1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 74 #include <sys/systm.h> 75 #include <sys/malloc.h> 76 #include <sys/endian.h> 77 #include <sys/kernel.h> 78 #include <sys/lock.h> 79 #include <sys/mutex.h> 80 #include <sys/module.h> 81 #include <sys/bus.h> 82 83 #include <sys/proc.h> 84 85 #include <dev/pci/pcireg.h> 86 #include <dev/pci/pcivar.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/cam_ccb.h> 94 #include <cam/cam_sim.h> 95 #include <cam/cam_xpt_sim.h> 96 #include <cam/cam_debug.h> 97 98 #include <cam/scsi/scsi_all.h> 99 #include <cam/scsi/scsi_message.h> 100 101 #include <vm/vm.h> 102 #include <vm/vm_param.h> 103 #include <vm/pmap.h> 104 105 /* Short and quite clear integer types */ 106 typedef int8_t s8; 107 typedef int16_t s16; 108 typedef int32_t s32; 109 typedef u_int8_t u8; 110 typedef u_int16_t u16; 111 typedef u_int32_t u32; 112 113 /* 114 * Driver definitions. 115 */ 116 #include <dev/sym/sym_defs.h> 117 #include <dev/sym/sym_fw.h> 118 119 /* 120 * IA32 architecture does not reorder STORES and prevents 121 * LOADS from passing STORES. It is called `program order' 122 * by Intel and allows device drivers to deal with memory 123 * ordering by only ensuring that the code is not reordered 124 * by the compiler when ordering is required. 125 * Other architectures implement a weaker ordering that 126 * requires memory barriers (and also IO barriers when they 127 * make sense) to be used. 128 */ 129 130 #if defined __i386__ || defined __amd64__ 131 #define MEMORY_BARRIER() do { ; } while(0) 132 #elif defined __powerpc__ 133 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 134 #elif defined __ia64__ 135 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 136 #elif defined __sparc64__ 137 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 138 #else 139 #error "Not supported platform" 140 #endif 141 142 /* 143 * A la VMS/CAM-3 queue management. 144 */ 145 146 typedef struct sym_quehead { 147 struct sym_quehead *flink; /* Forward pointer */ 148 struct sym_quehead *blink; /* Backward pointer */ 149 } SYM_QUEHEAD; 150 151 #define sym_que_init(ptr) do { \ 152 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 153 } while (0) 154 155 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 156 { 157 return (head->flink == head) ? NULL : head->flink; 158 } 159 160 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 161 { 162 return (head->blink == head) ? NULL : head->blink; 163 } 164 165 static __inline void __sym_que_add(struct sym_quehead * new, 166 struct sym_quehead * blink, 167 struct sym_quehead * flink) 168 { 169 flink->blink = new; 170 new->flink = flink; 171 new->blink = blink; 172 blink->flink = new; 173 } 174 175 static __inline void __sym_que_del(struct sym_quehead * blink, 176 struct sym_quehead * flink) 177 { 178 flink->blink = blink; 179 blink->flink = flink; 180 } 181 182 static __inline int sym_que_empty(struct sym_quehead *head) 183 { 184 return head->flink == head; 185 } 186 187 static __inline void sym_que_splice(struct sym_quehead *list, 188 struct sym_quehead *head) 189 { 190 struct sym_quehead *first = list->flink; 191 192 if (first != list) { 193 struct sym_quehead *last = list->blink; 194 struct sym_quehead *at = head->flink; 195 196 first->blink = head; 197 head->flink = first; 198 199 last->flink = at; 200 at->blink = last; 201 } 202 } 203 204 #define sym_que_entry(ptr, type, member) \ 205 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 206 207 208 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 209 210 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 211 212 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 213 214 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 215 { 216 struct sym_quehead *elem = head->flink; 217 218 if (elem != head) 219 __sym_que_del(head, elem->flink); 220 else 221 elem = NULL; 222 return elem; 223 } 224 225 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 226 227 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 228 { 229 struct sym_quehead *elem = head->blink; 230 231 if (elem != head) 232 __sym_que_del(elem->blink, head); 233 else 234 elem = NULL; 235 return elem; 236 } 237 238 /* 239 * This one may be useful. 240 */ 241 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 242 for (qp = (head)->flink; qp != (head); qp = qp->flink) 243 /* 244 * FreeBSD does not offer our kind of queue in the CAM CCB. 245 * So, we have to cast. 246 */ 247 #define sym_qptr(p) ((struct sym_quehead *) (p)) 248 249 /* 250 * Simple bitmap operations. 251 */ 252 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 253 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 254 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 255 256 /* 257 * Number of tasks per device we want to handle. 258 */ 259 #if SYM_CONF_MAX_TAG_ORDER > 8 260 #error "more than 256 tags per logical unit not allowed." 261 #endif 262 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 263 264 /* 265 * Donnot use more tasks that we can handle. 266 */ 267 #ifndef SYM_CONF_MAX_TAG 268 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 269 #endif 270 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 271 #undef SYM_CONF_MAX_TAG 272 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 273 #endif 274 275 /* 276 * This one means 'NO TAG for this job' 277 */ 278 #define NO_TAG (256) 279 280 /* 281 * Number of SCSI targets. 282 */ 283 #if SYM_CONF_MAX_TARGET > 16 284 #error "more than 16 targets not allowed." 285 #endif 286 287 /* 288 * Number of logical units per target. 289 */ 290 #if SYM_CONF_MAX_LUN > 64 291 #error "more than 64 logical units per target not allowed." 292 #endif 293 294 /* 295 * Asynchronous pre-scaler (ns). Shall be 40 for 296 * the SCSI timings to be compliant. 297 */ 298 #define SYM_CONF_MIN_ASYNC (40) 299 300 /* 301 * Number of entries in the START and DONE queues. 302 * 303 * We limit to 1 PAGE in order to succeed allocation of 304 * these queues. Each entry is 8 bytes long (2 DWORDS). 305 */ 306 #ifdef SYM_CONF_MAX_START 307 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 308 #else 309 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 310 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 311 #endif 312 313 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 314 #undef SYM_CONF_MAX_QUEUE 315 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 316 #undef SYM_CONF_MAX_START 317 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 318 #endif 319 320 /* 321 * For this one, we want a short name :-) 322 */ 323 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 324 325 /* 326 * Active debugging tags and verbosity. 327 */ 328 #define DEBUG_ALLOC (0x0001) 329 #define DEBUG_PHASE (0x0002) 330 #define DEBUG_POLL (0x0004) 331 #define DEBUG_QUEUE (0x0008) 332 #define DEBUG_RESULT (0x0010) 333 #define DEBUG_SCATTER (0x0020) 334 #define DEBUG_SCRIPT (0x0040) 335 #define DEBUG_TINY (0x0080) 336 #define DEBUG_TIMING (0x0100) 337 #define DEBUG_NEGO (0x0200) 338 #define DEBUG_TAGS (0x0400) 339 #define DEBUG_POINTER (0x0800) 340 341 #if 0 342 static int sym_debug = 0; 343 #define DEBUG_FLAGS sym_debug 344 #else 345 /* #define DEBUG_FLAGS (0x0631) */ 346 #define DEBUG_FLAGS (0x0000) 347 348 #endif 349 #define sym_verbose (np->verbose) 350 351 /* 352 * Insert a delay in micro-seconds and milli-seconds. 353 */ 354 static void UDELAY(int us) { DELAY(us); } 355 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 356 357 /* 358 * Simple power of two buddy-like allocator. 359 * 360 * This simple code is not intended to be fast, but to 361 * provide power of 2 aligned memory allocations. 362 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 363 * this allocator allows simple and fast address calculations 364 * from the SCRIPTS code. In addition, cache line alignment 365 * is guaranteed for power of 2 cache line size. 366 * 367 * This allocator has been developped for the Linux sym53c8xx 368 * driver, since this O/S does not provide naturally aligned 369 * allocations. 370 * It has the advantage of allowing the driver to use private 371 * pages of memory that will be useful if we ever need to deal 372 * with IO MMUs for PCI. 373 */ 374 375 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 376 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 377 #if 0 378 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 379 #endif 380 #define MEMO_WARN 1 381 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 382 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 383 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 384 385 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 386 #define free_pages(p) free((p), M_DEVBUF) 387 388 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 389 390 typedef struct m_link { /* Link between free memory chunks */ 391 struct m_link *next; 392 } m_link_s; 393 394 typedef struct m_vtob { /* Virtual to Bus address translation */ 395 struct m_vtob *next; 396 bus_dmamap_t dmamap; /* Map for this chunk */ 397 m_addr_t vaddr; /* Virtual address */ 398 m_addr_t baddr; /* Bus physical address */ 399 } m_vtob_s; 400 /* Hash this stuff a bit to speed up translations */ 401 #define VTOB_HASH_SHIFT 5 402 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 403 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 404 #define VTOB_HASH_CODE(m) \ 405 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 406 407 typedef struct m_pool { /* Memory pool of a given kind */ 408 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 409 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 410 m_addr_t (*getp)(struct m_pool *); 411 #ifdef MEMO_FREE_UNUSED 412 void (*freep)(struct m_pool *, m_addr_t); 413 #endif 414 #define M_GETP() mp->getp(mp) 415 #define M_FREEP(p) mp->freep(mp, p) 416 int nump; 417 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 418 struct m_pool *next; 419 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 420 } m_pool_s; 421 422 static void *___sym_malloc(m_pool_s *mp, int size) 423 { 424 int i = 0; 425 int s = (1 << MEMO_SHIFT); 426 int j; 427 m_addr_t a; 428 m_link_s *h = mp->h; 429 430 if (size > MEMO_CLUSTER_SIZE) 431 return NULL; 432 433 while (size > s) { 434 s <<= 1; 435 ++i; 436 } 437 438 j = i; 439 while (!h[j].next) { 440 if (s == MEMO_CLUSTER_SIZE) { 441 h[j].next = (m_link_s *) M_GETP(); 442 if (h[j].next) 443 h[j].next->next = NULL; 444 break; 445 } 446 ++j; 447 s <<= 1; 448 } 449 a = (m_addr_t) h[j].next; 450 if (a) { 451 h[j].next = h[j].next->next; 452 while (j > i) { 453 j -= 1; 454 s >>= 1; 455 h[j].next = (m_link_s *) (a+s); 456 h[j].next->next = NULL; 457 } 458 } 459 #ifdef DEBUG 460 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 461 #endif 462 return (void *) a; 463 } 464 465 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 466 { 467 int i = 0; 468 int s = (1 << MEMO_SHIFT); 469 m_link_s *q; 470 m_addr_t a, b; 471 m_link_s *h = mp->h; 472 473 #ifdef DEBUG 474 printf("___sym_mfree(%p, %d)\n", ptr, size); 475 #endif 476 477 if (size > MEMO_CLUSTER_SIZE) 478 return; 479 480 while (size > s) { 481 s <<= 1; 482 ++i; 483 } 484 485 a = (m_addr_t) ptr; 486 487 while (1) { 488 #ifdef MEMO_FREE_UNUSED 489 if (s == MEMO_CLUSTER_SIZE) { 490 M_FREEP(a); 491 break; 492 } 493 #endif 494 b = a ^ s; 495 q = &h[i]; 496 while (q->next && q->next != (m_link_s *) b) { 497 q = q->next; 498 } 499 if (!q->next) { 500 ((m_link_s *) a)->next = h[i].next; 501 h[i].next = (m_link_s *) a; 502 break; 503 } 504 q->next = q->next->next; 505 a = a & b; 506 s <<= 1; 507 ++i; 508 } 509 } 510 511 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 512 { 513 void *p; 514 515 p = ___sym_malloc(mp, size); 516 517 if (DEBUG_FLAGS & DEBUG_ALLOC) 518 printf ("new %-10s[%4d] @%p.\n", name, size, p); 519 520 if (p) 521 bzero(p, size); 522 else if (uflags & MEMO_WARN) 523 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 524 525 return p; 526 } 527 528 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 529 530 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 531 { 532 if (DEBUG_FLAGS & DEBUG_ALLOC) 533 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 534 535 ___sym_mfree(mp, ptr, size); 536 537 } 538 539 /* 540 * Default memory pool we donnot need to involve in DMA. 541 */ 542 /* 543 * With the `bus dma abstraction', we use a separate pool for 544 * memory we donnot need to involve in DMA. 545 */ 546 static m_addr_t ___mp0_getp(m_pool_s *mp) 547 { 548 m_addr_t m = (m_addr_t) get_pages(); 549 if (m) 550 ++mp->nump; 551 return m; 552 } 553 554 #ifdef MEMO_FREE_UNUSED 555 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 556 { 557 free_pages(m); 558 --mp->nump; 559 } 560 #endif 561 562 #ifdef MEMO_FREE_UNUSED 563 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 564 #else 565 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 566 #endif 567 568 569 /* 570 * Actual memory allocation routine for non-DMAed memory. 571 */ 572 static void *sym_calloc(int size, char *name) 573 { 574 void *m; 575 /* Lock */ 576 m = __sym_calloc(&mp0, size, name); 577 /* Unlock */ 578 return m; 579 } 580 581 /* 582 * Actual memory allocation routine for non-DMAed memory. 583 */ 584 static void sym_mfree(void *ptr, int size, char *name) 585 { 586 /* Lock */ 587 __sym_mfree(&mp0, ptr, size, name); 588 /* Unlock */ 589 } 590 591 /* 592 * DMAable pools. 593 */ 594 /* 595 * With `bus dma abstraction', we use a separate pool per parent 596 * BUS handle. A reverse table (hashed) is maintained for virtual 597 * to BUS address translation. 598 */ 599 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 600 { 601 bus_addr_t *baddr; 602 baddr = (bus_addr_t *)arg; 603 *baddr = segs->ds_addr; 604 } 605 606 static m_addr_t ___dma_getp(m_pool_s *mp) 607 { 608 m_vtob_s *vbp; 609 void *vaddr = NULL; 610 bus_addr_t baddr = 0; 611 612 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 613 if (!vbp) 614 goto out_err; 615 616 if (bus_dmamem_alloc(mp->dmat, &vaddr, 617 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 618 goto out_err; 619 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 620 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 621 if (baddr) { 622 int hc = VTOB_HASH_CODE(vaddr); 623 vbp->vaddr = (m_addr_t) vaddr; 624 vbp->baddr = (m_addr_t) baddr; 625 vbp->next = mp->vtob[hc]; 626 mp->vtob[hc] = vbp; 627 ++mp->nump; 628 return (m_addr_t) vaddr; 629 } 630 out_err: 631 if (baddr) 632 bus_dmamap_unload(mp->dmat, vbp->dmamap); 633 if (vaddr) 634 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 635 if (vbp) { 636 if (vbp->dmamap) 637 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 638 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 639 } 640 return 0; 641 } 642 643 #ifdef MEMO_FREE_UNUSED 644 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 645 { 646 m_vtob_s **vbpp, *vbp; 647 int hc = VTOB_HASH_CODE(m); 648 649 vbpp = &mp->vtob[hc]; 650 while (*vbpp && (*vbpp)->vaddr != m) 651 vbpp = &(*vbpp)->next; 652 if (*vbpp) { 653 vbp = *vbpp; 654 *vbpp = (*vbpp)->next; 655 bus_dmamap_unload(mp->dmat, vbp->dmamap); 656 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 657 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 658 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 659 --mp->nump; 660 } 661 } 662 #endif 663 664 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 665 { 666 m_pool_s *mp; 667 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 668 return mp; 669 } 670 671 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 672 { 673 m_pool_s *mp = NULL; 674 675 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 676 if (mp) { 677 mp->dev_dmat = dev_dmat; 678 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 679 BUS_SPACE_MAXADDR_32BIT, 680 BUS_SPACE_MAXADDR, 681 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 682 MEMO_CLUSTER_SIZE, 0, 683 NULL, NULL, &mp->dmat)) { 684 mp->getp = ___dma_getp; 685 #ifdef MEMO_FREE_UNUSED 686 mp->freep = ___dma_freep; 687 #endif 688 mp->next = mp0.next; 689 mp0.next = mp; 690 return mp; 691 } 692 } 693 if (mp) 694 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 695 return NULL; 696 } 697 698 #ifdef MEMO_FREE_UNUSED 699 static void ___del_dma_pool(m_pool_s *p) 700 { 701 struct m_pool **pp = &mp0.next; 702 703 while (*pp && *pp != p) 704 pp = &(*pp)->next; 705 if (*pp) { 706 *pp = (*pp)->next; 707 bus_dma_tag_destroy(p->dmat); 708 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 709 } 710 } 711 #endif 712 713 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 714 { 715 struct m_pool *mp; 716 void *m = NULL; 717 718 /* Lock */ 719 mp = ___get_dma_pool(dev_dmat); 720 if (!mp) 721 mp = ___cre_dma_pool(dev_dmat); 722 if (mp) 723 m = __sym_calloc(mp, size, name); 724 #ifdef MEMO_FREE_UNUSED 725 if (mp && !mp->nump) 726 ___del_dma_pool(mp); 727 #endif 728 /* Unlock */ 729 730 return m; 731 } 732 733 static void 734 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 735 { 736 struct m_pool *mp; 737 738 /* Lock */ 739 mp = ___get_dma_pool(dev_dmat); 740 if (mp) 741 __sym_mfree(mp, m, size, name); 742 #ifdef MEMO_FREE_UNUSED 743 if (mp && !mp->nump) 744 ___del_dma_pool(mp); 745 #endif 746 /* Unlock */ 747 } 748 749 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 750 { 751 m_pool_s *mp; 752 int hc = VTOB_HASH_CODE(m); 753 m_vtob_s *vp = NULL; 754 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 755 756 /* Lock */ 757 mp = ___get_dma_pool(dev_dmat); 758 if (mp) { 759 vp = mp->vtob[hc]; 760 while (vp && (m_addr_t) vp->vaddr != a) 761 vp = vp->next; 762 } 763 /* Unlock */ 764 if (!vp) 765 panic("sym: VTOBUS FAILED!\n"); 766 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 767 } 768 769 770 /* 771 * Verbs for DMAable memory handling. 772 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 773 * being discarded. 774 */ 775 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 776 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 777 #define _sym_mfree_dma(np, p, s, n) \ 778 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 779 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 780 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 781 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 782 #define vtobus(p) _vtobus(np, p) 783 784 785 /* 786 * Print a buffer in hexadecimal format. 787 */ 788 static void sym_printb_hex (u_char *p, int n) 789 { 790 while (n-- > 0) 791 printf (" %x", *p++); 792 } 793 794 /* 795 * Same with a label at beginning and .\n at end. 796 */ 797 static void sym_printl_hex (char *label, u_char *p, int n) 798 { 799 printf ("%s", label); 800 sym_printb_hex (p, n); 801 printf (".\n"); 802 } 803 804 /* 805 * Return a string for SCSI BUS mode. 806 */ 807 static const char *sym_scsi_bus_mode(int mode) 808 { 809 switch(mode) { 810 case SMODE_HVD: return "HVD"; 811 case SMODE_SE: return "SE"; 812 case SMODE_LVD: return "LVD"; 813 } 814 return "??"; 815 } 816 817 /* 818 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 819 */ 820 #ifdef SYM_CONF_NVRAM_SUPPORT 821 static const u_char Tekram_sync[16] = 822 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 823 #endif 824 825 /* 826 * Union of supported NVRAM formats. 827 */ 828 struct sym_nvram { 829 int type; 830 #define SYM_SYMBIOS_NVRAM (1) 831 #define SYM_TEKRAM_NVRAM (2) 832 #ifdef SYM_CONF_NVRAM_SUPPORT 833 union { 834 Symbios_nvram Symbios; 835 Tekram_nvram Tekram; 836 } data; 837 #endif 838 }; 839 840 /* 841 * This one is hopefully useless, but actually useful. :-) 842 */ 843 #ifndef assert 844 #define assert(expression) { \ 845 if (!(expression)) { \ 846 (void)panic( \ 847 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 848 #expression, \ 849 __FILE__, __LINE__); \ 850 } \ 851 } 852 #endif 853 854 /* 855 * Some provision for a possible big endian mode supported by 856 * Symbios chips (never seen, by the way). 857 * For now, this stuff does not deserve any comments. :) 858 */ 859 860 #define sym_offb(o) (o) 861 #define sym_offw(o) (o) 862 863 /* 864 * Some provision for support for BIG ENDIAN CPU. 865 */ 866 867 #define cpu_to_scr(dw) htole32(dw) 868 #define scr_to_cpu(dw) le32toh(dw) 869 870 /* 871 * Access to the chip IO registers and on-chip RAM. 872 * We use the `bus space' interface under FreeBSD-4 and 873 * later kernel versions. 874 */ 875 876 877 #if defined(SYM_CONF_IOMAPPED) 878 879 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 880 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 881 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 882 883 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 884 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 885 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 886 887 #else /* Memory mapped IO */ 888 889 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 890 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 891 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 892 893 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 894 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 895 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 896 897 #endif /* SYM_CONF_IOMAPPED */ 898 899 #define OUTRAM_OFF(o, a, l) \ 900 bus_write_region_1(np->ram_res, (o), (a), (l)) 901 902 903 /* 904 * Common definitions for both bus space and legacy IO methods. 905 */ 906 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 907 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 908 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 909 910 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 911 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 912 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 913 914 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 915 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 916 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 917 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 918 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 919 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 920 921 /* 922 * We normally want the chip to have a consistent view 923 * of driver internal data structures when we restart it. 924 * Thus these macros. 925 */ 926 #define OUTL_DSP(v) \ 927 do { \ 928 MEMORY_BARRIER(); \ 929 OUTL (nc_dsp, (v)); \ 930 } while (0) 931 932 #define OUTONB_STD() \ 933 do { \ 934 MEMORY_BARRIER(); \ 935 OUTONB (nc_dcntl, (STD|NOCOM)); \ 936 } while (0) 937 938 /* 939 * Command control block states. 940 */ 941 #define HS_IDLE (0) 942 #define HS_BUSY (1) 943 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 944 #define HS_DISCONNECT (3) /* Disconnected by target */ 945 #define HS_WAIT (4) /* waiting for resource */ 946 947 #define HS_DONEMASK (0x80) 948 #define HS_COMPLETE (4|HS_DONEMASK) 949 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 950 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 951 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 952 953 /* 954 * Software Interrupt Codes 955 */ 956 #define SIR_BAD_SCSI_STATUS (1) 957 #define SIR_SEL_ATN_NO_MSG_OUT (2) 958 #define SIR_MSG_RECEIVED (3) 959 #define SIR_MSG_WEIRD (4) 960 #define SIR_NEGO_FAILED (5) 961 #define SIR_NEGO_PROTO (6) 962 #define SIR_SCRIPT_STOPPED (7) 963 #define SIR_REJECT_TO_SEND (8) 964 #define SIR_SWIDE_OVERRUN (9) 965 #define SIR_SODL_UNDERRUN (10) 966 #define SIR_RESEL_NO_MSG_IN (11) 967 #define SIR_RESEL_NO_IDENTIFY (12) 968 #define SIR_RESEL_BAD_LUN (13) 969 #define SIR_TARGET_SELECTED (14) 970 #define SIR_RESEL_BAD_I_T_L (15) 971 #define SIR_RESEL_BAD_I_T_L_Q (16) 972 #define SIR_ABORT_SENT (17) 973 #define SIR_RESEL_ABORTED (18) 974 #define SIR_MSG_OUT_DONE (19) 975 #define SIR_COMPLETE_ERROR (20) 976 #define SIR_DATA_OVERRUN (21) 977 #define SIR_BAD_PHASE (22) 978 #define SIR_MAX (22) 979 980 /* 981 * Extended error bit codes. 982 * xerr_status field of struct sym_ccb. 983 */ 984 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 985 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 986 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 987 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 988 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 989 990 /* 991 * Negotiation status. 992 * nego_status field of struct sym_ccb. 993 */ 994 #define NS_SYNC (1) 995 #define NS_WIDE (2) 996 #define NS_PPR (3) 997 998 /* 999 * A CCB hashed table is used to retrieve CCB address 1000 * from DSA value. 1001 */ 1002 #define CCB_HASH_SHIFT 8 1003 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1004 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1005 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1006 1007 /* 1008 * Device flags. 1009 */ 1010 #define SYM_DISC_ENABLED (1) 1011 #define SYM_TAGS_ENABLED (1<<1) 1012 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1013 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1014 1015 /* 1016 * Host adapter miscellaneous flags. 1017 */ 1018 #define SYM_AVOID_BUS_RESET (1) 1019 #define SYM_SCAN_TARGETS_HILO (1<<1) 1020 1021 /* 1022 * Device quirks. 1023 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1024 * saving the DATA POINTER then reselects and terminates the IO. 1025 * On reselection, the automatic RESTORE DATA POINTER makes the 1026 * CURRENT DATA POINTER not point at the end of the IO. 1027 * This behaviour just breaks our calculation of the residual. 1028 * For now, we just force an AUTO SAVE on disconnection and will 1029 * fix that in a further driver version. 1030 */ 1031 #define SYM_QUIRK_AUTOSAVE 1 1032 1033 /* 1034 * Misc. 1035 */ 1036 #define SYM_LOCK() mtx_lock(&np->mtx) 1037 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1038 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1039 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1040 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1041 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1042 1043 #define SYM_SNOOP_TIMEOUT (10000000) 1044 #define SYM_PCI_IO PCIR_BAR(0) 1045 #define SYM_PCI_MMIO PCIR_BAR(1) 1046 #define SYM_PCI_RAM PCIR_BAR(2) 1047 #define SYM_PCI_RAM64 PCIR_BAR(3) 1048 1049 /* 1050 * Back-pointer from the CAM CCB to our data structures. 1051 */ 1052 #define sym_hcb_ptr spriv_ptr0 1053 /* #define sym_ccb_ptr spriv_ptr1 */ 1054 1055 /* 1056 * We mostly have to deal with pointers. 1057 * Thus these typedef's. 1058 */ 1059 typedef struct sym_tcb *tcb_p; 1060 typedef struct sym_lcb *lcb_p; 1061 typedef struct sym_ccb *ccb_p; 1062 typedef struct sym_hcb *hcb_p; 1063 1064 /* 1065 * Gather negotiable parameters value 1066 */ 1067 struct sym_trans { 1068 u8 scsi_version; 1069 u8 spi_version; 1070 u8 period; 1071 u8 offset; 1072 u8 width; 1073 u8 options; /* PPR options */ 1074 }; 1075 1076 struct sym_tinfo { 1077 struct sym_trans current; 1078 struct sym_trans goal; 1079 struct sym_trans user; 1080 }; 1081 1082 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1083 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1084 1085 /* 1086 * Global TCB HEADER. 1087 * 1088 * Due to lack of indirect addressing on earlier NCR chips, 1089 * this substructure is copied from the TCB to a global 1090 * address after selection. 1091 * For SYMBIOS chips that support LOAD/STORE this copy is 1092 * not needed and thus not performed. 1093 */ 1094 struct sym_tcbh { 1095 /* 1096 * Scripts bus addresses of LUN table accessed from scripts. 1097 * LUN #0 is a special case, since multi-lun devices are rare, 1098 * and we we want to speed-up the general case and not waste 1099 * resources. 1100 */ 1101 u32 luntbl_sa; /* bus address of this table */ 1102 u32 lun0_sa; /* bus address of LCB #0 */ 1103 /* 1104 * Actual SYNC/WIDE IO registers value for this target. 1105 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1106 * so have alignment constraints. 1107 */ 1108 /*0*/ u_char uval; /* -> SCNTL4 register */ 1109 /*1*/ u_char sval; /* -> SXFER io register */ 1110 /*2*/ u_char filler1; 1111 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1112 }; 1113 1114 /* 1115 * Target Control Block 1116 */ 1117 struct sym_tcb { 1118 /* 1119 * TCB header. 1120 * Assumed at offset 0. 1121 */ 1122 /*0*/ struct sym_tcbh head; 1123 1124 /* 1125 * LUN table used by the SCRIPTS processor. 1126 * An array of bus addresses is used on reselection. 1127 */ 1128 u32 *luntbl; /* LCBs bus address table */ 1129 1130 /* 1131 * LUN table used by the C code. 1132 */ 1133 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1134 #if SYM_CONF_MAX_LUN > 1 1135 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1136 #endif 1137 1138 /* 1139 * Bitmap that tells about LUNs that succeeded at least 1140 * 1 IO and therefore assumed to be a real device. 1141 * Avoid useless allocation of the LCB structure. 1142 */ 1143 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1144 1145 /* 1146 * Bitmap that tells about LUNs that haven't yet an LCB 1147 * allocated (not discovered or LCB allocation failed). 1148 */ 1149 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1150 1151 /* 1152 * Transfer capabilities (SIP) 1153 */ 1154 struct sym_tinfo tinfo; 1155 1156 /* 1157 * Keep track of the CCB used for the negotiation in order 1158 * to ensure that only 1 negotiation is queued at a time. 1159 */ 1160 ccb_p nego_cp; /* CCB used for the nego */ 1161 1162 /* 1163 * Set when we want to reset the device. 1164 */ 1165 u_char to_reset; 1166 1167 /* 1168 * Other user settable limits and options. 1169 * These limits are read from the NVRAM if present. 1170 */ 1171 u_char usrflags; 1172 u_short usrtags; 1173 }; 1174 1175 /* 1176 * Global LCB HEADER. 1177 * 1178 * Due to lack of indirect addressing on earlier NCR chips, 1179 * this substructure is copied from the LCB to a global 1180 * address after selection. 1181 * For SYMBIOS chips that support LOAD/STORE this copy is 1182 * not needed and thus not performed. 1183 */ 1184 struct sym_lcbh { 1185 /* 1186 * SCRIPTS address jumped by SCRIPTS on reselection. 1187 * For not probed logical units, this address points to 1188 * SCRIPTS that deal with bad LU handling (must be at 1189 * offset zero of the LCB for that reason). 1190 */ 1191 /*0*/ u32 resel_sa; 1192 1193 /* 1194 * Task (bus address of a CCB) read from SCRIPTS that points 1195 * to the unique ITL nexus allowed to be disconnected. 1196 */ 1197 u32 itl_task_sa; 1198 1199 /* 1200 * Task table bus address (read from SCRIPTS). 1201 */ 1202 u32 itlq_tbl_sa; 1203 }; 1204 1205 /* 1206 * Logical Unit Control Block 1207 */ 1208 struct sym_lcb { 1209 /* 1210 * TCB header. 1211 * Assumed at offset 0. 1212 */ 1213 /*0*/ struct sym_lcbh head; 1214 1215 /* 1216 * Task table read from SCRIPTS that contains pointers to 1217 * ITLQ nexuses. The bus address read from SCRIPTS is 1218 * inside the header. 1219 */ 1220 u32 *itlq_tbl; /* Kernel virtual address */ 1221 1222 /* 1223 * Busy CCBs management. 1224 */ 1225 u_short busy_itlq; /* Number of busy tagged CCBs */ 1226 u_short busy_itl; /* Number of busy untagged CCBs */ 1227 1228 /* 1229 * Circular tag allocation buffer. 1230 */ 1231 u_short ia_tag; /* Tag allocation index */ 1232 u_short if_tag; /* Tag release index */ 1233 u_char *cb_tags; /* Circular tags buffer */ 1234 1235 /* 1236 * Set when we want to clear all tasks. 1237 */ 1238 u_char to_clear; 1239 1240 /* 1241 * Capabilities. 1242 */ 1243 u_char user_flags; 1244 u_char current_flags; 1245 }; 1246 1247 /* 1248 * Action from SCRIPTS on a task. 1249 * Is part of the CCB, but is also used separately to plug 1250 * error handling action to perform from SCRIPTS. 1251 */ 1252 struct sym_actscr { 1253 u32 start; /* Jumped by SCRIPTS after selection */ 1254 u32 restart; /* Jumped by SCRIPTS on relection */ 1255 }; 1256 1257 /* 1258 * Phase mismatch context. 1259 * 1260 * It is part of the CCB and is used as parameters for the 1261 * DATA pointer. We need two contexts to handle correctly the 1262 * SAVED DATA POINTER. 1263 */ 1264 struct sym_pmc { 1265 struct sym_tblmove sg; /* Updated interrupted SG block */ 1266 u32 ret; /* SCRIPT return address */ 1267 }; 1268 1269 /* 1270 * LUN control block lookup. 1271 * We use a direct pointer for LUN #0, and a table of 1272 * pointers which is only allocated for devices that support 1273 * LUN(s) > 0. 1274 */ 1275 #if SYM_CONF_MAX_LUN <= 1 1276 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1277 #else 1278 #define sym_lp(np, tp, lun) \ 1279 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1280 #endif 1281 1282 /* 1283 * Status are used by the host and the script processor. 1284 * 1285 * The last four bytes (status[4]) are copied to the 1286 * scratchb register (declared as scr0..scr3) just after the 1287 * select/reselect, and copied back just after disconnecting. 1288 * Inside the script the XX_REG are used. 1289 */ 1290 1291 /* 1292 * Last four bytes (script) 1293 */ 1294 #define QU_REG scr0 1295 #define HS_REG scr1 1296 #define HS_PRT nc_scr1 1297 #define SS_REG scr2 1298 #define SS_PRT nc_scr2 1299 #define HF_REG scr3 1300 #define HF_PRT nc_scr3 1301 1302 /* 1303 * Last four bytes (host) 1304 */ 1305 #define actualquirks phys.head.status[0] 1306 #define host_status phys.head.status[1] 1307 #define ssss_status phys.head.status[2] 1308 #define host_flags phys.head.status[3] 1309 1310 /* 1311 * Host flags 1312 */ 1313 #define HF_IN_PM0 1u 1314 #define HF_IN_PM1 (1u<<1) 1315 #define HF_ACT_PM (1u<<2) 1316 #define HF_DP_SAVED (1u<<3) 1317 #define HF_SENSE (1u<<4) 1318 #define HF_EXT_ERR (1u<<5) 1319 #define HF_DATA_IN (1u<<6) 1320 #ifdef SYM_CONF_IARB_SUPPORT 1321 #define HF_HINT_IARB (1u<<7) 1322 #endif 1323 1324 /* 1325 * Global CCB HEADER. 1326 * 1327 * Due to lack of indirect addressing on earlier NCR chips, 1328 * this substructure is copied from the ccb to a global 1329 * address after selection (or reselection) and copied back 1330 * before disconnect. 1331 * For SYMBIOS chips that support LOAD/STORE this copy is 1332 * not needed and thus not performed. 1333 */ 1334 1335 struct sym_ccbh { 1336 /* 1337 * Start and restart SCRIPTS addresses (must be at 0). 1338 */ 1339 /*0*/ struct sym_actscr go; 1340 1341 /* 1342 * SCRIPTS jump address that deal with data pointers. 1343 * 'savep' points to the position in the script responsible 1344 * for the actual transfer of data. 1345 * It's written on reception of a SAVE_DATA_POINTER message. 1346 */ 1347 u32 savep; /* Jump address to saved data pointer */ 1348 u32 lastp; /* SCRIPTS address at end of data */ 1349 u32 goalp; /* Not accessed for now from SCRIPTS */ 1350 1351 /* 1352 * Status fields. 1353 */ 1354 u8 status[4]; 1355 }; 1356 1357 /* 1358 * Data Structure Block 1359 * 1360 * During execution of a ccb by the script processor, the 1361 * DSA (data structure address) register points to this 1362 * substructure of the ccb. 1363 */ 1364 struct sym_dsb { 1365 /* 1366 * CCB header. 1367 * Also assumed at offset 0 of the sym_ccb structure. 1368 */ 1369 /*0*/ struct sym_ccbh head; 1370 1371 /* 1372 * Phase mismatch contexts. 1373 * We need two to handle correctly the SAVED DATA POINTER. 1374 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1375 * for address calculation from SCRIPTS. 1376 */ 1377 struct sym_pmc pm0; 1378 struct sym_pmc pm1; 1379 1380 /* 1381 * Table data for Script 1382 */ 1383 struct sym_tblsel select; 1384 struct sym_tblmove smsg; 1385 struct sym_tblmove smsg_ext; 1386 struct sym_tblmove cmd; 1387 struct sym_tblmove sense; 1388 struct sym_tblmove wresid; 1389 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1390 }; 1391 1392 /* 1393 * Our Command Control Block 1394 */ 1395 struct sym_ccb { 1396 /* 1397 * This is the data structure which is pointed by the DSA 1398 * register when it is executed by the script processor. 1399 * It must be the first entry. 1400 */ 1401 struct sym_dsb phys; 1402 1403 /* 1404 * Pointer to CAM ccb and related stuff. 1405 */ 1406 struct callout ch; /* callout handle */ 1407 union ccb *cam_ccb; /* CAM scsiio ccb */ 1408 u8 cdb_buf[16]; /* Copy of CDB */ 1409 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1410 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1411 int data_len; /* Total data length */ 1412 int segments; /* Number of SG segments */ 1413 1414 /* 1415 * Miscellaneous status'. 1416 */ 1417 u_char nego_status; /* Negotiation status */ 1418 u_char xerr_status; /* Extended error flags */ 1419 u32 extra_bytes; /* Extraneous bytes transferred */ 1420 1421 /* 1422 * Message areas. 1423 * We prepare a message to be sent after selection. 1424 * We may use a second one if the command is rescheduled 1425 * due to CHECK_CONDITION or COMMAND TERMINATED. 1426 * Contents are IDENTIFY and SIMPLE_TAG. 1427 * While negotiating sync or wide transfer, 1428 * a SDTR or WDTR message is appended. 1429 */ 1430 u_char scsi_smsg [12]; 1431 u_char scsi_smsg2[12]; 1432 1433 /* 1434 * Auto request sense related fields. 1435 */ 1436 u_char sensecmd[6]; /* Request Sense command */ 1437 u_char sv_scsi_status; /* Saved SCSI status */ 1438 u_char sv_xerr_status; /* Saved extended status */ 1439 int sv_resid; /* Saved residual */ 1440 1441 /* 1442 * Map for the DMA of user data. 1443 */ 1444 void *arg; /* Argument for some callback */ 1445 bus_dmamap_t dmamap; /* DMA map for user data */ 1446 u_char dmamapped; 1447 #define SYM_DMA_NONE 0 1448 #define SYM_DMA_READ 1 1449 #define SYM_DMA_WRITE 2 1450 /* 1451 * Other fields. 1452 */ 1453 u32 ccb_ba; /* BUS address of this CCB */ 1454 u_short tag; /* Tag for this transfer */ 1455 /* NO_TAG means no tag */ 1456 u_char target; 1457 u_char lun; 1458 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1459 SYM_QUEHEAD 1460 link_ccbq; /* Link to free/busy CCB queue */ 1461 u32 startp; /* Initial data pointer */ 1462 int ext_sg; /* Extreme data pointer, used */ 1463 int ext_ofs; /* to calculate the residual. */ 1464 u_char to_abort; /* Want this IO to be aborted */ 1465 }; 1466 1467 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1468 1469 /* 1470 * Host Control Block 1471 */ 1472 struct sym_hcb { 1473 struct mtx mtx; 1474 1475 /* 1476 * Global headers. 1477 * Due to poorness of addressing capabilities, earlier 1478 * chips (810, 815, 825) copy part of the data structures 1479 * (CCB, TCB and LCB) in fixed areas. 1480 */ 1481 #ifdef SYM_CONF_GENERIC_SUPPORT 1482 struct sym_ccbh ccb_head; 1483 struct sym_tcbh tcb_head; 1484 struct sym_lcbh lcb_head; 1485 #endif 1486 /* 1487 * Idle task and invalid task actions and 1488 * their bus addresses. 1489 */ 1490 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1491 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1492 1493 /* 1494 * Dummy lun table to protect us against target 1495 * returning bad lun number on reselection. 1496 */ 1497 u32 *badluntbl; /* Table physical address */ 1498 u32 badlun_sa; /* SCRIPT handler BUS address */ 1499 1500 /* 1501 * Bus address of this host control block. 1502 */ 1503 u32 hcb_ba; 1504 1505 /* 1506 * Bit 32-63 of the on-chip RAM bus address in LE format. 1507 * The START_RAM64 script loads the MMRS and MMWS from this 1508 * field. 1509 */ 1510 u32 scr_ram_seg; 1511 1512 /* 1513 * Chip and controller indentification. 1514 */ 1515 device_t device; 1516 1517 /* 1518 * Initial value of some IO register bits. 1519 * These values are assumed to have been set by BIOS, and may 1520 * be used to probe adapter implementation differences. 1521 */ 1522 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1523 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1524 sv_stest1; 1525 1526 /* 1527 * Actual initial value of IO register bits used by the 1528 * driver. They are loaded at initialisation according to 1529 * features that are to be enabled/disabled. 1530 */ 1531 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1532 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1533 1534 /* 1535 * Target data. 1536 */ 1537 #ifdef __amd64__ 1538 struct sym_tcb *target; 1539 #else 1540 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1541 #endif 1542 1543 /* 1544 * Target control block bus address array used by the SCRIPT 1545 * on reselection. 1546 */ 1547 u32 *targtbl; 1548 u32 targtbl_ba; 1549 1550 /* 1551 * CAM SIM information for this instance. 1552 */ 1553 struct cam_sim *sim; 1554 struct cam_path *path; 1555 1556 /* 1557 * Allocated hardware resources. 1558 */ 1559 struct resource *irq_res; 1560 struct resource *io_res; 1561 struct resource *mmio_res; 1562 struct resource *ram_res; 1563 int ram_id; 1564 void *intr; 1565 1566 /* 1567 * Bus stuff. 1568 * 1569 * My understanding of PCI is that all agents must share the 1570 * same addressing range and model. 1571 * But some hardware architecture guys provide complex and 1572 * brain-deaded stuff that makes shit. 1573 * This driver only support PCI compliant implementations and 1574 * deals with part of the BUS stuff complexity only to fit O/S 1575 * requirements. 1576 */ 1577 1578 /* 1579 * DMA stuff. 1580 */ 1581 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1582 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1583 /* 1584 * BUS addresses of the chip 1585 */ 1586 vm_offset_t mmio_ba; /* MMIO BUS address */ 1587 int mmio_ws; /* MMIO Window size */ 1588 1589 vm_offset_t ram_ba; /* RAM BUS address */ 1590 int ram_ws; /* RAM window size */ 1591 1592 /* 1593 * SCRIPTS virtual and physical bus addresses. 1594 * 'script' is loaded in the on-chip RAM if present. 1595 * 'scripth' stays in main memory for all chips except the 1596 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1597 */ 1598 u_char *scripta0; /* Copies of script and scripth */ 1599 u_char *scriptb0; /* Copies of script and scripth */ 1600 vm_offset_t scripta_ba; /* Actual script and scripth */ 1601 vm_offset_t scriptb_ba; /* bus addresses. */ 1602 vm_offset_t scriptb0_ba; 1603 u_short scripta_sz; /* Actual size of script A */ 1604 u_short scriptb_sz; /* Actual size of script B */ 1605 1606 /* 1607 * Bus addresses, setup and patch methods for 1608 * the selected firmware. 1609 */ 1610 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1611 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1612 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1613 void (*fw_patch)(hcb_p np); 1614 const char *fw_name; 1615 1616 /* 1617 * General controller parameters and configuration. 1618 */ 1619 u_short device_id; /* PCI device id */ 1620 u_char revision_id; /* PCI device revision id */ 1621 u_int features; /* Chip features map */ 1622 u_char myaddr; /* SCSI id of the adapter */ 1623 u_char maxburst; /* log base 2 of dwords burst */ 1624 u_char maxwide; /* Maximum transfer width */ 1625 u_char minsync; /* Min sync period factor (ST) */ 1626 u_char maxsync; /* Max sync period factor (ST) */ 1627 u_char maxoffs; /* Max scsi offset (ST) */ 1628 u_char minsync_dt; /* Min sync period factor (DT) */ 1629 u_char maxsync_dt; /* Max sync period factor (DT) */ 1630 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1631 u_char multiplier; /* Clock multiplier (1,2,4) */ 1632 u_char clock_divn; /* Number of clock divisors */ 1633 u32 clock_khz; /* SCSI clock frequency in KHz */ 1634 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1635 /* 1636 * Start queue management. 1637 * It is filled up by the host processor and accessed by the 1638 * SCRIPTS processor in order to start SCSI commands. 1639 */ 1640 volatile /* Prevent code optimizations */ 1641 u32 *squeue; /* Start queue virtual address */ 1642 u32 squeue_ba; /* Start queue BUS address */ 1643 u_short squeueput; /* Next free slot of the queue */ 1644 u_short actccbs; /* Number of allocated CCBs */ 1645 1646 /* 1647 * Command completion queue. 1648 * It is the same size as the start queue to avoid overflow. 1649 */ 1650 u_short dqueueget; /* Next position to scan */ 1651 volatile /* Prevent code optimizations */ 1652 u32 *dqueue; /* Completion (done) queue */ 1653 u32 dqueue_ba; /* Done queue BUS address */ 1654 1655 /* 1656 * Miscellaneous buffers accessed by the scripts-processor. 1657 * They shall be DWORD aligned, because they may be read or 1658 * written with a script command. 1659 */ 1660 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1661 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1662 u32 lastmsg; /* Last SCSI message sent */ 1663 u_char scratch; /* Scratch for SCSI receive */ 1664 1665 /* 1666 * Miscellaneous configuration and status parameters. 1667 */ 1668 u_char usrflags; /* Miscellaneous user flags */ 1669 u_char scsi_mode; /* Current SCSI BUS mode */ 1670 u_char verbose; /* Verbosity for this controller*/ 1671 u32 cache; /* Used for cache test at init. */ 1672 1673 /* 1674 * CCB lists and queue. 1675 */ 1676 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1677 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1678 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1679 1680 /* 1681 * During error handling and/or recovery, 1682 * active CCBs that are to be completed with 1683 * error or requeued are moved from the busy_ccbq 1684 * to the comp_ccbq prior to completion. 1685 */ 1686 SYM_QUEHEAD comp_ccbq; 1687 1688 /* 1689 * CAM CCB pending queue. 1690 */ 1691 SYM_QUEHEAD cam_ccbq; 1692 1693 /* 1694 * IMMEDIATE ARBITRATION (IARB) control. 1695 * 1696 * We keep track in 'last_cp' of the last CCB that has been 1697 * queued to the SCRIPTS processor and clear 'last_cp' when 1698 * this CCB completes. If last_cp is not zero at the moment 1699 * we queue a new CCB, we set a flag in 'last_cp' that is 1700 * used by the SCRIPTS as a hint for setting IARB. 1701 * We donnot set more than 'iarb_max' consecutive hints for 1702 * IARB in order to leave devices a chance to reselect. 1703 * By the way, any non zero value of 'iarb_max' is unfair. :) 1704 */ 1705 #ifdef SYM_CONF_IARB_SUPPORT 1706 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1707 u_short iarb_count; /* Actual # of these hints */ 1708 ccb_p last_cp; 1709 #endif 1710 1711 /* 1712 * Command abort handling. 1713 * We need to synchronize tightly with the SCRIPTS 1714 * processor in order to handle things correctly. 1715 */ 1716 u_char abrt_msg[4]; /* Message to send buffer */ 1717 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1718 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1719 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1720 }; 1721 1722 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1723 1724 /* 1725 * Return the name of the controller. 1726 */ 1727 static __inline const char *sym_name(hcb_p np) 1728 { 1729 return device_get_nameunit(np->device); 1730 } 1731 1732 /*--------------------------------------------------------------------------*/ 1733 /*------------------------------ FIRMWARES ---------------------------------*/ 1734 /*--------------------------------------------------------------------------*/ 1735 1736 /* 1737 * This stuff will be moved to a separate source file when 1738 * the driver will be broken into several source modules. 1739 */ 1740 1741 /* 1742 * Macros used for all firmwares. 1743 */ 1744 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1745 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1746 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1747 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1748 1749 1750 #ifdef SYM_CONF_GENERIC_SUPPORT 1751 /* 1752 * Allocate firmware #1 script area. 1753 */ 1754 #define SYM_FWA_SCR sym_fw1a_scr 1755 #define SYM_FWB_SCR sym_fw1b_scr 1756 #include <dev/sym/sym_fw1.h> 1757 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1758 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1759 }; 1760 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1761 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1762 }; 1763 #undef SYM_FWA_SCR 1764 #undef SYM_FWB_SCR 1765 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1766 1767 /* 1768 * Allocate firmware #2 script area. 1769 */ 1770 #define SYM_FWA_SCR sym_fw2a_scr 1771 #define SYM_FWB_SCR sym_fw2b_scr 1772 #include <dev/sym/sym_fw2.h> 1773 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1774 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1775 }; 1776 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1777 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1778 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1779 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1780 }; 1781 #undef SYM_FWA_SCR 1782 #undef SYM_FWB_SCR 1783 1784 #undef SYM_GEN_A 1785 #undef SYM_GEN_B 1786 #undef PADDR_A 1787 #undef PADDR_B 1788 1789 #ifdef SYM_CONF_GENERIC_SUPPORT 1790 /* 1791 * Patch routine for firmware #1. 1792 */ 1793 static void 1794 sym_fw1_patch(hcb_p np) 1795 { 1796 struct sym_fw1a_scr *scripta0; 1797 struct sym_fw1b_scr *scriptb0; 1798 1799 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1800 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1801 1802 /* 1803 * Remove LED support if not needed. 1804 */ 1805 if (!(np->features & FE_LED0)) { 1806 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1807 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1808 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1809 } 1810 1811 #ifdef SYM_CONF_IARB_SUPPORT 1812 /* 1813 * If user does not want to use IMMEDIATE ARBITRATION 1814 * when we are reselected while attempting to arbitrate, 1815 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1816 */ 1817 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1818 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1819 #endif 1820 /* 1821 * Patch some data in SCRIPTS. 1822 * - start and done queue initial bus address. 1823 * - target bus address table bus address. 1824 */ 1825 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1826 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1827 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1828 } 1829 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1830 1831 /* 1832 * Patch routine for firmware #2. 1833 */ 1834 static void 1835 sym_fw2_patch(hcb_p np) 1836 { 1837 struct sym_fw2a_scr *scripta0; 1838 struct sym_fw2b_scr *scriptb0; 1839 1840 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1841 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1842 1843 /* 1844 * Remove LED support if not needed. 1845 */ 1846 if (!(np->features & FE_LED0)) { 1847 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1848 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1849 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1850 } 1851 1852 #ifdef SYM_CONF_IARB_SUPPORT 1853 /* 1854 * If user does not want to use IMMEDIATE ARBITRATION 1855 * when we are reselected while attempting to arbitrate, 1856 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1857 */ 1858 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1859 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1860 #endif 1861 /* 1862 * Patch some variable in SCRIPTS. 1863 * - start and done queue initial bus address. 1864 * - target bus address table bus address. 1865 */ 1866 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1867 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1868 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1869 1870 /* 1871 * Remove the load of SCNTL4 on reselection if not a C10. 1872 */ 1873 if (!(np->features & FE_C10)) { 1874 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1875 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1876 } 1877 1878 /* 1879 * Remove a couple of work-arounds specific to C1010 if 1880 * they are not desirable. See `sym_fw2.h' for more details. 1881 */ 1882 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1883 np->revision_id < 0x1 && 1884 np->pciclk_khz < 60000)) { 1885 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1886 scripta0->datao_phase[1] = cpu_to_scr(0); 1887 } 1888 if (!(np->device_id == PCI_ID_LSI53C1010 && 1889 /* np->revision_id < 0xff */ 1)) { 1890 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1891 scripta0->sel_done[1] = cpu_to_scr(0); 1892 } 1893 1894 /* 1895 * Patch some other variables in SCRIPTS. 1896 * These ones are loaded by the SCRIPTS processor. 1897 */ 1898 scriptb0->pm0_data_addr[0] = 1899 cpu_to_scr(np->scripta_ba + 1900 offsetof(struct sym_fw2a_scr, pm0_data)); 1901 scriptb0->pm1_data_addr[0] = 1902 cpu_to_scr(np->scripta_ba + 1903 offsetof(struct sym_fw2a_scr, pm1_data)); 1904 } 1905 1906 /* 1907 * Fill the data area in scripts. 1908 * To be done for all firmwares. 1909 */ 1910 static void 1911 sym_fw_fill_data (u32 *in, u32 *out) 1912 { 1913 int i; 1914 1915 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1916 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1917 *in++ = offsetof (struct sym_dsb, data[i]); 1918 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1919 *out++ = offsetof (struct sym_dsb, data[i]); 1920 } 1921 } 1922 1923 /* 1924 * Setup useful script bus addresses. 1925 * To be done for all firmwares. 1926 */ 1927 static void 1928 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1929 { 1930 u32 *pa; 1931 const u_short *po; 1932 int i; 1933 1934 /* 1935 * Build the bus address table for script A 1936 * from the script A offset table. 1937 */ 1938 po = (const u_short *) fw->a_ofs; 1939 pa = (u32 *) &np->fwa_bas; 1940 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1941 pa[i] = np->scripta_ba + po[i]; 1942 1943 /* 1944 * Same for script B. 1945 */ 1946 po = (const u_short *) fw->b_ofs; 1947 pa = (u32 *) &np->fwb_bas; 1948 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1949 pa[i] = np->scriptb_ba + po[i]; 1950 } 1951 1952 #ifdef SYM_CONF_GENERIC_SUPPORT 1953 /* 1954 * Setup routine for firmware #1. 1955 */ 1956 static void 1957 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1958 { 1959 struct sym_fw1a_scr *scripta0; 1960 struct sym_fw1b_scr *scriptb0; 1961 1962 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1963 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1964 1965 /* 1966 * Fill variable parts in scripts. 1967 */ 1968 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1969 1970 /* 1971 * Setup bus addresses used from the C code.. 1972 */ 1973 sym_fw_setup_bus_addresses(np, fw); 1974 } 1975 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1976 1977 /* 1978 * Setup routine for firmware #2. 1979 */ 1980 static void 1981 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1982 { 1983 struct sym_fw2a_scr *scripta0; 1984 struct sym_fw2b_scr *scriptb0; 1985 1986 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1987 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1988 1989 /* 1990 * Fill variable parts in scripts. 1991 */ 1992 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1993 1994 /* 1995 * Setup bus addresses used from the C code.. 1996 */ 1997 sym_fw_setup_bus_addresses(np, fw); 1998 } 1999 2000 /* 2001 * Allocate firmware descriptors. 2002 */ 2003 #ifdef SYM_CONF_GENERIC_SUPPORT 2004 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2005 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2006 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2007 2008 /* 2009 * Find the most appropriate firmware for a chip. 2010 */ 2011 static const struct sym_fw * 2012 sym_find_firmware(const struct sym_pci_chip *chip) 2013 { 2014 if (chip->features & FE_LDSTR) 2015 return &sym_fw2; 2016 #ifdef SYM_CONF_GENERIC_SUPPORT 2017 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2018 return &sym_fw1; 2019 #endif 2020 else 2021 return NULL; 2022 } 2023 2024 /* 2025 * Bind a script to physical addresses. 2026 */ 2027 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2028 { 2029 u32 opcode, new, old, tmp1, tmp2; 2030 u32 *end, *cur; 2031 int relocs; 2032 2033 cur = start; 2034 end = start + len/4; 2035 2036 while (cur < end) { 2037 2038 opcode = *cur; 2039 2040 /* 2041 * If we forget to change the length 2042 * in scripts, a field will be 2043 * padded with 0. This is an illegal 2044 * command. 2045 */ 2046 if (opcode == 0) { 2047 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2048 sym_name(np), (int) (cur-start)); 2049 MDELAY (10000); 2050 ++cur; 2051 continue; 2052 }; 2053 2054 /* 2055 * We use the bogus value 0xf00ff00f ;-) 2056 * to reserve data area in SCRIPTS. 2057 */ 2058 if (opcode == SCR_DATA_ZERO) { 2059 *cur++ = 0; 2060 continue; 2061 } 2062 2063 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2064 printf ("%d: <%x>\n", (int) (cur-start), 2065 (unsigned)opcode); 2066 2067 /* 2068 * We don't have to decode ALL commands 2069 */ 2070 switch (opcode >> 28) { 2071 case 0xf: 2072 /* 2073 * LOAD / STORE DSA relative, don't relocate. 2074 */ 2075 relocs = 0; 2076 break; 2077 case 0xe: 2078 /* 2079 * LOAD / STORE absolute. 2080 */ 2081 relocs = 1; 2082 break; 2083 case 0xc: 2084 /* 2085 * COPY has TWO arguments. 2086 */ 2087 relocs = 2; 2088 tmp1 = cur[1]; 2089 tmp2 = cur[2]; 2090 if ((tmp1 ^ tmp2) & 3) { 2091 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2092 sym_name(np), (int) (cur-start)); 2093 MDELAY (10000); 2094 } 2095 /* 2096 * If PREFETCH feature not enabled, remove 2097 * the NO FLUSH bit if present. 2098 */ 2099 if ((opcode & SCR_NO_FLUSH) && 2100 !(np->features & FE_PFEN)) { 2101 opcode = (opcode & ~SCR_NO_FLUSH); 2102 } 2103 break; 2104 case 0x0: 2105 /* 2106 * MOVE/CHMOV (absolute address) 2107 */ 2108 if (!(np->features & FE_WIDE)) 2109 opcode = (opcode | OPC_MOVE); 2110 relocs = 1; 2111 break; 2112 case 0x1: 2113 /* 2114 * MOVE/CHMOV (table indirect) 2115 */ 2116 if (!(np->features & FE_WIDE)) 2117 opcode = (opcode | OPC_MOVE); 2118 relocs = 0; 2119 break; 2120 case 0x8: 2121 /* 2122 * JUMP / CALL 2123 * dont't relocate if relative :-) 2124 */ 2125 if (opcode & 0x00800000) 2126 relocs = 0; 2127 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2128 relocs = 2; 2129 else 2130 relocs = 1; 2131 break; 2132 case 0x4: 2133 case 0x5: 2134 case 0x6: 2135 case 0x7: 2136 relocs = 1; 2137 break; 2138 default: 2139 relocs = 0; 2140 break; 2141 }; 2142 2143 /* 2144 * Scriptify:) the opcode. 2145 */ 2146 *cur++ = cpu_to_scr(opcode); 2147 2148 /* 2149 * If no relocation, assume 1 argument 2150 * and just scriptize:) it. 2151 */ 2152 if (!relocs) { 2153 *cur = cpu_to_scr(*cur); 2154 ++cur; 2155 continue; 2156 } 2157 2158 /* 2159 * Otherwise performs all needed relocations. 2160 */ 2161 while (relocs--) { 2162 old = *cur; 2163 2164 switch (old & RELOC_MASK) { 2165 case RELOC_REGISTER: 2166 new = (old & ~RELOC_MASK) + np->mmio_ba; 2167 break; 2168 case RELOC_LABEL_A: 2169 new = (old & ~RELOC_MASK) + np->scripta_ba; 2170 break; 2171 case RELOC_LABEL_B: 2172 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2173 break; 2174 case RELOC_SOFTC: 2175 new = (old & ~RELOC_MASK) + np->hcb_ba; 2176 break; 2177 case 0: 2178 /* 2179 * Don't relocate a 0 address. 2180 * They are mostly used for patched or 2181 * script self-modified areas. 2182 */ 2183 if (old == 0) { 2184 new = old; 2185 break; 2186 } 2187 /* fall through */ 2188 default: 2189 new = 0; 2190 panic("sym_fw_bind_script: " 2191 "weird relocation %x\n", old); 2192 break; 2193 } 2194 2195 *cur++ = cpu_to_scr(new); 2196 } 2197 }; 2198 } 2199 2200 /*---------------------------------------------------------------------------*/ 2201 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2202 /*---------------------------------------------------------------------------*/ 2203 2204 /* 2205 * Function prototypes. 2206 */ 2207 static void sym_save_initial_setting (hcb_p np); 2208 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2209 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2210 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2211 static void sym_chip_reset (hcb_p np); 2212 static void sym_soft_reset (hcb_p np); 2213 static void sym_start_reset (hcb_p np); 2214 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2215 static int sym_wakeup_done (hcb_p np); 2216 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2217 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2218 static void sym_init (hcb_p np, int reason); 2219 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2220 u_char *fakp); 2221 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2222 u_char div, u_char fak); 2223 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2224 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2225 u_char per, u_char wide, u_char div, u_char fak); 2226 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2227 u_char per, u_char wide, u_char div, u_char fak); 2228 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2229 static void sym_intr (void *arg); 2230 static void sym_poll (struct cam_sim *sim); 2231 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2232 static void sym_int_sto (hcb_p np); 2233 static void sym_int_udc (hcb_p np); 2234 static void sym_int_sbmc (hcb_p np); 2235 static void sym_int_par (hcb_p np, u_short sist); 2236 static void sym_int_ma (hcb_p np); 2237 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2238 int task); 2239 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2240 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2241 static void sym_sir_task_recovery (hcb_p np, int num); 2242 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2243 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2244 static int sym_compute_residual (hcb_p np, ccb_p cp); 2245 static int sym_show_msg (u_char * msg); 2246 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2247 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2248 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2249 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2250 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2251 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2252 static void sym_int_sir (hcb_p np); 2253 static void sym_free_ccb (hcb_p np, ccb_p cp); 2254 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2255 static ccb_p sym_alloc_ccb (hcb_p np); 2256 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2257 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2258 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2259 static int sym_snooptest (hcb_p np); 2260 static void sym_selectclock(hcb_p np, u_char scntl3); 2261 static void sym_getclock (hcb_p np, int mult); 2262 static int sym_getpciclock (hcb_p np); 2263 static void sym_complete_ok (hcb_p np, ccb_p cp); 2264 static void sym_complete_error (hcb_p np, ccb_p cp); 2265 static void sym_callout (void *arg); 2266 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2267 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2268 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2269 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2270 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2271 ccb_p cp); 2272 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2273 bus_dma_segment_t *psegs, int nsegs); 2274 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2275 bus_dma_segment_t *psegs, int nsegs); 2276 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2277 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2278 struct ccb_trans_settings *cts); 2279 static void sym_update_dflags(hcb_p np, u_char *flags, 2280 struct ccb_trans_settings *cts); 2281 2282 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2283 static int sym_pci_probe (device_t dev); 2284 static int sym_pci_attach (device_t dev); 2285 2286 static void sym_pci_free (hcb_p np); 2287 static int sym_cam_attach (hcb_p np); 2288 static void sym_cam_free (hcb_p np); 2289 2290 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2291 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2292 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2293 2294 /* 2295 * Print something which allows to retrieve the controler type, 2296 * unit, target, lun concerned by a kernel message. 2297 */ 2298 static void PRINT_TARGET (hcb_p np, int target) 2299 { 2300 printf ("%s:%d:", sym_name(np), target); 2301 } 2302 2303 static void PRINT_LUN(hcb_p np, int target, int lun) 2304 { 2305 printf ("%s:%d:%d:", sym_name(np), target, lun); 2306 } 2307 2308 static void PRINT_ADDR (ccb_p cp) 2309 { 2310 if (cp && cp->cam_ccb) 2311 xpt_print_path(cp->cam_ccb->ccb_h.path); 2312 } 2313 2314 /* 2315 * Take into account this ccb in the freeze count. 2316 */ 2317 static void sym_freeze_cam_ccb(union ccb *ccb) 2318 { 2319 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2320 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2321 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2322 xpt_freeze_devq(ccb->ccb_h.path, 1); 2323 } 2324 } 2325 } 2326 2327 /* 2328 * Set the status field of a CAM CCB. 2329 */ 2330 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2331 { 2332 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2333 ccb->ccb_h.status |= status; 2334 } 2335 2336 /* 2337 * Get the status field of a CAM CCB. 2338 */ 2339 static __inline int sym_get_cam_status(union ccb *ccb) 2340 { 2341 return ccb->ccb_h.status & CAM_STATUS_MASK; 2342 } 2343 2344 /* 2345 * Enqueue a CAM CCB. 2346 */ 2347 static void sym_enqueue_cam_ccb(ccb_p cp) 2348 { 2349 hcb_p np; 2350 union ccb *ccb; 2351 2352 ccb = cp->cam_ccb; 2353 np = (hcb_p) cp->arg; 2354 2355 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2356 ccb->ccb_h.status = CAM_REQ_INPROG; 2357 2358 callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout, 2359 (caddr_t) ccb); 2360 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2361 ccb->ccb_h.sym_hcb_ptr = np; 2362 2363 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2364 } 2365 2366 /* 2367 * Complete a pending CAM CCB. 2368 */ 2369 static void _sym_xpt_done(hcb_p np, union ccb *ccb) 2370 { 2371 SYM_LOCK_ASSERT(MA_OWNED); 2372 2373 KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0, 2374 ("%s: status=CAM_SIM_QUEUED", __func__)); 2375 2376 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2377 sym_freeze_cam_ccb(ccb); 2378 xpt_done(ccb); 2379 } 2380 2381 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2382 { 2383 SYM_LOCK_ASSERT(MA_OWNED); 2384 2385 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2386 callout_stop(&cp->ch); 2387 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2388 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2389 ccb->ccb_h.sym_hcb_ptr = NULL; 2390 } 2391 _sym_xpt_done(np, ccb); 2392 } 2393 2394 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2395 { 2396 SYM_LOCK_ASSERT(MA_OWNED); 2397 2398 sym_set_cam_status(ccb, cam_status); 2399 _sym_xpt_done(np, ccb); 2400 } 2401 2402 /* 2403 * SYMBIOS chip clock divisor table. 2404 * 2405 * Divisors are multiplied by 10,000,000 in order to make 2406 * calculations more simple. 2407 */ 2408 #define _5M 5000000 2409 static const u32 div_10M[] = 2410 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2411 2412 /* 2413 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2414 * 128 transfers. All chips support at least 16 transfers 2415 * bursts. The 825A, 875 and 895 chips support bursts of up 2416 * to 128 transfers and the 895A and 896 support bursts of up 2417 * to 64 transfers. All other chips support up to 16 2418 * transfers bursts. 2419 * 2420 * For PCI 32 bit data transfers each transfer is a DWORD. 2421 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2422 * 2423 * We use log base 2 (burst length) as internal code, with 2424 * value 0 meaning "burst disabled". 2425 */ 2426 2427 /* 2428 * Burst length from burst code. 2429 */ 2430 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2431 2432 /* 2433 * Burst code from io register bits. 2434 */ 2435 #define burst_code(dmode, ctest4, ctest5) \ 2436 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2437 2438 /* 2439 * Set initial io register bits from burst code. 2440 */ 2441 static __inline void sym_init_burst(hcb_p np, u_char bc) 2442 { 2443 np->rv_ctest4 &= ~0x80; 2444 np->rv_dmode &= ~(0x3 << 6); 2445 np->rv_ctest5 &= ~0x4; 2446 2447 if (!bc) { 2448 np->rv_ctest4 |= 0x80; 2449 } 2450 else { 2451 --bc; 2452 np->rv_dmode |= ((bc & 0x3) << 6); 2453 np->rv_ctest5 |= (bc & 0x4); 2454 } 2455 } 2456 2457 2458 /* 2459 * Print out the list of targets that have some flag disabled by user. 2460 */ 2461 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2462 { 2463 int cnt; 2464 int i; 2465 2466 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2467 if (i == np->myaddr) 2468 continue; 2469 if (np->target[i].usrflags & mask) { 2470 if (!cnt++) 2471 printf("%s: %s disabled for targets", 2472 sym_name(np), msg); 2473 printf(" %d", i); 2474 } 2475 } 2476 if (cnt) 2477 printf(".\n"); 2478 } 2479 2480 /* 2481 * Save initial settings of some IO registers. 2482 * Assumed to have been set by BIOS. 2483 * We cannot reset the chip prior to reading the 2484 * IO registers, since informations will be lost. 2485 * Since the SCRIPTS processor may be running, this 2486 * is not safe on paper, but it seems to work quite 2487 * well. :) 2488 */ 2489 static void sym_save_initial_setting (hcb_p np) 2490 { 2491 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2492 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2493 np->sv_dmode = INB(nc_dmode) & 0xce; 2494 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2495 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2496 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2497 np->sv_gpcntl = INB(nc_gpcntl); 2498 np->sv_stest1 = INB(nc_stest1); 2499 np->sv_stest2 = INB(nc_stest2) & 0x20; 2500 np->sv_stest4 = INB(nc_stest4); 2501 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2502 np->sv_scntl4 = INB(nc_scntl4); 2503 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2504 } 2505 else 2506 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2507 } 2508 2509 /* 2510 * Prepare io register values used by sym_init() according 2511 * to selected and supported features. 2512 */ 2513 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2514 { 2515 u_char burst_max; 2516 u32 period; 2517 int i; 2518 2519 /* 2520 * Wide ? 2521 */ 2522 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2523 2524 /* 2525 * Get the frequency of the chip's clock. 2526 */ 2527 if (np->features & FE_QUAD) 2528 np->multiplier = 4; 2529 else if (np->features & FE_DBLR) 2530 np->multiplier = 2; 2531 else 2532 np->multiplier = 1; 2533 2534 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2535 np->clock_khz *= np->multiplier; 2536 2537 if (np->clock_khz != 40000) 2538 sym_getclock(np, np->multiplier); 2539 2540 /* 2541 * Divisor to be used for async (timer pre-scaler). 2542 */ 2543 i = np->clock_divn - 1; 2544 while (--i >= 0) { 2545 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2546 ++i; 2547 break; 2548 } 2549 } 2550 np->rv_scntl3 = i+1; 2551 2552 /* 2553 * The C1010 uses hardwired divisors for async. 2554 * So, we just throw away, the async. divisor.:-) 2555 */ 2556 if (np->features & FE_C10) 2557 np->rv_scntl3 = 0; 2558 2559 /* 2560 * Minimum synchronous period factor supported by the chip. 2561 * Btw, 'period' is in tenths of nanoseconds. 2562 */ 2563 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2564 if (period <= 250) np->minsync = 10; 2565 else if (period <= 303) np->minsync = 11; 2566 else if (period <= 500) np->minsync = 12; 2567 else np->minsync = (period + 40 - 1) / 40; 2568 2569 /* 2570 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2571 */ 2572 if (np->minsync < 25 && 2573 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2574 np->minsync = 25; 2575 else if (np->minsync < 12 && 2576 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2577 np->minsync = 12; 2578 2579 /* 2580 * Maximum synchronous period factor supported by the chip. 2581 */ 2582 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2583 np->maxsync = period > 2540 ? 254 : period / 10; 2584 2585 /* 2586 * If chip is a C1010, guess the sync limits in DT mode. 2587 */ 2588 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2589 if (np->clock_khz == 160000) { 2590 np->minsync_dt = 9; 2591 np->maxsync_dt = 50; 2592 np->maxoffs_dt = 62; 2593 } 2594 } 2595 2596 /* 2597 * 64 bit addressing (895A/896/1010) ? 2598 */ 2599 if (np->features & FE_DAC) 2600 #ifdef __LP64__ 2601 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2602 #else 2603 np->rv_ccntl1 |= (DDAC); 2604 #endif 2605 2606 /* 2607 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2608 */ 2609 if (np->features & FE_NOPM) 2610 np->rv_ccntl0 |= (ENPMJ); 2611 2612 /* 2613 * C1010 Errata. 2614 * In dual channel mode, contention occurs if internal cycles 2615 * are used. Disable internal cycles. 2616 */ 2617 if (np->device_id == PCI_ID_LSI53C1010 && 2618 np->revision_id < 0x2) 2619 np->rv_ccntl0 |= DILS; 2620 2621 /* 2622 * Select burst length (dwords) 2623 */ 2624 burst_max = SYM_SETUP_BURST_ORDER; 2625 if (burst_max == 255) 2626 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2627 np->sv_ctest5); 2628 if (burst_max > 7) 2629 burst_max = 7; 2630 if (burst_max > np->maxburst) 2631 burst_max = np->maxburst; 2632 2633 /* 2634 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2635 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2636 * based transactions on LOAD/STORE instructions. So we have 2637 * to prevent these chips from using such PCI transactions in 2638 * this driver. The generic ncr driver that does not use 2639 * LOAD/STORE instructions does not need this work-around. 2640 */ 2641 if ((np->device_id == PCI_ID_SYM53C810 && 2642 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2643 (np->device_id == PCI_ID_SYM53C860 && 2644 np->revision_id <= 0x1)) 2645 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2646 2647 /* 2648 * Select all supported special features. 2649 * If we are using on-board RAM for scripts, prefetch (PFEN) 2650 * does not help, but burst op fetch (BOF) does. 2651 * Disabling PFEN makes sure BOF will be used. 2652 */ 2653 if (np->features & FE_ERL) 2654 np->rv_dmode |= ERL; /* Enable Read Line */ 2655 if (np->features & FE_BOF) 2656 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2657 if (np->features & FE_ERMP) 2658 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2659 #if 1 2660 if ((np->features & FE_PFEN) && !np->ram_ba) 2661 #else 2662 if (np->features & FE_PFEN) 2663 #endif 2664 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2665 if (np->features & FE_CLSE) 2666 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2667 if (np->features & FE_WRIE) 2668 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2669 if (np->features & FE_DFS) 2670 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2671 2672 /* 2673 * Select some other 2674 */ 2675 if (SYM_SETUP_PCI_PARITY) 2676 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2677 if (SYM_SETUP_SCSI_PARITY) 2678 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2679 2680 /* 2681 * Get parity checking, host ID and verbose mode from NVRAM 2682 */ 2683 np->myaddr = 255; 2684 sym_nvram_setup_host (np, nvram); 2685 2686 /* 2687 * Get SCSI addr of host adapter (set by bios?). 2688 */ 2689 if (np->myaddr == 255) { 2690 np->myaddr = INB(nc_scid) & 0x07; 2691 if (!np->myaddr) 2692 np->myaddr = SYM_SETUP_HOST_ID; 2693 } 2694 2695 /* 2696 * Prepare initial io register bits for burst length 2697 */ 2698 sym_init_burst(np, burst_max); 2699 2700 /* 2701 * Set SCSI BUS mode. 2702 * - LVD capable chips (895/895A/896/1010) report the 2703 * current BUS mode through the STEST4 IO register. 2704 * - For previous generation chips (825/825A/875), 2705 * user has to tell us how to check against HVD, 2706 * since a 100% safe algorithm is not possible. 2707 */ 2708 np->scsi_mode = SMODE_SE; 2709 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2710 np->scsi_mode = (np->sv_stest4 & SMODE); 2711 else if (np->features & FE_DIFF) { 2712 if (SYM_SETUP_SCSI_DIFF == 1) { 2713 if (np->sv_scntl3) { 2714 if (np->sv_stest2 & 0x20) 2715 np->scsi_mode = SMODE_HVD; 2716 } 2717 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2718 if (!(INB(nc_gpreg) & 0x08)) 2719 np->scsi_mode = SMODE_HVD; 2720 } 2721 } 2722 else if (SYM_SETUP_SCSI_DIFF == 2) 2723 np->scsi_mode = SMODE_HVD; 2724 } 2725 if (np->scsi_mode == SMODE_HVD) 2726 np->rv_stest2 |= 0x20; 2727 2728 /* 2729 * Set LED support from SCRIPTS. 2730 * Ignore this feature for boards known to use a 2731 * specific GPIO wiring and for the 895A, 896 2732 * and 1010 that drive the LED directly. 2733 */ 2734 if ((SYM_SETUP_SCSI_LED || 2735 (nvram->type == SYM_SYMBIOS_NVRAM || 2736 (nvram->type == SYM_TEKRAM_NVRAM && 2737 np->device_id == PCI_ID_SYM53C895))) && 2738 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2739 np->features |= FE_LED0; 2740 2741 /* 2742 * Set irq mode. 2743 */ 2744 switch(SYM_SETUP_IRQ_MODE & 3) { 2745 case 2: 2746 np->rv_dcntl |= IRQM; 2747 break; 2748 case 1: 2749 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2750 break; 2751 default: 2752 break; 2753 } 2754 2755 /* 2756 * Configure targets according to driver setup. 2757 * If NVRAM present get targets setup from NVRAM. 2758 */ 2759 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2760 tcb_p tp = &np->target[i]; 2761 2762 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2763 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2764 tp->tinfo.user.period = np->minsync; 2765 tp->tinfo.user.offset = np->maxoffs; 2766 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2767 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2768 tp->usrtags = SYM_SETUP_MAX_TAG; 2769 2770 sym_nvram_setup_target (np, i, nvram); 2771 2772 /* 2773 * For now, guess PPR/DT support from the period 2774 * and BUS width. 2775 */ 2776 if (np->features & FE_ULTRA3) { 2777 if (tp->tinfo.user.period <= 9 && 2778 tp->tinfo.user.width == BUS_16_BIT) { 2779 tp->tinfo.user.options |= PPR_OPT_DT; 2780 tp->tinfo.user.offset = np->maxoffs_dt; 2781 tp->tinfo.user.spi_version = 3; 2782 } 2783 } 2784 2785 if (!tp->usrtags) 2786 tp->usrflags &= ~SYM_TAGS_ENABLED; 2787 } 2788 2789 /* 2790 * Let user know about the settings. 2791 */ 2792 i = nvram->type; 2793 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2794 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2795 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2796 np->myaddr, 2797 (np->features & FE_ULTRA3) ? 80 : 2798 (np->features & FE_ULTRA2) ? 40 : 2799 (np->features & FE_ULTRA) ? 20 : 10, 2800 sym_scsi_bus_mode(np->scsi_mode), 2801 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2802 /* 2803 * Tell him more on demand. 2804 */ 2805 if (sym_verbose) { 2806 printf("%s: %s IRQ line driver%s\n", 2807 sym_name(np), 2808 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2809 np->ram_ba ? ", using on-chip SRAM" : ""); 2810 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2811 if (np->features & FE_NOPM) 2812 printf("%s: handling phase mismatch from SCRIPTS.\n", 2813 sym_name(np)); 2814 } 2815 /* 2816 * And still more. 2817 */ 2818 if (sym_verbose > 1) { 2819 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2820 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2821 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2822 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2823 2824 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2825 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2826 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2827 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2828 } 2829 /* 2830 * Let user be aware of targets that have some disable flags set. 2831 */ 2832 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2833 if (sym_verbose) 2834 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2835 "SCAN FOR LUNS"); 2836 2837 return 0; 2838 } 2839 2840 /* 2841 * Prepare the next negotiation message if needed. 2842 * 2843 * Fill in the part of message buffer that contains the 2844 * negotiation and the nego_status field of the CCB. 2845 * Returns the size of the message in bytes. 2846 */ 2847 2848 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2849 { 2850 tcb_p tp = &np->target[cp->target]; 2851 int msglen = 0; 2852 2853 /* 2854 * Early C1010 chips need a work-around for DT 2855 * data transfer to work. 2856 */ 2857 if (!(np->features & FE_U3EN)) 2858 tp->tinfo.goal.options = 0; 2859 /* 2860 * negotiate using PPR ? 2861 */ 2862 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2863 nego = NS_PPR; 2864 /* 2865 * negotiate wide transfers ? 2866 */ 2867 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2868 nego = NS_WIDE; 2869 /* 2870 * negotiate synchronous transfers? 2871 */ 2872 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2873 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2874 nego = NS_SYNC; 2875 2876 switch (nego) { 2877 case NS_SYNC: 2878 msgptr[msglen++] = M_EXTENDED; 2879 msgptr[msglen++] = 3; 2880 msgptr[msglen++] = M_X_SYNC_REQ; 2881 msgptr[msglen++] = tp->tinfo.goal.period; 2882 msgptr[msglen++] = tp->tinfo.goal.offset; 2883 break; 2884 case NS_WIDE: 2885 msgptr[msglen++] = M_EXTENDED; 2886 msgptr[msglen++] = 2; 2887 msgptr[msglen++] = M_X_WIDE_REQ; 2888 msgptr[msglen++] = tp->tinfo.goal.width; 2889 break; 2890 case NS_PPR: 2891 msgptr[msglen++] = M_EXTENDED; 2892 msgptr[msglen++] = 6; 2893 msgptr[msglen++] = M_X_PPR_REQ; 2894 msgptr[msglen++] = tp->tinfo.goal.period; 2895 msgptr[msglen++] = 0; 2896 msgptr[msglen++] = tp->tinfo.goal.offset; 2897 msgptr[msglen++] = tp->tinfo.goal.width; 2898 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2899 break; 2900 }; 2901 2902 cp->nego_status = nego; 2903 2904 if (nego) { 2905 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2906 if (DEBUG_FLAGS & DEBUG_NEGO) { 2907 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2908 nego == NS_WIDE ? "wide msgout" : 2909 "ppr msgout", msgptr); 2910 }; 2911 }; 2912 2913 return msglen; 2914 } 2915 2916 /* 2917 * Insert a job into the start queue. 2918 */ 2919 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2920 { 2921 u_short qidx; 2922 2923 #ifdef SYM_CONF_IARB_SUPPORT 2924 /* 2925 * If the previously queued CCB is not yet done, 2926 * set the IARB hint. The SCRIPTS will go with IARB 2927 * for this job when starting the previous one. 2928 * We leave devices a chance to win arbitration by 2929 * not using more than 'iarb_max' consecutive 2930 * immediate arbitrations. 2931 */ 2932 if (np->last_cp && np->iarb_count < np->iarb_max) { 2933 np->last_cp->host_flags |= HF_HINT_IARB; 2934 ++np->iarb_count; 2935 } 2936 else 2937 np->iarb_count = 0; 2938 np->last_cp = cp; 2939 #endif 2940 2941 /* 2942 * Insert first the idle task and then our job. 2943 * The MB should ensure proper ordering. 2944 */ 2945 qidx = np->squeueput + 2; 2946 if (qidx >= MAX_QUEUE*2) qidx = 0; 2947 2948 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2949 MEMORY_BARRIER(); 2950 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2951 2952 np->squeueput = qidx; 2953 2954 if (DEBUG_FLAGS & DEBUG_QUEUE) 2955 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2956 2957 /* 2958 * Script processor may be waiting for reselect. 2959 * Wake it up. 2960 */ 2961 MEMORY_BARRIER(); 2962 OUTB (nc_istat, SIGP|np->istat_sem); 2963 } 2964 2965 2966 /* 2967 * Soft reset the chip. 2968 * 2969 * Raising SRST when the chip is running may cause 2970 * problems on dual function chips (see below). 2971 * On the other hand, LVD devices need some delay 2972 * to settle and report actual BUS mode in STEST4. 2973 */ 2974 static void sym_chip_reset (hcb_p np) 2975 { 2976 OUTB (nc_istat, SRST); 2977 UDELAY (10); 2978 OUTB (nc_istat, 0); 2979 UDELAY(2000); /* For BUS MODE to settle */ 2980 } 2981 2982 /* 2983 * Soft reset the chip. 2984 * 2985 * Some 896 and 876 chip revisions may hang-up if we set 2986 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2987 * are running. 2988 * So, we need to abort the current operation prior to 2989 * soft resetting the chip. 2990 */ 2991 static void sym_soft_reset (hcb_p np) 2992 { 2993 u_char istat; 2994 int i; 2995 2996 OUTB (nc_istat, CABRT); 2997 for (i = 1000000 ; i ; --i) { 2998 istat = INB (nc_istat); 2999 if (istat & SIP) { 3000 INW (nc_sist); 3001 continue; 3002 } 3003 if (istat & DIP) { 3004 OUTB (nc_istat, 0); 3005 INB (nc_dstat); 3006 break; 3007 } 3008 } 3009 if (!i) 3010 printf("%s: unable to abort current chip operation.\n", 3011 sym_name(np)); 3012 sym_chip_reset (np); 3013 } 3014 3015 /* 3016 * Start reset process. 3017 * 3018 * The interrupt handler will reinitialize the chip. 3019 */ 3020 static void sym_start_reset(hcb_p np) 3021 { 3022 (void) sym_reset_scsi_bus(np, 1); 3023 } 3024 3025 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3026 { 3027 u32 term; 3028 int retv = 0; 3029 3030 sym_soft_reset(np); /* Soft reset the chip */ 3031 if (enab_int) 3032 OUTW (nc_sien, RST); 3033 /* 3034 * Enable Tolerant, reset IRQD if present and 3035 * properly set IRQ mode, prior to resetting the bus. 3036 */ 3037 OUTB (nc_stest3, TE); 3038 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3039 OUTB (nc_scntl1, CRST); 3040 UDELAY (200); 3041 3042 if (!SYM_SETUP_SCSI_BUS_CHECK) 3043 goto out; 3044 /* 3045 * Check for no terminators or SCSI bus shorts to ground. 3046 * Read SCSI data bus, data parity bits and control signals. 3047 * We are expecting RESET to be TRUE and other signals to be 3048 * FALSE. 3049 */ 3050 term = INB(nc_sstat0); 3051 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3052 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3053 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3054 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3055 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3056 3057 if (!(np->features & FE_WIDE)) 3058 term &= 0x3ffff; 3059 3060 if (term != (2<<7)) { 3061 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3062 sym_name(np)); 3063 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3064 "0x%lx, expecting 0x%lx\n", 3065 sym_name(np), 3066 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3067 (u_long)term, (u_long)(2<<7)); 3068 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3069 retv = 1; 3070 } 3071 out: 3072 OUTB (nc_scntl1, 0); 3073 /* MDELAY(100); */ 3074 return retv; 3075 } 3076 3077 /* 3078 * The chip may have completed jobs. Look at the DONE QUEUE. 3079 * 3080 * On architectures that may reorder LOAD/STORE operations, 3081 * a memory barrier may be needed after the reading of the 3082 * so-called `flag' and prior to dealing with the data. 3083 */ 3084 static int sym_wakeup_done (hcb_p np) 3085 { 3086 ccb_p cp; 3087 int i, n; 3088 u32 dsa; 3089 3090 SYM_LOCK_ASSERT(MA_OWNED); 3091 3092 n = 0; 3093 i = np->dqueueget; 3094 while (1) { 3095 dsa = scr_to_cpu(np->dqueue[i]); 3096 if (!dsa) 3097 break; 3098 np->dqueue[i] = 0; 3099 if ((i = i+2) >= MAX_QUEUE*2) 3100 i = 0; 3101 3102 cp = sym_ccb_from_dsa(np, dsa); 3103 if (cp) { 3104 MEMORY_BARRIER(); 3105 sym_complete_ok (np, cp); 3106 ++n; 3107 } 3108 else 3109 printf ("%s: bad DSA (%x) in done queue.\n", 3110 sym_name(np), (u_int) dsa); 3111 } 3112 np->dqueueget = i; 3113 3114 return n; 3115 } 3116 3117 /* 3118 * Complete all active CCBs with error. 3119 * Used on CHIP/SCSI RESET. 3120 */ 3121 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3122 { 3123 /* 3124 * Move all active CCBs to the COMP queue 3125 * and flush this queue. 3126 */ 3127 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3128 sym_que_init(&np->busy_ccbq); 3129 sym_flush_comp_queue(np, cam_status); 3130 } 3131 3132 /* 3133 * Start chip. 3134 * 3135 * 'reason' means: 3136 * 0: initialisation. 3137 * 1: SCSI BUS RESET delivered or received. 3138 * 2: SCSI BUS MODE changed. 3139 */ 3140 static void sym_init (hcb_p np, int reason) 3141 { 3142 int i; 3143 u32 phys; 3144 3145 SYM_LOCK_ASSERT(MA_OWNED); 3146 3147 /* 3148 * Reset chip if asked, otherwise just clear fifos. 3149 */ 3150 if (reason == 1) 3151 sym_soft_reset(np); 3152 else { 3153 OUTB (nc_stest3, TE|CSF); 3154 OUTONB (nc_ctest3, CLF); 3155 } 3156 3157 /* 3158 * Clear Start Queue 3159 */ 3160 phys = np->squeue_ba; 3161 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3162 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3163 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3164 } 3165 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3166 3167 /* 3168 * Start at first entry. 3169 */ 3170 np->squeueput = 0; 3171 3172 /* 3173 * Clear Done Queue 3174 */ 3175 phys = np->dqueue_ba; 3176 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3177 np->dqueue[i] = 0; 3178 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3179 } 3180 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3181 3182 /* 3183 * Start at first entry. 3184 */ 3185 np->dqueueget = 0; 3186 3187 /* 3188 * Install patches in scripts. 3189 * This also let point to first position the start 3190 * and done queue pointers used from SCRIPTS. 3191 */ 3192 np->fw_patch(np); 3193 3194 /* 3195 * Wakeup all pending jobs. 3196 */ 3197 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3198 3199 /* 3200 * Init chip. 3201 */ 3202 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3203 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3204 3205 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3206 /* full arb., ena parity, par->ATN */ 3207 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3208 3209 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3210 3211 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3212 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3213 OUTB (nc_istat , SIGP ); /* Signal Process */ 3214 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3215 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3216 3217 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3218 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3219 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3220 3221 /* Extended Sreq/Sack filtering not supported on the C10 */ 3222 if (np->features & FE_C10) 3223 OUTB (nc_stest2, np->rv_stest2); 3224 else 3225 OUTB (nc_stest2, EXT|np->rv_stest2); 3226 3227 OUTB (nc_stest3, TE); /* TolerANT enable */ 3228 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3229 3230 /* 3231 * For now, disable AIP generation on C1010-66. 3232 */ 3233 if (np->device_id == PCI_ID_LSI53C1010_2) 3234 OUTB (nc_aipcntl1, DISAIP); 3235 3236 /* 3237 * C10101 Errata. 3238 * Errant SGE's when in narrow. Write bits 4 & 5 of 3239 * STEST1 register to disable SGE. We probably should do 3240 * that from SCRIPTS for each selection/reselection, but 3241 * I just don't want. :) 3242 */ 3243 if (np->device_id == PCI_ID_LSI53C1010 && 3244 /* np->revision_id < 0xff */ 1) 3245 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3246 3247 /* 3248 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3249 * Disable overlapped arbitration for some dual function devices, 3250 * regardless revision id (kind of post-chip-design feature. ;-)) 3251 */ 3252 if (np->device_id == PCI_ID_SYM53C875) 3253 OUTB (nc_ctest0, (1<<5)); 3254 else if (np->device_id == PCI_ID_SYM53C896) 3255 np->rv_ccntl0 |= DPR; 3256 3257 /* 3258 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3259 * and/or hardware phase mismatch, since only such chips 3260 * seem to support those IO registers. 3261 */ 3262 if (np->features & (FE_DAC|FE_NOPM)) { 3263 OUTB (nc_ccntl0, np->rv_ccntl0); 3264 OUTB (nc_ccntl1, np->rv_ccntl1); 3265 } 3266 3267 /* 3268 * If phase mismatch handled by scripts (895A/896/1010), 3269 * set PM jump addresses. 3270 */ 3271 if (np->features & FE_NOPM) { 3272 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3273 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3274 } 3275 3276 /* 3277 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3278 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3279 */ 3280 if (np->features & FE_LED0) 3281 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3282 else if (np->features & FE_LEDC) 3283 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3284 3285 /* 3286 * enable ints 3287 */ 3288 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3289 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3290 3291 /* 3292 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3293 * Try to eat the spurious SBMC interrupt that may occur when 3294 * we reset the chip but not the SCSI BUS (at initialization). 3295 */ 3296 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3297 OUTONW (nc_sien, SBMC); 3298 if (reason == 0) { 3299 MDELAY(100); 3300 INW (nc_sist); 3301 } 3302 np->scsi_mode = INB (nc_stest4) & SMODE; 3303 } 3304 3305 /* 3306 * Fill in target structure. 3307 * Reinitialize usrsync. 3308 * Reinitialize usrwide. 3309 * Prepare sync negotiation according to actual SCSI bus mode. 3310 */ 3311 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3312 tcb_p tp = &np->target[i]; 3313 3314 tp->to_reset = 0; 3315 tp->head.sval = 0; 3316 tp->head.wval = np->rv_scntl3; 3317 tp->head.uval = 0; 3318 3319 tp->tinfo.current.period = 0; 3320 tp->tinfo.current.offset = 0; 3321 tp->tinfo.current.width = BUS_8_BIT; 3322 tp->tinfo.current.options = 0; 3323 } 3324 3325 /* 3326 * Download SCSI SCRIPTS to on-chip RAM if present, 3327 * and start script processor. 3328 */ 3329 if (np->ram_ba) { 3330 if (sym_verbose > 1) 3331 printf ("%s: Downloading SCSI SCRIPTS.\n", 3332 sym_name(np)); 3333 if (np->ram_ws == 8192) { 3334 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3335 OUTL (nc_mmws, np->scr_ram_seg); 3336 OUTL (nc_mmrs, np->scr_ram_seg); 3337 OUTL (nc_sfs, np->scr_ram_seg); 3338 phys = SCRIPTB_BA (np, start64); 3339 } 3340 else 3341 phys = SCRIPTA_BA (np, init); 3342 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3343 } 3344 else 3345 phys = SCRIPTA_BA (np, init); 3346 3347 np->istat_sem = 0; 3348 3349 OUTL (nc_dsa, np->hcb_ba); 3350 OUTL_DSP (phys); 3351 3352 /* 3353 * Notify the XPT about the RESET condition. 3354 */ 3355 if (reason != 0) 3356 xpt_async(AC_BUS_RESET, np->path, NULL); 3357 } 3358 3359 /* 3360 * Get clock factor and sync divisor for a given 3361 * synchronous factor period. 3362 */ 3363 static int 3364 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3365 { 3366 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3367 int div = np->clock_divn; /* Number of divisors supported */ 3368 u32 fak; /* Sync factor in sxfer */ 3369 u32 per; /* Period in tenths of ns */ 3370 u32 kpc; /* (per * clk) */ 3371 int ret; 3372 3373 /* 3374 * Compute the synchronous period in tenths of nano-seconds 3375 */ 3376 if (dt && sfac <= 9) per = 125; 3377 else if (sfac <= 10) per = 250; 3378 else if (sfac == 11) per = 303; 3379 else if (sfac == 12) per = 500; 3380 else per = 40 * sfac; 3381 ret = per; 3382 3383 kpc = per * clk; 3384 if (dt) 3385 kpc <<= 1; 3386 3387 /* 3388 * For earliest C10 revision 0, we cannot use extra 3389 * clocks for the setting of the SCSI clocking. 3390 * Note that this limits the lowest sync data transfer 3391 * to 5 Mega-transfers per second and may result in 3392 * using higher clock divisors. 3393 */ 3394 #if 1 3395 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3396 /* 3397 * Look for the lowest clock divisor that allows an 3398 * output speed not faster than the period. 3399 */ 3400 while (div > 0) { 3401 --div; 3402 if (kpc > (div_10M[div] << 2)) { 3403 ++div; 3404 break; 3405 } 3406 } 3407 fak = 0; /* No extra clocks */ 3408 if (div == np->clock_divn) { /* Are we too fast ? */ 3409 ret = -1; 3410 } 3411 *divp = div; 3412 *fakp = fak; 3413 return ret; 3414 } 3415 #endif 3416 3417 /* 3418 * Look for the greatest clock divisor that allows an 3419 * input speed faster than the period. 3420 */ 3421 while (div-- > 0) 3422 if (kpc >= (div_10M[div] << 2)) break; 3423 3424 /* 3425 * Calculate the lowest clock factor that allows an output 3426 * speed not faster than the period, and the max output speed. 3427 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3428 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3429 */ 3430 if (dt) { 3431 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3432 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3433 } 3434 else { 3435 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3436 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3437 } 3438 3439 /* 3440 * Check against our hardware limits, or bugs :). 3441 */ 3442 if (fak < 0) {fak = 0; ret = -1;} 3443 if (fak > 2) {fak = 2; ret = -1;} 3444 3445 /* 3446 * Compute and return sync parameters. 3447 */ 3448 *divp = div; 3449 *fakp = fak; 3450 3451 return ret; 3452 } 3453 3454 /* 3455 * Tell the SCSI layer about the new transfer parameters. 3456 */ 3457 static void 3458 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3459 { 3460 struct ccb_trans_settings cts; 3461 struct cam_path *path; 3462 int sts; 3463 tcb_p tp = &np->target[target]; 3464 3465 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3466 CAM_LUN_WILDCARD); 3467 if (sts != CAM_REQ_CMP) 3468 return; 3469 3470 bzero(&cts, sizeof(cts)); 3471 3472 #define cts__scsi (cts.proto_specific.scsi) 3473 #define cts__spi (cts.xport_specific.spi) 3474 3475 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3476 cts.protocol = PROTO_SCSI; 3477 cts.transport = XPORT_SPI; 3478 cts.protocol_version = tp->tinfo.current.scsi_version; 3479 cts.transport_version = tp->tinfo.current.spi_version; 3480 3481 cts__spi.valid = spi_valid; 3482 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3483 cts__spi.sync_period = tp->tinfo.current.period; 3484 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3485 cts__spi.sync_offset = tp->tinfo.current.offset; 3486 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3487 cts__spi.bus_width = tp->tinfo.current.width; 3488 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3489 cts__spi.ppr_options = tp->tinfo.current.options; 3490 #undef cts__spi 3491 #undef cts__scsi 3492 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3493 xpt_async(AC_TRANSFER_NEG, path, &cts); 3494 xpt_free_path(path); 3495 } 3496 3497 #define SYM_SPI_VALID_WDTR \ 3498 CTS_SPI_VALID_BUS_WIDTH | \ 3499 CTS_SPI_VALID_SYNC_RATE | \ 3500 CTS_SPI_VALID_SYNC_OFFSET 3501 #define SYM_SPI_VALID_SDTR \ 3502 CTS_SPI_VALID_SYNC_RATE | \ 3503 CTS_SPI_VALID_SYNC_OFFSET 3504 #define SYM_SPI_VALID_PPR \ 3505 CTS_SPI_VALID_PPR_OPTIONS | \ 3506 CTS_SPI_VALID_BUS_WIDTH | \ 3507 CTS_SPI_VALID_SYNC_RATE | \ 3508 CTS_SPI_VALID_SYNC_OFFSET 3509 3510 /* 3511 * We received a WDTR. 3512 * Let everything be aware of the changes. 3513 */ 3514 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3515 { 3516 tcb_p tp = &np->target[cp->target]; 3517 3518 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3519 3520 /* 3521 * Tell the SCSI layer about the new transfer parameters. 3522 */ 3523 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3524 tp->tinfo.current.offset = 0; 3525 tp->tinfo.current.period = 0; 3526 tp->tinfo.current.options = 0; 3527 3528 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3529 } 3530 3531 /* 3532 * We received a SDTR. 3533 * Let everything be aware of the changes. 3534 */ 3535 static void 3536 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3537 { 3538 tcb_p tp = &np->target[cp->target]; 3539 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3540 3541 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3542 3543 /* 3544 * Tell the SCSI layer about the new transfer parameters. 3545 */ 3546 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3547 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3548 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3549 3550 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3551 } 3552 3553 /* 3554 * We received a PPR. 3555 * Let everything be aware of the changes. 3556 */ 3557 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3558 u_char per, u_char wide, u_char div, u_char fak) 3559 { 3560 tcb_p tp = &np->target[cp->target]; 3561 3562 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3563 3564 /* 3565 * Tell the SCSI layer about the new transfer parameters. 3566 */ 3567 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3568 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3569 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3570 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3571 3572 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3573 } 3574 3575 /* 3576 * Switch trans mode for current job and it's target. 3577 */ 3578 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3579 u_char per, u_char wide, u_char div, u_char fak) 3580 { 3581 SYM_QUEHEAD *qp; 3582 union ccb *ccb; 3583 tcb_p tp; 3584 u_char target = INB (nc_sdid) & 0x0f; 3585 u_char sval, wval, uval; 3586 3587 assert (cp); 3588 if (!cp) return; 3589 ccb = cp->cam_ccb; 3590 assert (ccb); 3591 if (!ccb) return; 3592 assert (target == (cp->target & 0xf)); 3593 tp = &np->target[target]; 3594 3595 sval = tp->head.sval; 3596 wval = tp->head.wval; 3597 uval = tp->head.uval; 3598 3599 #if 0 3600 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3601 sval, wval, uval, np->rv_scntl3); 3602 #endif 3603 /* 3604 * Set the offset. 3605 */ 3606 if (!(np->features & FE_C10)) 3607 sval = (sval & ~0x1f) | ofs; 3608 else 3609 sval = (sval & ~0x3f) | ofs; 3610 3611 /* 3612 * Set the sync divisor and extra clock factor. 3613 */ 3614 if (ofs != 0) { 3615 wval = (wval & ~0x70) | ((div+1) << 4); 3616 if (!(np->features & FE_C10)) 3617 sval = (sval & ~0xe0) | (fak << 5); 3618 else { 3619 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3620 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3621 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3622 } 3623 } 3624 3625 /* 3626 * Set the bus width. 3627 */ 3628 wval = wval & ~EWS; 3629 if (wide != 0) 3630 wval |= EWS; 3631 3632 /* 3633 * Set misc. ultra enable bits. 3634 */ 3635 if (np->features & FE_C10) { 3636 uval = uval & ~(U3EN|AIPCKEN); 3637 if (dt) { 3638 assert(np->features & FE_U3EN); 3639 uval |= U3EN; 3640 } 3641 } 3642 else { 3643 wval = wval & ~ULTRA; 3644 if (per <= 12) wval |= ULTRA; 3645 } 3646 3647 /* 3648 * Stop there if sync parameters are unchanged. 3649 */ 3650 if (tp->head.sval == sval && 3651 tp->head.wval == wval && 3652 tp->head.uval == uval) 3653 return; 3654 tp->head.sval = sval; 3655 tp->head.wval = wval; 3656 tp->head.uval = uval; 3657 3658 /* 3659 * Disable extended Sreq/Sack filtering if per < 50. 3660 * Not supported on the C1010. 3661 */ 3662 if (per < 50 && !(np->features & FE_C10)) 3663 OUTOFFB (nc_stest2, EXT); 3664 3665 /* 3666 * set actual value and sync_status 3667 */ 3668 OUTB (nc_sxfer, tp->head.sval); 3669 OUTB (nc_scntl3, tp->head.wval); 3670 3671 if (np->features & FE_C10) { 3672 OUTB (nc_scntl4, tp->head.uval); 3673 } 3674 3675 /* 3676 * patch ALL busy ccbs of this target. 3677 */ 3678 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3679 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3680 if (cp->target != target) 3681 continue; 3682 cp->phys.select.sel_scntl3 = tp->head.wval; 3683 cp->phys.select.sel_sxfer = tp->head.sval; 3684 if (np->features & FE_C10) { 3685 cp->phys.select.sel_scntl4 = tp->head.uval; 3686 } 3687 } 3688 } 3689 3690 /* 3691 * log message for real hard errors 3692 * 3693 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3694 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3695 * 3696 * exception register: 3697 * ds: dstat 3698 * si: sist 3699 * 3700 * SCSI bus lines: 3701 * so: control lines as driven by chip. 3702 * si: control lines as seen by chip. 3703 * sd: scsi data lines as seen by chip. 3704 * 3705 * wide/fastmode: 3706 * sxfer: (see the manual) 3707 * scntl3: (see the manual) 3708 * 3709 * current script command: 3710 * dsp: script address (relative to start of script). 3711 * dbc: first word of script command. 3712 * 3713 * First 24 register of the chip: 3714 * r0..rf 3715 */ 3716 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3717 { 3718 u32 dsp; 3719 int script_ofs; 3720 int script_size; 3721 char *script_name; 3722 u_char *script_base; 3723 int i; 3724 3725 dsp = INL (nc_dsp); 3726 3727 if (dsp > np->scripta_ba && 3728 dsp <= np->scripta_ba + np->scripta_sz) { 3729 script_ofs = dsp - np->scripta_ba; 3730 script_size = np->scripta_sz; 3731 script_base = (u_char *) np->scripta0; 3732 script_name = "scripta"; 3733 } 3734 else if (np->scriptb_ba < dsp && 3735 dsp <= np->scriptb_ba + np->scriptb_sz) { 3736 script_ofs = dsp - np->scriptb_ba; 3737 script_size = np->scriptb_sz; 3738 script_base = (u_char *) np->scriptb0; 3739 script_name = "scriptb"; 3740 } else { 3741 script_ofs = dsp; 3742 script_size = 0; 3743 script_base = 0; 3744 script_name = "mem"; 3745 } 3746 3747 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3748 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3749 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3750 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3751 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3752 (unsigned)INL (nc_dbc)); 3753 3754 if (((script_ofs & 3) == 0) && 3755 (unsigned)script_ofs < script_size) { 3756 printf ("%s: script cmd = %08x\n", sym_name(np), 3757 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3758 } 3759 3760 printf ("%s: regdump:", sym_name(np)); 3761 for (i=0; i<24;i++) 3762 printf (" %02x", (unsigned)INB_OFF(i)); 3763 printf (".\n"); 3764 3765 /* 3766 * PCI BUS error, read the PCI ststus register. 3767 */ 3768 if (dstat & (MDPE|BF)) { 3769 u_short pci_sts; 3770 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3771 if (pci_sts & 0xf900) { 3772 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3773 printf("%s: PCI STATUS = 0x%04x\n", 3774 sym_name(np), pci_sts & 0xf900); 3775 } 3776 } 3777 } 3778 3779 /* 3780 * chip interrupt handler 3781 * 3782 * In normal situations, interrupt conditions occur one at 3783 * a time. But when something bad happens on the SCSI BUS, 3784 * the chip may raise several interrupt flags before 3785 * stopping and interrupting the CPU. The additionnal 3786 * interrupt flags are stacked in some extra registers 3787 * after the SIP and/or DIP flag has been raised in the 3788 * ISTAT. After the CPU has read the interrupt condition 3789 * flag from SIST or DSTAT, the chip unstacks the other 3790 * interrupt flags and sets the corresponding bits in 3791 * SIST or DSTAT. Since the chip starts stacking once the 3792 * SIP or DIP flag is set, there is a small window of time 3793 * where the stacking does not occur. 3794 * 3795 * Typically, multiple interrupt conditions may happen in 3796 * the following situations: 3797 * 3798 * - SCSI parity error + Phase mismatch (PAR|MA) 3799 * When a parity error is detected in input phase 3800 * and the device switches to msg-in phase inside a 3801 * block MOV. 3802 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3803 * When a stupid device does not want to handle the 3804 * recovery of an SCSI parity error. 3805 * - Some combinations of STO, PAR, UDC, ... 3806 * When using non compliant SCSI stuff, when user is 3807 * doing non compliant hot tampering on the BUS, when 3808 * something really bad happens to a device, etc ... 3809 * 3810 * The heuristic suggested by SYMBIOS to handle 3811 * multiple interrupts is to try unstacking all 3812 * interrupts conditions and to handle them on some 3813 * priority based on error severity. 3814 * This will work when the unstacking has been 3815 * successful, but we cannot be 100 % sure of that, 3816 * since the CPU may have been faster to unstack than 3817 * the chip is able to stack. Hmmm ... But it seems that 3818 * such a situation is very unlikely to happen. 3819 * 3820 * If this happen, for example STO caught by the CPU 3821 * then UDC happenning before the CPU have restarted 3822 * the SCRIPTS, the driver may wrongly complete the 3823 * same command on UDC, since the SCRIPTS didn't restart 3824 * and the DSA still points to the same command. 3825 * We avoid this situation by setting the DSA to an 3826 * invalid value when the CCB is completed and before 3827 * restarting the SCRIPTS. 3828 * 3829 * Another issue is that we need some section of our 3830 * recovery procedures to be somehow uninterruptible but 3831 * the SCRIPTS processor does not provides such a 3832 * feature. For this reason, we handle recovery preferently 3833 * from the C code and check against some SCRIPTS critical 3834 * sections from the C code. 3835 * 3836 * Hopefully, the interrupt handling of the driver is now 3837 * able to resist to weird BUS error conditions, but donnot 3838 * ask me for any guarantee that it will never fail. :-) 3839 * Use at your own decision and risk. 3840 */ 3841 3842 static void sym_intr1 (hcb_p np) 3843 { 3844 u_char istat, istatc; 3845 u_char dstat; 3846 u_short sist; 3847 3848 SYM_LOCK_ASSERT(MA_OWNED); 3849 3850 /* 3851 * interrupt on the fly ? 3852 * 3853 * A `dummy read' is needed to ensure that the 3854 * clear of the INTF flag reaches the device 3855 * before the scanning of the DONE queue. 3856 */ 3857 istat = INB (nc_istat); 3858 if (istat & INTF) { 3859 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3860 istat = INB (nc_istat); /* DUMMY READ */ 3861 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3862 (void)sym_wakeup_done (np); 3863 }; 3864 3865 if (!(istat & (SIP|DIP))) 3866 return; 3867 3868 #if 0 /* We should never get this one */ 3869 if (istat & CABRT) 3870 OUTB (nc_istat, CABRT); 3871 #endif 3872 3873 /* 3874 * PAR and MA interrupts may occur at the same time, 3875 * and we need to know of both in order to handle 3876 * this situation properly. We try to unstack SCSI 3877 * interrupts for that reason. BTW, I dislike a LOT 3878 * such a loop inside the interrupt routine. 3879 * Even if DMA interrupt stacking is very unlikely to 3880 * happen, we also try unstacking these ones, since 3881 * this has no performance impact. 3882 */ 3883 sist = 0; 3884 dstat = 0; 3885 istatc = istat; 3886 do { 3887 if (istatc & SIP) 3888 sist |= INW (nc_sist); 3889 if (istatc & DIP) 3890 dstat |= INB (nc_dstat); 3891 istatc = INB (nc_istat); 3892 istat |= istatc; 3893 } while (istatc & (SIP|DIP)); 3894 3895 if (DEBUG_FLAGS & DEBUG_TINY) 3896 printf ("<%d|%x:%x|%x:%x>", 3897 (int)INB(nc_scr0), 3898 dstat,sist, 3899 (unsigned)INL(nc_dsp), 3900 (unsigned)INL(nc_dbc)); 3901 /* 3902 * On paper, a memory barrier may be needed here. 3903 * And since we are paranoid ... :) 3904 */ 3905 MEMORY_BARRIER(); 3906 3907 /* 3908 * First, interrupts we want to service cleanly. 3909 * 3910 * Phase mismatch (MA) is the most frequent interrupt 3911 * for chip earlier than the 896 and so we have to service 3912 * it as quickly as possible. 3913 * A SCSI parity error (PAR) may be combined with a phase 3914 * mismatch condition (MA). 3915 * Programmed interrupts (SIR) are used to call the C code 3916 * from SCRIPTS. 3917 * The single step interrupt (SSI) is not used in this 3918 * driver. 3919 */ 3920 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3921 !(dstat & (MDPE|BF|ABRT|IID))) { 3922 if (sist & PAR) sym_int_par (np, sist); 3923 else if (sist & MA) sym_int_ma (np); 3924 else if (dstat & SIR) sym_int_sir (np); 3925 else if (dstat & SSI) OUTONB_STD (); 3926 else goto unknown_int; 3927 return; 3928 }; 3929 3930 /* 3931 * Now, interrupts that donnot happen in normal 3932 * situations and that we may need to recover from. 3933 * 3934 * On SCSI RESET (RST), we reset everything. 3935 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3936 * active CCBs with RESET status, prepare all devices 3937 * for negotiating again and restart the SCRIPTS. 3938 * On STO and UDC, we complete the CCB with the corres- 3939 * ponding status and restart the SCRIPTS. 3940 */ 3941 if (sist & RST) { 3942 xpt_print_path(np->path); 3943 printf("SCSI BUS reset detected.\n"); 3944 sym_init (np, 1); 3945 return; 3946 }; 3947 3948 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3949 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3950 3951 if (!(sist & (GEN|HTH|SGE)) && 3952 !(dstat & (MDPE|BF|ABRT|IID))) { 3953 if (sist & SBMC) sym_int_sbmc (np); 3954 else if (sist & STO) sym_int_sto (np); 3955 else if (sist & UDC) sym_int_udc (np); 3956 else goto unknown_int; 3957 return; 3958 }; 3959 3960 /* 3961 * Now, interrupts we are not able to recover cleanly. 3962 * 3963 * Log message for hard errors. 3964 * Reset everything. 3965 */ 3966 3967 sym_log_hard_error(np, sist, dstat); 3968 3969 if ((sist & (GEN|HTH|SGE)) || 3970 (dstat & (MDPE|BF|ABRT|IID))) { 3971 sym_start_reset(np); 3972 return; 3973 }; 3974 3975 unknown_int: 3976 /* 3977 * We just miss the cause of the interrupt. :( 3978 * Print a message. The timeout will do the real work. 3979 */ 3980 printf( "%s: unknown interrupt(s) ignored, " 3981 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3982 sym_name(np), istat, dstat, sist); 3983 } 3984 3985 static void sym_intr(void *arg) 3986 { 3987 hcb_p np = arg; 3988 3989 SYM_LOCK(); 3990 3991 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3992 sym_intr1((hcb_p) arg); 3993 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3994 3995 SYM_UNLOCK(); 3996 } 3997 3998 static void sym_poll(struct cam_sim *sim) 3999 { 4000 sym_intr1(cam_sim_softc(sim)); 4001 } 4002 4003 4004 /* 4005 * generic recovery from scsi interrupt 4006 * 4007 * The doc says that when the chip gets an SCSI interrupt, 4008 * it tries to stop in an orderly fashion, by completing 4009 * an instruction fetch that had started or by flushing 4010 * the DMA fifo for a write to memory that was executing. 4011 * Such a fashion is not enough to know if the instruction 4012 * that was just before the current DSP value has been 4013 * executed or not. 4014 * 4015 * There are some small SCRIPTS sections that deal with 4016 * the start queue and the done queue that may break any 4017 * assomption from the C code if we are interrupted 4018 * inside, so we reset if this happens. Btw, since these 4019 * SCRIPTS sections are executed while the SCRIPTS hasn't 4020 * started SCSI operations, it is very unlikely to happen. 4021 * 4022 * All the driver data structures are supposed to be 4023 * allocated from the same 4 GB memory window, so there 4024 * is a 1 to 1 relationship between DSA and driver data 4025 * structures. Since we are careful :) to invalidate the 4026 * DSA when we complete a command or when the SCRIPTS 4027 * pushes a DSA into a queue, we can trust it when it 4028 * points to a CCB. 4029 */ 4030 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4031 { 4032 u32 dsp = INL (nc_dsp); 4033 u32 dsa = INL (nc_dsa); 4034 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4035 4036 /* 4037 * If we haven't been interrupted inside the SCRIPTS 4038 * critical pathes, we can safely restart the SCRIPTS 4039 * and trust the DSA value if it matches a CCB. 4040 */ 4041 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4042 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4043 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4044 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4045 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4046 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4047 (!(dsp > SCRIPTA_BA (np, done) && 4048 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4049 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4050 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4051 /* 4052 * If we have a CCB, let the SCRIPTS call us back for 4053 * the handling of the error with SCRATCHA filled with 4054 * STARTPOS. This way, we will be able to freeze the 4055 * device queue and requeue awaiting IOs. 4056 */ 4057 if (cp) { 4058 cp->host_status = hsts; 4059 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4060 } 4061 /* 4062 * Otherwise just restart the SCRIPTS. 4063 */ 4064 else { 4065 OUTL (nc_dsa, 0xffffff); 4066 OUTL_DSP (SCRIPTA_BA (np, start)); 4067 } 4068 } 4069 else 4070 goto reset_all; 4071 4072 return; 4073 4074 reset_all: 4075 sym_start_reset(np); 4076 } 4077 4078 /* 4079 * chip exception handler for selection timeout 4080 */ 4081 static void sym_int_sto (hcb_p np) 4082 { 4083 u32 dsp = INL (nc_dsp); 4084 4085 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4086 4087 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4088 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4089 else 4090 sym_start_reset(np); 4091 } 4092 4093 /* 4094 * chip exception handler for unexpected disconnect 4095 */ 4096 static void sym_int_udc (hcb_p np) 4097 { 4098 printf ("%s: unexpected disconnect\n", sym_name(np)); 4099 sym_recover_scsi_int(np, HS_UNEXPECTED); 4100 } 4101 4102 /* 4103 * chip exception handler for SCSI bus mode change 4104 * 4105 * spi2-r12 11.2.3 says a transceiver mode change must 4106 * generate a reset event and a device that detects a reset 4107 * event shall initiate a hard reset. It says also that a 4108 * device that detects a mode change shall set data transfer 4109 * mode to eight bit asynchronous, etc... 4110 * So, just reinitializing all except chip should be enough. 4111 */ 4112 static void sym_int_sbmc (hcb_p np) 4113 { 4114 u_char scsi_mode = INB (nc_stest4) & SMODE; 4115 4116 /* 4117 * Notify user. 4118 */ 4119 xpt_print_path(np->path); 4120 printf("SCSI BUS mode change from %s to %s.\n", 4121 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4122 4123 /* 4124 * Should suspend command processing for a few seconds and 4125 * reinitialize all except the chip. 4126 */ 4127 sym_init (np, 2); 4128 } 4129 4130 /* 4131 * chip exception handler for SCSI parity error. 4132 * 4133 * When the chip detects a SCSI parity error and is 4134 * currently executing a (CH)MOV instruction, it does 4135 * not interrupt immediately, but tries to finish the 4136 * transfer of the current scatter entry before 4137 * interrupting. The following situations may occur: 4138 * 4139 * - The complete scatter entry has been transferred 4140 * without the device having changed phase. 4141 * The chip will then interrupt with the DSP pointing 4142 * to the instruction that follows the MOV. 4143 * 4144 * - A phase mismatch occurs before the MOV finished 4145 * and phase errors are to be handled by the C code. 4146 * The chip will then interrupt with both PAR and MA 4147 * conditions set. 4148 * 4149 * - A phase mismatch occurs before the MOV finished and 4150 * phase errors are to be handled by SCRIPTS. 4151 * The chip will load the DSP with the phase mismatch 4152 * JUMP address and interrupt the host processor. 4153 */ 4154 static void sym_int_par (hcb_p np, u_short sist) 4155 { 4156 u_char hsts = INB (HS_PRT); 4157 u32 dsp = INL (nc_dsp); 4158 u32 dbc = INL (nc_dbc); 4159 u32 dsa = INL (nc_dsa); 4160 u_char sbcl = INB (nc_sbcl); 4161 u_char cmd = dbc >> 24; 4162 int phase = cmd & 7; 4163 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4164 4165 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4166 sym_name(np), hsts, dbc, sbcl); 4167 4168 /* 4169 * Check that the chip is connected to the SCSI BUS. 4170 */ 4171 if (!(INB (nc_scntl1) & ISCON)) { 4172 sym_recover_scsi_int(np, HS_UNEXPECTED); 4173 return; 4174 } 4175 4176 /* 4177 * If the nexus is not clearly identified, reset the bus. 4178 * We will try to do better later. 4179 */ 4180 if (!cp) 4181 goto reset_all; 4182 4183 /* 4184 * Check instruction was a MOV, direction was INPUT and 4185 * ATN is asserted. 4186 */ 4187 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4188 goto reset_all; 4189 4190 /* 4191 * Keep track of the parity error. 4192 */ 4193 OUTONB (HF_PRT, HF_EXT_ERR); 4194 cp->xerr_status |= XE_PARITY_ERR; 4195 4196 /* 4197 * Prepare the message to send to the device. 4198 */ 4199 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4200 4201 /* 4202 * If the old phase was DATA IN phase, we have to deal with 4203 * the 3 situations described above. 4204 * For other input phases (MSG IN and STATUS), the device 4205 * must resend the whole thing that failed parity checking 4206 * or signal error. So, jumping to dispatcher should be OK. 4207 */ 4208 if (phase == 1 || phase == 5) { 4209 /* Phase mismatch handled by SCRIPTS */ 4210 if (dsp == SCRIPTB_BA (np, pm_handle)) 4211 OUTL_DSP (dsp); 4212 /* Phase mismatch handled by the C code */ 4213 else if (sist & MA) 4214 sym_int_ma (np); 4215 /* No phase mismatch occurred */ 4216 else { 4217 OUTL (nc_temp, dsp); 4218 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4219 } 4220 } 4221 else 4222 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4223 return; 4224 4225 reset_all: 4226 sym_start_reset(np); 4227 } 4228 4229 /* 4230 * chip exception handler for phase errors. 4231 * 4232 * We have to construct a new transfer descriptor, 4233 * to transfer the rest of the current block. 4234 */ 4235 static void sym_int_ma (hcb_p np) 4236 { 4237 u32 dbc; 4238 u32 rest; 4239 u32 dsp; 4240 u32 dsa; 4241 u32 nxtdsp; 4242 u32 *vdsp; 4243 u32 oadr, olen; 4244 u32 *tblp; 4245 u32 newcmd; 4246 u_int delta; 4247 u_char cmd; 4248 u_char hflags, hflags0; 4249 struct sym_pmc *pm; 4250 ccb_p cp; 4251 4252 dsp = INL (nc_dsp); 4253 dbc = INL (nc_dbc); 4254 dsa = INL (nc_dsa); 4255 4256 cmd = dbc >> 24; 4257 rest = dbc & 0xffffff; 4258 delta = 0; 4259 4260 /* 4261 * locate matching cp if any. 4262 */ 4263 cp = sym_ccb_from_dsa(np, dsa); 4264 4265 /* 4266 * Donnot take into account dma fifo and various buffers in 4267 * INPUT phase since the chip flushes everything before 4268 * raising the MA interrupt for interrupted INPUT phases. 4269 * For DATA IN phase, we will check for the SWIDE later. 4270 */ 4271 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4272 u_char ss0, ss2; 4273 4274 if (np->features & FE_DFBC) 4275 delta = INW (nc_dfbc); 4276 else { 4277 u32 dfifo; 4278 4279 /* 4280 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4281 */ 4282 dfifo = INL(nc_dfifo); 4283 4284 /* 4285 * Calculate remaining bytes in DMA fifo. 4286 * (CTEST5 = dfifo >> 16) 4287 */ 4288 if (dfifo & (DFS << 16)) 4289 delta = ((((dfifo >> 8) & 0x300) | 4290 (dfifo & 0xff)) - rest) & 0x3ff; 4291 else 4292 delta = ((dfifo & 0xff) - rest) & 0x7f; 4293 } 4294 4295 /* 4296 * The data in the dma fifo has not been transfered to 4297 * the target -> add the amount to the rest 4298 * and clear the data. 4299 * Check the sstat2 register in case of wide transfer. 4300 */ 4301 rest += delta; 4302 ss0 = INB (nc_sstat0); 4303 if (ss0 & OLF) rest++; 4304 if (!(np->features & FE_C10)) 4305 if (ss0 & ORF) rest++; 4306 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4307 ss2 = INB (nc_sstat2); 4308 if (ss2 & OLF1) rest++; 4309 if (!(np->features & FE_C10)) 4310 if (ss2 & ORF1) rest++; 4311 }; 4312 4313 /* 4314 * Clear fifos. 4315 */ 4316 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4317 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4318 } 4319 4320 /* 4321 * log the information 4322 */ 4323 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4324 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4325 (unsigned) rest, (unsigned) delta); 4326 4327 /* 4328 * try to find the interrupted script command, 4329 * and the address at which to continue. 4330 */ 4331 vdsp = 0; 4332 nxtdsp = 0; 4333 if (dsp > np->scripta_ba && 4334 dsp <= np->scripta_ba + np->scripta_sz) { 4335 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4336 nxtdsp = dsp; 4337 } 4338 else if (dsp > np->scriptb_ba && 4339 dsp <= np->scriptb_ba + np->scriptb_sz) { 4340 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4341 nxtdsp = dsp; 4342 } 4343 4344 /* 4345 * log the information 4346 */ 4347 if (DEBUG_FLAGS & DEBUG_PHASE) { 4348 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4349 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4350 }; 4351 4352 if (!vdsp) { 4353 printf ("%s: interrupted SCRIPT address not found.\n", 4354 sym_name (np)); 4355 goto reset_all; 4356 } 4357 4358 if (!cp) { 4359 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4360 sym_name (np)); 4361 goto reset_all; 4362 } 4363 4364 /* 4365 * get old startaddress and old length. 4366 */ 4367 oadr = scr_to_cpu(vdsp[1]); 4368 4369 if (cmd & 0x10) { /* Table indirect */ 4370 tblp = (u32 *) ((char*) &cp->phys + oadr); 4371 olen = scr_to_cpu(tblp[0]); 4372 oadr = scr_to_cpu(tblp[1]); 4373 } else { 4374 tblp = (u32 *) 0; 4375 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4376 }; 4377 4378 if (DEBUG_FLAGS & DEBUG_PHASE) { 4379 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4380 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4381 tblp, 4382 (unsigned) olen, 4383 (unsigned) oadr); 4384 }; 4385 4386 /* 4387 * check cmd against assumed interrupted script command. 4388 * If dt data phase, the MOVE instruction hasn't bit 4 of 4389 * the phase. 4390 */ 4391 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4392 PRINT_ADDR(cp); 4393 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4394 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4395 4396 goto reset_all; 4397 }; 4398 4399 /* 4400 * if old phase not dataphase, leave here. 4401 */ 4402 if (cmd & 2) { 4403 PRINT_ADDR(cp); 4404 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4405 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4406 (unsigned)oadr, (unsigned)rest); 4407 goto unexpected_phase; 4408 }; 4409 4410 /* 4411 * Choose the correct PM save area. 4412 * 4413 * Look at the PM_SAVE SCRIPT if you want to understand 4414 * this stuff. The equivalent code is implemented in 4415 * SCRIPTS for the 895A, 896 and 1010 that are able to 4416 * handle PM from the SCRIPTS processor. 4417 */ 4418 hflags0 = INB (HF_PRT); 4419 hflags = hflags0; 4420 4421 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4422 if (hflags & HF_IN_PM0) 4423 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4424 else if (hflags & HF_IN_PM1) 4425 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4426 4427 if (hflags & HF_DP_SAVED) 4428 hflags ^= HF_ACT_PM; 4429 } 4430 4431 if (!(hflags & HF_ACT_PM)) { 4432 pm = &cp->phys.pm0; 4433 newcmd = SCRIPTA_BA (np, pm0_data); 4434 } 4435 else { 4436 pm = &cp->phys.pm1; 4437 newcmd = SCRIPTA_BA (np, pm1_data); 4438 } 4439 4440 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4441 if (hflags != hflags0) 4442 OUTB (HF_PRT, hflags); 4443 4444 /* 4445 * fillin the phase mismatch context 4446 */ 4447 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4448 pm->sg.size = cpu_to_scr(rest); 4449 pm->ret = cpu_to_scr(nxtdsp); 4450 4451 /* 4452 * If we have a SWIDE, 4453 * - prepare the address to write the SWIDE from SCRIPTS, 4454 * - compute the SCRIPTS address to restart from, 4455 * - move current data pointer context by one byte. 4456 */ 4457 nxtdsp = SCRIPTA_BA (np, dispatch); 4458 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4459 (INB (nc_scntl2) & WSR)) { 4460 u32 tmp; 4461 4462 /* 4463 * Set up the table indirect for the MOVE 4464 * of the residual byte and adjust the data 4465 * pointer context. 4466 */ 4467 tmp = scr_to_cpu(pm->sg.addr); 4468 cp->phys.wresid.addr = cpu_to_scr(tmp); 4469 pm->sg.addr = cpu_to_scr(tmp + 1); 4470 tmp = scr_to_cpu(pm->sg.size); 4471 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4472 pm->sg.size = cpu_to_scr(tmp - 1); 4473 4474 /* 4475 * If only the residual byte is to be moved, 4476 * no PM context is needed. 4477 */ 4478 if ((tmp&0xffffff) == 1) 4479 newcmd = pm->ret; 4480 4481 /* 4482 * Prepare the address of SCRIPTS that will 4483 * move the residual byte to memory. 4484 */ 4485 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4486 } 4487 4488 if (DEBUG_FLAGS & DEBUG_PHASE) { 4489 PRINT_ADDR(cp); 4490 printf ("PM %x %x %x / %x %x %x.\n", 4491 hflags0, hflags, newcmd, 4492 (unsigned)scr_to_cpu(pm->sg.addr), 4493 (unsigned)scr_to_cpu(pm->sg.size), 4494 (unsigned)scr_to_cpu(pm->ret)); 4495 } 4496 4497 /* 4498 * Restart the SCRIPTS processor. 4499 */ 4500 OUTL (nc_temp, newcmd); 4501 OUTL_DSP (nxtdsp); 4502 return; 4503 4504 /* 4505 * Unexpected phase changes that occurs when the current phase 4506 * is not a DATA IN or DATA OUT phase are due to error conditions. 4507 * Such event may only happen when the SCRIPTS is using a 4508 * multibyte SCSI MOVE. 4509 * 4510 * Phase change Some possible cause 4511 * 4512 * COMMAND --> MSG IN SCSI parity error detected by target. 4513 * COMMAND --> STATUS Bad command or refused by target. 4514 * MSG OUT --> MSG IN Message rejected by target. 4515 * MSG OUT --> COMMAND Bogus target that discards extended 4516 * negotiation messages. 4517 * 4518 * The code below does not care of the new phase and so 4519 * trusts the target. Why to annoy it ? 4520 * If the interrupted phase is COMMAND phase, we restart at 4521 * dispatcher. 4522 * If a target does not get all the messages after selection, 4523 * the code assumes blindly that the target discards extended 4524 * messages and clears the negotiation status. 4525 * If the target does not want all our response to negotiation, 4526 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4527 * bloat for such a should_not_happen situation). 4528 * In all other situation, we reset the BUS. 4529 * Are these assumptions reasonnable ? (Wait and see ...) 4530 */ 4531 unexpected_phase: 4532 dsp -= 8; 4533 nxtdsp = 0; 4534 4535 switch (cmd & 7) { 4536 case 2: /* COMMAND phase */ 4537 nxtdsp = SCRIPTA_BA (np, dispatch); 4538 break; 4539 #if 0 4540 case 3: /* STATUS phase */ 4541 nxtdsp = SCRIPTA_BA (np, dispatch); 4542 break; 4543 #endif 4544 case 6: /* MSG OUT phase */ 4545 /* 4546 * If the device may want to use untagged when we want 4547 * tagged, we prepare an IDENTIFY without disc. granted, 4548 * since we will not be able to handle reselect. 4549 * Otherwise, we just don't care. 4550 */ 4551 if (dsp == SCRIPTA_BA (np, send_ident)) { 4552 if (cp->tag != NO_TAG && olen - rest <= 3) { 4553 cp->host_status = HS_BUSY; 4554 np->msgout[0] = M_IDENTIFY | cp->lun; 4555 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4556 } 4557 else 4558 nxtdsp = SCRIPTB_BA (np, ident_break); 4559 } 4560 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4561 dsp == SCRIPTB_BA (np, send_sdtr) || 4562 dsp == SCRIPTB_BA (np, send_ppr)) { 4563 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4564 } 4565 break; 4566 #if 0 4567 case 7: /* MSG IN phase */ 4568 nxtdsp = SCRIPTA_BA (np, clrack); 4569 break; 4570 #endif 4571 } 4572 4573 if (nxtdsp) { 4574 OUTL_DSP (nxtdsp); 4575 return; 4576 } 4577 4578 reset_all: 4579 sym_start_reset(np); 4580 } 4581 4582 /* 4583 * Dequeue from the START queue all CCBs that match 4584 * a given target/lun/task condition (-1 means all), 4585 * and move them from the BUSY queue to the COMP queue 4586 * with CAM_REQUEUE_REQ status condition. 4587 * This function is used during error handling/recovery. 4588 * It is called with SCRIPTS not running. 4589 */ 4590 static int 4591 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4592 { 4593 int j; 4594 ccb_p cp; 4595 4596 /* 4597 * Make sure the starting index is within range. 4598 */ 4599 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4600 4601 /* 4602 * Walk until end of START queue and dequeue every job 4603 * that matches the target/lun/task condition. 4604 */ 4605 j = i; 4606 while (i != np->squeueput) { 4607 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4608 assert(cp); 4609 #ifdef SYM_CONF_IARB_SUPPORT 4610 /* Forget hints for IARB, they may be no longer relevant */ 4611 cp->host_flags &= ~HF_HINT_IARB; 4612 #endif 4613 if ((target == -1 || cp->target == target) && 4614 (lun == -1 || cp->lun == lun) && 4615 (task == -1 || cp->tag == task)) { 4616 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4617 sym_remque(&cp->link_ccbq); 4618 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4619 } 4620 else { 4621 if (i != j) 4622 np->squeue[j] = np->squeue[i]; 4623 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4624 } 4625 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4626 } 4627 if (i != j) /* Copy back the idle task if needed */ 4628 np->squeue[j] = np->squeue[i]; 4629 np->squeueput = j; /* Update our current start queue pointer */ 4630 4631 return (i - j) / 2; 4632 } 4633 4634 /* 4635 * Complete all CCBs queued to the COMP queue. 4636 * 4637 * These CCBs are assumed: 4638 * - Not to be referenced either by devices or 4639 * SCRIPTS-related queues and datas. 4640 * - To have to be completed with an error condition 4641 * or requeued. 4642 * 4643 * The device queue freeze count is incremented 4644 * for each CCB that does not prevent this. 4645 * This function is called when all CCBs involved 4646 * in error handling/recovery have been reaped. 4647 */ 4648 static void 4649 sym_flush_comp_queue(hcb_p np, int cam_status) 4650 { 4651 SYM_QUEHEAD *qp; 4652 ccb_p cp; 4653 4654 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4655 union ccb *ccb; 4656 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4657 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4658 /* Leave quiet CCBs waiting for resources */ 4659 if (cp->host_status == HS_WAIT) 4660 continue; 4661 ccb = cp->cam_ccb; 4662 if (cam_status) 4663 sym_set_cam_status(ccb, cam_status); 4664 sym_freeze_cam_ccb(ccb); 4665 sym_xpt_done(np, ccb, cp); 4666 sym_free_ccb(np, cp); 4667 } 4668 } 4669 4670 /* 4671 * chip handler for bad SCSI status condition 4672 * 4673 * In case of bad SCSI status, we unqueue all the tasks 4674 * currently queued to the controller but not yet started 4675 * and then restart the SCRIPTS processor immediately. 4676 * 4677 * QUEUE FULL and BUSY conditions are handled the same way. 4678 * Basically all the not yet started tasks are requeued in 4679 * device queue and the queue is frozen until a completion. 4680 * 4681 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4682 * the CCB of the failed command to prepare a REQUEST SENSE 4683 * SCSI command and queue it to the controller queue. 4684 * 4685 * SCRATCHA is assumed to have been loaded with STARTPOS 4686 * before the SCRIPTS called the C code. 4687 */ 4688 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4689 { 4690 tcb_p tp = &np->target[cp->target]; 4691 u32 startp; 4692 u_char s_status = cp->ssss_status; 4693 u_char h_flags = cp->host_flags; 4694 int msglen; 4695 int nego; 4696 int i; 4697 4698 SYM_LOCK_ASSERT(MA_OWNED); 4699 4700 /* 4701 * Compute the index of the next job to start from SCRIPTS. 4702 */ 4703 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4704 4705 /* 4706 * The last CCB queued used for IARB hint may be 4707 * no longer relevant. Forget it. 4708 */ 4709 #ifdef SYM_CONF_IARB_SUPPORT 4710 if (np->last_cp) 4711 np->last_cp = NULL; 4712 #endif 4713 4714 /* 4715 * Now deal with the SCSI status. 4716 */ 4717 switch(s_status) { 4718 case S_BUSY: 4719 case S_QUEUE_FULL: 4720 if (sym_verbose >= 2) { 4721 PRINT_ADDR(cp); 4722 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4723 } 4724 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4725 sym_complete_error (np, cp); 4726 break; 4727 case S_TERMINATED: 4728 case S_CHECK_COND: 4729 /* 4730 * If we get an SCSI error when requesting sense, give up. 4731 */ 4732 if (h_flags & HF_SENSE) { 4733 sym_complete_error (np, cp); 4734 break; 4735 } 4736 4737 /* 4738 * Dequeue all queued CCBs for that device not yet started, 4739 * and restart the SCRIPTS processor immediately. 4740 */ 4741 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4742 OUTL_DSP (SCRIPTA_BA (np, start)); 4743 4744 /* 4745 * Save some info of the actual IO. 4746 * Compute the data residual. 4747 */ 4748 cp->sv_scsi_status = cp->ssss_status; 4749 cp->sv_xerr_status = cp->xerr_status; 4750 cp->sv_resid = sym_compute_residual(np, cp); 4751 4752 /* 4753 * Prepare all needed data structures for 4754 * requesting sense data. 4755 */ 4756 4757 /* 4758 * identify message 4759 */ 4760 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4761 msglen = 1; 4762 4763 /* 4764 * If we are currently using anything different from 4765 * async. 8 bit data transfers with that target, 4766 * start a negotiation, since the device may want 4767 * to report us a UNIT ATTENTION condition due to 4768 * a cause we currently ignore, and we donnot want 4769 * to be stuck with WIDE and/or SYNC data transfer. 4770 * 4771 * cp->nego_status is filled by sym_prepare_nego(). 4772 */ 4773 cp->nego_status = 0; 4774 nego = 0; 4775 if (tp->tinfo.current.options & PPR_OPT_MASK) 4776 nego = NS_PPR; 4777 else if (tp->tinfo.current.width != BUS_8_BIT) 4778 nego = NS_WIDE; 4779 else if (tp->tinfo.current.offset != 0) 4780 nego = NS_SYNC; 4781 if (nego) 4782 msglen += 4783 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4784 /* 4785 * Message table indirect structure. 4786 */ 4787 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4788 cp->phys.smsg.size = cpu_to_scr(msglen); 4789 4790 /* 4791 * sense command 4792 */ 4793 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4794 cp->phys.cmd.size = cpu_to_scr(6); 4795 4796 /* 4797 * patch requested size into sense command 4798 */ 4799 cp->sensecmd[0] = 0x03; 4800 cp->sensecmd[1] = cp->lun << 5; 4801 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4802 cp->sensecmd[1] = 0; 4803 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4804 cp->data_len = SYM_SNS_BBUF_LEN; 4805 4806 /* 4807 * sense data 4808 */ 4809 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4810 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4811 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4812 4813 /* 4814 * requeue the command. 4815 */ 4816 startp = SCRIPTB_BA (np, sdata_in); 4817 4818 cp->phys.head.savep = cpu_to_scr(startp); 4819 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4820 cp->phys.head.lastp = cpu_to_scr(startp); 4821 cp->startp = cpu_to_scr(startp); 4822 4823 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4824 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4825 cp->ssss_status = S_ILLEGAL; 4826 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4827 cp->xerr_status = 0; 4828 cp->extra_bytes = 0; 4829 4830 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4831 4832 /* 4833 * Requeue the command. 4834 */ 4835 sym_put_start_queue(np, cp); 4836 4837 /* 4838 * Give back to upper layer everything we have dequeued. 4839 */ 4840 sym_flush_comp_queue(np, 0); 4841 break; 4842 } 4843 } 4844 4845 /* 4846 * After a device has accepted some management message 4847 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4848 * a device signals a UNIT ATTENTION condition, some 4849 * tasks are thrown away by the device. We are required 4850 * to reflect that on our tasks list since the device 4851 * will never complete these tasks. 4852 * 4853 * This function move from the BUSY queue to the COMP 4854 * queue all disconnected CCBs for a given target that 4855 * match the following criteria: 4856 * - lun=-1 means any logical UNIT otherwise a given one. 4857 * - task=-1 means any task, otherwise a given one. 4858 */ 4859 static int 4860 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4861 { 4862 SYM_QUEHEAD qtmp, *qp; 4863 int i = 0; 4864 ccb_p cp; 4865 4866 /* 4867 * Move the entire BUSY queue to our temporary queue. 4868 */ 4869 sym_que_init(&qtmp); 4870 sym_que_splice(&np->busy_ccbq, &qtmp); 4871 sym_que_init(&np->busy_ccbq); 4872 4873 /* 4874 * Put all CCBs that matches our criteria into 4875 * the COMP queue and put back other ones into 4876 * the BUSY queue. 4877 */ 4878 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4879 union ccb *ccb; 4880 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4881 ccb = cp->cam_ccb; 4882 if (cp->host_status != HS_DISCONNECT || 4883 cp->target != target || 4884 (lun != -1 && cp->lun != lun) || 4885 (task != -1 && 4886 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4887 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4888 continue; 4889 } 4890 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4891 4892 /* Preserve the software timeout condition */ 4893 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4894 sym_set_cam_status(ccb, cam_status); 4895 ++i; 4896 #if 0 4897 printf("XXXX TASK @%p CLEARED\n", cp); 4898 #endif 4899 } 4900 return i; 4901 } 4902 4903 /* 4904 * chip handler for TASKS recovery 4905 * 4906 * We cannot safely abort a command, while the SCRIPTS 4907 * processor is running, since we just would be in race 4908 * with it. 4909 * 4910 * As long as we have tasks to abort, we keep the SEM 4911 * bit set in the ISTAT. When this bit is set, the 4912 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4913 * each time it enters the scheduler. 4914 * 4915 * If we have to reset a target, clear tasks of a unit, 4916 * or to perform the abort of a disconnected job, we 4917 * restart the SCRIPTS for selecting the target. Once 4918 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4919 * If it loses arbitration, the SCRIPTS will interrupt again 4920 * the next time it will enter its scheduler, and so on ... 4921 * 4922 * On SIR_TARGET_SELECTED, we scan for the more 4923 * appropriate thing to do: 4924 * 4925 * - If nothing, we just sent a M_ABORT message to the 4926 * target to get rid of the useless SCSI bus ownership. 4927 * According to the specs, no tasks shall be affected. 4928 * - If the target is to be reset, we send it a M_RESET 4929 * message. 4930 * - If a logical UNIT is to be cleared , we send the 4931 * IDENTIFY(lun) + M_ABORT. 4932 * - If an untagged task is to be aborted, we send the 4933 * IDENTIFY(lun) + M_ABORT. 4934 * - If a tagged task is to be aborted, we send the 4935 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4936 * 4937 * Once our 'kiss of death' :) message has been accepted 4938 * by the target, the SCRIPTS interrupts again 4939 * (SIR_ABORT_SENT). On this interrupt, we complete 4940 * all the CCBs that should have been aborted by the 4941 * target according to our message. 4942 */ 4943 static void sym_sir_task_recovery(hcb_p np, int num) 4944 { 4945 SYM_QUEHEAD *qp; 4946 ccb_p cp; 4947 tcb_p tp; 4948 int target=-1, lun=-1, task; 4949 int i, k; 4950 4951 switch(num) { 4952 /* 4953 * The SCRIPTS processor stopped before starting 4954 * the next command in order to allow us to perform 4955 * some task recovery. 4956 */ 4957 case SIR_SCRIPT_STOPPED: 4958 /* 4959 * Do we have any target to reset or unit to clear ? 4960 */ 4961 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4962 tp = &np->target[i]; 4963 if (tp->to_reset || 4964 (tp->lun0p && tp->lun0p->to_clear)) { 4965 target = i; 4966 break; 4967 } 4968 if (!tp->lunmp) 4969 continue; 4970 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4971 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4972 target = i; 4973 break; 4974 } 4975 } 4976 if (target != -1) 4977 break; 4978 } 4979 4980 /* 4981 * If not, walk the busy queue for any 4982 * disconnected CCB to be aborted. 4983 */ 4984 if (target == -1) { 4985 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4986 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4987 if (cp->host_status != HS_DISCONNECT) 4988 continue; 4989 if (cp->to_abort) { 4990 target = cp->target; 4991 break; 4992 } 4993 } 4994 } 4995 4996 /* 4997 * If some target is to be selected, 4998 * prepare and start the selection. 4999 */ 5000 if (target != -1) { 5001 tp = &np->target[target]; 5002 np->abrt_sel.sel_id = target; 5003 np->abrt_sel.sel_scntl3 = tp->head.wval; 5004 np->abrt_sel.sel_sxfer = tp->head.sval; 5005 OUTL(nc_dsa, np->hcb_ba); 5006 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 5007 return; 5008 } 5009 5010 /* 5011 * Now look for a CCB to abort that haven't started yet. 5012 * Btw, the SCRIPTS processor is still stopped, so 5013 * we are not in race. 5014 */ 5015 i = 0; 5016 cp = NULL; 5017 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5018 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5019 if (cp->host_status != HS_BUSY && 5020 cp->host_status != HS_NEGOTIATE) 5021 continue; 5022 if (!cp->to_abort) 5023 continue; 5024 #ifdef SYM_CONF_IARB_SUPPORT 5025 /* 5026 * If we are using IMMEDIATE ARBITRATION, we donnot 5027 * want to cancel the last queued CCB, since the 5028 * SCRIPTS may have anticipated the selection. 5029 */ 5030 if (cp == np->last_cp) { 5031 cp->to_abort = 0; 5032 continue; 5033 } 5034 #endif 5035 i = 1; /* Means we have found some */ 5036 break; 5037 } 5038 if (!i) { 5039 /* 5040 * We are done, so we donnot need 5041 * to synchronize with the SCRIPTS anylonger. 5042 * Remove the SEM flag from the ISTAT. 5043 */ 5044 np->istat_sem = 0; 5045 OUTB (nc_istat, SIGP); 5046 break; 5047 } 5048 /* 5049 * Compute index of next position in the start 5050 * queue the SCRIPTS intends to start and dequeue 5051 * all CCBs for that device that haven't been started. 5052 */ 5053 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5054 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5055 5056 /* 5057 * Make sure at least our IO to abort has been dequeued. 5058 */ 5059 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5060 5061 /* 5062 * Keep track in cam status of the reason of the abort. 5063 */ 5064 if (cp->to_abort == 2) 5065 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5066 else 5067 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5068 5069 /* 5070 * Complete with error everything that we have dequeued. 5071 */ 5072 sym_flush_comp_queue(np, 0); 5073 break; 5074 /* 5075 * The SCRIPTS processor has selected a target 5076 * we may have some manual recovery to perform for. 5077 */ 5078 case SIR_TARGET_SELECTED: 5079 target = (INB (nc_sdid) & 0xf); 5080 tp = &np->target[target]; 5081 5082 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5083 5084 /* 5085 * If the target is to be reset, prepare a 5086 * M_RESET message and clear the to_reset flag 5087 * since we donnot expect this operation to fail. 5088 */ 5089 if (tp->to_reset) { 5090 np->abrt_msg[0] = M_RESET; 5091 np->abrt_tbl.size = 1; 5092 tp->to_reset = 0; 5093 break; 5094 } 5095 5096 /* 5097 * Otherwise, look for some logical unit to be cleared. 5098 */ 5099 if (tp->lun0p && tp->lun0p->to_clear) 5100 lun = 0; 5101 else if (tp->lunmp) { 5102 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5103 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5104 lun = k; 5105 break; 5106 } 5107 } 5108 } 5109 5110 /* 5111 * If a logical unit is to be cleared, prepare 5112 * an IDENTIFY(lun) + ABORT MESSAGE. 5113 */ 5114 if (lun != -1) { 5115 lcb_p lp = sym_lp(np, tp, lun); 5116 lp->to_clear = 0; /* We donnot expect to fail here */ 5117 np->abrt_msg[0] = M_IDENTIFY | lun; 5118 np->abrt_msg[1] = M_ABORT; 5119 np->abrt_tbl.size = 2; 5120 break; 5121 } 5122 5123 /* 5124 * Otherwise, look for some disconnected job to 5125 * abort for this target. 5126 */ 5127 i = 0; 5128 cp = NULL; 5129 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5130 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5131 if (cp->host_status != HS_DISCONNECT) 5132 continue; 5133 if (cp->target != target) 5134 continue; 5135 if (!cp->to_abort) 5136 continue; 5137 i = 1; /* Means we have some */ 5138 break; 5139 } 5140 5141 /* 5142 * If we have none, probably since the device has 5143 * completed the command before we won abitration, 5144 * send a M_ABORT message without IDENTIFY. 5145 * According to the specs, the device must just 5146 * disconnect the BUS and not abort any task. 5147 */ 5148 if (!i) { 5149 np->abrt_msg[0] = M_ABORT; 5150 np->abrt_tbl.size = 1; 5151 break; 5152 } 5153 5154 /* 5155 * We have some task to abort. 5156 * Set the IDENTIFY(lun) 5157 */ 5158 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5159 5160 /* 5161 * If we want to abort an untagged command, we 5162 * will send an IDENTIFY + M_ABORT. 5163 * Otherwise (tagged command), we will send 5164 * an IDENTIFY + task attributes + ABORT TAG. 5165 */ 5166 if (cp->tag == NO_TAG) { 5167 np->abrt_msg[1] = M_ABORT; 5168 np->abrt_tbl.size = 2; 5169 } 5170 else { 5171 np->abrt_msg[1] = cp->scsi_smsg[1]; 5172 np->abrt_msg[2] = cp->scsi_smsg[2]; 5173 np->abrt_msg[3] = M_ABORT_TAG; 5174 np->abrt_tbl.size = 4; 5175 } 5176 /* 5177 * Keep track of software timeout condition, since the 5178 * peripheral driver may not count retries on abort 5179 * conditions not due to timeout. 5180 */ 5181 if (cp->to_abort == 2) 5182 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5183 cp->to_abort = 0; /* We donnot expect to fail here */ 5184 break; 5185 5186 /* 5187 * The target has accepted our message and switched 5188 * to BUS FREE phase as we expected. 5189 */ 5190 case SIR_ABORT_SENT: 5191 target = (INB (nc_sdid) & 0xf); 5192 tp = &np->target[target]; 5193 5194 /* 5195 ** If we didn't abort anything, leave here. 5196 */ 5197 if (np->abrt_msg[0] == M_ABORT) 5198 break; 5199 5200 /* 5201 * If we sent a M_RESET, then a hardware reset has 5202 * been performed by the target. 5203 * - Reset everything to async 8 bit 5204 * - Tell ourself to negotiate next time :-) 5205 * - Prepare to clear all disconnected CCBs for 5206 * this target from our task list (lun=task=-1) 5207 */ 5208 lun = -1; 5209 task = -1; 5210 if (np->abrt_msg[0] == M_RESET) { 5211 tp->head.sval = 0; 5212 tp->head.wval = np->rv_scntl3; 5213 tp->head.uval = 0; 5214 tp->tinfo.current.period = 0; 5215 tp->tinfo.current.offset = 0; 5216 tp->tinfo.current.width = BUS_8_BIT; 5217 tp->tinfo.current.options = 0; 5218 } 5219 5220 /* 5221 * Otherwise, check for the LUN and TASK(s) 5222 * concerned by the cancelation. 5223 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5224 * or an ABORT message :-) 5225 */ 5226 else { 5227 lun = np->abrt_msg[0] & 0x3f; 5228 if (np->abrt_msg[1] == M_ABORT_TAG) 5229 task = np->abrt_msg[2]; 5230 } 5231 5232 /* 5233 * Complete all the CCBs the device should have 5234 * aborted due to our 'kiss of death' message. 5235 */ 5236 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5237 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5238 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5239 sym_flush_comp_queue(np, 0); 5240 5241 /* 5242 * If we sent a BDR, make uper layer aware of that. 5243 */ 5244 if (np->abrt_msg[0] == M_RESET) 5245 xpt_async(AC_SENT_BDR, np->path, NULL); 5246 break; 5247 } 5248 5249 /* 5250 * Print to the log the message we intend to send. 5251 */ 5252 if (num == SIR_TARGET_SELECTED) { 5253 PRINT_TARGET(np, target); 5254 sym_printl_hex("control msgout:", np->abrt_msg, 5255 np->abrt_tbl.size); 5256 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5257 } 5258 5259 /* 5260 * Let the SCRIPTS processor continue. 5261 */ 5262 OUTONB_STD (); 5263 } 5264 5265 /* 5266 * Gerard's alchemy:) that deals with with the data 5267 * pointer for both MDP and the residual calculation. 5268 * 5269 * I didn't want to bloat the code by more than 200 5270 * lignes for the handling of both MDP and the residual. 5271 * This has been achieved by using a data pointer 5272 * representation consisting in an index in the data 5273 * array (dp_sg) and a negative offset (dp_ofs) that 5274 * have the following meaning: 5275 * 5276 * - dp_sg = SYM_CONF_MAX_SG 5277 * we are at the end of the data script. 5278 * - dp_sg < SYM_CONF_MAX_SG 5279 * dp_sg points to the next entry of the scatter array 5280 * we want to transfer. 5281 * - dp_ofs < 0 5282 * dp_ofs represents the residual of bytes of the 5283 * previous entry scatter entry we will send first. 5284 * - dp_ofs = 0 5285 * no residual to send first. 5286 * 5287 * The function sym_evaluate_dp() accepts an arbitray 5288 * offset (basically from the MDP message) and returns 5289 * the corresponding values of dp_sg and dp_ofs. 5290 */ 5291 5292 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5293 { 5294 u32 dp_scr; 5295 int dp_ofs, dp_sg, dp_sgmin; 5296 int tmp; 5297 struct sym_pmc *pm; 5298 5299 /* 5300 * Compute the resulted data pointer in term of a script 5301 * address within some DATA script and a signed byte offset. 5302 */ 5303 dp_scr = scr; 5304 dp_ofs = *ofs; 5305 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5306 pm = &cp->phys.pm0; 5307 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5308 pm = &cp->phys.pm1; 5309 else 5310 pm = NULL; 5311 5312 if (pm) { 5313 dp_scr = scr_to_cpu(pm->ret); 5314 dp_ofs -= scr_to_cpu(pm->sg.size); 5315 } 5316 5317 /* 5318 * If we are auto-sensing, then we are done. 5319 */ 5320 if (cp->host_flags & HF_SENSE) { 5321 *ofs = dp_ofs; 5322 return 0; 5323 } 5324 5325 /* 5326 * Deduce the index of the sg entry. 5327 * Keep track of the index of the first valid entry. 5328 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5329 * end of the data. 5330 */ 5331 tmp = scr_to_cpu(cp->phys.head.goalp); 5332 dp_sg = SYM_CONF_MAX_SG; 5333 if (dp_scr != tmp) 5334 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5335 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5336 5337 /* 5338 * Move to the sg entry the data pointer belongs to. 5339 * 5340 * If we are inside the data area, we expect result to be: 5341 * 5342 * Either, 5343 * dp_ofs = 0 and dp_sg is the index of the sg entry 5344 * the data pointer belongs to (or the end of the data) 5345 * Or, 5346 * dp_ofs < 0 and dp_sg is the index of the sg entry 5347 * the data pointer belongs to + 1. 5348 */ 5349 if (dp_ofs < 0) { 5350 int n; 5351 while (dp_sg > dp_sgmin) { 5352 --dp_sg; 5353 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5354 n = dp_ofs + (tmp & 0xffffff); 5355 if (n > 0) { 5356 ++dp_sg; 5357 break; 5358 } 5359 dp_ofs = n; 5360 } 5361 } 5362 else if (dp_ofs > 0) { 5363 while (dp_sg < SYM_CONF_MAX_SG) { 5364 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5365 dp_ofs -= (tmp & 0xffffff); 5366 ++dp_sg; 5367 if (dp_ofs <= 0) 5368 break; 5369 } 5370 } 5371 5372 /* 5373 * Make sure the data pointer is inside the data area. 5374 * If not, return some error. 5375 */ 5376 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5377 goto out_err; 5378 else if (dp_sg > SYM_CONF_MAX_SG || 5379 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5380 goto out_err; 5381 5382 /* 5383 * Save the extreme pointer if needed. 5384 */ 5385 if (dp_sg > cp->ext_sg || 5386 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5387 cp->ext_sg = dp_sg; 5388 cp->ext_ofs = dp_ofs; 5389 } 5390 5391 /* 5392 * Return data. 5393 */ 5394 *ofs = dp_ofs; 5395 return dp_sg; 5396 5397 out_err: 5398 return -1; 5399 } 5400 5401 /* 5402 * chip handler for MODIFY DATA POINTER MESSAGE 5403 * 5404 * We also call this function on IGNORE WIDE RESIDUE 5405 * messages that do not match a SWIDE full condition. 5406 * Btw, we assume in that situation that such a message 5407 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5408 */ 5409 5410 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5411 { 5412 int dp_ofs = ofs; 5413 u32 dp_scr = INL (nc_temp); 5414 u32 dp_ret; 5415 u32 tmp; 5416 u_char hflags; 5417 int dp_sg; 5418 struct sym_pmc *pm; 5419 5420 /* 5421 * Not supported for auto-sense. 5422 */ 5423 if (cp->host_flags & HF_SENSE) 5424 goto out_reject; 5425 5426 /* 5427 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5428 * to the resulted data pointer. 5429 */ 5430 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5431 if (dp_sg < 0) 5432 goto out_reject; 5433 5434 /* 5435 * And our alchemy:) allows to easily calculate the data 5436 * script address we want to return for the next data phase. 5437 */ 5438 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5439 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5440 5441 /* 5442 * If offset / scatter entry is zero we donnot need 5443 * a context for the new current data pointer. 5444 */ 5445 if (dp_ofs == 0) { 5446 dp_scr = dp_ret; 5447 goto out_ok; 5448 } 5449 5450 /* 5451 * Get a context for the new current data pointer. 5452 */ 5453 hflags = INB (HF_PRT); 5454 5455 if (hflags & HF_DP_SAVED) 5456 hflags ^= HF_ACT_PM; 5457 5458 if (!(hflags & HF_ACT_PM)) { 5459 pm = &cp->phys.pm0; 5460 dp_scr = SCRIPTA_BA (np, pm0_data); 5461 } 5462 else { 5463 pm = &cp->phys.pm1; 5464 dp_scr = SCRIPTA_BA (np, pm1_data); 5465 } 5466 5467 hflags &= ~(HF_DP_SAVED); 5468 5469 OUTB (HF_PRT, hflags); 5470 5471 /* 5472 * Set up the new current data pointer. 5473 * ofs < 0 there, and for the next data phase, we 5474 * want to transfer part of the data of the sg entry 5475 * corresponding to index dp_sg-1 prior to returning 5476 * to the main data script. 5477 */ 5478 pm->ret = cpu_to_scr(dp_ret); 5479 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5480 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5481 pm->sg.addr = cpu_to_scr(tmp); 5482 pm->sg.size = cpu_to_scr(-dp_ofs); 5483 5484 out_ok: 5485 OUTL (nc_temp, dp_scr); 5486 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5487 return; 5488 5489 out_reject: 5490 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5491 } 5492 5493 5494 /* 5495 * chip calculation of the data residual. 5496 * 5497 * As I used to say, the requirement of data residual 5498 * in SCSI is broken, useless and cannot be achieved 5499 * without huge complexity. 5500 * But most OSes and even the official CAM require it. 5501 * When stupidity happens to be so widely spread inside 5502 * a community, it gets hard to convince. 5503 * 5504 * Anyway, I don't care, since I am not going to use 5505 * any software that considers this data residual as 5506 * a relevant information. :) 5507 */ 5508 5509 static int sym_compute_residual(hcb_p np, ccb_p cp) 5510 { 5511 int dp_sg, dp_sgmin, resid = 0; 5512 int dp_ofs = 0; 5513 5514 /* 5515 * Check for some data lost or just thrown away. 5516 * We are not required to be quite accurate in this 5517 * situation. Btw, if we are odd for output and the 5518 * device claims some more data, it may well happen 5519 * than our residual be zero. :-) 5520 */ 5521 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5522 if (cp->xerr_status & XE_EXTRA_DATA) 5523 resid -= cp->extra_bytes; 5524 if (cp->xerr_status & XE_SODL_UNRUN) 5525 ++resid; 5526 if (cp->xerr_status & XE_SWIDE_OVRUN) 5527 --resid; 5528 } 5529 5530 /* 5531 * If all data has been transferred, 5532 * there is no residual. 5533 */ 5534 if (cp->phys.head.lastp == cp->phys.head.goalp) 5535 return resid; 5536 5537 /* 5538 * If no data transfer occurs, or if the data 5539 * pointer is weird, return full residual. 5540 */ 5541 if (cp->startp == cp->phys.head.lastp || 5542 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5543 &dp_ofs) < 0) { 5544 return cp->data_len; 5545 } 5546 5547 /* 5548 * If we were auto-sensing, then we are done. 5549 */ 5550 if (cp->host_flags & HF_SENSE) { 5551 return -dp_ofs; 5552 } 5553 5554 /* 5555 * We are now full comfortable in the computation 5556 * of the data residual (2's complement). 5557 */ 5558 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5559 resid = -cp->ext_ofs; 5560 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5561 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5562 resid += (tmp & 0xffffff); 5563 } 5564 5565 /* 5566 * Hopefully, the result is not too wrong. 5567 */ 5568 return resid; 5569 } 5570 5571 /* 5572 * Print out the content of a SCSI message. 5573 */ 5574 5575 static int sym_show_msg (u_char * msg) 5576 { 5577 u_char i; 5578 printf ("%x",*msg); 5579 if (*msg==M_EXTENDED) { 5580 for (i=1;i<8;i++) { 5581 if (i-1>msg[1]) break; 5582 printf ("-%x",msg[i]); 5583 }; 5584 return (i+1); 5585 } else if ((*msg & 0xf0) == 0x20) { 5586 printf ("-%x",msg[1]); 5587 return (2); 5588 }; 5589 return (1); 5590 } 5591 5592 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5593 { 5594 PRINT_ADDR(cp); 5595 if (label) 5596 printf ("%s: ", label); 5597 5598 (void) sym_show_msg (msg); 5599 printf (".\n"); 5600 } 5601 5602 /* 5603 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5604 * 5605 * When we try to negotiate, we append the negotiation message 5606 * to the identify and (maybe) simple tag message. 5607 * The host status field is set to HS_NEGOTIATE to mark this 5608 * situation. 5609 * 5610 * If the target doesn't answer this message immediately 5611 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5612 * will be raised eventually. 5613 * The handler removes the HS_NEGOTIATE status, and sets the 5614 * negotiated value to the default (async / nowide). 5615 * 5616 * If we receive a matching answer immediately, we check it 5617 * for validity, and set the values. 5618 * 5619 * If we receive a Reject message immediately, we assume the 5620 * negotiation has failed, and fall back to standard values. 5621 * 5622 * If we receive a negotiation message while not in HS_NEGOTIATE 5623 * state, it's a target initiated negotiation. We prepare a 5624 * (hopefully) valid answer, set our parameters, and send back 5625 * this answer to the target. 5626 * 5627 * If the target doesn't fetch the answer (no message out phase), 5628 * we assume the negotiation has failed, and fall back to default 5629 * settings (SIR_NEGO_PROTO interrupt). 5630 * 5631 * When we set the values, we adjust them in all ccbs belonging 5632 * to this target, in the controller's register, and in the "phys" 5633 * field of the controller's struct sym_hcb. 5634 */ 5635 5636 /* 5637 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5638 */ 5639 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5640 { 5641 u_char chg, ofs, per, fak, div; 5642 int req = 1; 5643 5644 /* 5645 * Synchronous request message received. 5646 */ 5647 if (DEBUG_FLAGS & DEBUG_NEGO) { 5648 sym_print_msg(cp, "sync msgin", np->msgin); 5649 }; 5650 5651 /* 5652 * request or answer ? 5653 */ 5654 if (INB (HS_PRT) == HS_NEGOTIATE) { 5655 OUTB (HS_PRT, HS_BUSY); 5656 if (cp->nego_status && cp->nego_status != NS_SYNC) 5657 goto reject_it; 5658 req = 0; 5659 } 5660 5661 /* 5662 * get requested values. 5663 */ 5664 chg = 0; 5665 per = np->msgin[3]; 5666 ofs = np->msgin[4]; 5667 5668 /* 5669 * check values against our limits. 5670 */ 5671 if (ofs) { 5672 if (ofs > np->maxoffs) 5673 {chg = 1; ofs = np->maxoffs;} 5674 if (req) { 5675 if (ofs > tp->tinfo.user.offset) 5676 {chg = 1; ofs = tp->tinfo.user.offset;} 5677 } 5678 } 5679 5680 if (ofs) { 5681 if (per < np->minsync) 5682 {chg = 1; per = np->minsync;} 5683 if (req) { 5684 if (per < tp->tinfo.user.period) 5685 {chg = 1; per = tp->tinfo.user.period;} 5686 } 5687 } 5688 5689 div = fak = 0; 5690 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5691 goto reject_it; 5692 5693 if (DEBUG_FLAGS & DEBUG_NEGO) { 5694 PRINT_ADDR(cp); 5695 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5696 ofs, per, div, fak, chg); 5697 } 5698 5699 /* 5700 * This was an answer message 5701 */ 5702 if (req == 0) { 5703 if (chg) /* Answer wasn't acceptable. */ 5704 goto reject_it; 5705 sym_setsync (np, cp, ofs, per, div, fak); 5706 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5707 return; 5708 } 5709 5710 /* 5711 * It was a request. Set value and 5712 * prepare an answer message 5713 */ 5714 sym_setsync (np, cp, ofs, per, div, fak); 5715 5716 np->msgout[0] = M_EXTENDED; 5717 np->msgout[1] = 3; 5718 np->msgout[2] = M_X_SYNC_REQ; 5719 np->msgout[3] = per; 5720 np->msgout[4] = ofs; 5721 5722 cp->nego_status = NS_SYNC; 5723 5724 if (DEBUG_FLAGS & DEBUG_NEGO) { 5725 sym_print_msg(cp, "sync msgout", np->msgout); 5726 } 5727 5728 np->msgin [0] = M_NOOP; 5729 5730 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5731 return; 5732 reject_it: 5733 sym_setsync (np, cp, 0, 0, 0, 0); 5734 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5735 } 5736 5737 /* 5738 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5739 */ 5740 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5741 { 5742 u_char chg, ofs, per, fak, dt, div, wide; 5743 int req = 1; 5744 5745 /* 5746 * Synchronous request message received. 5747 */ 5748 if (DEBUG_FLAGS & DEBUG_NEGO) { 5749 sym_print_msg(cp, "ppr msgin", np->msgin); 5750 }; 5751 5752 /* 5753 * get requested values. 5754 */ 5755 chg = 0; 5756 per = np->msgin[3]; 5757 ofs = np->msgin[5]; 5758 wide = np->msgin[6]; 5759 dt = np->msgin[7] & PPR_OPT_DT; 5760 5761 /* 5762 * request or answer ? 5763 */ 5764 if (INB (HS_PRT) == HS_NEGOTIATE) { 5765 OUTB (HS_PRT, HS_BUSY); 5766 if (cp->nego_status && cp->nego_status != NS_PPR) 5767 goto reject_it; 5768 req = 0; 5769 } 5770 5771 /* 5772 * check values against our limits. 5773 */ 5774 if (wide > np->maxwide) 5775 {chg = 1; wide = np->maxwide;} 5776 if (!wide || !(np->features & FE_ULTRA3)) 5777 dt &= ~PPR_OPT_DT; 5778 if (req) { 5779 if (wide > tp->tinfo.user.width) 5780 {chg = 1; wide = tp->tinfo.user.width;} 5781 } 5782 5783 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5784 dt &= ~PPR_OPT_DT; 5785 5786 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5787 5788 if (ofs) { 5789 if (dt) { 5790 if (ofs > np->maxoffs_dt) 5791 {chg = 1; ofs = np->maxoffs_dt;} 5792 } 5793 else if (ofs > np->maxoffs) 5794 {chg = 1; ofs = np->maxoffs;} 5795 if (req) { 5796 if (ofs > tp->tinfo.user.offset) 5797 {chg = 1; ofs = tp->tinfo.user.offset;} 5798 } 5799 } 5800 5801 if (ofs) { 5802 if (dt) { 5803 if (per < np->minsync_dt) 5804 {chg = 1; per = np->minsync_dt;} 5805 } 5806 else if (per < np->minsync) 5807 {chg = 1; per = np->minsync;} 5808 if (req) { 5809 if (per < tp->tinfo.user.period) 5810 {chg = 1; per = tp->tinfo.user.period;} 5811 } 5812 } 5813 5814 div = fak = 0; 5815 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5816 goto reject_it; 5817 5818 if (DEBUG_FLAGS & DEBUG_NEGO) { 5819 PRINT_ADDR(cp); 5820 printf ("ppr: " 5821 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5822 dt, ofs, per, wide, div, fak, chg); 5823 } 5824 5825 /* 5826 * It was an answer. 5827 */ 5828 if (req == 0) { 5829 if (chg) /* Answer wasn't acceptable */ 5830 goto reject_it; 5831 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5832 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5833 return; 5834 } 5835 5836 /* 5837 * It was a request. Set value and 5838 * prepare an answer message 5839 */ 5840 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5841 5842 np->msgout[0] = M_EXTENDED; 5843 np->msgout[1] = 6; 5844 np->msgout[2] = M_X_PPR_REQ; 5845 np->msgout[3] = per; 5846 np->msgout[4] = 0; 5847 np->msgout[5] = ofs; 5848 np->msgout[6] = wide; 5849 np->msgout[7] = dt; 5850 5851 cp->nego_status = NS_PPR; 5852 5853 if (DEBUG_FLAGS & DEBUG_NEGO) { 5854 sym_print_msg(cp, "ppr msgout", np->msgout); 5855 } 5856 5857 np->msgin [0] = M_NOOP; 5858 5859 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5860 return; 5861 reject_it: 5862 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5863 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5864 /* 5865 * If it was a device response that should result in 5866 * ST, we may want to try a legacy negotiation later. 5867 */ 5868 if (!req && !dt) { 5869 tp->tinfo.goal.options = 0; 5870 tp->tinfo.goal.width = wide; 5871 tp->tinfo.goal.period = per; 5872 tp->tinfo.goal.offset = ofs; 5873 } 5874 } 5875 5876 /* 5877 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5878 */ 5879 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5880 { 5881 u_char chg, wide; 5882 int req = 1; 5883 5884 /* 5885 * Wide request message received. 5886 */ 5887 if (DEBUG_FLAGS & DEBUG_NEGO) { 5888 sym_print_msg(cp, "wide msgin", np->msgin); 5889 }; 5890 5891 /* 5892 * Is it a request from the device? 5893 */ 5894 if (INB (HS_PRT) == HS_NEGOTIATE) { 5895 OUTB (HS_PRT, HS_BUSY); 5896 if (cp->nego_status && cp->nego_status != NS_WIDE) 5897 goto reject_it; 5898 req = 0; 5899 } 5900 5901 /* 5902 * get requested values. 5903 */ 5904 chg = 0; 5905 wide = np->msgin[3]; 5906 5907 /* 5908 * check values against driver limits. 5909 */ 5910 if (wide > np->maxwide) 5911 {chg = 1; wide = np->maxwide;} 5912 if (req) { 5913 if (wide > tp->tinfo.user.width) 5914 {chg = 1; wide = tp->tinfo.user.width;} 5915 } 5916 5917 if (DEBUG_FLAGS & DEBUG_NEGO) { 5918 PRINT_ADDR(cp); 5919 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5920 } 5921 5922 /* 5923 * This was an answer message 5924 */ 5925 if (req == 0) { 5926 if (chg) /* Answer wasn't acceptable. */ 5927 goto reject_it; 5928 sym_setwide (np, cp, wide); 5929 5930 /* 5931 * Negotiate for SYNC immediately after WIDE response. 5932 * This allows to negotiate for both WIDE and SYNC on 5933 * a single SCSI command (Suggested by Justin Gibbs). 5934 */ 5935 if (tp->tinfo.goal.offset) { 5936 np->msgout[0] = M_EXTENDED; 5937 np->msgout[1] = 3; 5938 np->msgout[2] = M_X_SYNC_REQ; 5939 np->msgout[3] = tp->tinfo.goal.period; 5940 np->msgout[4] = tp->tinfo.goal.offset; 5941 5942 if (DEBUG_FLAGS & DEBUG_NEGO) { 5943 sym_print_msg(cp, "sync msgout", np->msgout); 5944 } 5945 5946 cp->nego_status = NS_SYNC; 5947 OUTB (HS_PRT, HS_NEGOTIATE); 5948 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5949 return; 5950 } 5951 5952 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5953 return; 5954 }; 5955 5956 /* 5957 * It was a request, set value and 5958 * prepare an answer message 5959 */ 5960 sym_setwide (np, cp, wide); 5961 5962 np->msgout[0] = M_EXTENDED; 5963 np->msgout[1] = 2; 5964 np->msgout[2] = M_X_WIDE_REQ; 5965 np->msgout[3] = wide; 5966 5967 np->msgin [0] = M_NOOP; 5968 5969 cp->nego_status = NS_WIDE; 5970 5971 if (DEBUG_FLAGS & DEBUG_NEGO) { 5972 sym_print_msg(cp, "wide msgout", np->msgout); 5973 } 5974 5975 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5976 return; 5977 reject_it: 5978 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5979 } 5980 5981 /* 5982 * Reset SYNC or WIDE to default settings. 5983 * 5984 * Called when a negotiation does not succeed either 5985 * on rejection or on protocol error. 5986 * 5987 * If it was a PPR that made problems, we may want to 5988 * try a legacy negotiation later. 5989 */ 5990 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5991 { 5992 /* 5993 * any error in negotiation: 5994 * fall back to default mode. 5995 */ 5996 switch (cp->nego_status) { 5997 case NS_PPR: 5998 #if 0 5999 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6000 #else 6001 tp->tinfo.goal.options = 0; 6002 if (tp->tinfo.goal.period < np->minsync) 6003 tp->tinfo.goal.period = np->minsync; 6004 if (tp->tinfo.goal.offset > np->maxoffs) 6005 tp->tinfo.goal.offset = np->maxoffs; 6006 #endif 6007 break; 6008 case NS_SYNC: 6009 sym_setsync (np, cp, 0, 0, 0, 0); 6010 break; 6011 case NS_WIDE: 6012 sym_setwide (np, cp, 0); 6013 break; 6014 }; 6015 np->msgin [0] = M_NOOP; 6016 np->msgout[0] = M_NOOP; 6017 cp->nego_status = 0; 6018 } 6019 6020 /* 6021 * chip handler for MESSAGE REJECT received in response to 6022 * a WIDE or SYNCHRONOUS negotiation. 6023 */ 6024 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6025 { 6026 sym_nego_default(np, tp, cp); 6027 OUTB (HS_PRT, HS_BUSY); 6028 } 6029 6030 /* 6031 * chip exception handler for programmed interrupts. 6032 */ 6033 static void sym_int_sir (hcb_p np) 6034 { 6035 u_char num = INB (nc_dsps); 6036 u32 dsa = INL (nc_dsa); 6037 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6038 u_char target = INB (nc_sdid) & 0x0f; 6039 tcb_p tp = &np->target[target]; 6040 int tmp; 6041 6042 SYM_LOCK_ASSERT(MA_OWNED); 6043 6044 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6045 6046 switch (num) { 6047 /* 6048 * Command has been completed with error condition 6049 * or has been auto-sensed. 6050 */ 6051 case SIR_COMPLETE_ERROR: 6052 sym_complete_error(np, cp); 6053 return; 6054 /* 6055 * The C code is currently trying to recover from something. 6056 * Typically, user want to abort some command. 6057 */ 6058 case SIR_SCRIPT_STOPPED: 6059 case SIR_TARGET_SELECTED: 6060 case SIR_ABORT_SENT: 6061 sym_sir_task_recovery(np, num); 6062 return; 6063 /* 6064 * The device didn't go to MSG OUT phase after having 6065 * been selected with ATN. We donnot want to handle 6066 * that. 6067 */ 6068 case SIR_SEL_ATN_NO_MSG_OUT: 6069 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6070 sym_name (np), target); 6071 goto out_stuck; 6072 /* 6073 * The device didn't switch to MSG IN phase after 6074 * having reseleted the initiator. 6075 */ 6076 case SIR_RESEL_NO_MSG_IN: 6077 printf ("%s:%d: No MSG IN phase after reselection.\n", 6078 sym_name (np), target); 6079 goto out_stuck; 6080 /* 6081 * After reselection, the device sent a message that wasn't 6082 * an IDENTIFY. 6083 */ 6084 case SIR_RESEL_NO_IDENTIFY: 6085 printf ("%s:%d: No IDENTIFY after reselection.\n", 6086 sym_name (np), target); 6087 goto out_stuck; 6088 /* 6089 * The device reselected a LUN we donnot know about. 6090 */ 6091 case SIR_RESEL_BAD_LUN: 6092 np->msgout[0] = M_RESET; 6093 goto out; 6094 /* 6095 * The device reselected for an untagged nexus and we 6096 * haven't any. 6097 */ 6098 case SIR_RESEL_BAD_I_T_L: 6099 np->msgout[0] = M_ABORT; 6100 goto out; 6101 /* 6102 * The device reselected for a tagged nexus that we donnot 6103 * have. 6104 */ 6105 case SIR_RESEL_BAD_I_T_L_Q: 6106 np->msgout[0] = M_ABORT_TAG; 6107 goto out; 6108 /* 6109 * The SCRIPTS let us know that the device has grabbed 6110 * our message and will abort the job. 6111 */ 6112 case SIR_RESEL_ABORTED: 6113 np->lastmsg = np->msgout[0]; 6114 np->msgout[0] = M_NOOP; 6115 printf ("%s:%d: message %x sent on bad reselection.\n", 6116 sym_name (np), target, np->lastmsg); 6117 goto out; 6118 /* 6119 * The SCRIPTS let us know that a message has been 6120 * successfully sent to the device. 6121 */ 6122 case SIR_MSG_OUT_DONE: 6123 np->lastmsg = np->msgout[0]; 6124 np->msgout[0] = M_NOOP; 6125 /* Should we really care of that */ 6126 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6127 if (cp) { 6128 cp->xerr_status &= ~XE_PARITY_ERR; 6129 if (!cp->xerr_status) 6130 OUTOFFB (HF_PRT, HF_EXT_ERR); 6131 } 6132 } 6133 goto out; 6134 /* 6135 * The device didn't send a GOOD SCSI status. 6136 * We may have some work to do prior to allow 6137 * the SCRIPTS processor to continue. 6138 */ 6139 case SIR_BAD_SCSI_STATUS: 6140 if (!cp) 6141 goto out; 6142 sym_sir_bad_scsi_status(np, num, cp); 6143 return; 6144 /* 6145 * We are asked by the SCRIPTS to prepare a 6146 * REJECT message. 6147 */ 6148 case SIR_REJECT_TO_SEND: 6149 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6150 np->msgout[0] = M_REJECT; 6151 goto out; 6152 /* 6153 * We have been ODD at the end of a DATA IN 6154 * transfer and the device didn't send a 6155 * IGNORE WIDE RESIDUE message. 6156 * It is a data overrun condition. 6157 */ 6158 case SIR_SWIDE_OVERRUN: 6159 if (cp) { 6160 OUTONB (HF_PRT, HF_EXT_ERR); 6161 cp->xerr_status |= XE_SWIDE_OVRUN; 6162 } 6163 goto out; 6164 /* 6165 * We have been ODD at the end of a DATA OUT 6166 * transfer. 6167 * It is a data underrun condition. 6168 */ 6169 case SIR_SODL_UNDERRUN: 6170 if (cp) { 6171 OUTONB (HF_PRT, HF_EXT_ERR); 6172 cp->xerr_status |= XE_SODL_UNRUN; 6173 } 6174 goto out; 6175 /* 6176 * The device wants us to tranfer more data than 6177 * expected or in the wrong direction. 6178 * The number of extra bytes is in scratcha. 6179 * It is a data overrun condition. 6180 */ 6181 case SIR_DATA_OVERRUN: 6182 if (cp) { 6183 OUTONB (HF_PRT, HF_EXT_ERR); 6184 cp->xerr_status |= XE_EXTRA_DATA; 6185 cp->extra_bytes += INL (nc_scratcha); 6186 } 6187 goto out; 6188 /* 6189 * The device switched to an illegal phase (4/5). 6190 */ 6191 case SIR_BAD_PHASE: 6192 if (cp) { 6193 OUTONB (HF_PRT, HF_EXT_ERR); 6194 cp->xerr_status |= XE_BAD_PHASE; 6195 } 6196 goto out; 6197 /* 6198 * We received a message. 6199 */ 6200 case SIR_MSG_RECEIVED: 6201 if (!cp) 6202 goto out_stuck; 6203 switch (np->msgin [0]) { 6204 /* 6205 * We received an extended message. 6206 * We handle MODIFY DATA POINTER, SDTR, WDTR 6207 * and reject all other extended messages. 6208 */ 6209 case M_EXTENDED: 6210 switch (np->msgin [2]) { 6211 case M_X_MODIFY_DP: 6212 if (DEBUG_FLAGS & DEBUG_POINTER) 6213 sym_print_msg(cp,"modify DP",np->msgin); 6214 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6215 (np->msgin[5]<<8) + (np->msgin[6]); 6216 sym_modify_dp(np, tp, cp, tmp); 6217 return; 6218 case M_X_SYNC_REQ: 6219 sym_sync_nego(np, tp, cp); 6220 return; 6221 case M_X_PPR_REQ: 6222 sym_ppr_nego(np, tp, cp); 6223 return; 6224 case M_X_WIDE_REQ: 6225 sym_wide_nego(np, tp, cp); 6226 return; 6227 default: 6228 goto out_reject; 6229 } 6230 break; 6231 /* 6232 * We received a 1/2 byte message not handled from SCRIPTS. 6233 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6234 * RESIDUE messages that haven't been anticipated by 6235 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6236 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6237 */ 6238 case M_IGN_RESIDUE: 6239 if (DEBUG_FLAGS & DEBUG_POINTER) 6240 sym_print_msg(cp,"ign wide residue", np->msgin); 6241 sym_modify_dp(np, tp, cp, -1); 6242 return; 6243 case M_REJECT: 6244 if (INB (HS_PRT) == HS_NEGOTIATE) 6245 sym_nego_rejected(np, tp, cp); 6246 else { 6247 PRINT_ADDR(cp); 6248 printf ("M_REJECT received (%x:%x).\n", 6249 scr_to_cpu(np->lastmsg), np->msgout[0]); 6250 } 6251 goto out_clrack; 6252 break; 6253 default: 6254 goto out_reject; 6255 } 6256 break; 6257 /* 6258 * We received an unknown message. 6259 * Ignore all MSG IN phases and reject it. 6260 */ 6261 case SIR_MSG_WEIRD: 6262 sym_print_msg(cp, "WEIRD message received", np->msgin); 6263 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6264 return; 6265 /* 6266 * Negotiation failed. 6267 * Target does not send us the reply. 6268 * Remove the HS_NEGOTIATE status. 6269 */ 6270 case SIR_NEGO_FAILED: 6271 OUTB (HS_PRT, HS_BUSY); 6272 /* 6273 * Negotiation failed. 6274 * Target does not want answer message. 6275 */ 6276 case SIR_NEGO_PROTO: 6277 sym_nego_default(np, tp, cp); 6278 goto out; 6279 }; 6280 6281 out: 6282 OUTONB_STD (); 6283 return; 6284 out_reject: 6285 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6286 return; 6287 out_clrack: 6288 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6289 return; 6290 out_stuck: 6291 return; 6292 } 6293 6294 /* 6295 * Acquire a control block 6296 */ 6297 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6298 { 6299 tcb_p tp = &np->target[tn]; 6300 lcb_p lp = sym_lp(np, tp, ln); 6301 u_short tag = NO_TAG; 6302 SYM_QUEHEAD *qp; 6303 ccb_p cp = (ccb_p) NULL; 6304 6305 /* 6306 * Look for a free CCB 6307 */ 6308 if (sym_que_empty(&np->free_ccbq)) 6309 goto out; 6310 qp = sym_remque_head(&np->free_ccbq); 6311 if (!qp) 6312 goto out; 6313 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6314 6315 /* 6316 * If the LCB is not yet available and the LUN 6317 * has been probed ok, try to allocate the LCB. 6318 */ 6319 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6320 lp = sym_alloc_lcb(np, tn, ln); 6321 if (!lp) 6322 goto out_free; 6323 } 6324 6325 /* 6326 * If the LCB is not available here, then the 6327 * logical unit is not yet discovered. For those 6328 * ones only accept 1 SCSI IO per logical unit, 6329 * since we cannot allow disconnections. 6330 */ 6331 if (!lp) { 6332 if (!sym_is_bit(tp->busy0_map, ln)) 6333 sym_set_bit(tp->busy0_map, ln); 6334 else 6335 goto out_free; 6336 } else { 6337 /* 6338 * If we have been asked for a tagged command. 6339 */ 6340 if (tag_order) { 6341 /* 6342 * Debugging purpose. 6343 */ 6344 assert(lp->busy_itl == 0); 6345 /* 6346 * Allocate resources for tags if not yet. 6347 */ 6348 if (!lp->cb_tags) { 6349 sym_alloc_lcb_tags(np, tn, ln); 6350 if (!lp->cb_tags) 6351 goto out_free; 6352 } 6353 /* 6354 * Get a tag for this SCSI IO and set up 6355 * the CCB bus address for reselection, 6356 * and count it for this LUN. 6357 * Toggle reselect path to tagged. 6358 */ 6359 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6360 tag = lp->cb_tags[lp->ia_tag]; 6361 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6362 lp->ia_tag = 0; 6363 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6364 ++lp->busy_itlq; 6365 lp->head.resel_sa = 6366 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6367 } 6368 else 6369 goto out_free; 6370 } 6371 /* 6372 * This command will not be tagged. 6373 * If we already have either a tagged or untagged 6374 * one, refuse to overlap this untagged one. 6375 */ 6376 else { 6377 /* 6378 * Debugging purpose. 6379 */ 6380 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6381 /* 6382 * Count this nexus for this LUN. 6383 * Set up the CCB bus address for reselection. 6384 * Toggle reselect path to untagged. 6385 */ 6386 if (++lp->busy_itl == 1) { 6387 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6388 lp->head.resel_sa = 6389 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6390 } 6391 else 6392 goto out_free; 6393 } 6394 } 6395 /* 6396 * Put the CCB into the busy queue. 6397 */ 6398 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6399 6400 /* 6401 * Remember all informations needed to free this CCB. 6402 */ 6403 cp->to_abort = 0; 6404 cp->tag = tag; 6405 cp->target = tn; 6406 cp->lun = ln; 6407 6408 if (DEBUG_FLAGS & DEBUG_TAGS) { 6409 PRINT_LUN(np, tn, ln); 6410 printf ("ccb @%p using tag %d.\n", cp, tag); 6411 } 6412 6413 out: 6414 return cp; 6415 out_free: 6416 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6417 return NULL; 6418 } 6419 6420 /* 6421 * Release one control block 6422 */ 6423 static void sym_free_ccb (hcb_p np, ccb_p cp) 6424 { 6425 tcb_p tp = &np->target[cp->target]; 6426 lcb_p lp = sym_lp(np, tp, cp->lun); 6427 6428 if (DEBUG_FLAGS & DEBUG_TAGS) { 6429 PRINT_LUN(np, cp->target, cp->lun); 6430 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6431 } 6432 6433 /* 6434 * If LCB available, 6435 */ 6436 if (lp) { 6437 /* 6438 * If tagged, release the tag, set the relect path 6439 */ 6440 if (cp->tag != NO_TAG) { 6441 /* 6442 * Free the tag value. 6443 */ 6444 lp->cb_tags[lp->if_tag] = cp->tag; 6445 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6446 lp->if_tag = 0; 6447 /* 6448 * Make the reselect path invalid, 6449 * and uncount this CCB. 6450 */ 6451 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6452 --lp->busy_itlq; 6453 } else { /* Untagged */ 6454 /* 6455 * Make the reselect path invalid, 6456 * and uncount this CCB. 6457 */ 6458 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6459 --lp->busy_itl; 6460 } 6461 /* 6462 * If no JOB active, make the LUN reselect path invalid. 6463 */ 6464 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6465 lp->head.resel_sa = 6466 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6467 } 6468 /* 6469 * Otherwise, we only accept 1 IO per LUN. 6470 * Clear the bit that keeps track of this IO. 6471 */ 6472 else 6473 sym_clr_bit(tp->busy0_map, cp->lun); 6474 6475 /* 6476 * We donnot queue more than 1 ccb per target 6477 * with negotiation at any time. If this ccb was 6478 * used for negotiation, clear this info in the tcb. 6479 */ 6480 if (cp == tp->nego_cp) 6481 tp->nego_cp = NULL; 6482 6483 #ifdef SYM_CONF_IARB_SUPPORT 6484 /* 6485 * If we just complete the last queued CCB, 6486 * clear this info that is no longer relevant. 6487 */ 6488 if (cp == np->last_cp) 6489 np->last_cp = NULL; 6490 #endif 6491 6492 /* 6493 * Unmap user data from DMA map if needed. 6494 */ 6495 if (cp->dmamapped) { 6496 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6497 cp->dmamapped = 0; 6498 } 6499 6500 /* 6501 * Make this CCB available. 6502 */ 6503 cp->cam_ccb = NULL; 6504 cp->host_status = HS_IDLE; 6505 sym_remque(&cp->link_ccbq); 6506 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6507 } 6508 6509 /* 6510 * Allocate a CCB from memory and initialize its fixed part. 6511 */ 6512 static ccb_p sym_alloc_ccb(hcb_p np) 6513 { 6514 ccb_p cp = NULL; 6515 int hcode; 6516 6517 SYM_LOCK_ASSERT(MA_NOTOWNED); 6518 6519 /* 6520 * Prevent from allocating more CCBs than we can 6521 * queue to the controller. 6522 */ 6523 if (np->actccbs >= SYM_CONF_MAX_START) 6524 return NULL; 6525 6526 /* 6527 * Allocate memory for this CCB. 6528 */ 6529 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6530 if (!cp) 6531 return NULL; 6532 6533 /* 6534 * Allocate a bounce buffer for sense data. 6535 */ 6536 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6537 if (!cp->sns_bbuf) 6538 goto out_free; 6539 6540 /* 6541 * Allocate a map for the DMA of user data. 6542 */ 6543 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6544 goto out_free; 6545 /* 6546 * Count it. 6547 */ 6548 np->actccbs++; 6549 6550 /* 6551 * Initialize the callout. 6552 */ 6553 callout_init(&cp->ch, 1); 6554 6555 /* 6556 * Compute the bus address of this ccb. 6557 */ 6558 cp->ccb_ba = vtobus(cp); 6559 6560 /* 6561 * Insert this ccb into the hashed list. 6562 */ 6563 hcode = CCB_HASH_CODE(cp->ccb_ba); 6564 cp->link_ccbh = np->ccbh[hcode]; 6565 np->ccbh[hcode] = cp; 6566 6567 /* 6568 * Initialize the start and restart actions. 6569 */ 6570 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6571 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6572 6573 /* 6574 * Initilialyze some other fields. 6575 */ 6576 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6577 6578 /* 6579 * Chain into free ccb queue. 6580 */ 6581 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6582 6583 return cp; 6584 out_free: 6585 if (cp->sns_bbuf) 6586 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6587 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6588 return NULL; 6589 } 6590 6591 /* 6592 * Look up a CCB from a DSA value. 6593 */ 6594 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6595 { 6596 int hcode; 6597 ccb_p cp; 6598 6599 hcode = CCB_HASH_CODE(dsa); 6600 cp = np->ccbh[hcode]; 6601 while (cp) { 6602 if (cp->ccb_ba == dsa) 6603 break; 6604 cp = cp->link_ccbh; 6605 } 6606 6607 return cp; 6608 } 6609 6610 /* 6611 * Target control block initialisation. 6612 * Nothing important to do at the moment. 6613 */ 6614 static void sym_init_tcb (hcb_p np, u_char tn) 6615 { 6616 /* 6617 * Check some alignments required by the chip. 6618 */ 6619 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6620 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6621 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6622 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6623 } 6624 6625 /* 6626 * Lun control block allocation and initialization. 6627 */ 6628 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6629 { 6630 tcb_p tp = &np->target[tn]; 6631 lcb_p lp = sym_lp(np, tp, ln); 6632 6633 /* 6634 * Already done, just return. 6635 */ 6636 if (lp) 6637 return lp; 6638 /* 6639 * Check against some race. 6640 */ 6641 assert(!sym_is_bit(tp->busy0_map, ln)); 6642 6643 /* 6644 * Initialize the target control block if not yet. 6645 */ 6646 sym_init_tcb (np, tn); 6647 6648 /* 6649 * Allocate the LCB bus address array. 6650 * Compute the bus address of this table. 6651 */ 6652 if (ln && !tp->luntbl) { 6653 int i; 6654 6655 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6656 if (!tp->luntbl) 6657 goto fail; 6658 for (i = 0 ; i < 64 ; i++) 6659 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6660 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6661 } 6662 6663 /* 6664 * Allocate the table of pointers for LUN(s) > 0, if needed. 6665 */ 6666 if (ln && !tp->lunmp) { 6667 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6668 "LUNMP"); 6669 if (!tp->lunmp) 6670 goto fail; 6671 } 6672 6673 /* 6674 * Allocate the lcb. 6675 * Make it available to the chip. 6676 */ 6677 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6678 if (!lp) 6679 goto fail; 6680 if (ln) { 6681 tp->lunmp[ln] = lp; 6682 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6683 } 6684 else { 6685 tp->lun0p = lp; 6686 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6687 } 6688 6689 /* 6690 * Let the itl task point to error handling. 6691 */ 6692 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6693 6694 /* 6695 * Set the reselect pattern to our default. :) 6696 */ 6697 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6698 6699 /* 6700 * Set user capabilities. 6701 */ 6702 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6703 6704 fail: 6705 return lp; 6706 } 6707 6708 /* 6709 * Allocate LCB resources for tagged command queuing. 6710 */ 6711 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6712 { 6713 tcb_p tp = &np->target[tn]; 6714 lcb_p lp = sym_lp(np, tp, ln); 6715 int i; 6716 6717 /* 6718 * If LCB not available, try to allocate it. 6719 */ 6720 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6721 return; 6722 6723 /* 6724 * Allocate the task table and and the tag allocation 6725 * circular buffer. We want both or none. 6726 */ 6727 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6728 if (!lp->itlq_tbl) 6729 return; 6730 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6731 if (!lp->cb_tags) { 6732 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6733 lp->itlq_tbl = 0; 6734 return; 6735 } 6736 6737 /* 6738 * Initialize the task table with invalid entries. 6739 */ 6740 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6741 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6742 6743 /* 6744 * Fill up the tag buffer with tag numbers. 6745 */ 6746 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6747 lp->cb_tags[i] = i; 6748 6749 /* 6750 * Make the task table available to SCRIPTS, 6751 * And accept tagged commands now. 6752 */ 6753 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6754 } 6755 6756 /* 6757 * Test the pci bus snoop logic :-( 6758 * 6759 * Has to be called with interrupts disabled. 6760 */ 6761 #ifndef SYM_CONF_IOMAPPED 6762 static int sym_regtest (hcb_p np) 6763 { 6764 register volatile u32 data; 6765 /* 6766 * chip registers may NOT be cached. 6767 * write 0xffffffff to a read only register area, 6768 * and try to read it back. 6769 */ 6770 data = 0xffffffff; 6771 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6772 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6773 #if 1 6774 if (data == 0xffffffff) { 6775 #else 6776 if ((data & 0xe2f0fffd) != 0x02000080) { 6777 #endif 6778 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6779 (unsigned) data); 6780 return (0x10); 6781 }; 6782 return (0); 6783 } 6784 #endif 6785 6786 static int sym_snooptest (hcb_p np) 6787 { 6788 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6789 int i, err=0; 6790 #ifndef SYM_CONF_IOMAPPED 6791 err |= sym_regtest (np); 6792 if (err) return (err); 6793 #endif 6794 restart_test: 6795 /* 6796 * Enable Master Parity Checking as we intend 6797 * to enable it for normal operations. 6798 */ 6799 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6800 /* 6801 * init 6802 */ 6803 pc = SCRIPTB0_BA (np, snooptest); 6804 host_wr = 1; 6805 sym_wr = 2; 6806 /* 6807 * Set memory and register. 6808 */ 6809 np->cache = cpu_to_scr(host_wr); 6810 OUTL (nc_temp, sym_wr); 6811 /* 6812 * Start script (exchange values) 6813 */ 6814 OUTL (nc_dsa, np->hcb_ba); 6815 OUTL_DSP (pc); 6816 /* 6817 * Wait 'til done (with timeout) 6818 */ 6819 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6820 if (INB(nc_istat) & (INTF|SIP|DIP)) 6821 break; 6822 if (i>=SYM_SNOOP_TIMEOUT) { 6823 printf ("CACHE TEST FAILED: timeout.\n"); 6824 return (0x20); 6825 }; 6826 /* 6827 * Check for fatal DMA errors. 6828 */ 6829 dstat = INB (nc_dstat); 6830 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6831 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6832 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6833 "DISABLING MASTER DATA PARITY CHECKING.\n", 6834 sym_name(np)); 6835 np->rv_ctest4 &= ~MPEE; 6836 goto restart_test; 6837 } 6838 #endif 6839 if (dstat & (MDPE|BF|IID)) { 6840 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6841 return (0x80); 6842 } 6843 /* 6844 * Save termination position. 6845 */ 6846 pc = INL (nc_dsp); 6847 /* 6848 * Read memory and register. 6849 */ 6850 host_rd = scr_to_cpu(np->cache); 6851 sym_rd = INL (nc_scratcha); 6852 sym_bk = INL (nc_temp); 6853 6854 /* 6855 * Check termination position. 6856 */ 6857 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6858 printf ("CACHE TEST FAILED: script execution failed.\n"); 6859 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6860 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6861 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6862 return (0x40); 6863 }; 6864 /* 6865 * Show results. 6866 */ 6867 if (host_wr != sym_rd) { 6868 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6869 (int) host_wr, (int) sym_rd); 6870 err |= 1; 6871 }; 6872 if (host_rd != sym_wr) { 6873 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6874 (int) sym_wr, (int) host_rd); 6875 err |= 2; 6876 }; 6877 if (sym_bk != sym_wr) { 6878 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6879 (int) sym_wr, (int) sym_bk); 6880 err |= 4; 6881 }; 6882 6883 return (err); 6884 } 6885 6886 /* 6887 * Determine the chip's clock frequency. 6888 * 6889 * This is essential for the negotiation of the synchronous 6890 * transfer rate. 6891 * 6892 * Note: we have to return the correct value. 6893 * THERE IS NO SAFE DEFAULT VALUE. 6894 * 6895 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6896 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6897 * do not have a clock doubler and so are provided with a 6898 * 80 MHz clock. All other fast20 boards incorporate a doubler 6899 * and so should be delivered with a 40 MHz clock. 6900 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6901 * clock and provide a clock quadrupler (160 Mhz). 6902 */ 6903 6904 /* 6905 * Select SCSI clock frequency 6906 */ 6907 static void sym_selectclock(hcb_p np, u_char scntl3) 6908 { 6909 /* 6910 * If multiplier not present or not selected, leave here. 6911 */ 6912 if (np->multiplier <= 1) { 6913 OUTB(nc_scntl3, scntl3); 6914 return; 6915 } 6916 6917 if (sym_verbose >= 2) 6918 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6919 6920 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6921 /* 6922 * Wait for the LCKFRQ bit to be set if supported by the chip. 6923 * Otherwise wait 20 micro-seconds. 6924 */ 6925 if (np->features & FE_LCKFRQ) { 6926 int i = 20; 6927 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6928 UDELAY (20); 6929 if (!i) 6930 printf("%s: the chip cannot lock the frequency\n", 6931 sym_name(np)); 6932 } else 6933 UDELAY (20); 6934 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6935 OUTB(nc_scntl3, scntl3); 6936 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6937 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6938 } 6939 6940 /* 6941 * calculate SCSI clock frequency (in KHz) 6942 */ 6943 static unsigned getfreq (hcb_p np, int gen) 6944 { 6945 unsigned int ms = 0; 6946 unsigned int f; 6947 6948 /* 6949 * Measure GEN timer delay in order 6950 * to calculate SCSI clock frequency 6951 * 6952 * This code will never execute too 6953 * many loop iterations (if DELAY is 6954 * reasonably correct). It could get 6955 * too low a delay (too high a freq.) 6956 * if the CPU is slow executing the 6957 * loop for some reason (an NMI, for 6958 * example). For this reason we will 6959 * if multiple measurements are to be 6960 * performed trust the higher delay 6961 * (lower frequency returned). 6962 */ 6963 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6964 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6965 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6966 (void) INW (nc_sist); /* another one, just to be sure :) */ 6967 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6968 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6969 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6970 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6971 UDELAY (1000); /* count ms */ 6972 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6973 /* 6974 * set prescaler to divide by whatever 0 means 6975 * 0 ought to choose divide by 2, but appears 6976 * to set divide by 3.5 mode in my 53c810 ... 6977 */ 6978 OUTB (nc_scntl3, 0); 6979 6980 /* 6981 * adjust for prescaler, and convert into KHz 6982 */ 6983 f = ms ? ((1 << gen) * 4340) / ms : 0; 6984 6985 if (sym_verbose >= 2) 6986 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6987 sym_name(np), gen, ms, f); 6988 6989 return f; 6990 } 6991 6992 static unsigned sym_getfreq (hcb_p np) 6993 { 6994 u_int f1, f2; 6995 int gen = 11; 6996 6997 (void) getfreq (np, gen); /* throw away first result */ 6998 f1 = getfreq (np, gen); 6999 f2 = getfreq (np, gen); 7000 if (f1 > f2) f1 = f2; /* trust lower result */ 7001 return f1; 7002 } 7003 7004 /* 7005 * Get/probe chip SCSI clock frequency 7006 */ 7007 static void sym_getclock (hcb_p np, int mult) 7008 { 7009 unsigned char scntl3 = np->sv_scntl3; 7010 unsigned char stest1 = np->sv_stest1; 7011 unsigned f1; 7012 7013 /* 7014 * For the C10 core, assume 40 MHz. 7015 */ 7016 if (np->features & FE_C10) { 7017 np->multiplier = mult; 7018 np->clock_khz = 40000 * mult; 7019 return; 7020 } 7021 7022 np->multiplier = 1; 7023 f1 = 40000; 7024 /* 7025 * True with 875/895/896/895A with clock multiplier selected 7026 */ 7027 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7028 if (sym_verbose >= 2) 7029 printf ("%s: clock multiplier found\n", sym_name(np)); 7030 np->multiplier = mult; 7031 } 7032 7033 /* 7034 * If multiplier not found or scntl3 not 7,5,3, 7035 * reset chip and get frequency from general purpose timer. 7036 * Otherwise trust scntl3 BIOS setting. 7037 */ 7038 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7039 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7040 f1 = sym_getfreq (np); 7041 7042 if (sym_verbose) 7043 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7044 7045 if (f1 < 45000) f1 = 40000; 7046 else if (f1 < 55000) f1 = 50000; 7047 else f1 = 80000; 7048 7049 if (f1 < 80000 && mult > 1) { 7050 if (sym_verbose >= 2) 7051 printf ("%s: clock multiplier assumed\n", 7052 sym_name(np)); 7053 np->multiplier = mult; 7054 } 7055 } else { 7056 if ((scntl3 & 7) == 3) f1 = 40000; 7057 else if ((scntl3 & 7) == 5) f1 = 80000; 7058 else f1 = 160000; 7059 7060 f1 /= np->multiplier; 7061 } 7062 7063 /* 7064 * Compute controller synchronous parameters. 7065 */ 7066 f1 *= np->multiplier; 7067 np->clock_khz = f1; 7068 } 7069 7070 /* 7071 * Get/probe PCI clock frequency 7072 */ 7073 static int sym_getpciclock (hcb_p np) 7074 { 7075 int f = 0; 7076 7077 /* 7078 * For the C1010-33, this doesn't work. 7079 * For the C1010-66, this will be tested when I'll have 7080 * such a beast to play with. 7081 */ 7082 if (!(np->features & FE_C10)) { 7083 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7084 f = (int) sym_getfreq (np); 7085 OUTB (nc_stest1, 0); 7086 } 7087 np->pciclk_khz = f; 7088 7089 return f; 7090 } 7091 7092 /*============= DRIVER ACTION/COMPLETION ====================*/ 7093 7094 /* 7095 * Print something that tells about extended errors. 7096 */ 7097 static void sym_print_xerr(ccb_p cp, int x_status) 7098 { 7099 if (x_status & XE_PARITY_ERR) { 7100 PRINT_ADDR(cp); 7101 printf ("unrecovered SCSI parity error.\n"); 7102 } 7103 if (x_status & XE_EXTRA_DATA) { 7104 PRINT_ADDR(cp); 7105 printf ("extraneous data discarded.\n"); 7106 } 7107 if (x_status & XE_BAD_PHASE) { 7108 PRINT_ADDR(cp); 7109 printf ("illegal scsi phase (4/5).\n"); 7110 } 7111 if (x_status & XE_SODL_UNRUN) { 7112 PRINT_ADDR(cp); 7113 printf ("ODD transfer in DATA OUT phase.\n"); 7114 } 7115 if (x_status & XE_SWIDE_OVRUN) { 7116 PRINT_ADDR(cp); 7117 printf ("ODD transfer in DATA IN phase.\n"); 7118 } 7119 } 7120 7121 /* 7122 * Choose the more appropriate CAM status if 7123 * the IO encountered an extended error. 7124 */ 7125 static int sym_xerr_cam_status(int cam_status, int x_status) 7126 { 7127 if (x_status) { 7128 if (x_status & XE_PARITY_ERR) 7129 cam_status = CAM_UNCOR_PARITY; 7130 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7131 cam_status = CAM_DATA_RUN_ERR; 7132 else if (x_status & XE_BAD_PHASE) 7133 cam_status = CAM_REQ_CMP_ERR; 7134 else 7135 cam_status = CAM_REQ_CMP_ERR; 7136 } 7137 return cam_status; 7138 } 7139 7140 /* 7141 * Complete execution of a SCSI command with extented 7142 * error, SCSI status error, or having been auto-sensed. 7143 * 7144 * The SCRIPTS processor is not running there, so we 7145 * can safely access IO registers and remove JOBs from 7146 * the START queue. 7147 * SCRATCHA is assumed to have been loaded with STARTPOS 7148 * before the SCRIPTS called the C code. 7149 */ 7150 static void sym_complete_error (hcb_p np, ccb_p cp) 7151 { 7152 struct ccb_scsiio *csio; 7153 u_int cam_status; 7154 int i; 7155 7156 SYM_LOCK_ASSERT(MA_OWNED); 7157 7158 /* 7159 * Paranoid check. :) 7160 */ 7161 if (!cp || !cp->cam_ccb) 7162 return; 7163 7164 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7165 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7166 cp->host_status, cp->ssss_status, cp->host_flags, 7167 cp->target, cp->lun); 7168 MDELAY(100); 7169 } 7170 7171 /* 7172 * Get CAM command pointer. 7173 */ 7174 csio = &cp->cam_ccb->csio; 7175 7176 /* 7177 * Check for extended errors. 7178 */ 7179 if (cp->xerr_status) { 7180 if (sym_verbose) 7181 sym_print_xerr(cp, cp->xerr_status); 7182 if (cp->host_status == HS_COMPLETE) 7183 cp->host_status = HS_COMP_ERR; 7184 } 7185 7186 /* 7187 * Calculate the residual. 7188 */ 7189 csio->sense_resid = 0; 7190 csio->resid = sym_compute_residual(np, cp); 7191 7192 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7193 csio->resid = 0; /* throw them away. :) */ 7194 cp->sv_resid = 0; 7195 } 7196 7197 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7198 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7199 csio->sense_resid = csio->resid; /* Swap residuals */ 7200 csio->resid = cp->sv_resid; 7201 cp->sv_resid = 0; 7202 if (sym_verbose && cp->sv_xerr_status) 7203 sym_print_xerr(cp, cp->sv_xerr_status); 7204 if (cp->host_status == HS_COMPLETE && 7205 cp->ssss_status == S_GOOD && 7206 cp->xerr_status == 0) { 7207 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7208 cp->sv_xerr_status); 7209 cam_status |= CAM_AUTOSNS_VALID; 7210 /* 7211 * Bounce back the sense data to user and 7212 * fix the residual. 7213 */ 7214 bzero(&csio->sense_data, csio->sense_len); 7215 bcopy(cp->sns_bbuf, &csio->sense_data, 7216 MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); 7217 csio->sense_resid += csio->sense_len; 7218 csio->sense_resid -= SYM_SNS_BBUF_LEN; 7219 #if 0 7220 /* 7221 * If the device reports a UNIT ATTENTION condition 7222 * due to a RESET condition, we should consider all 7223 * disconnect CCBs for this unit as aborted. 7224 */ 7225 if (1) { 7226 u_char *p; 7227 p = (u_char *) csio->sense_data; 7228 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7229 sym_clear_tasks(np, CAM_REQ_ABORTED, 7230 cp->target,cp->lun, -1); 7231 } 7232 #endif 7233 } 7234 else 7235 cam_status = CAM_AUTOSENSE_FAIL; 7236 } 7237 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7238 csio->scsi_status = cp->ssss_status; 7239 cam_status = CAM_SCSI_STATUS_ERROR; 7240 } 7241 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7242 cam_status = CAM_SEL_TIMEOUT; 7243 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7244 cam_status = CAM_UNEXP_BUSFREE; 7245 else { /* Extended error */ 7246 if (sym_verbose) { 7247 PRINT_ADDR(cp); 7248 printf ("COMMAND FAILED (%x %x %x).\n", 7249 cp->host_status, cp->ssss_status, 7250 cp->xerr_status); 7251 } 7252 csio->scsi_status = cp->ssss_status; 7253 /* 7254 * Set the most appropriate value for CAM status. 7255 */ 7256 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7257 cp->xerr_status); 7258 } 7259 7260 /* 7261 * Dequeue all queued CCBs for that device 7262 * not yet started by SCRIPTS. 7263 */ 7264 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7265 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7266 7267 /* 7268 * Restart the SCRIPTS processor. 7269 */ 7270 OUTL_DSP (SCRIPTA_BA (np, start)); 7271 7272 /* 7273 * Synchronize DMA map if needed. 7274 */ 7275 if (cp->dmamapped) { 7276 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7277 (cp->dmamapped == SYM_DMA_READ ? 7278 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7279 } 7280 /* 7281 * Add this one to the COMP queue. 7282 * Complete all those commands with either error 7283 * or requeue condition. 7284 */ 7285 sym_set_cam_status((union ccb *) csio, cam_status); 7286 sym_remque(&cp->link_ccbq); 7287 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7288 sym_flush_comp_queue(np, 0); 7289 } 7290 7291 /* 7292 * Complete execution of a successful SCSI command. 7293 * 7294 * Only successful commands go to the DONE queue, 7295 * since we need to have the SCRIPTS processor 7296 * stopped on any error condition. 7297 * The SCRIPTS processor is running while we are 7298 * completing successful commands. 7299 */ 7300 static void sym_complete_ok (hcb_p np, ccb_p cp) 7301 { 7302 struct ccb_scsiio *csio; 7303 tcb_p tp; 7304 lcb_p lp; 7305 7306 SYM_LOCK_ASSERT(MA_OWNED); 7307 7308 /* 7309 * Paranoid check. :) 7310 */ 7311 if (!cp || !cp->cam_ccb) 7312 return; 7313 assert (cp->host_status == HS_COMPLETE); 7314 7315 /* 7316 * Get command, target and lun pointers. 7317 */ 7318 csio = &cp->cam_ccb->csio; 7319 tp = &np->target[cp->target]; 7320 lp = sym_lp(np, tp, cp->lun); 7321 7322 /* 7323 * Assume device discovered on first success. 7324 */ 7325 if (!lp) 7326 sym_set_bit(tp->lun_map, cp->lun); 7327 7328 /* 7329 * If all data have been transferred, given than no 7330 * extended error did occur, there is no residual. 7331 */ 7332 csio->resid = 0; 7333 if (cp->phys.head.lastp != cp->phys.head.goalp) 7334 csio->resid = sym_compute_residual(np, cp); 7335 7336 /* 7337 * Wrong transfer residuals may be worse than just always 7338 * returning zero. User can disable this feature from 7339 * sym_conf.h. Residual support is enabled by default. 7340 */ 7341 if (!SYM_CONF_RESIDUAL_SUPPORT) 7342 csio->resid = 0; 7343 7344 /* 7345 * Synchronize DMA map if needed. 7346 */ 7347 if (cp->dmamapped) { 7348 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7349 (cp->dmamapped == SYM_DMA_READ ? 7350 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7351 } 7352 /* 7353 * Set status and complete the command. 7354 */ 7355 csio->scsi_status = cp->ssss_status; 7356 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7357 sym_xpt_done(np, (union ccb *) csio, cp); 7358 sym_free_ccb(np, cp); 7359 } 7360 7361 /* 7362 * Our callout handler 7363 */ 7364 static void sym_callout(void *arg) 7365 { 7366 union ccb *ccb = (union ccb *) arg; 7367 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7368 7369 /* 7370 * Check that the CAM CCB is still queued. 7371 */ 7372 if (!np) 7373 return; 7374 7375 SYM_LOCK(); 7376 7377 switch(ccb->ccb_h.func_code) { 7378 case XPT_SCSI_IO: 7379 (void) sym_abort_scsiio(np, ccb, 1); 7380 break; 7381 default: 7382 break; 7383 } 7384 7385 SYM_UNLOCK(); 7386 } 7387 7388 /* 7389 * Abort an SCSI IO. 7390 */ 7391 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7392 { 7393 ccb_p cp; 7394 SYM_QUEHEAD *qp; 7395 7396 SYM_LOCK_ASSERT(MA_OWNED); 7397 7398 /* 7399 * Look up our CCB control block. 7400 */ 7401 cp = NULL; 7402 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7403 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7404 if (cp2->cam_ccb == ccb) { 7405 cp = cp2; 7406 break; 7407 } 7408 } 7409 if (!cp || cp->host_status == HS_WAIT) 7410 return -1; 7411 7412 /* 7413 * If a previous abort didn't succeed in time, 7414 * perform a BUS reset. 7415 */ 7416 if (cp->to_abort) { 7417 sym_reset_scsi_bus(np, 1); 7418 return 0; 7419 } 7420 7421 /* 7422 * Mark the CCB for abort and allow time for. 7423 */ 7424 cp->to_abort = timed_out ? 2 : 1; 7425 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7426 7427 /* 7428 * Tell the SCRIPTS processor to stop and synchronize with us. 7429 */ 7430 np->istat_sem = SEM; 7431 OUTB (nc_istat, SIGP|SEM); 7432 return 0; 7433 } 7434 7435 /* 7436 * Reset a SCSI device (all LUNs of a target). 7437 */ 7438 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7439 { 7440 tcb_p tp; 7441 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7442 7443 SYM_LOCK_ASSERT(MA_OWNED); 7444 7445 if (ccb_h->target_id == np->myaddr || 7446 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7447 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7448 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7449 return; 7450 } 7451 7452 tp = &np->target[ccb_h->target_id]; 7453 7454 tp->to_reset = 1; 7455 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7456 7457 np->istat_sem = SEM; 7458 OUTB (nc_istat, SIGP|SEM); 7459 } 7460 7461 /* 7462 * SIM action entry point. 7463 */ 7464 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7465 { 7466 hcb_p np; 7467 tcb_p tp; 7468 lcb_p lp; 7469 ccb_p cp; 7470 int tmp; 7471 u_char idmsg, *msgptr; 7472 u_int msglen; 7473 struct ccb_scsiio *csio; 7474 struct ccb_hdr *ccb_h; 7475 7476 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7477 7478 /* 7479 * Retrieve our controller data structure. 7480 */ 7481 np = (hcb_p) cam_sim_softc(sim); 7482 7483 SYM_LOCK_ASSERT(MA_OWNED); 7484 7485 /* 7486 * The common case is SCSI IO. 7487 * We deal with other ones elsewhere. 7488 */ 7489 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7490 sym_action2(sim, ccb); 7491 return; 7492 } 7493 csio = &ccb->csio; 7494 ccb_h = &csio->ccb_h; 7495 7496 /* 7497 * Work around races. 7498 */ 7499 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7500 xpt_done(ccb); 7501 return; 7502 } 7503 7504 /* 7505 * Minimal checkings, so that we will not 7506 * go outside our tables. 7507 */ 7508 if (ccb_h->target_id == np->myaddr || 7509 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7510 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7511 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7512 return; 7513 } 7514 7515 /* 7516 * Retreive the target and lun descriptors. 7517 */ 7518 tp = &np->target[ccb_h->target_id]; 7519 lp = sym_lp(np, tp, ccb_h->target_lun); 7520 7521 /* 7522 * Complete the 1st INQUIRY command with error 7523 * condition if the device is flagged NOSCAN 7524 * at BOOT in the NVRAM. This may speed up 7525 * the boot and maintain coherency with BIOS 7526 * device numbering. Clearing the flag allows 7527 * user to rescan skipped devices later. 7528 * We also return error for devices not flagged 7529 * for SCAN LUNS in the NVRAM since some mono-lun 7530 * devices behave badly when asked for some non 7531 * zero LUN. Btw, this is an absolute hack.:-) 7532 */ 7533 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7534 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7535 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7536 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7537 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7538 ccb_h->target_lun != 0)) { 7539 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7540 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7541 return; 7542 } 7543 } 7544 7545 /* 7546 * Get a control block for this IO. 7547 */ 7548 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7549 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7550 if (!cp) { 7551 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7552 return; 7553 } 7554 7555 /* 7556 * Keep track of the IO in our CCB. 7557 */ 7558 cp->cam_ccb = ccb; 7559 7560 /* 7561 * Build the IDENTIFY message. 7562 */ 7563 idmsg = M_IDENTIFY | cp->lun; 7564 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7565 idmsg |= 0x40; 7566 7567 msgptr = cp->scsi_smsg; 7568 msglen = 0; 7569 msgptr[msglen++] = idmsg; 7570 7571 /* 7572 * Build the tag message if present. 7573 */ 7574 if (cp->tag != NO_TAG) { 7575 u_char order = csio->tag_action; 7576 7577 switch(order) { 7578 case M_ORDERED_TAG: 7579 break; 7580 case M_HEAD_TAG: 7581 break; 7582 default: 7583 order = M_SIMPLE_TAG; 7584 } 7585 msgptr[msglen++] = order; 7586 7587 /* 7588 * For less than 128 tags, actual tags are numbered 7589 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7590 * with devices that have problems with #TAG 0 or too 7591 * great #TAG numbers. For more tags (up to 256), 7592 * we use directly our tag number. 7593 */ 7594 #if SYM_CONF_MAX_TASK > (512/4) 7595 msgptr[msglen++] = cp->tag; 7596 #else 7597 msgptr[msglen++] = (cp->tag << 1) + 1; 7598 #endif 7599 } 7600 7601 /* 7602 * Build a negotiation message if needed. 7603 * (nego_status is filled by sym_prepare_nego()) 7604 */ 7605 cp->nego_status = 0; 7606 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7607 tp->tinfo.current.period != tp->tinfo.goal.period || 7608 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7609 tp->tinfo.current.options != tp->tinfo.goal.options) { 7610 if (!tp->nego_cp && lp) 7611 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7612 } 7613 7614 /* 7615 * Fill in our ccb 7616 */ 7617 7618 /* 7619 * Startqueue 7620 */ 7621 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7622 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7623 7624 /* 7625 * select 7626 */ 7627 cp->phys.select.sel_id = cp->target; 7628 cp->phys.select.sel_scntl3 = tp->head.wval; 7629 cp->phys.select.sel_sxfer = tp->head.sval; 7630 cp->phys.select.sel_scntl4 = tp->head.uval; 7631 7632 /* 7633 * message 7634 */ 7635 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7636 cp->phys.smsg.size = cpu_to_scr(msglen); 7637 7638 /* 7639 * command 7640 */ 7641 if (sym_setup_cdb(np, csio, cp) < 0) { 7642 sym_xpt_done(np, ccb, cp); 7643 sym_free_ccb(np, cp); 7644 return; 7645 } 7646 7647 /* 7648 * status 7649 */ 7650 #if 0 /* Provision */ 7651 cp->actualquirks = tp->quirks; 7652 #endif 7653 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7654 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7655 cp->ssss_status = S_ILLEGAL; 7656 cp->xerr_status = 0; 7657 cp->host_flags = 0; 7658 cp->extra_bytes = 0; 7659 7660 /* 7661 * extreme data pointer. 7662 * shall be positive, so -1 is lower than lowest.:) 7663 */ 7664 cp->ext_sg = -1; 7665 cp->ext_ofs = 0; 7666 7667 /* 7668 * Build the data descriptor block 7669 * and start the IO. 7670 */ 7671 sym_setup_data_and_start(np, csio, cp); 7672 } 7673 7674 /* 7675 * Setup buffers and pointers that address the CDB. 7676 * I bet, physical CDBs will never be used on the planet, 7677 * since they can be bounced without significant overhead. 7678 */ 7679 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7680 { 7681 struct ccb_hdr *ccb_h; 7682 u32 cmd_ba; 7683 int cmd_len; 7684 7685 SYM_LOCK_ASSERT(MA_OWNED); 7686 7687 ccb_h = &csio->ccb_h; 7688 7689 /* 7690 * CDB is 16 bytes max. 7691 */ 7692 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7693 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7694 return -1; 7695 } 7696 cmd_len = csio->cdb_len; 7697 7698 if (ccb_h->flags & CAM_CDB_POINTER) { 7699 /* CDB is a pointer */ 7700 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7701 /* CDB pointer is virtual */ 7702 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7703 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7704 } else { 7705 /* CDB pointer is physical */ 7706 #if 0 7707 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7708 #else 7709 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7710 return -1; 7711 #endif 7712 } 7713 } else { 7714 /* CDB is in the CAM ccb (buffer) */ 7715 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7716 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7717 } 7718 7719 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7720 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7721 7722 return 0; 7723 } 7724 7725 /* 7726 * Set up data pointers used by SCRIPTS. 7727 */ 7728 static void __inline 7729 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7730 { 7731 u32 lastp, goalp; 7732 7733 SYM_LOCK_ASSERT(MA_OWNED); 7734 7735 /* 7736 * No segments means no data. 7737 */ 7738 if (!cp->segments) 7739 dir = CAM_DIR_NONE; 7740 7741 /* 7742 * Set the data pointer. 7743 */ 7744 switch(dir) { 7745 case CAM_DIR_OUT: 7746 goalp = SCRIPTA_BA (np, data_out2) + 8; 7747 lastp = goalp - 8 - (cp->segments * (2*4)); 7748 break; 7749 case CAM_DIR_IN: 7750 cp->host_flags |= HF_DATA_IN; 7751 goalp = SCRIPTA_BA (np, data_in2) + 8; 7752 lastp = goalp - 8 - (cp->segments * (2*4)); 7753 break; 7754 case CAM_DIR_NONE: 7755 default: 7756 lastp = goalp = SCRIPTB_BA (np, no_data); 7757 break; 7758 } 7759 7760 cp->phys.head.lastp = cpu_to_scr(lastp); 7761 cp->phys.head.goalp = cpu_to_scr(goalp); 7762 cp->phys.head.savep = cpu_to_scr(lastp); 7763 cp->startp = cp->phys.head.savep; 7764 } 7765 7766 7767 /* 7768 * Call back routine for the DMA map service. 7769 * If bounce buffers are used (why ?), we may sleep and then 7770 * be called there in another context. 7771 */ 7772 static void 7773 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7774 { 7775 ccb_p cp; 7776 hcb_p np; 7777 union ccb *ccb; 7778 7779 cp = (ccb_p) arg; 7780 ccb = cp->cam_ccb; 7781 np = (hcb_p) cp->arg; 7782 7783 SYM_LOCK_ASSERT(MA_OWNED); 7784 7785 /* 7786 * Deal with weird races. 7787 */ 7788 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7789 goto out_abort; 7790 7791 /* 7792 * Deal with weird errors. 7793 */ 7794 if (error) { 7795 cp->dmamapped = 0; 7796 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7797 goto out_abort; 7798 } 7799 7800 /* 7801 * Build the data descriptor for the chip. 7802 */ 7803 if (nsegs) { 7804 int retv; 7805 /* 896 rev 1 requires to be careful about boundaries */ 7806 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7807 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7808 else 7809 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7810 if (retv < 0) { 7811 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7812 goto out_abort; 7813 } 7814 } 7815 7816 /* 7817 * Synchronize the DMA map only if we have 7818 * actually mapped the data. 7819 */ 7820 if (cp->dmamapped) { 7821 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7822 (cp->dmamapped == SYM_DMA_READ ? 7823 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7824 } 7825 7826 /* 7827 * Set host status to busy state. 7828 * May have been set back to HS_WAIT to avoid a race. 7829 */ 7830 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7831 7832 /* 7833 * Set data pointers. 7834 */ 7835 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7836 7837 /* 7838 * Enqueue this IO in our pending queue. 7839 */ 7840 sym_enqueue_cam_ccb(cp); 7841 7842 /* 7843 * When `#ifed 1', the code below makes the driver 7844 * panic on the first attempt to write to a SCSI device. 7845 * It is the first test we want to do after a driver 7846 * change that does not seem obviously safe. :) 7847 */ 7848 #if 0 7849 switch (cp->cdb_buf[0]) { 7850 case 0x0A: case 0x2A: case 0xAA: 7851 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7852 MDELAY(10000); 7853 break; 7854 default: 7855 break; 7856 } 7857 #endif 7858 /* 7859 * Activate this job. 7860 */ 7861 sym_put_start_queue(np, cp); 7862 return; 7863 out_abort: 7864 sym_xpt_done(np, ccb, cp); 7865 sym_free_ccb(np, cp); 7866 } 7867 7868 /* 7869 * How complex it gets to deal with the data in CAM. 7870 * The Bus Dma stuff makes things still more complex. 7871 */ 7872 static void 7873 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7874 { 7875 struct ccb_hdr *ccb_h; 7876 int dir, retv; 7877 7878 SYM_LOCK_ASSERT(MA_OWNED); 7879 7880 ccb_h = &csio->ccb_h; 7881 7882 /* 7883 * Now deal with the data. 7884 */ 7885 cp->data_len = csio->dxfer_len; 7886 cp->arg = np; 7887 7888 /* 7889 * No direction means no data. 7890 */ 7891 dir = (ccb_h->flags & CAM_DIR_MASK); 7892 if (dir == CAM_DIR_NONE) { 7893 sym_execute_ccb(cp, NULL, 0, 0); 7894 return; 7895 } 7896 7897 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 7898 /* Single buffer */ 7899 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7900 /* Buffer is virtual */ 7901 cp->dmamapped = (dir == CAM_DIR_IN) ? 7902 SYM_DMA_READ : SYM_DMA_WRITE; 7903 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 7904 csio->data_ptr, csio->dxfer_len, 7905 sym_execute_ccb, cp, 0); 7906 if (retv == EINPROGRESS) { 7907 cp->host_status = HS_WAIT; 7908 xpt_freeze_simq(np->sim, 1); 7909 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7910 } 7911 } else { 7912 /* Buffer is physical */ 7913 struct bus_dma_segment seg; 7914 7915 seg.ds_addr = (bus_addr_t) csio->data_ptr; 7916 sym_execute_ccb(cp, &seg, 1, 0); 7917 } 7918 } else { 7919 /* Scatter/gather list */ 7920 struct bus_dma_segment *segs; 7921 7922 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 7923 /* The SG list pointer is physical */ 7924 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7925 goto out_abort; 7926 } 7927 7928 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7929 /* SG buffer pointers are virtual */ 7930 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7931 goto out_abort; 7932 } 7933 7934 /* SG buffer pointers are physical */ 7935 segs = (struct bus_dma_segment *)csio->data_ptr; 7936 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 7937 } 7938 return; 7939 out_abort: 7940 sym_xpt_done(np, (union ccb *) csio, cp); 7941 sym_free_ccb(np, cp); 7942 } 7943 7944 /* 7945 * Move the scatter list to our data block. 7946 */ 7947 static int 7948 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7949 bus_dma_segment_t *psegs, int nsegs) 7950 { 7951 struct sym_tblmove *data; 7952 bus_dma_segment_t *psegs2; 7953 7954 SYM_LOCK_ASSERT(MA_OWNED); 7955 7956 if (nsegs > SYM_CONF_MAX_SG) 7957 return -1; 7958 7959 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7960 psegs2 = &psegs[nsegs-1]; 7961 cp->segments = nsegs; 7962 7963 while (1) { 7964 data->addr = cpu_to_scr(psegs2->ds_addr); 7965 data->size = cpu_to_scr(psegs2->ds_len); 7966 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7967 printf ("%s scatter: paddr=%lx len=%ld\n", 7968 sym_name(np), (long) psegs2->ds_addr, 7969 (long) psegs2->ds_len); 7970 } 7971 if (psegs2 != psegs) { 7972 --data; 7973 --psegs2; 7974 continue; 7975 } 7976 break; 7977 } 7978 return 0; 7979 } 7980 7981 7982 /* 7983 * Scatter a SG list with physical addresses into bus addressable chunks. 7984 * We need to ensure 16MB boundaries not to be crossed during DMA of 7985 * each segment, due to some chips being flawed. 7986 */ 7987 #define BOUND_MASK ((1UL<<24)-1) 7988 static int 7989 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7990 { 7991 u_long ps, pe, pn; 7992 u_long k; 7993 int s, t; 7994 7995 SYM_LOCK_ASSERT(MA_OWNED); 7996 7997 s = SYM_CONF_MAX_SG - 1; 7998 t = nsegs - 1; 7999 ps = psegs[t].ds_addr; 8000 pe = ps + psegs[t].ds_len; 8001 8002 while (s >= 0) { 8003 pn = (pe - 1) & ~BOUND_MASK; 8004 if (pn <= ps) 8005 pn = ps; 8006 k = pe - pn; 8007 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8008 printf ("%s scatter: paddr=%lx len=%ld\n", 8009 sym_name(np), pn, k); 8010 } 8011 cp->phys.data[s].addr = cpu_to_scr(pn); 8012 cp->phys.data[s].size = cpu_to_scr(k); 8013 --s; 8014 if (pn == ps) { 8015 if (--t < 0) 8016 break; 8017 ps = psegs[t].ds_addr; 8018 pe = ps + psegs[t].ds_len; 8019 } 8020 else 8021 pe = pn; 8022 } 8023 8024 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8025 8026 return t >= 0 ? -1 : 0; 8027 } 8028 #undef BOUND_MASK 8029 8030 /* 8031 * SIM action for non performance critical stuff. 8032 */ 8033 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8034 { 8035 hcb_p np; 8036 tcb_p tp; 8037 lcb_p lp; 8038 struct ccb_hdr *ccb_h; 8039 8040 /* 8041 * Retrieve our controller data structure. 8042 */ 8043 np = (hcb_p) cam_sim_softc(sim); 8044 8045 SYM_LOCK_ASSERT(MA_OWNED); 8046 8047 ccb_h = &ccb->ccb_h; 8048 8049 switch (ccb_h->func_code) { 8050 case XPT_SET_TRAN_SETTINGS: 8051 { 8052 struct ccb_trans_settings *cts; 8053 8054 cts = &ccb->cts; 8055 tp = &np->target[ccb_h->target_id]; 8056 8057 /* 8058 * Update SPI transport settings in TARGET control block. 8059 * Update SCSI device settings in LUN control block. 8060 */ 8061 lp = sym_lp(np, tp, ccb_h->target_lun); 8062 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8063 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8064 if (lp) 8065 sym_update_dflags(np, &lp->current_flags, cts); 8066 } 8067 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8068 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8069 if (lp) 8070 sym_update_dflags(np, &lp->user_flags, cts); 8071 } 8072 8073 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8074 break; 8075 } 8076 case XPT_GET_TRAN_SETTINGS: 8077 { 8078 struct ccb_trans_settings *cts; 8079 struct sym_trans *tip; 8080 u_char dflags; 8081 8082 cts = &ccb->cts; 8083 tp = &np->target[ccb_h->target_id]; 8084 lp = sym_lp(np, tp, ccb_h->target_lun); 8085 8086 #define cts__scsi (&cts->proto_specific.scsi) 8087 #define cts__spi (&cts->xport_specific.spi) 8088 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8089 tip = &tp->tinfo.current; 8090 dflags = lp ? lp->current_flags : 0; 8091 } 8092 else { 8093 tip = &tp->tinfo.user; 8094 dflags = lp ? lp->user_flags : tp->usrflags; 8095 } 8096 8097 cts->protocol = PROTO_SCSI; 8098 cts->transport = XPORT_SPI; 8099 cts->protocol_version = tip->scsi_version; 8100 cts->transport_version = tip->spi_version; 8101 8102 cts__spi->sync_period = tip->period; 8103 cts__spi->sync_offset = tip->offset; 8104 cts__spi->bus_width = tip->width; 8105 cts__spi->ppr_options = tip->options; 8106 8107 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8108 | CTS_SPI_VALID_SYNC_OFFSET 8109 | CTS_SPI_VALID_BUS_WIDTH 8110 | CTS_SPI_VALID_PPR_OPTIONS; 8111 8112 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8113 if (dflags & SYM_DISC_ENABLED) 8114 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8115 cts__spi->valid |= CTS_SPI_VALID_DISC; 8116 8117 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8118 if (dflags & SYM_TAGS_ENABLED) 8119 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8120 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8121 #undef cts__spi 8122 #undef cts__scsi 8123 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8124 break; 8125 } 8126 case XPT_CALC_GEOMETRY: 8127 { 8128 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8129 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8130 break; 8131 } 8132 case XPT_PATH_INQ: 8133 { 8134 struct ccb_pathinq *cpi = &ccb->cpi; 8135 cpi->version_num = 1; 8136 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8137 if ((np->features & FE_WIDE) != 0) 8138 cpi->hba_inquiry |= PI_WIDE_16; 8139 cpi->target_sprt = 0; 8140 cpi->hba_misc = 0; 8141 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8142 cpi->hba_misc |= PIM_SCANHILO; 8143 if (np->usrflags & SYM_AVOID_BUS_RESET) 8144 cpi->hba_misc |= PIM_NOBUSRESET; 8145 cpi->hba_eng_cnt = 0; 8146 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8147 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8148 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8149 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8150 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8151 cpi->bus_id = cam_sim_bus(sim); 8152 cpi->initiator_id = np->myaddr; 8153 cpi->base_transfer_speed = 3300; 8154 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8155 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8156 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8157 cpi->unit_number = cam_sim_unit(sim); 8158 8159 cpi->protocol = PROTO_SCSI; 8160 cpi->protocol_version = SCSI_REV_2; 8161 cpi->transport = XPORT_SPI; 8162 cpi->transport_version = 2; 8163 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8164 if (np->features & FE_ULTRA3) { 8165 cpi->transport_version = 3; 8166 cpi->xport_specific.spi.ppr_options = 8167 SID_SPI_CLOCK_DT_ST; 8168 } 8169 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8170 break; 8171 } 8172 case XPT_ABORT: 8173 { 8174 union ccb *abort_ccb = ccb->cab.abort_ccb; 8175 switch(abort_ccb->ccb_h.func_code) { 8176 case XPT_SCSI_IO: 8177 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8178 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8179 break; 8180 } 8181 default: 8182 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8183 break; 8184 } 8185 break; 8186 } 8187 case XPT_RESET_DEV: 8188 { 8189 sym_reset_dev(np, ccb); 8190 break; 8191 } 8192 case XPT_RESET_BUS: 8193 { 8194 sym_reset_scsi_bus(np, 0); 8195 if (sym_verbose) { 8196 xpt_print_path(np->path); 8197 printf("SCSI BUS reset delivered.\n"); 8198 } 8199 sym_init (np, 1); 8200 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8201 break; 8202 } 8203 case XPT_ACCEPT_TARGET_IO: 8204 case XPT_CONT_TARGET_IO: 8205 case XPT_EN_LUN: 8206 case XPT_NOTIFY_ACK: 8207 case XPT_IMMED_NOTIFY: 8208 case XPT_TERM_IO: 8209 default: 8210 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8211 break; 8212 } 8213 } 8214 8215 /* 8216 * Asynchronous notification handler. 8217 */ 8218 static void 8219 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8220 { 8221 hcb_p np; 8222 struct cam_sim *sim; 8223 u_int tn; 8224 tcb_p tp; 8225 8226 sim = (struct cam_sim *) cb_arg; 8227 np = (hcb_p) cam_sim_softc(sim); 8228 8229 SYM_LOCK_ASSERT(MA_OWNED); 8230 8231 switch (code) { 8232 case AC_LOST_DEVICE: 8233 tn = xpt_path_target_id(path); 8234 if (tn >= SYM_CONF_MAX_TARGET) 8235 break; 8236 8237 tp = &np->target[tn]; 8238 8239 tp->to_reset = 0; 8240 tp->head.sval = 0; 8241 tp->head.wval = np->rv_scntl3; 8242 tp->head.uval = 0; 8243 8244 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8245 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8246 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8247 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8248 8249 break; 8250 default: 8251 break; 8252 } 8253 } 8254 8255 /* 8256 * Update transfer settings of a target. 8257 */ 8258 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8259 struct ccb_trans_settings *cts) 8260 { 8261 SYM_LOCK_ASSERT(MA_OWNED); 8262 8263 /* 8264 * Update the infos. 8265 */ 8266 #define cts__spi (&cts->xport_specific.spi) 8267 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8268 tip->width = cts__spi->bus_width; 8269 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8270 tip->offset = cts__spi->sync_offset; 8271 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8272 tip->period = cts__spi->sync_period; 8273 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8274 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8275 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8276 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8277 tip->scsi_version = cts->protocol_version; 8278 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8279 cts->transport_version != XPORT_VERSION_UNKNOWN) 8280 tip->spi_version = cts->transport_version; 8281 #undef cts__spi 8282 /* 8283 * Scale against driver configuration limits. 8284 */ 8285 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8286 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8287 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8288 8289 /* 8290 * Scale against actual controller BUS width. 8291 */ 8292 if (tip->width > np->maxwide) 8293 tip->width = np->maxwide; 8294 8295 /* 8296 * Only accept DT if controller supports and SYNC/WIDE asked. 8297 */ 8298 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8299 !(tip->width == BUS_16_BIT && tip->offset)) { 8300 tip->options &= ~PPR_OPT_DT; 8301 } 8302 8303 /* 8304 * Scale period factor and offset against controller limits. 8305 */ 8306 if (tip->options & PPR_OPT_DT) { 8307 if (tip->period < np->minsync_dt) 8308 tip->period = np->minsync_dt; 8309 if (tip->period > np->maxsync_dt) 8310 tip->period = np->maxsync_dt; 8311 if (tip->offset > np->maxoffs_dt) 8312 tip->offset = np->maxoffs_dt; 8313 } 8314 else { 8315 if (tip->period < np->minsync) 8316 tip->period = np->minsync; 8317 if (tip->period > np->maxsync) 8318 tip->period = np->maxsync; 8319 if (tip->offset > np->maxoffs) 8320 tip->offset = np->maxoffs; 8321 } 8322 } 8323 8324 /* 8325 * Update flags for a device (logical unit). 8326 */ 8327 static void 8328 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8329 { 8330 SYM_LOCK_ASSERT(MA_OWNED); 8331 8332 #define cts__scsi (&cts->proto_specific.scsi) 8333 #define cts__spi (&cts->xport_specific.spi) 8334 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8335 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8336 *flags |= SYM_DISC_ENABLED; 8337 else 8338 *flags &= ~SYM_DISC_ENABLED; 8339 } 8340 8341 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8342 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8343 *flags |= SYM_TAGS_ENABLED; 8344 else 8345 *flags &= ~SYM_TAGS_ENABLED; 8346 } 8347 #undef cts__spi 8348 #undef cts__scsi 8349 } 8350 8351 8352 /*============= DRIVER INITIALISATION ==================*/ 8353 8354 8355 static device_method_t sym_pci_methods[] = { 8356 DEVMETHOD(device_probe, sym_pci_probe), 8357 DEVMETHOD(device_attach, sym_pci_attach), 8358 { 0, 0 } 8359 }; 8360 8361 static driver_t sym_pci_driver = { 8362 "sym", 8363 sym_pci_methods, 8364 1 /* no softc */ 8365 }; 8366 8367 static devclass_t sym_devclass; 8368 8369 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8370 MODULE_DEPEND(sym, cam, 1, 1, 1); 8371 MODULE_DEPEND(sym, pci, 1, 1, 1); 8372 8373 8374 static const struct sym_pci_chip sym_pci_dev_table[] = { 8375 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8376 FE_ERL} 8377 , 8378 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8379 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8380 FE_BOF} 8381 , 8382 #else 8383 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8384 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8385 , 8386 #endif 8387 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8388 FE_BOF|FE_ERL} 8389 , 8390 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8391 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8392 , 8393 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8394 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8395 , 8396 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8397 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8398 , 8399 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8400 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8401 FE_RAM|FE_DIFF} 8402 , 8403 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8404 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8405 FE_RAM|FE_DIFF} 8406 , 8407 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8408 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8409 FE_RAM|FE_DIFF} 8410 , 8411 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8412 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8413 FE_RAM|FE_DIFF} 8414 , 8415 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8416 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8417 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8418 FE_RAM|FE_LCKFRQ} 8419 , 8420 #else 8421 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8422 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8423 FE_RAM|FE_LCKFRQ} 8424 , 8425 #endif 8426 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8427 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8428 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8429 , 8430 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8431 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8432 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8433 , 8434 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8435 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8436 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8437 FE_C10} 8438 , 8439 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8440 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8441 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8442 FE_C10|FE_U3EN} 8443 , 8444 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8445 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8446 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8447 FE_C10|FE_U3EN} 8448 , 8449 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8450 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8451 FE_RAM|FE_IO256|FE_LEDC} 8452 }; 8453 8454 #define sym_pci_num_devs \ 8455 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8456 8457 /* 8458 * Look up the chip table. 8459 * 8460 * Return a pointer to the chip entry if found, 8461 * zero otherwise. 8462 */ 8463 static const struct sym_pci_chip * 8464 sym_find_pci_chip(device_t dev) 8465 { 8466 const struct sym_pci_chip *chip; 8467 int i; 8468 u_short device_id; 8469 u_char revision; 8470 8471 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8472 return NULL; 8473 8474 device_id = pci_get_device(dev); 8475 revision = pci_get_revid(dev); 8476 8477 for (i = 0; i < sym_pci_num_devs; i++) { 8478 chip = &sym_pci_dev_table[i]; 8479 if (device_id != chip->device_id) 8480 continue; 8481 if (revision > chip->revision_id) 8482 continue; 8483 return chip; 8484 } 8485 8486 return NULL; 8487 } 8488 8489 /* 8490 * Tell upper layer if the chip is supported. 8491 */ 8492 static int 8493 sym_pci_probe(device_t dev) 8494 { 8495 const struct sym_pci_chip *chip; 8496 8497 chip = sym_find_pci_chip(dev); 8498 if (chip && sym_find_firmware(chip)) { 8499 device_set_desc(dev, chip->name); 8500 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? 8501 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; 8502 } 8503 return ENXIO; 8504 } 8505 8506 /* 8507 * Attach a sym53c8xx device. 8508 */ 8509 static int 8510 sym_pci_attach(device_t dev) 8511 { 8512 const struct sym_pci_chip *chip; 8513 u_short command; 8514 u_char cachelnsz; 8515 struct sym_hcb *np = NULL; 8516 struct sym_nvram nvram; 8517 const struct sym_fw *fw = NULL; 8518 int i; 8519 bus_dma_tag_t bus_dmat; 8520 8521 bus_dmat = bus_get_dma_tag(dev); 8522 8523 /* 8524 * Only probed devices should be attached. 8525 * We just enjoy being paranoid. :) 8526 */ 8527 chip = sym_find_pci_chip(dev); 8528 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8529 return (ENXIO); 8530 8531 /* 8532 * Allocate immediately the host control block, 8533 * since we are only expecting to succeed. :) 8534 * We keep track in the HCB of all the resources that 8535 * are to be released on error. 8536 */ 8537 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8538 if (np) 8539 np->bus_dmat = bus_dmat; 8540 else 8541 return (ENXIO); 8542 device_set_softc(dev, np); 8543 8544 SYM_LOCK_INIT(); 8545 8546 /* 8547 * Copy some useful infos to the HCB. 8548 */ 8549 np->hcb_ba = vtobus(np); 8550 np->verbose = bootverbose; 8551 np->device = dev; 8552 np->device_id = pci_get_device(dev); 8553 np->revision_id = pci_get_revid(dev); 8554 np->features = chip->features; 8555 np->clock_divn = chip->nr_divisor; 8556 np->maxoffs = chip->offset_max; 8557 np->maxburst = chip->burst_max; 8558 np->scripta_sz = fw->a_size; 8559 np->scriptb_sz = fw->b_size; 8560 np->fw_setup = fw->setup; 8561 np->fw_patch = fw->patch; 8562 np->fw_name = fw->name; 8563 8564 #ifdef __amd64__ 8565 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8566 "TARGET"); 8567 if (!np->target) 8568 goto attach_failed; 8569 #endif 8570 8571 /* 8572 * Initialize the CCB free and busy queues. 8573 */ 8574 sym_que_init(&np->free_ccbq); 8575 sym_que_init(&np->busy_ccbq); 8576 sym_que_init(&np->comp_ccbq); 8577 sym_que_init(&np->cam_ccbq); 8578 8579 /* 8580 * Allocate a tag for the DMA of user data. 8581 */ 8582 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 8583 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 8584 NULL, NULL, 8585 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 8586 (1<<24), 0, busdma_lock_mutex, &np->mtx, 8587 &np->data_dmat)) { 8588 device_printf(dev, "failed to create DMA tag.\n"); 8589 goto attach_failed; 8590 } 8591 /* 8592 * Read and apply some fix-ups to the PCI COMMAND 8593 * register. We want the chip to be enabled for: 8594 * - BUS mastering 8595 * - PCI parity checking (reporting would also be fine) 8596 * - Write And Invalidate. 8597 */ 8598 command = pci_read_config(dev, PCIR_COMMAND, 2); 8599 command |= PCIM_CMD_BUSMASTEREN; 8600 command |= PCIM_CMD_PERRESPEN; 8601 command |= /* PCIM_CMD_MWIEN */ 0x0010; 8602 pci_write_config(dev, PCIR_COMMAND, command, 2); 8603 8604 /* 8605 * Let the device know about the cache line size, 8606 * if it doesn't yet. 8607 */ 8608 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8609 if (!cachelnsz) { 8610 cachelnsz = 8; 8611 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8612 } 8613 8614 /* 8615 * Alloc/get/map/retrieve everything that deals with MMIO. 8616 */ 8617 if ((command & PCIM_CMD_MEMEN) != 0) { 8618 int regs_id = SYM_PCI_MMIO; 8619 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8620 ®s_id, RF_ACTIVE); 8621 } 8622 if (!np->mmio_res) { 8623 device_printf(dev, "failed to allocate MMIO resources\n"); 8624 goto attach_failed; 8625 } 8626 np->mmio_ba = rman_get_start(np->mmio_res); 8627 8628 /* 8629 * Allocate the IRQ. 8630 */ 8631 i = 0; 8632 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8633 RF_ACTIVE | RF_SHAREABLE); 8634 if (!np->irq_res) { 8635 device_printf(dev, "failed to allocate IRQ resource\n"); 8636 goto attach_failed; 8637 } 8638 8639 #ifdef SYM_CONF_IOMAPPED 8640 /* 8641 * User want us to use normal IO with PCI. 8642 * Alloc/get/map/retrieve everything that deals with IO. 8643 */ 8644 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 8645 int regs_id = SYM_PCI_IO; 8646 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 8647 ®s_id, RF_ACTIVE); 8648 } 8649 if (!np->io_res) { 8650 device_printf(dev, "failed to allocate IO resources\n"); 8651 goto attach_failed; 8652 } 8653 8654 #endif /* SYM_CONF_IOMAPPED */ 8655 8656 /* 8657 * If the chip has RAM. 8658 * Alloc/get/map/retrieve the corresponding resources. 8659 */ 8660 if ((np->features & (FE_RAM|FE_RAM8K)) && 8661 (command & PCIM_CMD_MEMEN) != 0) { 8662 int regs_id = SYM_PCI_RAM; 8663 if (np->features & FE_64BIT) 8664 regs_id = SYM_PCI_RAM64; 8665 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8666 ®s_id, RF_ACTIVE); 8667 if (!np->ram_res) { 8668 device_printf(dev,"failed to allocate RAM resources\n"); 8669 goto attach_failed; 8670 } 8671 np->ram_id = regs_id; 8672 np->ram_ba = rman_get_start(np->ram_res); 8673 } 8674 8675 /* 8676 * Save setting of some IO registers, so we will 8677 * be able to probe specific implementations. 8678 */ 8679 sym_save_initial_setting (np); 8680 8681 /* 8682 * Reset the chip now, since it has been reported 8683 * that SCSI clock calibration may not work properly 8684 * if the chip is currently active. 8685 */ 8686 sym_chip_reset (np); 8687 8688 /* 8689 * Try to read the user set-up. 8690 */ 8691 (void) sym_read_nvram(np, &nvram); 8692 8693 /* 8694 * Prepare controller and devices settings, according 8695 * to chip features, user set-up and driver set-up. 8696 */ 8697 (void) sym_prepare_setting(np, &nvram); 8698 8699 /* 8700 * Check the PCI clock frequency. 8701 * Must be performed after prepare_setting since it destroys 8702 * STEST1 that is used to probe for the clock doubler. 8703 */ 8704 i = sym_getpciclock(np); 8705 if (i > 37000) 8706 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8707 8708 /* 8709 * Allocate the start queue. 8710 */ 8711 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8712 if (!np->squeue) 8713 goto attach_failed; 8714 np->squeue_ba = vtobus(np->squeue); 8715 8716 /* 8717 * Allocate the done queue. 8718 */ 8719 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8720 if (!np->dqueue) 8721 goto attach_failed; 8722 np->dqueue_ba = vtobus(np->dqueue); 8723 8724 /* 8725 * Allocate the target bus address array. 8726 */ 8727 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8728 if (!np->targtbl) 8729 goto attach_failed; 8730 np->targtbl_ba = vtobus(np->targtbl); 8731 8732 /* 8733 * Allocate SCRIPTS areas. 8734 */ 8735 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8736 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8737 if (!np->scripta0 || !np->scriptb0) 8738 goto attach_failed; 8739 8740 /* 8741 * Allocate the CCBs. We need at least ONE. 8742 */ 8743 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8744 ; 8745 if (i < 1) 8746 goto attach_failed; 8747 8748 /* 8749 * Calculate BUS addresses where we are going 8750 * to load the SCRIPTS. 8751 */ 8752 np->scripta_ba = vtobus(np->scripta0); 8753 np->scriptb_ba = vtobus(np->scriptb0); 8754 np->scriptb0_ba = np->scriptb_ba; 8755 8756 if (np->ram_ba) { 8757 np->scripta_ba = np->ram_ba; 8758 if (np->features & FE_RAM8K) { 8759 np->ram_ws = 8192; 8760 np->scriptb_ba = np->scripta_ba + 4096; 8761 #ifdef __LP64__ 8762 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8763 #endif 8764 } 8765 else 8766 np->ram_ws = 4096; 8767 } 8768 8769 /* 8770 * Copy scripts to controller instance. 8771 */ 8772 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8773 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8774 8775 /* 8776 * Setup variable parts in scripts and compute 8777 * scripts bus addresses used from the C code. 8778 */ 8779 np->fw_setup(np, fw); 8780 8781 /* 8782 * Bind SCRIPTS with physical addresses usable by the 8783 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8784 */ 8785 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8786 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8787 8788 #ifdef SYM_CONF_IARB_SUPPORT 8789 /* 8790 * If user wants IARB to be set when we win arbitration 8791 * and have other jobs, compute the max number of consecutive 8792 * settings of IARB hints before we leave devices a chance to 8793 * arbitrate for reselection. 8794 */ 8795 #ifdef SYM_SETUP_IARB_MAX 8796 np->iarb_max = SYM_SETUP_IARB_MAX; 8797 #else 8798 np->iarb_max = 4; 8799 #endif 8800 #endif 8801 8802 /* 8803 * Prepare the idle and invalid task actions. 8804 */ 8805 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8806 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8807 np->idletask_ba = vtobus(&np->idletask); 8808 8809 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8810 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8811 np->notask_ba = vtobus(&np->notask); 8812 8813 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8814 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8815 np->bad_itl_ba = vtobus(&np->bad_itl); 8816 8817 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8818 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8819 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8820 8821 /* 8822 * Allocate and prepare the lun JUMP table that is used 8823 * for a target prior the probing of devices (bad lun table). 8824 * A private table will be allocated for the target on the 8825 * first INQUIRY response received. 8826 */ 8827 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8828 if (!np->badluntbl) 8829 goto attach_failed; 8830 8831 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8832 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8833 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8834 8835 /* 8836 * Prepare the bus address array that contains the bus 8837 * address of each target control block. 8838 * For now, assume all logical units are wrong. :) 8839 */ 8840 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8841 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8842 np->target[i].head.luntbl_sa = 8843 cpu_to_scr(vtobus(np->badluntbl)); 8844 np->target[i].head.lun0_sa = 8845 cpu_to_scr(vtobus(&np->badlun_sa)); 8846 } 8847 8848 /* 8849 * Now check the cache handling of the pci chipset. 8850 */ 8851 if (sym_snooptest (np)) { 8852 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8853 goto attach_failed; 8854 }; 8855 8856 /* 8857 * Now deal with CAM. 8858 * Hopefully, we will succeed with that one.:) 8859 */ 8860 if (!sym_cam_attach(np)) 8861 goto attach_failed; 8862 8863 /* 8864 * Sigh! we are done. 8865 */ 8866 return 0; 8867 8868 /* 8869 * We have failed. 8870 * We will try to free all the resources we have 8871 * allocated, but if we are a boot device, this 8872 * will not help that much.;) 8873 */ 8874 attach_failed: 8875 if (np) 8876 sym_pci_free(np); 8877 return ENXIO; 8878 } 8879 8880 /* 8881 * Free everything that have been allocated for this device. 8882 */ 8883 static void sym_pci_free(hcb_p np) 8884 { 8885 SYM_QUEHEAD *qp; 8886 ccb_p cp; 8887 tcb_p tp; 8888 lcb_p lp; 8889 int target, lun; 8890 8891 /* 8892 * First free CAM resources. 8893 */ 8894 sym_cam_free(np); 8895 8896 /* 8897 * Now every should be quiet for us to 8898 * free other resources. 8899 */ 8900 if (np->ram_res) 8901 bus_release_resource(np->device, SYS_RES_MEMORY, 8902 np->ram_id, np->ram_res); 8903 if (np->mmio_res) 8904 bus_release_resource(np->device, SYS_RES_MEMORY, 8905 SYM_PCI_MMIO, np->mmio_res); 8906 if (np->io_res) 8907 bus_release_resource(np->device, SYS_RES_IOPORT, 8908 SYM_PCI_IO, np->io_res); 8909 if (np->irq_res) 8910 bus_release_resource(np->device, SYS_RES_IRQ, 8911 0, np->irq_res); 8912 8913 if (np->scriptb0) 8914 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8915 if (np->scripta0) 8916 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8917 if (np->squeue) 8918 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8919 if (np->dqueue) 8920 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8921 8922 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8923 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8924 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8925 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8926 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8927 } 8928 8929 if (np->badluntbl) 8930 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8931 8932 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8933 tp = &np->target[target]; 8934 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8935 lp = sym_lp(np, tp, lun); 8936 if (!lp) 8937 continue; 8938 if (lp->itlq_tbl) 8939 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8940 "ITLQ_TBL"); 8941 if (lp->cb_tags) 8942 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8943 "CB_TAGS"); 8944 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8945 } 8946 #if SYM_CONF_MAX_LUN > 1 8947 if (tp->lunmp) 8948 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8949 "LUNMP"); 8950 #endif 8951 } 8952 #ifdef __amd64__ 8953 if (np->target) 8954 sym_mfree_dma(np->target, 8955 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8956 #endif 8957 if (np->targtbl) 8958 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8959 if (np->data_dmat) 8960 bus_dma_tag_destroy(np->data_dmat); 8961 if (SYM_LOCK_INITIALIZED() != 0) 8962 SYM_LOCK_DESTROY(); 8963 device_set_softc(np->device, NULL); 8964 sym_mfree_dma(np, sizeof(*np), "HCB"); 8965 } 8966 8967 /* 8968 * Allocate CAM resources and register a bus to CAM. 8969 */ 8970 static int sym_cam_attach(hcb_p np) 8971 { 8972 struct cam_devq *devq = NULL; 8973 struct cam_sim *sim = NULL; 8974 struct cam_path *path = NULL; 8975 struct ccb_setasync csa; 8976 int err; 8977 8978 /* 8979 * Establish our interrupt handler. 8980 */ 8981 err = bus_setup_intr(np->device, np->irq_res, 8982 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8983 NULL, sym_intr, np, &np->intr); 8984 if (err) { 8985 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8986 err); 8987 goto fail; 8988 } 8989 8990 /* 8991 * Create the device queue for our sym SIM. 8992 */ 8993 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8994 if (!devq) 8995 goto fail; 8996 8997 /* 8998 * Construct our SIM entry. 8999 */ 9000 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 9001 device_get_unit(np->device), 9002 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 9003 if (!sim) 9004 goto fail; 9005 9006 SYM_LOCK(); 9007 9008 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 9009 goto fail; 9010 np->sim = sim; 9011 9012 if (xpt_create_path(&path, 0, 9013 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 9014 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 9015 goto fail; 9016 } 9017 np->path = path; 9018 9019 /* 9020 * Establish our async notification handler. 9021 */ 9022 xpt_setup_ccb(&csa.ccb_h, np->path, 5); 9023 csa.ccb_h.func_code = XPT_SASYNC_CB; 9024 csa.event_enable = AC_LOST_DEVICE; 9025 csa.callback = sym_async; 9026 csa.callback_arg = np->sim; 9027 xpt_action((union ccb *)&csa); 9028 9029 /* 9030 * Start the chip now, without resetting the BUS, since 9031 * it seems that this must stay under control of CAM. 9032 * With LVD/SE capable chips and BUS in SE mode, we may 9033 * get a spurious SMBC interrupt. 9034 */ 9035 sym_init (np, 0); 9036 9037 SYM_UNLOCK(); 9038 9039 return 1; 9040 fail: 9041 if (sim) 9042 cam_sim_free(sim, FALSE); 9043 if (devq) 9044 cam_simq_free(devq); 9045 9046 SYM_UNLOCK(); 9047 9048 sym_cam_free(np); 9049 9050 return 0; 9051 } 9052 9053 /* 9054 * Free everything that deals with CAM. 9055 */ 9056 static void sym_cam_free(hcb_p np) 9057 { 9058 SYM_LOCK_ASSERT(MA_NOTOWNED); 9059 9060 if (np->intr) { 9061 bus_teardown_intr(np->device, np->irq_res, np->intr); 9062 np->intr = NULL; 9063 } 9064 9065 SYM_LOCK(); 9066 9067 if (np->sim) { 9068 xpt_bus_deregister(cam_sim_path(np->sim)); 9069 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9070 np->sim = NULL; 9071 } 9072 if (np->path) { 9073 xpt_free_path(np->path); 9074 np->path = NULL; 9075 } 9076 9077 SYM_UNLOCK(); 9078 } 9079 9080 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9081 9082 /* 9083 * Get host setup from NVRAM. 9084 */ 9085 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9086 { 9087 #ifdef SYM_CONF_NVRAM_SUPPORT 9088 /* 9089 * Get parity checking, host ID, verbose mode 9090 * and miscellaneous host flags from NVRAM. 9091 */ 9092 switch(nvram->type) { 9093 case SYM_SYMBIOS_NVRAM: 9094 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9095 np->rv_scntl0 &= ~0x0a; 9096 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9097 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9098 np->verbose += 1; 9099 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9100 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9101 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9102 np->usrflags |= SYM_AVOID_BUS_RESET; 9103 break; 9104 case SYM_TEKRAM_NVRAM: 9105 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9106 break; 9107 default: 9108 break; 9109 } 9110 #endif 9111 } 9112 9113 /* 9114 * Get target setup from NVRAM. 9115 */ 9116 #ifdef SYM_CONF_NVRAM_SUPPORT 9117 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9118 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9119 #endif 9120 9121 static void 9122 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9123 { 9124 #ifdef SYM_CONF_NVRAM_SUPPORT 9125 switch(nvp->type) { 9126 case SYM_SYMBIOS_NVRAM: 9127 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9128 break; 9129 case SYM_TEKRAM_NVRAM: 9130 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9131 break; 9132 default: 9133 break; 9134 } 9135 #endif 9136 } 9137 9138 #ifdef SYM_CONF_NVRAM_SUPPORT 9139 /* 9140 * Get target set-up from Symbios format NVRAM. 9141 */ 9142 static void 9143 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9144 { 9145 tcb_p tp = &np->target[target]; 9146 Symbios_target *tn = &nvram->target[target]; 9147 9148 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9149 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9150 tp->usrtags = 9151 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9152 9153 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9154 tp->usrflags &= ~SYM_DISC_ENABLED; 9155 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9156 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9157 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9158 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9159 } 9160 9161 /* 9162 * Get target set-up from Tekram format NVRAM. 9163 */ 9164 static void 9165 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9166 { 9167 tcb_p tp = &np->target[target]; 9168 struct Tekram_target *tn = &nvram->target[target]; 9169 int i; 9170 9171 if (tn->flags & TEKRAM_SYNC_NEGO) { 9172 i = tn->sync_index & 0xf; 9173 tp->tinfo.user.period = Tekram_sync[i]; 9174 } 9175 9176 tp->tinfo.user.width = 9177 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9178 9179 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9180 tp->usrtags = 2 << nvram->max_tags_index; 9181 } 9182 9183 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9184 tp->usrflags |= SYM_DISC_ENABLED; 9185 9186 /* If any device does not support parity, we will not use this option */ 9187 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9188 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9189 } 9190 9191 #ifdef SYM_CONF_DEBUG_NVRAM 9192 /* 9193 * Dump Symbios format NVRAM for debugging purpose. 9194 */ 9195 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9196 { 9197 int i; 9198 9199 /* display Symbios nvram host data */ 9200 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9201 sym_name(np), nvram->host_id & 0x0f, 9202 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9203 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9204 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9205 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9206 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9207 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9208 9209 /* display Symbios nvram drive data */ 9210 for (i = 0 ; i < 15 ; i++) { 9211 struct Symbios_target *tn = &nvram->target[i]; 9212 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9213 sym_name(np), i, 9214 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9215 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9216 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9217 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9218 tn->bus_width, 9219 tn->sync_period / 4, 9220 tn->timeout); 9221 } 9222 } 9223 9224 /* 9225 * Dump TEKRAM format NVRAM for debugging purpose. 9226 */ 9227 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9228 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9229 { 9230 int i, tags, boot_delay; 9231 char *rem; 9232 9233 /* display Tekram nvram host data */ 9234 tags = 2 << nvram->max_tags_index; 9235 boot_delay = 0; 9236 if (nvram->boot_delay_index < 6) 9237 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9238 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9239 default: 9240 case 0: rem = ""; break; 9241 case 1: rem = " REMOVABLE=boot device"; break; 9242 case 2: rem = " REMOVABLE=all"; break; 9243 } 9244 9245 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9246 sym_name(np), nvram->host_id & 0x0f, 9247 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9248 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9249 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9250 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9251 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9252 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9253 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9254 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9255 rem, boot_delay, tags); 9256 9257 /* display Tekram nvram drive data */ 9258 for (i = 0; i <= 15; i++) { 9259 int sync, j; 9260 struct Tekram_target *tn = &nvram->target[i]; 9261 j = tn->sync_index & 0xf; 9262 sync = Tekram_sync[j]; 9263 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9264 sym_name(np), i, 9265 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9266 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9267 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9268 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9269 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9270 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9271 sync); 9272 } 9273 } 9274 #endif /* SYM_CONF_DEBUG_NVRAM */ 9275 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9276 9277 9278 /* 9279 * Try reading Symbios or Tekram NVRAM 9280 */ 9281 #ifdef SYM_CONF_NVRAM_SUPPORT 9282 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9283 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9284 #endif 9285 9286 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9287 { 9288 #ifdef SYM_CONF_NVRAM_SUPPORT 9289 /* 9290 * Try to read SYMBIOS nvram. 9291 * Try to read TEKRAM nvram if Symbios nvram not found. 9292 */ 9293 if (SYM_SETUP_SYMBIOS_NVRAM && 9294 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9295 nvp->type = SYM_SYMBIOS_NVRAM; 9296 #ifdef SYM_CONF_DEBUG_NVRAM 9297 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9298 #endif 9299 } 9300 else if (SYM_SETUP_TEKRAM_NVRAM && 9301 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9302 nvp->type = SYM_TEKRAM_NVRAM; 9303 #ifdef SYM_CONF_DEBUG_NVRAM 9304 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9305 #endif 9306 } 9307 else 9308 nvp->type = 0; 9309 #else 9310 nvp->type = 0; 9311 #endif 9312 return nvp->type; 9313 } 9314 9315 9316 #ifdef SYM_CONF_NVRAM_SUPPORT 9317 /* 9318 * 24C16 EEPROM reading. 9319 * 9320 * GPOI0 - data in/data out 9321 * GPIO1 - clock 9322 * Symbios NVRAM wiring now also used by Tekram. 9323 */ 9324 9325 #define SET_BIT 0 9326 #define CLR_BIT 1 9327 #define SET_CLK 2 9328 #define CLR_CLK 3 9329 9330 /* 9331 * Set/clear data/clock bit in GPIO0 9332 */ 9333 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9334 int bit_mode) 9335 { 9336 UDELAY (5); 9337 switch (bit_mode){ 9338 case SET_BIT: 9339 *gpreg |= write_bit; 9340 break; 9341 case CLR_BIT: 9342 *gpreg &= 0xfe; 9343 break; 9344 case SET_CLK: 9345 *gpreg |= 0x02; 9346 break; 9347 case CLR_CLK: 9348 *gpreg &= 0xfd; 9349 break; 9350 9351 } 9352 OUTB (nc_gpreg, *gpreg); 9353 UDELAY (5); 9354 } 9355 9356 /* 9357 * Send START condition to NVRAM to wake it up. 9358 */ 9359 static void S24C16_start(hcb_p np, u_char *gpreg) 9360 { 9361 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9362 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9363 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9364 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9365 } 9366 9367 /* 9368 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9369 */ 9370 static void S24C16_stop(hcb_p np, u_char *gpreg) 9371 { 9372 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9373 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9374 } 9375 9376 /* 9377 * Read or write a bit to the NVRAM, 9378 * read if GPIO0 input else write if GPIO0 output 9379 */ 9380 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9381 u_char *gpreg) 9382 { 9383 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9384 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9385 if (read_bit) 9386 *read_bit = INB (nc_gpreg); 9387 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9388 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9389 } 9390 9391 /* 9392 * Output an ACK to the NVRAM after reading, 9393 * change GPIO0 to output and when done back to an input 9394 */ 9395 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9396 u_char *gpcntl) 9397 { 9398 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9399 S24C16_do_bit(np, 0, write_bit, gpreg); 9400 OUTB (nc_gpcntl, *gpcntl); 9401 } 9402 9403 /* 9404 * Input an ACK from NVRAM after writing, 9405 * change GPIO0 to input and when done back to an output 9406 */ 9407 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9408 u_char *gpcntl) 9409 { 9410 OUTB (nc_gpcntl, *gpcntl | 0x01); 9411 S24C16_do_bit(np, read_bit, 1, gpreg); 9412 OUTB (nc_gpcntl, *gpcntl); 9413 } 9414 9415 /* 9416 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9417 * GPIO0 must already be set as an output 9418 */ 9419 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9420 u_char *gpreg, u_char *gpcntl) 9421 { 9422 int x; 9423 9424 for (x = 0; x < 8; x++) 9425 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9426 9427 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9428 } 9429 9430 /* 9431 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9432 * GPIO0 must already be set as an input 9433 */ 9434 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9435 u_char *gpreg, u_char *gpcntl) 9436 { 9437 int x; 9438 u_char read_bit; 9439 9440 *read_data = 0; 9441 for (x = 0; x < 8; x++) { 9442 S24C16_do_bit(np, &read_bit, 1, gpreg); 9443 *read_data |= ((read_bit & 0x01) << (7 - x)); 9444 } 9445 9446 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9447 } 9448 9449 /* 9450 * Read 'len' bytes starting at 'offset'. 9451 */ 9452 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9453 { 9454 u_char gpcntl, gpreg; 9455 u_char old_gpcntl, old_gpreg; 9456 u_char ack_data; 9457 int retv = 1; 9458 int x; 9459 9460 /* save current state of GPCNTL and GPREG */ 9461 old_gpreg = INB (nc_gpreg); 9462 old_gpcntl = INB (nc_gpcntl); 9463 gpcntl = old_gpcntl & 0x1c; 9464 9465 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9466 OUTB (nc_gpreg, old_gpreg); 9467 OUTB (nc_gpcntl, gpcntl); 9468 9469 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9470 gpreg = old_gpreg; 9471 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9472 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9473 9474 /* now set NVRAM inactive with GPIO0/1 both high */ 9475 S24C16_stop(np, &gpreg); 9476 9477 /* activate NVRAM */ 9478 S24C16_start(np, &gpreg); 9479 9480 /* write device code and random address MSB */ 9481 S24C16_write_byte(np, &ack_data, 9482 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9483 if (ack_data & 0x01) 9484 goto out; 9485 9486 /* write random address LSB */ 9487 S24C16_write_byte(np, &ack_data, 9488 offset & 0xff, &gpreg, &gpcntl); 9489 if (ack_data & 0x01) 9490 goto out; 9491 9492 /* regenerate START state to set up for reading */ 9493 S24C16_start(np, &gpreg); 9494 9495 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9496 S24C16_write_byte(np, &ack_data, 9497 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9498 if (ack_data & 0x01) 9499 goto out; 9500 9501 /* now set up GPIO0 for inputting data */ 9502 gpcntl |= 0x01; 9503 OUTB (nc_gpcntl, gpcntl); 9504 9505 /* input all requested data - only part of total NVRAM */ 9506 for (x = 0; x < len; x++) 9507 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9508 9509 /* finally put NVRAM back in inactive mode */ 9510 gpcntl &= 0xfe; 9511 OUTB (nc_gpcntl, gpcntl); 9512 S24C16_stop(np, &gpreg); 9513 retv = 0; 9514 out: 9515 /* return GPIO0/1 to original states after having accessed NVRAM */ 9516 OUTB (nc_gpcntl, old_gpcntl); 9517 OUTB (nc_gpreg, old_gpreg); 9518 9519 return retv; 9520 } 9521 9522 #undef SET_BIT /* 0 */ 9523 #undef CLR_BIT /* 1 */ 9524 #undef SET_CLK /* 2 */ 9525 #undef CLR_CLK /* 3 */ 9526 9527 /* 9528 * Try reading Symbios NVRAM. 9529 * Return 0 if OK. 9530 */ 9531 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9532 { 9533 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9534 u_char *data = (u_char *) nvram; 9535 int len = sizeof(*nvram); 9536 u_short csum; 9537 int x; 9538 9539 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9540 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9541 return 1; 9542 9543 /* check valid NVRAM signature, verify byte count and checksum */ 9544 if (nvram->type != 0 || 9545 bcmp(nvram->trailer, Symbios_trailer, 6) || 9546 nvram->byte_count != len - 12) 9547 return 1; 9548 9549 /* verify checksum */ 9550 for (x = 6, csum = 0; x < len - 6; x++) 9551 csum += data[x]; 9552 if (csum != nvram->checksum) 9553 return 1; 9554 9555 return 0; 9556 } 9557 9558 /* 9559 * 93C46 EEPROM reading. 9560 * 9561 * GPOI0 - data in 9562 * GPIO1 - data out 9563 * GPIO2 - clock 9564 * GPIO4 - chip select 9565 * 9566 * Used by Tekram. 9567 */ 9568 9569 /* 9570 * Pulse clock bit in GPIO0 9571 */ 9572 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9573 { 9574 OUTB (nc_gpreg, *gpreg | 0x04); 9575 UDELAY (2); 9576 OUTB (nc_gpreg, *gpreg); 9577 } 9578 9579 /* 9580 * Read bit from NVRAM 9581 */ 9582 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9583 { 9584 UDELAY (2); 9585 T93C46_Clk(np, gpreg); 9586 *read_bit = INB (nc_gpreg); 9587 } 9588 9589 /* 9590 * Write bit to GPIO0 9591 */ 9592 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9593 { 9594 if (write_bit & 0x01) 9595 *gpreg |= 0x02; 9596 else 9597 *gpreg &= 0xfd; 9598 9599 *gpreg |= 0x10; 9600 9601 OUTB (nc_gpreg, *gpreg); 9602 UDELAY (2); 9603 9604 T93C46_Clk(np, gpreg); 9605 } 9606 9607 /* 9608 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9609 */ 9610 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9611 { 9612 *gpreg &= 0xef; 9613 OUTB (nc_gpreg, *gpreg); 9614 UDELAY (2); 9615 9616 T93C46_Clk(np, gpreg); 9617 } 9618 9619 /* 9620 * Send read command and address to NVRAM 9621 */ 9622 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9623 u_char *read_bit, u_char *gpreg) 9624 { 9625 int x; 9626 9627 /* send 9 bits, start bit (1), command (2), address (6) */ 9628 for (x = 0; x < 9; x++) 9629 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9630 9631 *read_bit = INB (nc_gpreg); 9632 } 9633 9634 /* 9635 * READ 2 bytes from the NVRAM 9636 */ 9637 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9638 { 9639 int x; 9640 u_char read_bit; 9641 9642 *nvram_data = 0; 9643 for (x = 0; x < 16; x++) { 9644 T93C46_Read_Bit(np, &read_bit, gpreg); 9645 9646 if (read_bit & 0x01) 9647 *nvram_data |= (0x01 << (15 - x)); 9648 else 9649 *nvram_data &= ~(0x01 << (15 - x)); 9650 } 9651 } 9652 9653 /* 9654 * Read Tekram NvRAM data. 9655 */ 9656 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9657 { 9658 u_char read_bit; 9659 int x; 9660 9661 for (x = 0; x < len; x++) { 9662 9663 /* output read command and address */ 9664 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9665 if (read_bit & 0x01) 9666 return 1; /* Bad */ 9667 T93C46_Read_Word(np, &data[x], gpreg); 9668 T93C46_Stop(np, gpreg); 9669 } 9670 9671 return 0; 9672 } 9673 9674 /* 9675 * Try reading 93C46 Tekram NVRAM. 9676 */ 9677 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9678 { 9679 u_char gpcntl, gpreg; 9680 u_char old_gpcntl, old_gpreg; 9681 int retv = 1; 9682 9683 /* save current state of GPCNTL and GPREG */ 9684 old_gpreg = INB (nc_gpreg); 9685 old_gpcntl = INB (nc_gpcntl); 9686 9687 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9688 1/2/4 out */ 9689 gpreg = old_gpreg & 0xe9; 9690 OUTB (nc_gpreg, gpreg); 9691 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9692 OUTB (nc_gpcntl, gpcntl); 9693 9694 /* input all of NVRAM, 64 words */ 9695 retv = T93C46_Read_Data(np, (u_short *) nvram, 9696 sizeof(*nvram) / sizeof(short), &gpreg); 9697 9698 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9699 OUTB (nc_gpcntl, old_gpcntl); 9700 OUTB (nc_gpreg, old_gpreg); 9701 9702 return retv; 9703 } 9704 9705 /* 9706 * Try reading Tekram NVRAM. 9707 * Return 0 if OK. 9708 */ 9709 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9710 { 9711 u_char *data = (u_char *) nvram; 9712 int len = sizeof(*nvram); 9713 u_short csum; 9714 int x; 9715 9716 switch (np->device_id) { 9717 case PCI_ID_SYM53C885: 9718 case PCI_ID_SYM53C895: 9719 case PCI_ID_SYM53C896: 9720 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9721 data, len); 9722 break; 9723 case PCI_ID_SYM53C875: 9724 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9725 data, len); 9726 if (!x) 9727 break; 9728 default: 9729 x = sym_read_T93C46_nvram(np, nvram); 9730 break; 9731 } 9732 if (x) 9733 return 1; 9734 9735 /* verify checksum */ 9736 for (x = 0, csum = 0; x < len - 1; x += 2) 9737 csum += data[x] + (data[x+1] << 8); 9738 if (csum != 0x1234) 9739 return 1; 9740 9741 return 0; 9742 } 9743 9744 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9745