xref: /freebsd/sys/dev/sym/sym_hipd.c (revision 99429157e8615dc3b7f11afbe3ed92de7476a5db)
1 /*-
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 
65 #include <sys/param.h>
66 
67 /*
68  *  Driver configuration options.
69  */
70 #include "opt_sym.h"
71 #include <dev/sym/sym_conf.h>
72 
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/endian.h>
76 #include <sys/kernel.h>
77 #include <sys/lock.h>
78 #include <sys/mutex.h>
79 #include <sys/module.h>
80 #include <sys/bus.h>
81 
82 #include <sys/proc.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <machine/atomic.h>
90 
91 #ifdef __sparc64__
92 #include <dev/ofw/openfirm.h>
93 #include <machine/ofw_machdep.h>
94 #endif
95 
96 #include <sys/rman.h>
97 
98 #include <cam/cam.h>
99 #include <cam/cam_ccb.h>
100 #include <cam/cam_sim.h>
101 #include <cam/cam_xpt_sim.h>
102 #include <cam/cam_debug.h>
103 
104 #include <cam/scsi/scsi_all.h>
105 #include <cam/scsi/scsi_message.h>
106 
107 /* Short and quite clear integer types */
108 typedef int8_t    s8;
109 typedef int16_t   s16;
110 typedef	int32_t   s32;
111 typedef u_int8_t  u8;
112 typedef u_int16_t u16;
113 typedef	u_int32_t u32;
114 
115 /*
116  *  Driver definitions.
117  */
118 #include <dev/sym/sym_defs.h>
119 #include <dev/sym/sym_fw.h>
120 
121 /*
122  *  IA32 architecture does not reorder STORES and prevents
123  *  LOADS from passing STORES. It is called `program order'
124  *  by Intel and allows device drivers to deal with memory
125  *  ordering by only ensuring that the code is not reordered
126  *  by the compiler when ordering is required.
127  *  Other architectures implement a weaker ordering that
128  *  requires memory barriers (and also IO barriers when they
129  *  make sense) to be used.
130  */
131 #if	defined	__i386__ || defined __amd64__
132 #define MEMORY_BARRIER()	do { ; } while(0)
133 #elif	defined	__powerpc__
134 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
135 #elif	defined	__sparc64__
136 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
137 #elif	defined	__arm__
138 #define MEMORY_BARRIER()	dmb()
139 #elif	defined	__aarch64__
140 #define MEMORY_BARRIER()	dmb(sy)
141 #elif	defined __riscv__
142 #define MEMORY_BARRIER()	fence()
143 #else
144 #error	"Not supported platform"
145 #endif
146 
147 /*
148  *  A la VMS/CAM-3 queue management.
149  */
150 typedef struct sym_quehead {
151 	struct sym_quehead *flink;	/* Forward  pointer */
152 	struct sym_quehead *blink;	/* Backward pointer */
153 } SYM_QUEHEAD;
154 
155 #define sym_que_init(ptr) do { \
156 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
157 } while (0)
158 
159 static __inline void __sym_que_add(struct sym_quehead * new,
160 	struct sym_quehead * blink,
161 	struct sym_quehead * flink)
162 {
163 	flink->blink	= new;
164 	new->flink	= flink;
165 	new->blink	= blink;
166 	blink->flink	= new;
167 }
168 
169 static __inline void __sym_que_del(struct sym_quehead * blink,
170 	struct sym_quehead * flink)
171 {
172 	flink->blink = blink;
173 	blink->flink = flink;
174 }
175 
176 static __inline int sym_que_empty(struct sym_quehead *head)
177 {
178 	return head->flink == head;
179 }
180 
181 static __inline void sym_que_splice(struct sym_quehead *list,
182 	struct sym_quehead *head)
183 {
184 	struct sym_quehead *first = list->flink;
185 
186 	if (first != list) {
187 		struct sym_quehead *last = list->blink;
188 		struct sym_quehead *at   = head->flink;
189 
190 		first->blink = head;
191 		head->flink  = first;
192 
193 		last->flink = at;
194 		at->blink   = last;
195 	}
196 }
197 
198 #define sym_que_entry(ptr, type, member) \
199 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
200 
201 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
202 
203 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
204 
205 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
206 
207 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
208 {
209 	struct sym_quehead *elem = head->flink;
210 
211 	if (elem != head)
212 		__sym_que_del(head, elem->flink);
213 	else
214 		elem = NULL;
215 	return elem;
216 }
217 
218 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
219 
220 /*
221  *  This one may be useful.
222  */
223 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
224 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
225 /*
226  *  FreeBSD does not offer our kind of queue in the CAM CCB.
227  *  So, we have to cast.
228  */
229 #define sym_qptr(p)	((struct sym_quehead *) (p))
230 
231 /*
232  *  Simple bitmap operations.
233  */
234 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
235 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
236 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
237 
238 /*
239  *  Number of tasks per device we want to handle.
240  */
241 #if	SYM_CONF_MAX_TAG_ORDER > 8
242 #error	"more than 256 tags per logical unit not allowed."
243 #endif
244 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
245 
246 /*
247  *  Donnot use more tasks that we can handle.
248  */
249 #ifndef	SYM_CONF_MAX_TAG
250 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
251 #endif
252 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
253 #undef	SYM_CONF_MAX_TAG
254 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
255 #endif
256 
257 /*
258  *    This one means 'NO TAG for this job'
259  */
260 #define NO_TAG	(256)
261 
262 /*
263  *  Number of SCSI targets.
264  */
265 #if	SYM_CONF_MAX_TARGET > 16
266 #error	"more than 16 targets not allowed."
267 #endif
268 
269 /*
270  *  Number of logical units per target.
271  */
272 #if	SYM_CONF_MAX_LUN > 64
273 #error	"more than 64 logical units per target not allowed."
274 #endif
275 
276 /*
277  *    Asynchronous pre-scaler (ns). Shall be 40 for
278  *    the SCSI timings to be compliant.
279  */
280 #define	SYM_CONF_MIN_ASYNC (40)
281 
282 /*
283  *  Number of entries in the START and DONE queues.
284  *
285  *  We limit to 1 PAGE in order to succeed allocation of
286  *  these queues. Each entry is 8 bytes long (2 DWORDS).
287  */
288 #ifdef	SYM_CONF_MAX_START
289 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
290 #else
291 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
292 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
293 #endif
294 
295 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
296 #undef	SYM_CONF_MAX_QUEUE
297 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
298 #undef	SYM_CONF_MAX_START
299 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
300 #endif
301 
302 /*
303  *  For this one, we want a short name :-)
304  */
305 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
306 
307 /*
308  *  Active debugging tags and verbosity.
309  */
310 #define DEBUG_ALLOC	(0x0001)
311 #define DEBUG_PHASE	(0x0002)
312 #define DEBUG_POLL	(0x0004)
313 #define DEBUG_QUEUE	(0x0008)
314 #define DEBUG_RESULT	(0x0010)
315 #define DEBUG_SCATTER	(0x0020)
316 #define DEBUG_SCRIPT	(0x0040)
317 #define DEBUG_TINY	(0x0080)
318 #define DEBUG_TIMING	(0x0100)
319 #define DEBUG_NEGO	(0x0200)
320 #define DEBUG_TAGS	(0x0400)
321 #define DEBUG_POINTER	(0x0800)
322 
323 #if 0
324 static int sym_debug = 0;
325 	#define DEBUG_FLAGS sym_debug
326 #else
327 /*	#define DEBUG_FLAGS (0x0631) */
328 	#define DEBUG_FLAGS (0x0000)
329 
330 #endif
331 #define sym_verbose	(np->verbose)
332 
333 /*
334  *  Insert a delay in micro-seconds and milli-seconds.
335  */
336 static void UDELAY(int us) { DELAY(us); }
337 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
338 
339 /*
340  *  Simple power of two buddy-like allocator.
341  *
342  *  This simple code is not intended to be fast, but to
343  *  provide power of 2 aligned memory allocations.
344  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
345  *  this allocator allows simple and fast address calculations
346  *  from the SCRIPTS code. In addition, cache line alignment
347  *  is guaranteed for power of 2 cache line size.
348  *
349  *  This allocator has been developed for the Linux sym53c8xx
350  *  driver, since this O/S does not provide naturally aligned
351  *  allocations.
352  *  It has the advantage of allowing the driver to use private
353  *  pages of memory that will be useful if we ever need to deal
354  *  with IO MMUs for PCI.
355  */
356 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
357 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
358 #if 0
359 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
360 #endif
361 #define MEMO_WARN	1
362 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
363 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
364 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
365 
366 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
367 #define free_pages(p)		free((p), M_DEVBUF)
368 
369 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
370 
371 typedef struct m_link {		/* Link between free memory chunks */
372 	struct m_link *next;
373 } m_link_s;
374 
375 typedef struct m_vtob {		/* Virtual to Bus address translation */
376 	struct m_vtob	*next;
377 	bus_dmamap_t	dmamap;	/* Map for this chunk */
378 	m_addr_t	vaddr;	/* Virtual address */
379 	m_addr_t	baddr;	/* Bus physical address */
380 } m_vtob_s;
381 /* Hash this stuff a bit to speed up translations */
382 #define VTOB_HASH_SHIFT		5
383 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
384 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
385 #define VTOB_HASH_CODE(m)	\
386 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
387 
388 typedef struct m_pool {		/* Memory pool of a given kind */
389 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
390 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
391 	m_addr_t (*getp)(struct m_pool *);
392 #ifdef	MEMO_FREE_UNUSED
393 	void (*freep)(struct m_pool *, m_addr_t);
394 #endif
395 #define M_GETP()		mp->getp(mp)
396 #define M_FREEP(p)		mp->freep(mp, p)
397 	int nump;
398 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
399 	struct m_pool *next;
400 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
401 } m_pool_s;
402 
403 static void *___sym_malloc(m_pool_s *mp, int size)
404 {
405 	int i = 0;
406 	int s = (1 << MEMO_SHIFT);
407 	int j;
408 	m_addr_t a;
409 	m_link_s *h = mp->h;
410 
411 	if (size > MEMO_CLUSTER_SIZE)
412 		return NULL;
413 
414 	while (size > s) {
415 		s <<= 1;
416 		++i;
417 	}
418 
419 	j = i;
420 	while (!h[j].next) {
421 		if (s == MEMO_CLUSTER_SIZE) {
422 			h[j].next = (m_link_s *) M_GETP();
423 			if (h[j].next)
424 				h[j].next->next = NULL;
425 			break;
426 		}
427 		++j;
428 		s <<= 1;
429 	}
430 	a = (m_addr_t) h[j].next;
431 	if (a) {
432 		h[j].next = h[j].next->next;
433 		while (j > i) {
434 			j -= 1;
435 			s >>= 1;
436 			h[j].next = (m_link_s *) (a+s);
437 			h[j].next->next = NULL;
438 		}
439 	}
440 #ifdef DEBUG
441 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
442 #endif
443 	return (void *) a;
444 }
445 
446 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
447 {
448 	int i = 0;
449 	int s = (1 << MEMO_SHIFT);
450 	m_link_s *q;
451 	m_addr_t a, b;
452 	m_link_s *h = mp->h;
453 
454 #ifdef DEBUG
455 	printf("___sym_mfree(%p, %d)\n", ptr, size);
456 #endif
457 
458 	if (size > MEMO_CLUSTER_SIZE)
459 		return;
460 
461 	while (size > s) {
462 		s <<= 1;
463 		++i;
464 	}
465 
466 	a = (m_addr_t) ptr;
467 
468 	while (1) {
469 #ifdef MEMO_FREE_UNUSED
470 		if (s == MEMO_CLUSTER_SIZE) {
471 			M_FREEP(a);
472 			break;
473 		}
474 #endif
475 		b = a ^ s;
476 		q = &h[i];
477 		while (q->next && q->next != (m_link_s *) b) {
478 			q = q->next;
479 		}
480 		if (!q->next) {
481 			((m_link_s *) a)->next = h[i].next;
482 			h[i].next = (m_link_s *) a;
483 			break;
484 		}
485 		q->next = q->next->next;
486 		a = a & b;
487 		s <<= 1;
488 		++i;
489 	}
490 }
491 
492 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
493 {
494 	void *p;
495 
496 	p = ___sym_malloc(mp, size);
497 
498 	if (DEBUG_FLAGS & DEBUG_ALLOC)
499 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
500 
501 	if (p)
502 		bzero(p, size);
503 	else if (uflags & MEMO_WARN)
504 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
505 
506 	return p;
507 }
508 
509 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
510 
511 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
512 {
513 	if (DEBUG_FLAGS & DEBUG_ALLOC)
514 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
515 
516 	___sym_mfree(mp, ptr, size);
517 
518 }
519 
520 /*
521  * Default memory pool we donnot need to involve in DMA.
522  */
523 /*
524  * With the `bus dma abstraction', we use a separate pool for
525  * memory we donnot need to involve in DMA.
526  */
527 static m_addr_t ___mp0_getp(m_pool_s *mp)
528 {
529 	m_addr_t m = (m_addr_t) get_pages();
530 	if (m)
531 		++mp->nump;
532 	return m;
533 }
534 
535 #ifdef	MEMO_FREE_UNUSED
536 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
537 {
538 	free_pages(m);
539 	--mp->nump;
540 }
541 #endif
542 
543 #ifdef	MEMO_FREE_UNUSED
544 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
545 #else
546 static m_pool_s mp0 = {0, 0, ___mp0_getp};
547 #endif
548 
549 /*
550  * Actual memory allocation routine for non-DMAed memory.
551  */
552 static void *sym_calloc(int size, char *name)
553 {
554 	void *m;
555 	/* Lock */
556 	m = __sym_calloc(&mp0, size, name);
557 	/* Unlock */
558 	return m;
559 }
560 
561 /*
562  * Actual memory allocation routine for non-DMAed memory.
563  */
564 static void sym_mfree(void *ptr, int size, char *name)
565 {
566 	/* Lock */
567 	__sym_mfree(&mp0, ptr, size, name);
568 	/* Unlock */
569 }
570 
571 /*
572  * DMAable pools.
573  */
574 /*
575  * With `bus dma abstraction', we use a separate pool per parent
576  * BUS handle. A reverse table (hashed) is maintained for virtual
577  * to BUS address translation.
578  */
579 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused,
580     int error)
581 {
582 	bus_addr_t *baddr;
583 
584 	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
585 
586 	baddr = (bus_addr_t *)arg;
587 	if (error)
588 		*baddr = 0;
589 	else
590 		*baddr = segs->ds_addr;
591 }
592 
593 static m_addr_t ___dma_getp(m_pool_s *mp)
594 {
595 	m_vtob_s *vbp;
596 	void *vaddr = NULL;
597 	bus_addr_t baddr = 0;
598 
599 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
600 	if (!vbp)
601 		goto out_err;
602 
603 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
604 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
605 		goto out_err;
606 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
607 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
608 	if (baddr) {
609 		int hc = VTOB_HASH_CODE(vaddr);
610 		vbp->vaddr = (m_addr_t) vaddr;
611 		vbp->baddr = (m_addr_t) baddr;
612 		vbp->next = mp->vtob[hc];
613 		mp->vtob[hc] = vbp;
614 		++mp->nump;
615 		return (m_addr_t) vaddr;
616 	}
617 out_err:
618 	if (baddr)
619 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
620 	if (vaddr)
621 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
622 	if (vbp)
623 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
624 	return 0;
625 }
626 
627 #ifdef	MEMO_FREE_UNUSED
628 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
629 {
630 	m_vtob_s **vbpp, *vbp;
631 	int hc = VTOB_HASH_CODE(m);
632 
633 	vbpp = &mp->vtob[hc];
634 	while (*vbpp && (*vbpp)->vaddr != m)
635 		vbpp = &(*vbpp)->next;
636 	if (*vbpp) {
637 		vbp = *vbpp;
638 		*vbpp = (*vbpp)->next;
639 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
640 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
641 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
642 		--mp->nump;
643 	}
644 }
645 #endif
646 
647 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
648 {
649 	m_pool_s *mp;
650 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
651 	return mp;
652 }
653 
654 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
655 {
656 	m_pool_s *mp = NULL;
657 
658 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
659 	if (mp) {
660 		mp->dev_dmat = dev_dmat;
661 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
662 			       BUS_SPACE_MAXADDR_32BIT,
663 			       BUS_SPACE_MAXADDR,
664 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
665 			       MEMO_CLUSTER_SIZE, 0,
666 			       NULL, NULL, &mp->dmat)) {
667 			mp->getp = ___dma_getp;
668 #ifdef	MEMO_FREE_UNUSED
669 			mp->freep = ___dma_freep;
670 #endif
671 			mp->next = mp0.next;
672 			mp0.next = mp;
673 			return mp;
674 		}
675 	}
676 	if (mp)
677 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
678 	return NULL;
679 }
680 
681 #ifdef	MEMO_FREE_UNUSED
682 static void ___del_dma_pool(m_pool_s *p)
683 {
684 	struct m_pool **pp = &mp0.next;
685 
686 	while (*pp && *pp != p)
687 		pp = &(*pp)->next;
688 	if (*pp) {
689 		*pp = (*pp)->next;
690 		bus_dma_tag_destroy(p->dmat);
691 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
692 	}
693 }
694 #endif
695 
696 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
697 {
698 	struct m_pool *mp;
699 	void *m = NULL;
700 
701 	/* Lock */
702 	mp = ___get_dma_pool(dev_dmat);
703 	if (!mp)
704 		mp = ___cre_dma_pool(dev_dmat);
705 	if (mp)
706 		m = __sym_calloc(mp, size, name);
707 #ifdef	MEMO_FREE_UNUSED
708 	if (mp && !mp->nump)
709 		___del_dma_pool(mp);
710 #endif
711 	/* Unlock */
712 
713 	return m;
714 }
715 
716 static void
717 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
718 {
719 	struct m_pool *mp;
720 
721 	/* Lock */
722 	mp = ___get_dma_pool(dev_dmat);
723 	if (mp)
724 		__sym_mfree(mp, m, size, name);
725 #ifdef	MEMO_FREE_UNUSED
726 	if (mp && !mp->nump)
727 		___del_dma_pool(mp);
728 #endif
729 	/* Unlock */
730 }
731 
732 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
733 {
734 	m_pool_s *mp;
735 	int hc = VTOB_HASH_CODE(m);
736 	m_vtob_s *vp = NULL;
737 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
738 
739 	/* Lock */
740 	mp = ___get_dma_pool(dev_dmat);
741 	if (mp) {
742 		vp = mp->vtob[hc];
743 		while (vp && (m_addr_t) vp->vaddr != a)
744 			vp = vp->next;
745 	}
746 	/* Unlock */
747 	if (!vp)
748 		panic("sym: VTOBUS FAILED!\n");
749 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
750 }
751 
752 /*
753  * Verbs for DMAable memory handling.
754  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
755  * being discarded.
756  */
757 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
758 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
759 #define _sym_mfree_dma(np, p, s, n)	\
760 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
761 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
762 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
763 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
764 #define vtobus(p)			_vtobus(np, p)
765 
766 /*
767  *  Print a buffer in hexadecimal format.
768  */
769 static void sym_printb_hex (u_char *p, int n)
770 {
771 	while (n-- > 0)
772 		printf (" %x", *p++);
773 }
774 
775 /*
776  *  Same with a label at beginning and .\n at end.
777  */
778 static void sym_printl_hex (char *label, u_char *p, int n)
779 {
780 	printf ("%s", label);
781 	sym_printb_hex (p, n);
782 	printf (".\n");
783 }
784 
785 /*
786  *  Return a string for SCSI BUS mode.
787  */
788 static const char *sym_scsi_bus_mode(int mode)
789 {
790 	switch(mode) {
791 	case SMODE_HVD:	return "HVD";
792 	case SMODE_SE:	return "SE";
793 	case SMODE_LVD: return "LVD";
794 	}
795 	return "??";
796 }
797 
798 /*
799  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
800  */
801 #ifdef SYM_CONF_NVRAM_SUPPORT
802 static const u_char Tekram_sync[16] =
803 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
804 #endif
805 
806 /*
807  *  Union of supported NVRAM formats.
808  */
809 struct sym_nvram {
810 	int type;
811 #define	SYM_SYMBIOS_NVRAM	(1)
812 #define	SYM_TEKRAM_NVRAM	(2)
813 #ifdef	SYM_CONF_NVRAM_SUPPORT
814 	union {
815 		Symbios_nvram Symbios;
816 		Tekram_nvram Tekram;
817 	} data;
818 #endif
819 };
820 
821 /*
822  *  This one is hopefully useless, but actually useful. :-)
823  */
824 #ifndef assert
825 #define	assert(expression) { \
826 	if (!(expression)) { \
827 		(void)panic( \
828 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
829 			#expression, \
830 			__FILE__, __LINE__); \
831 	} \
832 }
833 #endif
834 
835 /*
836  *  Some provision for a possible big endian mode supported by
837  *  Symbios chips (never seen, by the way).
838  *  For now, this stuff does not deserve any comments. :)
839  */
840 #define sym_offb(o)	(o)
841 #define sym_offw(o)	(o)
842 
843 /*
844  *  Some provision for support for BIG ENDIAN CPU.
845  */
846 #define cpu_to_scr(dw)	htole32(dw)
847 #define scr_to_cpu(dw)	le32toh(dw)
848 
849 /*
850  *  Access to the chip IO registers and on-chip RAM.
851  *  We use the `bus space' interface under FreeBSD-4 and
852  *  later kernel versions.
853  */
854 #if defined(SYM_CONF_IOMAPPED)
855 
856 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
857 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
858 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
859 
860 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
861 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
862 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
863 
864 #else	/* Memory mapped IO */
865 
866 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
867 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
868 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
869 
870 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
871 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
872 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
873 
874 #endif	/* SYM_CONF_IOMAPPED */
875 
876 #define OUTRAM_OFF(o, a, l)	\
877 	bus_write_region_1(np->ram_res, (o), (a), (l))
878 
879 /*
880  *  Common definitions for both bus space and legacy IO methods.
881  */
882 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
883 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
884 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
885 
886 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
887 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
888 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
889 
890 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
891 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
892 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
893 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
894 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
895 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
896 
897 /*
898  *  We normally want the chip to have a consistent view
899  *  of driver internal data structures when we restart it.
900  *  Thus these macros.
901  */
902 #define OUTL_DSP(v)				\
903 	do {					\
904 		MEMORY_BARRIER();		\
905 		OUTL (nc_dsp, (v));		\
906 	} while (0)
907 
908 #define OUTONB_STD()				\
909 	do {					\
910 		MEMORY_BARRIER();		\
911 		OUTONB (nc_dcntl, (STD|NOCOM));	\
912 	} while (0)
913 
914 /*
915  *  Command control block states.
916  */
917 #define HS_IDLE		(0)
918 #define HS_BUSY		(1)
919 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
920 #define HS_DISCONNECT	(3)	/* Disconnected by target */
921 #define HS_WAIT		(4)	/* waiting for resource	  */
922 
923 #define HS_DONEMASK	(0x80)
924 #define HS_COMPLETE	(4|HS_DONEMASK)
925 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
926 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
927 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
928 
929 /*
930  *  Software Interrupt Codes
931  */
932 #define	SIR_BAD_SCSI_STATUS	(1)
933 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
934 #define	SIR_MSG_RECEIVED	(3)
935 #define	SIR_MSG_WEIRD		(4)
936 #define	SIR_NEGO_FAILED		(5)
937 #define	SIR_NEGO_PROTO		(6)
938 #define	SIR_SCRIPT_STOPPED	(7)
939 #define	SIR_REJECT_TO_SEND	(8)
940 #define	SIR_SWIDE_OVERRUN	(9)
941 #define	SIR_SODL_UNDERRUN	(10)
942 #define	SIR_RESEL_NO_MSG_IN	(11)
943 #define	SIR_RESEL_NO_IDENTIFY	(12)
944 #define	SIR_RESEL_BAD_LUN	(13)
945 #define	SIR_TARGET_SELECTED	(14)
946 #define	SIR_RESEL_BAD_I_T_L	(15)
947 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
948 #define	SIR_ABORT_SENT		(17)
949 #define	SIR_RESEL_ABORTED	(18)
950 #define	SIR_MSG_OUT_DONE	(19)
951 #define	SIR_COMPLETE_ERROR	(20)
952 #define	SIR_DATA_OVERRUN	(21)
953 #define	SIR_BAD_PHASE		(22)
954 #define	SIR_MAX			(22)
955 
956 /*
957  *  Extended error bit codes.
958  *  xerr_status field of struct sym_ccb.
959  */
960 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
961 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
962 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
963 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
964 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
965 
966 /*
967  *  Negotiation status.
968  *  nego_status field of struct sym_ccb.
969  */
970 #define NS_SYNC		(1)
971 #define NS_WIDE		(2)
972 #define NS_PPR		(3)
973 
974 /*
975  *  A CCB hashed table is used to retrieve CCB address
976  *  from DSA value.
977  */
978 #define CCB_HASH_SHIFT		8
979 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
980 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
981 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
982 
983 /*
984  *  Device flags.
985  */
986 #define SYM_DISC_ENABLED	(1)
987 #define SYM_TAGS_ENABLED	(1<<1)
988 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
989 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
990 
991 /*
992  *  Host adapter miscellaneous flags.
993  */
994 #define SYM_AVOID_BUS_RESET	(1)
995 #define SYM_SCAN_TARGETS_HILO	(1<<1)
996 
997 /*
998  *  Device quirks.
999  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1000  *  saving the DATA POINTER then reselects and terminates the IO.
1001  *  On reselection, the automatic RESTORE DATA POINTER makes the
1002  *  CURRENT DATA POINTER not point at the end of the IO.
1003  *  This behaviour just breaks our calculation of the residual.
1004  *  For now, we just force an AUTO SAVE on disconnection and will
1005  *  fix that in a further driver version.
1006  */
1007 #define SYM_QUIRK_AUTOSAVE 1
1008 
1009 /*
1010  *  Misc.
1011  */
1012 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1013 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1014 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1015 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1016 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1017 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1018 
1019 #define SYM_SNOOP_TIMEOUT (10000000)
1020 #define SYM_PCI_IO	PCIR_BAR(0)
1021 #define SYM_PCI_MMIO	PCIR_BAR(1)
1022 #define SYM_PCI_RAM	PCIR_BAR(2)
1023 #define SYM_PCI_RAM64	PCIR_BAR(3)
1024 
1025 /*
1026  *  Back-pointer from the CAM CCB to our data structures.
1027  */
1028 #define sym_hcb_ptr	spriv_ptr0
1029 /* #define sym_ccb_ptr	spriv_ptr1 */
1030 
1031 /*
1032  *  We mostly have to deal with pointers.
1033  *  Thus these typedef's.
1034  */
1035 typedef struct sym_tcb *tcb_p;
1036 typedef struct sym_lcb *lcb_p;
1037 typedef struct sym_ccb *ccb_p;
1038 typedef struct sym_hcb *hcb_p;
1039 
1040 /*
1041  *  Gather negotiable parameters value
1042  */
1043 struct sym_trans {
1044 	u8 scsi_version;
1045 	u8 spi_version;
1046 	u8 period;
1047 	u8 offset;
1048 	u8 width;
1049 	u8 options;	/* PPR options */
1050 };
1051 
1052 struct sym_tinfo {
1053 	struct sym_trans current;
1054 	struct sym_trans goal;
1055 	struct sym_trans user;
1056 };
1057 
1058 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1059 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1060 
1061 /*
1062  *  Global TCB HEADER.
1063  *
1064  *  Due to lack of indirect addressing on earlier NCR chips,
1065  *  this substructure is copied from the TCB to a global
1066  *  address after selection.
1067  *  For SYMBIOS chips that support LOAD/STORE this copy is
1068  *  not needed and thus not performed.
1069  */
1070 struct sym_tcbh {
1071 	/*
1072 	 *  Scripts bus addresses of LUN table accessed from scripts.
1073 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1074 	 *  and we we want to speed-up the general case and not waste
1075 	 *  resources.
1076 	 */
1077 	u32	luntbl_sa;	/* bus address of this table	*/
1078 	u32	lun0_sa;	/* bus address of LCB #0	*/
1079 	/*
1080 	 *  Actual SYNC/WIDE IO registers value for this target.
1081 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1082 	 *  so have alignment constraints.
1083 	 */
1084 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1085 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1086 /*2*/	u_char	filler1;
1087 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1088 };
1089 
1090 /*
1091  *  Target Control Block
1092  */
1093 struct sym_tcb {
1094 	/*
1095 	 *  TCB header.
1096 	 *  Assumed at offset 0.
1097 	 */
1098 /*0*/	struct sym_tcbh head;
1099 
1100 	/*
1101 	 *  LUN table used by the SCRIPTS processor.
1102 	 *  An array of bus addresses is used on reselection.
1103 	 */
1104 	u32	*luntbl;	/* LCBs bus address table	*/
1105 
1106 	/*
1107 	 *  LUN table used by the C code.
1108 	 */
1109 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1110 #if SYM_CONF_MAX_LUN > 1
1111 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1112 #endif
1113 
1114 	/*
1115 	 *  Bitmap that tells about LUNs that succeeded at least
1116 	 *  1 IO and therefore assumed to be a real device.
1117 	 *  Avoid useless allocation of the LCB structure.
1118 	 */
1119 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1120 
1121 	/*
1122 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1123 	 *  allocated (not discovered or LCB allocation failed).
1124 	 */
1125 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1126 
1127 	/*
1128 	 *  Transfer capabilities (SIP)
1129 	 */
1130 	struct sym_tinfo tinfo;
1131 
1132 	/*
1133 	 * Keep track of the CCB used for the negotiation in order
1134 	 * to ensure that only 1 negotiation is queued at a time.
1135 	 */
1136 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1137 
1138 	/*
1139 	 *  Set when we want to reset the device.
1140 	 */
1141 	u_char	to_reset;
1142 
1143 	/*
1144 	 *  Other user settable limits and options.
1145 	 *  These limits are read from the NVRAM if present.
1146 	 */
1147 	u_char	usrflags;
1148 	u_short	usrtags;
1149 };
1150 
1151 /*
1152  *  Assert some alignments required by the chip.
1153  */
1154 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1155     offsetof(struct sym_tcb, head.sval)) &3) == 0);
1156 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1157     offsetof(struct sym_tcb, head.wval)) &3) == 0);
1158 
1159 /*
1160  *  Global LCB HEADER.
1161  *
1162  *  Due to lack of indirect addressing on earlier NCR chips,
1163  *  this substructure is copied from the LCB to a global
1164  *  address after selection.
1165  *  For SYMBIOS chips that support LOAD/STORE this copy is
1166  *  not needed and thus not performed.
1167  */
1168 struct sym_lcbh {
1169 	/*
1170 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1171 	 *  For not probed logical units, this address points to
1172 	 *  SCRIPTS that deal with bad LU handling (must be at
1173 	 *  offset zero of the LCB for that reason).
1174 	 */
1175 /*0*/	u32	resel_sa;
1176 
1177 	/*
1178 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1179 	 *  to the unique ITL nexus allowed to be disconnected.
1180 	 */
1181 	u32	itl_task_sa;
1182 
1183 	/*
1184 	 *  Task table bus address (read from SCRIPTS).
1185 	 */
1186 	u32	itlq_tbl_sa;
1187 };
1188 
1189 /*
1190  *  Logical Unit Control Block
1191  */
1192 struct sym_lcb {
1193 	/*
1194 	 *  TCB header.
1195 	 *  Assumed at offset 0.
1196 	 */
1197 /*0*/	struct sym_lcbh head;
1198 
1199 	/*
1200 	 *  Task table read from SCRIPTS that contains pointers to
1201 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1202 	 *  inside the header.
1203 	 */
1204 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1205 
1206 	/*
1207 	 *  Busy CCBs management.
1208 	 */
1209 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1210 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1211 
1212 	/*
1213 	 *  Circular tag allocation buffer.
1214 	 */
1215 	u_short	ia_tag;		/* Tag allocation index		*/
1216 	u_short	if_tag;		/* Tag release index		*/
1217 	u_char	*cb_tags;	/* Circular tags buffer		*/
1218 
1219 	/*
1220 	 *  Set when we want to clear all tasks.
1221 	 */
1222 	u_char to_clear;
1223 
1224 	/*
1225 	 *  Capabilities.
1226 	 */
1227 	u_char	user_flags;
1228 	u_char	current_flags;
1229 };
1230 
1231 /*
1232  *  Action from SCRIPTS on a task.
1233  *  Is part of the CCB, but is also used separately to plug
1234  *  error handling action to perform from SCRIPTS.
1235  */
1236 struct sym_actscr {
1237 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1238 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1239 };
1240 
1241 /*
1242  *  Phase mismatch context.
1243  *
1244  *  It is part of the CCB and is used as parameters for the
1245  *  DATA pointer. We need two contexts to handle correctly the
1246  *  SAVED DATA POINTER.
1247  */
1248 struct sym_pmc {
1249 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1250 	u32	ret;		/* SCRIPT return address	*/
1251 };
1252 
1253 /*
1254  *  LUN control block lookup.
1255  *  We use a direct pointer for LUN #0, and a table of
1256  *  pointers which is only allocated for devices that support
1257  *  LUN(s) > 0.
1258  */
1259 #if SYM_CONF_MAX_LUN <= 1
1260 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1261 #else
1262 #define sym_lp(tp, lun) \
1263 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1264 #endif
1265 
1266 /*
1267  *  Status are used by the host and the script processor.
1268  *
1269  *  The last four bytes (status[4]) are copied to the
1270  *  scratchb register (declared as scr0..scr3) just after the
1271  *  select/reselect, and copied back just after disconnecting.
1272  *  Inside the script the XX_REG are used.
1273  */
1274 
1275 /*
1276  *  Last four bytes (script)
1277  */
1278 #define  QU_REG	scr0
1279 #define  HS_REG	scr1
1280 #define  HS_PRT	nc_scr1
1281 #define  SS_REG	scr2
1282 #define  SS_PRT	nc_scr2
1283 #define  HF_REG	scr3
1284 #define  HF_PRT	nc_scr3
1285 
1286 /*
1287  *  Last four bytes (host)
1288  */
1289 #define  actualquirks  phys.head.status[0]
1290 #define  host_status   phys.head.status[1]
1291 #define  ssss_status   phys.head.status[2]
1292 #define  host_flags    phys.head.status[3]
1293 
1294 /*
1295  *  Host flags
1296  */
1297 #define HF_IN_PM0	1u
1298 #define HF_IN_PM1	(1u<<1)
1299 #define HF_ACT_PM	(1u<<2)
1300 #define HF_DP_SAVED	(1u<<3)
1301 #define HF_SENSE	(1u<<4)
1302 #define HF_EXT_ERR	(1u<<5)
1303 #define HF_DATA_IN	(1u<<6)
1304 #ifdef SYM_CONF_IARB_SUPPORT
1305 #define HF_HINT_IARB	(1u<<7)
1306 #endif
1307 
1308 /*
1309  *  Global CCB HEADER.
1310  *
1311  *  Due to lack of indirect addressing on earlier NCR chips,
1312  *  this substructure is copied from the ccb to a global
1313  *  address after selection (or reselection) and copied back
1314  *  before disconnect.
1315  *  For SYMBIOS chips that support LOAD/STORE this copy is
1316  *  not needed and thus not performed.
1317  */
1318 struct sym_ccbh {
1319 	/*
1320 	 *  Start and restart SCRIPTS addresses (must be at 0).
1321 	 */
1322 /*0*/	struct sym_actscr go;
1323 
1324 	/*
1325 	 *  SCRIPTS jump address that deal with data pointers.
1326 	 *  'savep' points to the position in the script responsible
1327 	 *  for the actual transfer of data.
1328 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1329 	 */
1330 	u32	savep;		/* Jump address to saved data pointer	*/
1331 	u32	lastp;		/* SCRIPTS address at end of data	*/
1332 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1333 
1334 	/*
1335 	 *  Status fields.
1336 	 */
1337 	u8	status[4];
1338 };
1339 
1340 /*
1341  *  Data Structure Block
1342  *
1343  *  During execution of a ccb by the script processor, the
1344  *  DSA (data structure address) register points to this
1345  *  substructure of the ccb.
1346  */
1347 struct sym_dsb {
1348 	/*
1349 	 *  CCB header.
1350 	 *  Also assumed at offset 0 of the sym_ccb structure.
1351 	 */
1352 /*0*/	struct sym_ccbh head;
1353 
1354 	/*
1355 	 *  Phase mismatch contexts.
1356 	 *  We need two to handle correctly the SAVED DATA POINTER.
1357 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1358 	 *  for address calculation from SCRIPTS.
1359 	 */
1360 	struct sym_pmc pm0;
1361 	struct sym_pmc pm1;
1362 
1363 	/*
1364 	 *  Table data for Script
1365 	 */
1366 	struct sym_tblsel  select;
1367 	struct sym_tblmove smsg;
1368 	struct sym_tblmove smsg_ext;
1369 	struct sym_tblmove cmd;
1370 	struct sym_tblmove sense;
1371 	struct sym_tblmove wresid;
1372 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1373 };
1374 
1375 /*
1376  *  Our Command Control Block
1377  */
1378 struct sym_ccb {
1379 	/*
1380 	 *  This is the data structure which is pointed by the DSA
1381 	 *  register when it is executed by the script processor.
1382 	 *  It must be the first entry.
1383 	 */
1384 	struct sym_dsb phys;
1385 
1386 	/*
1387 	 *  Pointer to CAM ccb and related stuff.
1388 	 */
1389 	struct callout ch;	/* callout handle		*/
1390 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1391 	u8	cdb_buf[16];	/* Copy of CDB			*/
1392 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1393 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1394 	int	data_len;	/* Total data length		*/
1395 	int	segments;	/* Number of SG segments	*/
1396 
1397 	/*
1398 	 *  Miscellaneous status'.
1399 	 */
1400 	u_char	nego_status;	/* Negotiation status		*/
1401 	u_char	xerr_status;	/* Extended error flags		*/
1402 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1403 
1404 	/*
1405 	 *  Message areas.
1406 	 *  We prepare a message to be sent after selection.
1407 	 *  We may use a second one if the command is rescheduled
1408 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1409 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1410 	 *  While negotiating sync or wide transfer,
1411 	 *  a SDTR or WDTR message is appended.
1412 	 */
1413 	u_char	scsi_smsg [12];
1414 	u_char	scsi_smsg2[12];
1415 
1416 	/*
1417 	 *  Auto request sense related fields.
1418 	 */
1419 	u_char	sensecmd[6];	/* Request Sense command	*/
1420 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1421 	u_char	sv_xerr_status;	/* Saved extended status	*/
1422 	int	sv_resid;	/* Saved residual		*/
1423 
1424 	/*
1425 	 *  Map for the DMA of user data.
1426 	 */
1427 	void		*arg;	/* Argument for some callback	*/
1428 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1429 	u_char		dmamapped;
1430 #define SYM_DMA_NONE	0
1431 #define SYM_DMA_READ	1
1432 #define SYM_DMA_WRITE	2
1433 	/*
1434 	 *  Other fields.
1435 	 */
1436 	u32	ccb_ba;		/* BUS address of this CCB	*/
1437 	u_short	tag;		/* Tag for this transfer	*/
1438 				/*  NO_TAG means no tag		*/
1439 	u_char	target;
1440 	u_char	lun;
1441 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1442 	SYM_QUEHEAD
1443 		link_ccbq;	/* Link to free/busy CCB queue	*/
1444 	u32	startp;		/* Initial data pointer		*/
1445 	int	ext_sg;		/* Extreme data pointer, used	*/
1446 	int	ext_ofs;	/*  to calculate the residual.	*/
1447 	u_char	to_abort;	/* Want this IO to be aborted	*/
1448 };
1449 
1450 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1451 
1452 /*
1453  *  Host Control Block
1454  */
1455 struct sym_hcb {
1456 	struct mtx	mtx;
1457 
1458 	/*
1459 	 *  Global headers.
1460 	 *  Due to poorness of addressing capabilities, earlier
1461 	 *  chips (810, 815, 825) copy part of the data structures
1462 	 *  (CCB, TCB and LCB) in fixed areas.
1463 	 */
1464 #ifdef	SYM_CONF_GENERIC_SUPPORT
1465 	struct sym_ccbh	ccb_head;
1466 	struct sym_tcbh	tcb_head;
1467 	struct sym_lcbh	lcb_head;
1468 #endif
1469 	/*
1470 	 *  Idle task and invalid task actions and
1471 	 *  their bus addresses.
1472 	 */
1473 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1474 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1475 
1476 	/*
1477 	 *  Dummy lun table to protect us against target
1478 	 *  returning bad lun number on reselection.
1479 	 */
1480 	u32	*badluntbl;	/* Table physical address	*/
1481 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1482 
1483 	/*
1484 	 *  Bus address of this host control block.
1485 	 */
1486 	u32	hcb_ba;
1487 
1488 	/*
1489 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1490 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1491 	 *  field.
1492 	 */
1493 	u32	scr_ram_seg;
1494 
1495 	/*
1496 	 *  Chip and controller indentification.
1497 	 */
1498 	device_t device;
1499 
1500 	/*
1501 	 *  Initial value of some IO register bits.
1502 	 *  These values are assumed to have been set by BIOS, and may
1503 	 *  be used to probe adapter implementation differences.
1504 	 */
1505 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1506 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1507 		sv_stest1;
1508 
1509 	/*
1510 	 *  Actual initial value of IO register bits used by the
1511 	 *  driver. They are loaded at initialisation according to
1512 	 *  features that are to be enabled/disabled.
1513 	 */
1514 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1515 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1516 
1517 	/*
1518 	 *  Target data.
1519 	 */
1520 #ifdef __amd64__
1521 	struct sym_tcb	*target;
1522 #else
1523 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1524 #endif
1525 
1526 	/*
1527 	 *  Target control block bus address array used by the SCRIPT
1528 	 *  on reselection.
1529 	 */
1530 	u32		*targtbl;
1531 	u32		targtbl_ba;
1532 
1533 	/*
1534 	 *  CAM SIM information for this instance.
1535 	 */
1536 	struct		cam_sim  *sim;
1537 	struct		cam_path *path;
1538 
1539 	/*
1540 	 *  Allocated hardware resources.
1541 	 */
1542 	struct resource	*irq_res;
1543 	struct resource	*io_res;
1544 	struct resource	*mmio_res;
1545 	struct resource	*ram_res;
1546 	int		ram_id;
1547 	void *intr;
1548 
1549 	/*
1550 	 *  Bus stuff.
1551 	 *
1552 	 *  My understanding of PCI is that all agents must share the
1553 	 *  same addressing range and model.
1554 	 *  But some hardware architecture guys provide complex and
1555 	 *  brain-deaded stuff that makes shit.
1556 	 *  This driver only support PCI compliant implementations and
1557 	 *  deals with part of the BUS stuff complexity only to fit O/S
1558 	 *  requirements.
1559 	 */
1560 
1561 	/*
1562 	 *  DMA stuff.
1563 	 */
1564 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1565 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1566 	/*
1567 	 *  BUS addresses of the chip
1568 	 */
1569 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1570 	int		mmio_ws;	/* MMIO Window size		*/
1571 
1572 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1573 	int		ram_ws;		/* RAM window size		*/
1574 
1575 	/*
1576 	 *  SCRIPTS virtual and physical bus addresses.
1577 	 *  'script'  is loaded in the on-chip RAM if present.
1578 	 *  'scripth' stays in main memory for all chips except the
1579 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1580 	 */
1581 	u_char		*scripta0;	/* Copies of script and scripth	*/
1582 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1583 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1584 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1585 	vm_offset_t	scriptb0_ba;
1586 	u_short		scripta_sz;	/* Actual size of script A	*/
1587 	u_short		scriptb_sz;	/* Actual size of script B	*/
1588 
1589 	/*
1590 	 *  Bus addresses, setup and patch methods for
1591 	 *  the selected firmware.
1592 	 */
1593 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1594 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1595 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1596 	void		(*fw_patch)(hcb_p np);
1597 	const char	*fw_name;
1598 
1599 	/*
1600 	 *  General controller parameters and configuration.
1601 	 */
1602 	u_short	device_id;	/* PCI device id		*/
1603 	u_char	revision_id;	/* PCI device revision id	*/
1604 	u_int	features;	/* Chip features map		*/
1605 	u_char	myaddr;		/* SCSI id of the adapter	*/
1606 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1607 	u_char	maxwide;	/* Maximum transfer width	*/
1608 	u_char	minsync;	/* Min sync period factor (ST)	*/
1609 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1610 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1611 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1612 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1613 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1614 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1615 	u_char	clock_divn;	/* Number of clock divisors	*/
1616 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1617 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1618 	/*
1619 	 *  Start queue management.
1620 	 *  It is filled up by the host processor and accessed by the
1621 	 *  SCRIPTS processor in order to start SCSI commands.
1622 	 */
1623 	volatile		/* Prevent code optimizations	*/
1624 	u32	*squeue;	/* Start queue virtual address	*/
1625 	u32	squeue_ba;	/* Start queue BUS address	*/
1626 	u_short	squeueput;	/* Next free slot of the queue	*/
1627 	u_short	actccbs;	/* Number of allocated CCBs	*/
1628 
1629 	/*
1630 	 *  Command completion queue.
1631 	 *  It is the same size as the start queue to avoid overflow.
1632 	 */
1633 	u_short	dqueueget;	/* Next position to scan	*/
1634 	volatile		/* Prevent code optimizations	*/
1635 	u32	*dqueue;	/* Completion (done) queue	*/
1636 	u32	dqueue_ba;	/* Done queue BUS address	*/
1637 
1638 	/*
1639 	 *  Miscellaneous buffers accessed by the scripts-processor.
1640 	 *  They shall be DWORD aligned, because they may be read or
1641 	 *  written with a script command.
1642 	 */
1643 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1644 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1645 	u32		lastmsg;	/* Last SCSI message sent	*/
1646 	u_char		scratch;	/* Scratch for SCSI receive	*/
1647 
1648 	/*
1649 	 *  Miscellaneous configuration and status parameters.
1650 	 */
1651 	u_char		usrflags;	/* Miscellaneous user flags	*/
1652 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1653 	u_char		verbose;	/* Verbosity for this controller*/
1654 	u32		cache;		/* Used for cache test at init.	*/
1655 
1656 	/*
1657 	 *  CCB lists and queue.
1658 	 */
1659 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1660 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1661 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1662 
1663 	/*
1664 	 *  During error handling and/or recovery,
1665 	 *  active CCBs that are to be completed with
1666 	 *  error or requeued are moved from the busy_ccbq
1667 	 *  to the comp_ccbq prior to completion.
1668 	 */
1669 	SYM_QUEHEAD	comp_ccbq;
1670 
1671 	/*
1672 	 *  CAM CCB pending queue.
1673 	 */
1674 	SYM_QUEHEAD	cam_ccbq;
1675 
1676 	/*
1677 	 *  IMMEDIATE ARBITRATION (IARB) control.
1678 	 *
1679 	 *  We keep track in 'last_cp' of the last CCB that has been
1680 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1681 	 *  this CCB completes. If last_cp is not zero at the moment
1682 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1683 	 *  used by the SCRIPTS as a hint for setting IARB.
1684 	 *  We donnot set more than 'iarb_max' consecutive hints for
1685 	 *  IARB in order to leave devices a chance to reselect.
1686 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1687 	 */
1688 #ifdef SYM_CONF_IARB_SUPPORT
1689 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1690 	u_short		iarb_count;	/* Actual # of these hints	*/
1691 	ccb_p		last_cp;
1692 #endif
1693 
1694 	/*
1695 	 *  Command abort handling.
1696 	 *  We need to synchronize tightly with the SCRIPTS
1697 	 *  processor in order to handle things correctly.
1698 	 */
1699 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1700 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1701 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1702 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1703 };
1704 
1705 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1706 
1707 /*
1708  *  Return the name of the controller.
1709  */
1710 static __inline const char *sym_name(hcb_p np)
1711 {
1712 	return device_get_nameunit(np->device);
1713 }
1714 
1715 /*--------------------------------------------------------------------------*/
1716 /*------------------------------ FIRMWARES ---------------------------------*/
1717 /*--------------------------------------------------------------------------*/
1718 
1719 /*
1720  *  This stuff will be moved to a separate source file when
1721  *  the driver will be broken into several source modules.
1722  */
1723 
1724 /*
1725  *  Macros used for all firmwares.
1726  */
1727 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1728 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1729 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1730 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1731 
1732 #ifdef	SYM_CONF_GENERIC_SUPPORT
1733 /*
1734  *  Allocate firmware #1 script area.
1735  */
1736 #define	SYM_FWA_SCR		sym_fw1a_scr
1737 #define	SYM_FWB_SCR		sym_fw1b_scr
1738 #include <dev/sym/sym_fw1.h>
1739 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1740 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1741 };
1742 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1743 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1744 };
1745 #undef	SYM_FWA_SCR
1746 #undef	SYM_FWB_SCR
1747 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1748 
1749 /*
1750  *  Allocate firmware #2 script area.
1751  */
1752 #define	SYM_FWA_SCR		sym_fw2a_scr
1753 #define	SYM_FWB_SCR		sym_fw2b_scr
1754 #include <dev/sym/sym_fw2.h>
1755 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1756 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1757 };
1758 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1759 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1760 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1761 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1762 };
1763 #undef	SYM_FWA_SCR
1764 #undef	SYM_FWB_SCR
1765 
1766 #undef	SYM_GEN_A
1767 #undef	SYM_GEN_B
1768 #undef	PADDR_A
1769 #undef	PADDR_B
1770 
1771 #ifdef	SYM_CONF_GENERIC_SUPPORT
1772 /*
1773  *  Patch routine for firmware #1.
1774  */
1775 static void
1776 sym_fw1_patch(hcb_p np)
1777 {
1778 	struct sym_fw1a_scr *scripta0;
1779 	struct sym_fw1b_scr *scriptb0;
1780 
1781 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1782 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1783 
1784 	/*
1785 	 *  Remove LED support if not needed.
1786 	 */
1787 	if (!(np->features & FE_LED0)) {
1788 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1789 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1790 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1791 	}
1792 
1793 #ifdef SYM_CONF_IARB_SUPPORT
1794 	/*
1795 	 *    If user does not want to use IMMEDIATE ARBITRATION
1796 	 *    when we are reselected while attempting to arbitrate,
1797 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1798 	 */
1799 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1800 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1801 #endif
1802 	/*
1803 	 *  Patch some data in SCRIPTS.
1804 	 *  - start and done queue initial bus address.
1805 	 *  - target bus address table bus address.
1806 	 */
1807 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1808 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1809 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1810 }
1811 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1812 
1813 /*
1814  *  Patch routine for firmware #2.
1815  */
1816 static void
1817 sym_fw2_patch(hcb_p np)
1818 {
1819 	struct sym_fw2a_scr *scripta0;
1820 	struct sym_fw2b_scr *scriptb0;
1821 
1822 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1823 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1824 
1825 	/*
1826 	 *  Remove LED support if not needed.
1827 	 */
1828 	if (!(np->features & FE_LED0)) {
1829 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1830 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1831 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1832 	}
1833 
1834 #ifdef SYM_CONF_IARB_SUPPORT
1835 	/*
1836 	 *    If user does not want to use IMMEDIATE ARBITRATION
1837 	 *    when we are reselected while attempting to arbitrate,
1838 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1839 	 */
1840 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1841 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1842 #endif
1843 	/*
1844 	 *  Patch some variable in SCRIPTS.
1845 	 *  - start and done queue initial bus address.
1846 	 *  - target bus address table bus address.
1847 	 */
1848 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1849 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1850 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1851 
1852 	/*
1853 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1854 	 */
1855 	if (!(np->features & FE_C10)) {
1856 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1857 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1858 	}
1859 
1860 	/*
1861 	 *  Remove a couple of work-arounds specific to C1010 if
1862 	 *  they are not desirable. See `sym_fw2.h' for more details.
1863 	 */
1864 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1865 	      np->revision_id < 0x1 &&
1866 	      np->pciclk_khz < 60000)) {
1867 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1868 		scripta0->datao_phase[1] = cpu_to_scr(0);
1869 	}
1870 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1871 	      /* np->revision_id < 0xff */ 1)) {
1872 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1873 		scripta0->sel_done[1] = cpu_to_scr(0);
1874 	}
1875 
1876 	/*
1877 	 *  Patch some other variables in SCRIPTS.
1878 	 *  These ones are loaded by the SCRIPTS processor.
1879 	 */
1880 	scriptb0->pm0_data_addr[0] =
1881 		cpu_to_scr(np->scripta_ba +
1882 			   offsetof(struct sym_fw2a_scr, pm0_data));
1883 	scriptb0->pm1_data_addr[0] =
1884 		cpu_to_scr(np->scripta_ba +
1885 			   offsetof(struct sym_fw2a_scr, pm1_data));
1886 }
1887 
1888 /*
1889  *  Fill the data area in scripts.
1890  *  To be done for all firmwares.
1891  */
1892 static void
1893 sym_fw_fill_data (u32 *in, u32 *out)
1894 {
1895 	int	i;
1896 
1897 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1898 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1899 		*in++  = offsetof (struct sym_dsb, data[i]);
1900 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1901 		*out++ = offsetof (struct sym_dsb, data[i]);
1902 	}
1903 }
1904 
1905 /*
1906  *  Setup useful script bus addresses.
1907  *  To be done for all firmwares.
1908  */
1909 static void
1910 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1911 {
1912 	u32 *pa;
1913 	const u_short *po;
1914 	int i;
1915 
1916 	/*
1917 	 *  Build the bus address table for script A
1918 	 *  from the script A offset table.
1919 	 */
1920 	po = (const u_short *) fw->a_ofs;
1921 	pa = (u32 *) &np->fwa_bas;
1922 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1923 		pa[i] = np->scripta_ba + po[i];
1924 
1925 	/*
1926 	 *  Same for script B.
1927 	 */
1928 	po = (const u_short *) fw->b_ofs;
1929 	pa = (u32 *) &np->fwb_bas;
1930 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1931 		pa[i] = np->scriptb_ba + po[i];
1932 }
1933 
1934 #ifdef	SYM_CONF_GENERIC_SUPPORT
1935 /*
1936  *  Setup routine for firmware #1.
1937  */
1938 static void
1939 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1940 {
1941 	struct sym_fw1a_scr *scripta0;
1942 
1943 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1944 
1945 	/*
1946 	 *  Fill variable parts in scripts.
1947 	 */
1948 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1949 
1950 	/*
1951 	 *  Setup bus addresses used from the C code..
1952 	 */
1953 	sym_fw_setup_bus_addresses(np, fw);
1954 }
1955 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1956 
1957 /*
1958  *  Setup routine for firmware #2.
1959  */
1960 static void
1961 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1962 {
1963 	struct sym_fw2a_scr *scripta0;
1964 
1965 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1966 
1967 	/*
1968 	 *  Fill variable parts in scripts.
1969 	 */
1970 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1971 
1972 	/*
1973 	 *  Setup bus addresses used from the C code..
1974 	 */
1975 	sym_fw_setup_bus_addresses(np, fw);
1976 }
1977 
1978 /*
1979  *  Allocate firmware descriptors.
1980  */
1981 #ifdef	SYM_CONF_GENERIC_SUPPORT
1982 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1983 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1984 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1985 
1986 /*
1987  *  Find the most appropriate firmware for a chip.
1988  */
1989 static const struct sym_fw *
1990 sym_find_firmware(const struct sym_pci_chip *chip)
1991 {
1992 	if (chip->features & FE_LDSTR)
1993 		return &sym_fw2;
1994 #ifdef	SYM_CONF_GENERIC_SUPPORT
1995 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1996 		return &sym_fw1;
1997 #endif
1998 	else
1999 		return NULL;
2000 }
2001 
2002 /*
2003  *  Bind a script to physical addresses.
2004  */
2005 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2006 {
2007 	u32 opcode, new, old, tmp1, tmp2;
2008 	u32 *end, *cur;
2009 	int relocs;
2010 
2011 	cur = start;
2012 	end = start + len/4;
2013 
2014 	while (cur < end) {
2015 
2016 		opcode = *cur;
2017 
2018 		/*
2019 		 *  If we forget to change the length
2020 		 *  in scripts, a field will be
2021 		 *  padded with 0. This is an illegal
2022 		 *  command.
2023 		 */
2024 		if (opcode == 0) {
2025 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2026 				sym_name(np), (int) (cur-start));
2027 			MDELAY (10000);
2028 			++cur;
2029 			continue;
2030 		}
2031 
2032 		/*
2033 		 *  We use the bogus value 0xf00ff00f ;-)
2034 		 *  to reserve data area in SCRIPTS.
2035 		 */
2036 		if (opcode == SCR_DATA_ZERO) {
2037 			*cur++ = 0;
2038 			continue;
2039 		}
2040 
2041 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2042 			printf ("%d:  <%x>\n", (int) (cur-start),
2043 				(unsigned)opcode);
2044 
2045 		/*
2046 		 *  We don't have to decode ALL commands
2047 		 */
2048 		switch (opcode >> 28) {
2049 		case 0xf:
2050 			/*
2051 			 *  LOAD / STORE DSA relative, don't relocate.
2052 			 */
2053 			relocs = 0;
2054 			break;
2055 		case 0xe:
2056 			/*
2057 			 *  LOAD / STORE absolute.
2058 			 */
2059 			relocs = 1;
2060 			break;
2061 		case 0xc:
2062 			/*
2063 			 *  COPY has TWO arguments.
2064 			 */
2065 			relocs = 2;
2066 			tmp1 = cur[1];
2067 			tmp2 = cur[2];
2068 			if ((tmp1 ^ tmp2) & 3) {
2069 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2070 					sym_name(np), (int) (cur-start));
2071 				MDELAY (10000);
2072 			}
2073 			/*
2074 			 *  If PREFETCH feature not enabled, remove
2075 			 *  the NO FLUSH bit if present.
2076 			 */
2077 			if ((opcode & SCR_NO_FLUSH) &&
2078 			    !(np->features & FE_PFEN)) {
2079 				opcode = (opcode & ~SCR_NO_FLUSH);
2080 			}
2081 			break;
2082 		case 0x0:
2083 			/*
2084 			 *  MOVE/CHMOV (absolute address)
2085 			 */
2086 			if (!(np->features & FE_WIDE))
2087 				opcode = (opcode | OPC_MOVE);
2088 			relocs = 1;
2089 			break;
2090 		case 0x1:
2091 			/*
2092 			 *  MOVE/CHMOV (table indirect)
2093 			 */
2094 			if (!(np->features & FE_WIDE))
2095 				opcode = (opcode | OPC_MOVE);
2096 			relocs = 0;
2097 			break;
2098 		case 0x8:
2099 			/*
2100 			 *  JUMP / CALL
2101 			 *  dont't relocate if relative :-)
2102 			 */
2103 			if (opcode & 0x00800000)
2104 				relocs = 0;
2105 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2106 				relocs = 2;
2107 			else
2108 				relocs = 1;
2109 			break;
2110 		case 0x4:
2111 		case 0x5:
2112 		case 0x6:
2113 		case 0x7:
2114 			relocs = 1;
2115 			break;
2116 		default:
2117 			relocs = 0;
2118 			break;
2119 		}
2120 
2121 		/*
2122 		 *  Scriptify:) the opcode.
2123 		 */
2124 		*cur++ = cpu_to_scr(opcode);
2125 
2126 		/*
2127 		 *  If no relocation, assume 1 argument
2128 		 *  and just scriptize:) it.
2129 		 */
2130 		if (!relocs) {
2131 			*cur = cpu_to_scr(*cur);
2132 			++cur;
2133 			continue;
2134 		}
2135 
2136 		/*
2137 		 *  Otherwise performs all needed relocations.
2138 		 */
2139 		while (relocs--) {
2140 			old = *cur;
2141 
2142 			switch (old & RELOC_MASK) {
2143 			case RELOC_REGISTER:
2144 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2145 				break;
2146 			case RELOC_LABEL_A:
2147 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2148 				break;
2149 			case RELOC_LABEL_B:
2150 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2151 				break;
2152 			case RELOC_SOFTC:
2153 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2154 				break;
2155 			case 0:
2156 				/*
2157 				 *  Don't relocate a 0 address.
2158 				 *  They are mostly used for patched or
2159 				 *  script self-modified areas.
2160 				 */
2161 				if (old == 0) {
2162 					new = old;
2163 					break;
2164 				}
2165 				/* fall through */
2166 			default:
2167 				new = 0;
2168 				panic("sym_fw_bind_script: "
2169 				      "weird relocation %x\n", old);
2170 				break;
2171 			}
2172 
2173 			*cur++ = cpu_to_scr(new);
2174 		}
2175 	}
2176 }
2177 
2178 /*---------------------------------------------------------------------------*/
2179 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2180 /*---------------------------------------------------------------------------*/
2181 
2182 /*
2183  *  Function prototypes.
2184  */
2185 static void sym_save_initial_setting (hcb_p np);
2186 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2187 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2188 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2189 static void sym_chip_reset (hcb_p np);
2190 static void sym_soft_reset (hcb_p np);
2191 static void sym_start_reset (hcb_p np);
2192 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2193 static int  sym_wakeup_done (hcb_p np);
2194 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2195 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2196 static void sym_init (hcb_p np, int reason);
2197 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2198 		        u_char *fakp);
2199 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2200 			 u_char div, u_char fak);
2201 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2202 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2203 			 u_char per, u_char wide, u_char div, u_char fak);
2204 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2205 			 u_char per, u_char wide, u_char div, u_char fak);
2206 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2207 static void sym_intr (void *arg);
2208 static void sym_poll (struct cam_sim *sim);
2209 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2210 static void sym_int_sto (hcb_p np);
2211 static void sym_int_udc (hcb_p np);
2212 static void sym_int_sbmc (hcb_p np);
2213 static void sym_int_par (hcb_p np, u_short sist);
2214 static void sym_int_ma (hcb_p np);
2215 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2216 				    int task);
2217 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2218 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2219 static void sym_sir_task_recovery (hcb_p np, int num);
2220 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2221 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2222 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2223 static int  sym_show_msg (u_char * msg);
2224 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2225 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2226 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2227 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2228 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2229 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2230 static void sym_int_sir (hcb_p np);
2231 static void sym_free_ccb (hcb_p np, ccb_p cp);
2232 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2233 static ccb_p sym_alloc_ccb (hcb_p np);
2234 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2235 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2236 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2237 static int  sym_snooptest (hcb_p np);
2238 static void sym_selectclock(hcb_p np, u_char scntl3);
2239 static void sym_getclock (hcb_p np, int mult);
2240 static int  sym_getpciclock (hcb_p np);
2241 static void sym_complete_ok (hcb_p np, ccb_p cp);
2242 static void sym_complete_error (hcb_p np, ccb_p cp);
2243 static void sym_callout (void *arg);
2244 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2245 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2246 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2247 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2248 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2249 				      ccb_p cp);
2250 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2251 					bus_dma_segment_t *psegs, int nsegs);
2252 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2253 				    bus_dma_segment_t *psegs, int nsegs);
2254 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2255 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2256 			      struct ccb_trans_settings *cts);
2257 static void sym_update_dflags(hcb_p np, u_char *flags,
2258 			      struct ccb_trans_settings *cts);
2259 
2260 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2261 static int  sym_pci_probe (device_t dev);
2262 static int  sym_pci_attach (device_t dev);
2263 
2264 static void sym_pci_free (hcb_p np);
2265 static int  sym_cam_attach (hcb_p np);
2266 static void sym_cam_free (hcb_p np);
2267 
2268 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2269 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2270 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2271 
2272 /*
2273  *  Print something which allows to retrieve the controller type,
2274  *  unit, target, lun concerned by a kernel message.
2275  */
2276 static void PRINT_TARGET (hcb_p np, int target)
2277 {
2278 	printf ("%s:%d:", sym_name(np), target);
2279 }
2280 
2281 static void PRINT_LUN(hcb_p np, int target, int lun)
2282 {
2283 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2284 }
2285 
2286 static void PRINT_ADDR (ccb_p cp)
2287 {
2288 	if (cp && cp->cam_ccb)
2289 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2290 }
2291 
2292 /*
2293  *  Take into account this ccb in the freeze count.
2294  */
2295 static void sym_freeze_cam_ccb(union ccb *ccb)
2296 {
2297 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2298 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2299 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2300 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2301 		}
2302 	}
2303 }
2304 
2305 /*
2306  *  Set the status field of a CAM CCB.
2307  */
2308 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2309 {
2310 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2311 	ccb->ccb_h.status |= status;
2312 }
2313 
2314 /*
2315  *  Get the status field of a CAM CCB.
2316  */
2317 static __inline int sym_get_cam_status(union ccb *ccb)
2318 {
2319 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2320 }
2321 
2322 /*
2323  *  Enqueue a CAM CCB.
2324  */
2325 static void sym_enqueue_cam_ccb(ccb_p cp)
2326 {
2327 	hcb_p np;
2328 	union ccb *ccb;
2329 
2330 	ccb = cp->cam_ccb;
2331 	np = (hcb_p) cp->arg;
2332 
2333 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2334 	ccb->ccb_h.status = CAM_REQ_INPROG;
2335 
2336 	callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2337 	    (caddr_t)ccb, 0);
2338 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2339 	ccb->ccb_h.sym_hcb_ptr = np;
2340 
2341 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2342 }
2343 
2344 /*
2345  *  Complete a pending CAM CCB.
2346  */
2347 
2348 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2349 {
2350 
2351 	SYM_LOCK_ASSERT(MA_OWNED);
2352 
2353 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2354 		callout_stop(&cp->ch);
2355 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2356 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2357 		ccb->ccb_h.sym_hcb_ptr = NULL;
2358 	}
2359 	xpt_done(ccb);
2360 }
2361 
2362 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2363 {
2364 
2365 	SYM_LOCK_ASSERT(MA_OWNED);
2366 
2367 	sym_set_cam_status(ccb, cam_status);
2368 	xpt_done(ccb);
2369 }
2370 
2371 /*
2372  *  SYMBIOS chip clock divisor table.
2373  *
2374  *  Divisors are multiplied by 10,000,000 in order to make
2375  *  calculations more simple.
2376  */
2377 #define _5M 5000000
2378 static const u32 div_10M[] =
2379 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2380 
2381 /*
2382  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2383  *  128 transfers. All chips support at least 16 transfers
2384  *  bursts. The 825A, 875 and 895 chips support bursts of up
2385  *  to 128 transfers and the 895A and 896 support bursts of up
2386  *  to 64 transfers. All other chips support up to 16
2387  *  transfers bursts.
2388  *
2389  *  For PCI 32 bit data transfers each transfer is a DWORD.
2390  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2391  *
2392  *  We use log base 2 (burst length) as internal code, with
2393  *  value 0 meaning "burst disabled".
2394  */
2395 
2396 /*
2397  *  Burst length from burst code.
2398  */
2399 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2400 
2401 /*
2402  *  Burst code from io register bits.
2403  */
2404 #define burst_code(dmode, ctest4, ctest5) \
2405 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2406 
2407 /*
2408  *  Set initial io register bits from burst code.
2409  */
2410 static __inline void sym_init_burst(hcb_p np, u_char bc)
2411 {
2412 	np->rv_ctest4	&= ~0x80;
2413 	np->rv_dmode	&= ~(0x3 << 6);
2414 	np->rv_ctest5	&= ~0x4;
2415 
2416 	if (!bc) {
2417 		np->rv_ctest4	|= 0x80;
2418 	}
2419 	else {
2420 		--bc;
2421 		np->rv_dmode	|= ((bc & 0x3) << 6);
2422 		np->rv_ctest5	|= (bc & 0x4);
2423 	}
2424 }
2425 
2426 /*
2427  * Print out the list of targets that have some flag disabled by user.
2428  */
2429 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2430 {
2431 	int cnt;
2432 	int i;
2433 
2434 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2435 		if (i == np->myaddr)
2436 			continue;
2437 		if (np->target[i].usrflags & mask) {
2438 			if (!cnt++)
2439 				printf("%s: %s disabled for targets",
2440 					sym_name(np), msg);
2441 			printf(" %d", i);
2442 		}
2443 	}
2444 	if (cnt)
2445 		printf(".\n");
2446 }
2447 
2448 /*
2449  *  Save initial settings of some IO registers.
2450  *  Assumed to have been set by BIOS.
2451  *  We cannot reset the chip prior to reading the
2452  *  IO registers, since informations will be lost.
2453  *  Since the SCRIPTS processor may be running, this
2454  *  is not safe on paper, but it seems to work quite
2455  *  well. :)
2456  */
2457 static void sym_save_initial_setting (hcb_p np)
2458 {
2459 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2460 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2461 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2462 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2463 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2464 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2465 	np->sv_gpcntl	= INB(nc_gpcntl);
2466 	np->sv_stest1	= INB(nc_stest1);
2467 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2468 	np->sv_stest4	= INB(nc_stest4);
2469 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2470 		np->sv_scntl4	= INB(nc_scntl4);
2471 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2472 	}
2473 	else
2474 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2475 }
2476 
2477 /*
2478  *  Prepare io register values used by sym_init() according
2479  *  to selected and supported features.
2480  */
2481 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2482 {
2483 	u_char	burst_max;
2484 	u32	period;
2485 	int i;
2486 
2487 	/*
2488 	 *  Wide ?
2489 	 */
2490 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2491 
2492 	/*
2493 	 *  Get the frequency of the chip's clock.
2494 	 */
2495 	if	(np->features & FE_QUAD)
2496 		np->multiplier	= 4;
2497 	else if	(np->features & FE_DBLR)
2498 		np->multiplier	= 2;
2499 	else
2500 		np->multiplier	= 1;
2501 
2502 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2503 	np->clock_khz	*= np->multiplier;
2504 
2505 	if (np->clock_khz != 40000)
2506 		sym_getclock(np, np->multiplier);
2507 
2508 	/*
2509 	 * Divisor to be used for async (timer pre-scaler).
2510 	 */
2511 	i = np->clock_divn - 1;
2512 	while (--i >= 0) {
2513 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2514 			++i;
2515 			break;
2516 		}
2517 	}
2518 	np->rv_scntl3 = i+1;
2519 
2520 	/*
2521 	 * The C1010 uses hardwired divisors for async.
2522 	 * So, we just throw away, the async. divisor.:-)
2523 	 */
2524 	if (np->features & FE_C10)
2525 		np->rv_scntl3 = 0;
2526 
2527 	/*
2528 	 * Minimum synchronous period factor supported by the chip.
2529 	 * Btw, 'period' is in tenths of nanoseconds.
2530 	 */
2531 	period = howmany(4 * div_10M[0], np->clock_khz);
2532 	if	(period <= 250)		np->minsync = 10;
2533 	else if	(period <= 303)		np->minsync = 11;
2534 	else if	(period <= 500)		np->minsync = 12;
2535 	else				np->minsync = howmany(period, 40);
2536 
2537 	/*
2538 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2539 	 */
2540 	if	(np->minsync < 25 &&
2541 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2542 		np->minsync = 25;
2543 	else if	(np->minsync < 12 &&
2544 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2545 		np->minsync = 12;
2546 
2547 	/*
2548 	 * Maximum synchronous period factor supported by the chip.
2549 	 */
2550 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2551 	np->maxsync = period > 2540 ? 254 : period / 10;
2552 
2553 	/*
2554 	 * If chip is a C1010, guess the sync limits in DT mode.
2555 	 */
2556 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2557 		if (np->clock_khz == 160000) {
2558 			np->minsync_dt = 9;
2559 			np->maxsync_dt = 50;
2560 			np->maxoffs_dt = 62;
2561 		}
2562 	}
2563 
2564 	/*
2565 	 *  64 bit addressing  (895A/896/1010) ?
2566 	 */
2567 	if (np->features & FE_DAC)
2568 #ifdef __LP64__
2569 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2570 #else
2571 		np->rv_ccntl1	|= (DDAC);
2572 #endif
2573 
2574 	/*
2575 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2576   	 */
2577 	if (np->features & FE_NOPM)
2578 		np->rv_ccntl0	|= (ENPMJ);
2579 
2580  	/*
2581 	 *  C1010 Errata.
2582 	 *  In dual channel mode, contention occurs if internal cycles
2583 	 *  are used. Disable internal cycles.
2584 	 */
2585 	if (np->device_id == PCI_ID_LSI53C1010 &&
2586 	    np->revision_id < 0x2)
2587 		np->rv_ccntl0	|=  DILS;
2588 
2589 	/*
2590 	 *  Select burst length (dwords)
2591 	 */
2592 	burst_max	= SYM_SETUP_BURST_ORDER;
2593 	if (burst_max == 255)
2594 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2595 				       np->sv_ctest5);
2596 	if (burst_max > 7)
2597 		burst_max = 7;
2598 	if (burst_max > np->maxburst)
2599 		burst_max = np->maxburst;
2600 
2601 	/*
2602 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2603 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2604 	 *  based transactions on LOAD/STORE instructions. So we have
2605 	 *  to prevent these chips from using such PCI transactions in
2606 	 *  this driver. The generic ncr driver that does not use
2607 	 *  LOAD/STORE instructions does not need this work-around.
2608 	 */
2609 	if ((np->device_id == PCI_ID_SYM53C810 &&
2610 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2611 	    (np->device_id == PCI_ID_SYM53C860 &&
2612 	     np->revision_id <= 0x1))
2613 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2614 
2615 	/*
2616 	 *  Select all supported special features.
2617 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2618 	 *  does not help, but burst op fetch (BOF) does.
2619 	 *  Disabling PFEN makes sure BOF will be used.
2620 	 */
2621 	if (np->features & FE_ERL)
2622 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2623 	if (np->features & FE_BOF)
2624 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2625 	if (np->features & FE_ERMP)
2626 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2627 #if 1
2628 	if ((np->features & FE_PFEN) && !np->ram_ba)
2629 #else
2630 	if (np->features & FE_PFEN)
2631 #endif
2632 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2633 	if (np->features & FE_CLSE)
2634 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2635 	if (np->features & FE_WRIE)
2636 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2637 	if (np->features & FE_DFS)
2638 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2639 
2640 	/*
2641 	 *  Select some other
2642 	 */
2643 	if (SYM_SETUP_PCI_PARITY)
2644 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2645 	if (SYM_SETUP_SCSI_PARITY)
2646 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2647 
2648 	/*
2649 	 *  Get parity checking, host ID and verbose mode from NVRAM
2650 	 */
2651 	np->myaddr = 255;
2652 	sym_nvram_setup_host (np, nvram);
2653 #ifdef __sparc64__
2654 	np->myaddr = OF_getscsinitid(np->device);
2655 #endif
2656 
2657 	/*
2658 	 *  Get SCSI addr of host adapter (set by bios?).
2659 	 */
2660 	if (np->myaddr == 255) {
2661 		np->myaddr = INB(nc_scid) & 0x07;
2662 		if (!np->myaddr)
2663 			np->myaddr = SYM_SETUP_HOST_ID;
2664 	}
2665 
2666 	/*
2667 	 *  Prepare initial io register bits for burst length
2668 	 */
2669 	sym_init_burst(np, burst_max);
2670 
2671 	/*
2672 	 *  Set SCSI BUS mode.
2673 	 *  - LVD capable chips (895/895A/896/1010) report the
2674 	 *    current BUS mode through the STEST4 IO register.
2675 	 *  - For previous generation chips (825/825A/875),
2676 	 *    user has to tell us how to check against HVD,
2677 	 *    since a 100% safe algorithm is not possible.
2678 	 */
2679 	np->scsi_mode = SMODE_SE;
2680 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2681 		np->scsi_mode = (np->sv_stest4 & SMODE);
2682 	else if	(np->features & FE_DIFF) {
2683 		if (SYM_SETUP_SCSI_DIFF == 1) {
2684 			if (np->sv_scntl3) {
2685 				if (np->sv_stest2 & 0x20)
2686 					np->scsi_mode = SMODE_HVD;
2687 			}
2688 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2689 				if (!(INB(nc_gpreg) & 0x08))
2690 					np->scsi_mode = SMODE_HVD;
2691 			}
2692 		}
2693 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2694 			np->scsi_mode = SMODE_HVD;
2695 	}
2696 	if (np->scsi_mode == SMODE_HVD)
2697 		np->rv_stest2 |= 0x20;
2698 
2699 	/*
2700 	 *  Set LED support from SCRIPTS.
2701 	 *  Ignore this feature for boards known to use a
2702 	 *  specific GPIO wiring and for the 895A, 896
2703 	 *  and 1010 that drive the LED directly.
2704 	 */
2705 	if ((SYM_SETUP_SCSI_LED ||
2706 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2707 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2708 	       np->device_id == PCI_ID_SYM53C895))) &&
2709 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2710 		np->features |= FE_LED0;
2711 
2712 	/*
2713 	 *  Set irq mode.
2714 	 */
2715 	switch(SYM_SETUP_IRQ_MODE & 3) {
2716 	case 2:
2717 		np->rv_dcntl	|= IRQM;
2718 		break;
2719 	case 1:
2720 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2721 		break;
2722 	default:
2723 		break;
2724 	}
2725 
2726 	/*
2727 	 *  Configure targets according to driver setup.
2728 	 *  If NVRAM present get targets setup from NVRAM.
2729 	 */
2730 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2731 		tcb_p tp = &np->target[i];
2732 
2733 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2734 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2735 		tp->tinfo.user.period = np->minsync;
2736 		if (np->features & FE_ULTRA3)
2737 			tp->tinfo.user.period = np->minsync_dt;
2738 		tp->tinfo.user.offset = np->maxoffs;
2739 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2740 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2741 		tp->usrtags = SYM_SETUP_MAX_TAG;
2742 
2743 		sym_nvram_setup_target (np, i, nvram);
2744 
2745 		/*
2746 		 *  For now, guess PPR/DT support from the period
2747 		 *  and BUS width.
2748 		 */
2749 		if (np->features & FE_ULTRA3) {
2750 			if (tp->tinfo.user.period <= 9	&&
2751 			    tp->tinfo.user.width == BUS_16_BIT) {
2752 				tp->tinfo.user.options |= PPR_OPT_DT;
2753 				tp->tinfo.user.offset   = np->maxoffs_dt;
2754 				tp->tinfo.user.spi_version = 3;
2755 			}
2756 		}
2757 
2758 		if (!tp->usrtags)
2759 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2760 	}
2761 
2762 	/*
2763 	 *  Let user know about the settings.
2764 	 */
2765 	i = nvram->type;
2766 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2767 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2768 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2769 		np->myaddr,
2770 		(np->features & FE_ULTRA3) ? 80 :
2771 		(np->features & FE_ULTRA2) ? 40 :
2772 		(np->features & FE_ULTRA)  ? 20 : 10,
2773 		sym_scsi_bus_mode(np->scsi_mode),
2774 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2775 	/*
2776 	 *  Tell him more on demand.
2777 	 */
2778 	if (sym_verbose) {
2779 		printf("%s: %s IRQ line driver%s\n",
2780 			sym_name(np),
2781 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2782 			np->ram_ba ? ", using on-chip SRAM" : "");
2783 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2784 		if (np->features & FE_NOPM)
2785 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2786 			       sym_name(np));
2787 	}
2788 	/*
2789 	 *  And still more.
2790 	 */
2791 	if (sym_verbose > 1) {
2792 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2793 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2794 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2795 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2796 
2797 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2798 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2799 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2800 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2801 	}
2802 	/*
2803 	 *  Let user be aware of targets that have some disable flags set.
2804 	 */
2805 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2806 	if (sym_verbose)
2807 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2808 				       "SCAN FOR LUNS");
2809 
2810 	return 0;
2811 }
2812 
2813 /*
2814  *  Prepare the next negotiation message if needed.
2815  *
2816  *  Fill in the part of message buffer that contains the
2817  *  negotiation and the nego_status field of the CCB.
2818  *  Returns the size of the message in bytes.
2819  */
2820 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2821 {
2822 	tcb_p tp = &np->target[cp->target];
2823 	int msglen = 0;
2824 
2825 	/*
2826 	 *  Early C1010 chips need a work-around for DT
2827 	 *  data transfer to work.
2828 	 */
2829 	if (!(np->features & FE_U3EN))
2830 		tp->tinfo.goal.options = 0;
2831 	/*
2832 	 *  negotiate using PPR ?
2833 	 */
2834 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2835 		nego = NS_PPR;
2836 	/*
2837 	 *  negotiate wide transfers ?
2838 	 */
2839 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2840 		nego = NS_WIDE;
2841 	/*
2842 	 *  negotiate synchronous transfers?
2843 	 */
2844 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2845 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2846 		nego = NS_SYNC;
2847 
2848 	switch (nego) {
2849 	case NS_SYNC:
2850 		msgptr[msglen++] = M_EXTENDED;
2851 		msgptr[msglen++] = 3;
2852 		msgptr[msglen++] = M_X_SYNC_REQ;
2853 		msgptr[msglen++] = tp->tinfo.goal.period;
2854 		msgptr[msglen++] = tp->tinfo.goal.offset;
2855 		break;
2856 	case NS_WIDE:
2857 		msgptr[msglen++] = M_EXTENDED;
2858 		msgptr[msglen++] = 2;
2859 		msgptr[msglen++] = M_X_WIDE_REQ;
2860 		msgptr[msglen++] = tp->tinfo.goal.width;
2861 		break;
2862 	case NS_PPR:
2863 		msgptr[msglen++] = M_EXTENDED;
2864 		msgptr[msglen++] = 6;
2865 		msgptr[msglen++] = M_X_PPR_REQ;
2866 		msgptr[msglen++] = tp->tinfo.goal.period;
2867 		msgptr[msglen++] = 0;
2868 		msgptr[msglen++] = tp->tinfo.goal.offset;
2869 		msgptr[msglen++] = tp->tinfo.goal.width;
2870 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2871 		break;
2872 	}
2873 
2874 	cp->nego_status = nego;
2875 
2876 	if (nego) {
2877 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2878 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2879 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2880 					  nego == NS_WIDE ? "wide msgout" :
2881 					  "ppr msgout", msgptr);
2882 		}
2883 	}
2884 
2885 	return msglen;
2886 }
2887 
2888 /*
2889  *  Insert a job into the start queue.
2890  */
2891 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2892 {
2893 	u_short	qidx;
2894 
2895 #ifdef SYM_CONF_IARB_SUPPORT
2896 	/*
2897 	 *  If the previously queued CCB is not yet done,
2898 	 *  set the IARB hint. The SCRIPTS will go with IARB
2899 	 *  for this job when starting the previous one.
2900 	 *  We leave devices a chance to win arbitration by
2901 	 *  not using more than 'iarb_max' consecutive
2902 	 *  immediate arbitrations.
2903 	 */
2904 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2905 		np->last_cp->host_flags |= HF_HINT_IARB;
2906 		++np->iarb_count;
2907 	}
2908 	else
2909 		np->iarb_count = 0;
2910 	np->last_cp = cp;
2911 #endif
2912 
2913 	/*
2914 	 *  Insert first the idle task and then our job.
2915 	 *  The MB should ensure proper ordering.
2916 	 */
2917 	qidx = np->squeueput + 2;
2918 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2919 
2920 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2921 	MEMORY_BARRIER();
2922 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2923 
2924 	np->squeueput = qidx;
2925 
2926 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2927 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2928 
2929 	/*
2930 	 *  Script processor may be waiting for reselect.
2931 	 *  Wake it up.
2932 	 */
2933 	MEMORY_BARRIER();
2934 	OUTB (nc_istat, SIGP|np->istat_sem);
2935 }
2936 
2937 /*
2938  *  Soft reset the chip.
2939  *
2940  *  Raising SRST when the chip is running may cause
2941  *  problems on dual function chips (see below).
2942  *  On the other hand, LVD devices need some delay
2943  *  to settle and report actual BUS mode in STEST4.
2944  */
2945 static void sym_chip_reset (hcb_p np)
2946 {
2947 	OUTB (nc_istat, SRST);
2948 	UDELAY (10);
2949 	OUTB (nc_istat, 0);
2950 	UDELAY(2000);	/* For BUS MODE to settle */
2951 }
2952 
2953 /*
2954  *  Soft reset the chip.
2955  *
2956  *  Some 896 and 876 chip revisions may hang-up if we set
2957  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2958  *  are running.
2959  *  So, we need to abort the current operation prior to
2960  *  soft resetting the chip.
2961  */
2962 static void sym_soft_reset (hcb_p np)
2963 {
2964 	u_char istat;
2965 	int i;
2966 
2967 	OUTB (nc_istat, CABRT);
2968 	for (i = 1000000 ; i ; --i) {
2969 		istat = INB (nc_istat);
2970 		if (istat & SIP) {
2971 			INW (nc_sist);
2972 			continue;
2973 		}
2974 		if (istat & DIP) {
2975 			OUTB (nc_istat, 0);
2976 			INB (nc_dstat);
2977 			break;
2978 		}
2979 	}
2980 	if (!i)
2981 		printf("%s: unable to abort current chip operation.\n",
2982 			sym_name(np));
2983 	sym_chip_reset (np);
2984 }
2985 
2986 /*
2987  *  Start reset process.
2988  *
2989  *  The interrupt handler will reinitialize the chip.
2990  */
2991 static void sym_start_reset(hcb_p np)
2992 {
2993 	(void) sym_reset_scsi_bus(np, 1);
2994 }
2995 
2996 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2997 {
2998 	u32 term;
2999 	int retv = 0;
3000 
3001 	sym_soft_reset(np);	/* Soft reset the chip */
3002 	if (enab_int)
3003 		OUTW (nc_sien, RST);
3004 	/*
3005 	 *  Enable Tolerant, reset IRQD if present and
3006 	 *  properly set IRQ mode, prior to resetting the bus.
3007 	 */
3008 	OUTB (nc_stest3, TE);
3009 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3010 	OUTB (nc_scntl1, CRST);
3011 	UDELAY (200);
3012 
3013 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3014 		goto out;
3015 	/*
3016 	 *  Check for no terminators or SCSI bus shorts to ground.
3017 	 *  Read SCSI data bus, data parity bits and control signals.
3018 	 *  We are expecting RESET to be TRUE and other signals to be
3019 	 *  FALSE.
3020 	 */
3021 	term =	INB(nc_sstat0);
3022 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3023 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3024 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3025 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3026 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3027 
3028 	if (!(np->features & FE_WIDE))
3029 		term &= 0x3ffff;
3030 
3031 	if (term != (2<<7)) {
3032 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3033 			sym_name(np));
3034 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3035 			"0x%lx, expecting 0x%lx\n",
3036 			sym_name(np),
3037 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3038 			(u_long)term, (u_long)(2<<7));
3039 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3040 			retv = 1;
3041 	}
3042 out:
3043 	OUTB (nc_scntl1, 0);
3044 	/* MDELAY(100); */
3045 	return retv;
3046 }
3047 
3048 /*
3049  *  The chip may have completed jobs. Look at the DONE QUEUE.
3050  *
3051  *  On architectures that may reorder LOAD/STORE operations,
3052  *  a memory barrier may be needed after the reading of the
3053  *  so-called `flag' and prior to dealing with the data.
3054  */
3055 static int sym_wakeup_done (hcb_p np)
3056 {
3057 	ccb_p cp;
3058 	int i, n;
3059 	u32 dsa;
3060 
3061 	SYM_LOCK_ASSERT(MA_OWNED);
3062 
3063 	n = 0;
3064 	i = np->dqueueget;
3065 	while (1) {
3066 		dsa = scr_to_cpu(np->dqueue[i]);
3067 		if (!dsa)
3068 			break;
3069 		np->dqueue[i] = 0;
3070 		if ((i = i+2) >= MAX_QUEUE*2)
3071 			i = 0;
3072 
3073 		cp = sym_ccb_from_dsa(np, dsa);
3074 		if (cp) {
3075 			MEMORY_BARRIER();
3076 			sym_complete_ok (np, cp);
3077 			++n;
3078 		}
3079 		else
3080 			printf ("%s: bad DSA (%x) in done queue.\n",
3081 				sym_name(np), (u_int) dsa);
3082 	}
3083 	np->dqueueget = i;
3084 
3085 	return n;
3086 }
3087 
3088 /*
3089  *  Complete all active CCBs with error.
3090  *  Used on CHIP/SCSI RESET.
3091  */
3092 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3093 {
3094 	/*
3095 	 *  Move all active CCBs to the COMP queue
3096 	 *  and flush this queue.
3097 	 */
3098 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3099 	sym_que_init(&np->busy_ccbq);
3100 	sym_flush_comp_queue(np, cam_status);
3101 }
3102 
3103 /*
3104  *  Start chip.
3105  *
3106  *  'reason' means:
3107  *     0: initialisation.
3108  *     1: SCSI BUS RESET delivered or received.
3109  *     2: SCSI BUS MODE changed.
3110  */
3111 static void sym_init (hcb_p np, int reason)
3112 {
3113  	int	i;
3114 	u32	phys;
3115 
3116 	SYM_LOCK_ASSERT(MA_OWNED);
3117 
3118  	/*
3119 	 *  Reset chip if asked, otherwise just clear fifos.
3120  	 */
3121 	if (reason == 1)
3122 		sym_soft_reset(np);
3123 	else {
3124 		OUTB (nc_stest3, TE|CSF);
3125 		OUTONB (nc_ctest3, CLF);
3126 	}
3127 
3128 	/*
3129 	 *  Clear Start Queue
3130 	 */
3131 	phys = np->squeue_ba;
3132 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3133 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3134 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3135 	}
3136 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3137 
3138 	/*
3139 	 *  Start at first entry.
3140 	 */
3141 	np->squeueput = 0;
3142 
3143 	/*
3144 	 *  Clear Done Queue
3145 	 */
3146 	phys = np->dqueue_ba;
3147 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3148 		np->dqueue[i]   = 0;
3149 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3150 	}
3151 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3152 
3153 	/*
3154 	 *  Start at first entry.
3155 	 */
3156 	np->dqueueget = 0;
3157 
3158 	/*
3159 	 *  Install patches in scripts.
3160 	 *  This also let point to first position the start
3161 	 *  and done queue pointers used from SCRIPTS.
3162 	 */
3163 	np->fw_patch(np);
3164 
3165 	/*
3166 	 *  Wakeup all pending jobs.
3167 	 */
3168 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3169 
3170 	/*
3171 	 *  Init chip.
3172 	 */
3173 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3174 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3175 
3176 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3177 					/*  full arb., ena parity, par->ATN  */
3178 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3179 
3180 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3181 
3182 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3183 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3184 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3185 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3186 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3187 
3188 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3189 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3190 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3191 
3192 	/* Extended Sreq/Sack filtering not supported on the C10 */
3193 	if (np->features & FE_C10)
3194 		OUTB (nc_stest2, np->rv_stest2);
3195 	else
3196 		OUTB (nc_stest2, EXT|np->rv_stest2);
3197 
3198 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3199 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3200 
3201 	/*
3202 	 *  For now, disable AIP generation on C1010-66.
3203 	 */
3204 	if (np->device_id == PCI_ID_LSI53C1010_2)
3205 		OUTB (nc_aipcntl1, DISAIP);
3206 
3207 	/*
3208 	 *  C10101 Errata.
3209 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3210 	 *  STEST1 register to disable SGE. We probably should do
3211 	 *  that from SCRIPTS for each selection/reselection, but
3212 	 *  I just don't want. :)
3213 	 */
3214 	if (np->device_id == PCI_ID_LSI53C1010 &&
3215 	    /* np->revision_id < 0xff */ 1)
3216 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3217 
3218 	/*
3219 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3220 	 *  Disable overlapped arbitration for some dual function devices,
3221 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3222 	 */
3223 	if (np->device_id == PCI_ID_SYM53C875)
3224 		OUTB (nc_ctest0, (1<<5));
3225 	else if (np->device_id == PCI_ID_SYM53C896)
3226 		np->rv_ccntl0 |= DPR;
3227 
3228 	/*
3229 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3230 	 *  and/or hardware phase mismatch, since only such chips
3231 	 *  seem to support those IO registers.
3232 	 */
3233 	if (np->features & (FE_DAC|FE_NOPM)) {
3234 		OUTB (nc_ccntl0, np->rv_ccntl0);
3235 		OUTB (nc_ccntl1, np->rv_ccntl1);
3236 	}
3237 
3238 	/*
3239 	 *  If phase mismatch handled by scripts (895A/896/1010),
3240 	 *  set PM jump addresses.
3241 	 */
3242 	if (np->features & FE_NOPM) {
3243 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3244 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3245 	}
3246 
3247 	/*
3248 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3249 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3250 	 */
3251 	if (np->features & FE_LED0)
3252 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3253 	else if (np->features & FE_LEDC)
3254 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3255 
3256 	/*
3257 	 *      enable ints
3258 	 */
3259 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3260 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3261 
3262 	/*
3263 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3264 	 *  Try to eat the spurious SBMC interrupt that may occur when
3265 	 *  we reset the chip but not the SCSI BUS (at initialization).
3266 	 */
3267 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3268 		OUTONW (nc_sien, SBMC);
3269 		if (reason == 0) {
3270 			MDELAY(100);
3271 			INW (nc_sist);
3272 		}
3273 		np->scsi_mode = INB (nc_stest4) & SMODE;
3274 	}
3275 
3276 	/*
3277 	 *  Fill in target structure.
3278 	 *  Reinitialize usrsync.
3279 	 *  Reinitialize usrwide.
3280 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3281 	 */
3282 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3283 		tcb_p tp = &np->target[i];
3284 
3285 		tp->to_reset  = 0;
3286 		tp->head.sval = 0;
3287 		tp->head.wval = np->rv_scntl3;
3288 		tp->head.uval = 0;
3289 
3290 		tp->tinfo.current.period = 0;
3291 		tp->tinfo.current.offset = 0;
3292 		tp->tinfo.current.width  = BUS_8_BIT;
3293 		tp->tinfo.current.options = 0;
3294 	}
3295 
3296 	/*
3297 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3298 	 *  and start script processor.
3299 	 */
3300 	if (np->ram_ba) {
3301 		if (sym_verbose > 1)
3302 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3303 				sym_name(np));
3304 		if (np->ram_ws == 8192) {
3305 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3306 			OUTL (nc_mmws, np->scr_ram_seg);
3307 			OUTL (nc_mmrs, np->scr_ram_seg);
3308 			OUTL (nc_sfs,  np->scr_ram_seg);
3309 			phys = SCRIPTB_BA (np, start64);
3310 		}
3311 		else
3312 			phys = SCRIPTA_BA (np, init);
3313 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3314 	}
3315 	else
3316 		phys = SCRIPTA_BA (np, init);
3317 
3318 	np->istat_sem = 0;
3319 
3320 	OUTL (nc_dsa, np->hcb_ba);
3321 	OUTL_DSP (phys);
3322 
3323 	/*
3324 	 *  Notify the XPT about the RESET condition.
3325 	 */
3326 	if (reason != 0)
3327 		xpt_async(AC_BUS_RESET, np->path, NULL);
3328 }
3329 
3330 /*
3331  *  Get clock factor and sync divisor for a given
3332  *  synchronous factor period.
3333  */
3334 static int
3335 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3336 {
3337 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3338 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3339 	u32	fak;			/* Sync factor in sxfer		*/
3340 	u32	per;			/* Period in tenths of ns	*/
3341 	u32	kpc;			/* (per * clk)			*/
3342 	int	ret;
3343 
3344 	/*
3345 	 *  Compute the synchronous period in tenths of nano-seconds
3346 	 */
3347 	if (dt && sfac <= 9)	per = 125;
3348 	else if	(sfac <= 10)	per = 250;
3349 	else if	(sfac == 11)	per = 303;
3350 	else if	(sfac == 12)	per = 500;
3351 	else			per = 40 * sfac;
3352 	ret = per;
3353 
3354 	kpc = per * clk;
3355 	if (dt)
3356 		kpc <<= 1;
3357 
3358 	/*
3359 	 *  For earliest C10 revision 0, we cannot use extra
3360 	 *  clocks for the setting of the SCSI clocking.
3361 	 *  Note that this limits the lowest sync data transfer
3362 	 *  to 5 Mega-transfers per second and may result in
3363 	 *  using higher clock divisors.
3364 	 */
3365 #if 1
3366 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3367 		/*
3368 		 *  Look for the lowest clock divisor that allows an
3369 		 *  output speed not faster than the period.
3370 		 */
3371 		while (div > 0) {
3372 			--div;
3373 			if (kpc > (div_10M[div] << 2)) {
3374 				++div;
3375 				break;
3376 			}
3377 		}
3378 		fak = 0;			/* No extra clocks */
3379 		if (div == np->clock_divn) {	/* Are we too fast ? */
3380 			ret = -1;
3381 		}
3382 		*divp = div;
3383 		*fakp = fak;
3384 		return ret;
3385 	}
3386 #endif
3387 
3388 	/*
3389 	 *  Look for the greatest clock divisor that allows an
3390 	 *  input speed faster than the period.
3391 	 */
3392 	while (div-- > 0)
3393 		if (kpc >= (div_10M[div] << 2)) break;
3394 
3395 	/*
3396 	 *  Calculate the lowest clock factor that allows an output
3397 	 *  speed not faster than the period, and the max output speed.
3398 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3399 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3400 	 */
3401 	if (dt) {
3402 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3403 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3404 	}
3405 	else {
3406 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3407 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3408 	}
3409 
3410 	/*
3411 	 *  Check against our hardware limits, or bugs :).
3412 	 */
3413 	if (fak > 2)	{fak = 2; ret = -1;}
3414 
3415 	/*
3416 	 *  Compute and return sync parameters.
3417 	 */
3418 	*divp = div;
3419 	*fakp = fak;
3420 
3421 	return ret;
3422 }
3423 
3424 /*
3425  *  Tell the SCSI layer about the new transfer parameters.
3426  */
3427 static void
3428 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3429 {
3430 	struct ccb_trans_settings cts;
3431 	struct cam_path *path;
3432 	int sts;
3433 	tcb_p tp = &np->target[target];
3434 
3435 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3436 	                      CAM_LUN_WILDCARD);
3437 	if (sts != CAM_REQ_CMP)
3438 		return;
3439 
3440 	bzero(&cts, sizeof(cts));
3441 
3442 #define	cts__scsi (cts.proto_specific.scsi)
3443 #define	cts__spi  (cts.xport_specific.spi)
3444 
3445 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3446 	cts.protocol  = PROTO_SCSI;
3447 	cts.transport = XPORT_SPI;
3448 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3449 	cts.transport_version = tp->tinfo.current.spi_version;
3450 
3451 	cts__spi.valid = spi_valid;
3452 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3453 		cts__spi.sync_period = tp->tinfo.current.period;
3454 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3455 		cts__spi.sync_offset = tp->tinfo.current.offset;
3456 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3457 		cts__spi.bus_width   = tp->tinfo.current.width;
3458 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3459 		cts__spi.ppr_options = tp->tinfo.current.options;
3460 #undef cts__spi
3461 #undef cts__scsi
3462 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3463 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3464 	xpt_free_path(path);
3465 }
3466 
3467 #define SYM_SPI_VALID_WDTR		\
3468 	CTS_SPI_VALID_BUS_WIDTH |	\
3469 	CTS_SPI_VALID_SYNC_RATE |	\
3470 	CTS_SPI_VALID_SYNC_OFFSET
3471 #define SYM_SPI_VALID_SDTR		\
3472 	CTS_SPI_VALID_SYNC_RATE |	\
3473 	CTS_SPI_VALID_SYNC_OFFSET
3474 #define SYM_SPI_VALID_PPR		\
3475 	CTS_SPI_VALID_PPR_OPTIONS |	\
3476 	CTS_SPI_VALID_BUS_WIDTH |	\
3477 	CTS_SPI_VALID_SYNC_RATE |	\
3478 	CTS_SPI_VALID_SYNC_OFFSET
3479 
3480 /*
3481  *  We received a WDTR.
3482  *  Let everything be aware of the changes.
3483  */
3484 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3485 {
3486 	tcb_p tp = &np->target[cp->target];
3487 
3488 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3489 
3490 	/*
3491 	 *  Tell the SCSI layer about the new transfer parameters.
3492 	 */
3493 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3494 	tp->tinfo.current.offset = 0;
3495 	tp->tinfo.current.period = 0;
3496 	tp->tinfo.current.options = 0;
3497 
3498 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3499 }
3500 
3501 /*
3502  *  We received a SDTR.
3503  *  Let everything be aware of the changes.
3504  */
3505 static void
3506 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3507 {
3508 	tcb_p tp = &np->target[cp->target];
3509 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3510 
3511 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3512 
3513 	/*
3514 	 *  Tell the SCSI layer about the new transfer parameters.
3515 	 */
3516 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3517 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3518 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3519 
3520 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3521 }
3522 
3523 /*
3524  *  We received a PPR.
3525  *  Let everything be aware of the changes.
3526  */
3527 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3528 			 u_char per, u_char wide, u_char div, u_char fak)
3529 {
3530 	tcb_p tp = &np->target[cp->target];
3531 
3532 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3533 
3534 	/*
3535 	 *  Tell the SCSI layer about the new transfer parameters.
3536 	 */
3537 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3538 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3539 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3540 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3541 
3542 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3543 }
3544 
3545 /*
3546  *  Switch trans mode for current job and it's target.
3547  */
3548 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3549 			 u_char per, u_char wide, u_char div, u_char fak)
3550 {
3551 	SYM_QUEHEAD *qp;
3552 	union	ccb *ccb;
3553 	tcb_p tp;
3554 	u_char target = INB (nc_sdid) & 0x0f;
3555 	u_char sval, wval, uval;
3556 
3557 	assert (cp);
3558 	if (!cp) return;
3559 	ccb = cp->cam_ccb;
3560 	assert (ccb);
3561 	if (!ccb) return;
3562 	assert (target == (cp->target & 0xf));
3563 	tp = &np->target[target];
3564 
3565 	sval = tp->head.sval;
3566 	wval = tp->head.wval;
3567 	uval = tp->head.uval;
3568 
3569 #if 0
3570 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3571 		sval, wval, uval, np->rv_scntl3);
3572 #endif
3573 	/*
3574 	 *  Set the offset.
3575 	 */
3576 	if (!(np->features & FE_C10))
3577 		sval = (sval & ~0x1f) | ofs;
3578 	else
3579 		sval = (sval & ~0x3f) | ofs;
3580 
3581 	/*
3582 	 *  Set the sync divisor and extra clock factor.
3583 	 */
3584 	if (ofs != 0) {
3585 		wval = (wval & ~0x70) | ((div+1) << 4);
3586 		if (!(np->features & FE_C10))
3587 			sval = (sval & ~0xe0) | (fak << 5);
3588 		else {
3589 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3590 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3591 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3592 		}
3593 	}
3594 
3595 	/*
3596 	 *  Set the bus width.
3597 	 */
3598 	wval = wval & ~EWS;
3599 	if (wide != 0)
3600 		wval |= EWS;
3601 
3602 	/*
3603 	 *  Set misc. ultra enable bits.
3604 	 */
3605 	if (np->features & FE_C10) {
3606 		uval = uval & ~(U3EN|AIPCKEN);
3607 		if (dt)	{
3608 			assert(np->features & FE_U3EN);
3609 			uval |= U3EN;
3610 		}
3611 	}
3612 	else {
3613 		wval = wval & ~ULTRA;
3614 		if (per <= 12)	wval |= ULTRA;
3615 	}
3616 
3617 	/*
3618 	 *   Stop there if sync parameters are unchanged.
3619 	 */
3620 	if (tp->head.sval == sval &&
3621 	    tp->head.wval == wval &&
3622 	    tp->head.uval == uval)
3623 		return;
3624 	tp->head.sval = sval;
3625 	tp->head.wval = wval;
3626 	tp->head.uval = uval;
3627 
3628 	/*
3629 	 *  Disable extended Sreq/Sack filtering if per < 50.
3630 	 *  Not supported on the C1010.
3631 	 */
3632 	if (per < 50 && !(np->features & FE_C10))
3633 		OUTOFFB (nc_stest2, EXT);
3634 
3635 	/*
3636 	 *  set actual value and sync_status
3637 	 */
3638 	OUTB (nc_sxfer,  tp->head.sval);
3639 	OUTB (nc_scntl3, tp->head.wval);
3640 
3641 	if (np->features & FE_C10) {
3642 		OUTB (nc_scntl4, tp->head.uval);
3643 	}
3644 
3645 	/*
3646 	 *  patch ALL busy ccbs of this target.
3647 	 */
3648 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3649 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3650 		if (cp->target != target)
3651 			continue;
3652 		cp->phys.select.sel_scntl3 = tp->head.wval;
3653 		cp->phys.select.sel_sxfer  = tp->head.sval;
3654 		if (np->features & FE_C10) {
3655 			cp->phys.select.sel_scntl4 = tp->head.uval;
3656 		}
3657 	}
3658 }
3659 
3660 /*
3661  *  log message for real hard errors
3662  *
3663  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3664  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3665  *
3666  *  exception register:
3667  *  	ds:	dstat
3668  *  	si:	sist
3669  *
3670  *  SCSI bus lines:
3671  *  	so:	control lines as driven by chip.
3672  *  	si:	control lines as seen by chip.
3673  *  	sd:	scsi data lines as seen by chip.
3674  *
3675  *  wide/fastmode:
3676  *  	sxfer:	(see the manual)
3677  *  	scntl3:	(see the manual)
3678  *
3679  *  current script command:
3680  *  	dsp:	script address (relative to start of script).
3681  *  	dbc:	first word of script command.
3682  *
3683  *  First 24 register of the chip:
3684  *  	r0..rf
3685  */
3686 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3687 {
3688 	u32	dsp;
3689 	int	script_ofs;
3690 	int	script_size;
3691 	char	*script_name;
3692 	u_char	*script_base;
3693 	int	i;
3694 
3695 	dsp	= INL (nc_dsp);
3696 
3697 	if	(dsp > np->scripta_ba &&
3698 		 dsp <= np->scripta_ba + np->scripta_sz) {
3699 		script_ofs	= dsp - np->scripta_ba;
3700 		script_size	= np->scripta_sz;
3701 		script_base	= (u_char *) np->scripta0;
3702 		script_name	= "scripta";
3703 	}
3704 	else if (np->scriptb_ba < dsp &&
3705 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3706 		script_ofs	= dsp - np->scriptb_ba;
3707 		script_size	= np->scriptb_sz;
3708 		script_base	= (u_char *) np->scriptb0;
3709 		script_name	= "scriptb";
3710 	} else {
3711 		script_ofs	= dsp;
3712 		script_size	= 0;
3713 		script_base	= NULL;
3714 		script_name	= "mem";
3715 	}
3716 
3717 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3718 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3719 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3720 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3721 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3722 		(unsigned)INL (nc_dbc));
3723 
3724 	if (((script_ofs & 3) == 0) &&
3725 	    (unsigned)script_ofs < script_size) {
3726 		printf ("%s: script cmd = %08x\n", sym_name(np),
3727 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3728 	}
3729 
3730         printf ("%s: regdump:", sym_name(np));
3731         for (i=0; i<24;i++)
3732             printf (" %02x", (unsigned)INB_OFF(i));
3733         printf (".\n");
3734 
3735 	/*
3736 	 *  PCI BUS error, read the PCI ststus register.
3737 	 */
3738 	if (dstat & (MDPE|BF)) {
3739 		u_short pci_sts;
3740 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3741 		if (pci_sts & 0xf900) {
3742 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3743 			printf("%s: PCI STATUS = 0x%04x\n",
3744 				sym_name(np), pci_sts & 0xf900);
3745 		}
3746 	}
3747 }
3748 
3749 /*
3750  *  chip interrupt handler
3751  *
3752  *  In normal situations, interrupt conditions occur one at
3753  *  a time. But when something bad happens on the SCSI BUS,
3754  *  the chip may raise several interrupt flags before
3755  *  stopping and interrupting the CPU. The additionnal
3756  *  interrupt flags are stacked in some extra registers
3757  *  after the SIP and/or DIP flag has been raised in the
3758  *  ISTAT. After the CPU has read the interrupt condition
3759  *  flag from SIST or DSTAT, the chip unstacks the other
3760  *  interrupt flags and sets the corresponding bits in
3761  *  SIST or DSTAT. Since the chip starts stacking once the
3762  *  SIP or DIP flag is set, there is a small window of time
3763  *  where the stacking does not occur.
3764  *
3765  *  Typically, multiple interrupt conditions may happen in
3766  *  the following situations:
3767  *
3768  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3769  *    When a parity error is detected in input phase
3770  *    and the device switches to msg-in phase inside a
3771  *    block MOV.
3772  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3773  *    When a stupid device does not want to handle the
3774  *    recovery of an SCSI parity error.
3775  *  - Some combinations of STO, PAR, UDC, ...
3776  *    When using non compliant SCSI stuff, when user is
3777  *    doing non compliant hot tampering on the BUS, when
3778  *    something really bad happens to a device, etc ...
3779  *
3780  *  The heuristic suggested by SYMBIOS to handle
3781  *  multiple interrupts is to try unstacking all
3782  *  interrupts conditions and to handle them on some
3783  *  priority based on error severity.
3784  *  This will work when the unstacking has been
3785  *  successful, but we cannot be 100 % sure of that,
3786  *  since the CPU may have been faster to unstack than
3787  *  the chip is able to stack. Hmmm ... But it seems that
3788  *  such a situation is very unlikely to happen.
3789  *
3790  *  If this happen, for example STO caught by the CPU
3791  *  then UDC happenning before the CPU have restarted
3792  *  the SCRIPTS, the driver may wrongly complete the
3793  *  same command on UDC, since the SCRIPTS didn't restart
3794  *  and the DSA still points to the same command.
3795  *  We avoid this situation by setting the DSA to an
3796  *  invalid value when the CCB is completed and before
3797  *  restarting the SCRIPTS.
3798  *
3799  *  Another issue is that we need some section of our
3800  *  recovery procedures to be somehow uninterruptible but
3801  *  the SCRIPTS processor does not provides such a
3802  *  feature. For this reason, we handle recovery preferently
3803  *  from the C code and check against some SCRIPTS critical
3804  *  sections from the C code.
3805  *
3806  *  Hopefully, the interrupt handling of the driver is now
3807  *  able to resist to weird BUS error conditions, but donnot
3808  *  ask me for any guarantee that it will never fail. :-)
3809  *  Use at your own decision and risk.
3810  */
3811 static void sym_intr1 (hcb_p np)
3812 {
3813 	u_char	istat, istatc;
3814 	u_char	dstat;
3815 	u_short	sist;
3816 
3817 	SYM_LOCK_ASSERT(MA_OWNED);
3818 
3819 	/*
3820 	 *  interrupt on the fly ?
3821 	 *
3822 	 *  A `dummy read' is needed to ensure that the
3823 	 *  clear of the INTF flag reaches the device
3824 	 *  before the scanning of the DONE queue.
3825 	 */
3826 	istat = INB (nc_istat);
3827 	if (istat & INTF) {
3828 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3829 		istat = INB (nc_istat);		/* DUMMY READ */
3830 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3831 		(void)sym_wakeup_done (np);
3832 	}
3833 
3834 	if (!(istat & (SIP|DIP)))
3835 		return;
3836 
3837 #if 0	/* We should never get this one */
3838 	if (istat & CABRT)
3839 		OUTB (nc_istat, CABRT);
3840 #endif
3841 
3842 	/*
3843 	 *  PAR and MA interrupts may occur at the same time,
3844 	 *  and we need to know of both in order to handle
3845 	 *  this situation properly. We try to unstack SCSI
3846 	 *  interrupts for that reason. BTW, I dislike a LOT
3847 	 *  such a loop inside the interrupt routine.
3848 	 *  Even if DMA interrupt stacking is very unlikely to
3849 	 *  happen, we also try unstacking these ones, since
3850 	 *  this has no performance impact.
3851 	 */
3852 	sist	= 0;
3853 	dstat	= 0;
3854 	istatc	= istat;
3855 	do {
3856 		if (istatc & SIP)
3857 			sist  |= INW (nc_sist);
3858 		if (istatc & DIP)
3859 			dstat |= INB (nc_dstat);
3860 		istatc = INB (nc_istat);
3861 		istat |= istatc;
3862 	} while (istatc & (SIP|DIP));
3863 
3864 	if (DEBUG_FLAGS & DEBUG_TINY)
3865 		printf ("<%d|%x:%x|%x:%x>",
3866 			(int)INB(nc_scr0),
3867 			dstat,sist,
3868 			(unsigned)INL(nc_dsp),
3869 			(unsigned)INL(nc_dbc));
3870 	/*
3871 	 *  On paper, a memory barrier may be needed here.
3872 	 *  And since we are paranoid ... :)
3873 	 */
3874 	MEMORY_BARRIER();
3875 
3876 	/*
3877 	 *  First, interrupts we want to service cleanly.
3878 	 *
3879 	 *  Phase mismatch (MA) is the most frequent interrupt
3880 	 *  for chip earlier than the 896 and so we have to service
3881 	 *  it as quickly as possible.
3882 	 *  A SCSI parity error (PAR) may be combined with a phase
3883 	 *  mismatch condition (MA).
3884 	 *  Programmed interrupts (SIR) are used to call the C code
3885 	 *  from SCRIPTS.
3886 	 *  The single step interrupt (SSI) is not used in this
3887 	 *  driver.
3888 	 */
3889 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3890 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3891 		if	(sist & PAR)	sym_int_par (np, sist);
3892 		else if (sist & MA)	sym_int_ma (np);
3893 		else if (dstat & SIR)	sym_int_sir (np);
3894 		else if (dstat & SSI)	OUTONB_STD ();
3895 		else			goto unknown_int;
3896 		return;
3897 	}
3898 
3899 	/*
3900 	 *  Now, interrupts that donnot happen in normal
3901 	 *  situations and that we may need to recover from.
3902 	 *
3903 	 *  On SCSI RESET (RST), we reset everything.
3904 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3905 	 *  active CCBs with RESET status, prepare all devices
3906 	 *  for negotiating again and restart the SCRIPTS.
3907 	 *  On STO and UDC, we complete the CCB with the corres-
3908 	 *  ponding status and restart the SCRIPTS.
3909 	 */
3910 	if (sist & RST) {
3911 		xpt_print_path(np->path);
3912 		printf("SCSI BUS reset detected.\n");
3913 		sym_init (np, 1);
3914 		return;
3915 	}
3916 
3917 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3918 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3919 
3920 	if (!(sist  & (GEN|HTH|SGE)) &&
3921 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3922 		if	(sist & SBMC)	sym_int_sbmc (np);
3923 		else if (sist & STO)	sym_int_sto (np);
3924 		else if (sist & UDC)	sym_int_udc (np);
3925 		else			goto unknown_int;
3926 		return;
3927 	}
3928 
3929 	/*
3930 	 *  Now, interrupts we are not able to recover cleanly.
3931 	 *
3932 	 *  Log message for hard errors.
3933 	 *  Reset everything.
3934 	 */
3935 
3936 	sym_log_hard_error(np, sist, dstat);
3937 
3938 	if ((sist & (GEN|HTH|SGE)) ||
3939 		(dstat & (MDPE|BF|ABRT|IID))) {
3940 		sym_start_reset(np);
3941 		return;
3942 	}
3943 
3944 unknown_int:
3945 	/*
3946 	 *  We just miss the cause of the interrupt. :(
3947 	 *  Print a message. The timeout will do the real work.
3948 	 */
3949 	printf(	"%s: unknown interrupt(s) ignored, "
3950 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3951 		sym_name(np), istat, dstat, sist);
3952 }
3953 
3954 static void sym_intr(void *arg)
3955 {
3956 	hcb_p np = arg;
3957 
3958 	SYM_LOCK();
3959 
3960 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3961 	sym_intr1((hcb_p) arg);
3962 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3963 
3964 	SYM_UNLOCK();
3965 }
3966 
3967 static void sym_poll(struct cam_sim *sim)
3968 {
3969 	sym_intr1(cam_sim_softc(sim));
3970 }
3971 
3972 /*
3973  *  generic recovery from scsi interrupt
3974  *
3975  *  The doc says that when the chip gets an SCSI interrupt,
3976  *  it tries to stop in an orderly fashion, by completing
3977  *  an instruction fetch that had started or by flushing
3978  *  the DMA fifo for a write to memory that was executing.
3979  *  Such a fashion is not enough to know if the instruction
3980  *  that was just before the current DSP value has been
3981  *  executed or not.
3982  *
3983  *  There are some small SCRIPTS sections that deal with
3984  *  the start queue and the done queue that may break any
3985  *  assomption from the C code if we are interrupted
3986  *  inside, so we reset if this happens. Btw, since these
3987  *  SCRIPTS sections are executed while the SCRIPTS hasn't
3988  *  started SCSI operations, it is very unlikely to happen.
3989  *
3990  *  All the driver data structures are supposed to be
3991  *  allocated from the same 4 GB memory window, so there
3992  *  is a 1 to 1 relationship between DSA and driver data
3993  *  structures. Since we are careful :) to invalidate the
3994  *  DSA when we complete a command or when the SCRIPTS
3995  *  pushes a DSA into a queue, we can trust it when it
3996  *  points to a CCB.
3997  */
3998 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
3999 {
4000 	u32	dsp	= INL (nc_dsp);
4001 	u32	dsa	= INL (nc_dsa);
4002 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4003 
4004 	/*
4005 	 *  If we haven't been interrupted inside the SCRIPTS
4006 	 *  critical paths, we can safely restart the SCRIPTS
4007 	 *  and trust the DSA value if it matches a CCB.
4008 	 */
4009 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4010 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4011 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4012 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4013 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4014 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4015 	    (!(dsp > SCRIPTA_BA (np, done) &&
4016 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4017 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4018 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4019 		/*
4020 		 *  If we have a CCB, let the SCRIPTS call us back for
4021 		 *  the handling of the error with SCRATCHA filled with
4022 		 *  STARTPOS. This way, we will be able to freeze the
4023 		 *  device queue and requeue awaiting IOs.
4024 		 */
4025 		if (cp) {
4026 			cp->host_status = hsts;
4027 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4028 		}
4029 		/*
4030 		 *  Otherwise just restart the SCRIPTS.
4031 		 */
4032 		else {
4033 			OUTL (nc_dsa, 0xffffff);
4034 			OUTL_DSP (SCRIPTA_BA (np, start));
4035 		}
4036 	}
4037 	else
4038 		goto reset_all;
4039 
4040 	return;
4041 
4042 reset_all:
4043 	sym_start_reset(np);
4044 }
4045 
4046 /*
4047  *  chip exception handler for selection timeout
4048  */
4049 static void sym_int_sto (hcb_p np)
4050 {
4051 	u32 dsp	= INL (nc_dsp);
4052 
4053 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4054 
4055 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4056 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4057 	else
4058 		sym_start_reset(np);
4059 }
4060 
4061 /*
4062  *  chip exception handler for unexpected disconnect
4063  */
4064 static void sym_int_udc (hcb_p np)
4065 {
4066 	printf ("%s: unexpected disconnect\n", sym_name(np));
4067 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4068 }
4069 
4070 /*
4071  *  chip exception handler for SCSI bus mode change
4072  *
4073  *  spi2-r12 11.2.3 says a transceiver mode change must
4074  *  generate a reset event and a device that detects a reset
4075  *  event shall initiate a hard reset. It says also that a
4076  *  device that detects a mode change shall set data transfer
4077  *  mode to eight bit asynchronous, etc...
4078  *  So, just reinitializing all except chip should be enough.
4079  */
4080 static void sym_int_sbmc (hcb_p np)
4081 {
4082 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4083 
4084 	/*
4085 	 *  Notify user.
4086 	 */
4087 	xpt_print_path(np->path);
4088 	printf("SCSI BUS mode change from %s to %s.\n",
4089 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4090 
4091 	/*
4092 	 *  Should suspend command processing for a few seconds and
4093 	 *  reinitialize all except the chip.
4094 	 */
4095 	sym_init (np, 2);
4096 }
4097 
4098 /*
4099  *  chip exception handler for SCSI parity error.
4100  *
4101  *  When the chip detects a SCSI parity error and is
4102  *  currently executing a (CH)MOV instruction, it does
4103  *  not interrupt immediately, but tries to finish the
4104  *  transfer of the current scatter entry before
4105  *  interrupting. The following situations may occur:
4106  *
4107  *  - The complete scatter entry has been transferred
4108  *    without the device having changed phase.
4109  *    The chip will then interrupt with the DSP pointing
4110  *    to the instruction that follows the MOV.
4111  *
4112  *  - A phase mismatch occurs before the MOV finished
4113  *    and phase errors are to be handled by the C code.
4114  *    The chip will then interrupt with both PAR and MA
4115  *    conditions set.
4116  *
4117  *  - A phase mismatch occurs before the MOV finished and
4118  *    phase errors are to be handled by SCRIPTS.
4119  *    The chip will load the DSP with the phase mismatch
4120  *    JUMP address and interrupt the host processor.
4121  */
4122 static void sym_int_par (hcb_p np, u_short sist)
4123 {
4124 	u_char	hsts	= INB (HS_PRT);
4125 	u32	dsp	= INL (nc_dsp);
4126 	u32	dbc	= INL (nc_dbc);
4127 	u32	dsa	= INL (nc_dsa);
4128 	u_char	sbcl	= INB (nc_sbcl);
4129 	u_char	cmd	= dbc >> 24;
4130 	int phase	= cmd & 7;
4131 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4132 
4133 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4134 		sym_name(np), hsts, dbc, sbcl);
4135 
4136 	/*
4137 	 *  Check that the chip is connected to the SCSI BUS.
4138 	 */
4139 	if (!(INB (nc_scntl1) & ISCON)) {
4140 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4141 		return;
4142 	}
4143 
4144 	/*
4145 	 *  If the nexus is not clearly identified, reset the bus.
4146 	 *  We will try to do better later.
4147 	 */
4148 	if (!cp)
4149 		goto reset_all;
4150 
4151 	/*
4152 	 *  Check instruction was a MOV, direction was INPUT and
4153 	 *  ATN is asserted.
4154 	 */
4155 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4156 		goto reset_all;
4157 
4158 	/*
4159 	 *  Keep track of the parity error.
4160 	 */
4161 	OUTONB (HF_PRT, HF_EXT_ERR);
4162 	cp->xerr_status |= XE_PARITY_ERR;
4163 
4164 	/*
4165 	 *  Prepare the message to send to the device.
4166 	 */
4167 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4168 
4169 	/*
4170 	 *  If the old phase was DATA IN phase, we have to deal with
4171 	 *  the 3 situations described above.
4172 	 *  For other input phases (MSG IN and STATUS), the device
4173 	 *  must resend the whole thing that failed parity checking
4174 	 *  or signal error. So, jumping to dispatcher should be OK.
4175 	 */
4176 	if (phase == 1 || phase == 5) {
4177 		/* Phase mismatch handled by SCRIPTS */
4178 		if (dsp == SCRIPTB_BA (np, pm_handle))
4179 			OUTL_DSP (dsp);
4180 		/* Phase mismatch handled by the C code */
4181 		else if (sist & MA)
4182 			sym_int_ma (np);
4183 		/* No phase mismatch occurred */
4184 		else {
4185 			OUTL (nc_temp, dsp);
4186 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4187 		}
4188 	}
4189 	else
4190 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4191 	return;
4192 
4193 reset_all:
4194 	sym_start_reset(np);
4195 }
4196 
4197 /*
4198  *  chip exception handler for phase errors.
4199  *
4200  *  We have to construct a new transfer descriptor,
4201  *  to transfer the rest of the current block.
4202  */
4203 static void sym_int_ma (hcb_p np)
4204 {
4205 	u32	dbc;
4206 	u32	rest;
4207 	u32	dsp;
4208 	u32	dsa;
4209 	u32	nxtdsp;
4210 	u32	*vdsp;
4211 	u32	oadr, olen;
4212 	u32	*tblp;
4213         u32	newcmd;
4214 	u_int	delta;
4215 	u_char	cmd;
4216 	u_char	hflags, hflags0;
4217 	struct	sym_pmc *pm;
4218 	ccb_p	cp;
4219 
4220 	dsp	= INL (nc_dsp);
4221 	dbc	= INL (nc_dbc);
4222 	dsa	= INL (nc_dsa);
4223 
4224 	cmd	= dbc >> 24;
4225 	rest	= dbc & 0xffffff;
4226 	delta	= 0;
4227 
4228 	/*
4229 	 *  locate matching cp if any.
4230 	 */
4231 	cp = sym_ccb_from_dsa(np, dsa);
4232 
4233 	/*
4234 	 *  Donnot take into account dma fifo and various buffers in
4235 	 *  INPUT phase since the chip flushes everything before
4236 	 *  raising the MA interrupt for interrupted INPUT phases.
4237 	 *  For DATA IN phase, we will check for the SWIDE later.
4238 	 */
4239 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4240 		u_char ss0, ss2;
4241 
4242 		if (np->features & FE_DFBC)
4243 			delta = INW (nc_dfbc);
4244 		else {
4245 			u32 dfifo;
4246 
4247 			/*
4248 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4249 			 */
4250 			dfifo = INL(nc_dfifo);
4251 
4252 			/*
4253 			 *  Calculate remaining bytes in DMA fifo.
4254 			 *  (CTEST5 = dfifo >> 16)
4255 			 */
4256 			if (dfifo & (DFS << 16))
4257 				delta = ((((dfifo >> 8) & 0x300) |
4258 				          (dfifo & 0xff)) - rest) & 0x3ff;
4259 			else
4260 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4261 		}
4262 
4263 		/*
4264 		 *  The data in the dma fifo has not been transferred to
4265 		 *  the target -> add the amount to the rest
4266 		 *  and clear the data.
4267 		 *  Check the sstat2 register in case of wide transfer.
4268 		 */
4269 		rest += delta;
4270 		ss0  = INB (nc_sstat0);
4271 		if (ss0 & OLF) rest++;
4272 		if (!(np->features & FE_C10))
4273 			if (ss0 & ORF) rest++;
4274 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4275 			ss2 = INB (nc_sstat2);
4276 			if (ss2 & OLF1) rest++;
4277 			if (!(np->features & FE_C10))
4278 				if (ss2 & ORF1) rest++;
4279 		}
4280 
4281 		/*
4282 		 *  Clear fifos.
4283 		 */
4284 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4285 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4286 	}
4287 
4288 	/*
4289 	 *  log the information
4290 	 */
4291 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4292 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4293 			(unsigned) rest, (unsigned) delta);
4294 
4295 	/*
4296 	 *  try to find the interrupted script command,
4297 	 *  and the address at which to continue.
4298 	 */
4299 	vdsp	= NULL;
4300 	nxtdsp	= 0;
4301 	if	(dsp >  np->scripta_ba &&
4302 		 dsp <= np->scripta_ba + np->scripta_sz) {
4303 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4304 		nxtdsp = dsp;
4305 	}
4306 	else if	(dsp >  np->scriptb_ba &&
4307 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4308 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4309 		nxtdsp = dsp;
4310 	}
4311 
4312 	/*
4313 	 *  log the information
4314 	 */
4315 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4316 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4317 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4318 	}
4319 
4320 	if (!vdsp) {
4321 		printf ("%s: interrupted SCRIPT address not found.\n",
4322 			sym_name (np));
4323 		goto reset_all;
4324 	}
4325 
4326 	if (!cp) {
4327 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4328 			sym_name (np));
4329 		goto reset_all;
4330 	}
4331 
4332 	/*
4333 	 *  get old startaddress and old length.
4334 	 */
4335 	oadr = scr_to_cpu(vdsp[1]);
4336 
4337 	if (cmd & 0x10) {	/* Table indirect */
4338 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4339 		olen = scr_to_cpu(tblp[0]);
4340 		oadr = scr_to_cpu(tblp[1]);
4341 	} else {
4342 		tblp = (u32 *) 0;
4343 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4344 	}
4345 
4346 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4347 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4348 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4349 			tblp,
4350 			(unsigned) olen,
4351 			(unsigned) oadr);
4352 	}
4353 
4354 	/*
4355 	 *  check cmd against assumed interrupted script command.
4356 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4357 	 *  the phase.
4358 	 */
4359 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4360 		PRINT_ADDR(cp);
4361 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4362 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4363 
4364 		goto reset_all;
4365 	}
4366 
4367 	/*
4368 	 *  if old phase not dataphase, leave here.
4369 	 */
4370 	if (cmd & 2) {
4371 		PRINT_ADDR(cp);
4372 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4373 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4374 			(unsigned)oadr, (unsigned)rest);
4375 		goto unexpected_phase;
4376 	}
4377 
4378 	/*
4379 	 *  Choose the correct PM save area.
4380 	 *
4381 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4382 	 *  this stuff. The equivalent code is implemented in
4383 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4384 	 *  handle PM from the SCRIPTS processor.
4385 	 */
4386 	hflags0 = INB (HF_PRT);
4387 	hflags = hflags0;
4388 
4389 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4390 		if (hflags & HF_IN_PM0)
4391 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4392 		else if	(hflags & HF_IN_PM1)
4393 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4394 
4395 		if (hflags & HF_DP_SAVED)
4396 			hflags ^= HF_ACT_PM;
4397 	}
4398 
4399 	if (!(hflags & HF_ACT_PM)) {
4400 		pm = &cp->phys.pm0;
4401 		newcmd = SCRIPTA_BA (np, pm0_data);
4402 	}
4403 	else {
4404 		pm = &cp->phys.pm1;
4405 		newcmd = SCRIPTA_BA (np, pm1_data);
4406 	}
4407 
4408 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4409 	if (hflags != hflags0)
4410 		OUTB (HF_PRT, hflags);
4411 
4412 	/*
4413 	 *  fillin the phase mismatch context
4414 	 */
4415 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4416 	pm->sg.size = cpu_to_scr(rest);
4417 	pm->ret     = cpu_to_scr(nxtdsp);
4418 
4419 	/*
4420 	 *  If we have a SWIDE,
4421 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4422 	 *  - compute the SCRIPTS address to restart from,
4423 	 *  - move current data pointer context by one byte.
4424 	 */
4425 	nxtdsp = SCRIPTA_BA (np, dispatch);
4426 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4427 	    (INB (nc_scntl2) & WSR)) {
4428 		u32 tmp;
4429 
4430 		/*
4431 		 *  Set up the table indirect for the MOVE
4432 		 *  of the residual byte and adjust the data
4433 		 *  pointer context.
4434 		 */
4435 		tmp = scr_to_cpu(pm->sg.addr);
4436 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4437 		pm->sg.addr = cpu_to_scr(tmp + 1);
4438 		tmp = scr_to_cpu(pm->sg.size);
4439 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4440 		pm->sg.size = cpu_to_scr(tmp - 1);
4441 
4442 		/*
4443 		 *  If only the residual byte is to be moved,
4444 		 *  no PM context is needed.
4445 		 */
4446 		if ((tmp&0xffffff) == 1)
4447 			newcmd = pm->ret;
4448 
4449 		/*
4450 		 *  Prepare the address of SCRIPTS that will
4451 		 *  move the residual byte to memory.
4452 		 */
4453 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4454 	}
4455 
4456 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4457 		PRINT_ADDR(cp);
4458 		printf ("PM %x %x %x / %x %x %x.\n",
4459 			hflags0, hflags, newcmd,
4460 			(unsigned)scr_to_cpu(pm->sg.addr),
4461 			(unsigned)scr_to_cpu(pm->sg.size),
4462 			(unsigned)scr_to_cpu(pm->ret));
4463 	}
4464 
4465 	/*
4466 	 *  Restart the SCRIPTS processor.
4467 	 */
4468 	OUTL (nc_temp, newcmd);
4469 	OUTL_DSP (nxtdsp);
4470 	return;
4471 
4472 	/*
4473 	 *  Unexpected phase changes that occurs when the current phase
4474 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4475 	 *  Such event may only happen when the SCRIPTS is using a
4476 	 *  multibyte SCSI MOVE.
4477 	 *
4478 	 *  Phase change		Some possible cause
4479 	 *
4480 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4481 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4482 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4483 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4484 	 *  			negotiation messages.
4485 	 *
4486 	 *  The code below does not care of the new phase and so
4487 	 *  trusts the target. Why to annoy it ?
4488 	 *  If the interrupted phase is COMMAND phase, we restart at
4489 	 *  dispatcher.
4490 	 *  If a target does not get all the messages after selection,
4491 	 *  the code assumes blindly that the target discards extended
4492 	 *  messages and clears the negotiation status.
4493 	 *  If the target does not want all our response to negotiation,
4494 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4495 	 *  bloat for such a should_not_happen situation).
4496 	 *  In all other situation, we reset the BUS.
4497 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4498 	 */
4499 unexpected_phase:
4500 	dsp -= 8;
4501 	nxtdsp = 0;
4502 
4503 	switch (cmd & 7) {
4504 	case 2:	/* COMMAND phase */
4505 		nxtdsp = SCRIPTA_BA (np, dispatch);
4506 		break;
4507 #if 0
4508 	case 3:	/* STATUS  phase */
4509 		nxtdsp = SCRIPTA_BA (np, dispatch);
4510 		break;
4511 #endif
4512 	case 6:	/* MSG OUT phase */
4513 		/*
4514 		 *  If the device may want to use untagged when we want
4515 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4516 		 *  since we will not be able to handle reselect.
4517 		 *  Otherwise, we just don't care.
4518 		 */
4519 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4520 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4521 				cp->host_status = HS_BUSY;
4522 				np->msgout[0] = M_IDENTIFY | cp->lun;
4523 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4524 			}
4525 			else
4526 				nxtdsp = SCRIPTB_BA (np, ident_break);
4527 		}
4528 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4529 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4530 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4531 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4532 		}
4533 		break;
4534 #if 0
4535 	case 7:	/* MSG IN  phase */
4536 		nxtdsp = SCRIPTA_BA (np, clrack);
4537 		break;
4538 #endif
4539 	}
4540 
4541 	if (nxtdsp) {
4542 		OUTL_DSP (nxtdsp);
4543 		return;
4544 	}
4545 
4546 reset_all:
4547 	sym_start_reset(np);
4548 }
4549 
4550 /*
4551  *  Dequeue from the START queue all CCBs that match
4552  *  a given target/lun/task condition (-1 means all),
4553  *  and move them from the BUSY queue to the COMP queue
4554  *  with CAM_REQUEUE_REQ status condition.
4555  *  This function is used during error handling/recovery.
4556  *  It is called with SCRIPTS not running.
4557  */
4558 static int
4559 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4560 {
4561 	int j;
4562 	ccb_p cp;
4563 
4564 	/*
4565 	 *  Make sure the starting index is within range.
4566 	 */
4567 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4568 
4569 	/*
4570 	 *  Walk until end of START queue and dequeue every job
4571 	 *  that matches the target/lun/task condition.
4572 	 */
4573 	j = i;
4574 	while (i != np->squeueput) {
4575 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4576 		assert(cp);
4577 #ifdef SYM_CONF_IARB_SUPPORT
4578 		/* Forget hints for IARB, they may be no longer relevant */
4579 		cp->host_flags &= ~HF_HINT_IARB;
4580 #endif
4581 		if ((target == -1 || cp->target == target) &&
4582 		    (lun    == -1 || cp->lun    == lun)    &&
4583 		    (task   == -1 || cp->tag    == task)) {
4584 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4585 			sym_remque(&cp->link_ccbq);
4586 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4587 		}
4588 		else {
4589 			if (i != j)
4590 				np->squeue[j] = np->squeue[i];
4591 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4592 		}
4593 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4594 	}
4595 	if (i != j)		/* Copy back the idle task if needed */
4596 		np->squeue[j] = np->squeue[i];
4597 	np->squeueput = j;	/* Update our current start queue pointer */
4598 
4599 	return (i - j) / 2;
4600 }
4601 
4602 /*
4603  *  Complete all CCBs queued to the COMP queue.
4604  *
4605  *  These CCBs are assumed:
4606  *  - Not to be referenced either by devices or
4607  *    SCRIPTS-related queues and datas.
4608  *  - To have to be completed with an error condition
4609  *    or requeued.
4610  *
4611  *  The device queue freeze count is incremented
4612  *  for each CCB that does not prevent this.
4613  *  This function is called when all CCBs involved
4614  *  in error handling/recovery have been reaped.
4615  */
4616 static void
4617 sym_flush_comp_queue(hcb_p np, int cam_status)
4618 {
4619 	SYM_QUEHEAD *qp;
4620 	ccb_p cp;
4621 
4622 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4623 		union ccb *ccb;
4624 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4625 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4626 		/* Leave quiet CCBs waiting for resources */
4627 		if (cp->host_status == HS_WAIT)
4628 			continue;
4629 		ccb = cp->cam_ccb;
4630 		if (cam_status)
4631 			sym_set_cam_status(ccb, cam_status);
4632 		sym_freeze_cam_ccb(ccb);
4633 		sym_xpt_done(np, ccb, cp);
4634 		sym_free_ccb(np, cp);
4635 	}
4636 }
4637 
4638 /*
4639  *  chip handler for bad SCSI status condition
4640  *
4641  *  In case of bad SCSI status, we unqueue all the tasks
4642  *  currently queued to the controller but not yet started
4643  *  and then restart the SCRIPTS processor immediately.
4644  *
4645  *  QUEUE FULL and BUSY conditions are handled the same way.
4646  *  Basically all the not yet started tasks are requeued in
4647  *  device queue and the queue is frozen until a completion.
4648  *
4649  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4650  *  the CCB of the failed command to prepare a REQUEST SENSE
4651  *  SCSI command and queue it to the controller queue.
4652  *
4653  *  SCRATCHA is assumed to have been loaded with STARTPOS
4654  *  before the SCRIPTS called the C code.
4655  */
4656 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4657 {
4658 	tcb_p tp	= &np->target[cp->target];
4659 	u32		startp;
4660 	u_char		s_status = cp->ssss_status;
4661 	u_char		h_flags  = cp->host_flags;
4662 	int		msglen;
4663 	int		nego;
4664 	int		i;
4665 
4666 	SYM_LOCK_ASSERT(MA_OWNED);
4667 
4668 	/*
4669 	 *  Compute the index of the next job to start from SCRIPTS.
4670 	 */
4671 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4672 
4673 	/*
4674 	 *  The last CCB queued used for IARB hint may be
4675 	 *  no longer relevant. Forget it.
4676 	 */
4677 #ifdef SYM_CONF_IARB_SUPPORT
4678 	if (np->last_cp)
4679 		np->last_cp = NULL;
4680 #endif
4681 
4682 	/*
4683 	 *  Now deal with the SCSI status.
4684 	 */
4685 	switch(s_status) {
4686 	case S_BUSY:
4687 	case S_QUEUE_FULL:
4688 		if (sym_verbose >= 2) {
4689 			PRINT_ADDR(cp);
4690 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4691 		}
4692 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4693 		sym_complete_error (np, cp);
4694 		break;
4695 	case S_TERMINATED:
4696 	case S_CHECK_COND:
4697 		/*
4698 		 *  If we get an SCSI error when requesting sense, give up.
4699 		 */
4700 		if (h_flags & HF_SENSE) {
4701 			sym_complete_error (np, cp);
4702 			break;
4703 		}
4704 
4705 		/*
4706 		 *  Dequeue all queued CCBs for that device not yet started,
4707 		 *  and restart the SCRIPTS processor immediately.
4708 		 */
4709 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4710 		OUTL_DSP (SCRIPTA_BA (np, start));
4711 
4712  		/*
4713 		 *  Save some info of the actual IO.
4714 		 *  Compute the data residual.
4715 		 */
4716 		cp->sv_scsi_status = cp->ssss_status;
4717 		cp->sv_xerr_status = cp->xerr_status;
4718 		cp->sv_resid = sym_compute_residual(np, cp);
4719 
4720 		/*
4721 		 *  Prepare all needed data structures for
4722 		 *  requesting sense data.
4723 		 */
4724 
4725 		/*
4726 		 *  identify message
4727 		 */
4728 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4729 		msglen = 1;
4730 
4731 		/*
4732 		 *  If we are currently using anything different from
4733 		 *  async. 8 bit data transfers with that target,
4734 		 *  start a negotiation, since the device may want
4735 		 *  to report us a UNIT ATTENTION condition due to
4736 		 *  a cause we currently ignore, and we donnot want
4737 		 *  to be stuck with WIDE and/or SYNC data transfer.
4738 		 *
4739 		 *  cp->nego_status is filled by sym_prepare_nego().
4740 		 */
4741 		cp->nego_status = 0;
4742 		nego = 0;
4743 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4744 			nego = NS_PPR;
4745 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4746 			nego = NS_WIDE;
4747 		else if (tp->tinfo.current.offset != 0)
4748 			nego = NS_SYNC;
4749 		if (nego)
4750 			msglen +=
4751 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4752 		/*
4753 		 *  Message table indirect structure.
4754 		 */
4755 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4756 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4757 
4758 		/*
4759 		 *  sense command
4760 		 */
4761 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4762 		cp->phys.cmd.size	= cpu_to_scr(6);
4763 
4764 		/*
4765 		 *  patch requested size into sense command
4766 		 */
4767 		cp->sensecmd[0]		= 0x03;
4768 		cp->sensecmd[1]		= cp->lun << 5;
4769 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4770 			cp->sensecmd[1]	= 0;
4771 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4772 		cp->data_len		= SYM_SNS_BBUF_LEN;
4773 
4774 		/*
4775 		 *  sense data
4776 		 */
4777 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4778 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4779 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4780 
4781 		/*
4782 		 *  requeue the command.
4783 		 */
4784 		startp = SCRIPTB_BA (np, sdata_in);
4785 
4786 		cp->phys.head.savep	= cpu_to_scr(startp);
4787 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4788 		cp->phys.head.lastp	= cpu_to_scr(startp);
4789 		cp->startp	= cpu_to_scr(startp);
4790 
4791 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4792 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4793 		cp->ssss_status = S_ILLEGAL;
4794 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4795 		cp->xerr_status = 0;
4796 		cp->extra_bytes = 0;
4797 
4798 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4799 
4800 		/*
4801 		 *  Requeue the command.
4802 		 */
4803 		sym_put_start_queue(np, cp);
4804 
4805 		/*
4806 		 *  Give back to upper layer everything we have dequeued.
4807 		 */
4808 		sym_flush_comp_queue(np, 0);
4809 		break;
4810 	}
4811 }
4812 
4813 /*
4814  *  After a device has accepted some management message
4815  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4816  *  a device signals a UNIT ATTENTION condition, some
4817  *  tasks are thrown away by the device. We are required
4818  *  to reflect that on our tasks list since the device
4819  *  will never complete these tasks.
4820  *
4821  *  This function move from the BUSY queue to the COMP
4822  *  queue all disconnected CCBs for a given target that
4823  *  match the following criteria:
4824  *  - lun=-1  means any logical UNIT otherwise a given one.
4825  *  - task=-1 means any task, otherwise a given one.
4826  */
4827 static int
4828 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4829 {
4830 	SYM_QUEHEAD qtmp, *qp;
4831 	int i = 0;
4832 	ccb_p cp;
4833 
4834 	/*
4835 	 *  Move the entire BUSY queue to our temporary queue.
4836 	 */
4837 	sym_que_init(&qtmp);
4838 	sym_que_splice(&np->busy_ccbq, &qtmp);
4839 	sym_que_init(&np->busy_ccbq);
4840 
4841 	/*
4842 	 *  Put all CCBs that matches our criteria into
4843 	 *  the COMP queue and put back other ones into
4844 	 *  the BUSY queue.
4845 	 */
4846 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4847 		union ccb *ccb;
4848 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4849 		ccb = cp->cam_ccb;
4850 		if (cp->host_status != HS_DISCONNECT ||
4851 		    cp->target != target	     ||
4852 		    (lun  != -1 && cp->lun != lun)   ||
4853 		    (task != -1 &&
4854 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4855 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4856 			continue;
4857 		}
4858 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4859 
4860 		/* Preserve the software timeout condition */
4861 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4862 			sym_set_cam_status(ccb, cam_status);
4863 		++i;
4864 #if 0
4865 printf("XXXX TASK @%p CLEARED\n", cp);
4866 #endif
4867 	}
4868 	return i;
4869 }
4870 
4871 /*
4872  *  chip handler for TASKS recovery
4873  *
4874  *  We cannot safely abort a command, while the SCRIPTS
4875  *  processor is running, since we just would be in race
4876  *  with it.
4877  *
4878  *  As long as we have tasks to abort, we keep the SEM
4879  *  bit set in the ISTAT. When this bit is set, the
4880  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4881  *  each time it enters the scheduler.
4882  *
4883  *  If we have to reset a target, clear tasks of a unit,
4884  *  or to perform the abort of a disconnected job, we
4885  *  restart the SCRIPTS for selecting the target. Once
4886  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4887  *  If it loses arbitration, the SCRIPTS will interrupt again
4888  *  the next time it will enter its scheduler, and so on ...
4889  *
4890  *  On SIR_TARGET_SELECTED, we scan for the more
4891  *  appropriate thing to do:
4892  *
4893  *  - If nothing, we just sent a M_ABORT message to the
4894  *    target to get rid of the useless SCSI bus ownership.
4895  *    According to the specs, no tasks shall be affected.
4896  *  - If the target is to be reset, we send it a M_RESET
4897  *    message.
4898  *  - If a logical UNIT is to be cleared , we send the
4899  *    IDENTIFY(lun) + M_ABORT.
4900  *  - If an untagged task is to be aborted, we send the
4901  *    IDENTIFY(lun) + M_ABORT.
4902  *  - If a tagged task is to be aborted, we send the
4903  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4904  *
4905  *  Once our 'kiss of death' :) message has been accepted
4906  *  by the target, the SCRIPTS interrupts again
4907  *  (SIR_ABORT_SENT). On this interrupt, we complete
4908  *  all the CCBs that should have been aborted by the
4909  *  target according to our message.
4910  */
4911 static void sym_sir_task_recovery(hcb_p np, int num)
4912 {
4913 	SYM_QUEHEAD *qp;
4914 	ccb_p cp;
4915 	tcb_p tp;
4916 	int target=-1, lun=-1, task;
4917 	int i, k;
4918 
4919 	switch(num) {
4920 	/*
4921 	 *  The SCRIPTS processor stopped before starting
4922 	 *  the next command in order to allow us to perform
4923 	 *  some task recovery.
4924 	 */
4925 	case SIR_SCRIPT_STOPPED:
4926 		/*
4927 		 *  Do we have any target to reset or unit to clear ?
4928 		 */
4929 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4930 			tp = &np->target[i];
4931 			if (tp->to_reset ||
4932 			    (tp->lun0p && tp->lun0p->to_clear)) {
4933 				target = i;
4934 				break;
4935 			}
4936 			if (!tp->lunmp)
4937 				continue;
4938 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4939 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4940 					target	= i;
4941 					break;
4942 				}
4943 			}
4944 			if (target != -1)
4945 				break;
4946 		}
4947 
4948 		/*
4949 		 *  If not, walk the busy queue for any
4950 		 *  disconnected CCB to be aborted.
4951 		 */
4952 		if (target == -1) {
4953 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4954 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4955 				if (cp->host_status != HS_DISCONNECT)
4956 					continue;
4957 				if (cp->to_abort) {
4958 					target = cp->target;
4959 					break;
4960 				}
4961 			}
4962 		}
4963 
4964 		/*
4965 		 *  If some target is to be selected,
4966 		 *  prepare and start the selection.
4967 		 */
4968 		if (target != -1) {
4969 			tp = &np->target[target];
4970 			np->abrt_sel.sel_id	= target;
4971 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4972 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4973 			OUTL(nc_dsa, np->hcb_ba);
4974 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4975 			return;
4976 		}
4977 
4978 		/*
4979 		 *  Now look for a CCB to abort that haven't started yet.
4980 		 *  Btw, the SCRIPTS processor is still stopped, so
4981 		 *  we are not in race.
4982 		 */
4983 		i = 0;
4984 		cp = NULL;
4985 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4986 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4987 			if (cp->host_status != HS_BUSY &&
4988 			    cp->host_status != HS_NEGOTIATE)
4989 				continue;
4990 			if (!cp->to_abort)
4991 				continue;
4992 #ifdef SYM_CONF_IARB_SUPPORT
4993 			/*
4994 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4995 			 *    want to cancel the last queued CCB, since the
4996 			 *    SCRIPTS may have anticipated the selection.
4997 			 */
4998 			if (cp == np->last_cp) {
4999 				cp->to_abort = 0;
5000 				continue;
5001 			}
5002 #endif
5003 			i = 1;	/* Means we have found some */
5004 			break;
5005 		}
5006 		if (!i) {
5007 			/*
5008 			 *  We are done, so we donnot need
5009 			 *  to synchronize with the SCRIPTS anylonger.
5010 			 *  Remove the SEM flag from the ISTAT.
5011 			 */
5012 			np->istat_sem = 0;
5013 			OUTB (nc_istat, SIGP);
5014 			break;
5015 		}
5016 		/*
5017 		 *  Compute index of next position in the start
5018 		 *  queue the SCRIPTS intends to start and dequeue
5019 		 *  all CCBs for that device that haven't been started.
5020 		 */
5021 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5022 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5023 
5024 		/*
5025 		 *  Make sure at least our IO to abort has been dequeued.
5026 		 */
5027 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5028 
5029 		/*
5030 		 *  Keep track in cam status of the reason of the abort.
5031 		 */
5032 		if (cp->to_abort == 2)
5033 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5034 		else
5035 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5036 
5037 		/*
5038 		 *  Complete with error everything that we have dequeued.
5039 	 	 */
5040 		sym_flush_comp_queue(np, 0);
5041 		break;
5042 	/*
5043 	 *  The SCRIPTS processor has selected a target
5044 	 *  we may have some manual recovery to perform for.
5045 	 */
5046 	case SIR_TARGET_SELECTED:
5047 		target = (INB (nc_sdid) & 0xf);
5048 		tp = &np->target[target];
5049 
5050 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5051 
5052 		/*
5053 		 *  If the target is to be reset, prepare a
5054 		 *  M_RESET message and clear the to_reset flag
5055 		 *  since we donnot expect this operation to fail.
5056 		 */
5057 		if (tp->to_reset) {
5058 			np->abrt_msg[0] = M_RESET;
5059 			np->abrt_tbl.size = 1;
5060 			tp->to_reset = 0;
5061 			break;
5062 		}
5063 
5064 		/*
5065 		 *  Otherwise, look for some logical unit to be cleared.
5066 		 */
5067 		if (tp->lun0p && tp->lun0p->to_clear)
5068 			lun = 0;
5069 		else if (tp->lunmp) {
5070 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5071 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5072 					lun = k;
5073 					break;
5074 				}
5075 			}
5076 		}
5077 
5078 		/*
5079 		 *  If a logical unit is to be cleared, prepare
5080 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5081 		 */
5082 		if (lun != -1) {
5083 			lcb_p lp = sym_lp(tp, lun);
5084 			lp->to_clear = 0; /* We donnot expect to fail here */
5085 			np->abrt_msg[0] = M_IDENTIFY | lun;
5086 			np->abrt_msg[1] = M_ABORT;
5087 			np->abrt_tbl.size = 2;
5088 			break;
5089 		}
5090 
5091 		/*
5092 		 *  Otherwise, look for some disconnected job to
5093 		 *  abort for this target.
5094 		 */
5095 		i = 0;
5096 		cp = NULL;
5097 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5098 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5099 			if (cp->host_status != HS_DISCONNECT)
5100 				continue;
5101 			if (cp->target != target)
5102 				continue;
5103 			if (!cp->to_abort)
5104 				continue;
5105 			i = 1;	/* Means we have some */
5106 			break;
5107 		}
5108 
5109 		/*
5110 		 *  If we have none, probably since the device has
5111 		 *  completed the command before we won abitration,
5112 		 *  send a M_ABORT message without IDENTIFY.
5113 		 *  According to the specs, the device must just
5114 		 *  disconnect the BUS and not abort any task.
5115 		 */
5116 		if (!i) {
5117 			np->abrt_msg[0] = M_ABORT;
5118 			np->abrt_tbl.size = 1;
5119 			break;
5120 		}
5121 
5122 		/*
5123 		 *  We have some task to abort.
5124 		 *  Set the IDENTIFY(lun)
5125 		 */
5126 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5127 
5128 		/*
5129 		 *  If we want to abort an untagged command, we
5130 		 *  will send an IDENTIFY + M_ABORT.
5131 		 *  Otherwise (tagged command), we will send
5132 		 *  an IDENTIFY + task attributes + ABORT TAG.
5133 		 */
5134 		if (cp->tag == NO_TAG) {
5135 			np->abrt_msg[1] = M_ABORT;
5136 			np->abrt_tbl.size = 2;
5137 		}
5138 		else {
5139 			np->abrt_msg[1] = cp->scsi_smsg[1];
5140 			np->abrt_msg[2] = cp->scsi_smsg[2];
5141 			np->abrt_msg[3] = M_ABORT_TAG;
5142 			np->abrt_tbl.size = 4;
5143 		}
5144 		/*
5145 		 *  Keep track of software timeout condition, since the
5146 		 *  peripheral driver may not count retries on abort
5147 		 *  conditions not due to timeout.
5148 		 */
5149 		if (cp->to_abort == 2)
5150 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5151 		cp->to_abort = 0; /* We donnot expect to fail here */
5152 		break;
5153 
5154 	/*
5155 	 *  The target has accepted our message and switched
5156 	 *  to BUS FREE phase as we expected.
5157 	 */
5158 	case SIR_ABORT_SENT:
5159 		target = (INB (nc_sdid) & 0xf);
5160 		tp = &np->target[target];
5161 
5162 		/*
5163 		**  If we didn't abort anything, leave here.
5164 		*/
5165 		if (np->abrt_msg[0] == M_ABORT)
5166 			break;
5167 
5168 		/*
5169 		 *  If we sent a M_RESET, then a hardware reset has
5170 		 *  been performed by the target.
5171 		 *  - Reset everything to async 8 bit
5172 		 *  - Tell ourself to negotiate next time :-)
5173 		 *  - Prepare to clear all disconnected CCBs for
5174 		 *    this target from our task list (lun=task=-1)
5175 		 */
5176 		lun = -1;
5177 		task = -1;
5178 		if (np->abrt_msg[0] == M_RESET) {
5179 			tp->head.sval = 0;
5180 			tp->head.wval = np->rv_scntl3;
5181 			tp->head.uval = 0;
5182 			tp->tinfo.current.period = 0;
5183 			tp->tinfo.current.offset = 0;
5184 			tp->tinfo.current.width  = BUS_8_BIT;
5185 			tp->tinfo.current.options = 0;
5186 		}
5187 
5188 		/*
5189 		 *  Otherwise, check for the LUN and TASK(s)
5190 		 *  concerned by the cancellation.
5191 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5192 		 *  or an ABORT message :-)
5193 		 */
5194 		else {
5195 			lun = np->abrt_msg[0] & 0x3f;
5196 			if (np->abrt_msg[1] == M_ABORT_TAG)
5197 				task = np->abrt_msg[2];
5198 		}
5199 
5200 		/*
5201 		 *  Complete all the CCBs the device should have
5202 		 *  aborted due to our 'kiss of death' message.
5203 		 */
5204 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5205 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5206 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5207 		sym_flush_comp_queue(np, 0);
5208 
5209 		/*
5210 		 *  If we sent a BDR, make uper layer aware of that.
5211 		 */
5212 		if (np->abrt_msg[0] == M_RESET)
5213 			xpt_async(AC_SENT_BDR, np->path, NULL);
5214 		break;
5215 	}
5216 
5217 	/*
5218 	 *  Print to the log the message we intend to send.
5219 	 */
5220 	if (num == SIR_TARGET_SELECTED) {
5221 		PRINT_TARGET(np, target);
5222 		sym_printl_hex("control msgout:", np->abrt_msg,
5223 			      np->abrt_tbl.size);
5224 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5225 	}
5226 
5227 	/*
5228 	 *  Let the SCRIPTS processor continue.
5229 	 */
5230 	OUTONB_STD ();
5231 }
5232 
5233 /*
5234  *  Gerard's alchemy:) that deals with with the data
5235  *  pointer for both MDP and the residual calculation.
5236  *
5237  *  I didn't want to bloat the code by more than 200
5238  *  lignes for the handling of both MDP and the residual.
5239  *  This has been achieved by using a data pointer
5240  *  representation consisting in an index in the data
5241  *  array (dp_sg) and a negative offset (dp_ofs) that
5242  *  have the following meaning:
5243  *
5244  *  - dp_sg = SYM_CONF_MAX_SG
5245  *    we are at the end of the data script.
5246  *  - dp_sg < SYM_CONF_MAX_SG
5247  *    dp_sg points to the next entry of the scatter array
5248  *    we want to transfer.
5249  *  - dp_ofs < 0
5250  *    dp_ofs represents the residual of bytes of the
5251  *    previous entry scatter entry we will send first.
5252  *  - dp_ofs = 0
5253  *    no residual to send first.
5254  *
5255  *  The function sym_evaluate_dp() accepts an arbitray
5256  *  offset (basically from the MDP message) and returns
5257  *  the corresponding values of dp_sg and dp_ofs.
5258  */
5259 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5260 {
5261 	u32	dp_scr;
5262 	int	dp_ofs, dp_sg, dp_sgmin;
5263 	int	tmp;
5264 	struct sym_pmc *pm;
5265 
5266 	/*
5267 	 *  Compute the resulted data pointer in term of a script
5268 	 *  address within some DATA script and a signed byte offset.
5269 	 */
5270 	dp_scr = scr;
5271 	dp_ofs = *ofs;
5272 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5273 		pm = &cp->phys.pm0;
5274 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5275 		pm = &cp->phys.pm1;
5276 	else
5277 		pm = NULL;
5278 
5279 	if (pm) {
5280 		dp_scr  = scr_to_cpu(pm->ret);
5281 		dp_ofs -= scr_to_cpu(pm->sg.size);
5282 	}
5283 
5284 	/*
5285 	 *  If we are auto-sensing, then we are done.
5286 	 */
5287 	if (cp->host_flags & HF_SENSE) {
5288 		*ofs = dp_ofs;
5289 		return 0;
5290 	}
5291 
5292 	/*
5293 	 *  Deduce the index of the sg entry.
5294 	 *  Keep track of the index of the first valid entry.
5295 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5296 	 *  end of the data.
5297 	 */
5298 	tmp = scr_to_cpu(cp->phys.head.goalp);
5299 	dp_sg = SYM_CONF_MAX_SG;
5300 	if (dp_scr != tmp)
5301 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5302 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5303 
5304 	/*
5305 	 *  Move to the sg entry the data pointer belongs to.
5306 	 *
5307 	 *  If we are inside the data area, we expect result to be:
5308 	 *
5309 	 *  Either,
5310 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5311 	 *      the data pointer belongs to (or the end of the data)
5312 	 *  Or,
5313 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5314 	 *      the data pointer belongs to + 1.
5315 	 */
5316 	if (dp_ofs < 0) {
5317 		int n;
5318 		while (dp_sg > dp_sgmin) {
5319 			--dp_sg;
5320 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5321 			n = dp_ofs + (tmp & 0xffffff);
5322 			if (n > 0) {
5323 				++dp_sg;
5324 				break;
5325 			}
5326 			dp_ofs = n;
5327 		}
5328 	}
5329 	else if (dp_ofs > 0) {
5330 		while (dp_sg < SYM_CONF_MAX_SG) {
5331 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5332 			dp_ofs -= (tmp & 0xffffff);
5333 			++dp_sg;
5334 			if (dp_ofs <= 0)
5335 				break;
5336 		}
5337 	}
5338 
5339 	/*
5340 	 *  Make sure the data pointer is inside the data area.
5341 	 *  If not, return some error.
5342 	 */
5343 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5344 		goto out_err;
5345 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5346 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5347 		goto out_err;
5348 
5349 	/*
5350 	 *  Save the extreme pointer if needed.
5351 	 */
5352 	if (dp_sg > cp->ext_sg ||
5353             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5354 		cp->ext_sg  = dp_sg;
5355 		cp->ext_ofs = dp_ofs;
5356 	}
5357 
5358 	/*
5359 	 *  Return data.
5360 	 */
5361 	*ofs = dp_ofs;
5362 	return dp_sg;
5363 
5364 out_err:
5365 	return -1;
5366 }
5367 
5368 /*
5369  *  chip handler for MODIFY DATA POINTER MESSAGE
5370  *
5371  *  We also call this function on IGNORE WIDE RESIDUE
5372  *  messages that do not match a SWIDE full condition.
5373  *  Btw, we assume in that situation that such a message
5374  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5375  */
5376 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5377 {
5378 	int dp_ofs	= ofs;
5379 	u32	dp_scr	= INL (nc_temp);
5380 	u32	dp_ret;
5381 	u32	tmp;
5382 	u_char	hflags;
5383 	int	dp_sg;
5384 	struct	sym_pmc *pm;
5385 
5386 	/*
5387 	 *  Not supported for auto-sense.
5388 	 */
5389 	if (cp->host_flags & HF_SENSE)
5390 		goto out_reject;
5391 
5392 	/*
5393 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5394 	 *  to the resulted data pointer.
5395 	 */
5396 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5397 	if (dp_sg < 0)
5398 		goto out_reject;
5399 
5400 	/*
5401 	 *  And our alchemy:) allows to easily calculate the data
5402 	 *  script address we want to return for the next data phase.
5403 	 */
5404 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5405 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5406 
5407 	/*
5408 	 *  If offset / scatter entry is zero we donnot need
5409 	 *  a context for the new current data pointer.
5410 	 */
5411 	if (dp_ofs == 0) {
5412 		dp_scr = dp_ret;
5413 		goto out_ok;
5414 	}
5415 
5416 	/*
5417 	 *  Get a context for the new current data pointer.
5418 	 */
5419 	hflags = INB (HF_PRT);
5420 
5421 	if (hflags & HF_DP_SAVED)
5422 		hflags ^= HF_ACT_PM;
5423 
5424 	if (!(hflags & HF_ACT_PM)) {
5425 		pm  = &cp->phys.pm0;
5426 		dp_scr = SCRIPTA_BA (np, pm0_data);
5427 	}
5428 	else {
5429 		pm = &cp->phys.pm1;
5430 		dp_scr = SCRIPTA_BA (np, pm1_data);
5431 	}
5432 
5433 	hflags &= ~(HF_DP_SAVED);
5434 
5435 	OUTB (HF_PRT, hflags);
5436 
5437 	/*
5438 	 *  Set up the new current data pointer.
5439 	 *  ofs < 0 there, and for the next data phase, we
5440 	 *  want to transfer part of the data of the sg entry
5441 	 *  corresponding to index dp_sg-1 prior to returning
5442 	 *  to the main data script.
5443 	 */
5444 	pm->ret = cpu_to_scr(dp_ret);
5445 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5446 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5447 	pm->sg.addr = cpu_to_scr(tmp);
5448 	pm->sg.size = cpu_to_scr(-dp_ofs);
5449 
5450 out_ok:
5451 	OUTL (nc_temp, dp_scr);
5452 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5453 	return;
5454 
5455 out_reject:
5456 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5457 }
5458 
5459 /*
5460  *  chip calculation of the data residual.
5461  *
5462  *  As I used to say, the requirement of data residual
5463  *  in SCSI is broken, useless and cannot be achieved
5464  *  without huge complexity.
5465  *  But most OSes and even the official CAM require it.
5466  *  When stupidity happens to be so widely spread inside
5467  *  a community, it gets hard to convince.
5468  *
5469  *  Anyway, I don't care, since I am not going to use
5470  *  any software that considers this data residual as
5471  *  a relevant information. :)
5472  */
5473 static int sym_compute_residual(hcb_p np, ccb_p cp)
5474 {
5475 	int dp_sg, dp_sgmin, resid = 0;
5476 	int dp_ofs = 0;
5477 
5478 	/*
5479 	 *  Check for some data lost or just thrown away.
5480 	 *  We are not required to be quite accurate in this
5481 	 *  situation. Btw, if we are odd for output and the
5482 	 *  device claims some more data, it may well happen
5483 	 *  than our residual be zero. :-)
5484 	 */
5485 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5486 		if (cp->xerr_status & XE_EXTRA_DATA)
5487 			resid -= cp->extra_bytes;
5488 		if (cp->xerr_status & XE_SODL_UNRUN)
5489 			++resid;
5490 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5491 			--resid;
5492 	}
5493 
5494 	/*
5495 	 *  If all data has been transferred,
5496 	 *  there is no residual.
5497 	 */
5498 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5499 		return resid;
5500 
5501 	/*
5502 	 *  If no data transfer occurs, or if the data
5503 	 *  pointer is weird, return full residual.
5504 	 */
5505 	if (cp->startp == cp->phys.head.lastp ||
5506 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5507 			    &dp_ofs) < 0) {
5508 		return cp->data_len;
5509 	}
5510 
5511 	/*
5512 	 *  If we were auto-sensing, then we are done.
5513 	 */
5514 	if (cp->host_flags & HF_SENSE) {
5515 		return -dp_ofs;
5516 	}
5517 
5518 	/*
5519 	 *  We are now full comfortable in the computation
5520 	 *  of the data residual (2's complement).
5521 	 */
5522 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5523 	resid = -cp->ext_ofs;
5524 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5525 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5526 		resid += (tmp & 0xffffff);
5527 	}
5528 
5529 	/*
5530 	 *  Hopefully, the result is not too wrong.
5531 	 */
5532 	return resid;
5533 }
5534 
5535 /*
5536  *  Print out the content of a SCSI message.
5537  */
5538 static int sym_show_msg (u_char * msg)
5539 {
5540 	u_char i;
5541 	printf ("%x",*msg);
5542 	if (*msg==M_EXTENDED) {
5543 		for (i=1;i<8;i++) {
5544 			if (i-1>msg[1]) break;
5545 			printf ("-%x",msg[i]);
5546 		}
5547 		return (i+1);
5548 	} else if ((*msg & 0xf0) == 0x20) {
5549 		printf ("-%x",msg[1]);
5550 		return (2);
5551 	}
5552 	return (1);
5553 }
5554 
5555 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5556 {
5557 	PRINT_ADDR(cp);
5558 	if (label)
5559 		printf ("%s: ", label);
5560 
5561 	(void) sym_show_msg (msg);
5562 	printf (".\n");
5563 }
5564 
5565 /*
5566  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5567  *
5568  *  When we try to negotiate, we append the negotiation message
5569  *  to the identify and (maybe) simple tag message.
5570  *  The host status field is set to HS_NEGOTIATE to mark this
5571  *  situation.
5572  *
5573  *  If the target doesn't answer this message immediately
5574  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5575  *  will be raised eventually.
5576  *  The handler removes the HS_NEGOTIATE status, and sets the
5577  *  negotiated value to the default (async / nowide).
5578  *
5579  *  If we receive a matching answer immediately, we check it
5580  *  for validity, and set the values.
5581  *
5582  *  If we receive a Reject message immediately, we assume the
5583  *  negotiation has failed, and fall back to standard values.
5584  *
5585  *  If we receive a negotiation message while not in HS_NEGOTIATE
5586  *  state, it's a target initiated negotiation. We prepare a
5587  *  (hopefully) valid answer, set our parameters, and send back
5588  *  this answer to the target.
5589  *
5590  *  If the target doesn't fetch the answer (no message out phase),
5591  *  we assume the negotiation has failed, and fall back to default
5592  *  settings (SIR_NEGO_PROTO interrupt).
5593  *
5594  *  When we set the values, we adjust them in all ccbs belonging
5595  *  to this target, in the controller's register, and in the "phys"
5596  *  field of the controller's struct sym_hcb.
5597  */
5598 
5599 /*
5600  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5601  */
5602 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5603 {
5604 	u_char	chg, ofs, per, fak, div;
5605 	int	req = 1;
5606 
5607 	/*
5608 	 *  Synchronous request message received.
5609 	 */
5610 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5611 		sym_print_msg(cp, "sync msgin", np->msgin);
5612 	}
5613 
5614 	/*
5615 	 * request or answer ?
5616 	 */
5617 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5618 		OUTB (HS_PRT, HS_BUSY);
5619 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5620 			goto reject_it;
5621 		req = 0;
5622 	}
5623 
5624 	/*
5625 	 *  get requested values.
5626 	 */
5627 	chg = 0;
5628 	per = np->msgin[3];
5629 	ofs = np->msgin[4];
5630 
5631 	/*
5632 	 *  check values against our limits.
5633 	 */
5634 	if (ofs) {
5635 		if (ofs > np->maxoffs)
5636 			{chg = 1; ofs = np->maxoffs;}
5637 		if (req) {
5638 			if (ofs > tp->tinfo.user.offset)
5639 				{chg = 1; ofs = tp->tinfo.user.offset;}
5640 		}
5641 	}
5642 
5643 	if (ofs) {
5644 		if (per < np->minsync)
5645 			{chg = 1; per = np->minsync;}
5646 		if (req) {
5647 			if (per < tp->tinfo.user.period)
5648 				{chg = 1; per = tp->tinfo.user.period;}
5649 		}
5650 	}
5651 
5652 	div = fak = 0;
5653 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5654 		goto reject_it;
5655 
5656 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5657 		PRINT_ADDR(cp);
5658 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5659 			ofs, per, div, fak, chg);
5660 	}
5661 
5662 	/*
5663 	 *  This was an answer message
5664 	 */
5665 	if (req == 0) {
5666 		if (chg) 	/* Answer wasn't acceptable. */
5667 			goto reject_it;
5668 		sym_setsync (np, cp, ofs, per, div, fak);
5669 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5670 		return;
5671 	}
5672 
5673 	/*
5674 	 *  It was a request. Set value and
5675 	 *  prepare an answer message
5676 	 */
5677 	sym_setsync (np, cp, ofs, per, div, fak);
5678 
5679 	np->msgout[0] = M_EXTENDED;
5680 	np->msgout[1] = 3;
5681 	np->msgout[2] = M_X_SYNC_REQ;
5682 	np->msgout[3] = per;
5683 	np->msgout[4] = ofs;
5684 
5685 	cp->nego_status = NS_SYNC;
5686 
5687 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5688 		sym_print_msg(cp, "sync msgout", np->msgout);
5689 	}
5690 
5691 	np->msgin [0] = M_NOOP;
5692 
5693 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5694 	return;
5695 reject_it:
5696 	sym_setsync (np, cp, 0, 0, 0, 0);
5697 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5698 }
5699 
5700 /*
5701  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5702  */
5703 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5704 {
5705 	u_char	chg, ofs, per, fak, dt, div, wide;
5706 	int	req = 1;
5707 
5708 	/*
5709 	 * Synchronous request message received.
5710 	 */
5711 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5712 		sym_print_msg(cp, "ppr msgin", np->msgin);
5713 	}
5714 
5715 	/*
5716 	 *  get requested values.
5717 	 */
5718 	chg  = 0;
5719 	per  = np->msgin[3];
5720 	ofs  = np->msgin[5];
5721 	wide = np->msgin[6];
5722 	dt   = np->msgin[7] & PPR_OPT_DT;
5723 
5724 	/*
5725 	 * request or answer ?
5726 	 */
5727 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5728 		OUTB (HS_PRT, HS_BUSY);
5729 		if (cp->nego_status && cp->nego_status != NS_PPR)
5730 			goto reject_it;
5731 		req = 0;
5732 	}
5733 
5734 	/*
5735 	 *  check values against our limits.
5736 	 */
5737 	if (wide > np->maxwide)
5738 		{chg = 1; wide = np->maxwide;}
5739 	if (!wide || !(np->features & FE_ULTRA3))
5740 		dt &= ~PPR_OPT_DT;
5741 	if (req) {
5742 		if (wide > tp->tinfo.user.width)
5743 			{chg = 1; wide = tp->tinfo.user.width;}
5744 	}
5745 
5746 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5747 		dt &= ~PPR_OPT_DT;
5748 
5749 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5750 
5751 	if (ofs) {
5752 		if (dt) {
5753 			if (ofs > np->maxoffs_dt)
5754 				{chg = 1; ofs = np->maxoffs_dt;}
5755 		}
5756 		else if (ofs > np->maxoffs)
5757 			{chg = 1; ofs = np->maxoffs;}
5758 		if (req) {
5759 			if (ofs > tp->tinfo.user.offset)
5760 				{chg = 1; ofs = tp->tinfo.user.offset;}
5761 		}
5762 	}
5763 
5764 	if (ofs) {
5765 		if (dt) {
5766 			if (per < np->minsync_dt)
5767 				{chg = 1; per = np->minsync_dt;}
5768 		}
5769 		else if (per < np->minsync)
5770 			{chg = 1; per = np->minsync;}
5771 		if (req) {
5772 			if (per < tp->tinfo.user.period)
5773 				{chg = 1; per = tp->tinfo.user.period;}
5774 		}
5775 	}
5776 
5777 	div = fak = 0;
5778 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5779 		goto reject_it;
5780 
5781 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5782 		PRINT_ADDR(cp);
5783 		printf ("ppr: "
5784 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5785 			dt, ofs, per, wide, div, fak, chg);
5786 	}
5787 
5788 	/*
5789 	 *  It was an answer.
5790 	 */
5791 	if (req == 0) {
5792 		if (chg) 	/* Answer wasn't acceptable */
5793 			goto reject_it;
5794 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5795 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5796 		return;
5797 	}
5798 
5799 	/*
5800 	 *  It was a request. Set value and
5801 	 *  prepare an answer message
5802 	 */
5803 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5804 
5805 	np->msgout[0] = M_EXTENDED;
5806 	np->msgout[1] = 6;
5807 	np->msgout[2] = M_X_PPR_REQ;
5808 	np->msgout[3] = per;
5809 	np->msgout[4] = 0;
5810 	np->msgout[5] = ofs;
5811 	np->msgout[6] = wide;
5812 	np->msgout[7] = dt;
5813 
5814 	cp->nego_status = NS_PPR;
5815 
5816 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5817 		sym_print_msg(cp, "ppr msgout", np->msgout);
5818 	}
5819 
5820 	np->msgin [0] = M_NOOP;
5821 
5822 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5823 	return;
5824 reject_it:
5825 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5826 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5827 	/*
5828 	 *  If it was a device response that should result in
5829 	 *  ST, we may want to try a legacy negotiation later.
5830 	 */
5831 	if (!req && !dt) {
5832 		tp->tinfo.goal.options = 0;
5833 		tp->tinfo.goal.width   = wide;
5834 		tp->tinfo.goal.period  = per;
5835 		tp->tinfo.goal.offset  = ofs;
5836 	}
5837 }
5838 
5839 /*
5840  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5841  */
5842 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5843 {
5844 	u_char	chg, wide;
5845 	int	req = 1;
5846 
5847 	/*
5848 	 *  Wide request message received.
5849 	 */
5850 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5851 		sym_print_msg(cp, "wide msgin", np->msgin);
5852 	}
5853 
5854 	/*
5855 	 * Is it a request from the device?
5856 	 */
5857 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5858 		OUTB (HS_PRT, HS_BUSY);
5859 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5860 			goto reject_it;
5861 		req = 0;
5862 	}
5863 
5864 	/*
5865 	 *  get requested values.
5866 	 */
5867 	chg  = 0;
5868 	wide = np->msgin[3];
5869 
5870 	/*
5871 	 *  check values against driver limits.
5872 	 */
5873 	if (wide > np->maxwide)
5874 		{chg = 1; wide = np->maxwide;}
5875 	if (req) {
5876 		if (wide > tp->tinfo.user.width)
5877 			{chg = 1; wide = tp->tinfo.user.width;}
5878 	}
5879 
5880 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5881 		PRINT_ADDR(cp);
5882 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5883 	}
5884 
5885 	/*
5886 	 * This was an answer message
5887 	 */
5888 	if (req == 0) {
5889 		if (chg)	/*  Answer wasn't acceptable. */
5890 			goto reject_it;
5891 		sym_setwide (np, cp, wide);
5892 
5893 		/*
5894 		 * Negotiate for SYNC immediately after WIDE response.
5895 		 * This allows to negotiate for both WIDE and SYNC on
5896 		 * a single SCSI command (Suggested by Justin Gibbs).
5897 		 */
5898 		if (tp->tinfo.goal.offset) {
5899 			np->msgout[0] = M_EXTENDED;
5900 			np->msgout[1] = 3;
5901 			np->msgout[2] = M_X_SYNC_REQ;
5902 			np->msgout[3] = tp->tinfo.goal.period;
5903 			np->msgout[4] = tp->tinfo.goal.offset;
5904 
5905 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5906 				sym_print_msg(cp, "sync msgout", np->msgout);
5907 			}
5908 
5909 			cp->nego_status = NS_SYNC;
5910 			OUTB (HS_PRT, HS_NEGOTIATE);
5911 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5912 			return;
5913 		}
5914 
5915 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5916 		return;
5917 	}
5918 
5919 	/*
5920 	 *  It was a request, set value and
5921 	 *  prepare an answer message
5922 	 */
5923 	sym_setwide (np, cp, wide);
5924 
5925 	np->msgout[0] = M_EXTENDED;
5926 	np->msgout[1] = 2;
5927 	np->msgout[2] = M_X_WIDE_REQ;
5928 	np->msgout[3] = wide;
5929 
5930 	np->msgin [0] = M_NOOP;
5931 
5932 	cp->nego_status = NS_WIDE;
5933 
5934 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5935 		sym_print_msg(cp, "wide msgout", np->msgout);
5936 	}
5937 
5938 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5939 	return;
5940 reject_it:
5941 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5942 }
5943 
5944 /*
5945  *  Reset SYNC or WIDE to default settings.
5946  *
5947  *  Called when a negotiation does not succeed either
5948  *  on rejection or on protocol error.
5949  *
5950  *  If it was a PPR that made problems, we may want to
5951  *  try a legacy negotiation later.
5952  */
5953 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5954 {
5955 	/*
5956 	 *  any error in negotiation:
5957 	 *  fall back to default mode.
5958 	 */
5959 	switch (cp->nego_status) {
5960 	case NS_PPR:
5961 #if 0
5962 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5963 #else
5964 		tp->tinfo.goal.options = 0;
5965 		if (tp->tinfo.goal.period < np->minsync)
5966 			tp->tinfo.goal.period = np->minsync;
5967 		if (tp->tinfo.goal.offset > np->maxoffs)
5968 			tp->tinfo.goal.offset = np->maxoffs;
5969 #endif
5970 		break;
5971 	case NS_SYNC:
5972 		sym_setsync (np, cp, 0, 0, 0, 0);
5973 		break;
5974 	case NS_WIDE:
5975 		sym_setwide (np, cp, 0);
5976 		break;
5977 	}
5978 	np->msgin [0] = M_NOOP;
5979 	np->msgout[0] = M_NOOP;
5980 	cp->nego_status = 0;
5981 }
5982 
5983 /*
5984  *  chip handler for MESSAGE REJECT received in response to
5985  *  a WIDE or SYNCHRONOUS negotiation.
5986  */
5987 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5988 {
5989 	sym_nego_default(np, tp, cp);
5990 	OUTB (HS_PRT, HS_BUSY);
5991 }
5992 
5993 /*
5994  *  chip exception handler for programmed interrupts.
5995  */
5996 static void sym_int_sir (hcb_p np)
5997 {
5998 	u_char	num	= INB (nc_dsps);
5999 	u32	dsa	= INL (nc_dsa);
6000 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6001 	u_char	target	= INB (nc_sdid) & 0x0f;
6002 	tcb_p	tp	= &np->target[target];
6003 	int	tmp;
6004 
6005 	SYM_LOCK_ASSERT(MA_OWNED);
6006 
6007 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6008 
6009 	switch (num) {
6010 	/*
6011 	 *  Command has been completed with error condition
6012 	 *  or has been auto-sensed.
6013 	 */
6014 	case SIR_COMPLETE_ERROR:
6015 		sym_complete_error(np, cp);
6016 		return;
6017 	/*
6018 	 *  The C code is currently trying to recover from something.
6019 	 *  Typically, user want to abort some command.
6020 	 */
6021 	case SIR_SCRIPT_STOPPED:
6022 	case SIR_TARGET_SELECTED:
6023 	case SIR_ABORT_SENT:
6024 		sym_sir_task_recovery(np, num);
6025 		return;
6026 	/*
6027 	 *  The device didn't go to MSG OUT phase after having
6028 	 *  been selected with ATN. We donnot want to handle
6029 	 *  that.
6030 	 */
6031 	case SIR_SEL_ATN_NO_MSG_OUT:
6032 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6033 			sym_name (np), target);
6034 		goto out_stuck;
6035 	/*
6036 	 *  The device didn't switch to MSG IN phase after
6037 	 *  having reseleted the initiator.
6038 	 */
6039 	case SIR_RESEL_NO_MSG_IN:
6040 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6041 			sym_name (np), target);
6042 		goto out_stuck;
6043 	/*
6044 	 *  After reselection, the device sent a message that wasn't
6045 	 *  an IDENTIFY.
6046 	 */
6047 	case SIR_RESEL_NO_IDENTIFY:
6048 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6049 			sym_name (np), target);
6050 		goto out_stuck;
6051 	/*
6052 	 *  The device reselected a LUN we donnot know about.
6053 	 */
6054 	case SIR_RESEL_BAD_LUN:
6055 		np->msgout[0] = M_RESET;
6056 		goto out;
6057 	/*
6058 	 *  The device reselected for an untagged nexus and we
6059 	 *  haven't any.
6060 	 */
6061 	case SIR_RESEL_BAD_I_T_L:
6062 		np->msgout[0] = M_ABORT;
6063 		goto out;
6064 	/*
6065 	 *  The device reselected for a tagged nexus that we donnot
6066 	 *  have.
6067 	 */
6068 	case SIR_RESEL_BAD_I_T_L_Q:
6069 		np->msgout[0] = M_ABORT_TAG;
6070 		goto out;
6071 	/*
6072 	 *  The SCRIPTS let us know that the device has grabbed
6073 	 *  our message and will abort the job.
6074 	 */
6075 	case SIR_RESEL_ABORTED:
6076 		np->lastmsg = np->msgout[0];
6077 		np->msgout[0] = M_NOOP;
6078 		printf ("%s:%d: message %x sent on bad reselection.\n",
6079 			sym_name (np), target, np->lastmsg);
6080 		goto out;
6081 	/*
6082 	 *  The SCRIPTS let us know that a message has been
6083 	 *  successfully sent to the device.
6084 	 */
6085 	case SIR_MSG_OUT_DONE:
6086 		np->lastmsg = np->msgout[0];
6087 		np->msgout[0] = M_NOOP;
6088 		/* Should we really care of that */
6089 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6090 			if (cp) {
6091 				cp->xerr_status &= ~XE_PARITY_ERR;
6092 				if (!cp->xerr_status)
6093 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6094 			}
6095 		}
6096 		goto out;
6097 	/*
6098 	 *  The device didn't send a GOOD SCSI status.
6099 	 *  We may have some work to do prior to allow
6100 	 *  the SCRIPTS processor to continue.
6101 	 */
6102 	case SIR_BAD_SCSI_STATUS:
6103 		if (!cp)
6104 			goto out;
6105 		sym_sir_bad_scsi_status(np, cp);
6106 		return;
6107 	/*
6108 	 *  We are asked by the SCRIPTS to prepare a
6109 	 *  REJECT message.
6110 	 */
6111 	case SIR_REJECT_TO_SEND:
6112 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6113 		np->msgout[0] = M_REJECT;
6114 		goto out;
6115 	/*
6116 	 *  We have been ODD at the end of a DATA IN
6117 	 *  transfer and the device didn't send a
6118 	 *  IGNORE WIDE RESIDUE message.
6119 	 *  It is a data overrun condition.
6120 	 */
6121 	case SIR_SWIDE_OVERRUN:
6122 		if (cp) {
6123 			OUTONB (HF_PRT, HF_EXT_ERR);
6124 			cp->xerr_status |= XE_SWIDE_OVRUN;
6125 		}
6126 		goto out;
6127 	/*
6128 	 *  We have been ODD at the end of a DATA OUT
6129 	 *  transfer.
6130 	 *  It is a data underrun condition.
6131 	 */
6132 	case SIR_SODL_UNDERRUN:
6133 		if (cp) {
6134 			OUTONB (HF_PRT, HF_EXT_ERR);
6135 			cp->xerr_status |= XE_SODL_UNRUN;
6136 		}
6137 		goto out;
6138 	/*
6139 	 *  The device wants us to transfer more data than
6140 	 *  expected or in the wrong direction.
6141 	 *  The number of extra bytes is in scratcha.
6142 	 *  It is a data overrun condition.
6143 	 */
6144 	case SIR_DATA_OVERRUN:
6145 		if (cp) {
6146 			OUTONB (HF_PRT, HF_EXT_ERR);
6147 			cp->xerr_status |= XE_EXTRA_DATA;
6148 			cp->extra_bytes += INL (nc_scratcha);
6149 		}
6150 		goto out;
6151 	/*
6152 	 *  The device switched to an illegal phase (4/5).
6153 	 */
6154 	case SIR_BAD_PHASE:
6155 		if (cp) {
6156 			OUTONB (HF_PRT, HF_EXT_ERR);
6157 			cp->xerr_status |= XE_BAD_PHASE;
6158 		}
6159 		goto out;
6160 	/*
6161 	 *  We received a message.
6162 	 */
6163 	case SIR_MSG_RECEIVED:
6164 		if (!cp)
6165 			goto out_stuck;
6166 		switch (np->msgin [0]) {
6167 		/*
6168 		 *  We received an extended message.
6169 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6170 		 *  and reject all other extended messages.
6171 		 */
6172 		case M_EXTENDED:
6173 			switch (np->msgin [2]) {
6174 			case M_X_MODIFY_DP:
6175 				if (DEBUG_FLAGS & DEBUG_POINTER)
6176 					sym_print_msg(cp,"modify DP",np->msgin);
6177 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6178 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6179 				sym_modify_dp(np, cp, tmp);
6180 				return;
6181 			case M_X_SYNC_REQ:
6182 				sym_sync_nego(np, tp, cp);
6183 				return;
6184 			case M_X_PPR_REQ:
6185 				sym_ppr_nego(np, tp, cp);
6186 				return;
6187 			case M_X_WIDE_REQ:
6188 				sym_wide_nego(np, tp, cp);
6189 				return;
6190 			default:
6191 				goto out_reject;
6192 			}
6193 			break;
6194 		/*
6195 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6196 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6197 		 *  RESIDUE messages that haven't been anticipated by
6198 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6199 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6200 		 */
6201 		case M_IGN_RESIDUE:
6202 			if (DEBUG_FLAGS & DEBUG_POINTER)
6203 				sym_print_msg(cp,"ign wide residue", np->msgin);
6204 			sym_modify_dp(np, cp, -1);
6205 			return;
6206 		case M_REJECT:
6207 			if (INB (HS_PRT) == HS_NEGOTIATE)
6208 				sym_nego_rejected(np, tp, cp);
6209 			else {
6210 				PRINT_ADDR(cp);
6211 				printf ("M_REJECT received (%x:%x).\n",
6212 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6213 			}
6214 			goto out_clrack;
6215 			break;
6216 		default:
6217 			goto out_reject;
6218 		}
6219 		break;
6220 	/*
6221 	 *  We received an unknown message.
6222 	 *  Ignore all MSG IN phases and reject it.
6223 	 */
6224 	case SIR_MSG_WEIRD:
6225 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6226 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6227 		return;
6228 	/*
6229 	 *  Negotiation failed.
6230 	 *  Target does not send us the reply.
6231 	 *  Remove the HS_NEGOTIATE status.
6232 	 */
6233 	case SIR_NEGO_FAILED:
6234 		OUTB (HS_PRT, HS_BUSY);
6235 	/*
6236 	 *  Negotiation failed.
6237 	 *  Target does not want answer message.
6238 	 */
6239 	case SIR_NEGO_PROTO:
6240 		sym_nego_default(np, tp, cp);
6241 		goto out;
6242 	}
6243 
6244 out:
6245 	OUTONB_STD ();
6246 	return;
6247 out_reject:
6248 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6249 	return;
6250 out_clrack:
6251 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6252 	return;
6253 out_stuck:
6254 	return;
6255 }
6256 
6257 /*
6258  *  Acquire a control block
6259  */
6260 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6261 {
6262 	tcb_p tp = &np->target[tn];
6263 	lcb_p lp = sym_lp(tp, ln);
6264 	u_short tag = NO_TAG;
6265 	SYM_QUEHEAD *qp;
6266 	ccb_p cp = (ccb_p) NULL;
6267 
6268 	/*
6269 	 *  Look for a free CCB
6270 	 */
6271 	if (sym_que_empty(&np->free_ccbq))
6272 		goto out;
6273 	qp = sym_remque_head(&np->free_ccbq);
6274 	if (!qp)
6275 		goto out;
6276 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6277 
6278 	/*
6279 	 *  If the LCB is not yet available and the LUN
6280 	 *  has been probed ok, try to allocate the LCB.
6281 	 */
6282 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6283 		lp = sym_alloc_lcb(np, tn, ln);
6284 		if (!lp)
6285 			goto out_free;
6286 	}
6287 
6288 	/*
6289 	 *  If the LCB is not available here, then the
6290 	 *  logical unit is not yet discovered. For those
6291 	 *  ones only accept 1 SCSI IO per logical unit,
6292 	 *  since we cannot allow disconnections.
6293 	 */
6294 	if (!lp) {
6295 		if (!sym_is_bit(tp->busy0_map, ln))
6296 			sym_set_bit(tp->busy0_map, ln);
6297 		else
6298 			goto out_free;
6299 	} else {
6300 		/*
6301 		 *  If we have been asked for a tagged command.
6302 		 */
6303 		if (tag_order) {
6304 			/*
6305 			 *  Debugging purpose.
6306 			 */
6307 			assert(lp->busy_itl == 0);
6308 			/*
6309 			 *  Allocate resources for tags if not yet.
6310 			 */
6311 			if (!lp->cb_tags) {
6312 				sym_alloc_lcb_tags(np, tn, ln);
6313 				if (!lp->cb_tags)
6314 					goto out_free;
6315 			}
6316 			/*
6317 			 *  Get a tag for this SCSI IO and set up
6318 			 *  the CCB bus address for reselection,
6319 			 *  and count it for this LUN.
6320 			 *  Toggle reselect path to tagged.
6321 			 */
6322 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6323 				tag = lp->cb_tags[lp->ia_tag];
6324 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6325 					lp->ia_tag = 0;
6326 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6327 				++lp->busy_itlq;
6328 				lp->head.resel_sa =
6329 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6330 			}
6331 			else
6332 				goto out_free;
6333 		}
6334 		/*
6335 		 *  This command will not be tagged.
6336 		 *  If we already have either a tagged or untagged
6337 		 *  one, refuse to overlap this untagged one.
6338 		 */
6339 		else {
6340 			/*
6341 			 *  Debugging purpose.
6342 			 */
6343 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6344 			/*
6345 			 *  Count this nexus for this LUN.
6346 			 *  Set up the CCB bus address for reselection.
6347 			 *  Toggle reselect path to untagged.
6348 			 */
6349 			if (++lp->busy_itl == 1) {
6350 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6351 				lp->head.resel_sa =
6352 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6353 			}
6354 			else
6355 				goto out_free;
6356 		}
6357 	}
6358 	/*
6359 	 *  Put the CCB into the busy queue.
6360 	 */
6361 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6362 
6363 	/*
6364 	 *  Remember all informations needed to free this CCB.
6365 	 */
6366 	cp->to_abort = 0;
6367 	cp->tag	   = tag;
6368 	cp->target = tn;
6369 	cp->lun    = ln;
6370 
6371 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6372 		PRINT_LUN(np, tn, ln);
6373 		printf ("ccb @%p using tag %d.\n", cp, tag);
6374 	}
6375 
6376 out:
6377 	return cp;
6378 out_free:
6379 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6380 	return NULL;
6381 }
6382 
6383 /*
6384  *  Release one control block
6385  */
6386 static void sym_free_ccb(hcb_p np, ccb_p cp)
6387 {
6388 	tcb_p tp = &np->target[cp->target];
6389 	lcb_p lp = sym_lp(tp, cp->lun);
6390 
6391 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6392 		PRINT_LUN(np, cp->target, cp->lun);
6393 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6394 	}
6395 
6396 	/*
6397 	 *  If LCB available,
6398 	 */
6399 	if (lp) {
6400 		/*
6401 		 *  If tagged, release the tag, set the relect path
6402 		 */
6403 		if (cp->tag != NO_TAG) {
6404 			/*
6405 			 *  Free the tag value.
6406 			 */
6407 			lp->cb_tags[lp->if_tag] = cp->tag;
6408 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6409 				lp->if_tag = 0;
6410 			/*
6411 			 *  Make the reselect path invalid,
6412 			 *  and uncount this CCB.
6413 			 */
6414 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6415 			--lp->busy_itlq;
6416 		} else {	/* Untagged */
6417 			/*
6418 			 *  Make the reselect path invalid,
6419 			 *  and uncount this CCB.
6420 			 */
6421 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6422 			--lp->busy_itl;
6423 		}
6424 		/*
6425 		 *  If no JOB active, make the LUN reselect path invalid.
6426 		 */
6427 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6428 			lp->head.resel_sa =
6429 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6430 	}
6431 	/*
6432 	 *  Otherwise, we only accept 1 IO per LUN.
6433 	 *  Clear the bit that keeps track of this IO.
6434 	 */
6435 	else
6436 		sym_clr_bit(tp->busy0_map, cp->lun);
6437 
6438 	/*
6439 	 *  We donnot queue more than 1 ccb per target
6440 	 *  with negotiation at any time. If this ccb was
6441 	 *  used for negotiation, clear this info in the tcb.
6442 	 */
6443 	if (cp == tp->nego_cp)
6444 		tp->nego_cp = NULL;
6445 
6446 #ifdef SYM_CONF_IARB_SUPPORT
6447 	/*
6448 	 *  If we just complete the last queued CCB,
6449 	 *  clear this info that is no longer relevant.
6450 	 */
6451 	if (cp == np->last_cp)
6452 		np->last_cp = NULL;
6453 #endif
6454 
6455 	/*
6456 	 *  Unmap user data from DMA map if needed.
6457 	 */
6458 	if (cp->dmamapped) {
6459 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6460 		cp->dmamapped = 0;
6461 	}
6462 
6463 	/*
6464 	 *  Make this CCB available.
6465 	 */
6466 	cp->cam_ccb = NULL;
6467 	cp->host_status = HS_IDLE;
6468 	sym_remque(&cp->link_ccbq);
6469 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6470 }
6471 
6472 /*
6473  *  Allocate a CCB from memory and initialize its fixed part.
6474  */
6475 static ccb_p sym_alloc_ccb(hcb_p np)
6476 {
6477 	ccb_p cp = NULL;
6478 	int hcode;
6479 
6480 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6481 
6482 	/*
6483 	 *  Prevent from allocating more CCBs than we can
6484 	 *  queue to the controller.
6485 	 */
6486 	if (np->actccbs >= SYM_CONF_MAX_START)
6487 		return NULL;
6488 
6489 	/*
6490 	 *  Allocate memory for this CCB.
6491 	 */
6492 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6493 	if (!cp)
6494 		return NULL;
6495 
6496 	/*
6497 	 *  Allocate a bounce buffer for sense data.
6498 	 */
6499 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6500 	if (!cp->sns_bbuf)
6501 		goto out_free;
6502 
6503 	/*
6504 	 *  Allocate a map for the DMA of user data.
6505 	 */
6506 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6507 		goto out_free;
6508 	/*
6509 	 *  Count it.
6510 	 */
6511 	np->actccbs++;
6512 
6513 	/*
6514 	 * Initialize the callout.
6515 	 */
6516 	callout_init(&cp->ch, 1);
6517 
6518 	/*
6519 	 *  Compute the bus address of this ccb.
6520 	 */
6521 	cp->ccb_ba = vtobus(cp);
6522 
6523 	/*
6524 	 *  Insert this ccb into the hashed list.
6525 	 */
6526 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6527 	cp->link_ccbh = np->ccbh[hcode];
6528 	np->ccbh[hcode] = cp;
6529 
6530 	/*
6531 	 *  Initialize the start and restart actions.
6532 	 */
6533 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6534 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6535 
6536  	/*
6537 	 *  Initilialyze some other fields.
6538 	 */
6539 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6540 
6541 	/*
6542 	 *  Chain into free ccb queue.
6543 	 */
6544 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6545 
6546 	return cp;
6547 out_free:
6548 	if (cp->sns_bbuf)
6549 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6550 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6551 	return NULL;
6552 }
6553 
6554 /*
6555  *  Look up a CCB from a DSA value.
6556  */
6557 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6558 {
6559 	int hcode;
6560 	ccb_p cp;
6561 
6562 	hcode = CCB_HASH_CODE(dsa);
6563 	cp = np->ccbh[hcode];
6564 	while (cp) {
6565 		if (cp->ccb_ba == dsa)
6566 			break;
6567 		cp = cp->link_ccbh;
6568 	}
6569 
6570 	return cp;
6571 }
6572 
6573 /*
6574  *  Lun control block allocation and initialization.
6575  */
6576 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6577 {
6578 	tcb_p tp = &np->target[tn];
6579 	lcb_p lp = sym_lp(tp, ln);
6580 
6581 	/*
6582 	 *  Already done, just return.
6583 	 */
6584 	if (lp)
6585 		return lp;
6586 	/*
6587 	 *  Check against some race.
6588 	 */
6589 	assert(!sym_is_bit(tp->busy0_map, ln));
6590 
6591 	/*
6592 	 *  Allocate the LCB bus address array.
6593 	 *  Compute the bus address of this table.
6594 	 */
6595 	if (ln && !tp->luntbl) {
6596 		int i;
6597 
6598 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6599 		if (!tp->luntbl)
6600 			goto fail;
6601 		for (i = 0 ; i < 64 ; i++)
6602 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6603 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6604 	}
6605 
6606 	/*
6607 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6608 	 */
6609 	if (ln && !tp->lunmp) {
6610 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6611 				   "LUNMP");
6612 		if (!tp->lunmp)
6613 			goto fail;
6614 	}
6615 
6616 	/*
6617 	 *  Allocate the lcb.
6618 	 *  Make it available to the chip.
6619 	 */
6620 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6621 	if (!lp)
6622 		goto fail;
6623 	if (ln) {
6624 		tp->lunmp[ln] = lp;
6625 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6626 	}
6627 	else {
6628 		tp->lun0p = lp;
6629 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6630 	}
6631 
6632 	/*
6633 	 *  Let the itl task point to error handling.
6634 	 */
6635 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6636 
6637 	/*
6638 	 *  Set the reselect pattern to our default. :)
6639 	 */
6640 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6641 
6642 	/*
6643 	 *  Set user capabilities.
6644 	 */
6645 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6646 
6647 fail:
6648 	return lp;
6649 }
6650 
6651 /*
6652  *  Allocate LCB resources for tagged command queuing.
6653  */
6654 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6655 {
6656 	tcb_p tp = &np->target[tn];
6657 	lcb_p lp = sym_lp(tp, ln);
6658 	int i;
6659 
6660 	/*
6661 	 *  If LCB not available, try to allocate it.
6662 	 */
6663 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6664 		return;
6665 
6666 	/*
6667 	 *  Allocate the task table and and the tag allocation
6668 	 *  circular buffer. We want both or none.
6669 	 */
6670 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6671 	if (!lp->itlq_tbl)
6672 		return;
6673 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6674 	if (!lp->cb_tags) {
6675 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6676 		lp->itlq_tbl = NULL;
6677 		return;
6678 	}
6679 
6680 	/*
6681 	 *  Initialize the task table with invalid entries.
6682 	 */
6683 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6684 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6685 
6686 	/*
6687 	 *  Fill up the tag buffer with tag numbers.
6688 	 */
6689 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6690 		lp->cb_tags[i] = i;
6691 
6692 	/*
6693 	 *  Make the task table available to SCRIPTS,
6694 	 *  And accept tagged commands now.
6695 	 */
6696 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6697 }
6698 
6699 /*
6700  *  Test the pci bus snoop logic :-(
6701  *
6702  *  Has to be called with interrupts disabled.
6703  */
6704 #ifndef SYM_CONF_IOMAPPED
6705 static int sym_regtest (hcb_p np)
6706 {
6707 	register volatile u32 data;
6708 	/*
6709 	 *  chip registers may NOT be cached.
6710 	 *  write 0xffffffff to a read only register area,
6711 	 *  and try to read it back.
6712 	 */
6713 	data = 0xffffffff;
6714 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6715 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6716 #if 1
6717 	if (data == 0xffffffff) {
6718 #else
6719 	if ((data & 0xe2f0fffd) != 0x02000080) {
6720 #endif
6721 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6722 			(unsigned) data);
6723 		return (0x10);
6724 	}
6725 	return (0);
6726 }
6727 #endif
6728 
6729 static int sym_snooptest (hcb_p np)
6730 {
6731 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6732 	int	i, err=0;
6733 #ifndef SYM_CONF_IOMAPPED
6734 	err |= sym_regtest (np);
6735 	if (err) return (err);
6736 #endif
6737 restart_test:
6738 	/*
6739 	 *  Enable Master Parity Checking as we intend
6740 	 *  to enable it for normal operations.
6741 	 */
6742 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6743 	/*
6744 	 *  init
6745 	 */
6746 	pc  = SCRIPTB0_BA (np, snooptest);
6747 	host_wr = 1;
6748 	sym_wr  = 2;
6749 	/*
6750 	 *  Set memory and register.
6751 	 */
6752 	np->cache = cpu_to_scr(host_wr);
6753 	OUTL (nc_temp, sym_wr);
6754 	/*
6755 	 *  Start script (exchange values)
6756 	 */
6757 	OUTL (nc_dsa, np->hcb_ba);
6758 	OUTL_DSP (pc);
6759 	/*
6760 	 *  Wait 'til done (with timeout)
6761 	 */
6762 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6763 		if (INB(nc_istat) & (INTF|SIP|DIP))
6764 			break;
6765 	if (i>=SYM_SNOOP_TIMEOUT) {
6766 		printf ("CACHE TEST FAILED: timeout.\n");
6767 		return (0x20);
6768 	}
6769 	/*
6770 	 *  Check for fatal DMA errors.
6771 	 */
6772 	dstat = INB (nc_dstat);
6773 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6774 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6775 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6776 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6777 			sym_name(np));
6778 		np->rv_ctest4 &= ~MPEE;
6779 		goto restart_test;
6780 	}
6781 #endif
6782 	if (dstat & (MDPE|BF|IID)) {
6783 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6784 		return (0x80);
6785 	}
6786 	/*
6787 	 *  Save termination position.
6788 	 */
6789 	pc = INL (nc_dsp);
6790 	/*
6791 	 *  Read memory and register.
6792 	 */
6793 	host_rd = scr_to_cpu(np->cache);
6794 	sym_rd  = INL (nc_scratcha);
6795 	sym_bk  = INL (nc_temp);
6796 
6797 	/*
6798 	 *  Check termination position.
6799 	 */
6800 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6801 		printf ("CACHE TEST FAILED: script execution failed.\n");
6802 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6803 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6804 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6805 		return (0x40);
6806 	}
6807 	/*
6808 	 *  Show results.
6809 	 */
6810 	if (host_wr != sym_rd) {
6811 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6812 			(int) host_wr, (int) sym_rd);
6813 		err |= 1;
6814 	}
6815 	if (host_rd != sym_wr) {
6816 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6817 			(int) sym_wr, (int) host_rd);
6818 		err |= 2;
6819 	}
6820 	if (sym_bk != sym_wr) {
6821 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6822 			(int) sym_wr, (int) sym_bk);
6823 		err |= 4;
6824 	}
6825 
6826 	return (err);
6827 }
6828 
6829 /*
6830  *  Determine the chip's clock frequency.
6831  *
6832  *  This is essential for the negotiation of the synchronous
6833  *  transfer rate.
6834  *
6835  *  Note: we have to return the correct value.
6836  *  THERE IS NO SAFE DEFAULT VALUE.
6837  *
6838  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6839  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6840  *  do not have a clock doubler and so are provided with a
6841  *  80 MHz clock. All other fast20 boards incorporate a doubler
6842  *  and so should be delivered with a 40 MHz clock.
6843  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6844  *  clock and provide a clock quadrupler (160 Mhz).
6845  */
6846 
6847 /*
6848  *  Select SCSI clock frequency
6849  */
6850 static void sym_selectclock(hcb_p np, u_char scntl3)
6851 {
6852 	/*
6853 	 *  If multiplier not present or not selected, leave here.
6854 	 */
6855 	if (np->multiplier <= 1) {
6856 		OUTB(nc_scntl3,	scntl3);
6857 		return;
6858 	}
6859 
6860 	if (sym_verbose >= 2)
6861 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6862 
6863 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6864 	/*
6865 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6866 	 *  Otherwise wait 20 micro-seconds.
6867 	 */
6868 	if (np->features & FE_LCKFRQ) {
6869 		int i = 20;
6870 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6871 			UDELAY (20);
6872 		if (!i)
6873 			printf("%s: the chip cannot lock the frequency\n",
6874 				sym_name(np));
6875 	} else
6876 		UDELAY (20);
6877 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6878 	OUTB(nc_scntl3,	scntl3);
6879 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6880 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6881 }
6882 
6883 /*
6884  *  calculate SCSI clock frequency (in KHz)
6885  */
6886 static unsigned getfreq (hcb_p np, int gen)
6887 {
6888 	unsigned int ms = 0;
6889 	unsigned int f;
6890 
6891 	/*
6892 	 * Measure GEN timer delay in order
6893 	 * to calculate SCSI clock frequency
6894 	 *
6895 	 * This code will never execute too
6896 	 * many loop iterations (if DELAY is
6897 	 * reasonably correct). It could get
6898 	 * too low a delay (too high a freq.)
6899 	 * if the CPU is slow executing the
6900 	 * loop for some reason (an NMI, for
6901 	 * example). For this reason we will
6902 	 * if multiple measurements are to be
6903 	 * performed trust the higher delay
6904 	 * (lower frequency returned).
6905 	 */
6906 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6907 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6908 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6909 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6910 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6911 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6912 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6913 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6914 		UDELAY (1000);	/* count ms */
6915 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6916  	/*
6917  	 * set prescaler to divide by whatever 0 means
6918  	 * 0 ought to choose divide by 2, but appears
6919  	 * to set divide by 3.5 mode in my 53c810 ...
6920  	 */
6921  	OUTB (nc_scntl3, 0);
6922 
6923   	/*
6924  	 * adjust for prescaler, and convert into KHz
6925   	 */
6926 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6927 
6928 	if (sym_verbose >= 2)
6929 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6930 			sym_name(np), gen, ms, f);
6931 
6932 	return f;
6933 }
6934 
6935 static unsigned sym_getfreq (hcb_p np)
6936 {
6937 	u_int f1, f2;
6938 	int gen = 11;
6939 
6940 	(void) getfreq (np, gen);	/* throw away first result */
6941 	f1 = getfreq (np, gen);
6942 	f2 = getfreq (np, gen);
6943 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6944 	return f1;
6945 }
6946 
6947 /*
6948  *  Get/probe chip SCSI clock frequency
6949  */
6950 static void sym_getclock (hcb_p np, int mult)
6951 {
6952 	unsigned char scntl3 = np->sv_scntl3;
6953 	unsigned char stest1 = np->sv_stest1;
6954 	unsigned f1;
6955 
6956 	/*
6957 	 *  For the C10 core, assume 40 MHz.
6958 	 */
6959 	if (np->features & FE_C10) {
6960 		np->multiplier = mult;
6961 		np->clock_khz = 40000 * mult;
6962 		return;
6963 	}
6964 
6965 	np->multiplier = 1;
6966 	f1 = 40000;
6967 	/*
6968 	 *  True with 875/895/896/895A with clock multiplier selected
6969 	 */
6970 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6971 		if (sym_verbose >= 2)
6972 			printf ("%s: clock multiplier found\n", sym_name(np));
6973 		np->multiplier = mult;
6974 	}
6975 
6976 	/*
6977 	 *  If multiplier not found or scntl3 not 7,5,3,
6978 	 *  reset chip and get frequency from general purpose timer.
6979 	 *  Otherwise trust scntl3 BIOS setting.
6980 	 */
6981 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6982 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6983 		f1 = sym_getfreq (np);
6984 
6985 		if (sym_verbose)
6986 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
6987 
6988 		if	(f1 <	45000)		f1 =  40000;
6989 		else if (f1 <	55000)		f1 =  50000;
6990 		else				f1 =  80000;
6991 
6992 		if (f1 < 80000 && mult > 1) {
6993 			if (sym_verbose >= 2)
6994 				printf ("%s: clock multiplier assumed\n",
6995 					sym_name(np));
6996 			np->multiplier	= mult;
6997 		}
6998 	} else {
6999 		if	((scntl3 & 7) == 3)	f1 =  40000;
7000 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7001 		else 				f1 = 160000;
7002 
7003 		f1 /= np->multiplier;
7004 	}
7005 
7006 	/*
7007 	 *  Compute controller synchronous parameters.
7008 	 */
7009 	f1		*= np->multiplier;
7010 	np->clock_khz	= f1;
7011 }
7012 
7013 /*
7014  *  Get/probe PCI clock frequency
7015  */
7016 static int sym_getpciclock (hcb_p np)
7017 {
7018 	int f = 0;
7019 
7020 	/*
7021 	 *  For the C1010-33, this doesn't work.
7022 	 *  For the C1010-66, this will be tested when I'll have
7023 	 *  such a beast to play with.
7024 	 */
7025 	if (!(np->features & FE_C10)) {
7026 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7027 		f = (int) sym_getfreq (np);
7028 		OUTB (nc_stest1, 0);
7029 	}
7030 	np->pciclk_khz = f;
7031 
7032 	return f;
7033 }
7034 
7035 /*============= DRIVER ACTION/COMPLETION ====================*/
7036 
7037 /*
7038  *  Print something that tells about extended errors.
7039  */
7040 static void sym_print_xerr(ccb_p cp, int x_status)
7041 {
7042 	if (x_status & XE_PARITY_ERR) {
7043 		PRINT_ADDR(cp);
7044 		printf ("unrecovered SCSI parity error.\n");
7045 	}
7046 	if (x_status & XE_EXTRA_DATA) {
7047 		PRINT_ADDR(cp);
7048 		printf ("extraneous data discarded.\n");
7049 	}
7050 	if (x_status & XE_BAD_PHASE) {
7051 		PRINT_ADDR(cp);
7052 		printf ("illegal scsi phase (4/5).\n");
7053 	}
7054 	if (x_status & XE_SODL_UNRUN) {
7055 		PRINT_ADDR(cp);
7056 		printf ("ODD transfer in DATA OUT phase.\n");
7057 	}
7058 	if (x_status & XE_SWIDE_OVRUN) {
7059 		PRINT_ADDR(cp);
7060 		printf ("ODD transfer in DATA IN phase.\n");
7061 	}
7062 }
7063 
7064 /*
7065  *  Choose the more appropriate CAM status if
7066  *  the IO encountered an extended error.
7067  */
7068 static int sym_xerr_cam_status(int cam_status, int x_status)
7069 {
7070 	if (x_status) {
7071 		if	(x_status & XE_PARITY_ERR)
7072 			cam_status = CAM_UNCOR_PARITY;
7073 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7074 			cam_status = CAM_DATA_RUN_ERR;
7075 		else if	(x_status & XE_BAD_PHASE)
7076 			cam_status = CAM_REQ_CMP_ERR;
7077 		else
7078 			cam_status = CAM_REQ_CMP_ERR;
7079 	}
7080 	return cam_status;
7081 }
7082 
7083 /*
7084  *  Complete execution of a SCSI command with extented
7085  *  error, SCSI status error, or having been auto-sensed.
7086  *
7087  *  The SCRIPTS processor is not running there, so we
7088  *  can safely access IO registers and remove JOBs from
7089  *  the START queue.
7090  *  SCRATCHA is assumed to have been loaded with STARTPOS
7091  *  before the SCRIPTS called the C code.
7092  */
7093 static void sym_complete_error (hcb_p np, ccb_p cp)
7094 {
7095 	struct ccb_scsiio *csio;
7096 	u_int cam_status;
7097 	int i, sense_returned;
7098 
7099 	SYM_LOCK_ASSERT(MA_OWNED);
7100 
7101 	/*
7102 	 *  Paranoid check. :)
7103 	 */
7104 	if (!cp || !cp->cam_ccb)
7105 		return;
7106 
7107 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7108 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7109 			cp->host_status, cp->ssss_status, cp->host_flags,
7110 			cp->target, cp->lun);
7111 		MDELAY(100);
7112 	}
7113 
7114 	/*
7115 	 *  Get CAM command pointer.
7116 	 */
7117 	csio = &cp->cam_ccb->csio;
7118 
7119 	/*
7120 	 *  Check for extended errors.
7121 	 */
7122 	if (cp->xerr_status) {
7123 		if (sym_verbose)
7124 			sym_print_xerr(cp, cp->xerr_status);
7125 		if (cp->host_status == HS_COMPLETE)
7126 			cp->host_status = HS_COMP_ERR;
7127 	}
7128 
7129 	/*
7130 	 *  Calculate the residual.
7131 	 */
7132 	csio->sense_resid = 0;
7133 	csio->resid = sym_compute_residual(np, cp);
7134 
7135 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7136 		csio->resid  = 0;	/* throw them away. :)		   */
7137 		cp->sv_resid = 0;
7138 	}
7139 
7140 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7141 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7142 		csio->sense_resid = csio->resid;	/* Swap residuals */
7143 		csio->resid       = cp->sv_resid;
7144 		cp->sv_resid	  = 0;
7145 		if (sym_verbose && cp->sv_xerr_status)
7146 			sym_print_xerr(cp, cp->sv_xerr_status);
7147 		if (cp->host_status == HS_COMPLETE &&
7148 		    cp->ssss_status == S_GOOD &&
7149 		    cp->xerr_status == 0) {
7150 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7151 							 cp->sv_xerr_status);
7152 			cam_status |= CAM_AUTOSNS_VALID;
7153 			/*
7154 			 *  Bounce back the sense data to user and
7155 			 *  fix the residual.
7156 			 */
7157 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7158 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7159 			if (sense_returned < csio->sense_len)
7160 				csio->sense_resid = csio->sense_len -
7161 				    sense_returned;
7162 			else
7163 				csio->sense_resid = 0;
7164 			bcopy(cp->sns_bbuf, &csio->sense_data,
7165 			    MIN(csio->sense_len, sense_returned));
7166 #if 0
7167 			/*
7168 			 *  If the device reports a UNIT ATTENTION condition
7169 			 *  due to a RESET condition, we should consider all
7170 			 *  disconnect CCBs for this unit as aborted.
7171 			 */
7172 			if (1) {
7173 				u_char *p;
7174 				p  = (u_char *) csio->sense_data;
7175 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7176 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7177 							cp->target,cp->lun, -1);
7178 			}
7179 #endif
7180 		}
7181 		else
7182 			cam_status = CAM_AUTOSENSE_FAIL;
7183 	}
7184 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7185 		csio->scsi_status = cp->ssss_status;
7186 		cam_status = CAM_SCSI_STATUS_ERROR;
7187 	}
7188 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7189 		cam_status = CAM_SEL_TIMEOUT;
7190 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7191 		cam_status = CAM_UNEXP_BUSFREE;
7192 	else {						/* Extended error */
7193 		if (sym_verbose) {
7194 			PRINT_ADDR(cp);
7195 			printf ("COMMAND FAILED (%x %x %x).\n",
7196 				cp->host_status, cp->ssss_status,
7197 				cp->xerr_status);
7198 		}
7199 		csio->scsi_status = cp->ssss_status;
7200 		/*
7201 		 *  Set the most appropriate value for CAM status.
7202 		 */
7203 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7204 						 cp->xerr_status);
7205 	}
7206 
7207 	/*
7208 	 *  Dequeue all queued CCBs for that device
7209 	 *  not yet started by SCRIPTS.
7210 	 */
7211 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7212 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7213 
7214 	/*
7215 	 *  Restart the SCRIPTS processor.
7216 	 */
7217 	OUTL_DSP (SCRIPTA_BA (np, start));
7218 
7219 	/*
7220 	 *  Synchronize DMA map if needed.
7221 	 */
7222 	if (cp->dmamapped) {
7223 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7224 			(cp->dmamapped == SYM_DMA_READ ?
7225 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7226 	}
7227 	/*
7228 	 *  Add this one to the COMP queue.
7229 	 *  Complete all those commands with either error
7230 	 *  or requeue condition.
7231 	 */
7232 	sym_set_cam_status((union ccb *) csio, cam_status);
7233 	sym_remque(&cp->link_ccbq);
7234 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7235 	sym_flush_comp_queue(np, 0);
7236 }
7237 
7238 /*
7239  *  Complete execution of a successful SCSI command.
7240  *
7241  *  Only successful commands go to the DONE queue,
7242  *  since we need to have the SCRIPTS processor
7243  *  stopped on any error condition.
7244  *  The SCRIPTS processor is running while we are
7245  *  completing successful commands.
7246  */
7247 static void sym_complete_ok (hcb_p np, ccb_p cp)
7248 {
7249 	struct ccb_scsiio *csio;
7250 	tcb_p tp;
7251 	lcb_p lp;
7252 
7253 	SYM_LOCK_ASSERT(MA_OWNED);
7254 
7255 	/*
7256 	 *  Paranoid check. :)
7257 	 */
7258 	if (!cp || !cp->cam_ccb)
7259 		return;
7260 	assert (cp->host_status == HS_COMPLETE);
7261 
7262 	/*
7263 	 *  Get command, target and lun pointers.
7264 	 */
7265 	csio = &cp->cam_ccb->csio;
7266 	tp = &np->target[cp->target];
7267 	lp = sym_lp(tp, cp->lun);
7268 
7269 	/*
7270 	 *  Assume device discovered on first success.
7271 	 */
7272 	if (!lp)
7273 		sym_set_bit(tp->lun_map, cp->lun);
7274 
7275 	/*
7276 	 *  If all data have been transferred, given than no
7277 	 *  extended error did occur, there is no residual.
7278 	 */
7279 	csio->resid = 0;
7280 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7281 		csio->resid = sym_compute_residual(np, cp);
7282 
7283 	/*
7284 	 *  Wrong transfer residuals may be worse than just always
7285 	 *  returning zero. User can disable this feature from
7286 	 *  sym_conf.h. Residual support is enabled by default.
7287 	 */
7288 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7289 		csio->resid  = 0;
7290 
7291 	/*
7292 	 *  Synchronize DMA map if needed.
7293 	 */
7294 	if (cp->dmamapped) {
7295 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7296 			(cp->dmamapped == SYM_DMA_READ ?
7297 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7298 	}
7299 	/*
7300 	 *  Set status and complete the command.
7301 	 */
7302 	csio->scsi_status = cp->ssss_status;
7303 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7304 	sym_xpt_done(np, (union ccb *) csio, cp);
7305 	sym_free_ccb(np, cp);
7306 }
7307 
7308 /*
7309  *  Our callout handler
7310  */
7311 static void sym_callout(void *arg)
7312 {
7313 	union ccb *ccb = (union ccb *) arg;
7314 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7315 
7316 	/*
7317 	 *  Check that the CAM CCB is still queued.
7318 	 */
7319 	if (!np)
7320 		return;
7321 
7322 	SYM_LOCK();
7323 
7324 	switch(ccb->ccb_h.func_code) {
7325 	case XPT_SCSI_IO:
7326 		(void) sym_abort_scsiio(np, ccb, 1);
7327 		break;
7328 	default:
7329 		break;
7330 	}
7331 
7332 	SYM_UNLOCK();
7333 }
7334 
7335 /*
7336  *  Abort an SCSI IO.
7337  */
7338 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7339 {
7340 	ccb_p cp;
7341 	SYM_QUEHEAD *qp;
7342 
7343 	SYM_LOCK_ASSERT(MA_OWNED);
7344 
7345 	/*
7346 	 *  Look up our CCB control block.
7347 	 */
7348 	cp = NULL;
7349 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7350 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7351 		if (cp2->cam_ccb == ccb) {
7352 			cp = cp2;
7353 			break;
7354 		}
7355 	}
7356 	if (!cp || cp->host_status == HS_WAIT)
7357 		return -1;
7358 
7359 	/*
7360 	 *  If a previous abort didn't succeed in time,
7361 	 *  perform a BUS reset.
7362 	 */
7363 	if (cp->to_abort) {
7364 		sym_reset_scsi_bus(np, 1);
7365 		return 0;
7366 	}
7367 
7368 	/*
7369 	 *  Mark the CCB for abort and allow time for.
7370 	 */
7371 	cp->to_abort = timed_out ? 2 : 1;
7372 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7373 
7374 	/*
7375 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7376 	 */
7377 	np->istat_sem = SEM;
7378 	OUTB (nc_istat, SIGP|SEM);
7379 	return 0;
7380 }
7381 
7382 /*
7383  *  Reset a SCSI device (all LUNs of a target).
7384  */
7385 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7386 {
7387 	tcb_p tp;
7388 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7389 
7390 	SYM_LOCK_ASSERT(MA_OWNED);
7391 
7392 	if (ccb_h->target_id   == np->myaddr ||
7393 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7394 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7395 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7396 		return;
7397 	}
7398 
7399 	tp = &np->target[ccb_h->target_id];
7400 
7401 	tp->to_reset = 1;
7402 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7403 
7404 	np->istat_sem = SEM;
7405 	OUTB (nc_istat, SIGP|SEM);
7406 }
7407 
7408 /*
7409  *  SIM action entry point.
7410  */
7411 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7412 {
7413 	hcb_p	np;
7414 	tcb_p	tp;
7415 	lcb_p	lp;
7416 	ccb_p	cp;
7417 	int 	tmp;
7418 	u_char	idmsg, *msgptr;
7419 	u_int   msglen;
7420 	struct	ccb_scsiio *csio;
7421 	struct	ccb_hdr  *ccb_h;
7422 
7423 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7424 
7425 	/*
7426 	 *  Retrieve our controller data structure.
7427 	 */
7428 	np = (hcb_p) cam_sim_softc(sim);
7429 
7430 	SYM_LOCK_ASSERT(MA_OWNED);
7431 
7432 	/*
7433 	 *  The common case is SCSI IO.
7434 	 *  We deal with other ones elsewhere.
7435 	 */
7436 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7437 		sym_action2(sim, ccb);
7438 		return;
7439 	}
7440 	csio  = &ccb->csio;
7441 	ccb_h = &csio->ccb_h;
7442 
7443 	/*
7444 	 *  Work around races.
7445 	 */
7446 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7447 		xpt_done(ccb);
7448 		return;
7449 	}
7450 
7451 	/*
7452 	 *  Minimal checkings, so that we will not
7453 	 *  go outside our tables.
7454 	 */
7455 	if (ccb_h->target_id   == np->myaddr ||
7456 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7457 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7458 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7459 		return;
7460         }
7461 
7462 	/*
7463 	 *  Retrieve the target and lun descriptors.
7464 	 */
7465 	tp = &np->target[ccb_h->target_id];
7466 	lp = sym_lp(tp, ccb_h->target_lun);
7467 
7468 	/*
7469 	 *  Complete the 1st INQUIRY command with error
7470 	 *  condition if the device is flagged NOSCAN
7471 	 *  at BOOT in the NVRAM. This may speed up
7472 	 *  the boot and maintain coherency with BIOS
7473 	 *  device numbering. Clearing the flag allows
7474 	 *  user to rescan skipped devices later.
7475 	 *  We also return error for devices not flagged
7476 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7477 	 *  devices behave badly when asked for some non
7478 	 *  zero LUN. Btw, this is an absolute hack.:-)
7479 	 */
7480 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7481 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7482 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7483 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7484 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7485 		     ccb_h->target_lun != 0)) {
7486 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7487 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7488 			return;
7489 		}
7490 	}
7491 
7492 	/*
7493 	 *  Get a control block for this IO.
7494 	 */
7495 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7496 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7497 	if (!cp) {
7498 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7499 		return;
7500 	}
7501 
7502 	/*
7503 	 *  Keep track of the IO in our CCB.
7504 	 */
7505 	cp->cam_ccb = ccb;
7506 
7507 	/*
7508 	 *  Build the IDENTIFY message.
7509 	 */
7510 	idmsg = M_IDENTIFY | cp->lun;
7511 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7512 		idmsg |= 0x40;
7513 
7514 	msgptr = cp->scsi_smsg;
7515 	msglen = 0;
7516 	msgptr[msglen++] = idmsg;
7517 
7518 	/*
7519 	 *  Build the tag message if present.
7520 	 */
7521 	if (cp->tag != NO_TAG) {
7522 		u_char order = csio->tag_action;
7523 
7524 		switch(order) {
7525 		case M_ORDERED_TAG:
7526 			break;
7527 		case M_HEAD_TAG:
7528 			break;
7529 		default:
7530 			order = M_SIMPLE_TAG;
7531 		}
7532 		msgptr[msglen++] = order;
7533 
7534 		/*
7535 		 *  For less than 128 tags, actual tags are numbered
7536 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7537 		 *  with devices that have problems with #TAG 0 or too
7538 		 *  great #TAG numbers. For more tags (up to 256),
7539 		 *  we use directly our tag number.
7540 		 */
7541 #if SYM_CONF_MAX_TASK > (512/4)
7542 		msgptr[msglen++] = cp->tag;
7543 #else
7544 		msgptr[msglen++] = (cp->tag << 1) + 1;
7545 #endif
7546 	}
7547 
7548 	/*
7549 	 *  Build a negotiation message if needed.
7550 	 *  (nego_status is filled by sym_prepare_nego())
7551 	 */
7552 	cp->nego_status = 0;
7553 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7554 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7555 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7556 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7557 		if (!tp->nego_cp && lp)
7558 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7559 	}
7560 
7561 	/*
7562 	 *  Fill in our ccb
7563 	 */
7564 
7565 	/*
7566 	 *  Startqueue
7567 	 */
7568 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7569 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7570 
7571 	/*
7572 	 *  select
7573 	 */
7574 	cp->phys.select.sel_id		= cp->target;
7575 	cp->phys.select.sel_scntl3	= tp->head.wval;
7576 	cp->phys.select.sel_sxfer	= tp->head.sval;
7577 	cp->phys.select.sel_scntl4	= tp->head.uval;
7578 
7579 	/*
7580 	 *  message
7581 	 */
7582 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7583 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7584 
7585 	/*
7586 	 *  command
7587 	 */
7588 	if (sym_setup_cdb(np, csio, cp) < 0) {
7589 		sym_xpt_done(np, ccb, cp);
7590 		sym_free_ccb(np, cp);
7591 		return;
7592 	}
7593 
7594 	/*
7595 	 *  status
7596 	 */
7597 #if	0	/* Provision */
7598 	cp->actualquirks	= tp->quirks;
7599 #endif
7600 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7601 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7602 	cp->ssss_status		= S_ILLEGAL;
7603 	cp->xerr_status		= 0;
7604 	cp->host_flags		= 0;
7605 	cp->extra_bytes		= 0;
7606 
7607 	/*
7608 	 *  extreme data pointer.
7609 	 *  shall be positive, so -1 is lower than lowest.:)
7610 	 */
7611 	cp->ext_sg  = -1;
7612 	cp->ext_ofs = 0;
7613 
7614 	/*
7615 	 *  Build the data descriptor block
7616 	 *  and start the IO.
7617 	 */
7618 	sym_setup_data_and_start(np, csio, cp);
7619 }
7620 
7621 /*
7622  *  Setup buffers and pointers that address the CDB.
7623  *  I bet, physical CDBs will never be used on the planet,
7624  *  since they can be bounced without significant overhead.
7625  */
7626 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7627 {
7628 	struct ccb_hdr *ccb_h;
7629 	u32	cmd_ba;
7630 	int	cmd_len;
7631 
7632 	SYM_LOCK_ASSERT(MA_OWNED);
7633 
7634 	ccb_h = &csio->ccb_h;
7635 
7636 	/*
7637 	 *  CDB is 16 bytes max.
7638 	 */
7639 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7640 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7641 		return -1;
7642 	}
7643 	cmd_len = csio->cdb_len;
7644 
7645 	if (ccb_h->flags & CAM_CDB_POINTER) {
7646 		/* CDB is a pointer */
7647 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7648 			/* CDB pointer is virtual */
7649 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7650 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7651 		} else {
7652 			/* CDB pointer is physical */
7653 #if 0
7654 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7655 #else
7656 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7657 			return -1;
7658 #endif
7659 		}
7660 	} else {
7661 		/* CDB is in the CAM ccb (buffer) */
7662 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7663 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7664 	}
7665 
7666 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7667 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7668 
7669 	return 0;
7670 }
7671 
7672 /*
7673  *  Set up data pointers used by SCRIPTS.
7674  */
7675 static void __inline
7676 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7677 {
7678 	u32 lastp, goalp;
7679 
7680 	SYM_LOCK_ASSERT(MA_OWNED);
7681 
7682 	/*
7683 	 *  No segments means no data.
7684 	 */
7685 	if (!cp->segments)
7686 		dir = CAM_DIR_NONE;
7687 
7688 	/*
7689 	 *  Set the data pointer.
7690 	 */
7691 	switch(dir) {
7692 	case CAM_DIR_OUT:
7693 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7694 		lastp = goalp - 8 - (cp->segments * (2*4));
7695 		break;
7696 	case CAM_DIR_IN:
7697 		cp->host_flags |= HF_DATA_IN;
7698 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7699 		lastp = goalp - 8 - (cp->segments * (2*4));
7700 		break;
7701 	case CAM_DIR_NONE:
7702 	default:
7703 		lastp = goalp = SCRIPTB_BA (np, no_data);
7704 		break;
7705 	}
7706 
7707 	cp->phys.head.lastp = cpu_to_scr(lastp);
7708 	cp->phys.head.goalp = cpu_to_scr(goalp);
7709 	cp->phys.head.savep = cpu_to_scr(lastp);
7710 	cp->startp	    = cp->phys.head.savep;
7711 }
7712 
7713 /*
7714  *  Call back routine for the DMA map service.
7715  *  If bounce buffers are used (why ?), we may sleep and then
7716  *  be called there in another context.
7717  */
7718 static void
7719 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7720 {
7721 	ccb_p	cp;
7722 	hcb_p	np;
7723 	union	ccb *ccb;
7724 
7725 	cp  = (ccb_p) arg;
7726 	ccb = cp->cam_ccb;
7727 	np  = (hcb_p) cp->arg;
7728 
7729 	SYM_LOCK_ASSERT(MA_OWNED);
7730 
7731 	/*
7732 	 *  Deal with weird races.
7733 	 */
7734 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7735 		goto out_abort;
7736 
7737 	/*
7738 	 *  Deal with weird errors.
7739 	 */
7740 	if (error) {
7741 		cp->dmamapped = 0;
7742 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7743 		goto out_abort;
7744 	}
7745 
7746 	/*
7747 	 *  Build the data descriptor for the chip.
7748 	 */
7749 	if (nsegs) {
7750 		int retv;
7751 		/* 896 rev 1 requires to be careful about boundaries */
7752 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7753 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7754 		else
7755 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7756 		if (retv < 0) {
7757 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7758 			goto out_abort;
7759 		}
7760 	}
7761 
7762 	/*
7763 	 *  Synchronize the DMA map only if we have
7764 	 *  actually mapped the data.
7765 	 */
7766 	if (cp->dmamapped) {
7767 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7768 			(cp->dmamapped == SYM_DMA_READ ?
7769 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7770 	}
7771 
7772 	/*
7773 	 *  Set host status to busy state.
7774 	 *  May have been set back to HS_WAIT to avoid a race.
7775 	 */
7776 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7777 
7778 	/*
7779 	 *  Set data pointers.
7780 	 */
7781 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7782 
7783 	/*
7784 	 *  Enqueue this IO in our pending queue.
7785 	 */
7786 	sym_enqueue_cam_ccb(cp);
7787 
7788 	/*
7789 	 *  When `#ifed 1', the code below makes the driver
7790 	 *  panic on the first attempt to write to a SCSI device.
7791 	 *  It is the first test we want to do after a driver
7792 	 *  change that does not seem obviously safe. :)
7793 	 */
7794 #if 0
7795 	switch (cp->cdb_buf[0]) {
7796 	case 0x0A: case 0x2A: case 0xAA:
7797 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7798 		MDELAY(10000);
7799 		break;
7800 	default:
7801 		break;
7802 	}
7803 #endif
7804 	/*
7805 	 *  Activate this job.
7806 	 */
7807 	sym_put_start_queue(np, cp);
7808 	return;
7809 out_abort:
7810 	sym_xpt_done(np, ccb, cp);
7811 	sym_free_ccb(np, cp);
7812 }
7813 
7814 /*
7815  *  How complex it gets to deal with the data in CAM.
7816  *  The Bus Dma stuff makes things still more complex.
7817  */
7818 static void
7819 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7820 {
7821 	struct ccb_hdr *ccb_h;
7822 	int dir, retv;
7823 
7824 	SYM_LOCK_ASSERT(MA_OWNED);
7825 
7826 	ccb_h = &csio->ccb_h;
7827 
7828 	/*
7829 	 *  Now deal with the data.
7830 	 */
7831 	cp->data_len = csio->dxfer_len;
7832 	cp->arg      = np;
7833 
7834 	/*
7835 	 *  No direction means no data.
7836 	 */
7837 	dir = (ccb_h->flags & CAM_DIR_MASK);
7838 	if (dir == CAM_DIR_NONE) {
7839 		sym_execute_ccb(cp, NULL, 0, 0);
7840 		return;
7841 	}
7842 
7843 	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7844 	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7845 			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7846 	if (retv == EINPROGRESS) {
7847 		cp->host_status	= HS_WAIT;
7848 		xpt_freeze_simq(np->sim, 1);
7849 		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7850 	}
7851 }
7852 
7853 /*
7854  *  Move the scatter list to our data block.
7855  */
7856 static int
7857 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7858 			     bus_dma_segment_t *psegs, int nsegs)
7859 {
7860 	struct sym_tblmove *data;
7861 	bus_dma_segment_t *psegs2;
7862 
7863 	SYM_LOCK_ASSERT(MA_OWNED);
7864 
7865 	if (nsegs > SYM_CONF_MAX_SG)
7866 		return -1;
7867 
7868 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7869 	psegs2 = &psegs[nsegs-1];
7870 	cp->segments = nsegs;
7871 
7872 	while (1) {
7873 		data->addr = cpu_to_scr(psegs2->ds_addr);
7874 		data->size = cpu_to_scr(psegs2->ds_len);
7875 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7876 			printf ("%s scatter: paddr=%lx len=%ld\n",
7877 				sym_name(np), (long) psegs2->ds_addr,
7878 				(long) psegs2->ds_len);
7879 		}
7880 		if (psegs2 != psegs) {
7881 			--data;
7882 			--psegs2;
7883 			continue;
7884 		}
7885 		break;
7886 	}
7887 	return 0;
7888 }
7889 
7890 /*
7891  *  Scatter a SG list with physical addresses into bus addressable chunks.
7892  */
7893 static int
7894 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7895 {
7896 	u_long	ps, pe, pn;
7897 	u_long	k;
7898 	int s, t;
7899 
7900 	SYM_LOCK_ASSERT(MA_OWNED);
7901 
7902 	s  = SYM_CONF_MAX_SG - 1;
7903 	t  = nsegs - 1;
7904 	ps = psegs[t].ds_addr;
7905 	pe = ps + psegs[t].ds_len;
7906 
7907 	while (s >= 0) {
7908 		pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY);
7909 		if (pn <= ps)
7910 			pn = ps;
7911 		k = pe - pn;
7912 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7913 			printf ("%s scatter: paddr=%lx len=%ld\n",
7914 				sym_name(np), pn, k);
7915 		}
7916 		cp->phys.data[s].addr = cpu_to_scr(pn);
7917 		cp->phys.data[s].size = cpu_to_scr(k);
7918 		--s;
7919 		if (pn == ps) {
7920 			if (--t < 0)
7921 				break;
7922 			ps = psegs[t].ds_addr;
7923 			pe = ps + psegs[t].ds_len;
7924 		}
7925 		else
7926 			pe = pn;
7927 	}
7928 
7929 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7930 
7931 	return t >= 0 ? -1 : 0;
7932 }
7933 
7934 /*
7935  *  SIM action for non performance critical stuff.
7936  */
7937 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7938 {
7939 	union ccb *abort_ccb;
7940 	struct ccb_hdr *ccb_h;
7941 	struct ccb_pathinq *cpi;
7942 	struct ccb_trans_settings *cts;
7943 	struct sym_trans *tip;
7944 	hcb_p	np;
7945 	tcb_p	tp;
7946 	lcb_p	lp;
7947 	u_char dflags;
7948 
7949 	/*
7950 	 *  Retrieve our controller data structure.
7951 	 */
7952 	np = (hcb_p) cam_sim_softc(sim);
7953 
7954 	SYM_LOCK_ASSERT(MA_OWNED);
7955 
7956 	ccb_h = &ccb->ccb_h;
7957 
7958 	switch (ccb_h->func_code) {
7959 	case XPT_SET_TRAN_SETTINGS:
7960 		cts  = &ccb->cts;
7961 		tp = &np->target[ccb_h->target_id];
7962 
7963 		/*
7964 		 *  Update SPI transport settings in TARGET control block.
7965 		 *  Update SCSI device settings in LUN control block.
7966 		 */
7967 		lp = sym_lp(tp, ccb_h->target_lun);
7968 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7969 			sym_update_trans(np, &tp->tinfo.goal, cts);
7970 			if (lp)
7971 				sym_update_dflags(np, &lp->current_flags, cts);
7972 		}
7973 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7974 			sym_update_trans(np, &tp->tinfo.user, cts);
7975 			if (lp)
7976 				sym_update_dflags(np, &lp->user_flags, cts);
7977 		}
7978 
7979 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7980 		break;
7981 	case XPT_GET_TRAN_SETTINGS:
7982 		cts = &ccb->cts;
7983 		tp = &np->target[ccb_h->target_id];
7984 		lp = sym_lp(tp, ccb_h->target_lun);
7985 
7986 #define	cts__scsi (&cts->proto_specific.scsi)
7987 #define	cts__spi  (&cts->xport_specific.spi)
7988 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7989 			tip = &tp->tinfo.current;
7990 			dflags = lp ? lp->current_flags : 0;
7991 		}
7992 		else {
7993 			tip = &tp->tinfo.user;
7994 			dflags = lp ? lp->user_flags : tp->usrflags;
7995 		}
7996 
7997 		cts->protocol  = PROTO_SCSI;
7998 		cts->transport = XPORT_SPI;
7999 		cts->protocol_version  = tip->scsi_version;
8000 		cts->transport_version = tip->spi_version;
8001 
8002 		cts__spi->sync_period = tip->period;
8003 		cts__spi->sync_offset = tip->offset;
8004 		cts__spi->bus_width   = tip->width;
8005 		cts__spi->ppr_options = tip->options;
8006 
8007 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8008 		                | CTS_SPI_VALID_SYNC_OFFSET
8009 		                | CTS_SPI_VALID_BUS_WIDTH
8010 		                | CTS_SPI_VALID_PPR_OPTIONS;
8011 
8012 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8013 		if (dflags & SYM_DISC_ENABLED)
8014 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8015 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8016 
8017 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8018 		if (dflags & SYM_TAGS_ENABLED)
8019 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8020 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8021 #undef	cts__spi
8022 #undef	cts__scsi
8023 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8024 		break;
8025 	case XPT_CALC_GEOMETRY:
8026 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8027 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8028 		break;
8029 	case XPT_PATH_INQ:
8030 		cpi = &ccb->cpi;
8031 		cpi->version_num = 1;
8032 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8033 		if ((np->features & FE_WIDE) != 0)
8034 			cpi->hba_inquiry |= PI_WIDE_16;
8035 		cpi->target_sprt = 0;
8036 		cpi->hba_misc = PIM_UNMAPPED;
8037 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8038 			cpi->hba_misc |= PIM_SCANHILO;
8039 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8040 			cpi->hba_misc |= PIM_NOBUSRESET;
8041 		cpi->hba_eng_cnt = 0;
8042 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8043 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8044 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8045 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8046 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8047 		cpi->bus_id = cam_sim_bus(sim);
8048 		cpi->initiator_id = np->myaddr;
8049 		cpi->base_transfer_speed = 3300;
8050 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8051 		strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8052 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8053 		cpi->unit_number = cam_sim_unit(sim);
8054 
8055 		cpi->protocol = PROTO_SCSI;
8056 		cpi->protocol_version = SCSI_REV_2;
8057 		cpi->transport = XPORT_SPI;
8058 		cpi->transport_version = 2;
8059 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8060 		if (np->features & FE_ULTRA3) {
8061 			cpi->transport_version = 3;
8062 			cpi->xport_specific.spi.ppr_options =
8063 			    SID_SPI_CLOCK_DT_ST;
8064 		}
8065 		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8066 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8067 		break;
8068 	case XPT_ABORT:
8069 		abort_ccb = ccb->cab.abort_ccb;
8070 		switch(abort_ccb->ccb_h.func_code) {
8071 		case XPT_SCSI_IO:
8072 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8073 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8074 				break;
8075 			}
8076 		default:
8077 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8078 			break;
8079 		}
8080 		break;
8081 	case XPT_RESET_DEV:
8082 		sym_reset_dev(np, ccb);
8083 		break;
8084 	case XPT_RESET_BUS:
8085 		sym_reset_scsi_bus(np, 0);
8086 		if (sym_verbose) {
8087 			xpt_print_path(np->path);
8088 			printf("SCSI BUS reset delivered.\n");
8089 		}
8090 		sym_init (np, 1);
8091 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8092 		break;
8093 	case XPT_TERM_IO:
8094 	default:
8095 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8096 		break;
8097 	}
8098 }
8099 
8100 /*
8101  *  Asynchronous notification handler.
8102  */
8103 static void
8104 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8105 {
8106 	hcb_p np;
8107 	struct cam_sim *sim;
8108 	u_int tn;
8109 	tcb_p tp;
8110 
8111 	sim = (struct cam_sim *) cb_arg;
8112 	np  = (hcb_p) cam_sim_softc(sim);
8113 
8114 	SYM_LOCK_ASSERT(MA_OWNED);
8115 
8116 	switch (code) {
8117 	case AC_LOST_DEVICE:
8118 		tn = xpt_path_target_id(path);
8119 		if (tn >= SYM_CONF_MAX_TARGET)
8120 			break;
8121 
8122 		tp = &np->target[tn];
8123 
8124 		tp->to_reset  = 0;
8125 		tp->head.sval = 0;
8126 		tp->head.wval = np->rv_scntl3;
8127 		tp->head.uval = 0;
8128 
8129 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8130 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8131 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8132 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8133 
8134 		break;
8135 	default:
8136 		break;
8137 	}
8138 }
8139 
8140 /*
8141  *  Update transfer settings of a target.
8142  */
8143 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8144     struct ccb_trans_settings *cts)
8145 {
8146 
8147 	SYM_LOCK_ASSERT(MA_OWNED);
8148 
8149 	/*
8150 	 *  Update the infos.
8151 	 */
8152 #define cts__spi (&cts->xport_specific.spi)
8153 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8154 		tip->width = cts__spi->bus_width;
8155 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8156 		tip->offset = cts__spi->sync_offset;
8157 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8158 		tip->period = cts__spi->sync_period;
8159 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8160 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8161 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8162 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8163 		tip->scsi_version = cts->protocol_version;
8164 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8165 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8166 		tip->spi_version = cts->transport_version;
8167 #undef cts__spi
8168 	/*
8169 	 *  Scale against driver configuration limits.
8170 	 */
8171 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8172 	if (tip->period && tip->offset) {
8173 		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8174 		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8175 	} else {
8176 		tip->offset = 0;
8177 		tip->period = 0;
8178 	}
8179 
8180 	/*
8181 	 *  Scale against actual controller BUS width.
8182 	 */
8183 	if (tip->width > np->maxwide)
8184 		tip->width  = np->maxwide;
8185 
8186 	/*
8187 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8188 	 */
8189 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8190 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8191 		tip->options &= ~PPR_OPT_DT;
8192 	}
8193 
8194 	/*
8195 	 *  Scale period factor and offset against controller limits.
8196 	 */
8197 	if (tip->offset && tip->period) {
8198 		if (tip->options & PPR_OPT_DT) {
8199 			if (tip->period < np->minsync_dt)
8200 				tip->period = np->minsync_dt;
8201 			if (tip->period > np->maxsync_dt)
8202 				tip->period = np->maxsync_dt;
8203 			if (tip->offset > np->maxoffs_dt)
8204 				tip->offset = np->maxoffs_dt;
8205 		}
8206 		else {
8207 			if (tip->period < np->minsync)
8208 				tip->period = np->minsync;
8209 			if (tip->period > np->maxsync)
8210 				tip->period = np->maxsync;
8211 			if (tip->offset > np->maxoffs)
8212 				tip->offset = np->maxoffs;
8213 		}
8214 	}
8215 }
8216 
8217 /*
8218  *  Update flags for a device (logical unit).
8219  */
8220 static void
8221 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8222 {
8223 
8224 	SYM_LOCK_ASSERT(MA_OWNED);
8225 
8226 #define	cts__scsi (&cts->proto_specific.scsi)
8227 #define	cts__spi  (&cts->xport_specific.spi)
8228 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8229 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8230 			*flags |= SYM_DISC_ENABLED;
8231 		else
8232 			*flags &= ~SYM_DISC_ENABLED;
8233 	}
8234 
8235 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8236 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8237 			*flags |= SYM_TAGS_ENABLED;
8238 		else
8239 			*flags &= ~SYM_TAGS_ENABLED;
8240 	}
8241 #undef	cts__spi
8242 #undef	cts__scsi
8243 }
8244 
8245 /*============= DRIVER INITIALISATION ==================*/
8246 
8247 static device_method_t sym_pci_methods[] = {
8248 	DEVMETHOD(device_probe,	 sym_pci_probe),
8249 	DEVMETHOD(device_attach, sym_pci_attach),
8250 	DEVMETHOD_END
8251 };
8252 
8253 static driver_t sym_pci_driver = {
8254 	"sym",
8255 	sym_pci_methods,
8256 	1	/* no softc */
8257 };
8258 
8259 static devclass_t sym_devclass;
8260 
8261 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL);
8262 MODULE_DEPEND(sym, cam, 1, 1, 1);
8263 MODULE_DEPEND(sym, pci, 1, 1, 1);
8264 
8265 static const struct sym_pci_chip sym_pci_dev_table[] = {
8266  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8267  FE_ERL}
8268  ,
8269 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8270  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8271  FE_BOF}
8272  ,
8273 #else
8274  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8275  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8276  ,
8277 #endif
8278  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8279  FE_BOF|FE_ERL}
8280  ,
8281  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8282  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8283  ,
8284  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8285  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8286  ,
8287  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8288  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8289  ,
8290  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8291  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8292  FE_RAM|FE_DIFF}
8293  ,
8294  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8295  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8296  FE_RAM|FE_DIFF}
8297  ,
8298  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8299  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8300  FE_RAM|FE_DIFF}
8301  ,
8302  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8303  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8304  FE_RAM|FE_DIFF}
8305  ,
8306 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8307  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8308  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8309  FE_RAM|FE_LCKFRQ}
8310  ,
8311 #else
8312  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8313  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8314  FE_RAM|FE_LCKFRQ}
8315  ,
8316 #endif
8317  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8318  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8319  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8320  ,
8321  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8322  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8323  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8324  ,
8325  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8326  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8327  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8328  FE_C10}
8329  ,
8330  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8331  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8332  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8333  FE_C10|FE_U3EN}
8334  ,
8335  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8336  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8337  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8338  FE_C10|FE_U3EN}
8339  ,
8340  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8341  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8342  FE_RAM|FE_IO256|FE_LEDC}
8343 };
8344 
8345 /*
8346  *  Look up the chip table.
8347  *
8348  *  Return a pointer to the chip entry if found,
8349  *  zero otherwise.
8350  */
8351 static const struct sym_pci_chip *
8352 sym_find_pci_chip(device_t dev)
8353 {
8354 	const struct	sym_pci_chip *chip;
8355 	int	i;
8356 	u_short	device_id;
8357 	u_char	revision;
8358 
8359 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8360 		return NULL;
8361 
8362 	device_id = pci_get_device(dev);
8363 	revision  = pci_get_revid(dev);
8364 
8365 	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8366 		chip = &sym_pci_dev_table[i];
8367 		if (device_id != chip->device_id)
8368 			continue;
8369 		if (revision > chip->revision_id)
8370 			continue;
8371 		return chip;
8372 	}
8373 
8374 	return NULL;
8375 }
8376 
8377 /*
8378  *  Tell upper layer if the chip is supported.
8379  */
8380 static int
8381 sym_pci_probe(device_t dev)
8382 {
8383 	const struct	sym_pci_chip *chip;
8384 
8385 	chip = sym_find_pci_chip(dev);
8386 	if (chip && sym_find_firmware(chip)) {
8387 		device_set_desc(dev, chip->name);
8388 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8389 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8390 	}
8391 	return ENXIO;
8392 }
8393 
8394 /*
8395  *  Attach a sym53c8xx device.
8396  */
8397 static int
8398 sym_pci_attach(device_t dev)
8399 {
8400 	const struct	sym_pci_chip *chip;
8401 	u_short	command;
8402 	u_char	cachelnsz;
8403 	struct	sym_hcb *np = NULL;
8404 	struct	sym_nvram nvram;
8405 	const struct	sym_fw *fw = NULL;
8406 	int 	i;
8407 	bus_dma_tag_t	bus_dmat;
8408 
8409 	bus_dmat = bus_get_dma_tag(dev);
8410 
8411 	/*
8412 	 *  Only probed devices should be attached.
8413 	 *  We just enjoy being paranoid. :)
8414 	 */
8415 	chip = sym_find_pci_chip(dev);
8416 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8417 		return (ENXIO);
8418 
8419 	/*
8420 	 *  Allocate immediately the host control block,
8421 	 *  since we are only expecting to succeed. :)
8422 	 *  We keep track in the HCB of all the resources that
8423 	 *  are to be released on error.
8424 	 */
8425 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8426 	if (np)
8427 		np->bus_dmat = bus_dmat;
8428 	else
8429 		return (ENXIO);
8430 	device_set_softc(dev, np);
8431 
8432 	SYM_LOCK_INIT();
8433 
8434 	/*
8435 	 *  Copy some useful infos to the HCB.
8436 	 */
8437 	np->hcb_ba	 = vtobus(np);
8438 	np->verbose	 = bootverbose;
8439 	np->device	 = dev;
8440 	np->device_id	 = pci_get_device(dev);
8441 	np->revision_id  = pci_get_revid(dev);
8442 	np->features	 = chip->features;
8443 	np->clock_divn	 = chip->nr_divisor;
8444 	np->maxoffs	 = chip->offset_max;
8445 	np->maxburst	 = chip->burst_max;
8446 	np->scripta_sz	 = fw->a_size;
8447 	np->scriptb_sz	 = fw->b_size;
8448 	np->fw_setup	 = fw->setup;
8449 	np->fw_patch	 = fw->patch;
8450 	np->fw_name	 = fw->name;
8451 
8452 #ifdef __amd64__
8453 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8454 			"TARGET");
8455 	if (!np->target)
8456 		goto attach_failed;
8457 #endif
8458 
8459 	/*
8460 	 *  Initialize the CCB free and busy queues.
8461 	 */
8462 	sym_que_init(&np->free_ccbq);
8463 	sym_que_init(&np->busy_ccbq);
8464 	sym_que_init(&np->comp_ccbq);
8465 	sym_que_init(&np->cam_ccbq);
8466 
8467 	/*
8468 	 *  Allocate a tag for the DMA of user data.
8469 	 */
8470 	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8471 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8472 	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8473 	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8474 		device_printf(dev, "failed to create DMA tag.\n");
8475 		goto attach_failed;
8476 	}
8477 
8478 	/*
8479 	 *  Read and apply some fix-ups to the PCI COMMAND
8480 	 *  register. We want the chip to be enabled for:
8481 	 *  - BUS mastering
8482 	 *  - PCI parity checking (reporting would also be fine)
8483 	 *  - Write And Invalidate.
8484 	 */
8485 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8486 	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8487 	    PCIM_CMD_MWRICEN;
8488 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8489 
8490 	/*
8491 	 *  Let the device know about the cache line size,
8492 	 *  if it doesn't yet.
8493 	 */
8494 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8495 	if (!cachelnsz) {
8496 		cachelnsz = 8;
8497 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8498 	}
8499 
8500 	/*
8501 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8502 	 */
8503 	i = SYM_PCI_MMIO;
8504 	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8505 	    RF_ACTIVE);
8506 	if (!np->mmio_res) {
8507 		device_printf(dev, "failed to allocate MMIO resources\n");
8508 		goto attach_failed;
8509 	}
8510 	np->mmio_ba = rman_get_start(np->mmio_res);
8511 
8512 	/*
8513 	 *  Allocate the IRQ.
8514 	 */
8515 	i = 0;
8516 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8517 					     RF_ACTIVE | RF_SHAREABLE);
8518 	if (!np->irq_res) {
8519 		device_printf(dev, "failed to allocate IRQ resource\n");
8520 		goto attach_failed;
8521 	}
8522 
8523 #ifdef	SYM_CONF_IOMAPPED
8524 	/*
8525 	 *  User want us to use normal IO with PCI.
8526 	 *  Alloc/get/map/retrieve everything that deals with IO.
8527 	 */
8528 	i = SYM_PCI_IO;
8529 	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8530 	if (!np->io_res) {
8531 		device_printf(dev, "failed to allocate IO resources\n");
8532 		goto attach_failed;
8533 	}
8534 
8535 #endif /* SYM_CONF_IOMAPPED */
8536 
8537 	/*
8538 	 *  If the chip has RAM.
8539 	 *  Alloc/get/map/retrieve the corresponding resources.
8540 	 */
8541 	if (np->features & (FE_RAM|FE_RAM8K)) {
8542 		int regs_id = SYM_PCI_RAM;
8543 		if (np->features & FE_64BIT)
8544 			regs_id = SYM_PCI_RAM64;
8545 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8546 						     &regs_id, RF_ACTIVE);
8547 		if (!np->ram_res) {
8548 			device_printf(dev,"failed to allocate RAM resources\n");
8549 			goto attach_failed;
8550 		}
8551 		np->ram_id  = regs_id;
8552 		np->ram_ba = rman_get_start(np->ram_res);
8553 	}
8554 
8555 	/*
8556 	 *  Save setting of some IO registers, so we will
8557 	 *  be able to probe specific implementations.
8558 	 */
8559 	sym_save_initial_setting (np);
8560 
8561 	/*
8562 	 *  Reset the chip now, since it has been reported
8563 	 *  that SCSI clock calibration may not work properly
8564 	 *  if the chip is currently active.
8565 	 */
8566 	sym_chip_reset (np);
8567 
8568 	/*
8569 	 *  Try to read the user set-up.
8570 	 */
8571 	(void) sym_read_nvram(np, &nvram);
8572 
8573 	/*
8574 	 *  Prepare controller and devices settings, according
8575 	 *  to chip features, user set-up and driver set-up.
8576 	 */
8577 	(void) sym_prepare_setting(np, &nvram);
8578 
8579 	/*
8580 	 *  Check the PCI clock frequency.
8581 	 *  Must be performed after prepare_setting since it destroys
8582 	 *  STEST1 that is used to probe for the clock doubler.
8583 	 */
8584 	i = sym_getpciclock(np);
8585 	if (i > 37000)
8586 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8587 
8588 	/*
8589 	 *  Allocate the start queue.
8590 	 */
8591 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8592 	if (!np->squeue)
8593 		goto attach_failed;
8594 	np->squeue_ba = vtobus(np->squeue);
8595 
8596 	/*
8597 	 *  Allocate the done queue.
8598 	 */
8599 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8600 	if (!np->dqueue)
8601 		goto attach_failed;
8602 	np->dqueue_ba = vtobus(np->dqueue);
8603 
8604 	/*
8605 	 *  Allocate the target bus address array.
8606 	 */
8607 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8608 	if (!np->targtbl)
8609 		goto attach_failed;
8610 	np->targtbl_ba = vtobus(np->targtbl);
8611 
8612 	/*
8613 	 *  Allocate SCRIPTS areas.
8614 	 */
8615 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8616 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8617 	if (!np->scripta0 || !np->scriptb0)
8618 		goto attach_failed;
8619 
8620 	/*
8621 	 *  Allocate the CCBs. We need at least ONE.
8622 	 */
8623 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8624 		;
8625 	if (i < 1)
8626 		goto attach_failed;
8627 
8628 	/*
8629 	 *  Calculate BUS addresses where we are going
8630 	 *  to load the SCRIPTS.
8631 	 */
8632 	np->scripta_ba	= vtobus(np->scripta0);
8633 	np->scriptb_ba	= vtobus(np->scriptb0);
8634 	np->scriptb0_ba	= np->scriptb_ba;
8635 
8636 	if (np->ram_ba) {
8637 		np->scripta_ba	= np->ram_ba;
8638 		if (np->features & FE_RAM8K) {
8639 			np->ram_ws = 8192;
8640 			np->scriptb_ba = np->scripta_ba + 4096;
8641 #ifdef __LP64__
8642 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8643 #endif
8644 		}
8645 		else
8646 			np->ram_ws = 4096;
8647 	}
8648 
8649 	/*
8650 	 *  Copy scripts to controller instance.
8651 	 */
8652 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8653 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8654 
8655 	/*
8656 	 *  Setup variable parts in scripts and compute
8657 	 *  scripts bus addresses used from the C code.
8658 	 */
8659 	np->fw_setup(np, fw);
8660 
8661 	/*
8662 	 *  Bind SCRIPTS with physical addresses usable by the
8663 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8664 	 */
8665 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8666 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8667 
8668 #ifdef SYM_CONF_IARB_SUPPORT
8669 	/*
8670 	 *    If user wants IARB to be set when we win arbitration
8671 	 *    and have other jobs, compute the max number of consecutive
8672 	 *    settings of IARB hints before we leave devices a chance to
8673 	 *    arbitrate for reselection.
8674 	 */
8675 #ifdef	SYM_SETUP_IARB_MAX
8676 	np->iarb_max = SYM_SETUP_IARB_MAX;
8677 #else
8678 	np->iarb_max = 4;
8679 #endif
8680 #endif
8681 
8682 	/*
8683 	 *  Prepare the idle and invalid task actions.
8684 	 */
8685 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8686 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8687 	np->idletask_ba		= vtobus(&np->idletask);
8688 
8689 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8690 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8691 	np->notask_ba		= vtobus(&np->notask);
8692 
8693 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8694 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8695 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8696 
8697 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8698 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8699 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8700 
8701 	/*
8702 	 *  Allocate and prepare the lun JUMP table that is used
8703 	 *  for a target prior the probing of devices (bad lun table).
8704 	 *  A private table will be allocated for the target on the
8705 	 *  first INQUIRY response received.
8706 	 */
8707 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8708 	if (!np->badluntbl)
8709 		goto attach_failed;
8710 
8711 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8712 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8713 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8714 
8715 	/*
8716 	 *  Prepare the bus address array that contains the bus
8717 	 *  address of each target control block.
8718 	 *  For now, assume all logical units are wrong. :)
8719 	 */
8720 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8721 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8722 		np->target[i].head.luntbl_sa =
8723 				cpu_to_scr(vtobus(np->badluntbl));
8724 		np->target[i].head.lun0_sa =
8725 				cpu_to_scr(vtobus(&np->badlun_sa));
8726 	}
8727 
8728 	/*
8729 	 *  Now check the cache handling of the pci chipset.
8730 	 */
8731 	if (sym_snooptest (np)) {
8732 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8733 		goto attach_failed;
8734 	}
8735 
8736 	/*
8737 	 *  Now deal with CAM.
8738 	 *  Hopefully, we will succeed with that one.:)
8739 	 */
8740 	if (!sym_cam_attach(np))
8741 		goto attach_failed;
8742 
8743 	/*
8744 	 *  Sigh! we are done.
8745 	 */
8746 	return 0;
8747 
8748 	/*
8749 	 *  We have failed.
8750 	 *  We will try to free all the resources we have
8751 	 *  allocated, but if we are a boot device, this
8752 	 *  will not help that much.;)
8753 	 */
8754 attach_failed:
8755 	if (np)
8756 		sym_pci_free(np);
8757 	return ENXIO;
8758 }
8759 
8760 /*
8761  *  Free everything that have been allocated for this device.
8762  */
8763 static void sym_pci_free(hcb_p np)
8764 {
8765 	SYM_QUEHEAD *qp;
8766 	ccb_p cp;
8767 	tcb_p tp;
8768 	lcb_p lp;
8769 	int target, lun;
8770 
8771 	/*
8772 	 *  First free CAM resources.
8773 	 */
8774 	sym_cam_free(np);
8775 
8776 	/*
8777 	 *  Now every should be quiet for us to
8778 	 *  free other resources.
8779 	 */
8780 	if (np->ram_res)
8781 		bus_release_resource(np->device, SYS_RES_MEMORY,
8782 				     np->ram_id, np->ram_res);
8783 	if (np->mmio_res)
8784 		bus_release_resource(np->device, SYS_RES_MEMORY,
8785 				     SYM_PCI_MMIO, np->mmio_res);
8786 	if (np->io_res)
8787 		bus_release_resource(np->device, SYS_RES_IOPORT,
8788 				     SYM_PCI_IO, np->io_res);
8789 	if (np->irq_res)
8790 		bus_release_resource(np->device, SYS_RES_IRQ,
8791 				     0, np->irq_res);
8792 
8793 	if (np->scriptb0)
8794 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8795 	if (np->scripta0)
8796 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8797 	if (np->squeue)
8798 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8799 	if (np->dqueue)
8800 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8801 
8802 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8803 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8804 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8805 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8806 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8807 	}
8808 
8809 	if (np->badluntbl)
8810 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8811 
8812 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8813 		tp = &np->target[target];
8814 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8815 			lp = sym_lp(tp, lun);
8816 			if (!lp)
8817 				continue;
8818 			if (lp->itlq_tbl)
8819 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8820 				       "ITLQ_TBL");
8821 			if (lp->cb_tags)
8822 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8823 				       "CB_TAGS");
8824 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8825 		}
8826 #if SYM_CONF_MAX_LUN > 1
8827 		if (tp->lunmp)
8828 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8829 			       "LUNMP");
8830 #endif
8831 	}
8832 #ifdef __amd64__
8833 	if (np->target)
8834 		sym_mfree_dma(np->target,
8835 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8836 #endif
8837 	if (np->targtbl)
8838 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8839 	if (np->data_dmat)
8840 		bus_dma_tag_destroy(np->data_dmat);
8841 	if (SYM_LOCK_INITIALIZED() != 0)
8842 		SYM_LOCK_DESTROY();
8843 	device_set_softc(np->device, NULL);
8844 	sym_mfree_dma(np, sizeof(*np), "HCB");
8845 }
8846 
8847 /*
8848  *  Allocate CAM resources and register a bus to CAM.
8849  */
8850 static int sym_cam_attach(hcb_p np)
8851 {
8852 	struct cam_devq *devq = NULL;
8853 	struct cam_sim *sim = NULL;
8854 	struct cam_path *path = NULL;
8855 	int err;
8856 
8857 	/*
8858 	 *  Establish our interrupt handler.
8859 	 */
8860 	err = bus_setup_intr(np->device, np->irq_res,
8861 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8862 			NULL, sym_intr, np, &np->intr);
8863 	if (err) {
8864 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8865 			      err);
8866 		goto fail;
8867 	}
8868 
8869 	/*
8870 	 *  Create the device queue for our sym SIM.
8871 	 */
8872 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8873 	if (!devq)
8874 		goto fail;
8875 
8876 	/*
8877 	 *  Construct our SIM entry.
8878 	 */
8879 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8880 			device_get_unit(np->device),
8881 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8882 	if (!sim)
8883 		goto fail;
8884 
8885 	SYM_LOCK();
8886 
8887 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8888 		goto fail;
8889 	np->sim = sim;
8890 	sim = NULL;
8891 
8892 	if (xpt_create_path(&path, NULL,
8893 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8894 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8895 		goto fail;
8896 	}
8897 	np->path = path;
8898 
8899 	/*
8900 	 *  Establish our async notification handler.
8901 	 */
8902 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) !=
8903 	    CAM_REQ_CMP)
8904 		goto fail;
8905 
8906 	/*
8907 	 *  Start the chip now, without resetting the BUS, since
8908 	 *  it seems that this must stay under control of CAM.
8909 	 *  With LVD/SE capable chips and BUS in SE mode, we may
8910 	 *  get a spurious SMBC interrupt.
8911 	 */
8912 	sym_init (np, 0);
8913 
8914 	SYM_UNLOCK();
8915 
8916 	return 1;
8917 fail:
8918 	if (sim)
8919 		cam_sim_free(sim, FALSE);
8920 	if (devq)
8921 		cam_simq_free(devq);
8922 
8923 	SYM_UNLOCK();
8924 
8925 	sym_cam_free(np);
8926 
8927 	return 0;
8928 }
8929 
8930 /*
8931  *  Free everything that deals with CAM.
8932  */
8933 static void sym_cam_free(hcb_p np)
8934 {
8935 
8936 	SYM_LOCK_ASSERT(MA_NOTOWNED);
8937 
8938 	if (np->intr) {
8939 		bus_teardown_intr(np->device, np->irq_res, np->intr);
8940 		np->intr = NULL;
8941 	}
8942 
8943 	SYM_LOCK();
8944 
8945 	if (np->sim) {
8946 		xpt_bus_deregister(cam_sim_path(np->sim));
8947 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8948 		np->sim = NULL;
8949 	}
8950 	if (np->path) {
8951 		xpt_free_path(np->path);
8952 		np->path = NULL;
8953 	}
8954 
8955 	SYM_UNLOCK();
8956 }
8957 
8958 /*============ OPTIONNAL NVRAM SUPPORT =================*/
8959 
8960 /*
8961  *  Get host setup from NVRAM.
8962  */
8963 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8964 {
8965 #ifdef SYM_CONF_NVRAM_SUPPORT
8966 	/*
8967 	 *  Get parity checking, host ID, verbose mode
8968 	 *  and miscellaneous host flags from NVRAM.
8969 	 */
8970 	switch(nvram->type) {
8971 	case SYM_SYMBIOS_NVRAM:
8972 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8973 			np->rv_scntl0  &= ~0x0a;
8974 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8975 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8976 			np->verbose += 1;
8977 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8978 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8979 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8980 			np->usrflags |= SYM_AVOID_BUS_RESET;
8981 		break;
8982 	case SYM_TEKRAM_NVRAM:
8983 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8984 		break;
8985 	default:
8986 		break;
8987 	}
8988 #endif
8989 }
8990 
8991 /*
8992  *  Get target setup from NVRAM.
8993  */
8994 #ifdef SYM_CONF_NVRAM_SUPPORT
8995 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8996 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8997 #endif
8998 
8999 static void
9000 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9001 {
9002 #ifdef SYM_CONF_NVRAM_SUPPORT
9003 	switch(nvp->type) {
9004 	case SYM_SYMBIOS_NVRAM:
9005 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9006 		break;
9007 	case SYM_TEKRAM_NVRAM:
9008 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9009 		break;
9010 	default:
9011 		break;
9012 	}
9013 #endif
9014 }
9015 
9016 #ifdef SYM_CONF_NVRAM_SUPPORT
9017 /*
9018  *  Get target set-up from Symbios format NVRAM.
9019  */
9020 static void
9021 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9022 {
9023 	tcb_p tp = &np->target[target];
9024 	Symbios_target *tn = &nvram->target[target];
9025 
9026 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9027 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9028 	tp->usrtags =
9029 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9030 
9031 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9032 		tp->usrflags &= ~SYM_DISC_ENABLED;
9033 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9034 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9035 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9036 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9037 }
9038 
9039 /*
9040  *  Get target set-up from Tekram format NVRAM.
9041  */
9042 static void
9043 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9044 {
9045 	tcb_p tp = &np->target[target];
9046 	struct Tekram_target *tn = &nvram->target[target];
9047 	int i;
9048 
9049 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9050 		i = tn->sync_index & 0xf;
9051 		tp->tinfo.user.period = Tekram_sync[i];
9052 	}
9053 
9054 	tp->tinfo.user.width =
9055 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9056 
9057 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9058 		tp->usrtags = 2 << nvram->max_tags_index;
9059 	}
9060 
9061 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9062 		tp->usrflags |= SYM_DISC_ENABLED;
9063 
9064 	/* If any device does not support parity, we will not use this option */
9065 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9066 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9067 }
9068 
9069 #ifdef	SYM_CONF_DEBUG_NVRAM
9070 /*
9071  *  Dump Symbios format NVRAM for debugging purpose.
9072  */
9073 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9074 {
9075 	int i;
9076 
9077 	/* display Symbios nvram host data */
9078 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9079 		sym_name(np), nvram->host_id & 0x0f,
9080 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9081 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9082 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9083 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9084 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9085 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9086 
9087 	/* display Symbios nvram drive data */
9088 	for (i = 0 ; i < 15 ; i++) {
9089 		struct Symbios_target *tn = &nvram->target[i];
9090 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9091 		sym_name(np), i,
9092 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9093 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9094 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9095 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9096 		tn->bus_width,
9097 		tn->sync_period / 4,
9098 		tn->timeout);
9099 	}
9100 }
9101 
9102 /*
9103  *  Dump TEKRAM format NVRAM for debugging purpose.
9104  */
9105 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9106 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9107 {
9108 	int i, tags, boot_delay;
9109 	char *rem;
9110 
9111 	/* display Tekram nvram host data */
9112 	tags = 2 << nvram->max_tags_index;
9113 	boot_delay = 0;
9114 	if (nvram->boot_delay_index < 6)
9115 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9116 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9117 	default:
9118 	case 0:	rem = "";			break;
9119 	case 1: rem = " REMOVABLE=boot device";	break;
9120 	case 2: rem = " REMOVABLE=all";		break;
9121 	}
9122 
9123 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9124 		sym_name(np), nvram->host_id & 0x0f,
9125 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9126 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9127 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9128 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9129 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9130 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9131 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9132 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9133 		rem, boot_delay, tags);
9134 
9135 	/* display Tekram nvram drive data */
9136 	for (i = 0; i <= 15; i++) {
9137 		int sync, j;
9138 		struct Tekram_target *tn = &nvram->target[i];
9139 		j = tn->sync_index & 0xf;
9140 		sync = Tekram_sync[j];
9141 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9142 		sym_name(np), i,
9143 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9144 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9145 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9146 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9147 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9148 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9149 		sync);
9150 	}
9151 }
9152 #endif	/* SYM_CONF_DEBUG_NVRAM */
9153 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9154 
9155 /*
9156  *  Try reading Symbios or Tekram NVRAM
9157  */
9158 #ifdef SYM_CONF_NVRAM_SUPPORT
9159 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9160 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9161 #endif
9162 
9163 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9164 {
9165 #ifdef SYM_CONF_NVRAM_SUPPORT
9166 	/*
9167 	 *  Try to read SYMBIOS nvram.
9168 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9169 	 */
9170 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9171 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9172 		nvp->type = SYM_SYMBIOS_NVRAM;
9173 #ifdef SYM_CONF_DEBUG_NVRAM
9174 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9175 #endif
9176 	}
9177 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9178 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9179 		nvp->type = SYM_TEKRAM_NVRAM;
9180 #ifdef SYM_CONF_DEBUG_NVRAM
9181 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9182 #endif
9183 	}
9184 	else
9185 		nvp->type = 0;
9186 #else
9187 	nvp->type = 0;
9188 #endif
9189 	return nvp->type;
9190 }
9191 
9192 #ifdef SYM_CONF_NVRAM_SUPPORT
9193 /*
9194  *  24C16 EEPROM reading.
9195  *
9196  *  GPOI0 - data in/data out
9197  *  GPIO1 - clock
9198  *  Symbios NVRAM wiring now also used by Tekram.
9199  */
9200 
9201 #define SET_BIT 0
9202 #define CLR_BIT 1
9203 #define SET_CLK 2
9204 #define CLR_CLK 3
9205 
9206 /*
9207  *  Set/clear data/clock bit in GPIO0
9208  */
9209 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9210 			  int bit_mode)
9211 {
9212 	UDELAY (5);
9213 	switch (bit_mode){
9214 	case SET_BIT:
9215 		*gpreg |= write_bit;
9216 		break;
9217 	case CLR_BIT:
9218 		*gpreg &= 0xfe;
9219 		break;
9220 	case SET_CLK:
9221 		*gpreg |= 0x02;
9222 		break;
9223 	case CLR_CLK:
9224 		*gpreg &= 0xfd;
9225 		break;
9226 
9227 	}
9228 	OUTB (nc_gpreg, *gpreg);
9229 	UDELAY (5);
9230 }
9231 
9232 /*
9233  *  Send START condition to NVRAM to wake it up.
9234  */
9235 static void S24C16_start(hcb_p np, u_char *gpreg)
9236 {
9237 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9238 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9239 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9240 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9241 }
9242 
9243 /*
9244  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9245  */
9246 static void S24C16_stop(hcb_p np, u_char *gpreg)
9247 {
9248 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9249 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9250 }
9251 
9252 /*
9253  *  Read or write a bit to the NVRAM,
9254  *  read if GPIO0 input else write if GPIO0 output
9255  */
9256 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9257 			 u_char *gpreg)
9258 {
9259 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9260 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9261 	if (read_bit)
9262 		*read_bit = INB (nc_gpreg);
9263 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9264 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9265 }
9266 
9267 /*
9268  *  Output an ACK to the NVRAM after reading,
9269  *  change GPIO0 to output and when done back to an input
9270  */
9271 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9272 			    u_char *gpcntl)
9273 {
9274 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9275 	S24C16_do_bit(np, 0, write_bit, gpreg);
9276 	OUTB (nc_gpcntl, *gpcntl);
9277 }
9278 
9279 /*
9280  *  Input an ACK from NVRAM after writing,
9281  *  change GPIO0 to input and when done back to an output
9282  */
9283 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9284 			   u_char *gpcntl)
9285 {
9286 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9287 	S24C16_do_bit(np, read_bit, 1, gpreg);
9288 	OUTB (nc_gpcntl, *gpcntl);
9289 }
9290 
9291 /*
9292  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9293  *  GPIO0 must already be set as an output
9294  */
9295 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9296 			     u_char *gpreg, u_char *gpcntl)
9297 {
9298 	int x;
9299 
9300 	for (x = 0; x < 8; x++)
9301 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9302 
9303 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9304 }
9305 
9306 /*
9307  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9308  *  GPIO0 must already be set as an input
9309  */
9310 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9311 			    u_char *gpreg, u_char *gpcntl)
9312 {
9313 	int x;
9314 	u_char read_bit;
9315 
9316 	*read_data = 0;
9317 	for (x = 0; x < 8; x++) {
9318 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9319 		*read_data |= ((read_bit & 0x01) << (7 - x));
9320 	}
9321 
9322 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9323 }
9324 
9325 /*
9326  *  Read 'len' bytes starting at 'offset'.
9327  */
9328 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9329 {
9330 	u_char	gpcntl, gpreg;
9331 	u_char	old_gpcntl, old_gpreg;
9332 	u_char	ack_data;
9333 	int	retv = 1;
9334 	int	x;
9335 
9336 	/* save current state of GPCNTL and GPREG */
9337 	old_gpreg	= INB (nc_gpreg);
9338 	old_gpcntl	= INB (nc_gpcntl);
9339 	gpcntl		= old_gpcntl & 0x1c;
9340 
9341 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9342 	OUTB (nc_gpreg,  old_gpreg);
9343 	OUTB (nc_gpcntl, gpcntl);
9344 
9345 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9346 	gpreg = old_gpreg;
9347 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9348 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9349 
9350 	/* now set NVRAM inactive with GPIO0/1 both high */
9351 	S24C16_stop(np, &gpreg);
9352 
9353 	/* activate NVRAM */
9354 	S24C16_start(np, &gpreg);
9355 
9356 	/* write device code and random address MSB */
9357 	S24C16_write_byte(np, &ack_data,
9358 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9359 	if (ack_data & 0x01)
9360 		goto out;
9361 
9362 	/* write random address LSB */
9363 	S24C16_write_byte(np, &ack_data,
9364 		offset & 0xff, &gpreg, &gpcntl);
9365 	if (ack_data & 0x01)
9366 		goto out;
9367 
9368 	/* regenerate START state to set up for reading */
9369 	S24C16_start(np, &gpreg);
9370 
9371 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9372 	S24C16_write_byte(np, &ack_data,
9373 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9374 	if (ack_data & 0x01)
9375 		goto out;
9376 
9377 	/* now set up GPIO0 for inputting data */
9378 	gpcntl |= 0x01;
9379 	OUTB (nc_gpcntl, gpcntl);
9380 
9381 	/* input all requested data - only part of total NVRAM */
9382 	for (x = 0; x < len; x++)
9383 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9384 
9385 	/* finally put NVRAM back in inactive mode */
9386 	gpcntl &= 0xfe;
9387 	OUTB (nc_gpcntl, gpcntl);
9388 	S24C16_stop(np, &gpreg);
9389 	retv = 0;
9390 out:
9391 	/* return GPIO0/1 to original states after having accessed NVRAM */
9392 	OUTB (nc_gpcntl, old_gpcntl);
9393 	OUTB (nc_gpreg,  old_gpreg);
9394 
9395 	return retv;
9396 }
9397 
9398 #undef SET_BIT /* 0 */
9399 #undef CLR_BIT /* 1 */
9400 #undef SET_CLK /* 2 */
9401 #undef CLR_CLK /* 3 */
9402 
9403 /*
9404  *  Try reading Symbios NVRAM.
9405  *  Return 0 if OK.
9406  */
9407 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9408 {
9409 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9410 	u_char *data = (u_char *) nvram;
9411 	int len  = sizeof(*nvram);
9412 	u_short	csum;
9413 	int x;
9414 
9415 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9416 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9417 		return 1;
9418 
9419 	/* check valid NVRAM signature, verify byte count and checksum */
9420 	if (nvram->type != 0 ||
9421 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9422 	    nvram->byte_count != len - 12)
9423 		return 1;
9424 
9425 	/* verify checksum */
9426 	for (x = 6, csum = 0; x < len - 6; x++)
9427 		csum += data[x];
9428 	if (csum != nvram->checksum)
9429 		return 1;
9430 
9431 	return 0;
9432 }
9433 
9434 /*
9435  *  93C46 EEPROM reading.
9436  *
9437  *  GPOI0 - data in
9438  *  GPIO1 - data out
9439  *  GPIO2 - clock
9440  *  GPIO4 - chip select
9441  *
9442  *  Used by Tekram.
9443  */
9444 
9445 /*
9446  *  Pulse clock bit in GPIO0
9447  */
9448 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9449 {
9450 	OUTB (nc_gpreg, *gpreg | 0x04);
9451 	UDELAY (2);
9452 	OUTB (nc_gpreg, *gpreg);
9453 }
9454 
9455 /*
9456  *  Read bit from NVRAM
9457  */
9458 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9459 {
9460 	UDELAY (2);
9461 	T93C46_Clk(np, gpreg);
9462 	*read_bit = INB (nc_gpreg);
9463 }
9464 
9465 /*
9466  *  Write bit to GPIO0
9467  */
9468 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9469 {
9470 	if (write_bit & 0x01)
9471 		*gpreg |= 0x02;
9472 	else
9473 		*gpreg &= 0xfd;
9474 
9475 	*gpreg |= 0x10;
9476 
9477 	OUTB (nc_gpreg, *gpreg);
9478 	UDELAY (2);
9479 
9480 	T93C46_Clk(np, gpreg);
9481 }
9482 
9483 /*
9484  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9485  */
9486 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9487 {
9488 	*gpreg &= 0xef;
9489 	OUTB (nc_gpreg, *gpreg);
9490 	UDELAY (2);
9491 
9492 	T93C46_Clk(np, gpreg);
9493 }
9494 
9495 /*
9496  *  Send read command and address to NVRAM
9497  */
9498 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9499 				u_char *read_bit, u_char *gpreg)
9500 {
9501 	int x;
9502 
9503 	/* send 9 bits, start bit (1), command (2), address (6)  */
9504 	for (x = 0; x < 9; x++)
9505 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9506 
9507 	*read_bit = INB (nc_gpreg);
9508 }
9509 
9510 /*
9511  *  READ 2 bytes from the NVRAM
9512  */
9513 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9514 {
9515 	int x;
9516 	u_char read_bit;
9517 
9518 	*nvram_data = 0;
9519 	for (x = 0; x < 16; x++) {
9520 		T93C46_Read_Bit(np, &read_bit, gpreg);
9521 
9522 		if (read_bit & 0x01)
9523 			*nvram_data |=  (0x01 << (15 - x));
9524 		else
9525 			*nvram_data &= ~(0x01 << (15 - x));
9526 	}
9527 }
9528 
9529 /*
9530  *  Read Tekram NvRAM data.
9531  */
9532 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9533 {
9534 	u_char	read_bit;
9535 	int	x;
9536 
9537 	for (x = 0; x < len; x++)  {
9538 
9539 		/* output read command and address */
9540 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9541 		if (read_bit & 0x01)
9542 			return 1; /* Bad */
9543 		T93C46_Read_Word(np, &data[x], gpreg);
9544 		T93C46_Stop(np, gpreg);
9545 	}
9546 
9547 	return 0;
9548 }
9549 
9550 /*
9551  *  Try reading 93C46 Tekram NVRAM.
9552  */
9553 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9554 {
9555 	u_char gpcntl, gpreg;
9556 	u_char old_gpcntl, old_gpreg;
9557 	int retv = 1;
9558 
9559 	/* save current state of GPCNTL and GPREG */
9560 	old_gpreg	= INB (nc_gpreg);
9561 	old_gpcntl	= INB (nc_gpcntl);
9562 
9563 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9564 	   1/2/4 out */
9565 	gpreg = old_gpreg & 0xe9;
9566 	OUTB (nc_gpreg, gpreg);
9567 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9568 	OUTB (nc_gpcntl, gpcntl);
9569 
9570 	/* input all of NVRAM, 64 words */
9571 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9572 				sizeof(*nvram) / sizeof(short), &gpreg);
9573 
9574 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9575 	OUTB (nc_gpcntl, old_gpcntl);
9576 	OUTB (nc_gpreg,  old_gpreg);
9577 
9578 	return retv;
9579 }
9580 
9581 /*
9582  *  Try reading Tekram NVRAM.
9583  *  Return 0 if OK.
9584  */
9585 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9586 {
9587 	u_char *data = (u_char *) nvram;
9588 	int len = sizeof(*nvram);
9589 	u_short	csum;
9590 	int x;
9591 
9592 	switch (np->device_id) {
9593 	case PCI_ID_SYM53C885:
9594 	case PCI_ID_SYM53C895:
9595 	case PCI_ID_SYM53C896:
9596 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9597 					  data, len);
9598 		break;
9599 	case PCI_ID_SYM53C875:
9600 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9601 					  data, len);
9602 		if (!x)
9603 			break;
9604 	default:
9605 		x = sym_read_T93C46_nvram(np, nvram);
9606 		break;
9607 	}
9608 	if (x)
9609 		return 1;
9610 
9611 	/* verify checksum */
9612 	for (x = 0, csum = 0; x < len - 1; x += 2)
9613 		csum += data[x] + (data[x+1] << 8);
9614 	if (csum != 0x1234)
9615 		return 1;
9616 
9617 	return 0;
9618 }
9619 
9620 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9621