xref: /freebsd/sys/dev/sym/sym_hipd.c (revision 716fd348e01c5f2ba125f878a634a753436c2994)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5  *  PCI-SCSI controllers.
6  *
7  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
8  *
9  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
10  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
12  *
13  *
14  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15  *  Copyright (C) 1998-1999  Gerard Roudier
16  *
17  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
19  *
20  *  The original ncr driver has been written for 386bsd and FreeBSD by
21  *          Wolfgang Stanglmeier        <wolf@cologne.de>
22  *          Stefan Esser                <se@mi.Uni-Koeln.de>
23  *  Copyright (C) 1994  Wolfgang Stanglmeier
24  *
25  *  The initialisation code, and part of the code that addresses
26  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27  *  written by Justin T. Gibbs.
28  *
29  *  Other major contributions:
30  *
31  *  NVRAM detection and reading.
32  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33  *
34  *-----------------------------------------------------------------------------
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
64 
65 /* #define SYM_DEBUG_GENERIC_SUPPORT */
66 
67 #include <sys/param.h>
68 
69 /*
70  *  Driver configuration options.
71  */
72 #include "opt_sym.h"
73 #include <dev/sym/sym_conf.h>
74 
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mutex.h>
81 #include <sys/module.h>
82 #include <sys/bus.h>
83 
84 #include <sys/proc.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <machine/atomic.h>
92 
93 #include <sys/rman.h>
94 
95 #include <cam/cam.h>
96 #include <cam/cam_ccb.h>
97 #include <cam/cam_sim.h>
98 #include <cam/cam_xpt_sim.h>
99 #include <cam/cam_debug.h>
100 
101 #include <cam/scsi/scsi_all.h>
102 #include <cam/scsi/scsi_message.h>
103 
104 /* Short and quite clear integer types */
105 typedef int8_t    s8;
106 typedef int16_t   s16;
107 typedef	int32_t   s32;
108 typedef u_int8_t  u8;
109 typedef u_int16_t u16;
110 typedef	u_int32_t u32;
111 
112 /*
113  *  Driver definitions.
114  */
115 #include <dev/sym/sym_defs.h>
116 #include <dev/sym/sym_fw.h>
117 
118 /*
119  *  IA32 architecture does not reorder STORES and prevents
120  *  LOADS from passing STORES. It is called `program order'
121  *  by Intel and allows device drivers to deal with memory
122  *  ordering by only ensuring that the code is not reordered
123  *  by the compiler when ordering is required.
124  *  Other architectures implement a weaker ordering that
125  *  requires memory barriers (and also IO barriers when they
126  *  make sense) to be used.
127  */
128 #if	defined	__i386__ || defined __amd64__
129 #define MEMORY_BARRIER()	do { ; } while(0)
130 #elif	defined	__powerpc__
131 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
132 #elif	defined	__arm__
133 #define MEMORY_BARRIER()	dmb()
134 #elif	defined	__aarch64__
135 #define MEMORY_BARRIER()	dmb(sy)
136 #elif	defined __riscv
137 #define MEMORY_BARRIER()	fence()
138 #else
139 #error	"Not supported platform"
140 #endif
141 
142 /*
143  *  A la VMS/CAM-3 queue management.
144  */
145 typedef struct sym_quehead {
146 	struct sym_quehead *flink;	/* Forward  pointer */
147 	struct sym_quehead *blink;	/* Backward pointer */
148 } SYM_QUEHEAD;
149 
150 #define sym_que_init(ptr) do { \
151 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
152 } while (0)
153 
154 static __inline void __sym_que_add(struct sym_quehead * new,
155 	struct sym_quehead * blink,
156 	struct sym_quehead * flink)
157 {
158 	flink->blink	= new;
159 	new->flink	= flink;
160 	new->blink	= blink;
161 	blink->flink	= new;
162 }
163 
164 static __inline void __sym_que_del(struct sym_quehead * blink,
165 	struct sym_quehead * flink)
166 {
167 	flink->blink = blink;
168 	blink->flink = flink;
169 }
170 
171 static __inline int sym_que_empty(struct sym_quehead *head)
172 {
173 	return head->flink == head;
174 }
175 
176 static __inline void sym_que_splice(struct sym_quehead *list,
177 	struct sym_quehead *head)
178 {
179 	struct sym_quehead *first = list->flink;
180 
181 	if (first != list) {
182 		struct sym_quehead *last = list->blink;
183 		struct sym_quehead *at   = head->flink;
184 
185 		first->blink = head;
186 		head->flink  = first;
187 
188 		last->flink = at;
189 		at->blink   = last;
190 	}
191 }
192 
193 #define sym_que_entry(ptr, type, member) \
194 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
195 
196 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
197 
198 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
199 
200 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
201 
202 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
203 {
204 	struct sym_quehead *elem = head->flink;
205 
206 	if (elem != head)
207 		__sym_que_del(head, elem->flink);
208 	else
209 		elem = NULL;
210 	return elem;
211 }
212 
213 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
214 
215 /*
216  *  This one may be useful.
217  */
218 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
219 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
220 /*
221  *  FreeBSD does not offer our kind of queue in the CAM CCB.
222  *  So, we have to cast.
223  */
224 #define sym_qptr(p)	((struct sym_quehead *) (p))
225 
226 /*
227  *  Simple bitmap operations.
228  */
229 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
230 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
231 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
232 
233 /*
234  *  Number of tasks per device we want to handle.
235  */
236 #if	SYM_CONF_MAX_TAG_ORDER > 8
237 #error	"more than 256 tags per logical unit not allowed."
238 #endif
239 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
240 
241 /*
242  *  Donnot use more tasks that we can handle.
243  */
244 #ifndef	SYM_CONF_MAX_TAG
245 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
246 #endif
247 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
248 #undef	SYM_CONF_MAX_TAG
249 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
250 #endif
251 
252 /*
253  *    This one means 'NO TAG for this job'
254  */
255 #define NO_TAG	(256)
256 
257 /*
258  *  Number of SCSI targets.
259  */
260 #if	SYM_CONF_MAX_TARGET > 16
261 #error	"more than 16 targets not allowed."
262 #endif
263 
264 /*
265  *  Number of logical units per target.
266  */
267 #if	SYM_CONF_MAX_LUN > 64
268 #error	"more than 64 logical units per target not allowed."
269 #endif
270 
271 /*
272  *    Asynchronous pre-scaler (ns). Shall be 40 for
273  *    the SCSI timings to be compliant.
274  */
275 #define	SYM_CONF_MIN_ASYNC (40)
276 
277 /*
278  *  Number of entries in the START and DONE queues.
279  *
280  *  We limit to 1 PAGE in order to succeed allocation of
281  *  these queues. Each entry is 8 bytes long (2 DWORDS).
282  */
283 #ifdef	SYM_CONF_MAX_START
284 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
285 #else
286 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
287 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
288 #endif
289 
290 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
291 #undef	SYM_CONF_MAX_QUEUE
292 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
293 #undef	SYM_CONF_MAX_START
294 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
295 #endif
296 
297 /*
298  *  For this one, we want a short name :-)
299  */
300 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
301 
302 /*
303  *  Active debugging tags and verbosity.
304  */
305 #define DEBUG_ALLOC	(0x0001)
306 #define DEBUG_PHASE	(0x0002)
307 #define DEBUG_POLL	(0x0004)
308 #define DEBUG_QUEUE	(0x0008)
309 #define DEBUG_RESULT	(0x0010)
310 #define DEBUG_SCATTER	(0x0020)
311 #define DEBUG_SCRIPT	(0x0040)
312 #define DEBUG_TINY	(0x0080)
313 #define DEBUG_TIMING	(0x0100)
314 #define DEBUG_NEGO	(0x0200)
315 #define DEBUG_TAGS	(0x0400)
316 #define DEBUG_POINTER	(0x0800)
317 
318 #if 0
319 static int sym_debug = 0;
320 	#define DEBUG_FLAGS sym_debug
321 #else
322 /*	#define DEBUG_FLAGS (0x0631) */
323 	#define DEBUG_FLAGS (0x0000)
324 
325 #endif
326 #define sym_verbose	(np->verbose)
327 
328 /*
329  *  Insert a delay in micro-seconds and milli-seconds.
330  */
331 static void UDELAY(int us) { DELAY(us); }
332 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
333 
334 /*
335  *  Simple power of two buddy-like allocator.
336  *
337  *  This simple code is not intended to be fast, but to
338  *  provide power of 2 aligned memory allocations.
339  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
340  *  this allocator allows simple and fast address calculations
341  *  from the SCRIPTS code. In addition, cache line alignment
342  *  is guaranteed for power of 2 cache line size.
343  *
344  *  This allocator has been developed for the Linux sym53c8xx
345  *  driver, since this O/S does not provide naturally aligned
346  *  allocations.
347  *  It has the advantage of allowing the driver to use private
348  *  pages of memory that will be useful if we ever need to deal
349  *  with IO MMUs for PCI.
350  */
351 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
352 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
353 #if 0
354 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
355 #endif
356 #define MEMO_WARN	1
357 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
358 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
359 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
360 
361 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
362 #define free_pages(p)		free((p), M_DEVBUF)
363 
364 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
365 
366 typedef struct m_link {		/* Link between free memory chunks */
367 	struct m_link *next;
368 } m_link_s;
369 
370 typedef struct m_vtob {		/* Virtual to Bus address translation */
371 	struct m_vtob	*next;
372 	bus_dmamap_t	dmamap;	/* Map for this chunk */
373 	m_addr_t	vaddr;	/* Virtual address */
374 	m_addr_t	baddr;	/* Bus physical address */
375 } m_vtob_s;
376 /* Hash this stuff a bit to speed up translations */
377 #define VTOB_HASH_SHIFT		5
378 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
379 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
380 #define VTOB_HASH_CODE(m)	\
381 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
382 
383 typedef struct m_pool {		/* Memory pool of a given kind */
384 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
385 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
386 	m_addr_t (*getp)(struct m_pool *);
387 #ifdef	MEMO_FREE_UNUSED
388 	void (*freep)(struct m_pool *, m_addr_t);
389 #endif
390 #define M_GETP()		mp->getp(mp)
391 #define M_FREEP(p)		mp->freep(mp, p)
392 	int nump;
393 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
394 	struct m_pool *next;
395 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
396 } m_pool_s;
397 
398 static void *___sym_malloc(m_pool_s *mp, int size)
399 {
400 	int i = 0;
401 	int s = (1 << MEMO_SHIFT);
402 	int j;
403 	m_addr_t a;
404 	m_link_s *h = mp->h;
405 
406 	if (size > MEMO_CLUSTER_SIZE)
407 		return NULL;
408 
409 	while (size > s) {
410 		s <<= 1;
411 		++i;
412 	}
413 
414 	j = i;
415 	while (!h[j].next) {
416 		if (s == MEMO_CLUSTER_SIZE) {
417 			h[j].next = (m_link_s *) M_GETP();
418 			if (h[j].next)
419 				h[j].next->next = NULL;
420 			break;
421 		}
422 		++j;
423 		s <<= 1;
424 	}
425 	a = (m_addr_t) h[j].next;
426 	if (a) {
427 		h[j].next = h[j].next->next;
428 		while (j > i) {
429 			j -= 1;
430 			s >>= 1;
431 			h[j].next = (m_link_s *) (a+s);
432 			h[j].next->next = NULL;
433 		}
434 	}
435 #ifdef DEBUG
436 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
437 #endif
438 	return (void *) a;
439 }
440 
441 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
442 {
443 	int i = 0;
444 	int s = (1 << MEMO_SHIFT);
445 	m_link_s *q;
446 	m_addr_t a, b;
447 	m_link_s *h = mp->h;
448 
449 #ifdef DEBUG
450 	printf("___sym_mfree(%p, %d)\n", ptr, size);
451 #endif
452 
453 	if (size > MEMO_CLUSTER_SIZE)
454 		return;
455 
456 	while (size > s) {
457 		s <<= 1;
458 		++i;
459 	}
460 
461 	a = (m_addr_t) ptr;
462 
463 	while (1) {
464 #ifdef MEMO_FREE_UNUSED
465 		if (s == MEMO_CLUSTER_SIZE) {
466 			M_FREEP(a);
467 			break;
468 		}
469 #endif
470 		b = a ^ s;
471 		q = &h[i];
472 		while (q->next && q->next != (m_link_s *) b) {
473 			q = q->next;
474 		}
475 		if (!q->next) {
476 			((m_link_s *) a)->next = h[i].next;
477 			h[i].next = (m_link_s *) a;
478 			break;
479 		}
480 		q->next = q->next->next;
481 		a = a & b;
482 		s <<= 1;
483 		++i;
484 	}
485 }
486 
487 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
488 {
489 	void *p;
490 
491 	p = ___sym_malloc(mp, size);
492 
493 	if (DEBUG_FLAGS & DEBUG_ALLOC)
494 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
495 
496 	if (p)
497 		bzero(p, size);
498 	else if (uflags & MEMO_WARN)
499 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
500 
501 	return p;
502 }
503 
504 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
505 
506 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
507 {
508 	if (DEBUG_FLAGS & DEBUG_ALLOC)
509 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
510 
511 	___sym_mfree(mp, ptr, size);
512 
513 }
514 
515 /*
516  * Default memory pool we donnot need to involve in DMA.
517  */
518 /*
519  * With the `bus dma abstraction', we use a separate pool for
520  * memory we donnot need to involve in DMA.
521  */
522 static m_addr_t ___mp0_getp(m_pool_s *mp)
523 {
524 	m_addr_t m = (m_addr_t) get_pages();
525 	if (m)
526 		++mp->nump;
527 	return m;
528 }
529 
530 #ifdef	MEMO_FREE_UNUSED
531 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
532 {
533 	free_pages(m);
534 	--mp->nump;
535 }
536 #endif
537 
538 #ifdef	MEMO_FREE_UNUSED
539 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
540 #else
541 static m_pool_s mp0 = {0, 0, ___mp0_getp};
542 #endif
543 
544 /*
545  * Actual memory allocation routine for non-DMAed memory.
546  */
547 static void *sym_calloc(int size, char *name)
548 {
549 	void *m;
550 	/* Lock */
551 	m = __sym_calloc(&mp0, size, name);
552 	/* Unlock */
553 	return m;
554 }
555 
556 /*
557  * Actual memory allocation routine for non-DMAed memory.
558  */
559 static void sym_mfree(void *ptr, int size, char *name)
560 {
561 	/* Lock */
562 	__sym_mfree(&mp0, ptr, size, name);
563 	/* Unlock */
564 }
565 
566 /*
567  * DMAable pools.
568  */
569 /*
570  * With `bus dma abstraction', we use a separate pool per parent
571  * BUS handle. A reverse table (hashed) is maintained for virtual
572  * to BUS address translation.
573  */
574 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
575 {
576 	bus_addr_t *baddr;
577 
578 	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
579 
580 	baddr = (bus_addr_t *)arg;
581 	if (error)
582 		*baddr = 0;
583 	else
584 		*baddr = segs->ds_addr;
585 }
586 
587 static m_addr_t ___dma_getp(m_pool_s *mp)
588 {
589 	m_vtob_s *vbp;
590 	void *vaddr = NULL;
591 	bus_addr_t baddr = 0;
592 
593 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
594 	if (!vbp)
595 		goto out_err;
596 
597 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
598 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
599 		goto out_err;
600 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
601 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
602 	if (baddr) {
603 		int hc = VTOB_HASH_CODE(vaddr);
604 		vbp->vaddr = (m_addr_t) vaddr;
605 		vbp->baddr = (m_addr_t) baddr;
606 		vbp->next = mp->vtob[hc];
607 		mp->vtob[hc] = vbp;
608 		++mp->nump;
609 		return (m_addr_t) vaddr;
610 	}
611 out_err:
612 	if (vaddr)
613 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
614 	if (vbp)
615 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
616 	return 0;
617 }
618 
619 #ifdef	MEMO_FREE_UNUSED
620 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
621 {
622 	m_vtob_s **vbpp, *vbp;
623 	int hc = VTOB_HASH_CODE(m);
624 
625 	vbpp = &mp->vtob[hc];
626 	while (*vbpp && (*vbpp)->vaddr != m)
627 		vbpp = &(*vbpp)->next;
628 	if (*vbpp) {
629 		vbp = *vbpp;
630 		*vbpp = (*vbpp)->next;
631 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
632 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
633 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
634 		--mp->nump;
635 	}
636 }
637 #endif
638 
639 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
640 {
641 	m_pool_s *mp;
642 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
643 	return mp;
644 }
645 
646 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
647 {
648 	m_pool_s *mp = NULL;
649 
650 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
651 	if (mp) {
652 		mp->dev_dmat = dev_dmat;
653 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
654 			       BUS_SPACE_MAXADDR_32BIT,
655 			       BUS_SPACE_MAXADDR,
656 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
657 			       MEMO_CLUSTER_SIZE, 0,
658 			       NULL, NULL, &mp->dmat)) {
659 			mp->getp = ___dma_getp;
660 #ifdef	MEMO_FREE_UNUSED
661 			mp->freep = ___dma_freep;
662 #endif
663 			mp->next = mp0.next;
664 			mp0.next = mp;
665 			return mp;
666 		}
667 	}
668 	if (mp)
669 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
670 	return NULL;
671 }
672 
673 #ifdef	MEMO_FREE_UNUSED
674 static void ___del_dma_pool(m_pool_s *p)
675 {
676 	struct m_pool **pp = &mp0.next;
677 
678 	while (*pp && *pp != p)
679 		pp = &(*pp)->next;
680 	if (*pp) {
681 		*pp = (*pp)->next;
682 		bus_dma_tag_destroy(p->dmat);
683 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
684 	}
685 }
686 #endif
687 
688 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
689 {
690 	struct m_pool *mp;
691 	void *m = NULL;
692 
693 	/* Lock */
694 	mp = ___get_dma_pool(dev_dmat);
695 	if (!mp)
696 		mp = ___cre_dma_pool(dev_dmat);
697 	if (mp)
698 		m = __sym_calloc(mp, size, name);
699 #ifdef	MEMO_FREE_UNUSED
700 	if (mp && !mp->nump)
701 		___del_dma_pool(mp);
702 #endif
703 	/* Unlock */
704 
705 	return m;
706 }
707 
708 static void
709 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
710 {
711 	struct m_pool *mp;
712 
713 	/* Lock */
714 	mp = ___get_dma_pool(dev_dmat);
715 	if (mp)
716 		__sym_mfree(mp, m, size, name);
717 #ifdef	MEMO_FREE_UNUSED
718 	if (mp && !mp->nump)
719 		___del_dma_pool(mp);
720 #endif
721 	/* Unlock */
722 }
723 
724 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
725 {
726 	m_pool_s *mp;
727 	int hc = VTOB_HASH_CODE(m);
728 	m_vtob_s *vp = NULL;
729 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
730 
731 	/* Lock */
732 	mp = ___get_dma_pool(dev_dmat);
733 	if (mp) {
734 		vp = mp->vtob[hc];
735 		while (vp && (m_addr_t) vp->vaddr != a)
736 			vp = vp->next;
737 	}
738 	/* Unlock */
739 	if (!vp)
740 		panic("sym: VTOBUS FAILED!\n");
741 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
742 }
743 
744 /*
745  * Verbs for DMAable memory handling.
746  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
747  * being discarded.
748  */
749 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
750 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
751 #define _sym_mfree_dma(np, p, s, n)	\
752 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
753 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
754 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
755 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
756 #define vtobus(p)			_vtobus(np, p)
757 
758 /*
759  *  Print a buffer in hexadecimal format.
760  */
761 static void sym_printb_hex (u_char *p, int n)
762 {
763 	while (n-- > 0)
764 		printf (" %x", *p++);
765 }
766 
767 /*
768  *  Same with a label at beginning and .\n at end.
769  */
770 static void sym_printl_hex (char *label, u_char *p, int n)
771 {
772 	printf ("%s", label);
773 	sym_printb_hex (p, n);
774 	printf (".\n");
775 }
776 
777 /*
778  *  Return a string for SCSI BUS mode.
779  */
780 static const char *sym_scsi_bus_mode(int mode)
781 {
782 	switch(mode) {
783 	case SMODE_HVD:	return "HVD";
784 	case SMODE_SE:	return "SE";
785 	case SMODE_LVD: return "LVD";
786 	}
787 	return "??";
788 }
789 
790 /*
791  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
792  */
793 #ifdef SYM_CONF_NVRAM_SUPPORT
794 static const u_char Tekram_sync[16] =
795 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
796 #endif
797 
798 /*
799  *  Union of supported NVRAM formats.
800  */
801 struct sym_nvram {
802 	int type;
803 #define	SYM_SYMBIOS_NVRAM	(1)
804 #define	SYM_TEKRAM_NVRAM	(2)
805 #ifdef	SYM_CONF_NVRAM_SUPPORT
806 	union {
807 		Symbios_nvram Symbios;
808 		Tekram_nvram Tekram;
809 	} data;
810 #endif
811 };
812 
813 /*
814  *  This one is hopefully useless, but actually useful. :-)
815  */
816 #ifndef assert
817 #define	assert(expression) { \
818 	if (!(expression)) { \
819 		(void)panic( \
820 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
821 			#expression, \
822 			__FILE__, __LINE__); \
823 	} \
824 }
825 #endif
826 
827 /*
828  *  Some provision for a possible big endian mode supported by
829  *  Symbios chips (never seen, by the way).
830  *  For now, this stuff does not deserve any comments. :)
831  */
832 #define sym_offb(o)	(o)
833 #define sym_offw(o)	(o)
834 
835 /*
836  *  Some provision for support for BIG ENDIAN CPU.
837  */
838 #define cpu_to_scr(dw)	htole32(dw)
839 #define scr_to_cpu(dw)	le32toh(dw)
840 
841 /*
842  *  Access to the chip IO registers and on-chip RAM.
843  *  We use the `bus space' interface under FreeBSD-4 and
844  *  later kernel versions.
845  */
846 #if defined(SYM_CONF_IOMAPPED)
847 
848 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
849 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
850 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
851 
852 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
853 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
854 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
855 
856 #else	/* Memory mapped IO */
857 
858 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
859 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
860 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
861 
862 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
863 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
864 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
865 
866 #endif	/* SYM_CONF_IOMAPPED */
867 
868 #define OUTRAM_OFF(o, a, l)	\
869 	bus_write_region_1(np->ram_res, (o), (a), (l))
870 
871 /*
872  *  Common definitions for both bus space and legacy IO methods.
873  */
874 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
875 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
876 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
877 
878 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
879 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
880 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
881 
882 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
883 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
884 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
885 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
886 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
887 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
888 
889 /*
890  *  We normally want the chip to have a consistent view
891  *  of driver internal data structures when we restart it.
892  *  Thus these macros.
893  */
894 #define OUTL_DSP(v)				\
895 	do {					\
896 		MEMORY_BARRIER();		\
897 		OUTL (nc_dsp, (v));		\
898 	} while (0)
899 
900 #define OUTONB_STD()				\
901 	do {					\
902 		MEMORY_BARRIER();		\
903 		OUTONB (nc_dcntl, (STD|NOCOM));	\
904 	} while (0)
905 
906 /*
907  *  Command control block states.
908  */
909 #define HS_IDLE		(0)
910 #define HS_BUSY		(1)
911 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
912 #define HS_DISCONNECT	(3)	/* Disconnected by target */
913 #define HS_WAIT		(4)	/* waiting for resource	  */
914 
915 #define HS_DONEMASK	(0x80)
916 #define HS_COMPLETE	(4|HS_DONEMASK)
917 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
918 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
919 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
920 
921 /*
922  *  Software Interrupt Codes
923  */
924 #define	SIR_BAD_SCSI_STATUS	(1)
925 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
926 #define	SIR_MSG_RECEIVED	(3)
927 #define	SIR_MSG_WEIRD		(4)
928 #define	SIR_NEGO_FAILED		(5)
929 #define	SIR_NEGO_PROTO		(6)
930 #define	SIR_SCRIPT_STOPPED	(7)
931 #define	SIR_REJECT_TO_SEND	(8)
932 #define	SIR_SWIDE_OVERRUN	(9)
933 #define	SIR_SODL_UNDERRUN	(10)
934 #define	SIR_RESEL_NO_MSG_IN	(11)
935 #define	SIR_RESEL_NO_IDENTIFY	(12)
936 #define	SIR_RESEL_BAD_LUN	(13)
937 #define	SIR_TARGET_SELECTED	(14)
938 #define	SIR_RESEL_BAD_I_T_L	(15)
939 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
940 #define	SIR_ABORT_SENT		(17)
941 #define	SIR_RESEL_ABORTED	(18)
942 #define	SIR_MSG_OUT_DONE	(19)
943 #define	SIR_COMPLETE_ERROR	(20)
944 #define	SIR_DATA_OVERRUN	(21)
945 #define	SIR_BAD_PHASE		(22)
946 #define	SIR_MAX			(22)
947 
948 /*
949  *  Extended error bit codes.
950  *  xerr_status field of struct sym_ccb.
951  */
952 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
953 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
954 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
955 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
956 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
957 
958 /*
959  *  Negotiation status.
960  *  nego_status field of struct sym_ccb.
961  */
962 #define NS_SYNC		(1)
963 #define NS_WIDE		(2)
964 #define NS_PPR		(3)
965 
966 /*
967  *  A CCB hashed table is used to retrieve CCB address
968  *  from DSA value.
969  */
970 #define CCB_HASH_SHIFT		8
971 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
972 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
973 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
974 
975 /*
976  *  Device flags.
977  */
978 #define SYM_DISC_ENABLED	(1)
979 #define SYM_TAGS_ENABLED	(1<<1)
980 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
981 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
982 
983 /*
984  *  Host adapter miscellaneous flags.
985  */
986 #define SYM_AVOID_BUS_RESET	(1)
987 #define SYM_SCAN_TARGETS_HILO	(1<<1)
988 
989 /*
990  *  Device quirks.
991  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
992  *  saving the DATA POINTER then reselects and terminates the IO.
993  *  On reselection, the automatic RESTORE DATA POINTER makes the
994  *  CURRENT DATA POINTER not point at the end of the IO.
995  *  This behaviour just breaks our calculation of the residual.
996  *  For now, we just force an AUTO SAVE on disconnection and will
997  *  fix that in a further driver version.
998  */
999 #define SYM_QUIRK_AUTOSAVE 1
1000 
1001 /*
1002  *  Misc.
1003  */
1004 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1005 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1006 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1007 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1008 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1009 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1010 
1011 #define SYM_SNOOP_TIMEOUT (10000000)
1012 #define SYM_PCI_IO	PCIR_BAR(0)
1013 #define SYM_PCI_MMIO	PCIR_BAR(1)
1014 #define SYM_PCI_RAM	PCIR_BAR(2)
1015 #define SYM_PCI_RAM64	PCIR_BAR(3)
1016 
1017 /*
1018  *  Back-pointer from the CAM CCB to our data structures.
1019  */
1020 #define sym_hcb_ptr	spriv_ptr0
1021 /* #define sym_ccb_ptr	spriv_ptr1 */
1022 
1023 /*
1024  *  We mostly have to deal with pointers.
1025  *  Thus these typedef's.
1026  */
1027 typedef struct sym_tcb *tcb_p;
1028 typedef struct sym_lcb *lcb_p;
1029 typedef struct sym_ccb *ccb_p;
1030 typedef struct sym_hcb *hcb_p;
1031 
1032 /*
1033  *  Gather negotiable parameters value
1034  */
1035 struct sym_trans {
1036 	u8 scsi_version;
1037 	u8 spi_version;
1038 	u8 period;
1039 	u8 offset;
1040 	u8 width;
1041 	u8 options;	/* PPR options */
1042 };
1043 
1044 struct sym_tinfo {
1045 	struct sym_trans current;
1046 	struct sym_trans goal;
1047 	struct sym_trans user;
1048 };
1049 
1050 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1051 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1052 
1053 /*
1054  *  Global TCB HEADER.
1055  *
1056  *  Due to lack of indirect addressing on earlier NCR chips,
1057  *  this substructure is copied from the TCB to a global
1058  *  address after selection.
1059  *  For SYMBIOS chips that support LOAD/STORE this copy is
1060  *  not needed and thus not performed.
1061  */
1062 struct sym_tcbh {
1063 	/*
1064 	 *  Scripts bus addresses of LUN table accessed from scripts.
1065 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1066 	 *  and we we want to speed-up the general case and not waste
1067 	 *  resources.
1068 	 */
1069 	u32	luntbl_sa;	/* bus address of this table	*/
1070 	u32	lun0_sa;	/* bus address of LCB #0	*/
1071 	/*
1072 	 *  Actual SYNC/WIDE IO registers value for this target.
1073 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1074 	 *  so have alignment constraints.
1075 	 */
1076 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1077 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1078 /*2*/	u_char	filler1;
1079 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1080 };
1081 
1082 /*
1083  *  Target Control Block
1084  */
1085 struct sym_tcb {
1086 	/*
1087 	 *  TCB header.
1088 	 *  Assumed at offset 0.
1089 	 */
1090 /*0*/	struct sym_tcbh head;
1091 
1092 	/*
1093 	 *  LUN table used by the SCRIPTS processor.
1094 	 *  An array of bus addresses is used on reselection.
1095 	 */
1096 	u32	*luntbl;	/* LCBs bus address table	*/
1097 
1098 	/*
1099 	 *  LUN table used by the C code.
1100 	 */
1101 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1102 #if SYM_CONF_MAX_LUN > 1
1103 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1104 #endif
1105 
1106 	/*
1107 	 *  Bitmap that tells about LUNs that succeeded at least
1108 	 *  1 IO and therefore assumed to be a real device.
1109 	 *  Avoid useless allocation of the LCB structure.
1110 	 */
1111 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1112 
1113 	/*
1114 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1115 	 *  allocated (not discovered or LCB allocation failed).
1116 	 */
1117 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1118 
1119 	/*
1120 	 *  Transfer capabilities (SIP)
1121 	 */
1122 	struct sym_tinfo tinfo;
1123 
1124 	/*
1125 	 * Keep track of the CCB used for the negotiation in order
1126 	 * to ensure that only 1 negotiation is queued at a time.
1127 	 */
1128 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1129 
1130 	/*
1131 	 *  Set when we want to reset the device.
1132 	 */
1133 	u_char	to_reset;
1134 
1135 	/*
1136 	 *  Other user settable limits and options.
1137 	 *  These limits are read from the NVRAM if present.
1138 	 */
1139 	u_char	usrflags;
1140 	u_short	usrtags;
1141 };
1142 
1143 /*
1144  *  Assert some alignments required by the chip.
1145  */
1146 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1147     offsetof(struct sym_tcb, head.sval)) &3) == 0);
1148 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1149     offsetof(struct sym_tcb, head.wval)) &3) == 0);
1150 
1151 /*
1152  *  Global LCB HEADER.
1153  *
1154  *  Due to lack of indirect addressing on earlier NCR chips,
1155  *  this substructure is copied from the LCB to a global
1156  *  address after selection.
1157  *  For SYMBIOS chips that support LOAD/STORE this copy is
1158  *  not needed and thus not performed.
1159  */
1160 struct sym_lcbh {
1161 	/*
1162 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1163 	 *  For not probed logical units, this address points to
1164 	 *  SCRIPTS that deal with bad LU handling (must be at
1165 	 *  offset zero of the LCB for that reason).
1166 	 */
1167 /*0*/	u32	resel_sa;
1168 
1169 	/*
1170 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1171 	 *  to the unique ITL nexus allowed to be disconnected.
1172 	 */
1173 	u32	itl_task_sa;
1174 
1175 	/*
1176 	 *  Task table bus address (read from SCRIPTS).
1177 	 */
1178 	u32	itlq_tbl_sa;
1179 };
1180 
1181 /*
1182  *  Logical Unit Control Block
1183  */
1184 struct sym_lcb {
1185 	/*
1186 	 *  TCB header.
1187 	 *  Assumed at offset 0.
1188 	 */
1189 /*0*/	struct sym_lcbh head;
1190 
1191 	/*
1192 	 *  Task table read from SCRIPTS that contains pointers to
1193 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1194 	 *  inside the header.
1195 	 */
1196 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1197 
1198 	/*
1199 	 *  Busy CCBs management.
1200 	 */
1201 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1202 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1203 
1204 	/*
1205 	 *  Circular tag allocation buffer.
1206 	 */
1207 	u_short	ia_tag;		/* Tag allocation index		*/
1208 	u_short	if_tag;		/* Tag release index		*/
1209 	u_char	*cb_tags;	/* Circular tags buffer		*/
1210 
1211 	/*
1212 	 *  Set when we want to clear all tasks.
1213 	 */
1214 	u_char to_clear;
1215 
1216 	/*
1217 	 *  Capabilities.
1218 	 */
1219 	u_char	user_flags;
1220 	u_char	current_flags;
1221 };
1222 
1223 /*
1224  *  Action from SCRIPTS on a task.
1225  *  Is part of the CCB, but is also used separately to plug
1226  *  error handling action to perform from SCRIPTS.
1227  */
1228 struct sym_actscr {
1229 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1230 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1231 };
1232 
1233 /*
1234  *  Phase mismatch context.
1235  *
1236  *  It is part of the CCB and is used as parameters for the
1237  *  DATA pointer. We need two contexts to handle correctly the
1238  *  SAVED DATA POINTER.
1239  */
1240 struct sym_pmc {
1241 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1242 	u32	ret;		/* SCRIPT return address	*/
1243 };
1244 
1245 /*
1246  *  LUN control block lookup.
1247  *  We use a direct pointer for LUN #0, and a table of
1248  *  pointers which is only allocated for devices that support
1249  *  LUN(s) > 0.
1250  */
1251 #if SYM_CONF_MAX_LUN <= 1
1252 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1253 #else
1254 #define sym_lp(tp, lun) \
1255 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1256 #endif
1257 
1258 /*
1259  *  Status are used by the host and the script processor.
1260  *
1261  *  The last four bytes (status[4]) are copied to the
1262  *  scratchb register (declared as scr0..scr3) just after the
1263  *  select/reselect, and copied back just after disconnecting.
1264  *  Inside the script the XX_REG are used.
1265  */
1266 
1267 /*
1268  *  Last four bytes (script)
1269  */
1270 #define  QU_REG	scr0
1271 #define  HS_REG	scr1
1272 #define  HS_PRT	nc_scr1
1273 #define  SS_REG	scr2
1274 #define  SS_PRT	nc_scr2
1275 #define  HF_REG	scr3
1276 #define  HF_PRT	nc_scr3
1277 
1278 /*
1279  *  Last four bytes (host)
1280  */
1281 #define  actualquirks  phys.head.status[0]
1282 #define  host_status   phys.head.status[1]
1283 #define  ssss_status   phys.head.status[2]
1284 #define  host_flags    phys.head.status[3]
1285 
1286 /*
1287  *  Host flags
1288  */
1289 #define HF_IN_PM0	1u
1290 #define HF_IN_PM1	(1u<<1)
1291 #define HF_ACT_PM	(1u<<2)
1292 #define HF_DP_SAVED	(1u<<3)
1293 #define HF_SENSE	(1u<<4)
1294 #define HF_EXT_ERR	(1u<<5)
1295 #define HF_DATA_IN	(1u<<6)
1296 #ifdef SYM_CONF_IARB_SUPPORT
1297 #define HF_HINT_IARB	(1u<<7)
1298 #endif
1299 
1300 /*
1301  *  Global CCB HEADER.
1302  *
1303  *  Due to lack of indirect addressing on earlier NCR chips,
1304  *  this substructure is copied from the ccb to a global
1305  *  address after selection (or reselection) and copied back
1306  *  before disconnect.
1307  *  For SYMBIOS chips that support LOAD/STORE this copy is
1308  *  not needed and thus not performed.
1309  */
1310 struct sym_ccbh {
1311 	/*
1312 	 *  Start and restart SCRIPTS addresses (must be at 0).
1313 	 */
1314 /*0*/	struct sym_actscr go;
1315 
1316 	/*
1317 	 *  SCRIPTS jump address that deal with data pointers.
1318 	 *  'savep' points to the position in the script responsible
1319 	 *  for the actual transfer of data.
1320 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1321 	 */
1322 	u32	savep;		/* Jump address to saved data pointer	*/
1323 	u32	lastp;		/* SCRIPTS address at end of data	*/
1324 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1325 
1326 	/*
1327 	 *  Status fields.
1328 	 */
1329 	u8	status[4];
1330 };
1331 
1332 /*
1333  *  Data Structure Block
1334  *
1335  *  During execution of a ccb by the script processor, the
1336  *  DSA (data structure address) register points to this
1337  *  substructure of the ccb.
1338  */
1339 struct sym_dsb {
1340 	/*
1341 	 *  CCB header.
1342 	 *  Also assumed at offset 0 of the sym_ccb structure.
1343 	 */
1344 /*0*/	struct sym_ccbh head;
1345 
1346 	/*
1347 	 *  Phase mismatch contexts.
1348 	 *  We need two to handle correctly the SAVED DATA POINTER.
1349 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1350 	 *  for address calculation from SCRIPTS.
1351 	 */
1352 	struct sym_pmc pm0;
1353 	struct sym_pmc pm1;
1354 
1355 	/*
1356 	 *  Table data for Script
1357 	 */
1358 	struct sym_tblsel  select;
1359 	struct sym_tblmove smsg;
1360 	struct sym_tblmove smsg_ext;
1361 	struct sym_tblmove cmd;
1362 	struct sym_tblmove sense;
1363 	struct sym_tblmove wresid;
1364 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1365 };
1366 
1367 /*
1368  *  Our Command Control Block
1369  */
1370 struct sym_ccb {
1371 	/*
1372 	 *  This is the data structure which is pointed by the DSA
1373 	 *  register when it is executed by the script processor.
1374 	 *  It must be the first entry.
1375 	 */
1376 	struct sym_dsb phys;
1377 
1378 	/*
1379 	 *  Pointer to CAM ccb and related stuff.
1380 	 */
1381 	struct callout ch;	/* callout handle		*/
1382 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1383 	u8	cdb_buf[16];	/* Copy of CDB			*/
1384 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1385 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1386 	int	data_len;	/* Total data length		*/
1387 	int	segments;	/* Number of SG segments	*/
1388 
1389 	/*
1390 	 *  Miscellaneous status'.
1391 	 */
1392 	u_char	nego_status;	/* Negotiation status		*/
1393 	u_char	xerr_status;	/* Extended error flags		*/
1394 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1395 
1396 	/*
1397 	 *  Message areas.
1398 	 *  We prepare a message to be sent after selection.
1399 	 *  We may use a second one if the command is rescheduled
1400 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1401 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1402 	 *  While negotiating sync or wide transfer,
1403 	 *  a SDTR or WDTR message is appended.
1404 	 */
1405 	u_char	scsi_smsg [12];
1406 	u_char	scsi_smsg2[12];
1407 
1408 	/*
1409 	 *  Auto request sense related fields.
1410 	 */
1411 	u_char	sensecmd[6];	/* Request Sense command	*/
1412 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1413 	u_char	sv_xerr_status;	/* Saved extended status	*/
1414 	int	sv_resid;	/* Saved residual		*/
1415 
1416 	/*
1417 	 *  Map for the DMA of user data.
1418 	 */
1419 	void		*arg;	/* Argument for some callback	*/
1420 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1421 	u_char		dmamapped;
1422 #define SYM_DMA_NONE	0
1423 #define SYM_DMA_READ	1
1424 #define SYM_DMA_WRITE	2
1425 	/*
1426 	 *  Other fields.
1427 	 */
1428 	u32	ccb_ba;		/* BUS address of this CCB	*/
1429 	u_short	tag;		/* Tag for this transfer	*/
1430 				/*  NO_TAG means no tag		*/
1431 	u_char	target;
1432 	u_char	lun;
1433 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1434 	SYM_QUEHEAD
1435 		link_ccbq;	/* Link to free/busy CCB queue	*/
1436 	u32	startp;		/* Initial data pointer		*/
1437 	int	ext_sg;		/* Extreme data pointer, used	*/
1438 	int	ext_ofs;	/*  to calculate the residual.	*/
1439 	u_char	to_abort;	/* Want this IO to be aborted	*/
1440 };
1441 
1442 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1443 
1444 /*
1445  *  Host Control Block
1446  */
1447 struct sym_hcb {
1448 	struct mtx	mtx;
1449 
1450 	/*
1451 	 *  Global headers.
1452 	 *  Due to poorness of addressing capabilities, earlier
1453 	 *  chips (810, 815, 825) copy part of the data structures
1454 	 *  (CCB, TCB and LCB) in fixed areas.
1455 	 */
1456 #ifdef	SYM_CONF_GENERIC_SUPPORT
1457 	struct sym_ccbh	ccb_head;
1458 	struct sym_tcbh	tcb_head;
1459 	struct sym_lcbh	lcb_head;
1460 #endif
1461 	/*
1462 	 *  Idle task and invalid task actions and
1463 	 *  their bus addresses.
1464 	 */
1465 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1466 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1467 
1468 	/*
1469 	 *  Dummy lun table to protect us against target
1470 	 *  returning bad lun number on reselection.
1471 	 */
1472 	u32	*badluntbl;	/* Table physical address	*/
1473 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1474 
1475 	/*
1476 	 *  Bus address of this host control block.
1477 	 */
1478 	u32	hcb_ba;
1479 
1480 	/*
1481 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1482 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1483 	 *  field.
1484 	 */
1485 	u32	scr_ram_seg;
1486 
1487 	/*
1488 	 *  Chip and controller indentification.
1489 	 */
1490 	device_t device;
1491 
1492 	/*
1493 	 *  Initial value of some IO register bits.
1494 	 *  These values are assumed to have been set by BIOS, and may
1495 	 *  be used to probe adapter implementation differences.
1496 	 */
1497 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1498 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1499 		sv_stest1;
1500 
1501 	/*
1502 	 *  Actual initial value of IO register bits used by the
1503 	 *  driver. They are loaded at initialisation according to
1504 	 *  features that are to be enabled/disabled.
1505 	 */
1506 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1507 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1508 
1509 	/*
1510 	 *  Target data.
1511 	 */
1512 #ifdef __amd64__
1513 	struct sym_tcb	*target;
1514 #else
1515 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1516 #endif
1517 
1518 	/*
1519 	 *  Target control block bus address array used by the SCRIPT
1520 	 *  on reselection.
1521 	 */
1522 	u32		*targtbl;
1523 	u32		targtbl_ba;
1524 
1525 	/*
1526 	 *  CAM SIM information for this instance.
1527 	 */
1528 	struct		cam_sim  *sim;
1529 	struct		cam_path *path;
1530 
1531 	/*
1532 	 *  Allocated hardware resources.
1533 	 */
1534 	struct resource	*irq_res;
1535 	struct resource	*io_res;
1536 	struct resource	*mmio_res;
1537 	struct resource	*ram_res;
1538 	int		ram_id;
1539 	void *intr;
1540 
1541 	/*
1542 	 *  Bus stuff.
1543 	 *
1544 	 *  My understanding of PCI is that all agents must share the
1545 	 *  same addressing range and model.
1546 	 *  But some hardware architecture guys provide complex and
1547 	 *  brain-deaded stuff that makes shit.
1548 	 *  This driver only support PCI compliant implementations and
1549 	 *  deals with part of the BUS stuff complexity only to fit O/S
1550 	 *  requirements.
1551 	 */
1552 
1553 	/*
1554 	 *  DMA stuff.
1555 	 */
1556 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1557 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1558 	/*
1559 	 *  BUS addresses of the chip
1560 	 */
1561 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1562 	int		mmio_ws;	/* MMIO Window size		*/
1563 
1564 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1565 	int		ram_ws;		/* RAM window size		*/
1566 
1567 	/*
1568 	 *  SCRIPTS virtual and physical bus addresses.
1569 	 *  'script'  is loaded in the on-chip RAM if present.
1570 	 *  'scripth' stays in main memory for all chips except the
1571 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1572 	 */
1573 	u_char		*scripta0;	/* Copies of script and scripth	*/
1574 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1575 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1576 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1577 	vm_offset_t	scriptb0_ba;
1578 	u_short		scripta_sz;	/* Actual size of script A	*/
1579 	u_short		scriptb_sz;	/* Actual size of script B	*/
1580 
1581 	/*
1582 	 *  Bus addresses, setup and patch methods for
1583 	 *  the selected firmware.
1584 	 */
1585 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1586 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1587 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1588 	void		(*fw_patch)(hcb_p np);
1589 	const char	*fw_name;
1590 
1591 	/*
1592 	 *  General controller parameters and configuration.
1593 	 */
1594 	u_short	device_id;	/* PCI device id		*/
1595 	u_char	revision_id;	/* PCI device revision id	*/
1596 	u_int	features;	/* Chip features map		*/
1597 	u_char	myaddr;		/* SCSI id of the adapter	*/
1598 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1599 	u_char	maxwide;	/* Maximum transfer width	*/
1600 	u_char	minsync;	/* Min sync period factor (ST)	*/
1601 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1602 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1603 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1604 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1605 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1606 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1607 	u_char	clock_divn;	/* Number of clock divisors	*/
1608 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1609 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1610 	/*
1611 	 *  Start queue management.
1612 	 *  It is filled up by the host processor and accessed by the
1613 	 *  SCRIPTS processor in order to start SCSI commands.
1614 	 */
1615 	volatile		/* Prevent code optimizations	*/
1616 	u32	*squeue;	/* Start queue virtual address	*/
1617 	u32	squeue_ba;	/* Start queue BUS address	*/
1618 	u_short	squeueput;	/* Next free slot of the queue	*/
1619 	u_short	actccbs;	/* Number of allocated CCBs	*/
1620 
1621 	/*
1622 	 *  Command completion queue.
1623 	 *  It is the same size as the start queue to avoid overflow.
1624 	 */
1625 	u_short	dqueueget;	/* Next position to scan	*/
1626 	volatile		/* Prevent code optimizations	*/
1627 	u32	*dqueue;	/* Completion (done) queue	*/
1628 	u32	dqueue_ba;	/* Done queue BUS address	*/
1629 
1630 	/*
1631 	 *  Miscellaneous buffers accessed by the scripts-processor.
1632 	 *  They shall be DWORD aligned, because they may be read or
1633 	 *  written with a script command.
1634 	 */
1635 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1636 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1637 	u32		lastmsg;	/* Last SCSI message sent	*/
1638 	u_char		scratch;	/* Scratch for SCSI receive	*/
1639 
1640 	/*
1641 	 *  Miscellaneous configuration and status parameters.
1642 	 */
1643 	u_char		usrflags;	/* Miscellaneous user flags	*/
1644 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1645 	u_char		verbose;	/* Verbosity for this controller*/
1646 	u32		cache;		/* Used for cache test at init.	*/
1647 
1648 	/*
1649 	 *  CCB lists and queue.
1650 	 */
1651 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1652 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1653 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1654 
1655 	/*
1656 	 *  During error handling and/or recovery,
1657 	 *  active CCBs that are to be completed with
1658 	 *  error or requeued are moved from the busy_ccbq
1659 	 *  to the comp_ccbq prior to completion.
1660 	 */
1661 	SYM_QUEHEAD	comp_ccbq;
1662 
1663 	/*
1664 	 *  CAM CCB pending queue.
1665 	 */
1666 	SYM_QUEHEAD	cam_ccbq;
1667 
1668 	/*
1669 	 *  IMMEDIATE ARBITRATION (IARB) control.
1670 	 *
1671 	 *  We keep track in 'last_cp' of the last CCB that has been
1672 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1673 	 *  this CCB completes. If last_cp is not zero at the moment
1674 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1675 	 *  used by the SCRIPTS as a hint for setting IARB.
1676 	 *  We donnot set more than 'iarb_max' consecutive hints for
1677 	 *  IARB in order to leave devices a chance to reselect.
1678 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1679 	 */
1680 #ifdef SYM_CONF_IARB_SUPPORT
1681 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1682 	u_short		iarb_count;	/* Actual # of these hints	*/
1683 	ccb_p		last_cp;
1684 #endif
1685 
1686 	/*
1687 	 *  Command abort handling.
1688 	 *  We need to synchronize tightly with the SCRIPTS
1689 	 *  processor in order to handle things correctly.
1690 	 */
1691 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1692 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1693 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1694 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1695 };
1696 
1697 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1698 
1699 /*
1700  *  Return the name of the controller.
1701  */
1702 static __inline const char *sym_name(hcb_p np)
1703 {
1704 	return device_get_nameunit(np->device);
1705 }
1706 
1707 /*--------------------------------------------------------------------------*/
1708 /*------------------------------ FIRMWARES ---------------------------------*/
1709 /*--------------------------------------------------------------------------*/
1710 
1711 /*
1712  *  This stuff will be moved to a separate source file when
1713  *  the driver will be broken into several source modules.
1714  */
1715 
1716 /*
1717  *  Macros used for all firmwares.
1718  */
1719 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1720 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1721 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1722 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1723 
1724 #ifdef	SYM_CONF_GENERIC_SUPPORT
1725 /*
1726  *  Allocate firmware #1 script area.
1727  */
1728 #define	SYM_FWA_SCR		sym_fw1a_scr
1729 #define	SYM_FWB_SCR		sym_fw1b_scr
1730 #include <dev/sym/sym_fw1.h>
1731 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1732 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1733 };
1734 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1735 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1736 };
1737 #undef	SYM_FWA_SCR
1738 #undef	SYM_FWB_SCR
1739 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1740 
1741 /*
1742  *  Allocate firmware #2 script area.
1743  */
1744 #define	SYM_FWA_SCR		sym_fw2a_scr
1745 #define	SYM_FWB_SCR		sym_fw2b_scr
1746 #include <dev/sym/sym_fw2.h>
1747 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1748 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1749 };
1750 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1751 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1752 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1753 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1754 };
1755 #undef	SYM_FWA_SCR
1756 #undef	SYM_FWB_SCR
1757 
1758 #undef	SYM_GEN_A
1759 #undef	SYM_GEN_B
1760 #undef	PADDR_A
1761 #undef	PADDR_B
1762 
1763 #ifdef	SYM_CONF_GENERIC_SUPPORT
1764 /*
1765  *  Patch routine for firmware #1.
1766  */
1767 static void
1768 sym_fw1_patch(hcb_p np)
1769 {
1770 	struct sym_fw1a_scr *scripta0;
1771 	struct sym_fw1b_scr *scriptb0;
1772 
1773 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1774 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1775 
1776 	/*
1777 	 *  Remove LED support if not needed.
1778 	 */
1779 	if (!(np->features & FE_LED0)) {
1780 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1781 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1782 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1783 	}
1784 
1785 #ifdef SYM_CONF_IARB_SUPPORT
1786 	/*
1787 	 *    If user does not want to use IMMEDIATE ARBITRATION
1788 	 *    when we are reselected while attempting to arbitrate,
1789 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1790 	 */
1791 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1792 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1793 #endif
1794 	/*
1795 	 *  Patch some data in SCRIPTS.
1796 	 *  - start and done queue initial bus address.
1797 	 *  - target bus address table bus address.
1798 	 */
1799 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1800 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1801 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1802 }
1803 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1804 
1805 /*
1806  *  Patch routine for firmware #2.
1807  */
1808 static void
1809 sym_fw2_patch(hcb_p np)
1810 {
1811 	struct sym_fw2a_scr *scripta0;
1812 	struct sym_fw2b_scr *scriptb0;
1813 
1814 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1815 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1816 
1817 	/*
1818 	 *  Remove LED support if not needed.
1819 	 */
1820 	if (!(np->features & FE_LED0)) {
1821 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1822 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1823 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1824 	}
1825 
1826 #ifdef SYM_CONF_IARB_SUPPORT
1827 	/*
1828 	 *    If user does not want to use IMMEDIATE ARBITRATION
1829 	 *    when we are reselected while attempting to arbitrate,
1830 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1831 	 */
1832 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1833 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1834 #endif
1835 	/*
1836 	 *  Patch some variable in SCRIPTS.
1837 	 *  - start and done queue initial bus address.
1838 	 *  - target bus address table bus address.
1839 	 */
1840 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1841 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1842 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1843 
1844 	/*
1845 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1846 	 */
1847 	if (!(np->features & FE_C10)) {
1848 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1849 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1850 	}
1851 
1852 	/*
1853 	 *  Remove a couple of work-arounds specific to C1010 if
1854 	 *  they are not desirable. See `sym_fw2.h' for more details.
1855 	 */
1856 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1857 	      np->revision_id < 0x1 &&
1858 	      np->pciclk_khz < 60000)) {
1859 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1860 		scripta0->datao_phase[1] = cpu_to_scr(0);
1861 	}
1862 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1863 	      /* np->revision_id < 0xff */ 1)) {
1864 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1865 		scripta0->sel_done[1] = cpu_to_scr(0);
1866 	}
1867 
1868 	/*
1869 	 *  Patch some other variables in SCRIPTS.
1870 	 *  These ones are loaded by the SCRIPTS processor.
1871 	 */
1872 	scriptb0->pm0_data_addr[0] =
1873 		cpu_to_scr(np->scripta_ba +
1874 			   offsetof(struct sym_fw2a_scr, pm0_data));
1875 	scriptb0->pm1_data_addr[0] =
1876 		cpu_to_scr(np->scripta_ba +
1877 			   offsetof(struct sym_fw2a_scr, pm1_data));
1878 }
1879 
1880 /*
1881  *  Fill the data area in scripts.
1882  *  To be done for all firmwares.
1883  */
1884 static void
1885 sym_fw_fill_data (u32 *in, u32 *out)
1886 {
1887 	int	i;
1888 
1889 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1890 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1891 		*in++  = offsetof (struct sym_dsb, data[i]);
1892 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1893 		*out++ = offsetof (struct sym_dsb, data[i]);
1894 	}
1895 }
1896 
1897 /*
1898  *  Setup useful script bus addresses.
1899  *  To be done for all firmwares.
1900  */
1901 static void
1902 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1903 {
1904 	u32 *pa;
1905 	const u_short *po;
1906 	int i;
1907 
1908 	/*
1909 	 *  Build the bus address table for script A
1910 	 *  from the script A offset table.
1911 	 */
1912 	po = (const u_short *) fw->a_ofs;
1913 	pa = (u32 *) &np->fwa_bas;
1914 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1915 		pa[i] = np->scripta_ba + po[i];
1916 
1917 	/*
1918 	 *  Same for script B.
1919 	 */
1920 	po = (const u_short *) fw->b_ofs;
1921 	pa = (u32 *) &np->fwb_bas;
1922 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1923 		pa[i] = np->scriptb_ba + po[i];
1924 }
1925 
1926 #ifdef	SYM_CONF_GENERIC_SUPPORT
1927 /*
1928  *  Setup routine for firmware #1.
1929  */
1930 static void
1931 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1932 {
1933 	struct sym_fw1a_scr *scripta0;
1934 
1935 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1936 
1937 	/*
1938 	 *  Fill variable parts in scripts.
1939 	 */
1940 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1941 
1942 	/*
1943 	 *  Setup bus addresses used from the C code..
1944 	 */
1945 	sym_fw_setup_bus_addresses(np, fw);
1946 }
1947 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1948 
1949 /*
1950  *  Setup routine for firmware #2.
1951  */
1952 static void
1953 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1954 {
1955 	struct sym_fw2a_scr *scripta0;
1956 
1957 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1958 
1959 	/*
1960 	 *  Fill variable parts in scripts.
1961 	 */
1962 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1963 
1964 	/*
1965 	 *  Setup bus addresses used from the C code..
1966 	 */
1967 	sym_fw_setup_bus_addresses(np, fw);
1968 }
1969 
1970 /*
1971  *  Allocate firmware descriptors.
1972  */
1973 #ifdef	SYM_CONF_GENERIC_SUPPORT
1974 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1975 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1976 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1977 
1978 /*
1979  *  Find the most appropriate firmware for a chip.
1980  */
1981 static const struct sym_fw *
1982 sym_find_firmware(const struct sym_pci_chip *chip)
1983 {
1984 	if (chip->features & FE_LDSTR)
1985 		return &sym_fw2;
1986 #ifdef	SYM_CONF_GENERIC_SUPPORT
1987 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1988 		return &sym_fw1;
1989 #endif
1990 	else
1991 		return NULL;
1992 }
1993 
1994 /*
1995  *  Bind a script to physical addresses.
1996  */
1997 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
1998 {
1999 	u32 opcode, new, old, tmp1, tmp2;
2000 	u32 *end, *cur;
2001 	int relocs;
2002 
2003 	cur = start;
2004 	end = start + len/4;
2005 
2006 	while (cur < end) {
2007 		opcode = *cur;
2008 
2009 		/*
2010 		 *  If we forget to change the length
2011 		 *  in scripts, a field will be
2012 		 *  padded with 0. This is an illegal
2013 		 *  command.
2014 		 */
2015 		if (opcode == 0) {
2016 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2017 				sym_name(np), (int) (cur-start));
2018 			MDELAY (10000);
2019 			++cur;
2020 			continue;
2021 		}
2022 
2023 		/*
2024 		 *  We use the bogus value 0xf00ff00f ;-)
2025 		 *  to reserve data area in SCRIPTS.
2026 		 */
2027 		if (opcode == SCR_DATA_ZERO) {
2028 			*cur++ = 0;
2029 			continue;
2030 		}
2031 
2032 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2033 			printf ("%d:  <%x>\n", (int) (cur-start),
2034 				(unsigned)opcode);
2035 
2036 		/*
2037 		 *  We don't have to decode ALL commands
2038 		 */
2039 		switch (opcode >> 28) {
2040 		case 0xf:
2041 			/*
2042 			 *  LOAD / STORE DSA relative, don't relocate.
2043 			 */
2044 			relocs = 0;
2045 			break;
2046 		case 0xe:
2047 			/*
2048 			 *  LOAD / STORE absolute.
2049 			 */
2050 			relocs = 1;
2051 			break;
2052 		case 0xc:
2053 			/*
2054 			 *  COPY has TWO arguments.
2055 			 */
2056 			relocs = 2;
2057 			tmp1 = cur[1];
2058 			tmp2 = cur[2];
2059 			if ((tmp1 ^ tmp2) & 3) {
2060 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2061 					sym_name(np), (int) (cur-start));
2062 				MDELAY (10000);
2063 			}
2064 			/*
2065 			 *  If PREFETCH feature not enabled, remove
2066 			 *  the NO FLUSH bit if present.
2067 			 */
2068 			if ((opcode & SCR_NO_FLUSH) &&
2069 			    !(np->features & FE_PFEN)) {
2070 				opcode = (opcode & ~SCR_NO_FLUSH);
2071 			}
2072 			break;
2073 		case 0x0:
2074 			/*
2075 			 *  MOVE/CHMOV (absolute address)
2076 			 */
2077 			if (!(np->features & FE_WIDE))
2078 				opcode = (opcode | OPC_MOVE);
2079 			relocs = 1;
2080 			break;
2081 		case 0x1:
2082 			/*
2083 			 *  MOVE/CHMOV (table indirect)
2084 			 */
2085 			if (!(np->features & FE_WIDE))
2086 				opcode = (opcode | OPC_MOVE);
2087 			relocs = 0;
2088 			break;
2089 		case 0x8:
2090 			/*
2091 			 *  JUMP / CALL
2092 			 *  dont't relocate if relative :-)
2093 			 */
2094 			if (opcode & 0x00800000)
2095 				relocs = 0;
2096 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2097 				relocs = 2;
2098 			else
2099 				relocs = 1;
2100 			break;
2101 		case 0x4:
2102 		case 0x5:
2103 		case 0x6:
2104 		case 0x7:
2105 			relocs = 1;
2106 			break;
2107 		default:
2108 			relocs = 0;
2109 			break;
2110 		}
2111 
2112 		/*
2113 		 *  Scriptify:) the opcode.
2114 		 */
2115 		*cur++ = cpu_to_scr(opcode);
2116 
2117 		/*
2118 		 *  If no relocation, assume 1 argument
2119 		 *  and just scriptize:) it.
2120 		 */
2121 		if (!relocs) {
2122 			*cur = cpu_to_scr(*cur);
2123 			++cur;
2124 			continue;
2125 		}
2126 
2127 		/*
2128 		 *  Otherwise performs all needed relocations.
2129 		 */
2130 		while (relocs--) {
2131 			old = *cur;
2132 
2133 			switch (old & RELOC_MASK) {
2134 			case RELOC_REGISTER:
2135 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2136 				break;
2137 			case RELOC_LABEL_A:
2138 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2139 				break;
2140 			case RELOC_LABEL_B:
2141 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2142 				break;
2143 			case RELOC_SOFTC:
2144 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2145 				break;
2146 			case 0:
2147 				/*
2148 				 *  Don't relocate a 0 address.
2149 				 *  They are mostly used for patched or
2150 				 *  script self-modified areas.
2151 				 */
2152 				if (old == 0) {
2153 					new = old;
2154 					break;
2155 				}
2156 				/* fall through */
2157 			default:
2158 				new = 0;
2159 				panic("sym_fw_bind_script: "
2160 				      "weird relocation %x\n", old);
2161 				break;
2162 			}
2163 
2164 			*cur++ = cpu_to_scr(new);
2165 		}
2166 	}
2167 }
2168 
2169 /*---------------------------------------------------------------------------*/
2170 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2171 /*---------------------------------------------------------------------------*/
2172 
2173 /*
2174  *  Function prototypes.
2175  */
2176 static void sym_save_initial_setting (hcb_p np);
2177 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2178 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2179 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2180 static void sym_chip_reset (hcb_p np);
2181 static void sym_soft_reset (hcb_p np);
2182 static void sym_start_reset (hcb_p np);
2183 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2184 static int  sym_wakeup_done (hcb_p np);
2185 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2186 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2187 static void sym_init (hcb_p np, int reason);
2188 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2189 		        u_char *fakp);
2190 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2191 			 u_char div, u_char fak);
2192 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2193 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2194 			 u_char per, u_char wide, u_char div, u_char fak);
2195 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2196 			 u_char per, u_char wide, u_char div, u_char fak);
2197 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2198 static void sym_intr (void *arg);
2199 static void sym_poll (struct cam_sim *sim);
2200 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2201 static void sym_int_sto (hcb_p np);
2202 static void sym_int_udc (hcb_p np);
2203 static void sym_int_sbmc (hcb_p np);
2204 static void sym_int_par (hcb_p np, u_short sist);
2205 static void sym_int_ma (hcb_p np);
2206 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2207 				    int task);
2208 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2209 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2210 static void sym_sir_task_recovery (hcb_p np, int num);
2211 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2212 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2213 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2214 static int  sym_show_msg (u_char * msg);
2215 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2216 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2217 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2218 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2219 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2220 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2221 static void sym_int_sir (hcb_p np);
2222 static void sym_free_ccb (hcb_p np, ccb_p cp);
2223 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2224 static ccb_p sym_alloc_ccb (hcb_p np);
2225 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2226 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2227 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2228 static int  sym_snooptest (hcb_p np);
2229 static void sym_selectclock(hcb_p np, u_char scntl3);
2230 static void sym_getclock (hcb_p np, int mult);
2231 static int  sym_getpciclock (hcb_p np);
2232 static void sym_complete_ok (hcb_p np, ccb_p cp);
2233 static void sym_complete_error (hcb_p np, ccb_p cp);
2234 static void sym_callout (void *arg);
2235 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2236 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2237 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2238 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2239 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2240 				      ccb_p cp);
2241 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2242 					bus_dma_segment_t *psegs, int nsegs);
2243 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2244 				    bus_dma_segment_t *psegs, int nsegs);
2245 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2246 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2247 			      struct ccb_trans_settings *cts);
2248 static void sym_update_dflags(hcb_p np, u_char *flags,
2249 			      struct ccb_trans_settings *cts);
2250 
2251 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2252 static int  sym_pci_probe (device_t dev);
2253 static int  sym_pci_attach (device_t dev);
2254 
2255 static void sym_pci_free (hcb_p np);
2256 static int  sym_cam_attach (hcb_p np);
2257 static void sym_cam_free (hcb_p np);
2258 
2259 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2260 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2261 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2262 
2263 /*
2264  *  Print something which allows to retrieve the controller type,
2265  *  unit, target, lun concerned by a kernel message.
2266  */
2267 static void PRINT_TARGET (hcb_p np, int target)
2268 {
2269 	printf ("%s:%d:", sym_name(np), target);
2270 }
2271 
2272 static void PRINT_LUN(hcb_p np, int target, int lun)
2273 {
2274 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2275 }
2276 
2277 static void PRINT_ADDR (ccb_p cp)
2278 {
2279 	if (cp && cp->cam_ccb)
2280 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2281 }
2282 
2283 /*
2284  *  Take into account this ccb in the freeze count.
2285  */
2286 static void sym_freeze_cam_ccb(union ccb *ccb)
2287 {
2288 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2289 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2290 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2291 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2292 		}
2293 	}
2294 }
2295 
2296 /*
2297  *  Set the status field of a CAM CCB.
2298  */
2299 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2300 {
2301 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2302 	ccb->ccb_h.status |= status;
2303 }
2304 
2305 /*
2306  *  Get the status field of a CAM CCB.
2307  */
2308 static __inline int sym_get_cam_status(union ccb *ccb)
2309 {
2310 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2311 }
2312 
2313 /*
2314  *  Enqueue a CAM CCB.
2315  */
2316 static void sym_enqueue_cam_ccb(ccb_p cp)
2317 {
2318 	hcb_p np;
2319 	union ccb *ccb;
2320 
2321 	ccb = cp->cam_ccb;
2322 	np = (hcb_p) cp->arg;
2323 
2324 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2325 	ccb->ccb_h.status = CAM_REQ_INPROG;
2326 
2327 	callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2328 	    (caddr_t)ccb, 0);
2329 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2330 	ccb->ccb_h.sym_hcb_ptr = np;
2331 
2332 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2333 }
2334 
2335 /*
2336  *  Complete a pending CAM CCB.
2337  */
2338 
2339 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2340 {
2341 
2342 	SYM_LOCK_ASSERT(MA_OWNED);
2343 
2344 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2345 		callout_stop(&cp->ch);
2346 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2347 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2348 		ccb->ccb_h.sym_hcb_ptr = NULL;
2349 	}
2350 	xpt_done(ccb);
2351 }
2352 
2353 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2354 {
2355 
2356 	SYM_LOCK_ASSERT(MA_OWNED);
2357 
2358 	sym_set_cam_status(ccb, cam_status);
2359 	xpt_done(ccb);
2360 }
2361 
2362 /*
2363  *  SYMBIOS chip clock divisor table.
2364  *
2365  *  Divisors are multiplied by 10,000,000 in order to make
2366  *  calculations more simple.
2367  */
2368 #define _5M 5000000
2369 static const u32 div_10M[] =
2370 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2371 
2372 /*
2373  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2374  *  128 transfers. All chips support at least 16 transfers
2375  *  bursts. The 825A, 875 and 895 chips support bursts of up
2376  *  to 128 transfers and the 895A and 896 support bursts of up
2377  *  to 64 transfers. All other chips support up to 16
2378  *  transfers bursts.
2379  *
2380  *  For PCI 32 bit data transfers each transfer is a DWORD.
2381  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2382  *
2383  *  We use log base 2 (burst length) as internal code, with
2384  *  value 0 meaning "burst disabled".
2385  */
2386 
2387 /*
2388  *  Burst length from burst code.
2389  */
2390 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2391 
2392 /*
2393  *  Burst code from io register bits.
2394  */
2395 #define burst_code(dmode, ctest4, ctest5) \
2396 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2397 
2398 /*
2399  *  Set initial io register bits from burst code.
2400  */
2401 static __inline void sym_init_burst(hcb_p np, u_char bc)
2402 {
2403 	np->rv_ctest4	&= ~0x80;
2404 	np->rv_dmode	&= ~(0x3 << 6);
2405 	np->rv_ctest5	&= ~0x4;
2406 
2407 	if (!bc) {
2408 		np->rv_ctest4	|= 0x80;
2409 	}
2410 	else {
2411 		--bc;
2412 		np->rv_dmode	|= ((bc & 0x3) << 6);
2413 		np->rv_ctest5	|= (bc & 0x4);
2414 	}
2415 }
2416 
2417 /*
2418  * Print out the list of targets that have some flag disabled by user.
2419  */
2420 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2421 {
2422 	int cnt;
2423 	int i;
2424 
2425 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2426 		if (i == np->myaddr)
2427 			continue;
2428 		if (np->target[i].usrflags & mask) {
2429 			if (!cnt++)
2430 				printf("%s: %s disabled for targets",
2431 					sym_name(np), msg);
2432 			printf(" %d", i);
2433 		}
2434 	}
2435 	if (cnt)
2436 		printf(".\n");
2437 }
2438 
2439 /*
2440  *  Save initial settings of some IO registers.
2441  *  Assumed to have been set by BIOS.
2442  *  We cannot reset the chip prior to reading the
2443  *  IO registers, since informations will be lost.
2444  *  Since the SCRIPTS processor may be running, this
2445  *  is not safe on paper, but it seems to work quite
2446  *  well. :)
2447  */
2448 static void sym_save_initial_setting (hcb_p np)
2449 {
2450 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2451 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2452 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2453 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2454 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2455 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2456 	np->sv_gpcntl	= INB(nc_gpcntl);
2457 	np->sv_stest1	= INB(nc_stest1);
2458 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2459 	np->sv_stest4	= INB(nc_stest4);
2460 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2461 		np->sv_scntl4	= INB(nc_scntl4);
2462 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2463 	}
2464 	else
2465 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2466 }
2467 
2468 /*
2469  *  Prepare io register values used by sym_init() according
2470  *  to selected and supported features.
2471  */
2472 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2473 {
2474 	u_char	burst_max;
2475 	u32	period;
2476 	int i;
2477 
2478 	/*
2479 	 *  Wide ?
2480 	 */
2481 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2482 
2483 	/*
2484 	 *  Get the frequency of the chip's clock.
2485 	 */
2486 	if	(np->features & FE_QUAD)
2487 		np->multiplier	= 4;
2488 	else if	(np->features & FE_DBLR)
2489 		np->multiplier	= 2;
2490 	else
2491 		np->multiplier	= 1;
2492 
2493 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2494 	np->clock_khz	*= np->multiplier;
2495 
2496 	if (np->clock_khz != 40000)
2497 		sym_getclock(np, np->multiplier);
2498 
2499 	/*
2500 	 * Divisor to be used for async (timer pre-scaler).
2501 	 */
2502 	i = np->clock_divn - 1;
2503 	while (--i >= 0) {
2504 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2505 			++i;
2506 			break;
2507 		}
2508 	}
2509 	np->rv_scntl3 = i+1;
2510 
2511 	/*
2512 	 * The C1010 uses hardwired divisors for async.
2513 	 * So, we just throw away, the async. divisor.:-)
2514 	 */
2515 	if (np->features & FE_C10)
2516 		np->rv_scntl3 = 0;
2517 
2518 	/*
2519 	 * Minimum synchronous period factor supported by the chip.
2520 	 * Btw, 'period' is in tenths of nanoseconds.
2521 	 */
2522 	period = howmany(4 * div_10M[0], np->clock_khz);
2523 	if	(period <= 250)		np->minsync = 10;
2524 	else if	(period <= 303)		np->minsync = 11;
2525 	else if	(period <= 500)		np->minsync = 12;
2526 	else				np->minsync = howmany(period, 40);
2527 
2528 	/*
2529 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2530 	 */
2531 	if	(np->minsync < 25 &&
2532 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2533 		np->minsync = 25;
2534 	else if	(np->minsync < 12 &&
2535 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2536 		np->minsync = 12;
2537 
2538 	/*
2539 	 * Maximum synchronous period factor supported by the chip.
2540 	 */
2541 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2542 	np->maxsync = period > 2540 ? 254 : period / 10;
2543 
2544 	/*
2545 	 * If chip is a C1010, guess the sync limits in DT mode.
2546 	 */
2547 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2548 		if (np->clock_khz == 160000) {
2549 			np->minsync_dt = 9;
2550 			np->maxsync_dt = 50;
2551 			np->maxoffs_dt = 62;
2552 		}
2553 	}
2554 
2555 	/*
2556 	 *  64 bit addressing  (895A/896/1010) ?
2557 	 */
2558 	if (np->features & FE_DAC)
2559 #ifdef __LP64__
2560 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2561 #else
2562 		np->rv_ccntl1	|= (DDAC);
2563 #endif
2564 
2565 	/*
2566 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2567   	 */
2568 	if (np->features & FE_NOPM)
2569 		np->rv_ccntl0	|= (ENPMJ);
2570 
2571  	/*
2572 	 *  C1010 Errata.
2573 	 *  In dual channel mode, contention occurs if internal cycles
2574 	 *  are used. Disable internal cycles.
2575 	 */
2576 	if (np->device_id == PCI_ID_LSI53C1010 &&
2577 	    np->revision_id < 0x2)
2578 		np->rv_ccntl0	|=  DILS;
2579 
2580 	/*
2581 	 *  Select burst length (dwords)
2582 	 */
2583 	burst_max	= SYM_SETUP_BURST_ORDER;
2584 	if (burst_max == 255)
2585 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2586 				       np->sv_ctest5);
2587 	if (burst_max > 7)
2588 		burst_max = 7;
2589 	if (burst_max > np->maxburst)
2590 		burst_max = np->maxburst;
2591 
2592 	/*
2593 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2594 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2595 	 *  based transactions on LOAD/STORE instructions. So we have
2596 	 *  to prevent these chips from using such PCI transactions in
2597 	 *  this driver. The generic ncr driver that does not use
2598 	 *  LOAD/STORE instructions does not need this work-around.
2599 	 */
2600 	if ((np->device_id == PCI_ID_SYM53C810 &&
2601 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2602 	    (np->device_id == PCI_ID_SYM53C860 &&
2603 	     np->revision_id <= 0x1))
2604 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2605 
2606 	/*
2607 	 *  Select all supported special features.
2608 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2609 	 *  does not help, but burst op fetch (BOF) does.
2610 	 *  Disabling PFEN makes sure BOF will be used.
2611 	 */
2612 	if (np->features & FE_ERL)
2613 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2614 	if (np->features & FE_BOF)
2615 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2616 	if (np->features & FE_ERMP)
2617 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2618 #if 1
2619 	if ((np->features & FE_PFEN) && !np->ram_ba)
2620 #else
2621 	if (np->features & FE_PFEN)
2622 #endif
2623 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2624 	if (np->features & FE_CLSE)
2625 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2626 	if (np->features & FE_WRIE)
2627 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2628 	if (np->features & FE_DFS)
2629 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2630 
2631 	/*
2632 	 *  Select some other
2633 	 */
2634 	if (SYM_SETUP_PCI_PARITY)
2635 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2636 	if (SYM_SETUP_SCSI_PARITY)
2637 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2638 
2639 	/*
2640 	 *  Get parity checking, host ID and verbose mode from NVRAM
2641 	 */
2642 	np->myaddr = 255;
2643 	sym_nvram_setup_host (np, nvram);
2644 
2645 	/*
2646 	 *  Get SCSI addr of host adapter (set by bios?).
2647 	 */
2648 	if (np->myaddr == 255) {
2649 		np->myaddr = INB(nc_scid) & 0x07;
2650 		if (!np->myaddr)
2651 			np->myaddr = SYM_SETUP_HOST_ID;
2652 	}
2653 
2654 	/*
2655 	 *  Prepare initial io register bits for burst length
2656 	 */
2657 	sym_init_burst(np, burst_max);
2658 
2659 	/*
2660 	 *  Set SCSI BUS mode.
2661 	 *  - LVD capable chips (895/895A/896/1010) report the
2662 	 *    current BUS mode through the STEST4 IO register.
2663 	 *  - For previous generation chips (825/825A/875),
2664 	 *    user has to tell us how to check against HVD,
2665 	 *    since a 100% safe algorithm is not possible.
2666 	 */
2667 	np->scsi_mode = SMODE_SE;
2668 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2669 		np->scsi_mode = (np->sv_stest4 & SMODE);
2670 	else if	(np->features & FE_DIFF) {
2671 		if (SYM_SETUP_SCSI_DIFF == 1) {
2672 			if (np->sv_scntl3) {
2673 				if (np->sv_stest2 & 0x20)
2674 					np->scsi_mode = SMODE_HVD;
2675 			}
2676 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2677 				if (!(INB(nc_gpreg) & 0x08))
2678 					np->scsi_mode = SMODE_HVD;
2679 			}
2680 		}
2681 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2682 			np->scsi_mode = SMODE_HVD;
2683 	}
2684 	if (np->scsi_mode == SMODE_HVD)
2685 		np->rv_stest2 |= 0x20;
2686 
2687 	/*
2688 	 *  Set LED support from SCRIPTS.
2689 	 *  Ignore this feature for boards known to use a
2690 	 *  specific GPIO wiring and for the 895A, 896
2691 	 *  and 1010 that drive the LED directly.
2692 	 */
2693 	if ((SYM_SETUP_SCSI_LED ||
2694 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2695 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2696 	       np->device_id == PCI_ID_SYM53C895))) &&
2697 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2698 		np->features |= FE_LED0;
2699 
2700 	/*
2701 	 *  Set irq mode.
2702 	 */
2703 	switch(SYM_SETUP_IRQ_MODE & 3) {
2704 	case 2:
2705 		np->rv_dcntl	|= IRQM;
2706 		break;
2707 	case 1:
2708 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2709 		break;
2710 	default:
2711 		break;
2712 	}
2713 
2714 	/*
2715 	 *  Configure targets according to driver setup.
2716 	 *  If NVRAM present get targets setup from NVRAM.
2717 	 */
2718 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2719 		tcb_p tp = &np->target[i];
2720 
2721 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2722 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2723 		tp->tinfo.user.period = np->minsync;
2724 		if (np->features & FE_ULTRA3)
2725 			tp->tinfo.user.period = np->minsync_dt;
2726 		tp->tinfo.user.offset = np->maxoffs;
2727 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2728 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2729 		tp->usrtags = SYM_SETUP_MAX_TAG;
2730 
2731 		sym_nvram_setup_target (np, i, nvram);
2732 
2733 		/*
2734 		 *  For now, guess PPR/DT support from the period
2735 		 *  and BUS width.
2736 		 */
2737 		if (np->features & FE_ULTRA3) {
2738 			if (tp->tinfo.user.period <= 9	&&
2739 			    tp->tinfo.user.width == BUS_16_BIT) {
2740 				tp->tinfo.user.options |= PPR_OPT_DT;
2741 				tp->tinfo.user.offset   = np->maxoffs_dt;
2742 				tp->tinfo.user.spi_version = 3;
2743 			}
2744 		}
2745 
2746 		if (!tp->usrtags)
2747 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2748 	}
2749 
2750 	/*
2751 	 *  Let user know about the settings.
2752 	 */
2753 	i = nvram->type;
2754 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2755 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2756 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2757 		np->myaddr,
2758 		(np->features & FE_ULTRA3) ? 80 :
2759 		(np->features & FE_ULTRA2) ? 40 :
2760 		(np->features & FE_ULTRA)  ? 20 : 10,
2761 		sym_scsi_bus_mode(np->scsi_mode),
2762 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2763 	/*
2764 	 *  Tell him more on demand.
2765 	 */
2766 	if (sym_verbose) {
2767 		printf("%s: %s IRQ line driver%s\n",
2768 			sym_name(np),
2769 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2770 			np->ram_ba ? ", using on-chip SRAM" : "");
2771 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2772 		if (np->features & FE_NOPM)
2773 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2774 			       sym_name(np));
2775 	}
2776 	/*
2777 	 *  And still more.
2778 	 */
2779 	if (sym_verbose > 1) {
2780 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2781 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2782 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2783 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2784 
2785 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2786 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2787 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2788 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2789 	}
2790 	/*
2791 	 *  Let user be aware of targets that have some disable flags set.
2792 	 */
2793 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2794 	if (sym_verbose)
2795 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2796 				       "SCAN FOR LUNS");
2797 
2798 	return 0;
2799 }
2800 
2801 /*
2802  *  Prepare the next negotiation message if needed.
2803  *
2804  *  Fill in the part of message buffer that contains the
2805  *  negotiation and the nego_status field of the CCB.
2806  *  Returns the size of the message in bytes.
2807  */
2808 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2809 {
2810 	tcb_p tp = &np->target[cp->target];
2811 	int msglen = 0;
2812 
2813 	/*
2814 	 *  Early C1010 chips need a work-around for DT
2815 	 *  data transfer to work.
2816 	 */
2817 	if (!(np->features & FE_U3EN))
2818 		tp->tinfo.goal.options = 0;
2819 	/*
2820 	 *  negotiate using PPR ?
2821 	 */
2822 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2823 		nego = NS_PPR;
2824 	/*
2825 	 *  negotiate wide transfers ?
2826 	 */
2827 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2828 		nego = NS_WIDE;
2829 	/*
2830 	 *  negotiate synchronous transfers?
2831 	 */
2832 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2833 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2834 		nego = NS_SYNC;
2835 
2836 	switch (nego) {
2837 	case NS_SYNC:
2838 		msgptr[msglen++] = M_EXTENDED;
2839 		msgptr[msglen++] = 3;
2840 		msgptr[msglen++] = M_X_SYNC_REQ;
2841 		msgptr[msglen++] = tp->tinfo.goal.period;
2842 		msgptr[msglen++] = tp->tinfo.goal.offset;
2843 		break;
2844 	case NS_WIDE:
2845 		msgptr[msglen++] = M_EXTENDED;
2846 		msgptr[msglen++] = 2;
2847 		msgptr[msglen++] = M_X_WIDE_REQ;
2848 		msgptr[msglen++] = tp->tinfo.goal.width;
2849 		break;
2850 	case NS_PPR:
2851 		msgptr[msglen++] = M_EXTENDED;
2852 		msgptr[msglen++] = 6;
2853 		msgptr[msglen++] = M_X_PPR_REQ;
2854 		msgptr[msglen++] = tp->tinfo.goal.period;
2855 		msgptr[msglen++] = 0;
2856 		msgptr[msglen++] = tp->tinfo.goal.offset;
2857 		msgptr[msglen++] = tp->tinfo.goal.width;
2858 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2859 		break;
2860 	}
2861 
2862 	cp->nego_status = nego;
2863 
2864 	if (nego) {
2865 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2866 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2867 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2868 					  nego == NS_WIDE ? "wide msgout" :
2869 					  "ppr msgout", msgptr);
2870 		}
2871 	}
2872 
2873 	return msglen;
2874 }
2875 
2876 /*
2877  *  Insert a job into the start queue.
2878  */
2879 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2880 {
2881 	u_short	qidx;
2882 
2883 #ifdef SYM_CONF_IARB_SUPPORT
2884 	/*
2885 	 *  If the previously queued CCB is not yet done,
2886 	 *  set the IARB hint. The SCRIPTS will go with IARB
2887 	 *  for this job when starting the previous one.
2888 	 *  We leave devices a chance to win arbitration by
2889 	 *  not using more than 'iarb_max' consecutive
2890 	 *  immediate arbitrations.
2891 	 */
2892 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2893 		np->last_cp->host_flags |= HF_HINT_IARB;
2894 		++np->iarb_count;
2895 	}
2896 	else
2897 		np->iarb_count = 0;
2898 	np->last_cp = cp;
2899 #endif
2900 
2901 	/*
2902 	 *  Insert first the idle task and then our job.
2903 	 *  The MB should ensure proper ordering.
2904 	 */
2905 	qidx = np->squeueput + 2;
2906 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2907 
2908 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2909 	MEMORY_BARRIER();
2910 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2911 
2912 	np->squeueput = qidx;
2913 
2914 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2915 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2916 
2917 	/*
2918 	 *  Script processor may be waiting for reselect.
2919 	 *  Wake it up.
2920 	 */
2921 	MEMORY_BARRIER();
2922 	OUTB (nc_istat, SIGP|np->istat_sem);
2923 }
2924 
2925 /*
2926  *  Soft reset the chip.
2927  *
2928  *  Raising SRST when the chip is running may cause
2929  *  problems on dual function chips (see below).
2930  *  On the other hand, LVD devices need some delay
2931  *  to settle and report actual BUS mode in STEST4.
2932  */
2933 static void sym_chip_reset (hcb_p np)
2934 {
2935 	OUTB (nc_istat, SRST);
2936 	UDELAY (10);
2937 	OUTB (nc_istat, 0);
2938 	UDELAY(2000);	/* For BUS MODE to settle */
2939 }
2940 
2941 /*
2942  *  Soft reset the chip.
2943  *
2944  *  Some 896 and 876 chip revisions may hang-up if we set
2945  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2946  *  are running.
2947  *  So, we need to abort the current operation prior to
2948  *  soft resetting the chip.
2949  */
2950 static void sym_soft_reset (hcb_p np)
2951 {
2952 	u_char istat;
2953 	int i;
2954 
2955 	OUTB (nc_istat, CABRT);
2956 	for (i = 1000000 ; i ; --i) {
2957 		istat = INB (nc_istat);
2958 		if (istat & SIP) {
2959 			INW (nc_sist);
2960 			continue;
2961 		}
2962 		if (istat & DIP) {
2963 			OUTB (nc_istat, 0);
2964 			INB (nc_dstat);
2965 			break;
2966 		}
2967 	}
2968 	if (!i)
2969 		printf("%s: unable to abort current chip operation.\n",
2970 			sym_name(np));
2971 	sym_chip_reset (np);
2972 }
2973 
2974 /*
2975  *  Start reset process.
2976  *
2977  *  The interrupt handler will reinitialize the chip.
2978  */
2979 static void sym_start_reset(hcb_p np)
2980 {
2981 	(void) sym_reset_scsi_bus(np, 1);
2982 }
2983 
2984 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2985 {
2986 	u32 term;
2987 	int retv = 0;
2988 
2989 	sym_soft_reset(np);	/* Soft reset the chip */
2990 	if (enab_int)
2991 		OUTW (nc_sien, RST);
2992 	/*
2993 	 *  Enable Tolerant, reset IRQD if present and
2994 	 *  properly set IRQ mode, prior to resetting the bus.
2995 	 */
2996 	OUTB (nc_stest3, TE);
2997 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
2998 	OUTB (nc_scntl1, CRST);
2999 	UDELAY (200);
3000 
3001 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3002 		goto out;
3003 	/*
3004 	 *  Check for no terminators or SCSI bus shorts to ground.
3005 	 *  Read SCSI data bus, data parity bits and control signals.
3006 	 *  We are expecting RESET to be TRUE and other signals to be
3007 	 *  FALSE.
3008 	 */
3009 	term =	INB(nc_sstat0);
3010 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3011 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3012 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3013 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3014 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3015 
3016 	if (!(np->features & FE_WIDE))
3017 		term &= 0x3ffff;
3018 
3019 	if (term != (2<<7)) {
3020 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3021 			sym_name(np));
3022 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3023 			"0x%lx, expecting 0x%lx\n",
3024 			sym_name(np),
3025 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3026 			(u_long)term, (u_long)(2<<7));
3027 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3028 			retv = 1;
3029 	}
3030 out:
3031 	OUTB (nc_scntl1, 0);
3032 	/* MDELAY(100); */
3033 	return retv;
3034 }
3035 
3036 /*
3037  *  The chip may have completed jobs. Look at the DONE QUEUE.
3038  *
3039  *  On architectures that may reorder LOAD/STORE operations,
3040  *  a memory barrier may be needed after the reading of the
3041  *  so-called `flag' and prior to dealing with the data.
3042  */
3043 static int sym_wakeup_done (hcb_p np)
3044 {
3045 	ccb_p cp;
3046 	int i, n;
3047 	u32 dsa;
3048 
3049 	SYM_LOCK_ASSERT(MA_OWNED);
3050 
3051 	n = 0;
3052 	i = np->dqueueget;
3053 	while (1) {
3054 		dsa = scr_to_cpu(np->dqueue[i]);
3055 		if (!dsa)
3056 			break;
3057 		np->dqueue[i] = 0;
3058 		if ((i = i+2) >= MAX_QUEUE*2)
3059 			i = 0;
3060 
3061 		cp = sym_ccb_from_dsa(np, dsa);
3062 		if (cp) {
3063 			MEMORY_BARRIER();
3064 			sym_complete_ok (np, cp);
3065 			++n;
3066 		}
3067 		else
3068 			printf ("%s: bad DSA (%x) in done queue.\n",
3069 				sym_name(np), (u_int) dsa);
3070 	}
3071 	np->dqueueget = i;
3072 
3073 	return n;
3074 }
3075 
3076 /*
3077  *  Complete all active CCBs with error.
3078  *  Used on CHIP/SCSI RESET.
3079  */
3080 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3081 {
3082 	/*
3083 	 *  Move all active CCBs to the COMP queue
3084 	 *  and flush this queue.
3085 	 */
3086 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3087 	sym_que_init(&np->busy_ccbq);
3088 	sym_flush_comp_queue(np, cam_status);
3089 }
3090 
3091 /*
3092  *  Start chip.
3093  *
3094  *  'reason' means:
3095  *     0: initialisation.
3096  *     1: SCSI BUS RESET delivered or received.
3097  *     2: SCSI BUS MODE changed.
3098  */
3099 static void sym_init (hcb_p np, int reason)
3100 {
3101  	int	i;
3102 	u32	phys;
3103 
3104 	SYM_LOCK_ASSERT(MA_OWNED);
3105 
3106  	/*
3107 	 *  Reset chip if asked, otherwise just clear fifos.
3108  	 */
3109 	if (reason == 1)
3110 		sym_soft_reset(np);
3111 	else {
3112 		OUTB (nc_stest3, TE|CSF);
3113 		OUTONB (nc_ctest3, CLF);
3114 	}
3115 
3116 	/*
3117 	 *  Clear Start Queue
3118 	 */
3119 	phys = np->squeue_ba;
3120 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3121 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3122 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3123 	}
3124 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3125 
3126 	/*
3127 	 *  Start at first entry.
3128 	 */
3129 	np->squeueput = 0;
3130 
3131 	/*
3132 	 *  Clear Done Queue
3133 	 */
3134 	phys = np->dqueue_ba;
3135 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3136 		np->dqueue[i]   = 0;
3137 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3138 	}
3139 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3140 
3141 	/*
3142 	 *  Start at first entry.
3143 	 */
3144 	np->dqueueget = 0;
3145 
3146 	/*
3147 	 *  Install patches in scripts.
3148 	 *  This also let point to first position the start
3149 	 *  and done queue pointers used from SCRIPTS.
3150 	 */
3151 	np->fw_patch(np);
3152 
3153 	/*
3154 	 *  Wakeup all pending jobs.
3155 	 */
3156 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3157 
3158 	/*
3159 	 *  Init chip.
3160 	 */
3161 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3162 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3163 
3164 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3165 					/*  full arb., ena parity, par->ATN  */
3166 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3167 
3168 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3169 
3170 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3171 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3172 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3173 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3174 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3175 
3176 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3177 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3178 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3179 
3180 	/* Extended Sreq/Sack filtering not supported on the C10 */
3181 	if (np->features & FE_C10)
3182 		OUTB (nc_stest2, np->rv_stest2);
3183 	else
3184 		OUTB (nc_stest2, EXT|np->rv_stest2);
3185 
3186 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3187 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3188 
3189 	/*
3190 	 *  For now, disable AIP generation on C1010-66.
3191 	 */
3192 	if (np->device_id == PCI_ID_LSI53C1010_2)
3193 		OUTB (nc_aipcntl1, DISAIP);
3194 
3195 	/*
3196 	 *  C10101 Errata.
3197 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3198 	 *  STEST1 register to disable SGE. We probably should do
3199 	 *  that from SCRIPTS for each selection/reselection, but
3200 	 *  I just don't want. :)
3201 	 */
3202 	if (np->device_id == PCI_ID_LSI53C1010 &&
3203 	    /* np->revision_id < 0xff */ 1)
3204 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3205 
3206 	/*
3207 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3208 	 *  Disable overlapped arbitration for some dual function devices,
3209 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3210 	 */
3211 	if (np->device_id == PCI_ID_SYM53C875)
3212 		OUTB (nc_ctest0, (1<<5));
3213 	else if (np->device_id == PCI_ID_SYM53C896)
3214 		np->rv_ccntl0 |= DPR;
3215 
3216 	/*
3217 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3218 	 *  and/or hardware phase mismatch, since only such chips
3219 	 *  seem to support those IO registers.
3220 	 */
3221 	if (np->features & (FE_DAC|FE_NOPM)) {
3222 		OUTB (nc_ccntl0, np->rv_ccntl0);
3223 		OUTB (nc_ccntl1, np->rv_ccntl1);
3224 	}
3225 
3226 	/*
3227 	 *  If phase mismatch handled by scripts (895A/896/1010),
3228 	 *  set PM jump addresses.
3229 	 */
3230 	if (np->features & FE_NOPM) {
3231 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3232 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3233 	}
3234 
3235 	/*
3236 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3237 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3238 	 */
3239 	if (np->features & FE_LED0)
3240 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3241 	else if (np->features & FE_LEDC)
3242 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3243 
3244 	/*
3245 	 *      enable ints
3246 	 */
3247 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3248 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3249 
3250 	/*
3251 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3252 	 *  Try to eat the spurious SBMC interrupt that may occur when
3253 	 *  we reset the chip but not the SCSI BUS (at initialization).
3254 	 */
3255 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3256 		OUTONW (nc_sien, SBMC);
3257 		if (reason == 0) {
3258 			MDELAY(100);
3259 			INW (nc_sist);
3260 		}
3261 		np->scsi_mode = INB (nc_stest4) & SMODE;
3262 	}
3263 
3264 	/*
3265 	 *  Fill in target structure.
3266 	 *  Reinitialize usrsync.
3267 	 *  Reinitialize usrwide.
3268 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3269 	 */
3270 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3271 		tcb_p tp = &np->target[i];
3272 
3273 		tp->to_reset  = 0;
3274 		tp->head.sval = 0;
3275 		tp->head.wval = np->rv_scntl3;
3276 		tp->head.uval = 0;
3277 
3278 		tp->tinfo.current.period = 0;
3279 		tp->tinfo.current.offset = 0;
3280 		tp->tinfo.current.width  = BUS_8_BIT;
3281 		tp->tinfo.current.options = 0;
3282 	}
3283 
3284 	/*
3285 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3286 	 *  and start script processor.
3287 	 */
3288 	if (np->ram_ba) {
3289 		if (sym_verbose > 1)
3290 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3291 				sym_name(np));
3292 		if (np->ram_ws == 8192) {
3293 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3294 			OUTL (nc_mmws, np->scr_ram_seg);
3295 			OUTL (nc_mmrs, np->scr_ram_seg);
3296 			OUTL (nc_sfs,  np->scr_ram_seg);
3297 			phys = SCRIPTB_BA (np, start64);
3298 		}
3299 		else
3300 			phys = SCRIPTA_BA (np, init);
3301 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3302 	}
3303 	else
3304 		phys = SCRIPTA_BA (np, init);
3305 
3306 	np->istat_sem = 0;
3307 
3308 	OUTL (nc_dsa, np->hcb_ba);
3309 	OUTL_DSP (phys);
3310 
3311 	/*
3312 	 *  Notify the XPT about the RESET condition.
3313 	 */
3314 	if (reason != 0)
3315 		xpt_async(AC_BUS_RESET, np->path, NULL);
3316 }
3317 
3318 /*
3319  *  Get clock factor and sync divisor for a given
3320  *  synchronous factor period.
3321  */
3322 static int
3323 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3324 {
3325 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3326 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3327 	u32	fak;			/* Sync factor in sxfer		*/
3328 	u32	per;			/* Period in tenths of ns	*/
3329 	u32	kpc;			/* (per * clk)			*/
3330 	int	ret;
3331 
3332 	/*
3333 	 *  Compute the synchronous period in tenths of nano-seconds
3334 	 */
3335 	if (dt && sfac <= 9)	per = 125;
3336 	else if	(sfac <= 10)	per = 250;
3337 	else if	(sfac == 11)	per = 303;
3338 	else if	(sfac == 12)	per = 500;
3339 	else			per = 40 * sfac;
3340 	ret = per;
3341 
3342 	kpc = per * clk;
3343 	if (dt)
3344 		kpc <<= 1;
3345 
3346 	/*
3347 	 *  For earliest C10 revision 0, we cannot use extra
3348 	 *  clocks for the setting of the SCSI clocking.
3349 	 *  Note that this limits the lowest sync data transfer
3350 	 *  to 5 Mega-transfers per second and may result in
3351 	 *  using higher clock divisors.
3352 	 */
3353 #if 1
3354 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3355 		/*
3356 		 *  Look for the lowest clock divisor that allows an
3357 		 *  output speed not faster than the period.
3358 		 */
3359 		while (div > 0) {
3360 			--div;
3361 			if (kpc > (div_10M[div] << 2)) {
3362 				++div;
3363 				break;
3364 			}
3365 		}
3366 		fak = 0;			/* No extra clocks */
3367 		if (div == np->clock_divn) {	/* Are we too fast ? */
3368 			ret = -1;
3369 		}
3370 		*divp = div;
3371 		*fakp = fak;
3372 		return ret;
3373 	}
3374 #endif
3375 
3376 	/*
3377 	 *  Look for the greatest clock divisor that allows an
3378 	 *  input speed faster than the period.
3379 	 */
3380 	while (div-- > 0)
3381 		if (kpc >= (div_10M[div] << 2)) break;
3382 
3383 	/*
3384 	 *  Calculate the lowest clock factor that allows an output
3385 	 *  speed not faster than the period, and the max output speed.
3386 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3387 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3388 	 */
3389 	if (dt) {
3390 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3391 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3392 	}
3393 	else {
3394 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3395 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3396 	}
3397 
3398 	/*
3399 	 *  Check against our hardware limits, or bugs :).
3400 	 */
3401 	if (fak > 2)	{fak = 2; ret = -1;}
3402 
3403 	/*
3404 	 *  Compute and return sync parameters.
3405 	 */
3406 	*divp = div;
3407 	*fakp = fak;
3408 
3409 	return ret;
3410 }
3411 
3412 /*
3413  *  Tell the SCSI layer about the new transfer parameters.
3414  */
3415 static void
3416 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3417 {
3418 	struct ccb_trans_settings cts;
3419 	struct cam_path *path;
3420 	int sts;
3421 	tcb_p tp = &np->target[target];
3422 
3423 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3424 	                      CAM_LUN_WILDCARD);
3425 	if (sts != CAM_REQ_CMP)
3426 		return;
3427 
3428 	bzero(&cts, sizeof(cts));
3429 
3430 #define	cts__scsi (cts.proto_specific.scsi)
3431 #define	cts__spi  (cts.xport_specific.spi)
3432 
3433 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3434 	cts.protocol  = PROTO_SCSI;
3435 	cts.transport = XPORT_SPI;
3436 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3437 	cts.transport_version = tp->tinfo.current.spi_version;
3438 
3439 	cts__spi.valid = spi_valid;
3440 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3441 		cts__spi.sync_period = tp->tinfo.current.period;
3442 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3443 		cts__spi.sync_offset = tp->tinfo.current.offset;
3444 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3445 		cts__spi.bus_width   = tp->tinfo.current.width;
3446 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3447 		cts__spi.ppr_options = tp->tinfo.current.options;
3448 #undef cts__spi
3449 #undef cts__scsi
3450 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3451 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3452 	xpt_free_path(path);
3453 }
3454 
3455 #define SYM_SPI_VALID_WDTR		\
3456 	CTS_SPI_VALID_BUS_WIDTH |	\
3457 	CTS_SPI_VALID_SYNC_RATE |	\
3458 	CTS_SPI_VALID_SYNC_OFFSET
3459 #define SYM_SPI_VALID_SDTR		\
3460 	CTS_SPI_VALID_SYNC_RATE |	\
3461 	CTS_SPI_VALID_SYNC_OFFSET
3462 #define SYM_SPI_VALID_PPR		\
3463 	CTS_SPI_VALID_PPR_OPTIONS |	\
3464 	CTS_SPI_VALID_BUS_WIDTH |	\
3465 	CTS_SPI_VALID_SYNC_RATE |	\
3466 	CTS_SPI_VALID_SYNC_OFFSET
3467 
3468 /*
3469  *  We received a WDTR.
3470  *  Let everything be aware of the changes.
3471  */
3472 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3473 {
3474 	tcb_p tp = &np->target[cp->target];
3475 
3476 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3477 
3478 	/*
3479 	 *  Tell the SCSI layer about the new transfer parameters.
3480 	 */
3481 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3482 	tp->tinfo.current.offset = 0;
3483 	tp->tinfo.current.period = 0;
3484 	tp->tinfo.current.options = 0;
3485 
3486 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3487 }
3488 
3489 /*
3490  *  We received a SDTR.
3491  *  Let everything be aware of the changes.
3492  */
3493 static void
3494 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3495 {
3496 	tcb_p tp = &np->target[cp->target];
3497 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3498 
3499 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3500 
3501 	/*
3502 	 *  Tell the SCSI layer about the new transfer parameters.
3503 	 */
3504 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3505 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3506 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3507 
3508 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3509 }
3510 
3511 /*
3512  *  We received a PPR.
3513  *  Let everything be aware of the changes.
3514  */
3515 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3516 			 u_char per, u_char wide, u_char div, u_char fak)
3517 {
3518 	tcb_p tp = &np->target[cp->target];
3519 
3520 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3521 
3522 	/*
3523 	 *  Tell the SCSI layer about the new transfer parameters.
3524 	 */
3525 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3526 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3527 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3528 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3529 
3530 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3531 }
3532 
3533 /*
3534  *  Switch trans mode for current job and it's target.
3535  */
3536 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3537 			 u_char per, u_char wide, u_char div, u_char fak)
3538 {
3539 	SYM_QUEHEAD *qp;
3540 	union	ccb *ccb;
3541 	tcb_p tp;
3542 	u_char target = INB (nc_sdid) & 0x0f;
3543 	u_char sval, wval, uval;
3544 
3545 	assert (cp);
3546 	if (!cp) return;
3547 	ccb = cp->cam_ccb;
3548 	assert (ccb);
3549 	if (!ccb) return;
3550 	assert (target == (cp->target & 0xf));
3551 	tp = &np->target[target];
3552 
3553 	sval = tp->head.sval;
3554 	wval = tp->head.wval;
3555 	uval = tp->head.uval;
3556 
3557 #if 0
3558 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3559 		sval, wval, uval, np->rv_scntl3);
3560 #endif
3561 	/*
3562 	 *  Set the offset.
3563 	 */
3564 	if (!(np->features & FE_C10))
3565 		sval = (sval & ~0x1f) | ofs;
3566 	else
3567 		sval = (sval & ~0x3f) | ofs;
3568 
3569 	/*
3570 	 *  Set the sync divisor and extra clock factor.
3571 	 */
3572 	if (ofs != 0) {
3573 		wval = (wval & ~0x70) | ((div+1) << 4);
3574 		if (!(np->features & FE_C10))
3575 			sval = (sval & ~0xe0) | (fak << 5);
3576 		else {
3577 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3578 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3579 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3580 		}
3581 	}
3582 
3583 	/*
3584 	 *  Set the bus width.
3585 	 */
3586 	wval = wval & ~EWS;
3587 	if (wide != 0)
3588 		wval |= EWS;
3589 
3590 	/*
3591 	 *  Set misc. ultra enable bits.
3592 	 */
3593 	if (np->features & FE_C10) {
3594 		uval = uval & ~(U3EN|AIPCKEN);
3595 		if (dt)	{
3596 			assert(np->features & FE_U3EN);
3597 			uval |= U3EN;
3598 		}
3599 	}
3600 	else {
3601 		wval = wval & ~ULTRA;
3602 		if (per <= 12)	wval |= ULTRA;
3603 	}
3604 
3605 	/*
3606 	 *   Stop there if sync parameters are unchanged.
3607 	 */
3608 	if (tp->head.sval == sval &&
3609 	    tp->head.wval == wval &&
3610 	    tp->head.uval == uval)
3611 		return;
3612 	tp->head.sval = sval;
3613 	tp->head.wval = wval;
3614 	tp->head.uval = uval;
3615 
3616 	/*
3617 	 *  Disable extended Sreq/Sack filtering if per < 50.
3618 	 *  Not supported on the C1010.
3619 	 */
3620 	if (per < 50 && !(np->features & FE_C10))
3621 		OUTOFFB (nc_stest2, EXT);
3622 
3623 	/*
3624 	 *  set actual value and sync_status
3625 	 */
3626 	OUTB (nc_sxfer,  tp->head.sval);
3627 	OUTB (nc_scntl3, tp->head.wval);
3628 
3629 	if (np->features & FE_C10) {
3630 		OUTB (nc_scntl4, tp->head.uval);
3631 	}
3632 
3633 	/*
3634 	 *  patch ALL busy ccbs of this target.
3635 	 */
3636 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3637 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3638 		if (cp->target != target)
3639 			continue;
3640 		cp->phys.select.sel_scntl3 = tp->head.wval;
3641 		cp->phys.select.sel_sxfer  = tp->head.sval;
3642 		if (np->features & FE_C10) {
3643 			cp->phys.select.sel_scntl4 = tp->head.uval;
3644 		}
3645 	}
3646 }
3647 
3648 /*
3649  *  log message for real hard errors
3650  *
3651  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3652  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3653  *
3654  *  exception register:
3655  *  	ds:	dstat
3656  *  	si:	sist
3657  *
3658  *  SCSI bus lines:
3659  *  	so:	control lines as driven by chip.
3660  *  	si:	control lines as seen by chip.
3661  *  	sd:	scsi data lines as seen by chip.
3662  *
3663  *  wide/fastmode:
3664  *  	sxfer:	(see the manual)
3665  *  	scntl3:	(see the manual)
3666  *
3667  *  current script command:
3668  *  	dsp:	script address (relative to start of script).
3669  *  	dbc:	first word of script command.
3670  *
3671  *  First 24 register of the chip:
3672  *  	r0..rf
3673  */
3674 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3675 {
3676 	u32	dsp;
3677 	int	script_ofs;
3678 	int	script_size;
3679 	char	*script_name;
3680 	u_char	*script_base;
3681 	int	i;
3682 
3683 	dsp	= INL (nc_dsp);
3684 
3685 	if	(dsp > np->scripta_ba &&
3686 		 dsp <= np->scripta_ba + np->scripta_sz) {
3687 		script_ofs	= dsp - np->scripta_ba;
3688 		script_size	= np->scripta_sz;
3689 		script_base	= (u_char *) np->scripta0;
3690 		script_name	= "scripta";
3691 	}
3692 	else if (np->scriptb_ba < dsp &&
3693 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3694 		script_ofs	= dsp - np->scriptb_ba;
3695 		script_size	= np->scriptb_sz;
3696 		script_base	= (u_char *) np->scriptb0;
3697 		script_name	= "scriptb";
3698 	} else {
3699 		script_ofs	= dsp;
3700 		script_size	= 0;
3701 		script_base	= NULL;
3702 		script_name	= "mem";
3703 	}
3704 
3705 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3706 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3707 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3708 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3709 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3710 		(unsigned)INL (nc_dbc));
3711 
3712 	if (((script_ofs & 3) == 0) &&
3713 	    (unsigned)script_ofs < script_size) {
3714 		printf ("%s: script cmd = %08x\n", sym_name(np),
3715 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3716 	}
3717 
3718         printf ("%s: regdump:", sym_name(np));
3719         for (i=0; i<24;i++)
3720             printf (" %02x", (unsigned)INB_OFF(i));
3721         printf (".\n");
3722 
3723 	/*
3724 	 *  PCI BUS error, read the PCI ststus register.
3725 	 */
3726 	if (dstat & (MDPE|BF)) {
3727 		u_short pci_sts;
3728 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3729 		if (pci_sts & 0xf900) {
3730 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3731 			printf("%s: PCI STATUS = 0x%04x\n",
3732 				sym_name(np), pci_sts & 0xf900);
3733 		}
3734 	}
3735 }
3736 
3737 /*
3738  *  chip interrupt handler
3739  *
3740  *  In normal situations, interrupt conditions occur one at
3741  *  a time. But when something bad happens on the SCSI BUS,
3742  *  the chip may raise several interrupt flags before
3743  *  stopping and interrupting the CPU. The additionnal
3744  *  interrupt flags are stacked in some extra registers
3745  *  after the SIP and/or DIP flag has been raised in the
3746  *  ISTAT. After the CPU has read the interrupt condition
3747  *  flag from SIST or DSTAT, the chip unstacks the other
3748  *  interrupt flags and sets the corresponding bits in
3749  *  SIST or DSTAT. Since the chip starts stacking once the
3750  *  SIP or DIP flag is set, there is a small window of time
3751  *  where the stacking does not occur.
3752  *
3753  *  Typically, multiple interrupt conditions may happen in
3754  *  the following situations:
3755  *
3756  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3757  *    When a parity error is detected in input phase
3758  *    and the device switches to msg-in phase inside a
3759  *    block MOV.
3760  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3761  *    When a stupid device does not want to handle the
3762  *    recovery of an SCSI parity error.
3763  *  - Some combinations of STO, PAR, UDC, ...
3764  *    When using non compliant SCSI stuff, when user is
3765  *    doing non compliant hot tampering on the BUS, when
3766  *    something really bad happens to a device, etc ...
3767  *
3768  *  The heuristic suggested by SYMBIOS to handle
3769  *  multiple interrupts is to try unstacking all
3770  *  interrupts conditions and to handle them on some
3771  *  priority based on error severity.
3772  *  This will work when the unstacking has been
3773  *  successful, but we cannot be 100 % sure of that,
3774  *  since the CPU may have been faster to unstack than
3775  *  the chip is able to stack. Hmmm ... But it seems that
3776  *  such a situation is very unlikely to happen.
3777  *
3778  *  If this happen, for example STO caught by the CPU
3779  *  then UDC happenning before the CPU have restarted
3780  *  the SCRIPTS, the driver may wrongly complete the
3781  *  same command on UDC, since the SCRIPTS didn't restart
3782  *  and the DSA still points to the same command.
3783  *  We avoid this situation by setting the DSA to an
3784  *  invalid value when the CCB is completed and before
3785  *  restarting the SCRIPTS.
3786  *
3787  *  Another issue is that we need some section of our
3788  *  recovery procedures to be somehow uninterruptible but
3789  *  the SCRIPTS processor does not provides such a
3790  *  feature. For this reason, we handle recovery preferently
3791  *  from the C code and check against some SCRIPTS critical
3792  *  sections from the C code.
3793  *
3794  *  Hopefully, the interrupt handling of the driver is now
3795  *  able to resist to weird BUS error conditions, but donnot
3796  *  ask me for any guarantee that it will never fail. :-)
3797  *  Use at your own decision and risk.
3798  */
3799 static void sym_intr1 (hcb_p np)
3800 {
3801 	u_char	istat, istatc;
3802 	u_char	dstat;
3803 	u_short	sist;
3804 
3805 	SYM_LOCK_ASSERT(MA_OWNED);
3806 
3807 	/*
3808 	 *  interrupt on the fly ?
3809 	 *
3810 	 *  A `dummy read' is needed to ensure that the
3811 	 *  clear of the INTF flag reaches the device
3812 	 *  before the scanning of the DONE queue.
3813 	 */
3814 	istat = INB (nc_istat);
3815 	if (istat & INTF) {
3816 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3817 		istat = INB (nc_istat);		/* DUMMY READ */
3818 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3819 		(void)sym_wakeup_done (np);
3820 	}
3821 
3822 	if (!(istat & (SIP|DIP)))
3823 		return;
3824 
3825 #if 0	/* We should never get this one */
3826 	if (istat & CABRT)
3827 		OUTB (nc_istat, CABRT);
3828 #endif
3829 
3830 	/*
3831 	 *  PAR and MA interrupts may occur at the same time,
3832 	 *  and we need to know of both in order to handle
3833 	 *  this situation properly. We try to unstack SCSI
3834 	 *  interrupts for that reason. BTW, I dislike a LOT
3835 	 *  such a loop inside the interrupt routine.
3836 	 *  Even if DMA interrupt stacking is very unlikely to
3837 	 *  happen, we also try unstacking these ones, since
3838 	 *  this has no performance impact.
3839 	 */
3840 	sist	= 0;
3841 	dstat	= 0;
3842 	istatc	= istat;
3843 	do {
3844 		if (istatc & SIP)
3845 			sist  |= INW (nc_sist);
3846 		if (istatc & DIP)
3847 			dstat |= INB (nc_dstat);
3848 		istatc = INB (nc_istat);
3849 		istat |= istatc;
3850 	} while (istatc & (SIP|DIP));
3851 
3852 	if (DEBUG_FLAGS & DEBUG_TINY)
3853 		printf ("<%d|%x:%x|%x:%x>",
3854 			(int)INB(nc_scr0),
3855 			dstat,sist,
3856 			(unsigned)INL(nc_dsp),
3857 			(unsigned)INL(nc_dbc));
3858 	/*
3859 	 *  On paper, a memory barrier may be needed here.
3860 	 *  And since we are paranoid ... :)
3861 	 */
3862 	MEMORY_BARRIER();
3863 
3864 	/*
3865 	 *  First, interrupts we want to service cleanly.
3866 	 *
3867 	 *  Phase mismatch (MA) is the most frequent interrupt
3868 	 *  for chip earlier than the 896 and so we have to service
3869 	 *  it as quickly as possible.
3870 	 *  A SCSI parity error (PAR) may be combined with a phase
3871 	 *  mismatch condition (MA).
3872 	 *  Programmed interrupts (SIR) are used to call the C code
3873 	 *  from SCRIPTS.
3874 	 *  The single step interrupt (SSI) is not used in this
3875 	 *  driver.
3876 	 */
3877 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3878 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3879 		if	(sist & PAR)	sym_int_par (np, sist);
3880 		else if (sist & MA)	sym_int_ma (np);
3881 		else if (dstat & SIR)	sym_int_sir (np);
3882 		else if (dstat & SSI)	OUTONB_STD ();
3883 		else			goto unknown_int;
3884 		return;
3885 	}
3886 
3887 	/*
3888 	 *  Now, interrupts that donnot happen in normal
3889 	 *  situations and that we may need to recover from.
3890 	 *
3891 	 *  On SCSI RESET (RST), we reset everything.
3892 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3893 	 *  active CCBs with RESET status, prepare all devices
3894 	 *  for negotiating again and restart the SCRIPTS.
3895 	 *  On STO and UDC, we complete the CCB with the corres-
3896 	 *  ponding status and restart the SCRIPTS.
3897 	 */
3898 	if (sist & RST) {
3899 		xpt_print_path(np->path);
3900 		printf("SCSI BUS reset detected.\n");
3901 		sym_init (np, 1);
3902 		return;
3903 	}
3904 
3905 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3906 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3907 
3908 	if (!(sist  & (GEN|HTH|SGE)) &&
3909 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3910 		if	(sist & SBMC)	sym_int_sbmc (np);
3911 		else if (sist & STO)	sym_int_sto (np);
3912 		else if (sist & UDC)	sym_int_udc (np);
3913 		else			goto unknown_int;
3914 		return;
3915 	}
3916 
3917 	/*
3918 	 *  Now, interrupts we are not able to recover cleanly.
3919 	 *
3920 	 *  Log message for hard errors.
3921 	 *  Reset everything.
3922 	 */
3923 
3924 	sym_log_hard_error(np, sist, dstat);
3925 
3926 	if ((sist & (GEN|HTH|SGE)) ||
3927 		(dstat & (MDPE|BF|ABRT|IID))) {
3928 		sym_start_reset(np);
3929 		return;
3930 	}
3931 
3932 unknown_int:
3933 	/*
3934 	 *  We just miss the cause of the interrupt. :(
3935 	 *  Print a message. The timeout will do the real work.
3936 	 */
3937 	printf(	"%s: unknown interrupt(s) ignored, "
3938 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3939 		sym_name(np), istat, dstat, sist);
3940 }
3941 
3942 static void sym_intr(void *arg)
3943 {
3944 	hcb_p np = arg;
3945 
3946 	SYM_LOCK();
3947 
3948 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3949 	sym_intr1((hcb_p) arg);
3950 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3951 
3952 	SYM_UNLOCK();
3953 }
3954 
3955 static void sym_poll(struct cam_sim *sim)
3956 {
3957 	sym_intr1(cam_sim_softc(sim));
3958 }
3959 
3960 /*
3961  *  generic recovery from scsi interrupt
3962  *
3963  *  The doc says that when the chip gets an SCSI interrupt,
3964  *  it tries to stop in an orderly fashion, by completing
3965  *  an instruction fetch that had started or by flushing
3966  *  the DMA fifo for a write to memory that was executing.
3967  *  Such a fashion is not enough to know if the instruction
3968  *  that was just before the current DSP value has been
3969  *  executed or not.
3970  *
3971  *  There are some small SCRIPTS sections that deal with
3972  *  the start queue and the done queue that may break any
3973  *  assomption from the C code if we are interrupted
3974  *  inside, so we reset if this happens. Btw, since these
3975  *  SCRIPTS sections are executed while the SCRIPTS hasn't
3976  *  started SCSI operations, it is very unlikely to happen.
3977  *
3978  *  All the driver data structures are supposed to be
3979  *  allocated from the same 4 GB memory window, so there
3980  *  is a 1 to 1 relationship between DSA and driver data
3981  *  structures. Since we are careful :) to invalidate the
3982  *  DSA when we complete a command or when the SCRIPTS
3983  *  pushes a DSA into a queue, we can trust it when it
3984  *  points to a CCB.
3985  */
3986 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
3987 {
3988 	u32	dsp	= INL (nc_dsp);
3989 	u32	dsa	= INL (nc_dsa);
3990 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
3991 
3992 	/*
3993 	 *  If we haven't been interrupted inside the SCRIPTS
3994 	 *  critical paths, we can safely restart the SCRIPTS
3995 	 *  and trust the DSA value if it matches a CCB.
3996 	 */
3997 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
3998 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
3999 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4000 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4001 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4002 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4003 	    (!(dsp > SCRIPTA_BA (np, done) &&
4004 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4005 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4006 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4007 		/*
4008 		 *  If we have a CCB, let the SCRIPTS call us back for
4009 		 *  the handling of the error with SCRATCHA filled with
4010 		 *  STARTPOS. This way, we will be able to freeze the
4011 		 *  device queue and requeue awaiting IOs.
4012 		 */
4013 		if (cp) {
4014 			cp->host_status = hsts;
4015 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4016 		}
4017 		/*
4018 		 *  Otherwise just restart the SCRIPTS.
4019 		 */
4020 		else {
4021 			OUTL (nc_dsa, 0xffffff);
4022 			OUTL_DSP (SCRIPTA_BA (np, start));
4023 		}
4024 	}
4025 	else
4026 		goto reset_all;
4027 
4028 	return;
4029 
4030 reset_all:
4031 	sym_start_reset(np);
4032 }
4033 
4034 /*
4035  *  chip exception handler for selection timeout
4036  */
4037 static void sym_int_sto (hcb_p np)
4038 {
4039 	u32 dsp	= INL (nc_dsp);
4040 
4041 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4042 
4043 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4044 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4045 	else
4046 		sym_start_reset(np);
4047 }
4048 
4049 /*
4050  *  chip exception handler for unexpected disconnect
4051  */
4052 static void sym_int_udc (hcb_p np)
4053 {
4054 	printf ("%s: unexpected disconnect\n", sym_name(np));
4055 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4056 }
4057 
4058 /*
4059  *  chip exception handler for SCSI bus mode change
4060  *
4061  *  spi2-r12 11.2.3 says a transceiver mode change must
4062  *  generate a reset event and a device that detects a reset
4063  *  event shall initiate a hard reset. It says also that a
4064  *  device that detects a mode change shall set data transfer
4065  *  mode to eight bit asynchronous, etc...
4066  *  So, just reinitializing all except chip should be enough.
4067  */
4068 static void sym_int_sbmc (hcb_p np)
4069 {
4070 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4071 
4072 	/*
4073 	 *  Notify user.
4074 	 */
4075 	xpt_print_path(np->path);
4076 	printf("SCSI BUS mode change from %s to %s.\n",
4077 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4078 
4079 	/*
4080 	 *  Should suspend command processing for a few seconds and
4081 	 *  reinitialize all except the chip.
4082 	 */
4083 	sym_init (np, 2);
4084 }
4085 
4086 /*
4087  *  chip exception handler for SCSI parity error.
4088  *
4089  *  When the chip detects a SCSI parity error and is
4090  *  currently executing a (CH)MOV instruction, it does
4091  *  not interrupt immediately, but tries to finish the
4092  *  transfer of the current scatter entry before
4093  *  interrupting. The following situations may occur:
4094  *
4095  *  - The complete scatter entry has been transferred
4096  *    without the device having changed phase.
4097  *    The chip will then interrupt with the DSP pointing
4098  *    to the instruction that follows the MOV.
4099  *
4100  *  - A phase mismatch occurs before the MOV finished
4101  *    and phase errors are to be handled by the C code.
4102  *    The chip will then interrupt with both PAR and MA
4103  *    conditions set.
4104  *
4105  *  - A phase mismatch occurs before the MOV finished and
4106  *    phase errors are to be handled by SCRIPTS.
4107  *    The chip will load the DSP with the phase mismatch
4108  *    JUMP address and interrupt the host processor.
4109  */
4110 static void sym_int_par (hcb_p np, u_short sist)
4111 {
4112 	u_char	hsts	= INB (HS_PRT);
4113 	u32	dsp	= INL (nc_dsp);
4114 	u32	dbc	= INL (nc_dbc);
4115 	u32	dsa	= INL (nc_dsa);
4116 	u_char	sbcl	= INB (nc_sbcl);
4117 	u_char	cmd	= dbc >> 24;
4118 	int phase	= cmd & 7;
4119 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4120 
4121 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4122 		sym_name(np), hsts, dbc, sbcl);
4123 
4124 	/*
4125 	 *  Check that the chip is connected to the SCSI BUS.
4126 	 */
4127 	if (!(INB (nc_scntl1) & ISCON)) {
4128 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4129 		return;
4130 	}
4131 
4132 	/*
4133 	 *  If the nexus is not clearly identified, reset the bus.
4134 	 *  We will try to do better later.
4135 	 */
4136 	if (!cp)
4137 		goto reset_all;
4138 
4139 	/*
4140 	 *  Check instruction was a MOV, direction was INPUT and
4141 	 *  ATN is asserted.
4142 	 */
4143 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4144 		goto reset_all;
4145 
4146 	/*
4147 	 *  Keep track of the parity error.
4148 	 */
4149 	OUTONB (HF_PRT, HF_EXT_ERR);
4150 	cp->xerr_status |= XE_PARITY_ERR;
4151 
4152 	/*
4153 	 *  Prepare the message to send to the device.
4154 	 */
4155 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4156 
4157 	/*
4158 	 *  If the old phase was DATA IN phase, we have to deal with
4159 	 *  the 3 situations described above.
4160 	 *  For other input phases (MSG IN and STATUS), the device
4161 	 *  must resend the whole thing that failed parity checking
4162 	 *  or signal error. So, jumping to dispatcher should be OK.
4163 	 */
4164 	if (phase == 1 || phase == 5) {
4165 		/* Phase mismatch handled by SCRIPTS */
4166 		if (dsp == SCRIPTB_BA (np, pm_handle))
4167 			OUTL_DSP (dsp);
4168 		/* Phase mismatch handled by the C code */
4169 		else if (sist & MA)
4170 			sym_int_ma (np);
4171 		/* No phase mismatch occurred */
4172 		else {
4173 			OUTL (nc_temp, dsp);
4174 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4175 		}
4176 	}
4177 	else
4178 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4179 	return;
4180 
4181 reset_all:
4182 	sym_start_reset(np);
4183 }
4184 
4185 /*
4186  *  chip exception handler for phase errors.
4187  *
4188  *  We have to construct a new transfer descriptor,
4189  *  to transfer the rest of the current block.
4190  */
4191 static void sym_int_ma (hcb_p np)
4192 {
4193 	u32	dbc;
4194 	u32	rest;
4195 	u32	dsp;
4196 	u32	dsa;
4197 	u32	nxtdsp;
4198 	u32	*vdsp;
4199 	u32	oadr, olen;
4200 	u32	*tblp;
4201         u32	newcmd;
4202 	u_int	delta;
4203 	u_char	cmd;
4204 	u_char	hflags, hflags0;
4205 	struct	sym_pmc *pm;
4206 	ccb_p	cp;
4207 
4208 	dsp	= INL (nc_dsp);
4209 	dbc	= INL (nc_dbc);
4210 	dsa	= INL (nc_dsa);
4211 
4212 	cmd	= dbc >> 24;
4213 	rest	= dbc & 0xffffff;
4214 	delta	= 0;
4215 
4216 	/*
4217 	 *  locate matching cp if any.
4218 	 */
4219 	cp = sym_ccb_from_dsa(np, dsa);
4220 
4221 	/*
4222 	 *  Donnot take into account dma fifo and various buffers in
4223 	 *  INPUT phase since the chip flushes everything before
4224 	 *  raising the MA interrupt for interrupted INPUT phases.
4225 	 *  For DATA IN phase, we will check for the SWIDE later.
4226 	 */
4227 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4228 		u_char ss0, ss2;
4229 
4230 		if (np->features & FE_DFBC)
4231 			delta = INW (nc_dfbc);
4232 		else {
4233 			u32 dfifo;
4234 
4235 			/*
4236 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4237 			 */
4238 			dfifo = INL(nc_dfifo);
4239 
4240 			/*
4241 			 *  Calculate remaining bytes in DMA fifo.
4242 			 *  (CTEST5 = dfifo >> 16)
4243 			 */
4244 			if (dfifo & (DFS << 16))
4245 				delta = ((((dfifo >> 8) & 0x300) |
4246 				          (dfifo & 0xff)) - rest) & 0x3ff;
4247 			else
4248 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4249 		}
4250 
4251 		/*
4252 		 *  The data in the dma fifo has not been transferred to
4253 		 *  the target -> add the amount to the rest
4254 		 *  and clear the data.
4255 		 *  Check the sstat2 register in case of wide transfer.
4256 		 */
4257 		rest += delta;
4258 		ss0  = INB (nc_sstat0);
4259 		if (ss0 & OLF) rest++;
4260 		if (!(np->features & FE_C10))
4261 			if (ss0 & ORF) rest++;
4262 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4263 			ss2 = INB (nc_sstat2);
4264 			if (ss2 & OLF1) rest++;
4265 			if (!(np->features & FE_C10))
4266 				if (ss2 & ORF1) rest++;
4267 		}
4268 
4269 		/*
4270 		 *  Clear fifos.
4271 		 */
4272 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4273 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4274 	}
4275 
4276 	/*
4277 	 *  log the information
4278 	 */
4279 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4280 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4281 			(unsigned) rest, (unsigned) delta);
4282 
4283 	/*
4284 	 *  try to find the interrupted script command,
4285 	 *  and the address at which to continue.
4286 	 */
4287 	vdsp	= NULL;
4288 	nxtdsp	= 0;
4289 	if	(dsp >  np->scripta_ba &&
4290 		 dsp <= np->scripta_ba + np->scripta_sz) {
4291 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4292 		nxtdsp = dsp;
4293 	}
4294 	else if	(dsp >  np->scriptb_ba &&
4295 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4296 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4297 		nxtdsp = dsp;
4298 	}
4299 
4300 	/*
4301 	 *  log the information
4302 	 */
4303 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4304 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4305 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4306 	}
4307 
4308 	if (!vdsp) {
4309 		printf ("%s: interrupted SCRIPT address not found.\n",
4310 			sym_name (np));
4311 		goto reset_all;
4312 	}
4313 
4314 	if (!cp) {
4315 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4316 			sym_name (np));
4317 		goto reset_all;
4318 	}
4319 
4320 	/*
4321 	 *  get old startaddress and old length.
4322 	 */
4323 	oadr = scr_to_cpu(vdsp[1]);
4324 
4325 	if (cmd & 0x10) {	/* Table indirect */
4326 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4327 		olen = scr_to_cpu(tblp[0]);
4328 		oadr = scr_to_cpu(tblp[1]);
4329 	} else {
4330 		tblp = (u32 *) 0;
4331 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4332 	}
4333 
4334 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4335 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4336 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4337 			tblp,
4338 			(unsigned) olen,
4339 			(unsigned) oadr);
4340 	}
4341 
4342 	/*
4343 	 *  check cmd against assumed interrupted script command.
4344 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4345 	 *  the phase.
4346 	 */
4347 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4348 		PRINT_ADDR(cp);
4349 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4350 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4351 
4352 		goto reset_all;
4353 	}
4354 
4355 	/*
4356 	 *  if old phase not dataphase, leave here.
4357 	 */
4358 	if (cmd & 2) {
4359 		PRINT_ADDR(cp);
4360 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4361 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4362 			(unsigned)oadr, (unsigned)rest);
4363 		goto unexpected_phase;
4364 	}
4365 
4366 	/*
4367 	 *  Choose the correct PM save area.
4368 	 *
4369 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4370 	 *  this stuff. The equivalent code is implemented in
4371 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4372 	 *  handle PM from the SCRIPTS processor.
4373 	 */
4374 	hflags0 = INB (HF_PRT);
4375 	hflags = hflags0;
4376 
4377 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4378 		if (hflags & HF_IN_PM0)
4379 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4380 		else if	(hflags & HF_IN_PM1)
4381 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4382 
4383 		if (hflags & HF_DP_SAVED)
4384 			hflags ^= HF_ACT_PM;
4385 	}
4386 
4387 	if (!(hflags & HF_ACT_PM)) {
4388 		pm = &cp->phys.pm0;
4389 		newcmd = SCRIPTA_BA (np, pm0_data);
4390 	}
4391 	else {
4392 		pm = &cp->phys.pm1;
4393 		newcmd = SCRIPTA_BA (np, pm1_data);
4394 	}
4395 
4396 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4397 	if (hflags != hflags0)
4398 		OUTB (HF_PRT, hflags);
4399 
4400 	/*
4401 	 *  fillin the phase mismatch context
4402 	 */
4403 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4404 	pm->sg.size = cpu_to_scr(rest);
4405 	pm->ret     = cpu_to_scr(nxtdsp);
4406 
4407 	/*
4408 	 *  If we have a SWIDE,
4409 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4410 	 *  - compute the SCRIPTS address to restart from,
4411 	 *  - move current data pointer context by one byte.
4412 	 */
4413 	nxtdsp = SCRIPTA_BA (np, dispatch);
4414 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4415 	    (INB (nc_scntl2) & WSR)) {
4416 		u32 tmp;
4417 
4418 		/*
4419 		 *  Set up the table indirect for the MOVE
4420 		 *  of the residual byte and adjust the data
4421 		 *  pointer context.
4422 		 */
4423 		tmp = scr_to_cpu(pm->sg.addr);
4424 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4425 		pm->sg.addr = cpu_to_scr(tmp + 1);
4426 		tmp = scr_to_cpu(pm->sg.size);
4427 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4428 		pm->sg.size = cpu_to_scr(tmp - 1);
4429 
4430 		/*
4431 		 *  If only the residual byte is to be moved,
4432 		 *  no PM context is needed.
4433 		 */
4434 		if ((tmp&0xffffff) == 1)
4435 			newcmd = pm->ret;
4436 
4437 		/*
4438 		 *  Prepare the address of SCRIPTS that will
4439 		 *  move the residual byte to memory.
4440 		 */
4441 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4442 	}
4443 
4444 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4445 		PRINT_ADDR(cp);
4446 		printf ("PM %x %x %x / %x %x %x.\n",
4447 			hflags0, hflags, newcmd,
4448 			(unsigned)scr_to_cpu(pm->sg.addr),
4449 			(unsigned)scr_to_cpu(pm->sg.size),
4450 			(unsigned)scr_to_cpu(pm->ret));
4451 	}
4452 
4453 	/*
4454 	 *  Restart the SCRIPTS processor.
4455 	 */
4456 	OUTL (nc_temp, newcmd);
4457 	OUTL_DSP (nxtdsp);
4458 	return;
4459 
4460 	/*
4461 	 *  Unexpected phase changes that occurs when the current phase
4462 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4463 	 *  Such event may only happen when the SCRIPTS is using a
4464 	 *  multibyte SCSI MOVE.
4465 	 *
4466 	 *  Phase change		Some possible cause
4467 	 *
4468 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4469 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4470 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4471 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4472 	 *  			negotiation messages.
4473 	 *
4474 	 *  The code below does not care of the new phase and so
4475 	 *  trusts the target. Why to annoy it ?
4476 	 *  If the interrupted phase is COMMAND phase, we restart at
4477 	 *  dispatcher.
4478 	 *  If a target does not get all the messages after selection,
4479 	 *  the code assumes blindly that the target discards extended
4480 	 *  messages and clears the negotiation status.
4481 	 *  If the target does not want all our response to negotiation,
4482 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4483 	 *  bloat for such a should_not_happen situation).
4484 	 *  In all other situation, we reset the BUS.
4485 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4486 	 */
4487 unexpected_phase:
4488 	dsp -= 8;
4489 	nxtdsp = 0;
4490 
4491 	switch (cmd & 7) {
4492 	case 2:	/* COMMAND phase */
4493 		nxtdsp = SCRIPTA_BA (np, dispatch);
4494 		break;
4495 #if 0
4496 	case 3:	/* STATUS  phase */
4497 		nxtdsp = SCRIPTA_BA (np, dispatch);
4498 		break;
4499 #endif
4500 	case 6:	/* MSG OUT phase */
4501 		/*
4502 		 *  If the device may want to use untagged when we want
4503 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4504 		 *  since we will not be able to handle reselect.
4505 		 *  Otherwise, we just don't care.
4506 		 */
4507 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4508 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4509 				cp->host_status = HS_BUSY;
4510 				np->msgout[0] = M_IDENTIFY | cp->lun;
4511 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4512 			}
4513 			else
4514 				nxtdsp = SCRIPTB_BA (np, ident_break);
4515 		}
4516 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4517 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4518 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4519 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4520 		}
4521 		break;
4522 #if 0
4523 	case 7:	/* MSG IN  phase */
4524 		nxtdsp = SCRIPTA_BA (np, clrack);
4525 		break;
4526 #endif
4527 	}
4528 
4529 	if (nxtdsp) {
4530 		OUTL_DSP (nxtdsp);
4531 		return;
4532 	}
4533 
4534 reset_all:
4535 	sym_start_reset(np);
4536 }
4537 
4538 /*
4539  *  Dequeue from the START queue all CCBs that match
4540  *  a given target/lun/task condition (-1 means all),
4541  *  and move them from the BUSY queue to the COMP queue
4542  *  with CAM_REQUEUE_REQ status condition.
4543  *  This function is used during error handling/recovery.
4544  *  It is called with SCRIPTS not running.
4545  */
4546 static int
4547 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4548 {
4549 	int j;
4550 	ccb_p cp;
4551 
4552 	/*
4553 	 *  Make sure the starting index is within range.
4554 	 */
4555 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4556 
4557 	/*
4558 	 *  Walk until end of START queue and dequeue every job
4559 	 *  that matches the target/lun/task condition.
4560 	 */
4561 	j = i;
4562 	while (i != np->squeueput) {
4563 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4564 		assert(cp);
4565 #ifdef SYM_CONF_IARB_SUPPORT
4566 		/* Forget hints for IARB, they may be no longer relevant */
4567 		cp->host_flags &= ~HF_HINT_IARB;
4568 #endif
4569 		if ((target == -1 || cp->target == target) &&
4570 		    (lun    == -1 || cp->lun    == lun)    &&
4571 		    (task   == -1 || cp->tag    == task)) {
4572 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4573 			sym_remque(&cp->link_ccbq);
4574 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4575 		}
4576 		else {
4577 			if (i != j)
4578 				np->squeue[j] = np->squeue[i];
4579 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4580 		}
4581 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4582 	}
4583 	if (i != j)		/* Copy back the idle task if needed */
4584 		np->squeue[j] = np->squeue[i];
4585 	np->squeueput = j;	/* Update our current start queue pointer */
4586 
4587 	return (i - j) / 2;
4588 }
4589 
4590 /*
4591  *  Complete all CCBs queued to the COMP queue.
4592  *
4593  *  These CCBs are assumed:
4594  *  - Not to be referenced either by devices or
4595  *    SCRIPTS-related queues and datas.
4596  *  - To have to be completed with an error condition
4597  *    or requeued.
4598  *
4599  *  The device queue freeze count is incremented
4600  *  for each CCB that does not prevent this.
4601  *  This function is called when all CCBs involved
4602  *  in error handling/recovery have been reaped.
4603  */
4604 static void
4605 sym_flush_comp_queue(hcb_p np, int cam_status)
4606 {
4607 	SYM_QUEHEAD *qp;
4608 	ccb_p cp;
4609 
4610 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4611 		union ccb *ccb;
4612 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4613 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4614 		/* Leave quiet CCBs waiting for resources */
4615 		if (cp->host_status == HS_WAIT)
4616 			continue;
4617 		ccb = cp->cam_ccb;
4618 		if (cam_status)
4619 			sym_set_cam_status(ccb, cam_status);
4620 		sym_freeze_cam_ccb(ccb);
4621 		sym_xpt_done(np, ccb, cp);
4622 		sym_free_ccb(np, cp);
4623 	}
4624 }
4625 
4626 /*
4627  *  chip handler for bad SCSI status condition
4628  *
4629  *  In case of bad SCSI status, we unqueue all the tasks
4630  *  currently queued to the controller but not yet started
4631  *  and then restart the SCRIPTS processor immediately.
4632  *
4633  *  QUEUE FULL and BUSY conditions are handled the same way.
4634  *  Basically all the not yet started tasks are requeued in
4635  *  device queue and the queue is frozen until a completion.
4636  *
4637  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4638  *  the CCB of the failed command to prepare a REQUEST SENSE
4639  *  SCSI command and queue it to the controller queue.
4640  *
4641  *  SCRATCHA is assumed to have been loaded with STARTPOS
4642  *  before the SCRIPTS called the C code.
4643  */
4644 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4645 {
4646 	tcb_p tp	= &np->target[cp->target];
4647 	u32		startp;
4648 	u_char		s_status = cp->ssss_status;
4649 	u_char		h_flags  = cp->host_flags;
4650 	int		msglen;
4651 	int		nego;
4652 	int		i;
4653 
4654 	SYM_LOCK_ASSERT(MA_OWNED);
4655 
4656 	/*
4657 	 *  Compute the index of the next job to start from SCRIPTS.
4658 	 */
4659 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4660 
4661 	/*
4662 	 *  The last CCB queued used for IARB hint may be
4663 	 *  no longer relevant. Forget it.
4664 	 */
4665 #ifdef SYM_CONF_IARB_SUPPORT
4666 	if (np->last_cp)
4667 		np->last_cp = NULL;
4668 #endif
4669 
4670 	/*
4671 	 *  Now deal with the SCSI status.
4672 	 */
4673 	switch(s_status) {
4674 	case S_BUSY:
4675 	case S_QUEUE_FULL:
4676 		if (sym_verbose >= 2) {
4677 			PRINT_ADDR(cp);
4678 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4679 		}
4680 		/* FALLTHROUGH */
4681 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4682 		sym_complete_error (np, cp);
4683 		break;
4684 	case S_TERMINATED:
4685 	case S_CHECK_COND:
4686 		/*
4687 		 *  If we get an SCSI error when requesting sense, give up.
4688 		 */
4689 		if (h_flags & HF_SENSE) {
4690 			sym_complete_error (np, cp);
4691 			break;
4692 		}
4693 
4694 		/*
4695 		 *  Dequeue all queued CCBs for that device not yet started,
4696 		 *  and restart the SCRIPTS processor immediately.
4697 		 */
4698 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4699 		OUTL_DSP (SCRIPTA_BA (np, start));
4700 
4701  		/*
4702 		 *  Save some info of the actual IO.
4703 		 *  Compute the data residual.
4704 		 */
4705 		cp->sv_scsi_status = cp->ssss_status;
4706 		cp->sv_xerr_status = cp->xerr_status;
4707 		cp->sv_resid = sym_compute_residual(np, cp);
4708 
4709 		/*
4710 		 *  Prepare all needed data structures for
4711 		 *  requesting sense data.
4712 		 */
4713 
4714 		/*
4715 		 *  identify message
4716 		 */
4717 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4718 		msglen = 1;
4719 
4720 		/*
4721 		 *  If we are currently using anything different from
4722 		 *  async. 8 bit data transfers with that target,
4723 		 *  start a negotiation, since the device may want
4724 		 *  to report us a UNIT ATTENTION condition due to
4725 		 *  a cause we currently ignore, and we donnot want
4726 		 *  to be stuck with WIDE and/or SYNC data transfer.
4727 		 *
4728 		 *  cp->nego_status is filled by sym_prepare_nego().
4729 		 */
4730 		cp->nego_status = 0;
4731 		nego = 0;
4732 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4733 			nego = NS_PPR;
4734 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4735 			nego = NS_WIDE;
4736 		else if (tp->tinfo.current.offset != 0)
4737 			nego = NS_SYNC;
4738 		if (nego)
4739 			msglen +=
4740 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4741 		/*
4742 		 *  Message table indirect structure.
4743 		 */
4744 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4745 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4746 
4747 		/*
4748 		 *  sense command
4749 		 */
4750 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4751 		cp->phys.cmd.size	= cpu_to_scr(6);
4752 
4753 		/*
4754 		 *  patch requested size into sense command
4755 		 */
4756 		cp->sensecmd[0]		= 0x03;
4757 		cp->sensecmd[1]		= cp->lun << 5;
4758 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4759 			cp->sensecmd[1]	= 0;
4760 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4761 		cp->data_len		= SYM_SNS_BBUF_LEN;
4762 
4763 		/*
4764 		 *  sense data
4765 		 */
4766 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4767 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4768 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4769 
4770 		/*
4771 		 *  requeue the command.
4772 		 */
4773 		startp = SCRIPTB_BA (np, sdata_in);
4774 
4775 		cp->phys.head.savep	= cpu_to_scr(startp);
4776 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4777 		cp->phys.head.lastp	= cpu_to_scr(startp);
4778 		cp->startp	= cpu_to_scr(startp);
4779 
4780 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4781 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4782 		cp->ssss_status = S_ILLEGAL;
4783 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4784 		cp->xerr_status = 0;
4785 		cp->extra_bytes = 0;
4786 
4787 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4788 
4789 		/*
4790 		 *  Requeue the command.
4791 		 */
4792 		sym_put_start_queue(np, cp);
4793 
4794 		/*
4795 		 *  Give back to upper layer everything we have dequeued.
4796 		 */
4797 		sym_flush_comp_queue(np, 0);
4798 		break;
4799 	}
4800 }
4801 
4802 /*
4803  *  After a device has accepted some management message
4804  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4805  *  a device signals a UNIT ATTENTION condition, some
4806  *  tasks are thrown away by the device. We are required
4807  *  to reflect that on our tasks list since the device
4808  *  will never complete these tasks.
4809  *
4810  *  This function move from the BUSY queue to the COMP
4811  *  queue all disconnected CCBs for a given target that
4812  *  match the following criteria:
4813  *  - lun=-1  means any logical UNIT otherwise a given one.
4814  *  - task=-1 means any task, otherwise a given one.
4815  */
4816 static int
4817 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4818 {
4819 	SYM_QUEHEAD qtmp, *qp;
4820 	int i = 0;
4821 	ccb_p cp;
4822 
4823 	/*
4824 	 *  Move the entire BUSY queue to our temporary queue.
4825 	 */
4826 	sym_que_init(&qtmp);
4827 	sym_que_splice(&np->busy_ccbq, &qtmp);
4828 	sym_que_init(&np->busy_ccbq);
4829 
4830 	/*
4831 	 *  Put all CCBs that matches our criteria into
4832 	 *  the COMP queue and put back other ones into
4833 	 *  the BUSY queue.
4834 	 */
4835 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4836 		union ccb *ccb;
4837 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4838 		ccb = cp->cam_ccb;
4839 		if (cp->host_status != HS_DISCONNECT ||
4840 		    cp->target != target	     ||
4841 		    (lun  != -1 && cp->lun != lun)   ||
4842 		    (task != -1 &&
4843 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4844 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4845 			continue;
4846 		}
4847 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4848 
4849 		/* Preserve the software timeout condition */
4850 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4851 			sym_set_cam_status(ccb, cam_status);
4852 		++i;
4853 #if 0
4854 printf("XXXX TASK @%p CLEARED\n", cp);
4855 #endif
4856 	}
4857 	return i;
4858 }
4859 
4860 /*
4861  *  chip handler for TASKS recovery
4862  *
4863  *  We cannot safely abort a command, while the SCRIPTS
4864  *  processor is running, since we just would be in race
4865  *  with it.
4866  *
4867  *  As long as we have tasks to abort, we keep the SEM
4868  *  bit set in the ISTAT. When this bit is set, the
4869  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4870  *  each time it enters the scheduler.
4871  *
4872  *  If we have to reset a target, clear tasks of a unit,
4873  *  or to perform the abort of a disconnected job, we
4874  *  restart the SCRIPTS for selecting the target. Once
4875  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4876  *  If it loses arbitration, the SCRIPTS will interrupt again
4877  *  the next time it will enter its scheduler, and so on ...
4878  *
4879  *  On SIR_TARGET_SELECTED, we scan for the more
4880  *  appropriate thing to do:
4881  *
4882  *  - If nothing, we just sent a M_ABORT message to the
4883  *    target to get rid of the useless SCSI bus ownership.
4884  *    According to the specs, no tasks shall be affected.
4885  *  - If the target is to be reset, we send it a M_RESET
4886  *    message.
4887  *  - If a logical UNIT is to be cleared , we send the
4888  *    IDENTIFY(lun) + M_ABORT.
4889  *  - If an untagged task is to be aborted, we send the
4890  *    IDENTIFY(lun) + M_ABORT.
4891  *  - If a tagged task is to be aborted, we send the
4892  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4893  *
4894  *  Once our 'kiss of death' :) message has been accepted
4895  *  by the target, the SCRIPTS interrupts again
4896  *  (SIR_ABORT_SENT). On this interrupt, we complete
4897  *  all the CCBs that should have been aborted by the
4898  *  target according to our message.
4899  */
4900 static void sym_sir_task_recovery(hcb_p np, int num)
4901 {
4902 	SYM_QUEHEAD *qp;
4903 	ccb_p cp;
4904 	tcb_p tp;
4905 	int target=-1, lun=-1, task;
4906 	int i, k;
4907 
4908 	switch(num) {
4909 	/*
4910 	 *  The SCRIPTS processor stopped before starting
4911 	 *  the next command in order to allow us to perform
4912 	 *  some task recovery.
4913 	 */
4914 	case SIR_SCRIPT_STOPPED:
4915 		/*
4916 		 *  Do we have any target to reset or unit to clear ?
4917 		 */
4918 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4919 			tp = &np->target[i];
4920 			if (tp->to_reset ||
4921 			    (tp->lun0p && tp->lun0p->to_clear)) {
4922 				target = i;
4923 				break;
4924 			}
4925 			if (!tp->lunmp)
4926 				continue;
4927 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4928 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4929 					target	= i;
4930 					break;
4931 				}
4932 			}
4933 			if (target != -1)
4934 				break;
4935 		}
4936 
4937 		/*
4938 		 *  If not, walk the busy queue for any
4939 		 *  disconnected CCB to be aborted.
4940 		 */
4941 		if (target == -1) {
4942 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4943 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4944 				if (cp->host_status != HS_DISCONNECT)
4945 					continue;
4946 				if (cp->to_abort) {
4947 					target = cp->target;
4948 					break;
4949 				}
4950 			}
4951 		}
4952 
4953 		/*
4954 		 *  If some target is to be selected,
4955 		 *  prepare and start the selection.
4956 		 */
4957 		if (target != -1) {
4958 			tp = &np->target[target];
4959 			np->abrt_sel.sel_id	= target;
4960 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4961 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4962 			OUTL(nc_dsa, np->hcb_ba);
4963 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4964 			return;
4965 		}
4966 
4967 		/*
4968 		 *  Now look for a CCB to abort that haven't started yet.
4969 		 *  Btw, the SCRIPTS processor is still stopped, so
4970 		 *  we are not in race.
4971 		 */
4972 		i = 0;
4973 		cp = NULL;
4974 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4975 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4976 			if (cp->host_status != HS_BUSY &&
4977 			    cp->host_status != HS_NEGOTIATE)
4978 				continue;
4979 			if (!cp->to_abort)
4980 				continue;
4981 #ifdef SYM_CONF_IARB_SUPPORT
4982 			/*
4983 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4984 			 *    want to cancel the last queued CCB, since the
4985 			 *    SCRIPTS may have anticipated the selection.
4986 			 */
4987 			if (cp == np->last_cp) {
4988 				cp->to_abort = 0;
4989 				continue;
4990 			}
4991 #endif
4992 			i = 1;	/* Means we have found some */
4993 			break;
4994 		}
4995 		if (!i) {
4996 			/*
4997 			 *  We are done, so we donnot need
4998 			 *  to synchronize with the SCRIPTS anylonger.
4999 			 *  Remove the SEM flag from the ISTAT.
5000 			 */
5001 			np->istat_sem = 0;
5002 			OUTB (nc_istat, SIGP);
5003 			break;
5004 		}
5005 		/*
5006 		 *  Compute index of next position in the start
5007 		 *  queue the SCRIPTS intends to start and dequeue
5008 		 *  all CCBs for that device that haven't been started.
5009 		 */
5010 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5011 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5012 
5013 		/*
5014 		 *  Make sure at least our IO to abort has been dequeued.
5015 		 */
5016 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5017 
5018 		/*
5019 		 *  Keep track in cam status of the reason of the abort.
5020 		 */
5021 		if (cp->to_abort == 2)
5022 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5023 		else
5024 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5025 
5026 		/*
5027 		 *  Complete with error everything that we have dequeued.
5028 	 	 */
5029 		sym_flush_comp_queue(np, 0);
5030 		break;
5031 	/*
5032 	 *  The SCRIPTS processor has selected a target
5033 	 *  we may have some manual recovery to perform for.
5034 	 */
5035 	case SIR_TARGET_SELECTED:
5036 		target = (INB (nc_sdid) & 0xf);
5037 		tp = &np->target[target];
5038 
5039 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5040 
5041 		/*
5042 		 *  If the target is to be reset, prepare a
5043 		 *  M_RESET message and clear the to_reset flag
5044 		 *  since we donnot expect this operation to fail.
5045 		 */
5046 		if (tp->to_reset) {
5047 			np->abrt_msg[0] = M_RESET;
5048 			np->abrt_tbl.size = 1;
5049 			tp->to_reset = 0;
5050 			break;
5051 		}
5052 
5053 		/*
5054 		 *  Otherwise, look for some logical unit to be cleared.
5055 		 */
5056 		if (tp->lun0p && tp->lun0p->to_clear)
5057 			lun = 0;
5058 		else if (tp->lunmp) {
5059 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5060 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5061 					lun = k;
5062 					break;
5063 				}
5064 			}
5065 		}
5066 
5067 		/*
5068 		 *  If a logical unit is to be cleared, prepare
5069 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5070 		 */
5071 		if (lun != -1) {
5072 			lcb_p lp = sym_lp(tp, lun);
5073 			lp->to_clear = 0; /* We donnot expect to fail here */
5074 			np->abrt_msg[0] = M_IDENTIFY | lun;
5075 			np->abrt_msg[1] = M_ABORT;
5076 			np->abrt_tbl.size = 2;
5077 			break;
5078 		}
5079 
5080 		/*
5081 		 *  Otherwise, look for some disconnected job to
5082 		 *  abort for this target.
5083 		 */
5084 		i = 0;
5085 		cp = NULL;
5086 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5087 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5088 			if (cp->host_status != HS_DISCONNECT)
5089 				continue;
5090 			if (cp->target != target)
5091 				continue;
5092 			if (!cp->to_abort)
5093 				continue;
5094 			i = 1;	/* Means we have some */
5095 			break;
5096 		}
5097 
5098 		/*
5099 		 *  If we have none, probably since the device has
5100 		 *  completed the command before we won abitration,
5101 		 *  send a M_ABORT message without IDENTIFY.
5102 		 *  According to the specs, the device must just
5103 		 *  disconnect the BUS and not abort any task.
5104 		 */
5105 		if (!i) {
5106 			np->abrt_msg[0] = M_ABORT;
5107 			np->abrt_tbl.size = 1;
5108 			break;
5109 		}
5110 
5111 		/*
5112 		 *  We have some task to abort.
5113 		 *  Set the IDENTIFY(lun)
5114 		 */
5115 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5116 
5117 		/*
5118 		 *  If we want to abort an untagged command, we
5119 		 *  will send an IDENTIFY + M_ABORT.
5120 		 *  Otherwise (tagged command), we will send
5121 		 *  an IDENTIFY + task attributes + ABORT TAG.
5122 		 */
5123 		if (cp->tag == NO_TAG) {
5124 			np->abrt_msg[1] = M_ABORT;
5125 			np->abrt_tbl.size = 2;
5126 		}
5127 		else {
5128 			np->abrt_msg[1] = cp->scsi_smsg[1];
5129 			np->abrt_msg[2] = cp->scsi_smsg[2];
5130 			np->abrt_msg[3] = M_ABORT_TAG;
5131 			np->abrt_tbl.size = 4;
5132 		}
5133 		/*
5134 		 *  Keep track of software timeout condition, since the
5135 		 *  peripheral driver may not count retries on abort
5136 		 *  conditions not due to timeout.
5137 		 */
5138 		if (cp->to_abort == 2)
5139 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5140 		cp->to_abort = 0; /* We donnot expect to fail here */
5141 		break;
5142 
5143 	/*
5144 	 *  The target has accepted our message and switched
5145 	 *  to BUS FREE phase as we expected.
5146 	 */
5147 	case SIR_ABORT_SENT:
5148 		target = (INB (nc_sdid) & 0xf);
5149 		tp = &np->target[target];
5150 
5151 		/*
5152 		**  If we didn't abort anything, leave here.
5153 		*/
5154 		if (np->abrt_msg[0] == M_ABORT)
5155 			break;
5156 
5157 		/*
5158 		 *  If we sent a M_RESET, then a hardware reset has
5159 		 *  been performed by the target.
5160 		 *  - Reset everything to async 8 bit
5161 		 *  - Tell ourself to negotiate next time :-)
5162 		 *  - Prepare to clear all disconnected CCBs for
5163 		 *    this target from our task list (lun=task=-1)
5164 		 */
5165 		lun = -1;
5166 		task = -1;
5167 		if (np->abrt_msg[0] == M_RESET) {
5168 			tp->head.sval = 0;
5169 			tp->head.wval = np->rv_scntl3;
5170 			tp->head.uval = 0;
5171 			tp->tinfo.current.period = 0;
5172 			tp->tinfo.current.offset = 0;
5173 			tp->tinfo.current.width  = BUS_8_BIT;
5174 			tp->tinfo.current.options = 0;
5175 		}
5176 
5177 		/*
5178 		 *  Otherwise, check for the LUN and TASK(s)
5179 		 *  concerned by the cancellation.
5180 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5181 		 *  or an ABORT message :-)
5182 		 */
5183 		else {
5184 			lun = np->abrt_msg[0] & 0x3f;
5185 			if (np->abrt_msg[1] == M_ABORT_TAG)
5186 				task = np->abrt_msg[2];
5187 		}
5188 
5189 		/*
5190 		 *  Complete all the CCBs the device should have
5191 		 *  aborted due to our 'kiss of death' message.
5192 		 */
5193 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5194 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5195 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5196 		sym_flush_comp_queue(np, 0);
5197 
5198 		/*
5199 		 *  If we sent a BDR, make uper layer aware of that.
5200 		 */
5201 		if (np->abrt_msg[0] == M_RESET)
5202 			xpt_async(AC_SENT_BDR, np->path, NULL);
5203 		break;
5204 	}
5205 
5206 	/*
5207 	 *  Print to the log the message we intend to send.
5208 	 */
5209 	if (num == SIR_TARGET_SELECTED) {
5210 		PRINT_TARGET(np, target);
5211 		sym_printl_hex("control msgout:", np->abrt_msg,
5212 			      np->abrt_tbl.size);
5213 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5214 	}
5215 
5216 	/*
5217 	 *  Let the SCRIPTS processor continue.
5218 	 */
5219 	OUTONB_STD ();
5220 }
5221 
5222 /*
5223  *  Gerard's alchemy:) that deals with with the data
5224  *  pointer for both MDP and the residual calculation.
5225  *
5226  *  I didn't want to bloat the code by more than 200
5227  *  lignes for the handling of both MDP and the residual.
5228  *  This has been achieved by using a data pointer
5229  *  representation consisting in an index in the data
5230  *  array (dp_sg) and a negative offset (dp_ofs) that
5231  *  have the following meaning:
5232  *
5233  *  - dp_sg = SYM_CONF_MAX_SG
5234  *    we are at the end of the data script.
5235  *  - dp_sg < SYM_CONF_MAX_SG
5236  *    dp_sg points to the next entry of the scatter array
5237  *    we want to transfer.
5238  *  - dp_ofs < 0
5239  *    dp_ofs represents the residual of bytes of the
5240  *    previous entry scatter entry we will send first.
5241  *  - dp_ofs = 0
5242  *    no residual to send first.
5243  *
5244  *  The function sym_evaluate_dp() accepts an arbitray
5245  *  offset (basically from the MDP message) and returns
5246  *  the corresponding values of dp_sg and dp_ofs.
5247  */
5248 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5249 {
5250 	u32	dp_scr;
5251 	int	dp_ofs, dp_sg, dp_sgmin;
5252 	int	tmp;
5253 	struct sym_pmc *pm;
5254 
5255 	/*
5256 	 *  Compute the resulted data pointer in term of a script
5257 	 *  address within some DATA script and a signed byte offset.
5258 	 */
5259 	dp_scr = scr;
5260 	dp_ofs = *ofs;
5261 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5262 		pm = &cp->phys.pm0;
5263 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5264 		pm = &cp->phys.pm1;
5265 	else
5266 		pm = NULL;
5267 
5268 	if (pm) {
5269 		dp_scr  = scr_to_cpu(pm->ret);
5270 		dp_ofs -= scr_to_cpu(pm->sg.size);
5271 	}
5272 
5273 	/*
5274 	 *  If we are auto-sensing, then we are done.
5275 	 */
5276 	if (cp->host_flags & HF_SENSE) {
5277 		*ofs = dp_ofs;
5278 		return 0;
5279 	}
5280 
5281 	/*
5282 	 *  Deduce the index of the sg entry.
5283 	 *  Keep track of the index of the first valid entry.
5284 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5285 	 *  end of the data.
5286 	 */
5287 	tmp = scr_to_cpu(cp->phys.head.goalp);
5288 	dp_sg = SYM_CONF_MAX_SG;
5289 	if (dp_scr != tmp)
5290 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5291 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5292 
5293 	/*
5294 	 *  Move to the sg entry the data pointer belongs to.
5295 	 *
5296 	 *  If we are inside the data area, we expect result to be:
5297 	 *
5298 	 *  Either,
5299 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5300 	 *      the data pointer belongs to (or the end of the data)
5301 	 *  Or,
5302 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5303 	 *      the data pointer belongs to + 1.
5304 	 */
5305 	if (dp_ofs < 0) {
5306 		int n;
5307 		while (dp_sg > dp_sgmin) {
5308 			--dp_sg;
5309 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5310 			n = dp_ofs + (tmp & 0xffffff);
5311 			if (n > 0) {
5312 				++dp_sg;
5313 				break;
5314 			}
5315 			dp_ofs = n;
5316 		}
5317 	}
5318 	else if (dp_ofs > 0) {
5319 		while (dp_sg < SYM_CONF_MAX_SG) {
5320 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5321 			dp_ofs -= (tmp & 0xffffff);
5322 			++dp_sg;
5323 			if (dp_ofs <= 0)
5324 				break;
5325 		}
5326 	}
5327 
5328 	/*
5329 	 *  Make sure the data pointer is inside the data area.
5330 	 *  If not, return some error.
5331 	 */
5332 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5333 		goto out_err;
5334 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5335 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5336 		goto out_err;
5337 
5338 	/*
5339 	 *  Save the extreme pointer if needed.
5340 	 */
5341 	if (dp_sg > cp->ext_sg ||
5342             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5343 		cp->ext_sg  = dp_sg;
5344 		cp->ext_ofs = dp_ofs;
5345 	}
5346 
5347 	/*
5348 	 *  Return data.
5349 	 */
5350 	*ofs = dp_ofs;
5351 	return dp_sg;
5352 
5353 out_err:
5354 	return -1;
5355 }
5356 
5357 /*
5358  *  chip handler for MODIFY DATA POINTER MESSAGE
5359  *
5360  *  We also call this function on IGNORE WIDE RESIDUE
5361  *  messages that do not match a SWIDE full condition.
5362  *  Btw, we assume in that situation that such a message
5363  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5364  */
5365 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5366 {
5367 	int dp_ofs	= ofs;
5368 	u32	dp_scr	= INL (nc_temp);
5369 	u32	dp_ret;
5370 	u32	tmp;
5371 	u_char	hflags;
5372 	int	dp_sg;
5373 	struct	sym_pmc *pm;
5374 
5375 	/*
5376 	 *  Not supported for auto-sense.
5377 	 */
5378 	if (cp->host_flags & HF_SENSE)
5379 		goto out_reject;
5380 
5381 	/*
5382 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5383 	 *  to the resulted data pointer.
5384 	 */
5385 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5386 	if (dp_sg < 0)
5387 		goto out_reject;
5388 
5389 	/*
5390 	 *  And our alchemy:) allows to easily calculate the data
5391 	 *  script address we want to return for the next data phase.
5392 	 */
5393 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5394 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5395 
5396 	/*
5397 	 *  If offset / scatter entry is zero we donnot need
5398 	 *  a context for the new current data pointer.
5399 	 */
5400 	if (dp_ofs == 0) {
5401 		dp_scr = dp_ret;
5402 		goto out_ok;
5403 	}
5404 
5405 	/*
5406 	 *  Get a context for the new current data pointer.
5407 	 */
5408 	hflags = INB (HF_PRT);
5409 
5410 	if (hflags & HF_DP_SAVED)
5411 		hflags ^= HF_ACT_PM;
5412 
5413 	if (!(hflags & HF_ACT_PM)) {
5414 		pm  = &cp->phys.pm0;
5415 		dp_scr = SCRIPTA_BA (np, pm0_data);
5416 	}
5417 	else {
5418 		pm = &cp->phys.pm1;
5419 		dp_scr = SCRIPTA_BA (np, pm1_data);
5420 	}
5421 
5422 	hflags &= ~(HF_DP_SAVED);
5423 
5424 	OUTB (HF_PRT, hflags);
5425 
5426 	/*
5427 	 *  Set up the new current data pointer.
5428 	 *  ofs < 0 there, and for the next data phase, we
5429 	 *  want to transfer part of the data of the sg entry
5430 	 *  corresponding to index dp_sg-1 prior to returning
5431 	 *  to the main data script.
5432 	 */
5433 	pm->ret = cpu_to_scr(dp_ret);
5434 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5435 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5436 	pm->sg.addr = cpu_to_scr(tmp);
5437 	pm->sg.size = cpu_to_scr(-dp_ofs);
5438 
5439 out_ok:
5440 	OUTL (nc_temp, dp_scr);
5441 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5442 	return;
5443 
5444 out_reject:
5445 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5446 }
5447 
5448 /*
5449  *  chip calculation of the data residual.
5450  *
5451  *  As I used to say, the requirement of data residual
5452  *  in SCSI is broken, useless and cannot be achieved
5453  *  without huge complexity.
5454  *  But most OSes and even the official CAM require it.
5455  *  When stupidity happens to be so widely spread inside
5456  *  a community, it gets hard to convince.
5457  *
5458  *  Anyway, I don't care, since I am not going to use
5459  *  any software that considers this data residual as
5460  *  a relevant information. :)
5461  */
5462 static int sym_compute_residual(hcb_p np, ccb_p cp)
5463 {
5464 	int dp_sg, resid = 0;
5465 	int dp_ofs = 0;
5466 
5467 	/*
5468 	 *  Check for some data lost or just thrown away.
5469 	 *  We are not required to be quite accurate in this
5470 	 *  situation. Btw, if we are odd for output and the
5471 	 *  device claims some more data, it may well happen
5472 	 *  than our residual be zero. :-)
5473 	 */
5474 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5475 		if (cp->xerr_status & XE_EXTRA_DATA)
5476 			resid -= cp->extra_bytes;
5477 		if (cp->xerr_status & XE_SODL_UNRUN)
5478 			++resid;
5479 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5480 			--resid;
5481 	}
5482 
5483 	/*
5484 	 *  If all data has been transferred,
5485 	 *  there is no residual.
5486 	 */
5487 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5488 		return resid;
5489 
5490 	/*
5491 	 *  If no data transfer occurs, or if the data
5492 	 *  pointer is weird, return full residual.
5493 	 */
5494 	if (cp->startp == cp->phys.head.lastp ||
5495 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5496 			    &dp_ofs) < 0) {
5497 		return cp->data_len;
5498 	}
5499 
5500 	/*
5501 	 *  If we were auto-sensing, then we are done.
5502 	 */
5503 	if (cp->host_flags & HF_SENSE) {
5504 		return -dp_ofs;
5505 	}
5506 
5507 	/*
5508 	 *  We are now full comfortable in the computation
5509 	 *  of the data residual (2's complement).
5510 	 */
5511 	resid = -cp->ext_ofs;
5512 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5513 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5514 		resid += (tmp & 0xffffff);
5515 	}
5516 
5517 	/*
5518 	 *  Hopefully, the result is not too wrong.
5519 	 */
5520 	return resid;
5521 }
5522 
5523 /*
5524  *  Print out the content of a SCSI message.
5525  */
5526 static int sym_show_msg (u_char * msg)
5527 {
5528 	u_char i;
5529 	printf ("%x",*msg);
5530 	if (*msg==M_EXTENDED) {
5531 		for (i=1;i<8;i++) {
5532 			if (i-1>msg[1]) break;
5533 			printf ("-%x",msg[i]);
5534 		}
5535 		return (i+1);
5536 	} else if ((*msg & 0xf0) == 0x20) {
5537 		printf ("-%x",msg[1]);
5538 		return (2);
5539 	}
5540 	return (1);
5541 }
5542 
5543 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5544 {
5545 	PRINT_ADDR(cp);
5546 	if (label)
5547 		printf ("%s: ", label);
5548 
5549 	(void) sym_show_msg (msg);
5550 	printf (".\n");
5551 }
5552 
5553 /*
5554  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5555  *
5556  *  When we try to negotiate, we append the negotiation message
5557  *  to the identify and (maybe) simple tag message.
5558  *  The host status field is set to HS_NEGOTIATE to mark this
5559  *  situation.
5560  *
5561  *  If the target doesn't answer this message immediately
5562  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5563  *  will be raised eventually.
5564  *  The handler removes the HS_NEGOTIATE status, and sets the
5565  *  negotiated value to the default (async / nowide).
5566  *
5567  *  If we receive a matching answer immediately, we check it
5568  *  for validity, and set the values.
5569  *
5570  *  If we receive a Reject message immediately, we assume the
5571  *  negotiation has failed, and fall back to standard values.
5572  *
5573  *  If we receive a negotiation message while not in HS_NEGOTIATE
5574  *  state, it's a target initiated negotiation. We prepare a
5575  *  (hopefully) valid answer, set our parameters, and send back
5576  *  this answer to the target.
5577  *
5578  *  If the target doesn't fetch the answer (no message out phase),
5579  *  we assume the negotiation has failed, and fall back to default
5580  *  settings (SIR_NEGO_PROTO interrupt).
5581  *
5582  *  When we set the values, we adjust them in all ccbs belonging
5583  *  to this target, in the controller's register, and in the "phys"
5584  *  field of the controller's struct sym_hcb.
5585  */
5586 
5587 /*
5588  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5589  */
5590 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5591 {
5592 	u_char	chg, ofs, per, fak, div;
5593 	int	req = 1;
5594 
5595 	/*
5596 	 *  Synchronous request message received.
5597 	 */
5598 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5599 		sym_print_msg(cp, "sync msgin", np->msgin);
5600 	}
5601 
5602 	/*
5603 	 * request or answer ?
5604 	 */
5605 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5606 		OUTB (HS_PRT, HS_BUSY);
5607 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5608 			goto reject_it;
5609 		req = 0;
5610 	}
5611 
5612 	/*
5613 	 *  get requested values.
5614 	 */
5615 	chg = 0;
5616 	per = np->msgin[3];
5617 	ofs = np->msgin[4];
5618 
5619 	/*
5620 	 *  check values against our limits.
5621 	 */
5622 	if (ofs) {
5623 		if (ofs > np->maxoffs)
5624 			{chg = 1; ofs = np->maxoffs;}
5625 		if (req) {
5626 			if (ofs > tp->tinfo.user.offset)
5627 				{chg = 1; ofs = tp->tinfo.user.offset;}
5628 		}
5629 	}
5630 
5631 	if (ofs) {
5632 		if (per < np->minsync)
5633 			{chg = 1; per = np->minsync;}
5634 		if (req) {
5635 			if (per < tp->tinfo.user.period)
5636 				{chg = 1; per = tp->tinfo.user.period;}
5637 		}
5638 	}
5639 
5640 	div = fak = 0;
5641 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5642 		goto reject_it;
5643 
5644 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5645 		PRINT_ADDR(cp);
5646 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5647 			ofs, per, div, fak, chg);
5648 	}
5649 
5650 	/*
5651 	 *  This was an answer message
5652 	 */
5653 	if (req == 0) {
5654 		if (chg) 	/* Answer wasn't acceptable. */
5655 			goto reject_it;
5656 		sym_setsync (np, cp, ofs, per, div, fak);
5657 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5658 		return;
5659 	}
5660 
5661 	/*
5662 	 *  It was a request. Set value and
5663 	 *  prepare an answer message
5664 	 */
5665 	sym_setsync (np, cp, ofs, per, div, fak);
5666 
5667 	np->msgout[0] = M_EXTENDED;
5668 	np->msgout[1] = 3;
5669 	np->msgout[2] = M_X_SYNC_REQ;
5670 	np->msgout[3] = per;
5671 	np->msgout[4] = ofs;
5672 
5673 	cp->nego_status = NS_SYNC;
5674 
5675 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5676 		sym_print_msg(cp, "sync msgout", np->msgout);
5677 	}
5678 
5679 	np->msgin [0] = M_NOOP;
5680 
5681 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5682 	return;
5683 reject_it:
5684 	sym_setsync (np, cp, 0, 0, 0, 0);
5685 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5686 }
5687 
5688 /*
5689  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5690  */
5691 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5692 {
5693 	u_char	chg, ofs, per, fak, dt, div, wide;
5694 	int	req = 1;
5695 
5696 	/*
5697 	 * Synchronous request message received.
5698 	 */
5699 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5700 		sym_print_msg(cp, "ppr msgin", np->msgin);
5701 	}
5702 
5703 	/*
5704 	 *  get requested values.
5705 	 */
5706 	chg  = 0;
5707 	per  = np->msgin[3];
5708 	ofs  = np->msgin[5];
5709 	wide = np->msgin[6];
5710 	dt   = np->msgin[7] & PPR_OPT_DT;
5711 
5712 	/*
5713 	 * request or answer ?
5714 	 */
5715 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5716 		OUTB (HS_PRT, HS_BUSY);
5717 		if (cp->nego_status && cp->nego_status != NS_PPR)
5718 			goto reject_it;
5719 		req = 0;
5720 	}
5721 
5722 	/*
5723 	 *  check values against our limits.
5724 	 */
5725 	if (wide > np->maxwide)
5726 		{chg = 1; wide = np->maxwide;}
5727 	if (!wide || !(np->features & FE_ULTRA3))
5728 		dt &= ~PPR_OPT_DT;
5729 	if (req) {
5730 		if (wide > tp->tinfo.user.width)
5731 			{chg = 1; wide = tp->tinfo.user.width;}
5732 	}
5733 
5734 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5735 		dt &= ~PPR_OPT_DT;
5736 
5737 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5738 
5739 	if (ofs) {
5740 		if (dt) {
5741 			if (ofs > np->maxoffs_dt)
5742 				{chg = 1; ofs = np->maxoffs_dt;}
5743 		}
5744 		else if (ofs > np->maxoffs)
5745 			{chg = 1; ofs = np->maxoffs;}
5746 		if (req) {
5747 			if (ofs > tp->tinfo.user.offset)
5748 				{chg = 1; ofs = tp->tinfo.user.offset;}
5749 		}
5750 	}
5751 
5752 	if (ofs) {
5753 		if (dt) {
5754 			if (per < np->minsync_dt)
5755 				{chg = 1; per = np->minsync_dt;}
5756 		}
5757 		else if (per < np->minsync)
5758 			{chg = 1; per = np->minsync;}
5759 		if (req) {
5760 			if (per < tp->tinfo.user.period)
5761 				{chg = 1; per = tp->tinfo.user.period;}
5762 		}
5763 	}
5764 
5765 	div = fak = 0;
5766 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5767 		goto reject_it;
5768 
5769 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5770 		PRINT_ADDR(cp);
5771 		printf ("ppr: "
5772 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5773 			dt, ofs, per, wide, div, fak, chg);
5774 	}
5775 
5776 	/*
5777 	 *  It was an answer.
5778 	 */
5779 	if (req == 0) {
5780 		if (chg) 	/* Answer wasn't acceptable */
5781 			goto reject_it;
5782 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5783 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5784 		return;
5785 	}
5786 
5787 	/*
5788 	 *  It was a request. Set value and
5789 	 *  prepare an answer message
5790 	 */
5791 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5792 
5793 	np->msgout[0] = M_EXTENDED;
5794 	np->msgout[1] = 6;
5795 	np->msgout[2] = M_X_PPR_REQ;
5796 	np->msgout[3] = per;
5797 	np->msgout[4] = 0;
5798 	np->msgout[5] = ofs;
5799 	np->msgout[6] = wide;
5800 	np->msgout[7] = dt;
5801 
5802 	cp->nego_status = NS_PPR;
5803 
5804 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5805 		sym_print_msg(cp, "ppr msgout", np->msgout);
5806 	}
5807 
5808 	np->msgin [0] = M_NOOP;
5809 
5810 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5811 	return;
5812 reject_it:
5813 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5814 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5815 	/*
5816 	 *  If it was a device response that should result in
5817 	 *  ST, we may want to try a legacy negotiation later.
5818 	 */
5819 	if (!req && !dt) {
5820 		tp->tinfo.goal.options = 0;
5821 		tp->tinfo.goal.width   = wide;
5822 		tp->tinfo.goal.period  = per;
5823 		tp->tinfo.goal.offset  = ofs;
5824 	}
5825 }
5826 
5827 /*
5828  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5829  */
5830 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5831 {
5832 	u_char	chg, wide;
5833 	int	req = 1;
5834 
5835 	/*
5836 	 *  Wide request message received.
5837 	 */
5838 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5839 		sym_print_msg(cp, "wide msgin", np->msgin);
5840 	}
5841 
5842 	/*
5843 	 * Is it a request from the device?
5844 	 */
5845 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5846 		OUTB (HS_PRT, HS_BUSY);
5847 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5848 			goto reject_it;
5849 		req = 0;
5850 	}
5851 
5852 	/*
5853 	 *  get requested values.
5854 	 */
5855 	chg  = 0;
5856 	wide = np->msgin[3];
5857 
5858 	/*
5859 	 *  check values against driver limits.
5860 	 */
5861 	if (wide > np->maxwide)
5862 		{chg = 1; wide = np->maxwide;}
5863 	if (req) {
5864 		if (wide > tp->tinfo.user.width)
5865 			{chg = 1; wide = tp->tinfo.user.width;}
5866 	}
5867 
5868 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5869 		PRINT_ADDR(cp);
5870 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5871 	}
5872 
5873 	/*
5874 	 * This was an answer message
5875 	 */
5876 	if (req == 0) {
5877 		if (chg)	/*  Answer wasn't acceptable. */
5878 			goto reject_it;
5879 		sym_setwide (np, cp, wide);
5880 
5881 		/*
5882 		 * Negotiate for SYNC immediately after WIDE response.
5883 		 * This allows to negotiate for both WIDE and SYNC on
5884 		 * a single SCSI command (Suggested by Justin Gibbs).
5885 		 */
5886 		if (tp->tinfo.goal.offset) {
5887 			np->msgout[0] = M_EXTENDED;
5888 			np->msgout[1] = 3;
5889 			np->msgout[2] = M_X_SYNC_REQ;
5890 			np->msgout[3] = tp->tinfo.goal.period;
5891 			np->msgout[4] = tp->tinfo.goal.offset;
5892 
5893 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5894 				sym_print_msg(cp, "sync msgout", np->msgout);
5895 			}
5896 
5897 			cp->nego_status = NS_SYNC;
5898 			OUTB (HS_PRT, HS_NEGOTIATE);
5899 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5900 			return;
5901 		}
5902 
5903 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5904 		return;
5905 	}
5906 
5907 	/*
5908 	 *  It was a request, set value and
5909 	 *  prepare an answer message
5910 	 */
5911 	sym_setwide (np, cp, wide);
5912 
5913 	np->msgout[0] = M_EXTENDED;
5914 	np->msgout[1] = 2;
5915 	np->msgout[2] = M_X_WIDE_REQ;
5916 	np->msgout[3] = wide;
5917 
5918 	np->msgin [0] = M_NOOP;
5919 
5920 	cp->nego_status = NS_WIDE;
5921 
5922 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5923 		sym_print_msg(cp, "wide msgout", np->msgout);
5924 	}
5925 
5926 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5927 	return;
5928 reject_it:
5929 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5930 }
5931 
5932 /*
5933  *  Reset SYNC or WIDE to default settings.
5934  *
5935  *  Called when a negotiation does not succeed either
5936  *  on rejection or on protocol error.
5937  *
5938  *  If it was a PPR that made problems, we may want to
5939  *  try a legacy negotiation later.
5940  */
5941 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5942 {
5943 	/*
5944 	 *  any error in negotiation:
5945 	 *  fall back to default mode.
5946 	 */
5947 	switch (cp->nego_status) {
5948 	case NS_PPR:
5949 #if 0
5950 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5951 #else
5952 		tp->tinfo.goal.options = 0;
5953 		if (tp->tinfo.goal.period < np->minsync)
5954 			tp->tinfo.goal.period = np->minsync;
5955 		if (tp->tinfo.goal.offset > np->maxoffs)
5956 			tp->tinfo.goal.offset = np->maxoffs;
5957 #endif
5958 		break;
5959 	case NS_SYNC:
5960 		sym_setsync (np, cp, 0, 0, 0, 0);
5961 		break;
5962 	case NS_WIDE:
5963 		sym_setwide (np, cp, 0);
5964 		break;
5965 	}
5966 	np->msgin [0] = M_NOOP;
5967 	np->msgout[0] = M_NOOP;
5968 	cp->nego_status = 0;
5969 }
5970 
5971 /*
5972  *  chip handler for MESSAGE REJECT received in response to
5973  *  a WIDE or SYNCHRONOUS negotiation.
5974  */
5975 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5976 {
5977 	sym_nego_default(np, tp, cp);
5978 	OUTB (HS_PRT, HS_BUSY);
5979 }
5980 
5981 /*
5982  *  chip exception handler for programmed interrupts.
5983  */
5984 static void sym_int_sir (hcb_p np)
5985 {
5986 	u_char	num	= INB (nc_dsps);
5987 	u32	dsa	= INL (nc_dsa);
5988 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
5989 	u_char	target	= INB (nc_sdid) & 0x0f;
5990 	tcb_p	tp	= &np->target[target];
5991 	int	tmp;
5992 
5993 	SYM_LOCK_ASSERT(MA_OWNED);
5994 
5995 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
5996 
5997 	switch (num) {
5998 	/*
5999 	 *  Command has been completed with error condition
6000 	 *  or has been auto-sensed.
6001 	 */
6002 	case SIR_COMPLETE_ERROR:
6003 		if (!cp)
6004 			goto out;
6005 		sym_complete_error(np, cp);
6006 		return;
6007 	/*
6008 	 *  The C code is currently trying to recover from something.
6009 	 *  Typically, user want to abort some command.
6010 	 */
6011 	case SIR_SCRIPT_STOPPED:
6012 	case SIR_TARGET_SELECTED:
6013 	case SIR_ABORT_SENT:
6014 		sym_sir_task_recovery(np, num);
6015 		return;
6016 	/*
6017 	 *  The device didn't go to MSG OUT phase after having
6018 	 *  been selected with ATN. We donnot want to handle
6019 	 *  that.
6020 	 */
6021 	case SIR_SEL_ATN_NO_MSG_OUT:
6022 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6023 			sym_name (np), target);
6024 		goto out_stuck;
6025 	/*
6026 	 *  The device didn't switch to MSG IN phase after
6027 	 *  having reseleted the initiator.
6028 	 */
6029 	case SIR_RESEL_NO_MSG_IN:
6030 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6031 			sym_name (np), target);
6032 		goto out_stuck;
6033 	/*
6034 	 *  After reselection, the device sent a message that wasn't
6035 	 *  an IDENTIFY.
6036 	 */
6037 	case SIR_RESEL_NO_IDENTIFY:
6038 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6039 			sym_name (np), target);
6040 		goto out_stuck;
6041 	/*
6042 	 *  The device reselected a LUN we donnot know about.
6043 	 */
6044 	case SIR_RESEL_BAD_LUN:
6045 		np->msgout[0] = M_RESET;
6046 		goto out;
6047 	/*
6048 	 *  The device reselected for an untagged nexus and we
6049 	 *  haven't any.
6050 	 */
6051 	case SIR_RESEL_BAD_I_T_L:
6052 		np->msgout[0] = M_ABORT;
6053 		goto out;
6054 	/*
6055 	 *  The device reselected for a tagged nexus that we donnot
6056 	 *  have.
6057 	 */
6058 	case SIR_RESEL_BAD_I_T_L_Q:
6059 		np->msgout[0] = M_ABORT_TAG;
6060 		goto out;
6061 	/*
6062 	 *  The SCRIPTS let us know that the device has grabbed
6063 	 *  our message and will abort the job.
6064 	 */
6065 	case SIR_RESEL_ABORTED:
6066 		np->lastmsg = np->msgout[0];
6067 		np->msgout[0] = M_NOOP;
6068 		printf ("%s:%d: message %x sent on bad reselection.\n",
6069 			sym_name (np), target, np->lastmsg);
6070 		goto out;
6071 	/*
6072 	 *  The SCRIPTS let us know that a message has been
6073 	 *  successfully sent to the device.
6074 	 */
6075 	case SIR_MSG_OUT_DONE:
6076 		np->lastmsg = np->msgout[0];
6077 		np->msgout[0] = M_NOOP;
6078 		/* Should we really care of that */
6079 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6080 			if (cp) {
6081 				cp->xerr_status &= ~XE_PARITY_ERR;
6082 				if (!cp->xerr_status)
6083 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6084 			}
6085 		}
6086 		goto out;
6087 	/*
6088 	 *  The device didn't send a GOOD SCSI status.
6089 	 *  We may have some work to do prior to allow
6090 	 *  the SCRIPTS processor to continue.
6091 	 */
6092 	case SIR_BAD_SCSI_STATUS:
6093 		if (!cp)
6094 			goto out;
6095 		sym_sir_bad_scsi_status(np, cp);
6096 		return;
6097 	/*
6098 	 *  We are asked by the SCRIPTS to prepare a
6099 	 *  REJECT message.
6100 	 */
6101 	case SIR_REJECT_TO_SEND:
6102 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6103 		np->msgout[0] = M_REJECT;
6104 		goto out;
6105 	/*
6106 	 *  We have been ODD at the end of a DATA IN
6107 	 *  transfer and the device didn't send a
6108 	 *  IGNORE WIDE RESIDUE message.
6109 	 *  It is a data overrun condition.
6110 	 */
6111 	case SIR_SWIDE_OVERRUN:
6112 		if (cp) {
6113 			OUTONB (HF_PRT, HF_EXT_ERR);
6114 			cp->xerr_status |= XE_SWIDE_OVRUN;
6115 		}
6116 		goto out;
6117 	/*
6118 	 *  We have been ODD at the end of a DATA OUT
6119 	 *  transfer.
6120 	 *  It is a data underrun condition.
6121 	 */
6122 	case SIR_SODL_UNDERRUN:
6123 		if (cp) {
6124 			OUTONB (HF_PRT, HF_EXT_ERR);
6125 			cp->xerr_status |= XE_SODL_UNRUN;
6126 		}
6127 		goto out;
6128 	/*
6129 	 *  The device wants us to transfer more data than
6130 	 *  expected or in the wrong direction.
6131 	 *  The number of extra bytes is in scratcha.
6132 	 *  It is a data overrun condition.
6133 	 */
6134 	case SIR_DATA_OVERRUN:
6135 		if (cp) {
6136 			OUTONB (HF_PRT, HF_EXT_ERR);
6137 			cp->xerr_status |= XE_EXTRA_DATA;
6138 			cp->extra_bytes += INL (nc_scratcha);
6139 		}
6140 		goto out;
6141 	/*
6142 	 *  The device switched to an illegal phase (4/5).
6143 	 */
6144 	case SIR_BAD_PHASE:
6145 		if (cp) {
6146 			OUTONB (HF_PRT, HF_EXT_ERR);
6147 			cp->xerr_status |= XE_BAD_PHASE;
6148 		}
6149 		goto out;
6150 	/*
6151 	 *  We received a message.
6152 	 */
6153 	case SIR_MSG_RECEIVED:
6154 		if (!cp)
6155 			goto out_stuck;
6156 		switch (np->msgin [0]) {
6157 		/*
6158 		 *  We received an extended message.
6159 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6160 		 *  and reject all other extended messages.
6161 		 */
6162 		case M_EXTENDED:
6163 			switch (np->msgin [2]) {
6164 			case M_X_MODIFY_DP:
6165 				if (DEBUG_FLAGS & DEBUG_POINTER)
6166 					sym_print_msg(cp,"modify DP",np->msgin);
6167 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6168 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6169 				sym_modify_dp(np, cp, tmp);
6170 				return;
6171 			case M_X_SYNC_REQ:
6172 				sym_sync_nego(np, tp, cp);
6173 				return;
6174 			case M_X_PPR_REQ:
6175 				sym_ppr_nego(np, tp, cp);
6176 				return;
6177 			case M_X_WIDE_REQ:
6178 				sym_wide_nego(np, tp, cp);
6179 				return;
6180 			default:
6181 				goto out_reject;
6182 			}
6183 			break;
6184 		/*
6185 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6186 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6187 		 *  RESIDUE messages that haven't been anticipated by
6188 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6189 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6190 		 */
6191 		case M_IGN_RESIDUE:
6192 			if (DEBUG_FLAGS & DEBUG_POINTER)
6193 				sym_print_msg(cp,"ign wide residue", np->msgin);
6194 			sym_modify_dp(np, cp, -1);
6195 			return;
6196 		case M_REJECT:
6197 			if (INB (HS_PRT) == HS_NEGOTIATE)
6198 				sym_nego_rejected(np, tp, cp);
6199 			else {
6200 				PRINT_ADDR(cp);
6201 				printf ("M_REJECT received (%x:%x).\n",
6202 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6203 			}
6204 			goto out_clrack;
6205 			break;
6206 		default:
6207 			goto out_reject;
6208 		}
6209 		break;
6210 	/*
6211 	 *  We received an unknown message.
6212 	 *  Ignore all MSG IN phases and reject it.
6213 	 */
6214 	case SIR_MSG_WEIRD:
6215 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6216 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6217 		return;
6218 	/*
6219 	 *  Negotiation failed.
6220 	 *  Target does not send us the reply.
6221 	 *  Remove the HS_NEGOTIATE status.
6222 	 */
6223 	case SIR_NEGO_FAILED:
6224 		OUTB (HS_PRT, HS_BUSY);
6225 	/*
6226 	 *  Negotiation failed.
6227 	 *  Target does not want answer message.
6228 	 */
6229 	case SIR_NEGO_PROTO:
6230 		if (!cp)
6231 			goto out;
6232 		sym_nego_default(np, tp, cp);
6233 		goto out;
6234 	}
6235 
6236 out:
6237 	OUTONB_STD ();
6238 	return;
6239 out_reject:
6240 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6241 	return;
6242 out_clrack:
6243 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6244 	return;
6245 out_stuck:
6246 	return;
6247 }
6248 
6249 /*
6250  *  Acquire a control block
6251  */
6252 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6253 {
6254 	tcb_p tp = &np->target[tn];
6255 	lcb_p lp = sym_lp(tp, ln);
6256 	u_short tag = NO_TAG;
6257 	SYM_QUEHEAD *qp;
6258 	ccb_p cp = (ccb_p) NULL;
6259 
6260 	/*
6261 	 *  Look for a free CCB
6262 	 */
6263 	if (sym_que_empty(&np->free_ccbq))
6264 		goto out;
6265 	qp = sym_remque_head(&np->free_ccbq);
6266 	if (!qp)
6267 		goto out;
6268 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6269 
6270 	/*
6271 	 *  If the LCB is not yet available and the LUN
6272 	 *  has been probed ok, try to allocate the LCB.
6273 	 */
6274 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6275 		lp = sym_alloc_lcb(np, tn, ln);
6276 		if (!lp)
6277 			goto out_free;
6278 	}
6279 
6280 	/*
6281 	 *  If the LCB is not available here, then the
6282 	 *  logical unit is not yet discovered. For those
6283 	 *  ones only accept 1 SCSI IO per logical unit,
6284 	 *  since we cannot allow disconnections.
6285 	 */
6286 	if (!lp) {
6287 		if (!sym_is_bit(tp->busy0_map, ln))
6288 			sym_set_bit(tp->busy0_map, ln);
6289 		else
6290 			goto out_free;
6291 	} else {
6292 		/*
6293 		 *  If we have been asked for a tagged command, refuse
6294 		 *  to overlap with an existing untagged one.
6295 		 */
6296 		if (tag_order) {
6297 			if (lp->busy_itl != 0)
6298 				goto out_free;
6299 			/*
6300 			 *  Allocate resources for tags if not yet.
6301 			 */
6302 			if (!lp->cb_tags) {
6303 				sym_alloc_lcb_tags(np, tn, ln);
6304 				if (!lp->cb_tags)
6305 					goto out_free;
6306 			}
6307 			/*
6308 			 *  Get a tag for this SCSI IO and set up
6309 			 *  the CCB bus address for reselection,
6310 			 *  and count it for this LUN.
6311 			 *  Toggle reselect path to tagged.
6312 			 */
6313 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6314 				tag = lp->cb_tags[lp->ia_tag];
6315 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6316 					lp->ia_tag = 0;
6317 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6318 				++lp->busy_itlq;
6319 				lp->head.resel_sa =
6320 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6321 			}
6322 			else
6323 				goto out_free;
6324 		}
6325 		/*
6326 		 *  This command will not be tagged.
6327 		 *  If we already have either a tagged or untagged
6328 		 *  one, refuse to overlap this untagged one.
6329 		 */
6330 		else {
6331 			if (lp->busy_itlq != 0 || lp->busy_itl != 0)
6332 				goto out_free;
6333 			/*
6334 			 *  Count this nexus for this LUN.
6335 			 *  Set up the CCB bus address for reselection.
6336 			 *  Toggle reselect path to untagged.
6337 			 */
6338 			lp->busy_itl = 1;
6339 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6340 			lp->head.resel_sa =
6341 			      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6342 		}
6343 	}
6344 	/*
6345 	 *  Put the CCB into the busy queue.
6346 	 */
6347 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6348 
6349 	/*
6350 	 *  Remember all informations needed to free this CCB.
6351 	 */
6352 	cp->to_abort = 0;
6353 	cp->tag	   = tag;
6354 	cp->target = tn;
6355 	cp->lun    = ln;
6356 
6357 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6358 		PRINT_LUN(np, tn, ln);
6359 		printf ("ccb @%p using tag %d.\n", cp, tag);
6360 	}
6361 
6362 out:
6363 	return cp;
6364 out_free:
6365 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6366 	return NULL;
6367 }
6368 
6369 /*
6370  *  Release one control block
6371  */
6372 static void sym_free_ccb(hcb_p np, ccb_p cp)
6373 {
6374 	tcb_p tp = &np->target[cp->target];
6375 	lcb_p lp = sym_lp(tp, cp->lun);
6376 
6377 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6378 		PRINT_LUN(np, cp->target, cp->lun);
6379 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6380 	}
6381 
6382 	/*
6383 	 *  If LCB available,
6384 	 */
6385 	if (lp) {
6386 		/*
6387 		 *  If tagged, release the tag, set the reselect path.
6388 		 */
6389 		if (cp->tag != NO_TAG) {
6390 			/*
6391 			 *  Free the tag value.
6392 			 */
6393 			lp->cb_tags[lp->if_tag] = cp->tag;
6394 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6395 				lp->if_tag = 0;
6396 			/*
6397 			 *  Make the reselect path invalid,
6398 			 *  and uncount this CCB.
6399 			 */
6400 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6401 			--lp->busy_itlq;
6402 		} else {	/* Untagged */
6403 			/*
6404 			 *  Make the reselect path invalid,
6405 			 *  and uncount this CCB.
6406 			 */
6407 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6408 			lp->busy_itl = 0;
6409 		}
6410 		/*
6411 		 *  If no JOB active, make the LUN reselect path invalid.
6412 		 */
6413 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6414 			lp->head.resel_sa =
6415 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6416 	}
6417 	/*
6418 	 *  Otherwise, we only accept 1 IO per LUN.
6419 	 *  Clear the bit that keeps track of this IO.
6420 	 */
6421 	else
6422 		sym_clr_bit(tp->busy0_map, cp->lun);
6423 
6424 	/*
6425 	 *  We donnot queue more than 1 ccb per target
6426 	 *  with negotiation at any time. If this ccb was
6427 	 *  used for negotiation, clear this info in the tcb.
6428 	 */
6429 	if (cp == tp->nego_cp)
6430 		tp->nego_cp = NULL;
6431 
6432 #ifdef SYM_CONF_IARB_SUPPORT
6433 	/*
6434 	 *  If we just complete the last queued CCB,
6435 	 *  clear this info that is no longer relevant.
6436 	 */
6437 	if (cp == np->last_cp)
6438 		np->last_cp = NULL;
6439 #endif
6440 
6441 	/*
6442 	 *  Unmap user data from DMA map if needed.
6443 	 */
6444 	if (cp->dmamapped) {
6445 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6446 		cp->dmamapped = 0;
6447 	}
6448 
6449 	/*
6450 	 *  Make this CCB available.
6451 	 */
6452 	cp->cam_ccb = NULL;
6453 	cp->host_status = HS_IDLE;
6454 	sym_remque(&cp->link_ccbq);
6455 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6456 }
6457 
6458 /*
6459  *  Allocate a CCB from memory and initialize its fixed part.
6460  */
6461 static ccb_p sym_alloc_ccb(hcb_p np)
6462 {
6463 	ccb_p cp = NULL;
6464 	int hcode;
6465 
6466 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6467 
6468 	/*
6469 	 *  Prevent from allocating more CCBs than we can
6470 	 *  queue to the controller.
6471 	 */
6472 	if (np->actccbs >= SYM_CONF_MAX_START)
6473 		return NULL;
6474 
6475 	/*
6476 	 *  Allocate memory for this CCB.
6477 	 */
6478 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6479 	if (!cp)
6480 		return NULL;
6481 
6482 	/*
6483 	 *  Allocate a bounce buffer for sense data.
6484 	 */
6485 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6486 	if (!cp->sns_bbuf)
6487 		goto out_free;
6488 
6489 	/*
6490 	 *  Allocate a map for the DMA of user data.
6491 	 */
6492 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6493 		goto out_free;
6494 	/*
6495 	 *  Count it.
6496 	 */
6497 	np->actccbs++;
6498 
6499 	/*
6500 	 * Initialize the callout.
6501 	 */
6502 	callout_init(&cp->ch, 1);
6503 
6504 	/*
6505 	 *  Compute the bus address of this ccb.
6506 	 */
6507 	cp->ccb_ba = vtobus(cp);
6508 
6509 	/*
6510 	 *  Insert this ccb into the hashed list.
6511 	 */
6512 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6513 	cp->link_ccbh = np->ccbh[hcode];
6514 	np->ccbh[hcode] = cp;
6515 
6516 	/*
6517 	 *  Initialize the start and restart actions.
6518 	 */
6519 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6520 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6521 
6522  	/*
6523 	 *  Initilialyze some other fields.
6524 	 */
6525 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6526 
6527 	/*
6528 	 *  Chain into free ccb queue.
6529 	 */
6530 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6531 
6532 	return cp;
6533 out_free:
6534 	if (cp->sns_bbuf)
6535 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6536 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6537 	return NULL;
6538 }
6539 
6540 /*
6541  *  Look up a CCB from a DSA value.
6542  */
6543 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6544 {
6545 	int hcode;
6546 	ccb_p cp;
6547 
6548 	hcode = CCB_HASH_CODE(dsa);
6549 	cp = np->ccbh[hcode];
6550 	while (cp) {
6551 		if (cp->ccb_ba == dsa)
6552 			break;
6553 		cp = cp->link_ccbh;
6554 	}
6555 
6556 	return cp;
6557 }
6558 
6559 /*
6560  *  Lun control block allocation and initialization.
6561  */
6562 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6563 {
6564 	tcb_p tp = &np->target[tn];
6565 	lcb_p lp = sym_lp(tp, ln);
6566 
6567 	/*
6568 	 *  Already done, just return.
6569 	 */
6570 	if (lp)
6571 		return lp;
6572 	/*
6573 	 *  Check against some race.
6574 	 */
6575 	assert(!sym_is_bit(tp->busy0_map, ln));
6576 
6577 	/*
6578 	 *  Allocate the LCB bus address array.
6579 	 *  Compute the bus address of this table.
6580 	 */
6581 	if (ln && !tp->luntbl) {
6582 		int i;
6583 
6584 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6585 		if (!tp->luntbl)
6586 			goto fail;
6587 		for (i = 0 ; i < 64 ; i++)
6588 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6589 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6590 	}
6591 
6592 	/*
6593 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6594 	 */
6595 	if (ln && !tp->lunmp) {
6596 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6597 				   "LUNMP");
6598 		if (!tp->lunmp)
6599 			goto fail;
6600 	}
6601 
6602 	/*
6603 	 *  Allocate the lcb.
6604 	 *  Make it available to the chip.
6605 	 */
6606 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6607 	if (!lp)
6608 		goto fail;
6609 	if (ln) {
6610 		tp->lunmp[ln] = lp;
6611 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6612 	}
6613 	else {
6614 		tp->lun0p = lp;
6615 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6616 	}
6617 
6618 	/*
6619 	 *  Let the itl task point to error handling.
6620 	 */
6621 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6622 
6623 	/*
6624 	 *  Set the reselect pattern to our default. :)
6625 	 */
6626 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6627 
6628 	/*
6629 	 *  Set user capabilities.
6630 	 */
6631 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6632 
6633 fail:
6634 	return lp;
6635 }
6636 
6637 /*
6638  *  Allocate LCB resources for tagged command queuing.
6639  */
6640 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6641 {
6642 	tcb_p tp = &np->target[tn];
6643 	lcb_p lp = sym_lp(tp, ln);
6644 	int i;
6645 
6646 	/*
6647 	 *  If LCB not available, try to allocate it.
6648 	 */
6649 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6650 		return;
6651 
6652 	/*
6653 	 *  Allocate the task table and and the tag allocation
6654 	 *  circular buffer. We want both or none.
6655 	 */
6656 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6657 	if (!lp->itlq_tbl)
6658 		return;
6659 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6660 	if (!lp->cb_tags) {
6661 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6662 		lp->itlq_tbl = NULL;
6663 		return;
6664 	}
6665 
6666 	/*
6667 	 *  Initialize the task table with invalid entries.
6668 	 */
6669 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6670 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6671 
6672 	/*
6673 	 *  Fill up the tag buffer with tag numbers.
6674 	 */
6675 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6676 		lp->cb_tags[i] = i;
6677 
6678 	/*
6679 	 *  Make the task table available to SCRIPTS,
6680 	 *  And accept tagged commands now.
6681 	 */
6682 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6683 }
6684 
6685 /*
6686  *  Test the pci bus snoop logic :-(
6687  *
6688  *  Has to be called with interrupts disabled.
6689  */
6690 #ifndef SYM_CONF_IOMAPPED
6691 static int sym_regtest (hcb_p np)
6692 {
6693 	register volatile u32 data;
6694 	/*
6695 	 *  chip registers may NOT be cached.
6696 	 *  write 0xffffffff to a read only register area,
6697 	 *  and try to read it back.
6698 	 */
6699 	data = 0xffffffff;
6700 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6701 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6702 #if 1
6703 	if (data == 0xffffffff) {
6704 #else
6705 	if ((data & 0xe2f0fffd) != 0x02000080) {
6706 #endif
6707 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6708 			(unsigned) data);
6709 		return (0x10);
6710 	}
6711 	return (0);
6712 }
6713 #endif
6714 
6715 static int sym_snooptest (hcb_p np)
6716 {
6717 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6718 	int	i, err=0;
6719 #ifndef SYM_CONF_IOMAPPED
6720 	err |= sym_regtest (np);
6721 	if (err) return (err);
6722 #endif
6723 restart_test:
6724 	/*
6725 	 *  Enable Master Parity Checking as we intend
6726 	 *  to enable it for normal operations.
6727 	 */
6728 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6729 	/*
6730 	 *  init
6731 	 */
6732 	pc  = SCRIPTB0_BA (np, snooptest);
6733 	host_wr = 1;
6734 	sym_wr  = 2;
6735 	/*
6736 	 *  Set memory and register.
6737 	 */
6738 	np->cache = cpu_to_scr(host_wr);
6739 	OUTL (nc_temp, sym_wr);
6740 	/*
6741 	 *  Start script (exchange values)
6742 	 */
6743 	OUTL (nc_dsa, np->hcb_ba);
6744 	OUTL_DSP (pc);
6745 	/*
6746 	 *  Wait 'til done (with timeout)
6747 	 */
6748 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6749 		if (INB(nc_istat) & (INTF|SIP|DIP))
6750 			break;
6751 	if (i>=SYM_SNOOP_TIMEOUT) {
6752 		printf ("CACHE TEST FAILED: timeout.\n");
6753 		return (0x20);
6754 	}
6755 	/*
6756 	 *  Check for fatal DMA errors.
6757 	 */
6758 	dstat = INB (nc_dstat);
6759 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6760 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6761 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6762 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6763 			sym_name(np));
6764 		np->rv_ctest4 &= ~MPEE;
6765 		goto restart_test;
6766 	}
6767 #endif
6768 	if (dstat & (MDPE|BF|IID)) {
6769 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6770 		return (0x80);
6771 	}
6772 	/*
6773 	 *  Save termination position.
6774 	 */
6775 	pc = INL (nc_dsp);
6776 	/*
6777 	 *  Read memory and register.
6778 	 */
6779 	host_rd = scr_to_cpu(np->cache);
6780 	sym_rd  = INL (nc_scratcha);
6781 	sym_bk  = INL (nc_temp);
6782 
6783 	/*
6784 	 *  Check termination position.
6785 	 */
6786 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6787 		printf ("CACHE TEST FAILED: script execution failed.\n");
6788 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6789 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6790 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6791 		return (0x40);
6792 	}
6793 	/*
6794 	 *  Show results.
6795 	 */
6796 	if (host_wr != sym_rd) {
6797 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6798 			(int) host_wr, (int) sym_rd);
6799 		err |= 1;
6800 	}
6801 	if (host_rd != sym_wr) {
6802 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6803 			(int) sym_wr, (int) host_rd);
6804 		err |= 2;
6805 	}
6806 	if (sym_bk != sym_wr) {
6807 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6808 			(int) sym_wr, (int) sym_bk);
6809 		err |= 4;
6810 	}
6811 
6812 	return (err);
6813 }
6814 
6815 /*
6816  *  Determine the chip's clock frequency.
6817  *
6818  *  This is essential for the negotiation of the synchronous
6819  *  transfer rate.
6820  *
6821  *  Note: we have to return the correct value.
6822  *  THERE IS NO SAFE DEFAULT VALUE.
6823  *
6824  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6825  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6826  *  do not have a clock doubler and so are provided with a
6827  *  80 MHz clock. All other fast20 boards incorporate a doubler
6828  *  and so should be delivered with a 40 MHz clock.
6829  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6830  *  clock and provide a clock quadrupler (160 Mhz).
6831  */
6832 
6833 /*
6834  *  Select SCSI clock frequency
6835  */
6836 static void sym_selectclock(hcb_p np, u_char scntl3)
6837 {
6838 	/*
6839 	 *  If multiplier not present or not selected, leave here.
6840 	 */
6841 	if (np->multiplier <= 1) {
6842 		OUTB(nc_scntl3,	scntl3);
6843 		return;
6844 	}
6845 
6846 	if (sym_verbose >= 2)
6847 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6848 
6849 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6850 	/*
6851 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6852 	 *  Otherwise wait 20 micro-seconds.
6853 	 */
6854 	if (np->features & FE_LCKFRQ) {
6855 		int i = 20;
6856 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6857 			UDELAY (20);
6858 		if (!i)
6859 			printf("%s: the chip cannot lock the frequency\n",
6860 				sym_name(np));
6861 	} else
6862 		UDELAY (20);
6863 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6864 	OUTB(nc_scntl3,	scntl3);
6865 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6866 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6867 }
6868 
6869 /*
6870  *  calculate SCSI clock frequency (in KHz)
6871  */
6872 static unsigned getfreq (hcb_p np, int gen)
6873 {
6874 	unsigned int ms = 0;
6875 	unsigned int f;
6876 
6877 	/*
6878 	 * Measure GEN timer delay in order
6879 	 * to calculate SCSI clock frequency
6880 	 *
6881 	 * This code will never execute too
6882 	 * many loop iterations (if DELAY is
6883 	 * reasonably correct). It could get
6884 	 * too low a delay (too high a freq.)
6885 	 * if the CPU is slow executing the
6886 	 * loop for some reason (an NMI, for
6887 	 * example). For this reason we will
6888 	 * if multiple measurements are to be
6889 	 * performed trust the higher delay
6890 	 * (lower frequency returned).
6891 	 */
6892 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6893 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6894 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6895 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6896 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6897 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6898 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6899 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6900 		UDELAY (1000);	/* count ms */
6901 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6902  	/*
6903  	 * set prescaler to divide by whatever 0 means
6904  	 * 0 ought to choose divide by 2, but appears
6905  	 * to set divide by 3.5 mode in my 53c810 ...
6906  	 */
6907  	OUTB (nc_scntl3, 0);
6908 
6909   	/*
6910  	 * adjust for prescaler, and convert into KHz
6911   	 */
6912 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6913 
6914 	if (sym_verbose >= 2)
6915 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6916 			sym_name(np), gen, ms, f);
6917 
6918 	return f;
6919 }
6920 
6921 static unsigned sym_getfreq (hcb_p np)
6922 {
6923 	u_int f1, f2;
6924 	int gen = 11;
6925 
6926 	(void) getfreq (np, gen);	/* throw away first result */
6927 	f1 = getfreq (np, gen);
6928 	f2 = getfreq (np, gen);
6929 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6930 	return f1;
6931 }
6932 
6933 /*
6934  *  Get/probe chip SCSI clock frequency
6935  */
6936 static void sym_getclock (hcb_p np, int mult)
6937 {
6938 	unsigned char scntl3 = np->sv_scntl3;
6939 	unsigned char stest1 = np->sv_stest1;
6940 	unsigned f1;
6941 
6942 	/*
6943 	 *  For the C10 core, assume 40 MHz.
6944 	 */
6945 	if (np->features & FE_C10) {
6946 		np->multiplier = mult;
6947 		np->clock_khz = 40000 * mult;
6948 		return;
6949 	}
6950 
6951 	np->multiplier = 1;
6952 	f1 = 40000;
6953 	/*
6954 	 *  True with 875/895/896/895A with clock multiplier selected
6955 	 */
6956 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6957 		if (sym_verbose >= 2)
6958 			printf ("%s: clock multiplier found\n", sym_name(np));
6959 		np->multiplier = mult;
6960 	}
6961 
6962 	/*
6963 	 *  If multiplier not found or scntl3 not 7,5,3,
6964 	 *  reset chip and get frequency from general purpose timer.
6965 	 *  Otherwise trust scntl3 BIOS setting.
6966 	 */
6967 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6968 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6969 		f1 = sym_getfreq (np);
6970 
6971 		if (sym_verbose)
6972 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
6973 
6974 		if	(f1 <	45000)		f1 =  40000;
6975 		else if (f1 <	55000)		f1 =  50000;
6976 		else				f1 =  80000;
6977 
6978 		if (f1 < 80000 && mult > 1) {
6979 			if (sym_verbose >= 2)
6980 				printf ("%s: clock multiplier assumed\n",
6981 					sym_name(np));
6982 			np->multiplier	= mult;
6983 		}
6984 	} else {
6985 		if	((scntl3 & 7) == 3)	f1 =  40000;
6986 		else if	((scntl3 & 7) == 5)	f1 =  80000;
6987 		else 				f1 = 160000;
6988 
6989 		f1 /= np->multiplier;
6990 	}
6991 
6992 	/*
6993 	 *  Compute controller synchronous parameters.
6994 	 */
6995 	f1		*= np->multiplier;
6996 	np->clock_khz	= f1;
6997 }
6998 
6999 /*
7000  *  Get/probe PCI clock frequency
7001  */
7002 static int sym_getpciclock (hcb_p np)
7003 {
7004 	int f = 0;
7005 
7006 	/*
7007 	 *  For the C1010-33, this doesn't work.
7008 	 *  For the C1010-66, this will be tested when I'll have
7009 	 *  such a beast to play with.
7010 	 */
7011 	if (!(np->features & FE_C10)) {
7012 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7013 		f = (int) sym_getfreq (np);
7014 		OUTB (nc_stest1, 0);
7015 	}
7016 	np->pciclk_khz = f;
7017 
7018 	return f;
7019 }
7020 
7021 /*============= DRIVER ACTION/COMPLETION ====================*/
7022 
7023 /*
7024  *  Print something that tells about extended errors.
7025  */
7026 static void sym_print_xerr(ccb_p cp, int x_status)
7027 {
7028 	if (x_status & XE_PARITY_ERR) {
7029 		PRINT_ADDR(cp);
7030 		printf ("unrecovered SCSI parity error.\n");
7031 	}
7032 	if (x_status & XE_EXTRA_DATA) {
7033 		PRINT_ADDR(cp);
7034 		printf ("extraneous data discarded.\n");
7035 	}
7036 	if (x_status & XE_BAD_PHASE) {
7037 		PRINT_ADDR(cp);
7038 		printf ("illegal scsi phase (4/5).\n");
7039 	}
7040 	if (x_status & XE_SODL_UNRUN) {
7041 		PRINT_ADDR(cp);
7042 		printf ("ODD transfer in DATA OUT phase.\n");
7043 	}
7044 	if (x_status & XE_SWIDE_OVRUN) {
7045 		PRINT_ADDR(cp);
7046 		printf ("ODD transfer in DATA IN phase.\n");
7047 	}
7048 }
7049 
7050 /*
7051  *  Choose the more appropriate CAM status if
7052  *  the IO encountered an extended error.
7053  */
7054 static int sym_xerr_cam_status(int cam_status, int x_status)
7055 {
7056 	if (x_status) {
7057 		if	(x_status & XE_PARITY_ERR)
7058 			cam_status = CAM_UNCOR_PARITY;
7059 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7060 			cam_status = CAM_DATA_RUN_ERR;
7061 		else if	(x_status & XE_BAD_PHASE)
7062 			cam_status = CAM_REQ_CMP_ERR;
7063 		else
7064 			cam_status = CAM_REQ_CMP_ERR;
7065 	}
7066 	return cam_status;
7067 }
7068 
7069 /*
7070  *  Complete execution of a SCSI command with extented
7071  *  error, SCSI status error, or having been auto-sensed.
7072  *
7073  *  The SCRIPTS processor is not running there, so we
7074  *  can safely access IO registers and remove JOBs from
7075  *  the START queue.
7076  *  SCRATCHA is assumed to have been loaded with STARTPOS
7077  *  before the SCRIPTS called the C code.
7078  */
7079 static void sym_complete_error (hcb_p np, ccb_p cp)
7080 {
7081 	struct ccb_scsiio *csio;
7082 	u_int cam_status;
7083 	int i, sense_returned;
7084 
7085 	SYM_LOCK_ASSERT(MA_OWNED);
7086 
7087 	/*
7088 	 *  Paranoid check. :)
7089 	 */
7090 	if (!cp || !cp->cam_ccb)
7091 		return;
7092 
7093 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7094 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7095 			cp->host_status, cp->ssss_status, cp->host_flags,
7096 			cp->target, cp->lun);
7097 		MDELAY(100);
7098 	}
7099 
7100 	/*
7101 	 *  Get CAM command pointer.
7102 	 */
7103 	csio = &cp->cam_ccb->csio;
7104 
7105 	/*
7106 	 *  Check for extended errors.
7107 	 */
7108 	if (cp->xerr_status) {
7109 		if (sym_verbose)
7110 			sym_print_xerr(cp, cp->xerr_status);
7111 		if (cp->host_status == HS_COMPLETE)
7112 			cp->host_status = HS_COMP_ERR;
7113 	}
7114 
7115 	/*
7116 	 *  Calculate the residual.
7117 	 */
7118 	csio->sense_resid = 0;
7119 	csio->resid = sym_compute_residual(np, cp);
7120 
7121 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7122 		csio->resid  = 0;	/* throw them away. :)		   */
7123 		cp->sv_resid = 0;
7124 	}
7125 
7126 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7127 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7128 		csio->sense_resid = csio->resid;	/* Swap residuals */
7129 		csio->resid       = cp->sv_resid;
7130 		cp->sv_resid	  = 0;
7131 		if (sym_verbose && cp->sv_xerr_status)
7132 			sym_print_xerr(cp, cp->sv_xerr_status);
7133 		if (cp->host_status == HS_COMPLETE &&
7134 		    cp->ssss_status == S_GOOD &&
7135 		    cp->xerr_status == 0) {
7136 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7137 							 cp->sv_xerr_status);
7138 			cam_status |= CAM_AUTOSNS_VALID;
7139 			/*
7140 			 *  Bounce back the sense data to user and
7141 			 *  fix the residual.
7142 			 */
7143 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7144 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7145 			if (sense_returned < csio->sense_len)
7146 				csio->sense_resid = csio->sense_len -
7147 				    sense_returned;
7148 			else
7149 				csio->sense_resid = 0;
7150 			bcopy(cp->sns_bbuf, &csio->sense_data,
7151 			    MIN(csio->sense_len, sense_returned));
7152 #if 0
7153 			/*
7154 			 *  If the device reports a UNIT ATTENTION condition
7155 			 *  due to a RESET condition, we should consider all
7156 			 *  disconnect CCBs for this unit as aborted.
7157 			 */
7158 			if (1) {
7159 				u_char *p;
7160 				p  = (u_char *) csio->sense_data;
7161 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7162 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7163 							cp->target,cp->lun, -1);
7164 			}
7165 #endif
7166 		}
7167 		else
7168 			cam_status = CAM_AUTOSENSE_FAIL;
7169 	}
7170 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7171 		csio->scsi_status = cp->ssss_status;
7172 		cam_status = CAM_SCSI_STATUS_ERROR;
7173 	}
7174 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7175 		cam_status = CAM_SEL_TIMEOUT;
7176 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7177 		cam_status = CAM_UNEXP_BUSFREE;
7178 	else {						/* Extended error */
7179 		if (sym_verbose) {
7180 			PRINT_ADDR(cp);
7181 			printf ("COMMAND FAILED (%x %x %x).\n",
7182 				cp->host_status, cp->ssss_status,
7183 				cp->xerr_status);
7184 		}
7185 		csio->scsi_status = cp->ssss_status;
7186 		/*
7187 		 *  Set the most appropriate value for CAM status.
7188 		 */
7189 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7190 						 cp->xerr_status);
7191 	}
7192 
7193 	/*
7194 	 *  Dequeue all queued CCBs for that device
7195 	 *  not yet started by SCRIPTS.
7196 	 */
7197 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7198 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7199 
7200 	/*
7201 	 *  Restart the SCRIPTS processor.
7202 	 */
7203 	OUTL_DSP (SCRIPTA_BA (np, start));
7204 
7205 	/*
7206 	 *  Synchronize DMA map if needed.
7207 	 */
7208 	if (cp->dmamapped) {
7209 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7210 			(cp->dmamapped == SYM_DMA_READ ?
7211 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7212 	}
7213 	/*
7214 	 *  Add this one to the COMP queue.
7215 	 *  Complete all those commands with either error
7216 	 *  or requeue condition.
7217 	 */
7218 	sym_set_cam_status((union ccb *) csio, cam_status);
7219 	sym_remque(&cp->link_ccbq);
7220 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7221 	sym_flush_comp_queue(np, 0);
7222 }
7223 
7224 /*
7225  *  Complete execution of a successful SCSI command.
7226  *
7227  *  Only successful commands go to the DONE queue,
7228  *  since we need to have the SCRIPTS processor
7229  *  stopped on any error condition.
7230  *  The SCRIPTS processor is running while we are
7231  *  completing successful commands.
7232  */
7233 static void sym_complete_ok (hcb_p np, ccb_p cp)
7234 {
7235 	struct ccb_scsiio *csio;
7236 	tcb_p tp;
7237 	lcb_p lp;
7238 
7239 	SYM_LOCK_ASSERT(MA_OWNED);
7240 
7241 	/*
7242 	 *  Paranoid check. :)
7243 	 */
7244 	if (!cp || !cp->cam_ccb)
7245 		return;
7246 	assert (cp->host_status == HS_COMPLETE);
7247 
7248 	/*
7249 	 *  Get command, target and lun pointers.
7250 	 */
7251 	csio = &cp->cam_ccb->csio;
7252 	tp = &np->target[cp->target];
7253 	lp = sym_lp(tp, cp->lun);
7254 
7255 	/*
7256 	 *  Assume device discovered on first success.
7257 	 */
7258 	if (!lp)
7259 		sym_set_bit(tp->lun_map, cp->lun);
7260 
7261 	/*
7262 	 *  If all data have been transferred, given than no
7263 	 *  extended error did occur, there is no residual.
7264 	 */
7265 	csio->resid = 0;
7266 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7267 		csio->resid = sym_compute_residual(np, cp);
7268 
7269 	/*
7270 	 *  Wrong transfer residuals may be worse than just always
7271 	 *  returning zero. User can disable this feature from
7272 	 *  sym_conf.h. Residual support is enabled by default.
7273 	 */
7274 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7275 		csio->resid  = 0;
7276 
7277 	/*
7278 	 *  Synchronize DMA map if needed.
7279 	 */
7280 	if (cp->dmamapped) {
7281 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7282 			(cp->dmamapped == SYM_DMA_READ ?
7283 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7284 	}
7285 	/*
7286 	 *  Set status and complete the command.
7287 	 */
7288 	csio->scsi_status = cp->ssss_status;
7289 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7290 	sym_xpt_done(np, (union ccb *) csio, cp);
7291 	sym_free_ccb(np, cp);
7292 }
7293 
7294 /*
7295  *  Our callout handler
7296  */
7297 static void sym_callout(void *arg)
7298 {
7299 	union ccb *ccb = (union ccb *) arg;
7300 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7301 
7302 	/*
7303 	 *  Check that the CAM CCB is still queued.
7304 	 */
7305 	if (!np)
7306 		return;
7307 
7308 	SYM_LOCK();
7309 
7310 	switch(ccb->ccb_h.func_code) {
7311 	case XPT_SCSI_IO:
7312 		(void) sym_abort_scsiio(np, ccb, 1);
7313 		break;
7314 	default:
7315 		break;
7316 	}
7317 
7318 	SYM_UNLOCK();
7319 }
7320 
7321 /*
7322  *  Abort an SCSI IO.
7323  */
7324 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7325 {
7326 	ccb_p cp;
7327 	SYM_QUEHEAD *qp;
7328 
7329 	SYM_LOCK_ASSERT(MA_OWNED);
7330 
7331 	/*
7332 	 *  Look up our CCB control block.
7333 	 */
7334 	cp = NULL;
7335 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7336 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7337 		if (cp2->cam_ccb == ccb) {
7338 			cp = cp2;
7339 			break;
7340 		}
7341 	}
7342 	if (!cp || cp->host_status == HS_WAIT)
7343 		return -1;
7344 
7345 	/*
7346 	 *  If a previous abort didn't succeed in time,
7347 	 *  perform a BUS reset.
7348 	 */
7349 	if (cp->to_abort) {
7350 		sym_reset_scsi_bus(np, 1);
7351 		return 0;
7352 	}
7353 
7354 	/*
7355 	 *  Mark the CCB for abort and allow time for.
7356 	 */
7357 	cp->to_abort = timed_out ? 2 : 1;
7358 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7359 
7360 	/*
7361 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7362 	 */
7363 	np->istat_sem = SEM;
7364 	OUTB (nc_istat, SIGP|SEM);
7365 	return 0;
7366 }
7367 
7368 /*
7369  *  Reset a SCSI device (all LUNs of a target).
7370  */
7371 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7372 {
7373 	tcb_p tp;
7374 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7375 
7376 	SYM_LOCK_ASSERT(MA_OWNED);
7377 
7378 	if (ccb_h->target_id   == np->myaddr ||
7379 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7380 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7381 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7382 		return;
7383 	}
7384 
7385 	tp = &np->target[ccb_h->target_id];
7386 
7387 	tp->to_reset = 1;
7388 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7389 
7390 	np->istat_sem = SEM;
7391 	OUTB (nc_istat, SIGP|SEM);
7392 }
7393 
7394 /*
7395  *  SIM action entry point.
7396  */
7397 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7398 {
7399 	hcb_p	np;
7400 	tcb_p	tp;
7401 	lcb_p	lp;
7402 	ccb_p	cp;
7403 	int 	tmp;
7404 	u_char	idmsg, *msgptr;
7405 	u_int   msglen;
7406 	struct	ccb_scsiio *csio;
7407 	struct	ccb_hdr  *ccb_h;
7408 
7409 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7410 
7411 	/*
7412 	 *  Retrieve our controller data structure.
7413 	 */
7414 	np = (hcb_p) cam_sim_softc(sim);
7415 
7416 	SYM_LOCK_ASSERT(MA_OWNED);
7417 
7418 	/*
7419 	 *  The common case is SCSI IO.
7420 	 *  We deal with other ones elsewhere.
7421 	 */
7422 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7423 		sym_action2(sim, ccb);
7424 		return;
7425 	}
7426 	csio  = &ccb->csio;
7427 	ccb_h = &csio->ccb_h;
7428 
7429 	/*
7430 	 *  Work around races.
7431 	 */
7432 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7433 		xpt_done(ccb);
7434 		return;
7435 	}
7436 
7437 	/*
7438 	 *  Minimal checkings, so that we will not
7439 	 *  go outside our tables.
7440 	 */
7441 	if (ccb_h->target_id   == np->myaddr ||
7442 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7443 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7444 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7445 		return;
7446         }
7447 
7448 	/*
7449 	 *  Retrieve the target and lun descriptors.
7450 	 */
7451 	tp = &np->target[ccb_h->target_id];
7452 	lp = sym_lp(tp, ccb_h->target_lun);
7453 
7454 	/*
7455 	 *  Complete the 1st INQUIRY command with error
7456 	 *  condition if the device is flagged NOSCAN
7457 	 *  at BOOT in the NVRAM. This may speed up
7458 	 *  the boot and maintain coherency with BIOS
7459 	 *  device numbering. Clearing the flag allows
7460 	 *  user to rescan skipped devices later.
7461 	 *  We also return error for devices not flagged
7462 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7463 	 *  devices behave badly when asked for some non
7464 	 *  zero LUN. Btw, this is an absolute hack.:-)
7465 	 */
7466 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7467 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7468 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7469 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7470 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7471 		     ccb_h->target_lun != 0)) {
7472 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7473 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7474 			return;
7475 		}
7476 	}
7477 
7478 	/*
7479 	 *  Get a control block for this IO.
7480 	 */
7481 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7482 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7483 	if (!cp) {
7484 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7485 		return;
7486 	}
7487 
7488 	/*
7489 	 *  Keep track of the IO in our CCB.
7490 	 */
7491 	cp->cam_ccb = ccb;
7492 
7493 	/*
7494 	 *  Build the IDENTIFY message.
7495 	 */
7496 	idmsg = M_IDENTIFY | cp->lun;
7497 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7498 		idmsg |= 0x40;
7499 
7500 	msgptr = cp->scsi_smsg;
7501 	msglen = 0;
7502 	msgptr[msglen++] = idmsg;
7503 
7504 	/*
7505 	 *  Build the tag message if present.
7506 	 */
7507 	if (cp->tag != NO_TAG) {
7508 		u_char order = csio->tag_action;
7509 
7510 		switch(order) {
7511 		case M_ORDERED_TAG:
7512 			break;
7513 		case M_HEAD_TAG:
7514 			break;
7515 		default:
7516 			order = M_SIMPLE_TAG;
7517 		}
7518 		msgptr[msglen++] = order;
7519 
7520 		/*
7521 		 *  For less than 128 tags, actual tags are numbered
7522 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7523 		 *  with devices that have problems with #TAG 0 or too
7524 		 *  great #TAG numbers. For more tags (up to 256),
7525 		 *  we use directly our tag number.
7526 		 */
7527 #if SYM_CONF_MAX_TASK > (512/4)
7528 		msgptr[msglen++] = cp->tag;
7529 #else
7530 		msgptr[msglen++] = (cp->tag << 1) + 1;
7531 #endif
7532 	}
7533 
7534 	/*
7535 	 *  Build a negotiation message if needed.
7536 	 *  (nego_status is filled by sym_prepare_nego())
7537 	 */
7538 	cp->nego_status = 0;
7539 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7540 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7541 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7542 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7543 		if (!tp->nego_cp && lp)
7544 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7545 	}
7546 
7547 	/*
7548 	 *  Fill in our ccb
7549 	 */
7550 
7551 	/*
7552 	 *  Startqueue
7553 	 */
7554 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7555 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7556 
7557 	/*
7558 	 *  select
7559 	 */
7560 	cp->phys.select.sel_id		= cp->target;
7561 	cp->phys.select.sel_scntl3	= tp->head.wval;
7562 	cp->phys.select.sel_sxfer	= tp->head.sval;
7563 	cp->phys.select.sel_scntl4	= tp->head.uval;
7564 
7565 	/*
7566 	 *  message
7567 	 */
7568 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7569 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7570 
7571 	/*
7572 	 *  command
7573 	 */
7574 	if (sym_setup_cdb(np, csio, cp) < 0) {
7575 		sym_xpt_done(np, ccb, cp);
7576 		sym_free_ccb(np, cp);
7577 		return;
7578 	}
7579 
7580 	/*
7581 	 *  status
7582 	 */
7583 #if	0	/* Provision */
7584 	cp->actualquirks	= tp->quirks;
7585 #endif
7586 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7587 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7588 	cp->ssss_status		= S_ILLEGAL;
7589 	cp->xerr_status		= 0;
7590 	cp->host_flags		= 0;
7591 	cp->extra_bytes		= 0;
7592 
7593 	/*
7594 	 *  extreme data pointer.
7595 	 *  shall be positive, so -1 is lower than lowest.:)
7596 	 */
7597 	cp->ext_sg  = -1;
7598 	cp->ext_ofs = 0;
7599 
7600 	/*
7601 	 *  Build the data descriptor block
7602 	 *  and start the IO.
7603 	 */
7604 	sym_setup_data_and_start(np, csio, cp);
7605 }
7606 
7607 /*
7608  *  Setup buffers and pointers that address the CDB.
7609  *  I bet, physical CDBs will never be used on the planet,
7610  *  since they can be bounced without significant overhead.
7611  */
7612 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7613 {
7614 	struct ccb_hdr *ccb_h;
7615 	u32	cmd_ba;
7616 	int	cmd_len;
7617 
7618 	SYM_LOCK_ASSERT(MA_OWNED);
7619 
7620 	ccb_h = &csio->ccb_h;
7621 
7622 	/*
7623 	 *  CDB is 16 bytes max.
7624 	 */
7625 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7626 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7627 		return -1;
7628 	}
7629 	cmd_len = csio->cdb_len;
7630 
7631 	if (ccb_h->flags & CAM_CDB_POINTER) {
7632 		/* CDB is a pointer */
7633 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7634 			/* CDB pointer is virtual */
7635 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7636 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7637 		} else {
7638 			/* CDB pointer is physical */
7639 #if 0
7640 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7641 #else
7642 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7643 			return -1;
7644 #endif
7645 		}
7646 	} else {
7647 		/* CDB is in the CAM ccb (buffer) */
7648 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7649 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7650 	}
7651 
7652 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7653 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7654 
7655 	return 0;
7656 }
7657 
7658 /*
7659  *  Set up data pointers used by SCRIPTS.
7660  */
7661 static void __inline
7662 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7663 {
7664 	u32 lastp, goalp;
7665 
7666 	SYM_LOCK_ASSERT(MA_OWNED);
7667 
7668 	/*
7669 	 *  No segments means no data.
7670 	 */
7671 	if (!cp->segments)
7672 		dir = CAM_DIR_NONE;
7673 
7674 	/*
7675 	 *  Set the data pointer.
7676 	 */
7677 	switch(dir) {
7678 	case CAM_DIR_OUT:
7679 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7680 		lastp = goalp - 8 - (cp->segments * (2*4));
7681 		break;
7682 	case CAM_DIR_IN:
7683 		cp->host_flags |= HF_DATA_IN;
7684 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7685 		lastp = goalp - 8 - (cp->segments * (2*4));
7686 		break;
7687 	case CAM_DIR_NONE:
7688 	default:
7689 		lastp = goalp = SCRIPTB_BA (np, no_data);
7690 		break;
7691 	}
7692 
7693 	cp->phys.head.lastp = cpu_to_scr(lastp);
7694 	cp->phys.head.goalp = cpu_to_scr(goalp);
7695 	cp->phys.head.savep = cpu_to_scr(lastp);
7696 	cp->startp	    = cp->phys.head.savep;
7697 }
7698 
7699 /*
7700  *  Call back routine for the DMA map service.
7701  *  If bounce buffers are used (why ?), we may sleep and then
7702  *  be called there in another context.
7703  */
7704 static void
7705 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7706 {
7707 	ccb_p	cp;
7708 	hcb_p	np;
7709 	union	ccb *ccb;
7710 
7711 	cp  = (ccb_p) arg;
7712 	ccb = cp->cam_ccb;
7713 	np  = (hcb_p) cp->arg;
7714 
7715 	SYM_LOCK_ASSERT(MA_OWNED);
7716 
7717 	/*
7718 	 *  Deal with weird races.
7719 	 */
7720 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7721 		goto out_abort;
7722 
7723 	/*
7724 	 *  Deal with weird errors.
7725 	 */
7726 	if (error) {
7727 		cp->dmamapped = 0;
7728 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7729 		goto out_abort;
7730 	}
7731 
7732 	/*
7733 	 *  Build the data descriptor for the chip.
7734 	 */
7735 	if (nsegs) {
7736 		int retv;
7737 		/* 896 rev 1 requires to be careful about boundaries */
7738 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7739 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7740 		else
7741 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7742 		if (retv < 0) {
7743 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7744 			goto out_abort;
7745 		}
7746 	}
7747 
7748 	/*
7749 	 *  Synchronize the DMA map only if we have
7750 	 *  actually mapped the data.
7751 	 */
7752 	if (cp->dmamapped) {
7753 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7754 			(cp->dmamapped == SYM_DMA_READ ?
7755 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7756 	}
7757 
7758 	/*
7759 	 *  Set host status to busy state.
7760 	 *  May have been set back to HS_WAIT to avoid a race.
7761 	 */
7762 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7763 
7764 	/*
7765 	 *  Set data pointers.
7766 	 */
7767 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7768 
7769 	/*
7770 	 *  Enqueue this IO in our pending queue.
7771 	 */
7772 	sym_enqueue_cam_ccb(cp);
7773 
7774 	/*
7775 	 *  When `#ifed 1', the code below makes the driver
7776 	 *  panic on the first attempt to write to a SCSI device.
7777 	 *  It is the first test we want to do after a driver
7778 	 *  change that does not seem obviously safe. :)
7779 	 */
7780 #if 0
7781 	switch (cp->cdb_buf[0]) {
7782 	case 0x0A: case 0x2A: case 0xAA:
7783 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7784 		MDELAY(10000);
7785 		break;
7786 	default:
7787 		break;
7788 	}
7789 #endif
7790 	/*
7791 	 *  Activate this job.
7792 	 */
7793 	sym_put_start_queue(np, cp);
7794 	return;
7795 out_abort:
7796 	sym_xpt_done(np, ccb, cp);
7797 	sym_free_ccb(np, cp);
7798 }
7799 
7800 /*
7801  *  How complex it gets to deal with the data in CAM.
7802  *  The Bus Dma stuff makes things still more complex.
7803  */
7804 static void
7805 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7806 {
7807 	struct ccb_hdr *ccb_h;
7808 	int dir, retv;
7809 
7810 	SYM_LOCK_ASSERT(MA_OWNED);
7811 
7812 	ccb_h = &csio->ccb_h;
7813 
7814 	/*
7815 	 *  Now deal with the data.
7816 	 */
7817 	cp->data_len = csio->dxfer_len;
7818 	cp->arg      = np;
7819 
7820 	/*
7821 	 *  No direction means no data.
7822 	 */
7823 	dir = (ccb_h->flags & CAM_DIR_MASK);
7824 	if (dir == CAM_DIR_NONE) {
7825 		sym_execute_ccb(cp, NULL, 0, 0);
7826 		return;
7827 	}
7828 
7829 	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7830 	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7831 			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7832 	if (retv == EINPROGRESS) {
7833 		cp->host_status	= HS_WAIT;
7834 		xpt_freeze_simq(np->sim, 1);
7835 		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7836 	}
7837 }
7838 
7839 /*
7840  *  Move the scatter list to our data block.
7841  */
7842 static int
7843 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7844 			     bus_dma_segment_t *psegs, int nsegs)
7845 {
7846 	struct sym_tblmove *data;
7847 	bus_dma_segment_t *psegs2;
7848 
7849 	SYM_LOCK_ASSERT(MA_OWNED);
7850 
7851 	if (nsegs > SYM_CONF_MAX_SG)
7852 		return -1;
7853 
7854 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7855 	psegs2 = &psegs[nsegs-1];
7856 	cp->segments = nsegs;
7857 
7858 	while (1) {
7859 		data->addr = cpu_to_scr(psegs2->ds_addr);
7860 		data->size = cpu_to_scr(psegs2->ds_len);
7861 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7862 			printf ("%s scatter: paddr=%lx len=%ld\n",
7863 				sym_name(np), (long) psegs2->ds_addr,
7864 				(long) psegs2->ds_len);
7865 		}
7866 		if (psegs2 != psegs) {
7867 			--data;
7868 			--psegs2;
7869 			continue;
7870 		}
7871 		break;
7872 	}
7873 	return 0;
7874 }
7875 
7876 /*
7877  *  Scatter a SG list with physical addresses into bus addressable chunks.
7878  */
7879 static int
7880 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7881 {
7882 	u_long	ps, pe, pn;
7883 	u_long	k;
7884 	int s, t;
7885 
7886 	SYM_LOCK_ASSERT(MA_OWNED);
7887 
7888 	s  = SYM_CONF_MAX_SG - 1;
7889 	t  = nsegs - 1;
7890 	ps = psegs[t].ds_addr;
7891 	pe = ps + psegs[t].ds_len;
7892 
7893 	while (s >= 0) {
7894 		pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY);
7895 		if (pn <= ps)
7896 			pn = ps;
7897 		k = pe - pn;
7898 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7899 			printf ("%s scatter: paddr=%lx len=%ld\n",
7900 				sym_name(np), pn, k);
7901 		}
7902 		cp->phys.data[s].addr = cpu_to_scr(pn);
7903 		cp->phys.data[s].size = cpu_to_scr(k);
7904 		--s;
7905 		if (pn == ps) {
7906 			if (--t < 0)
7907 				break;
7908 			ps = psegs[t].ds_addr;
7909 			pe = ps + psegs[t].ds_len;
7910 		}
7911 		else
7912 			pe = pn;
7913 	}
7914 
7915 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7916 
7917 	return t >= 0 ? -1 : 0;
7918 }
7919 
7920 /*
7921  *  SIM action for non performance critical stuff.
7922  */
7923 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7924 {
7925 	union ccb *abort_ccb;
7926 	struct ccb_hdr *ccb_h;
7927 	struct ccb_pathinq *cpi;
7928 	struct ccb_trans_settings *cts;
7929 	struct sym_trans *tip;
7930 	hcb_p	np;
7931 	tcb_p	tp;
7932 	lcb_p	lp;
7933 	u_char dflags;
7934 
7935 	/*
7936 	 *  Retrieve our controller data structure.
7937 	 */
7938 	np = (hcb_p) cam_sim_softc(sim);
7939 
7940 	SYM_LOCK_ASSERT(MA_OWNED);
7941 
7942 	ccb_h = &ccb->ccb_h;
7943 
7944 	switch (ccb_h->func_code) {
7945 	case XPT_SET_TRAN_SETTINGS:
7946 		cts  = &ccb->cts;
7947 		tp = &np->target[ccb_h->target_id];
7948 
7949 		/*
7950 		 *  Update SPI transport settings in TARGET control block.
7951 		 *  Update SCSI device settings in LUN control block.
7952 		 */
7953 		lp = sym_lp(tp, ccb_h->target_lun);
7954 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7955 			sym_update_trans(np, &tp->tinfo.goal, cts);
7956 			if (lp)
7957 				sym_update_dflags(np, &lp->current_flags, cts);
7958 		}
7959 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7960 			sym_update_trans(np, &tp->tinfo.user, cts);
7961 			if (lp)
7962 				sym_update_dflags(np, &lp->user_flags, cts);
7963 		}
7964 
7965 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7966 		break;
7967 	case XPT_GET_TRAN_SETTINGS:
7968 		cts = &ccb->cts;
7969 		tp = &np->target[ccb_h->target_id];
7970 		lp = sym_lp(tp, ccb_h->target_lun);
7971 
7972 #define	cts__scsi (&cts->proto_specific.scsi)
7973 #define	cts__spi  (&cts->xport_specific.spi)
7974 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7975 			tip = &tp->tinfo.current;
7976 			dflags = lp ? lp->current_flags : 0;
7977 		}
7978 		else {
7979 			tip = &tp->tinfo.user;
7980 			dflags = lp ? lp->user_flags : tp->usrflags;
7981 		}
7982 
7983 		cts->protocol  = PROTO_SCSI;
7984 		cts->transport = XPORT_SPI;
7985 		cts->protocol_version  = tip->scsi_version;
7986 		cts->transport_version = tip->spi_version;
7987 
7988 		cts__spi->sync_period = tip->period;
7989 		cts__spi->sync_offset = tip->offset;
7990 		cts__spi->bus_width   = tip->width;
7991 		cts__spi->ppr_options = tip->options;
7992 
7993 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
7994 		                | CTS_SPI_VALID_SYNC_OFFSET
7995 		                | CTS_SPI_VALID_BUS_WIDTH
7996 		                | CTS_SPI_VALID_PPR_OPTIONS;
7997 
7998 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
7999 		if (dflags & SYM_DISC_ENABLED)
8000 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8001 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8002 
8003 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8004 		if (dflags & SYM_TAGS_ENABLED)
8005 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8006 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8007 #undef	cts__spi
8008 #undef	cts__scsi
8009 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8010 		break;
8011 	case XPT_CALC_GEOMETRY:
8012 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8013 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8014 		break;
8015 	case XPT_PATH_INQ:
8016 		cpi = &ccb->cpi;
8017 		cpi->version_num = 1;
8018 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8019 		if ((np->features & FE_WIDE) != 0)
8020 			cpi->hba_inquiry |= PI_WIDE_16;
8021 		cpi->target_sprt = 0;
8022 		cpi->hba_misc = PIM_UNMAPPED;
8023 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8024 			cpi->hba_misc |= PIM_SCANHILO;
8025 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8026 			cpi->hba_misc |= PIM_NOBUSRESET;
8027 		cpi->hba_eng_cnt = 0;
8028 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8029 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8030 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8031 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8032 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8033 		cpi->bus_id = cam_sim_bus(sim);
8034 		cpi->initiator_id = np->myaddr;
8035 		cpi->base_transfer_speed = 3300;
8036 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8037 		strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8038 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8039 		cpi->unit_number = cam_sim_unit(sim);
8040 
8041 		cpi->protocol = PROTO_SCSI;
8042 		cpi->protocol_version = SCSI_REV_2;
8043 		cpi->transport = XPORT_SPI;
8044 		cpi->transport_version = 2;
8045 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8046 		if (np->features & FE_ULTRA3) {
8047 			cpi->transport_version = 3;
8048 			cpi->xport_specific.spi.ppr_options =
8049 			    SID_SPI_CLOCK_DT_ST;
8050 		}
8051 		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8052 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8053 		break;
8054 	case XPT_ABORT:
8055 		abort_ccb = ccb->cab.abort_ccb;
8056 		switch(abort_ccb->ccb_h.func_code) {
8057 		case XPT_SCSI_IO:
8058 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8059 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8060 				break;
8061 			}
8062 		default:
8063 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8064 			break;
8065 		}
8066 		break;
8067 	case XPT_RESET_DEV:
8068 		sym_reset_dev(np, ccb);
8069 		break;
8070 	case XPT_RESET_BUS:
8071 		sym_reset_scsi_bus(np, 0);
8072 		if (sym_verbose) {
8073 			xpt_print_path(np->path);
8074 			printf("SCSI BUS reset delivered.\n");
8075 		}
8076 		sym_init (np, 1);
8077 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8078 		break;
8079 	case XPT_TERM_IO:
8080 	default:
8081 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8082 		break;
8083 	}
8084 }
8085 
8086 /*
8087  *  Asynchronous notification handler.
8088  */
8089 static void
8090 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8091 {
8092 	hcb_p np;
8093 	struct cam_sim *sim;
8094 	u_int tn;
8095 	tcb_p tp;
8096 
8097 	sim = (struct cam_sim *) cb_arg;
8098 	np  = (hcb_p) cam_sim_softc(sim);
8099 
8100 	SYM_LOCK_ASSERT(MA_OWNED);
8101 
8102 	switch (code) {
8103 	case AC_LOST_DEVICE:
8104 		tn = xpt_path_target_id(path);
8105 		if (tn >= SYM_CONF_MAX_TARGET)
8106 			break;
8107 
8108 		tp = &np->target[tn];
8109 
8110 		tp->to_reset  = 0;
8111 		tp->head.sval = 0;
8112 		tp->head.wval = np->rv_scntl3;
8113 		tp->head.uval = 0;
8114 
8115 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8116 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8117 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8118 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8119 
8120 		break;
8121 	default:
8122 		break;
8123 	}
8124 }
8125 
8126 /*
8127  *  Update transfer settings of a target.
8128  */
8129 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8130     struct ccb_trans_settings *cts)
8131 {
8132 
8133 	SYM_LOCK_ASSERT(MA_OWNED);
8134 
8135 	/*
8136 	 *  Update the infos.
8137 	 */
8138 #define cts__spi (&cts->xport_specific.spi)
8139 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8140 		tip->width = cts__spi->bus_width;
8141 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8142 		tip->offset = cts__spi->sync_offset;
8143 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8144 		tip->period = cts__spi->sync_period;
8145 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8146 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8147 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8148 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8149 		tip->scsi_version = cts->protocol_version;
8150 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8151 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8152 		tip->spi_version = cts->transport_version;
8153 #undef cts__spi
8154 	/*
8155 	 *  Scale against driver configuration limits.
8156 	 */
8157 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8158 	if (tip->period && tip->offset) {
8159 		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8160 		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8161 	} else {
8162 		tip->offset = 0;
8163 		tip->period = 0;
8164 	}
8165 
8166 	/*
8167 	 *  Scale against actual controller BUS width.
8168 	 */
8169 	if (tip->width > np->maxwide)
8170 		tip->width  = np->maxwide;
8171 
8172 	/*
8173 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8174 	 */
8175 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8176 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8177 		tip->options &= ~PPR_OPT_DT;
8178 	}
8179 
8180 	/*
8181 	 *  Scale period factor and offset against controller limits.
8182 	 */
8183 	if (tip->offset && tip->period) {
8184 		if (tip->options & PPR_OPT_DT) {
8185 			if (tip->period < np->minsync_dt)
8186 				tip->period = np->minsync_dt;
8187 			if (tip->period > np->maxsync_dt)
8188 				tip->period = np->maxsync_dt;
8189 			if (tip->offset > np->maxoffs_dt)
8190 				tip->offset = np->maxoffs_dt;
8191 		}
8192 		else {
8193 			if (tip->period < np->minsync)
8194 				tip->period = np->minsync;
8195 			if (tip->period > np->maxsync)
8196 				tip->period = np->maxsync;
8197 			if (tip->offset > np->maxoffs)
8198 				tip->offset = np->maxoffs;
8199 		}
8200 	}
8201 }
8202 
8203 /*
8204  *  Update flags for a device (logical unit).
8205  */
8206 static void
8207 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8208 {
8209 
8210 	SYM_LOCK_ASSERT(MA_OWNED);
8211 
8212 #define	cts__scsi (&cts->proto_specific.scsi)
8213 #define	cts__spi  (&cts->xport_specific.spi)
8214 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8215 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8216 			*flags |= SYM_DISC_ENABLED;
8217 		else
8218 			*flags &= ~SYM_DISC_ENABLED;
8219 	}
8220 
8221 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8222 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8223 			*flags |= SYM_TAGS_ENABLED;
8224 		else
8225 			*flags &= ~SYM_TAGS_ENABLED;
8226 	}
8227 #undef	cts__spi
8228 #undef	cts__scsi
8229 }
8230 
8231 /*============= DRIVER INITIALISATION ==================*/
8232 
8233 static device_method_t sym_pci_methods[] = {
8234 	DEVMETHOD(device_probe,	 sym_pci_probe),
8235 	DEVMETHOD(device_attach, sym_pci_attach),
8236 	DEVMETHOD_END
8237 };
8238 
8239 static driver_t sym_pci_driver = {
8240 	"sym",
8241 	sym_pci_methods,
8242 	1	/* no softc */
8243 };
8244 
8245 DRIVER_MODULE(sym, pci, sym_pci_driver, NULL, NULL);
8246 MODULE_DEPEND(sym, cam, 1, 1, 1);
8247 MODULE_DEPEND(sym, pci, 1, 1, 1);
8248 
8249 static const struct sym_pci_chip sym_pci_dev_table[] = {
8250  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8251  FE_ERL}
8252  ,
8253 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8254  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8255  FE_BOF}
8256  ,
8257 #else
8258  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8259  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8260  ,
8261 #endif
8262  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8263  FE_BOF|FE_ERL}
8264  ,
8265  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8266  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8267  ,
8268  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8269  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8270  ,
8271  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8272  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8273  ,
8274  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8275  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8276  FE_RAM|FE_DIFF}
8277  ,
8278  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8279  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8280  FE_RAM|FE_DIFF}
8281  ,
8282  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8283  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8284  FE_RAM|FE_DIFF}
8285  ,
8286  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8287  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8288  FE_RAM|FE_DIFF}
8289  ,
8290 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8291  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8292  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8293  FE_RAM|FE_LCKFRQ}
8294  ,
8295 #else
8296  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8297  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8298  FE_RAM|FE_LCKFRQ}
8299  ,
8300 #endif
8301  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8302  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8303  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8304  ,
8305  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8306  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8307  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8308  ,
8309  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8310  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8311  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8312  FE_C10}
8313  ,
8314  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8315  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8316  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8317  FE_C10|FE_U3EN}
8318  ,
8319  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8320  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8321  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8322  FE_C10|FE_U3EN}
8323  ,
8324  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8325  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8326  FE_RAM|FE_IO256|FE_LEDC}
8327 };
8328 
8329 /*
8330  *  Look up the chip table.
8331  *
8332  *  Return a pointer to the chip entry if found,
8333  *  zero otherwise.
8334  */
8335 static const struct sym_pci_chip *
8336 sym_find_pci_chip(device_t dev)
8337 {
8338 	const struct	sym_pci_chip *chip;
8339 	int	i;
8340 	u_short	device_id;
8341 	u_char	revision;
8342 
8343 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8344 		return NULL;
8345 
8346 	device_id = pci_get_device(dev);
8347 	revision  = pci_get_revid(dev);
8348 
8349 	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8350 		chip = &sym_pci_dev_table[i];
8351 		if (device_id != chip->device_id)
8352 			continue;
8353 		if (revision > chip->revision_id)
8354 			continue;
8355 		return chip;
8356 	}
8357 
8358 	return NULL;
8359 }
8360 
8361 /*
8362  *  Tell upper layer if the chip is supported.
8363  */
8364 static int
8365 sym_pci_probe(device_t dev)
8366 {
8367 	const struct	sym_pci_chip *chip;
8368 
8369 	chip = sym_find_pci_chip(dev);
8370 	if (chip && sym_find_firmware(chip)) {
8371 		device_set_desc(dev, chip->name);
8372 		return BUS_PROBE_DEFAULT;
8373 	}
8374 	return ENXIO;
8375 }
8376 
8377 /*
8378  *  Attach a sym53c8xx device.
8379  */
8380 static int
8381 sym_pci_attach(device_t dev)
8382 {
8383 	const struct	sym_pci_chip *chip;
8384 	u_short	command;
8385 	u_char	cachelnsz;
8386 	struct	sym_hcb *np = NULL;
8387 	struct	sym_nvram nvram;
8388 	const struct	sym_fw *fw = NULL;
8389 	int 	i;
8390 	bus_dma_tag_t	bus_dmat;
8391 
8392 	bus_dmat = bus_get_dma_tag(dev);
8393 
8394 	/*
8395 	 *  Only probed devices should be attached.
8396 	 *  We just enjoy being paranoid. :)
8397 	 */
8398 	chip = sym_find_pci_chip(dev);
8399 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8400 		return (ENXIO);
8401 
8402 	/*
8403 	 *  Allocate immediately the host control block,
8404 	 *  since we are only expecting to succeed. :)
8405 	 *  We keep track in the HCB of all the resources that
8406 	 *  are to be released on error.
8407 	 */
8408 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8409 	if (np)
8410 		np->bus_dmat = bus_dmat;
8411 	else
8412 		return (ENXIO);
8413 	device_set_softc(dev, np);
8414 
8415 	SYM_LOCK_INIT();
8416 
8417 	/*
8418 	 *  Copy some useful infos to the HCB.
8419 	 */
8420 	np->hcb_ba	 = vtobus(np);
8421 	np->verbose	 = bootverbose;
8422 	np->device	 = dev;
8423 	np->device_id	 = pci_get_device(dev);
8424 	np->revision_id  = pci_get_revid(dev);
8425 	np->features	 = chip->features;
8426 	np->clock_divn	 = chip->nr_divisor;
8427 	np->maxoffs	 = chip->offset_max;
8428 	np->maxburst	 = chip->burst_max;
8429 	np->scripta_sz	 = fw->a_size;
8430 	np->scriptb_sz	 = fw->b_size;
8431 	np->fw_setup	 = fw->setup;
8432 	np->fw_patch	 = fw->patch;
8433 	np->fw_name	 = fw->name;
8434 
8435 #ifdef __amd64__
8436 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8437 			"TARGET");
8438 	if (!np->target)
8439 		goto attach_failed;
8440 #endif
8441 
8442 	/*
8443 	 *  Initialize the CCB free and busy queues.
8444 	 */
8445 	sym_que_init(&np->free_ccbq);
8446 	sym_que_init(&np->busy_ccbq);
8447 	sym_que_init(&np->comp_ccbq);
8448 	sym_que_init(&np->cam_ccbq);
8449 
8450 	/*
8451 	 *  Allocate a tag for the DMA of user data.
8452 	 */
8453 	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8454 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8455 	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8456 	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8457 		device_printf(dev, "failed to create DMA tag.\n");
8458 		goto attach_failed;
8459 	}
8460 
8461 	/*
8462 	 *  Read and apply some fix-ups to the PCI COMMAND
8463 	 *  register. We want the chip to be enabled for:
8464 	 *  - BUS mastering
8465 	 *  - PCI parity checking (reporting would also be fine)
8466 	 *  - Write And Invalidate.
8467 	 */
8468 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8469 	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8470 	    PCIM_CMD_MWRICEN;
8471 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8472 
8473 	/*
8474 	 *  Let the device know about the cache line size,
8475 	 *  if it doesn't yet.
8476 	 */
8477 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8478 	if (!cachelnsz) {
8479 		cachelnsz = 8;
8480 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8481 	}
8482 
8483 	/*
8484 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8485 	 */
8486 	i = SYM_PCI_MMIO;
8487 	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8488 	    RF_ACTIVE);
8489 	if (!np->mmio_res) {
8490 		device_printf(dev, "failed to allocate MMIO resources\n");
8491 		goto attach_failed;
8492 	}
8493 	np->mmio_ba = rman_get_start(np->mmio_res);
8494 
8495 	/*
8496 	 *  Allocate the IRQ.
8497 	 */
8498 	i = 0;
8499 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8500 					     RF_ACTIVE | RF_SHAREABLE);
8501 	if (!np->irq_res) {
8502 		device_printf(dev, "failed to allocate IRQ resource\n");
8503 		goto attach_failed;
8504 	}
8505 
8506 #ifdef	SYM_CONF_IOMAPPED
8507 	/*
8508 	 *  User want us to use normal IO with PCI.
8509 	 *  Alloc/get/map/retrieve everything that deals with IO.
8510 	 */
8511 	i = SYM_PCI_IO;
8512 	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8513 	if (!np->io_res) {
8514 		device_printf(dev, "failed to allocate IO resources\n");
8515 		goto attach_failed;
8516 	}
8517 
8518 #endif /* SYM_CONF_IOMAPPED */
8519 
8520 	/*
8521 	 *  If the chip has RAM.
8522 	 *  Alloc/get/map/retrieve the corresponding resources.
8523 	 */
8524 	if (np->features & (FE_RAM|FE_RAM8K)) {
8525 		int regs_id = SYM_PCI_RAM;
8526 		if (np->features & FE_64BIT)
8527 			regs_id = SYM_PCI_RAM64;
8528 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8529 						     &regs_id, RF_ACTIVE);
8530 		if (!np->ram_res) {
8531 			device_printf(dev,"failed to allocate RAM resources\n");
8532 			goto attach_failed;
8533 		}
8534 		np->ram_id  = regs_id;
8535 		np->ram_ba = rman_get_start(np->ram_res);
8536 	}
8537 
8538 	/*
8539 	 *  Save setting of some IO registers, so we will
8540 	 *  be able to probe specific implementations.
8541 	 */
8542 	sym_save_initial_setting (np);
8543 
8544 	/*
8545 	 *  Reset the chip now, since it has been reported
8546 	 *  that SCSI clock calibration may not work properly
8547 	 *  if the chip is currently active.
8548 	 */
8549 	sym_chip_reset (np);
8550 
8551 	/*
8552 	 *  Try to read the user set-up.
8553 	 */
8554 	(void) sym_read_nvram(np, &nvram);
8555 
8556 	/*
8557 	 *  Prepare controller and devices settings, according
8558 	 *  to chip features, user set-up and driver set-up.
8559 	 */
8560 	(void) sym_prepare_setting(np, &nvram);
8561 
8562 	/*
8563 	 *  Check the PCI clock frequency.
8564 	 *  Must be performed after prepare_setting since it destroys
8565 	 *  STEST1 that is used to probe for the clock doubler.
8566 	 */
8567 	i = sym_getpciclock(np);
8568 	if (i > 37000)
8569 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8570 
8571 	/*
8572 	 *  Allocate the start queue.
8573 	 */
8574 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8575 	if (!np->squeue)
8576 		goto attach_failed;
8577 	np->squeue_ba = vtobus(np->squeue);
8578 
8579 	/*
8580 	 *  Allocate the done queue.
8581 	 */
8582 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8583 	if (!np->dqueue)
8584 		goto attach_failed;
8585 	np->dqueue_ba = vtobus(np->dqueue);
8586 
8587 	/*
8588 	 *  Allocate the target bus address array.
8589 	 */
8590 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8591 	if (!np->targtbl)
8592 		goto attach_failed;
8593 	np->targtbl_ba = vtobus(np->targtbl);
8594 
8595 	/*
8596 	 *  Allocate SCRIPTS areas.
8597 	 */
8598 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8599 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8600 	if (!np->scripta0 || !np->scriptb0)
8601 		goto attach_failed;
8602 
8603 	/*
8604 	 *  Allocate the CCBs. We need at least ONE.
8605 	 */
8606 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8607 		;
8608 	if (i < 1)
8609 		goto attach_failed;
8610 
8611 	/*
8612 	 *  Calculate BUS addresses where we are going
8613 	 *  to load the SCRIPTS.
8614 	 */
8615 	np->scripta_ba	= vtobus(np->scripta0);
8616 	np->scriptb_ba	= vtobus(np->scriptb0);
8617 	np->scriptb0_ba	= np->scriptb_ba;
8618 
8619 	if (np->ram_ba) {
8620 		np->scripta_ba	= np->ram_ba;
8621 		if (np->features & FE_RAM8K) {
8622 			np->ram_ws = 8192;
8623 			np->scriptb_ba = np->scripta_ba + 4096;
8624 #ifdef __LP64__
8625 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8626 #endif
8627 		}
8628 		else
8629 			np->ram_ws = 4096;
8630 	}
8631 
8632 	/*
8633 	 *  Copy scripts to controller instance.
8634 	 */
8635 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8636 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8637 
8638 	/*
8639 	 *  Setup variable parts in scripts and compute
8640 	 *  scripts bus addresses used from the C code.
8641 	 */
8642 	np->fw_setup(np, fw);
8643 
8644 	/*
8645 	 *  Bind SCRIPTS with physical addresses usable by the
8646 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8647 	 */
8648 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8649 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8650 
8651 #ifdef SYM_CONF_IARB_SUPPORT
8652 	/*
8653 	 *    If user wants IARB to be set when we win arbitration
8654 	 *    and have other jobs, compute the max number of consecutive
8655 	 *    settings of IARB hints before we leave devices a chance to
8656 	 *    arbitrate for reselection.
8657 	 */
8658 #ifdef	SYM_SETUP_IARB_MAX
8659 	np->iarb_max = SYM_SETUP_IARB_MAX;
8660 #else
8661 	np->iarb_max = 4;
8662 #endif
8663 #endif
8664 
8665 	/*
8666 	 *  Prepare the idle and invalid task actions.
8667 	 */
8668 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8669 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8670 	np->idletask_ba		= vtobus(&np->idletask);
8671 
8672 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8673 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8674 	np->notask_ba		= vtobus(&np->notask);
8675 
8676 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8677 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8678 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8679 
8680 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8681 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8682 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8683 
8684 	/*
8685 	 *  Allocate and prepare the lun JUMP table that is used
8686 	 *  for a target prior the probing of devices (bad lun table).
8687 	 *  A private table will be allocated for the target on the
8688 	 *  first INQUIRY response received.
8689 	 */
8690 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8691 	if (!np->badluntbl)
8692 		goto attach_failed;
8693 
8694 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8695 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8696 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8697 
8698 	/*
8699 	 *  Prepare the bus address array that contains the bus
8700 	 *  address of each target control block.
8701 	 *  For now, assume all logical units are wrong. :)
8702 	 */
8703 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8704 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8705 		np->target[i].head.luntbl_sa =
8706 				cpu_to_scr(vtobus(np->badluntbl));
8707 		np->target[i].head.lun0_sa =
8708 				cpu_to_scr(vtobus(&np->badlun_sa));
8709 	}
8710 
8711 	/*
8712 	 *  Now check the cache handling of the pci chipset.
8713 	 */
8714 	if (sym_snooptest (np)) {
8715 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8716 		goto attach_failed;
8717 	}
8718 
8719 	/*
8720 	 *  Now deal with CAM.
8721 	 *  Hopefully, we will succeed with that one.:)
8722 	 */
8723 	if (!sym_cam_attach(np))
8724 		goto attach_failed;
8725 
8726 	/*
8727 	 *  Sigh! we are done.
8728 	 */
8729 	return 0;
8730 
8731 	/*
8732 	 *  We have failed.
8733 	 *  We will try to free all the resources we have
8734 	 *  allocated, but if we are a boot device, this
8735 	 *  will not help that much.;)
8736 	 */
8737 attach_failed:
8738 	if (np)
8739 		sym_pci_free(np);
8740 	return ENXIO;
8741 }
8742 
8743 /*
8744  *  Free everything that have been allocated for this device.
8745  */
8746 static void sym_pci_free(hcb_p np)
8747 {
8748 	SYM_QUEHEAD *qp;
8749 	ccb_p cp;
8750 	tcb_p tp;
8751 	lcb_p lp;
8752 	int target, lun;
8753 
8754 	/*
8755 	 *  First free CAM resources.
8756 	 */
8757 	sym_cam_free(np);
8758 
8759 	/*
8760 	 *  Now every should be quiet for us to
8761 	 *  free other resources.
8762 	 */
8763 	if (np->ram_res)
8764 		bus_release_resource(np->device, SYS_RES_MEMORY,
8765 				     np->ram_id, np->ram_res);
8766 	if (np->mmio_res)
8767 		bus_release_resource(np->device, SYS_RES_MEMORY,
8768 				     SYM_PCI_MMIO, np->mmio_res);
8769 	if (np->io_res)
8770 		bus_release_resource(np->device, SYS_RES_IOPORT,
8771 				     SYM_PCI_IO, np->io_res);
8772 	if (np->irq_res)
8773 		bus_release_resource(np->device, SYS_RES_IRQ,
8774 				     0, np->irq_res);
8775 
8776 	if (np->scriptb0)
8777 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8778 	if (np->scripta0)
8779 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8780 	if (np->squeue)
8781 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8782 	if (np->dqueue)
8783 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8784 
8785 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8786 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8787 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8788 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8789 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8790 	}
8791 
8792 	if (np->badluntbl)
8793 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8794 
8795 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8796 		tp = &np->target[target];
8797 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8798 			lp = sym_lp(tp, lun);
8799 			if (!lp)
8800 				continue;
8801 			if (lp->itlq_tbl)
8802 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8803 				       "ITLQ_TBL");
8804 			if (lp->cb_tags)
8805 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8806 				       "CB_TAGS");
8807 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8808 		}
8809 #if SYM_CONF_MAX_LUN > 1
8810 		if (tp->lunmp)
8811 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8812 			       "LUNMP");
8813 #endif
8814 	}
8815 #ifdef __amd64__
8816 	if (np->target)
8817 		sym_mfree_dma(np->target,
8818 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8819 #endif
8820 	if (np->targtbl)
8821 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8822 	if (np->data_dmat)
8823 		bus_dma_tag_destroy(np->data_dmat);
8824 	if (SYM_LOCK_INITIALIZED() != 0)
8825 		SYM_LOCK_DESTROY();
8826 	device_set_softc(np->device, NULL);
8827 	sym_mfree_dma(np, sizeof(*np), "HCB");
8828 }
8829 
8830 /*
8831  *  Allocate CAM resources and register a bus to CAM.
8832  */
8833 static int sym_cam_attach(hcb_p np)
8834 {
8835 	struct cam_devq *devq = NULL;
8836 	struct cam_sim *sim = NULL;
8837 	struct cam_path *path = NULL;
8838 	int err;
8839 
8840 	/*
8841 	 *  Establish our interrupt handler.
8842 	 */
8843 	err = bus_setup_intr(np->device, np->irq_res,
8844 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8845 			NULL, sym_intr, np, &np->intr);
8846 	if (err) {
8847 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8848 			      err);
8849 		goto fail;
8850 	}
8851 
8852 	/*
8853 	 *  Create the device queue for our sym SIM.
8854 	 */
8855 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8856 	if (!devq)
8857 		goto fail;
8858 
8859 	/*
8860 	 *  Construct our SIM entry.
8861 	 */
8862 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8863 			device_get_unit(np->device),
8864 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8865 	if (!sim)
8866 		goto fail;
8867 
8868 	SYM_LOCK();
8869 
8870 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8871 		goto fail;
8872 	np->sim = sim;
8873 	sim = NULL;
8874 
8875 	if (xpt_create_path(&path, NULL,
8876 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8877 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8878 		goto fail;
8879 	}
8880 	np->path = path;
8881 
8882 	/*
8883 	 *  Establish our async notification handler.
8884 	 */
8885 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) !=
8886 	    CAM_REQ_CMP)
8887 		goto fail;
8888 
8889 	/*
8890 	 *  Start the chip now, without resetting the BUS, since
8891 	 *  it seems that this must stay under control of CAM.
8892 	 *  With LVD/SE capable chips and BUS in SE mode, we may
8893 	 *  get a spurious SMBC interrupt.
8894 	 */
8895 	sym_init (np, 0);
8896 
8897 	SYM_UNLOCK();
8898 
8899 	return 1;
8900 fail:
8901 	if (sim)
8902 		cam_sim_free(sim, FALSE);
8903 	if (devq)
8904 		cam_simq_free(devq);
8905 
8906 	SYM_UNLOCK();
8907 
8908 	sym_cam_free(np);
8909 
8910 	return 0;
8911 }
8912 
8913 /*
8914  *  Free everything that deals with CAM.
8915  */
8916 static void sym_cam_free(hcb_p np)
8917 {
8918 
8919 	SYM_LOCK_ASSERT(MA_NOTOWNED);
8920 
8921 	if (np->intr) {
8922 		bus_teardown_intr(np->device, np->irq_res, np->intr);
8923 		np->intr = NULL;
8924 	}
8925 
8926 	SYM_LOCK();
8927 
8928 	if (np->sim) {
8929 		xpt_bus_deregister(cam_sim_path(np->sim));
8930 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8931 		np->sim = NULL;
8932 	}
8933 	if (np->path) {
8934 		xpt_free_path(np->path);
8935 		np->path = NULL;
8936 	}
8937 
8938 	SYM_UNLOCK();
8939 }
8940 
8941 /*============ OPTIONNAL NVRAM SUPPORT =================*/
8942 
8943 /*
8944  *  Get host setup from NVRAM.
8945  */
8946 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8947 {
8948 #ifdef SYM_CONF_NVRAM_SUPPORT
8949 	/*
8950 	 *  Get parity checking, host ID, verbose mode
8951 	 *  and miscellaneous host flags from NVRAM.
8952 	 */
8953 	switch(nvram->type) {
8954 	case SYM_SYMBIOS_NVRAM:
8955 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8956 			np->rv_scntl0  &= ~0x0a;
8957 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8958 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8959 			np->verbose += 1;
8960 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8961 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8962 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8963 			np->usrflags |= SYM_AVOID_BUS_RESET;
8964 		break;
8965 	case SYM_TEKRAM_NVRAM:
8966 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8967 		break;
8968 	default:
8969 		break;
8970 	}
8971 #endif
8972 }
8973 
8974 /*
8975  *  Get target setup from NVRAM.
8976  */
8977 #ifdef SYM_CONF_NVRAM_SUPPORT
8978 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8979 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8980 #endif
8981 
8982 static void
8983 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
8984 {
8985 #ifdef SYM_CONF_NVRAM_SUPPORT
8986 	switch(nvp->type) {
8987 	case SYM_SYMBIOS_NVRAM:
8988 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
8989 		break;
8990 	case SYM_TEKRAM_NVRAM:
8991 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
8992 		break;
8993 	default:
8994 		break;
8995 	}
8996 #endif
8997 }
8998 
8999 #ifdef SYM_CONF_NVRAM_SUPPORT
9000 /*
9001  *  Get target set-up from Symbios format NVRAM.
9002  */
9003 static void
9004 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9005 {
9006 	tcb_p tp = &np->target[target];
9007 	Symbios_target *tn = &nvram->target[target];
9008 
9009 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9010 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9011 	tp->usrtags =
9012 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9013 
9014 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9015 		tp->usrflags &= ~SYM_DISC_ENABLED;
9016 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9017 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9018 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9019 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9020 }
9021 
9022 /*
9023  *  Get target set-up from Tekram format NVRAM.
9024  */
9025 static void
9026 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9027 {
9028 	tcb_p tp = &np->target[target];
9029 	struct Tekram_target *tn = &nvram->target[target];
9030 	int i;
9031 
9032 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9033 		i = tn->sync_index & 0xf;
9034 		tp->tinfo.user.period = Tekram_sync[i];
9035 	}
9036 
9037 	tp->tinfo.user.width =
9038 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9039 
9040 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9041 		tp->usrtags = 2 << nvram->max_tags_index;
9042 	}
9043 
9044 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9045 		tp->usrflags |= SYM_DISC_ENABLED;
9046 
9047 	/* If any device does not support parity, we will not use this option */
9048 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9049 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9050 }
9051 
9052 #ifdef	SYM_CONF_DEBUG_NVRAM
9053 /*
9054  *  Dump Symbios format NVRAM for debugging purpose.
9055  */
9056 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9057 {
9058 	int i;
9059 
9060 	/* display Symbios nvram host data */
9061 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9062 		sym_name(np), nvram->host_id & 0x0f,
9063 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9064 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9065 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9066 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9067 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9068 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9069 
9070 	/* display Symbios nvram drive data */
9071 	for (i = 0 ; i < 15 ; i++) {
9072 		struct Symbios_target *tn = &nvram->target[i];
9073 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9074 		sym_name(np), i,
9075 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9076 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9077 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9078 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9079 		tn->bus_width,
9080 		tn->sync_period / 4,
9081 		tn->timeout);
9082 	}
9083 }
9084 
9085 /*
9086  *  Dump TEKRAM format NVRAM for debugging purpose.
9087  */
9088 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9089 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9090 {
9091 	int i, tags, boot_delay;
9092 	char *rem;
9093 
9094 	/* display Tekram nvram host data */
9095 	tags = 2 << nvram->max_tags_index;
9096 	boot_delay = 0;
9097 	if (nvram->boot_delay_index < 6)
9098 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9099 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9100 	default:
9101 	case 0:	rem = "";			break;
9102 	case 1: rem = " REMOVABLE=boot device";	break;
9103 	case 2: rem = " REMOVABLE=all";		break;
9104 	}
9105 
9106 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9107 		sym_name(np), nvram->host_id & 0x0f,
9108 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9109 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9110 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9111 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9112 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9113 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9114 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9115 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9116 		rem, boot_delay, tags);
9117 
9118 	/* display Tekram nvram drive data */
9119 	for (i = 0; i <= 15; i++) {
9120 		int sync, j;
9121 		struct Tekram_target *tn = &nvram->target[i];
9122 		j = tn->sync_index & 0xf;
9123 		sync = Tekram_sync[j];
9124 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9125 		sym_name(np), i,
9126 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9127 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9128 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9129 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9130 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9131 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9132 		sync);
9133 	}
9134 }
9135 #endif	/* SYM_CONF_DEBUG_NVRAM */
9136 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9137 
9138 /*
9139  *  Try reading Symbios or Tekram NVRAM
9140  */
9141 #ifdef SYM_CONF_NVRAM_SUPPORT
9142 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9143 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9144 #endif
9145 
9146 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9147 {
9148 #ifdef SYM_CONF_NVRAM_SUPPORT
9149 	/*
9150 	 *  Try to read SYMBIOS nvram.
9151 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9152 	 */
9153 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9154 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9155 		nvp->type = SYM_SYMBIOS_NVRAM;
9156 #ifdef SYM_CONF_DEBUG_NVRAM
9157 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9158 #endif
9159 	}
9160 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9161 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9162 		nvp->type = SYM_TEKRAM_NVRAM;
9163 #ifdef SYM_CONF_DEBUG_NVRAM
9164 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9165 #endif
9166 	}
9167 	else
9168 		nvp->type = 0;
9169 #else
9170 	nvp->type = 0;
9171 #endif
9172 	return nvp->type;
9173 }
9174 
9175 #ifdef SYM_CONF_NVRAM_SUPPORT
9176 /*
9177  *  24C16 EEPROM reading.
9178  *
9179  *  GPOI0 - data in/data out
9180  *  GPIO1 - clock
9181  *  Symbios NVRAM wiring now also used by Tekram.
9182  */
9183 
9184 #define SET_BIT 0
9185 #define CLR_BIT 1
9186 #define SET_CLK 2
9187 #define CLR_CLK 3
9188 
9189 /*
9190  *  Set/clear data/clock bit in GPIO0
9191  */
9192 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9193 			  int bit_mode)
9194 {
9195 	UDELAY (5);
9196 	switch (bit_mode){
9197 	case SET_BIT:
9198 		*gpreg |= write_bit;
9199 		break;
9200 	case CLR_BIT:
9201 		*gpreg &= 0xfe;
9202 		break;
9203 	case SET_CLK:
9204 		*gpreg |= 0x02;
9205 		break;
9206 	case CLR_CLK:
9207 		*gpreg &= 0xfd;
9208 		break;
9209 	}
9210 	OUTB (nc_gpreg, *gpreg);
9211 	UDELAY (5);
9212 }
9213 
9214 /*
9215  *  Send START condition to NVRAM to wake it up.
9216  */
9217 static void S24C16_start(hcb_p np, u_char *gpreg)
9218 {
9219 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9220 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9221 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9222 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9223 }
9224 
9225 /*
9226  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9227  */
9228 static void S24C16_stop(hcb_p np, u_char *gpreg)
9229 {
9230 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9231 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9232 }
9233 
9234 /*
9235  *  Read or write a bit to the NVRAM,
9236  *  read if GPIO0 input else write if GPIO0 output
9237  */
9238 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9239 			 u_char *gpreg)
9240 {
9241 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9242 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9243 	if (read_bit)
9244 		*read_bit = INB (nc_gpreg);
9245 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9246 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9247 }
9248 
9249 /*
9250  *  Output an ACK to the NVRAM after reading,
9251  *  change GPIO0 to output and when done back to an input
9252  */
9253 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9254 			    u_char *gpcntl)
9255 {
9256 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9257 	S24C16_do_bit(np, 0, write_bit, gpreg);
9258 	OUTB (nc_gpcntl, *gpcntl);
9259 }
9260 
9261 /*
9262  *  Input an ACK from NVRAM after writing,
9263  *  change GPIO0 to input and when done back to an output
9264  */
9265 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9266 			   u_char *gpcntl)
9267 {
9268 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9269 	S24C16_do_bit(np, read_bit, 1, gpreg);
9270 	OUTB (nc_gpcntl, *gpcntl);
9271 }
9272 
9273 /*
9274  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9275  *  GPIO0 must already be set as an output
9276  */
9277 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9278 			     u_char *gpreg, u_char *gpcntl)
9279 {
9280 	int x;
9281 
9282 	for (x = 0; x < 8; x++)
9283 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9284 
9285 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9286 }
9287 
9288 /*
9289  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9290  *  GPIO0 must already be set as an input
9291  */
9292 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9293 			    u_char *gpreg, u_char *gpcntl)
9294 {
9295 	int x;
9296 	u_char read_bit;
9297 
9298 	*read_data = 0;
9299 	for (x = 0; x < 8; x++) {
9300 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9301 		*read_data |= ((read_bit & 0x01) << (7 - x));
9302 	}
9303 
9304 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9305 }
9306 
9307 /*
9308  *  Read 'len' bytes starting at 'offset'.
9309  */
9310 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9311 {
9312 	u_char	gpcntl, gpreg;
9313 	u_char	old_gpcntl, old_gpreg;
9314 	u_char	ack_data;
9315 	int	retv = 1;
9316 	int	x;
9317 
9318 	/* save current state of GPCNTL and GPREG */
9319 	old_gpreg	= INB (nc_gpreg);
9320 	old_gpcntl	= INB (nc_gpcntl);
9321 	gpcntl		= old_gpcntl & 0x1c;
9322 
9323 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9324 	OUTB (nc_gpreg,  old_gpreg);
9325 	OUTB (nc_gpcntl, gpcntl);
9326 
9327 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9328 	gpreg = old_gpreg;
9329 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9330 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9331 
9332 	/* now set NVRAM inactive with GPIO0/1 both high */
9333 	S24C16_stop(np, &gpreg);
9334 
9335 	/* activate NVRAM */
9336 	S24C16_start(np, &gpreg);
9337 
9338 	/* write device code and random address MSB */
9339 	S24C16_write_byte(np, &ack_data,
9340 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9341 	if (ack_data & 0x01)
9342 		goto out;
9343 
9344 	/* write random address LSB */
9345 	S24C16_write_byte(np, &ack_data,
9346 		offset & 0xff, &gpreg, &gpcntl);
9347 	if (ack_data & 0x01)
9348 		goto out;
9349 
9350 	/* regenerate START state to set up for reading */
9351 	S24C16_start(np, &gpreg);
9352 
9353 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9354 	S24C16_write_byte(np, &ack_data,
9355 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9356 	if (ack_data & 0x01)
9357 		goto out;
9358 
9359 	/* now set up GPIO0 for inputting data */
9360 	gpcntl |= 0x01;
9361 	OUTB (nc_gpcntl, gpcntl);
9362 
9363 	/* input all requested data - only part of total NVRAM */
9364 	for (x = 0; x < len; x++)
9365 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9366 
9367 	/* finally put NVRAM back in inactive mode */
9368 	gpcntl &= 0xfe;
9369 	OUTB (nc_gpcntl, gpcntl);
9370 	S24C16_stop(np, &gpreg);
9371 	retv = 0;
9372 out:
9373 	/* return GPIO0/1 to original states after having accessed NVRAM */
9374 	OUTB (nc_gpcntl, old_gpcntl);
9375 	OUTB (nc_gpreg,  old_gpreg);
9376 
9377 	return retv;
9378 }
9379 
9380 #undef SET_BIT /* 0 */
9381 #undef CLR_BIT /* 1 */
9382 #undef SET_CLK /* 2 */
9383 #undef CLR_CLK /* 3 */
9384 
9385 /*
9386  *  Try reading Symbios NVRAM.
9387  *  Return 0 if OK.
9388  */
9389 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9390 {
9391 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9392 	u_char *data = (u_char *) nvram;
9393 	int len  = sizeof(*nvram);
9394 	u_short	csum;
9395 	int x;
9396 
9397 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9398 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9399 		return 1;
9400 
9401 	/* check valid NVRAM signature, verify byte count and checksum */
9402 	if (nvram->type != 0 ||
9403 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9404 	    nvram->byte_count != len - 12)
9405 		return 1;
9406 
9407 	/* verify checksum */
9408 	for (x = 6, csum = 0; x < len - 6; x++)
9409 		csum += data[x];
9410 	if (csum != nvram->checksum)
9411 		return 1;
9412 
9413 	return 0;
9414 }
9415 
9416 /*
9417  *  93C46 EEPROM reading.
9418  *
9419  *  GPOI0 - data in
9420  *  GPIO1 - data out
9421  *  GPIO2 - clock
9422  *  GPIO4 - chip select
9423  *
9424  *  Used by Tekram.
9425  */
9426 
9427 /*
9428  *  Pulse clock bit in GPIO0
9429  */
9430 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9431 {
9432 	OUTB (nc_gpreg, *gpreg | 0x04);
9433 	UDELAY (2);
9434 	OUTB (nc_gpreg, *gpreg);
9435 }
9436 
9437 /*
9438  *  Read bit from NVRAM
9439  */
9440 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9441 {
9442 	UDELAY (2);
9443 	T93C46_Clk(np, gpreg);
9444 	*read_bit = INB (nc_gpreg);
9445 }
9446 
9447 /*
9448  *  Write bit to GPIO0
9449  */
9450 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9451 {
9452 	if (write_bit & 0x01)
9453 		*gpreg |= 0x02;
9454 	else
9455 		*gpreg &= 0xfd;
9456 
9457 	*gpreg |= 0x10;
9458 
9459 	OUTB (nc_gpreg, *gpreg);
9460 	UDELAY (2);
9461 
9462 	T93C46_Clk(np, gpreg);
9463 }
9464 
9465 /*
9466  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9467  */
9468 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9469 {
9470 	*gpreg &= 0xef;
9471 	OUTB (nc_gpreg, *gpreg);
9472 	UDELAY (2);
9473 
9474 	T93C46_Clk(np, gpreg);
9475 }
9476 
9477 /*
9478  *  Send read command and address to NVRAM
9479  */
9480 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9481 				u_char *read_bit, u_char *gpreg)
9482 {
9483 	int x;
9484 
9485 	/* send 9 bits, start bit (1), command (2), address (6)  */
9486 	for (x = 0; x < 9; x++)
9487 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9488 
9489 	*read_bit = INB (nc_gpreg);
9490 }
9491 
9492 /*
9493  *  READ 2 bytes from the NVRAM
9494  */
9495 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9496 {
9497 	int x;
9498 	u_char read_bit;
9499 
9500 	*nvram_data = 0;
9501 	for (x = 0; x < 16; x++) {
9502 		T93C46_Read_Bit(np, &read_bit, gpreg);
9503 
9504 		if (read_bit & 0x01)
9505 			*nvram_data |=  (0x01 << (15 - x));
9506 		else
9507 			*nvram_data &= ~(0x01 << (15 - x));
9508 	}
9509 }
9510 
9511 /*
9512  *  Read Tekram NvRAM data.
9513  */
9514 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9515 {
9516 	u_char	read_bit;
9517 	int	x;
9518 
9519 	for (x = 0; x < len; x++)  {
9520 		/* output read command and address */
9521 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9522 		if (read_bit & 0x01)
9523 			return 1; /* Bad */
9524 		T93C46_Read_Word(np, &data[x], gpreg);
9525 		T93C46_Stop(np, gpreg);
9526 	}
9527 
9528 	return 0;
9529 }
9530 
9531 /*
9532  *  Try reading 93C46 Tekram NVRAM.
9533  */
9534 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9535 {
9536 	u_char gpcntl, gpreg;
9537 	u_char old_gpcntl, old_gpreg;
9538 	int retv = 1;
9539 
9540 	/* save current state of GPCNTL and GPREG */
9541 	old_gpreg	= INB (nc_gpreg);
9542 	old_gpcntl	= INB (nc_gpcntl);
9543 
9544 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9545 	   1/2/4 out */
9546 	gpreg = old_gpreg & 0xe9;
9547 	OUTB (nc_gpreg, gpreg);
9548 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9549 	OUTB (nc_gpcntl, gpcntl);
9550 
9551 	/* input all of NVRAM, 64 words */
9552 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9553 				sizeof(*nvram) / sizeof(short), &gpreg);
9554 
9555 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9556 	OUTB (nc_gpcntl, old_gpcntl);
9557 	OUTB (nc_gpreg,  old_gpreg);
9558 
9559 	return retv;
9560 }
9561 
9562 /*
9563  *  Try reading Tekram NVRAM.
9564  *  Return 0 if OK.
9565  */
9566 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9567 {
9568 	u_char *data = (u_char *) nvram;
9569 	int len = sizeof(*nvram);
9570 	u_short	csum;
9571 	int x;
9572 
9573 	switch (np->device_id) {
9574 	case PCI_ID_SYM53C885:
9575 	case PCI_ID_SYM53C895:
9576 	case PCI_ID_SYM53C896:
9577 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9578 					  data, len);
9579 		break;
9580 	case PCI_ID_SYM53C875:
9581 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9582 					  data, len);
9583 		if (!x)
9584 			break;
9585 	default:
9586 		x = sym_read_T93C46_nvram(np, nvram);
9587 		break;
9588 	}
9589 	if (x)
9590 		return 1;
9591 
9592 	/* verify checksum */
9593 	for (x = 0, csum = 0; x < len - 1; x += 2)
9594 		csum += data[x] + (data[x+1] << 8);
9595 	if (csum != 0x1234)
9596 		return 1;
9597 
9598 	return 0;
9599 }
9600 
9601 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9602