1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 5 * PCI-SCSI controllers. 6 * 7 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 8 * 9 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 10 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 11 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 12 * 13 * 14 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 15 * Copyright (C) 1998-1999 Gerard Roudier 16 * 17 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 18 * a port of the FreeBSD ncr driver to Linux-1.2.13. 19 * 20 * The original ncr driver has been written for 386bsd and FreeBSD by 21 * Wolfgang Stanglmeier <wolf@cologne.de> 22 * Stefan Esser <se@mi.Uni-Koeln.de> 23 * Copyright (C) 1994 Wolfgang Stanglmeier 24 * 25 * The initialisation code, and part of the code that addresses 26 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 27 * written by Justin T. Gibbs. 28 * 29 * Other major contributions: 30 * 31 * NVRAM detection and reading. 32 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 33 * 34 *----------------------------------------------------------------------------- 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. The name of the author may not be used to endorse or promote products 45 * derived from this software without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 51 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 64 65 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 66 67 #include <sys/param.h> 68 69 /* 70 * Driver configuration options. 71 */ 72 #include "opt_sym.h" 73 #include <dev/sym/sym_conf.h> 74 75 #include <sys/systm.h> 76 #include <sys/malloc.h> 77 #include <sys/endian.h> 78 #include <sys/kernel.h> 79 #include <sys/lock.h> 80 #include <sys/mutex.h> 81 #include <sys/module.h> 82 #include <sys/bus.h> 83 84 #include <sys/proc.h> 85 86 #include <dev/pci/pcireg.h> 87 #include <dev/pci/pcivar.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <machine/atomic.h> 92 93 #ifdef __sparc64__ 94 #include <dev/ofw/openfirm.h> 95 #include <machine/ofw_machdep.h> 96 #endif 97 98 #include <sys/rman.h> 99 100 #include <cam/cam.h> 101 #include <cam/cam_ccb.h> 102 #include <cam/cam_sim.h> 103 #include <cam/cam_xpt_sim.h> 104 #include <cam/cam_debug.h> 105 106 #include <cam/scsi/scsi_all.h> 107 #include <cam/scsi/scsi_message.h> 108 109 /* Short and quite clear integer types */ 110 typedef int8_t s8; 111 typedef int16_t s16; 112 typedef int32_t s32; 113 typedef u_int8_t u8; 114 typedef u_int16_t u16; 115 typedef u_int32_t u32; 116 117 /* 118 * Driver definitions. 119 */ 120 #include <dev/sym/sym_defs.h> 121 #include <dev/sym/sym_fw.h> 122 123 /* 124 * IA32 architecture does not reorder STORES and prevents 125 * LOADS from passing STORES. It is called `program order' 126 * by Intel and allows device drivers to deal with memory 127 * ordering by only ensuring that the code is not reordered 128 * by the compiler when ordering is required. 129 * Other architectures implement a weaker ordering that 130 * requires memory barriers (and also IO barriers when they 131 * make sense) to be used. 132 */ 133 #if defined __i386__ || defined __amd64__ 134 #define MEMORY_BARRIER() do { ; } while(0) 135 #elif defined __powerpc__ 136 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 137 #elif defined __sparc64__ 138 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 139 #elif defined __arm__ 140 #define MEMORY_BARRIER() dmb() 141 #elif defined __aarch64__ 142 #define MEMORY_BARRIER() dmb(sy) 143 #elif defined __riscv 144 #define MEMORY_BARRIER() fence() 145 #else 146 #error "Not supported platform" 147 #endif 148 149 /* 150 * A la VMS/CAM-3 queue management. 151 */ 152 typedef struct sym_quehead { 153 struct sym_quehead *flink; /* Forward pointer */ 154 struct sym_quehead *blink; /* Backward pointer */ 155 } SYM_QUEHEAD; 156 157 #define sym_que_init(ptr) do { \ 158 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 159 } while (0) 160 161 static __inline void __sym_que_add(struct sym_quehead * new, 162 struct sym_quehead * blink, 163 struct sym_quehead * flink) 164 { 165 flink->blink = new; 166 new->flink = flink; 167 new->blink = blink; 168 blink->flink = new; 169 } 170 171 static __inline void __sym_que_del(struct sym_quehead * blink, 172 struct sym_quehead * flink) 173 { 174 flink->blink = blink; 175 blink->flink = flink; 176 } 177 178 static __inline int sym_que_empty(struct sym_quehead *head) 179 { 180 return head->flink == head; 181 } 182 183 static __inline void sym_que_splice(struct sym_quehead *list, 184 struct sym_quehead *head) 185 { 186 struct sym_quehead *first = list->flink; 187 188 if (first != list) { 189 struct sym_quehead *last = list->blink; 190 struct sym_quehead *at = head->flink; 191 192 first->blink = head; 193 head->flink = first; 194 195 last->flink = at; 196 at->blink = last; 197 } 198 } 199 200 #define sym_que_entry(ptr, type, member) \ 201 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 202 203 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 204 205 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 206 207 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 208 209 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 210 { 211 struct sym_quehead *elem = head->flink; 212 213 if (elem != head) 214 __sym_que_del(head, elem->flink); 215 else 216 elem = NULL; 217 return elem; 218 } 219 220 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 221 222 /* 223 * This one may be useful. 224 */ 225 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 226 for (qp = (head)->flink; qp != (head); qp = qp->flink) 227 /* 228 * FreeBSD does not offer our kind of queue in the CAM CCB. 229 * So, we have to cast. 230 */ 231 #define sym_qptr(p) ((struct sym_quehead *) (p)) 232 233 /* 234 * Simple bitmap operations. 235 */ 236 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 237 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 238 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 239 240 /* 241 * Number of tasks per device we want to handle. 242 */ 243 #if SYM_CONF_MAX_TAG_ORDER > 8 244 #error "more than 256 tags per logical unit not allowed." 245 #endif 246 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 247 248 /* 249 * Donnot use more tasks that we can handle. 250 */ 251 #ifndef SYM_CONF_MAX_TAG 252 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 253 #endif 254 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 255 #undef SYM_CONF_MAX_TAG 256 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 257 #endif 258 259 /* 260 * This one means 'NO TAG for this job' 261 */ 262 #define NO_TAG (256) 263 264 /* 265 * Number of SCSI targets. 266 */ 267 #if SYM_CONF_MAX_TARGET > 16 268 #error "more than 16 targets not allowed." 269 #endif 270 271 /* 272 * Number of logical units per target. 273 */ 274 #if SYM_CONF_MAX_LUN > 64 275 #error "more than 64 logical units per target not allowed." 276 #endif 277 278 /* 279 * Asynchronous pre-scaler (ns). Shall be 40 for 280 * the SCSI timings to be compliant. 281 */ 282 #define SYM_CONF_MIN_ASYNC (40) 283 284 /* 285 * Number of entries in the START and DONE queues. 286 * 287 * We limit to 1 PAGE in order to succeed allocation of 288 * these queues. Each entry is 8 bytes long (2 DWORDS). 289 */ 290 #ifdef SYM_CONF_MAX_START 291 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 292 #else 293 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 294 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 295 #endif 296 297 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 298 #undef SYM_CONF_MAX_QUEUE 299 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 300 #undef SYM_CONF_MAX_START 301 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 302 #endif 303 304 /* 305 * For this one, we want a short name :-) 306 */ 307 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 308 309 /* 310 * Active debugging tags and verbosity. 311 */ 312 #define DEBUG_ALLOC (0x0001) 313 #define DEBUG_PHASE (0x0002) 314 #define DEBUG_POLL (0x0004) 315 #define DEBUG_QUEUE (0x0008) 316 #define DEBUG_RESULT (0x0010) 317 #define DEBUG_SCATTER (0x0020) 318 #define DEBUG_SCRIPT (0x0040) 319 #define DEBUG_TINY (0x0080) 320 #define DEBUG_TIMING (0x0100) 321 #define DEBUG_NEGO (0x0200) 322 #define DEBUG_TAGS (0x0400) 323 #define DEBUG_POINTER (0x0800) 324 325 #if 0 326 static int sym_debug = 0; 327 #define DEBUG_FLAGS sym_debug 328 #else 329 /* #define DEBUG_FLAGS (0x0631) */ 330 #define DEBUG_FLAGS (0x0000) 331 332 #endif 333 #define sym_verbose (np->verbose) 334 335 /* 336 * Insert a delay in micro-seconds and milli-seconds. 337 */ 338 static void UDELAY(int us) { DELAY(us); } 339 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 340 341 /* 342 * Simple power of two buddy-like allocator. 343 * 344 * This simple code is not intended to be fast, but to 345 * provide power of 2 aligned memory allocations. 346 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 347 * this allocator allows simple and fast address calculations 348 * from the SCRIPTS code. In addition, cache line alignment 349 * is guaranteed for power of 2 cache line size. 350 * 351 * This allocator has been developed for the Linux sym53c8xx 352 * driver, since this O/S does not provide naturally aligned 353 * allocations. 354 * It has the advantage of allowing the driver to use private 355 * pages of memory that will be useful if we ever need to deal 356 * with IO MMUs for PCI. 357 */ 358 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 359 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 360 #if 0 361 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 362 #endif 363 #define MEMO_WARN 1 364 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 365 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 366 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 367 368 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 369 #define free_pages(p) free((p), M_DEVBUF) 370 371 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 372 373 typedef struct m_link { /* Link between free memory chunks */ 374 struct m_link *next; 375 } m_link_s; 376 377 typedef struct m_vtob { /* Virtual to Bus address translation */ 378 struct m_vtob *next; 379 bus_dmamap_t dmamap; /* Map for this chunk */ 380 m_addr_t vaddr; /* Virtual address */ 381 m_addr_t baddr; /* Bus physical address */ 382 } m_vtob_s; 383 /* Hash this stuff a bit to speed up translations */ 384 #define VTOB_HASH_SHIFT 5 385 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 386 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 387 #define VTOB_HASH_CODE(m) \ 388 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 389 390 typedef struct m_pool { /* Memory pool of a given kind */ 391 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 392 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 393 m_addr_t (*getp)(struct m_pool *); 394 #ifdef MEMO_FREE_UNUSED 395 void (*freep)(struct m_pool *, m_addr_t); 396 #endif 397 #define M_GETP() mp->getp(mp) 398 #define M_FREEP(p) mp->freep(mp, p) 399 int nump; 400 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 401 struct m_pool *next; 402 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 403 } m_pool_s; 404 405 static void *___sym_malloc(m_pool_s *mp, int size) 406 { 407 int i = 0; 408 int s = (1 << MEMO_SHIFT); 409 int j; 410 m_addr_t a; 411 m_link_s *h = mp->h; 412 413 if (size > MEMO_CLUSTER_SIZE) 414 return NULL; 415 416 while (size > s) { 417 s <<= 1; 418 ++i; 419 } 420 421 j = i; 422 while (!h[j].next) { 423 if (s == MEMO_CLUSTER_SIZE) { 424 h[j].next = (m_link_s *) M_GETP(); 425 if (h[j].next) 426 h[j].next->next = NULL; 427 break; 428 } 429 ++j; 430 s <<= 1; 431 } 432 a = (m_addr_t) h[j].next; 433 if (a) { 434 h[j].next = h[j].next->next; 435 while (j > i) { 436 j -= 1; 437 s >>= 1; 438 h[j].next = (m_link_s *) (a+s); 439 h[j].next->next = NULL; 440 } 441 } 442 #ifdef DEBUG 443 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 444 #endif 445 return (void *) a; 446 } 447 448 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 449 { 450 int i = 0; 451 int s = (1 << MEMO_SHIFT); 452 m_link_s *q; 453 m_addr_t a, b; 454 m_link_s *h = mp->h; 455 456 #ifdef DEBUG 457 printf("___sym_mfree(%p, %d)\n", ptr, size); 458 #endif 459 460 if (size > MEMO_CLUSTER_SIZE) 461 return; 462 463 while (size > s) { 464 s <<= 1; 465 ++i; 466 } 467 468 a = (m_addr_t) ptr; 469 470 while (1) { 471 #ifdef MEMO_FREE_UNUSED 472 if (s == MEMO_CLUSTER_SIZE) { 473 M_FREEP(a); 474 break; 475 } 476 #endif 477 b = a ^ s; 478 q = &h[i]; 479 while (q->next && q->next != (m_link_s *) b) { 480 q = q->next; 481 } 482 if (!q->next) { 483 ((m_link_s *) a)->next = h[i].next; 484 h[i].next = (m_link_s *) a; 485 break; 486 } 487 q->next = q->next->next; 488 a = a & b; 489 s <<= 1; 490 ++i; 491 } 492 } 493 494 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 495 { 496 void *p; 497 498 p = ___sym_malloc(mp, size); 499 500 if (DEBUG_FLAGS & DEBUG_ALLOC) 501 printf ("new %-10s[%4d] @%p.\n", name, size, p); 502 503 if (p) 504 bzero(p, size); 505 else if (uflags & MEMO_WARN) 506 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 507 508 return p; 509 } 510 511 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 512 513 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 514 { 515 if (DEBUG_FLAGS & DEBUG_ALLOC) 516 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 517 518 ___sym_mfree(mp, ptr, size); 519 520 } 521 522 /* 523 * Default memory pool we donnot need to involve in DMA. 524 */ 525 /* 526 * With the `bus dma abstraction', we use a separate pool for 527 * memory we donnot need to involve in DMA. 528 */ 529 static m_addr_t ___mp0_getp(m_pool_s *mp) 530 { 531 m_addr_t m = (m_addr_t) get_pages(); 532 if (m) 533 ++mp->nump; 534 return m; 535 } 536 537 #ifdef MEMO_FREE_UNUSED 538 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 539 { 540 free_pages(m); 541 --mp->nump; 542 } 543 #endif 544 545 #ifdef MEMO_FREE_UNUSED 546 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 547 #else 548 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 549 #endif 550 551 /* 552 * Actual memory allocation routine for non-DMAed memory. 553 */ 554 static void *sym_calloc(int size, char *name) 555 { 556 void *m; 557 /* Lock */ 558 m = __sym_calloc(&mp0, size, name); 559 /* Unlock */ 560 return m; 561 } 562 563 /* 564 * Actual memory allocation routine for non-DMAed memory. 565 */ 566 static void sym_mfree(void *ptr, int size, char *name) 567 { 568 /* Lock */ 569 __sym_mfree(&mp0, ptr, size, name); 570 /* Unlock */ 571 } 572 573 /* 574 * DMAable pools. 575 */ 576 /* 577 * With `bus dma abstraction', we use a separate pool per parent 578 * BUS handle. A reverse table (hashed) is maintained for virtual 579 * to BUS address translation. 580 */ 581 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused, 582 int error) 583 { 584 bus_addr_t *baddr; 585 586 KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg)); 587 588 baddr = (bus_addr_t *)arg; 589 if (error) 590 *baddr = 0; 591 else 592 *baddr = segs->ds_addr; 593 } 594 595 static m_addr_t ___dma_getp(m_pool_s *mp) 596 { 597 m_vtob_s *vbp; 598 void *vaddr = NULL; 599 bus_addr_t baddr = 0; 600 601 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 602 if (!vbp) 603 goto out_err; 604 605 if (bus_dmamem_alloc(mp->dmat, &vaddr, 606 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 607 goto out_err; 608 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 609 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 610 if (baddr) { 611 int hc = VTOB_HASH_CODE(vaddr); 612 vbp->vaddr = (m_addr_t) vaddr; 613 vbp->baddr = (m_addr_t) baddr; 614 vbp->next = mp->vtob[hc]; 615 mp->vtob[hc] = vbp; 616 ++mp->nump; 617 return (m_addr_t) vaddr; 618 } 619 out_err: 620 if (baddr) 621 bus_dmamap_unload(mp->dmat, vbp->dmamap); 622 if (vaddr) 623 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 624 if (vbp) 625 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 626 return 0; 627 } 628 629 #ifdef MEMO_FREE_UNUSED 630 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 631 { 632 m_vtob_s **vbpp, *vbp; 633 int hc = VTOB_HASH_CODE(m); 634 635 vbpp = &mp->vtob[hc]; 636 while (*vbpp && (*vbpp)->vaddr != m) 637 vbpp = &(*vbpp)->next; 638 if (*vbpp) { 639 vbp = *vbpp; 640 *vbpp = (*vbpp)->next; 641 bus_dmamap_unload(mp->dmat, vbp->dmamap); 642 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 643 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 644 --mp->nump; 645 } 646 } 647 #endif 648 649 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 650 { 651 m_pool_s *mp; 652 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 653 return mp; 654 } 655 656 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 657 { 658 m_pool_s *mp = NULL; 659 660 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 661 if (mp) { 662 mp->dev_dmat = dev_dmat; 663 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 664 BUS_SPACE_MAXADDR_32BIT, 665 BUS_SPACE_MAXADDR, 666 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 667 MEMO_CLUSTER_SIZE, 0, 668 NULL, NULL, &mp->dmat)) { 669 mp->getp = ___dma_getp; 670 #ifdef MEMO_FREE_UNUSED 671 mp->freep = ___dma_freep; 672 #endif 673 mp->next = mp0.next; 674 mp0.next = mp; 675 return mp; 676 } 677 } 678 if (mp) 679 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 680 return NULL; 681 } 682 683 #ifdef MEMO_FREE_UNUSED 684 static void ___del_dma_pool(m_pool_s *p) 685 { 686 struct m_pool **pp = &mp0.next; 687 688 while (*pp && *pp != p) 689 pp = &(*pp)->next; 690 if (*pp) { 691 *pp = (*pp)->next; 692 bus_dma_tag_destroy(p->dmat); 693 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 694 } 695 } 696 #endif 697 698 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 699 { 700 struct m_pool *mp; 701 void *m = NULL; 702 703 /* Lock */ 704 mp = ___get_dma_pool(dev_dmat); 705 if (!mp) 706 mp = ___cre_dma_pool(dev_dmat); 707 if (mp) 708 m = __sym_calloc(mp, size, name); 709 #ifdef MEMO_FREE_UNUSED 710 if (mp && !mp->nump) 711 ___del_dma_pool(mp); 712 #endif 713 /* Unlock */ 714 715 return m; 716 } 717 718 static void 719 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 720 { 721 struct m_pool *mp; 722 723 /* Lock */ 724 mp = ___get_dma_pool(dev_dmat); 725 if (mp) 726 __sym_mfree(mp, m, size, name); 727 #ifdef MEMO_FREE_UNUSED 728 if (mp && !mp->nump) 729 ___del_dma_pool(mp); 730 #endif 731 /* Unlock */ 732 } 733 734 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 735 { 736 m_pool_s *mp; 737 int hc = VTOB_HASH_CODE(m); 738 m_vtob_s *vp = NULL; 739 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 740 741 /* Lock */ 742 mp = ___get_dma_pool(dev_dmat); 743 if (mp) { 744 vp = mp->vtob[hc]; 745 while (vp && (m_addr_t) vp->vaddr != a) 746 vp = vp->next; 747 } 748 /* Unlock */ 749 if (!vp) 750 panic("sym: VTOBUS FAILED!\n"); 751 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 752 } 753 754 /* 755 * Verbs for DMAable memory handling. 756 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 757 * being discarded. 758 */ 759 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 760 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 761 #define _sym_mfree_dma(np, p, s, n) \ 762 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 763 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 764 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 765 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 766 #define vtobus(p) _vtobus(np, p) 767 768 /* 769 * Print a buffer in hexadecimal format. 770 */ 771 static void sym_printb_hex (u_char *p, int n) 772 { 773 while (n-- > 0) 774 printf (" %x", *p++); 775 } 776 777 /* 778 * Same with a label at beginning and .\n at end. 779 */ 780 static void sym_printl_hex (char *label, u_char *p, int n) 781 { 782 printf ("%s", label); 783 sym_printb_hex (p, n); 784 printf (".\n"); 785 } 786 787 /* 788 * Return a string for SCSI BUS mode. 789 */ 790 static const char *sym_scsi_bus_mode(int mode) 791 { 792 switch(mode) { 793 case SMODE_HVD: return "HVD"; 794 case SMODE_SE: return "SE"; 795 case SMODE_LVD: return "LVD"; 796 } 797 return "??"; 798 } 799 800 /* 801 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 802 */ 803 #ifdef SYM_CONF_NVRAM_SUPPORT 804 static const u_char Tekram_sync[16] = 805 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 806 #endif 807 808 /* 809 * Union of supported NVRAM formats. 810 */ 811 struct sym_nvram { 812 int type; 813 #define SYM_SYMBIOS_NVRAM (1) 814 #define SYM_TEKRAM_NVRAM (2) 815 #ifdef SYM_CONF_NVRAM_SUPPORT 816 union { 817 Symbios_nvram Symbios; 818 Tekram_nvram Tekram; 819 } data; 820 #endif 821 }; 822 823 /* 824 * This one is hopefully useless, but actually useful. :-) 825 */ 826 #ifndef assert 827 #define assert(expression) { \ 828 if (!(expression)) { \ 829 (void)panic( \ 830 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 831 #expression, \ 832 __FILE__, __LINE__); \ 833 } \ 834 } 835 #endif 836 837 /* 838 * Some provision for a possible big endian mode supported by 839 * Symbios chips (never seen, by the way). 840 * For now, this stuff does not deserve any comments. :) 841 */ 842 #define sym_offb(o) (o) 843 #define sym_offw(o) (o) 844 845 /* 846 * Some provision for support for BIG ENDIAN CPU. 847 */ 848 #define cpu_to_scr(dw) htole32(dw) 849 #define scr_to_cpu(dw) le32toh(dw) 850 851 /* 852 * Access to the chip IO registers and on-chip RAM. 853 * We use the `bus space' interface under FreeBSD-4 and 854 * later kernel versions. 855 */ 856 #if defined(SYM_CONF_IOMAPPED) 857 858 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 859 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 860 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 861 862 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 863 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 864 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 865 866 #else /* Memory mapped IO */ 867 868 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 869 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 870 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 871 872 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 873 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 874 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 875 876 #endif /* SYM_CONF_IOMAPPED */ 877 878 #define OUTRAM_OFF(o, a, l) \ 879 bus_write_region_1(np->ram_res, (o), (a), (l)) 880 881 /* 882 * Common definitions for both bus space and legacy IO methods. 883 */ 884 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 885 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 886 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 887 888 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 889 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 890 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 891 892 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 893 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 894 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 895 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 896 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 897 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 898 899 /* 900 * We normally want the chip to have a consistent view 901 * of driver internal data structures when we restart it. 902 * Thus these macros. 903 */ 904 #define OUTL_DSP(v) \ 905 do { \ 906 MEMORY_BARRIER(); \ 907 OUTL (nc_dsp, (v)); \ 908 } while (0) 909 910 #define OUTONB_STD() \ 911 do { \ 912 MEMORY_BARRIER(); \ 913 OUTONB (nc_dcntl, (STD|NOCOM)); \ 914 } while (0) 915 916 /* 917 * Command control block states. 918 */ 919 #define HS_IDLE (0) 920 #define HS_BUSY (1) 921 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 922 #define HS_DISCONNECT (3) /* Disconnected by target */ 923 #define HS_WAIT (4) /* waiting for resource */ 924 925 #define HS_DONEMASK (0x80) 926 #define HS_COMPLETE (4|HS_DONEMASK) 927 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 928 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 929 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 930 931 /* 932 * Software Interrupt Codes 933 */ 934 #define SIR_BAD_SCSI_STATUS (1) 935 #define SIR_SEL_ATN_NO_MSG_OUT (2) 936 #define SIR_MSG_RECEIVED (3) 937 #define SIR_MSG_WEIRD (4) 938 #define SIR_NEGO_FAILED (5) 939 #define SIR_NEGO_PROTO (6) 940 #define SIR_SCRIPT_STOPPED (7) 941 #define SIR_REJECT_TO_SEND (8) 942 #define SIR_SWIDE_OVERRUN (9) 943 #define SIR_SODL_UNDERRUN (10) 944 #define SIR_RESEL_NO_MSG_IN (11) 945 #define SIR_RESEL_NO_IDENTIFY (12) 946 #define SIR_RESEL_BAD_LUN (13) 947 #define SIR_TARGET_SELECTED (14) 948 #define SIR_RESEL_BAD_I_T_L (15) 949 #define SIR_RESEL_BAD_I_T_L_Q (16) 950 #define SIR_ABORT_SENT (17) 951 #define SIR_RESEL_ABORTED (18) 952 #define SIR_MSG_OUT_DONE (19) 953 #define SIR_COMPLETE_ERROR (20) 954 #define SIR_DATA_OVERRUN (21) 955 #define SIR_BAD_PHASE (22) 956 #define SIR_MAX (22) 957 958 /* 959 * Extended error bit codes. 960 * xerr_status field of struct sym_ccb. 961 */ 962 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 963 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 964 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 965 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 966 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 967 968 /* 969 * Negotiation status. 970 * nego_status field of struct sym_ccb. 971 */ 972 #define NS_SYNC (1) 973 #define NS_WIDE (2) 974 #define NS_PPR (3) 975 976 /* 977 * A CCB hashed table is used to retrieve CCB address 978 * from DSA value. 979 */ 980 #define CCB_HASH_SHIFT 8 981 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 982 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 983 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 984 985 /* 986 * Device flags. 987 */ 988 #define SYM_DISC_ENABLED (1) 989 #define SYM_TAGS_ENABLED (1<<1) 990 #define SYM_SCAN_BOOT_DISABLED (1<<2) 991 #define SYM_SCAN_LUNS_DISABLED (1<<3) 992 993 /* 994 * Host adapter miscellaneous flags. 995 */ 996 #define SYM_AVOID_BUS_RESET (1) 997 #define SYM_SCAN_TARGETS_HILO (1<<1) 998 999 /* 1000 * Device quirks. 1001 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1002 * saving the DATA POINTER then reselects and terminates the IO. 1003 * On reselection, the automatic RESTORE DATA POINTER makes the 1004 * CURRENT DATA POINTER not point at the end of the IO. 1005 * This behaviour just breaks our calculation of the residual. 1006 * For now, we just force an AUTO SAVE on disconnection and will 1007 * fix that in a further driver version. 1008 */ 1009 #define SYM_QUIRK_AUTOSAVE 1 1010 1011 /* 1012 * Misc. 1013 */ 1014 #define SYM_LOCK() mtx_lock(&np->mtx) 1015 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1016 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1017 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1018 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1019 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1020 1021 #define SYM_SNOOP_TIMEOUT (10000000) 1022 #define SYM_PCI_IO PCIR_BAR(0) 1023 #define SYM_PCI_MMIO PCIR_BAR(1) 1024 #define SYM_PCI_RAM PCIR_BAR(2) 1025 #define SYM_PCI_RAM64 PCIR_BAR(3) 1026 1027 /* 1028 * Back-pointer from the CAM CCB to our data structures. 1029 */ 1030 #define sym_hcb_ptr spriv_ptr0 1031 /* #define sym_ccb_ptr spriv_ptr1 */ 1032 1033 /* 1034 * We mostly have to deal with pointers. 1035 * Thus these typedef's. 1036 */ 1037 typedef struct sym_tcb *tcb_p; 1038 typedef struct sym_lcb *lcb_p; 1039 typedef struct sym_ccb *ccb_p; 1040 typedef struct sym_hcb *hcb_p; 1041 1042 /* 1043 * Gather negotiable parameters value 1044 */ 1045 struct sym_trans { 1046 u8 scsi_version; 1047 u8 spi_version; 1048 u8 period; 1049 u8 offset; 1050 u8 width; 1051 u8 options; /* PPR options */ 1052 }; 1053 1054 struct sym_tinfo { 1055 struct sym_trans current; 1056 struct sym_trans goal; 1057 struct sym_trans user; 1058 }; 1059 1060 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1061 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1062 1063 /* 1064 * Global TCB HEADER. 1065 * 1066 * Due to lack of indirect addressing on earlier NCR chips, 1067 * this substructure is copied from the TCB to a global 1068 * address after selection. 1069 * For SYMBIOS chips that support LOAD/STORE this copy is 1070 * not needed and thus not performed. 1071 */ 1072 struct sym_tcbh { 1073 /* 1074 * Scripts bus addresses of LUN table accessed from scripts. 1075 * LUN #0 is a special case, since multi-lun devices are rare, 1076 * and we we want to speed-up the general case and not waste 1077 * resources. 1078 */ 1079 u32 luntbl_sa; /* bus address of this table */ 1080 u32 lun0_sa; /* bus address of LCB #0 */ 1081 /* 1082 * Actual SYNC/WIDE IO registers value for this target. 1083 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1084 * so have alignment constraints. 1085 */ 1086 /*0*/ u_char uval; /* -> SCNTL4 register */ 1087 /*1*/ u_char sval; /* -> SXFER io register */ 1088 /*2*/ u_char filler1; 1089 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1090 }; 1091 1092 /* 1093 * Target Control Block 1094 */ 1095 struct sym_tcb { 1096 /* 1097 * TCB header. 1098 * Assumed at offset 0. 1099 */ 1100 /*0*/ struct sym_tcbh head; 1101 1102 /* 1103 * LUN table used by the SCRIPTS processor. 1104 * An array of bus addresses is used on reselection. 1105 */ 1106 u32 *luntbl; /* LCBs bus address table */ 1107 1108 /* 1109 * LUN table used by the C code. 1110 */ 1111 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1112 #if SYM_CONF_MAX_LUN > 1 1113 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1114 #endif 1115 1116 /* 1117 * Bitmap that tells about LUNs that succeeded at least 1118 * 1 IO and therefore assumed to be a real device. 1119 * Avoid useless allocation of the LCB structure. 1120 */ 1121 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1122 1123 /* 1124 * Bitmap that tells about LUNs that haven't yet an LCB 1125 * allocated (not discovered or LCB allocation failed). 1126 */ 1127 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1128 1129 /* 1130 * Transfer capabilities (SIP) 1131 */ 1132 struct sym_tinfo tinfo; 1133 1134 /* 1135 * Keep track of the CCB used for the negotiation in order 1136 * to ensure that only 1 negotiation is queued at a time. 1137 */ 1138 ccb_p nego_cp; /* CCB used for the nego */ 1139 1140 /* 1141 * Set when we want to reset the device. 1142 */ 1143 u_char to_reset; 1144 1145 /* 1146 * Other user settable limits and options. 1147 * These limits are read from the NVRAM if present. 1148 */ 1149 u_char usrflags; 1150 u_short usrtags; 1151 }; 1152 1153 /* 1154 * Assert some alignments required by the chip. 1155 */ 1156 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^ 1157 offsetof(struct sym_tcb, head.sval)) &3) == 0); 1158 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^ 1159 offsetof(struct sym_tcb, head.wval)) &3) == 0); 1160 1161 /* 1162 * Global LCB HEADER. 1163 * 1164 * Due to lack of indirect addressing on earlier NCR chips, 1165 * this substructure is copied from the LCB to a global 1166 * address after selection. 1167 * For SYMBIOS chips that support LOAD/STORE this copy is 1168 * not needed and thus not performed. 1169 */ 1170 struct sym_lcbh { 1171 /* 1172 * SCRIPTS address jumped by SCRIPTS on reselection. 1173 * For not probed logical units, this address points to 1174 * SCRIPTS that deal with bad LU handling (must be at 1175 * offset zero of the LCB for that reason). 1176 */ 1177 /*0*/ u32 resel_sa; 1178 1179 /* 1180 * Task (bus address of a CCB) read from SCRIPTS that points 1181 * to the unique ITL nexus allowed to be disconnected. 1182 */ 1183 u32 itl_task_sa; 1184 1185 /* 1186 * Task table bus address (read from SCRIPTS). 1187 */ 1188 u32 itlq_tbl_sa; 1189 }; 1190 1191 /* 1192 * Logical Unit Control Block 1193 */ 1194 struct sym_lcb { 1195 /* 1196 * TCB header. 1197 * Assumed at offset 0. 1198 */ 1199 /*0*/ struct sym_lcbh head; 1200 1201 /* 1202 * Task table read from SCRIPTS that contains pointers to 1203 * ITLQ nexuses. The bus address read from SCRIPTS is 1204 * inside the header. 1205 */ 1206 u32 *itlq_tbl; /* Kernel virtual address */ 1207 1208 /* 1209 * Busy CCBs management. 1210 */ 1211 u_short busy_itlq; /* Number of busy tagged CCBs */ 1212 u_short busy_itl; /* Number of busy untagged CCBs */ 1213 1214 /* 1215 * Circular tag allocation buffer. 1216 */ 1217 u_short ia_tag; /* Tag allocation index */ 1218 u_short if_tag; /* Tag release index */ 1219 u_char *cb_tags; /* Circular tags buffer */ 1220 1221 /* 1222 * Set when we want to clear all tasks. 1223 */ 1224 u_char to_clear; 1225 1226 /* 1227 * Capabilities. 1228 */ 1229 u_char user_flags; 1230 u_char current_flags; 1231 }; 1232 1233 /* 1234 * Action from SCRIPTS on a task. 1235 * Is part of the CCB, but is also used separately to plug 1236 * error handling action to perform from SCRIPTS. 1237 */ 1238 struct sym_actscr { 1239 u32 start; /* Jumped by SCRIPTS after selection */ 1240 u32 restart; /* Jumped by SCRIPTS on relection */ 1241 }; 1242 1243 /* 1244 * Phase mismatch context. 1245 * 1246 * It is part of the CCB and is used as parameters for the 1247 * DATA pointer. We need two contexts to handle correctly the 1248 * SAVED DATA POINTER. 1249 */ 1250 struct sym_pmc { 1251 struct sym_tblmove sg; /* Updated interrupted SG block */ 1252 u32 ret; /* SCRIPT return address */ 1253 }; 1254 1255 /* 1256 * LUN control block lookup. 1257 * We use a direct pointer for LUN #0, and a table of 1258 * pointers which is only allocated for devices that support 1259 * LUN(s) > 0. 1260 */ 1261 #if SYM_CONF_MAX_LUN <= 1 1262 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0 1263 #else 1264 #define sym_lp(tp, lun) \ 1265 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1266 #endif 1267 1268 /* 1269 * Status are used by the host and the script processor. 1270 * 1271 * The last four bytes (status[4]) are copied to the 1272 * scratchb register (declared as scr0..scr3) just after the 1273 * select/reselect, and copied back just after disconnecting. 1274 * Inside the script the XX_REG are used. 1275 */ 1276 1277 /* 1278 * Last four bytes (script) 1279 */ 1280 #define QU_REG scr0 1281 #define HS_REG scr1 1282 #define HS_PRT nc_scr1 1283 #define SS_REG scr2 1284 #define SS_PRT nc_scr2 1285 #define HF_REG scr3 1286 #define HF_PRT nc_scr3 1287 1288 /* 1289 * Last four bytes (host) 1290 */ 1291 #define actualquirks phys.head.status[0] 1292 #define host_status phys.head.status[1] 1293 #define ssss_status phys.head.status[2] 1294 #define host_flags phys.head.status[3] 1295 1296 /* 1297 * Host flags 1298 */ 1299 #define HF_IN_PM0 1u 1300 #define HF_IN_PM1 (1u<<1) 1301 #define HF_ACT_PM (1u<<2) 1302 #define HF_DP_SAVED (1u<<3) 1303 #define HF_SENSE (1u<<4) 1304 #define HF_EXT_ERR (1u<<5) 1305 #define HF_DATA_IN (1u<<6) 1306 #ifdef SYM_CONF_IARB_SUPPORT 1307 #define HF_HINT_IARB (1u<<7) 1308 #endif 1309 1310 /* 1311 * Global CCB HEADER. 1312 * 1313 * Due to lack of indirect addressing on earlier NCR chips, 1314 * this substructure is copied from the ccb to a global 1315 * address after selection (or reselection) and copied back 1316 * before disconnect. 1317 * For SYMBIOS chips that support LOAD/STORE this copy is 1318 * not needed and thus not performed. 1319 */ 1320 struct sym_ccbh { 1321 /* 1322 * Start and restart SCRIPTS addresses (must be at 0). 1323 */ 1324 /*0*/ struct sym_actscr go; 1325 1326 /* 1327 * SCRIPTS jump address that deal with data pointers. 1328 * 'savep' points to the position in the script responsible 1329 * for the actual transfer of data. 1330 * It's written on reception of a SAVE_DATA_POINTER message. 1331 */ 1332 u32 savep; /* Jump address to saved data pointer */ 1333 u32 lastp; /* SCRIPTS address at end of data */ 1334 u32 goalp; /* Not accessed for now from SCRIPTS */ 1335 1336 /* 1337 * Status fields. 1338 */ 1339 u8 status[4]; 1340 }; 1341 1342 /* 1343 * Data Structure Block 1344 * 1345 * During execution of a ccb by the script processor, the 1346 * DSA (data structure address) register points to this 1347 * substructure of the ccb. 1348 */ 1349 struct sym_dsb { 1350 /* 1351 * CCB header. 1352 * Also assumed at offset 0 of the sym_ccb structure. 1353 */ 1354 /*0*/ struct sym_ccbh head; 1355 1356 /* 1357 * Phase mismatch contexts. 1358 * We need two to handle correctly the SAVED DATA POINTER. 1359 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1360 * for address calculation from SCRIPTS. 1361 */ 1362 struct sym_pmc pm0; 1363 struct sym_pmc pm1; 1364 1365 /* 1366 * Table data for Script 1367 */ 1368 struct sym_tblsel select; 1369 struct sym_tblmove smsg; 1370 struct sym_tblmove smsg_ext; 1371 struct sym_tblmove cmd; 1372 struct sym_tblmove sense; 1373 struct sym_tblmove wresid; 1374 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1375 }; 1376 1377 /* 1378 * Our Command Control Block 1379 */ 1380 struct sym_ccb { 1381 /* 1382 * This is the data structure which is pointed by the DSA 1383 * register when it is executed by the script processor. 1384 * It must be the first entry. 1385 */ 1386 struct sym_dsb phys; 1387 1388 /* 1389 * Pointer to CAM ccb and related stuff. 1390 */ 1391 struct callout ch; /* callout handle */ 1392 union ccb *cam_ccb; /* CAM scsiio ccb */ 1393 u8 cdb_buf[16]; /* Copy of CDB */ 1394 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1395 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1396 int data_len; /* Total data length */ 1397 int segments; /* Number of SG segments */ 1398 1399 /* 1400 * Miscellaneous status'. 1401 */ 1402 u_char nego_status; /* Negotiation status */ 1403 u_char xerr_status; /* Extended error flags */ 1404 u32 extra_bytes; /* Extraneous bytes transferred */ 1405 1406 /* 1407 * Message areas. 1408 * We prepare a message to be sent after selection. 1409 * We may use a second one if the command is rescheduled 1410 * due to CHECK_CONDITION or COMMAND TERMINATED. 1411 * Contents are IDENTIFY and SIMPLE_TAG. 1412 * While negotiating sync or wide transfer, 1413 * a SDTR or WDTR message is appended. 1414 */ 1415 u_char scsi_smsg [12]; 1416 u_char scsi_smsg2[12]; 1417 1418 /* 1419 * Auto request sense related fields. 1420 */ 1421 u_char sensecmd[6]; /* Request Sense command */ 1422 u_char sv_scsi_status; /* Saved SCSI status */ 1423 u_char sv_xerr_status; /* Saved extended status */ 1424 int sv_resid; /* Saved residual */ 1425 1426 /* 1427 * Map for the DMA of user data. 1428 */ 1429 void *arg; /* Argument for some callback */ 1430 bus_dmamap_t dmamap; /* DMA map for user data */ 1431 u_char dmamapped; 1432 #define SYM_DMA_NONE 0 1433 #define SYM_DMA_READ 1 1434 #define SYM_DMA_WRITE 2 1435 /* 1436 * Other fields. 1437 */ 1438 u32 ccb_ba; /* BUS address of this CCB */ 1439 u_short tag; /* Tag for this transfer */ 1440 /* NO_TAG means no tag */ 1441 u_char target; 1442 u_char lun; 1443 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1444 SYM_QUEHEAD 1445 link_ccbq; /* Link to free/busy CCB queue */ 1446 u32 startp; /* Initial data pointer */ 1447 int ext_sg; /* Extreme data pointer, used */ 1448 int ext_ofs; /* to calculate the residual. */ 1449 u_char to_abort; /* Want this IO to be aborted */ 1450 }; 1451 1452 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1453 1454 /* 1455 * Host Control Block 1456 */ 1457 struct sym_hcb { 1458 struct mtx mtx; 1459 1460 /* 1461 * Global headers. 1462 * Due to poorness of addressing capabilities, earlier 1463 * chips (810, 815, 825) copy part of the data structures 1464 * (CCB, TCB and LCB) in fixed areas. 1465 */ 1466 #ifdef SYM_CONF_GENERIC_SUPPORT 1467 struct sym_ccbh ccb_head; 1468 struct sym_tcbh tcb_head; 1469 struct sym_lcbh lcb_head; 1470 #endif 1471 /* 1472 * Idle task and invalid task actions and 1473 * their bus addresses. 1474 */ 1475 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1476 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1477 1478 /* 1479 * Dummy lun table to protect us against target 1480 * returning bad lun number on reselection. 1481 */ 1482 u32 *badluntbl; /* Table physical address */ 1483 u32 badlun_sa; /* SCRIPT handler BUS address */ 1484 1485 /* 1486 * Bus address of this host control block. 1487 */ 1488 u32 hcb_ba; 1489 1490 /* 1491 * Bit 32-63 of the on-chip RAM bus address in LE format. 1492 * The START_RAM64 script loads the MMRS and MMWS from this 1493 * field. 1494 */ 1495 u32 scr_ram_seg; 1496 1497 /* 1498 * Chip and controller indentification. 1499 */ 1500 device_t device; 1501 1502 /* 1503 * Initial value of some IO register bits. 1504 * These values are assumed to have been set by BIOS, and may 1505 * be used to probe adapter implementation differences. 1506 */ 1507 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1508 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1509 sv_stest1; 1510 1511 /* 1512 * Actual initial value of IO register bits used by the 1513 * driver. They are loaded at initialisation according to 1514 * features that are to be enabled/disabled. 1515 */ 1516 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1517 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1518 1519 /* 1520 * Target data. 1521 */ 1522 #ifdef __amd64__ 1523 struct sym_tcb *target; 1524 #else 1525 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1526 #endif 1527 1528 /* 1529 * Target control block bus address array used by the SCRIPT 1530 * on reselection. 1531 */ 1532 u32 *targtbl; 1533 u32 targtbl_ba; 1534 1535 /* 1536 * CAM SIM information for this instance. 1537 */ 1538 struct cam_sim *sim; 1539 struct cam_path *path; 1540 1541 /* 1542 * Allocated hardware resources. 1543 */ 1544 struct resource *irq_res; 1545 struct resource *io_res; 1546 struct resource *mmio_res; 1547 struct resource *ram_res; 1548 int ram_id; 1549 void *intr; 1550 1551 /* 1552 * Bus stuff. 1553 * 1554 * My understanding of PCI is that all agents must share the 1555 * same addressing range and model. 1556 * But some hardware architecture guys provide complex and 1557 * brain-deaded stuff that makes shit. 1558 * This driver only support PCI compliant implementations and 1559 * deals with part of the BUS stuff complexity only to fit O/S 1560 * requirements. 1561 */ 1562 1563 /* 1564 * DMA stuff. 1565 */ 1566 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1567 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1568 /* 1569 * BUS addresses of the chip 1570 */ 1571 vm_offset_t mmio_ba; /* MMIO BUS address */ 1572 int mmio_ws; /* MMIO Window size */ 1573 1574 vm_offset_t ram_ba; /* RAM BUS address */ 1575 int ram_ws; /* RAM window size */ 1576 1577 /* 1578 * SCRIPTS virtual and physical bus addresses. 1579 * 'script' is loaded in the on-chip RAM if present. 1580 * 'scripth' stays in main memory for all chips except the 1581 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1582 */ 1583 u_char *scripta0; /* Copies of script and scripth */ 1584 u_char *scriptb0; /* Copies of script and scripth */ 1585 vm_offset_t scripta_ba; /* Actual script and scripth */ 1586 vm_offset_t scriptb_ba; /* bus addresses. */ 1587 vm_offset_t scriptb0_ba; 1588 u_short scripta_sz; /* Actual size of script A */ 1589 u_short scriptb_sz; /* Actual size of script B */ 1590 1591 /* 1592 * Bus addresses, setup and patch methods for 1593 * the selected firmware. 1594 */ 1595 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1596 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1597 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1598 void (*fw_patch)(hcb_p np); 1599 const char *fw_name; 1600 1601 /* 1602 * General controller parameters and configuration. 1603 */ 1604 u_short device_id; /* PCI device id */ 1605 u_char revision_id; /* PCI device revision id */ 1606 u_int features; /* Chip features map */ 1607 u_char myaddr; /* SCSI id of the adapter */ 1608 u_char maxburst; /* log base 2 of dwords burst */ 1609 u_char maxwide; /* Maximum transfer width */ 1610 u_char minsync; /* Min sync period factor (ST) */ 1611 u_char maxsync; /* Max sync period factor (ST) */ 1612 u_char maxoffs; /* Max scsi offset (ST) */ 1613 u_char minsync_dt; /* Min sync period factor (DT) */ 1614 u_char maxsync_dt; /* Max sync period factor (DT) */ 1615 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1616 u_char multiplier; /* Clock multiplier (1,2,4) */ 1617 u_char clock_divn; /* Number of clock divisors */ 1618 u32 clock_khz; /* SCSI clock frequency in KHz */ 1619 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1620 /* 1621 * Start queue management. 1622 * It is filled up by the host processor and accessed by the 1623 * SCRIPTS processor in order to start SCSI commands. 1624 */ 1625 volatile /* Prevent code optimizations */ 1626 u32 *squeue; /* Start queue virtual address */ 1627 u32 squeue_ba; /* Start queue BUS address */ 1628 u_short squeueput; /* Next free slot of the queue */ 1629 u_short actccbs; /* Number of allocated CCBs */ 1630 1631 /* 1632 * Command completion queue. 1633 * It is the same size as the start queue to avoid overflow. 1634 */ 1635 u_short dqueueget; /* Next position to scan */ 1636 volatile /* Prevent code optimizations */ 1637 u32 *dqueue; /* Completion (done) queue */ 1638 u32 dqueue_ba; /* Done queue BUS address */ 1639 1640 /* 1641 * Miscellaneous buffers accessed by the scripts-processor. 1642 * They shall be DWORD aligned, because they may be read or 1643 * written with a script command. 1644 */ 1645 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1646 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1647 u32 lastmsg; /* Last SCSI message sent */ 1648 u_char scratch; /* Scratch for SCSI receive */ 1649 1650 /* 1651 * Miscellaneous configuration and status parameters. 1652 */ 1653 u_char usrflags; /* Miscellaneous user flags */ 1654 u_char scsi_mode; /* Current SCSI BUS mode */ 1655 u_char verbose; /* Verbosity for this controller*/ 1656 u32 cache; /* Used for cache test at init. */ 1657 1658 /* 1659 * CCB lists and queue. 1660 */ 1661 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1662 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1663 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1664 1665 /* 1666 * During error handling and/or recovery, 1667 * active CCBs that are to be completed with 1668 * error or requeued are moved from the busy_ccbq 1669 * to the comp_ccbq prior to completion. 1670 */ 1671 SYM_QUEHEAD comp_ccbq; 1672 1673 /* 1674 * CAM CCB pending queue. 1675 */ 1676 SYM_QUEHEAD cam_ccbq; 1677 1678 /* 1679 * IMMEDIATE ARBITRATION (IARB) control. 1680 * 1681 * We keep track in 'last_cp' of the last CCB that has been 1682 * queued to the SCRIPTS processor and clear 'last_cp' when 1683 * this CCB completes. If last_cp is not zero at the moment 1684 * we queue a new CCB, we set a flag in 'last_cp' that is 1685 * used by the SCRIPTS as a hint for setting IARB. 1686 * We donnot set more than 'iarb_max' consecutive hints for 1687 * IARB in order to leave devices a chance to reselect. 1688 * By the way, any non zero value of 'iarb_max' is unfair. :) 1689 */ 1690 #ifdef SYM_CONF_IARB_SUPPORT 1691 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1692 u_short iarb_count; /* Actual # of these hints */ 1693 ccb_p last_cp; 1694 #endif 1695 1696 /* 1697 * Command abort handling. 1698 * We need to synchronize tightly with the SCRIPTS 1699 * processor in order to handle things correctly. 1700 */ 1701 u_char abrt_msg[4]; /* Message to send buffer */ 1702 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1703 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1704 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1705 }; 1706 1707 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1708 1709 /* 1710 * Return the name of the controller. 1711 */ 1712 static __inline const char *sym_name(hcb_p np) 1713 { 1714 return device_get_nameunit(np->device); 1715 } 1716 1717 /*--------------------------------------------------------------------------*/ 1718 /*------------------------------ FIRMWARES ---------------------------------*/ 1719 /*--------------------------------------------------------------------------*/ 1720 1721 /* 1722 * This stuff will be moved to a separate source file when 1723 * the driver will be broken into several source modules. 1724 */ 1725 1726 /* 1727 * Macros used for all firmwares. 1728 */ 1729 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1730 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1731 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1732 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1733 1734 #ifdef SYM_CONF_GENERIC_SUPPORT 1735 /* 1736 * Allocate firmware #1 script area. 1737 */ 1738 #define SYM_FWA_SCR sym_fw1a_scr 1739 #define SYM_FWB_SCR sym_fw1b_scr 1740 #include <dev/sym/sym_fw1.h> 1741 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1742 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1743 }; 1744 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1745 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1746 }; 1747 #undef SYM_FWA_SCR 1748 #undef SYM_FWB_SCR 1749 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1750 1751 /* 1752 * Allocate firmware #2 script area. 1753 */ 1754 #define SYM_FWA_SCR sym_fw2a_scr 1755 #define SYM_FWB_SCR sym_fw2b_scr 1756 #include <dev/sym/sym_fw2.h> 1757 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1758 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1759 }; 1760 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1761 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1762 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1763 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1764 }; 1765 #undef SYM_FWA_SCR 1766 #undef SYM_FWB_SCR 1767 1768 #undef SYM_GEN_A 1769 #undef SYM_GEN_B 1770 #undef PADDR_A 1771 #undef PADDR_B 1772 1773 #ifdef SYM_CONF_GENERIC_SUPPORT 1774 /* 1775 * Patch routine for firmware #1. 1776 */ 1777 static void 1778 sym_fw1_patch(hcb_p np) 1779 { 1780 struct sym_fw1a_scr *scripta0; 1781 struct sym_fw1b_scr *scriptb0; 1782 1783 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1784 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1785 1786 /* 1787 * Remove LED support if not needed. 1788 */ 1789 if (!(np->features & FE_LED0)) { 1790 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1791 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1792 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1793 } 1794 1795 #ifdef SYM_CONF_IARB_SUPPORT 1796 /* 1797 * If user does not want to use IMMEDIATE ARBITRATION 1798 * when we are reselected while attempting to arbitrate, 1799 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1800 */ 1801 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1802 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1803 #endif 1804 /* 1805 * Patch some data in SCRIPTS. 1806 * - start and done queue initial bus address. 1807 * - target bus address table bus address. 1808 */ 1809 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1810 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1811 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1812 } 1813 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1814 1815 /* 1816 * Patch routine for firmware #2. 1817 */ 1818 static void 1819 sym_fw2_patch(hcb_p np) 1820 { 1821 struct sym_fw2a_scr *scripta0; 1822 struct sym_fw2b_scr *scriptb0; 1823 1824 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1825 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1826 1827 /* 1828 * Remove LED support if not needed. 1829 */ 1830 if (!(np->features & FE_LED0)) { 1831 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1832 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1833 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1834 } 1835 1836 #ifdef SYM_CONF_IARB_SUPPORT 1837 /* 1838 * If user does not want to use IMMEDIATE ARBITRATION 1839 * when we are reselected while attempting to arbitrate, 1840 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1841 */ 1842 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1843 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1844 #endif 1845 /* 1846 * Patch some variable in SCRIPTS. 1847 * - start and done queue initial bus address. 1848 * - target bus address table bus address. 1849 */ 1850 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1851 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1852 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1853 1854 /* 1855 * Remove the load of SCNTL4 on reselection if not a C10. 1856 */ 1857 if (!(np->features & FE_C10)) { 1858 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1859 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1860 } 1861 1862 /* 1863 * Remove a couple of work-arounds specific to C1010 if 1864 * they are not desirable. See `sym_fw2.h' for more details. 1865 */ 1866 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1867 np->revision_id < 0x1 && 1868 np->pciclk_khz < 60000)) { 1869 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1870 scripta0->datao_phase[1] = cpu_to_scr(0); 1871 } 1872 if (!(np->device_id == PCI_ID_LSI53C1010 && 1873 /* np->revision_id < 0xff */ 1)) { 1874 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1875 scripta0->sel_done[1] = cpu_to_scr(0); 1876 } 1877 1878 /* 1879 * Patch some other variables in SCRIPTS. 1880 * These ones are loaded by the SCRIPTS processor. 1881 */ 1882 scriptb0->pm0_data_addr[0] = 1883 cpu_to_scr(np->scripta_ba + 1884 offsetof(struct sym_fw2a_scr, pm0_data)); 1885 scriptb0->pm1_data_addr[0] = 1886 cpu_to_scr(np->scripta_ba + 1887 offsetof(struct sym_fw2a_scr, pm1_data)); 1888 } 1889 1890 /* 1891 * Fill the data area in scripts. 1892 * To be done for all firmwares. 1893 */ 1894 static void 1895 sym_fw_fill_data (u32 *in, u32 *out) 1896 { 1897 int i; 1898 1899 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1900 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1901 *in++ = offsetof (struct sym_dsb, data[i]); 1902 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1903 *out++ = offsetof (struct sym_dsb, data[i]); 1904 } 1905 } 1906 1907 /* 1908 * Setup useful script bus addresses. 1909 * To be done for all firmwares. 1910 */ 1911 static void 1912 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1913 { 1914 u32 *pa; 1915 const u_short *po; 1916 int i; 1917 1918 /* 1919 * Build the bus address table for script A 1920 * from the script A offset table. 1921 */ 1922 po = (const u_short *) fw->a_ofs; 1923 pa = (u32 *) &np->fwa_bas; 1924 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1925 pa[i] = np->scripta_ba + po[i]; 1926 1927 /* 1928 * Same for script B. 1929 */ 1930 po = (const u_short *) fw->b_ofs; 1931 pa = (u32 *) &np->fwb_bas; 1932 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1933 pa[i] = np->scriptb_ba + po[i]; 1934 } 1935 1936 #ifdef SYM_CONF_GENERIC_SUPPORT 1937 /* 1938 * Setup routine for firmware #1. 1939 */ 1940 static void 1941 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1942 { 1943 struct sym_fw1a_scr *scripta0; 1944 1945 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1946 1947 /* 1948 * Fill variable parts in scripts. 1949 */ 1950 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1951 1952 /* 1953 * Setup bus addresses used from the C code.. 1954 */ 1955 sym_fw_setup_bus_addresses(np, fw); 1956 } 1957 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1958 1959 /* 1960 * Setup routine for firmware #2. 1961 */ 1962 static void 1963 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1964 { 1965 struct sym_fw2a_scr *scripta0; 1966 1967 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1968 1969 /* 1970 * Fill variable parts in scripts. 1971 */ 1972 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1973 1974 /* 1975 * Setup bus addresses used from the C code.. 1976 */ 1977 sym_fw_setup_bus_addresses(np, fw); 1978 } 1979 1980 /* 1981 * Allocate firmware descriptors. 1982 */ 1983 #ifdef SYM_CONF_GENERIC_SUPPORT 1984 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 1985 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1986 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 1987 1988 /* 1989 * Find the most appropriate firmware for a chip. 1990 */ 1991 static const struct sym_fw * 1992 sym_find_firmware(const struct sym_pci_chip *chip) 1993 { 1994 if (chip->features & FE_LDSTR) 1995 return &sym_fw2; 1996 #ifdef SYM_CONF_GENERIC_SUPPORT 1997 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 1998 return &sym_fw1; 1999 #endif 2000 else 2001 return NULL; 2002 } 2003 2004 /* 2005 * Bind a script to physical addresses. 2006 */ 2007 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2008 { 2009 u32 opcode, new, old, tmp1, tmp2; 2010 u32 *end, *cur; 2011 int relocs; 2012 2013 cur = start; 2014 end = start + len/4; 2015 2016 while (cur < end) { 2017 2018 opcode = *cur; 2019 2020 /* 2021 * If we forget to change the length 2022 * in scripts, a field will be 2023 * padded with 0. This is an illegal 2024 * command. 2025 */ 2026 if (opcode == 0) { 2027 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2028 sym_name(np), (int) (cur-start)); 2029 MDELAY (10000); 2030 ++cur; 2031 continue; 2032 } 2033 2034 /* 2035 * We use the bogus value 0xf00ff00f ;-) 2036 * to reserve data area in SCRIPTS. 2037 */ 2038 if (opcode == SCR_DATA_ZERO) { 2039 *cur++ = 0; 2040 continue; 2041 } 2042 2043 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2044 printf ("%d: <%x>\n", (int) (cur-start), 2045 (unsigned)opcode); 2046 2047 /* 2048 * We don't have to decode ALL commands 2049 */ 2050 switch (opcode >> 28) { 2051 case 0xf: 2052 /* 2053 * LOAD / STORE DSA relative, don't relocate. 2054 */ 2055 relocs = 0; 2056 break; 2057 case 0xe: 2058 /* 2059 * LOAD / STORE absolute. 2060 */ 2061 relocs = 1; 2062 break; 2063 case 0xc: 2064 /* 2065 * COPY has TWO arguments. 2066 */ 2067 relocs = 2; 2068 tmp1 = cur[1]; 2069 tmp2 = cur[2]; 2070 if ((tmp1 ^ tmp2) & 3) { 2071 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2072 sym_name(np), (int) (cur-start)); 2073 MDELAY (10000); 2074 } 2075 /* 2076 * If PREFETCH feature not enabled, remove 2077 * the NO FLUSH bit if present. 2078 */ 2079 if ((opcode & SCR_NO_FLUSH) && 2080 !(np->features & FE_PFEN)) { 2081 opcode = (opcode & ~SCR_NO_FLUSH); 2082 } 2083 break; 2084 case 0x0: 2085 /* 2086 * MOVE/CHMOV (absolute address) 2087 */ 2088 if (!(np->features & FE_WIDE)) 2089 opcode = (opcode | OPC_MOVE); 2090 relocs = 1; 2091 break; 2092 case 0x1: 2093 /* 2094 * MOVE/CHMOV (table indirect) 2095 */ 2096 if (!(np->features & FE_WIDE)) 2097 opcode = (opcode | OPC_MOVE); 2098 relocs = 0; 2099 break; 2100 case 0x8: 2101 /* 2102 * JUMP / CALL 2103 * dont't relocate if relative :-) 2104 */ 2105 if (opcode & 0x00800000) 2106 relocs = 0; 2107 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2108 relocs = 2; 2109 else 2110 relocs = 1; 2111 break; 2112 case 0x4: 2113 case 0x5: 2114 case 0x6: 2115 case 0x7: 2116 relocs = 1; 2117 break; 2118 default: 2119 relocs = 0; 2120 break; 2121 } 2122 2123 /* 2124 * Scriptify:) the opcode. 2125 */ 2126 *cur++ = cpu_to_scr(opcode); 2127 2128 /* 2129 * If no relocation, assume 1 argument 2130 * and just scriptize:) it. 2131 */ 2132 if (!relocs) { 2133 *cur = cpu_to_scr(*cur); 2134 ++cur; 2135 continue; 2136 } 2137 2138 /* 2139 * Otherwise performs all needed relocations. 2140 */ 2141 while (relocs--) { 2142 old = *cur; 2143 2144 switch (old & RELOC_MASK) { 2145 case RELOC_REGISTER: 2146 new = (old & ~RELOC_MASK) + np->mmio_ba; 2147 break; 2148 case RELOC_LABEL_A: 2149 new = (old & ~RELOC_MASK) + np->scripta_ba; 2150 break; 2151 case RELOC_LABEL_B: 2152 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2153 break; 2154 case RELOC_SOFTC: 2155 new = (old & ~RELOC_MASK) + np->hcb_ba; 2156 break; 2157 case 0: 2158 /* 2159 * Don't relocate a 0 address. 2160 * They are mostly used for patched or 2161 * script self-modified areas. 2162 */ 2163 if (old == 0) { 2164 new = old; 2165 break; 2166 } 2167 /* fall through */ 2168 default: 2169 new = 0; 2170 panic("sym_fw_bind_script: " 2171 "weird relocation %x\n", old); 2172 break; 2173 } 2174 2175 *cur++ = cpu_to_scr(new); 2176 } 2177 } 2178 } 2179 2180 /*---------------------------------------------------------------------------*/ 2181 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2182 /*---------------------------------------------------------------------------*/ 2183 2184 /* 2185 * Function prototypes. 2186 */ 2187 static void sym_save_initial_setting (hcb_p np); 2188 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2189 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2190 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2191 static void sym_chip_reset (hcb_p np); 2192 static void sym_soft_reset (hcb_p np); 2193 static void sym_start_reset (hcb_p np); 2194 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2195 static int sym_wakeup_done (hcb_p np); 2196 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2197 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2198 static void sym_init (hcb_p np, int reason); 2199 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2200 u_char *fakp); 2201 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2202 u_char div, u_char fak); 2203 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2204 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2205 u_char per, u_char wide, u_char div, u_char fak); 2206 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2207 u_char per, u_char wide, u_char div, u_char fak); 2208 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2209 static void sym_intr (void *arg); 2210 static void sym_poll (struct cam_sim *sim); 2211 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2212 static void sym_int_sto (hcb_p np); 2213 static void sym_int_udc (hcb_p np); 2214 static void sym_int_sbmc (hcb_p np); 2215 static void sym_int_par (hcb_p np, u_short sist); 2216 static void sym_int_ma (hcb_p np); 2217 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2218 int task); 2219 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp); 2220 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2221 static void sym_sir_task_recovery (hcb_p np, int num); 2222 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2223 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs); 2224 static int sym_compute_residual (hcb_p np, ccb_p cp); 2225 static int sym_show_msg (u_char * msg); 2226 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2227 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2228 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2229 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2230 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2231 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2232 static void sym_int_sir (hcb_p np); 2233 static void sym_free_ccb (hcb_p np, ccb_p cp); 2234 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2235 static ccb_p sym_alloc_ccb (hcb_p np); 2236 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2237 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2238 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2239 static int sym_snooptest (hcb_p np); 2240 static void sym_selectclock(hcb_p np, u_char scntl3); 2241 static void sym_getclock (hcb_p np, int mult); 2242 static int sym_getpciclock (hcb_p np); 2243 static void sym_complete_ok (hcb_p np, ccb_p cp); 2244 static void sym_complete_error (hcb_p np, ccb_p cp); 2245 static void sym_callout (void *arg); 2246 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2247 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2248 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2249 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2250 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2251 ccb_p cp); 2252 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2253 bus_dma_segment_t *psegs, int nsegs); 2254 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2255 bus_dma_segment_t *psegs, int nsegs); 2256 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2257 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 2258 struct ccb_trans_settings *cts); 2259 static void sym_update_dflags(hcb_p np, u_char *flags, 2260 struct ccb_trans_settings *cts); 2261 2262 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2263 static int sym_pci_probe (device_t dev); 2264 static int sym_pci_attach (device_t dev); 2265 2266 static void sym_pci_free (hcb_p np); 2267 static int sym_cam_attach (hcb_p np); 2268 static void sym_cam_free (hcb_p np); 2269 2270 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2271 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2272 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2273 2274 /* 2275 * Print something which allows to retrieve the controller type, 2276 * unit, target, lun concerned by a kernel message. 2277 */ 2278 static void PRINT_TARGET (hcb_p np, int target) 2279 { 2280 printf ("%s:%d:", sym_name(np), target); 2281 } 2282 2283 static void PRINT_LUN(hcb_p np, int target, int lun) 2284 { 2285 printf ("%s:%d:%d:", sym_name(np), target, lun); 2286 } 2287 2288 static void PRINT_ADDR (ccb_p cp) 2289 { 2290 if (cp && cp->cam_ccb) 2291 xpt_print_path(cp->cam_ccb->ccb_h.path); 2292 } 2293 2294 /* 2295 * Take into account this ccb in the freeze count. 2296 */ 2297 static void sym_freeze_cam_ccb(union ccb *ccb) 2298 { 2299 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2300 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2301 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2302 xpt_freeze_devq(ccb->ccb_h.path, 1); 2303 } 2304 } 2305 } 2306 2307 /* 2308 * Set the status field of a CAM CCB. 2309 */ 2310 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2311 { 2312 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2313 ccb->ccb_h.status |= status; 2314 } 2315 2316 /* 2317 * Get the status field of a CAM CCB. 2318 */ 2319 static __inline int sym_get_cam_status(union ccb *ccb) 2320 { 2321 return ccb->ccb_h.status & CAM_STATUS_MASK; 2322 } 2323 2324 /* 2325 * Enqueue a CAM CCB. 2326 */ 2327 static void sym_enqueue_cam_ccb(ccb_p cp) 2328 { 2329 hcb_p np; 2330 union ccb *ccb; 2331 2332 ccb = cp->cam_ccb; 2333 np = (hcb_p) cp->arg; 2334 2335 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2336 ccb->ccb_h.status = CAM_REQ_INPROG; 2337 2338 callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout, 2339 (caddr_t)ccb, 0); 2340 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2341 ccb->ccb_h.sym_hcb_ptr = np; 2342 2343 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2344 } 2345 2346 /* 2347 * Complete a pending CAM CCB. 2348 */ 2349 2350 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2351 { 2352 2353 SYM_LOCK_ASSERT(MA_OWNED); 2354 2355 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2356 callout_stop(&cp->ch); 2357 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2358 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2359 ccb->ccb_h.sym_hcb_ptr = NULL; 2360 } 2361 xpt_done(ccb); 2362 } 2363 2364 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2365 { 2366 2367 SYM_LOCK_ASSERT(MA_OWNED); 2368 2369 sym_set_cam_status(ccb, cam_status); 2370 xpt_done(ccb); 2371 } 2372 2373 /* 2374 * SYMBIOS chip clock divisor table. 2375 * 2376 * Divisors are multiplied by 10,000,000 in order to make 2377 * calculations more simple. 2378 */ 2379 #define _5M 5000000 2380 static const u32 div_10M[] = 2381 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2382 2383 /* 2384 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2385 * 128 transfers. All chips support at least 16 transfers 2386 * bursts. The 825A, 875 and 895 chips support bursts of up 2387 * to 128 transfers and the 895A and 896 support bursts of up 2388 * to 64 transfers. All other chips support up to 16 2389 * transfers bursts. 2390 * 2391 * For PCI 32 bit data transfers each transfer is a DWORD. 2392 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2393 * 2394 * We use log base 2 (burst length) as internal code, with 2395 * value 0 meaning "burst disabled". 2396 */ 2397 2398 /* 2399 * Burst length from burst code. 2400 */ 2401 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2402 2403 /* 2404 * Burst code from io register bits. 2405 */ 2406 #define burst_code(dmode, ctest4, ctest5) \ 2407 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2408 2409 /* 2410 * Set initial io register bits from burst code. 2411 */ 2412 static __inline void sym_init_burst(hcb_p np, u_char bc) 2413 { 2414 np->rv_ctest4 &= ~0x80; 2415 np->rv_dmode &= ~(0x3 << 6); 2416 np->rv_ctest5 &= ~0x4; 2417 2418 if (!bc) { 2419 np->rv_ctest4 |= 0x80; 2420 } 2421 else { 2422 --bc; 2423 np->rv_dmode |= ((bc & 0x3) << 6); 2424 np->rv_ctest5 |= (bc & 0x4); 2425 } 2426 } 2427 2428 /* 2429 * Print out the list of targets that have some flag disabled by user. 2430 */ 2431 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2432 { 2433 int cnt; 2434 int i; 2435 2436 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2437 if (i == np->myaddr) 2438 continue; 2439 if (np->target[i].usrflags & mask) { 2440 if (!cnt++) 2441 printf("%s: %s disabled for targets", 2442 sym_name(np), msg); 2443 printf(" %d", i); 2444 } 2445 } 2446 if (cnt) 2447 printf(".\n"); 2448 } 2449 2450 /* 2451 * Save initial settings of some IO registers. 2452 * Assumed to have been set by BIOS. 2453 * We cannot reset the chip prior to reading the 2454 * IO registers, since informations will be lost. 2455 * Since the SCRIPTS processor may be running, this 2456 * is not safe on paper, but it seems to work quite 2457 * well. :) 2458 */ 2459 static void sym_save_initial_setting (hcb_p np) 2460 { 2461 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2462 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2463 np->sv_dmode = INB(nc_dmode) & 0xce; 2464 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2465 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2466 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2467 np->sv_gpcntl = INB(nc_gpcntl); 2468 np->sv_stest1 = INB(nc_stest1); 2469 np->sv_stest2 = INB(nc_stest2) & 0x20; 2470 np->sv_stest4 = INB(nc_stest4); 2471 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2472 np->sv_scntl4 = INB(nc_scntl4); 2473 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2474 } 2475 else 2476 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2477 } 2478 2479 /* 2480 * Prepare io register values used by sym_init() according 2481 * to selected and supported features. 2482 */ 2483 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2484 { 2485 u_char burst_max; 2486 u32 period; 2487 int i; 2488 2489 /* 2490 * Wide ? 2491 */ 2492 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2493 2494 /* 2495 * Get the frequency of the chip's clock. 2496 */ 2497 if (np->features & FE_QUAD) 2498 np->multiplier = 4; 2499 else if (np->features & FE_DBLR) 2500 np->multiplier = 2; 2501 else 2502 np->multiplier = 1; 2503 2504 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2505 np->clock_khz *= np->multiplier; 2506 2507 if (np->clock_khz != 40000) 2508 sym_getclock(np, np->multiplier); 2509 2510 /* 2511 * Divisor to be used for async (timer pre-scaler). 2512 */ 2513 i = np->clock_divn - 1; 2514 while (--i >= 0) { 2515 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2516 ++i; 2517 break; 2518 } 2519 } 2520 np->rv_scntl3 = i+1; 2521 2522 /* 2523 * The C1010 uses hardwired divisors for async. 2524 * So, we just throw away, the async. divisor.:-) 2525 */ 2526 if (np->features & FE_C10) 2527 np->rv_scntl3 = 0; 2528 2529 /* 2530 * Minimum synchronous period factor supported by the chip. 2531 * Btw, 'period' is in tenths of nanoseconds. 2532 */ 2533 period = howmany(4 * div_10M[0], np->clock_khz); 2534 if (period <= 250) np->minsync = 10; 2535 else if (period <= 303) np->minsync = 11; 2536 else if (period <= 500) np->minsync = 12; 2537 else np->minsync = howmany(period, 40); 2538 2539 /* 2540 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2541 */ 2542 if (np->minsync < 25 && 2543 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2544 np->minsync = 25; 2545 else if (np->minsync < 12 && 2546 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2547 np->minsync = 12; 2548 2549 /* 2550 * Maximum synchronous period factor supported by the chip. 2551 */ 2552 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2553 np->maxsync = period > 2540 ? 254 : period / 10; 2554 2555 /* 2556 * If chip is a C1010, guess the sync limits in DT mode. 2557 */ 2558 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2559 if (np->clock_khz == 160000) { 2560 np->minsync_dt = 9; 2561 np->maxsync_dt = 50; 2562 np->maxoffs_dt = 62; 2563 } 2564 } 2565 2566 /* 2567 * 64 bit addressing (895A/896/1010) ? 2568 */ 2569 if (np->features & FE_DAC) 2570 #ifdef __LP64__ 2571 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2572 #else 2573 np->rv_ccntl1 |= (DDAC); 2574 #endif 2575 2576 /* 2577 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2578 */ 2579 if (np->features & FE_NOPM) 2580 np->rv_ccntl0 |= (ENPMJ); 2581 2582 /* 2583 * C1010 Errata. 2584 * In dual channel mode, contention occurs if internal cycles 2585 * are used. Disable internal cycles. 2586 */ 2587 if (np->device_id == PCI_ID_LSI53C1010 && 2588 np->revision_id < 0x2) 2589 np->rv_ccntl0 |= DILS; 2590 2591 /* 2592 * Select burst length (dwords) 2593 */ 2594 burst_max = SYM_SETUP_BURST_ORDER; 2595 if (burst_max == 255) 2596 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2597 np->sv_ctest5); 2598 if (burst_max > 7) 2599 burst_max = 7; 2600 if (burst_max > np->maxburst) 2601 burst_max = np->maxburst; 2602 2603 /* 2604 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2605 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2606 * based transactions on LOAD/STORE instructions. So we have 2607 * to prevent these chips from using such PCI transactions in 2608 * this driver. The generic ncr driver that does not use 2609 * LOAD/STORE instructions does not need this work-around. 2610 */ 2611 if ((np->device_id == PCI_ID_SYM53C810 && 2612 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2613 (np->device_id == PCI_ID_SYM53C860 && 2614 np->revision_id <= 0x1)) 2615 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2616 2617 /* 2618 * Select all supported special features. 2619 * If we are using on-board RAM for scripts, prefetch (PFEN) 2620 * does not help, but burst op fetch (BOF) does. 2621 * Disabling PFEN makes sure BOF will be used. 2622 */ 2623 if (np->features & FE_ERL) 2624 np->rv_dmode |= ERL; /* Enable Read Line */ 2625 if (np->features & FE_BOF) 2626 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2627 if (np->features & FE_ERMP) 2628 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2629 #if 1 2630 if ((np->features & FE_PFEN) && !np->ram_ba) 2631 #else 2632 if (np->features & FE_PFEN) 2633 #endif 2634 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2635 if (np->features & FE_CLSE) 2636 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2637 if (np->features & FE_WRIE) 2638 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2639 if (np->features & FE_DFS) 2640 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2641 2642 /* 2643 * Select some other 2644 */ 2645 if (SYM_SETUP_PCI_PARITY) 2646 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2647 if (SYM_SETUP_SCSI_PARITY) 2648 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2649 2650 /* 2651 * Get parity checking, host ID and verbose mode from NVRAM 2652 */ 2653 np->myaddr = 255; 2654 sym_nvram_setup_host (np, nvram); 2655 #ifdef __sparc64__ 2656 np->myaddr = OF_getscsinitid(np->device); 2657 #endif 2658 2659 /* 2660 * Get SCSI addr of host adapter (set by bios?). 2661 */ 2662 if (np->myaddr == 255) { 2663 np->myaddr = INB(nc_scid) & 0x07; 2664 if (!np->myaddr) 2665 np->myaddr = SYM_SETUP_HOST_ID; 2666 } 2667 2668 /* 2669 * Prepare initial io register bits for burst length 2670 */ 2671 sym_init_burst(np, burst_max); 2672 2673 /* 2674 * Set SCSI BUS mode. 2675 * - LVD capable chips (895/895A/896/1010) report the 2676 * current BUS mode through the STEST4 IO register. 2677 * - For previous generation chips (825/825A/875), 2678 * user has to tell us how to check against HVD, 2679 * since a 100% safe algorithm is not possible. 2680 */ 2681 np->scsi_mode = SMODE_SE; 2682 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2683 np->scsi_mode = (np->sv_stest4 & SMODE); 2684 else if (np->features & FE_DIFF) { 2685 if (SYM_SETUP_SCSI_DIFF == 1) { 2686 if (np->sv_scntl3) { 2687 if (np->sv_stest2 & 0x20) 2688 np->scsi_mode = SMODE_HVD; 2689 } 2690 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2691 if (!(INB(nc_gpreg) & 0x08)) 2692 np->scsi_mode = SMODE_HVD; 2693 } 2694 } 2695 else if (SYM_SETUP_SCSI_DIFF == 2) 2696 np->scsi_mode = SMODE_HVD; 2697 } 2698 if (np->scsi_mode == SMODE_HVD) 2699 np->rv_stest2 |= 0x20; 2700 2701 /* 2702 * Set LED support from SCRIPTS. 2703 * Ignore this feature for boards known to use a 2704 * specific GPIO wiring and for the 895A, 896 2705 * and 1010 that drive the LED directly. 2706 */ 2707 if ((SYM_SETUP_SCSI_LED || 2708 (nvram->type == SYM_SYMBIOS_NVRAM || 2709 (nvram->type == SYM_TEKRAM_NVRAM && 2710 np->device_id == PCI_ID_SYM53C895))) && 2711 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2712 np->features |= FE_LED0; 2713 2714 /* 2715 * Set irq mode. 2716 */ 2717 switch(SYM_SETUP_IRQ_MODE & 3) { 2718 case 2: 2719 np->rv_dcntl |= IRQM; 2720 break; 2721 case 1: 2722 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2723 break; 2724 default: 2725 break; 2726 } 2727 2728 /* 2729 * Configure targets according to driver setup. 2730 * If NVRAM present get targets setup from NVRAM. 2731 */ 2732 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2733 tcb_p tp = &np->target[i]; 2734 2735 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2736 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2737 tp->tinfo.user.period = np->minsync; 2738 if (np->features & FE_ULTRA3) 2739 tp->tinfo.user.period = np->minsync_dt; 2740 tp->tinfo.user.offset = np->maxoffs; 2741 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2742 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2743 tp->usrtags = SYM_SETUP_MAX_TAG; 2744 2745 sym_nvram_setup_target (np, i, nvram); 2746 2747 /* 2748 * For now, guess PPR/DT support from the period 2749 * and BUS width. 2750 */ 2751 if (np->features & FE_ULTRA3) { 2752 if (tp->tinfo.user.period <= 9 && 2753 tp->tinfo.user.width == BUS_16_BIT) { 2754 tp->tinfo.user.options |= PPR_OPT_DT; 2755 tp->tinfo.user.offset = np->maxoffs_dt; 2756 tp->tinfo.user.spi_version = 3; 2757 } 2758 } 2759 2760 if (!tp->usrtags) 2761 tp->usrflags &= ~SYM_TAGS_ENABLED; 2762 } 2763 2764 /* 2765 * Let user know about the settings. 2766 */ 2767 i = nvram->type; 2768 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2769 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2770 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2771 np->myaddr, 2772 (np->features & FE_ULTRA3) ? 80 : 2773 (np->features & FE_ULTRA2) ? 40 : 2774 (np->features & FE_ULTRA) ? 20 : 10, 2775 sym_scsi_bus_mode(np->scsi_mode), 2776 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2777 /* 2778 * Tell him more on demand. 2779 */ 2780 if (sym_verbose) { 2781 printf("%s: %s IRQ line driver%s\n", 2782 sym_name(np), 2783 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2784 np->ram_ba ? ", using on-chip SRAM" : ""); 2785 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2786 if (np->features & FE_NOPM) 2787 printf("%s: handling phase mismatch from SCRIPTS.\n", 2788 sym_name(np)); 2789 } 2790 /* 2791 * And still more. 2792 */ 2793 if (sym_verbose > 1) { 2794 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2795 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2796 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2797 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2798 2799 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2800 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2801 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2802 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2803 } 2804 /* 2805 * Let user be aware of targets that have some disable flags set. 2806 */ 2807 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2808 if (sym_verbose) 2809 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2810 "SCAN FOR LUNS"); 2811 2812 return 0; 2813 } 2814 2815 /* 2816 * Prepare the next negotiation message if needed. 2817 * 2818 * Fill in the part of message buffer that contains the 2819 * negotiation and the nego_status field of the CCB. 2820 * Returns the size of the message in bytes. 2821 */ 2822 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2823 { 2824 tcb_p tp = &np->target[cp->target]; 2825 int msglen = 0; 2826 2827 /* 2828 * Early C1010 chips need a work-around for DT 2829 * data transfer to work. 2830 */ 2831 if (!(np->features & FE_U3EN)) 2832 tp->tinfo.goal.options = 0; 2833 /* 2834 * negotiate using PPR ? 2835 */ 2836 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2837 nego = NS_PPR; 2838 /* 2839 * negotiate wide transfers ? 2840 */ 2841 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2842 nego = NS_WIDE; 2843 /* 2844 * negotiate synchronous transfers? 2845 */ 2846 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2847 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2848 nego = NS_SYNC; 2849 2850 switch (nego) { 2851 case NS_SYNC: 2852 msgptr[msglen++] = M_EXTENDED; 2853 msgptr[msglen++] = 3; 2854 msgptr[msglen++] = M_X_SYNC_REQ; 2855 msgptr[msglen++] = tp->tinfo.goal.period; 2856 msgptr[msglen++] = tp->tinfo.goal.offset; 2857 break; 2858 case NS_WIDE: 2859 msgptr[msglen++] = M_EXTENDED; 2860 msgptr[msglen++] = 2; 2861 msgptr[msglen++] = M_X_WIDE_REQ; 2862 msgptr[msglen++] = tp->tinfo.goal.width; 2863 break; 2864 case NS_PPR: 2865 msgptr[msglen++] = M_EXTENDED; 2866 msgptr[msglen++] = 6; 2867 msgptr[msglen++] = M_X_PPR_REQ; 2868 msgptr[msglen++] = tp->tinfo.goal.period; 2869 msgptr[msglen++] = 0; 2870 msgptr[msglen++] = tp->tinfo.goal.offset; 2871 msgptr[msglen++] = tp->tinfo.goal.width; 2872 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2873 break; 2874 } 2875 2876 cp->nego_status = nego; 2877 2878 if (nego) { 2879 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2880 if (DEBUG_FLAGS & DEBUG_NEGO) { 2881 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2882 nego == NS_WIDE ? "wide msgout" : 2883 "ppr msgout", msgptr); 2884 } 2885 } 2886 2887 return msglen; 2888 } 2889 2890 /* 2891 * Insert a job into the start queue. 2892 */ 2893 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2894 { 2895 u_short qidx; 2896 2897 #ifdef SYM_CONF_IARB_SUPPORT 2898 /* 2899 * If the previously queued CCB is not yet done, 2900 * set the IARB hint. The SCRIPTS will go with IARB 2901 * for this job when starting the previous one. 2902 * We leave devices a chance to win arbitration by 2903 * not using more than 'iarb_max' consecutive 2904 * immediate arbitrations. 2905 */ 2906 if (np->last_cp && np->iarb_count < np->iarb_max) { 2907 np->last_cp->host_flags |= HF_HINT_IARB; 2908 ++np->iarb_count; 2909 } 2910 else 2911 np->iarb_count = 0; 2912 np->last_cp = cp; 2913 #endif 2914 2915 /* 2916 * Insert first the idle task and then our job. 2917 * The MB should ensure proper ordering. 2918 */ 2919 qidx = np->squeueput + 2; 2920 if (qidx >= MAX_QUEUE*2) qidx = 0; 2921 2922 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2923 MEMORY_BARRIER(); 2924 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2925 2926 np->squeueput = qidx; 2927 2928 if (DEBUG_FLAGS & DEBUG_QUEUE) 2929 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2930 2931 /* 2932 * Script processor may be waiting for reselect. 2933 * Wake it up. 2934 */ 2935 MEMORY_BARRIER(); 2936 OUTB (nc_istat, SIGP|np->istat_sem); 2937 } 2938 2939 /* 2940 * Soft reset the chip. 2941 * 2942 * Raising SRST when the chip is running may cause 2943 * problems on dual function chips (see below). 2944 * On the other hand, LVD devices need some delay 2945 * to settle and report actual BUS mode in STEST4. 2946 */ 2947 static void sym_chip_reset (hcb_p np) 2948 { 2949 OUTB (nc_istat, SRST); 2950 UDELAY (10); 2951 OUTB (nc_istat, 0); 2952 UDELAY(2000); /* For BUS MODE to settle */ 2953 } 2954 2955 /* 2956 * Soft reset the chip. 2957 * 2958 * Some 896 and 876 chip revisions may hang-up if we set 2959 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2960 * are running. 2961 * So, we need to abort the current operation prior to 2962 * soft resetting the chip. 2963 */ 2964 static void sym_soft_reset (hcb_p np) 2965 { 2966 u_char istat; 2967 int i; 2968 2969 OUTB (nc_istat, CABRT); 2970 for (i = 1000000 ; i ; --i) { 2971 istat = INB (nc_istat); 2972 if (istat & SIP) { 2973 INW (nc_sist); 2974 continue; 2975 } 2976 if (istat & DIP) { 2977 OUTB (nc_istat, 0); 2978 INB (nc_dstat); 2979 break; 2980 } 2981 } 2982 if (!i) 2983 printf("%s: unable to abort current chip operation.\n", 2984 sym_name(np)); 2985 sym_chip_reset (np); 2986 } 2987 2988 /* 2989 * Start reset process. 2990 * 2991 * The interrupt handler will reinitialize the chip. 2992 */ 2993 static void sym_start_reset(hcb_p np) 2994 { 2995 (void) sym_reset_scsi_bus(np, 1); 2996 } 2997 2998 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 2999 { 3000 u32 term; 3001 int retv = 0; 3002 3003 sym_soft_reset(np); /* Soft reset the chip */ 3004 if (enab_int) 3005 OUTW (nc_sien, RST); 3006 /* 3007 * Enable Tolerant, reset IRQD if present and 3008 * properly set IRQ mode, prior to resetting the bus. 3009 */ 3010 OUTB (nc_stest3, TE); 3011 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3012 OUTB (nc_scntl1, CRST); 3013 UDELAY (200); 3014 3015 if (!SYM_SETUP_SCSI_BUS_CHECK) 3016 goto out; 3017 /* 3018 * Check for no terminators or SCSI bus shorts to ground. 3019 * Read SCSI data bus, data parity bits and control signals. 3020 * We are expecting RESET to be TRUE and other signals to be 3021 * FALSE. 3022 */ 3023 term = INB(nc_sstat0); 3024 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3025 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3026 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3027 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3028 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3029 3030 if (!(np->features & FE_WIDE)) 3031 term &= 0x3ffff; 3032 3033 if (term != (2<<7)) { 3034 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3035 sym_name(np)); 3036 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3037 "0x%lx, expecting 0x%lx\n", 3038 sym_name(np), 3039 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3040 (u_long)term, (u_long)(2<<7)); 3041 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3042 retv = 1; 3043 } 3044 out: 3045 OUTB (nc_scntl1, 0); 3046 /* MDELAY(100); */ 3047 return retv; 3048 } 3049 3050 /* 3051 * The chip may have completed jobs. Look at the DONE QUEUE. 3052 * 3053 * On architectures that may reorder LOAD/STORE operations, 3054 * a memory barrier may be needed after the reading of the 3055 * so-called `flag' and prior to dealing with the data. 3056 */ 3057 static int sym_wakeup_done (hcb_p np) 3058 { 3059 ccb_p cp; 3060 int i, n; 3061 u32 dsa; 3062 3063 SYM_LOCK_ASSERT(MA_OWNED); 3064 3065 n = 0; 3066 i = np->dqueueget; 3067 while (1) { 3068 dsa = scr_to_cpu(np->dqueue[i]); 3069 if (!dsa) 3070 break; 3071 np->dqueue[i] = 0; 3072 if ((i = i+2) >= MAX_QUEUE*2) 3073 i = 0; 3074 3075 cp = sym_ccb_from_dsa(np, dsa); 3076 if (cp) { 3077 MEMORY_BARRIER(); 3078 sym_complete_ok (np, cp); 3079 ++n; 3080 } 3081 else 3082 printf ("%s: bad DSA (%x) in done queue.\n", 3083 sym_name(np), (u_int) dsa); 3084 } 3085 np->dqueueget = i; 3086 3087 return n; 3088 } 3089 3090 /* 3091 * Complete all active CCBs with error. 3092 * Used on CHIP/SCSI RESET. 3093 */ 3094 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3095 { 3096 /* 3097 * Move all active CCBs to the COMP queue 3098 * and flush this queue. 3099 */ 3100 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3101 sym_que_init(&np->busy_ccbq); 3102 sym_flush_comp_queue(np, cam_status); 3103 } 3104 3105 /* 3106 * Start chip. 3107 * 3108 * 'reason' means: 3109 * 0: initialisation. 3110 * 1: SCSI BUS RESET delivered or received. 3111 * 2: SCSI BUS MODE changed. 3112 */ 3113 static void sym_init (hcb_p np, int reason) 3114 { 3115 int i; 3116 u32 phys; 3117 3118 SYM_LOCK_ASSERT(MA_OWNED); 3119 3120 /* 3121 * Reset chip if asked, otherwise just clear fifos. 3122 */ 3123 if (reason == 1) 3124 sym_soft_reset(np); 3125 else { 3126 OUTB (nc_stest3, TE|CSF); 3127 OUTONB (nc_ctest3, CLF); 3128 } 3129 3130 /* 3131 * Clear Start Queue 3132 */ 3133 phys = np->squeue_ba; 3134 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3135 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3136 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3137 } 3138 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3139 3140 /* 3141 * Start at first entry. 3142 */ 3143 np->squeueput = 0; 3144 3145 /* 3146 * Clear Done Queue 3147 */ 3148 phys = np->dqueue_ba; 3149 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3150 np->dqueue[i] = 0; 3151 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3152 } 3153 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3154 3155 /* 3156 * Start at first entry. 3157 */ 3158 np->dqueueget = 0; 3159 3160 /* 3161 * Install patches in scripts. 3162 * This also let point to first position the start 3163 * and done queue pointers used from SCRIPTS. 3164 */ 3165 np->fw_patch(np); 3166 3167 /* 3168 * Wakeup all pending jobs. 3169 */ 3170 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3171 3172 /* 3173 * Init chip. 3174 */ 3175 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3176 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3177 3178 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3179 /* full arb., ena parity, par->ATN */ 3180 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3181 3182 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3183 3184 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3185 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3186 OUTB (nc_istat , SIGP ); /* Signal Process */ 3187 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3188 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3189 3190 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3191 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3192 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3193 3194 /* Extended Sreq/Sack filtering not supported on the C10 */ 3195 if (np->features & FE_C10) 3196 OUTB (nc_stest2, np->rv_stest2); 3197 else 3198 OUTB (nc_stest2, EXT|np->rv_stest2); 3199 3200 OUTB (nc_stest3, TE); /* TolerANT enable */ 3201 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3202 3203 /* 3204 * For now, disable AIP generation on C1010-66. 3205 */ 3206 if (np->device_id == PCI_ID_LSI53C1010_2) 3207 OUTB (nc_aipcntl1, DISAIP); 3208 3209 /* 3210 * C10101 Errata. 3211 * Errant SGE's when in narrow. Write bits 4 & 5 of 3212 * STEST1 register to disable SGE. We probably should do 3213 * that from SCRIPTS for each selection/reselection, but 3214 * I just don't want. :) 3215 */ 3216 if (np->device_id == PCI_ID_LSI53C1010 && 3217 /* np->revision_id < 0xff */ 1) 3218 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3219 3220 /* 3221 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3222 * Disable overlapped arbitration for some dual function devices, 3223 * regardless revision id (kind of post-chip-design feature. ;-)) 3224 */ 3225 if (np->device_id == PCI_ID_SYM53C875) 3226 OUTB (nc_ctest0, (1<<5)); 3227 else if (np->device_id == PCI_ID_SYM53C896) 3228 np->rv_ccntl0 |= DPR; 3229 3230 /* 3231 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3232 * and/or hardware phase mismatch, since only such chips 3233 * seem to support those IO registers. 3234 */ 3235 if (np->features & (FE_DAC|FE_NOPM)) { 3236 OUTB (nc_ccntl0, np->rv_ccntl0); 3237 OUTB (nc_ccntl1, np->rv_ccntl1); 3238 } 3239 3240 /* 3241 * If phase mismatch handled by scripts (895A/896/1010), 3242 * set PM jump addresses. 3243 */ 3244 if (np->features & FE_NOPM) { 3245 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3246 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3247 } 3248 3249 /* 3250 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3251 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3252 */ 3253 if (np->features & FE_LED0) 3254 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3255 else if (np->features & FE_LEDC) 3256 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3257 3258 /* 3259 * enable ints 3260 */ 3261 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3262 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3263 3264 /* 3265 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3266 * Try to eat the spurious SBMC interrupt that may occur when 3267 * we reset the chip but not the SCSI BUS (at initialization). 3268 */ 3269 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3270 OUTONW (nc_sien, SBMC); 3271 if (reason == 0) { 3272 MDELAY(100); 3273 INW (nc_sist); 3274 } 3275 np->scsi_mode = INB (nc_stest4) & SMODE; 3276 } 3277 3278 /* 3279 * Fill in target structure. 3280 * Reinitialize usrsync. 3281 * Reinitialize usrwide. 3282 * Prepare sync negotiation according to actual SCSI bus mode. 3283 */ 3284 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3285 tcb_p tp = &np->target[i]; 3286 3287 tp->to_reset = 0; 3288 tp->head.sval = 0; 3289 tp->head.wval = np->rv_scntl3; 3290 tp->head.uval = 0; 3291 3292 tp->tinfo.current.period = 0; 3293 tp->tinfo.current.offset = 0; 3294 tp->tinfo.current.width = BUS_8_BIT; 3295 tp->tinfo.current.options = 0; 3296 } 3297 3298 /* 3299 * Download SCSI SCRIPTS to on-chip RAM if present, 3300 * and start script processor. 3301 */ 3302 if (np->ram_ba) { 3303 if (sym_verbose > 1) 3304 printf ("%s: Downloading SCSI SCRIPTS.\n", 3305 sym_name(np)); 3306 if (np->ram_ws == 8192) { 3307 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3308 OUTL (nc_mmws, np->scr_ram_seg); 3309 OUTL (nc_mmrs, np->scr_ram_seg); 3310 OUTL (nc_sfs, np->scr_ram_seg); 3311 phys = SCRIPTB_BA (np, start64); 3312 } 3313 else 3314 phys = SCRIPTA_BA (np, init); 3315 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3316 } 3317 else 3318 phys = SCRIPTA_BA (np, init); 3319 3320 np->istat_sem = 0; 3321 3322 OUTL (nc_dsa, np->hcb_ba); 3323 OUTL_DSP (phys); 3324 3325 /* 3326 * Notify the XPT about the RESET condition. 3327 */ 3328 if (reason != 0) 3329 xpt_async(AC_BUS_RESET, np->path, NULL); 3330 } 3331 3332 /* 3333 * Get clock factor and sync divisor for a given 3334 * synchronous factor period. 3335 */ 3336 static int 3337 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3338 { 3339 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3340 int div = np->clock_divn; /* Number of divisors supported */ 3341 u32 fak; /* Sync factor in sxfer */ 3342 u32 per; /* Period in tenths of ns */ 3343 u32 kpc; /* (per * clk) */ 3344 int ret; 3345 3346 /* 3347 * Compute the synchronous period in tenths of nano-seconds 3348 */ 3349 if (dt && sfac <= 9) per = 125; 3350 else if (sfac <= 10) per = 250; 3351 else if (sfac == 11) per = 303; 3352 else if (sfac == 12) per = 500; 3353 else per = 40 * sfac; 3354 ret = per; 3355 3356 kpc = per * clk; 3357 if (dt) 3358 kpc <<= 1; 3359 3360 /* 3361 * For earliest C10 revision 0, we cannot use extra 3362 * clocks for the setting of the SCSI clocking. 3363 * Note that this limits the lowest sync data transfer 3364 * to 5 Mega-transfers per second and may result in 3365 * using higher clock divisors. 3366 */ 3367 #if 1 3368 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3369 /* 3370 * Look for the lowest clock divisor that allows an 3371 * output speed not faster than the period. 3372 */ 3373 while (div > 0) { 3374 --div; 3375 if (kpc > (div_10M[div] << 2)) { 3376 ++div; 3377 break; 3378 } 3379 } 3380 fak = 0; /* No extra clocks */ 3381 if (div == np->clock_divn) { /* Are we too fast ? */ 3382 ret = -1; 3383 } 3384 *divp = div; 3385 *fakp = fak; 3386 return ret; 3387 } 3388 #endif 3389 3390 /* 3391 * Look for the greatest clock divisor that allows an 3392 * input speed faster than the period. 3393 */ 3394 while (div-- > 0) 3395 if (kpc >= (div_10M[div] << 2)) break; 3396 3397 /* 3398 * Calculate the lowest clock factor that allows an output 3399 * speed not faster than the period, and the max output speed. 3400 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3401 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3402 */ 3403 if (dt) { 3404 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3405 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3406 } 3407 else { 3408 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3409 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3410 } 3411 3412 /* 3413 * Check against our hardware limits, or bugs :). 3414 */ 3415 if (fak > 2) {fak = 2; ret = -1;} 3416 3417 /* 3418 * Compute and return sync parameters. 3419 */ 3420 *divp = div; 3421 *fakp = fak; 3422 3423 return ret; 3424 } 3425 3426 /* 3427 * Tell the SCSI layer about the new transfer parameters. 3428 */ 3429 static void 3430 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3431 { 3432 struct ccb_trans_settings cts; 3433 struct cam_path *path; 3434 int sts; 3435 tcb_p tp = &np->target[target]; 3436 3437 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3438 CAM_LUN_WILDCARD); 3439 if (sts != CAM_REQ_CMP) 3440 return; 3441 3442 bzero(&cts, sizeof(cts)); 3443 3444 #define cts__scsi (cts.proto_specific.scsi) 3445 #define cts__spi (cts.xport_specific.spi) 3446 3447 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3448 cts.protocol = PROTO_SCSI; 3449 cts.transport = XPORT_SPI; 3450 cts.protocol_version = tp->tinfo.current.scsi_version; 3451 cts.transport_version = tp->tinfo.current.spi_version; 3452 3453 cts__spi.valid = spi_valid; 3454 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3455 cts__spi.sync_period = tp->tinfo.current.period; 3456 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3457 cts__spi.sync_offset = tp->tinfo.current.offset; 3458 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3459 cts__spi.bus_width = tp->tinfo.current.width; 3460 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3461 cts__spi.ppr_options = tp->tinfo.current.options; 3462 #undef cts__spi 3463 #undef cts__scsi 3464 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3465 xpt_async(AC_TRANSFER_NEG, path, &cts); 3466 xpt_free_path(path); 3467 } 3468 3469 #define SYM_SPI_VALID_WDTR \ 3470 CTS_SPI_VALID_BUS_WIDTH | \ 3471 CTS_SPI_VALID_SYNC_RATE | \ 3472 CTS_SPI_VALID_SYNC_OFFSET 3473 #define SYM_SPI_VALID_SDTR \ 3474 CTS_SPI_VALID_SYNC_RATE | \ 3475 CTS_SPI_VALID_SYNC_OFFSET 3476 #define SYM_SPI_VALID_PPR \ 3477 CTS_SPI_VALID_PPR_OPTIONS | \ 3478 CTS_SPI_VALID_BUS_WIDTH | \ 3479 CTS_SPI_VALID_SYNC_RATE | \ 3480 CTS_SPI_VALID_SYNC_OFFSET 3481 3482 /* 3483 * We received a WDTR. 3484 * Let everything be aware of the changes. 3485 */ 3486 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3487 { 3488 tcb_p tp = &np->target[cp->target]; 3489 3490 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3491 3492 /* 3493 * Tell the SCSI layer about the new transfer parameters. 3494 */ 3495 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3496 tp->tinfo.current.offset = 0; 3497 tp->tinfo.current.period = 0; 3498 tp->tinfo.current.options = 0; 3499 3500 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3501 } 3502 3503 /* 3504 * We received a SDTR. 3505 * Let everything be aware of the changes. 3506 */ 3507 static void 3508 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3509 { 3510 tcb_p tp = &np->target[cp->target]; 3511 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3512 3513 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3514 3515 /* 3516 * Tell the SCSI layer about the new transfer parameters. 3517 */ 3518 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3519 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3520 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3521 3522 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3523 } 3524 3525 /* 3526 * We received a PPR. 3527 * Let everything be aware of the changes. 3528 */ 3529 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3530 u_char per, u_char wide, u_char div, u_char fak) 3531 { 3532 tcb_p tp = &np->target[cp->target]; 3533 3534 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3535 3536 /* 3537 * Tell the SCSI layer about the new transfer parameters. 3538 */ 3539 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3540 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3541 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3542 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3543 3544 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3545 } 3546 3547 /* 3548 * Switch trans mode for current job and it's target. 3549 */ 3550 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3551 u_char per, u_char wide, u_char div, u_char fak) 3552 { 3553 SYM_QUEHEAD *qp; 3554 union ccb *ccb; 3555 tcb_p tp; 3556 u_char target = INB (nc_sdid) & 0x0f; 3557 u_char sval, wval, uval; 3558 3559 assert (cp); 3560 if (!cp) return; 3561 ccb = cp->cam_ccb; 3562 assert (ccb); 3563 if (!ccb) return; 3564 assert (target == (cp->target & 0xf)); 3565 tp = &np->target[target]; 3566 3567 sval = tp->head.sval; 3568 wval = tp->head.wval; 3569 uval = tp->head.uval; 3570 3571 #if 0 3572 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3573 sval, wval, uval, np->rv_scntl3); 3574 #endif 3575 /* 3576 * Set the offset. 3577 */ 3578 if (!(np->features & FE_C10)) 3579 sval = (sval & ~0x1f) | ofs; 3580 else 3581 sval = (sval & ~0x3f) | ofs; 3582 3583 /* 3584 * Set the sync divisor and extra clock factor. 3585 */ 3586 if (ofs != 0) { 3587 wval = (wval & ~0x70) | ((div+1) << 4); 3588 if (!(np->features & FE_C10)) 3589 sval = (sval & ~0xe0) | (fak << 5); 3590 else { 3591 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3592 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3593 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3594 } 3595 } 3596 3597 /* 3598 * Set the bus width. 3599 */ 3600 wval = wval & ~EWS; 3601 if (wide != 0) 3602 wval |= EWS; 3603 3604 /* 3605 * Set misc. ultra enable bits. 3606 */ 3607 if (np->features & FE_C10) { 3608 uval = uval & ~(U3EN|AIPCKEN); 3609 if (dt) { 3610 assert(np->features & FE_U3EN); 3611 uval |= U3EN; 3612 } 3613 } 3614 else { 3615 wval = wval & ~ULTRA; 3616 if (per <= 12) wval |= ULTRA; 3617 } 3618 3619 /* 3620 * Stop there if sync parameters are unchanged. 3621 */ 3622 if (tp->head.sval == sval && 3623 tp->head.wval == wval && 3624 tp->head.uval == uval) 3625 return; 3626 tp->head.sval = sval; 3627 tp->head.wval = wval; 3628 tp->head.uval = uval; 3629 3630 /* 3631 * Disable extended Sreq/Sack filtering if per < 50. 3632 * Not supported on the C1010. 3633 */ 3634 if (per < 50 && !(np->features & FE_C10)) 3635 OUTOFFB (nc_stest2, EXT); 3636 3637 /* 3638 * set actual value and sync_status 3639 */ 3640 OUTB (nc_sxfer, tp->head.sval); 3641 OUTB (nc_scntl3, tp->head.wval); 3642 3643 if (np->features & FE_C10) { 3644 OUTB (nc_scntl4, tp->head.uval); 3645 } 3646 3647 /* 3648 * patch ALL busy ccbs of this target. 3649 */ 3650 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3651 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3652 if (cp->target != target) 3653 continue; 3654 cp->phys.select.sel_scntl3 = tp->head.wval; 3655 cp->phys.select.sel_sxfer = tp->head.sval; 3656 if (np->features & FE_C10) { 3657 cp->phys.select.sel_scntl4 = tp->head.uval; 3658 } 3659 } 3660 } 3661 3662 /* 3663 * log message for real hard errors 3664 * 3665 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3666 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3667 * 3668 * exception register: 3669 * ds: dstat 3670 * si: sist 3671 * 3672 * SCSI bus lines: 3673 * so: control lines as driven by chip. 3674 * si: control lines as seen by chip. 3675 * sd: scsi data lines as seen by chip. 3676 * 3677 * wide/fastmode: 3678 * sxfer: (see the manual) 3679 * scntl3: (see the manual) 3680 * 3681 * current script command: 3682 * dsp: script address (relative to start of script). 3683 * dbc: first word of script command. 3684 * 3685 * First 24 register of the chip: 3686 * r0..rf 3687 */ 3688 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3689 { 3690 u32 dsp; 3691 int script_ofs; 3692 int script_size; 3693 char *script_name; 3694 u_char *script_base; 3695 int i; 3696 3697 dsp = INL (nc_dsp); 3698 3699 if (dsp > np->scripta_ba && 3700 dsp <= np->scripta_ba + np->scripta_sz) { 3701 script_ofs = dsp - np->scripta_ba; 3702 script_size = np->scripta_sz; 3703 script_base = (u_char *) np->scripta0; 3704 script_name = "scripta"; 3705 } 3706 else if (np->scriptb_ba < dsp && 3707 dsp <= np->scriptb_ba + np->scriptb_sz) { 3708 script_ofs = dsp - np->scriptb_ba; 3709 script_size = np->scriptb_sz; 3710 script_base = (u_char *) np->scriptb0; 3711 script_name = "scriptb"; 3712 } else { 3713 script_ofs = dsp; 3714 script_size = 0; 3715 script_base = NULL; 3716 script_name = "mem"; 3717 } 3718 3719 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3720 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3721 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3722 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3723 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3724 (unsigned)INL (nc_dbc)); 3725 3726 if (((script_ofs & 3) == 0) && 3727 (unsigned)script_ofs < script_size) { 3728 printf ("%s: script cmd = %08x\n", sym_name(np), 3729 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3730 } 3731 3732 printf ("%s: regdump:", sym_name(np)); 3733 for (i=0; i<24;i++) 3734 printf (" %02x", (unsigned)INB_OFF(i)); 3735 printf (".\n"); 3736 3737 /* 3738 * PCI BUS error, read the PCI ststus register. 3739 */ 3740 if (dstat & (MDPE|BF)) { 3741 u_short pci_sts; 3742 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3743 if (pci_sts & 0xf900) { 3744 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3745 printf("%s: PCI STATUS = 0x%04x\n", 3746 sym_name(np), pci_sts & 0xf900); 3747 } 3748 } 3749 } 3750 3751 /* 3752 * chip interrupt handler 3753 * 3754 * In normal situations, interrupt conditions occur one at 3755 * a time. But when something bad happens on the SCSI BUS, 3756 * the chip may raise several interrupt flags before 3757 * stopping and interrupting the CPU. The additionnal 3758 * interrupt flags are stacked in some extra registers 3759 * after the SIP and/or DIP flag has been raised in the 3760 * ISTAT. After the CPU has read the interrupt condition 3761 * flag from SIST or DSTAT, the chip unstacks the other 3762 * interrupt flags and sets the corresponding bits in 3763 * SIST or DSTAT. Since the chip starts stacking once the 3764 * SIP or DIP flag is set, there is a small window of time 3765 * where the stacking does not occur. 3766 * 3767 * Typically, multiple interrupt conditions may happen in 3768 * the following situations: 3769 * 3770 * - SCSI parity error + Phase mismatch (PAR|MA) 3771 * When a parity error is detected in input phase 3772 * and the device switches to msg-in phase inside a 3773 * block MOV. 3774 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3775 * When a stupid device does not want to handle the 3776 * recovery of an SCSI parity error. 3777 * - Some combinations of STO, PAR, UDC, ... 3778 * When using non compliant SCSI stuff, when user is 3779 * doing non compliant hot tampering on the BUS, when 3780 * something really bad happens to a device, etc ... 3781 * 3782 * The heuristic suggested by SYMBIOS to handle 3783 * multiple interrupts is to try unstacking all 3784 * interrupts conditions and to handle them on some 3785 * priority based on error severity. 3786 * This will work when the unstacking has been 3787 * successful, but we cannot be 100 % sure of that, 3788 * since the CPU may have been faster to unstack than 3789 * the chip is able to stack. Hmmm ... But it seems that 3790 * such a situation is very unlikely to happen. 3791 * 3792 * If this happen, for example STO caught by the CPU 3793 * then UDC happenning before the CPU have restarted 3794 * the SCRIPTS, the driver may wrongly complete the 3795 * same command on UDC, since the SCRIPTS didn't restart 3796 * and the DSA still points to the same command. 3797 * We avoid this situation by setting the DSA to an 3798 * invalid value when the CCB is completed and before 3799 * restarting the SCRIPTS. 3800 * 3801 * Another issue is that we need some section of our 3802 * recovery procedures to be somehow uninterruptible but 3803 * the SCRIPTS processor does not provides such a 3804 * feature. For this reason, we handle recovery preferently 3805 * from the C code and check against some SCRIPTS critical 3806 * sections from the C code. 3807 * 3808 * Hopefully, the interrupt handling of the driver is now 3809 * able to resist to weird BUS error conditions, but donnot 3810 * ask me for any guarantee that it will never fail. :-) 3811 * Use at your own decision and risk. 3812 */ 3813 static void sym_intr1 (hcb_p np) 3814 { 3815 u_char istat, istatc; 3816 u_char dstat; 3817 u_short sist; 3818 3819 SYM_LOCK_ASSERT(MA_OWNED); 3820 3821 /* 3822 * interrupt on the fly ? 3823 * 3824 * A `dummy read' is needed to ensure that the 3825 * clear of the INTF flag reaches the device 3826 * before the scanning of the DONE queue. 3827 */ 3828 istat = INB (nc_istat); 3829 if (istat & INTF) { 3830 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3831 istat = INB (nc_istat); /* DUMMY READ */ 3832 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3833 (void)sym_wakeup_done (np); 3834 } 3835 3836 if (!(istat & (SIP|DIP))) 3837 return; 3838 3839 #if 0 /* We should never get this one */ 3840 if (istat & CABRT) 3841 OUTB (nc_istat, CABRT); 3842 #endif 3843 3844 /* 3845 * PAR and MA interrupts may occur at the same time, 3846 * and we need to know of both in order to handle 3847 * this situation properly. We try to unstack SCSI 3848 * interrupts for that reason. BTW, I dislike a LOT 3849 * such a loop inside the interrupt routine. 3850 * Even if DMA interrupt stacking is very unlikely to 3851 * happen, we also try unstacking these ones, since 3852 * this has no performance impact. 3853 */ 3854 sist = 0; 3855 dstat = 0; 3856 istatc = istat; 3857 do { 3858 if (istatc & SIP) 3859 sist |= INW (nc_sist); 3860 if (istatc & DIP) 3861 dstat |= INB (nc_dstat); 3862 istatc = INB (nc_istat); 3863 istat |= istatc; 3864 } while (istatc & (SIP|DIP)); 3865 3866 if (DEBUG_FLAGS & DEBUG_TINY) 3867 printf ("<%d|%x:%x|%x:%x>", 3868 (int)INB(nc_scr0), 3869 dstat,sist, 3870 (unsigned)INL(nc_dsp), 3871 (unsigned)INL(nc_dbc)); 3872 /* 3873 * On paper, a memory barrier may be needed here. 3874 * And since we are paranoid ... :) 3875 */ 3876 MEMORY_BARRIER(); 3877 3878 /* 3879 * First, interrupts we want to service cleanly. 3880 * 3881 * Phase mismatch (MA) is the most frequent interrupt 3882 * for chip earlier than the 896 and so we have to service 3883 * it as quickly as possible. 3884 * A SCSI parity error (PAR) may be combined with a phase 3885 * mismatch condition (MA). 3886 * Programmed interrupts (SIR) are used to call the C code 3887 * from SCRIPTS. 3888 * The single step interrupt (SSI) is not used in this 3889 * driver. 3890 */ 3891 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3892 !(dstat & (MDPE|BF|ABRT|IID))) { 3893 if (sist & PAR) sym_int_par (np, sist); 3894 else if (sist & MA) sym_int_ma (np); 3895 else if (dstat & SIR) sym_int_sir (np); 3896 else if (dstat & SSI) OUTONB_STD (); 3897 else goto unknown_int; 3898 return; 3899 } 3900 3901 /* 3902 * Now, interrupts that donnot happen in normal 3903 * situations and that we may need to recover from. 3904 * 3905 * On SCSI RESET (RST), we reset everything. 3906 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3907 * active CCBs with RESET status, prepare all devices 3908 * for negotiating again and restart the SCRIPTS. 3909 * On STO and UDC, we complete the CCB with the corres- 3910 * ponding status and restart the SCRIPTS. 3911 */ 3912 if (sist & RST) { 3913 xpt_print_path(np->path); 3914 printf("SCSI BUS reset detected.\n"); 3915 sym_init (np, 1); 3916 return; 3917 } 3918 3919 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3920 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3921 3922 if (!(sist & (GEN|HTH|SGE)) && 3923 !(dstat & (MDPE|BF|ABRT|IID))) { 3924 if (sist & SBMC) sym_int_sbmc (np); 3925 else if (sist & STO) sym_int_sto (np); 3926 else if (sist & UDC) sym_int_udc (np); 3927 else goto unknown_int; 3928 return; 3929 } 3930 3931 /* 3932 * Now, interrupts we are not able to recover cleanly. 3933 * 3934 * Log message for hard errors. 3935 * Reset everything. 3936 */ 3937 3938 sym_log_hard_error(np, sist, dstat); 3939 3940 if ((sist & (GEN|HTH|SGE)) || 3941 (dstat & (MDPE|BF|ABRT|IID))) { 3942 sym_start_reset(np); 3943 return; 3944 } 3945 3946 unknown_int: 3947 /* 3948 * We just miss the cause of the interrupt. :( 3949 * Print a message. The timeout will do the real work. 3950 */ 3951 printf( "%s: unknown interrupt(s) ignored, " 3952 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3953 sym_name(np), istat, dstat, sist); 3954 } 3955 3956 static void sym_intr(void *arg) 3957 { 3958 hcb_p np = arg; 3959 3960 SYM_LOCK(); 3961 3962 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3963 sym_intr1((hcb_p) arg); 3964 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3965 3966 SYM_UNLOCK(); 3967 } 3968 3969 static void sym_poll(struct cam_sim *sim) 3970 { 3971 sym_intr1(cam_sim_softc(sim)); 3972 } 3973 3974 /* 3975 * generic recovery from scsi interrupt 3976 * 3977 * The doc says that when the chip gets an SCSI interrupt, 3978 * it tries to stop in an orderly fashion, by completing 3979 * an instruction fetch that had started or by flushing 3980 * the DMA fifo for a write to memory that was executing. 3981 * Such a fashion is not enough to know if the instruction 3982 * that was just before the current DSP value has been 3983 * executed or not. 3984 * 3985 * There are some small SCRIPTS sections that deal with 3986 * the start queue and the done queue that may break any 3987 * assomption from the C code if we are interrupted 3988 * inside, so we reset if this happens. Btw, since these 3989 * SCRIPTS sections are executed while the SCRIPTS hasn't 3990 * started SCSI operations, it is very unlikely to happen. 3991 * 3992 * All the driver data structures are supposed to be 3993 * allocated from the same 4 GB memory window, so there 3994 * is a 1 to 1 relationship between DSA and driver data 3995 * structures. Since we are careful :) to invalidate the 3996 * DSA when we complete a command or when the SCRIPTS 3997 * pushes a DSA into a queue, we can trust it when it 3998 * points to a CCB. 3999 */ 4000 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4001 { 4002 u32 dsp = INL (nc_dsp); 4003 u32 dsa = INL (nc_dsa); 4004 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4005 4006 /* 4007 * If we haven't been interrupted inside the SCRIPTS 4008 * critical paths, we can safely restart the SCRIPTS 4009 * and trust the DSA value if it matches a CCB. 4010 */ 4011 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4012 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4013 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4014 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4015 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4016 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4017 (!(dsp > SCRIPTA_BA (np, done) && 4018 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4019 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4020 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4021 /* 4022 * If we have a CCB, let the SCRIPTS call us back for 4023 * the handling of the error with SCRATCHA filled with 4024 * STARTPOS. This way, we will be able to freeze the 4025 * device queue and requeue awaiting IOs. 4026 */ 4027 if (cp) { 4028 cp->host_status = hsts; 4029 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4030 } 4031 /* 4032 * Otherwise just restart the SCRIPTS. 4033 */ 4034 else { 4035 OUTL (nc_dsa, 0xffffff); 4036 OUTL_DSP (SCRIPTA_BA (np, start)); 4037 } 4038 } 4039 else 4040 goto reset_all; 4041 4042 return; 4043 4044 reset_all: 4045 sym_start_reset(np); 4046 } 4047 4048 /* 4049 * chip exception handler for selection timeout 4050 */ 4051 static void sym_int_sto (hcb_p np) 4052 { 4053 u32 dsp = INL (nc_dsp); 4054 4055 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4056 4057 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4058 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4059 else 4060 sym_start_reset(np); 4061 } 4062 4063 /* 4064 * chip exception handler for unexpected disconnect 4065 */ 4066 static void sym_int_udc (hcb_p np) 4067 { 4068 printf ("%s: unexpected disconnect\n", sym_name(np)); 4069 sym_recover_scsi_int(np, HS_UNEXPECTED); 4070 } 4071 4072 /* 4073 * chip exception handler for SCSI bus mode change 4074 * 4075 * spi2-r12 11.2.3 says a transceiver mode change must 4076 * generate a reset event and a device that detects a reset 4077 * event shall initiate a hard reset. It says also that a 4078 * device that detects a mode change shall set data transfer 4079 * mode to eight bit asynchronous, etc... 4080 * So, just reinitializing all except chip should be enough. 4081 */ 4082 static void sym_int_sbmc (hcb_p np) 4083 { 4084 u_char scsi_mode = INB (nc_stest4) & SMODE; 4085 4086 /* 4087 * Notify user. 4088 */ 4089 xpt_print_path(np->path); 4090 printf("SCSI BUS mode change from %s to %s.\n", 4091 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4092 4093 /* 4094 * Should suspend command processing for a few seconds and 4095 * reinitialize all except the chip. 4096 */ 4097 sym_init (np, 2); 4098 } 4099 4100 /* 4101 * chip exception handler for SCSI parity error. 4102 * 4103 * When the chip detects a SCSI parity error and is 4104 * currently executing a (CH)MOV instruction, it does 4105 * not interrupt immediately, but tries to finish the 4106 * transfer of the current scatter entry before 4107 * interrupting. The following situations may occur: 4108 * 4109 * - The complete scatter entry has been transferred 4110 * without the device having changed phase. 4111 * The chip will then interrupt with the DSP pointing 4112 * to the instruction that follows the MOV. 4113 * 4114 * - A phase mismatch occurs before the MOV finished 4115 * and phase errors are to be handled by the C code. 4116 * The chip will then interrupt with both PAR and MA 4117 * conditions set. 4118 * 4119 * - A phase mismatch occurs before the MOV finished and 4120 * phase errors are to be handled by SCRIPTS. 4121 * The chip will load the DSP with the phase mismatch 4122 * JUMP address and interrupt the host processor. 4123 */ 4124 static void sym_int_par (hcb_p np, u_short sist) 4125 { 4126 u_char hsts = INB (HS_PRT); 4127 u32 dsp = INL (nc_dsp); 4128 u32 dbc = INL (nc_dbc); 4129 u32 dsa = INL (nc_dsa); 4130 u_char sbcl = INB (nc_sbcl); 4131 u_char cmd = dbc >> 24; 4132 int phase = cmd & 7; 4133 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4134 4135 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4136 sym_name(np), hsts, dbc, sbcl); 4137 4138 /* 4139 * Check that the chip is connected to the SCSI BUS. 4140 */ 4141 if (!(INB (nc_scntl1) & ISCON)) { 4142 sym_recover_scsi_int(np, HS_UNEXPECTED); 4143 return; 4144 } 4145 4146 /* 4147 * If the nexus is not clearly identified, reset the bus. 4148 * We will try to do better later. 4149 */ 4150 if (!cp) 4151 goto reset_all; 4152 4153 /* 4154 * Check instruction was a MOV, direction was INPUT and 4155 * ATN is asserted. 4156 */ 4157 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4158 goto reset_all; 4159 4160 /* 4161 * Keep track of the parity error. 4162 */ 4163 OUTONB (HF_PRT, HF_EXT_ERR); 4164 cp->xerr_status |= XE_PARITY_ERR; 4165 4166 /* 4167 * Prepare the message to send to the device. 4168 */ 4169 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4170 4171 /* 4172 * If the old phase was DATA IN phase, we have to deal with 4173 * the 3 situations described above. 4174 * For other input phases (MSG IN and STATUS), the device 4175 * must resend the whole thing that failed parity checking 4176 * or signal error. So, jumping to dispatcher should be OK. 4177 */ 4178 if (phase == 1 || phase == 5) { 4179 /* Phase mismatch handled by SCRIPTS */ 4180 if (dsp == SCRIPTB_BA (np, pm_handle)) 4181 OUTL_DSP (dsp); 4182 /* Phase mismatch handled by the C code */ 4183 else if (sist & MA) 4184 sym_int_ma (np); 4185 /* No phase mismatch occurred */ 4186 else { 4187 OUTL (nc_temp, dsp); 4188 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4189 } 4190 } 4191 else 4192 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4193 return; 4194 4195 reset_all: 4196 sym_start_reset(np); 4197 } 4198 4199 /* 4200 * chip exception handler for phase errors. 4201 * 4202 * We have to construct a new transfer descriptor, 4203 * to transfer the rest of the current block. 4204 */ 4205 static void sym_int_ma (hcb_p np) 4206 { 4207 u32 dbc; 4208 u32 rest; 4209 u32 dsp; 4210 u32 dsa; 4211 u32 nxtdsp; 4212 u32 *vdsp; 4213 u32 oadr, olen; 4214 u32 *tblp; 4215 u32 newcmd; 4216 u_int delta; 4217 u_char cmd; 4218 u_char hflags, hflags0; 4219 struct sym_pmc *pm; 4220 ccb_p cp; 4221 4222 dsp = INL (nc_dsp); 4223 dbc = INL (nc_dbc); 4224 dsa = INL (nc_dsa); 4225 4226 cmd = dbc >> 24; 4227 rest = dbc & 0xffffff; 4228 delta = 0; 4229 4230 /* 4231 * locate matching cp if any. 4232 */ 4233 cp = sym_ccb_from_dsa(np, dsa); 4234 4235 /* 4236 * Donnot take into account dma fifo and various buffers in 4237 * INPUT phase since the chip flushes everything before 4238 * raising the MA interrupt for interrupted INPUT phases. 4239 * For DATA IN phase, we will check for the SWIDE later. 4240 */ 4241 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4242 u_char ss0, ss2; 4243 4244 if (np->features & FE_DFBC) 4245 delta = INW (nc_dfbc); 4246 else { 4247 u32 dfifo; 4248 4249 /* 4250 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4251 */ 4252 dfifo = INL(nc_dfifo); 4253 4254 /* 4255 * Calculate remaining bytes in DMA fifo. 4256 * (CTEST5 = dfifo >> 16) 4257 */ 4258 if (dfifo & (DFS << 16)) 4259 delta = ((((dfifo >> 8) & 0x300) | 4260 (dfifo & 0xff)) - rest) & 0x3ff; 4261 else 4262 delta = ((dfifo & 0xff) - rest) & 0x7f; 4263 } 4264 4265 /* 4266 * The data in the dma fifo has not been transferred to 4267 * the target -> add the amount to the rest 4268 * and clear the data. 4269 * Check the sstat2 register in case of wide transfer. 4270 */ 4271 rest += delta; 4272 ss0 = INB (nc_sstat0); 4273 if (ss0 & OLF) rest++; 4274 if (!(np->features & FE_C10)) 4275 if (ss0 & ORF) rest++; 4276 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4277 ss2 = INB (nc_sstat2); 4278 if (ss2 & OLF1) rest++; 4279 if (!(np->features & FE_C10)) 4280 if (ss2 & ORF1) rest++; 4281 } 4282 4283 /* 4284 * Clear fifos. 4285 */ 4286 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4287 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4288 } 4289 4290 /* 4291 * log the information 4292 */ 4293 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4294 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4295 (unsigned) rest, (unsigned) delta); 4296 4297 /* 4298 * try to find the interrupted script command, 4299 * and the address at which to continue. 4300 */ 4301 vdsp = NULL; 4302 nxtdsp = 0; 4303 if (dsp > np->scripta_ba && 4304 dsp <= np->scripta_ba + np->scripta_sz) { 4305 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4306 nxtdsp = dsp; 4307 } 4308 else if (dsp > np->scriptb_ba && 4309 dsp <= np->scriptb_ba + np->scriptb_sz) { 4310 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4311 nxtdsp = dsp; 4312 } 4313 4314 /* 4315 * log the information 4316 */ 4317 if (DEBUG_FLAGS & DEBUG_PHASE) { 4318 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4319 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4320 } 4321 4322 if (!vdsp) { 4323 printf ("%s: interrupted SCRIPT address not found.\n", 4324 sym_name (np)); 4325 goto reset_all; 4326 } 4327 4328 if (!cp) { 4329 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4330 sym_name (np)); 4331 goto reset_all; 4332 } 4333 4334 /* 4335 * get old startaddress and old length. 4336 */ 4337 oadr = scr_to_cpu(vdsp[1]); 4338 4339 if (cmd & 0x10) { /* Table indirect */ 4340 tblp = (u32 *) ((char*) &cp->phys + oadr); 4341 olen = scr_to_cpu(tblp[0]); 4342 oadr = scr_to_cpu(tblp[1]); 4343 } else { 4344 tblp = (u32 *) 0; 4345 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4346 } 4347 4348 if (DEBUG_FLAGS & DEBUG_PHASE) { 4349 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4350 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4351 tblp, 4352 (unsigned) olen, 4353 (unsigned) oadr); 4354 } 4355 4356 /* 4357 * check cmd against assumed interrupted script command. 4358 * If dt data phase, the MOVE instruction hasn't bit 4 of 4359 * the phase. 4360 */ 4361 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4362 PRINT_ADDR(cp); 4363 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4364 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4365 4366 goto reset_all; 4367 } 4368 4369 /* 4370 * if old phase not dataphase, leave here. 4371 */ 4372 if (cmd & 2) { 4373 PRINT_ADDR(cp); 4374 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4375 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4376 (unsigned)oadr, (unsigned)rest); 4377 goto unexpected_phase; 4378 } 4379 4380 /* 4381 * Choose the correct PM save area. 4382 * 4383 * Look at the PM_SAVE SCRIPT if you want to understand 4384 * this stuff. The equivalent code is implemented in 4385 * SCRIPTS for the 895A, 896 and 1010 that are able to 4386 * handle PM from the SCRIPTS processor. 4387 */ 4388 hflags0 = INB (HF_PRT); 4389 hflags = hflags0; 4390 4391 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4392 if (hflags & HF_IN_PM0) 4393 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4394 else if (hflags & HF_IN_PM1) 4395 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4396 4397 if (hflags & HF_DP_SAVED) 4398 hflags ^= HF_ACT_PM; 4399 } 4400 4401 if (!(hflags & HF_ACT_PM)) { 4402 pm = &cp->phys.pm0; 4403 newcmd = SCRIPTA_BA (np, pm0_data); 4404 } 4405 else { 4406 pm = &cp->phys.pm1; 4407 newcmd = SCRIPTA_BA (np, pm1_data); 4408 } 4409 4410 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4411 if (hflags != hflags0) 4412 OUTB (HF_PRT, hflags); 4413 4414 /* 4415 * fillin the phase mismatch context 4416 */ 4417 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4418 pm->sg.size = cpu_to_scr(rest); 4419 pm->ret = cpu_to_scr(nxtdsp); 4420 4421 /* 4422 * If we have a SWIDE, 4423 * - prepare the address to write the SWIDE from SCRIPTS, 4424 * - compute the SCRIPTS address to restart from, 4425 * - move current data pointer context by one byte. 4426 */ 4427 nxtdsp = SCRIPTA_BA (np, dispatch); 4428 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4429 (INB (nc_scntl2) & WSR)) { 4430 u32 tmp; 4431 4432 /* 4433 * Set up the table indirect for the MOVE 4434 * of the residual byte and adjust the data 4435 * pointer context. 4436 */ 4437 tmp = scr_to_cpu(pm->sg.addr); 4438 cp->phys.wresid.addr = cpu_to_scr(tmp); 4439 pm->sg.addr = cpu_to_scr(tmp + 1); 4440 tmp = scr_to_cpu(pm->sg.size); 4441 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4442 pm->sg.size = cpu_to_scr(tmp - 1); 4443 4444 /* 4445 * If only the residual byte is to be moved, 4446 * no PM context is needed. 4447 */ 4448 if ((tmp&0xffffff) == 1) 4449 newcmd = pm->ret; 4450 4451 /* 4452 * Prepare the address of SCRIPTS that will 4453 * move the residual byte to memory. 4454 */ 4455 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4456 } 4457 4458 if (DEBUG_FLAGS & DEBUG_PHASE) { 4459 PRINT_ADDR(cp); 4460 printf ("PM %x %x %x / %x %x %x.\n", 4461 hflags0, hflags, newcmd, 4462 (unsigned)scr_to_cpu(pm->sg.addr), 4463 (unsigned)scr_to_cpu(pm->sg.size), 4464 (unsigned)scr_to_cpu(pm->ret)); 4465 } 4466 4467 /* 4468 * Restart the SCRIPTS processor. 4469 */ 4470 OUTL (nc_temp, newcmd); 4471 OUTL_DSP (nxtdsp); 4472 return; 4473 4474 /* 4475 * Unexpected phase changes that occurs when the current phase 4476 * is not a DATA IN or DATA OUT phase are due to error conditions. 4477 * Such event may only happen when the SCRIPTS is using a 4478 * multibyte SCSI MOVE. 4479 * 4480 * Phase change Some possible cause 4481 * 4482 * COMMAND --> MSG IN SCSI parity error detected by target. 4483 * COMMAND --> STATUS Bad command or refused by target. 4484 * MSG OUT --> MSG IN Message rejected by target. 4485 * MSG OUT --> COMMAND Bogus target that discards extended 4486 * negotiation messages. 4487 * 4488 * The code below does not care of the new phase and so 4489 * trusts the target. Why to annoy it ? 4490 * If the interrupted phase is COMMAND phase, we restart at 4491 * dispatcher. 4492 * If a target does not get all the messages after selection, 4493 * the code assumes blindly that the target discards extended 4494 * messages and clears the negotiation status. 4495 * If the target does not want all our response to negotiation, 4496 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4497 * bloat for such a should_not_happen situation). 4498 * In all other situation, we reset the BUS. 4499 * Are these assumptions reasonnable ? (Wait and see ...) 4500 */ 4501 unexpected_phase: 4502 dsp -= 8; 4503 nxtdsp = 0; 4504 4505 switch (cmd & 7) { 4506 case 2: /* COMMAND phase */ 4507 nxtdsp = SCRIPTA_BA (np, dispatch); 4508 break; 4509 #if 0 4510 case 3: /* STATUS phase */ 4511 nxtdsp = SCRIPTA_BA (np, dispatch); 4512 break; 4513 #endif 4514 case 6: /* MSG OUT phase */ 4515 /* 4516 * If the device may want to use untagged when we want 4517 * tagged, we prepare an IDENTIFY without disc. granted, 4518 * since we will not be able to handle reselect. 4519 * Otherwise, we just don't care. 4520 */ 4521 if (dsp == SCRIPTA_BA (np, send_ident)) { 4522 if (cp->tag != NO_TAG && olen - rest <= 3) { 4523 cp->host_status = HS_BUSY; 4524 np->msgout[0] = M_IDENTIFY | cp->lun; 4525 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4526 } 4527 else 4528 nxtdsp = SCRIPTB_BA (np, ident_break); 4529 } 4530 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4531 dsp == SCRIPTB_BA (np, send_sdtr) || 4532 dsp == SCRIPTB_BA (np, send_ppr)) { 4533 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4534 } 4535 break; 4536 #if 0 4537 case 7: /* MSG IN phase */ 4538 nxtdsp = SCRIPTA_BA (np, clrack); 4539 break; 4540 #endif 4541 } 4542 4543 if (nxtdsp) { 4544 OUTL_DSP (nxtdsp); 4545 return; 4546 } 4547 4548 reset_all: 4549 sym_start_reset(np); 4550 } 4551 4552 /* 4553 * Dequeue from the START queue all CCBs that match 4554 * a given target/lun/task condition (-1 means all), 4555 * and move them from the BUSY queue to the COMP queue 4556 * with CAM_REQUEUE_REQ status condition. 4557 * This function is used during error handling/recovery. 4558 * It is called with SCRIPTS not running. 4559 */ 4560 static int 4561 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4562 { 4563 int j; 4564 ccb_p cp; 4565 4566 /* 4567 * Make sure the starting index is within range. 4568 */ 4569 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4570 4571 /* 4572 * Walk until end of START queue and dequeue every job 4573 * that matches the target/lun/task condition. 4574 */ 4575 j = i; 4576 while (i != np->squeueput) { 4577 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4578 assert(cp); 4579 #ifdef SYM_CONF_IARB_SUPPORT 4580 /* Forget hints for IARB, they may be no longer relevant */ 4581 cp->host_flags &= ~HF_HINT_IARB; 4582 #endif 4583 if ((target == -1 || cp->target == target) && 4584 (lun == -1 || cp->lun == lun) && 4585 (task == -1 || cp->tag == task)) { 4586 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4587 sym_remque(&cp->link_ccbq); 4588 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4589 } 4590 else { 4591 if (i != j) 4592 np->squeue[j] = np->squeue[i]; 4593 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4594 } 4595 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4596 } 4597 if (i != j) /* Copy back the idle task if needed */ 4598 np->squeue[j] = np->squeue[i]; 4599 np->squeueput = j; /* Update our current start queue pointer */ 4600 4601 return (i - j) / 2; 4602 } 4603 4604 /* 4605 * Complete all CCBs queued to the COMP queue. 4606 * 4607 * These CCBs are assumed: 4608 * - Not to be referenced either by devices or 4609 * SCRIPTS-related queues and datas. 4610 * - To have to be completed with an error condition 4611 * or requeued. 4612 * 4613 * The device queue freeze count is incremented 4614 * for each CCB that does not prevent this. 4615 * This function is called when all CCBs involved 4616 * in error handling/recovery have been reaped. 4617 */ 4618 static void 4619 sym_flush_comp_queue(hcb_p np, int cam_status) 4620 { 4621 SYM_QUEHEAD *qp; 4622 ccb_p cp; 4623 4624 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4625 union ccb *ccb; 4626 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4627 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4628 /* Leave quiet CCBs waiting for resources */ 4629 if (cp->host_status == HS_WAIT) 4630 continue; 4631 ccb = cp->cam_ccb; 4632 if (cam_status) 4633 sym_set_cam_status(ccb, cam_status); 4634 sym_freeze_cam_ccb(ccb); 4635 sym_xpt_done(np, ccb, cp); 4636 sym_free_ccb(np, cp); 4637 } 4638 } 4639 4640 /* 4641 * chip handler for bad SCSI status condition 4642 * 4643 * In case of bad SCSI status, we unqueue all the tasks 4644 * currently queued to the controller but not yet started 4645 * and then restart the SCRIPTS processor immediately. 4646 * 4647 * QUEUE FULL and BUSY conditions are handled the same way. 4648 * Basically all the not yet started tasks are requeued in 4649 * device queue and the queue is frozen until a completion. 4650 * 4651 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4652 * the CCB of the failed command to prepare a REQUEST SENSE 4653 * SCSI command and queue it to the controller queue. 4654 * 4655 * SCRATCHA is assumed to have been loaded with STARTPOS 4656 * before the SCRIPTS called the C code. 4657 */ 4658 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp) 4659 { 4660 tcb_p tp = &np->target[cp->target]; 4661 u32 startp; 4662 u_char s_status = cp->ssss_status; 4663 u_char h_flags = cp->host_flags; 4664 int msglen; 4665 int nego; 4666 int i; 4667 4668 SYM_LOCK_ASSERT(MA_OWNED); 4669 4670 /* 4671 * Compute the index of the next job to start from SCRIPTS. 4672 */ 4673 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4674 4675 /* 4676 * The last CCB queued used for IARB hint may be 4677 * no longer relevant. Forget it. 4678 */ 4679 #ifdef SYM_CONF_IARB_SUPPORT 4680 if (np->last_cp) 4681 np->last_cp = NULL; 4682 #endif 4683 4684 /* 4685 * Now deal with the SCSI status. 4686 */ 4687 switch(s_status) { 4688 case S_BUSY: 4689 case S_QUEUE_FULL: 4690 if (sym_verbose >= 2) { 4691 PRINT_ADDR(cp); 4692 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4693 } 4694 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4695 sym_complete_error (np, cp); 4696 break; 4697 case S_TERMINATED: 4698 case S_CHECK_COND: 4699 /* 4700 * If we get an SCSI error when requesting sense, give up. 4701 */ 4702 if (h_flags & HF_SENSE) { 4703 sym_complete_error (np, cp); 4704 break; 4705 } 4706 4707 /* 4708 * Dequeue all queued CCBs for that device not yet started, 4709 * and restart the SCRIPTS processor immediately. 4710 */ 4711 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4712 OUTL_DSP (SCRIPTA_BA (np, start)); 4713 4714 /* 4715 * Save some info of the actual IO. 4716 * Compute the data residual. 4717 */ 4718 cp->sv_scsi_status = cp->ssss_status; 4719 cp->sv_xerr_status = cp->xerr_status; 4720 cp->sv_resid = sym_compute_residual(np, cp); 4721 4722 /* 4723 * Prepare all needed data structures for 4724 * requesting sense data. 4725 */ 4726 4727 /* 4728 * identify message 4729 */ 4730 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4731 msglen = 1; 4732 4733 /* 4734 * If we are currently using anything different from 4735 * async. 8 bit data transfers with that target, 4736 * start a negotiation, since the device may want 4737 * to report us a UNIT ATTENTION condition due to 4738 * a cause we currently ignore, and we donnot want 4739 * to be stuck with WIDE and/or SYNC data transfer. 4740 * 4741 * cp->nego_status is filled by sym_prepare_nego(). 4742 */ 4743 cp->nego_status = 0; 4744 nego = 0; 4745 if (tp->tinfo.current.options & PPR_OPT_MASK) 4746 nego = NS_PPR; 4747 else if (tp->tinfo.current.width != BUS_8_BIT) 4748 nego = NS_WIDE; 4749 else if (tp->tinfo.current.offset != 0) 4750 nego = NS_SYNC; 4751 if (nego) 4752 msglen += 4753 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4754 /* 4755 * Message table indirect structure. 4756 */ 4757 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4758 cp->phys.smsg.size = cpu_to_scr(msglen); 4759 4760 /* 4761 * sense command 4762 */ 4763 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4764 cp->phys.cmd.size = cpu_to_scr(6); 4765 4766 /* 4767 * patch requested size into sense command 4768 */ 4769 cp->sensecmd[0] = 0x03; 4770 cp->sensecmd[1] = cp->lun << 5; 4771 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4772 cp->sensecmd[1] = 0; 4773 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4774 cp->data_len = SYM_SNS_BBUF_LEN; 4775 4776 /* 4777 * sense data 4778 */ 4779 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4780 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4781 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4782 4783 /* 4784 * requeue the command. 4785 */ 4786 startp = SCRIPTB_BA (np, sdata_in); 4787 4788 cp->phys.head.savep = cpu_to_scr(startp); 4789 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4790 cp->phys.head.lastp = cpu_to_scr(startp); 4791 cp->startp = cpu_to_scr(startp); 4792 4793 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4794 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4795 cp->ssss_status = S_ILLEGAL; 4796 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4797 cp->xerr_status = 0; 4798 cp->extra_bytes = 0; 4799 4800 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4801 4802 /* 4803 * Requeue the command. 4804 */ 4805 sym_put_start_queue(np, cp); 4806 4807 /* 4808 * Give back to upper layer everything we have dequeued. 4809 */ 4810 sym_flush_comp_queue(np, 0); 4811 break; 4812 } 4813 } 4814 4815 /* 4816 * After a device has accepted some management message 4817 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4818 * a device signals a UNIT ATTENTION condition, some 4819 * tasks are thrown away by the device. We are required 4820 * to reflect that on our tasks list since the device 4821 * will never complete these tasks. 4822 * 4823 * This function move from the BUSY queue to the COMP 4824 * queue all disconnected CCBs for a given target that 4825 * match the following criteria: 4826 * - lun=-1 means any logical UNIT otherwise a given one. 4827 * - task=-1 means any task, otherwise a given one. 4828 */ 4829 static int 4830 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4831 { 4832 SYM_QUEHEAD qtmp, *qp; 4833 int i = 0; 4834 ccb_p cp; 4835 4836 /* 4837 * Move the entire BUSY queue to our temporary queue. 4838 */ 4839 sym_que_init(&qtmp); 4840 sym_que_splice(&np->busy_ccbq, &qtmp); 4841 sym_que_init(&np->busy_ccbq); 4842 4843 /* 4844 * Put all CCBs that matches our criteria into 4845 * the COMP queue and put back other ones into 4846 * the BUSY queue. 4847 */ 4848 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4849 union ccb *ccb; 4850 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4851 ccb = cp->cam_ccb; 4852 if (cp->host_status != HS_DISCONNECT || 4853 cp->target != target || 4854 (lun != -1 && cp->lun != lun) || 4855 (task != -1 && 4856 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4857 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4858 continue; 4859 } 4860 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4861 4862 /* Preserve the software timeout condition */ 4863 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4864 sym_set_cam_status(ccb, cam_status); 4865 ++i; 4866 #if 0 4867 printf("XXXX TASK @%p CLEARED\n", cp); 4868 #endif 4869 } 4870 return i; 4871 } 4872 4873 /* 4874 * chip handler for TASKS recovery 4875 * 4876 * We cannot safely abort a command, while the SCRIPTS 4877 * processor is running, since we just would be in race 4878 * with it. 4879 * 4880 * As long as we have tasks to abort, we keep the SEM 4881 * bit set in the ISTAT. When this bit is set, the 4882 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4883 * each time it enters the scheduler. 4884 * 4885 * If we have to reset a target, clear tasks of a unit, 4886 * or to perform the abort of a disconnected job, we 4887 * restart the SCRIPTS for selecting the target. Once 4888 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4889 * If it loses arbitration, the SCRIPTS will interrupt again 4890 * the next time it will enter its scheduler, and so on ... 4891 * 4892 * On SIR_TARGET_SELECTED, we scan for the more 4893 * appropriate thing to do: 4894 * 4895 * - If nothing, we just sent a M_ABORT message to the 4896 * target to get rid of the useless SCSI bus ownership. 4897 * According to the specs, no tasks shall be affected. 4898 * - If the target is to be reset, we send it a M_RESET 4899 * message. 4900 * - If a logical UNIT is to be cleared , we send the 4901 * IDENTIFY(lun) + M_ABORT. 4902 * - If an untagged task is to be aborted, we send the 4903 * IDENTIFY(lun) + M_ABORT. 4904 * - If a tagged task is to be aborted, we send the 4905 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4906 * 4907 * Once our 'kiss of death' :) message has been accepted 4908 * by the target, the SCRIPTS interrupts again 4909 * (SIR_ABORT_SENT). On this interrupt, we complete 4910 * all the CCBs that should have been aborted by the 4911 * target according to our message. 4912 */ 4913 static void sym_sir_task_recovery(hcb_p np, int num) 4914 { 4915 SYM_QUEHEAD *qp; 4916 ccb_p cp; 4917 tcb_p tp; 4918 int target=-1, lun=-1, task; 4919 int i, k; 4920 4921 switch(num) { 4922 /* 4923 * The SCRIPTS processor stopped before starting 4924 * the next command in order to allow us to perform 4925 * some task recovery. 4926 */ 4927 case SIR_SCRIPT_STOPPED: 4928 /* 4929 * Do we have any target to reset or unit to clear ? 4930 */ 4931 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4932 tp = &np->target[i]; 4933 if (tp->to_reset || 4934 (tp->lun0p && tp->lun0p->to_clear)) { 4935 target = i; 4936 break; 4937 } 4938 if (!tp->lunmp) 4939 continue; 4940 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4941 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4942 target = i; 4943 break; 4944 } 4945 } 4946 if (target != -1) 4947 break; 4948 } 4949 4950 /* 4951 * If not, walk the busy queue for any 4952 * disconnected CCB to be aborted. 4953 */ 4954 if (target == -1) { 4955 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4956 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4957 if (cp->host_status != HS_DISCONNECT) 4958 continue; 4959 if (cp->to_abort) { 4960 target = cp->target; 4961 break; 4962 } 4963 } 4964 } 4965 4966 /* 4967 * If some target is to be selected, 4968 * prepare and start the selection. 4969 */ 4970 if (target != -1) { 4971 tp = &np->target[target]; 4972 np->abrt_sel.sel_id = target; 4973 np->abrt_sel.sel_scntl3 = tp->head.wval; 4974 np->abrt_sel.sel_sxfer = tp->head.sval; 4975 OUTL(nc_dsa, np->hcb_ba); 4976 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 4977 return; 4978 } 4979 4980 /* 4981 * Now look for a CCB to abort that haven't started yet. 4982 * Btw, the SCRIPTS processor is still stopped, so 4983 * we are not in race. 4984 */ 4985 i = 0; 4986 cp = NULL; 4987 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4988 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4989 if (cp->host_status != HS_BUSY && 4990 cp->host_status != HS_NEGOTIATE) 4991 continue; 4992 if (!cp->to_abort) 4993 continue; 4994 #ifdef SYM_CONF_IARB_SUPPORT 4995 /* 4996 * If we are using IMMEDIATE ARBITRATION, we donnot 4997 * want to cancel the last queued CCB, since the 4998 * SCRIPTS may have anticipated the selection. 4999 */ 5000 if (cp == np->last_cp) { 5001 cp->to_abort = 0; 5002 continue; 5003 } 5004 #endif 5005 i = 1; /* Means we have found some */ 5006 break; 5007 } 5008 if (!i) { 5009 /* 5010 * We are done, so we donnot need 5011 * to synchronize with the SCRIPTS anylonger. 5012 * Remove the SEM flag from the ISTAT. 5013 */ 5014 np->istat_sem = 0; 5015 OUTB (nc_istat, SIGP); 5016 break; 5017 } 5018 /* 5019 * Compute index of next position in the start 5020 * queue the SCRIPTS intends to start and dequeue 5021 * all CCBs for that device that haven't been started. 5022 */ 5023 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5024 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5025 5026 /* 5027 * Make sure at least our IO to abort has been dequeued. 5028 */ 5029 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5030 5031 /* 5032 * Keep track in cam status of the reason of the abort. 5033 */ 5034 if (cp->to_abort == 2) 5035 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5036 else 5037 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5038 5039 /* 5040 * Complete with error everything that we have dequeued. 5041 */ 5042 sym_flush_comp_queue(np, 0); 5043 break; 5044 /* 5045 * The SCRIPTS processor has selected a target 5046 * we may have some manual recovery to perform for. 5047 */ 5048 case SIR_TARGET_SELECTED: 5049 target = (INB (nc_sdid) & 0xf); 5050 tp = &np->target[target]; 5051 5052 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5053 5054 /* 5055 * If the target is to be reset, prepare a 5056 * M_RESET message and clear the to_reset flag 5057 * since we donnot expect this operation to fail. 5058 */ 5059 if (tp->to_reset) { 5060 np->abrt_msg[0] = M_RESET; 5061 np->abrt_tbl.size = 1; 5062 tp->to_reset = 0; 5063 break; 5064 } 5065 5066 /* 5067 * Otherwise, look for some logical unit to be cleared. 5068 */ 5069 if (tp->lun0p && tp->lun0p->to_clear) 5070 lun = 0; 5071 else if (tp->lunmp) { 5072 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5073 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5074 lun = k; 5075 break; 5076 } 5077 } 5078 } 5079 5080 /* 5081 * If a logical unit is to be cleared, prepare 5082 * an IDENTIFY(lun) + ABORT MESSAGE. 5083 */ 5084 if (lun != -1) { 5085 lcb_p lp = sym_lp(tp, lun); 5086 lp->to_clear = 0; /* We donnot expect to fail here */ 5087 np->abrt_msg[0] = M_IDENTIFY | lun; 5088 np->abrt_msg[1] = M_ABORT; 5089 np->abrt_tbl.size = 2; 5090 break; 5091 } 5092 5093 /* 5094 * Otherwise, look for some disconnected job to 5095 * abort for this target. 5096 */ 5097 i = 0; 5098 cp = NULL; 5099 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5100 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5101 if (cp->host_status != HS_DISCONNECT) 5102 continue; 5103 if (cp->target != target) 5104 continue; 5105 if (!cp->to_abort) 5106 continue; 5107 i = 1; /* Means we have some */ 5108 break; 5109 } 5110 5111 /* 5112 * If we have none, probably since the device has 5113 * completed the command before we won abitration, 5114 * send a M_ABORT message without IDENTIFY. 5115 * According to the specs, the device must just 5116 * disconnect the BUS and not abort any task. 5117 */ 5118 if (!i) { 5119 np->abrt_msg[0] = M_ABORT; 5120 np->abrt_tbl.size = 1; 5121 break; 5122 } 5123 5124 /* 5125 * We have some task to abort. 5126 * Set the IDENTIFY(lun) 5127 */ 5128 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5129 5130 /* 5131 * If we want to abort an untagged command, we 5132 * will send an IDENTIFY + M_ABORT. 5133 * Otherwise (tagged command), we will send 5134 * an IDENTIFY + task attributes + ABORT TAG. 5135 */ 5136 if (cp->tag == NO_TAG) { 5137 np->abrt_msg[1] = M_ABORT; 5138 np->abrt_tbl.size = 2; 5139 } 5140 else { 5141 np->abrt_msg[1] = cp->scsi_smsg[1]; 5142 np->abrt_msg[2] = cp->scsi_smsg[2]; 5143 np->abrt_msg[3] = M_ABORT_TAG; 5144 np->abrt_tbl.size = 4; 5145 } 5146 /* 5147 * Keep track of software timeout condition, since the 5148 * peripheral driver may not count retries on abort 5149 * conditions not due to timeout. 5150 */ 5151 if (cp->to_abort == 2) 5152 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5153 cp->to_abort = 0; /* We donnot expect to fail here */ 5154 break; 5155 5156 /* 5157 * The target has accepted our message and switched 5158 * to BUS FREE phase as we expected. 5159 */ 5160 case SIR_ABORT_SENT: 5161 target = (INB (nc_sdid) & 0xf); 5162 tp = &np->target[target]; 5163 5164 /* 5165 ** If we didn't abort anything, leave here. 5166 */ 5167 if (np->abrt_msg[0] == M_ABORT) 5168 break; 5169 5170 /* 5171 * If we sent a M_RESET, then a hardware reset has 5172 * been performed by the target. 5173 * - Reset everything to async 8 bit 5174 * - Tell ourself to negotiate next time :-) 5175 * - Prepare to clear all disconnected CCBs for 5176 * this target from our task list (lun=task=-1) 5177 */ 5178 lun = -1; 5179 task = -1; 5180 if (np->abrt_msg[0] == M_RESET) { 5181 tp->head.sval = 0; 5182 tp->head.wval = np->rv_scntl3; 5183 tp->head.uval = 0; 5184 tp->tinfo.current.period = 0; 5185 tp->tinfo.current.offset = 0; 5186 tp->tinfo.current.width = BUS_8_BIT; 5187 tp->tinfo.current.options = 0; 5188 } 5189 5190 /* 5191 * Otherwise, check for the LUN and TASK(s) 5192 * concerned by the cancellation. 5193 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5194 * or an ABORT message :-) 5195 */ 5196 else { 5197 lun = np->abrt_msg[0] & 0x3f; 5198 if (np->abrt_msg[1] == M_ABORT_TAG) 5199 task = np->abrt_msg[2]; 5200 } 5201 5202 /* 5203 * Complete all the CCBs the device should have 5204 * aborted due to our 'kiss of death' message. 5205 */ 5206 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5207 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5208 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5209 sym_flush_comp_queue(np, 0); 5210 5211 /* 5212 * If we sent a BDR, make uper layer aware of that. 5213 */ 5214 if (np->abrt_msg[0] == M_RESET) 5215 xpt_async(AC_SENT_BDR, np->path, NULL); 5216 break; 5217 } 5218 5219 /* 5220 * Print to the log the message we intend to send. 5221 */ 5222 if (num == SIR_TARGET_SELECTED) { 5223 PRINT_TARGET(np, target); 5224 sym_printl_hex("control msgout:", np->abrt_msg, 5225 np->abrt_tbl.size); 5226 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5227 } 5228 5229 /* 5230 * Let the SCRIPTS processor continue. 5231 */ 5232 OUTONB_STD (); 5233 } 5234 5235 /* 5236 * Gerard's alchemy:) that deals with with the data 5237 * pointer for both MDP and the residual calculation. 5238 * 5239 * I didn't want to bloat the code by more than 200 5240 * lignes for the handling of both MDP and the residual. 5241 * This has been achieved by using a data pointer 5242 * representation consisting in an index in the data 5243 * array (dp_sg) and a negative offset (dp_ofs) that 5244 * have the following meaning: 5245 * 5246 * - dp_sg = SYM_CONF_MAX_SG 5247 * we are at the end of the data script. 5248 * - dp_sg < SYM_CONF_MAX_SG 5249 * dp_sg points to the next entry of the scatter array 5250 * we want to transfer. 5251 * - dp_ofs < 0 5252 * dp_ofs represents the residual of bytes of the 5253 * previous entry scatter entry we will send first. 5254 * - dp_ofs = 0 5255 * no residual to send first. 5256 * 5257 * The function sym_evaluate_dp() accepts an arbitray 5258 * offset (basically from the MDP message) and returns 5259 * the corresponding values of dp_sg and dp_ofs. 5260 */ 5261 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5262 { 5263 u32 dp_scr; 5264 int dp_ofs, dp_sg, dp_sgmin; 5265 int tmp; 5266 struct sym_pmc *pm; 5267 5268 /* 5269 * Compute the resulted data pointer in term of a script 5270 * address within some DATA script and a signed byte offset. 5271 */ 5272 dp_scr = scr; 5273 dp_ofs = *ofs; 5274 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5275 pm = &cp->phys.pm0; 5276 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5277 pm = &cp->phys.pm1; 5278 else 5279 pm = NULL; 5280 5281 if (pm) { 5282 dp_scr = scr_to_cpu(pm->ret); 5283 dp_ofs -= scr_to_cpu(pm->sg.size); 5284 } 5285 5286 /* 5287 * If we are auto-sensing, then we are done. 5288 */ 5289 if (cp->host_flags & HF_SENSE) { 5290 *ofs = dp_ofs; 5291 return 0; 5292 } 5293 5294 /* 5295 * Deduce the index of the sg entry. 5296 * Keep track of the index of the first valid entry. 5297 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5298 * end of the data. 5299 */ 5300 tmp = scr_to_cpu(cp->phys.head.goalp); 5301 dp_sg = SYM_CONF_MAX_SG; 5302 if (dp_scr != tmp) 5303 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5304 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5305 5306 /* 5307 * Move to the sg entry the data pointer belongs to. 5308 * 5309 * If we are inside the data area, we expect result to be: 5310 * 5311 * Either, 5312 * dp_ofs = 0 and dp_sg is the index of the sg entry 5313 * the data pointer belongs to (or the end of the data) 5314 * Or, 5315 * dp_ofs < 0 and dp_sg is the index of the sg entry 5316 * the data pointer belongs to + 1. 5317 */ 5318 if (dp_ofs < 0) { 5319 int n; 5320 while (dp_sg > dp_sgmin) { 5321 --dp_sg; 5322 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5323 n = dp_ofs + (tmp & 0xffffff); 5324 if (n > 0) { 5325 ++dp_sg; 5326 break; 5327 } 5328 dp_ofs = n; 5329 } 5330 } 5331 else if (dp_ofs > 0) { 5332 while (dp_sg < SYM_CONF_MAX_SG) { 5333 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5334 dp_ofs -= (tmp & 0xffffff); 5335 ++dp_sg; 5336 if (dp_ofs <= 0) 5337 break; 5338 } 5339 } 5340 5341 /* 5342 * Make sure the data pointer is inside the data area. 5343 * If not, return some error. 5344 */ 5345 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5346 goto out_err; 5347 else if (dp_sg > SYM_CONF_MAX_SG || 5348 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5349 goto out_err; 5350 5351 /* 5352 * Save the extreme pointer if needed. 5353 */ 5354 if (dp_sg > cp->ext_sg || 5355 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5356 cp->ext_sg = dp_sg; 5357 cp->ext_ofs = dp_ofs; 5358 } 5359 5360 /* 5361 * Return data. 5362 */ 5363 *ofs = dp_ofs; 5364 return dp_sg; 5365 5366 out_err: 5367 return -1; 5368 } 5369 5370 /* 5371 * chip handler for MODIFY DATA POINTER MESSAGE 5372 * 5373 * We also call this function on IGNORE WIDE RESIDUE 5374 * messages that do not match a SWIDE full condition. 5375 * Btw, we assume in that situation that such a message 5376 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5377 */ 5378 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs) 5379 { 5380 int dp_ofs = ofs; 5381 u32 dp_scr = INL (nc_temp); 5382 u32 dp_ret; 5383 u32 tmp; 5384 u_char hflags; 5385 int dp_sg; 5386 struct sym_pmc *pm; 5387 5388 /* 5389 * Not supported for auto-sense. 5390 */ 5391 if (cp->host_flags & HF_SENSE) 5392 goto out_reject; 5393 5394 /* 5395 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5396 * to the resulted data pointer. 5397 */ 5398 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5399 if (dp_sg < 0) 5400 goto out_reject; 5401 5402 /* 5403 * And our alchemy:) allows to easily calculate the data 5404 * script address we want to return for the next data phase. 5405 */ 5406 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5407 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5408 5409 /* 5410 * If offset / scatter entry is zero we donnot need 5411 * a context for the new current data pointer. 5412 */ 5413 if (dp_ofs == 0) { 5414 dp_scr = dp_ret; 5415 goto out_ok; 5416 } 5417 5418 /* 5419 * Get a context for the new current data pointer. 5420 */ 5421 hflags = INB (HF_PRT); 5422 5423 if (hflags & HF_DP_SAVED) 5424 hflags ^= HF_ACT_PM; 5425 5426 if (!(hflags & HF_ACT_PM)) { 5427 pm = &cp->phys.pm0; 5428 dp_scr = SCRIPTA_BA (np, pm0_data); 5429 } 5430 else { 5431 pm = &cp->phys.pm1; 5432 dp_scr = SCRIPTA_BA (np, pm1_data); 5433 } 5434 5435 hflags &= ~(HF_DP_SAVED); 5436 5437 OUTB (HF_PRT, hflags); 5438 5439 /* 5440 * Set up the new current data pointer. 5441 * ofs < 0 there, and for the next data phase, we 5442 * want to transfer part of the data of the sg entry 5443 * corresponding to index dp_sg-1 prior to returning 5444 * to the main data script. 5445 */ 5446 pm->ret = cpu_to_scr(dp_ret); 5447 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5448 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5449 pm->sg.addr = cpu_to_scr(tmp); 5450 pm->sg.size = cpu_to_scr(-dp_ofs); 5451 5452 out_ok: 5453 OUTL (nc_temp, dp_scr); 5454 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5455 return; 5456 5457 out_reject: 5458 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5459 } 5460 5461 /* 5462 * chip calculation of the data residual. 5463 * 5464 * As I used to say, the requirement of data residual 5465 * in SCSI is broken, useless and cannot be achieved 5466 * without huge complexity. 5467 * But most OSes and even the official CAM require it. 5468 * When stupidity happens to be so widely spread inside 5469 * a community, it gets hard to convince. 5470 * 5471 * Anyway, I don't care, since I am not going to use 5472 * any software that considers this data residual as 5473 * a relevant information. :) 5474 */ 5475 static int sym_compute_residual(hcb_p np, ccb_p cp) 5476 { 5477 int dp_sg, dp_sgmin, resid = 0; 5478 int dp_ofs = 0; 5479 5480 /* 5481 * Check for some data lost or just thrown away. 5482 * We are not required to be quite accurate in this 5483 * situation. Btw, if we are odd for output and the 5484 * device claims some more data, it may well happen 5485 * than our residual be zero. :-) 5486 */ 5487 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5488 if (cp->xerr_status & XE_EXTRA_DATA) 5489 resid -= cp->extra_bytes; 5490 if (cp->xerr_status & XE_SODL_UNRUN) 5491 ++resid; 5492 if (cp->xerr_status & XE_SWIDE_OVRUN) 5493 --resid; 5494 } 5495 5496 /* 5497 * If all data has been transferred, 5498 * there is no residual. 5499 */ 5500 if (cp->phys.head.lastp == cp->phys.head.goalp) 5501 return resid; 5502 5503 /* 5504 * If no data transfer occurs, or if the data 5505 * pointer is weird, return full residual. 5506 */ 5507 if (cp->startp == cp->phys.head.lastp || 5508 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5509 &dp_ofs) < 0) { 5510 return cp->data_len; 5511 } 5512 5513 /* 5514 * If we were auto-sensing, then we are done. 5515 */ 5516 if (cp->host_flags & HF_SENSE) { 5517 return -dp_ofs; 5518 } 5519 5520 /* 5521 * We are now full comfortable in the computation 5522 * of the data residual (2's complement). 5523 */ 5524 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5525 resid = -cp->ext_ofs; 5526 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5527 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5528 resid += (tmp & 0xffffff); 5529 } 5530 5531 /* 5532 * Hopefully, the result is not too wrong. 5533 */ 5534 return resid; 5535 } 5536 5537 /* 5538 * Print out the content of a SCSI message. 5539 */ 5540 static int sym_show_msg (u_char * msg) 5541 { 5542 u_char i; 5543 printf ("%x",*msg); 5544 if (*msg==M_EXTENDED) { 5545 for (i=1;i<8;i++) { 5546 if (i-1>msg[1]) break; 5547 printf ("-%x",msg[i]); 5548 } 5549 return (i+1); 5550 } else if ((*msg & 0xf0) == 0x20) { 5551 printf ("-%x",msg[1]); 5552 return (2); 5553 } 5554 return (1); 5555 } 5556 5557 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5558 { 5559 PRINT_ADDR(cp); 5560 if (label) 5561 printf ("%s: ", label); 5562 5563 (void) sym_show_msg (msg); 5564 printf (".\n"); 5565 } 5566 5567 /* 5568 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5569 * 5570 * When we try to negotiate, we append the negotiation message 5571 * to the identify and (maybe) simple tag message. 5572 * The host status field is set to HS_NEGOTIATE to mark this 5573 * situation. 5574 * 5575 * If the target doesn't answer this message immediately 5576 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5577 * will be raised eventually. 5578 * The handler removes the HS_NEGOTIATE status, and sets the 5579 * negotiated value to the default (async / nowide). 5580 * 5581 * If we receive a matching answer immediately, we check it 5582 * for validity, and set the values. 5583 * 5584 * If we receive a Reject message immediately, we assume the 5585 * negotiation has failed, and fall back to standard values. 5586 * 5587 * If we receive a negotiation message while not in HS_NEGOTIATE 5588 * state, it's a target initiated negotiation. We prepare a 5589 * (hopefully) valid answer, set our parameters, and send back 5590 * this answer to the target. 5591 * 5592 * If the target doesn't fetch the answer (no message out phase), 5593 * we assume the negotiation has failed, and fall back to default 5594 * settings (SIR_NEGO_PROTO interrupt). 5595 * 5596 * When we set the values, we adjust them in all ccbs belonging 5597 * to this target, in the controller's register, and in the "phys" 5598 * field of the controller's struct sym_hcb. 5599 */ 5600 5601 /* 5602 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5603 */ 5604 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5605 { 5606 u_char chg, ofs, per, fak, div; 5607 int req = 1; 5608 5609 /* 5610 * Synchronous request message received. 5611 */ 5612 if (DEBUG_FLAGS & DEBUG_NEGO) { 5613 sym_print_msg(cp, "sync msgin", np->msgin); 5614 } 5615 5616 /* 5617 * request or answer ? 5618 */ 5619 if (INB (HS_PRT) == HS_NEGOTIATE) { 5620 OUTB (HS_PRT, HS_BUSY); 5621 if (cp->nego_status && cp->nego_status != NS_SYNC) 5622 goto reject_it; 5623 req = 0; 5624 } 5625 5626 /* 5627 * get requested values. 5628 */ 5629 chg = 0; 5630 per = np->msgin[3]; 5631 ofs = np->msgin[4]; 5632 5633 /* 5634 * check values against our limits. 5635 */ 5636 if (ofs) { 5637 if (ofs > np->maxoffs) 5638 {chg = 1; ofs = np->maxoffs;} 5639 if (req) { 5640 if (ofs > tp->tinfo.user.offset) 5641 {chg = 1; ofs = tp->tinfo.user.offset;} 5642 } 5643 } 5644 5645 if (ofs) { 5646 if (per < np->minsync) 5647 {chg = 1; per = np->minsync;} 5648 if (req) { 5649 if (per < tp->tinfo.user.period) 5650 {chg = 1; per = tp->tinfo.user.period;} 5651 } 5652 } 5653 5654 div = fak = 0; 5655 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5656 goto reject_it; 5657 5658 if (DEBUG_FLAGS & DEBUG_NEGO) { 5659 PRINT_ADDR(cp); 5660 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5661 ofs, per, div, fak, chg); 5662 } 5663 5664 /* 5665 * This was an answer message 5666 */ 5667 if (req == 0) { 5668 if (chg) /* Answer wasn't acceptable. */ 5669 goto reject_it; 5670 sym_setsync (np, cp, ofs, per, div, fak); 5671 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5672 return; 5673 } 5674 5675 /* 5676 * It was a request. Set value and 5677 * prepare an answer message 5678 */ 5679 sym_setsync (np, cp, ofs, per, div, fak); 5680 5681 np->msgout[0] = M_EXTENDED; 5682 np->msgout[1] = 3; 5683 np->msgout[2] = M_X_SYNC_REQ; 5684 np->msgout[3] = per; 5685 np->msgout[4] = ofs; 5686 5687 cp->nego_status = NS_SYNC; 5688 5689 if (DEBUG_FLAGS & DEBUG_NEGO) { 5690 sym_print_msg(cp, "sync msgout", np->msgout); 5691 } 5692 5693 np->msgin [0] = M_NOOP; 5694 5695 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5696 return; 5697 reject_it: 5698 sym_setsync (np, cp, 0, 0, 0, 0); 5699 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5700 } 5701 5702 /* 5703 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5704 */ 5705 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5706 { 5707 u_char chg, ofs, per, fak, dt, div, wide; 5708 int req = 1; 5709 5710 /* 5711 * Synchronous request message received. 5712 */ 5713 if (DEBUG_FLAGS & DEBUG_NEGO) { 5714 sym_print_msg(cp, "ppr msgin", np->msgin); 5715 } 5716 5717 /* 5718 * get requested values. 5719 */ 5720 chg = 0; 5721 per = np->msgin[3]; 5722 ofs = np->msgin[5]; 5723 wide = np->msgin[6]; 5724 dt = np->msgin[7] & PPR_OPT_DT; 5725 5726 /* 5727 * request or answer ? 5728 */ 5729 if (INB (HS_PRT) == HS_NEGOTIATE) { 5730 OUTB (HS_PRT, HS_BUSY); 5731 if (cp->nego_status && cp->nego_status != NS_PPR) 5732 goto reject_it; 5733 req = 0; 5734 } 5735 5736 /* 5737 * check values against our limits. 5738 */ 5739 if (wide > np->maxwide) 5740 {chg = 1; wide = np->maxwide;} 5741 if (!wide || !(np->features & FE_ULTRA3)) 5742 dt &= ~PPR_OPT_DT; 5743 if (req) { 5744 if (wide > tp->tinfo.user.width) 5745 {chg = 1; wide = tp->tinfo.user.width;} 5746 } 5747 5748 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5749 dt &= ~PPR_OPT_DT; 5750 5751 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5752 5753 if (ofs) { 5754 if (dt) { 5755 if (ofs > np->maxoffs_dt) 5756 {chg = 1; ofs = np->maxoffs_dt;} 5757 } 5758 else if (ofs > np->maxoffs) 5759 {chg = 1; ofs = np->maxoffs;} 5760 if (req) { 5761 if (ofs > tp->tinfo.user.offset) 5762 {chg = 1; ofs = tp->tinfo.user.offset;} 5763 } 5764 } 5765 5766 if (ofs) { 5767 if (dt) { 5768 if (per < np->minsync_dt) 5769 {chg = 1; per = np->minsync_dt;} 5770 } 5771 else if (per < np->minsync) 5772 {chg = 1; per = np->minsync;} 5773 if (req) { 5774 if (per < tp->tinfo.user.period) 5775 {chg = 1; per = tp->tinfo.user.period;} 5776 } 5777 } 5778 5779 div = fak = 0; 5780 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5781 goto reject_it; 5782 5783 if (DEBUG_FLAGS & DEBUG_NEGO) { 5784 PRINT_ADDR(cp); 5785 printf ("ppr: " 5786 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5787 dt, ofs, per, wide, div, fak, chg); 5788 } 5789 5790 /* 5791 * It was an answer. 5792 */ 5793 if (req == 0) { 5794 if (chg) /* Answer wasn't acceptable */ 5795 goto reject_it; 5796 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5797 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5798 return; 5799 } 5800 5801 /* 5802 * It was a request. Set value and 5803 * prepare an answer message 5804 */ 5805 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5806 5807 np->msgout[0] = M_EXTENDED; 5808 np->msgout[1] = 6; 5809 np->msgout[2] = M_X_PPR_REQ; 5810 np->msgout[3] = per; 5811 np->msgout[4] = 0; 5812 np->msgout[5] = ofs; 5813 np->msgout[6] = wide; 5814 np->msgout[7] = dt; 5815 5816 cp->nego_status = NS_PPR; 5817 5818 if (DEBUG_FLAGS & DEBUG_NEGO) { 5819 sym_print_msg(cp, "ppr msgout", np->msgout); 5820 } 5821 5822 np->msgin [0] = M_NOOP; 5823 5824 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5825 return; 5826 reject_it: 5827 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5828 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5829 /* 5830 * If it was a device response that should result in 5831 * ST, we may want to try a legacy negotiation later. 5832 */ 5833 if (!req && !dt) { 5834 tp->tinfo.goal.options = 0; 5835 tp->tinfo.goal.width = wide; 5836 tp->tinfo.goal.period = per; 5837 tp->tinfo.goal.offset = ofs; 5838 } 5839 } 5840 5841 /* 5842 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5843 */ 5844 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5845 { 5846 u_char chg, wide; 5847 int req = 1; 5848 5849 /* 5850 * Wide request message received. 5851 */ 5852 if (DEBUG_FLAGS & DEBUG_NEGO) { 5853 sym_print_msg(cp, "wide msgin", np->msgin); 5854 } 5855 5856 /* 5857 * Is it a request from the device? 5858 */ 5859 if (INB (HS_PRT) == HS_NEGOTIATE) { 5860 OUTB (HS_PRT, HS_BUSY); 5861 if (cp->nego_status && cp->nego_status != NS_WIDE) 5862 goto reject_it; 5863 req = 0; 5864 } 5865 5866 /* 5867 * get requested values. 5868 */ 5869 chg = 0; 5870 wide = np->msgin[3]; 5871 5872 /* 5873 * check values against driver limits. 5874 */ 5875 if (wide > np->maxwide) 5876 {chg = 1; wide = np->maxwide;} 5877 if (req) { 5878 if (wide > tp->tinfo.user.width) 5879 {chg = 1; wide = tp->tinfo.user.width;} 5880 } 5881 5882 if (DEBUG_FLAGS & DEBUG_NEGO) { 5883 PRINT_ADDR(cp); 5884 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5885 } 5886 5887 /* 5888 * This was an answer message 5889 */ 5890 if (req == 0) { 5891 if (chg) /* Answer wasn't acceptable. */ 5892 goto reject_it; 5893 sym_setwide (np, cp, wide); 5894 5895 /* 5896 * Negotiate for SYNC immediately after WIDE response. 5897 * This allows to negotiate for both WIDE and SYNC on 5898 * a single SCSI command (Suggested by Justin Gibbs). 5899 */ 5900 if (tp->tinfo.goal.offset) { 5901 np->msgout[0] = M_EXTENDED; 5902 np->msgout[1] = 3; 5903 np->msgout[2] = M_X_SYNC_REQ; 5904 np->msgout[3] = tp->tinfo.goal.period; 5905 np->msgout[4] = tp->tinfo.goal.offset; 5906 5907 if (DEBUG_FLAGS & DEBUG_NEGO) { 5908 sym_print_msg(cp, "sync msgout", np->msgout); 5909 } 5910 5911 cp->nego_status = NS_SYNC; 5912 OUTB (HS_PRT, HS_NEGOTIATE); 5913 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5914 return; 5915 } 5916 5917 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5918 return; 5919 } 5920 5921 /* 5922 * It was a request, set value and 5923 * prepare an answer message 5924 */ 5925 sym_setwide (np, cp, wide); 5926 5927 np->msgout[0] = M_EXTENDED; 5928 np->msgout[1] = 2; 5929 np->msgout[2] = M_X_WIDE_REQ; 5930 np->msgout[3] = wide; 5931 5932 np->msgin [0] = M_NOOP; 5933 5934 cp->nego_status = NS_WIDE; 5935 5936 if (DEBUG_FLAGS & DEBUG_NEGO) { 5937 sym_print_msg(cp, "wide msgout", np->msgout); 5938 } 5939 5940 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5941 return; 5942 reject_it: 5943 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5944 } 5945 5946 /* 5947 * Reset SYNC or WIDE to default settings. 5948 * 5949 * Called when a negotiation does not succeed either 5950 * on rejection or on protocol error. 5951 * 5952 * If it was a PPR that made problems, we may want to 5953 * try a legacy negotiation later. 5954 */ 5955 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5956 { 5957 /* 5958 * any error in negotiation: 5959 * fall back to default mode. 5960 */ 5961 switch (cp->nego_status) { 5962 case NS_PPR: 5963 #if 0 5964 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5965 #else 5966 tp->tinfo.goal.options = 0; 5967 if (tp->tinfo.goal.period < np->minsync) 5968 tp->tinfo.goal.period = np->minsync; 5969 if (tp->tinfo.goal.offset > np->maxoffs) 5970 tp->tinfo.goal.offset = np->maxoffs; 5971 #endif 5972 break; 5973 case NS_SYNC: 5974 sym_setsync (np, cp, 0, 0, 0, 0); 5975 break; 5976 case NS_WIDE: 5977 sym_setwide (np, cp, 0); 5978 break; 5979 } 5980 np->msgin [0] = M_NOOP; 5981 np->msgout[0] = M_NOOP; 5982 cp->nego_status = 0; 5983 } 5984 5985 /* 5986 * chip handler for MESSAGE REJECT received in response to 5987 * a WIDE or SYNCHRONOUS negotiation. 5988 */ 5989 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 5990 { 5991 sym_nego_default(np, tp, cp); 5992 OUTB (HS_PRT, HS_BUSY); 5993 } 5994 5995 /* 5996 * chip exception handler for programmed interrupts. 5997 */ 5998 static void sym_int_sir (hcb_p np) 5999 { 6000 u_char num = INB (nc_dsps); 6001 u32 dsa = INL (nc_dsa); 6002 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6003 u_char target = INB (nc_sdid) & 0x0f; 6004 tcb_p tp = &np->target[target]; 6005 int tmp; 6006 6007 SYM_LOCK_ASSERT(MA_OWNED); 6008 6009 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6010 6011 switch (num) { 6012 /* 6013 * Command has been completed with error condition 6014 * or has been auto-sensed. 6015 */ 6016 case SIR_COMPLETE_ERROR: 6017 sym_complete_error(np, cp); 6018 return; 6019 /* 6020 * The C code is currently trying to recover from something. 6021 * Typically, user want to abort some command. 6022 */ 6023 case SIR_SCRIPT_STOPPED: 6024 case SIR_TARGET_SELECTED: 6025 case SIR_ABORT_SENT: 6026 sym_sir_task_recovery(np, num); 6027 return; 6028 /* 6029 * The device didn't go to MSG OUT phase after having 6030 * been selected with ATN. We donnot want to handle 6031 * that. 6032 */ 6033 case SIR_SEL_ATN_NO_MSG_OUT: 6034 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6035 sym_name (np), target); 6036 goto out_stuck; 6037 /* 6038 * The device didn't switch to MSG IN phase after 6039 * having reseleted the initiator. 6040 */ 6041 case SIR_RESEL_NO_MSG_IN: 6042 printf ("%s:%d: No MSG IN phase after reselection.\n", 6043 sym_name (np), target); 6044 goto out_stuck; 6045 /* 6046 * After reselection, the device sent a message that wasn't 6047 * an IDENTIFY. 6048 */ 6049 case SIR_RESEL_NO_IDENTIFY: 6050 printf ("%s:%d: No IDENTIFY after reselection.\n", 6051 sym_name (np), target); 6052 goto out_stuck; 6053 /* 6054 * The device reselected a LUN we donnot know about. 6055 */ 6056 case SIR_RESEL_BAD_LUN: 6057 np->msgout[0] = M_RESET; 6058 goto out; 6059 /* 6060 * The device reselected for an untagged nexus and we 6061 * haven't any. 6062 */ 6063 case SIR_RESEL_BAD_I_T_L: 6064 np->msgout[0] = M_ABORT; 6065 goto out; 6066 /* 6067 * The device reselected for a tagged nexus that we donnot 6068 * have. 6069 */ 6070 case SIR_RESEL_BAD_I_T_L_Q: 6071 np->msgout[0] = M_ABORT_TAG; 6072 goto out; 6073 /* 6074 * The SCRIPTS let us know that the device has grabbed 6075 * our message and will abort the job. 6076 */ 6077 case SIR_RESEL_ABORTED: 6078 np->lastmsg = np->msgout[0]; 6079 np->msgout[0] = M_NOOP; 6080 printf ("%s:%d: message %x sent on bad reselection.\n", 6081 sym_name (np), target, np->lastmsg); 6082 goto out; 6083 /* 6084 * The SCRIPTS let us know that a message has been 6085 * successfully sent to the device. 6086 */ 6087 case SIR_MSG_OUT_DONE: 6088 np->lastmsg = np->msgout[0]; 6089 np->msgout[0] = M_NOOP; 6090 /* Should we really care of that */ 6091 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6092 if (cp) { 6093 cp->xerr_status &= ~XE_PARITY_ERR; 6094 if (!cp->xerr_status) 6095 OUTOFFB (HF_PRT, HF_EXT_ERR); 6096 } 6097 } 6098 goto out; 6099 /* 6100 * The device didn't send a GOOD SCSI status. 6101 * We may have some work to do prior to allow 6102 * the SCRIPTS processor to continue. 6103 */ 6104 case SIR_BAD_SCSI_STATUS: 6105 if (!cp) 6106 goto out; 6107 sym_sir_bad_scsi_status(np, cp); 6108 return; 6109 /* 6110 * We are asked by the SCRIPTS to prepare a 6111 * REJECT message. 6112 */ 6113 case SIR_REJECT_TO_SEND: 6114 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6115 np->msgout[0] = M_REJECT; 6116 goto out; 6117 /* 6118 * We have been ODD at the end of a DATA IN 6119 * transfer and the device didn't send a 6120 * IGNORE WIDE RESIDUE message. 6121 * It is a data overrun condition. 6122 */ 6123 case SIR_SWIDE_OVERRUN: 6124 if (cp) { 6125 OUTONB (HF_PRT, HF_EXT_ERR); 6126 cp->xerr_status |= XE_SWIDE_OVRUN; 6127 } 6128 goto out; 6129 /* 6130 * We have been ODD at the end of a DATA OUT 6131 * transfer. 6132 * It is a data underrun condition. 6133 */ 6134 case SIR_SODL_UNDERRUN: 6135 if (cp) { 6136 OUTONB (HF_PRT, HF_EXT_ERR); 6137 cp->xerr_status |= XE_SODL_UNRUN; 6138 } 6139 goto out; 6140 /* 6141 * The device wants us to transfer more data than 6142 * expected or in the wrong direction. 6143 * The number of extra bytes is in scratcha. 6144 * It is a data overrun condition. 6145 */ 6146 case SIR_DATA_OVERRUN: 6147 if (cp) { 6148 OUTONB (HF_PRT, HF_EXT_ERR); 6149 cp->xerr_status |= XE_EXTRA_DATA; 6150 cp->extra_bytes += INL (nc_scratcha); 6151 } 6152 goto out; 6153 /* 6154 * The device switched to an illegal phase (4/5). 6155 */ 6156 case SIR_BAD_PHASE: 6157 if (cp) { 6158 OUTONB (HF_PRT, HF_EXT_ERR); 6159 cp->xerr_status |= XE_BAD_PHASE; 6160 } 6161 goto out; 6162 /* 6163 * We received a message. 6164 */ 6165 case SIR_MSG_RECEIVED: 6166 if (!cp) 6167 goto out_stuck; 6168 switch (np->msgin [0]) { 6169 /* 6170 * We received an extended message. 6171 * We handle MODIFY DATA POINTER, SDTR, WDTR 6172 * and reject all other extended messages. 6173 */ 6174 case M_EXTENDED: 6175 switch (np->msgin [2]) { 6176 case M_X_MODIFY_DP: 6177 if (DEBUG_FLAGS & DEBUG_POINTER) 6178 sym_print_msg(cp,"modify DP",np->msgin); 6179 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6180 (np->msgin[5]<<8) + (np->msgin[6]); 6181 sym_modify_dp(np, cp, tmp); 6182 return; 6183 case M_X_SYNC_REQ: 6184 sym_sync_nego(np, tp, cp); 6185 return; 6186 case M_X_PPR_REQ: 6187 sym_ppr_nego(np, tp, cp); 6188 return; 6189 case M_X_WIDE_REQ: 6190 sym_wide_nego(np, tp, cp); 6191 return; 6192 default: 6193 goto out_reject; 6194 } 6195 break; 6196 /* 6197 * We received a 1/2 byte message not handled from SCRIPTS. 6198 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6199 * RESIDUE messages that haven't been anticipated by 6200 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6201 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6202 */ 6203 case M_IGN_RESIDUE: 6204 if (DEBUG_FLAGS & DEBUG_POINTER) 6205 sym_print_msg(cp,"ign wide residue", np->msgin); 6206 sym_modify_dp(np, cp, -1); 6207 return; 6208 case M_REJECT: 6209 if (INB (HS_PRT) == HS_NEGOTIATE) 6210 sym_nego_rejected(np, tp, cp); 6211 else { 6212 PRINT_ADDR(cp); 6213 printf ("M_REJECT received (%x:%x).\n", 6214 scr_to_cpu(np->lastmsg), np->msgout[0]); 6215 } 6216 goto out_clrack; 6217 break; 6218 default: 6219 goto out_reject; 6220 } 6221 break; 6222 /* 6223 * We received an unknown message. 6224 * Ignore all MSG IN phases and reject it. 6225 */ 6226 case SIR_MSG_WEIRD: 6227 sym_print_msg(cp, "WEIRD message received", np->msgin); 6228 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6229 return; 6230 /* 6231 * Negotiation failed. 6232 * Target does not send us the reply. 6233 * Remove the HS_NEGOTIATE status. 6234 */ 6235 case SIR_NEGO_FAILED: 6236 OUTB (HS_PRT, HS_BUSY); 6237 /* 6238 * Negotiation failed. 6239 * Target does not want answer message. 6240 */ 6241 case SIR_NEGO_PROTO: 6242 sym_nego_default(np, tp, cp); 6243 goto out; 6244 } 6245 6246 out: 6247 OUTONB_STD (); 6248 return; 6249 out_reject: 6250 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6251 return; 6252 out_clrack: 6253 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6254 return; 6255 out_stuck: 6256 return; 6257 } 6258 6259 /* 6260 * Acquire a control block 6261 */ 6262 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6263 { 6264 tcb_p tp = &np->target[tn]; 6265 lcb_p lp = sym_lp(tp, ln); 6266 u_short tag = NO_TAG; 6267 SYM_QUEHEAD *qp; 6268 ccb_p cp = (ccb_p) NULL; 6269 6270 /* 6271 * Look for a free CCB 6272 */ 6273 if (sym_que_empty(&np->free_ccbq)) 6274 goto out; 6275 qp = sym_remque_head(&np->free_ccbq); 6276 if (!qp) 6277 goto out; 6278 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6279 6280 /* 6281 * If the LCB is not yet available and the LUN 6282 * has been probed ok, try to allocate the LCB. 6283 */ 6284 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6285 lp = sym_alloc_lcb(np, tn, ln); 6286 if (!lp) 6287 goto out_free; 6288 } 6289 6290 /* 6291 * If the LCB is not available here, then the 6292 * logical unit is not yet discovered. For those 6293 * ones only accept 1 SCSI IO per logical unit, 6294 * since we cannot allow disconnections. 6295 */ 6296 if (!lp) { 6297 if (!sym_is_bit(tp->busy0_map, ln)) 6298 sym_set_bit(tp->busy0_map, ln); 6299 else 6300 goto out_free; 6301 } else { 6302 /* 6303 * If we have been asked for a tagged command. 6304 */ 6305 if (tag_order) { 6306 /* 6307 * Debugging purpose. 6308 */ 6309 assert(lp->busy_itl == 0); 6310 /* 6311 * Allocate resources for tags if not yet. 6312 */ 6313 if (!lp->cb_tags) { 6314 sym_alloc_lcb_tags(np, tn, ln); 6315 if (!lp->cb_tags) 6316 goto out_free; 6317 } 6318 /* 6319 * Get a tag for this SCSI IO and set up 6320 * the CCB bus address for reselection, 6321 * and count it for this LUN. 6322 * Toggle reselect path to tagged. 6323 */ 6324 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6325 tag = lp->cb_tags[lp->ia_tag]; 6326 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6327 lp->ia_tag = 0; 6328 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6329 ++lp->busy_itlq; 6330 lp->head.resel_sa = 6331 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6332 } 6333 else 6334 goto out_free; 6335 } 6336 /* 6337 * This command will not be tagged. 6338 * If we already have either a tagged or untagged 6339 * one, refuse to overlap this untagged one. 6340 */ 6341 else { 6342 /* 6343 * Debugging purpose. 6344 */ 6345 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6346 /* 6347 * Count this nexus for this LUN. 6348 * Set up the CCB bus address for reselection. 6349 * Toggle reselect path to untagged. 6350 */ 6351 if (++lp->busy_itl == 1) { 6352 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6353 lp->head.resel_sa = 6354 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6355 } 6356 else 6357 goto out_free; 6358 } 6359 } 6360 /* 6361 * Put the CCB into the busy queue. 6362 */ 6363 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6364 6365 /* 6366 * Remember all informations needed to free this CCB. 6367 */ 6368 cp->to_abort = 0; 6369 cp->tag = tag; 6370 cp->target = tn; 6371 cp->lun = ln; 6372 6373 if (DEBUG_FLAGS & DEBUG_TAGS) { 6374 PRINT_LUN(np, tn, ln); 6375 printf ("ccb @%p using tag %d.\n", cp, tag); 6376 } 6377 6378 out: 6379 return cp; 6380 out_free: 6381 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6382 return NULL; 6383 } 6384 6385 /* 6386 * Release one control block 6387 */ 6388 static void sym_free_ccb(hcb_p np, ccb_p cp) 6389 { 6390 tcb_p tp = &np->target[cp->target]; 6391 lcb_p lp = sym_lp(tp, cp->lun); 6392 6393 if (DEBUG_FLAGS & DEBUG_TAGS) { 6394 PRINT_LUN(np, cp->target, cp->lun); 6395 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6396 } 6397 6398 /* 6399 * If LCB available, 6400 */ 6401 if (lp) { 6402 /* 6403 * If tagged, release the tag, set the relect path 6404 */ 6405 if (cp->tag != NO_TAG) { 6406 /* 6407 * Free the tag value. 6408 */ 6409 lp->cb_tags[lp->if_tag] = cp->tag; 6410 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6411 lp->if_tag = 0; 6412 /* 6413 * Make the reselect path invalid, 6414 * and uncount this CCB. 6415 */ 6416 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6417 --lp->busy_itlq; 6418 } else { /* Untagged */ 6419 /* 6420 * Make the reselect path invalid, 6421 * and uncount this CCB. 6422 */ 6423 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6424 --lp->busy_itl; 6425 } 6426 /* 6427 * If no JOB active, make the LUN reselect path invalid. 6428 */ 6429 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6430 lp->head.resel_sa = 6431 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6432 } 6433 /* 6434 * Otherwise, we only accept 1 IO per LUN. 6435 * Clear the bit that keeps track of this IO. 6436 */ 6437 else 6438 sym_clr_bit(tp->busy0_map, cp->lun); 6439 6440 /* 6441 * We donnot queue more than 1 ccb per target 6442 * with negotiation at any time. If this ccb was 6443 * used for negotiation, clear this info in the tcb. 6444 */ 6445 if (cp == tp->nego_cp) 6446 tp->nego_cp = NULL; 6447 6448 #ifdef SYM_CONF_IARB_SUPPORT 6449 /* 6450 * If we just complete the last queued CCB, 6451 * clear this info that is no longer relevant. 6452 */ 6453 if (cp == np->last_cp) 6454 np->last_cp = NULL; 6455 #endif 6456 6457 /* 6458 * Unmap user data from DMA map if needed. 6459 */ 6460 if (cp->dmamapped) { 6461 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6462 cp->dmamapped = 0; 6463 } 6464 6465 /* 6466 * Make this CCB available. 6467 */ 6468 cp->cam_ccb = NULL; 6469 cp->host_status = HS_IDLE; 6470 sym_remque(&cp->link_ccbq); 6471 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6472 } 6473 6474 /* 6475 * Allocate a CCB from memory and initialize its fixed part. 6476 */ 6477 static ccb_p sym_alloc_ccb(hcb_p np) 6478 { 6479 ccb_p cp = NULL; 6480 int hcode; 6481 6482 SYM_LOCK_ASSERT(MA_NOTOWNED); 6483 6484 /* 6485 * Prevent from allocating more CCBs than we can 6486 * queue to the controller. 6487 */ 6488 if (np->actccbs >= SYM_CONF_MAX_START) 6489 return NULL; 6490 6491 /* 6492 * Allocate memory for this CCB. 6493 */ 6494 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6495 if (!cp) 6496 return NULL; 6497 6498 /* 6499 * Allocate a bounce buffer for sense data. 6500 */ 6501 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6502 if (!cp->sns_bbuf) 6503 goto out_free; 6504 6505 /* 6506 * Allocate a map for the DMA of user data. 6507 */ 6508 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6509 goto out_free; 6510 /* 6511 * Count it. 6512 */ 6513 np->actccbs++; 6514 6515 /* 6516 * Initialize the callout. 6517 */ 6518 callout_init(&cp->ch, 1); 6519 6520 /* 6521 * Compute the bus address of this ccb. 6522 */ 6523 cp->ccb_ba = vtobus(cp); 6524 6525 /* 6526 * Insert this ccb into the hashed list. 6527 */ 6528 hcode = CCB_HASH_CODE(cp->ccb_ba); 6529 cp->link_ccbh = np->ccbh[hcode]; 6530 np->ccbh[hcode] = cp; 6531 6532 /* 6533 * Initialize the start and restart actions. 6534 */ 6535 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6536 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6537 6538 /* 6539 * Initilialyze some other fields. 6540 */ 6541 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6542 6543 /* 6544 * Chain into free ccb queue. 6545 */ 6546 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6547 6548 return cp; 6549 out_free: 6550 if (cp->sns_bbuf) 6551 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6552 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6553 return NULL; 6554 } 6555 6556 /* 6557 * Look up a CCB from a DSA value. 6558 */ 6559 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6560 { 6561 int hcode; 6562 ccb_p cp; 6563 6564 hcode = CCB_HASH_CODE(dsa); 6565 cp = np->ccbh[hcode]; 6566 while (cp) { 6567 if (cp->ccb_ba == dsa) 6568 break; 6569 cp = cp->link_ccbh; 6570 } 6571 6572 return cp; 6573 } 6574 6575 /* 6576 * Lun control block allocation and initialization. 6577 */ 6578 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6579 { 6580 tcb_p tp = &np->target[tn]; 6581 lcb_p lp = sym_lp(tp, ln); 6582 6583 /* 6584 * Already done, just return. 6585 */ 6586 if (lp) 6587 return lp; 6588 /* 6589 * Check against some race. 6590 */ 6591 assert(!sym_is_bit(tp->busy0_map, ln)); 6592 6593 /* 6594 * Allocate the LCB bus address array. 6595 * Compute the bus address of this table. 6596 */ 6597 if (ln && !tp->luntbl) { 6598 int i; 6599 6600 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6601 if (!tp->luntbl) 6602 goto fail; 6603 for (i = 0 ; i < 64 ; i++) 6604 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6605 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6606 } 6607 6608 /* 6609 * Allocate the table of pointers for LUN(s) > 0, if needed. 6610 */ 6611 if (ln && !tp->lunmp) { 6612 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6613 "LUNMP"); 6614 if (!tp->lunmp) 6615 goto fail; 6616 } 6617 6618 /* 6619 * Allocate the lcb. 6620 * Make it available to the chip. 6621 */ 6622 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6623 if (!lp) 6624 goto fail; 6625 if (ln) { 6626 tp->lunmp[ln] = lp; 6627 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6628 } 6629 else { 6630 tp->lun0p = lp; 6631 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6632 } 6633 6634 /* 6635 * Let the itl task point to error handling. 6636 */ 6637 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6638 6639 /* 6640 * Set the reselect pattern to our default. :) 6641 */ 6642 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6643 6644 /* 6645 * Set user capabilities. 6646 */ 6647 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6648 6649 fail: 6650 return lp; 6651 } 6652 6653 /* 6654 * Allocate LCB resources for tagged command queuing. 6655 */ 6656 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6657 { 6658 tcb_p tp = &np->target[tn]; 6659 lcb_p lp = sym_lp(tp, ln); 6660 int i; 6661 6662 /* 6663 * If LCB not available, try to allocate it. 6664 */ 6665 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6666 return; 6667 6668 /* 6669 * Allocate the task table and and the tag allocation 6670 * circular buffer. We want both or none. 6671 */ 6672 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6673 if (!lp->itlq_tbl) 6674 return; 6675 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6676 if (!lp->cb_tags) { 6677 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6678 lp->itlq_tbl = NULL; 6679 return; 6680 } 6681 6682 /* 6683 * Initialize the task table with invalid entries. 6684 */ 6685 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6686 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6687 6688 /* 6689 * Fill up the tag buffer with tag numbers. 6690 */ 6691 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6692 lp->cb_tags[i] = i; 6693 6694 /* 6695 * Make the task table available to SCRIPTS, 6696 * And accept tagged commands now. 6697 */ 6698 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6699 } 6700 6701 /* 6702 * Test the pci bus snoop logic :-( 6703 * 6704 * Has to be called with interrupts disabled. 6705 */ 6706 #ifndef SYM_CONF_IOMAPPED 6707 static int sym_regtest (hcb_p np) 6708 { 6709 register volatile u32 data; 6710 /* 6711 * chip registers may NOT be cached. 6712 * write 0xffffffff to a read only register area, 6713 * and try to read it back. 6714 */ 6715 data = 0xffffffff; 6716 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6717 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6718 #if 1 6719 if (data == 0xffffffff) { 6720 #else 6721 if ((data & 0xe2f0fffd) != 0x02000080) { 6722 #endif 6723 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6724 (unsigned) data); 6725 return (0x10); 6726 } 6727 return (0); 6728 } 6729 #endif 6730 6731 static int sym_snooptest (hcb_p np) 6732 { 6733 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6734 int i, err=0; 6735 #ifndef SYM_CONF_IOMAPPED 6736 err |= sym_regtest (np); 6737 if (err) return (err); 6738 #endif 6739 restart_test: 6740 /* 6741 * Enable Master Parity Checking as we intend 6742 * to enable it for normal operations. 6743 */ 6744 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6745 /* 6746 * init 6747 */ 6748 pc = SCRIPTB0_BA (np, snooptest); 6749 host_wr = 1; 6750 sym_wr = 2; 6751 /* 6752 * Set memory and register. 6753 */ 6754 np->cache = cpu_to_scr(host_wr); 6755 OUTL (nc_temp, sym_wr); 6756 /* 6757 * Start script (exchange values) 6758 */ 6759 OUTL (nc_dsa, np->hcb_ba); 6760 OUTL_DSP (pc); 6761 /* 6762 * Wait 'til done (with timeout) 6763 */ 6764 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6765 if (INB(nc_istat) & (INTF|SIP|DIP)) 6766 break; 6767 if (i>=SYM_SNOOP_TIMEOUT) { 6768 printf ("CACHE TEST FAILED: timeout.\n"); 6769 return (0x20); 6770 } 6771 /* 6772 * Check for fatal DMA errors. 6773 */ 6774 dstat = INB (nc_dstat); 6775 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6776 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6777 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6778 "DISABLING MASTER DATA PARITY CHECKING.\n", 6779 sym_name(np)); 6780 np->rv_ctest4 &= ~MPEE; 6781 goto restart_test; 6782 } 6783 #endif 6784 if (dstat & (MDPE|BF|IID)) { 6785 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6786 return (0x80); 6787 } 6788 /* 6789 * Save termination position. 6790 */ 6791 pc = INL (nc_dsp); 6792 /* 6793 * Read memory and register. 6794 */ 6795 host_rd = scr_to_cpu(np->cache); 6796 sym_rd = INL (nc_scratcha); 6797 sym_bk = INL (nc_temp); 6798 6799 /* 6800 * Check termination position. 6801 */ 6802 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6803 printf ("CACHE TEST FAILED: script execution failed.\n"); 6804 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6805 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6806 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6807 return (0x40); 6808 } 6809 /* 6810 * Show results. 6811 */ 6812 if (host_wr != sym_rd) { 6813 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6814 (int) host_wr, (int) sym_rd); 6815 err |= 1; 6816 } 6817 if (host_rd != sym_wr) { 6818 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6819 (int) sym_wr, (int) host_rd); 6820 err |= 2; 6821 } 6822 if (sym_bk != sym_wr) { 6823 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6824 (int) sym_wr, (int) sym_bk); 6825 err |= 4; 6826 } 6827 6828 return (err); 6829 } 6830 6831 /* 6832 * Determine the chip's clock frequency. 6833 * 6834 * This is essential for the negotiation of the synchronous 6835 * transfer rate. 6836 * 6837 * Note: we have to return the correct value. 6838 * THERE IS NO SAFE DEFAULT VALUE. 6839 * 6840 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6841 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6842 * do not have a clock doubler and so are provided with a 6843 * 80 MHz clock. All other fast20 boards incorporate a doubler 6844 * and so should be delivered with a 40 MHz clock. 6845 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6846 * clock and provide a clock quadrupler (160 Mhz). 6847 */ 6848 6849 /* 6850 * Select SCSI clock frequency 6851 */ 6852 static void sym_selectclock(hcb_p np, u_char scntl3) 6853 { 6854 /* 6855 * If multiplier not present or not selected, leave here. 6856 */ 6857 if (np->multiplier <= 1) { 6858 OUTB(nc_scntl3, scntl3); 6859 return; 6860 } 6861 6862 if (sym_verbose >= 2) 6863 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6864 6865 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6866 /* 6867 * Wait for the LCKFRQ bit to be set if supported by the chip. 6868 * Otherwise wait 20 micro-seconds. 6869 */ 6870 if (np->features & FE_LCKFRQ) { 6871 int i = 20; 6872 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6873 UDELAY (20); 6874 if (!i) 6875 printf("%s: the chip cannot lock the frequency\n", 6876 sym_name(np)); 6877 } else 6878 UDELAY (20); 6879 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6880 OUTB(nc_scntl3, scntl3); 6881 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6882 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6883 } 6884 6885 /* 6886 * calculate SCSI clock frequency (in KHz) 6887 */ 6888 static unsigned getfreq (hcb_p np, int gen) 6889 { 6890 unsigned int ms = 0; 6891 unsigned int f; 6892 6893 /* 6894 * Measure GEN timer delay in order 6895 * to calculate SCSI clock frequency 6896 * 6897 * This code will never execute too 6898 * many loop iterations (if DELAY is 6899 * reasonably correct). It could get 6900 * too low a delay (too high a freq.) 6901 * if the CPU is slow executing the 6902 * loop for some reason (an NMI, for 6903 * example). For this reason we will 6904 * if multiple measurements are to be 6905 * performed trust the higher delay 6906 * (lower frequency returned). 6907 */ 6908 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6909 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6910 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6911 (void) INW (nc_sist); /* another one, just to be sure :) */ 6912 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6913 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6914 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6915 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6916 UDELAY (1000); /* count ms */ 6917 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6918 /* 6919 * set prescaler to divide by whatever 0 means 6920 * 0 ought to choose divide by 2, but appears 6921 * to set divide by 3.5 mode in my 53c810 ... 6922 */ 6923 OUTB (nc_scntl3, 0); 6924 6925 /* 6926 * adjust for prescaler, and convert into KHz 6927 */ 6928 f = ms ? ((1 << gen) * 4340) / ms : 0; 6929 6930 if (sym_verbose >= 2) 6931 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6932 sym_name(np), gen, ms, f); 6933 6934 return f; 6935 } 6936 6937 static unsigned sym_getfreq (hcb_p np) 6938 { 6939 u_int f1, f2; 6940 int gen = 11; 6941 6942 (void) getfreq (np, gen); /* throw away first result */ 6943 f1 = getfreq (np, gen); 6944 f2 = getfreq (np, gen); 6945 if (f1 > f2) f1 = f2; /* trust lower result */ 6946 return f1; 6947 } 6948 6949 /* 6950 * Get/probe chip SCSI clock frequency 6951 */ 6952 static void sym_getclock (hcb_p np, int mult) 6953 { 6954 unsigned char scntl3 = np->sv_scntl3; 6955 unsigned char stest1 = np->sv_stest1; 6956 unsigned f1; 6957 6958 /* 6959 * For the C10 core, assume 40 MHz. 6960 */ 6961 if (np->features & FE_C10) { 6962 np->multiplier = mult; 6963 np->clock_khz = 40000 * mult; 6964 return; 6965 } 6966 6967 np->multiplier = 1; 6968 f1 = 40000; 6969 /* 6970 * True with 875/895/896/895A with clock multiplier selected 6971 */ 6972 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 6973 if (sym_verbose >= 2) 6974 printf ("%s: clock multiplier found\n", sym_name(np)); 6975 np->multiplier = mult; 6976 } 6977 6978 /* 6979 * If multiplier not found or scntl3 not 7,5,3, 6980 * reset chip and get frequency from general purpose timer. 6981 * Otherwise trust scntl3 BIOS setting. 6982 */ 6983 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 6984 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 6985 f1 = sym_getfreq (np); 6986 6987 if (sym_verbose) 6988 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 6989 6990 if (f1 < 45000) f1 = 40000; 6991 else if (f1 < 55000) f1 = 50000; 6992 else f1 = 80000; 6993 6994 if (f1 < 80000 && mult > 1) { 6995 if (sym_verbose >= 2) 6996 printf ("%s: clock multiplier assumed\n", 6997 sym_name(np)); 6998 np->multiplier = mult; 6999 } 7000 } else { 7001 if ((scntl3 & 7) == 3) f1 = 40000; 7002 else if ((scntl3 & 7) == 5) f1 = 80000; 7003 else f1 = 160000; 7004 7005 f1 /= np->multiplier; 7006 } 7007 7008 /* 7009 * Compute controller synchronous parameters. 7010 */ 7011 f1 *= np->multiplier; 7012 np->clock_khz = f1; 7013 } 7014 7015 /* 7016 * Get/probe PCI clock frequency 7017 */ 7018 static int sym_getpciclock (hcb_p np) 7019 { 7020 int f = 0; 7021 7022 /* 7023 * For the C1010-33, this doesn't work. 7024 * For the C1010-66, this will be tested when I'll have 7025 * such a beast to play with. 7026 */ 7027 if (!(np->features & FE_C10)) { 7028 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7029 f = (int) sym_getfreq (np); 7030 OUTB (nc_stest1, 0); 7031 } 7032 np->pciclk_khz = f; 7033 7034 return f; 7035 } 7036 7037 /*============= DRIVER ACTION/COMPLETION ====================*/ 7038 7039 /* 7040 * Print something that tells about extended errors. 7041 */ 7042 static void sym_print_xerr(ccb_p cp, int x_status) 7043 { 7044 if (x_status & XE_PARITY_ERR) { 7045 PRINT_ADDR(cp); 7046 printf ("unrecovered SCSI parity error.\n"); 7047 } 7048 if (x_status & XE_EXTRA_DATA) { 7049 PRINT_ADDR(cp); 7050 printf ("extraneous data discarded.\n"); 7051 } 7052 if (x_status & XE_BAD_PHASE) { 7053 PRINT_ADDR(cp); 7054 printf ("illegal scsi phase (4/5).\n"); 7055 } 7056 if (x_status & XE_SODL_UNRUN) { 7057 PRINT_ADDR(cp); 7058 printf ("ODD transfer in DATA OUT phase.\n"); 7059 } 7060 if (x_status & XE_SWIDE_OVRUN) { 7061 PRINT_ADDR(cp); 7062 printf ("ODD transfer in DATA IN phase.\n"); 7063 } 7064 } 7065 7066 /* 7067 * Choose the more appropriate CAM status if 7068 * the IO encountered an extended error. 7069 */ 7070 static int sym_xerr_cam_status(int cam_status, int x_status) 7071 { 7072 if (x_status) { 7073 if (x_status & XE_PARITY_ERR) 7074 cam_status = CAM_UNCOR_PARITY; 7075 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7076 cam_status = CAM_DATA_RUN_ERR; 7077 else if (x_status & XE_BAD_PHASE) 7078 cam_status = CAM_REQ_CMP_ERR; 7079 else 7080 cam_status = CAM_REQ_CMP_ERR; 7081 } 7082 return cam_status; 7083 } 7084 7085 /* 7086 * Complete execution of a SCSI command with extented 7087 * error, SCSI status error, or having been auto-sensed. 7088 * 7089 * The SCRIPTS processor is not running there, so we 7090 * can safely access IO registers and remove JOBs from 7091 * the START queue. 7092 * SCRATCHA is assumed to have been loaded with STARTPOS 7093 * before the SCRIPTS called the C code. 7094 */ 7095 static void sym_complete_error (hcb_p np, ccb_p cp) 7096 { 7097 struct ccb_scsiio *csio; 7098 u_int cam_status; 7099 int i, sense_returned; 7100 7101 SYM_LOCK_ASSERT(MA_OWNED); 7102 7103 /* 7104 * Paranoid check. :) 7105 */ 7106 if (!cp || !cp->cam_ccb) 7107 return; 7108 7109 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7110 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7111 cp->host_status, cp->ssss_status, cp->host_flags, 7112 cp->target, cp->lun); 7113 MDELAY(100); 7114 } 7115 7116 /* 7117 * Get CAM command pointer. 7118 */ 7119 csio = &cp->cam_ccb->csio; 7120 7121 /* 7122 * Check for extended errors. 7123 */ 7124 if (cp->xerr_status) { 7125 if (sym_verbose) 7126 sym_print_xerr(cp, cp->xerr_status); 7127 if (cp->host_status == HS_COMPLETE) 7128 cp->host_status = HS_COMP_ERR; 7129 } 7130 7131 /* 7132 * Calculate the residual. 7133 */ 7134 csio->sense_resid = 0; 7135 csio->resid = sym_compute_residual(np, cp); 7136 7137 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7138 csio->resid = 0; /* throw them away. :) */ 7139 cp->sv_resid = 0; 7140 } 7141 7142 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7143 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7144 csio->sense_resid = csio->resid; /* Swap residuals */ 7145 csio->resid = cp->sv_resid; 7146 cp->sv_resid = 0; 7147 if (sym_verbose && cp->sv_xerr_status) 7148 sym_print_xerr(cp, cp->sv_xerr_status); 7149 if (cp->host_status == HS_COMPLETE && 7150 cp->ssss_status == S_GOOD && 7151 cp->xerr_status == 0) { 7152 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7153 cp->sv_xerr_status); 7154 cam_status |= CAM_AUTOSNS_VALID; 7155 /* 7156 * Bounce back the sense data to user and 7157 * fix the residual. 7158 */ 7159 bzero(&csio->sense_data, sizeof(csio->sense_data)); 7160 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid; 7161 if (sense_returned < csio->sense_len) 7162 csio->sense_resid = csio->sense_len - 7163 sense_returned; 7164 else 7165 csio->sense_resid = 0; 7166 bcopy(cp->sns_bbuf, &csio->sense_data, 7167 MIN(csio->sense_len, sense_returned)); 7168 #if 0 7169 /* 7170 * If the device reports a UNIT ATTENTION condition 7171 * due to a RESET condition, we should consider all 7172 * disconnect CCBs for this unit as aborted. 7173 */ 7174 if (1) { 7175 u_char *p; 7176 p = (u_char *) csio->sense_data; 7177 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7178 sym_clear_tasks(np, CAM_REQ_ABORTED, 7179 cp->target,cp->lun, -1); 7180 } 7181 #endif 7182 } 7183 else 7184 cam_status = CAM_AUTOSENSE_FAIL; 7185 } 7186 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7187 csio->scsi_status = cp->ssss_status; 7188 cam_status = CAM_SCSI_STATUS_ERROR; 7189 } 7190 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7191 cam_status = CAM_SEL_TIMEOUT; 7192 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7193 cam_status = CAM_UNEXP_BUSFREE; 7194 else { /* Extended error */ 7195 if (sym_verbose) { 7196 PRINT_ADDR(cp); 7197 printf ("COMMAND FAILED (%x %x %x).\n", 7198 cp->host_status, cp->ssss_status, 7199 cp->xerr_status); 7200 } 7201 csio->scsi_status = cp->ssss_status; 7202 /* 7203 * Set the most appropriate value for CAM status. 7204 */ 7205 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7206 cp->xerr_status); 7207 } 7208 7209 /* 7210 * Dequeue all queued CCBs for that device 7211 * not yet started by SCRIPTS. 7212 */ 7213 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7214 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7215 7216 /* 7217 * Restart the SCRIPTS processor. 7218 */ 7219 OUTL_DSP (SCRIPTA_BA (np, start)); 7220 7221 /* 7222 * Synchronize DMA map if needed. 7223 */ 7224 if (cp->dmamapped) { 7225 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7226 (cp->dmamapped == SYM_DMA_READ ? 7227 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7228 } 7229 /* 7230 * Add this one to the COMP queue. 7231 * Complete all those commands with either error 7232 * or requeue condition. 7233 */ 7234 sym_set_cam_status((union ccb *) csio, cam_status); 7235 sym_remque(&cp->link_ccbq); 7236 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7237 sym_flush_comp_queue(np, 0); 7238 } 7239 7240 /* 7241 * Complete execution of a successful SCSI command. 7242 * 7243 * Only successful commands go to the DONE queue, 7244 * since we need to have the SCRIPTS processor 7245 * stopped on any error condition. 7246 * The SCRIPTS processor is running while we are 7247 * completing successful commands. 7248 */ 7249 static void sym_complete_ok (hcb_p np, ccb_p cp) 7250 { 7251 struct ccb_scsiio *csio; 7252 tcb_p tp; 7253 lcb_p lp; 7254 7255 SYM_LOCK_ASSERT(MA_OWNED); 7256 7257 /* 7258 * Paranoid check. :) 7259 */ 7260 if (!cp || !cp->cam_ccb) 7261 return; 7262 assert (cp->host_status == HS_COMPLETE); 7263 7264 /* 7265 * Get command, target and lun pointers. 7266 */ 7267 csio = &cp->cam_ccb->csio; 7268 tp = &np->target[cp->target]; 7269 lp = sym_lp(tp, cp->lun); 7270 7271 /* 7272 * Assume device discovered on first success. 7273 */ 7274 if (!lp) 7275 sym_set_bit(tp->lun_map, cp->lun); 7276 7277 /* 7278 * If all data have been transferred, given than no 7279 * extended error did occur, there is no residual. 7280 */ 7281 csio->resid = 0; 7282 if (cp->phys.head.lastp != cp->phys.head.goalp) 7283 csio->resid = sym_compute_residual(np, cp); 7284 7285 /* 7286 * Wrong transfer residuals may be worse than just always 7287 * returning zero. User can disable this feature from 7288 * sym_conf.h. Residual support is enabled by default. 7289 */ 7290 if (!SYM_CONF_RESIDUAL_SUPPORT) 7291 csio->resid = 0; 7292 7293 /* 7294 * Synchronize DMA map if needed. 7295 */ 7296 if (cp->dmamapped) { 7297 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7298 (cp->dmamapped == SYM_DMA_READ ? 7299 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7300 } 7301 /* 7302 * Set status and complete the command. 7303 */ 7304 csio->scsi_status = cp->ssss_status; 7305 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7306 sym_xpt_done(np, (union ccb *) csio, cp); 7307 sym_free_ccb(np, cp); 7308 } 7309 7310 /* 7311 * Our callout handler 7312 */ 7313 static void sym_callout(void *arg) 7314 { 7315 union ccb *ccb = (union ccb *) arg; 7316 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7317 7318 /* 7319 * Check that the CAM CCB is still queued. 7320 */ 7321 if (!np) 7322 return; 7323 7324 SYM_LOCK(); 7325 7326 switch(ccb->ccb_h.func_code) { 7327 case XPT_SCSI_IO: 7328 (void) sym_abort_scsiio(np, ccb, 1); 7329 break; 7330 default: 7331 break; 7332 } 7333 7334 SYM_UNLOCK(); 7335 } 7336 7337 /* 7338 * Abort an SCSI IO. 7339 */ 7340 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7341 { 7342 ccb_p cp; 7343 SYM_QUEHEAD *qp; 7344 7345 SYM_LOCK_ASSERT(MA_OWNED); 7346 7347 /* 7348 * Look up our CCB control block. 7349 */ 7350 cp = NULL; 7351 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7352 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7353 if (cp2->cam_ccb == ccb) { 7354 cp = cp2; 7355 break; 7356 } 7357 } 7358 if (!cp || cp->host_status == HS_WAIT) 7359 return -1; 7360 7361 /* 7362 * If a previous abort didn't succeed in time, 7363 * perform a BUS reset. 7364 */ 7365 if (cp->to_abort) { 7366 sym_reset_scsi_bus(np, 1); 7367 return 0; 7368 } 7369 7370 /* 7371 * Mark the CCB for abort and allow time for. 7372 */ 7373 cp->to_abort = timed_out ? 2 : 1; 7374 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7375 7376 /* 7377 * Tell the SCRIPTS processor to stop and synchronize with us. 7378 */ 7379 np->istat_sem = SEM; 7380 OUTB (nc_istat, SIGP|SEM); 7381 return 0; 7382 } 7383 7384 /* 7385 * Reset a SCSI device (all LUNs of a target). 7386 */ 7387 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7388 { 7389 tcb_p tp; 7390 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7391 7392 SYM_LOCK_ASSERT(MA_OWNED); 7393 7394 if (ccb_h->target_id == np->myaddr || 7395 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7396 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7397 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7398 return; 7399 } 7400 7401 tp = &np->target[ccb_h->target_id]; 7402 7403 tp->to_reset = 1; 7404 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7405 7406 np->istat_sem = SEM; 7407 OUTB (nc_istat, SIGP|SEM); 7408 } 7409 7410 /* 7411 * SIM action entry point. 7412 */ 7413 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7414 { 7415 hcb_p np; 7416 tcb_p tp; 7417 lcb_p lp; 7418 ccb_p cp; 7419 int tmp; 7420 u_char idmsg, *msgptr; 7421 u_int msglen; 7422 struct ccb_scsiio *csio; 7423 struct ccb_hdr *ccb_h; 7424 7425 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7426 7427 /* 7428 * Retrieve our controller data structure. 7429 */ 7430 np = (hcb_p) cam_sim_softc(sim); 7431 7432 SYM_LOCK_ASSERT(MA_OWNED); 7433 7434 /* 7435 * The common case is SCSI IO. 7436 * We deal with other ones elsewhere. 7437 */ 7438 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7439 sym_action2(sim, ccb); 7440 return; 7441 } 7442 csio = &ccb->csio; 7443 ccb_h = &csio->ccb_h; 7444 7445 /* 7446 * Work around races. 7447 */ 7448 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7449 xpt_done(ccb); 7450 return; 7451 } 7452 7453 /* 7454 * Minimal checkings, so that we will not 7455 * go outside our tables. 7456 */ 7457 if (ccb_h->target_id == np->myaddr || 7458 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7459 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7460 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7461 return; 7462 } 7463 7464 /* 7465 * Retrieve the target and lun descriptors. 7466 */ 7467 tp = &np->target[ccb_h->target_id]; 7468 lp = sym_lp(tp, ccb_h->target_lun); 7469 7470 /* 7471 * Complete the 1st INQUIRY command with error 7472 * condition if the device is flagged NOSCAN 7473 * at BOOT in the NVRAM. This may speed up 7474 * the boot and maintain coherency with BIOS 7475 * device numbering. Clearing the flag allows 7476 * user to rescan skipped devices later. 7477 * We also return error for devices not flagged 7478 * for SCAN LUNS in the NVRAM since some mono-lun 7479 * devices behave badly when asked for some non 7480 * zero LUN. Btw, this is an absolute hack.:-) 7481 */ 7482 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7483 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7484 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7485 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7486 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7487 ccb_h->target_lun != 0)) { 7488 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7489 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7490 return; 7491 } 7492 } 7493 7494 /* 7495 * Get a control block for this IO. 7496 */ 7497 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7498 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7499 if (!cp) { 7500 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7501 return; 7502 } 7503 7504 /* 7505 * Keep track of the IO in our CCB. 7506 */ 7507 cp->cam_ccb = ccb; 7508 7509 /* 7510 * Build the IDENTIFY message. 7511 */ 7512 idmsg = M_IDENTIFY | cp->lun; 7513 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7514 idmsg |= 0x40; 7515 7516 msgptr = cp->scsi_smsg; 7517 msglen = 0; 7518 msgptr[msglen++] = idmsg; 7519 7520 /* 7521 * Build the tag message if present. 7522 */ 7523 if (cp->tag != NO_TAG) { 7524 u_char order = csio->tag_action; 7525 7526 switch(order) { 7527 case M_ORDERED_TAG: 7528 break; 7529 case M_HEAD_TAG: 7530 break; 7531 default: 7532 order = M_SIMPLE_TAG; 7533 } 7534 msgptr[msglen++] = order; 7535 7536 /* 7537 * For less than 128 tags, actual tags are numbered 7538 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7539 * with devices that have problems with #TAG 0 or too 7540 * great #TAG numbers. For more tags (up to 256), 7541 * we use directly our tag number. 7542 */ 7543 #if SYM_CONF_MAX_TASK > (512/4) 7544 msgptr[msglen++] = cp->tag; 7545 #else 7546 msgptr[msglen++] = (cp->tag << 1) + 1; 7547 #endif 7548 } 7549 7550 /* 7551 * Build a negotiation message if needed. 7552 * (nego_status is filled by sym_prepare_nego()) 7553 */ 7554 cp->nego_status = 0; 7555 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7556 tp->tinfo.current.period != tp->tinfo.goal.period || 7557 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7558 tp->tinfo.current.options != tp->tinfo.goal.options) { 7559 if (!tp->nego_cp && lp) 7560 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7561 } 7562 7563 /* 7564 * Fill in our ccb 7565 */ 7566 7567 /* 7568 * Startqueue 7569 */ 7570 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7571 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7572 7573 /* 7574 * select 7575 */ 7576 cp->phys.select.sel_id = cp->target; 7577 cp->phys.select.sel_scntl3 = tp->head.wval; 7578 cp->phys.select.sel_sxfer = tp->head.sval; 7579 cp->phys.select.sel_scntl4 = tp->head.uval; 7580 7581 /* 7582 * message 7583 */ 7584 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7585 cp->phys.smsg.size = cpu_to_scr(msglen); 7586 7587 /* 7588 * command 7589 */ 7590 if (sym_setup_cdb(np, csio, cp) < 0) { 7591 sym_xpt_done(np, ccb, cp); 7592 sym_free_ccb(np, cp); 7593 return; 7594 } 7595 7596 /* 7597 * status 7598 */ 7599 #if 0 /* Provision */ 7600 cp->actualquirks = tp->quirks; 7601 #endif 7602 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7603 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7604 cp->ssss_status = S_ILLEGAL; 7605 cp->xerr_status = 0; 7606 cp->host_flags = 0; 7607 cp->extra_bytes = 0; 7608 7609 /* 7610 * extreme data pointer. 7611 * shall be positive, so -1 is lower than lowest.:) 7612 */ 7613 cp->ext_sg = -1; 7614 cp->ext_ofs = 0; 7615 7616 /* 7617 * Build the data descriptor block 7618 * and start the IO. 7619 */ 7620 sym_setup_data_and_start(np, csio, cp); 7621 } 7622 7623 /* 7624 * Setup buffers and pointers that address the CDB. 7625 * I bet, physical CDBs will never be used on the planet, 7626 * since they can be bounced without significant overhead. 7627 */ 7628 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7629 { 7630 struct ccb_hdr *ccb_h; 7631 u32 cmd_ba; 7632 int cmd_len; 7633 7634 SYM_LOCK_ASSERT(MA_OWNED); 7635 7636 ccb_h = &csio->ccb_h; 7637 7638 /* 7639 * CDB is 16 bytes max. 7640 */ 7641 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7642 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7643 return -1; 7644 } 7645 cmd_len = csio->cdb_len; 7646 7647 if (ccb_h->flags & CAM_CDB_POINTER) { 7648 /* CDB is a pointer */ 7649 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7650 /* CDB pointer is virtual */ 7651 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7652 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7653 } else { 7654 /* CDB pointer is physical */ 7655 #if 0 7656 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7657 #else 7658 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7659 return -1; 7660 #endif 7661 } 7662 } else { 7663 /* CDB is in the CAM ccb (buffer) */ 7664 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7665 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7666 } 7667 7668 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7669 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7670 7671 return 0; 7672 } 7673 7674 /* 7675 * Set up data pointers used by SCRIPTS. 7676 */ 7677 static void __inline 7678 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7679 { 7680 u32 lastp, goalp; 7681 7682 SYM_LOCK_ASSERT(MA_OWNED); 7683 7684 /* 7685 * No segments means no data. 7686 */ 7687 if (!cp->segments) 7688 dir = CAM_DIR_NONE; 7689 7690 /* 7691 * Set the data pointer. 7692 */ 7693 switch(dir) { 7694 case CAM_DIR_OUT: 7695 goalp = SCRIPTA_BA (np, data_out2) + 8; 7696 lastp = goalp - 8 - (cp->segments * (2*4)); 7697 break; 7698 case CAM_DIR_IN: 7699 cp->host_flags |= HF_DATA_IN; 7700 goalp = SCRIPTA_BA (np, data_in2) + 8; 7701 lastp = goalp - 8 - (cp->segments * (2*4)); 7702 break; 7703 case CAM_DIR_NONE: 7704 default: 7705 lastp = goalp = SCRIPTB_BA (np, no_data); 7706 break; 7707 } 7708 7709 cp->phys.head.lastp = cpu_to_scr(lastp); 7710 cp->phys.head.goalp = cpu_to_scr(goalp); 7711 cp->phys.head.savep = cpu_to_scr(lastp); 7712 cp->startp = cp->phys.head.savep; 7713 } 7714 7715 /* 7716 * Call back routine for the DMA map service. 7717 * If bounce buffers are used (why ?), we may sleep and then 7718 * be called there in another context. 7719 */ 7720 static void 7721 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7722 { 7723 ccb_p cp; 7724 hcb_p np; 7725 union ccb *ccb; 7726 7727 cp = (ccb_p) arg; 7728 ccb = cp->cam_ccb; 7729 np = (hcb_p) cp->arg; 7730 7731 SYM_LOCK_ASSERT(MA_OWNED); 7732 7733 /* 7734 * Deal with weird races. 7735 */ 7736 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7737 goto out_abort; 7738 7739 /* 7740 * Deal with weird errors. 7741 */ 7742 if (error) { 7743 cp->dmamapped = 0; 7744 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7745 goto out_abort; 7746 } 7747 7748 /* 7749 * Build the data descriptor for the chip. 7750 */ 7751 if (nsegs) { 7752 int retv; 7753 /* 896 rev 1 requires to be careful about boundaries */ 7754 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7755 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7756 else 7757 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7758 if (retv < 0) { 7759 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7760 goto out_abort; 7761 } 7762 } 7763 7764 /* 7765 * Synchronize the DMA map only if we have 7766 * actually mapped the data. 7767 */ 7768 if (cp->dmamapped) { 7769 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7770 (cp->dmamapped == SYM_DMA_READ ? 7771 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7772 } 7773 7774 /* 7775 * Set host status to busy state. 7776 * May have been set back to HS_WAIT to avoid a race. 7777 */ 7778 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7779 7780 /* 7781 * Set data pointers. 7782 */ 7783 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7784 7785 /* 7786 * Enqueue this IO in our pending queue. 7787 */ 7788 sym_enqueue_cam_ccb(cp); 7789 7790 /* 7791 * When `#ifed 1', the code below makes the driver 7792 * panic on the first attempt to write to a SCSI device. 7793 * It is the first test we want to do after a driver 7794 * change that does not seem obviously safe. :) 7795 */ 7796 #if 0 7797 switch (cp->cdb_buf[0]) { 7798 case 0x0A: case 0x2A: case 0xAA: 7799 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7800 MDELAY(10000); 7801 break; 7802 default: 7803 break; 7804 } 7805 #endif 7806 /* 7807 * Activate this job. 7808 */ 7809 sym_put_start_queue(np, cp); 7810 return; 7811 out_abort: 7812 sym_xpt_done(np, ccb, cp); 7813 sym_free_ccb(np, cp); 7814 } 7815 7816 /* 7817 * How complex it gets to deal with the data in CAM. 7818 * The Bus Dma stuff makes things still more complex. 7819 */ 7820 static void 7821 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7822 { 7823 struct ccb_hdr *ccb_h; 7824 int dir, retv; 7825 7826 SYM_LOCK_ASSERT(MA_OWNED); 7827 7828 ccb_h = &csio->ccb_h; 7829 7830 /* 7831 * Now deal with the data. 7832 */ 7833 cp->data_len = csio->dxfer_len; 7834 cp->arg = np; 7835 7836 /* 7837 * No direction means no data. 7838 */ 7839 dir = (ccb_h->flags & CAM_DIR_MASK); 7840 if (dir == CAM_DIR_NONE) { 7841 sym_execute_ccb(cp, NULL, 0, 0); 7842 return; 7843 } 7844 7845 cp->dmamapped = (dir == CAM_DIR_IN) ? SYM_DMA_READ : SYM_DMA_WRITE; 7846 retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap, 7847 (union ccb *)csio, sym_execute_ccb, cp, 0); 7848 if (retv == EINPROGRESS) { 7849 cp->host_status = HS_WAIT; 7850 xpt_freeze_simq(np->sim, 1); 7851 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7852 } 7853 } 7854 7855 /* 7856 * Move the scatter list to our data block. 7857 */ 7858 static int 7859 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7860 bus_dma_segment_t *psegs, int nsegs) 7861 { 7862 struct sym_tblmove *data; 7863 bus_dma_segment_t *psegs2; 7864 7865 SYM_LOCK_ASSERT(MA_OWNED); 7866 7867 if (nsegs > SYM_CONF_MAX_SG) 7868 return -1; 7869 7870 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7871 psegs2 = &psegs[nsegs-1]; 7872 cp->segments = nsegs; 7873 7874 while (1) { 7875 data->addr = cpu_to_scr(psegs2->ds_addr); 7876 data->size = cpu_to_scr(psegs2->ds_len); 7877 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7878 printf ("%s scatter: paddr=%lx len=%ld\n", 7879 sym_name(np), (long) psegs2->ds_addr, 7880 (long) psegs2->ds_len); 7881 } 7882 if (psegs2 != psegs) { 7883 --data; 7884 --psegs2; 7885 continue; 7886 } 7887 break; 7888 } 7889 return 0; 7890 } 7891 7892 /* 7893 * Scatter a SG list with physical addresses into bus addressable chunks. 7894 */ 7895 static int 7896 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7897 { 7898 u_long ps, pe, pn; 7899 u_long k; 7900 int s, t; 7901 7902 SYM_LOCK_ASSERT(MA_OWNED); 7903 7904 s = SYM_CONF_MAX_SG - 1; 7905 t = nsegs - 1; 7906 ps = psegs[t].ds_addr; 7907 pe = ps + psegs[t].ds_len; 7908 7909 while (s >= 0) { 7910 pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY); 7911 if (pn <= ps) 7912 pn = ps; 7913 k = pe - pn; 7914 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7915 printf ("%s scatter: paddr=%lx len=%ld\n", 7916 sym_name(np), pn, k); 7917 } 7918 cp->phys.data[s].addr = cpu_to_scr(pn); 7919 cp->phys.data[s].size = cpu_to_scr(k); 7920 --s; 7921 if (pn == ps) { 7922 if (--t < 0) 7923 break; 7924 ps = psegs[t].ds_addr; 7925 pe = ps + psegs[t].ds_len; 7926 } 7927 else 7928 pe = pn; 7929 } 7930 7931 cp->segments = SYM_CONF_MAX_SG - 1 - s; 7932 7933 return t >= 0 ? -1 : 0; 7934 } 7935 7936 /* 7937 * SIM action for non performance critical stuff. 7938 */ 7939 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 7940 { 7941 union ccb *abort_ccb; 7942 struct ccb_hdr *ccb_h; 7943 struct ccb_pathinq *cpi; 7944 struct ccb_trans_settings *cts; 7945 struct sym_trans *tip; 7946 hcb_p np; 7947 tcb_p tp; 7948 lcb_p lp; 7949 u_char dflags; 7950 7951 /* 7952 * Retrieve our controller data structure. 7953 */ 7954 np = (hcb_p) cam_sim_softc(sim); 7955 7956 SYM_LOCK_ASSERT(MA_OWNED); 7957 7958 ccb_h = &ccb->ccb_h; 7959 7960 switch (ccb_h->func_code) { 7961 case XPT_SET_TRAN_SETTINGS: 7962 cts = &ccb->cts; 7963 tp = &np->target[ccb_h->target_id]; 7964 7965 /* 7966 * Update SPI transport settings in TARGET control block. 7967 * Update SCSI device settings in LUN control block. 7968 */ 7969 lp = sym_lp(tp, ccb_h->target_lun); 7970 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7971 sym_update_trans(np, &tp->tinfo.goal, cts); 7972 if (lp) 7973 sym_update_dflags(np, &lp->current_flags, cts); 7974 } 7975 if (cts->type == CTS_TYPE_USER_SETTINGS) { 7976 sym_update_trans(np, &tp->tinfo.user, cts); 7977 if (lp) 7978 sym_update_dflags(np, &lp->user_flags, cts); 7979 } 7980 7981 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7982 break; 7983 case XPT_GET_TRAN_SETTINGS: 7984 cts = &ccb->cts; 7985 tp = &np->target[ccb_h->target_id]; 7986 lp = sym_lp(tp, ccb_h->target_lun); 7987 7988 #define cts__scsi (&cts->proto_specific.scsi) 7989 #define cts__spi (&cts->xport_specific.spi) 7990 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7991 tip = &tp->tinfo.current; 7992 dflags = lp ? lp->current_flags : 0; 7993 } 7994 else { 7995 tip = &tp->tinfo.user; 7996 dflags = lp ? lp->user_flags : tp->usrflags; 7997 } 7998 7999 cts->protocol = PROTO_SCSI; 8000 cts->transport = XPORT_SPI; 8001 cts->protocol_version = tip->scsi_version; 8002 cts->transport_version = tip->spi_version; 8003 8004 cts__spi->sync_period = tip->period; 8005 cts__spi->sync_offset = tip->offset; 8006 cts__spi->bus_width = tip->width; 8007 cts__spi->ppr_options = tip->options; 8008 8009 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8010 | CTS_SPI_VALID_SYNC_OFFSET 8011 | CTS_SPI_VALID_BUS_WIDTH 8012 | CTS_SPI_VALID_PPR_OPTIONS; 8013 8014 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8015 if (dflags & SYM_DISC_ENABLED) 8016 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8017 cts__spi->valid |= CTS_SPI_VALID_DISC; 8018 8019 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8020 if (dflags & SYM_TAGS_ENABLED) 8021 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8022 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8023 #undef cts__spi 8024 #undef cts__scsi 8025 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8026 break; 8027 case XPT_CALC_GEOMETRY: 8028 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8029 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8030 break; 8031 case XPT_PATH_INQ: 8032 cpi = &ccb->cpi; 8033 cpi->version_num = 1; 8034 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8035 if ((np->features & FE_WIDE) != 0) 8036 cpi->hba_inquiry |= PI_WIDE_16; 8037 cpi->target_sprt = 0; 8038 cpi->hba_misc = PIM_UNMAPPED; 8039 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8040 cpi->hba_misc |= PIM_SCANHILO; 8041 if (np->usrflags & SYM_AVOID_BUS_RESET) 8042 cpi->hba_misc |= PIM_NOBUSRESET; 8043 cpi->hba_eng_cnt = 0; 8044 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8045 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8046 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8047 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8048 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8049 cpi->bus_id = cam_sim_bus(sim); 8050 cpi->initiator_id = np->myaddr; 8051 cpi->base_transfer_speed = 3300; 8052 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8053 strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8054 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8055 cpi->unit_number = cam_sim_unit(sim); 8056 8057 cpi->protocol = PROTO_SCSI; 8058 cpi->protocol_version = SCSI_REV_2; 8059 cpi->transport = XPORT_SPI; 8060 cpi->transport_version = 2; 8061 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8062 if (np->features & FE_ULTRA3) { 8063 cpi->transport_version = 3; 8064 cpi->xport_specific.spi.ppr_options = 8065 SID_SPI_CLOCK_DT_ST; 8066 } 8067 cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE; 8068 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8069 break; 8070 case XPT_ABORT: 8071 abort_ccb = ccb->cab.abort_ccb; 8072 switch(abort_ccb->ccb_h.func_code) { 8073 case XPT_SCSI_IO: 8074 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8075 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8076 break; 8077 } 8078 default: 8079 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8080 break; 8081 } 8082 break; 8083 case XPT_RESET_DEV: 8084 sym_reset_dev(np, ccb); 8085 break; 8086 case XPT_RESET_BUS: 8087 sym_reset_scsi_bus(np, 0); 8088 if (sym_verbose) { 8089 xpt_print_path(np->path); 8090 printf("SCSI BUS reset delivered.\n"); 8091 } 8092 sym_init (np, 1); 8093 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8094 break; 8095 case XPT_TERM_IO: 8096 default: 8097 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8098 break; 8099 } 8100 } 8101 8102 /* 8103 * Asynchronous notification handler. 8104 */ 8105 static void 8106 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused) 8107 { 8108 hcb_p np; 8109 struct cam_sim *sim; 8110 u_int tn; 8111 tcb_p tp; 8112 8113 sim = (struct cam_sim *) cb_arg; 8114 np = (hcb_p) cam_sim_softc(sim); 8115 8116 SYM_LOCK_ASSERT(MA_OWNED); 8117 8118 switch (code) { 8119 case AC_LOST_DEVICE: 8120 tn = xpt_path_target_id(path); 8121 if (tn >= SYM_CONF_MAX_TARGET) 8122 break; 8123 8124 tp = &np->target[tn]; 8125 8126 tp->to_reset = 0; 8127 tp->head.sval = 0; 8128 tp->head.wval = np->rv_scntl3; 8129 tp->head.uval = 0; 8130 8131 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8132 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8133 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8134 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8135 8136 break; 8137 default: 8138 break; 8139 } 8140 } 8141 8142 /* 8143 * Update transfer settings of a target. 8144 */ 8145 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 8146 struct ccb_trans_settings *cts) 8147 { 8148 8149 SYM_LOCK_ASSERT(MA_OWNED); 8150 8151 /* 8152 * Update the infos. 8153 */ 8154 #define cts__spi (&cts->xport_specific.spi) 8155 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8156 tip->width = cts__spi->bus_width; 8157 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8158 tip->offset = cts__spi->sync_offset; 8159 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8160 tip->period = cts__spi->sync_period; 8161 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8162 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8163 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8164 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8165 tip->scsi_version = cts->protocol_version; 8166 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8167 cts->transport_version != XPORT_VERSION_UNKNOWN) 8168 tip->spi_version = cts->transport_version; 8169 #undef cts__spi 8170 /* 8171 * Scale against driver configuration limits. 8172 */ 8173 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8174 if (tip->period && tip->offset) { 8175 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8176 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8177 } else { 8178 tip->offset = 0; 8179 tip->period = 0; 8180 } 8181 8182 /* 8183 * Scale against actual controller BUS width. 8184 */ 8185 if (tip->width > np->maxwide) 8186 tip->width = np->maxwide; 8187 8188 /* 8189 * Only accept DT if controller supports and SYNC/WIDE asked. 8190 */ 8191 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8192 !(tip->width == BUS_16_BIT && tip->offset)) { 8193 tip->options &= ~PPR_OPT_DT; 8194 } 8195 8196 /* 8197 * Scale period factor and offset against controller limits. 8198 */ 8199 if (tip->offset && tip->period) { 8200 if (tip->options & PPR_OPT_DT) { 8201 if (tip->period < np->minsync_dt) 8202 tip->period = np->minsync_dt; 8203 if (tip->period > np->maxsync_dt) 8204 tip->period = np->maxsync_dt; 8205 if (tip->offset > np->maxoffs_dt) 8206 tip->offset = np->maxoffs_dt; 8207 } 8208 else { 8209 if (tip->period < np->minsync) 8210 tip->period = np->minsync; 8211 if (tip->period > np->maxsync) 8212 tip->period = np->maxsync; 8213 if (tip->offset > np->maxoffs) 8214 tip->offset = np->maxoffs; 8215 } 8216 } 8217 } 8218 8219 /* 8220 * Update flags for a device (logical unit). 8221 */ 8222 static void 8223 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8224 { 8225 8226 SYM_LOCK_ASSERT(MA_OWNED); 8227 8228 #define cts__scsi (&cts->proto_specific.scsi) 8229 #define cts__spi (&cts->xport_specific.spi) 8230 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8231 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8232 *flags |= SYM_DISC_ENABLED; 8233 else 8234 *flags &= ~SYM_DISC_ENABLED; 8235 } 8236 8237 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8238 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8239 *flags |= SYM_TAGS_ENABLED; 8240 else 8241 *flags &= ~SYM_TAGS_ENABLED; 8242 } 8243 #undef cts__spi 8244 #undef cts__scsi 8245 } 8246 8247 /*============= DRIVER INITIALISATION ==================*/ 8248 8249 static device_method_t sym_pci_methods[] = { 8250 DEVMETHOD(device_probe, sym_pci_probe), 8251 DEVMETHOD(device_attach, sym_pci_attach), 8252 DEVMETHOD_END 8253 }; 8254 8255 static driver_t sym_pci_driver = { 8256 "sym", 8257 sym_pci_methods, 8258 1 /* no softc */ 8259 }; 8260 8261 static devclass_t sym_devclass; 8262 8263 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL); 8264 MODULE_DEPEND(sym, cam, 1, 1, 1); 8265 MODULE_DEPEND(sym, pci, 1, 1, 1); 8266 8267 static const struct sym_pci_chip sym_pci_dev_table[] = { 8268 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8269 FE_ERL} 8270 , 8271 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8272 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8273 FE_BOF} 8274 , 8275 #else 8276 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8277 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8278 , 8279 #endif 8280 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8281 FE_BOF|FE_ERL} 8282 , 8283 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8284 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8285 , 8286 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8287 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8288 , 8289 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8290 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8291 , 8292 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8293 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8294 FE_RAM|FE_DIFF} 8295 , 8296 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8297 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8298 FE_RAM|FE_DIFF} 8299 , 8300 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8301 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8302 FE_RAM|FE_DIFF} 8303 , 8304 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8305 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8306 FE_RAM|FE_DIFF} 8307 , 8308 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8309 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8310 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8311 FE_RAM|FE_LCKFRQ} 8312 , 8313 #else 8314 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8315 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8316 FE_RAM|FE_LCKFRQ} 8317 , 8318 #endif 8319 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8320 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8321 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8322 , 8323 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8324 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8325 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8326 , 8327 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8328 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8329 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8330 FE_C10} 8331 , 8332 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8333 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8334 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8335 FE_C10|FE_U3EN} 8336 , 8337 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8338 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8339 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8340 FE_C10|FE_U3EN} 8341 , 8342 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8343 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8344 FE_RAM|FE_IO256|FE_LEDC} 8345 }; 8346 8347 /* 8348 * Look up the chip table. 8349 * 8350 * Return a pointer to the chip entry if found, 8351 * zero otherwise. 8352 */ 8353 static const struct sym_pci_chip * 8354 sym_find_pci_chip(device_t dev) 8355 { 8356 const struct sym_pci_chip *chip; 8357 int i; 8358 u_short device_id; 8359 u_char revision; 8360 8361 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8362 return NULL; 8363 8364 device_id = pci_get_device(dev); 8365 revision = pci_get_revid(dev); 8366 8367 for (i = 0; i < nitems(sym_pci_dev_table); i++) { 8368 chip = &sym_pci_dev_table[i]; 8369 if (device_id != chip->device_id) 8370 continue; 8371 if (revision > chip->revision_id) 8372 continue; 8373 return chip; 8374 } 8375 8376 return NULL; 8377 } 8378 8379 /* 8380 * Tell upper layer if the chip is supported. 8381 */ 8382 static int 8383 sym_pci_probe(device_t dev) 8384 { 8385 const struct sym_pci_chip *chip; 8386 8387 chip = sym_find_pci_chip(dev); 8388 if (chip && sym_find_firmware(chip)) { 8389 device_set_desc(dev, chip->name); 8390 return BUS_PROBE_DEFAULT; 8391 } 8392 return ENXIO; 8393 } 8394 8395 /* 8396 * Attach a sym53c8xx device. 8397 */ 8398 static int 8399 sym_pci_attach(device_t dev) 8400 { 8401 const struct sym_pci_chip *chip; 8402 u_short command; 8403 u_char cachelnsz; 8404 struct sym_hcb *np = NULL; 8405 struct sym_nvram nvram; 8406 const struct sym_fw *fw = NULL; 8407 int i; 8408 bus_dma_tag_t bus_dmat; 8409 8410 bus_dmat = bus_get_dma_tag(dev); 8411 8412 /* 8413 * Only probed devices should be attached. 8414 * We just enjoy being paranoid. :) 8415 */ 8416 chip = sym_find_pci_chip(dev); 8417 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8418 return (ENXIO); 8419 8420 /* 8421 * Allocate immediately the host control block, 8422 * since we are only expecting to succeed. :) 8423 * We keep track in the HCB of all the resources that 8424 * are to be released on error. 8425 */ 8426 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8427 if (np) 8428 np->bus_dmat = bus_dmat; 8429 else 8430 return (ENXIO); 8431 device_set_softc(dev, np); 8432 8433 SYM_LOCK_INIT(); 8434 8435 /* 8436 * Copy some useful infos to the HCB. 8437 */ 8438 np->hcb_ba = vtobus(np); 8439 np->verbose = bootverbose; 8440 np->device = dev; 8441 np->device_id = pci_get_device(dev); 8442 np->revision_id = pci_get_revid(dev); 8443 np->features = chip->features; 8444 np->clock_divn = chip->nr_divisor; 8445 np->maxoffs = chip->offset_max; 8446 np->maxburst = chip->burst_max; 8447 np->scripta_sz = fw->a_size; 8448 np->scriptb_sz = fw->b_size; 8449 np->fw_setup = fw->setup; 8450 np->fw_patch = fw->patch; 8451 np->fw_name = fw->name; 8452 8453 #ifdef __amd64__ 8454 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8455 "TARGET"); 8456 if (!np->target) 8457 goto attach_failed; 8458 #endif 8459 8460 /* 8461 * Initialize the CCB free and busy queues. 8462 */ 8463 sym_que_init(&np->free_ccbq); 8464 sym_que_init(&np->busy_ccbq); 8465 sym_que_init(&np->comp_ccbq); 8466 sym_que_init(&np->cam_ccbq); 8467 8468 /* 8469 * Allocate a tag for the DMA of user data. 8470 */ 8471 if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY, 8472 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 8473 BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY, 8474 0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) { 8475 device_printf(dev, "failed to create DMA tag.\n"); 8476 goto attach_failed; 8477 } 8478 8479 /* 8480 * Read and apply some fix-ups to the PCI COMMAND 8481 * register. We want the chip to be enabled for: 8482 * - BUS mastering 8483 * - PCI parity checking (reporting would also be fine) 8484 * - Write And Invalidate. 8485 */ 8486 command = pci_read_config(dev, PCIR_COMMAND, 2); 8487 command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN | 8488 PCIM_CMD_MWRICEN; 8489 pci_write_config(dev, PCIR_COMMAND, command, 2); 8490 8491 /* 8492 * Let the device know about the cache line size, 8493 * if it doesn't yet. 8494 */ 8495 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8496 if (!cachelnsz) { 8497 cachelnsz = 8; 8498 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8499 } 8500 8501 /* 8502 * Alloc/get/map/retrieve everything that deals with MMIO. 8503 */ 8504 i = SYM_PCI_MMIO; 8505 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, 8506 RF_ACTIVE); 8507 if (!np->mmio_res) { 8508 device_printf(dev, "failed to allocate MMIO resources\n"); 8509 goto attach_failed; 8510 } 8511 np->mmio_ba = rman_get_start(np->mmio_res); 8512 8513 /* 8514 * Allocate the IRQ. 8515 */ 8516 i = 0; 8517 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8518 RF_ACTIVE | RF_SHAREABLE); 8519 if (!np->irq_res) { 8520 device_printf(dev, "failed to allocate IRQ resource\n"); 8521 goto attach_failed; 8522 } 8523 8524 #ifdef SYM_CONF_IOMAPPED 8525 /* 8526 * User want us to use normal IO with PCI. 8527 * Alloc/get/map/retrieve everything that deals with IO. 8528 */ 8529 i = SYM_PCI_IO; 8530 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE); 8531 if (!np->io_res) { 8532 device_printf(dev, "failed to allocate IO resources\n"); 8533 goto attach_failed; 8534 } 8535 8536 #endif /* SYM_CONF_IOMAPPED */ 8537 8538 /* 8539 * If the chip has RAM. 8540 * Alloc/get/map/retrieve the corresponding resources. 8541 */ 8542 if (np->features & (FE_RAM|FE_RAM8K)) { 8543 int regs_id = SYM_PCI_RAM; 8544 if (np->features & FE_64BIT) 8545 regs_id = SYM_PCI_RAM64; 8546 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8547 ®s_id, RF_ACTIVE); 8548 if (!np->ram_res) { 8549 device_printf(dev,"failed to allocate RAM resources\n"); 8550 goto attach_failed; 8551 } 8552 np->ram_id = regs_id; 8553 np->ram_ba = rman_get_start(np->ram_res); 8554 } 8555 8556 /* 8557 * Save setting of some IO registers, so we will 8558 * be able to probe specific implementations. 8559 */ 8560 sym_save_initial_setting (np); 8561 8562 /* 8563 * Reset the chip now, since it has been reported 8564 * that SCSI clock calibration may not work properly 8565 * if the chip is currently active. 8566 */ 8567 sym_chip_reset (np); 8568 8569 /* 8570 * Try to read the user set-up. 8571 */ 8572 (void) sym_read_nvram(np, &nvram); 8573 8574 /* 8575 * Prepare controller and devices settings, according 8576 * to chip features, user set-up and driver set-up. 8577 */ 8578 (void) sym_prepare_setting(np, &nvram); 8579 8580 /* 8581 * Check the PCI clock frequency. 8582 * Must be performed after prepare_setting since it destroys 8583 * STEST1 that is used to probe for the clock doubler. 8584 */ 8585 i = sym_getpciclock(np); 8586 if (i > 37000) 8587 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8588 8589 /* 8590 * Allocate the start queue. 8591 */ 8592 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8593 if (!np->squeue) 8594 goto attach_failed; 8595 np->squeue_ba = vtobus(np->squeue); 8596 8597 /* 8598 * Allocate the done queue. 8599 */ 8600 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8601 if (!np->dqueue) 8602 goto attach_failed; 8603 np->dqueue_ba = vtobus(np->dqueue); 8604 8605 /* 8606 * Allocate the target bus address array. 8607 */ 8608 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8609 if (!np->targtbl) 8610 goto attach_failed; 8611 np->targtbl_ba = vtobus(np->targtbl); 8612 8613 /* 8614 * Allocate SCRIPTS areas. 8615 */ 8616 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8617 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8618 if (!np->scripta0 || !np->scriptb0) 8619 goto attach_failed; 8620 8621 /* 8622 * Allocate the CCBs. We need at least ONE. 8623 */ 8624 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8625 ; 8626 if (i < 1) 8627 goto attach_failed; 8628 8629 /* 8630 * Calculate BUS addresses where we are going 8631 * to load the SCRIPTS. 8632 */ 8633 np->scripta_ba = vtobus(np->scripta0); 8634 np->scriptb_ba = vtobus(np->scriptb0); 8635 np->scriptb0_ba = np->scriptb_ba; 8636 8637 if (np->ram_ba) { 8638 np->scripta_ba = np->ram_ba; 8639 if (np->features & FE_RAM8K) { 8640 np->ram_ws = 8192; 8641 np->scriptb_ba = np->scripta_ba + 4096; 8642 #ifdef __LP64__ 8643 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8644 #endif 8645 } 8646 else 8647 np->ram_ws = 4096; 8648 } 8649 8650 /* 8651 * Copy scripts to controller instance. 8652 */ 8653 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8654 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8655 8656 /* 8657 * Setup variable parts in scripts and compute 8658 * scripts bus addresses used from the C code. 8659 */ 8660 np->fw_setup(np, fw); 8661 8662 /* 8663 * Bind SCRIPTS with physical addresses usable by the 8664 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8665 */ 8666 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8667 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8668 8669 #ifdef SYM_CONF_IARB_SUPPORT 8670 /* 8671 * If user wants IARB to be set when we win arbitration 8672 * and have other jobs, compute the max number of consecutive 8673 * settings of IARB hints before we leave devices a chance to 8674 * arbitrate for reselection. 8675 */ 8676 #ifdef SYM_SETUP_IARB_MAX 8677 np->iarb_max = SYM_SETUP_IARB_MAX; 8678 #else 8679 np->iarb_max = 4; 8680 #endif 8681 #endif 8682 8683 /* 8684 * Prepare the idle and invalid task actions. 8685 */ 8686 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8687 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8688 np->idletask_ba = vtobus(&np->idletask); 8689 8690 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8691 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8692 np->notask_ba = vtobus(&np->notask); 8693 8694 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8695 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8696 np->bad_itl_ba = vtobus(&np->bad_itl); 8697 8698 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8699 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8700 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8701 8702 /* 8703 * Allocate and prepare the lun JUMP table that is used 8704 * for a target prior the probing of devices (bad lun table). 8705 * A private table will be allocated for the target on the 8706 * first INQUIRY response received. 8707 */ 8708 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8709 if (!np->badluntbl) 8710 goto attach_failed; 8711 8712 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8713 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8714 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8715 8716 /* 8717 * Prepare the bus address array that contains the bus 8718 * address of each target control block. 8719 * For now, assume all logical units are wrong. :) 8720 */ 8721 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8722 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8723 np->target[i].head.luntbl_sa = 8724 cpu_to_scr(vtobus(np->badluntbl)); 8725 np->target[i].head.lun0_sa = 8726 cpu_to_scr(vtobus(&np->badlun_sa)); 8727 } 8728 8729 /* 8730 * Now check the cache handling of the pci chipset. 8731 */ 8732 if (sym_snooptest (np)) { 8733 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8734 goto attach_failed; 8735 } 8736 8737 /* 8738 * Now deal with CAM. 8739 * Hopefully, we will succeed with that one.:) 8740 */ 8741 if (!sym_cam_attach(np)) 8742 goto attach_failed; 8743 8744 /* 8745 * Sigh! we are done. 8746 */ 8747 return 0; 8748 8749 /* 8750 * We have failed. 8751 * We will try to free all the resources we have 8752 * allocated, but if we are a boot device, this 8753 * will not help that much.;) 8754 */ 8755 attach_failed: 8756 if (np) 8757 sym_pci_free(np); 8758 return ENXIO; 8759 } 8760 8761 /* 8762 * Free everything that have been allocated for this device. 8763 */ 8764 static void sym_pci_free(hcb_p np) 8765 { 8766 SYM_QUEHEAD *qp; 8767 ccb_p cp; 8768 tcb_p tp; 8769 lcb_p lp; 8770 int target, lun; 8771 8772 /* 8773 * First free CAM resources. 8774 */ 8775 sym_cam_free(np); 8776 8777 /* 8778 * Now every should be quiet for us to 8779 * free other resources. 8780 */ 8781 if (np->ram_res) 8782 bus_release_resource(np->device, SYS_RES_MEMORY, 8783 np->ram_id, np->ram_res); 8784 if (np->mmio_res) 8785 bus_release_resource(np->device, SYS_RES_MEMORY, 8786 SYM_PCI_MMIO, np->mmio_res); 8787 if (np->io_res) 8788 bus_release_resource(np->device, SYS_RES_IOPORT, 8789 SYM_PCI_IO, np->io_res); 8790 if (np->irq_res) 8791 bus_release_resource(np->device, SYS_RES_IRQ, 8792 0, np->irq_res); 8793 8794 if (np->scriptb0) 8795 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8796 if (np->scripta0) 8797 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8798 if (np->squeue) 8799 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8800 if (np->dqueue) 8801 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8802 8803 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8804 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8805 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8806 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8807 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8808 } 8809 8810 if (np->badluntbl) 8811 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8812 8813 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8814 tp = &np->target[target]; 8815 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8816 lp = sym_lp(tp, lun); 8817 if (!lp) 8818 continue; 8819 if (lp->itlq_tbl) 8820 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8821 "ITLQ_TBL"); 8822 if (lp->cb_tags) 8823 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8824 "CB_TAGS"); 8825 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8826 } 8827 #if SYM_CONF_MAX_LUN > 1 8828 if (tp->lunmp) 8829 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8830 "LUNMP"); 8831 #endif 8832 } 8833 #ifdef __amd64__ 8834 if (np->target) 8835 sym_mfree_dma(np->target, 8836 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8837 #endif 8838 if (np->targtbl) 8839 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8840 if (np->data_dmat) 8841 bus_dma_tag_destroy(np->data_dmat); 8842 if (SYM_LOCK_INITIALIZED() != 0) 8843 SYM_LOCK_DESTROY(); 8844 device_set_softc(np->device, NULL); 8845 sym_mfree_dma(np, sizeof(*np), "HCB"); 8846 } 8847 8848 /* 8849 * Allocate CAM resources and register a bus to CAM. 8850 */ 8851 static int sym_cam_attach(hcb_p np) 8852 { 8853 struct cam_devq *devq = NULL; 8854 struct cam_sim *sim = NULL; 8855 struct cam_path *path = NULL; 8856 int err; 8857 8858 /* 8859 * Establish our interrupt handler. 8860 */ 8861 err = bus_setup_intr(np->device, np->irq_res, 8862 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8863 NULL, sym_intr, np, &np->intr); 8864 if (err) { 8865 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8866 err); 8867 goto fail; 8868 } 8869 8870 /* 8871 * Create the device queue for our sym SIM. 8872 */ 8873 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8874 if (!devq) 8875 goto fail; 8876 8877 /* 8878 * Construct our SIM entry. 8879 */ 8880 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 8881 device_get_unit(np->device), 8882 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 8883 if (!sim) 8884 goto fail; 8885 8886 SYM_LOCK(); 8887 8888 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 8889 goto fail; 8890 np->sim = sim; 8891 sim = NULL; 8892 8893 if (xpt_create_path(&path, NULL, 8894 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 8895 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 8896 goto fail; 8897 } 8898 np->path = path; 8899 8900 /* 8901 * Establish our async notification handler. 8902 */ 8903 if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) != 8904 CAM_REQ_CMP) 8905 goto fail; 8906 8907 /* 8908 * Start the chip now, without resetting the BUS, since 8909 * it seems that this must stay under control of CAM. 8910 * With LVD/SE capable chips and BUS in SE mode, we may 8911 * get a spurious SMBC interrupt. 8912 */ 8913 sym_init (np, 0); 8914 8915 SYM_UNLOCK(); 8916 8917 return 1; 8918 fail: 8919 if (sim) 8920 cam_sim_free(sim, FALSE); 8921 if (devq) 8922 cam_simq_free(devq); 8923 8924 SYM_UNLOCK(); 8925 8926 sym_cam_free(np); 8927 8928 return 0; 8929 } 8930 8931 /* 8932 * Free everything that deals with CAM. 8933 */ 8934 static void sym_cam_free(hcb_p np) 8935 { 8936 8937 SYM_LOCK_ASSERT(MA_NOTOWNED); 8938 8939 if (np->intr) { 8940 bus_teardown_intr(np->device, np->irq_res, np->intr); 8941 np->intr = NULL; 8942 } 8943 8944 SYM_LOCK(); 8945 8946 if (np->sim) { 8947 xpt_bus_deregister(cam_sim_path(np->sim)); 8948 cam_sim_free(np->sim, /*free_devq*/ TRUE); 8949 np->sim = NULL; 8950 } 8951 if (np->path) { 8952 xpt_free_path(np->path); 8953 np->path = NULL; 8954 } 8955 8956 SYM_UNLOCK(); 8957 } 8958 8959 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 8960 8961 /* 8962 * Get host setup from NVRAM. 8963 */ 8964 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 8965 { 8966 #ifdef SYM_CONF_NVRAM_SUPPORT 8967 /* 8968 * Get parity checking, host ID, verbose mode 8969 * and miscellaneous host flags from NVRAM. 8970 */ 8971 switch(nvram->type) { 8972 case SYM_SYMBIOS_NVRAM: 8973 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 8974 np->rv_scntl0 &= ~0x0a; 8975 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 8976 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 8977 np->verbose += 1; 8978 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 8979 np->usrflags |= SYM_SCAN_TARGETS_HILO; 8980 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 8981 np->usrflags |= SYM_AVOID_BUS_RESET; 8982 break; 8983 case SYM_TEKRAM_NVRAM: 8984 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 8985 break; 8986 default: 8987 break; 8988 } 8989 #endif 8990 } 8991 8992 /* 8993 * Get target setup from NVRAM. 8994 */ 8995 #ifdef SYM_CONF_NVRAM_SUPPORT 8996 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 8997 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 8998 #endif 8999 9000 static void 9001 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9002 { 9003 #ifdef SYM_CONF_NVRAM_SUPPORT 9004 switch(nvp->type) { 9005 case SYM_SYMBIOS_NVRAM: 9006 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9007 break; 9008 case SYM_TEKRAM_NVRAM: 9009 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9010 break; 9011 default: 9012 break; 9013 } 9014 #endif 9015 } 9016 9017 #ifdef SYM_CONF_NVRAM_SUPPORT 9018 /* 9019 * Get target set-up from Symbios format NVRAM. 9020 */ 9021 static void 9022 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9023 { 9024 tcb_p tp = &np->target[target]; 9025 Symbios_target *tn = &nvram->target[target]; 9026 9027 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9028 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9029 tp->usrtags = 9030 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9031 9032 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9033 tp->usrflags &= ~SYM_DISC_ENABLED; 9034 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9035 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9036 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9037 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9038 } 9039 9040 /* 9041 * Get target set-up from Tekram format NVRAM. 9042 */ 9043 static void 9044 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9045 { 9046 tcb_p tp = &np->target[target]; 9047 struct Tekram_target *tn = &nvram->target[target]; 9048 int i; 9049 9050 if (tn->flags & TEKRAM_SYNC_NEGO) { 9051 i = tn->sync_index & 0xf; 9052 tp->tinfo.user.period = Tekram_sync[i]; 9053 } 9054 9055 tp->tinfo.user.width = 9056 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9057 9058 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9059 tp->usrtags = 2 << nvram->max_tags_index; 9060 } 9061 9062 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9063 tp->usrflags |= SYM_DISC_ENABLED; 9064 9065 /* If any device does not support parity, we will not use this option */ 9066 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9067 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9068 } 9069 9070 #ifdef SYM_CONF_DEBUG_NVRAM 9071 /* 9072 * Dump Symbios format NVRAM for debugging purpose. 9073 */ 9074 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9075 { 9076 int i; 9077 9078 /* display Symbios nvram host data */ 9079 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9080 sym_name(np), nvram->host_id & 0x0f, 9081 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9082 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9083 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9084 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9085 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9086 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9087 9088 /* display Symbios nvram drive data */ 9089 for (i = 0 ; i < 15 ; i++) { 9090 struct Symbios_target *tn = &nvram->target[i]; 9091 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9092 sym_name(np), i, 9093 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9094 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9095 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9096 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9097 tn->bus_width, 9098 tn->sync_period / 4, 9099 tn->timeout); 9100 } 9101 } 9102 9103 /* 9104 * Dump TEKRAM format NVRAM for debugging purpose. 9105 */ 9106 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9107 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9108 { 9109 int i, tags, boot_delay; 9110 char *rem; 9111 9112 /* display Tekram nvram host data */ 9113 tags = 2 << nvram->max_tags_index; 9114 boot_delay = 0; 9115 if (nvram->boot_delay_index < 6) 9116 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9117 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9118 default: 9119 case 0: rem = ""; break; 9120 case 1: rem = " REMOVABLE=boot device"; break; 9121 case 2: rem = " REMOVABLE=all"; break; 9122 } 9123 9124 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9125 sym_name(np), nvram->host_id & 0x0f, 9126 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9127 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9128 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9129 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9130 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9131 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9132 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9133 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9134 rem, boot_delay, tags); 9135 9136 /* display Tekram nvram drive data */ 9137 for (i = 0; i <= 15; i++) { 9138 int sync, j; 9139 struct Tekram_target *tn = &nvram->target[i]; 9140 j = tn->sync_index & 0xf; 9141 sync = Tekram_sync[j]; 9142 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9143 sym_name(np), i, 9144 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9145 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9146 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9147 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9148 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9149 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9150 sync); 9151 } 9152 } 9153 #endif /* SYM_CONF_DEBUG_NVRAM */ 9154 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9155 9156 /* 9157 * Try reading Symbios or Tekram NVRAM 9158 */ 9159 #ifdef SYM_CONF_NVRAM_SUPPORT 9160 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9161 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9162 #endif 9163 9164 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9165 { 9166 #ifdef SYM_CONF_NVRAM_SUPPORT 9167 /* 9168 * Try to read SYMBIOS nvram. 9169 * Try to read TEKRAM nvram if Symbios nvram not found. 9170 */ 9171 if (SYM_SETUP_SYMBIOS_NVRAM && 9172 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9173 nvp->type = SYM_SYMBIOS_NVRAM; 9174 #ifdef SYM_CONF_DEBUG_NVRAM 9175 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9176 #endif 9177 } 9178 else if (SYM_SETUP_TEKRAM_NVRAM && 9179 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9180 nvp->type = SYM_TEKRAM_NVRAM; 9181 #ifdef SYM_CONF_DEBUG_NVRAM 9182 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9183 #endif 9184 } 9185 else 9186 nvp->type = 0; 9187 #else 9188 nvp->type = 0; 9189 #endif 9190 return nvp->type; 9191 } 9192 9193 #ifdef SYM_CONF_NVRAM_SUPPORT 9194 /* 9195 * 24C16 EEPROM reading. 9196 * 9197 * GPOI0 - data in/data out 9198 * GPIO1 - clock 9199 * Symbios NVRAM wiring now also used by Tekram. 9200 */ 9201 9202 #define SET_BIT 0 9203 #define CLR_BIT 1 9204 #define SET_CLK 2 9205 #define CLR_CLK 3 9206 9207 /* 9208 * Set/clear data/clock bit in GPIO0 9209 */ 9210 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9211 int bit_mode) 9212 { 9213 UDELAY (5); 9214 switch (bit_mode){ 9215 case SET_BIT: 9216 *gpreg |= write_bit; 9217 break; 9218 case CLR_BIT: 9219 *gpreg &= 0xfe; 9220 break; 9221 case SET_CLK: 9222 *gpreg |= 0x02; 9223 break; 9224 case CLR_CLK: 9225 *gpreg &= 0xfd; 9226 break; 9227 9228 } 9229 OUTB (nc_gpreg, *gpreg); 9230 UDELAY (5); 9231 } 9232 9233 /* 9234 * Send START condition to NVRAM to wake it up. 9235 */ 9236 static void S24C16_start(hcb_p np, u_char *gpreg) 9237 { 9238 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9239 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9240 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9241 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9242 } 9243 9244 /* 9245 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9246 */ 9247 static void S24C16_stop(hcb_p np, u_char *gpreg) 9248 { 9249 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9250 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9251 } 9252 9253 /* 9254 * Read or write a bit to the NVRAM, 9255 * read if GPIO0 input else write if GPIO0 output 9256 */ 9257 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9258 u_char *gpreg) 9259 { 9260 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9261 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9262 if (read_bit) 9263 *read_bit = INB (nc_gpreg); 9264 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9265 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9266 } 9267 9268 /* 9269 * Output an ACK to the NVRAM after reading, 9270 * change GPIO0 to output and when done back to an input 9271 */ 9272 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9273 u_char *gpcntl) 9274 { 9275 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9276 S24C16_do_bit(np, 0, write_bit, gpreg); 9277 OUTB (nc_gpcntl, *gpcntl); 9278 } 9279 9280 /* 9281 * Input an ACK from NVRAM after writing, 9282 * change GPIO0 to input and when done back to an output 9283 */ 9284 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9285 u_char *gpcntl) 9286 { 9287 OUTB (nc_gpcntl, *gpcntl | 0x01); 9288 S24C16_do_bit(np, read_bit, 1, gpreg); 9289 OUTB (nc_gpcntl, *gpcntl); 9290 } 9291 9292 /* 9293 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9294 * GPIO0 must already be set as an output 9295 */ 9296 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9297 u_char *gpreg, u_char *gpcntl) 9298 { 9299 int x; 9300 9301 for (x = 0; x < 8; x++) 9302 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9303 9304 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9305 } 9306 9307 /* 9308 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9309 * GPIO0 must already be set as an input 9310 */ 9311 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9312 u_char *gpreg, u_char *gpcntl) 9313 { 9314 int x; 9315 u_char read_bit; 9316 9317 *read_data = 0; 9318 for (x = 0; x < 8; x++) { 9319 S24C16_do_bit(np, &read_bit, 1, gpreg); 9320 *read_data |= ((read_bit & 0x01) << (7 - x)); 9321 } 9322 9323 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9324 } 9325 9326 /* 9327 * Read 'len' bytes starting at 'offset'. 9328 */ 9329 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9330 { 9331 u_char gpcntl, gpreg; 9332 u_char old_gpcntl, old_gpreg; 9333 u_char ack_data; 9334 int retv = 1; 9335 int x; 9336 9337 /* save current state of GPCNTL and GPREG */ 9338 old_gpreg = INB (nc_gpreg); 9339 old_gpcntl = INB (nc_gpcntl); 9340 gpcntl = old_gpcntl & 0x1c; 9341 9342 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9343 OUTB (nc_gpreg, old_gpreg); 9344 OUTB (nc_gpcntl, gpcntl); 9345 9346 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9347 gpreg = old_gpreg; 9348 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9349 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9350 9351 /* now set NVRAM inactive with GPIO0/1 both high */ 9352 S24C16_stop(np, &gpreg); 9353 9354 /* activate NVRAM */ 9355 S24C16_start(np, &gpreg); 9356 9357 /* write device code and random address MSB */ 9358 S24C16_write_byte(np, &ack_data, 9359 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9360 if (ack_data & 0x01) 9361 goto out; 9362 9363 /* write random address LSB */ 9364 S24C16_write_byte(np, &ack_data, 9365 offset & 0xff, &gpreg, &gpcntl); 9366 if (ack_data & 0x01) 9367 goto out; 9368 9369 /* regenerate START state to set up for reading */ 9370 S24C16_start(np, &gpreg); 9371 9372 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9373 S24C16_write_byte(np, &ack_data, 9374 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9375 if (ack_data & 0x01) 9376 goto out; 9377 9378 /* now set up GPIO0 for inputting data */ 9379 gpcntl |= 0x01; 9380 OUTB (nc_gpcntl, gpcntl); 9381 9382 /* input all requested data - only part of total NVRAM */ 9383 for (x = 0; x < len; x++) 9384 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9385 9386 /* finally put NVRAM back in inactive mode */ 9387 gpcntl &= 0xfe; 9388 OUTB (nc_gpcntl, gpcntl); 9389 S24C16_stop(np, &gpreg); 9390 retv = 0; 9391 out: 9392 /* return GPIO0/1 to original states after having accessed NVRAM */ 9393 OUTB (nc_gpcntl, old_gpcntl); 9394 OUTB (nc_gpreg, old_gpreg); 9395 9396 return retv; 9397 } 9398 9399 #undef SET_BIT /* 0 */ 9400 #undef CLR_BIT /* 1 */ 9401 #undef SET_CLK /* 2 */ 9402 #undef CLR_CLK /* 3 */ 9403 9404 /* 9405 * Try reading Symbios NVRAM. 9406 * Return 0 if OK. 9407 */ 9408 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9409 { 9410 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9411 u_char *data = (u_char *) nvram; 9412 int len = sizeof(*nvram); 9413 u_short csum; 9414 int x; 9415 9416 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9417 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9418 return 1; 9419 9420 /* check valid NVRAM signature, verify byte count and checksum */ 9421 if (nvram->type != 0 || 9422 bcmp(nvram->trailer, Symbios_trailer, 6) || 9423 nvram->byte_count != len - 12) 9424 return 1; 9425 9426 /* verify checksum */ 9427 for (x = 6, csum = 0; x < len - 6; x++) 9428 csum += data[x]; 9429 if (csum != nvram->checksum) 9430 return 1; 9431 9432 return 0; 9433 } 9434 9435 /* 9436 * 93C46 EEPROM reading. 9437 * 9438 * GPOI0 - data in 9439 * GPIO1 - data out 9440 * GPIO2 - clock 9441 * GPIO4 - chip select 9442 * 9443 * Used by Tekram. 9444 */ 9445 9446 /* 9447 * Pulse clock bit in GPIO0 9448 */ 9449 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9450 { 9451 OUTB (nc_gpreg, *gpreg | 0x04); 9452 UDELAY (2); 9453 OUTB (nc_gpreg, *gpreg); 9454 } 9455 9456 /* 9457 * Read bit from NVRAM 9458 */ 9459 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9460 { 9461 UDELAY (2); 9462 T93C46_Clk(np, gpreg); 9463 *read_bit = INB (nc_gpreg); 9464 } 9465 9466 /* 9467 * Write bit to GPIO0 9468 */ 9469 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9470 { 9471 if (write_bit & 0x01) 9472 *gpreg |= 0x02; 9473 else 9474 *gpreg &= 0xfd; 9475 9476 *gpreg |= 0x10; 9477 9478 OUTB (nc_gpreg, *gpreg); 9479 UDELAY (2); 9480 9481 T93C46_Clk(np, gpreg); 9482 } 9483 9484 /* 9485 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9486 */ 9487 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9488 { 9489 *gpreg &= 0xef; 9490 OUTB (nc_gpreg, *gpreg); 9491 UDELAY (2); 9492 9493 T93C46_Clk(np, gpreg); 9494 } 9495 9496 /* 9497 * Send read command and address to NVRAM 9498 */ 9499 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9500 u_char *read_bit, u_char *gpreg) 9501 { 9502 int x; 9503 9504 /* send 9 bits, start bit (1), command (2), address (6) */ 9505 for (x = 0; x < 9; x++) 9506 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9507 9508 *read_bit = INB (nc_gpreg); 9509 } 9510 9511 /* 9512 * READ 2 bytes from the NVRAM 9513 */ 9514 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9515 { 9516 int x; 9517 u_char read_bit; 9518 9519 *nvram_data = 0; 9520 for (x = 0; x < 16; x++) { 9521 T93C46_Read_Bit(np, &read_bit, gpreg); 9522 9523 if (read_bit & 0x01) 9524 *nvram_data |= (0x01 << (15 - x)); 9525 else 9526 *nvram_data &= ~(0x01 << (15 - x)); 9527 } 9528 } 9529 9530 /* 9531 * Read Tekram NvRAM data. 9532 */ 9533 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9534 { 9535 u_char read_bit; 9536 int x; 9537 9538 for (x = 0; x < len; x++) { 9539 9540 /* output read command and address */ 9541 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9542 if (read_bit & 0x01) 9543 return 1; /* Bad */ 9544 T93C46_Read_Word(np, &data[x], gpreg); 9545 T93C46_Stop(np, gpreg); 9546 } 9547 9548 return 0; 9549 } 9550 9551 /* 9552 * Try reading 93C46 Tekram NVRAM. 9553 */ 9554 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9555 { 9556 u_char gpcntl, gpreg; 9557 u_char old_gpcntl, old_gpreg; 9558 int retv = 1; 9559 9560 /* save current state of GPCNTL and GPREG */ 9561 old_gpreg = INB (nc_gpreg); 9562 old_gpcntl = INB (nc_gpcntl); 9563 9564 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9565 1/2/4 out */ 9566 gpreg = old_gpreg & 0xe9; 9567 OUTB (nc_gpreg, gpreg); 9568 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9569 OUTB (nc_gpcntl, gpcntl); 9570 9571 /* input all of NVRAM, 64 words */ 9572 retv = T93C46_Read_Data(np, (u_short *) nvram, 9573 sizeof(*nvram) / sizeof(short), &gpreg); 9574 9575 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9576 OUTB (nc_gpcntl, old_gpcntl); 9577 OUTB (nc_gpreg, old_gpreg); 9578 9579 return retv; 9580 } 9581 9582 /* 9583 * Try reading Tekram NVRAM. 9584 * Return 0 if OK. 9585 */ 9586 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9587 { 9588 u_char *data = (u_char *) nvram; 9589 int len = sizeof(*nvram); 9590 u_short csum; 9591 int x; 9592 9593 switch (np->device_id) { 9594 case PCI_ID_SYM53C885: 9595 case PCI_ID_SYM53C895: 9596 case PCI_ID_SYM53C896: 9597 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9598 data, len); 9599 break; 9600 case PCI_ID_SYM53C875: 9601 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9602 data, len); 9603 if (!x) 9604 break; 9605 default: 9606 x = sym_read_T93C46_nvram(np, nvram); 9607 break; 9608 } 9609 if (x) 9610 return 1; 9611 9612 /* verify checksum */ 9613 for (x = 0, csum = 0; x < len - 1; x += 2) 9614 csum += data[x] + (data[x+1] << 8); 9615 if (csum != 0x1234) 9616 return 1; 9617 9618 return 0; 9619 } 9620 9621 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9622