status); 7170 if (cp->host_status == HS_COMPLETE && 7171 cp->ssss_status == S_GOOD && 7172 cp->xerr_status == 0) { 7173 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7174 cp->sv_xerr_status); 7175 cam_status |= CAM_AUTOSNS_VALID; 7176 /* 7177 * Bounce back the sense data to user and 7178 * fix the residual. 7179 */ 7180 bzero(&csio->sense_data, sizeof(csio->sense_data)); 7181 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid; 7182 if (sense_returned < csio->sense_len) 7183 csio->sense_resid = csio->sense_len - 7184 sense_returned; 7185 else 7186 csio->sense_resid = 0; 7187 bcopy(cp->sns_bbuf, &csio->sense_data, 7188 MIN(csio->sense_len, sense_returned)); 7189 #if 0 7190 /* 7191 * If the device reports a UNIT ATTENTION condition 7192 * due to a RESET condition, we should consider all 7193 * disconnect CCBs for this unit as aborted. 7194 */ 7195 if (1) { 7196 u_char *p; 7197 p = (u_char *) csio->sense_data; 7198 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7199 sym_clear_tasks(np, CAM_REQ_ABORTED, 7200 cp->target,cp->lun, -1); 7201 } 7202 #endif 7203 } 7204 else 7205 cam_status = CAM_AUTOSENSE_FAIL; 7206 } 7207 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7208 csio->scsi_status = cp->ssss_status; 7209 cam_status = CAM_SCSI_STATUS_ERROR; 7210 } 7211 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7212 cam_status = CAM_SEL_TIMEOUT; 7213 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7214 cam_status = CAM_UNEXP_BUSFREE; 7215 else { /* Extended error */ 7216 if (sym_verbose) { 7217 PRINT_ADDR(cp); 7218 printf ("COMMAND FAILED (%x %x %x).\n", 7219 cp->host_status, cp->ssss_status, 7220 cp->xerr_status); 7221 } 7222 csio->scsi_status = cp->ssss_status; 7223 /* 7224 * Set the most appropriate value for CAM status. 7225 */ 7226 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7227 cp->xerr_status); 7228 } 7229 7230 /* 7231 * Dequeue all queued CCBs for that device 7232 * not yet started by SCRIPTS. 7233 */ 7234 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7235 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7236 7237 /* 7238 * Restart the SCRIPTS processor. 7239 */ 7240 OUTL_DSP (SCRIPTA_BA (np, start)); 7241 7242 /* 7243 * Synchronize DMA map if needed. 7244 */ 7245 if (cp->dmamapped) { 7246 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7247 (cp->dmamapped == SYM_DMA_READ ? 7248 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7249 } 7250 /* 7251 * Add this one to the COMP queue. 7252 * Complete all those commands with either error 7253 * or requeue condition. 7254 */ 7255 sym_set_cam_status((union ccb *) csio, cam_status); 7256 sym_remque(&cp->link_ccbq); 7257 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7258 sym_flush_comp_queue(np, 0); 7259 } 7260 7261 /* 7262 * Complete execution of a successful SCSI command. 7263 * 7264 * Only successful commands go to the DONE queue, 7265 * since we need to have the SCRIPTS processor 7266 * stopped on any error condition. 7267 * The SCRIPTS processor is running while we are 7268 * completing successful commands. 7269 */ 7270 static void sym_complete_ok (hcb_p np, ccb_p cp) 7271 { 7272 struct ccb_scsiio *csio; 7273 tcb_p tp; 7274 lcb_p lp; 7275 7276 SYM_LOCK_ASSERT(MA_OWNED); 7277 7278 /* 7279 * Paranoid check. :) 7280 */ 7281 if (!cp || !cp->cam_ccb) 7282 return; 7283 assert (cp->host_status == HS_COMPLETE); 7284 7285 /* 7286 * Get command, target and lun pointers. 7287 */ 7288 csio = &cp->cam_ccb->csio; 7289 tp = &np->target[cp->target]; 7290 lp = sym_lp(tp, cp->lun); 7291 7292 /* 7293 * Assume device discovered on first success. 7294 */ 7295 if (!lp) 7296 sym_set_bit(tp->lun_map, cp->lun); 7297 7298 /* 7299 * If all data have been transferred, given than no 7300 * extended error did occur, there is no residual. 7301 */ 7302 csio->resid = 0; 7303 if (cp->phys.head.lastp != cp->phys.head.goalp) 7304 csio->resid = sym_compute_residual(np, cp); 7305 7306 /* 7307 * Wrong transfer residuals may be worse than just always 7308 * returning zero. User can disable this feature from 7309 * sym_conf.h. Residual support is enabled by default. 7310 */ 7311 if (!SYM_CONF_RESIDUAL_SUPPORT) 7312 csio->resid = 0; 7313 7314 /* 7315 * Synchronize DMA map if needed. 7316 */ 7317 if (cp->dmamapped) { 7318 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7319 (cp->dmamapped == SYM_DMA_READ ? 7320 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7321 } 7322 /* 7323 * Set status and complete the command. 7324 */ 7325 csio->scsi_status = cp->ssss_status; 7326 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7327 sym_xpt_done(np, (union ccb *) csio, cp); 7328 sym_free_ccb(np, cp); 7329 } 7330 7331 /* 7332 * Our callout handler 7333 */ 7334 static void sym_callout(void *arg) 7335 { 7336 union ccb *ccb = (union ccb *) arg; 7337 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7338 7339 /* 7340 * Check that the CAM CCB is still queued. 7341 */ 7342 if (!np) 7343 return; 7344 7345 SYM_LOCK(); 7346 7347 switch(ccb->ccb_h.func_code) { 7348 case XPT_SCSI_IO: 7349 (void) sym_abort_scsiio(np, ccb, 1); 7350 break; 7351 default: 7352 break; 7353 } 7354 7355 SYM_UNLOCK(); 7356 } 7357 7358 /* 7359 * Abort an SCSI IO. 7360 */ 7361 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7362 { 7363 ccb_p cp; 7364 SYM_QUEHEAD *qp; 7365 7366 SYM_LOCK_ASSERT(MA_OWNED); 7367 7368 /* 7369 * Look up our CCB control block. 7370 */ 7371 cp = NULL; 7372 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7373 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7374 if (cp2->cam_ccb == ccb) { 7375 cp = cp2; 7376 break; 7377 } 7378 } 7379 if (!cp || cp->host_status == HS_WAIT) 7380 return -1; 7381 7382 /* 7383 * If a previous abort didn't succeed in time, 7384 * perform a BUS reset. 7385 */ 7386 if (cp->to_abort) { 7387 sym_reset_scsi_bus(np, 1); 7388 return 0; 7389 } 7390 7391 /* 7392 * Mark the CCB for abort and allow time for. 7393 */ 7394 cp->to_abort = timed_out ? 2 : 1; 7395 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7396 7397 /* 7398 * Tell the SCRIPTS processor to stop and synchronize with us. 7399 */ 7400 np->istat_sem = SEM; 7401 OUTB (nc_istat, SIGP|SEM); 7402 return 0; 7403 } 7404 7405 /* 7406 * Reset a SCSI device (all LUNs of a target). 7407 */ 7408 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7409 { 7410 tcb_p tp; 7411 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7412 7413 SYM_LOCK_ASSERT(MA_OWNED); 7414 7415 if (ccb_h->target_id == np->myaddr || 7416 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7417 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7418 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7419 return; 7420 } 7421 7422 tp = &np->target[ccb_h->target_id]; 7423 7424 tp->to_reset = 1; 7425 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7426 7427 np->istat_sem = SEM; 7428 OUTB (nc_istat, SIGP|SEM); 7429 } 7430 7431 /* 7432 * SIM action entry point. 7433 */ 7434 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7435 { 7436 hcb_p np; 7437 tcb_p tp; 7438 lcb_p lp; 7439 ccb_p cp; 7440 int tmp; 7441 u_char idmsg, *msgptr; 7442 u_int msglen; 7443 struct ccb_scsiio *csio; 7444 struct ccb_hdr *ccb_h; 7445 7446 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7447 7448 /* 7449 * Retrieve our controller data structure. 7450 */ 7451 np = (hcb_p) cam_sim_softc(sim); 7452 7453 SYM_LOCK_ASSERT(MA_OWNED); 7454 7455 /* 7456 * The common case is SCSI IO. 7457 * We deal with other ones elsewhere. 7458 */ 7459 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7460 sym_action2(sim, ccb); 7461 return; 7462 } 7463 csio = &ccb->csio; 7464 ccb_h = &csio->ccb_h; 7465 7466 /* 7467 * Work around races. 7468 */ 7469 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7470 xpt_done(ccb); 7471 return; 7472 } 7473 7474 /* 7475 * Minimal checkings, so that we will not 7476 * go outside our tables. 7477 */ 7478 if (ccb_h->target_id == np->myaddr || 7479 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7480 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7481 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7482 return; 7483 } 7484 7485 /* 7486 * Retrieve the target and lun descriptors. 7487 */ 7488 tp = &np->target[ccb_h->target_id]; 7489 lp = sym_lp(tp, ccb_h->target_lun); 7490 7491 /* 7492 * Complete the 1st INQUIRY command with error 7493 * condition if the device is flagged NOSCAN 7494 * at BOOT in the NVRAM. This may speed up 7495 * the boot and maintain coherency with BIOS 7496 * device numbering. Clearing the flag allows 7497 * user to rescan skipped devices later. 7498 * We also return error for devices not flagged 7499 * for SCAN LUNS in the NVRAM since some mono-lun 7500 * devices behave badly when asked for some non 7501 * zero LUN. Btw, this is an absolute hack.:-) 7502 */ 7503 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7504 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7505 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7506 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7507 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7508 ccb_h->target_lun != 0)) { 7509 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7510 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7511 return; 7512 } 7513 } 7514 7515 /* 7516 * Get a control block for this IO. 7517 */ 7518 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7519 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7520 if (!cp) { 7521 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7522 return; 7523 } 7524 7525 /* 7526 * Keep track of the IO in our CCB. 7527 */ 7528 cp->cam_ccb = ccb; 7529 7530 /* 7531 * Build the IDENTIFY message. 7532 */ 7533 idmsg = M_IDENTIFY | cp->lun; 7534 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7535 idmsg |= 0x40; 7536 7537 msgptr = cp->scsi_smsg; 7538 msglen = 0; 7539 msgptr[msglen++] = idmsg; 7540 7541 /* 7542 * Build the tag message if present. 7543 */ 7544 if (cp->tag != NO_TAG) { 7545 u_char order = csio->tag_action; 7546 7547 switch(order) { 7548 case M_ORDERED_TAG: 7549 break; 7550 case M_HEAD_TAG: 7551 break; 7552 default: 7553 order = M_SIMPLE_TAG; 7554 } 7555 msgptr[msglen++] = order; 7556 7557 /* 7558 * For less than 128 tags, actual tags are numbered 7559 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7560 * with devices that have problems with #TAG 0 or too 7561 * great #TAG numbers. For more tags (up to 256), 7562 * we use directly our tag number. 7563 */ 7564 #if SYM_CONF_MAX_TASK > (512/4) 7565 msgptr[msglen++] = cp->tag; 7566 #else 7567 msgptr[msglen++] = (cp->tag << 1) + 1; 7568 #endif 7569 } 7570 7571 /* 7572 * Build a negotiation message if needed. 7573 * (nego_status is filled by sym_prepare_nego()) 7574 */ 7575 cp->nego_status = 0; 7576 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7577 tp->tinfo.current.period != tp->tinfo.goal.period || 7578 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7579 tp->tinfo.current.options != tp->tinfo.goal.options) { 7580 if (!tp->nego_cp && lp) 7581 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7582 } 7583 7584 /* 7585 * Fill in our ccb 7586 */ 7587 7588 /* 7589 * Startqueue 7590 */ 7591 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7592 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7593 7594 /* 7595 * select 7596 */ 7597 cp->phys.select.sel_id = cp->target; 7598 cp->phys.select.sel_scntl3 = tp->head.wval; 7599 cp->phys.select.sel_sxfer = tp->head.sval; 7600 cp->phys.select.sel_scntl4 = tp->head.uval; 7601 7602 /* 7603 * message 7604 */ 7605 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7606 cp->phys.smsg.size = cpu_to_scr(msglen); 7607 7608 /* 7609 * command 7610 */ 7611 if (sym_setup_cdb(np, csio, cp) < 0) { 7612 sym_xpt_done(np, ccb, cp); 7613 sym_free_ccb(np, cp); 7614 return; 7615 } 7616 7617 /* 7618 * status 7619 */ 7620 #if 0 /* Provision */ 7621 cp->actualquirks = tp->quirks; 7622 #endif 7623 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7624 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7625 cp->ssss_status = S_ILLEGAL; 7626 cp->xerr_status = 0; 7627 cp->host_flags = 0; 7628 cp->extra_bytes = 0; 7629 7630 /* 7631 * extreme data pointer. 7632 * shall be positive, so -1 is lower than lowest.:) 7633 */ 7634 cp->ext_sg = -1; 7635 cp->ext_ofs = 0; 7636 7637 /* 7638 * Build the data descriptor block 7639 * and start the IO. 7640 */ 7641 sym_setup_data_and_start(np, csio, cp); 7642 } 7643 7644 /* 7645 * Setup buffers and pointers that address the CDB. 7646 * I bet, physical CDBs will never be used on the planet, 7647 * since they can be bounced without significant overhead. 7648 */ 7649 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7650 { 7651 struct ccb_hdr *ccb_h; 7652 u32 cmd_ba; 7653 int cmd_len; 7654 7655 SYM_LOCK_ASSERT(MA_OWNED); 7656 7657 ccb_h = &csio->ccb_h; 7658 7659 /* 7660 * CDB is 16 bytes max. 7661 */ 7662 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7663 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7664 return -1; 7665 } 7666 cmd_len = csio->cdb_len; 7667 7668 if (ccb_h->flags & CAM_CDB_POINTER) { 7669 /* CDB is a pointer */ 7670 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7671 /* CDB pointer is virtual */ 7672 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7673 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7674 } else { 7675 /* CDB pointer is physical */ 7676 #if 0 7677 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7678 #else 7679 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7680 return -1; 7681 #endif 7682 } 7683 } else { 7684 /* CDB is in the CAM ccb (buffer) */ 7685 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7686 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7687 } 7688 7689 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7690 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7691 7692 return 0; 7693 } 7694 7695 /* 7696 * Set up data pointers used by SCRIPTS. 7697 */ 7698 static void __inline 7699 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7700 { 7701 u32 lastp, goalp; 7702 7703 SYM_LOCK_ASSERT(MA_OWNED); 7704 7705 /* 7706 * No segments means no data. 7707 */ 7708 if (!cp->segments) 7709 dir = CAM_DIR_NONE; 7710 7711 /* 7712 * Set the data pointer. 7713 */ 7714 switch(dir) { 7715 case CAM_DIR_OUT: 7716 goalp = SCRIPTA_BA (np, data_out2) + 8; 7717 lastp = goalp - 8 - (cp->segments * (2*4)); 7718 break; 7719 case CAM_DIR_IN: 7720 cp->host_flags |= HF_DATA_IN; 7721 goalp = SCRIPTA_BA (np, data_in2) + 8; 7722 lastp = goalp - 8 - (cp->segments * (2*4)); 7723 break; 7724 case CAM_DIR_NONE: 7725 default: 7726 lastp = goalp = SCRIPTB_BA (np, no_data); 7727 break; 7728 } 7729 7730 cp->phys.head.lastp = cpu_to_scr(lastp); 7731 cp->phys.head.goalp = cpu_to_scr(goalp); 7732 cp->phys.head.savep = cpu_to_scr(lastp); 7733 cp->startp = cp->phys.head.savep; 7734 } 7735 7736 /* 7737 * Call back routine for the DMA map service. 7738 * If bounce buffers are used (why ?), we may sleep and then 7739 * be called there in another context. 7740 */ 7741 static void 7742 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7743 { 7744 ccb_p cp; 7745 hcb_p np; 7746 union ccb *ccb; 7747 7748 cp = (ccb_p) arg; 7749 ccb = cp->cam_ccb; 7750 np = (hcb_p) cp->arg; 7751 7752 SYM_LOCK_ASSERT(MA_OWNED); 7753 7754 /* 7755 * Deal with weird races. 7756 */ 7757 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7758 goto out_abort; 7759 7760 /* 7761 * Deal with weird errors. 7762 */ 7763 if (error) { 7764 cp->dmamapped = 0; 7765 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7766 goto out_abort; 7767 } 7768 7769 /* 7770 * Build the data descriptor for the chip. 7771 */ 7772 if (nsegs) { 7773 int retv; 7774 /* 896 rev 1 requires to be careful about boundaries */ 7775 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7776 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7777 else 7778 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7779 if (retv < 0) { 7780 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7781 goto out_abort; 7782 } 7783 } 7784 7785 /* 7786 * Synchronize the DMA map only if we have 7787 * actually mapped the data. 7788 */ 7789 if (cp->dmamapped) { 7790 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7791 (cp->dmamapped == SYM_DMA_READ ? 7792 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7793 } 7794 7795 /* 7796 * Set host status to busy state. 7797 * May have been set back to HS_WAIT to avoid a race. 7798 */ 7799 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7800 7801 /* 7802 * Set data pointers. 7803 */ 7804 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7805 7806 /* 7807 * Enqueue this IO in our pending queue. 7808 */ 7809 sym_enqueue_cam_ccb(cp); 7810 7811 /* 7812 * When `#ifed 1', the code below makes the driver 7813 * panic on the first attempt to write to a SCSI device. 7814 * It is the first test we want to do after a driver 7815 * change that does not seem obviously safe. :) 7816 */ 7817 #if 0 7818 switch (cp->cdb_buf[0]) { 7819 case 0x0A: case 0x2A: case 0xAA: 7820 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7821 MDELAY(10000); 7822 break; 7823 default: 7824 break; 7825 } 7826 #endif 7827 /* 7828 * Activate this job. 7829 */ 7830 sym_put_start_queue(np, cp); 7831 return; 7832 out_abort: 7833 sym_xpt_done(np, ccb, cp); 7834 sym_free_ccb(np, cp); 7835 } 7836 7837 /* 7838 * How complex it gets to deal with the data in CAM. 7839 * The Bus Dma stuff makes things still more complex. 7840 */ 7841 static void 7842 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7843 { 7844 struct ccb_hdr *ccb_h; 7845 int dir, retv; 7846 7847 SYM_LOCK_ASSERT(MA_OWNED); 7848 7849 ccb_h = &csio->ccb_h; 7850 7851 /* 7852 * Now deal with the data. 7853 */ 7854 cp->data_len = csio->dxfer_len; 7855 cp->arg = np; 7856 7857 /* 7858 * No direction means no data. 7859 */ 7860 dir = (ccb_h->flags & CAM_DIR_MASK); 7861 if (dir == CAM_DIR_NONE) { 7862 sym_execute_ccb(cp, NULL, 0, 0); 7863 return; 7864 } 7865 7866 cp->dmamapped = (dir == CAM_DIR_IN) ? SYM_DMA_READ : SYM_DMA_WRITE; 7867 retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap, 7868 (union ccb *)csio, sym_execute_ccb, cp, 0); 7869 if (retv == EINPROGRESS) { 7870 cp->host_status = HS_WAIT; 7871 xpt_freeze_simq(np->sim, 1); 7872 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7873 } 7874 } 7875 7876 /* 7877 * Move the scatter list to our data block. 7878 */ 7879 static int 7880 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7881 bus_dma_segment_t *psegs, int nsegs) 7882 { 7883 struct sym_tblmove *data; 7884 bus_dma_segment_t *psegs2; 7885 7886 SYM_LOCK_ASSERT(MA_OWNED); 7887 7888 if (nsegs > SYM_CONF_MAX_SG) 7889 return -1; 7890 7891 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7892 psegs2 = &psegs[nsegs-1]; 7893 cp->segments = nsegs; 7894 7895 while (1) { 7896 data->addr = cpu_to_scr(psegs2->ds_addr); 7897 data->size = cpu_to_scr(psegs2->ds_len); 7898 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7899 printf ("%s scatter: paddr=%lx len=%ld\n", 7900 sym_name(np), (long) psegs2->ds_addr, 7901 (long) psegs2->ds_len); 7902 } 7903 if (psegs2 != psegs) { 7904 --data; 7905 --psegs2; 7906 continue; 7907 } 7908 break; 7909 } 7910 return 0; 7911 } 7912 7913 /* 7914 * Scatter a SG list with physical addresses into bus addressable chunks. 7915 */ 7916 static int 7917 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7918 { 7919 u_long ps, pe, pn; 7920 u_long k; 7921 int s, t; 7922 7923 SYM_LOCK_ASSERT(MA_OWNED); 7924 7925 s = SYM_CONF_MAX_SG - 1; 7926 t = nsegs - 1; 7927 ps = psegs[t].ds_addr; 7928 pe = ps + psegs[t].ds_len; 7929 7930 while (s >= 0) { 7931 pn = (pe - 1) & ~(SYM_CONF_DMA_BOUNDARY - 1); 7932 if (pn <= ps) 7933 pn = ps; 7934 k = pe - pn; 7935 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7936 printf ("%s scatter: paddr=%lx len=%ld\n", 7937 sym_name(np), pn, k); 7938 } 7939 cp->phys.data[s].addr = cpu_to_scr(pn); 7940 cp->phys.data[s].size = cpu_to_scr(k); 7941 --s; 7942 if (pn == ps) { 7943 if (--t < 0) 7944 break; 7945 ps = psegs[t].ds_addr; 7946 pe = ps + psegs[t].ds_len; 7947 } 7948 else 7949 pe = pn; 7950 } 7951 7952 cp->segments = SYM_CONF_MAX_SG - 1 - s; 7953 7954 return t >= 0 ? -1 : 0; 7955 } 7956 7957 /* 7958 * SIM action for non performance critical stuff. 7959 */ 7960 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 7961 { 7962 union ccb *abort_ccb; 7963 struct ccb_hdr *ccb_h; 7964 struct ccb_pathinq *cpi; 7965 struct ccb_trans_settings *cts; 7966 struct sym_trans *tip; 7967 hcb_p np; 7968 tcb_p tp; 7969 lcb_p lp; 7970 u_char dflags; 7971 7972 /* 7973 * Retrieve our controller data structure. 7974 */ 7975 np = (hcb_p) cam_sim_softc(sim); 7976 7977 SYM_LOCK_ASSERT(MA_OWNED); 7978 7979 ccb_h = &ccb->ccb_h; 7980 7981 switch (ccb_h->func_code) { 7982 case XPT_SET_TRAN_SETTINGS: 7983 cts = &ccb->cts; 7984 tp = &np->target[ccb_h->target_id]; 7985 7986 /* 7987 * Update SPI transport settings in TARGET control block. 7988 * Update SCSI device settings in LUN control block. 7989 */ 7990 lp = sym_lp(tp, ccb_h->target_lun); 7991 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7992 sym_update_trans(np, &tp->tinfo.goal, cts); 7993 if (lp) 7994 sym_update_dflags(np, &lp->current_flags, cts); 7995 } 7996 if (cts->type == CTS_TYPE_USER_SETTINGS) { 7997 sym_update_trans(np, &tp->tinfo.user, cts); 7998 if (lp) 7999 sym_update_dflags(np, &lp->user_flags, cts); 8000 } 8001 8002 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8003 break; 8004 case XPT_GET_TRAN_SETTINGS: 8005 cts = &ccb->cts; 8006 tp = &np->target[ccb_h->target_id]; 8007 lp = sym_lp(tp, ccb_h->target_lun); 8008 8009 #define cts__scsi (&cts->proto_specific.scsi) 8010 #define cts__spi (&cts->xport_specific.spi) 8011 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8012 tip = &tp->tinfo.current; 8013 dflags = lp ? lp->current_flags : 0; 8014 } 8015 else { 8016 tip = &tp->tinfo.user; 8017 dflags = lp ? lp->user_flags : tp->usrflags; 8018 } 8019 8020 cts->protocol = PROTO_SCSI; 8021 cts->transport = XPORT_SPI; 8022 cts->protocol_version = tip->scsi_version; 8023 cts->transport_version = tip->spi_version; 8024 8025 cts__spi->sync_period = tip->period; 8026 cts__spi->sync_offset = tip->offset; 8027 cts__spi->bus_width = tip->width; 8028 cts__spi->ppr_options = tip->options; 8029 8030 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8031 | CTS_SPI_VALID_SYNC_OFFSET 8032 | CTS_SPI_VALID_BUS_WIDTH 8033 | CTS_SPI_VALID_PPR_OPTIONS; 8034 8035 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8036 if (dflags & SYM_DISC_ENABLED) 8037 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8038 cts__spi->valid |= CTS_SPI_VALID_DISC; 8039 8040 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8041 if (dflags & SYM_TAGS_ENABLED) 8042 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8043 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8044 #undef cts__spi 8045 #undef cts__scsi 8046 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8047 break; 8048 case XPT_CALC_GEOMETRY: 8049 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8050 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8051 break; 8052 case XPT_PATH_INQ: 8053 cpi = &ccb->cpi; 8054 cpi->version_num = 1; 8055 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8056 if ((np->features & FE_WIDE) != 0) 8057 cpi->hba_inquiry |= PI_WIDE_16; 8058 cpi->target_sprt = 0; 8059 cpi->hba_misc = PIM_UNMAPPED; 8060 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8061 cpi->hba_misc |= PIM_SCANHILO; 8062 if (np->usrflags & SYM_AVOID_BUS_RESET) 8063 cpi->hba_misc |= PIM_NOBUSRESET; 8064 cpi->hba_eng_cnt = 0; 8065 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8066 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8067 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8068 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8069 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8070 cpi->bus_id = cam_sim_bus(sim); 8071 cpi->initiator_id = np->myaddr; 8072 cpi->base_transfer_speed = 3300; 8073 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8074 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8075 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8076 cpi->unit_number = cam_sim_unit(sim); 8077 8078 cpi->protocol = PROTO_SCSI; 8079 cpi->protocol_version = SCSI_REV_2; 8080 cpi->transport = XPORT_SPI; 8081 cpi->transport_version = 2; 8082 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8083 if (np->features & FE_ULTRA3) { 8084 cpi->transport_version = 3; 8085 cpi->xport_specific.spi.ppr_options = 8086 SID_SPI_CLOCK_DT_ST; 8087 } 8088 cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE; 8089 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8090 break; 8091 case XPT_ABORT: 8092 abort_ccb = ccb->cab.abort_ccb; 8093 switch(abort_ccb->ccb_h.func_code) { 8094 case XPT_SCSI_IO: 8095 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8096 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8097 break; 8098 } 8099 default: 8100 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8101 break; 8102 } 8103 break; 8104 case XPT_RESET_DEV: 8105 sym_reset_dev(np, ccb); 8106 break; 8107 case XPT_RESET_BUS: 8108 sym_reset_scsi_bus(np, 0); 8109 if (sym_verbose) { 8110 xpt_print_path(np->path); 8111 printf("SCSI BUS reset delivered.\n"); 8112 } 8113 sym_init (np, 1); 8114 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8115 break; 8116 case XPT_ACCEPT_TARGET_IO: 8117 case XPT_CONT_TARGET_IO: 8118 case XPT_EN_LUN: 8119 case XPT_NOTIFY_ACK: 8120 case XPT_IMMED_NOTIFY: 8121 case XPT_TERM_IO: 8122 default: 8123 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8124 break; 8125 } 8126 } 8127 8128 /* 8129 * Asynchronous notification handler. 8130 */ 8131 static void 8132 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused) 8133 { 8134 hcb_p np; 8135 struct cam_sim *sim; 8136 u_int tn; 8137 tcb_p tp; 8138 8139 sim = (struct cam_sim *) cb_arg; 8140 np = (hcb_p) cam_sim_softc(sim); 8141 8142 SYM_LOCK_ASSERT(MA_OWNED); 8143 8144 switch (code) { 8145 case AC_LOST_DEVICE: 8146 tn = xpt_path_target_id(path); 8147 if (tn >= SYM_CONF_MAX_TARGET) 8148 break; 8149 8150 tp = &np->target[tn]; 8151 8152 tp->to_reset = 0; 8153 tp->head.sval = 0; 8154 tp->head.wval = np->rv_scntl3; 8155 tp->head.uval = 0; 8156 8157 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8158 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8159 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8160 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8161 8162 break; 8163 default: 8164 break; 8165 } 8166 } 8167 8168 /* 8169 * Update transfer settings of a target. 8170 */ 8171 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 8172 struct ccb_trans_settings *cts) 8173 { 8174 8175 SYM_LOCK_ASSERT(MA_OWNED); 8176 8177 /* 8178 * Update the infos. 8179 */ 8180 #define cts__spi (&cts->xport_specific.spi) 8181 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8182 tip->width = cts__spi->bus_width; 8183 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8184 tip->offset = cts__spi->sync_offset; 8185 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8186 tip->period = cts__spi->sync_period; 8187 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8188 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8189 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8190 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8191 tip->scsi_version = cts->protocol_version; 8192 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8193 cts->transport_version != XPORT_VERSION_UNKNOWN) 8194 tip->spi_version = cts->transport_version; 8195 #undef cts__spi 8196 /* 8197 * Scale against driver configuration limits. 8198 */ 8199 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8200 if (tip->period && tip->offset) { 8201 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8202 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8203 } else { 8204 tip->offset = 0; 8205 tip->period = 0; 8206 } 8207 8208 /* 8209 * Scale against actual controller BUS width. 8210 */ 8211 if (tip->width > np->maxwide) 8212 tip->width = np->maxwide; 8213 8214 /* 8215 * Only accept DT if controller supports and SYNC/WIDE asked. 8216 */ 8217 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8218 !(tip->width == BUS_16_BIT && tip->offset)) { 8219 tip->options &= ~PPR_OPT_DT; 8220 } 8221 8222 /* 8223 * Scale period factor and offset against controller limits. 8224 */ 8225 if (tip->offset && tip->period) { 8226 if (tip->options & PPR_OPT_DT) { 8227 if (tip->period < np->minsync_dt) 8228 tip->period = np->minsync_dt; 8229 if (tip->period > np->maxsync_dt) 8230 tip->period = np->maxsync_dt; 8231 if (tip->offset > np->maxoffs_dt) 8232 tip->offset = np->maxoffs_dt; 8233 } 8234 else { 8235 if (tip->period < np->minsync) 8236 tip->period = np->minsync; 8237 if (tip->period > np->maxsync) 8238 tip->period = np->maxsync; 8239 if (tip->offset > np->maxoffs) 8240 tip->offset = np->maxoffs; 8241 } 8242 } 8243 } 8244 8245 /* 8246 * Update flags for a device (logical unit). 8247 */ 8248 static void 8249 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8250 { 8251 8252 SYM_LOCK_ASSERT(MA_OWNED); 8253 8254 #define cts__scsi (&cts->proto_specific.scsi) 8255 #define cts__spi (&cts->xport_specific.spi) 8256 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8257 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8258 *flags |= SYM_DISC_ENABLED; 8259 else 8260 *flags &= ~SYM_DISC_ENABLED; 8261 } 8262 8263 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8264 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8265 *flags |= SYM_TAGS_ENABLED; 8266 else 8267 *flags &= ~SYM_TAGS_ENABLED; 8268 } 8269 #undef cts__spi 8270 #undef cts__scsi 8271 } 8272 8273 /*============= DRIVER INITIALISATION ==================*/ 8274 8275 static device_method_t sym_pci_methods[] = { 8276 DEVMETHOD(device_probe, sym_pci_probe), 8277 DEVMETHOD(device_attach, sym_pci_attach), 8278 DEVMETHOD_END 8279 }; 8280 8281 static driver_t sym_pci_driver = { 8282 "sym", 8283 sym_pci_methods, 8284 1 /* no softc */ 8285 }; 8286 8287 static devclass_t sym_devclass; 8288 8289 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL); 8290 MODULE_DEPEND(sym, cam, 1, 1, 1); 8291 MODULE_DEPEND(sym, pci, 1, 1, 1); 8292 8293 static const struct sym_pci_chip sym_pci_dev_table[] = { 8294 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8295 FE_ERL} 8296 , 8297 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8298 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8299 FE_BOF} 8300 , 8301 #else 8302 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8303 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8304 , 8305 #endif 8306 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8307 FE_BOF|FE_ERL} 8308 , 8309 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8310 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8311 , 8312 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8313 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8314 , 8315 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8316 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8317 , 8318 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8319 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8320 FE_RAM|FE_DIFF} 8321 , 8322 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8323 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8324 FE_RAM|FE_DIFF} 8325 , 8326 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8327 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8328 FE_RAM|FE_DIFF} 8329 , 8330 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8331 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8332 FE_RAM|FE_DIFF} 8333 , 8334 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8335 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8336 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8337 FE_RAM|FE_LCKFRQ} 8338 , 8339 #else 8340 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8341 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8342 FE_RAM|FE_LCKFRQ} 8343 , 8344 #endif 8345 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8346 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8347 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8348 , 8349 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8350 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8351 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8352 , 8353 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8354 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8355 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8356 FE_C10} 8357 , 8358 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8359 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8360 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8361 FE_C10|FE_U3EN} 8362 , 8363 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8364 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8365 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8366 FE_C10|FE_U3EN} 8367 , 8368 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8369 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8370 FE_RAM|FE_IO256|FE_LEDC} 8371 }; 8372 8373 /* 8374 * Look up the chip table. 8375 * 8376 * Return a pointer to the chip entry if found, 8377 * zero otherwise. 8378 */ 8379 static const struct sym_pci_chip * 8380 sym_find_pci_chip(device_t dev) 8381 { 8382 const struct sym_pci_chip *chip; 8383 int i; 8384 u_short device_id; 8385 u_char revision; 8386 8387 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8388 return NULL; 8389 8390 device_id = pci_get_device(dev); 8391 revision = pci_get_revid(dev); 8392 8393 for (i = 0; i < nitems(sym_pci_dev_table); i++) { 8394 chip = &sym_pci_dev_table[i]; 8395 if (device_id != chip->device_id) 8396 continue; 8397 if (revision > chip->revision_id) 8398 continue; 8399 return chip; 8400 } 8401 8402 return NULL; 8403 } 8404 8405 /* 8406 * Tell upper layer if the chip is supported. 8407 */ 8408 static int 8409 sym_pci_probe(device_t dev) 8410 { 8411 const struct sym_pci_chip *chip; 8412 8413 chip = sym_find_pci_chip(dev); 8414 if (chip && sym_find_firmware(chip)) { 8415 device_set_desc(dev, chip->name); 8416 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? 8417 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; 8418 } 8419 return ENXIO; 8420 } 8421 8422 /* 8423 * Attach a sym53c8xx device. 8424 */ 8425 static int 8426 sym_pci_attach(device_t dev) 8427 { 8428 const struct sym_pci_chip *chip; 8429 u_short command; 8430 u_char cachelnsz; 8431 struct sym_hcb *np = NULL; 8432 struct sym_nvram nvram; 8433 const struct sym_fw *fw = NULL; 8434 int i; 8435 bus_dma_tag_t bus_dmat; 8436 8437 bus_dmat = bus_get_dma_tag(dev); 8438 8439 /* 8440 * Only probed devices should be attached. 8441 * We just enjoy being paranoid. :) 8442 */ 8443 chip = sym_find_pci_chip(dev); 8444 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8445 return (ENXIO); 8446 8447 /* 8448 * Allocate immediately the host control block, 8449 * since we are only expecting to succeed. :) 8450 * We keep track in the HCB of all the resources that 8451 * are to be released on error. 8452 */ 8453 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8454 if (np) 8455 np->bus_dmat = bus_dmat; 8456 else 8457 return (ENXIO); 8458 device_set_softc(dev, np); 8459 8460 SYM_LOCK_INIT(); 8461 8462 /* 8463 * Copy some useful infos to the HCB. 8464 */ 8465 np->hcb_ba = vtobus(np); 8466 np->verbose = bootverbose; 8467 np->device = dev; 8468 np->device_id = pci_get_device(dev); 8469 np->revision_id = pci_get_revid(dev); 8470 np->features = chip->features; 8471 np->clock_divn = chip->nr_divisor; 8472 np->maxoffs = chip->offset_max; 8473 np->maxburst = chip->burst_max; 8474 np->scripta_sz = fw->a_size; 8475 np->scriptb_sz = fw->b_size; 8476 np->fw_setup = fw->setup; 8477 np->fw_patch = fw->patch; 8478 np->fw_name = fw->name; 8479 8480 #ifdef __amd64__ 8481 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8482 "TARGET"); 8483 if (!np->target) 8484 goto attach_failed; 8485 #endif 8486 8487 /* 8488 * Initialize the CCB free and busy queues. 8489 */ 8490 sym_que_init(&np->free_ccbq); 8491 sym_que_init(&np->busy_ccbq); 8492 sym_que_init(&np->comp_ccbq); 8493 sym_que_init(&np->cam_ccbq); 8494 8495 /* 8496 * Allocate a tag for the DMA of user data. 8497 */ 8498 if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY, 8499 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 8500 BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY, 8501 0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) { 8502 device_printf(dev, "failed to create DMA tag.\n"); 8503 goto attach_failed; 8504 } 8505 8506 /* 8507 * Read and apply some fix-ups to the PCI COMMAND 8508 * register. We want the chip to be enabled for: 8509 * - BUS mastering 8510 * - PCI parity checking (reporting would also be fine) 8511 * - Write And Invalidate. 8512 */ 8513 command = pci_read_config(dev, PCIR_COMMAND, 2); 8514 command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN | 8515 PCIM_CMD_MWRICEN; 8516 pci_write_config(dev, PCIR_COMMAND, command, 2); 8517 8518 /* 8519 * Let the device know about the cache line size, 8520 * if it doesn't yet. 8521 */ 8522 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8523 if (!cachelnsz) { 8524 cachelnsz = 8; 8525 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8526 } 8527 8528 /* 8529 * Alloc/get/map/retrieve everything that deals with MMIO. 8530 */ 8531 i = SYM_PCI_MMIO; 8532 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, 8533 RF_ACTIVE); 8534 if (!np->mmio_res) { 8535 device_printf(dev, "failed to allocate MMIO resources\n"); 8536 goto attach_failed; 8537 } 8538 np->mmio_ba = rman_get_start(np->mmio_res); 8539 8540 /* 8541 * Allocate the IRQ. 8542 */ 8543 i = 0; 8544 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8545 RF_ACTIVE | RF_SHAREABLE); 8546 if (!np->irq_res) { 8547 device_printf(dev, "failed to allocate IRQ resource\n"); 8548 goto attach_failed; 8549 } 8550 8551 #ifdef SYM_CONF_IOMAPPED 8552 /* 8553 * User want us to use normal IO with PCI. 8554 * Alloc/get/map/retrieve everything that deals with IO. 8555 */ 8556 i = SYM_PCI_IO; 8557 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE); 8558 if (!np->io_res) { 8559 device_printf(dev, "failed to allocate IO resources\n"); 8560 goto attach_failed; 8561 } 8562 8563 #endif /* SYM_CONF_IOMAPPED */ 8564 8565 /* 8566 * If the chip has RAM. 8567 * Alloc/get/map/retrieve the corresponding resources. 8568 */ 8569 if (np->features & (FE_RAM|FE_RAM8K)) { 8570 int regs_id = SYM_PCI_RAM; 8571 if (np->features & FE_64BIT) 8572 regs_id = SYM_PCI_RAM64; 8573 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8574 ®s_id, RF_ACTIVE); 8575 if (!np->ram_res) { 8576 device_printf(dev,"failed to allocate RAM resources\n"); 8577 goto attach_failed; 8578 } 8579 np->ram_id = regs_id; 8580 np->ram_ba = rman_get_start(np->ram_res); 8581 } 8582 8583 /* 8584 * Save setting of some IO registers, so we will 8585 * be able to probe specific implementations. 8586 */ 8587 sym_save_initial_setting (np); 8588 8589 /* 8590 * Reset the chip now, since it has been reported 8591 * that SCSI clock calibration may not work properly 8592 * if the chip is currently active. 8593 */ 8594 sym_chip_reset (np); 8595 8596 /* 8597 * Try to read the user set-up. 8598 */ 8599 (void) sym_read_nvram(np, &nvram); 8600 8601 /* 8602 * Prepare controller and devices settings, according 8603 * to chip features, user set-up and driver set-up. 8604 */ 8605 (void) sym_prepare_setting(np, &nvram); 8606 8607 /* 8608 * Check the PCI clock frequency. 8609 * Must be performed after prepare_setting since it destroys 8610 * STEST1 that is used to probe for the clock doubler. 8611 */ 8612 i = sym_getpciclock(np); 8613 if (i > 37000) 8614 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8615 8616 /* 8617 * Allocate the start queue. 8618 */ 8619 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8620 if (!np->squeue) 8621 goto attach_failed; 8622 np->squeue_ba = vtobus(np->squeue); 8623 8624 /* 8625 * Allocate the done queue. 8626 */ 8627 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8628 if (!np->dqueue) 8629 goto attach_failed; 8630 np->dqueue_ba = vtobus(np->dqueue); 8631 8632 /* 8633 * Allocate the target bus address array. 8634 */ 8635 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8636 if (!np->targtbl) 8637 goto attach_failed; 8638 np->targtbl_ba = vtobus(np->targtbl); 8639 8640 /* 8641 * Allocate SCRIPTS areas. 8642 */ 8643 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8644 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8645 if (!np->scripta0 || !np->scriptb0) 8646 goto attach_failed; 8647 8648 /* 8649 * Allocate the CCBs. We need at least ONE. 8650 */ 8651 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8652 ; 8653 if (i < 1) 8654 goto attach_failed; 8655 8656 /* 8657 * Calculate BUS addresses where we are going 8658 * to load the SCRIPTS. 8659 */ 8660 np->scripta_ba = vtobus(np->scripta0); 8661 np->scriptb_ba = vtobus(np->scriptb0); 8662 np->scriptb0_ba = np->scriptb_ba; 8663 8664 if (np->ram_ba) { 8665 np->scripta_ba = np->ram_ba; 8666 if (np->features & FE_RAM8K) { 8667 np->ram_ws = 8192; 8668 np->scriptb_ba = np->scripta_ba + 4096; 8669 #ifdef __LP64__ 8670 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8671 #endif 8672 } 8673 else 8674 np->ram_ws = 4096; 8675 } 8676 8677 /* 8678 * Copy scripts to controller instance. 8679 */ 8680 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8681 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8682 8683 /* 8684 * Setup variable parts in scripts and compute 8685 * scripts bus addresses used from the C code. 8686 */ 8687 np->fw_setup(np, fw); 8688 8689 /* 8690 * Bind SCRIPTS with physical addresses usable by the 8691 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8692 */ 8693 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8694 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8695 8696 #ifdef SYM_CONF_IARB_SUPPORT 8697 /* 8698 * If user wants IARB to be set when we win arbitration 8699 * and have other jobs, compute the max number of consecutive 8700 * settings of IARB hints before we leave devices a chance to 8701 * arbitrate for reselection. 8702 */ 8703 #ifdef SYM_SETUP_IARB_MAX 8704 np->iarb_max = SYM_SETUP_IARB_MAX; 8705 #else 8706 np->iarb_max = 4; 8707 #endif 8708 #endif 8709 8710 /* 8711 * Prepare the idle and invalid task actions. 8712 */ 8713 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8714 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8715 np->idletask_ba = vtobus(&np->idletask); 8716 8717 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8718 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8719 np->notask_ba = vtobus(&np->notask); 8720 8721 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8722 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8723 np->bad_itl_ba = vtobus(&np->bad_itl); 8724 8725 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8726 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8727 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8728 8729 /* 8730 * Allocate and prepare the lun JUMP table that is used 8731 * for a target prior the probing of devices (bad lun table). 8732 * A private table will be allocated for the target on the 8733 * first INQUIRY response received. 8734 */ 8735 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8736 if (!np->badluntbl) 8737 goto attach_failed; 8738 8739 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8740 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8741 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8742 8743 /* 8744 * Prepare the bus address array that contains the bus 8745 * address of each target control block. 8746 * For now, assume all logical units are wrong. :) 8747 */ 8748 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8749 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8750 np->target[i].head.luntbl_sa = 8751 cpu_to_scr(vtobus(np->badluntbl)); 8752 np->target[i].head.lun0_sa = 8753 cpu_to_scr(vtobus(&np->badlun_sa)); 8754 } 8755 8756 /* 8757 * Now check the cache handling of the pci chipset. 8758 */ 8759 if (sym_snooptest (np)) { 8760 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8761 goto attach_failed; 8762 }; 8763 8764 /* 8765 * Now deal with CAM. 8766 * Hopefully, we will succeed with that one.:) 8767 */ 8768 if (!sym_cam_attach(np)) 8769 goto attach_failed; 8770 8771 /* 8772 * Sigh! we are done. 8773 */ 8774 return 0; 8775 8776 /* 8777 * We have failed. 8778 * We will try to free all the resources we have 8779 * allocated, but if we are a boot device, this 8780 * will not help that much.;) 8781 */ 8782 attach_failed: 8783 if (np) 8784 sym_pci_free(np); 8785 return ENXIO; 8786 } 8787 8788 /* 8789 * Free everything that have been allocated for this device. 8790 */ 8791 static void sym_pci_free(hcb_p np) 8792 { 8793 SYM_QUEHEAD *qp; 8794 ccb_p cp; 8795 tcb_p tp; 8796 lcb_p lp; 8797 int target, lun; 8798 8799 /* 8800 * First free CAM resources. 8801 */ 8802 sym_cam_free(np); 8803 8804 /* 8805 * Now every should be quiet for us to 8806 * free other resources. 8807 */ 8808 if (np->ram_res) 8809 bus_release_resource(np->device, SYS_RES_MEMORY, 8810 np->ram_id, np->ram_res); 8811 if (np->mmio_res) 8812 bus_release_resource(np->device, SYS_RES_MEMORY, 8813 SYM_PCI_MMIO, np->mmio_res); 8814 if (np->io_res) 8815 bus_release_resource(np->device, SYS_RES_IOPORT, 8816 SYM_PCI_IO, np->io_res); 8817 if (np->irq_res) 8818 bus_release_resource(np->device, SYS_RES_IRQ, 8819 0, np->irq_res); 8820 8821 if (np->scriptb0) 8822 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8823 if (np->scripta0) 8824 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8825 if (np->squeue) 8826 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8827 if (np->dqueue) 8828 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8829 8830 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8831 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8832 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8833 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8834 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8835 } 8836 8837 if (np->badluntbl) 8838 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8839 8840 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8841 tp = &np->target[target]; 8842 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8843 lp = sym_lp(tp, lun); 8844 if (!lp) 8845 continue; 8846 if (lp->itlq_tbl) 8847 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8848 "ITLQ_TBL"); 8849 if (lp->cb_tags) 8850 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8851 "CB_TAGS"); 8852 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8853 } 8854 #if SYM_CONF_MAX_LUN > 1 8855 if (tp->lunmp) 8856 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8857 "LUNMP"); 8858 #endif 8859 } 8860 #ifdef __amd64__ 8861 if (np->target) 8862 sym_mfree_dma(np->target, 8863 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8864 #endif 8865 if (np->targtbl) 8866 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8867 if (np->data_dmat) 8868 bus_dma_tag_destroy(np->data_dmat); 8869 if (SYM_LOCK_INITIALIZED() != 0) 8870 SYM_LOCK_DESTROY(); 8871 device_set_softc(np->device, NULL); 8872 sym_mfree_dma(np, sizeof(*np), "HCB"); 8873 } 8874 8875 /* 8876 * Allocate CAM resources and register a bus to CAM. 8877 */ 8878 static int sym_cam_attach(hcb_p np) 8879 { 8880 struct cam_devq *devq = NULL; 8881 struct cam_sim *sim = NULL; 8882 struct cam_path *path = NULL; 8883 int err; 8884 8885 /* 8886 * Establish our interrupt handler. 8887 */ 8888 err = bus_setup_intr(np->device, np->irq_res, 8889 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8890 NULL, sym_intr, np, &np->intr); 8891 if (err) { 8892 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8893 err); 8894 goto fail; 8895 } 8896 8897 /* 8898 * Create the device queue for our sym SIM. 8899 */ 8900 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8901 if (!devq) 8902 goto fail; 8903 8904 /* 8905 * Construct our SIM entry. 8906 */ 8907 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 8908 device_get_unit(np->device), 8909 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 8910 if (!sim) 8911 goto fail; 8912 8913 SYM_LOCK(); 8914 8915 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 8916 goto fail; 8917 np->sim = sim; 8918 8919 if (xpt_create_path(&path, NULL, 8920 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 8921 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 8922 goto fail; 8923 } 8924 np->path = path; 8925 8926 /* 8927 * Establish our async notification handler. 8928 */ 8929 if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) != 8930 CAM_REQ_CMP) 8931 goto fail; 8932 8933 /* 8934 * Start the chip now, without resetting the BUS, since 8935 * it seems that this must stay under control of CAM. 8936 * With LVD/SE capable chips and BUS in SE mode, we may 8937 * get a spurious SMBC interrupt. 8938 */ 8939 sym_init (np, 0); 8940 8941 SYM_UNLOCK(); 8942 8943 return 1; 8944 fail: 8945 if (sim) 8946 cam_sim_free(sim, FALSE); 8947 if (devq) 8948 cam_simq_free(devq); 8949 8950 SYM_UNLOCK(); 8951 8952 sym_cam_free(np); 8953 8954 return 0; 8955 } 8956 8957 /* 8958 * Free everything that deals with CAM. 8959 */ 8960 static void sym_cam_free(hcb_p np) 8961 { 8962 8963 SYM_LOCK_ASSERT(MA_NOTOWNED); 8964 8965 if (np->intr) { 8966 bus_teardown_intr(np->device, np->irq_res, np->intr); 8967 np->intr = NULL; 8968 } 8969 8970 SYM_LOCK(); 8971 8972 if (np->sim) { 8973 xpt_bus_deregister(cam_sim_path(np->sim)); 8974 cam_sim_free(np->sim, /*free_devq*/ TRUE); 8975 np->sim = NULL; 8976 } 8977 if (np->path) { 8978 xpt_free_path(np->path); 8979 np->path = NULL; 8980 } 8981 8982 SYM_UNLOCK(); 8983 } 8984 8985 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 8986 8987 /* 8988 * Get host setup from NVRAM. 8989 */ 8990 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 8991 { 8992 #ifdef SYM_CONF_NVRAM_SUPPORT 8993 /* 8994 * Get parity checking, host ID, verbose mode 8995 * and miscellaneous host flags from NVRAM. 8996 */ 8997 switch(nvram->type) { 8998 case SYM_SYMBIOS_NVRAM: 8999 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9000 np->rv_scntl0 &= ~0x0a; 9001 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9002 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9003 np->verbose += 1; 9004 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9005 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9006 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9007 np->usrflags |= SYM_AVOID_BUS_RESET; 9008 break; 9009 case SYM_TEKRAM_NVRAM: 9010 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9011 break; 9012 default: 9013 break; 9014 } 9015 #endif 9016 } 9017 9018 /* 9019 * Get target setup from NVRAM. 9020 */ 9021 #ifdef SYM_CONF_NVRAM_SUPPORT 9022 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9023 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9024 #endif 9025 9026 static void 9027 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9028 { 9029 #ifdef SYM_CONF_NVRAM_SUPPORT 9030 switch(nvp->type) { 9031 case SYM_SYMBIOS_NVRAM: 9032 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9033 break; 9034 case SYM_TEKRAM_NVRAM: 9035 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9036 break; 9037 default: 9038 break; 9039 } 9040 #endif 9041 } 9042 9043 #ifdef SYM_CONF_NVRAM_SUPPORT 9044 /* 9045 * Get target set-up from Symbios format NVRAM. 9046 */ 9047 static void 9048 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9049 { 9050 tcb_p tp = &np->target[target]; 9051 Symbios_target *tn = &nvram->target[target]; 9052 9053 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9054 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9055 tp->usrtags = 9056 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9057 9058 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9059 tp->usrflags &= ~SYM_DISC_ENABLED; 9060 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9061 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9062 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9063 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9064 } 9065 9066 /* 9067 * Get target set-up from Tekram format NVRAM. 9068 */ 9069 static void 9070 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9071 { 9072 tcb_p tp = &np->target[target]; 9073 struct Tekram_target *tn = &nvram->target[target]; 9074 int i; 9075 9076 if (tn->flags & TEKRAM_SYNC_NEGO) { 9077 i = tn->sync_index & 0xf; 9078 tp->tinfo.user.period = Tekram_sync[i]; 9079 } 9080 9081 tp->tinfo.user.width = 9082 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9083 9084 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9085 tp->usrtags = 2 << nvram->max_tags_index; 9086 } 9087 9088 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9089 tp->usrflags |= SYM_DISC_ENABLED; 9090 9091 /* If any device does not support parity, we will not use this option */ 9092 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9093 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9094 } 9095 9096 #ifdef SYM_CONF_DEBUG_NVRAM 9097 /* 9098 * Dump Symbios format NVRAM for debugging purpose. 9099 */ 9100 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9101 { 9102 int i; 9103 9104 /* display Symbios nvram host data */ 9105 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9106 sym_name(np), nvram->host_id & 0x0f, 9107 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9108 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9109 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9110 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9111 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9112 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9113 9114 /* display Symbios nvram drive data */ 9115 for (i = 0 ; i < 15 ; i++) { 9116 struct Symbios_target *tn = &nvram->target[i]; 9117 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9118 sym_name(np), i, 9119 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9120 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9121 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9122 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9123 tn->bus_width, 9124 tn->sync_period / 4, 9125 tn->timeout); 9126 } 9127 } 9128 9129 /* 9130 * Dump TEKRAM format NVRAM for debugging purpose. 9131 */ 9132 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9133 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9134 { 9135 int i, tags, boot_delay; 9136 char *rem; 9137 9138 /* display Tekram nvram host data */ 9139 tags = 2 << nvram->max_tags_index; 9140 boot_delay = 0; 9141 if (nvram->boot_delay_index < 6) 9142 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9143 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9144 default: 9145 case 0: rem = ""; break; 9146 case 1: rem = " REMOVABLE=boot device"; break; 9147 case 2: rem = " REMOVABLE=all"; break; 9148 } 9149 9150 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9151 sym_name(np), nvram->host_id & 0x0f, 9152 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9153 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9154 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9155 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9156 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9157 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9158 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9159 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9160 rem, boot_delay, tags); 9161 9162 /* display Tekram nvram drive data */ 9163 for (i = 0; i <= 15; i++) { 9164 int sync, j; 9165 struct Tekram_target *tn = &nvram->target[i]; 9166 j = tn->sync_index & 0xf; 9167 sync = Tekram_sync[j]; 9168 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9169 sym_name(np), i, 9170 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9171 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9172 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9173 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9174 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9175 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9176 sync); 9177 } 9178 } 9179 #endif /* SYM_CONF_DEBUG_NVRAM */ 9180 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9181 9182 /* 9183 * Try reading Symbios or Tekram NVRAM 9184 */ 9185 #ifdef SYM_CONF_NVRAM_SUPPORT 9186 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9187 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9188 #endif 9189 9190 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9191 { 9192 #ifdef SYM_CONF_NVRAM_SUPPORT 9193 /* 9194 * Try to read SYMBIOS nvram. 9195 * Try to read TEKRAM nvram if Symbios nvram not found. 9196 */ 9197 if (SYM_SETUP_SYMBIOS_NVRAM && 9198 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9199 nvp->type = SYM_SYMBIOS_NVRAM; 9200 #ifdef SYM_CONF_DEBUG_NVRAM 9201 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9202 #endif 9203 } 9204 else if (SYM_SETUP_TEKRAM_NVRAM && 9205 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9206 nvp->type = SYM_TEKRAM_NVRAM; 9207 #ifdef SYM_CONF_DEBUG_NVRAM 9208 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9209 #endif 9210 } 9211 else 9212 nvp->type = 0; 9213 #else 9214 nvp->type = 0; 9215 #endif 9216 return nvp->type; 9217 } 9218 9219 #ifdef SYM_CONF_NVRAM_SUPPORT 9220 /* 9221 * 24C16 EEPROM reading. 9222 * 9223 * GPOI0 - data in/data out 9224 * GPIO1 - clock 9225 * Symbios NVRAM wiring now also used by Tekram. 9226 */ 9227 9228 #define SET_BIT 0 9229 #define CLR_BIT 1 9230 #define SET_CLK 2 9231 #define CLR_CLK 3 9232 9233 /* 9234 * Set/clear data/clock bit in GPIO0 9235 */ 9236 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9237 int bit_mode) 9238 { 9239 UDELAY (5); 9240 switch (bit_mode){ 9241 case SET_BIT: 9242 *gpreg |= write_bit; 9243 break; 9244 case CLR_BIT: 9245 *gpreg &= 0xfe; 9246 break; 9247 case SET_CLK: 9248 *gpreg |= 0x02; 9249 break; 9250 case CLR_CLK: 9251 *gpreg &= 0xfd; 9252 break; 9253 9254 } 9255 OUTB (nc_gpreg, *gpreg); 9256 UDELAY (5); 9257 } 9258 9259 /* 9260 * Send START condition to NVRAM to wake it up. 9261 */ 9262 static void S24C16_start(hcb_p np, u_char *gpreg) 9263 { 9264 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9265 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9266 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9267 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9268 } 9269 9270 /* 9271 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9272 */ 9273 static void S24C16_stop(hcb_p np, u_char *gpreg) 9274 { 9275 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9276 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9277 } 9278 9279 /* 9280 * Read or write a bit to the NVRAM, 9281 * read if GPIO0 input else write if GPIO0 output 9282 */ 9283 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9284 u_char *gpreg) 9285 { 9286 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9287 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9288 if (read_bit) 9289 *read_bit = INB (nc_gpreg); 9290 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9291 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9292 } 9293 9294 /* 9295 * Output an ACK to the NVRAM after reading, 9296 * change GPIO0 to output and when done back to an input 9297 */ 9298 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9299 u_char *gpcntl) 9300 { 9301 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9302 S24C16_do_bit(np, 0, write_bit, gpreg); 9303 OUTB (nc_gpcntl, *gpcntl); 9304 } 9305 9306 /* 9307 * Input an ACK from NVRAM after writing, 9308 * change GPIO0 to input and when done back to an output 9309 */ 9310 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9311 u_char *gpcntl) 9312 { 9313 OUTB (nc_gpcntl, *gpcntl | 0x01); 9314 S24C16_do_bit(np, read_bit, 1, gpreg); 9315 OUTB (nc_gpcntl, *gpcntl); 9316 } 9317 9318 /* 9319 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9320 * GPIO0 must already be set as an output 9321 */ 9322 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9323 u_char *gpreg, u_char *gpcntl) 9324 { 9325 int x; 9326 9327 for (x = 0; x < 8; x++) 9328 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9329 9330 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9331 } 9332 9333 /* 9334 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9335 * GPIO0 must already be set as an input 9336 */ 9337 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9338 u_char *gpreg, u_char *gpcntl) 9339 { 9340 int x; 9341 u_char read_bit; 9342 9343 *read_data = 0; 9344 for (x = 0; x < 8; x++) { 9345 S24C16_do_bit(np, &read_bit, 1, gpreg); 9346 *read_data |= ((read_bit & 0x01) << (7 - x)); 9347 } 9348 9349 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9350 } 9351 9352 /* 9353 * Read 'len' bytes starting at 'offset'. 9354 */ 9355 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9356 { 9357 u_char gpcntl, gpreg; 9358 u_char old_gpcntl, old_gpreg; 9359 u_char ack_data; 9360 int retv = 1; 9361 int x; 9362 9363 /* save current state of GPCNTL and GPREG */ 9364 old_gpreg = INB (nc_gpreg); 9365 old_gpcntl = INB (nc_gpcntl); 9366 gpcntl = old_gpcntl & 0x1c; 9367 9368 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9369 OUTB (nc_gpreg, old_gpreg); 9370 OUTB (nc_gpcntl, gpcntl); 9371 9372 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9373 gpreg = old_gpreg; 9374 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9375 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9376 9377 /* now set NVRAM inactive with GPIO0/1 both high */ 9378 S24C16_stop(np, &gpreg); 9379 9380 /* activate NVRAM */ 9381 S24C16_start(np, &gpreg); 9382 9383 /* write device code and random address MSB */ 9384 S24C16_write_byte(np, &ack_data, 9385 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9386 if (ack_data & 0x01) 9387 goto out; 9388 9389 /* write random address LSB */ 9390 S24C16_write_byte(np, &ack_data, 9391 offset & 0xff, &gpreg, &gpcntl); 9392 if (ack_data & 0x01) 9393 goto out; 9394 9395 /* regenerate START state to set up for reading */ 9396 S24C16_start(np, &gpreg); 9397 9398 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9399 S24C16_write_byte(np, &ack_data, 9400 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9401 if (ack_data & 0x01) 9402 goto out; 9403 9404 /* now set up GPIO0 for inputting data */ 9405 gpcntl |= 0x01; 9406 OUTB (nc_gpcntl, gpcntl); 9407 9408 /* input all requested data - only part of total NVRAM */ 9409 for (x = 0; x < len; x++) 9410 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9411 9412 /* finally put NVRAM back in inactive mode */ 9413 gpcntl &= 0xfe; 9414 OUTB (nc_gpcntl, gpcntl); 9415 S24C16_stop(np, &gpreg); 9416 retv = 0; 9417 out: 9418 /* return GPIO0/1 to original states after having accessed NVRAM */ 9419 OUTB (nc_gpcntl, old_gpcntl); 9420 OUTB (nc_gpreg, old_gpreg); 9421 9422 return retv; 9423 } 9424 9425 #undef SET_BIT /* 0 */ 9426 #undef CLR_BIT /* 1 */ 9427 #undef SET_CLK /* 2 */ 9428 #undef CLR_CLK /* 3 */ 9429 9430 /* 9431 * Try reading Symbios NVRAM. 9432 * Return 0 if OK. 9433 */ 9434 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9435 { 9436 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9437 u_char *data = (u_char *) nvram; 9438 int len = sizeof(*nvram); 9439 u_short csum; 9440 int x; 9441 9442 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9443 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9444 return 1; 9445 9446 /* check valid NVRAM signature, verify byte count and checksum */ 9447 if (nvram->type != 0 || 9448 bcmp(nvram->trailer, Symbios_trailer, 6) || 9449 nvram->byte_count != len - 12) 9450 return 1; 9451 9452 /* verify checksum */ 9453 for (x = 6, csum = 0; x < len - 6; x++) 9454 csum += data[x]; 9455 if (csum != nvram->checksum) 9456 return 1; 9457 9458 return 0; 9459 } 9460 9461 /* 9462 * 93C46 EEPROM reading. 9463 * 9464 * GPOI0 - data in 9465 * GPIO1 - data out 9466 * GPIO2 - clock 9467 * GPIO4 - chip select 9468 * 9469 * Used by Tekram. 9470 */ 9471 9472 /* 9473 * Pulse clock bit in GPIO0 9474 */ 9475 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9476 { 9477 OUTB (nc_gpreg, *gpreg | 0x04); 9478 UDELAY (2); 9479 OUTB (nc_gpreg, *gpreg); 9480 } 9481 9482 /* 9483 * Read bit from NVRAM 9484 */ 9485 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9486 { 9487 UDELAY (2); 9488 T93C46_Clk(np, gpreg); 9489 *read_bit = INB (nc_gpreg); 9490 } 9491 9492 /* 9493 * Write bit to GPIO0 9494 */ 9495 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9496 { 9497 if (write_bit & 0x01) 9498 *gpreg |= 0x02; 9499 else 9500 *gpreg &= 0xfd; 9501 9502 *gpreg |= 0x10; 9503 9504 OUTB (nc_gpreg, *gpreg); 9505 UDELAY (2); 9506 9507 T93C46_Clk(np, gpreg); 9508 } 9509 9510 /* 9511 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9512 */ 9513 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9514 { 9515 *gpreg &= 0xef; 9516 OUTB (nc_gpreg, *gpreg); 9517 UDELAY (2); 9518 9519 T93C46_Clk(np, gpreg); 9520 } 9521 9522 /* 9523 * Send read command and address to NVRAM 9524 */ 9525 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9526 u_char *read_bit, u_char *gpreg) 9527 { 9528 int x; 9529 9530 /* send 9 bits, start bit (1), command (2), address (6) */ 9531 for (x = 0; x < 9; x++) 9532 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9533 9534 *read_bit = INB (nc_gpreg); 9535 } 9536 9537 /* 9538 * READ 2 bytes from the NVRAM 9539 */ 9540 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9541 { 9542 int x; 9543 u_char read_bit; 9544 9545 *nvram_data = 0; 9546 for (x = 0; x < 16; x++) { 9547 T93C46_Read_Bit(np, &read_bit, gpreg); 9548 9549 if (read_bit & 0x01) 9550 *nvram_data |= (0x01 << (15 - x)); 9551 else 9552 *nvram_data &= ~(0x01 << (15 - x)); 9553 } 9554 } 9555 9556 /* 9557 * Read Tekram NvRAM data. 9558 */ 9559 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9560 { 9561 u_char read_bit; 9562 int x; 9563 9564 for (x = 0; x < len; x++) { 9565 9566 /* output read command and address */ 9567 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9568 if (read_bit & 0x01) 9569 return 1; /* Bad */ 9570 T93C46_Read_Word(np, &data[x], gpreg); 9571 T93C46_Stop(np, gpreg); 9572 } 9573 9574 return 0; 9575 } 9576 9577 /* 9578 * Try reading 93C46 Tekram NVRAM. 9579 */ 9580 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9581 { 9582 u_char gpcntl, gpreg; 9583 u_char old_gpcntl, old_gpreg; 9584 int retv = 1; 9585 9586 /* save current state of GPCNTL and GPREG */ 9587 old_gpreg = INB (nc_gpreg); 9588 old_gpcntl = INB (nc_gpcntl); 9589 9590 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9591 1/2/4 out */ 9592 gpreg = old_gpreg & 0xe9; 9593 OUTB (nc_gpreg, gpreg); 9594 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9595 OUTB (nc_gpcntl, gpcntl); 9596 9597 /* input all of NVRAM, 64 words */ 9598 retv = T93C46_Read_Data(np, (u_short *) nvram, 9599 sizeof(*nvram) / sizeof(short), &gpreg); 9600 9601 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9602 OUTB (nc_gpcntl, old_gpcntl); 9603 OUTB (nc_gpreg, old_gpreg); 9604 9605 return retv; 9606 } 9607 9608 /* 9609 * Try reading Tekram NVRAM. 9610 * Return 0 if OK. 9611 */ 9612 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9613 { 9614 u_char *data = (u_char *) nvram; 9615 int len = sizeof(*nvram); 9616 u_short csum; 9617 int x; 9618 9619 switch (np->device_id) { 9620 case PCI_ID_SYM53C885: 9621 case PCI_ID_SYM53C895: 9622 case PCI_ID_SYM53C896: 9623 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9624 data, len); 9625 break; 9626 case PCI_ID_SYM53C875: 9627 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9628 data, len); 9629 if (!x) 9630 break; 9631 default: 9632 x = sym_read_T93C46_nvram(np, nvram); 9633 break; 9634 } 9635 if (x) 9636 return 1; 9637 9638 /* verify checksum */ 9639 for (x = 0, csum = 0; x < len - 1; x += 2) 9640 csum += data[x] + (data[x+1] << 8); 9641 if (csum != 0x1234) 9642 return 1; 9643 9644 return 0; 9645 } 9646 9647 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9648