xref: /freebsd/sys/dev/sym/sym_hipd.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 /* #define CAM_NEW_TRAN_CODE */
65 
66 #include <sys/param.h>
67 
68 /*
69  *  Driver configuration options.
70  */
71 #include "opt_sym.h"
72 #include <dev/sym/sym_conf.h>
73 
74 
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mutex.h>
81 #include <sys/module.h>
82 #include <sys/bus.h>
83 
84 #include <sys/proc.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <sys/rman.h>
92 
93 #include <cam/cam.h>
94 #include <cam/cam_ccb.h>
95 #include <cam/cam_sim.h>
96 #include <cam/cam_xpt_sim.h>
97 #include <cam/cam_debug.h>
98 
99 #include <cam/scsi/scsi_all.h>
100 #include <cam/scsi/scsi_message.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 
106 /* Short and quite clear integer types */
107 typedef int8_t    s8;
108 typedef int16_t   s16;
109 typedef	int32_t   s32;
110 typedef u_int8_t  u8;
111 typedef u_int16_t u16;
112 typedef	u_int32_t u32;
113 
114 /*
115  *  From 'cam.error_recovery_diffs.20010313.context' patch.
116  */
117 #ifdef  CAM_NEW_TRAN_CODE
118 #define FreeBSD_New_Tran_Settings
119 #endif  /* CAM_NEW_TRAN_CODE */
120 
121 /*
122  *  Driver definitions.
123  */
124 #include <dev/sym/sym_defs.h>
125 #include <dev/sym/sym_fw.h>
126 
127 /*
128  *  IA32 architecture does not reorder STORES and prevents
129  *  LOADS from passing STORES. It is called `program order'
130  *  by Intel and allows device drivers to deal with memory
131  *  ordering by only ensuring that the code is not reordered
132  *  by the compiler when ordering is required.
133  *  Other architectures implement a weaker ordering that
134  *  requires memory barriers (and also IO barriers when they
135  *  make sense) to be used.
136  */
137 
138 #if	defined	__i386__ || defined __amd64__
139 #define MEMORY_BARRIER()	do { ; } while(0)
140 #elif	defined	__alpha__
141 #define MEMORY_BARRIER()	alpha_mb()
142 #elif	defined	__powerpc__
143 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
144 #elif	defined	__ia64__
145 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
146 #elif	defined	__sparc64__
147 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
148 #else
149 #error	"Not supported platform"
150 #endif
151 
152 /*
153  *  A la VMS/CAM-3 queue management.
154  */
155 
156 typedef struct sym_quehead {
157 	struct sym_quehead *flink;	/* Forward  pointer */
158 	struct sym_quehead *blink;	/* Backward pointer */
159 } SYM_QUEHEAD;
160 
161 #define sym_que_init(ptr) do { \
162 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
163 } while (0)
164 
165 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
166 {
167 	return (head->flink == head) ? 0 : head->flink;
168 }
169 
170 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
171 {
172 	return (head->blink == head) ? 0 : head->blink;
173 }
174 
175 static __inline void __sym_que_add(struct sym_quehead * new,
176 	struct sym_quehead * blink,
177 	struct sym_quehead * flink)
178 {
179 	flink->blink	= new;
180 	new->flink	= flink;
181 	new->blink	= blink;
182 	blink->flink	= new;
183 }
184 
185 static __inline void __sym_que_del(struct sym_quehead * blink,
186 	struct sym_quehead * flink)
187 {
188 	flink->blink = blink;
189 	blink->flink = flink;
190 }
191 
192 static __inline int sym_que_empty(struct sym_quehead *head)
193 {
194 	return head->flink == head;
195 }
196 
197 static __inline void sym_que_splice(struct sym_quehead *list,
198 	struct sym_quehead *head)
199 {
200 	struct sym_quehead *first = list->flink;
201 
202 	if (first != list) {
203 		struct sym_quehead *last = list->blink;
204 		struct sym_quehead *at   = head->flink;
205 
206 		first->blink = head;
207 		head->flink  = first;
208 
209 		last->flink = at;
210 		at->blink   = last;
211 	}
212 }
213 
214 #define sym_que_entry(ptr, type, member) \
215 	((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
216 
217 
218 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
219 
220 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
221 
222 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
223 
224 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
225 {
226 	struct sym_quehead *elem = head->flink;
227 
228 	if (elem != head)
229 		__sym_que_del(head, elem->flink);
230 	else
231 		elem = 0;
232 	return elem;
233 }
234 
235 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
236 
237 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
238 {
239 	struct sym_quehead *elem = head->blink;
240 
241 	if (elem != head)
242 		__sym_que_del(elem->blink, head);
243 	else
244 		elem = 0;
245 	return elem;
246 }
247 
248 /*
249  *  This one may be useful.
250  */
251 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
252 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
253 /*
254  *  FreeBSD does not offer our kind of queue in the CAM CCB.
255  *  So, we have to cast.
256  */
257 #define sym_qptr(p)	((struct sym_quehead *) (p))
258 
259 /*
260  *  Simple bitmap operations.
261  */
262 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
263 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
264 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
265 
266 /*
267  *  Number of tasks per device we want to handle.
268  */
269 #if	SYM_CONF_MAX_TAG_ORDER > 8
270 #error	"more than 256 tags per logical unit not allowed."
271 #endif
272 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
273 
274 /*
275  *  Donnot use more tasks that we can handle.
276  */
277 #ifndef	SYM_CONF_MAX_TAG
278 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
279 #endif
280 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
281 #undef	SYM_CONF_MAX_TAG
282 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
283 #endif
284 
285 /*
286  *    This one means 'NO TAG for this job'
287  */
288 #define NO_TAG	(256)
289 
290 /*
291  *  Number of SCSI targets.
292  */
293 #if	SYM_CONF_MAX_TARGET > 16
294 #error	"more than 16 targets not allowed."
295 #endif
296 
297 /*
298  *  Number of logical units per target.
299  */
300 #if	SYM_CONF_MAX_LUN > 64
301 #error	"more than 64 logical units per target not allowed."
302 #endif
303 
304 /*
305  *    Asynchronous pre-scaler (ns). Shall be 40 for
306  *    the SCSI timings to be compliant.
307  */
308 #define	SYM_CONF_MIN_ASYNC (40)
309 
310 /*
311  *  Number of entries in the START and DONE queues.
312  *
313  *  We limit to 1 PAGE in order to succeed allocation of
314  *  these queues. Each entry is 8 bytes long (2 DWORDS).
315  */
316 #ifdef	SYM_CONF_MAX_START
317 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
318 #else
319 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
320 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
321 #endif
322 
323 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
324 #undef	SYM_CONF_MAX_QUEUE
325 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
326 #undef	SYM_CONF_MAX_START
327 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
328 #endif
329 
330 /*
331  *  For this one, we want a short name :-)
332  */
333 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
334 
335 /*
336  *  Active debugging tags and verbosity.
337  */
338 #define DEBUG_ALLOC	(0x0001)
339 #define DEBUG_PHASE	(0x0002)
340 #define DEBUG_POLL	(0x0004)
341 #define DEBUG_QUEUE	(0x0008)
342 #define DEBUG_RESULT	(0x0010)
343 #define DEBUG_SCATTER	(0x0020)
344 #define DEBUG_SCRIPT	(0x0040)
345 #define DEBUG_TINY	(0x0080)
346 #define DEBUG_TIMING	(0x0100)
347 #define DEBUG_NEGO	(0x0200)
348 #define DEBUG_TAGS	(0x0400)
349 #define DEBUG_POINTER	(0x0800)
350 
351 #if 0
352 static int sym_debug = 0;
353 	#define DEBUG_FLAGS sym_debug
354 #else
355 /*	#define DEBUG_FLAGS (0x0631) */
356 	#define DEBUG_FLAGS (0x0000)
357 
358 #endif
359 #define sym_verbose	(np->verbose)
360 
361 /*
362  *  Insert a delay in micro-seconds and milli-seconds.
363  */
364 static void UDELAY(int us) { DELAY(us); }
365 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
366 
367 /*
368  *  Simple power of two buddy-like allocator.
369  *
370  *  This simple code is not intended to be fast, but to
371  *  provide power of 2 aligned memory allocations.
372  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
373  *  this allocator allows simple and fast address calculations
374  *  from the SCRIPTS code. In addition, cache line alignment
375  *  is guaranteed for power of 2 cache line size.
376  *
377  *  This allocator has been developped for the Linux sym53c8xx
378  *  driver, since this O/S does not provide naturally aligned
379  *  allocations.
380  *  It has the advantage of allowing the driver to use private
381  *  pages of memory that will be useful if we ever need to deal
382  *  with IO MMUs for PCI.
383  */
384 
385 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
386 #ifndef __amd64__
387 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
388 #else
389 #define MEMO_PAGE_ORDER	1	/* 2 PAGEs maximum on amd64 */
390 #endif
391 #if 0
392 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
393 #endif
394 #define MEMO_WARN	1
395 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
396 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
397 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
398 
399 #ifndef __amd64__
400 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
401 #define free_pages(p)		free((p), M_DEVBUF)
402 #else
403 #define get_pages()		contigmalloc(MEMO_CLUSTER_SIZE, M_DEVBUF, \
404 				    0, 0, 1LL << 32, PAGE_SIZE, 1LL << 32)
405 #define free_pages(p)		contigfree((p), MEMO_CLUSTER_SIZE, M_DEVBUF)
406 #endif
407 
408 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
409 
410 typedef struct m_link {		/* Link between free memory chunks */
411 	struct m_link *next;
412 } m_link_s;
413 
414 typedef struct m_vtob {		/* Virtual to Bus address translation */
415 	struct m_vtob	*next;
416 	bus_dmamap_t	dmamap;	/* Map for this chunk */
417 	m_addr_t	vaddr;	/* Virtual address */
418 	m_addr_t	baddr;	/* Bus physical address */
419 } m_vtob_s;
420 /* Hash this stuff a bit to speed up translations */
421 #define VTOB_HASH_SHIFT		5
422 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
423 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
424 #define VTOB_HASH_CODE(m)	\
425 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
426 
427 typedef struct m_pool {		/* Memory pool of a given kind */
428 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
429 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
430 	m_addr_t (*getp)(struct m_pool *);
431 #ifdef	MEMO_FREE_UNUSED
432 	void (*freep)(struct m_pool *, m_addr_t);
433 #endif
434 #define M_GETP()		mp->getp(mp)
435 #define M_FREEP(p)		mp->freep(mp, p)
436 	int nump;
437 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
438 	struct m_pool *next;
439 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
440 } m_pool_s;
441 
442 static void *___sym_malloc(m_pool_s *mp, int size)
443 {
444 	int i = 0;
445 	int s = (1 << MEMO_SHIFT);
446 	int j;
447 	m_addr_t a;
448 	m_link_s *h = mp->h;
449 
450 	if (size > MEMO_CLUSTER_SIZE)
451 		return 0;
452 
453 	while (size > s) {
454 		s <<= 1;
455 		++i;
456 	}
457 
458 	j = i;
459 	while (!h[j].next) {
460 		if (s == MEMO_CLUSTER_SIZE) {
461 			h[j].next = (m_link_s *) M_GETP();
462 			if (h[j].next)
463 				h[j].next->next = 0;
464 			break;
465 		}
466 		++j;
467 		s <<= 1;
468 	}
469 	a = (m_addr_t) h[j].next;
470 	if (a) {
471 		h[j].next = h[j].next->next;
472 		while (j > i) {
473 			j -= 1;
474 			s >>= 1;
475 			h[j].next = (m_link_s *) (a+s);
476 			h[j].next->next = 0;
477 		}
478 	}
479 #ifdef DEBUG
480 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
481 #endif
482 	return (void *) a;
483 }
484 
485 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
486 {
487 	int i = 0;
488 	int s = (1 << MEMO_SHIFT);
489 	m_link_s *q;
490 	m_addr_t a, b;
491 	m_link_s *h = mp->h;
492 
493 #ifdef DEBUG
494 	printf("___sym_mfree(%p, %d)\n", ptr, size);
495 #endif
496 
497 	if (size > MEMO_CLUSTER_SIZE)
498 		return;
499 
500 	while (size > s) {
501 		s <<= 1;
502 		++i;
503 	}
504 
505 	a = (m_addr_t) ptr;
506 
507 	while (1) {
508 #ifdef MEMO_FREE_UNUSED
509 		if (s == MEMO_CLUSTER_SIZE) {
510 			M_FREEP(a);
511 			break;
512 		}
513 #endif
514 		b = a ^ s;
515 		q = &h[i];
516 		while (q->next && q->next != (m_link_s *) b) {
517 			q = q->next;
518 		}
519 		if (!q->next) {
520 			((m_link_s *) a)->next = h[i].next;
521 			h[i].next = (m_link_s *) a;
522 			break;
523 		}
524 		q->next = q->next->next;
525 		a = a & b;
526 		s <<= 1;
527 		++i;
528 	}
529 }
530 
531 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
532 {
533 	void *p;
534 
535 	p = ___sym_malloc(mp, size);
536 
537 	if (DEBUG_FLAGS & DEBUG_ALLOC)
538 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
539 
540 	if (p)
541 		bzero(p, size);
542 	else if (uflags & MEMO_WARN)
543 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
544 
545 	return p;
546 }
547 
548 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
549 
550 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
551 {
552 	if (DEBUG_FLAGS & DEBUG_ALLOC)
553 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
554 
555 	___sym_mfree(mp, ptr, size);
556 
557 }
558 
559 /*
560  * Default memory pool we donnot need to involve in DMA.
561  */
562 /*
563  * With the `bus dma abstraction', we use a separate pool for
564  * memory we donnot need to involve in DMA.
565  */
566 static m_addr_t ___mp0_getp(m_pool_s *mp)
567 {
568 	m_addr_t m = (m_addr_t) get_pages();
569 	if (m)
570 		++mp->nump;
571 	return m;
572 }
573 
574 #ifdef	MEMO_FREE_UNUSED
575 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
576 {
577 	free_pages(m);
578 	--mp->nump;
579 }
580 #endif
581 
582 #ifdef	MEMO_FREE_UNUSED
583 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
584 #else
585 static m_pool_s mp0 = {0, 0, ___mp0_getp};
586 #endif
587 
588 
589 /*
590  * Actual memory allocation routine for non-DMAed memory.
591  */
592 static void *sym_calloc(int size, char *name)
593 {
594 	void *m;
595 	/* Lock */
596 	m = __sym_calloc(&mp0, size, name);
597 	/* Unlock */
598 	return m;
599 }
600 
601 /*
602  * Actual memory allocation routine for non-DMAed memory.
603  */
604 static void sym_mfree(void *ptr, int size, char *name)
605 {
606 	/* Lock */
607 	__sym_mfree(&mp0, ptr, size, name);
608 	/* Unlock */
609 }
610 
611 /*
612  * DMAable pools.
613  */
614 /*
615  * With `bus dma abstraction', we use a separate pool per parent
616  * BUS handle. A reverse table (hashed) is maintained for virtual
617  * to BUS address translation.
618  */
619 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
620 {
621 	bus_addr_t *baddr;
622 	baddr = (bus_addr_t *)arg;
623 	*baddr = segs->ds_addr;
624 }
625 
626 static m_addr_t ___dma_getp(m_pool_s *mp)
627 {
628 	m_vtob_s *vbp;
629 	void *vaddr = 0;
630 	bus_addr_t baddr = 0;
631 
632 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
633 	if (!vbp)
634 		goto out_err;
635 
636 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
637 			      BUS_DMA_NOWAIT, &vbp->dmamap))
638 		goto out_err;
639 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
640 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0);
641 	if (baddr) {
642 		int hc = VTOB_HASH_CODE(vaddr);
643 		vbp->vaddr = (m_addr_t) vaddr;
644 		vbp->baddr = (m_addr_t) baddr;
645 		vbp->next = mp->vtob[hc];
646 		mp->vtob[hc] = vbp;
647 		++mp->nump;
648 		return (m_addr_t) vaddr;
649 	}
650 out_err:
651 	if (baddr)
652 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
653 	if (vaddr)
654 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
655 	if (vbp) {
656 		if (vbp->dmamap)
657 			bus_dmamap_destroy(mp->dmat, vbp->dmamap);
658 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
659 	}
660 	return 0;
661 }
662 
663 #ifdef	MEMO_FREE_UNUSED
664 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
665 {
666 	m_vtob_s **vbpp, *vbp;
667 	int hc = VTOB_HASH_CODE(m);
668 
669 	vbpp = &mp->vtob[hc];
670 	while (*vbpp && (*vbpp)->vaddr != m)
671 		vbpp = &(*vbpp)->next;
672 	if (*vbpp) {
673 		vbp = *vbpp;
674 		*vbpp = (*vbpp)->next;
675 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
676 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
677 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
678 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
679 		--mp->nump;
680 	}
681 }
682 #endif
683 
684 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
685 {
686 	m_pool_s *mp;
687 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
688 	return mp;
689 }
690 
691 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
692 {
693 	m_pool_s *mp = 0;
694 
695 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
696 	if (mp) {
697 		mp->dev_dmat = dev_dmat;
698 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
699 			       BUS_SPACE_MAXADDR_32BIT,
700 			       BUS_SPACE_MAXADDR_32BIT,
701 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
702 			       MEMO_CLUSTER_SIZE, 0,
703 			       busdma_lock_mutex, &Giant, &mp->dmat)) {
704 			mp->getp = ___dma_getp;
705 #ifdef	MEMO_FREE_UNUSED
706 			mp->freep = ___dma_freep;
707 #endif
708 			mp->next = mp0.next;
709 			mp0.next = mp;
710 			return mp;
711 		}
712 	}
713 	if (mp)
714 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
715 	return 0;
716 }
717 
718 #ifdef	MEMO_FREE_UNUSED
719 static void ___del_dma_pool(m_pool_s *p)
720 {
721 	struct m_pool **pp = &mp0.next;
722 
723 	while (*pp && *pp != p)
724 		pp = &(*pp)->next;
725 	if (*pp) {
726 		*pp = (*pp)->next;
727 		bus_dma_tag_destroy(p->dmat);
728 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
729 	}
730 }
731 #endif
732 
733 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
734 {
735 	struct m_pool *mp;
736 	void *m = 0;
737 
738 	/* Lock */
739 	mp = ___get_dma_pool(dev_dmat);
740 	if (!mp)
741 		mp = ___cre_dma_pool(dev_dmat);
742 	if (mp)
743 		m = __sym_calloc(mp, size, name);
744 #ifdef	MEMO_FREE_UNUSED
745 	if (mp && !mp->nump)
746 		___del_dma_pool(mp);
747 #endif
748 	/* Unlock */
749 
750 	return m;
751 }
752 
753 static void
754 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
755 {
756 	struct m_pool *mp;
757 
758 	/* Lock */
759 	mp = ___get_dma_pool(dev_dmat);
760 	if (mp)
761 		__sym_mfree(mp, m, size, name);
762 #ifdef	MEMO_FREE_UNUSED
763 	if (mp && !mp->nump)
764 		___del_dma_pool(mp);
765 #endif
766 	/* Unlock */
767 }
768 
769 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
770 {
771 	m_pool_s *mp;
772 	int hc = VTOB_HASH_CODE(m);
773 	m_vtob_s *vp = 0;
774 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
775 
776 	/* Lock */
777 	mp = ___get_dma_pool(dev_dmat);
778 	if (mp) {
779 		vp = mp->vtob[hc];
780 		while (vp && (m_addr_t) vp->vaddr != a)
781 			vp = vp->next;
782 	}
783 	/* Unlock */
784 	if (!vp)
785 		panic("sym: VTOBUS FAILED!\n");
786 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
787 }
788 
789 
790 /*
791  * Verbs for DMAable memory handling.
792  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
793  * being discarded.
794  */
795 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
796 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
797 #define _sym_mfree_dma(np, p, s, n)	\
798 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
799 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
800 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
801 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
802 #define vtobus(p)			_vtobus(np, p)
803 
804 
805 /*
806  *  Print a buffer in hexadecimal format.
807  */
808 static void sym_printb_hex (u_char *p, int n)
809 {
810 	while (n-- > 0)
811 		printf (" %x", *p++);
812 }
813 
814 /*
815  *  Same with a label at beginning and .\n at end.
816  */
817 static void sym_printl_hex (char *label, u_char *p, int n)
818 {
819 	printf ("%s", label);
820 	sym_printb_hex (p, n);
821 	printf (".\n");
822 }
823 
824 /*
825  *  Return a string for SCSI BUS mode.
826  */
827 static char *sym_scsi_bus_mode(int mode)
828 {
829 	switch(mode) {
830 	case SMODE_HVD:	return "HVD";
831 	case SMODE_SE:	return "SE";
832 	case SMODE_LVD: return "LVD";
833 	}
834 	return "??";
835 }
836 
837 /*
838  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
839  */
840 #ifdef SYM_CONF_NVRAM_SUPPORT
841 static u_char Tekram_sync[16] =
842 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
843 #endif
844 
845 /*
846  *  Union of supported NVRAM formats.
847  */
848 struct sym_nvram {
849 	int type;
850 #define	SYM_SYMBIOS_NVRAM	(1)
851 #define	SYM_TEKRAM_NVRAM	(2)
852 #ifdef	SYM_CONF_NVRAM_SUPPORT
853 	union {
854 		Symbios_nvram Symbios;
855 		Tekram_nvram Tekram;
856 	} data;
857 #endif
858 };
859 
860 /*
861  *  This one is hopefully useless, but actually useful. :-)
862  */
863 #ifndef assert
864 #define	assert(expression) { \
865 	if (!(expression)) { \
866 		(void)panic( \
867 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
868 			#expression, \
869 			__FILE__, __LINE__); \
870 	} \
871 }
872 #endif
873 
874 /*
875  *  Some provision for a possible big endian mode supported by
876  *  Symbios chips (never seen, by the way).
877  *  For now, this stuff does not deserve any comments. :)
878  */
879 
880 #define sym_offb(o)	(o)
881 #define sym_offw(o)	(o)
882 
883 /*
884  *  Some provision for support for BIG ENDIAN CPU.
885  */
886 
887 #define cpu_to_scr(dw)	htole32(dw)
888 #define scr_to_cpu(dw)	le32toh(dw)
889 
890 /*
891  *  Access to the chip IO registers and on-chip RAM.
892  *  We use the `bus space' interface under FreeBSD-4 and
893  *  later kernel versions.
894  */
895 
896 
897 #if defined(SYM_CONF_IOMAPPED)
898 
899 #define INB_OFF(o)	bus_space_read_1(np->io_tag, np->io_bsh, o)
900 #define INW_OFF(o)	bus_space_read_2(np->io_tag, np->io_bsh, o)
901 #define INL_OFF(o)	bus_space_read_4(np->io_tag, np->io_bsh, o)
902 
903 #define OUTB_OFF(o, v)	bus_space_write_1(np->io_tag, np->io_bsh, o, (v))
904 #define OUTW_OFF(o, v)	bus_space_write_2(np->io_tag, np->io_bsh, o, (v))
905 #define OUTL_OFF(o, v)	bus_space_write_4(np->io_tag, np->io_bsh, o, (v))
906 
907 #else	/* Memory mapped IO */
908 
909 #define INB_OFF(o)	bus_space_read_1(np->mmio_tag, np->mmio_bsh, o)
910 #define INW_OFF(o)	bus_space_read_2(np->mmio_tag, np->mmio_bsh, o)
911 #define INL_OFF(o)	bus_space_read_4(np->mmio_tag, np->mmio_bsh, o)
912 
913 #define OUTB_OFF(o, v)	bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v))
914 #define OUTW_OFF(o, v)	bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v))
915 #define OUTL_OFF(o, v)	bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v))
916 
917 #endif	/* SYM_CONF_IOMAPPED */
918 
919 #define OUTRAM_OFF(o, a, l)	\
920 	bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l))
921 
922 
923 /*
924  *  Common definitions for both bus space and legacy IO methods.
925  */
926 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
927 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
928 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
929 
930 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
931 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
932 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
933 
934 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
935 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
936 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
937 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
938 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
939 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
940 
941 /*
942  *  We normally want the chip to have a consistent view
943  *  of driver internal data structures when we restart it.
944  *  Thus these macros.
945  */
946 #define OUTL_DSP(v)				\
947 	do {					\
948 		MEMORY_BARRIER();		\
949 		OUTL (nc_dsp, (v));		\
950 	} while (0)
951 
952 #define OUTONB_STD()				\
953 	do {					\
954 		MEMORY_BARRIER();		\
955 		OUTONB (nc_dcntl, (STD|NOCOM));	\
956 	} while (0)
957 
958 /*
959  *  Command control block states.
960  */
961 #define HS_IDLE		(0)
962 #define HS_BUSY		(1)
963 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
964 #define HS_DISCONNECT	(3)	/* Disconnected by target */
965 #define HS_WAIT		(4)	/* waiting for resource	  */
966 
967 #define HS_DONEMASK	(0x80)
968 #define HS_COMPLETE	(4|HS_DONEMASK)
969 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
970 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
971 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
972 
973 /*
974  *  Software Interrupt Codes
975  */
976 #define	SIR_BAD_SCSI_STATUS	(1)
977 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
978 #define	SIR_MSG_RECEIVED	(3)
979 #define	SIR_MSG_WEIRD		(4)
980 #define	SIR_NEGO_FAILED		(5)
981 #define	SIR_NEGO_PROTO		(6)
982 #define	SIR_SCRIPT_STOPPED	(7)
983 #define	SIR_REJECT_TO_SEND	(8)
984 #define	SIR_SWIDE_OVERRUN	(9)
985 #define	SIR_SODL_UNDERRUN	(10)
986 #define	SIR_RESEL_NO_MSG_IN	(11)
987 #define	SIR_RESEL_NO_IDENTIFY	(12)
988 #define	SIR_RESEL_BAD_LUN	(13)
989 #define	SIR_TARGET_SELECTED	(14)
990 #define	SIR_RESEL_BAD_I_T_L	(15)
991 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
992 #define	SIR_ABORT_SENT		(17)
993 #define	SIR_RESEL_ABORTED	(18)
994 #define	SIR_MSG_OUT_DONE	(19)
995 #define	SIR_COMPLETE_ERROR	(20)
996 #define	SIR_DATA_OVERRUN	(21)
997 #define	SIR_BAD_PHASE		(22)
998 #define	SIR_MAX			(22)
999 
1000 /*
1001  *  Extended error bit codes.
1002  *  xerr_status field of struct sym_ccb.
1003  */
1004 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
1005 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
1006 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
1007 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
1008 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
1009 
1010 /*
1011  *  Negotiation status.
1012  *  nego_status field of struct sym_ccb.
1013  */
1014 #define NS_SYNC		(1)
1015 #define NS_WIDE		(2)
1016 #define NS_PPR		(3)
1017 
1018 /*
1019  *  A CCB hashed table is used to retrieve CCB address
1020  *  from DSA value.
1021  */
1022 #define CCB_HASH_SHIFT		8
1023 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1024 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1025 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1026 
1027 /*
1028  *  Device flags.
1029  */
1030 #define SYM_DISC_ENABLED	(1)
1031 #define SYM_TAGS_ENABLED	(1<<1)
1032 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1033 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1034 
1035 /*
1036  *  Host adapter miscellaneous flags.
1037  */
1038 #define SYM_AVOID_BUS_RESET	(1)
1039 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1040 
1041 /*
1042  *  Device quirks.
1043  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1044  *  saving the DATA POINTER then reselects and terminates the IO.
1045  *  On reselection, the automatic RESTORE DATA POINTER makes the
1046  *  CURRENT DATA POINTER not point at the end of the IO.
1047  *  This behaviour just breaks our calculation of the residual.
1048  *  For now, we just force an AUTO SAVE on disconnection and will
1049  *  fix that in a further driver version.
1050  */
1051 #define SYM_QUIRK_AUTOSAVE 1
1052 
1053 /*
1054  *  Misc.
1055  */
1056 #define SYM_SNOOP_TIMEOUT (10000000)
1057 #define SYM_PCI_IO	PCIR_BAR(0)
1058 #define SYM_PCI_MMIO	PCIR_BAR(1)
1059 #define SYM_PCI_RAM	PCIR_BAR(2)
1060 #define SYM_PCI_RAM64	PCIR_BAR(3)
1061 
1062 /*
1063  *  Back-pointer from the CAM CCB to our data structures.
1064  */
1065 #define sym_hcb_ptr	spriv_ptr0
1066 /* #define sym_ccb_ptr	spriv_ptr1 */
1067 
1068 /*
1069  *  We mostly have to deal with pointers.
1070  *  Thus these typedef's.
1071  */
1072 typedef struct sym_tcb *tcb_p;
1073 typedef struct sym_lcb *lcb_p;
1074 typedef struct sym_ccb *ccb_p;
1075 typedef struct sym_hcb *hcb_p;
1076 
1077 /*
1078  *  Gather negotiable parameters value
1079  */
1080 struct sym_trans {
1081 #ifdef	FreeBSD_New_Tran_Settings
1082 	u8 scsi_version;
1083 	u8 spi_version;
1084 #endif
1085 	u8 period;
1086 	u8 offset;
1087 	u8 width;
1088 	u8 options;	/* PPR options */
1089 };
1090 
1091 struct sym_tinfo {
1092 	struct sym_trans current;
1093 	struct sym_trans goal;
1094 	struct sym_trans user;
1095 };
1096 
1097 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1098 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1099 
1100 /*
1101  *  Global TCB HEADER.
1102  *
1103  *  Due to lack of indirect addressing on earlier NCR chips,
1104  *  this substructure is copied from the TCB to a global
1105  *  address after selection.
1106  *  For SYMBIOS chips that support LOAD/STORE this copy is
1107  *  not needed and thus not performed.
1108  */
1109 struct sym_tcbh {
1110 	/*
1111 	 *  Scripts bus addresses of LUN table accessed from scripts.
1112 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1113 	 *  and we we want to speed-up the general case and not waste
1114 	 *  resources.
1115 	 */
1116 	u32	luntbl_sa;	/* bus address of this table	*/
1117 	u32	lun0_sa;	/* bus address of LCB #0	*/
1118 	/*
1119 	 *  Actual SYNC/WIDE IO registers value for this target.
1120 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1121 	 *  so have alignment constraints.
1122 	 */
1123 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1124 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1125 /*2*/	u_char	filler1;
1126 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1127 };
1128 
1129 /*
1130  *  Target Control Block
1131  */
1132 struct sym_tcb {
1133 	/*
1134 	 *  TCB header.
1135 	 *  Assumed at offset 0.
1136 	 */
1137 /*0*/	struct sym_tcbh head;
1138 
1139 	/*
1140 	 *  LUN table used by the SCRIPTS processor.
1141 	 *  An array of bus addresses is used on reselection.
1142 	 */
1143 	u32	*luntbl;	/* LCBs bus address table	*/
1144 
1145 	/*
1146 	 *  LUN table used by the C code.
1147 	 */
1148 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1149 #if SYM_CONF_MAX_LUN > 1
1150 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1151 #endif
1152 
1153 	/*
1154 	 *  Bitmap that tells about LUNs that succeeded at least
1155 	 *  1 IO and therefore assumed to be a real device.
1156 	 *  Avoid useless allocation of the LCB structure.
1157 	 */
1158 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1159 
1160 	/*
1161 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1162 	 *  allocated (not discovered or LCB allocation failed).
1163 	 */
1164 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1165 
1166 	/*
1167 	 *  Transfer capabilities (SIP)
1168 	 */
1169 	struct sym_tinfo tinfo;
1170 
1171 	/*
1172 	 * Keep track of the CCB used for the negotiation in order
1173 	 * to ensure that only 1 negotiation is queued at a time.
1174 	 */
1175 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1176 
1177 	/*
1178 	 *  Set when we want to reset the device.
1179 	 */
1180 	u_char	to_reset;
1181 
1182 	/*
1183 	 *  Other user settable limits and options.
1184 	 *  These limits are read from the NVRAM if present.
1185 	 */
1186 	u_char	usrflags;
1187 	u_short	usrtags;
1188 };
1189 
1190 /*
1191  *  Global LCB HEADER.
1192  *
1193  *  Due to lack of indirect addressing on earlier NCR chips,
1194  *  this substructure is copied from the LCB to a global
1195  *  address after selection.
1196  *  For SYMBIOS chips that support LOAD/STORE this copy is
1197  *  not needed and thus not performed.
1198  */
1199 struct sym_lcbh {
1200 	/*
1201 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1202 	 *  For not probed logical units, this address points to
1203 	 *  SCRIPTS that deal with bad LU handling (must be at
1204 	 *  offset zero of the LCB for that reason).
1205 	 */
1206 /*0*/	u32	resel_sa;
1207 
1208 	/*
1209 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1210 	 *  to the unique ITL nexus allowed to be disconnected.
1211 	 */
1212 	u32	itl_task_sa;
1213 
1214 	/*
1215 	 *  Task table bus address (read from SCRIPTS).
1216 	 */
1217 	u32	itlq_tbl_sa;
1218 };
1219 
1220 /*
1221  *  Logical Unit Control Block
1222  */
1223 struct sym_lcb {
1224 	/*
1225 	 *  TCB header.
1226 	 *  Assumed at offset 0.
1227 	 */
1228 /*0*/	struct sym_lcbh head;
1229 
1230 	/*
1231 	 *  Task table read from SCRIPTS that contains pointers to
1232 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1233 	 *  inside the header.
1234 	 */
1235 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1236 
1237 	/*
1238 	 *  Busy CCBs management.
1239 	 */
1240 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1241 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1242 
1243 	/*
1244 	 *  Circular tag allocation buffer.
1245 	 */
1246 	u_short	ia_tag;		/* Tag allocation index		*/
1247 	u_short	if_tag;		/* Tag release index		*/
1248 	u_char	*cb_tags;	/* Circular tags buffer		*/
1249 
1250 	/*
1251 	 *  Set when we want to clear all tasks.
1252 	 */
1253 	u_char to_clear;
1254 
1255 	/*
1256 	 *  Capabilities.
1257 	 */
1258 	u_char	user_flags;
1259 	u_char	current_flags;
1260 };
1261 
1262 /*
1263  *  Action from SCRIPTS on a task.
1264  *  Is part of the CCB, but is also used separately to plug
1265  *  error handling action to perform from SCRIPTS.
1266  */
1267 struct sym_actscr {
1268 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1269 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1270 };
1271 
1272 /*
1273  *  Phase mismatch context.
1274  *
1275  *  It is part of the CCB and is used as parameters for the
1276  *  DATA pointer. We need two contexts to handle correctly the
1277  *  SAVED DATA POINTER.
1278  */
1279 struct sym_pmc {
1280 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1281 	u32	ret;		/* SCRIPT return address	*/
1282 };
1283 
1284 /*
1285  *  LUN control block lookup.
1286  *  We use a direct pointer for LUN #0, and a table of
1287  *  pointers which is only allocated for devices that support
1288  *  LUN(s) > 0.
1289  */
1290 #if SYM_CONF_MAX_LUN <= 1
1291 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1292 #else
1293 #define sym_lp(np, tp, lun) \
1294 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1295 #endif
1296 
1297 /*
1298  *  Status are used by the host and the script processor.
1299  *
1300  *  The last four bytes (status[4]) are copied to the
1301  *  scratchb register (declared as scr0..scr3) just after the
1302  *  select/reselect, and copied back just after disconnecting.
1303  *  Inside the script the XX_REG are used.
1304  */
1305 
1306 /*
1307  *  Last four bytes (script)
1308  */
1309 #define  QU_REG	scr0
1310 #define  HS_REG	scr1
1311 #define  HS_PRT	nc_scr1
1312 #define  SS_REG	scr2
1313 #define  SS_PRT	nc_scr2
1314 #define  HF_REG	scr3
1315 #define  HF_PRT	nc_scr3
1316 
1317 /*
1318  *  Last four bytes (host)
1319  */
1320 #define  actualquirks  phys.head.status[0]
1321 #define  host_status   phys.head.status[1]
1322 #define  ssss_status   phys.head.status[2]
1323 #define  host_flags    phys.head.status[3]
1324 
1325 /*
1326  *  Host flags
1327  */
1328 #define HF_IN_PM0	1u
1329 #define HF_IN_PM1	(1u<<1)
1330 #define HF_ACT_PM	(1u<<2)
1331 #define HF_DP_SAVED	(1u<<3)
1332 #define HF_SENSE	(1u<<4)
1333 #define HF_EXT_ERR	(1u<<5)
1334 #define HF_DATA_IN	(1u<<6)
1335 #ifdef SYM_CONF_IARB_SUPPORT
1336 #define HF_HINT_IARB	(1u<<7)
1337 #endif
1338 
1339 /*
1340  *  Global CCB HEADER.
1341  *
1342  *  Due to lack of indirect addressing on earlier NCR chips,
1343  *  this substructure is copied from the ccb to a global
1344  *  address after selection (or reselection) and copied back
1345  *  before disconnect.
1346  *  For SYMBIOS chips that support LOAD/STORE this copy is
1347  *  not needed and thus not performed.
1348  */
1349 
1350 struct sym_ccbh {
1351 	/*
1352 	 *  Start and restart SCRIPTS addresses (must be at 0).
1353 	 */
1354 /*0*/	struct sym_actscr go;
1355 
1356 	/*
1357 	 *  SCRIPTS jump address that deal with data pointers.
1358 	 *  'savep' points to the position in the script responsible
1359 	 *  for the actual transfer of data.
1360 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1361 	 */
1362 	u32	savep;		/* Jump address to saved data pointer	*/
1363 	u32	lastp;		/* SCRIPTS address at end of data	*/
1364 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1365 
1366 	/*
1367 	 *  Status fields.
1368 	 */
1369 	u8	status[4];
1370 };
1371 
1372 /*
1373  *  Data Structure Block
1374  *
1375  *  During execution of a ccb by the script processor, the
1376  *  DSA (data structure address) register points to this
1377  *  substructure of the ccb.
1378  */
1379 struct sym_dsb {
1380 	/*
1381 	 *  CCB header.
1382 	 *  Also assumed at offset 0 of the sym_ccb structure.
1383 	 */
1384 /*0*/	struct sym_ccbh head;
1385 
1386 	/*
1387 	 *  Phase mismatch contexts.
1388 	 *  We need two to handle correctly the SAVED DATA POINTER.
1389 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1390 	 *  for address calculation from SCRIPTS.
1391 	 */
1392 	struct sym_pmc pm0;
1393 	struct sym_pmc pm1;
1394 
1395 	/*
1396 	 *  Table data for Script
1397 	 */
1398 	struct sym_tblsel  select;
1399 	struct sym_tblmove smsg;
1400 	struct sym_tblmove smsg_ext;
1401 	struct sym_tblmove cmd;
1402 	struct sym_tblmove sense;
1403 	struct sym_tblmove wresid;
1404 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1405 };
1406 
1407 /*
1408  *  Our Command Control Block
1409  */
1410 struct sym_ccb {
1411 	/*
1412 	 *  This is the data structure which is pointed by the DSA
1413 	 *  register when it is executed by the script processor.
1414 	 *  It must be the first entry.
1415 	 */
1416 	struct sym_dsb phys;
1417 
1418 	/*
1419 	 *  Pointer to CAM ccb and related stuff.
1420 	 */
1421 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1422 	u8	cdb_buf[16];	/* Copy of CDB			*/
1423 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1424 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1425 	int	data_len;	/* Total data length		*/
1426 	int	segments;	/* Number of SG segments	*/
1427 
1428 	/*
1429 	 *  Miscellaneous status'.
1430 	 */
1431 	u_char	nego_status;	/* Negotiation status		*/
1432 	u_char	xerr_status;	/* Extended error flags		*/
1433 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1434 
1435 	/*
1436 	 *  Message areas.
1437 	 *  We prepare a message to be sent after selection.
1438 	 *  We may use a second one if the command is rescheduled
1439 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1440 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1441 	 *  While negotiating sync or wide transfer,
1442 	 *  a SDTR or WDTR message is appended.
1443 	 */
1444 	u_char	scsi_smsg [12];
1445 	u_char	scsi_smsg2[12];
1446 
1447 	/*
1448 	 *  Auto request sense related fields.
1449 	 */
1450 	u_char	sensecmd[6];	/* Request Sense command	*/
1451 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1452 	u_char	sv_xerr_status;	/* Saved extended status	*/
1453 	int	sv_resid;	/* Saved residual		*/
1454 
1455 	/*
1456 	 *  Map for the DMA of user data.
1457 	 */
1458 	void		*arg;	/* Argument for some callback	*/
1459 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1460 	u_char		dmamapped;
1461 #define SYM_DMA_NONE	0
1462 #define SYM_DMA_READ	1
1463 #define SYM_DMA_WRITE	2
1464 	/*
1465 	 *  Other fields.
1466 	 */
1467 	u32	ccb_ba;		/* BUS address of this CCB	*/
1468 	u_short	tag;		/* Tag for this transfer	*/
1469 				/*  NO_TAG means no tag		*/
1470 	u_char	target;
1471 	u_char	lun;
1472 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1473 	SYM_QUEHEAD
1474 		link_ccbq;	/* Link to free/busy CCB queue	*/
1475 	u32	startp;		/* Initial data pointer		*/
1476 	int	ext_sg;		/* Extreme data pointer, used	*/
1477 	int	ext_ofs;	/*  to calculate the residual.	*/
1478 	u_char	to_abort;	/* Want this IO to be aborted	*/
1479 };
1480 
1481 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1482 
1483 /*
1484  *  Host Control Block
1485  */
1486 struct sym_hcb {
1487 	/*
1488 	 *  Global headers.
1489 	 *  Due to poorness of addressing capabilities, earlier
1490 	 *  chips (810, 815, 825) copy part of the data structures
1491 	 *  (CCB, TCB and LCB) in fixed areas.
1492 	 */
1493 #ifdef	SYM_CONF_GENERIC_SUPPORT
1494 	struct sym_ccbh	ccb_head;
1495 	struct sym_tcbh	tcb_head;
1496 	struct sym_lcbh	lcb_head;
1497 #endif
1498 	/*
1499 	 *  Idle task and invalid task actions and
1500 	 *  their bus addresses.
1501 	 */
1502 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1503 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1504 
1505 	/*
1506 	 *  Dummy lun table to protect us against target
1507 	 *  returning bad lun number on reselection.
1508 	 */
1509 	u32	*badluntbl;	/* Table physical address	*/
1510 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1511 
1512 	/*
1513 	 *  Bus address of this host control block.
1514 	 */
1515 	u32	hcb_ba;
1516 
1517 	/*
1518 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1519 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1520 	 *  field.
1521 	 */
1522 	u32	scr_ram_seg;
1523 
1524 	/*
1525 	 *  Chip and controller indentification.
1526 	 */
1527 	device_t device;
1528 	int	unit;
1529 	char	inst_name[8];
1530 
1531 	/*
1532 	 *  Initial value of some IO register bits.
1533 	 *  These values are assumed to have been set by BIOS, and may
1534 	 *  be used to probe adapter implementation differences.
1535 	 */
1536 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1537 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1538 		sv_stest1;
1539 
1540 	/*
1541 	 *  Actual initial value of IO register bits used by the
1542 	 *  driver. They are loaded at initialisation according to
1543 	 *  features that are to be enabled/disabled.
1544 	 */
1545 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1546 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1547 
1548 	/*
1549 	 *  Target data.
1550 	 */
1551 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1552 
1553 	/*
1554 	 *  Target control block bus address array used by the SCRIPT
1555 	 *  on reselection.
1556 	 */
1557 	u32		*targtbl;
1558 	u32		targtbl_ba;
1559 
1560 	/*
1561 	 *  CAM SIM information for this instance.
1562 	 */
1563 	struct		cam_sim  *sim;
1564 	struct		cam_path *path;
1565 
1566 	/*
1567 	 *  Allocated hardware resources.
1568 	 */
1569 	struct resource	*irq_res;
1570 	struct resource	*io_res;
1571 	struct resource	*mmio_res;
1572 	struct resource	*ram_res;
1573 	int		ram_id;
1574 	void *intr;
1575 
1576 	/*
1577 	 *  Bus stuff.
1578 	 *
1579 	 *  My understanding of PCI is that all agents must share the
1580 	 *  same addressing range and model.
1581 	 *  But some hardware architecture guys provide complex and
1582 	 *  brain-deaded stuff that makes shit.
1583 	 *  This driver only support PCI compliant implementations and
1584 	 *  deals with part of the BUS stuff complexity only to fit O/S
1585 	 *  requirements.
1586 	 */
1587 	bus_space_handle_t	io_bsh;
1588 	bus_space_tag_t		io_tag;
1589 	bus_space_handle_t	mmio_bsh;
1590 	bus_space_tag_t		mmio_tag;
1591 	bus_space_handle_t	ram_bsh;
1592 	bus_space_tag_t		ram_tag;
1593 
1594 	/*
1595 	 *  DMA stuff.
1596 	 */
1597 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1598 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1599 	/*
1600 	 *  Virtual and physical bus addresses of the chip.
1601 	 */
1602 	vm_offset_t	mmio_va;	/* MMIO kernel virtual address	*/
1603 	vm_offset_t	mmio_pa;	/* MMIO CPU physical address	*/
1604 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1605 	int		mmio_ws;	/* MMIO Window size		*/
1606 
1607 	vm_offset_t	ram_va;		/* RAM kernel virtual address	*/
1608 	vm_offset_t	ram_pa;		/* RAM CPU physical address	*/
1609 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1610 	int		ram_ws;		/* RAM window size		*/
1611 	u32		io_port;	/* IO port address		*/
1612 
1613 	/*
1614 	 *  SCRIPTS virtual and physical bus addresses.
1615 	 *  'script'  is loaded in the on-chip RAM if present.
1616 	 *  'scripth' stays in main memory for all chips except the
1617 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1618 	 */
1619 	u_char		*scripta0;	/* Copies of script and scripth	*/
1620 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1621 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1622 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1623 	vm_offset_t	scriptb0_ba;
1624 	u_short		scripta_sz;	/* Actual size of script A	*/
1625 	u_short		scriptb_sz;	/* Actual size of script B	*/
1626 
1627 	/*
1628 	 *  Bus addresses, setup and patch methods for
1629 	 *  the selected firmware.
1630 	 */
1631 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1632 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1633 	void		(*fw_setup)(hcb_p np, struct sym_fw *fw);
1634 	void		(*fw_patch)(hcb_p np);
1635 	char		*fw_name;
1636 
1637 	/*
1638 	 *  General controller parameters and configuration.
1639 	 */
1640 	u_short	device_id;	/* PCI device id		*/
1641 	u_char	revision_id;	/* PCI device revision id	*/
1642 	u_int	features;	/* Chip features map		*/
1643 	u_char	myaddr;		/* SCSI id of the adapter	*/
1644 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1645 	u_char	maxwide;	/* Maximum transfer width	*/
1646 	u_char	minsync;	/* Min sync period factor (ST)	*/
1647 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1648 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1649 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1650 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1651 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1652 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1653 	u_char	clock_divn;	/* Number of clock divisors	*/
1654 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1655 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1656 	/*
1657 	 *  Start queue management.
1658 	 *  It is filled up by the host processor and accessed by the
1659 	 *  SCRIPTS processor in order to start SCSI commands.
1660 	 */
1661 	volatile		/* Prevent code optimizations	*/
1662 	u32	*squeue;	/* Start queue virtual address	*/
1663 	u32	squeue_ba;	/* Start queue BUS address	*/
1664 	u_short	squeueput;	/* Next free slot of the queue	*/
1665 	u_short	actccbs;	/* Number of allocated CCBs	*/
1666 
1667 	/*
1668 	 *  Command completion queue.
1669 	 *  It is the same size as the start queue to avoid overflow.
1670 	 */
1671 	u_short	dqueueget;	/* Next position to scan	*/
1672 	volatile		/* Prevent code optimizations	*/
1673 	u32	*dqueue;	/* Completion (done) queue	*/
1674 	u32	dqueue_ba;	/* Done queue BUS address	*/
1675 
1676 	/*
1677 	 *  Miscellaneous buffers accessed by the scripts-processor.
1678 	 *  They shall be DWORD aligned, because they may be read or
1679 	 *  written with a script command.
1680 	 */
1681 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1682 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1683 	u32		lastmsg;	/* Last SCSI message sent	*/
1684 	u_char		scratch;	/* Scratch for SCSI receive	*/
1685 
1686 	/*
1687 	 *  Miscellaneous configuration and status parameters.
1688 	 */
1689 	u_char		usrflags;	/* Miscellaneous user flags	*/
1690 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1691 	u_char		verbose;	/* Verbosity for this controller*/
1692 	u32		cache;		/* Used for cache test at init.	*/
1693 
1694 	/*
1695 	 *  CCB lists and queue.
1696 	 */
1697 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1698 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1699 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1700 
1701 	/*
1702 	 *  During error handling and/or recovery,
1703 	 *  active CCBs that are to be completed with
1704 	 *  error or requeued are moved from the busy_ccbq
1705 	 *  to the comp_ccbq prior to completion.
1706 	 */
1707 	SYM_QUEHEAD	comp_ccbq;
1708 
1709 	/*
1710 	 *  CAM CCB pending queue.
1711 	 */
1712 	SYM_QUEHEAD	cam_ccbq;
1713 
1714 	/*
1715 	 *  IMMEDIATE ARBITRATION (IARB) control.
1716 	 *
1717 	 *  We keep track in 'last_cp' of the last CCB that has been
1718 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1719 	 *  this CCB completes. If last_cp is not zero at the moment
1720 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1721 	 *  used by the SCRIPTS as a hint for setting IARB.
1722 	 *  We donnot set more than 'iarb_max' consecutive hints for
1723 	 *  IARB in order to leave devices a chance to reselect.
1724 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1725 	 */
1726 #ifdef SYM_CONF_IARB_SUPPORT
1727 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1728 	u_short		iarb_count;	/* Actual # of these hints	*/
1729 	ccb_p		last_cp;
1730 #endif
1731 
1732 	/*
1733 	 *  Command abort handling.
1734 	 *  We need to synchronize tightly with the SCRIPTS
1735 	 *  processor in order to handle things correctly.
1736 	 */
1737 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1738 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1739 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1740 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1741 };
1742 
1743 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1744 
1745 /*
1746  *  Return the name of the controller.
1747  */
1748 static __inline char *sym_name(hcb_p np)
1749 {
1750 	return np->inst_name;
1751 }
1752 
1753 /*--------------------------------------------------------------------------*/
1754 /*------------------------------ FIRMWARES ---------------------------------*/
1755 /*--------------------------------------------------------------------------*/
1756 
1757 /*
1758  *  This stuff will be moved to a separate source file when
1759  *  the driver will be broken into several source modules.
1760  */
1761 
1762 /*
1763  *  Macros used for all firmwares.
1764  */
1765 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1766 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1767 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1768 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1769 
1770 
1771 #ifdef	SYM_CONF_GENERIC_SUPPORT
1772 /*
1773  *  Allocate firmware #1 script area.
1774  */
1775 #define	SYM_FWA_SCR		sym_fw1a_scr
1776 #define	SYM_FWB_SCR		sym_fw1b_scr
1777 #include <dev/sym/sym_fw1.h>
1778 struct sym_fwa_ofs sym_fw1a_ofs = {
1779 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1780 };
1781 struct sym_fwb_ofs sym_fw1b_ofs = {
1782 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1783 };
1784 #undef	SYM_FWA_SCR
1785 #undef	SYM_FWB_SCR
1786 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1787 
1788 /*
1789  *  Allocate firmware #2 script area.
1790  */
1791 #define	SYM_FWA_SCR		sym_fw2a_scr
1792 #define	SYM_FWB_SCR		sym_fw2b_scr
1793 #include <dev/sym/sym_fw2.h>
1794 struct sym_fwa_ofs sym_fw2a_ofs = {
1795 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1796 };
1797 struct sym_fwb_ofs sym_fw2b_ofs = {
1798 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1799 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1800 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1801 };
1802 #undef	SYM_FWA_SCR
1803 #undef	SYM_FWB_SCR
1804 
1805 #undef	SYM_GEN_A
1806 #undef	SYM_GEN_B
1807 #undef	PADDR_A
1808 #undef	PADDR_B
1809 
1810 #ifdef	SYM_CONF_GENERIC_SUPPORT
1811 /*
1812  *  Patch routine for firmware #1.
1813  */
1814 static void
1815 sym_fw1_patch(hcb_p np)
1816 {
1817 	struct sym_fw1a_scr *scripta0;
1818 	struct sym_fw1b_scr *scriptb0;
1819 
1820 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1821 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1822 
1823 	/*
1824 	 *  Remove LED support if not needed.
1825 	 */
1826 	if (!(np->features & FE_LED0)) {
1827 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1828 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1829 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1830 	}
1831 
1832 #ifdef SYM_CONF_IARB_SUPPORT
1833 	/*
1834 	 *    If user does not want to use IMMEDIATE ARBITRATION
1835 	 *    when we are reselected while attempting to arbitrate,
1836 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1837 	 */
1838 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1839 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1840 #endif
1841 	/*
1842 	 *  Patch some data in SCRIPTS.
1843 	 *  - start and done queue initial bus address.
1844 	 *  - target bus address table bus address.
1845 	 */
1846 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1847 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1848 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1849 }
1850 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1851 
1852 /*
1853  *  Patch routine for firmware #2.
1854  */
1855 static void
1856 sym_fw2_patch(hcb_p np)
1857 {
1858 	struct sym_fw2a_scr *scripta0;
1859 	struct sym_fw2b_scr *scriptb0;
1860 
1861 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1862 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1863 
1864 	/*
1865 	 *  Remove LED support if not needed.
1866 	 */
1867 	if (!(np->features & FE_LED0)) {
1868 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1869 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1870 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1871 	}
1872 
1873 #ifdef SYM_CONF_IARB_SUPPORT
1874 	/*
1875 	 *    If user does not want to use IMMEDIATE ARBITRATION
1876 	 *    when we are reselected while attempting to arbitrate,
1877 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1878 	 */
1879 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1880 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1881 #endif
1882 	/*
1883 	 *  Patch some variable in SCRIPTS.
1884 	 *  - start and done queue initial bus address.
1885 	 *  - target bus address table bus address.
1886 	 */
1887 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1888 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1889 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1890 
1891 	/*
1892 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1893 	 */
1894 	if (!(np->features & FE_C10)) {
1895 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1896 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1897 	}
1898 
1899 	/*
1900 	 *  Remove a couple of work-arounds specific to C1010 if
1901 	 *  they are not desirable. See `sym_fw2.h' for more details.
1902 	 */
1903 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1904 	      np->revision_id < 0x1 &&
1905 	      np->pciclk_khz < 60000)) {
1906 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1907 		scripta0->datao_phase[1] = cpu_to_scr(0);
1908 	}
1909 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1910 	      /* np->revision_id < 0xff */ 1)) {
1911 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1912 		scripta0->sel_done[1] = cpu_to_scr(0);
1913 	}
1914 
1915 	/*
1916 	 *  Patch some other variables in SCRIPTS.
1917 	 *  These ones are loaded by the SCRIPTS processor.
1918 	 */
1919 	scriptb0->pm0_data_addr[0] =
1920 		cpu_to_scr(np->scripta_ba +
1921 			   offsetof(struct sym_fw2a_scr, pm0_data));
1922 	scriptb0->pm1_data_addr[0] =
1923 		cpu_to_scr(np->scripta_ba +
1924 			   offsetof(struct sym_fw2a_scr, pm1_data));
1925 }
1926 
1927 /*
1928  *  Fill the data area in scripts.
1929  *  To be done for all firmwares.
1930  */
1931 static void
1932 sym_fw_fill_data (u32 *in, u32 *out)
1933 {
1934 	int	i;
1935 
1936 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1937 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1938 		*in++  = offsetof (struct sym_dsb, data[i]);
1939 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1940 		*out++ = offsetof (struct sym_dsb, data[i]);
1941 	}
1942 }
1943 
1944 /*
1945  *  Setup useful script bus addresses.
1946  *  To be done for all firmwares.
1947  */
1948 static void
1949 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
1950 {
1951 	u32 *pa;
1952 	u_short *po;
1953 	int i;
1954 
1955 	/*
1956 	 *  Build the bus address table for script A
1957 	 *  from the script A offset table.
1958 	 */
1959 	po = (u_short *) fw->a_ofs;
1960 	pa = (u32 *) &np->fwa_bas;
1961 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1962 		pa[i] = np->scripta_ba + po[i];
1963 
1964 	/*
1965 	 *  Same for script B.
1966 	 */
1967 	po = (u_short *) fw->b_ofs;
1968 	pa = (u32 *) &np->fwb_bas;
1969 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1970 		pa[i] = np->scriptb_ba + po[i];
1971 }
1972 
1973 #ifdef	SYM_CONF_GENERIC_SUPPORT
1974 /*
1975  *  Setup routine for firmware #1.
1976  */
1977 static void
1978 sym_fw1_setup(hcb_p np, struct sym_fw *fw)
1979 {
1980 	struct sym_fw1a_scr *scripta0;
1981 	struct sym_fw1b_scr *scriptb0;
1982 
1983 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1984 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1985 
1986 	/*
1987 	 *  Fill variable parts in scripts.
1988 	 */
1989 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1990 
1991 	/*
1992 	 *  Setup bus addresses used from the C code..
1993 	 */
1994 	sym_fw_setup_bus_addresses(np, fw);
1995 }
1996 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1997 
1998 /*
1999  *  Setup routine for firmware #2.
2000  */
2001 static void
2002 sym_fw2_setup(hcb_p np, struct sym_fw *fw)
2003 {
2004 	struct sym_fw2a_scr *scripta0;
2005 	struct sym_fw2b_scr *scriptb0;
2006 
2007 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
2008 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
2009 
2010 	/*
2011 	 *  Fill variable parts in scripts.
2012 	 */
2013 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
2014 
2015 	/*
2016 	 *  Setup bus addresses used from the C code..
2017 	 */
2018 	sym_fw_setup_bus_addresses(np, fw);
2019 }
2020 
2021 /*
2022  *  Allocate firmware descriptors.
2023  */
2024 #ifdef	SYM_CONF_GENERIC_SUPPORT
2025 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2026 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2027 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2028 
2029 /*
2030  *  Find the most appropriate firmware for a chip.
2031  */
2032 static struct sym_fw *
2033 sym_find_firmware(struct sym_pci_chip *chip)
2034 {
2035 	if (chip->features & FE_LDSTR)
2036 		return &sym_fw2;
2037 #ifdef	SYM_CONF_GENERIC_SUPPORT
2038 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2039 		return &sym_fw1;
2040 #endif
2041 	else
2042 		return 0;
2043 }
2044 
2045 /*
2046  *  Bind a script to physical addresses.
2047  */
2048 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2049 {
2050 	u32 opcode, new, old, tmp1, tmp2;
2051 	u32 *end, *cur;
2052 	int relocs;
2053 
2054 	cur = start;
2055 	end = start + len/4;
2056 
2057 	while (cur < end) {
2058 
2059 		opcode = *cur;
2060 
2061 		/*
2062 		 *  If we forget to change the length
2063 		 *  in scripts, a field will be
2064 		 *  padded with 0. This is an illegal
2065 		 *  command.
2066 		 */
2067 		if (opcode == 0) {
2068 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2069 				sym_name(np), (int) (cur-start));
2070 			MDELAY (10000);
2071 			++cur;
2072 			continue;
2073 		};
2074 
2075 		/*
2076 		 *  We use the bogus value 0xf00ff00f ;-)
2077 		 *  to reserve data area in SCRIPTS.
2078 		 */
2079 		if (opcode == SCR_DATA_ZERO) {
2080 			*cur++ = 0;
2081 			continue;
2082 		}
2083 
2084 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2085 			printf ("%d:  <%x>\n", (int) (cur-start),
2086 				(unsigned)opcode);
2087 
2088 		/*
2089 		 *  We don't have to decode ALL commands
2090 		 */
2091 		switch (opcode >> 28) {
2092 		case 0xf:
2093 			/*
2094 			 *  LOAD / STORE DSA relative, don't relocate.
2095 			 */
2096 			relocs = 0;
2097 			break;
2098 		case 0xe:
2099 			/*
2100 			 *  LOAD / STORE absolute.
2101 			 */
2102 			relocs = 1;
2103 			break;
2104 		case 0xc:
2105 			/*
2106 			 *  COPY has TWO arguments.
2107 			 */
2108 			relocs = 2;
2109 			tmp1 = cur[1];
2110 			tmp2 = cur[2];
2111 			if ((tmp1 ^ tmp2) & 3) {
2112 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2113 					sym_name(np), (int) (cur-start));
2114 				MDELAY (10000);
2115 			}
2116 			/*
2117 			 *  If PREFETCH feature not enabled, remove
2118 			 *  the NO FLUSH bit if present.
2119 			 */
2120 			if ((opcode & SCR_NO_FLUSH) &&
2121 			    !(np->features & FE_PFEN)) {
2122 				opcode = (opcode & ~SCR_NO_FLUSH);
2123 			}
2124 			break;
2125 		case 0x0:
2126 			/*
2127 			 *  MOVE/CHMOV (absolute address)
2128 			 */
2129 			if (!(np->features & FE_WIDE))
2130 				opcode = (opcode | OPC_MOVE);
2131 			relocs = 1;
2132 			break;
2133 		case 0x1:
2134 			/*
2135 			 *  MOVE/CHMOV (table indirect)
2136 			 */
2137 			if (!(np->features & FE_WIDE))
2138 				opcode = (opcode | OPC_MOVE);
2139 			relocs = 0;
2140 			break;
2141 		case 0x8:
2142 			/*
2143 			 *  JUMP / CALL
2144 			 *  dont't relocate if relative :-)
2145 			 */
2146 			if (opcode & 0x00800000)
2147 				relocs = 0;
2148 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2149 				relocs = 2;
2150 			else
2151 				relocs = 1;
2152 			break;
2153 		case 0x4:
2154 		case 0x5:
2155 		case 0x6:
2156 		case 0x7:
2157 			relocs = 1;
2158 			break;
2159 		default:
2160 			relocs = 0;
2161 			break;
2162 		};
2163 
2164 		/*
2165 		 *  Scriptify:) the opcode.
2166 		 */
2167 		*cur++ = cpu_to_scr(opcode);
2168 
2169 		/*
2170 		 *  If no relocation, assume 1 argument
2171 		 *  and just scriptize:) it.
2172 		 */
2173 		if (!relocs) {
2174 			*cur = cpu_to_scr(*cur);
2175 			++cur;
2176 			continue;
2177 		}
2178 
2179 		/*
2180 		 *  Otherwise performs all needed relocations.
2181 		 */
2182 		while (relocs--) {
2183 			old = *cur;
2184 
2185 			switch (old & RELOC_MASK) {
2186 			case RELOC_REGISTER:
2187 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2188 				break;
2189 			case RELOC_LABEL_A:
2190 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2191 				break;
2192 			case RELOC_LABEL_B:
2193 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2194 				break;
2195 			case RELOC_SOFTC:
2196 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2197 				break;
2198 			case 0:
2199 				/*
2200 				 *  Don't relocate a 0 address.
2201 				 *  They are mostly used for patched or
2202 				 *  script self-modified areas.
2203 				 */
2204 				if (old == 0) {
2205 					new = old;
2206 					break;
2207 				}
2208 				/* fall through */
2209 			default:
2210 				new = 0;
2211 				panic("sym_fw_bind_script: "
2212 				      "weird relocation %x\n", old);
2213 				break;
2214 			}
2215 
2216 			*cur++ = cpu_to_scr(new);
2217 		}
2218 	};
2219 }
2220 
2221 /*--------------------------------------------------------------------------*/
2222 /*--------------------------- END OF FIRMARES  -----------------------------*/
2223 /*--------------------------------------------------------------------------*/
2224 
2225 /*
2226  *  Function prototypes.
2227  */
2228 static void sym_save_initial_setting (hcb_p np);
2229 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2230 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2231 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2232 static void sym_chip_reset (hcb_p np);
2233 static void sym_soft_reset (hcb_p np);
2234 static void sym_start_reset (hcb_p np);
2235 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2236 static int  sym_wakeup_done (hcb_p np);
2237 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2238 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2239 static void sym_init (hcb_p np, int reason);
2240 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2241 		        u_char *fakp);
2242 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2243 			 u_char div, u_char fak);
2244 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2245 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2246 			 u_char per, u_char wide, u_char div, u_char fak);
2247 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2248 			 u_char per, u_char wide, u_char div, u_char fak);
2249 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2250 static void sym_intr (void *arg);
2251 static void sym_poll (struct cam_sim *sim);
2252 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2253 static void sym_int_sto (hcb_p np);
2254 static void sym_int_udc (hcb_p np);
2255 static void sym_int_sbmc (hcb_p np);
2256 static void sym_int_par (hcb_p np, u_short sist);
2257 static void sym_int_ma (hcb_p np);
2258 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2259 				    int task);
2260 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2261 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2262 static void sym_sir_task_recovery (hcb_p np, int num);
2263 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2264 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2265 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2266 static int  sym_show_msg (u_char * msg);
2267 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2268 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2269 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2270 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2271 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2272 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2273 static void sym_int_sir (hcb_p np);
2274 static void sym_free_ccb (hcb_p np, ccb_p cp);
2275 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2276 static ccb_p sym_alloc_ccb (hcb_p np);
2277 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2278 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2279 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2280 static int  sym_snooptest (hcb_p np);
2281 static void sym_selectclock(hcb_p np, u_char scntl3);
2282 static void sym_getclock (hcb_p np, int mult);
2283 static int  sym_getpciclock (hcb_p np);
2284 static void sym_complete_ok (hcb_p np, ccb_p cp);
2285 static void sym_complete_error (hcb_p np, ccb_p cp);
2286 static void sym_timeout (void *arg);
2287 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2288 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2289 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2290 static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
2291 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2292 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2293 				      ccb_p cp);
2294 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2295 					bus_dma_segment_t *psegs, int nsegs);
2296 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2297 				    bus_dma_segment_t *psegs, int nsegs);
2298 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2299 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2300 			      struct ccb_trans_settings *cts);
2301 static void sym_update_dflags(hcb_p np, u_char *flags,
2302 			      struct ccb_trans_settings *cts);
2303 
2304 static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2305 static int  sym_pci_probe (device_t dev);
2306 static int  sym_pci_attach (device_t dev);
2307 
2308 static void sym_pci_free (hcb_p np);
2309 static int  sym_cam_attach (hcb_p np);
2310 static void sym_cam_free (hcb_p np);
2311 
2312 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2313 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2314 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2315 
2316 /*
2317  *  Print something which allows to retrieve the controler type,
2318  *  unit, target, lun concerned by a kernel message.
2319  */
2320 static void PRINT_TARGET (hcb_p np, int target)
2321 {
2322 	printf ("%s:%d:", sym_name(np), target);
2323 }
2324 
2325 static void PRINT_LUN(hcb_p np, int target, int lun)
2326 {
2327 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2328 }
2329 
2330 static void PRINT_ADDR (ccb_p cp)
2331 {
2332 	if (cp && cp->cam_ccb)
2333 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2334 }
2335 
2336 /*
2337  *  Take into account this ccb in the freeze count.
2338  */
2339 static void sym_freeze_cam_ccb(union ccb *ccb)
2340 {
2341 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2342 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2343 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2344 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2345 		}
2346 	}
2347 }
2348 
2349 /*
2350  *  Set the status field of a CAM CCB.
2351  */
2352 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2353 {
2354 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2355 	ccb->ccb_h.status |= status;
2356 }
2357 
2358 /*
2359  *  Get the status field of a CAM CCB.
2360  */
2361 static __inline int sym_get_cam_status(union ccb *ccb)
2362 {
2363 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2364 }
2365 
2366 /*
2367  *  Enqueue a CAM CCB.
2368  */
2369 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
2370 {
2371 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2372 	ccb->ccb_h.status = CAM_REQ_INPROG;
2373 
2374 	ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb,
2375 				       ccb->ccb_h.timeout*hz/1000);
2376 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2377 	ccb->ccb_h.sym_hcb_ptr = np;
2378 
2379 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2380 }
2381 
2382 /*
2383  *  Complete a pending CAM CCB.
2384  */
2385 static void sym_xpt_done(hcb_p np, union ccb *ccb)
2386 {
2387 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2388 		untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch);
2389 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2390 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2391 		ccb->ccb_h.sym_hcb_ptr = 0;
2392 	}
2393 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2394 		sym_freeze_cam_ccb(ccb);
2395 	xpt_done(ccb);
2396 }
2397 
2398 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2399 {
2400 	sym_set_cam_status(ccb, cam_status);
2401 	sym_xpt_done(np, ccb);
2402 }
2403 
2404 /*
2405  *  SYMBIOS chip clock divisor table.
2406  *
2407  *  Divisors are multiplied by 10,000,000 in order to make
2408  *  calculations more simple.
2409  */
2410 #define _5M 5000000
2411 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2412 
2413 /*
2414  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2415  *  128 transfers. All chips support at least 16 transfers
2416  *  bursts. The 825A, 875 and 895 chips support bursts of up
2417  *  to 128 transfers and the 895A and 896 support bursts of up
2418  *  to 64 transfers. All other chips support up to 16
2419  *  transfers bursts.
2420  *
2421  *  For PCI 32 bit data transfers each transfer is a DWORD.
2422  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2423  *
2424  *  We use log base 2 (burst length) as internal code, with
2425  *  value 0 meaning "burst disabled".
2426  */
2427 
2428 /*
2429  *  Burst length from burst code.
2430  */
2431 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2432 
2433 /*
2434  *  Burst code from io register bits.
2435  */
2436 #define burst_code(dmode, ctest4, ctest5) \
2437 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2438 
2439 /*
2440  *  Set initial io register bits from burst code.
2441  */
2442 static __inline void sym_init_burst(hcb_p np, u_char bc)
2443 {
2444 	np->rv_ctest4	&= ~0x80;
2445 	np->rv_dmode	&= ~(0x3 << 6);
2446 	np->rv_ctest5	&= ~0x4;
2447 
2448 	if (!bc) {
2449 		np->rv_ctest4	|= 0x80;
2450 	}
2451 	else {
2452 		--bc;
2453 		np->rv_dmode	|= ((bc & 0x3) << 6);
2454 		np->rv_ctest5	|= (bc & 0x4);
2455 	}
2456 }
2457 
2458 
2459 /*
2460  * Print out the list of targets that have some flag disabled by user.
2461  */
2462 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2463 {
2464 	int cnt;
2465 	int i;
2466 
2467 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2468 		if (i == np->myaddr)
2469 			continue;
2470 		if (np->target[i].usrflags & mask) {
2471 			if (!cnt++)
2472 				printf("%s: %s disabled for targets",
2473 					sym_name(np), msg);
2474 			printf(" %d", i);
2475 		}
2476 	}
2477 	if (cnt)
2478 		printf(".\n");
2479 }
2480 
2481 /*
2482  *  Save initial settings of some IO registers.
2483  *  Assumed to have been set by BIOS.
2484  *  We cannot reset the chip prior to reading the
2485  *  IO registers, since informations will be lost.
2486  *  Since the SCRIPTS processor may be running, this
2487  *  is not safe on paper, but it seems to work quite
2488  *  well. :)
2489  */
2490 static void sym_save_initial_setting (hcb_p np)
2491 {
2492 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2493 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2494 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2495 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2496 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2497 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2498 	np->sv_gpcntl	= INB(nc_gpcntl);
2499 	np->sv_stest1	= INB(nc_stest1);
2500 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2501 	np->sv_stest4	= INB(nc_stest4);
2502 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2503 		np->sv_scntl4	= INB(nc_scntl4);
2504 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2505 	}
2506 	else
2507 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2508 }
2509 
2510 /*
2511  *  Prepare io register values used by sym_init() according
2512  *  to selected and supported features.
2513  */
2514 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2515 {
2516 	u_char	burst_max;
2517 	u32	period;
2518 	int i;
2519 
2520 	/*
2521 	 *  Wide ?
2522 	 */
2523 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2524 
2525 	/*
2526 	 *  Get the frequency of the chip's clock.
2527 	 */
2528 	if	(np->features & FE_QUAD)
2529 		np->multiplier	= 4;
2530 	else if	(np->features & FE_DBLR)
2531 		np->multiplier	= 2;
2532 	else
2533 		np->multiplier	= 1;
2534 
2535 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2536 	np->clock_khz	*= np->multiplier;
2537 
2538 	if (np->clock_khz != 40000)
2539 		sym_getclock(np, np->multiplier);
2540 
2541 	/*
2542 	 * Divisor to be used for async (timer pre-scaler).
2543 	 */
2544 	i = np->clock_divn - 1;
2545 	while (--i >= 0) {
2546 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2547 			++i;
2548 			break;
2549 		}
2550 	}
2551 	np->rv_scntl3 = i+1;
2552 
2553 	/*
2554 	 * The C1010 uses hardwired divisors for async.
2555 	 * So, we just throw away, the async. divisor.:-)
2556 	 */
2557 	if (np->features & FE_C10)
2558 		np->rv_scntl3 = 0;
2559 
2560 	/*
2561 	 * Minimum synchronous period factor supported by the chip.
2562 	 * Btw, 'period' is in tenths of nanoseconds.
2563 	 */
2564 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2565 	if	(period <= 250)		np->minsync = 10;
2566 	else if	(period <= 303)		np->minsync = 11;
2567 	else if	(period <= 500)		np->minsync = 12;
2568 	else				np->minsync = (period + 40 - 1) / 40;
2569 
2570 	/*
2571 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2572 	 */
2573 	if	(np->minsync < 25 &&
2574 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2575 		np->minsync = 25;
2576 	else if	(np->minsync < 12 &&
2577 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2578 		np->minsync = 12;
2579 
2580 	/*
2581 	 * Maximum synchronous period factor supported by the chip.
2582 	 */
2583 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2584 	np->maxsync = period > 2540 ? 254 : period / 10;
2585 
2586 	/*
2587 	 * If chip is a C1010, guess the sync limits in DT mode.
2588 	 */
2589 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2590 		if (np->clock_khz == 160000) {
2591 			np->minsync_dt = 9;
2592 			np->maxsync_dt = 50;
2593 			np->maxoffs_dt = 62;
2594 		}
2595 	}
2596 
2597 	/*
2598 	 *  64 bit addressing  (895A/896/1010) ?
2599 	 */
2600 	if (np->features & FE_DAC)
2601 #ifdef __LP64__
2602 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2603 #else
2604 		np->rv_ccntl1	|= (DDAC);
2605 #endif
2606 
2607 	/*
2608 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2609   	 */
2610 	if (np->features & FE_NOPM)
2611 		np->rv_ccntl0	|= (ENPMJ);
2612 
2613  	/*
2614 	 *  C1010 Errata.
2615 	 *  In dual channel mode, contention occurs if internal cycles
2616 	 *  are used. Disable internal cycles.
2617 	 */
2618 	if (np->device_id == PCI_ID_LSI53C1010 &&
2619 	    np->revision_id < 0x2)
2620 		np->rv_ccntl0	|=  DILS;
2621 
2622 	/*
2623 	 *  Select burst length (dwords)
2624 	 */
2625 	burst_max	= SYM_SETUP_BURST_ORDER;
2626 	if (burst_max == 255)
2627 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2628 				       np->sv_ctest5);
2629 	if (burst_max > 7)
2630 		burst_max = 7;
2631 	if (burst_max > np->maxburst)
2632 		burst_max = np->maxburst;
2633 
2634 	/*
2635 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2636 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2637 	 *  based transactions on LOAD/STORE instructions. So we have
2638 	 *  to prevent these chips from using such PCI transactions in
2639 	 *  this driver. The generic ncr driver that does not use
2640 	 *  LOAD/STORE instructions does not need this work-around.
2641 	 */
2642 	if ((np->device_id == PCI_ID_SYM53C810 &&
2643 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2644 	    (np->device_id == PCI_ID_SYM53C860 &&
2645 	     np->revision_id <= 0x1))
2646 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2647 
2648 	/*
2649 	 *  Select all supported special features.
2650 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2651 	 *  does not help, but burst op fetch (BOF) does.
2652 	 *  Disabling PFEN makes sure BOF will be used.
2653 	 */
2654 	if (np->features & FE_ERL)
2655 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2656 	if (np->features & FE_BOF)
2657 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2658 	if (np->features & FE_ERMP)
2659 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2660 #if 1
2661 	if ((np->features & FE_PFEN) && !np->ram_ba)
2662 #else
2663 	if (np->features & FE_PFEN)
2664 #endif
2665 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2666 	if (np->features & FE_CLSE)
2667 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2668 	if (np->features & FE_WRIE)
2669 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2670 	if (np->features & FE_DFS)
2671 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2672 
2673 	/*
2674 	 *  Select some other
2675 	 */
2676 	if (SYM_SETUP_PCI_PARITY)
2677 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2678 	if (SYM_SETUP_SCSI_PARITY)
2679 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2680 
2681 	/*
2682 	 *  Get parity checking, host ID and verbose mode from NVRAM
2683 	 */
2684 	np->myaddr = 255;
2685 	sym_nvram_setup_host (np, nvram);
2686 
2687 	/*
2688 	 *  Get SCSI addr of host adapter (set by bios?).
2689 	 */
2690 	if (np->myaddr == 255) {
2691 		np->myaddr = INB(nc_scid) & 0x07;
2692 		if (!np->myaddr)
2693 			np->myaddr = SYM_SETUP_HOST_ID;
2694 	}
2695 
2696 	/*
2697 	 *  Prepare initial io register bits for burst length
2698 	 */
2699 	sym_init_burst(np, burst_max);
2700 
2701 	/*
2702 	 *  Set SCSI BUS mode.
2703 	 *  - LVD capable chips (895/895A/896/1010) report the
2704 	 *    current BUS mode through the STEST4 IO register.
2705 	 *  - For previous generation chips (825/825A/875),
2706 	 *    user has to tell us how to check against HVD,
2707 	 *    since a 100% safe algorithm is not possible.
2708 	 */
2709 	np->scsi_mode = SMODE_SE;
2710 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2711 		np->scsi_mode = (np->sv_stest4 & SMODE);
2712 	else if	(np->features & FE_DIFF) {
2713 		if (SYM_SETUP_SCSI_DIFF == 1) {
2714 			if (np->sv_scntl3) {
2715 				if (np->sv_stest2 & 0x20)
2716 					np->scsi_mode = SMODE_HVD;
2717 			}
2718 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2719 				if (!(INB(nc_gpreg) & 0x08))
2720 					np->scsi_mode = SMODE_HVD;
2721 			}
2722 		}
2723 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2724 			np->scsi_mode = SMODE_HVD;
2725 	}
2726 	if (np->scsi_mode == SMODE_HVD)
2727 		np->rv_stest2 |= 0x20;
2728 
2729 	/*
2730 	 *  Set LED support from SCRIPTS.
2731 	 *  Ignore this feature for boards known to use a
2732 	 *  specific GPIO wiring and for the 895A, 896
2733 	 *  and 1010 that drive the LED directly.
2734 	 */
2735 	if ((SYM_SETUP_SCSI_LED ||
2736 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2737 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2738 	       np->device_id == PCI_ID_SYM53C895))) &&
2739 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2740 		np->features |= FE_LED0;
2741 
2742 	/*
2743 	 *  Set irq mode.
2744 	 */
2745 	switch(SYM_SETUP_IRQ_MODE & 3) {
2746 	case 2:
2747 		np->rv_dcntl	|= IRQM;
2748 		break;
2749 	case 1:
2750 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2751 		break;
2752 	default:
2753 		break;
2754 	}
2755 
2756 	/*
2757 	 *  Configure targets according to driver setup.
2758 	 *  If NVRAM present get targets setup from NVRAM.
2759 	 */
2760 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2761 		tcb_p tp = &np->target[i];
2762 
2763 #ifdef	FreeBSD_New_Tran_Settings
2764 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2765 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2766 #endif
2767 		tp->tinfo.user.period = np->minsync;
2768 		tp->tinfo.user.offset = np->maxoffs;
2769 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2770 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2771 		tp->usrtags = SYM_SETUP_MAX_TAG;
2772 
2773 		sym_nvram_setup_target (np, i, nvram);
2774 
2775 		/*
2776 		 *  For now, guess PPR/DT support from the period
2777 		 *  and BUS width.
2778 		 */
2779 		if (np->features & FE_ULTRA3) {
2780 			if (tp->tinfo.user.period <= 9	&&
2781 			    tp->tinfo.user.width == BUS_16_BIT) {
2782 				tp->tinfo.user.options |= PPR_OPT_DT;
2783 				tp->tinfo.user.offset   = np->maxoffs_dt;
2784 #ifdef	FreeBSD_New_Tran_Settings
2785 				tp->tinfo.user.spi_version = 3;
2786 #endif
2787 			}
2788 		}
2789 
2790 		if (!tp->usrtags)
2791 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2792 	}
2793 
2794 	/*
2795 	 *  Let user know about the settings.
2796 	 */
2797 	i = nvram->type;
2798 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2799 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2800 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2801 		np->myaddr,
2802 		(np->features & FE_ULTRA3) ? 80 :
2803 		(np->features & FE_ULTRA2) ? 40 :
2804 		(np->features & FE_ULTRA)  ? 20 : 10,
2805 		sym_scsi_bus_mode(np->scsi_mode),
2806 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2807 	/*
2808 	 *  Tell him more on demand.
2809 	 */
2810 	if (sym_verbose) {
2811 		printf("%s: %s IRQ line driver%s\n",
2812 			sym_name(np),
2813 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2814 			np->ram_ba ? ", using on-chip SRAM" : "");
2815 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2816 		if (np->features & FE_NOPM)
2817 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2818 			       sym_name(np));
2819 	}
2820 	/*
2821 	 *  And still more.
2822 	 */
2823 	if (sym_verbose > 1) {
2824 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2825 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2826 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2827 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2828 
2829 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2830 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2831 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2832 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2833 	}
2834 	/*
2835 	 *  Let user be aware of targets that have some disable flags set.
2836 	 */
2837 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2838 	if (sym_verbose)
2839 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2840 				       "SCAN FOR LUNS");
2841 
2842 	return 0;
2843 }
2844 
2845 /*
2846  *  Prepare the next negotiation message if needed.
2847  *
2848  *  Fill in the part of message buffer that contains the
2849  *  negotiation and the nego_status field of the CCB.
2850  *  Returns the size of the message in bytes.
2851  */
2852 
2853 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2854 {
2855 	tcb_p tp = &np->target[cp->target];
2856 	int msglen = 0;
2857 
2858 	/*
2859 	 *  Early C1010 chips need a work-around for DT
2860 	 *  data transfer to work.
2861 	 */
2862 	if (!(np->features & FE_U3EN))
2863 		tp->tinfo.goal.options = 0;
2864 	/*
2865 	 *  negotiate using PPR ?
2866 	 */
2867 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2868 		nego = NS_PPR;
2869 	/*
2870 	 *  negotiate wide transfers ?
2871 	 */
2872 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2873 		nego = NS_WIDE;
2874 	/*
2875 	 *  negotiate synchronous transfers?
2876 	 */
2877 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2878 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2879 		nego = NS_SYNC;
2880 
2881 	switch (nego) {
2882 	case NS_SYNC:
2883 		msgptr[msglen++] = M_EXTENDED;
2884 		msgptr[msglen++] = 3;
2885 		msgptr[msglen++] = M_X_SYNC_REQ;
2886 		msgptr[msglen++] = tp->tinfo.goal.period;
2887 		msgptr[msglen++] = tp->tinfo.goal.offset;
2888 		break;
2889 	case NS_WIDE:
2890 		msgptr[msglen++] = M_EXTENDED;
2891 		msgptr[msglen++] = 2;
2892 		msgptr[msglen++] = M_X_WIDE_REQ;
2893 		msgptr[msglen++] = tp->tinfo.goal.width;
2894 		break;
2895 	case NS_PPR:
2896 		msgptr[msglen++] = M_EXTENDED;
2897 		msgptr[msglen++] = 6;
2898 		msgptr[msglen++] = M_X_PPR_REQ;
2899 		msgptr[msglen++] = tp->tinfo.goal.period;
2900 		msgptr[msglen++] = 0;
2901 		msgptr[msglen++] = tp->tinfo.goal.offset;
2902 		msgptr[msglen++] = tp->tinfo.goal.width;
2903 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2904 		break;
2905 	};
2906 
2907 	cp->nego_status = nego;
2908 
2909 	if (nego) {
2910 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2911 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2912 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2913 					  nego == NS_WIDE ? "wide msgout" :
2914 					  "ppr msgout", msgptr);
2915 		};
2916 	};
2917 
2918 	return msglen;
2919 }
2920 
2921 /*
2922  *  Insert a job into the start queue.
2923  */
2924 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2925 {
2926 	u_short	qidx;
2927 
2928 #ifdef SYM_CONF_IARB_SUPPORT
2929 	/*
2930 	 *  If the previously queued CCB is not yet done,
2931 	 *  set the IARB hint. The SCRIPTS will go with IARB
2932 	 *  for this job when starting the previous one.
2933 	 *  We leave devices a chance to win arbitration by
2934 	 *  not using more than 'iarb_max' consecutive
2935 	 *  immediate arbitrations.
2936 	 */
2937 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2938 		np->last_cp->host_flags |= HF_HINT_IARB;
2939 		++np->iarb_count;
2940 	}
2941 	else
2942 		np->iarb_count = 0;
2943 	np->last_cp = cp;
2944 #endif
2945 
2946 	/*
2947 	 *  Insert first the idle task and then our job.
2948 	 *  The MB should ensure proper ordering.
2949 	 */
2950 	qidx = np->squeueput + 2;
2951 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2952 
2953 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2954 	MEMORY_BARRIER();
2955 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2956 
2957 	np->squeueput = qidx;
2958 
2959 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2960 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2961 
2962 	/*
2963 	 *  Script processor may be waiting for reselect.
2964 	 *  Wake it up.
2965 	 */
2966 	MEMORY_BARRIER();
2967 	OUTB (nc_istat, SIGP|np->istat_sem);
2968 }
2969 
2970 
2971 /*
2972  *  Soft reset the chip.
2973  *
2974  *  Raising SRST when the chip is running may cause
2975  *  problems on dual function chips (see below).
2976  *  On the other hand, LVD devices need some delay
2977  *  to settle and report actual BUS mode in STEST4.
2978  */
2979 static void sym_chip_reset (hcb_p np)
2980 {
2981 	OUTB (nc_istat, SRST);
2982 	UDELAY (10);
2983 	OUTB (nc_istat, 0);
2984 	UDELAY(2000);	/* For BUS MODE to settle */
2985 }
2986 
2987 /*
2988  *  Soft reset the chip.
2989  *
2990  *  Some 896 and 876 chip revisions may hang-up if we set
2991  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2992  *  are running.
2993  *  So, we need to abort the current operation prior to
2994  *  soft resetting the chip.
2995  */
2996 static void sym_soft_reset (hcb_p np)
2997 {
2998 	u_char istat;
2999 	int i;
3000 
3001 	OUTB (nc_istat, CABRT);
3002 	for (i = 1000000 ; i ; --i) {
3003 		istat = INB (nc_istat);
3004 		if (istat & SIP) {
3005 			INW (nc_sist);
3006 			continue;
3007 		}
3008 		if (istat & DIP) {
3009 			OUTB (nc_istat, 0);
3010 			INB (nc_dstat);
3011 			break;
3012 		}
3013 	}
3014 	if (!i)
3015 		printf("%s: unable to abort current chip operation.\n",
3016 			sym_name(np));
3017 	sym_chip_reset (np);
3018 }
3019 
3020 /*
3021  *  Start reset process.
3022  *
3023  *  The interrupt handler will reinitialize the chip.
3024  */
3025 static void sym_start_reset(hcb_p np)
3026 {
3027 	(void) sym_reset_scsi_bus(np, 1);
3028 }
3029 
3030 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3031 {
3032 	u32 term;
3033 	int retv = 0;
3034 
3035 	sym_soft_reset(np);	/* Soft reset the chip */
3036 	if (enab_int)
3037 		OUTW (nc_sien, RST);
3038 	/*
3039 	 *  Enable Tolerant, reset IRQD if present and
3040 	 *  properly set IRQ mode, prior to resetting the bus.
3041 	 */
3042 	OUTB (nc_stest3, TE);
3043 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3044 	OUTB (nc_scntl1, CRST);
3045 	UDELAY (200);
3046 
3047 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3048 		goto out;
3049 	/*
3050 	 *  Check for no terminators or SCSI bus shorts to ground.
3051 	 *  Read SCSI data bus, data parity bits and control signals.
3052 	 *  We are expecting RESET to be TRUE and other signals to be
3053 	 *  FALSE.
3054 	 */
3055 	term =	INB(nc_sstat0);
3056 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3057 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3058 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3059 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3060 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3061 
3062 	if (!(np->features & FE_WIDE))
3063 		term &= 0x3ffff;
3064 
3065 	if (term != (2<<7)) {
3066 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3067 			sym_name(np));
3068 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3069 			"0x%lx, expecting 0x%lx\n",
3070 			sym_name(np),
3071 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3072 			(u_long)term, (u_long)(2<<7));
3073 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3074 			retv = 1;
3075 	}
3076 out:
3077 	OUTB (nc_scntl1, 0);
3078 	/* MDELAY(100); */
3079 	return retv;
3080 }
3081 
3082 /*
3083  *  The chip may have completed jobs. Look at the DONE QUEUE.
3084  *
3085  *  On architectures that may reorder LOAD/STORE operations,
3086  *  a memory barrier may be needed after the reading of the
3087  *  so-called `flag' and prior to dealing with the data.
3088  */
3089 static int sym_wakeup_done (hcb_p np)
3090 {
3091 	ccb_p cp;
3092 	int i, n;
3093 	u32 dsa;
3094 
3095 	n = 0;
3096 	i = np->dqueueget;
3097 	while (1) {
3098 		dsa = scr_to_cpu(np->dqueue[i]);
3099 		if (!dsa)
3100 			break;
3101 		np->dqueue[i] = 0;
3102 		if ((i = i+2) >= MAX_QUEUE*2)
3103 			i = 0;
3104 
3105 		cp = sym_ccb_from_dsa(np, dsa);
3106 		if (cp) {
3107 			MEMORY_BARRIER();
3108 			sym_complete_ok (np, cp);
3109 			++n;
3110 		}
3111 		else
3112 			printf ("%s: bad DSA (%x) in done queue.\n",
3113 				sym_name(np), (u_int) dsa);
3114 	}
3115 	np->dqueueget = i;
3116 
3117 	return n;
3118 }
3119 
3120 /*
3121  *  Complete all active CCBs with error.
3122  *  Used on CHIP/SCSI RESET.
3123  */
3124 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3125 {
3126 	/*
3127 	 *  Move all active CCBs to the COMP queue
3128 	 *  and flush this queue.
3129 	 */
3130 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3131 	sym_que_init(&np->busy_ccbq);
3132 	sym_flush_comp_queue(np, cam_status);
3133 }
3134 
3135 /*
3136  *  Start chip.
3137  *
3138  *  'reason' means:
3139  *     0: initialisation.
3140  *     1: SCSI BUS RESET delivered or received.
3141  *     2: SCSI BUS MODE changed.
3142  */
3143 static void sym_init (hcb_p np, int reason)
3144 {
3145  	int	i;
3146 	u32	phys;
3147 
3148  	/*
3149 	 *  Reset chip if asked, otherwise just clear fifos.
3150  	 */
3151 	if (reason == 1)
3152 		sym_soft_reset(np);
3153 	else {
3154 		OUTB (nc_stest3, TE|CSF);
3155 		OUTONB (nc_ctest3, CLF);
3156 	}
3157 
3158 	/*
3159 	 *  Clear Start Queue
3160 	 */
3161 	phys = np->squeue_ba;
3162 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3163 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3164 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3165 	}
3166 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3167 
3168 	/*
3169 	 *  Start at first entry.
3170 	 */
3171 	np->squeueput = 0;
3172 
3173 	/*
3174 	 *  Clear Done Queue
3175 	 */
3176 	phys = np->dqueue_ba;
3177 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3178 		np->dqueue[i]   = 0;
3179 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3180 	}
3181 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3182 
3183 	/*
3184 	 *  Start at first entry.
3185 	 */
3186 	np->dqueueget = 0;
3187 
3188 	/*
3189 	 *  Install patches in scripts.
3190 	 *  This also let point to first position the start
3191 	 *  and done queue pointers used from SCRIPTS.
3192 	 */
3193 	np->fw_patch(np);
3194 
3195 	/*
3196 	 *  Wakeup all pending jobs.
3197 	 */
3198 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3199 
3200 	/*
3201 	 *  Init chip.
3202 	 */
3203 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3204 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3205 
3206 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3207 					/*  full arb., ena parity, par->ATN  */
3208 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3209 
3210 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3211 
3212 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3213 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3214 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3215 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3216 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3217 
3218 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3219 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3220 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3221 
3222 	/* Extended Sreq/Sack filtering not supported on the C10 */
3223 	if (np->features & FE_C10)
3224 		OUTB (nc_stest2, np->rv_stest2);
3225 	else
3226 		OUTB (nc_stest2, EXT|np->rv_stest2);
3227 
3228 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3229 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3230 
3231 	/*
3232 	 *  For now, disable AIP generation on C1010-66.
3233 	 */
3234 	if (np->device_id == PCI_ID_LSI53C1010_2)
3235 		OUTB (nc_aipcntl1, DISAIP);
3236 
3237 	/*
3238 	 *  C10101 Errata.
3239 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3240 	 *  STEST1 register to disable SGE. We probably should do
3241 	 *  that from SCRIPTS for each selection/reselection, but
3242 	 *  I just don't want. :)
3243 	 */
3244 	if (np->device_id == PCI_ID_LSI53C1010 &&
3245 	    /* np->revision_id < 0xff */ 1)
3246 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3247 
3248 	/*
3249 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3250 	 *  Disable overlapped arbitration for some dual function devices,
3251 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3252 	 */
3253 	if (np->device_id == PCI_ID_SYM53C875)
3254 		OUTB (nc_ctest0, (1<<5));
3255 	else if (np->device_id == PCI_ID_SYM53C896)
3256 		np->rv_ccntl0 |= DPR;
3257 
3258 	/*
3259 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3260 	 *  and/or hardware phase mismatch, since only such chips
3261 	 *  seem to support those IO registers.
3262 	 */
3263 	if (np->features & (FE_DAC|FE_NOPM)) {
3264 		OUTB (nc_ccntl0, np->rv_ccntl0);
3265 		OUTB (nc_ccntl1, np->rv_ccntl1);
3266 	}
3267 
3268 	/*
3269 	 *  If phase mismatch handled by scripts (895A/896/1010),
3270 	 *  set PM jump addresses.
3271 	 */
3272 	if (np->features & FE_NOPM) {
3273 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3274 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3275 	}
3276 
3277 	/*
3278 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3279 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3280 	 */
3281 	if (np->features & FE_LED0)
3282 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3283 	else if (np->features & FE_LEDC)
3284 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3285 
3286 	/*
3287 	 *      enable ints
3288 	 */
3289 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3290 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3291 
3292 	/*
3293 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3294 	 *  Try to eat the spurious SBMC interrupt that may occur when
3295 	 *  we reset the chip but not the SCSI BUS (at initialization).
3296 	 */
3297 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3298 		OUTONW (nc_sien, SBMC);
3299 		if (reason == 0) {
3300 			MDELAY(100);
3301 			INW (nc_sist);
3302 		}
3303 		np->scsi_mode = INB (nc_stest4) & SMODE;
3304 	}
3305 
3306 	/*
3307 	 *  Fill in target structure.
3308 	 *  Reinitialize usrsync.
3309 	 *  Reinitialize usrwide.
3310 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3311 	 */
3312 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3313 		tcb_p tp = &np->target[i];
3314 
3315 		tp->to_reset  = 0;
3316 		tp->head.sval = 0;
3317 		tp->head.wval = np->rv_scntl3;
3318 		tp->head.uval = 0;
3319 
3320 		tp->tinfo.current.period = 0;
3321 		tp->tinfo.current.offset = 0;
3322 		tp->tinfo.current.width  = BUS_8_BIT;
3323 		tp->tinfo.current.options = 0;
3324 	}
3325 
3326 	/*
3327 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3328 	 *  and start script processor.
3329 	 */
3330 	if (np->ram_ba) {
3331 		if (sym_verbose > 1)
3332 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3333 				sym_name(np));
3334 		if (np->ram_ws == 8192) {
3335 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3336 			OUTL (nc_mmws, np->scr_ram_seg);
3337 			OUTL (nc_mmrs, np->scr_ram_seg);
3338 			OUTL (nc_sfs,  np->scr_ram_seg);
3339 			phys = SCRIPTB_BA (np, start64);
3340 		}
3341 		else
3342 			phys = SCRIPTA_BA (np, init);
3343 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3344 	}
3345 	else
3346 		phys = SCRIPTA_BA (np, init);
3347 
3348 	np->istat_sem = 0;
3349 
3350 	OUTL (nc_dsa, np->hcb_ba);
3351 	OUTL_DSP (phys);
3352 
3353 	/*
3354 	 *  Notify the XPT about the RESET condition.
3355 	 */
3356 	if (reason != 0)
3357 		xpt_async(AC_BUS_RESET, np->path, NULL);
3358 }
3359 
3360 /*
3361  *  Get clock factor and sync divisor for a given
3362  *  synchronous factor period.
3363  */
3364 static int
3365 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3366 {
3367 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3368 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3369 	u32	fak;			/* Sync factor in sxfer		*/
3370 	u32	per;			/* Period in tenths of ns	*/
3371 	u32	kpc;			/* (per * clk)			*/
3372 	int	ret;
3373 
3374 	/*
3375 	 *  Compute the synchronous period in tenths of nano-seconds
3376 	 */
3377 	if (dt && sfac <= 9)	per = 125;
3378 	else if	(sfac <= 10)	per = 250;
3379 	else if	(sfac == 11)	per = 303;
3380 	else if	(sfac == 12)	per = 500;
3381 	else			per = 40 * sfac;
3382 	ret = per;
3383 
3384 	kpc = per * clk;
3385 	if (dt)
3386 		kpc <<= 1;
3387 
3388 	/*
3389 	 *  For earliest C10 revision 0, we cannot use extra
3390 	 *  clocks for the setting of the SCSI clocking.
3391 	 *  Note that this limits the lowest sync data transfer
3392 	 *  to 5 Mega-transfers per second and may result in
3393 	 *  using higher clock divisors.
3394 	 */
3395 #if 1
3396 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3397 		/*
3398 		 *  Look for the lowest clock divisor that allows an
3399 		 *  output speed not faster than the period.
3400 		 */
3401 		while (div > 0) {
3402 			--div;
3403 			if (kpc > (div_10M[div] << 2)) {
3404 				++div;
3405 				break;
3406 			}
3407 		}
3408 		fak = 0;			/* No extra clocks */
3409 		if (div == np->clock_divn) {	/* Are we too fast ? */
3410 			ret = -1;
3411 		}
3412 		*divp = div;
3413 		*fakp = fak;
3414 		return ret;
3415 	}
3416 #endif
3417 
3418 	/*
3419 	 *  Look for the greatest clock divisor that allows an
3420 	 *  input speed faster than the period.
3421 	 */
3422 	while (div-- > 0)
3423 		if (kpc >= (div_10M[div] << 2)) break;
3424 
3425 	/*
3426 	 *  Calculate the lowest clock factor that allows an output
3427 	 *  speed not faster than the period, and the max output speed.
3428 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3429 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3430 	 */
3431 	if (dt) {
3432 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3433 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3434 	}
3435 	else {
3436 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3437 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3438 	}
3439 
3440 	/*
3441 	 *  Check against our hardware limits, or bugs :).
3442 	 */
3443 	if (fak < 0)	{fak = 0; ret = -1;}
3444 	if (fak > 2)	{fak = 2; ret = -1;}
3445 
3446 	/*
3447 	 *  Compute and return sync parameters.
3448 	 */
3449 	*divp = div;
3450 	*fakp = fak;
3451 
3452 	return ret;
3453 }
3454 
3455 /*
3456  *  Tell the SCSI layer about the new transfer parameters.
3457  */
3458 static void
3459 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3460 {
3461 	struct ccb_trans_settings cts;
3462 	struct cam_path *path;
3463 	int sts;
3464 	tcb_p tp = &np->target[target];
3465 
3466 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3467 	                      CAM_LUN_WILDCARD);
3468 	if (sts != CAM_REQ_CMP)
3469 		return;
3470 
3471 	bzero(&cts, sizeof(cts));
3472 
3473 #ifdef	FreeBSD_New_Tran_Settings
3474 #define	cts__scsi (cts.proto_specific.scsi)
3475 #define	cts__spi  (cts.xport_specific.spi)
3476 
3477 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3478 	cts.protocol  = PROTO_SCSI;
3479 	cts.transport = XPORT_SPI;
3480 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3481 	cts.transport_version = tp->tinfo.current.spi_version;
3482 
3483 	cts__spi.valid = spi_valid;
3484 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3485 		cts__spi.sync_period = tp->tinfo.current.period;
3486 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3487 		cts__spi.sync_offset = tp->tinfo.current.offset;
3488 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3489 		cts__spi.bus_width   = tp->tinfo.current.width;
3490 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3491 		cts__spi.ppr_options = tp->tinfo.current.options;
3492 #undef cts__spi
3493 #undef cts__scsi
3494 #else
3495 	cts.valid = spi_valid;
3496 	if (spi_valid & CCB_TRANS_SYNC_RATE_VALID)
3497 		cts.sync_period = tp->tinfo.current.period;
3498 	if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID)
3499 		cts.sync_offset = tp->tinfo.current.offset;
3500 	if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID)
3501 		cts.bus_width   = tp->tinfo.current.width;
3502 #endif
3503 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3504 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3505 	xpt_free_path(path);
3506 }
3507 
3508 #ifdef	FreeBSD_New_Tran_Settings
3509 #define SYM_SPI_VALID_WDTR		\
3510 	CTS_SPI_VALID_BUS_WIDTH |	\
3511 	CTS_SPI_VALID_SYNC_RATE |	\
3512 	CTS_SPI_VALID_SYNC_OFFSET
3513 #define SYM_SPI_VALID_SDTR		\
3514 	CTS_SPI_VALID_SYNC_RATE |	\
3515 	CTS_SPI_VALID_SYNC_OFFSET
3516 #define SYM_SPI_VALID_PPR		\
3517 	CTS_SPI_VALID_PPR_OPTIONS |	\
3518 	CTS_SPI_VALID_BUS_WIDTH |	\
3519 	CTS_SPI_VALID_SYNC_RATE |	\
3520 	CTS_SPI_VALID_SYNC_OFFSET
3521 #else
3522 #define SYM_SPI_VALID_WDTR		\
3523 	CCB_TRANS_BUS_WIDTH_VALID |	\
3524 	CCB_TRANS_SYNC_RATE_VALID |	\
3525 	CCB_TRANS_SYNC_OFFSET_VALID
3526 #define SYM_SPI_VALID_SDTR		\
3527 	CCB_TRANS_SYNC_RATE_VALID |	\
3528 	CCB_TRANS_SYNC_OFFSET_VALID
3529 #define SYM_SPI_VALID_PPR		\
3530 	CCB_TRANS_BUS_WIDTH_VALID |	\
3531 	CCB_TRANS_SYNC_RATE_VALID |	\
3532 	CCB_TRANS_SYNC_OFFSET_VALID
3533 #endif
3534 
3535 /*
3536  *  We received a WDTR.
3537  *  Let everything be aware of the changes.
3538  */
3539 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3540 {
3541 	tcb_p tp = &np->target[cp->target];
3542 
3543 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3544 
3545 	/*
3546 	 *  Tell the SCSI layer about the new transfer parameters.
3547 	 */
3548 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3549 	tp->tinfo.current.offset = 0;
3550 	tp->tinfo.current.period = 0;
3551 	tp->tinfo.current.options = 0;
3552 
3553 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3554 }
3555 
3556 /*
3557  *  We received a SDTR.
3558  *  Let everything be aware of the changes.
3559  */
3560 static void
3561 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3562 {
3563 	tcb_p tp = &np->target[cp->target];
3564 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3565 
3566 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3567 
3568 	/*
3569 	 *  Tell the SCSI layer about the new transfer parameters.
3570 	 */
3571 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3572 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3573 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3574 
3575 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3576 }
3577 
3578 /*
3579  *  We received a PPR.
3580  *  Let everything be aware of the changes.
3581  */
3582 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3583 			 u_char per, u_char wide, u_char div, u_char fak)
3584 {
3585 	tcb_p tp = &np->target[cp->target];
3586 
3587 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3588 
3589 	/*
3590 	 *  Tell the SCSI layer about the new transfer parameters.
3591 	 */
3592 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3593 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3594 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3595 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3596 
3597 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3598 }
3599 
3600 /*
3601  *  Switch trans mode for current job and it's target.
3602  */
3603 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3604 			 u_char per, u_char wide, u_char div, u_char fak)
3605 {
3606 	SYM_QUEHEAD *qp;
3607 	union	ccb *ccb;
3608 	tcb_p tp;
3609 	u_char target = INB (nc_sdid) & 0x0f;
3610 	u_char sval, wval, uval;
3611 
3612 	assert (cp);
3613 	if (!cp) return;
3614 	ccb = cp->cam_ccb;
3615 	assert (ccb);
3616 	if (!ccb) return;
3617 	assert (target == (cp->target & 0xf));
3618 	tp = &np->target[target];
3619 
3620 	sval = tp->head.sval;
3621 	wval = tp->head.wval;
3622 	uval = tp->head.uval;
3623 
3624 #if 0
3625 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3626 		sval, wval, uval, np->rv_scntl3);
3627 #endif
3628 	/*
3629 	 *  Set the offset.
3630 	 */
3631 	if (!(np->features & FE_C10))
3632 		sval = (sval & ~0x1f) | ofs;
3633 	else
3634 		sval = (sval & ~0x3f) | ofs;
3635 
3636 	/*
3637 	 *  Set the sync divisor and extra clock factor.
3638 	 */
3639 	if (ofs != 0) {
3640 		wval = (wval & ~0x70) | ((div+1) << 4);
3641 		if (!(np->features & FE_C10))
3642 			sval = (sval & ~0xe0) | (fak << 5);
3643 		else {
3644 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3645 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3646 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3647 		}
3648 	}
3649 
3650 	/*
3651 	 *  Set the bus width.
3652 	 */
3653 	wval = wval & ~EWS;
3654 	if (wide != 0)
3655 		wval |= EWS;
3656 
3657 	/*
3658 	 *  Set misc. ultra enable bits.
3659 	 */
3660 	if (np->features & FE_C10) {
3661 		uval = uval & ~(U3EN|AIPCKEN);
3662 		if (dt)	{
3663 			assert(np->features & FE_U3EN);
3664 			uval |= U3EN;
3665 		}
3666 	}
3667 	else {
3668 		wval = wval & ~ULTRA;
3669 		if (per <= 12)	wval |= ULTRA;
3670 	}
3671 
3672 	/*
3673 	 *   Stop there if sync parameters are unchanged.
3674 	 */
3675 	if (tp->head.sval == sval &&
3676 	    tp->head.wval == wval &&
3677 	    tp->head.uval == uval)
3678 		return;
3679 	tp->head.sval = sval;
3680 	tp->head.wval = wval;
3681 	tp->head.uval = uval;
3682 
3683 	/*
3684 	 *  Disable extended Sreq/Sack filtering if per < 50.
3685 	 *  Not supported on the C1010.
3686 	 */
3687 	if (per < 50 && !(np->features & FE_C10))
3688 		OUTOFFB (nc_stest2, EXT);
3689 
3690 	/*
3691 	 *  set actual value and sync_status
3692 	 */
3693 	OUTB (nc_sxfer,  tp->head.sval);
3694 	OUTB (nc_scntl3, tp->head.wval);
3695 
3696 	if (np->features & FE_C10) {
3697 		OUTB (nc_scntl4, tp->head.uval);
3698 	}
3699 
3700 	/*
3701 	 *  patch ALL busy ccbs of this target.
3702 	 */
3703 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3704 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3705 		if (cp->target != target)
3706 			continue;
3707 		cp->phys.select.sel_scntl3 = tp->head.wval;
3708 		cp->phys.select.sel_sxfer  = tp->head.sval;
3709 		if (np->features & FE_C10) {
3710 			cp->phys.select.sel_scntl4 = tp->head.uval;
3711 		}
3712 	}
3713 }
3714 
3715 /*
3716  *  log message for real hard errors
3717  *
3718  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3719  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3720  *
3721  *  exception register:
3722  *  	ds:	dstat
3723  *  	si:	sist
3724  *
3725  *  SCSI bus lines:
3726  *  	so:	control lines as driven by chip.
3727  *  	si:	control lines as seen by chip.
3728  *  	sd:	scsi data lines as seen by chip.
3729  *
3730  *  wide/fastmode:
3731  *  	sxfer:	(see the manual)
3732  *  	scntl3:	(see the manual)
3733  *
3734  *  current script command:
3735  *  	dsp:	script address (relative to start of script).
3736  *  	dbc:	first word of script command.
3737  *
3738  *  First 24 register of the chip:
3739  *  	r0..rf
3740  */
3741 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3742 {
3743 	u32	dsp;
3744 	int	script_ofs;
3745 	int	script_size;
3746 	char	*script_name;
3747 	u_char	*script_base;
3748 	int	i;
3749 
3750 	dsp	= INL (nc_dsp);
3751 
3752 	if	(dsp > np->scripta_ba &&
3753 		 dsp <= np->scripta_ba + np->scripta_sz) {
3754 		script_ofs	= dsp - np->scripta_ba;
3755 		script_size	= np->scripta_sz;
3756 		script_base	= (u_char *) np->scripta0;
3757 		script_name	= "scripta";
3758 	}
3759 	else if (np->scriptb_ba < dsp &&
3760 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3761 		script_ofs	= dsp - np->scriptb_ba;
3762 		script_size	= np->scriptb_sz;
3763 		script_base	= (u_char *) np->scriptb0;
3764 		script_name	= "scriptb";
3765 	} else {
3766 		script_ofs	= dsp;
3767 		script_size	= 0;
3768 		script_base	= 0;
3769 		script_name	= "mem";
3770 	}
3771 
3772 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3773 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3774 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3775 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3776 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3777 		(unsigned)INL (nc_dbc));
3778 
3779 	if (((script_ofs & 3) == 0) &&
3780 	    (unsigned)script_ofs < script_size) {
3781 		printf ("%s: script cmd = %08x\n", sym_name(np),
3782 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3783 	}
3784 
3785         printf ("%s: regdump:", sym_name(np));
3786         for (i=0; i<24;i++)
3787             printf (" %02x", (unsigned)INB_OFF(i));
3788         printf (".\n");
3789 
3790 	/*
3791 	 *  PCI BUS error, read the PCI ststus register.
3792 	 */
3793 	if (dstat & (MDPE|BF)) {
3794 		u_short pci_sts;
3795 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3796 		if (pci_sts & 0xf900) {
3797 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3798 			printf("%s: PCI STATUS = 0x%04x\n",
3799 				sym_name(np), pci_sts & 0xf900);
3800 		}
3801 	}
3802 }
3803 
3804 /*
3805  *  chip interrupt handler
3806  *
3807  *  In normal situations, interrupt conditions occur one at
3808  *  a time. But when something bad happens on the SCSI BUS,
3809  *  the chip may raise several interrupt flags before
3810  *  stopping and interrupting the CPU. The additionnal
3811  *  interrupt flags are stacked in some extra registers
3812  *  after the SIP and/or DIP flag has been raised in the
3813  *  ISTAT. After the CPU has read the interrupt condition
3814  *  flag from SIST or DSTAT, the chip unstacks the other
3815  *  interrupt flags and sets the corresponding bits in
3816  *  SIST or DSTAT. Since the chip starts stacking once the
3817  *  SIP or DIP flag is set, there is a small window of time
3818  *  where the stacking does not occur.
3819  *
3820  *  Typically, multiple interrupt conditions may happen in
3821  *  the following situations:
3822  *
3823  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3824  *    When a parity error is detected in input phase
3825  *    and the device switches to msg-in phase inside a
3826  *    block MOV.
3827  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3828  *    When a stupid device does not want to handle the
3829  *    recovery of an SCSI parity error.
3830  *  - Some combinations of STO, PAR, UDC, ...
3831  *    When using non compliant SCSI stuff, when user is
3832  *    doing non compliant hot tampering on the BUS, when
3833  *    something really bad happens to a device, etc ...
3834  *
3835  *  The heuristic suggested by SYMBIOS to handle
3836  *  multiple interrupts is to try unstacking all
3837  *  interrupts conditions and to handle them on some
3838  *  priority based on error severity.
3839  *  This will work when the unstacking has been
3840  *  successful, but we cannot be 100 % sure of that,
3841  *  since the CPU may have been faster to unstack than
3842  *  the chip is able to stack. Hmmm ... But it seems that
3843  *  such a situation is very unlikely to happen.
3844  *
3845  *  If this happen, for example STO caught by the CPU
3846  *  then UDC happenning before the CPU have restarted
3847  *  the SCRIPTS, the driver may wrongly complete the
3848  *  same command on UDC, since the SCRIPTS didn't restart
3849  *  and the DSA still points to the same command.
3850  *  We avoid this situation by setting the DSA to an
3851  *  invalid value when the CCB is completed and before
3852  *  restarting the SCRIPTS.
3853  *
3854  *  Another issue is that we need some section of our
3855  *  recovery procedures to be somehow uninterruptible but
3856  *  the SCRIPTS processor does not provides such a
3857  *  feature. For this reason, we handle recovery preferently
3858  *  from the C code and check against some SCRIPTS critical
3859  *  sections from the C code.
3860  *
3861  *  Hopefully, the interrupt handling of the driver is now
3862  *  able to resist to weird BUS error conditions, but donnot
3863  *  ask me for any guarantee that it will never fail. :-)
3864  *  Use at your own decision and risk.
3865  */
3866 
3867 static void sym_intr1 (hcb_p np)
3868 {
3869 	u_char	istat, istatc;
3870 	u_char	dstat;
3871 	u_short	sist;
3872 
3873 	/*
3874 	 *  interrupt on the fly ?
3875 	 *
3876 	 *  A `dummy read' is needed to ensure that the
3877 	 *  clear of the INTF flag reaches the device
3878 	 *  before the scanning of the DONE queue.
3879 	 */
3880 	istat = INB (nc_istat);
3881 	if (istat & INTF) {
3882 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3883 		istat = INB (nc_istat);		/* DUMMY READ */
3884 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3885 		(void)sym_wakeup_done (np);
3886 	};
3887 
3888 	if (!(istat & (SIP|DIP)))
3889 		return;
3890 
3891 #if 0	/* We should never get this one */
3892 	if (istat & CABRT)
3893 		OUTB (nc_istat, CABRT);
3894 #endif
3895 
3896 	/*
3897 	 *  PAR and MA interrupts may occur at the same time,
3898 	 *  and we need to know of both in order to handle
3899 	 *  this situation properly. We try to unstack SCSI
3900 	 *  interrupts for that reason. BTW, I dislike a LOT
3901 	 *  such a loop inside the interrupt routine.
3902 	 *  Even if DMA interrupt stacking is very unlikely to
3903 	 *  happen, we also try unstacking these ones, since
3904 	 *  this has no performance impact.
3905 	 */
3906 	sist	= 0;
3907 	dstat	= 0;
3908 	istatc	= istat;
3909 	do {
3910 		if (istatc & SIP)
3911 			sist  |= INW (nc_sist);
3912 		if (istatc & DIP)
3913 			dstat |= INB (nc_dstat);
3914 		istatc = INB (nc_istat);
3915 		istat |= istatc;
3916 	} while (istatc & (SIP|DIP));
3917 
3918 	if (DEBUG_FLAGS & DEBUG_TINY)
3919 		printf ("<%d|%x:%x|%x:%x>",
3920 			(int)INB(nc_scr0),
3921 			dstat,sist,
3922 			(unsigned)INL(nc_dsp),
3923 			(unsigned)INL(nc_dbc));
3924 	/*
3925 	 *  On paper, a memory barrier may be needed here.
3926 	 *  And since we are paranoid ... :)
3927 	 */
3928 	MEMORY_BARRIER();
3929 
3930 	/*
3931 	 *  First, interrupts we want to service cleanly.
3932 	 *
3933 	 *  Phase mismatch (MA) is the most frequent interrupt
3934 	 *  for chip earlier than the 896 and so we have to service
3935 	 *  it as quickly as possible.
3936 	 *  A SCSI parity error (PAR) may be combined with a phase
3937 	 *  mismatch condition (MA).
3938 	 *  Programmed interrupts (SIR) are used to call the C code
3939 	 *  from SCRIPTS.
3940 	 *  The single step interrupt (SSI) is not used in this
3941 	 *  driver.
3942 	 */
3943 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3944 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3945 		if	(sist & PAR)	sym_int_par (np, sist);
3946 		else if (sist & MA)	sym_int_ma (np);
3947 		else if (dstat & SIR)	sym_int_sir (np);
3948 		else if (dstat & SSI)	OUTONB_STD ();
3949 		else			goto unknown_int;
3950 		return;
3951 	};
3952 
3953 	/*
3954 	 *  Now, interrupts that donnot happen in normal
3955 	 *  situations and that we may need to recover from.
3956 	 *
3957 	 *  On SCSI RESET (RST), we reset everything.
3958 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3959 	 *  active CCBs with RESET status, prepare all devices
3960 	 *  for negotiating again and restart the SCRIPTS.
3961 	 *  On STO and UDC, we complete the CCB with the corres-
3962 	 *  ponding status and restart the SCRIPTS.
3963 	 */
3964 	if (sist & RST) {
3965 		xpt_print_path(np->path);
3966 		printf("SCSI BUS reset detected.\n");
3967 		sym_init (np, 1);
3968 		return;
3969 	};
3970 
3971 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3972 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3973 
3974 	if (!(sist  & (GEN|HTH|SGE)) &&
3975 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3976 		if	(sist & SBMC)	sym_int_sbmc (np);
3977 		else if (sist & STO)	sym_int_sto (np);
3978 		else if (sist & UDC)	sym_int_udc (np);
3979 		else			goto unknown_int;
3980 		return;
3981 	};
3982 
3983 	/*
3984 	 *  Now, interrupts we are not able to recover cleanly.
3985 	 *
3986 	 *  Log message for hard errors.
3987 	 *  Reset everything.
3988 	 */
3989 
3990 	sym_log_hard_error(np, sist, dstat);
3991 
3992 	if ((sist & (GEN|HTH|SGE)) ||
3993 		(dstat & (MDPE|BF|ABRT|IID))) {
3994 		sym_start_reset(np);
3995 		return;
3996 	};
3997 
3998 unknown_int:
3999 	/*
4000 	 *  We just miss the cause of the interrupt. :(
4001 	 *  Print a message. The timeout will do the real work.
4002 	 */
4003 	printf(	"%s: unknown interrupt(s) ignored, "
4004 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
4005 		sym_name(np), istat, dstat, sist);
4006 }
4007 
4008 static void sym_intr(void *arg)
4009 {
4010 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
4011 	sym_intr1((hcb_p) arg);
4012 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
4013 	return;
4014 }
4015 
4016 static void sym_poll(struct cam_sim *sim)
4017 {
4018 	int s = splcam();
4019 	sym_intr(cam_sim_softc(sim));
4020 	splx(s);
4021 }
4022 
4023 
4024 /*
4025  *  generic recovery from scsi interrupt
4026  *
4027  *  The doc says that when the chip gets an SCSI interrupt,
4028  *  it tries to stop in an orderly fashion, by completing
4029  *  an instruction fetch that had started or by flushing
4030  *  the DMA fifo for a write to memory that was executing.
4031  *  Such a fashion is not enough to know if the instruction
4032  *  that was just before the current DSP value has been
4033  *  executed or not.
4034  *
4035  *  There are some small SCRIPTS sections that deal with
4036  *  the start queue and the done queue that may break any
4037  *  assomption from the C code if we are interrupted
4038  *  inside, so we reset if this happens. Btw, since these
4039  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4040  *  started SCSI operations, it is very unlikely to happen.
4041  *
4042  *  All the driver data structures are supposed to be
4043  *  allocated from the same 4 GB memory window, so there
4044  *  is a 1 to 1 relationship between DSA and driver data
4045  *  structures. Since we are careful :) to invalidate the
4046  *  DSA when we complete a command or when the SCRIPTS
4047  *  pushes a DSA into a queue, we can trust it when it
4048  *  points to a CCB.
4049  */
4050 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4051 {
4052 	u32	dsp	= INL (nc_dsp);
4053 	u32	dsa	= INL (nc_dsa);
4054 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4055 
4056 	/*
4057 	 *  If we haven't been interrupted inside the SCRIPTS
4058 	 *  critical pathes, we can safely restart the SCRIPTS
4059 	 *  and trust the DSA value if it matches a CCB.
4060 	 */
4061 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4062 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4063 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4064 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4065 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4066 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4067 	    (!(dsp > SCRIPTA_BA (np, done) &&
4068 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4069 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4070 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4071 		/*
4072 		 *  If we have a CCB, let the SCRIPTS call us back for
4073 		 *  the handling of the error with SCRATCHA filled with
4074 		 *  STARTPOS. This way, we will be able to freeze the
4075 		 *  device queue and requeue awaiting IOs.
4076 		 */
4077 		if (cp) {
4078 			cp->host_status = hsts;
4079 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4080 		}
4081 		/*
4082 		 *  Otherwise just restart the SCRIPTS.
4083 		 */
4084 		else {
4085 			OUTL (nc_dsa, 0xffffff);
4086 			OUTL_DSP (SCRIPTA_BA (np, start));
4087 		}
4088 	}
4089 	else
4090 		goto reset_all;
4091 
4092 	return;
4093 
4094 reset_all:
4095 	sym_start_reset(np);
4096 }
4097 
4098 /*
4099  *  chip exception handler for selection timeout
4100  */
4101 static void sym_int_sto (hcb_p np)
4102 {
4103 	u32 dsp	= INL (nc_dsp);
4104 
4105 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4106 
4107 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4108 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4109 	else
4110 		sym_start_reset(np);
4111 }
4112 
4113 /*
4114  *  chip exception handler for unexpected disconnect
4115  */
4116 static void sym_int_udc (hcb_p np)
4117 {
4118 	printf ("%s: unexpected disconnect\n", sym_name(np));
4119 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4120 }
4121 
4122 /*
4123  *  chip exception handler for SCSI bus mode change
4124  *
4125  *  spi2-r12 11.2.3 says a transceiver mode change must
4126  *  generate a reset event and a device that detects a reset
4127  *  event shall initiate a hard reset. It says also that a
4128  *  device that detects a mode change shall set data transfer
4129  *  mode to eight bit asynchronous, etc...
4130  *  So, just reinitializing all except chip should be enough.
4131  */
4132 static void sym_int_sbmc (hcb_p np)
4133 {
4134 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4135 
4136 	/*
4137 	 *  Notify user.
4138 	 */
4139 	xpt_print_path(np->path);
4140 	printf("SCSI BUS mode change from %s to %s.\n",
4141 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4142 
4143 	/*
4144 	 *  Should suspend command processing for a few seconds and
4145 	 *  reinitialize all except the chip.
4146 	 */
4147 	sym_init (np, 2);
4148 }
4149 
4150 /*
4151  *  chip exception handler for SCSI parity error.
4152  *
4153  *  When the chip detects a SCSI parity error and is
4154  *  currently executing a (CH)MOV instruction, it does
4155  *  not interrupt immediately, but tries to finish the
4156  *  transfer of the current scatter entry before
4157  *  interrupting. The following situations may occur:
4158  *
4159  *  - The complete scatter entry has been transferred
4160  *    without the device having changed phase.
4161  *    The chip will then interrupt with the DSP pointing
4162  *    to the instruction that follows the MOV.
4163  *
4164  *  - A phase mismatch occurs before the MOV finished
4165  *    and phase errors are to be handled by the C code.
4166  *    The chip will then interrupt with both PAR and MA
4167  *    conditions set.
4168  *
4169  *  - A phase mismatch occurs before the MOV finished and
4170  *    phase errors are to be handled by SCRIPTS.
4171  *    The chip will load the DSP with the phase mismatch
4172  *    JUMP address and interrupt the host processor.
4173  */
4174 static void sym_int_par (hcb_p np, u_short sist)
4175 {
4176 	u_char	hsts	= INB (HS_PRT);
4177 	u32	dsp	= INL (nc_dsp);
4178 	u32	dbc	= INL (nc_dbc);
4179 	u32	dsa	= INL (nc_dsa);
4180 	u_char	sbcl	= INB (nc_sbcl);
4181 	u_char	cmd	= dbc >> 24;
4182 	int phase	= cmd & 7;
4183 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4184 
4185 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4186 		sym_name(np), hsts, dbc, sbcl);
4187 
4188 	/*
4189 	 *  Check that the chip is connected to the SCSI BUS.
4190 	 */
4191 	if (!(INB (nc_scntl1) & ISCON)) {
4192 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4193 		return;
4194 	}
4195 
4196 	/*
4197 	 *  If the nexus is not clearly identified, reset the bus.
4198 	 *  We will try to do better later.
4199 	 */
4200 	if (!cp)
4201 		goto reset_all;
4202 
4203 	/*
4204 	 *  Check instruction was a MOV, direction was INPUT and
4205 	 *  ATN is asserted.
4206 	 */
4207 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4208 		goto reset_all;
4209 
4210 	/*
4211 	 *  Keep track of the parity error.
4212 	 */
4213 	OUTONB (HF_PRT, HF_EXT_ERR);
4214 	cp->xerr_status |= XE_PARITY_ERR;
4215 
4216 	/*
4217 	 *  Prepare the message to send to the device.
4218 	 */
4219 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4220 
4221 	/*
4222 	 *  If the old phase was DATA IN phase, we have to deal with
4223 	 *  the 3 situations described above.
4224 	 *  For other input phases (MSG IN and STATUS), the device
4225 	 *  must resend the whole thing that failed parity checking
4226 	 *  or signal error. So, jumping to dispatcher should be OK.
4227 	 */
4228 	if (phase == 1 || phase == 5) {
4229 		/* Phase mismatch handled by SCRIPTS */
4230 		if (dsp == SCRIPTB_BA (np, pm_handle))
4231 			OUTL_DSP (dsp);
4232 		/* Phase mismatch handled by the C code */
4233 		else if (sist & MA)
4234 			sym_int_ma (np);
4235 		/* No phase mismatch occurred */
4236 		else {
4237 			OUTL (nc_temp, dsp);
4238 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4239 		}
4240 	}
4241 	else
4242 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4243 	return;
4244 
4245 reset_all:
4246 	sym_start_reset(np);
4247 	return;
4248 }
4249 
4250 /*
4251  *  chip exception handler for phase errors.
4252  *
4253  *  We have to construct a new transfer descriptor,
4254  *  to transfer the rest of the current block.
4255  */
4256 static void sym_int_ma (hcb_p np)
4257 {
4258 	u32	dbc;
4259 	u32	rest;
4260 	u32	dsp;
4261 	u32	dsa;
4262 	u32	nxtdsp;
4263 	u32	*vdsp;
4264 	u32	oadr, olen;
4265 	u32	*tblp;
4266         u32	newcmd;
4267 	u_int	delta;
4268 	u_char	cmd;
4269 	u_char	hflags, hflags0;
4270 	struct	sym_pmc *pm;
4271 	ccb_p	cp;
4272 
4273 	dsp	= INL (nc_dsp);
4274 	dbc	= INL (nc_dbc);
4275 	dsa	= INL (nc_dsa);
4276 
4277 	cmd	= dbc >> 24;
4278 	rest	= dbc & 0xffffff;
4279 	delta	= 0;
4280 
4281 	/*
4282 	 *  locate matching cp if any.
4283 	 */
4284 	cp = sym_ccb_from_dsa(np, dsa);
4285 
4286 	/*
4287 	 *  Donnot take into account dma fifo and various buffers in
4288 	 *  INPUT phase since the chip flushes everything before
4289 	 *  raising the MA interrupt for interrupted INPUT phases.
4290 	 *  For DATA IN phase, we will check for the SWIDE later.
4291 	 */
4292 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4293 		u_char ss0, ss2;
4294 
4295 		if (np->features & FE_DFBC)
4296 			delta = INW (nc_dfbc);
4297 		else {
4298 			u32 dfifo;
4299 
4300 			/*
4301 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4302 			 */
4303 			dfifo = INL(nc_dfifo);
4304 
4305 			/*
4306 			 *  Calculate remaining bytes in DMA fifo.
4307 			 *  (CTEST5 = dfifo >> 16)
4308 			 */
4309 			if (dfifo & (DFS << 16))
4310 				delta = ((((dfifo >> 8) & 0x300) |
4311 				          (dfifo & 0xff)) - rest) & 0x3ff;
4312 			else
4313 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4314 		}
4315 
4316 		/*
4317 		 *  The data in the dma fifo has not been transfered to
4318 		 *  the target -> add the amount to the rest
4319 		 *  and clear the data.
4320 		 *  Check the sstat2 register in case of wide transfer.
4321 		 */
4322 		rest += delta;
4323 		ss0  = INB (nc_sstat0);
4324 		if (ss0 & OLF) rest++;
4325 		if (!(np->features & FE_C10))
4326 			if (ss0 & ORF) rest++;
4327 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4328 			ss2 = INB (nc_sstat2);
4329 			if (ss2 & OLF1) rest++;
4330 			if (!(np->features & FE_C10))
4331 				if (ss2 & ORF1) rest++;
4332 		};
4333 
4334 		/*
4335 		 *  Clear fifos.
4336 		 */
4337 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4338 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4339 	}
4340 
4341 	/*
4342 	 *  log the information
4343 	 */
4344 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4345 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4346 			(unsigned) rest, (unsigned) delta);
4347 
4348 	/*
4349 	 *  try to find the interrupted script command,
4350 	 *  and the address at which to continue.
4351 	 */
4352 	vdsp	= 0;
4353 	nxtdsp	= 0;
4354 	if	(dsp >  np->scripta_ba &&
4355 		 dsp <= np->scripta_ba + np->scripta_sz) {
4356 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4357 		nxtdsp = dsp;
4358 	}
4359 	else if	(dsp >  np->scriptb_ba &&
4360 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4361 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4362 		nxtdsp = dsp;
4363 	}
4364 
4365 	/*
4366 	 *  log the information
4367 	 */
4368 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4369 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4370 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4371 	};
4372 
4373 	if (!vdsp) {
4374 		printf ("%s: interrupted SCRIPT address not found.\n",
4375 			sym_name (np));
4376 		goto reset_all;
4377 	}
4378 
4379 	if (!cp) {
4380 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4381 			sym_name (np));
4382 		goto reset_all;
4383 	}
4384 
4385 	/*
4386 	 *  get old startaddress and old length.
4387 	 */
4388 	oadr = scr_to_cpu(vdsp[1]);
4389 
4390 	if (cmd & 0x10) {	/* Table indirect */
4391 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4392 		olen = scr_to_cpu(tblp[0]);
4393 		oadr = scr_to_cpu(tblp[1]);
4394 	} else {
4395 		tblp = (u32 *) 0;
4396 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4397 	};
4398 
4399 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4400 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4401 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4402 			tblp,
4403 			(unsigned) olen,
4404 			(unsigned) oadr);
4405 	};
4406 
4407 	/*
4408 	 *  check cmd against assumed interrupted script command.
4409 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4410 	 *  the phase.
4411 	 */
4412 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4413 		PRINT_ADDR(cp);
4414 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4415 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4416 
4417 		goto reset_all;
4418 	};
4419 
4420 	/*
4421 	 *  if old phase not dataphase, leave here.
4422 	 */
4423 	if (cmd & 2) {
4424 		PRINT_ADDR(cp);
4425 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4426 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4427 			(unsigned)oadr, (unsigned)rest);
4428 		goto unexpected_phase;
4429 	};
4430 
4431 	/*
4432 	 *  Choose the correct PM save area.
4433 	 *
4434 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4435 	 *  this stuff. The equivalent code is implemented in
4436 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4437 	 *  handle PM from the SCRIPTS processor.
4438 	 */
4439 	hflags0 = INB (HF_PRT);
4440 	hflags = hflags0;
4441 
4442 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4443 		if (hflags & HF_IN_PM0)
4444 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4445 		else if	(hflags & HF_IN_PM1)
4446 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4447 
4448 		if (hflags & HF_DP_SAVED)
4449 			hflags ^= HF_ACT_PM;
4450 	}
4451 
4452 	if (!(hflags & HF_ACT_PM)) {
4453 		pm = &cp->phys.pm0;
4454 		newcmd = SCRIPTA_BA (np, pm0_data);
4455 	}
4456 	else {
4457 		pm = &cp->phys.pm1;
4458 		newcmd = SCRIPTA_BA (np, pm1_data);
4459 	}
4460 
4461 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4462 	if (hflags != hflags0)
4463 		OUTB (HF_PRT, hflags);
4464 
4465 	/*
4466 	 *  fillin the phase mismatch context
4467 	 */
4468 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4469 	pm->sg.size = cpu_to_scr(rest);
4470 	pm->ret     = cpu_to_scr(nxtdsp);
4471 
4472 	/*
4473 	 *  If we have a SWIDE,
4474 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4475 	 *  - compute the SCRIPTS address to restart from,
4476 	 *  - move current data pointer context by one byte.
4477 	 */
4478 	nxtdsp = SCRIPTA_BA (np, dispatch);
4479 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4480 	    (INB (nc_scntl2) & WSR)) {
4481 		u32 tmp;
4482 
4483 		/*
4484 		 *  Set up the table indirect for the MOVE
4485 		 *  of the residual byte and adjust the data
4486 		 *  pointer context.
4487 		 */
4488 		tmp = scr_to_cpu(pm->sg.addr);
4489 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4490 		pm->sg.addr = cpu_to_scr(tmp + 1);
4491 		tmp = scr_to_cpu(pm->sg.size);
4492 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4493 		pm->sg.size = cpu_to_scr(tmp - 1);
4494 
4495 		/*
4496 		 *  If only the residual byte is to be moved,
4497 		 *  no PM context is needed.
4498 		 */
4499 		if ((tmp&0xffffff) == 1)
4500 			newcmd = pm->ret;
4501 
4502 		/*
4503 		 *  Prepare the address of SCRIPTS that will
4504 		 *  move the residual byte to memory.
4505 		 */
4506 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4507 	}
4508 
4509 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4510 		PRINT_ADDR(cp);
4511 		printf ("PM %x %x %x / %x %x %x.\n",
4512 			hflags0, hflags, newcmd,
4513 			(unsigned)scr_to_cpu(pm->sg.addr),
4514 			(unsigned)scr_to_cpu(pm->sg.size),
4515 			(unsigned)scr_to_cpu(pm->ret));
4516 	}
4517 
4518 	/*
4519 	 *  Restart the SCRIPTS processor.
4520 	 */
4521 	OUTL (nc_temp, newcmd);
4522 	OUTL_DSP (nxtdsp);
4523 	return;
4524 
4525 	/*
4526 	 *  Unexpected phase changes that occurs when the current phase
4527 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4528 	 *  Such event may only happen when the SCRIPTS is using a
4529 	 *  multibyte SCSI MOVE.
4530 	 *
4531 	 *  Phase change		Some possible cause
4532 	 *
4533 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4534 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4535 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4536 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4537 	 *  			negotiation messages.
4538 	 *
4539 	 *  The code below does not care of the new phase and so
4540 	 *  trusts the target. Why to annoy it ?
4541 	 *  If the interrupted phase is COMMAND phase, we restart at
4542 	 *  dispatcher.
4543 	 *  If a target does not get all the messages after selection,
4544 	 *  the code assumes blindly that the target discards extended
4545 	 *  messages and clears the negotiation status.
4546 	 *  If the target does not want all our response to negotiation,
4547 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4548 	 *  bloat for such a should_not_happen situation).
4549 	 *  In all other situation, we reset the BUS.
4550 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4551 	 */
4552 unexpected_phase:
4553 	dsp -= 8;
4554 	nxtdsp = 0;
4555 
4556 	switch (cmd & 7) {
4557 	case 2:	/* COMMAND phase */
4558 		nxtdsp = SCRIPTA_BA (np, dispatch);
4559 		break;
4560 #if 0
4561 	case 3:	/* STATUS  phase */
4562 		nxtdsp = SCRIPTA_BA (np, dispatch);
4563 		break;
4564 #endif
4565 	case 6:	/* MSG OUT phase */
4566 		/*
4567 		 *  If the device may want to use untagged when we want
4568 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4569 		 *  since we will not be able to handle reselect.
4570 		 *  Otherwise, we just don't care.
4571 		 */
4572 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4573 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4574 				cp->host_status = HS_BUSY;
4575 				np->msgout[0] = M_IDENTIFY | cp->lun;
4576 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4577 			}
4578 			else
4579 				nxtdsp = SCRIPTB_BA (np, ident_break);
4580 		}
4581 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4582 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4583 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4584 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4585 		}
4586 		break;
4587 #if 0
4588 	case 7:	/* MSG IN  phase */
4589 		nxtdsp = SCRIPTA_BA (np, clrack);
4590 		break;
4591 #endif
4592 	}
4593 
4594 	if (nxtdsp) {
4595 		OUTL_DSP (nxtdsp);
4596 		return;
4597 	}
4598 
4599 reset_all:
4600 	sym_start_reset(np);
4601 }
4602 
4603 /*
4604  *  Dequeue from the START queue all CCBs that match
4605  *  a given target/lun/task condition (-1 means all),
4606  *  and move them from the BUSY queue to the COMP queue
4607  *  with CAM_REQUEUE_REQ status condition.
4608  *  This function is used during error handling/recovery.
4609  *  It is called with SCRIPTS not running.
4610  */
4611 static int
4612 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4613 {
4614 	int j;
4615 	ccb_p cp;
4616 
4617 	/*
4618 	 *  Make sure the starting index is within range.
4619 	 */
4620 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4621 
4622 	/*
4623 	 *  Walk until end of START queue and dequeue every job
4624 	 *  that matches the target/lun/task condition.
4625 	 */
4626 	j = i;
4627 	while (i != np->squeueput) {
4628 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4629 		assert(cp);
4630 #ifdef SYM_CONF_IARB_SUPPORT
4631 		/* Forget hints for IARB, they may be no longer relevant */
4632 		cp->host_flags &= ~HF_HINT_IARB;
4633 #endif
4634 		if ((target == -1 || cp->target == target) &&
4635 		    (lun    == -1 || cp->lun    == lun)    &&
4636 		    (task   == -1 || cp->tag    == task)) {
4637 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4638 			sym_remque(&cp->link_ccbq);
4639 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4640 		}
4641 		else {
4642 			if (i != j)
4643 				np->squeue[j] = np->squeue[i];
4644 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4645 		}
4646 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4647 	}
4648 	if (i != j)		/* Copy back the idle task if needed */
4649 		np->squeue[j] = np->squeue[i];
4650 	np->squeueput = j;	/* Update our current start queue pointer */
4651 
4652 	return (i - j) / 2;
4653 }
4654 
4655 /*
4656  *  Complete all CCBs queued to the COMP queue.
4657  *
4658  *  These CCBs are assumed:
4659  *  - Not to be referenced either by devices or
4660  *    SCRIPTS-related queues and datas.
4661  *  - To have to be completed with an error condition
4662  *    or requeued.
4663  *
4664  *  The device queue freeze count is incremented
4665  *  for each CCB that does not prevent this.
4666  *  This function is called when all CCBs involved
4667  *  in error handling/recovery have been reaped.
4668  */
4669 static void
4670 sym_flush_comp_queue(hcb_p np, int cam_status)
4671 {
4672 	SYM_QUEHEAD *qp;
4673 	ccb_p cp;
4674 
4675 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
4676 		union ccb *ccb;
4677 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4678 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4679 		/* Leave quiet CCBs waiting for resources */
4680 		if (cp->host_status == HS_WAIT)
4681 			continue;
4682 		ccb = cp->cam_ccb;
4683 		if (cam_status)
4684 			sym_set_cam_status(ccb, cam_status);
4685 		sym_free_ccb(np, cp);
4686 		sym_freeze_cam_ccb(ccb);
4687 		sym_xpt_done(np, ccb);
4688 	}
4689 }
4690 
4691 /*
4692  *  chip handler for bad SCSI status condition
4693  *
4694  *  In case of bad SCSI status, we unqueue all the tasks
4695  *  currently queued to the controller but not yet started
4696  *  and then restart the SCRIPTS processor immediately.
4697  *
4698  *  QUEUE FULL and BUSY conditions are handled the same way.
4699  *  Basically all the not yet started tasks are requeued in
4700  *  device queue and the queue is frozen until a completion.
4701  *
4702  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4703  *  the CCB of the failed command to prepare a REQUEST SENSE
4704  *  SCSI command and queue it to the controller queue.
4705  *
4706  *  SCRATCHA is assumed to have been loaded with STARTPOS
4707  *  before the SCRIPTS called the C code.
4708  */
4709 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4710 {
4711 	tcb_p tp	= &np->target[cp->target];
4712 	u32		startp;
4713 	u_char		s_status = cp->ssss_status;
4714 	u_char		h_flags  = cp->host_flags;
4715 	int		msglen;
4716 	int		nego;
4717 	int		i;
4718 
4719 	/*
4720 	 *  Compute the index of the next job to start from SCRIPTS.
4721 	 */
4722 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4723 
4724 	/*
4725 	 *  The last CCB queued used for IARB hint may be
4726 	 *  no longer relevant. Forget it.
4727 	 */
4728 #ifdef SYM_CONF_IARB_SUPPORT
4729 	if (np->last_cp)
4730 		np->last_cp = 0;
4731 #endif
4732 
4733 	/*
4734 	 *  Now deal with the SCSI status.
4735 	 */
4736 	switch(s_status) {
4737 	case S_BUSY:
4738 	case S_QUEUE_FULL:
4739 		if (sym_verbose >= 2) {
4740 			PRINT_ADDR(cp);
4741 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4742 		}
4743 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4744 		sym_complete_error (np, cp);
4745 		break;
4746 	case S_TERMINATED:
4747 	case S_CHECK_COND:
4748 		/*
4749 		 *  If we get an SCSI error when requesting sense, give up.
4750 		 */
4751 		if (h_flags & HF_SENSE) {
4752 			sym_complete_error (np, cp);
4753 			break;
4754 		}
4755 
4756 		/*
4757 		 *  Dequeue all queued CCBs for that device not yet started,
4758 		 *  and restart the SCRIPTS processor immediately.
4759 		 */
4760 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4761 		OUTL_DSP (SCRIPTA_BA (np, start));
4762 
4763  		/*
4764 		 *  Save some info of the actual IO.
4765 		 *  Compute the data residual.
4766 		 */
4767 		cp->sv_scsi_status = cp->ssss_status;
4768 		cp->sv_xerr_status = cp->xerr_status;
4769 		cp->sv_resid = sym_compute_residual(np, cp);
4770 
4771 		/*
4772 		 *  Prepare all needed data structures for
4773 		 *  requesting sense data.
4774 		 */
4775 
4776 		/*
4777 		 *  identify message
4778 		 */
4779 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4780 		msglen = 1;
4781 
4782 		/*
4783 		 *  If we are currently using anything different from
4784 		 *  async. 8 bit data transfers with that target,
4785 		 *  start a negotiation, since the device may want
4786 		 *  to report us a UNIT ATTENTION condition due to
4787 		 *  a cause we currently ignore, and we donnot want
4788 		 *  to be stuck with WIDE and/or SYNC data transfer.
4789 		 *
4790 		 *  cp->nego_status is filled by sym_prepare_nego().
4791 		 */
4792 		cp->nego_status = 0;
4793 		nego = 0;
4794 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4795 			nego = NS_PPR;
4796 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4797 			nego = NS_WIDE;
4798 		else if (tp->tinfo.current.offset != 0)
4799 			nego = NS_SYNC;
4800 		if (nego)
4801 			msglen +=
4802 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4803 		/*
4804 		 *  Message table indirect structure.
4805 		 */
4806 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4807 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4808 
4809 		/*
4810 		 *  sense command
4811 		 */
4812 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4813 		cp->phys.cmd.size	= cpu_to_scr(6);
4814 
4815 		/*
4816 		 *  patch requested size into sense command
4817 		 */
4818 		cp->sensecmd[0]		= 0x03;
4819 		cp->sensecmd[1]		= cp->lun << 5;
4820 #ifdef	FreeBSD_New_Tran_Settings
4821 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4822 			cp->sensecmd[1]	= 0;
4823 #endif
4824 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4825 		cp->data_len		= SYM_SNS_BBUF_LEN;
4826 
4827 		/*
4828 		 *  sense data
4829 		 */
4830 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4831 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4832 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4833 
4834 		/*
4835 		 *  requeue the command.
4836 		 */
4837 		startp = SCRIPTB_BA (np, sdata_in);
4838 
4839 		cp->phys.head.savep	= cpu_to_scr(startp);
4840 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4841 		cp->phys.head.lastp	= cpu_to_scr(startp);
4842 		cp->startp	= cpu_to_scr(startp);
4843 
4844 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4845 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4846 		cp->ssss_status = S_ILLEGAL;
4847 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4848 		cp->xerr_status = 0;
4849 		cp->extra_bytes = 0;
4850 
4851 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4852 
4853 		/*
4854 		 *  Requeue the command.
4855 		 */
4856 		sym_put_start_queue(np, cp);
4857 
4858 		/*
4859 		 *  Give back to upper layer everything we have dequeued.
4860 		 */
4861 		sym_flush_comp_queue(np, 0);
4862 		break;
4863 	}
4864 }
4865 
4866 /*
4867  *  After a device has accepted some management message
4868  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4869  *  a device signals a UNIT ATTENTION condition, some
4870  *  tasks are thrown away by the device. We are required
4871  *  to reflect that on our tasks list since the device
4872  *  will never complete these tasks.
4873  *
4874  *  This function move from the BUSY queue to the COMP
4875  *  queue all disconnected CCBs for a given target that
4876  *  match the following criteria:
4877  *  - lun=-1  means any logical UNIT otherwise a given one.
4878  *  - task=-1 means any task, otherwise a given one.
4879  */
4880 static int
4881 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4882 {
4883 	SYM_QUEHEAD qtmp, *qp;
4884 	int i = 0;
4885 	ccb_p cp;
4886 
4887 	/*
4888 	 *  Move the entire BUSY queue to our temporary queue.
4889 	 */
4890 	sym_que_init(&qtmp);
4891 	sym_que_splice(&np->busy_ccbq, &qtmp);
4892 	sym_que_init(&np->busy_ccbq);
4893 
4894 	/*
4895 	 *  Put all CCBs that matches our criteria into
4896 	 *  the COMP queue and put back other ones into
4897 	 *  the BUSY queue.
4898 	 */
4899 	while ((qp = sym_remque_head(&qtmp)) != 0) {
4900 		union ccb *ccb;
4901 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4902 		ccb = cp->cam_ccb;
4903 		if (cp->host_status != HS_DISCONNECT ||
4904 		    cp->target != target	     ||
4905 		    (lun  != -1 && cp->lun != lun)   ||
4906 		    (task != -1 &&
4907 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4908 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4909 			continue;
4910 		}
4911 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4912 
4913 		/* Preserve the software timeout condition */
4914 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4915 			sym_set_cam_status(ccb, cam_status);
4916 		++i;
4917 #if 0
4918 printf("XXXX TASK @%p CLEARED\n", cp);
4919 #endif
4920 	}
4921 	return i;
4922 }
4923 
4924 /*
4925  *  chip handler for TASKS recovery
4926  *
4927  *  We cannot safely abort a command, while the SCRIPTS
4928  *  processor is running, since we just would be in race
4929  *  with it.
4930  *
4931  *  As long as we have tasks to abort, we keep the SEM
4932  *  bit set in the ISTAT. When this bit is set, the
4933  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4934  *  each time it enters the scheduler.
4935  *
4936  *  If we have to reset a target, clear tasks of a unit,
4937  *  or to perform the abort of a disconnected job, we
4938  *  restart the SCRIPTS for selecting the target. Once
4939  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4940  *  If it loses arbitration, the SCRIPTS will interrupt again
4941  *  the next time it will enter its scheduler, and so on ...
4942  *
4943  *  On SIR_TARGET_SELECTED, we scan for the more
4944  *  appropriate thing to do:
4945  *
4946  *  - If nothing, we just sent a M_ABORT message to the
4947  *    target to get rid of the useless SCSI bus ownership.
4948  *    According to the specs, no tasks shall be affected.
4949  *  - If the target is to be reset, we send it a M_RESET
4950  *    message.
4951  *  - If a logical UNIT is to be cleared , we send the
4952  *    IDENTIFY(lun) + M_ABORT.
4953  *  - If an untagged task is to be aborted, we send the
4954  *    IDENTIFY(lun) + M_ABORT.
4955  *  - If a tagged task is to be aborted, we send the
4956  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4957  *
4958  *  Once our 'kiss of death' :) message has been accepted
4959  *  by the target, the SCRIPTS interrupts again
4960  *  (SIR_ABORT_SENT). On this interrupt, we complete
4961  *  all the CCBs that should have been aborted by the
4962  *  target according to our message.
4963  */
4964 static void sym_sir_task_recovery(hcb_p np, int num)
4965 {
4966 	SYM_QUEHEAD *qp;
4967 	ccb_p cp;
4968 	tcb_p tp;
4969 	int target=-1, lun=-1, task;
4970 	int i, k;
4971 
4972 	switch(num) {
4973 	/*
4974 	 *  The SCRIPTS processor stopped before starting
4975 	 *  the next command in order to allow us to perform
4976 	 *  some task recovery.
4977 	 */
4978 	case SIR_SCRIPT_STOPPED:
4979 		/*
4980 		 *  Do we have any target to reset or unit to clear ?
4981 		 */
4982 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4983 			tp = &np->target[i];
4984 			if (tp->to_reset ||
4985 			    (tp->lun0p && tp->lun0p->to_clear)) {
4986 				target = i;
4987 				break;
4988 			}
4989 			if (!tp->lunmp)
4990 				continue;
4991 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4992 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4993 					target	= i;
4994 					break;
4995 				}
4996 			}
4997 			if (target != -1)
4998 				break;
4999 		}
5000 
5001 		/*
5002 		 *  If not, walk the busy queue for any
5003 		 *  disconnected CCB to be aborted.
5004 		 */
5005 		if (target == -1) {
5006 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5007 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
5008 				if (cp->host_status != HS_DISCONNECT)
5009 					continue;
5010 				if (cp->to_abort) {
5011 					target = cp->target;
5012 					break;
5013 				}
5014 			}
5015 		}
5016 
5017 		/*
5018 		 *  If some target is to be selected,
5019 		 *  prepare and start the selection.
5020 		 */
5021 		if (target != -1) {
5022 			tp = &np->target[target];
5023 			np->abrt_sel.sel_id	= target;
5024 			np->abrt_sel.sel_scntl3 = tp->head.wval;
5025 			np->abrt_sel.sel_sxfer  = tp->head.sval;
5026 			OUTL(nc_dsa, np->hcb_ba);
5027 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
5028 			return;
5029 		}
5030 
5031 		/*
5032 		 *  Now look for a CCB to abort that haven't started yet.
5033 		 *  Btw, the SCRIPTS processor is still stopped, so
5034 		 *  we are not in race.
5035 		 */
5036 		i = 0;
5037 		cp = 0;
5038 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5039 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5040 			if (cp->host_status != HS_BUSY &&
5041 			    cp->host_status != HS_NEGOTIATE)
5042 				continue;
5043 			if (!cp->to_abort)
5044 				continue;
5045 #ifdef SYM_CONF_IARB_SUPPORT
5046 			/*
5047 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5048 			 *    want to cancel the last queued CCB, since the
5049 			 *    SCRIPTS may have anticipated the selection.
5050 			 */
5051 			if (cp == np->last_cp) {
5052 				cp->to_abort = 0;
5053 				continue;
5054 			}
5055 #endif
5056 			i = 1;	/* Means we have found some */
5057 			break;
5058 		}
5059 		if (!i) {
5060 			/*
5061 			 *  We are done, so we donnot need
5062 			 *  to synchronize with the SCRIPTS anylonger.
5063 			 *  Remove the SEM flag from the ISTAT.
5064 			 */
5065 			np->istat_sem = 0;
5066 			OUTB (nc_istat, SIGP);
5067 			break;
5068 		}
5069 		/*
5070 		 *  Compute index of next position in the start
5071 		 *  queue the SCRIPTS intends to start and dequeue
5072 		 *  all CCBs for that device that haven't been started.
5073 		 */
5074 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5075 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5076 
5077 		/*
5078 		 *  Make sure at least our IO to abort has been dequeued.
5079 		 */
5080 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5081 
5082 		/*
5083 		 *  Keep track in cam status of the reason of the abort.
5084 		 */
5085 		if (cp->to_abort == 2)
5086 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5087 		else
5088 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5089 
5090 		/*
5091 		 *  Complete with error everything that we have dequeued.
5092 	 	 */
5093 		sym_flush_comp_queue(np, 0);
5094 		break;
5095 	/*
5096 	 *  The SCRIPTS processor has selected a target
5097 	 *  we may have some manual recovery to perform for.
5098 	 */
5099 	case SIR_TARGET_SELECTED:
5100 		target = (INB (nc_sdid) & 0xf);
5101 		tp = &np->target[target];
5102 
5103 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5104 
5105 		/*
5106 		 *  If the target is to be reset, prepare a
5107 		 *  M_RESET message and clear the to_reset flag
5108 		 *  since we donnot expect this operation to fail.
5109 		 */
5110 		if (tp->to_reset) {
5111 			np->abrt_msg[0] = M_RESET;
5112 			np->abrt_tbl.size = 1;
5113 			tp->to_reset = 0;
5114 			break;
5115 		}
5116 
5117 		/*
5118 		 *  Otherwise, look for some logical unit to be cleared.
5119 		 */
5120 		if (tp->lun0p && tp->lun0p->to_clear)
5121 			lun = 0;
5122 		else if (tp->lunmp) {
5123 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5124 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5125 					lun = k;
5126 					break;
5127 				}
5128 			}
5129 		}
5130 
5131 		/*
5132 		 *  If a logical unit is to be cleared, prepare
5133 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5134 		 */
5135 		if (lun != -1) {
5136 			lcb_p lp = sym_lp(np, tp, lun);
5137 			lp->to_clear = 0; /* We donnot expect to fail here */
5138 			np->abrt_msg[0] = M_IDENTIFY | lun;
5139 			np->abrt_msg[1] = M_ABORT;
5140 			np->abrt_tbl.size = 2;
5141 			break;
5142 		}
5143 
5144 		/*
5145 		 *  Otherwise, look for some disconnected job to
5146 		 *  abort for this target.
5147 		 */
5148 		i = 0;
5149 		cp = 0;
5150 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5151 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5152 			if (cp->host_status != HS_DISCONNECT)
5153 				continue;
5154 			if (cp->target != target)
5155 				continue;
5156 			if (!cp->to_abort)
5157 				continue;
5158 			i = 1;	/* Means we have some */
5159 			break;
5160 		}
5161 
5162 		/*
5163 		 *  If we have none, probably since the device has
5164 		 *  completed the command before we won abitration,
5165 		 *  send a M_ABORT message without IDENTIFY.
5166 		 *  According to the specs, the device must just
5167 		 *  disconnect the BUS and not abort any task.
5168 		 */
5169 		if (!i) {
5170 			np->abrt_msg[0] = M_ABORT;
5171 			np->abrt_tbl.size = 1;
5172 			break;
5173 		}
5174 
5175 		/*
5176 		 *  We have some task to abort.
5177 		 *  Set the IDENTIFY(lun)
5178 		 */
5179 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5180 
5181 		/*
5182 		 *  If we want to abort an untagged command, we
5183 		 *  will send an IDENTIFY + M_ABORT.
5184 		 *  Otherwise (tagged command), we will send
5185 		 *  an IDENTIFY + task attributes + ABORT TAG.
5186 		 */
5187 		if (cp->tag == NO_TAG) {
5188 			np->abrt_msg[1] = M_ABORT;
5189 			np->abrt_tbl.size = 2;
5190 		}
5191 		else {
5192 			np->abrt_msg[1] = cp->scsi_smsg[1];
5193 			np->abrt_msg[2] = cp->scsi_smsg[2];
5194 			np->abrt_msg[3] = M_ABORT_TAG;
5195 			np->abrt_tbl.size = 4;
5196 		}
5197 		/*
5198 		 *  Keep track of software timeout condition, since the
5199 		 *  peripheral driver may not count retries on abort
5200 		 *  conditions not due to timeout.
5201 		 */
5202 		if (cp->to_abort == 2)
5203 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5204 		cp->to_abort = 0; /* We donnot expect to fail here */
5205 		break;
5206 
5207 	/*
5208 	 *  The target has accepted our message and switched
5209 	 *  to BUS FREE phase as we expected.
5210 	 */
5211 	case SIR_ABORT_SENT:
5212 		target = (INB (nc_sdid) & 0xf);
5213 		tp = &np->target[target];
5214 
5215 		/*
5216 		**  If we didn't abort anything, leave here.
5217 		*/
5218 		if (np->abrt_msg[0] == M_ABORT)
5219 			break;
5220 
5221 		/*
5222 		 *  If we sent a M_RESET, then a hardware reset has
5223 		 *  been performed by the target.
5224 		 *  - Reset everything to async 8 bit
5225 		 *  - Tell ourself to negotiate next time :-)
5226 		 *  - Prepare to clear all disconnected CCBs for
5227 		 *    this target from our task list (lun=task=-1)
5228 		 */
5229 		lun = -1;
5230 		task = -1;
5231 		if (np->abrt_msg[0] == M_RESET) {
5232 			tp->head.sval = 0;
5233 			tp->head.wval = np->rv_scntl3;
5234 			tp->head.uval = 0;
5235 			tp->tinfo.current.period = 0;
5236 			tp->tinfo.current.offset = 0;
5237 			tp->tinfo.current.width  = BUS_8_BIT;
5238 			tp->tinfo.current.options = 0;
5239 		}
5240 
5241 		/*
5242 		 *  Otherwise, check for the LUN and TASK(s)
5243 		 *  concerned by the cancelation.
5244 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5245 		 *  or an ABORT message :-)
5246 		 */
5247 		else {
5248 			lun = np->abrt_msg[0] & 0x3f;
5249 			if (np->abrt_msg[1] == M_ABORT_TAG)
5250 				task = np->abrt_msg[2];
5251 		}
5252 
5253 		/*
5254 		 *  Complete all the CCBs the device should have
5255 		 *  aborted due to our 'kiss of death' message.
5256 		 */
5257 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5258 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5259 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5260 		sym_flush_comp_queue(np, 0);
5261 
5262 		/*
5263 		 *  If we sent a BDR, make uper layer aware of that.
5264 		 */
5265 		if (np->abrt_msg[0] == M_RESET)
5266 			xpt_async(AC_SENT_BDR, np->path, NULL);
5267 		break;
5268 	}
5269 
5270 	/*
5271 	 *  Print to the log the message we intend to send.
5272 	 */
5273 	if (num == SIR_TARGET_SELECTED) {
5274 		PRINT_TARGET(np, target);
5275 		sym_printl_hex("control msgout:", np->abrt_msg,
5276 			      np->abrt_tbl.size);
5277 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5278 	}
5279 
5280 	/*
5281 	 *  Let the SCRIPTS processor continue.
5282 	 */
5283 	OUTONB_STD ();
5284 }
5285 
5286 /*
5287  *  Gerard's alchemy:) that deals with with the data
5288  *  pointer for both MDP and the residual calculation.
5289  *
5290  *  I didn't want to bloat the code by more than 200
5291  *  lignes for the handling of both MDP and the residual.
5292  *  This has been achieved by using a data pointer
5293  *  representation consisting in an index in the data
5294  *  array (dp_sg) and a negative offset (dp_ofs) that
5295  *  have the following meaning:
5296  *
5297  *  - dp_sg = SYM_CONF_MAX_SG
5298  *    we are at the end of the data script.
5299  *  - dp_sg < SYM_CONF_MAX_SG
5300  *    dp_sg points to the next entry of the scatter array
5301  *    we want to transfer.
5302  *  - dp_ofs < 0
5303  *    dp_ofs represents the residual of bytes of the
5304  *    previous entry scatter entry we will send first.
5305  *  - dp_ofs = 0
5306  *    no residual to send first.
5307  *
5308  *  The function sym_evaluate_dp() accepts an arbitray
5309  *  offset (basically from the MDP message) and returns
5310  *  the corresponding values of dp_sg and dp_ofs.
5311  */
5312 
5313 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5314 {
5315 	u32	dp_scr;
5316 	int	dp_ofs, dp_sg, dp_sgmin;
5317 	int	tmp;
5318 	struct sym_pmc *pm;
5319 
5320 	/*
5321 	 *  Compute the resulted data pointer in term of a script
5322 	 *  address within some DATA script and a signed byte offset.
5323 	 */
5324 	dp_scr = scr;
5325 	dp_ofs = *ofs;
5326 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5327 		pm = &cp->phys.pm0;
5328 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5329 		pm = &cp->phys.pm1;
5330 	else
5331 		pm = 0;
5332 
5333 	if (pm) {
5334 		dp_scr  = scr_to_cpu(pm->ret);
5335 		dp_ofs -= scr_to_cpu(pm->sg.size);
5336 	}
5337 
5338 	/*
5339 	 *  If we are auto-sensing, then we are done.
5340 	 */
5341 	if (cp->host_flags & HF_SENSE) {
5342 		*ofs = dp_ofs;
5343 		return 0;
5344 	}
5345 
5346 	/*
5347 	 *  Deduce the index of the sg entry.
5348 	 *  Keep track of the index of the first valid entry.
5349 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5350 	 *  end of the data.
5351 	 */
5352 	tmp = scr_to_cpu(cp->phys.head.goalp);
5353 	dp_sg = SYM_CONF_MAX_SG;
5354 	if (dp_scr != tmp)
5355 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5356 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5357 
5358 	/*
5359 	 *  Move to the sg entry the data pointer belongs to.
5360 	 *
5361 	 *  If we are inside the data area, we expect result to be:
5362 	 *
5363 	 *  Either,
5364 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5365 	 *      the data pointer belongs to (or the end of the data)
5366 	 *  Or,
5367 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5368 	 *      the data pointer belongs to + 1.
5369 	 */
5370 	if (dp_ofs < 0) {
5371 		int n;
5372 		while (dp_sg > dp_sgmin) {
5373 			--dp_sg;
5374 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5375 			n = dp_ofs + (tmp & 0xffffff);
5376 			if (n > 0) {
5377 				++dp_sg;
5378 				break;
5379 			}
5380 			dp_ofs = n;
5381 		}
5382 	}
5383 	else if (dp_ofs > 0) {
5384 		while (dp_sg < SYM_CONF_MAX_SG) {
5385 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5386 			dp_ofs -= (tmp & 0xffffff);
5387 			++dp_sg;
5388 			if (dp_ofs <= 0)
5389 				break;
5390 		}
5391 	}
5392 
5393 	/*
5394 	 *  Make sure the data pointer is inside the data area.
5395 	 *  If not, return some error.
5396 	 */
5397 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5398 		goto out_err;
5399 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5400 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5401 		goto out_err;
5402 
5403 	/*
5404 	 *  Save the extreme pointer if needed.
5405 	 */
5406 	if (dp_sg > cp->ext_sg ||
5407             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5408 		cp->ext_sg  = dp_sg;
5409 		cp->ext_ofs = dp_ofs;
5410 	}
5411 
5412 	/*
5413 	 *  Return data.
5414 	 */
5415 	*ofs = dp_ofs;
5416 	return dp_sg;
5417 
5418 out_err:
5419 	return -1;
5420 }
5421 
5422 /*
5423  *  chip handler for MODIFY DATA POINTER MESSAGE
5424  *
5425  *  We also call this function on IGNORE WIDE RESIDUE
5426  *  messages that do not match a SWIDE full condition.
5427  *  Btw, we assume in that situation that such a message
5428  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5429  */
5430 
5431 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5432 {
5433 	int dp_ofs	= ofs;
5434 	u32	dp_scr	= INL (nc_temp);
5435 	u32	dp_ret;
5436 	u32	tmp;
5437 	u_char	hflags;
5438 	int	dp_sg;
5439 	struct	sym_pmc *pm;
5440 
5441 	/*
5442 	 *  Not supported for auto-sense.
5443 	 */
5444 	if (cp->host_flags & HF_SENSE)
5445 		goto out_reject;
5446 
5447 	/*
5448 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5449 	 *  to the resulted data pointer.
5450 	 */
5451 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5452 	if (dp_sg < 0)
5453 		goto out_reject;
5454 
5455 	/*
5456 	 *  And our alchemy:) allows to easily calculate the data
5457 	 *  script address we want to return for the next data phase.
5458 	 */
5459 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5460 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5461 
5462 	/*
5463 	 *  If offset / scatter entry is zero we donnot need
5464 	 *  a context for the new current data pointer.
5465 	 */
5466 	if (dp_ofs == 0) {
5467 		dp_scr = dp_ret;
5468 		goto out_ok;
5469 	}
5470 
5471 	/*
5472 	 *  Get a context for the new current data pointer.
5473 	 */
5474 	hflags = INB (HF_PRT);
5475 
5476 	if (hflags & HF_DP_SAVED)
5477 		hflags ^= HF_ACT_PM;
5478 
5479 	if (!(hflags & HF_ACT_PM)) {
5480 		pm  = &cp->phys.pm0;
5481 		dp_scr = SCRIPTA_BA (np, pm0_data);
5482 	}
5483 	else {
5484 		pm = &cp->phys.pm1;
5485 		dp_scr = SCRIPTA_BA (np, pm1_data);
5486 	}
5487 
5488 	hflags &= ~(HF_DP_SAVED);
5489 
5490 	OUTB (HF_PRT, hflags);
5491 
5492 	/*
5493 	 *  Set up the new current data pointer.
5494 	 *  ofs < 0 there, and for the next data phase, we
5495 	 *  want to transfer part of the data of the sg entry
5496 	 *  corresponding to index dp_sg-1 prior to returning
5497 	 *  to the main data script.
5498 	 */
5499 	pm->ret = cpu_to_scr(dp_ret);
5500 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5501 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5502 	pm->sg.addr = cpu_to_scr(tmp);
5503 	pm->sg.size = cpu_to_scr(-dp_ofs);
5504 
5505 out_ok:
5506 	OUTL (nc_temp, dp_scr);
5507 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5508 	return;
5509 
5510 out_reject:
5511 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5512 }
5513 
5514 
5515 /*
5516  *  chip calculation of the data residual.
5517  *
5518  *  As I used to say, the requirement of data residual
5519  *  in SCSI is broken, useless and cannot be achieved
5520  *  without huge complexity.
5521  *  But most OSes and even the official CAM require it.
5522  *  When stupidity happens to be so widely spread inside
5523  *  a community, it gets hard to convince.
5524  *
5525  *  Anyway, I don't care, since I am not going to use
5526  *  any software that considers this data residual as
5527  *  a relevant information. :)
5528  */
5529 
5530 static int sym_compute_residual(hcb_p np, ccb_p cp)
5531 {
5532 	int dp_sg, dp_sgmin, resid = 0;
5533 	int dp_ofs = 0;
5534 
5535 	/*
5536 	 *  Check for some data lost or just thrown away.
5537 	 *  We are not required to be quite accurate in this
5538 	 *  situation. Btw, if we are odd for output and the
5539 	 *  device claims some more data, it may well happen
5540 	 *  than our residual be zero. :-)
5541 	 */
5542 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5543 		if (cp->xerr_status & XE_EXTRA_DATA)
5544 			resid -= cp->extra_bytes;
5545 		if (cp->xerr_status & XE_SODL_UNRUN)
5546 			++resid;
5547 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5548 			--resid;
5549 	}
5550 
5551 	/*
5552 	 *  If all data has been transferred,
5553 	 *  there is no residual.
5554 	 */
5555 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5556 		return resid;
5557 
5558 	/*
5559 	 *  If no data transfer occurs, or if the data
5560 	 *  pointer is weird, return full residual.
5561 	 */
5562 	if (cp->startp == cp->phys.head.lastp ||
5563 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5564 			    &dp_ofs) < 0) {
5565 		return cp->data_len;
5566 	}
5567 
5568 	/*
5569 	 *  If we were auto-sensing, then we are done.
5570 	 */
5571 	if (cp->host_flags & HF_SENSE) {
5572 		return -dp_ofs;
5573 	}
5574 
5575 	/*
5576 	 *  We are now full comfortable in the computation
5577 	 *  of the data residual (2's complement).
5578 	 */
5579 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5580 	resid = -cp->ext_ofs;
5581 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5582 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5583 		resid += (tmp & 0xffffff);
5584 	}
5585 
5586 	/*
5587 	 *  Hopefully, the result is not too wrong.
5588 	 */
5589 	return resid;
5590 }
5591 
5592 /*
5593  *  Print out the content of a SCSI message.
5594  */
5595 
5596 static int sym_show_msg (u_char * msg)
5597 {
5598 	u_char i;
5599 	printf ("%x",*msg);
5600 	if (*msg==M_EXTENDED) {
5601 		for (i=1;i<8;i++) {
5602 			if (i-1>msg[1]) break;
5603 			printf ("-%x",msg[i]);
5604 		};
5605 		return (i+1);
5606 	} else if ((*msg & 0xf0) == 0x20) {
5607 		printf ("-%x",msg[1]);
5608 		return (2);
5609 	};
5610 	return (1);
5611 }
5612 
5613 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5614 {
5615 	PRINT_ADDR(cp);
5616 	if (label)
5617 		printf ("%s: ", label);
5618 
5619 	(void) sym_show_msg (msg);
5620 	printf (".\n");
5621 }
5622 
5623 /*
5624  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5625  *
5626  *  When we try to negotiate, we append the negotiation message
5627  *  to the identify and (maybe) simple tag message.
5628  *  The host status field is set to HS_NEGOTIATE to mark this
5629  *  situation.
5630  *
5631  *  If the target doesn't answer this message immediately
5632  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5633  *  will be raised eventually.
5634  *  The handler removes the HS_NEGOTIATE status, and sets the
5635  *  negotiated value to the default (async / nowide).
5636  *
5637  *  If we receive a matching answer immediately, we check it
5638  *  for validity, and set the values.
5639  *
5640  *  If we receive a Reject message immediately, we assume the
5641  *  negotiation has failed, and fall back to standard values.
5642  *
5643  *  If we receive a negotiation message while not in HS_NEGOTIATE
5644  *  state, it's a target initiated negotiation. We prepare a
5645  *  (hopefully) valid answer, set our parameters, and send back
5646  *  this answer to the target.
5647  *
5648  *  If the target doesn't fetch the answer (no message out phase),
5649  *  we assume the negotiation has failed, and fall back to default
5650  *  settings (SIR_NEGO_PROTO interrupt).
5651  *
5652  *  When we set the values, we adjust them in all ccbs belonging
5653  *  to this target, in the controller's register, and in the "phys"
5654  *  field of the controller's struct sym_hcb.
5655  */
5656 
5657 /*
5658  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5659  */
5660 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5661 {
5662 	u_char	chg, ofs, per, fak, div;
5663 	int	req = 1;
5664 
5665 	/*
5666 	 *  Synchronous request message received.
5667 	 */
5668 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5669 		sym_print_msg(cp, "sync msgin", np->msgin);
5670 	};
5671 
5672 	/*
5673 	 * request or answer ?
5674 	 */
5675 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5676 		OUTB (HS_PRT, HS_BUSY);
5677 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5678 			goto reject_it;
5679 		req = 0;
5680 	}
5681 
5682 	/*
5683 	 *  get requested values.
5684 	 */
5685 	chg = 0;
5686 	per = np->msgin[3];
5687 	ofs = np->msgin[4];
5688 
5689 	/*
5690 	 *  check values against our limits.
5691 	 */
5692 	if (ofs) {
5693 		if (ofs > np->maxoffs)
5694 			{chg = 1; ofs = np->maxoffs;}
5695 		if (req) {
5696 			if (ofs > tp->tinfo.user.offset)
5697 				{chg = 1; ofs = tp->tinfo.user.offset;}
5698 		}
5699 	}
5700 
5701 	if (ofs) {
5702 		if (per < np->minsync)
5703 			{chg = 1; per = np->minsync;}
5704 		if (req) {
5705 			if (per < tp->tinfo.user.period)
5706 				{chg = 1; per = tp->tinfo.user.period;}
5707 		}
5708 	}
5709 
5710 	div = fak = 0;
5711 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5712 		goto reject_it;
5713 
5714 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5715 		PRINT_ADDR(cp);
5716 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5717 			ofs, per, div, fak, chg);
5718 	}
5719 
5720 	/*
5721 	 *  This was an answer message
5722 	 */
5723 	if (req == 0) {
5724 		if (chg) 	/* Answer wasn't acceptable. */
5725 			goto reject_it;
5726 		sym_setsync (np, cp, ofs, per, div, fak);
5727 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5728 		return;
5729 	}
5730 
5731 	/*
5732 	 *  It was a request. Set value and
5733 	 *  prepare an answer message
5734 	 */
5735 	sym_setsync (np, cp, ofs, per, div, fak);
5736 
5737 	np->msgout[0] = M_EXTENDED;
5738 	np->msgout[1] = 3;
5739 	np->msgout[2] = M_X_SYNC_REQ;
5740 	np->msgout[3] = per;
5741 	np->msgout[4] = ofs;
5742 
5743 	cp->nego_status = NS_SYNC;
5744 
5745 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5746 		sym_print_msg(cp, "sync msgout", np->msgout);
5747 	}
5748 
5749 	np->msgin [0] = M_NOOP;
5750 
5751 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5752 	return;
5753 reject_it:
5754 	sym_setsync (np, cp, 0, 0, 0, 0);
5755 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5756 }
5757 
5758 /*
5759  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5760  */
5761 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5762 {
5763 	u_char	chg, ofs, per, fak, dt, div, wide;
5764 	int	req = 1;
5765 
5766 	/*
5767 	 * Synchronous request message received.
5768 	 */
5769 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5770 		sym_print_msg(cp, "ppr msgin", np->msgin);
5771 	};
5772 
5773 	/*
5774 	 *  get requested values.
5775 	 */
5776 	chg  = 0;
5777 	per  = np->msgin[3];
5778 	ofs  = np->msgin[5];
5779 	wide = np->msgin[6];
5780 	dt   = np->msgin[7] & PPR_OPT_DT;
5781 
5782 	/*
5783 	 * request or answer ?
5784 	 */
5785 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5786 		OUTB (HS_PRT, HS_BUSY);
5787 		if (cp->nego_status && cp->nego_status != NS_PPR)
5788 			goto reject_it;
5789 		req = 0;
5790 	}
5791 
5792 	/*
5793 	 *  check values against our limits.
5794 	 */
5795 	if (wide > np->maxwide)
5796 		{chg = 1; wide = np->maxwide;}
5797 	if (!wide || !(np->features & FE_ULTRA3))
5798 		dt &= ~PPR_OPT_DT;
5799 	if (req) {
5800 		if (wide > tp->tinfo.user.width)
5801 			{chg = 1; wide = tp->tinfo.user.width;}
5802 	}
5803 
5804 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5805 		dt &= ~PPR_OPT_DT;
5806 
5807 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5808 
5809 	if (ofs) {
5810 		if (dt) {
5811 			if (ofs > np->maxoffs_dt)
5812 				{chg = 1; ofs = np->maxoffs_dt;}
5813 		}
5814 		else if (ofs > np->maxoffs)
5815 			{chg = 1; ofs = np->maxoffs;}
5816 		if (req) {
5817 			if (ofs > tp->tinfo.user.offset)
5818 				{chg = 1; ofs = tp->tinfo.user.offset;}
5819 		}
5820 	}
5821 
5822 	if (ofs) {
5823 		if (dt) {
5824 			if (per < np->minsync_dt)
5825 				{chg = 1; per = np->minsync_dt;}
5826 		}
5827 		else if (per < np->minsync)
5828 			{chg = 1; per = np->minsync;}
5829 		if (req) {
5830 			if (per < tp->tinfo.user.period)
5831 				{chg = 1; per = tp->tinfo.user.period;}
5832 		}
5833 	}
5834 
5835 	div = fak = 0;
5836 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5837 		goto reject_it;
5838 
5839 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5840 		PRINT_ADDR(cp);
5841 		printf ("ppr: "
5842 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5843 			dt, ofs, per, wide, div, fak, chg);
5844 	}
5845 
5846 	/*
5847 	 *  It was an answer.
5848 	 */
5849 	if (req == 0) {
5850 		if (chg) 	/* Answer wasn't acceptable */
5851 			goto reject_it;
5852 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5853 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5854 		return;
5855 	}
5856 
5857 	/*
5858 	 *  It was a request. Set value and
5859 	 *  prepare an answer message
5860 	 */
5861 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5862 
5863 	np->msgout[0] = M_EXTENDED;
5864 	np->msgout[1] = 6;
5865 	np->msgout[2] = M_X_PPR_REQ;
5866 	np->msgout[3] = per;
5867 	np->msgout[4] = 0;
5868 	np->msgout[5] = ofs;
5869 	np->msgout[6] = wide;
5870 	np->msgout[7] = dt;
5871 
5872 	cp->nego_status = NS_PPR;
5873 
5874 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5875 		sym_print_msg(cp, "ppr msgout", np->msgout);
5876 	}
5877 
5878 	np->msgin [0] = M_NOOP;
5879 
5880 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5881 	return;
5882 reject_it:
5883 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5884 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5885 	/*
5886 	 *  If it was a device response that should result in
5887 	 *  ST, we may want to try a legacy negotiation later.
5888 	 */
5889 	if (!req && !dt) {
5890 		tp->tinfo.goal.options = 0;
5891 		tp->tinfo.goal.width   = wide;
5892 		tp->tinfo.goal.period  = per;
5893 		tp->tinfo.goal.offset  = ofs;
5894 	}
5895 	return;
5896 }
5897 
5898 /*
5899  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5900  */
5901 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5902 {
5903 	u_char	chg, wide;
5904 	int	req = 1;
5905 
5906 	/*
5907 	 *  Wide request message received.
5908 	 */
5909 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5910 		sym_print_msg(cp, "wide msgin", np->msgin);
5911 	};
5912 
5913 	/*
5914 	 * Is it a request from the device?
5915 	 */
5916 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5917 		OUTB (HS_PRT, HS_BUSY);
5918 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5919 			goto reject_it;
5920 		req = 0;
5921 	}
5922 
5923 	/*
5924 	 *  get requested values.
5925 	 */
5926 	chg  = 0;
5927 	wide = np->msgin[3];
5928 
5929 	/*
5930 	 *  check values against driver limits.
5931 	 */
5932 	if (wide > np->maxwide)
5933 		{chg = 1; wide = np->maxwide;}
5934 	if (req) {
5935 		if (wide > tp->tinfo.user.width)
5936 			{chg = 1; wide = tp->tinfo.user.width;}
5937 	}
5938 
5939 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5940 		PRINT_ADDR(cp);
5941 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5942 	}
5943 
5944 	/*
5945 	 * This was an answer message
5946 	 */
5947 	if (req == 0) {
5948 		if (chg)	/*  Answer wasn't acceptable. */
5949 			goto reject_it;
5950 		sym_setwide (np, cp, wide);
5951 
5952 		/*
5953 		 * Negotiate for SYNC immediately after WIDE response.
5954 		 * This allows to negotiate for both WIDE and SYNC on
5955 		 * a single SCSI command (Suggested by Justin Gibbs).
5956 		 */
5957 		if (tp->tinfo.goal.offset) {
5958 			np->msgout[0] = M_EXTENDED;
5959 			np->msgout[1] = 3;
5960 			np->msgout[2] = M_X_SYNC_REQ;
5961 			np->msgout[3] = tp->tinfo.goal.period;
5962 			np->msgout[4] = tp->tinfo.goal.offset;
5963 
5964 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5965 				sym_print_msg(cp, "sync msgout", np->msgout);
5966 			}
5967 
5968 			cp->nego_status = NS_SYNC;
5969 			OUTB (HS_PRT, HS_NEGOTIATE);
5970 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5971 			return;
5972 		}
5973 
5974 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5975 		return;
5976 	};
5977 
5978 	/*
5979 	 *  It was a request, set value and
5980 	 *  prepare an answer message
5981 	 */
5982 	sym_setwide (np, cp, wide);
5983 
5984 	np->msgout[0] = M_EXTENDED;
5985 	np->msgout[1] = 2;
5986 	np->msgout[2] = M_X_WIDE_REQ;
5987 	np->msgout[3] = wide;
5988 
5989 	np->msgin [0] = M_NOOP;
5990 
5991 	cp->nego_status = NS_WIDE;
5992 
5993 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5994 		sym_print_msg(cp, "wide msgout", np->msgout);
5995 	}
5996 
5997 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5998 	return;
5999 reject_it:
6000 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6001 }
6002 
6003 /*
6004  *  Reset SYNC or WIDE to default settings.
6005  *
6006  *  Called when a negotiation does not succeed either
6007  *  on rejection or on protocol error.
6008  *
6009  *  If it was a PPR that made problems, we may want to
6010  *  try a legacy negotiation later.
6011  */
6012 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
6013 {
6014 	/*
6015 	 *  any error in negotiation:
6016 	 *  fall back to default mode.
6017 	 */
6018 	switch (cp->nego_status) {
6019 	case NS_PPR:
6020 #if 0
6021 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6022 #else
6023 		tp->tinfo.goal.options = 0;
6024 		if (tp->tinfo.goal.period < np->minsync)
6025 			tp->tinfo.goal.period = np->minsync;
6026 		if (tp->tinfo.goal.offset > np->maxoffs)
6027 			tp->tinfo.goal.offset = np->maxoffs;
6028 #endif
6029 		break;
6030 	case NS_SYNC:
6031 		sym_setsync (np, cp, 0, 0, 0, 0);
6032 		break;
6033 	case NS_WIDE:
6034 		sym_setwide (np, cp, 0);
6035 		break;
6036 	};
6037 	np->msgin [0] = M_NOOP;
6038 	np->msgout[0] = M_NOOP;
6039 	cp->nego_status = 0;
6040 }
6041 
6042 /*
6043  *  chip handler for MESSAGE REJECT received in response to
6044  *  a WIDE or SYNCHRONOUS negotiation.
6045  */
6046 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6047 {
6048 	sym_nego_default(np, tp, cp);
6049 	OUTB (HS_PRT, HS_BUSY);
6050 }
6051 
6052 /*
6053  *  chip exception handler for programmed interrupts.
6054  */
6055 static void sym_int_sir (hcb_p np)
6056 {
6057 	u_char	num	= INB (nc_dsps);
6058 	u32	dsa	= INL (nc_dsa);
6059 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6060 	u_char	target	= INB (nc_sdid) & 0x0f;
6061 	tcb_p	tp	= &np->target[target];
6062 	int	tmp;
6063 
6064 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6065 
6066 	switch (num) {
6067 	/*
6068 	 *  Command has been completed with error condition
6069 	 *  or has been auto-sensed.
6070 	 */
6071 	case SIR_COMPLETE_ERROR:
6072 		sym_complete_error(np, cp);
6073 		return;
6074 	/*
6075 	 *  The C code is currently trying to recover from something.
6076 	 *  Typically, user want to abort some command.
6077 	 */
6078 	case SIR_SCRIPT_STOPPED:
6079 	case SIR_TARGET_SELECTED:
6080 	case SIR_ABORT_SENT:
6081 		sym_sir_task_recovery(np, num);
6082 		return;
6083 	/*
6084 	 *  The device didn't go to MSG OUT phase after having
6085 	 *  been selected with ATN. We donnot want to handle
6086 	 *  that.
6087 	 */
6088 	case SIR_SEL_ATN_NO_MSG_OUT:
6089 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6090 			sym_name (np), target);
6091 		goto out_stuck;
6092 	/*
6093 	 *  The device didn't switch to MSG IN phase after
6094 	 *  having reseleted the initiator.
6095 	 */
6096 	case SIR_RESEL_NO_MSG_IN:
6097 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6098 			sym_name (np), target);
6099 		goto out_stuck;
6100 	/*
6101 	 *  After reselection, the device sent a message that wasn't
6102 	 *  an IDENTIFY.
6103 	 */
6104 	case SIR_RESEL_NO_IDENTIFY:
6105 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6106 			sym_name (np), target);
6107 		goto out_stuck;
6108 	/*
6109 	 *  The device reselected a LUN we donnot know about.
6110 	 */
6111 	case SIR_RESEL_BAD_LUN:
6112 		np->msgout[0] = M_RESET;
6113 		goto out;
6114 	/*
6115 	 *  The device reselected for an untagged nexus and we
6116 	 *  haven't any.
6117 	 */
6118 	case SIR_RESEL_BAD_I_T_L:
6119 		np->msgout[0] = M_ABORT;
6120 		goto out;
6121 	/*
6122 	 *  The device reselected for a tagged nexus that we donnot
6123 	 *  have.
6124 	 */
6125 	case SIR_RESEL_BAD_I_T_L_Q:
6126 		np->msgout[0] = M_ABORT_TAG;
6127 		goto out;
6128 	/*
6129 	 *  The SCRIPTS let us know that the device has grabbed
6130 	 *  our message and will abort the job.
6131 	 */
6132 	case SIR_RESEL_ABORTED:
6133 		np->lastmsg = np->msgout[0];
6134 		np->msgout[0] = M_NOOP;
6135 		printf ("%s:%d: message %x sent on bad reselection.\n",
6136 			sym_name (np), target, np->lastmsg);
6137 		goto out;
6138 	/*
6139 	 *  The SCRIPTS let us know that a message has been
6140 	 *  successfully sent to the device.
6141 	 */
6142 	case SIR_MSG_OUT_DONE:
6143 		np->lastmsg = np->msgout[0];
6144 		np->msgout[0] = M_NOOP;
6145 		/* Should we really care of that */
6146 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6147 			if (cp) {
6148 				cp->xerr_status &= ~XE_PARITY_ERR;
6149 				if (!cp->xerr_status)
6150 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6151 			}
6152 		}
6153 		goto out;
6154 	/*
6155 	 *  The device didn't send a GOOD SCSI status.
6156 	 *  We may have some work to do prior to allow
6157 	 *  the SCRIPTS processor to continue.
6158 	 */
6159 	case SIR_BAD_SCSI_STATUS:
6160 		if (!cp)
6161 			goto out;
6162 		sym_sir_bad_scsi_status(np, num, cp);
6163 		return;
6164 	/*
6165 	 *  We are asked by the SCRIPTS to prepare a
6166 	 *  REJECT message.
6167 	 */
6168 	case SIR_REJECT_TO_SEND:
6169 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6170 		np->msgout[0] = M_REJECT;
6171 		goto out;
6172 	/*
6173 	 *  We have been ODD at the end of a DATA IN
6174 	 *  transfer and the device didn't send a
6175 	 *  IGNORE WIDE RESIDUE message.
6176 	 *  It is a data overrun condition.
6177 	 */
6178 	case SIR_SWIDE_OVERRUN:
6179 		if (cp) {
6180 			OUTONB (HF_PRT, HF_EXT_ERR);
6181 			cp->xerr_status |= XE_SWIDE_OVRUN;
6182 		}
6183 		goto out;
6184 	/*
6185 	 *  We have been ODD at the end of a DATA OUT
6186 	 *  transfer.
6187 	 *  It is a data underrun condition.
6188 	 */
6189 	case SIR_SODL_UNDERRUN:
6190 		if (cp) {
6191 			OUTONB (HF_PRT, HF_EXT_ERR);
6192 			cp->xerr_status |= XE_SODL_UNRUN;
6193 		}
6194 		goto out;
6195 	/*
6196 	 *  The device wants us to tranfer more data than
6197 	 *  expected or in the wrong direction.
6198 	 *  The number of extra bytes is in scratcha.
6199 	 *  It is a data overrun condition.
6200 	 */
6201 	case SIR_DATA_OVERRUN:
6202 		if (cp) {
6203 			OUTONB (HF_PRT, HF_EXT_ERR);
6204 			cp->xerr_status |= XE_EXTRA_DATA;
6205 			cp->extra_bytes += INL (nc_scratcha);
6206 		}
6207 		goto out;
6208 	/*
6209 	 *  The device switched to an illegal phase (4/5).
6210 	 */
6211 	case SIR_BAD_PHASE:
6212 		if (cp) {
6213 			OUTONB (HF_PRT, HF_EXT_ERR);
6214 			cp->xerr_status |= XE_BAD_PHASE;
6215 		}
6216 		goto out;
6217 	/*
6218 	 *  We received a message.
6219 	 */
6220 	case SIR_MSG_RECEIVED:
6221 		if (!cp)
6222 			goto out_stuck;
6223 		switch (np->msgin [0]) {
6224 		/*
6225 		 *  We received an extended message.
6226 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6227 		 *  and reject all other extended messages.
6228 		 */
6229 		case M_EXTENDED:
6230 			switch (np->msgin [2]) {
6231 			case M_X_MODIFY_DP:
6232 				if (DEBUG_FLAGS & DEBUG_POINTER)
6233 					sym_print_msg(cp,"modify DP",np->msgin);
6234 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6235 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6236 				sym_modify_dp(np, tp, cp, tmp);
6237 				return;
6238 			case M_X_SYNC_REQ:
6239 				sym_sync_nego(np, tp, cp);
6240 				return;
6241 			case M_X_PPR_REQ:
6242 				sym_ppr_nego(np, tp, cp);
6243 				return;
6244 			case M_X_WIDE_REQ:
6245 				sym_wide_nego(np, tp, cp);
6246 				return;
6247 			default:
6248 				goto out_reject;
6249 			}
6250 			break;
6251 		/*
6252 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6253 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6254 		 *  RESIDUE messages that haven't been anticipated by
6255 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6256 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6257 		 */
6258 		case M_IGN_RESIDUE:
6259 			if (DEBUG_FLAGS & DEBUG_POINTER)
6260 				sym_print_msg(cp,"ign wide residue", np->msgin);
6261 			sym_modify_dp(np, tp, cp, -1);
6262 			return;
6263 		case M_REJECT:
6264 			if (INB (HS_PRT) == HS_NEGOTIATE)
6265 				sym_nego_rejected(np, tp, cp);
6266 			else {
6267 				PRINT_ADDR(cp);
6268 				printf ("M_REJECT received (%x:%x).\n",
6269 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6270 			}
6271 			goto out_clrack;
6272 			break;
6273 		default:
6274 			goto out_reject;
6275 		}
6276 		break;
6277 	/*
6278 	 *  We received an unknown message.
6279 	 *  Ignore all MSG IN phases and reject it.
6280 	 */
6281 	case SIR_MSG_WEIRD:
6282 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6283 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6284 		return;
6285 	/*
6286 	 *  Negotiation failed.
6287 	 *  Target does not send us the reply.
6288 	 *  Remove the HS_NEGOTIATE status.
6289 	 */
6290 	case SIR_NEGO_FAILED:
6291 		OUTB (HS_PRT, HS_BUSY);
6292 	/*
6293 	 *  Negotiation failed.
6294 	 *  Target does not want answer message.
6295 	 */
6296 	case SIR_NEGO_PROTO:
6297 		sym_nego_default(np, tp, cp);
6298 		goto out;
6299 	};
6300 
6301 out:
6302 	OUTONB_STD ();
6303 	return;
6304 out_reject:
6305 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6306 	return;
6307 out_clrack:
6308 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6309 	return;
6310 out_stuck:
6311 	return;
6312 }
6313 
6314 /*
6315  *  Acquire a control block
6316  */
6317 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6318 {
6319 	tcb_p tp = &np->target[tn];
6320 	lcb_p lp = sym_lp(np, tp, ln);
6321 	u_short tag = NO_TAG;
6322 	SYM_QUEHEAD *qp;
6323 	ccb_p cp = (ccb_p) 0;
6324 
6325 	/*
6326 	 *  Look for a free CCB
6327 	 */
6328 	if (sym_que_empty(&np->free_ccbq))
6329 		(void) sym_alloc_ccb(np);
6330 	qp = sym_remque_head(&np->free_ccbq);
6331 	if (!qp)
6332 		goto out;
6333 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6334 
6335 	/*
6336 	 *  If the LCB is not yet available and the LUN
6337 	 *  has been probed ok, try to allocate the LCB.
6338 	 */
6339 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6340 		lp = sym_alloc_lcb(np, tn, ln);
6341 		if (!lp)
6342 			goto out_free;
6343 	}
6344 
6345 	/*
6346 	 *  If the LCB is not available here, then the
6347 	 *  logical unit is not yet discovered. For those
6348 	 *  ones only accept 1 SCSI IO per logical unit,
6349 	 *  since we cannot allow disconnections.
6350 	 */
6351 	if (!lp) {
6352 		if (!sym_is_bit(tp->busy0_map, ln))
6353 			sym_set_bit(tp->busy0_map, ln);
6354 		else
6355 			goto out_free;
6356 	} else {
6357 		/*
6358 		 *  If we have been asked for a tagged command.
6359 		 */
6360 		if (tag_order) {
6361 			/*
6362 			 *  Debugging purpose.
6363 			 */
6364 			assert(lp->busy_itl == 0);
6365 			/*
6366 			 *  Allocate resources for tags if not yet.
6367 			 */
6368 			if (!lp->cb_tags) {
6369 				sym_alloc_lcb_tags(np, tn, ln);
6370 				if (!lp->cb_tags)
6371 					goto out_free;
6372 			}
6373 			/*
6374 			 *  Get a tag for this SCSI IO and set up
6375 			 *  the CCB bus address for reselection,
6376 			 *  and count it for this LUN.
6377 			 *  Toggle reselect path to tagged.
6378 			 */
6379 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6380 				tag = lp->cb_tags[lp->ia_tag];
6381 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6382 					lp->ia_tag = 0;
6383 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6384 				++lp->busy_itlq;
6385 				lp->head.resel_sa =
6386 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6387 			}
6388 			else
6389 				goto out_free;
6390 		}
6391 		/*
6392 		 *  This command will not be tagged.
6393 		 *  If we already have either a tagged or untagged
6394 		 *  one, refuse to overlap this untagged one.
6395 		 */
6396 		else {
6397 			/*
6398 			 *  Debugging purpose.
6399 			 */
6400 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6401 			/*
6402 			 *  Count this nexus for this LUN.
6403 			 *  Set up the CCB bus address for reselection.
6404 			 *  Toggle reselect path to untagged.
6405 			 */
6406 			if (++lp->busy_itl == 1) {
6407 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6408 				lp->head.resel_sa =
6409 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6410 			}
6411 			else
6412 				goto out_free;
6413 		}
6414 	}
6415 	/*
6416 	 *  Put the CCB into the busy queue.
6417 	 */
6418 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6419 
6420 	/*
6421 	 *  Remember all informations needed to free this CCB.
6422 	 */
6423 	cp->to_abort = 0;
6424 	cp->tag	   = tag;
6425 	cp->target = tn;
6426 	cp->lun    = ln;
6427 
6428 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6429 		PRINT_LUN(np, tn, ln);
6430 		printf ("ccb @%p using tag %d.\n", cp, tag);
6431 	}
6432 
6433 out:
6434 	return cp;
6435 out_free:
6436 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6437 	return (ccb_p) 0;
6438 }
6439 
6440 /*
6441  *  Release one control block
6442  */
6443 static void sym_free_ccb (hcb_p np, ccb_p cp)
6444 {
6445 	tcb_p tp = &np->target[cp->target];
6446 	lcb_p lp = sym_lp(np, tp, cp->lun);
6447 
6448 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6449 		PRINT_LUN(np, cp->target, cp->lun);
6450 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6451 	}
6452 
6453 	/*
6454 	 *  If LCB available,
6455 	 */
6456 	if (lp) {
6457 		/*
6458 		 *  If tagged, release the tag, set the relect path
6459 		 */
6460 		if (cp->tag != NO_TAG) {
6461 			/*
6462 			 *  Free the tag value.
6463 			 */
6464 			lp->cb_tags[lp->if_tag] = cp->tag;
6465 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6466 				lp->if_tag = 0;
6467 			/*
6468 			 *  Make the reselect path invalid,
6469 			 *  and uncount this CCB.
6470 			 */
6471 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6472 			--lp->busy_itlq;
6473 		} else {	/* Untagged */
6474 			/*
6475 			 *  Make the reselect path invalid,
6476 			 *  and uncount this CCB.
6477 			 */
6478 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6479 			--lp->busy_itl;
6480 		}
6481 		/*
6482 		 *  If no JOB active, make the LUN reselect path invalid.
6483 		 */
6484 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6485 			lp->head.resel_sa =
6486 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6487 	}
6488 	/*
6489 	 *  Otherwise, we only accept 1 IO per LUN.
6490 	 *  Clear the bit that keeps track of this IO.
6491 	 */
6492 	else
6493 		sym_clr_bit(tp->busy0_map, cp->lun);
6494 
6495 	/*
6496 	 *  We donnot queue more than 1 ccb per target
6497 	 *  with negotiation at any time. If this ccb was
6498 	 *  used for negotiation, clear this info in the tcb.
6499 	 */
6500 	if (cp == tp->nego_cp)
6501 		tp->nego_cp = 0;
6502 
6503 #ifdef SYM_CONF_IARB_SUPPORT
6504 	/*
6505 	 *  If we just complete the last queued CCB,
6506 	 *  clear this info that is no longer relevant.
6507 	 */
6508 	if (cp == np->last_cp)
6509 		np->last_cp = 0;
6510 #endif
6511 
6512 	/*
6513 	 *  Unmap user data from DMA map if needed.
6514 	 */
6515 	if (cp->dmamapped) {
6516 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6517 		cp->dmamapped = 0;
6518 	}
6519 
6520 	/*
6521 	 *  Make this CCB available.
6522 	 */
6523 	cp->cam_ccb = 0;
6524 	cp->host_status = HS_IDLE;
6525 	sym_remque(&cp->link_ccbq);
6526 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6527 }
6528 
6529 /*
6530  *  Allocate a CCB from memory and initialize its fixed part.
6531  */
6532 static ccb_p sym_alloc_ccb(hcb_p np)
6533 {
6534 	ccb_p cp = 0;
6535 	int hcode;
6536 
6537 	/*
6538 	 *  Prevent from allocating more CCBs than we can
6539 	 *  queue to the controller.
6540 	 */
6541 	if (np->actccbs >= SYM_CONF_MAX_START)
6542 		return 0;
6543 
6544 	/*
6545 	 *  Allocate memory for this CCB.
6546 	 */
6547 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6548 	if (!cp)
6549 		goto out_free;
6550 
6551 	/*
6552 	 *  Allocate a bounce buffer for sense data.
6553 	 */
6554 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6555 	if (!cp->sns_bbuf)
6556 		goto out_free;
6557 
6558 	/*
6559 	 *  Allocate a map for the DMA of user data.
6560 	 */
6561 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6562 		goto out_free;
6563 	/*
6564 	 *  Count it.
6565 	 */
6566 	np->actccbs++;
6567 
6568 	/*
6569 	 *  Compute the bus address of this ccb.
6570 	 */
6571 	cp->ccb_ba = vtobus(cp);
6572 
6573 	/*
6574 	 *  Insert this ccb into the hashed list.
6575 	 */
6576 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6577 	cp->link_ccbh = np->ccbh[hcode];
6578 	np->ccbh[hcode] = cp;
6579 
6580 	/*
6581 	 *  Initialyze the start and restart actions.
6582 	 */
6583 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6584 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6585 
6586  	/*
6587 	 *  Initilialyze some other fields.
6588 	 */
6589 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6590 
6591 	/*
6592 	 *  Chain into free ccb queue.
6593 	 */
6594 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6595 
6596 	return cp;
6597 out_free:
6598 	if (cp) {
6599 		if (cp->sns_bbuf)
6600 			sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
6601 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
6602 	}
6603 	return 0;
6604 }
6605 
6606 /*
6607  *  Look up a CCB from a DSA value.
6608  */
6609 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6610 {
6611 	int hcode;
6612 	ccb_p cp;
6613 
6614 	hcode = CCB_HASH_CODE(dsa);
6615 	cp = np->ccbh[hcode];
6616 	while (cp) {
6617 		if (cp->ccb_ba == dsa)
6618 			break;
6619 		cp = cp->link_ccbh;
6620 	}
6621 
6622 	return cp;
6623 }
6624 
6625 /*
6626  *  Target control block initialisation.
6627  *  Nothing important to do at the moment.
6628  */
6629 static void sym_init_tcb (hcb_p np, u_char tn)
6630 {
6631 	/*
6632 	 *  Check some alignments required by the chip.
6633 	 */
6634 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6635 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6636 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6637 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6638 }
6639 
6640 /*
6641  *  Lun control block allocation and initialization.
6642  */
6643 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6644 {
6645 	tcb_p tp = &np->target[tn];
6646 	lcb_p lp = sym_lp(np, tp, ln);
6647 
6648 	/*
6649 	 *  Already done, just return.
6650 	 */
6651 	if (lp)
6652 		return lp;
6653 	/*
6654 	 *  Check against some race.
6655 	 */
6656 	assert(!sym_is_bit(tp->busy0_map, ln));
6657 
6658 	/*
6659 	 *  Initialize the target control block if not yet.
6660 	 */
6661 	sym_init_tcb (np, tn);
6662 
6663 	/*
6664 	 *  Allocate the LCB bus address array.
6665 	 *  Compute the bus address of this table.
6666 	 */
6667 	if (ln && !tp->luntbl) {
6668 		int i;
6669 
6670 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6671 		if (!tp->luntbl)
6672 			goto fail;
6673 		for (i = 0 ; i < 64 ; i++)
6674 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6675 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6676 	}
6677 
6678 	/*
6679 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6680 	 */
6681 	if (ln && !tp->lunmp) {
6682 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6683 				   "LUNMP");
6684 		if (!tp->lunmp)
6685 			goto fail;
6686 	}
6687 
6688 	/*
6689 	 *  Allocate the lcb.
6690 	 *  Make it available to the chip.
6691 	 */
6692 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6693 	if (!lp)
6694 		goto fail;
6695 	if (ln) {
6696 		tp->lunmp[ln] = lp;
6697 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6698 	}
6699 	else {
6700 		tp->lun0p = lp;
6701 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6702 	}
6703 
6704 	/*
6705 	 *  Let the itl task point to error handling.
6706 	 */
6707 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6708 
6709 	/*
6710 	 *  Set the reselect pattern to our default. :)
6711 	 */
6712 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6713 
6714 	/*
6715 	 *  Set user capabilities.
6716 	 */
6717 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6718 
6719 fail:
6720 	return lp;
6721 }
6722 
6723 /*
6724  *  Allocate LCB resources for tagged command queuing.
6725  */
6726 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6727 {
6728 	tcb_p tp = &np->target[tn];
6729 	lcb_p lp = sym_lp(np, tp, ln);
6730 	int i;
6731 
6732 	/*
6733 	 *  If LCB not available, try to allocate it.
6734 	 */
6735 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6736 		goto fail;
6737 
6738 	/*
6739 	 *  Allocate the task table and and the tag allocation
6740 	 *  circular buffer. We want both or none.
6741 	 */
6742 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6743 	if (!lp->itlq_tbl)
6744 		goto fail;
6745 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6746 	if (!lp->cb_tags) {
6747 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6748 		lp->itlq_tbl = 0;
6749 		goto fail;
6750 	}
6751 
6752 	/*
6753 	 *  Initialize the task table with invalid entries.
6754 	 */
6755 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6756 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6757 
6758 	/*
6759 	 *  Fill up the tag buffer with tag numbers.
6760 	 */
6761 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6762 		lp->cb_tags[i] = i;
6763 
6764 	/*
6765 	 *  Make the task table available to SCRIPTS,
6766 	 *  And accept tagged commands now.
6767 	 */
6768 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6769 
6770 	return;
6771 fail:
6772 	return;
6773 }
6774 
6775 /*
6776  *  Test the pci bus snoop logic :-(
6777  *
6778  *  Has to be called with interrupts disabled.
6779  */
6780 #ifndef SYM_CONF_IOMAPPED
6781 static int sym_regtest (hcb_p np)
6782 {
6783 	register volatile u32 data;
6784 	/*
6785 	 *  chip registers may NOT be cached.
6786 	 *  write 0xffffffff to a read only register area,
6787 	 *  and try to read it back.
6788 	 */
6789 	data = 0xffffffff;
6790 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6791 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6792 #if 1
6793 	if (data == 0xffffffff) {
6794 #else
6795 	if ((data & 0xe2f0fffd) != 0x02000080) {
6796 #endif
6797 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6798 			(unsigned) data);
6799 		return (0x10);
6800 	};
6801 	return (0);
6802 }
6803 #endif
6804 
6805 static int sym_snooptest (hcb_p np)
6806 {
6807 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6808 	int	i, err=0;
6809 #ifndef SYM_CONF_IOMAPPED
6810 	err |= sym_regtest (np);
6811 	if (err) return (err);
6812 #endif
6813 restart_test:
6814 	/*
6815 	 *  Enable Master Parity Checking as we intend
6816 	 *  to enable it for normal operations.
6817 	 */
6818 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6819 	/*
6820 	 *  init
6821 	 */
6822 	pc  = SCRIPTB0_BA (np, snooptest);
6823 	host_wr = 1;
6824 	sym_wr  = 2;
6825 	/*
6826 	 *  Set memory and register.
6827 	 */
6828 	np->cache = cpu_to_scr(host_wr);
6829 	OUTL (nc_temp, sym_wr);
6830 	/*
6831 	 *  Start script (exchange values)
6832 	 */
6833 	OUTL (nc_dsa, np->hcb_ba);
6834 	OUTL_DSP (pc);
6835 	/*
6836 	 *  Wait 'til done (with timeout)
6837 	 */
6838 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6839 		if (INB(nc_istat) & (INTF|SIP|DIP))
6840 			break;
6841 	if (i>=SYM_SNOOP_TIMEOUT) {
6842 		printf ("CACHE TEST FAILED: timeout.\n");
6843 		return (0x20);
6844 	};
6845 	/*
6846 	 *  Check for fatal DMA errors.
6847 	 */
6848 	dstat = INB (nc_dstat);
6849 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6850 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6851 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6852 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6853 			sym_name(np));
6854 		np->rv_ctest4 &= ~MPEE;
6855 		goto restart_test;
6856 	}
6857 #endif
6858 	if (dstat & (MDPE|BF|IID)) {
6859 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6860 		return (0x80);
6861 	}
6862 	/*
6863 	 *  Save termination position.
6864 	 */
6865 	pc = INL (nc_dsp);
6866 	/*
6867 	 *  Read memory and register.
6868 	 */
6869 	host_rd = scr_to_cpu(np->cache);
6870 	sym_rd  = INL (nc_scratcha);
6871 	sym_bk  = INL (nc_temp);
6872 
6873 	/*
6874 	 *  Check termination position.
6875 	 */
6876 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6877 		printf ("CACHE TEST FAILED: script execution failed.\n");
6878 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6879 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6880 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6881 		return (0x40);
6882 	};
6883 	/*
6884 	 *  Show results.
6885 	 */
6886 	if (host_wr != sym_rd) {
6887 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6888 			(int) host_wr, (int) sym_rd);
6889 		err |= 1;
6890 	};
6891 	if (host_rd != sym_wr) {
6892 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6893 			(int) sym_wr, (int) host_rd);
6894 		err |= 2;
6895 	};
6896 	if (sym_bk != sym_wr) {
6897 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6898 			(int) sym_wr, (int) sym_bk);
6899 		err |= 4;
6900 	};
6901 
6902 	return (err);
6903 }
6904 
6905 /*
6906  *  Determine the chip's clock frequency.
6907  *
6908  *  This is essential for the negotiation of the synchronous
6909  *  transfer rate.
6910  *
6911  *  Note: we have to return the correct value.
6912  *  THERE IS NO SAFE DEFAULT VALUE.
6913  *
6914  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6915  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6916  *  do not have a clock doubler and so are provided with a
6917  *  80 MHz clock. All other fast20 boards incorporate a doubler
6918  *  and so should be delivered with a 40 MHz clock.
6919  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6920  *  clock and provide a clock quadrupler (160 Mhz).
6921  */
6922 
6923 /*
6924  *  Select SCSI clock frequency
6925  */
6926 static void sym_selectclock(hcb_p np, u_char scntl3)
6927 {
6928 	/*
6929 	 *  If multiplier not present or not selected, leave here.
6930 	 */
6931 	if (np->multiplier <= 1) {
6932 		OUTB(nc_scntl3,	scntl3);
6933 		return;
6934 	}
6935 
6936 	if (sym_verbose >= 2)
6937 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6938 
6939 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6940 	/*
6941 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6942 	 *  Otherwise wait 20 micro-seconds.
6943 	 */
6944 	if (np->features & FE_LCKFRQ) {
6945 		int i = 20;
6946 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6947 			UDELAY (20);
6948 		if (!i)
6949 			printf("%s: the chip cannot lock the frequency\n",
6950 				sym_name(np));
6951 	} else
6952 		UDELAY (20);
6953 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6954 	OUTB(nc_scntl3,	scntl3);
6955 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6956 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6957 }
6958 
6959 /*
6960  *  calculate SCSI clock frequency (in KHz)
6961  */
6962 static unsigned getfreq (hcb_p np, int gen)
6963 {
6964 	unsigned int ms = 0;
6965 	unsigned int f;
6966 
6967 	/*
6968 	 * Measure GEN timer delay in order
6969 	 * to calculate SCSI clock frequency
6970 	 *
6971 	 * This code will never execute too
6972 	 * many loop iterations (if DELAY is
6973 	 * reasonably correct). It could get
6974 	 * too low a delay (too high a freq.)
6975 	 * if the CPU is slow executing the
6976 	 * loop for some reason (an NMI, for
6977 	 * example). For this reason we will
6978 	 * if multiple measurements are to be
6979 	 * performed trust the higher delay
6980 	 * (lower frequency returned).
6981 	 */
6982 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6983 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6984 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6985 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6986 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6987 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6988 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6989 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6990 		UDELAY (1000);	/* count ms */
6991 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6992  	/*
6993  	 * set prescaler to divide by whatever 0 means
6994  	 * 0 ought to choose divide by 2, but appears
6995  	 * to set divide by 3.5 mode in my 53c810 ...
6996  	 */
6997  	OUTB (nc_scntl3, 0);
6998 
6999   	/*
7000  	 * adjust for prescaler, and convert into KHz
7001   	 */
7002 	f = ms ? ((1 << gen) * 4340) / ms : 0;
7003 
7004 	if (sym_verbose >= 2)
7005 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
7006 			sym_name(np), gen, ms, f);
7007 
7008 	return f;
7009 }
7010 
7011 static unsigned sym_getfreq (hcb_p np)
7012 {
7013 	u_int f1, f2;
7014 	int gen = 11;
7015 
7016 	(void) getfreq (np, gen);	/* throw away first result */
7017 	f1 = getfreq (np, gen);
7018 	f2 = getfreq (np, gen);
7019 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
7020 	return f1;
7021 }
7022 
7023 /*
7024  *  Get/probe chip SCSI clock frequency
7025  */
7026 static void sym_getclock (hcb_p np, int mult)
7027 {
7028 	unsigned char scntl3 = np->sv_scntl3;
7029 	unsigned char stest1 = np->sv_stest1;
7030 	unsigned f1;
7031 
7032 	/*
7033 	 *  For the C10 core, assume 40 MHz.
7034 	 */
7035 	if (np->features & FE_C10) {
7036 		np->multiplier = mult;
7037 		np->clock_khz = 40000 * mult;
7038 		return;
7039 	}
7040 
7041 	np->multiplier = 1;
7042 	f1 = 40000;
7043 	/*
7044 	 *  True with 875/895/896/895A with clock multiplier selected
7045 	 */
7046 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7047 		if (sym_verbose >= 2)
7048 			printf ("%s: clock multiplier found\n", sym_name(np));
7049 		np->multiplier = mult;
7050 	}
7051 
7052 	/*
7053 	 *  If multiplier not found or scntl3 not 7,5,3,
7054 	 *  reset chip and get frequency from general purpose timer.
7055 	 *  Otherwise trust scntl3 BIOS setting.
7056 	 */
7057 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7058 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7059 		f1 = sym_getfreq (np);
7060 
7061 		if (sym_verbose)
7062 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7063 
7064 		if	(f1 <	45000)		f1 =  40000;
7065 		else if (f1 <	55000)		f1 =  50000;
7066 		else				f1 =  80000;
7067 
7068 		if (f1 < 80000 && mult > 1) {
7069 			if (sym_verbose >= 2)
7070 				printf ("%s: clock multiplier assumed\n",
7071 					sym_name(np));
7072 			np->multiplier	= mult;
7073 		}
7074 	} else {
7075 		if	((scntl3 & 7) == 3)	f1 =  40000;
7076 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7077 		else 				f1 = 160000;
7078 
7079 		f1 /= np->multiplier;
7080 	}
7081 
7082 	/*
7083 	 *  Compute controller synchronous parameters.
7084 	 */
7085 	f1		*= np->multiplier;
7086 	np->clock_khz	= f1;
7087 }
7088 
7089 /*
7090  *  Get/probe PCI clock frequency
7091  */
7092 static int sym_getpciclock (hcb_p np)
7093 {
7094 	int f = 0;
7095 
7096 	/*
7097 	 *  For the C1010-33, this doesn't work.
7098 	 *  For the C1010-66, this will be tested when I'll have
7099 	 *  such a beast to play with.
7100 	 */
7101 	if (!(np->features & FE_C10)) {
7102 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7103 		f = (int) sym_getfreq (np);
7104 		OUTB (nc_stest1, 0);
7105 	}
7106 	np->pciclk_khz = f;
7107 
7108 	return f;
7109 }
7110 
7111 /*============= DRIVER ACTION/COMPLETION ====================*/
7112 
7113 /*
7114  *  Print something that tells about extended errors.
7115  */
7116 static void sym_print_xerr(ccb_p cp, int x_status)
7117 {
7118 	if (x_status & XE_PARITY_ERR) {
7119 		PRINT_ADDR(cp);
7120 		printf ("unrecovered SCSI parity error.\n");
7121 	}
7122 	if (x_status & XE_EXTRA_DATA) {
7123 		PRINT_ADDR(cp);
7124 		printf ("extraneous data discarded.\n");
7125 	}
7126 	if (x_status & XE_BAD_PHASE) {
7127 		PRINT_ADDR(cp);
7128 		printf ("illegal scsi phase (4/5).\n");
7129 	}
7130 	if (x_status & XE_SODL_UNRUN) {
7131 		PRINT_ADDR(cp);
7132 		printf ("ODD transfer in DATA OUT phase.\n");
7133 	}
7134 	if (x_status & XE_SWIDE_OVRUN) {
7135 		PRINT_ADDR(cp);
7136 		printf ("ODD transfer in DATA IN phase.\n");
7137 	}
7138 }
7139 
7140 /*
7141  *  Choose the more appropriate CAM status if
7142  *  the IO encountered an extended error.
7143  */
7144 static int sym_xerr_cam_status(int cam_status, int x_status)
7145 {
7146 	if (x_status) {
7147 		if	(x_status & XE_PARITY_ERR)
7148 			cam_status = CAM_UNCOR_PARITY;
7149 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7150 			cam_status = CAM_DATA_RUN_ERR;
7151 		else if	(x_status & XE_BAD_PHASE)
7152 			cam_status = CAM_REQ_CMP_ERR;
7153 		else
7154 			cam_status = CAM_REQ_CMP_ERR;
7155 	}
7156 	return cam_status;
7157 }
7158 
7159 /*
7160  *  Complete execution of a SCSI command with extented
7161  *  error, SCSI status error, or having been auto-sensed.
7162  *
7163  *  The SCRIPTS processor is not running there, so we
7164  *  can safely access IO registers and remove JOBs from
7165  *  the START queue.
7166  *  SCRATCHA is assumed to have been loaded with STARTPOS
7167  *  before the SCRIPTS called the C code.
7168  */
7169 static void sym_complete_error (hcb_p np, ccb_p cp)
7170 {
7171 	struct ccb_scsiio *csio;
7172 	u_int cam_status;
7173 	int i;
7174 
7175 	/*
7176 	 *  Paranoid check. :)
7177 	 */
7178 	if (!cp || !cp->cam_ccb)
7179 		return;
7180 
7181 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7182 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7183 			cp->host_status, cp->ssss_status, cp->host_flags,
7184 			cp->target, cp->lun);
7185 		MDELAY(100);
7186 	}
7187 
7188 	/*
7189 	 *  Get CAM command pointer.
7190 	 */
7191 	csio = &cp->cam_ccb->csio;
7192 
7193 	/*
7194 	 *  Check for extended errors.
7195 	 */
7196 	if (cp->xerr_status) {
7197 		if (sym_verbose)
7198 			sym_print_xerr(cp, cp->xerr_status);
7199 		if (cp->host_status == HS_COMPLETE)
7200 			cp->host_status = HS_COMP_ERR;
7201 	}
7202 
7203 	/*
7204 	 *  Calculate the residual.
7205 	 */
7206 	csio->sense_resid = 0;
7207 	csio->resid = sym_compute_residual(np, cp);
7208 
7209 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7210 		csio->resid  = 0;	/* throw them away. :)		   */
7211 		cp->sv_resid = 0;
7212 	}
7213 
7214 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7215 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7216 		csio->sense_resid = csio->resid;	/* Swap residuals */
7217 		csio->resid       = cp->sv_resid;
7218 		cp->sv_resid	  = 0;
7219 		if (sym_verbose && cp->sv_xerr_status)
7220 			sym_print_xerr(cp, cp->sv_xerr_status);
7221 		if (cp->host_status == HS_COMPLETE &&
7222 		    cp->ssss_status == S_GOOD &&
7223 		    cp->xerr_status == 0) {
7224 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7225 							 cp->sv_xerr_status);
7226 			cam_status |= CAM_AUTOSNS_VALID;
7227 			/*
7228 			 *  Bounce back the sense data to user and
7229 			 *  fix the residual.
7230 			 */
7231 			bzero(&csio->sense_data, csio->sense_len);
7232 			bcopy(cp->sns_bbuf, &csio->sense_data,
7233 			      MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7234 			csio->sense_resid += csio->sense_len;
7235 			csio->sense_resid -= SYM_SNS_BBUF_LEN;
7236 #if 0
7237 			/*
7238 			 *  If the device reports a UNIT ATTENTION condition
7239 			 *  due to a RESET condition, we should consider all
7240 			 *  disconnect CCBs for this unit as aborted.
7241 			 */
7242 			if (1) {
7243 				u_char *p;
7244 				p  = (u_char *) csio->sense_data;
7245 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7246 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7247 							cp->target,cp->lun, -1);
7248 			}
7249 #endif
7250 		}
7251 		else
7252 			cam_status = CAM_AUTOSENSE_FAIL;
7253 	}
7254 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7255 		csio->scsi_status = cp->ssss_status;
7256 		cam_status = CAM_SCSI_STATUS_ERROR;
7257 	}
7258 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7259 		cam_status = CAM_SEL_TIMEOUT;
7260 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7261 		cam_status = CAM_UNEXP_BUSFREE;
7262 	else {						/* Extended error */
7263 		if (sym_verbose) {
7264 			PRINT_ADDR(cp);
7265 			printf ("COMMAND FAILED (%x %x %x).\n",
7266 				cp->host_status, cp->ssss_status,
7267 				cp->xerr_status);
7268 		}
7269 		csio->scsi_status = cp->ssss_status;
7270 		/*
7271 		 *  Set the most appropriate value for CAM status.
7272 		 */
7273 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7274 						 cp->xerr_status);
7275 	}
7276 
7277 	/*
7278 	 *  Dequeue all queued CCBs for that device
7279 	 *  not yet started by SCRIPTS.
7280 	 */
7281 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7282 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7283 
7284 	/*
7285 	 *  Restart the SCRIPTS processor.
7286 	 */
7287 	OUTL_DSP (SCRIPTA_BA (np, start));
7288 
7289 	/*
7290 	 *  Synchronize DMA map if needed.
7291 	 */
7292 	if (cp->dmamapped) {
7293 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7294 			(cp->dmamapped == SYM_DMA_READ ?
7295 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7296 	}
7297 	/*
7298 	 *  Add this one to the COMP queue.
7299 	 *  Complete all those commands with either error
7300 	 *  or requeue condition.
7301 	 */
7302 	sym_set_cam_status((union ccb *) csio, cam_status);
7303 	sym_remque(&cp->link_ccbq);
7304 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7305 	sym_flush_comp_queue(np, 0);
7306 }
7307 
7308 /*
7309  *  Complete execution of a successful SCSI command.
7310  *
7311  *  Only successful commands go to the DONE queue,
7312  *  since we need to have the SCRIPTS processor
7313  *  stopped on any error condition.
7314  *  The SCRIPTS processor is running while we are
7315  *  completing successful commands.
7316  */
7317 static void sym_complete_ok (hcb_p np, ccb_p cp)
7318 {
7319 	struct ccb_scsiio *csio;
7320 	tcb_p tp;
7321 	lcb_p lp;
7322 
7323 	/*
7324 	 *  Paranoid check. :)
7325 	 */
7326 	if (!cp || !cp->cam_ccb)
7327 		return;
7328 	assert (cp->host_status == HS_COMPLETE);
7329 
7330 	/*
7331 	 *  Get command, target and lun pointers.
7332 	 */
7333 	csio = &cp->cam_ccb->csio;
7334 	tp = &np->target[cp->target];
7335 	lp = sym_lp(np, tp, cp->lun);
7336 
7337 	/*
7338 	 *  Assume device discovered on first success.
7339 	 */
7340 	if (!lp)
7341 		sym_set_bit(tp->lun_map, cp->lun);
7342 
7343 	/*
7344 	 *  If all data have been transferred, given than no
7345 	 *  extended error did occur, there is no residual.
7346 	 */
7347 	csio->resid = 0;
7348 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7349 		csio->resid = sym_compute_residual(np, cp);
7350 
7351 	/*
7352 	 *  Wrong transfer residuals may be worse than just always
7353 	 *  returning zero. User can disable this feature from
7354 	 *  sym_conf.h. Residual support is enabled by default.
7355 	 */
7356 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7357 		csio->resid  = 0;
7358 
7359 	/*
7360 	 *  Synchronize DMA map if needed.
7361 	 */
7362 	if (cp->dmamapped) {
7363 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7364 			(cp->dmamapped == SYM_DMA_READ ?
7365 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7366 	}
7367 	/*
7368 	 *  Set status and complete the command.
7369 	 */
7370 	csio->scsi_status = cp->ssss_status;
7371 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7372 	sym_free_ccb (np, cp);
7373 	sym_xpt_done(np, (union ccb *) csio);
7374 }
7375 
7376 /*
7377  *  Our timeout handler.
7378  */
7379 static void sym_timeout1(void *arg)
7380 {
7381 	union ccb *ccb = (union ccb *) arg;
7382 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7383 
7384 	/*
7385 	 *  Check that the CAM CCB is still queued.
7386 	 */
7387 	if (!np)
7388 		return;
7389 
7390 	switch(ccb->ccb_h.func_code) {
7391 	case XPT_SCSI_IO:
7392 		(void) sym_abort_scsiio(np, ccb, 1);
7393 		break;
7394 	default:
7395 		break;
7396 	}
7397 }
7398 
7399 static void sym_timeout(void *arg)
7400 {
7401 	int s = splcam();
7402 	sym_timeout1(arg);
7403 	splx(s);
7404 }
7405 
7406 /*
7407  *  Abort an SCSI IO.
7408  */
7409 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7410 {
7411 	ccb_p cp;
7412 	SYM_QUEHEAD *qp;
7413 
7414 	/*
7415 	 *  Look up our CCB control block.
7416 	 */
7417 	cp = 0;
7418 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7419 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7420 		if (cp2->cam_ccb == ccb) {
7421 			cp = cp2;
7422 			break;
7423 		}
7424 	}
7425 	if (!cp || cp->host_status == HS_WAIT)
7426 		return -1;
7427 
7428 	/*
7429 	 *  If a previous abort didn't succeed in time,
7430 	 *  perform a BUS reset.
7431 	 */
7432 	if (cp->to_abort) {
7433 		sym_reset_scsi_bus(np, 1);
7434 		return 0;
7435 	}
7436 
7437 	/*
7438 	 *  Mark the CCB for abort and allow time for.
7439 	 */
7440 	cp->to_abort = timed_out ? 2 : 1;
7441 	ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz);
7442 
7443 	/*
7444 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7445 	 */
7446 	np->istat_sem = SEM;
7447 	OUTB (nc_istat, SIGP|SEM);
7448 	return 0;
7449 }
7450 
7451 /*
7452  *  Reset a SCSI device (all LUNs of a target).
7453  */
7454 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7455 {
7456 	tcb_p tp;
7457 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7458 
7459 	if (ccb_h->target_id   == np->myaddr ||
7460 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7461 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7462 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7463 		return;
7464 	}
7465 
7466 	tp = &np->target[ccb_h->target_id];
7467 
7468 	tp->to_reset = 1;
7469 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7470 
7471 	np->istat_sem = SEM;
7472 	OUTB (nc_istat, SIGP|SEM);
7473 	return;
7474 }
7475 
7476 /*
7477  *  SIM action entry point.
7478  */
7479 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7480 {
7481 	int s = splcam();
7482 	sym_action1(sim, ccb);
7483 	splx(s);
7484 }
7485 
7486 static void sym_action1(struct cam_sim *sim, union ccb *ccb)
7487 {
7488 	hcb_p	np;
7489 	tcb_p	tp;
7490 	lcb_p	lp;
7491 	ccb_p	cp;
7492 	int 	tmp;
7493 	u_char	idmsg, *msgptr;
7494 	u_int   msglen;
7495 	struct	ccb_scsiio *csio;
7496 	struct	ccb_hdr  *ccb_h;
7497 
7498 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7499 
7500 	/*
7501 	 *  Retrieve our controller data structure.
7502 	 */
7503 	np = (hcb_p) cam_sim_softc(sim);
7504 
7505 	/*
7506 	 *  The common case is SCSI IO.
7507 	 *  We deal with other ones elsewhere.
7508 	 */
7509 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7510 		sym_action2(sim, ccb);
7511 		return;
7512 	}
7513 	csio  = &ccb->csio;
7514 	ccb_h = &csio->ccb_h;
7515 
7516 	/*
7517 	 *  Work around races.
7518 	 */
7519 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7520 		xpt_done(ccb);
7521 		return;
7522 	}
7523 
7524 	/*
7525 	 *  Minimal checkings, so that we will not
7526 	 *  go outside our tables.
7527 	 */
7528 	if (ccb_h->target_id   == np->myaddr ||
7529 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7530 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7531 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7532 		return;
7533         }
7534 
7535 	/*
7536 	 *  Retreive the target and lun descriptors.
7537 	 */
7538 	tp = &np->target[ccb_h->target_id];
7539 	lp = sym_lp(np, tp, ccb_h->target_lun);
7540 
7541 	/*
7542 	 *  Complete the 1st INQUIRY command with error
7543 	 *  condition if the device is flagged NOSCAN
7544 	 *  at BOOT in the NVRAM. This may speed up
7545 	 *  the boot and maintain coherency with BIOS
7546 	 *  device numbering. Clearing the flag allows
7547 	 *  user to rescan skipped devices later.
7548 	 *  We also return error for devices not flagged
7549 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7550 	 *  devices behave badly when asked for some non
7551 	 *  zero LUN. Btw, this is an absolute hack.:-)
7552 	 */
7553 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7554 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7555 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7556 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7557 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7558 		     ccb_h->target_lun != 0)) {
7559 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7560 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7561 			return;
7562 		}
7563 	}
7564 
7565 	/*
7566 	 *  Get a control block for this IO.
7567 	 */
7568 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7569 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7570 	if (!cp) {
7571 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7572 		return;
7573 	}
7574 
7575 	/*
7576 	 *  Keep track of the IO in our CCB.
7577 	 */
7578 	cp->cam_ccb = ccb;
7579 
7580 	/*
7581 	 *  Build the IDENTIFY message.
7582 	 */
7583 	idmsg = M_IDENTIFY | cp->lun;
7584 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7585 		idmsg |= 0x40;
7586 
7587 	msgptr = cp->scsi_smsg;
7588 	msglen = 0;
7589 	msgptr[msglen++] = idmsg;
7590 
7591 	/*
7592 	 *  Build the tag message if present.
7593 	 */
7594 	if (cp->tag != NO_TAG) {
7595 		u_char order = csio->tag_action;
7596 
7597 		switch(order) {
7598 		case M_ORDERED_TAG:
7599 			break;
7600 		case M_HEAD_TAG:
7601 			break;
7602 		default:
7603 			order = M_SIMPLE_TAG;
7604 		}
7605 		msgptr[msglen++] = order;
7606 
7607 		/*
7608 		 *  For less than 128 tags, actual tags are numbered
7609 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7610 		 *  with devices that have problems with #TAG 0 or too
7611 		 *  great #TAG numbers. For more tags (up to 256),
7612 		 *  we use directly our tag number.
7613 		 */
7614 #if SYM_CONF_MAX_TASK > (512/4)
7615 		msgptr[msglen++] = cp->tag;
7616 #else
7617 		msgptr[msglen++] = (cp->tag << 1) + 1;
7618 #endif
7619 	}
7620 
7621 	/*
7622 	 *  Build a negotiation message if needed.
7623 	 *  (nego_status is filled by sym_prepare_nego())
7624 	 */
7625 	cp->nego_status = 0;
7626 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7627 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7628 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7629 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7630 		if (!tp->nego_cp && lp)
7631 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7632 	}
7633 
7634 	/*
7635 	 *  Fill in our ccb
7636 	 */
7637 
7638 	/*
7639 	 *  Startqueue
7640 	 */
7641 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7642 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7643 
7644 	/*
7645 	 *  select
7646 	 */
7647 	cp->phys.select.sel_id		= cp->target;
7648 	cp->phys.select.sel_scntl3	= tp->head.wval;
7649 	cp->phys.select.sel_sxfer	= tp->head.sval;
7650 	cp->phys.select.sel_scntl4	= tp->head.uval;
7651 
7652 	/*
7653 	 *  message
7654 	 */
7655 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7656 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7657 
7658 	/*
7659 	 *  command
7660 	 */
7661 	if (sym_setup_cdb(np, csio, cp) < 0) {
7662 		sym_free_ccb(np, cp);
7663 		sym_xpt_done(np, ccb);
7664 		return;
7665 	}
7666 
7667 	/*
7668 	 *  status
7669 	 */
7670 #if	0	/* Provision */
7671 	cp->actualquirks	= tp->quirks;
7672 #endif
7673 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7674 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7675 	cp->ssss_status		= S_ILLEGAL;
7676 	cp->xerr_status		= 0;
7677 	cp->host_flags		= 0;
7678 	cp->extra_bytes		= 0;
7679 
7680 	/*
7681 	 *  extreme data pointer.
7682 	 *  shall be positive, so -1 is lower than lowest.:)
7683 	 */
7684 	cp->ext_sg  = -1;
7685 	cp->ext_ofs = 0;
7686 
7687 	/*
7688 	 *  Build the data descriptor block
7689 	 *  and start the IO.
7690 	 */
7691 	sym_setup_data_and_start(np, csio, cp);
7692 }
7693 
7694 /*
7695  *  Setup buffers and pointers that address the CDB.
7696  *  I bet, physical CDBs will never be used on the planet,
7697  *  since they can be bounced without significant overhead.
7698  */
7699 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7700 {
7701 	struct ccb_hdr *ccb_h;
7702 	u32	cmd_ba;
7703 	int	cmd_len;
7704 
7705 	ccb_h = &csio->ccb_h;
7706 
7707 	/*
7708 	 *  CDB is 16 bytes max.
7709 	 */
7710 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7711 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7712 		return -1;
7713 	}
7714 	cmd_len = csio->cdb_len;
7715 
7716 	if (ccb_h->flags & CAM_CDB_POINTER) {
7717 		/* CDB is a pointer */
7718 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7719 			/* CDB pointer is virtual */
7720 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7721 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7722 		} else {
7723 			/* CDB pointer is physical */
7724 #if 0
7725 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7726 #else
7727 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7728 			return -1;
7729 #endif
7730 		}
7731 	} else {
7732 		/* CDB is in the CAM ccb (buffer) */
7733 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7734 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7735 	}
7736 
7737 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7738 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7739 
7740 	return 0;
7741 }
7742 
7743 /*
7744  *  Set up data pointers used by SCRIPTS.
7745  */
7746 static void __inline
7747 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7748 {
7749 	u32 lastp, goalp;
7750 
7751 	/*
7752 	 *  No segments means no data.
7753 	 */
7754 	if (!cp->segments)
7755 		dir = CAM_DIR_NONE;
7756 
7757 	/*
7758 	 *  Set the data pointer.
7759 	 */
7760 	switch(dir) {
7761 	case CAM_DIR_OUT:
7762 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7763 		lastp = goalp - 8 - (cp->segments * (2*4));
7764 		break;
7765 	case CAM_DIR_IN:
7766 		cp->host_flags |= HF_DATA_IN;
7767 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7768 		lastp = goalp - 8 - (cp->segments * (2*4));
7769 		break;
7770 	case CAM_DIR_NONE:
7771 	default:
7772 		lastp = goalp = SCRIPTB_BA (np, no_data);
7773 		break;
7774 	}
7775 
7776 	cp->phys.head.lastp = cpu_to_scr(lastp);
7777 	cp->phys.head.goalp = cpu_to_scr(goalp);
7778 	cp->phys.head.savep = cpu_to_scr(lastp);
7779 	cp->startp	    = cp->phys.head.savep;
7780 }
7781 
7782 
7783 /*
7784  *  Call back routine for the DMA map service.
7785  *  If bounce buffers are used (why ?), we may sleep and then
7786  *  be called there in another context.
7787  */
7788 static void
7789 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7790 {
7791 	ccb_p	cp;
7792 	hcb_p	np;
7793 	union	ccb *ccb;
7794 	int	s;
7795 
7796 	s = splcam();
7797 
7798 	cp  = (ccb_p) arg;
7799 	ccb = cp->cam_ccb;
7800 	np  = (hcb_p) cp->arg;
7801 
7802 	/*
7803 	 *  Deal with weird races.
7804 	 */
7805 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7806 		goto out_abort;
7807 
7808 	/*
7809 	 *  Deal with weird errors.
7810 	 */
7811 	if (error) {
7812 		cp->dmamapped = 0;
7813 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7814 		goto out_abort;
7815 	}
7816 
7817 	/*
7818 	 *  Build the data descriptor for the chip.
7819 	 */
7820 	if (nsegs) {
7821 		int retv;
7822 		/* 896 rev 1 requires to be careful about boundaries */
7823 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7824 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7825 		else
7826 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7827 		if (retv < 0) {
7828 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7829 			goto out_abort;
7830 		}
7831 	}
7832 
7833 	/*
7834 	 *  Synchronize the DMA map only if we have
7835 	 *  actually mapped the data.
7836 	 */
7837 	if (cp->dmamapped) {
7838 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7839 			(cp->dmamapped == SYM_DMA_READ ?
7840 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7841 	}
7842 
7843 	/*
7844 	 *  Set host status to busy state.
7845 	 *  May have been set back to HS_WAIT to avoid a race.
7846 	 */
7847 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7848 
7849 	/*
7850 	 *  Set data pointers.
7851 	 */
7852 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7853 
7854 	/*
7855 	 *  Enqueue this IO in our pending queue.
7856 	 */
7857 	sym_enqueue_cam_ccb(np, ccb);
7858 
7859 	/*
7860 	 *  When `#ifed 1', the code below makes the driver
7861 	 *  panic on the first attempt to write to a SCSI device.
7862 	 *  It is the first test we want to do after a driver
7863 	 *  change that does not seem obviously safe. :)
7864 	 */
7865 #if 0
7866 	switch (cp->cdb_buf[0]) {
7867 	case 0x0A: case 0x2A: case 0xAA:
7868 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7869 		MDELAY(10000);
7870 		break;
7871 	default:
7872 		break;
7873 	}
7874 #endif
7875 	/*
7876 	 *  Activate this job.
7877 	 */
7878 	sym_put_start_queue(np, cp);
7879 out:
7880 	splx(s);
7881 	return;
7882 out_abort:
7883 	sym_free_ccb(np, cp);
7884 	sym_xpt_done(np, ccb);
7885 	goto out;
7886 }
7887 
7888 /*
7889  *  How complex it gets to deal with the data in CAM.
7890  *  The Bus Dma stuff makes things still more complex.
7891  */
7892 static void
7893 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7894 {
7895 	struct ccb_hdr *ccb_h;
7896 	int dir, retv;
7897 
7898 	ccb_h = &csio->ccb_h;
7899 
7900 	/*
7901 	 *  Now deal with the data.
7902 	 */
7903 	cp->data_len = csio->dxfer_len;
7904 	cp->arg      = np;
7905 
7906 	/*
7907 	 *  No direction means no data.
7908 	 */
7909 	dir = (ccb_h->flags & CAM_DIR_MASK);
7910 	if (dir == CAM_DIR_NONE) {
7911 		sym_execute_ccb(cp, NULL, 0, 0);
7912 		return;
7913 	}
7914 
7915 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
7916 		/* Single buffer */
7917 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7918 			/* Buffer is virtual */
7919 			int s;
7920 
7921 			cp->dmamapped = (dir == CAM_DIR_IN) ?
7922 						SYM_DMA_READ : SYM_DMA_WRITE;
7923 			s = splsoftvm();
7924 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
7925 					       csio->data_ptr, csio->dxfer_len,
7926 					       sym_execute_ccb, cp, 0);
7927 			if (retv == EINPROGRESS) {
7928 				cp->host_status	= HS_WAIT;
7929 				xpt_freeze_simq(np->sim, 1);
7930 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7931 			}
7932 			splx(s);
7933 		} else {
7934 			/* Buffer is physical */
7935 			struct bus_dma_segment seg;
7936 
7937 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
7938 			sym_execute_ccb(cp, &seg, 1, 0);
7939 		}
7940 	} else {
7941 		/* Scatter/gather list */
7942 		struct bus_dma_segment *segs;
7943 
7944 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
7945 			/* The SG list pointer is physical */
7946 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7947 			goto out_abort;
7948 		}
7949 
7950 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7951 			/* SG buffer pointers are virtual */
7952 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7953 			goto out_abort;
7954 		}
7955 
7956 		/* SG buffer pointers are physical */
7957 		segs  = (struct bus_dma_segment *)csio->data_ptr;
7958 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
7959 	}
7960 	return;
7961 out_abort:
7962 	sym_free_ccb(np, cp);
7963 	sym_xpt_done(np, (union ccb *) csio);
7964 }
7965 
7966 /*
7967  *  Move the scatter list to our data block.
7968  */
7969 static int
7970 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7971 			     bus_dma_segment_t *psegs, int nsegs)
7972 {
7973 	struct sym_tblmove *data;
7974 	bus_dma_segment_t *psegs2;
7975 
7976 	if (nsegs > SYM_CONF_MAX_SG)
7977 		return -1;
7978 
7979 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7980 	psegs2 = &psegs[nsegs-1];
7981 	cp->segments = nsegs;
7982 
7983 	while (1) {
7984 		data->addr = cpu_to_scr(psegs2->ds_addr);
7985 		data->size = cpu_to_scr(psegs2->ds_len);
7986 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7987 			printf ("%s scatter: paddr=%lx len=%ld\n",
7988 				sym_name(np), (long) psegs2->ds_addr,
7989 				(long) psegs2->ds_len);
7990 		}
7991 		if (psegs2 != psegs) {
7992 			--data;
7993 			--psegs2;
7994 			continue;
7995 		}
7996 		break;
7997 	}
7998 	return 0;
7999 }
8000 
8001 
8002 /*
8003  *  Scatter a SG list with physical addresses into bus addressable chunks.
8004  *  We need to ensure 16MB boundaries not to be crossed during DMA of
8005  *  each segment, due to some chips being flawed.
8006  */
8007 #define BOUND_MASK ((1UL<<24)-1)
8008 static int
8009 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
8010 {
8011 	u_long	ps, pe, pn;
8012 	u_long	k;
8013 	int s, t;
8014 
8015 	s  = SYM_CONF_MAX_SG - 1;
8016 	t  = nsegs - 1;
8017 	ps = psegs[t].ds_addr;
8018 	pe = ps + psegs[t].ds_len;
8019 
8020 	while (s >= 0) {
8021 		pn = (pe - 1) & ~BOUND_MASK;
8022 		if (pn <= ps)
8023 			pn = ps;
8024 		k = pe - pn;
8025 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8026 			printf ("%s scatter: paddr=%lx len=%ld\n",
8027 				sym_name(np), pn, k);
8028 		}
8029 		cp->phys.data[s].addr = cpu_to_scr(pn);
8030 		cp->phys.data[s].size = cpu_to_scr(k);
8031 		--s;
8032 		if (pn == ps) {
8033 			if (--t < 0)
8034 				break;
8035 			ps = psegs[t].ds_addr;
8036 			pe = ps + psegs[t].ds_len;
8037 		}
8038 		else
8039 			pe = pn;
8040 	}
8041 
8042 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8043 
8044 	return t >= 0 ? -1 : 0;
8045 }
8046 #undef BOUND_MASK
8047 
8048 /*
8049  *  SIM action for non performance critical stuff.
8050  */
8051 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8052 {
8053 	hcb_p	np;
8054 	tcb_p	tp;
8055 	lcb_p	lp;
8056 	struct	ccb_hdr  *ccb_h;
8057 
8058 	/*
8059 	 *  Retrieve our controller data structure.
8060 	 */
8061 	np = (hcb_p) cam_sim_softc(sim);
8062 
8063 	ccb_h = &ccb->ccb_h;
8064 
8065 	switch (ccb_h->func_code) {
8066 	case XPT_SET_TRAN_SETTINGS:
8067 	{
8068 		struct ccb_trans_settings *cts;
8069 
8070 		cts  = &ccb->cts;
8071 		tp = &np->target[ccb_h->target_id];
8072 
8073 		/*
8074 		 *  Update SPI transport settings in TARGET control block.
8075 		 *  Update SCSI device settings in LUN control block.
8076 		 */
8077 		lp = sym_lp(np, tp, ccb_h->target_lun);
8078 #ifdef	FreeBSD_New_Tran_Settings
8079 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8080 #else
8081 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
8082 #endif
8083 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8084 			if (lp)
8085 				sym_update_dflags(np, &lp->current_flags, cts);
8086 		}
8087 #ifdef	FreeBSD_New_Tran_Settings
8088 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8089 #else
8090 		if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
8091 #endif
8092 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8093 			if (lp)
8094 				sym_update_dflags(np, &lp->user_flags, cts);
8095 		}
8096 
8097 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8098 		break;
8099 	}
8100 	case XPT_GET_TRAN_SETTINGS:
8101 	{
8102 		struct ccb_trans_settings *cts;
8103 		struct sym_trans *tip;
8104 		u_char dflags;
8105 
8106 		cts = &ccb->cts;
8107 		tp = &np->target[ccb_h->target_id];
8108 		lp = sym_lp(np, tp, ccb_h->target_lun);
8109 
8110 #ifdef	FreeBSD_New_Tran_Settings
8111 #define	cts__scsi (&cts->proto_specific.scsi)
8112 #define	cts__spi  (&cts->xport_specific.spi)
8113 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8114 			tip = &tp->tinfo.current;
8115 			dflags = lp ? lp->current_flags : 0;
8116 		}
8117 		else {
8118 			tip = &tp->tinfo.user;
8119 			dflags = lp ? lp->user_flags : tp->usrflags;
8120 		}
8121 
8122 		cts->protocol  = PROTO_SCSI;
8123 		cts->transport = XPORT_SPI;
8124 		cts->protocol_version  = tip->scsi_version;
8125 		cts->transport_version = tip->spi_version;
8126 
8127 		cts__spi->sync_period = tip->period;
8128 		cts__spi->sync_offset = tip->offset;
8129 		cts__spi->bus_width   = tip->width;
8130 		cts__spi->ppr_options = tip->options;
8131 
8132 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8133 		                | CTS_SPI_VALID_SYNC_OFFSET
8134 		                | CTS_SPI_VALID_BUS_WIDTH
8135 		                | CTS_SPI_VALID_PPR_OPTIONS;
8136 
8137 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8138 		if (dflags & SYM_DISC_ENABLED)
8139 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8140 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8141 
8142 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8143 		if (dflags & SYM_TAGS_ENABLED)
8144 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8145 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8146 #undef	cts__spi
8147 #undef	cts__scsi
8148 #else
8149 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
8150 			tip = &tp->tinfo.current;
8151 			dflags = lp ? lp->current_flags : 0;
8152 		}
8153 		else {
8154 			tip = &tp->tinfo.user;
8155 			dflags = lp ? lp->user_flags : tp->usrflags;
8156 		}
8157 
8158 		cts->sync_period = tip->period;
8159 		cts->sync_offset = tip->offset;
8160 		cts->bus_width   = tip->width;
8161 
8162 		cts->valid = CCB_TRANS_SYNC_RATE_VALID
8163 			   | CCB_TRANS_SYNC_OFFSET_VALID
8164 			   | CCB_TRANS_BUS_WIDTH_VALID;
8165 
8166 		cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
8167 
8168 		if (dflags & SYM_DISC_ENABLED)
8169 			cts->flags |= CCB_TRANS_DISC_ENB;
8170 
8171 		if (dflags & SYM_TAGS_ENABLED)
8172 			cts->flags |= CCB_TRANS_TAG_ENB;
8173 
8174 		cts->valid |= CCB_TRANS_DISC_VALID;
8175 		cts->valid |= CCB_TRANS_TQ_VALID;
8176 #endif
8177 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8178 		break;
8179 	}
8180 	case XPT_CALC_GEOMETRY:
8181 	{
8182 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8183 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8184 		break;
8185 	}
8186 	case XPT_PATH_INQ:
8187 	{
8188 		struct ccb_pathinq *cpi = &ccb->cpi;
8189 		cpi->version_num = 1;
8190 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8191 		if ((np->features & FE_WIDE) != 0)
8192 			cpi->hba_inquiry |= PI_WIDE_16;
8193 		cpi->target_sprt = 0;
8194 		cpi->hba_misc = 0;
8195 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8196 			cpi->hba_misc |= PIM_SCANHILO;
8197 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8198 			cpi->hba_misc |= PIM_NOBUSRESET;
8199 		cpi->hba_eng_cnt = 0;
8200 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8201 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8202 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8203 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8204 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8205 		cpi->bus_id = cam_sim_bus(sim);
8206 		cpi->initiator_id = np->myaddr;
8207 		cpi->base_transfer_speed = 3300;
8208 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8209 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8210 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8211 		cpi->unit_number = cam_sim_unit(sim);
8212 
8213 #ifdef	FreeBSD_New_Tran_Settings
8214 		cpi->protocol = PROTO_SCSI;
8215 		cpi->protocol_version = SCSI_REV_2;
8216 		cpi->transport = XPORT_SPI;
8217 		cpi->transport_version = 2;
8218 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8219 		if (np->features & FE_ULTRA3) {
8220 			cpi->transport_version = 3;
8221 			cpi->xport_specific.spi.ppr_options =
8222 			    SID_SPI_CLOCK_DT_ST;
8223 		}
8224 #endif
8225 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8226 		break;
8227 	}
8228 	case XPT_ABORT:
8229 	{
8230 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8231 		switch(abort_ccb->ccb_h.func_code) {
8232 		case XPT_SCSI_IO:
8233 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8234 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8235 				break;
8236 			}
8237 		default:
8238 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8239 			break;
8240 		}
8241 		break;
8242 	}
8243 	case XPT_RESET_DEV:
8244 	{
8245 		sym_reset_dev(np, ccb);
8246 		break;
8247 	}
8248 	case XPT_RESET_BUS:
8249 	{
8250 		sym_reset_scsi_bus(np, 0);
8251 		if (sym_verbose) {
8252 			xpt_print_path(np->path);
8253 			printf("SCSI BUS reset delivered.\n");
8254 		}
8255 		sym_init (np, 1);
8256 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8257 		break;
8258 	}
8259 	case XPT_ACCEPT_TARGET_IO:
8260 	case XPT_CONT_TARGET_IO:
8261 	case XPT_EN_LUN:
8262 	case XPT_NOTIFY_ACK:
8263 	case XPT_IMMED_NOTIFY:
8264 	case XPT_TERM_IO:
8265 	default:
8266 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8267 		break;
8268 	}
8269 }
8270 
8271 /*
8272  *  Asynchronous notification handler.
8273  */
8274 static void
8275 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8276 {
8277 	hcb_p np;
8278 	struct cam_sim *sim;
8279 	u_int tn;
8280 	tcb_p tp;
8281 	int s;
8282 
8283 	s = splcam();
8284 
8285 	sim = (struct cam_sim *) cb_arg;
8286 	np  = (hcb_p) cam_sim_softc(sim);
8287 
8288 	switch (code) {
8289 	case AC_LOST_DEVICE:
8290 		tn = xpt_path_target_id(path);
8291 		if (tn >= SYM_CONF_MAX_TARGET)
8292 			break;
8293 
8294 		tp = &np->target[tn];
8295 
8296 		tp->to_reset  = 0;
8297 		tp->head.sval = 0;
8298 		tp->head.wval = np->rv_scntl3;
8299 		tp->head.uval = 0;
8300 
8301 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8302 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8303 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8304 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8305 
8306 		break;
8307 	default:
8308 		break;
8309 	}
8310 
8311 	splx(s);
8312 }
8313 
8314 /*
8315  *  Update transfer settings of a target.
8316  */
8317 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8318 			    struct ccb_trans_settings *cts)
8319 {
8320 	/*
8321 	 *  Update the infos.
8322 	 */
8323 #ifdef	FreeBSD_New_Tran_Settings
8324 #define cts__spi (&cts->xport_specific.spi)
8325 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8326 		tip->width = cts__spi->bus_width;
8327 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8328 		tip->offset = cts__spi->sync_offset;
8329 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8330 		tip->period = cts__spi->sync_period;
8331 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8332 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8333 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8334 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8335 		tip->scsi_version = cts->protocol_version;
8336 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8337 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8338 		tip->spi_version = cts->transport_version;
8339 #undef cts__spi
8340 #else
8341 	if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
8342 		tip->width = cts->bus_width;
8343 	if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
8344 		tip->offset = cts->sync_offset;
8345 	if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
8346 		tip->period = cts->sync_period;
8347 #endif
8348 	/*
8349 	 *  Scale against driver configuration limits.
8350 	 */
8351 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8352 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8353 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8354 
8355 	/*
8356 	 *  Scale against actual controller BUS width.
8357 	 */
8358 	if (tip->width > np->maxwide)
8359 		tip->width  = np->maxwide;
8360 
8361 #ifdef	FreeBSD_New_Tran_Settings
8362 	/*
8363 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8364 	 */
8365 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8366 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8367 		tip->options &= ~PPR_OPT_DT;
8368 	}
8369 #else
8370 	/*
8371 	 *  For now, only assume DT if period <= 9, BUS 16 and offset != 0.
8372 	 */
8373 	tip->options = 0;
8374 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) &&
8375 	    tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) {
8376 		tip->options |= PPR_OPT_DT;
8377 	}
8378 #endif
8379 
8380 	/*
8381 	 *  Scale period factor and offset against controller limits.
8382 	 */
8383 	if (tip->options & PPR_OPT_DT) {
8384 		if (tip->period < np->minsync_dt)
8385 			tip->period = np->minsync_dt;
8386 		if (tip->period > np->maxsync_dt)
8387 			tip->period = np->maxsync_dt;
8388 		if (tip->offset > np->maxoffs_dt)
8389 			tip->offset = np->maxoffs_dt;
8390 	}
8391 	else {
8392 		if (tip->period < np->minsync)
8393 			tip->period = np->minsync;
8394 		if (tip->period > np->maxsync)
8395 			tip->period = np->maxsync;
8396 		if (tip->offset > np->maxoffs)
8397 			tip->offset = np->maxoffs;
8398 	}
8399 }
8400 
8401 /*
8402  *  Update flags for a device (logical unit).
8403  */
8404 static void
8405 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8406 {
8407 #ifdef	FreeBSD_New_Tran_Settings
8408 #define	cts__scsi (&cts->proto_specific.scsi)
8409 #define	cts__spi  (&cts->xport_specific.spi)
8410 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8411 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8412 			*flags |= SYM_DISC_ENABLED;
8413 		else
8414 			*flags &= ~SYM_DISC_ENABLED;
8415 	}
8416 
8417 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8418 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8419 			*flags |= SYM_TAGS_ENABLED;
8420 		else
8421 			*flags &= ~SYM_TAGS_ENABLED;
8422 	}
8423 #undef	cts__spi
8424 #undef	cts__scsi
8425 #else
8426 	if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
8427 		if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
8428 			*flags |= SYM_DISC_ENABLED;
8429 		else
8430 			*flags &= ~SYM_DISC_ENABLED;
8431 	}
8432 
8433 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
8434 		if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
8435 			*flags |= SYM_TAGS_ENABLED;
8436 		else
8437 			*flags &= ~SYM_TAGS_ENABLED;
8438 	}
8439 #endif
8440 }
8441 
8442 
8443 /*============= DRIVER INITIALISATION ==================*/
8444 
8445 
8446 static device_method_t sym_pci_methods[] = {
8447 	DEVMETHOD(device_probe,	 sym_pci_probe),
8448 	DEVMETHOD(device_attach, sym_pci_attach),
8449 	{ 0, 0 }
8450 };
8451 
8452 static driver_t sym_pci_driver = {
8453 	"sym",
8454 	sym_pci_methods,
8455 	sizeof(struct sym_hcb)
8456 };
8457 
8458 static devclass_t sym_devclass;
8459 
8460 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8461 MODULE_DEPEND(sym, cam, 1, 1, 1);
8462 MODULE_DEPEND(sym, pci, 1, 1, 1);
8463 
8464 
8465 static struct sym_pci_chip sym_pci_dev_table[] = {
8466  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8467  FE_ERL}
8468  ,
8469 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8470  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8471  FE_BOF}
8472  ,
8473 #else
8474  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8475  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8476  ,
8477 #endif
8478  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8479  FE_BOF|FE_ERL}
8480  ,
8481  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8482  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8483  ,
8484  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8485  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8486  ,
8487  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8488  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8489  ,
8490  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8491  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8492  FE_RAM|FE_DIFF}
8493  ,
8494  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8495  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8496  FE_RAM|FE_DIFF}
8497  ,
8498  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8499  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8500  FE_RAM|FE_DIFF}
8501  ,
8502  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8503  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8504  FE_RAM|FE_DIFF}
8505  ,
8506 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8507  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8508  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8509  FE_RAM|FE_LCKFRQ}
8510  ,
8511 #else
8512  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8513  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8514  FE_RAM|FE_LCKFRQ}
8515  ,
8516 #endif
8517  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8518  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8519  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8520  ,
8521  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8522  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8523  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8524  ,
8525  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8526  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8527  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8528  FE_C10}
8529  ,
8530  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8531  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8532  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8533  FE_C10|FE_U3EN}
8534  ,
8535  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8536  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8537  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8538  FE_C10|FE_U3EN}
8539  ,
8540  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8541  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8542  FE_RAM|FE_IO256|FE_LEDC}
8543 };
8544 
8545 #define sym_pci_num_devs \
8546 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8547 
8548 /*
8549  *  Look up the chip table.
8550  *
8551  *  Return a pointer to the chip entry if found,
8552  *  zero otherwise.
8553  */
8554 static struct sym_pci_chip *
8555 sym_find_pci_chip(device_t dev)
8556 {
8557 	struct	sym_pci_chip *chip;
8558 	int	i;
8559 	u_short	device_id;
8560 	u_char	revision;
8561 
8562 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8563 		return 0;
8564 
8565 	device_id = pci_get_device(dev);
8566 	revision  = pci_get_revid(dev);
8567 
8568 	for (i = 0; i < sym_pci_num_devs; i++) {
8569 		chip = &sym_pci_dev_table[i];
8570 		if (device_id != chip->device_id)
8571 			continue;
8572 		if (revision > chip->revision_id)
8573 			continue;
8574 		return chip;
8575 	}
8576 
8577 	return 0;
8578 }
8579 
8580 /*
8581  *  Tell upper layer if the chip is supported.
8582  */
8583 static int
8584 sym_pci_probe(device_t dev)
8585 {
8586 	struct	sym_pci_chip *chip;
8587 
8588 	chip = sym_find_pci_chip(dev);
8589 	if (chip && sym_find_firmware(chip)) {
8590 		device_set_desc(dev, chip->name);
8591 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8592 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8593 	}
8594 	return ENXIO;
8595 }
8596 
8597 /*
8598  *  Attach a sym53c8xx device.
8599  */
8600 static int
8601 sym_pci_attach(device_t dev)
8602 {
8603 	struct	sym_pci_chip *chip;
8604 	u_short	command;
8605 	u_char	cachelnsz;
8606 	struct	sym_hcb *np = 0;
8607 	struct	sym_nvram nvram;
8608 	struct	sym_fw *fw = 0;
8609 	int 	i;
8610 	bus_dma_tag_t	bus_dmat;
8611 
8612 	/*
8613 	 *  I expected to be told about a parent
8614 	 *  DMA tag, but didn't find any.
8615 	 */
8616 	bus_dmat = NULL;
8617 
8618 	/*
8619 	 *  Only probed devices should be attached.
8620 	 *  We just enjoy being paranoid. :)
8621 	 */
8622 	chip = sym_find_pci_chip(dev);
8623 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8624 		return (ENXIO);
8625 
8626 	/*
8627 	 *  Allocate immediately the host control block,
8628 	 *  since we are only expecting to succeed. :)
8629 	 *  We keep track in the HCB of all the resources that
8630 	 *  are to be released on error.
8631 	 */
8632 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8633 	if (np)
8634 		np->bus_dmat = bus_dmat;
8635 	else
8636 		goto attach_failed;
8637 
8638 	/*
8639 	 *  Copy some useful infos to the HCB.
8640 	 */
8641 	np->hcb_ba	 = vtobus(np);
8642 	np->verbose	 = bootverbose;
8643 	np->device	 = dev;
8644 	np->unit	 = device_get_unit(dev);
8645 	np->device_id	 = pci_get_device(dev);
8646 	np->revision_id  = pci_get_revid(dev);
8647 	np->features	 = chip->features;
8648 	np->clock_divn	 = chip->nr_divisor;
8649 	np->maxoffs	 = chip->offset_max;
8650 	np->maxburst	 = chip->burst_max;
8651 	np->scripta_sz	 = fw->a_size;
8652 	np->scriptb_sz	 = fw->b_size;
8653 	np->fw_setup	 = fw->setup;
8654 	np->fw_patch	 = fw->patch;
8655 	np->fw_name	 = fw->name;
8656 
8657 	/*
8658 	 * Edit its name.
8659 	 */
8660 	snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
8661 
8662 	/*
8663 	 *  Initialyze the CCB free and busy queues.
8664 	 */
8665 	sym_que_init(&np->free_ccbq);
8666 	sym_que_init(&np->busy_ccbq);
8667 	sym_que_init(&np->comp_ccbq);
8668 	sym_que_init(&np->cam_ccbq);
8669 
8670 	/*
8671 	 *  Allocate a tag for the DMA of user data.
8672 	 */
8673 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
8674 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
8675 				NULL, NULL,
8676 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
8677 				(1<<24), 0, busdma_lock_mutex, &Giant,
8678 				&np->data_dmat)) {
8679 		device_printf(dev, "failed to create DMA tag.\n");
8680 		goto attach_failed;
8681 	}
8682 	/*
8683 	 *  Read and apply some fix-ups to the PCI COMMAND
8684 	 *  register. We want the chip to be enabled for:
8685 	 *  - BUS mastering
8686 	 *  - PCI parity checking (reporting would also be fine)
8687 	 *  - Write And Invalidate.
8688 	 */
8689 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8690 	command |= PCIM_CMD_BUSMASTEREN;
8691 	command |= PCIM_CMD_PERRESPEN;
8692 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
8693 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8694 
8695 	/*
8696 	 *  Let the device know about the cache line size,
8697 	 *  if it doesn't yet.
8698 	 */
8699 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8700 	if (!cachelnsz) {
8701 		cachelnsz = 8;
8702 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8703 	}
8704 
8705 	/*
8706 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8707 	 */
8708 	if ((command & PCIM_CMD_MEMEN) != 0) {
8709 		int regs_id = SYM_PCI_MMIO;
8710 		np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8711 						      &regs_id, RF_ACTIVE);
8712 	}
8713 	if (!np->mmio_res) {
8714 		device_printf(dev, "failed to allocate MMIO resources\n");
8715 		goto attach_failed;
8716 	}
8717 	np->mmio_bsh = rman_get_bushandle(np->mmio_res);
8718 	np->mmio_tag = rman_get_bustag(np->mmio_res);
8719 	np->mmio_pa  = rman_get_start(np->mmio_res);
8720 	np->mmio_va  = (vm_offset_t) rman_get_virtual(np->mmio_res);
8721 	np->mmio_ba  = np->mmio_pa;
8722 
8723 	/*
8724 	 *  Allocate the IRQ.
8725 	 */
8726 	i = 0;
8727 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8728 					     RF_ACTIVE | RF_SHAREABLE);
8729 	if (!np->irq_res) {
8730 		device_printf(dev, "failed to allocate IRQ resource\n");
8731 		goto attach_failed;
8732 	}
8733 
8734 #ifdef	SYM_CONF_IOMAPPED
8735 	/*
8736 	 *  User want us to use normal IO with PCI.
8737 	 *  Alloc/get/map/retrieve everything that deals with IO.
8738 	 */
8739 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
8740 		int regs_id = SYM_PCI_IO;
8741 		np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
8742 						    &regs_id, RF_ACTIVE);
8743 	}
8744 	if (!np->io_res) {
8745 		device_printf(dev, "failed to allocate IO resources\n");
8746 		goto attach_failed;
8747 	}
8748 	np->io_bsh  = rman_get_bushandle(np->io_res);
8749 	np->io_tag  = rman_get_bustag(np->io_res);
8750 	np->io_port = rman_get_start(np->io_res);
8751 
8752 #endif /* SYM_CONF_IOMAPPED */
8753 
8754 	/*
8755 	 *  If the chip has RAM.
8756 	 *  Alloc/get/map/retrieve the corresponding resources.
8757 	 */
8758 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
8759 	    (command & PCIM_CMD_MEMEN) != 0) {
8760 		int regs_id = SYM_PCI_RAM;
8761 		if (np->features & FE_64BIT)
8762 			regs_id = SYM_PCI_RAM64;
8763 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8764 						     &regs_id, RF_ACTIVE);
8765 		if (!np->ram_res) {
8766 			device_printf(dev,"failed to allocate RAM resources\n");
8767 			goto attach_failed;
8768 		}
8769 		np->ram_id  = regs_id;
8770 		np->ram_bsh = rman_get_bushandle(np->ram_res);
8771 		np->ram_tag = rman_get_bustag(np->ram_res);
8772 		np->ram_pa  = rman_get_start(np->ram_res);
8773 		np->ram_va  = (vm_offset_t) rman_get_virtual(np->ram_res);
8774 		np->ram_ba  = np->ram_pa;
8775 	}
8776 
8777 	/*
8778 	 *  Save setting of some IO registers, so we will
8779 	 *  be able to probe specific implementations.
8780 	 */
8781 	sym_save_initial_setting (np);
8782 
8783 	/*
8784 	 *  Reset the chip now, since it has been reported
8785 	 *  that SCSI clock calibration may not work properly
8786 	 *  if the chip is currently active.
8787 	 */
8788 	sym_chip_reset (np);
8789 
8790 	/*
8791 	 *  Try to read the user set-up.
8792 	 */
8793 	(void) sym_read_nvram(np, &nvram);
8794 
8795 	/*
8796 	 *  Prepare controller and devices settings, according
8797 	 *  to chip features, user set-up and driver set-up.
8798 	 */
8799 	(void) sym_prepare_setting(np, &nvram);
8800 
8801 	/*
8802 	 *  Check the PCI clock frequency.
8803 	 *  Must be performed after prepare_setting since it destroys
8804 	 *  STEST1 that is used to probe for the clock doubler.
8805 	 */
8806 	i = sym_getpciclock(np);
8807 	if (i > 37000)
8808 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8809 
8810 	/*
8811 	 *  Allocate the start queue.
8812 	 */
8813 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8814 	if (!np->squeue)
8815 		goto attach_failed;
8816 	np->squeue_ba = vtobus(np->squeue);
8817 
8818 	/*
8819 	 *  Allocate the done queue.
8820 	 */
8821 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8822 	if (!np->dqueue)
8823 		goto attach_failed;
8824 	np->dqueue_ba = vtobus(np->dqueue);
8825 
8826 	/*
8827 	 *  Allocate the target bus address array.
8828 	 */
8829 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8830 	if (!np->targtbl)
8831 		goto attach_failed;
8832 	np->targtbl_ba = vtobus(np->targtbl);
8833 
8834 	/*
8835 	 *  Allocate SCRIPTS areas.
8836 	 */
8837 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8838 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8839 	if (!np->scripta0 || !np->scriptb0)
8840 		goto attach_failed;
8841 
8842 	/*
8843 	 *  Allocate some CCB. We need at least ONE.
8844 	 */
8845 	if (!sym_alloc_ccb(np))
8846 		goto attach_failed;
8847 
8848 	/*
8849 	 *  Calculate BUS addresses where we are going
8850 	 *  to load the SCRIPTS.
8851 	 */
8852 	np->scripta_ba	= vtobus(np->scripta0);
8853 	np->scriptb_ba	= vtobus(np->scriptb0);
8854 	np->scriptb0_ba	= np->scriptb_ba;
8855 
8856 	if (np->ram_ba) {
8857 		np->scripta_ba	= np->ram_ba;
8858 		if (np->features & FE_RAM8K) {
8859 			np->ram_ws = 8192;
8860 			np->scriptb_ba = np->scripta_ba + 4096;
8861 #ifdef __LP64__
8862 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8863 #endif
8864 		}
8865 		else
8866 			np->ram_ws = 4096;
8867 	}
8868 
8869 	/*
8870 	 *  Copy scripts to controller instance.
8871 	 */
8872 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8873 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8874 
8875 	/*
8876 	 *  Setup variable parts in scripts and compute
8877 	 *  scripts bus addresses used from the C code.
8878 	 */
8879 	np->fw_setup(np, fw);
8880 
8881 	/*
8882 	 *  Bind SCRIPTS with physical addresses usable by the
8883 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8884 	 */
8885 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8886 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8887 
8888 #ifdef SYM_CONF_IARB_SUPPORT
8889 	/*
8890 	 *    If user wants IARB to be set when we win arbitration
8891 	 *    and have other jobs, compute the max number of consecutive
8892 	 *    settings of IARB hints before we leave devices a chance to
8893 	 *    arbitrate for reselection.
8894 	 */
8895 #ifdef	SYM_SETUP_IARB_MAX
8896 	np->iarb_max = SYM_SETUP_IARB_MAX;
8897 #else
8898 	np->iarb_max = 4;
8899 #endif
8900 #endif
8901 
8902 	/*
8903 	 *  Prepare the idle and invalid task actions.
8904 	 */
8905 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8906 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8907 	np->idletask_ba		= vtobus(&np->idletask);
8908 
8909 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8910 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8911 	np->notask_ba		= vtobus(&np->notask);
8912 
8913 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8914 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8915 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8916 
8917 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8918 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8919 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8920 
8921 	/*
8922 	 *  Allocate and prepare the lun JUMP table that is used
8923 	 *  for a target prior the probing of devices (bad lun table).
8924 	 *  A private table will be allocated for the target on the
8925 	 *  first INQUIRY response received.
8926 	 */
8927 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8928 	if (!np->badluntbl)
8929 		goto attach_failed;
8930 
8931 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8932 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8933 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8934 
8935 	/*
8936 	 *  Prepare the bus address array that contains the bus
8937 	 *  address of each target control block.
8938 	 *  For now, assume all logical units are wrong. :)
8939 	 */
8940 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8941 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8942 		np->target[i].head.luntbl_sa =
8943 				cpu_to_scr(vtobus(np->badluntbl));
8944 		np->target[i].head.lun0_sa =
8945 				cpu_to_scr(vtobus(&np->badlun_sa));
8946 	}
8947 
8948 	/*
8949 	 *  Now check the cache handling of the pci chipset.
8950 	 */
8951 	if (sym_snooptest (np)) {
8952 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8953 		goto attach_failed;
8954 	};
8955 
8956 	/*
8957 	 *  Now deal with CAM.
8958 	 *  Hopefully, we will succeed with that one.:)
8959 	 */
8960 	if (!sym_cam_attach(np))
8961 		goto attach_failed;
8962 
8963 	/*
8964 	 *  Sigh! we are done.
8965 	 */
8966 	return 0;
8967 
8968 	/*
8969 	 *  We have failed.
8970 	 *  We will try to free all the resources we have
8971 	 *  allocated, but if we are a boot device, this
8972 	 *  will not help that much.;)
8973 	 */
8974 attach_failed:
8975 	if (np)
8976 		sym_pci_free(np);
8977 	return ENXIO;
8978 }
8979 
8980 /*
8981  *  Free everything that have been allocated for this device.
8982  */
8983 static void sym_pci_free(hcb_p np)
8984 {
8985 	SYM_QUEHEAD *qp;
8986 	ccb_p cp;
8987 	tcb_p tp;
8988 	lcb_p lp;
8989 	int target, lun;
8990 	int s;
8991 
8992 	/*
8993 	 *  First free CAM resources.
8994 	 */
8995 	s = splcam();
8996 	sym_cam_free(np);
8997 	splx(s);
8998 
8999 	/*
9000 	 *  Now every should be quiet for us to
9001 	 *  free other resources.
9002 	 */
9003 	if (np->ram_res)
9004 		bus_release_resource(np->device, SYS_RES_MEMORY,
9005 				     np->ram_id, np->ram_res);
9006 	if (np->mmio_res)
9007 		bus_release_resource(np->device, SYS_RES_MEMORY,
9008 				     SYM_PCI_MMIO, np->mmio_res);
9009 	if (np->io_res)
9010 		bus_release_resource(np->device, SYS_RES_IOPORT,
9011 				     SYM_PCI_IO, np->io_res);
9012 	if (np->irq_res)
9013 		bus_release_resource(np->device, SYS_RES_IRQ,
9014 				     0, np->irq_res);
9015 
9016 	if (np->scriptb0)
9017 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
9018 	if (np->scripta0)
9019 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
9020 	if (np->squeue)
9021 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
9022 	if (np->dqueue)
9023 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
9024 
9025 	while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
9026 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
9027 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
9028 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
9029 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
9030 	}
9031 
9032 	if (np->badluntbl)
9033 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
9034 
9035 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
9036 		tp = &np->target[target];
9037 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
9038 			lp = sym_lp(np, tp, lun);
9039 			if (!lp)
9040 				continue;
9041 			if (lp->itlq_tbl)
9042 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
9043 				       "ITLQ_TBL");
9044 			if (lp->cb_tags)
9045 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
9046 				       "CB_TAGS");
9047 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
9048 		}
9049 #if SYM_CONF_MAX_LUN > 1
9050 		if (tp->lunmp)
9051 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
9052 			       "LUNMP");
9053 #endif
9054 	}
9055 	if (np->targtbl)
9056 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
9057 	if (np->data_dmat)
9058 		bus_dma_tag_destroy(np->data_dmat);
9059 	sym_mfree_dma(np, sizeof(*np), "HCB");
9060 }
9061 
9062 /*
9063  *  Allocate CAM resources and register a bus to CAM.
9064  */
9065 static int sym_cam_attach(hcb_p np)
9066 {
9067 	struct cam_devq *devq = 0;
9068 	struct cam_sim *sim = 0;
9069 	struct cam_path *path = 0;
9070 	struct ccb_setasync csa;
9071 	int err, s;
9072 
9073 	s = splcam();
9074 
9075 	/*
9076 	 *  Establish our interrupt handler.
9077 	 */
9078 	err = bus_setup_intr(np->device, np->irq_res,
9079 			     INTR_TYPE_CAM | INTR_ENTROPY, sym_intr, np,
9080 			     &np->intr);
9081 	if (err) {
9082 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
9083 			      err);
9084 		goto fail;
9085 	}
9086 
9087 	/*
9088 	 *  Create the device queue for our sym SIM.
9089 	 */
9090 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
9091 	if (!devq)
9092 		goto fail;
9093 
9094 	/*
9095 	 *  Construct our SIM entry.
9096 	 */
9097 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
9098 			    1, SYM_SETUP_MAX_TAG, devq);
9099 	if (!sim)
9100 		goto fail;
9101 	devq = 0;
9102 
9103 	if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
9104 		goto fail;
9105 	np->sim = sim;
9106 	sim = 0;
9107 
9108 	if (xpt_create_path(&path, 0,
9109 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9110 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9111 		goto fail;
9112 	}
9113 	np->path = path;
9114 
9115 	/*
9116 	 *  Establish our async notification handler.
9117 	 */
9118 	xpt_setup_ccb(&csa.ccb_h, np->path, 5);
9119 	csa.ccb_h.func_code = XPT_SASYNC_CB;
9120 	csa.event_enable    = AC_LOST_DEVICE;
9121 	csa.callback	    = sym_async;
9122 	csa.callback_arg    = np->sim;
9123 	xpt_action((union ccb *)&csa);
9124 
9125 	/*
9126 	 *  Start the chip now, without resetting the BUS, since
9127 	 *  it seems that this must stay under control of CAM.
9128 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9129 	 *  get a spurious SMBC interrupt.
9130 	 */
9131 	sym_init (np, 0);
9132 
9133 	splx(s);
9134 	return 1;
9135 fail:
9136 	if (sim)
9137 		cam_sim_free(sim, FALSE);
9138 	if (devq)
9139 		cam_simq_free(devq);
9140 
9141 	sym_cam_free(np);
9142 
9143 	splx(s);
9144 	return 0;
9145 }
9146 
9147 /*
9148  *  Free everything that deals with CAM.
9149  */
9150 static void sym_cam_free(hcb_p np)
9151 {
9152 	if (np->intr) {
9153 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9154 		np->intr = NULL;
9155 	}
9156 
9157 	if (np->sim) {
9158 		xpt_bus_deregister(cam_sim_path(np->sim));
9159 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
9160 		np->sim = NULL;
9161 	}
9162 	if (np->path) {
9163 		xpt_free_path(np->path);
9164 		np->path = NULL;
9165 	}
9166 }
9167 
9168 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9169 
9170 /*
9171  *  Get host setup from NVRAM.
9172  */
9173 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9174 {
9175 #ifdef SYM_CONF_NVRAM_SUPPORT
9176 	/*
9177 	 *  Get parity checking, host ID, verbose mode
9178 	 *  and miscellaneous host flags from NVRAM.
9179 	 */
9180 	switch(nvram->type) {
9181 	case SYM_SYMBIOS_NVRAM:
9182 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9183 			np->rv_scntl0  &= ~0x0a;
9184 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9185 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9186 			np->verbose += 1;
9187 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9188 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9189 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9190 			np->usrflags |= SYM_AVOID_BUS_RESET;
9191 		break;
9192 	case SYM_TEKRAM_NVRAM:
9193 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9194 		break;
9195 	default:
9196 		break;
9197 	}
9198 #endif
9199 }
9200 
9201 /*
9202  *  Get target setup from NVRAM.
9203  */
9204 #ifdef SYM_CONF_NVRAM_SUPPORT
9205 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9206 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9207 #endif
9208 
9209 static void
9210 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9211 {
9212 #ifdef SYM_CONF_NVRAM_SUPPORT
9213 	switch(nvp->type) {
9214 	case SYM_SYMBIOS_NVRAM:
9215 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9216 		break;
9217 	case SYM_TEKRAM_NVRAM:
9218 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9219 		break;
9220 	default:
9221 		break;
9222 	}
9223 #endif
9224 }
9225 
9226 #ifdef SYM_CONF_NVRAM_SUPPORT
9227 /*
9228  *  Get target set-up from Symbios format NVRAM.
9229  */
9230 static void
9231 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9232 {
9233 	tcb_p tp = &np->target[target];
9234 	Symbios_target *tn = &nvram->target[target];
9235 
9236 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9237 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9238 	tp->usrtags =
9239 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9240 
9241 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9242 		tp->usrflags &= ~SYM_DISC_ENABLED;
9243 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9244 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9245 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9246 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9247 }
9248 
9249 /*
9250  *  Get target set-up from Tekram format NVRAM.
9251  */
9252 static void
9253 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9254 {
9255 	tcb_p tp = &np->target[target];
9256 	struct Tekram_target *tn = &nvram->target[target];
9257 	int i;
9258 
9259 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9260 		i = tn->sync_index & 0xf;
9261 		tp->tinfo.user.period = Tekram_sync[i];
9262 	}
9263 
9264 	tp->tinfo.user.width =
9265 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9266 
9267 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9268 		tp->usrtags = 2 << nvram->max_tags_index;
9269 	}
9270 
9271 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9272 		tp->usrflags |= SYM_DISC_ENABLED;
9273 
9274 	/* If any device does not support parity, we will not use this option */
9275 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9276 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9277 }
9278 
9279 #ifdef	SYM_CONF_DEBUG_NVRAM
9280 /*
9281  *  Dump Symbios format NVRAM for debugging purpose.
9282  */
9283 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9284 {
9285 	int i;
9286 
9287 	/* display Symbios nvram host data */
9288 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9289 		sym_name(np), nvram->host_id & 0x0f,
9290 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9291 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9292 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9293 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9294 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9295 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9296 
9297 	/* display Symbios nvram drive data */
9298 	for (i = 0 ; i < 15 ; i++) {
9299 		struct Symbios_target *tn = &nvram->target[i];
9300 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9301 		sym_name(np), i,
9302 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9303 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9304 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9305 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9306 		tn->bus_width,
9307 		tn->sync_period / 4,
9308 		tn->timeout);
9309 	}
9310 }
9311 
9312 /*
9313  *  Dump TEKRAM format NVRAM for debugging purpose.
9314  */
9315 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9316 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9317 {
9318 	int i, tags, boot_delay;
9319 	char *rem;
9320 
9321 	/* display Tekram nvram host data */
9322 	tags = 2 << nvram->max_tags_index;
9323 	boot_delay = 0;
9324 	if (nvram->boot_delay_index < 6)
9325 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9326 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9327 	default:
9328 	case 0:	rem = "";			break;
9329 	case 1: rem = " REMOVABLE=boot device";	break;
9330 	case 2: rem = " REMOVABLE=all";		break;
9331 	}
9332 
9333 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9334 		sym_name(np), nvram->host_id & 0x0f,
9335 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9336 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9337 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9338 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9339 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9340 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9341 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9342 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9343 		rem, boot_delay, tags);
9344 
9345 	/* display Tekram nvram drive data */
9346 	for (i = 0; i <= 15; i++) {
9347 		int sync, j;
9348 		struct Tekram_target *tn = &nvram->target[i];
9349 		j = tn->sync_index & 0xf;
9350 		sync = Tekram_sync[j];
9351 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9352 		sym_name(np), i,
9353 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9354 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9355 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9356 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9357 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9358 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9359 		sync);
9360 	}
9361 }
9362 #endif	/* SYM_CONF_DEBUG_NVRAM */
9363 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9364 
9365 
9366 /*
9367  *  Try reading Symbios or Tekram NVRAM
9368  */
9369 #ifdef SYM_CONF_NVRAM_SUPPORT
9370 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9371 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9372 #endif
9373 
9374 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9375 {
9376 #ifdef SYM_CONF_NVRAM_SUPPORT
9377 	/*
9378 	 *  Try to read SYMBIOS nvram.
9379 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9380 	 */
9381 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9382 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9383 		nvp->type = SYM_SYMBIOS_NVRAM;
9384 #ifdef SYM_CONF_DEBUG_NVRAM
9385 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9386 #endif
9387 	}
9388 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9389 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9390 		nvp->type = SYM_TEKRAM_NVRAM;
9391 #ifdef SYM_CONF_DEBUG_NVRAM
9392 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9393 #endif
9394 	}
9395 	else
9396 		nvp->type = 0;
9397 #else
9398 	nvp->type = 0;
9399 #endif
9400 	return nvp->type;
9401 }
9402 
9403 
9404 #ifdef SYM_CONF_NVRAM_SUPPORT
9405 /*
9406  *  24C16 EEPROM reading.
9407  *
9408  *  GPOI0 - data in/data out
9409  *  GPIO1 - clock
9410  *  Symbios NVRAM wiring now also used by Tekram.
9411  */
9412 
9413 #define SET_BIT 0
9414 #define CLR_BIT 1
9415 #define SET_CLK 2
9416 #define CLR_CLK 3
9417 
9418 /*
9419  *  Set/clear data/clock bit in GPIO0
9420  */
9421 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9422 			  int bit_mode)
9423 {
9424 	UDELAY (5);
9425 	switch (bit_mode){
9426 	case SET_BIT:
9427 		*gpreg |= write_bit;
9428 		break;
9429 	case CLR_BIT:
9430 		*gpreg &= 0xfe;
9431 		break;
9432 	case SET_CLK:
9433 		*gpreg |= 0x02;
9434 		break;
9435 	case CLR_CLK:
9436 		*gpreg &= 0xfd;
9437 		break;
9438 
9439 	}
9440 	OUTB (nc_gpreg, *gpreg);
9441 	UDELAY (5);
9442 }
9443 
9444 /*
9445  *  Send START condition to NVRAM to wake it up.
9446  */
9447 static void S24C16_start(hcb_p np, u_char *gpreg)
9448 {
9449 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9450 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9451 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9452 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9453 }
9454 
9455 /*
9456  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9457  */
9458 static void S24C16_stop(hcb_p np, u_char *gpreg)
9459 {
9460 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9461 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9462 }
9463 
9464 /*
9465  *  Read or write a bit to the NVRAM,
9466  *  read if GPIO0 input else write if GPIO0 output
9467  */
9468 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9469 			 u_char *gpreg)
9470 {
9471 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9472 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9473 	if (read_bit)
9474 		*read_bit = INB (nc_gpreg);
9475 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9476 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9477 }
9478 
9479 /*
9480  *  Output an ACK to the NVRAM after reading,
9481  *  change GPIO0 to output and when done back to an input
9482  */
9483 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9484 			    u_char *gpcntl)
9485 {
9486 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9487 	S24C16_do_bit(np, 0, write_bit, gpreg);
9488 	OUTB (nc_gpcntl, *gpcntl);
9489 }
9490 
9491 /*
9492  *  Input an ACK from NVRAM after writing,
9493  *  change GPIO0 to input and when done back to an output
9494  */
9495 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9496 			   u_char *gpcntl)
9497 {
9498 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9499 	S24C16_do_bit(np, read_bit, 1, gpreg);
9500 	OUTB (nc_gpcntl, *gpcntl);
9501 }
9502 
9503 /*
9504  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9505  *  GPIO0 must already be set as an output
9506  */
9507 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9508 			     u_char *gpreg, u_char *gpcntl)
9509 {
9510 	int x;
9511 
9512 	for (x = 0; x < 8; x++)
9513 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9514 
9515 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9516 }
9517 
9518 /*
9519  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9520  *  GPIO0 must already be set as an input
9521  */
9522 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9523 			    u_char *gpreg, u_char *gpcntl)
9524 {
9525 	int x;
9526 	u_char read_bit;
9527 
9528 	*read_data = 0;
9529 	for (x = 0; x < 8; x++) {
9530 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9531 		*read_data |= ((read_bit & 0x01) << (7 - x));
9532 	}
9533 
9534 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9535 }
9536 
9537 /*
9538  *  Read 'len' bytes starting at 'offset'.
9539  */
9540 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9541 {
9542 	u_char	gpcntl, gpreg;
9543 	u_char	old_gpcntl, old_gpreg;
9544 	u_char	ack_data;
9545 	int	retv = 1;
9546 	int	x;
9547 
9548 	/* save current state of GPCNTL and GPREG */
9549 	old_gpreg	= INB (nc_gpreg);
9550 	old_gpcntl	= INB (nc_gpcntl);
9551 	gpcntl		= old_gpcntl & 0x1c;
9552 
9553 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9554 	OUTB (nc_gpreg,  old_gpreg);
9555 	OUTB (nc_gpcntl, gpcntl);
9556 
9557 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9558 	gpreg = old_gpreg;
9559 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9560 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9561 
9562 	/* now set NVRAM inactive with GPIO0/1 both high */
9563 	S24C16_stop(np, &gpreg);
9564 
9565 	/* activate NVRAM */
9566 	S24C16_start(np, &gpreg);
9567 
9568 	/* write device code and random address MSB */
9569 	S24C16_write_byte(np, &ack_data,
9570 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9571 	if (ack_data & 0x01)
9572 		goto out;
9573 
9574 	/* write random address LSB */
9575 	S24C16_write_byte(np, &ack_data,
9576 		offset & 0xff, &gpreg, &gpcntl);
9577 	if (ack_data & 0x01)
9578 		goto out;
9579 
9580 	/* regenerate START state to set up for reading */
9581 	S24C16_start(np, &gpreg);
9582 
9583 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9584 	S24C16_write_byte(np, &ack_data,
9585 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9586 	if (ack_data & 0x01)
9587 		goto out;
9588 
9589 	/* now set up GPIO0 for inputting data */
9590 	gpcntl |= 0x01;
9591 	OUTB (nc_gpcntl, gpcntl);
9592 
9593 	/* input all requested data - only part of total NVRAM */
9594 	for (x = 0; x < len; x++)
9595 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9596 
9597 	/* finally put NVRAM back in inactive mode */
9598 	gpcntl &= 0xfe;
9599 	OUTB (nc_gpcntl, gpcntl);
9600 	S24C16_stop(np, &gpreg);
9601 	retv = 0;
9602 out:
9603 	/* return GPIO0/1 to original states after having accessed NVRAM */
9604 	OUTB (nc_gpcntl, old_gpcntl);
9605 	OUTB (nc_gpreg,  old_gpreg);
9606 
9607 	return retv;
9608 }
9609 
9610 #undef SET_BIT /* 0 */
9611 #undef CLR_BIT /* 1 */
9612 #undef SET_CLK /* 2 */
9613 #undef CLR_CLK /* 3 */
9614 
9615 /*
9616  *  Try reading Symbios NVRAM.
9617  *  Return 0 if OK.
9618  */
9619 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9620 {
9621 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9622 	u_char *data = (u_char *) nvram;
9623 	int len  = sizeof(*nvram);
9624 	u_short	csum;
9625 	int x;
9626 
9627 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9628 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9629 		return 1;
9630 
9631 	/* check valid NVRAM signature, verify byte count and checksum */
9632 	if (nvram->type != 0 ||
9633 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9634 	    nvram->byte_count != len - 12)
9635 		return 1;
9636 
9637 	/* verify checksum */
9638 	for (x = 6, csum = 0; x < len - 6; x++)
9639 		csum += data[x];
9640 	if (csum != nvram->checksum)
9641 		return 1;
9642 
9643 	return 0;
9644 }
9645 
9646 /*
9647  *  93C46 EEPROM reading.
9648  *
9649  *  GPOI0 - data in
9650  *  GPIO1 - data out
9651  *  GPIO2 - clock
9652  *  GPIO4 - chip select
9653  *
9654  *  Used by Tekram.
9655  */
9656 
9657 /*
9658  *  Pulse clock bit in GPIO0
9659  */
9660 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9661 {
9662 	OUTB (nc_gpreg, *gpreg | 0x04);
9663 	UDELAY (2);
9664 	OUTB (nc_gpreg, *gpreg);
9665 }
9666 
9667 /*
9668  *  Read bit from NVRAM
9669  */
9670 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9671 {
9672 	UDELAY (2);
9673 	T93C46_Clk(np, gpreg);
9674 	*read_bit = INB (nc_gpreg);
9675 }
9676 
9677 /*
9678  *  Write bit to GPIO0
9679  */
9680 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9681 {
9682 	if (write_bit & 0x01)
9683 		*gpreg |= 0x02;
9684 	else
9685 		*gpreg &= 0xfd;
9686 
9687 	*gpreg |= 0x10;
9688 
9689 	OUTB (nc_gpreg, *gpreg);
9690 	UDELAY (2);
9691 
9692 	T93C46_Clk(np, gpreg);
9693 }
9694 
9695 /*
9696  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9697  */
9698 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9699 {
9700 	*gpreg &= 0xef;
9701 	OUTB (nc_gpreg, *gpreg);
9702 	UDELAY (2);
9703 
9704 	T93C46_Clk(np, gpreg);
9705 }
9706 
9707 /*
9708  *  Send read command and address to NVRAM
9709  */
9710 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9711 				u_char *read_bit, u_char *gpreg)
9712 {
9713 	int x;
9714 
9715 	/* send 9 bits, start bit (1), command (2), address (6)  */
9716 	for (x = 0; x < 9; x++)
9717 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9718 
9719 	*read_bit = INB (nc_gpreg);
9720 }
9721 
9722 /*
9723  *  READ 2 bytes from the NVRAM
9724  */
9725 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9726 {
9727 	int x;
9728 	u_char read_bit;
9729 
9730 	*nvram_data = 0;
9731 	for (x = 0; x < 16; x++) {
9732 		T93C46_Read_Bit(np, &read_bit, gpreg);
9733 
9734 		if (read_bit & 0x01)
9735 			*nvram_data |=  (0x01 << (15 - x));
9736 		else
9737 			*nvram_data &= ~(0x01 << (15 - x));
9738 	}
9739 }
9740 
9741 /*
9742  *  Read Tekram NvRAM data.
9743  */
9744 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9745 {
9746 	u_char	read_bit;
9747 	int	x;
9748 
9749 	for (x = 0; x < len; x++)  {
9750 
9751 		/* output read command and address */
9752 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9753 		if (read_bit & 0x01)
9754 			return 1; /* Bad */
9755 		T93C46_Read_Word(np, &data[x], gpreg);
9756 		T93C46_Stop(np, gpreg);
9757 	}
9758 
9759 	return 0;
9760 }
9761 
9762 /*
9763  *  Try reading 93C46 Tekram NVRAM.
9764  */
9765 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9766 {
9767 	u_char gpcntl, gpreg;
9768 	u_char old_gpcntl, old_gpreg;
9769 	int retv = 1;
9770 
9771 	/* save current state of GPCNTL and GPREG */
9772 	old_gpreg	= INB (nc_gpreg);
9773 	old_gpcntl	= INB (nc_gpcntl);
9774 
9775 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9776 	   1/2/4 out */
9777 	gpreg = old_gpreg & 0xe9;
9778 	OUTB (nc_gpreg, gpreg);
9779 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9780 	OUTB (nc_gpcntl, gpcntl);
9781 
9782 	/* input all of NVRAM, 64 words */
9783 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9784 				sizeof(*nvram) / sizeof(short), &gpreg);
9785 
9786 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9787 	OUTB (nc_gpcntl, old_gpcntl);
9788 	OUTB (nc_gpreg,  old_gpreg);
9789 
9790 	return retv;
9791 }
9792 
9793 /*
9794  *  Try reading Tekram NVRAM.
9795  *  Return 0 if OK.
9796  */
9797 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9798 {
9799 	u_char *data = (u_char *) nvram;
9800 	int len = sizeof(*nvram);
9801 	u_short	csum;
9802 	int x;
9803 
9804 	switch (np->device_id) {
9805 	case PCI_ID_SYM53C885:
9806 	case PCI_ID_SYM53C895:
9807 	case PCI_ID_SYM53C896:
9808 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9809 					  data, len);
9810 		break;
9811 	case PCI_ID_SYM53C875:
9812 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9813 					  data, len);
9814 		if (!x)
9815 			break;
9816 	default:
9817 		x = sym_read_T93C46_nvram(np, nvram);
9818 		break;
9819 	}
9820 	if (x)
9821 		return 1;
9822 
9823 	/* verify checksum */
9824 	for (x = 0, csum = 0; x < len - 1; x += 2)
9825 		csum += data[x] + (data[x+1] << 8);
9826 	if (csum != 0x1234)
9827 		return 1;
9828 
9829 	return 0;
9830 }
9831 
9832 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9833