1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 74 #include <sys/systm.h> 75 #include <sys/malloc.h> 76 #include <sys/endian.h> 77 #include <sys/kernel.h> 78 #include <sys/lock.h> 79 #include <sys/mutex.h> 80 #include <sys/module.h> 81 #include <sys/bus.h> 82 83 #include <sys/proc.h> 84 85 #include <dev/pci/pcireg.h> 86 #include <dev/pci/pcivar.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 91 #ifdef __sparc64__ 92 #include <dev/ofw/openfirm.h> 93 #include <machine/ofw_machdep.h> 94 #endif 95 96 #include <sys/rman.h> 97 98 #include <cam/cam.h> 99 #include <cam/cam_ccb.h> 100 #include <cam/cam_sim.h> 101 #include <cam/cam_xpt_sim.h> 102 #include <cam/cam_debug.h> 103 104 #include <cam/scsi/scsi_all.h> 105 #include <cam/scsi/scsi_message.h> 106 107 /* Short and quite clear integer types */ 108 typedef int8_t s8; 109 typedef int16_t s16; 110 typedef int32_t s32; 111 typedef u_int8_t u8; 112 typedef u_int16_t u16; 113 typedef u_int32_t u32; 114 115 /* 116 * Driver definitions. 117 */ 118 #include <dev/sym/sym_defs.h> 119 #include <dev/sym/sym_fw.h> 120 121 /* 122 * IA32 architecture does not reorder STORES and prevents 123 * LOADS from passing STORES. It is called `program order' 124 * by Intel and allows device drivers to deal with memory 125 * ordering by only ensuring that the code is not reordered 126 * by the compiler when ordering is required. 127 * Other architectures implement a weaker ordering that 128 * requires memory barriers (and also IO barriers when they 129 * make sense) to be used. 130 */ 131 132 #if defined __i386__ || defined __amd64__ 133 #define MEMORY_BARRIER() do { ; } while(0) 134 #elif defined __powerpc__ 135 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 136 #elif defined __ia64__ 137 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 138 #elif defined __sparc64__ 139 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 140 #else 141 #error "Not supported platform" 142 #endif 143 144 /* 145 * A la VMS/CAM-3 queue management. 146 */ 147 148 typedef struct sym_quehead { 149 struct sym_quehead *flink; /* Forward pointer */ 150 struct sym_quehead *blink; /* Backward pointer */ 151 } SYM_QUEHEAD; 152 153 #define sym_que_init(ptr) do { \ 154 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 155 } while (0) 156 157 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 158 { 159 return (head->flink == head) ? NULL : head->flink; 160 } 161 162 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 163 { 164 return (head->blink == head) ? NULL : head->blink; 165 } 166 167 static __inline void __sym_que_add(struct sym_quehead * new, 168 struct sym_quehead * blink, 169 struct sym_quehead * flink) 170 { 171 flink->blink = new; 172 new->flink = flink; 173 new->blink = blink; 174 blink->flink = new; 175 } 176 177 static __inline void __sym_que_del(struct sym_quehead * blink, 178 struct sym_quehead * flink) 179 { 180 flink->blink = blink; 181 blink->flink = flink; 182 } 183 184 static __inline int sym_que_empty(struct sym_quehead *head) 185 { 186 return head->flink == head; 187 } 188 189 static __inline void sym_que_splice(struct sym_quehead *list, 190 struct sym_quehead *head) 191 { 192 struct sym_quehead *first = list->flink; 193 194 if (first != list) { 195 struct sym_quehead *last = list->blink; 196 struct sym_quehead *at = head->flink; 197 198 first->blink = head; 199 head->flink = first; 200 201 last->flink = at; 202 at->blink = last; 203 } 204 } 205 206 #define sym_que_entry(ptr, type, member) \ 207 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 208 209 210 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 211 212 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 213 214 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 215 216 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 217 { 218 struct sym_quehead *elem = head->flink; 219 220 if (elem != head) 221 __sym_que_del(head, elem->flink); 222 else 223 elem = NULL; 224 return elem; 225 } 226 227 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 228 229 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 230 { 231 struct sym_quehead *elem = head->blink; 232 233 if (elem != head) 234 __sym_que_del(elem->blink, head); 235 else 236 elem = NULL; 237 return elem; 238 } 239 240 /* 241 * This one may be useful. 242 */ 243 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 244 for (qp = (head)->flink; qp != (head); qp = qp->flink) 245 /* 246 * FreeBSD does not offer our kind of queue in the CAM CCB. 247 * So, we have to cast. 248 */ 249 #define sym_qptr(p) ((struct sym_quehead *) (p)) 250 251 /* 252 * Simple bitmap operations. 253 */ 254 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 255 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 256 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 257 258 /* 259 * Number of tasks per device we want to handle. 260 */ 261 #if SYM_CONF_MAX_TAG_ORDER > 8 262 #error "more than 256 tags per logical unit not allowed." 263 #endif 264 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 265 266 /* 267 * Donnot use more tasks that we can handle. 268 */ 269 #ifndef SYM_CONF_MAX_TAG 270 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 271 #endif 272 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 273 #undef SYM_CONF_MAX_TAG 274 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 275 #endif 276 277 /* 278 * This one means 'NO TAG for this job' 279 */ 280 #define NO_TAG (256) 281 282 /* 283 * Number of SCSI targets. 284 */ 285 #if SYM_CONF_MAX_TARGET > 16 286 #error "more than 16 targets not allowed." 287 #endif 288 289 /* 290 * Number of logical units per target. 291 */ 292 #if SYM_CONF_MAX_LUN > 64 293 #error "more than 64 logical units per target not allowed." 294 #endif 295 296 /* 297 * Asynchronous pre-scaler (ns). Shall be 40 for 298 * the SCSI timings to be compliant. 299 */ 300 #define SYM_CONF_MIN_ASYNC (40) 301 302 /* 303 * Number of entries in the START and DONE queues. 304 * 305 * We limit to 1 PAGE in order to succeed allocation of 306 * these queues. Each entry is 8 bytes long (2 DWORDS). 307 */ 308 #ifdef SYM_CONF_MAX_START 309 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 310 #else 311 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 312 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 313 #endif 314 315 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 316 #undef SYM_CONF_MAX_QUEUE 317 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 318 #undef SYM_CONF_MAX_START 319 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 320 #endif 321 322 /* 323 * For this one, we want a short name :-) 324 */ 325 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 326 327 /* 328 * Active debugging tags and verbosity. 329 */ 330 #define DEBUG_ALLOC (0x0001) 331 #define DEBUG_PHASE (0x0002) 332 #define DEBUG_POLL (0x0004) 333 #define DEBUG_QUEUE (0x0008) 334 #define DEBUG_RESULT (0x0010) 335 #define DEBUG_SCATTER (0x0020) 336 #define DEBUG_SCRIPT (0x0040) 337 #define DEBUG_TINY (0x0080) 338 #define DEBUG_TIMING (0x0100) 339 #define DEBUG_NEGO (0x0200) 340 #define DEBUG_TAGS (0x0400) 341 #define DEBUG_POINTER (0x0800) 342 343 #if 0 344 static int sym_debug = 0; 345 #define DEBUG_FLAGS sym_debug 346 #else 347 /* #define DEBUG_FLAGS (0x0631) */ 348 #define DEBUG_FLAGS (0x0000) 349 350 #endif 351 #define sym_verbose (np->verbose) 352 353 /* 354 * Insert a delay in micro-seconds and milli-seconds. 355 */ 356 static void UDELAY(int us) { DELAY(us); } 357 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 358 359 /* 360 * Simple power of two buddy-like allocator. 361 * 362 * This simple code is not intended to be fast, but to 363 * provide power of 2 aligned memory allocations. 364 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 365 * this allocator allows simple and fast address calculations 366 * from the SCRIPTS code. In addition, cache line alignment 367 * is guaranteed for power of 2 cache line size. 368 * 369 * This allocator has been developed for the Linux sym53c8xx 370 * driver, since this O/S does not provide naturally aligned 371 * allocations. 372 * It has the advantage of allowing the driver to use private 373 * pages of memory that will be useful if we ever need to deal 374 * with IO MMUs for PCI. 375 */ 376 377 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 378 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 379 #if 0 380 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 381 #endif 382 #define MEMO_WARN 1 383 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 384 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 385 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 386 387 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 388 #define free_pages(p) free((p), M_DEVBUF) 389 390 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 391 392 typedef struct m_link { /* Link between free memory chunks */ 393 struct m_link *next; 394 } m_link_s; 395 396 typedef struct m_vtob { /* Virtual to Bus address translation */ 397 struct m_vtob *next; 398 bus_dmamap_t dmamap; /* Map for this chunk */ 399 m_addr_t vaddr; /* Virtual address */ 400 m_addr_t baddr; /* Bus physical address */ 401 } m_vtob_s; 402 /* Hash this stuff a bit to speed up translations */ 403 #define VTOB_HASH_SHIFT 5 404 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 405 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 406 #define VTOB_HASH_CODE(m) \ 407 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 408 409 typedef struct m_pool { /* Memory pool of a given kind */ 410 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 411 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 412 m_addr_t (*getp)(struct m_pool *); 413 #ifdef MEMO_FREE_UNUSED 414 void (*freep)(struct m_pool *, m_addr_t); 415 #endif 416 #define M_GETP() mp->getp(mp) 417 #define M_FREEP(p) mp->freep(mp, p) 418 int nump; 419 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 420 struct m_pool *next; 421 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 422 } m_pool_s; 423 424 static void *___sym_malloc(m_pool_s *mp, int size) 425 { 426 int i = 0; 427 int s = (1 << MEMO_SHIFT); 428 int j; 429 m_addr_t a; 430 m_link_s *h = mp->h; 431 432 if (size > MEMO_CLUSTER_SIZE) 433 return NULL; 434 435 while (size > s) { 436 s <<= 1; 437 ++i; 438 } 439 440 j = i; 441 while (!h[j].next) { 442 if (s == MEMO_CLUSTER_SIZE) { 443 h[j].next = (m_link_s *) M_GETP(); 444 if (h[j].next) 445 h[j].next->next = NULL; 446 break; 447 } 448 ++j; 449 s <<= 1; 450 } 451 a = (m_addr_t) h[j].next; 452 if (a) { 453 h[j].next = h[j].next->next; 454 while (j > i) { 455 j -= 1; 456 s >>= 1; 457 h[j].next = (m_link_s *) (a+s); 458 h[j].next->next = NULL; 459 } 460 } 461 #ifdef DEBUG 462 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 463 #endif 464 return (void *) a; 465 } 466 467 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 468 { 469 int i = 0; 470 int s = (1 << MEMO_SHIFT); 471 m_link_s *q; 472 m_addr_t a, b; 473 m_link_s *h = mp->h; 474 475 #ifdef DEBUG 476 printf("___sym_mfree(%p, %d)\n", ptr, size); 477 #endif 478 479 if (size > MEMO_CLUSTER_SIZE) 480 return; 481 482 while (size > s) { 483 s <<= 1; 484 ++i; 485 } 486 487 a = (m_addr_t) ptr; 488 489 while (1) { 490 #ifdef MEMO_FREE_UNUSED 491 if (s == MEMO_CLUSTER_SIZE) { 492 M_FREEP(a); 493 break; 494 } 495 #endif 496 b = a ^ s; 497 q = &h[i]; 498 while (q->next && q->next != (m_link_s *) b) { 499 q = q->next; 500 } 501 if (!q->next) { 502 ((m_link_s *) a)->next = h[i].next; 503 h[i].next = (m_link_s *) a; 504 break; 505 } 506 q->next = q->next->next; 507 a = a & b; 508 s <<= 1; 509 ++i; 510 } 511 } 512 513 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 514 { 515 void *p; 516 517 p = ___sym_malloc(mp, size); 518 519 if (DEBUG_FLAGS & DEBUG_ALLOC) 520 printf ("new %-10s[%4d] @%p.\n", name, size, p); 521 522 if (p) 523 bzero(p, size); 524 else if (uflags & MEMO_WARN) 525 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 526 527 return p; 528 } 529 530 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 531 532 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 533 { 534 if (DEBUG_FLAGS & DEBUG_ALLOC) 535 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 536 537 ___sym_mfree(mp, ptr, size); 538 539 } 540 541 /* 542 * Default memory pool we donnot need to involve in DMA. 543 */ 544 /* 545 * With the `bus dma abstraction', we use a separate pool for 546 * memory we donnot need to involve in DMA. 547 */ 548 static m_addr_t ___mp0_getp(m_pool_s *mp) 549 { 550 m_addr_t m = (m_addr_t) get_pages(); 551 if (m) 552 ++mp->nump; 553 return m; 554 } 555 556 #ifdef MEMO_FREE_UNUSED 557 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 558 { 559 free_pages(m); 560 --mp->nump; 561 } 562 #endif 563 564 #ifdef MEMO_FREE_UNUSED 565 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 566 #else 567 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 568 #endif 569 570 571 /* 572 * Actual memory allocation routine for non-DMAed memory. 573 */ 574 static void *sym_calloc(int size, char *name) 575 { 576 void *m; 577 /* Lock */ 578 m = __sym_calloc(&mp0, size, name); 579 /* Unlock */ 580 return m; 581 } 582 583 /* 584 * Actual memory allocation routine for non-DMAed memory. 585 */ 586 static void sym_mfree(void *ptr, int size, char *name) 587 { 588 /* Lock */ 589 __sym_mfree(&mp0, ptr, size, name); 590 /* Unlock */ 591 } 592 593 /* 594 * DMAable pools. 595 */ 596 /* 597 * With `bus dma abstraction', we use a separate pool per parent 598 * BUS handle. A reverse table (hashed) is maintained for virtual 599 * to BUS address translation. 600 */ 601 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 602 { 603 bus_addr_t *baddr; 604 baddr = (bus_addr_t *)arg; 605 *baddr = segs->ds_addr; 606 } 607 608 static m_addr_t ___dma_getp(m_pool_s *mp) 609 { 610 m_vtob_s *vbp; 611 void *vaddr = NULL; 612 bus_addr_t baddr = 0; 613 614 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 615 if (!vbp) 616 goto out_err; 617 618 if (bus_dmamem_alloc(mp->dmat, &vaddr, 619 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 620 goto out_err; 621 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 622 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 623 if (baddr) { 624 int hc = VTOB_HASH_CODE(vaddr); 625 vbp->vaddr = (m_addr_t) vaddr; 626 vbp->baddr = (m_addr_t) baddr; 627 vbp->next = mp->vtob[hc]; 628 mp->vtob[hc] = vbp; 629 ++mp->nump; 630 return (m_addr_t) vaddr; 631 } 632 out_err: 633 if (baddr) 634 bus_dmamap_unload(mp->dmat, vbp->dmamap); 635 if (vaddr) 636 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 637 if (vbp) { 638 if (vbp->dmamap) 639 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 640 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 641 } 642 return 0; 643 } 644 645 #ifdef MEMO_FREE_UNUSED 646 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 647 { 648 m_vtob_s **vbpp, *vbp; 649 int hc = VTOB_HASH_CODE(m); 650 651 vbpp = &mp->vtob[hc]; 652 while (*vbpp && (*vbpp)->vaddr != m) 653 vbpp = &(*vbpp)->next; 654 if (*vbpp) { 655 vbp = *vbpp; 656 *vbpp = (*vbpp)->next; 657 bus_dmamap_unload(mp->dmat, vbp->dmamap); 658 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 659 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 660 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 661 --mp->nump; 662 } 663 } 664 #endif 665 666 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 667 { 668 m_pool_s *mp; 669 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 670 return mp; 671 } 672 673 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 674 { 675 m_pool_s *mp = NULL; 676 677 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 678 if (mp) { 679 mp->dev_dmat = dev_dmat; 680 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 681 BUS_SPACE_MAXADDR_32BIT, 682 BUS_SPACE_MAXADDR, 683 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 684 MEMO_CLUSTER_SIZE, 0, 685 NULL, NULL, &mp->dmat)) { 686 mp->getp = ___dma_getp; 687 #ifdef MEMO_FREE_UNUSED 688 mp->freep = ___dma_freep; 689 #endif 690 mp->next = mp0.next; 691 mp0.next = mp; 692 return mp; 693 } 694 } 695 if (mp) 696 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 697 return NULL; 698 } 699 700 #ifdef MEMO_FREE_UNUSED 701 static void ___del_dma_pool(m_pool_s *p) 702 { 703 struct m_pool **pp = &mp0.next; 704 705 while (*pp && *pp != p) 706 pp = &(*pp)->next; 707 if (*pp) { 708 *pp = (*pp)->next; 709 bus_dma_tag_destroy(p->dmat); 710 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 711 } 712 } 713 #endif 714 715 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 716 { 717 struct m_pool *mp; 718 void *m = NULL; 719 720 /* Lock */ 721 mp = ___get_dma_pool(dev_dmat); 722 if (!mp) 723 mp = ___cre_dma_pool(dev_dmat); 724 if (mp) 725 m = __sym_calloc(mp, size, name); 726 #ifdef MEMO_FREE_UNUSED 727 if (mp && !mp->nump) 728 ___del_dma_pool(mp); 729 #endif 730 /* Unlock */ 731 732 return m; 733 } 734 735 static void 736 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 737 { 738 struct m_pool *mp; 739 740 /* Lock */ 741 mp = ___get_dma_pool(dev_dmat); 742 if (mp) 743 __sym_mfree(mp, m, size, name); 744 #ifdef MEMO_FREE_UNUSED 745 if (mp && !mp->nump) 746 ___del_dma_pool(mp); 747 #endif 748 /* Unlock */ 749 } 750 751 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 752 { 753 m_pool_s *mp; 754 int hc = VTOB_HASH_CODE(m); 755 m_vtob_s *vp = NULL; 756 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 757 758 /* Lock */ 759 mp = ___get_dma_pool(dev_dmat); 760 if (mp) { 761 vp = mp->vtob[hc]; 762 while (vp && (m_addr_t) vp->vaddr != a) 763 vp = vp->next; 764 } 765 /* Unlock */ 766 if (!vp) 767 panic("sym: VTOBUS FAILED!\n"); 768 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 769 } 770 771 772 /* 773 * Verbs for DMAable memory handling. 774 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 775 * being discarded. 776 */ 777 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 778 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 779 #define _sym_mfree_dma(np, p, s, n) \ 780 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 781 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 782 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 783 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 784 #define vtobus(p) _vtobus(np, p) 785 786 787 /* 788 * Print a buffer in hexadecimal format. 789 */ 790 static void sym_printb_hex (u_char *p, int n) 791 { 792 while (n-- > 0) 793 printf (" %x", *p++); 794 } 795 796 /* 797 * Same with a label at beginning and .\n at end. 798 */ 799 static void sym_printl_hex (char *label, u_char *p, int n) 800 { 801 printf ("%s", label); 802 sym_printb_hex (p, n); 803 printf (".\n"); 804 } 805 806 /* 807 * Return a string for SCSI BUS mode. 808 */ 809 static const char *sym_scsi_bus_mode(int mode) 810 { 811 switch(mode) { 812 case SMODE_HVD: return "HVD"; 813 case SMODE_SE: return "SE"; 814 case SMODE_LVD: return "LVD"; 815 } 816 return "??"; 817 } 818 819 /* 820 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 821 */ 822 #ifdef SYM_CONF_NVRAM_SUPPORT 823 static const u_char Tekram_sync[16] = 824 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 825 #endif 826 827 /* 828 * Union of supported NVRAM formats. 829 */ 830 struct sym_nvram { 831 int type; 832 #define SYM_SYMBIOS_NVRAM (1) 833 #define SYM_TEKRAM_NVRAM (2) 834 #ifdef SYM_CONF_NVRAM_SUPPORT 835 union { 836 Symbios_nvram Symbios; 837 Tekram_nvram Tekram; 838 } data; 839 #endif 840 }; 841 842 /* 843 * This one is hopefully useless, but actually useful. :-) 844 */ 845 #ifndef assert 846 #define assert(expression) { \ 847 if (!(expression)) { \ 848 (void)panic( \ 849 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 850 #expression, \ 851 __FILE__, __LINE__); \ 852 } \ 853 } 854 #endif 855 856 /* 857 * Some provision for a possible big endian mode supported by 858 * Symbios chips (never seen, by the way). 859 * For now, this stuff does not deserve any comments. :) 860 */ 861 862 #define sym_offb(o) (o) 863 #define sym_offw(o) (o) 864 865 /* 866 * Some provision for support for BIG ENDIAN CPU. 867 */ 868 869 #define cpu_to_scr(dw) htole32(dw) 870 #define scr_to_cpu(dw) le32toh(dw) 871 872 /* 873 * Access to the chip IO registers and on-chip RAM. 874 * We use the `bus space' interface under FreeBSD-4 and 875 * later kernel versions. 876 */ 877 878 879 #if defined(SYM_CONF_IOMAPPED) 880 881 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 882 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 883 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 884 885 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 886 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 887 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 888 889 #else /* Memory mapped IO */ 890 891 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 892 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 893 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 894 895 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 896 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 897 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 898 899 #endif /* SYM_CONF_IOMAPPED */ 900 901 #define OUTRAM_OFF(o, a, l) \ 902 bus_write_region_1(np->ram_res, (o), (a), (l)) 903 904 905 /* 906 * Common definitions for both bus space and legacy IO methods. 907 */ 908 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 909 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 910 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 911 912 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 913 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 914 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 915 916 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 917 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 918 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 919 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 920 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 921 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 922 923 /* 924 * We normally want the chip to have a consistent view 925 * of driver internal data structures when we restart it. 926 * Thus these macros. 927 */ 928 #define OUTL_DSP(v) \ 929 do { \ 930 MEMORY_BARRIER(); \ 931 OUTL (nc_dsp, (v)); \ 932 } while (0) 933 934 #define OUTONB_STD() \ 935 do { \ 936 MEMORY_BARRIER(); \ 937 OUTONB (nc_dcntl, (STD|NOCOM)); \ 938 } while (0) 939 940 /* 941 * Command control block states. 942 */ 943 #define HS_IDLE (0) 944 #define HS_BUSY (1) 945 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 946 #define HS_DISCONNECT (3) /* Disconnected by target */ 947 #define HS_WAIT (4) /* waiting for resource */ 948 949 #define HS_DONEMASK (0x80) 950 #define HS_COMPLETE (4|HS_DONEMASK) 951 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 952 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 953 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 954 955 /* 956 * Software Interrupt Codes 957 */ 958 #define SIR_BAD_SCSI_STATUS (1) 959 #define SIR_SEL_ATN_NO_MSG_OUT (2) 960 #define SIR_MSG_RECEIVED (3) 961 #define SIR_MSG_WEIRD (4) 962 #define SIR_NEGO_FAILED (5) 963 #define SIR_NEGO_PROTO (6) 964 #define SIR_SCRIPT_STOPPED (7) 965 #define SIR_REJECT_TO_SEND (8) 966 #define SIR_SWIDE_OVERRUN (9) 967 #define SIR_SODL_UNDERRUN (10) 968 #define SIR_RESEL_NO_MSG_IN (11) 969 #define SIR_RESEL_NO_IDENTIFY (12) 970 #define SIR_RESEL_BAD_LUN (13) 971 #define SIR_TARGET_SELECTED (14) 972 #define SIR_RESEL_BAD_I_T_L (15) 973 #define SIR_RESEL_BAD_I_T_L_Q (16) 974 #define SIR_ABORT_SENT (17) 975 #define SIR_RESEL_ABORTED (18) 976 #define SIR_MSG_OUT_DONE (19) 977 #define SIR_COMPLETE_ERROR (20) 978 #define SIR_DATA_OVERRUN (21) 979 #define SIR_BAD_PHASE (22) 980 #define SIR_MAX (22) 981 982 /* 983 * Extended error bit codes. 984 * xerr_status field of struct sym_ccb. 985 */ 986 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 987 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 988 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 989 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 990 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 991 992 /* 993 * Negotiation status. 994 * nego_status field of struct sym_ccb. 995 */ 996 #define NS_SYNC (1) 997 #define NS_WIDE (2) 998 #define NS_PPR (3) 999 1000 /* 1001 * A CCB hashed table is used to retrieve CCB address 1002 * from DSA value. 1003 */ 1004 #define CCB_HASH_SHIFT 8 1005 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1006 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1007 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1008 1009 /* 1010 * Device flags. 1011 */ 1012 #define SYM_DISC_ENABLED (1) 1013 #define SYM_TAGS_ENABLED (1<<1) 1014 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1015 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1016 1017 /* 1018 * Host adapter miscellaneous flags. 1019 */ 1020 #define SYM_AVOID_BUS_RESET (1) 1021 #define SYM_SCAN_TARGETS_HILO (1<<1) 1022 1023 /* 1024 * Device quirks. 1025 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1026 * saving the DATA POINTER then reselects and terminates the IO. 1027 * On reselection, the automatic RESTORE DATA POINTER makes the 1028 * CURRENT DATA POINTER not point at the end of the IO. 1029 * This behaviour just breaks our calculation of the residual. 1030 * For now, we just force an AUTO SAVE on disconnection and will 1031 * fix that in a further driver version. 1032 */ 1033 #define SYM_QUIRK_AUTOSAVE 1 1034 1035 /* 1036 * Misc. 1037 */ 1038 #define SYM_LOCK() mtx_lock(&np->mtx) 1039 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1040 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1041 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1042 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1043 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1044 1045 #define SYM_SNOOP_TIMEOUT (10000000) 1046 #define SYM_PCI_IO PCIR_BAR(0) 1047 #define SYM_PCI_MMIO PCIR_BAR(1) 1048 #define SYM_PCI_RAM PCIR_BAR(2) 1049 #define SYM_PCI_RAM64 PCIR_BAR(3) 1050 1051 /* 1052 * Back-pointer from the CAM CCB to our data structures. 1053 */ 1054 #define sym_hcb_ptr spriv_ptr0 1055 /* #define sym_ccb_ptr spriv_ptr1 */ 1056 1057 /* 1058 * We mostly have to deal with pointers. 1059 * Thus these typedef's. 1060 */ 1061 typedef struct sym_tcb *tcb_p; 1062 typedef struct sym_lcb *lcb_p; 1063 typedef struct sym_ccb *ccb_p; 1064 typedef struct sym_hcb *hcb_p; 1065 1066 /* 1067 * Gather negotiable parameters value 1068 */ 1069 struct sym_trans { 1070 u8 scsi_version; 1071 u8 spi_version; 1072 u8 period; 1073 u8 offset; 1074 u8 width; 1075 u8 options; /* PPR options */ 1076 }; 1077 1078 struct sym_tinfo { 1079 struct sym_trans current; 1080 struct sym_trans goal; 1081 struct sym_trans user; 1082 }; 1083 1084 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1085 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1086 1087 /* 1088 * Global TCB HEADER. 1089 * 1090 * Due to lack of indirect addressing on earlier NCR chips, 1091 * this substructure is copied from the TCB to a global 1092 * address after selection. 1093 * For SYMBIOS chips that support LOAD/STORE this copy is 1094 * not needed and thus not performed. 1095 */ 1096 struct sym_tcbh { 1097 /* 1098 * Scripts bus addresses of LUN table accessed from scripts. 1099 * LUN #0 is a special case, since multi-lun devices are rare, 1100 * and we we want to speed-up the general case and not waste 1101 * resources. 1102 */ 1103 u32 luntbl_sa; /* bus address of this table */ 1104 u32 lun0_sa; /* bus address of LCB #0 */ 1105 /* 1106 * Actual SYNC/WIDE IO registers value for this target. 1107 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1108 * so have alignment constraints. 1109 */ 1110 /*0*/ u_char uval; /* -> SCNTL4 register */ 1111 /*1*/ u_char sval; /* -> SXFER io register */ 1112 /*2*/ u_char filler1; 1113 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1114 }; 1115 1116 /* 1117 * Target Control Block 1118 */ 1119 struct sym_tcb { 1120 /* 1121 * TCB header. 1122 * Assumed at offset 0. 1123 */ 1124 /*0*/ struct sym_tcbh head; 1125 1126 /* 1127 * LUN table used by the SCRIPTS processor. 1128 * An array of bus addresses is used on reselection. 1129 */ 1130 u32 *luntbl; /* LCBs bus address table */ 1131 1132 /* 1133 * LUN table used by the C code. 1134 */ 1135 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1136 #if SYM_CONF_MAX_LUN > 1 1137 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1138 #endif 1139 1140 /* 1141 * Bitmap that tells about LUNs that succeeded at least 1142 * 1 IO and therefore assumed to be a real device. 1143 * Avoid useless allocation of the LCB structure. 1144 */ 1145 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1146 1147 /* 1148 * Bitmap that tells about LUNs that haven't yet an LCB 1149 * allocated (not discovered or LCB allocation failed). 1150 */ 1151 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1152 1153 /* 1154 * Transfer capabilities (SIP) 1155 */ 1156 struct sym_tinfo tinfo; 1157 1158 /* 1159 * Keep track of the CCB used for the negotiation in order 1160 * to ensure that only 1 negotiation is queued at a time. 1161 */ 1162 ccb_p nego_cp; /* CCB used for the nego */ 1163 1164 /* 1165 * Set when we want to reset the device. 1166 */ 1167 u_char to_reset; 1168 1169 /* 1170 * Other user settable limits and options. 1171 * These limits are read from the NVRAM if present. 1172 */ 1173 u_char usrflags; 1174 u_short usrtags; 1175 }; 1176 1177 /* 1178 * Global LCB HEADER. 1179 * 1180 * Due to lack of indirect addressing on earlier NCR chips, 1181 * this substructure is copied from the LCB to a global 1182 * address after selection. 1183 * For SYMBIOS chips that support LOAD/STORE this copy is 1184 * not needed and thus not performed. 1185 */ 1186 struct sym_lcbh { 1187 /* 1188 * SCRIPTS address jumped by SCRIPTS on reselection. 1189 * For not probed logical units, this address points to 1190 * SCRIPTS that deal with bad LU handling (must be at 1191 * offset zero of the LCB for that reason). 1192 */ 1193 /*0*/ u32 resel_sa; 1194 1195 /* 1196 * Task (bus address of a CCB) read from SCRIPTS that points 1197 * to the unique ITL nexus allowed to be disconnected. 1198 */ 1199 u32 itl_task_sa; 1200 1201 /* 1202 * Task table bus address (read from SCRIPTS). 1203 */ 1204 u32 itlq_tbl_sa; 1205 }; 1206 1207 /* 1208 * Logical Unit Control Block 1209 */ 1210 struct sym_lcb { 1211 /* 1212 * TCB header. 1213 * Assumed at offset 0. 1214 */ 1215 /*0*/ struct sym_lcbh head; 1216 1217 /* 1218 * Task table read from SCRIPTS that contains pointers to 1219 * ITLQ nexuses. The bus address read from SCRIPTS is 1220 * inside the header. 1221 */ 1222 u32 *itlq_tbl; /* Kernel virtual address */ 1223 1224 /* 1225 * Busy CCBs management. 1226 */ 1227 u_short busy_itlq; /* Number of busy tagged CCBs */ 1228 u_short busy_itl; /* Number of busy untagged CCBs */ 1229 1230 /* 1231 * Circular tag allocation buffer. 1232 */ 1233 u_short ia_tag; /* Tag allocation index */ 1234 u_short if_tag; /* Tag release index */ 1235 u_char *cb_tags; /* Circular tags buffer */ 1236 1237 /* 1238 * Set when we want to clear all tasks. 1239 */ 1240 u_char to_clear; 1241 1242 /* 1243 * Capabilities. 1244 */ 1245 u_char user_flags; 1246 u_char current_flags; 1247 }; 1248 1249 /* 1250 * Action from SCRIPTS on a task. 1251 * Is part of the CCB, but is also used separately to plug 1252 * error handling action to perform from SCRIPTS. 1253 */ 1254 struct sym_actscr { 1255 u32 start; /* Jumped by SCRIPTS after selection */ 1256 u32 restart; /* Jumped by SCRIPTS on relection */ 1257 }; 1258 1259 /* 1260 * Phase mismatch context. 1261 * 1262 * It is part of the CCB and is used as parameters for the 1263 * DATA pointer. We need two contexts to handle correctly the 1264 * SAVED DATA POINTER. 1265 */ 1266 struct sym_pmc { 1267 struct sym_tblmove sg; /* Updated interrupted SG block */ 1268 u32 ret; /* SCRIPT return address */ 1269 }; 1270 1271 /* 1272 * LUN control block lookup. 1273 * We use a direct pointer for LUN #0, and a table of 1274 * pointers which is only allocated for devices that support 1275 * LUN(s) > 0. 1276 */ 1277 #if SYM_CONF_MAX_LUN <= 1 1278 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1279 #else 1280 #define sym_lp(np, tp, lun) \ 1281 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1282 #endif 1283 1284 /* 1285 * Status are used by the host and the script processor. 1286 * 1287 * The last four bytes (status[4]) are copied to the 1288 * scratchb register (declared as scr0..scr3) just after the 1289 * select/reselect, and copied back just after disconnecting. 1290 * Inside the script the XX_REG are used. 1291 */ 1292 1293 /* 1294 * Last four bytes (script) 1295 */ 1296 #define QU_REG scr0 1297 #define HS_REG scr1 1298 #define HS_PRT nc_scr1 1299 #define SS_REG scr2 1300 #define SS_PRT nc_scr2 1301 #define HF_REG scr3 1302 #define HF_PRT nc_scr3 1303 1304 /* 1305 * Last four bytes (host) 1306 */ 1307 #define actualquirks phys.head.status[0] 1308 #define host_status phys.head.status[1] 1309 #define ssss_status phys.head.status[2] 1310 #define host_flags phys.head.status[3] 1311 1312 /* 1313 * Host flags 1314 */ 1315 #define HF_IN_PM0 1u 1316 #define HF_IN_PM1 (1u<<1) 1317 #define HF_ACT_PM (1u<<2) 1318 #define HF_DP_SAVED (1u<<3) 1319 #define HF_SENSE (1u<<4) 1320 #define HF_EXT_ERR (1u<<5) 1321 #define HF_DATA_IN (1u<<6) 1322 #ifdef SYM_CONF_IARB_SUPPORT 1323 #define HF_HINT_IARB (1u<<7) 1324 #endif 1325 1326 /* 1327 * Global CCB HEADER. 1328 * 1329 * Due to lack of indirect addressing on earlier NCR chips, 1330 * this substructure is copied from the ccb to a global 1331 * address after selection (or reselection) and copied back 1332 * before disconnect. 1333 * For SYMBIOS chips that support LOAD/STORE this copy is 1334 * not needed and thus not performed. 1335 */ 1336 1337 struct sym_ccbh { 1338 /* 1339 * Start and restart SCRIPTS addresses (must be at 0). 1340 */ 1341 /*0*/ struct sym_actscr go; 1342 1343 /* 1344 * SCRIPTS jump address that deal with data pointers. 1345 * 'savep' points to the position in the script responsible 1346 * for the actual transfer of data. 1347 * It's written on reception of a SAVE_DATA_POINTER message. 1348 */ 1349 u32 savep; /* Jump address to saved data pointer */ 1350 u32 lastp; /* SCRIPTS address at end of data */ 1351 u32 goalp; /* Not accessed for now from SCRIPTS */ 1352 1353 /* 1354 * Status fields. 1355 */ 1356 u8 status[4]; 1357 }; 1358 1359 /* 1360 * Data Structure Block 1361 * 1362 * During execution of a ccb by the script processor, the 1363 * DSA (data structure address) register points to this 1364 * substructure of the ccb. 1365 */ 1366 struct sym_dsb { 1367 /* 1368 * CCB header. 1369 * Also assumed at offset 0 of the sym_ccb structure. 1370 */ 1371 /*0*/ struct sym_ccbh head; 1372 1373 /* 1374 * Phase mismatch contexts. 1375 * We need two to handle correctly the SAVED DATA POINTER. 1376 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1377 * for address calculation from SCRIPTS. 1378 */ 1379 struct sym_pmc pm0; 1380 struct sym_pmc pm1; 1381 1382 /* 1383 * Table data for Script 1384 */ 1385 struct sym_tblsel select; 1386 struct sym_tblmove smsg; 1387 struct sym_tblmove smsg_ext; 1388 struct sym_tblmove cmd; 1389 struct sym_tblmove sense; 1390 struct sym_tblmove wresid; 1391 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1392 }; 1393 1394 /* 1395 * Our Command Control Block 1396 */ 1397 struct sym_ccb { 1398 /* 1399 * This is the data structure which is pointed by the DSA 1400 * register when it is executed by the script processor. 1401 * It must be the first entry. 1402 */ 1403 struct sym_dsb phys; 1404 1405 /* 1406 * Pointer to CAM ccb and related stuff. 1407 */ 1408 struct callout ch; /* callout handle */ 1409 union ccb *cam_ccb; /* CAM scsiio ccb */ 1410 u8 cdb_buf[16]; /* Copy of CDB */ 1411 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1412 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1413 int data_len; /* Total data length */ 1414 int segments; /* Number of SG segments */ 1415 1416 /* 1417 * Miscellaneous status'. 1418 */ 1419 u_char nego_status; /* Negotiation status */ 1420 u_char xerr_status; /* Extended error flags */ 1421 u32 extra_bytes; /* Extraneous bytes transferred */ 1422 1423 /* 1424 * Message areas. 1425 * We prepare a message to be sent after selection. 1426 * We may use a second one if the command is rescheduled 1427 * due to CHECK_CONDITION or COMMAND TERMINATED. 1428 * Contents are IDENTIFY and SIMPLE_TAG. 1429 * While negotiating sync or wide transfer, 1430 * a SDTR or WDTR message is appended. 1431 */ 1432 u_char scsi_smsg [12]; 1433 u_char scsi_smsg2[12]; 1434 1435 /* 1436 * Auto request sense related fields. 1437 */ 1438 u_char sensecmd[6]; /* Request Sense command */ 1439 u_char sv_scsi_status; /* Saved SCSI status */ 1440 u_char sv_xerr_status; /* Saved extended status */ 1441 int sv_resid; /* Saved residual */ 1442 1443 /* 1444 * Map for the DMA of user data. 1445 */ 1446 void *arg; /* Argument for some callback */ 1447 bus_dmamap_t dmamap; /* DMA map for user data */ 1448 u_char dmamapped; 1449 #define SYM_DMA_NONE 0 1450 #define SYM_DMA_READ 1 1451 #define SYM_DMA_WRITE 2 1452 /* 1453 * Other fields. 1454 */ 1455 u32 ccb_ba; /* BUS address of this CCB */ 1456 u_short tag; /* Tag for this transfer */ 1457 /* NO_TAG means no tag */ 1458 u_char target; 1459 u_char lun; 1460 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1461 SYM_QUEHEAD 1462 link_ccbq; /* Link to free/busy CCB queue */ 1463 u32 startp; /* Initial data pointer */ 1464 int ext_sg; /* Extreme data pointer, used */ 1465 int ext_ofs; /* to calculate the residual. */ 1466 u_char to_abort; /* Want this IO to be aborted */ 1467 }; 1468 1469 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1470 1471 /* 1472 * Host Control Block 1473 */ 1474 struct sym_hcb { 1475 struct mtx mtx; 1476 1477 /* 1478 * Global headers. 1479 * Due to poorness of addressing capabilities, earlier 1480 * chips (810, 815, 825) copy part of the data structures 1481 * (CCB, TCB and LCB) in fixed areas. 1482 */ 1483 #ifdef SYM_CONF_GENERIC_SUPPORT 1484 struct sym_ccbh ccb_head; 1485 struct sym_tcbh tcb_head; 1486 struct sym_lcbh lcb_head; 1487 #endif 1488 /* 1489 * Idle task and invalid task actions and 1490 * their bus addresses. 1491 */ 1492 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1493 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1494 1495 /* 1496 * Dummy lun table to protect us against target 1497 * returning bad lun number on reselection. 1498 */ 1499 u32 *badluntbl; /* Table physical address */ 1500 u32 badlun_sa; /* SCRIPT handler BUS address */ 1501 1502 /* 1503 * Bus address of this host control block. 1504 */ 1505 u32 hcb_ba; 1506 1507 /* 1508 * Bit 32-63 of the on-chip RAM bus address in LE format. 1509 * The START_RAM64 script loads the MMRS and MMWS from this 1510 * field. 1511 */ 1512 u32 scr_ram_seg; 1513 1514 /* 1515 * Chip and controller indentification. 1516 */ 1517 device_t device; 1518 1519 /* 1520 * Initial value of some IO register bits. 1521 * These values are assumed to have been set by BIOS, and may 1522 * be used to probe adapter implementation differences. 1523 */ 1524 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1525 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1526 sv_stest1; 1527 1528 /* 1529 * Actual initial value of IO register bits used by the 1530 * driver. They are loaded at initialisation according to 1531 * features that are to be enabled/disabled. 1532 */ 1533 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1534 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1535 1536 /* 1537 * Target data. 1538 */ 1539 #ifdef __amd64__ 1540 struct sym_tcb *target; 1541 #else 1542 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1543 #endif 1544 1545 /* 1546 * Target control block bus address array used by the SCRIPT 1547 * on reselection. 1548 */ 1549 u32 *targtbl; 1550 u32 targtbl_ba; 1551 1552 /* 1553 * CAM SIM information for this instance. 1554 */ 1555 struct cam_sim *sim; 1556 struct cam_path *path; 1557 1558 /* 1559 * Allocated hardware resources. 1560 */ 1561 struct resource *irq_res; 1562 struct resource *io_res; 1563 struct resource *mmio_res; 1564 struct resource *ram_res; 1565 int ram_id; 1566 void *intr; 1567 1568 /* 1569 * Bus stuff. 1570 * 1571 * My understanding of PCI is that all agents must share the 1572 * same addressing range and model. 1573 * But some hardware architecture guys provide complex and 1574 * brain-deaded stuff that makes shit. 1575 * This driver only support PCI compliant implementations and 1576 * deals with part of the BUS stuff complexity only to fit O/S 1577 * requirements. 1578 */ 1579 1580 /* 1581 * DMA stuff. 1582 */ 1583 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1584 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1585 /* 1586 * BUS addresses of the chip 1587 */ 1588 vm_offset_t mmio_ba; /* MMIO BUS address */ 1589 int mmio_ws; /* MMIO Window size */ 1590 1591 vm_offset_t ram_ba; /* RAM BUS address */ 1592 int ram_ws; /* RAM window size */ 1593 1594 /* 1595 * SCRIPTS virtual and physical bus addresses. 1596 * 'script' is loaded in the on-chip RAM if present. 1597 * 'scripth' stays in main memory for all chips except the 1598 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1599 */ 1600 u_char *scripta0; /* Copies of script and scripth */ 1601 u_char *scriptb0; /* Copies of script and scripth */ 1602 vm_offset_t scripta_ba; /* Actual script and scripth */ 1603 vm_offset_t scriptb_ba; /* bus addresses. */ 1604 vm_offset_t scriptb0_ba; 1605 u_short scripta_sz; /* Actual size of script A */ 1606 u_short scriptb_sz; /* Actual size of script B */ 1607 1608 /* 1609 * Bus addresses, setup and patch methods for 1610 * the selected firmware. 1611 */ 1612 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1613 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1614 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1615 void (*fw_patch)(hcb_p np); 1616 const char *fw_name; 1617 1618 /* 1619 * General controller parameters and configuration. 1620 */ 1621 u_short device_id; /* PCI device id */ 1622 u_char revision_id; /* PCI device revision id */ 1623 u_int features; /* Chip features map */ 1624 u_char myaddr; /* SCSI id of the adapter */ 1625 u_char maxburst; /* log base 2 of dwords burst */ 1626 u_char maxwide; /* Maximum transfer width */ 1627 u_char minsync; /* Min sync period factor (ST) */ 1628 u_char maxsync; /* Max sync period factor (ST) */ 1629 u_char maxoffs; /* Max scsi offset (ST) */ 1630 u_char minsync_dt; /* Min sync period factor (DT) */ 1631 u_char maxsync_dt; /* Max sync period factor (DT) */ 1632 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1633 u_char multiplier; /* Clock multiplier (1,2,4) */ 1634 u_char clock_divn; /* Number of clock divisors */ 1635 u32 clock_khz; /* SCSI clock frequency in KHz */ 1636 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1637 /* 1638 * Start queue management. 1639 * It is filled up by the host processor and accessed by the 1640 * SCRIPTS processor in order to start SCSI commands. 1641 */ 1642 volatile /* Prevent code optimizations */ 1643 u32 *squeue; /* Start queue virtual address */ 1644 u32 squeue_ba; /* Start queue BUS address */ 1645 u_short squeueput; /* Next free slot of the queue */ 1646 u_short actccbs; /* Number of allocated CCBs */ 1647 1648 /* 1649 * Command completion queue. 1650 * It is the same size as the start queue to avoid overflow. 1651 */ 1652 u_short dqueueget; /* Next position to scan */ 1653 volatile /* Prevent code optimizations */ 1654 u32 *dqueue; /* Completion (done) queue */ 1655 u32 dqueue_ba; /* Done queue BUS address */ 1656 1657 /* 1658 * Miscellaneous buffers accessed by the scripts-processor. 1659 * They shall be DWORD aligned, because they may be read or 1660 * written with a script command. 1661 */ 1662 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1663 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1664 u32 lastmsg; /* Last SCSI message sent */ 1665 u_char scratch; /* Scratch for SCSI receive */ 1666 1667 /* 1668 * Miscellaneous configuration and status parameters. 1669 */ 1670 u_char usrflags; /* Miscellaneous user flags */ 1671 u_char scsi_mode; /* Current SCSI BUS mode */ 1672 u_char verbose; /* Verbosity for this controller*/ 1673 u32 cache; /* Used for cache test at init. */ 1674 1675 /* 1676 * CCB lists and queue. 1677 */ 1678 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1679 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1680 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1681 1682 /* 1683 * During error handling and/or recovery, 1684 * active CCBs that are to be completed with 1685 * error or requeued are moved from the busy_ccbq 1686 * to the comp_ccbq prior to completion. 1687 */ 1688 SYM_QUEHEAD comp_ccbq; 1689 1690 /* 1691 * CAM CCB pending queue. 1692 */ 1693 SYM_QUEHEAD cam_ccbq; 1694 1695 /* 1696 * IMMEDIATE ARBITRATION (IARB) control. 1697 * 1698 * We keep track in 'last_cp' of the last CCB that has been 1699 * queued to the SCRIPTS processor and clear 'last_cp' when 1700 * this CCB completes. If last_cp is not zero at the moment 1701 * we queue a new CCB, we set a flag in 'last_cp' that is 1702 * used by the SCRIPTS as a hint for setting IARB. 1703 * We donnot set more than 'iarb_max' consecutive hints for 1704 * IARB in order to leave devices a chance to reselect. 1705 * By the way, any non zero value of 'iarb_max' is unfair. :) 1706 */ 1707 #ifdef SYM_CONF_IARB_SUPPORT 1708 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1709 u_short iarb_count; /* Actual # of these hints */ 1710 ccb_p last_cp; 1711 #endif 1712 1713 /* 1714 * Command abort handling. 1715 * We need to synchronize tightly with the SCRIPTS 1716 * processor in order to handle things correctly. 1717 */ 1718 u_char abrt_msg[4]; /* Message to send buffer */ 1719 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1720 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1721 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1722 }; 1723 1724 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1725 1726 /* 1727 * Return the name of the controller. 1728 */ 1729 static __inline const char *sym_name(hcb_p np) 1730 { 1731 return device_get_nameunit(np->device); 1732 } 1733 1734 /*--------------------------------------------------------------------------*/ 1735 /*------------------------------ FIRMWARES ---------------------------------*/ 1736 /*--------------------------------------------------------------------------*/ 1737 1738 /* 1739 * This stuff will be moved to a separate source file when 1740 * the driver will be broken into several source modules. 1741 */ 1742 1743 /* 1744 * Macros used for all firmwares. 1745 */ 1746 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1747 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1748 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1749 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1750 1751 1752 #ifdef SYM_CONF_GENERIC_SUPPORT 1753 /* 1754 * Allocate firmware #1 script area. 1755 */ 1756 #define SYM_FWA_SCR sym_fw1a_scr 1757 #define SYM_FWB_SCR sym_fw1b_scr 1758 #include <dev/sym/sym_fw1.h> 1759 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1760 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1761 }; 1762 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1763 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1764 }; 1765 #undef SYM_FWA_SCR 1766 #undef SYM_FWB_SCR 1767 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1768 1769 /* 1770 * Allocate firmware #2 script area. 1771 */ 1772 #define SYM_FWA_SCR sym_fw2a_scr 1773 #define SYM_FWB_SCR sym_fw2b_scr 1774 #include <dev/sym/sym_fw2.h> 1775 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1776 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1777 }; 1778 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1779 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1780 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1781 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1782 }; 1783 #undef SYM_FWA_SCR 1784 #undef SYM_FWB_SCR 1785 1786 #undef SYM_GEN_A 1787 #undef SYM_GEN_B 1788 #undef PADDR_A 1789 #undef PADDR_B 1790 1791 #ifdef SYM_CONF_GENERIC_SUPPORT 1792 /* 1793 * Patch routine for firmware #1. 1794 */ 1795 static void 1796 sym_fw1_patch(hcb_p np) 1797 { 1798 struct sym_fw1a_scr *scripta0; 1799 struct sym_fw1b_scr *scriptb0; 1800 1801 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1802 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1803 1804 /* 1805 * Remove LED support if not needed. 1806 */ 1807 if (!(np->features & FE_LED0)) { 1808 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1809 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1810 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1811 } 1812 1813 #ifdef SYM_CONF_IARB_SUPPORT 1814 /* 1815 * If user does not want to use IMMEDIATE ARBITRATION 1816 * when we are reselected while attempting to arbitrate, 1817 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1818 */ 1819 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1820 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1821 #endif 1822 /* 1823 * Patch some data in SCRIPTS. 1824 * - start and done queue initial bus address. 1825 * - target bus address table bus address. 1826 */ 1827 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1828 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1829 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1830 } 1831 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1832 1833 /* 1834 * Patch routine for firmware #2. 1835 */ 1836 static void 1837 sym_fw2_patch(hcb_p np) 1838 { 1839 struct sym_fw2a_scr *scripta0; 1840 struct sym_fw2b_scr *scriptb0; 1841 1842 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1843 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1844 1845 /* 1846 * Remove LED support if not needed. 1847 */ 1848 if (!(np->features & FE_LED0)) { 1849 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1850 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1851 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1852 } 1853 1854 #ifdef SYM_CONF_IARB_SUPPORT 1855 /* 1856 * If user does not want to use IMMEDIATE ARBITRATION 1857 * when we are reselected while attempting to arbitrate, 1858 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1859 */ 1860 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1861 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1862 #endif 1863 /* 1864 * Patch some variable in SCRIPTS. 1865 * - start and done queue initial bus address. 1866 * - target bus address table bus address. 1867 */ 1868 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1869 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1870 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1871 1872 /* 1873 * Remove the load of SCNTL4 on reselection if not a C10. 1874 */ 1875 if (!(np->features & FE_C10)) { 1876 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1877 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1878 } 1879 1880 /* 1881 * Remove a couple of work-arounds specific to C1010 if 1882 * they are not desirable. See `sym_fw2.h' for more details. 1883 */ 1884 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1885 np->revision_id < 0x1 && 1886 np->pciclk_khz < 60000)) { 1887 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1888 scripta0->datao_phase[1] = cpu_to_scr(0); 1889 } 1890 if (!(np->device_id == PCI_ID_LSI53C1010 && 1891 /* np->revision_id < 0xff */ 1)) { 1892 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1893 scripta0->sel_done[1] = cpu_to_scr(0); 1894 } 1895 1896 /* 1897 * Patch some other variables in SCRIPTS. 1898 * These ones are loaded by the SCRIPTS processor. 1899 */ 1900 scriptb0->pm0_data_addr[0] = 1901 cpu_to_scr(np->scripta_ba + 1902 offsetof(struct sym_fw2a_scr, pm0_data)); 1903 scriptb0->pm1_data_addr[0] = 1904 cpu_to_scr(np->scripta_ba + 1905 offsetof(struct sym_fw2a_scr, pm1_data)); 1906 } 1907 1908 /* 1909 * Fill the data area in scripts. 1910 * To be done for all firmwares. 1911 */ 1912 static void 1913 sym_fw_fill_data (u32 *in, u32 *out) 1914 { 1915 int i; 1916 1917 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1918 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1919 *in++ = offsetof (struct sym_dsb, data[i]); 1920 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1921 *out++ = offsetof (struct sym_dsb, data[i]); 1922 } 1923 } 1924 1925 /* 1926 * Setup useful script bus addresses. 1927 * To be done for all firmwares. 1928 */ 1929 static void 1930 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1931 { 1932 u32 *pa; 1933 const u_short *po; 1934 int i; 1935 1936 /* 1937 * Build the bus address table for script A 1938 * from the script A offset table. 1939 */ 1940 po = (const u_short *) fw->a_ofs; 1941 pa = (u32 *) &np->fwa_bas; 1942 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1943 pa[i] = np->scripta_ba + po[i]; 1944 1945 /* 1946 * Same for script B. 1947 */ 1948 po = (const u_short *) fw->b_ofs; 1949 pa = (u32 *) &np->fwb_bas; 1950 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1951 pa[i] = np->scriptb_ba + po[i]; 1952 } 1953 1954 #ifdef SYM_CONF_GENERIC_SUPPORT 1955 /* 1956 * Setup routine for firmware #1. 1957 */ 1958 static void 1959 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1960 { 1961 struct sym_fw1a_scr *scripta0; 1962 1963 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1964 1965 /* 1966 * Fill variable parts in scripts. 1967 */ 1968 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1969 1970 /* 1971 * Setup bus addresses used from the C code.. 1972 */ 1973 sym_fw_setup_bus_addresses(np, fw); 1974 } 1975 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1976 1977 /* 1978 * Setup routine for firmware #2. 1979 */ 1980 static void 1981 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1982 { 1983 struct sym_fw2a_scr *scripta0; 1984 1985 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1986 1987 /* 1988 * Fill variable parts in scripts. 1989 */ 1990 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1991 1992 /* 1993 * Setup bus addresses used from the C code.. 1994 */ 1995 sym_fw_setup_bus_addresses(np, fw); 1996 } 1997 1998 /* 1999 * Allocate firmware descriptors. 2000 */ 2001 #ifdef SYM_CONF_GENERIC_SUPPORT 2002 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2003 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2004 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2005 2006 /* 2007 * Find the most appropriate firmware for a chip. 2008 */ 2009 static const struct sym_fw * 2010 sym_find_firmware(const struct sym_pci_chip *chip) 2011 { 2012 if (chip->features & FE_LDSTR) 2013 return &sym_fw2; 2014 #ifdef SYM_CONF_GENERIC_SUPPORT 2015 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2016 return &sym_fw1; 2017 #endif 2018 else 2019 return NULL; 2020 } 2021 2022 /* 2023 * Bind a script to physical addresses. 2024 */ 2025 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2026 { 2027 u32 opcode, new, old, tmp1, tmp2; 2028 u32 *end, *cur; 2029 int relocs; 2030 2031 cur = start; 2032 end = start + len/4; 2033 2034 while (cur < end) { 2035 2036 opcode = *cur; 2037 2038 /* 2039 * If we forget to change the length 2040 * in scripts, a field will be 2041 * padded with 0. This is an illegal 2042 * command. 2043 */ 2044 if (opcode == 0) { 2045 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2046 sym_name(np), (int) (cur-start)); 2047 MDELAY (10000); 2048 ++cur; 2049 continue; 2050 }; 2051 2052 /* 2053 * We use the bogus value 0xf00ff00f ;-) 2054 * to reserve data area in SCRIPTS. 2055 */ 2056 if (opcode == SCR_DATA_ZERO) { 2057 *cur++ = 0; 2058 continue; 2059 } 2060 2061 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2062 printf ("%d: <%x>\n", (int) (cur-start), 2063 (unsigned)opcode); 2064 2065 /* 2066 * We don't have to decode ALL commands 2067 */ 2068 switch (opcode >> 28) { 2069 case 0xf: 2070 /* 2071 * LOAD / STORE DSA relative, don't relocate. 2072 */ 2073 relocs = 0; 2074 break; 2075 case 0xe: 2076 /* 2077 * LOAD / STORE absolute. 2078 */ 2079 relocs = 1; 2080 break; 2081 case 0xc: 2082 /* 2083 * COPY has TWO arguments. 2084 */ 2085 relocs = 2; 2086 tmp1 = cur[1]; 2087 tmp2 = cur[2]; 2088 if ((tmp1 ^ tmp2) & 3) { 2089 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2090 sym_name(np), (int) (cur-start)); 2091 MDELAY (10000); 2092 } 2093 /* 2094 * If PREFETCH feature not enabled, remove 2095 * the NO FLUSH bit if present. 2096 */ 2097 if ((opcode & SCR_NO_FLUSH) && 2098 !(np->features & FE_PFEN)) { 2099 opcode = (opcode & ~SCR_NO_FLUSH); 2100 } 2101 break; 2102 case 0x0: 2103 /* 2104 * MOVE/CHMOV (absolute address) 2105 */ 2106 if (!(np->features & FE_WIDE)) 2107 opcode = (opcode | OPC_MOVE); 2108 relocs = 1; 2109 break; 2110 case 0x1: 2111 /* 2112 * MOVE/CHMOV (table indirect) 2113 */ 2114 if (!(np->features & FE_WIDE)) 2115 opcode = (opcode | OPC_MOVE); 2116 relocs = 0; 2117 break; 2118 case 0x8: 2119 /* 2120 * JUMP / CALL 2121 * dont't relocate if relative :-) 2122 */ 2123 if (opcode & 0x00800000) 2124 relocs = 0; 2125 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2126 relocs = 2; 2127 else 2128 relocs = 1; 2129 break; 2130 case 0x4: 2131 case 0x5: 2132 case 0x6: 2133 case 0x7: 2134 relocs = 1; 2135 break; 2136 default: 2137 relocs = 0; 2138 break; 2139 }; 2140 2141 /* 2142 * Scriptify:) the opcode. 2143 */ 2144 *cur++ = cpu_to_scr(opcode); 2145 2146 /* 2147 * If no relocation, assume 1 argument 2148 * and just scriptize:) it. 2149 */ 2150 if (!relocs) { 2151 *cur = cpu_to_scr(*cur); 2152 ++cur; 2153 continue; 2154 } 2155 2156 /* 2157 * Otherwise performs all needed relocations. 2158 */ 2159 while (relocs--) { 2160 old = *cur; 2161 2162 switch (old & RELOC_MASK) { 2163 case RELOC_REGISTER: 2164 new = (old & ~RELOC_MASK) + np->mmio_ba; 2165 break; 2166 case RELOC_LABEL_A: 2167 new = (old & ~RELOC_MASK) + np->scripta_ba; 2168 break; 2169 case RELOC_LABEL_B: 2170 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2171 break; 2172 case RELOC_SOFTC: 2173 new = (old & ~RELOC_MASK) + np->hcb_ba; 2174 break; 2175 case 0: 2176 /* 2177 * Don't relocate a 0 address. 2178 * They are mostly used for patched or 2179 * script self-modified areas. 2180 */ 2181 if (old == 0) { 2182 new = old; 2183 break; 2184 } 2185 /* fall through */ 2186 default: 2187 new = 0; 2188 panic("sym_fw_bind_script: " 2189 "weird relocation %x\n", old); 2190 break; 2191 } 2192 2193 *cur++ = cpu_to_scr(new); 2194 } 2195 }; 2196 } 2197 2198 /*---------------------------------------------------------------------------*/ 2199 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2200 /*---------------------------------------------------------------------------*/ 2201 2202 /* 2203 * Function prototypes. 2204 */ 2205 static void sym_save_initial_setting (hcb_p np); 2206 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2207 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2208 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2209 static void sym_chip_reset (hcb_p np); 2210 static void sym_soft_reset (hcb_p np); 2211 static void sym_start_reset (hcb_p np); 2212 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2213 static int sym_wakeup_done (hcb_p np); 2214 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2215 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2216 static void sym_init (hcb_p np, int reason); 2217 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2218 u_char *fakp); 2219 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2220 u_char div, u_char fak); 2221 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2222 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2223 u_char per, u_char wide, u_char div, u_char fak); 2224 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2225 u_char per, u_char wide, u_char div, u_char fak); 2226 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2227 static void sym_intr (void *arg); 2228 static void sym_poll (struct cam_sim *sim); 2229 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2230 static void sym_int_sto (hcb_p np); 2231 static void sym_int_udc (hcb_p np); 2232 static void sym_int_sbmc (hcb_p np); 2233 static void sym_int_par (hcb_p np, u_short sist); 2234 static void sym_int_ma (hcb_p np); 2235 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2236 int task); 2237 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2238 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2239 static void sym_sir_task_recovery (hcb_p np, int num); 2240 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2241 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2242 static int sym_compute_residual (hcb_p np, ccb_p cp); 2243 static int sym_show_msg (u_char * msg); 2244 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2245 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2246 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2247 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2248 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2249 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2250 static void sym_int_sir (hcb_p np); 2251 static void sym_free_ccb (hcb_p np, ccb_p cp); 2252 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2253 static ccb_p sym_alloc_ccb (hcb_p np); 2254 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2255 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2256 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2257 static int sym_snooptest (hcb_p np); 2258 static void sym_selectclock(hcb_p np, u_char scntl3); 2259 static void sym_getclock (hcb_p np, int mult); 2260 static int sym_getpciclock (hcb_p np); 2261 static void sym_complete_ok (hcb_p np, ccb_p cp); 2262 static void sym_complete_error (hcb_p np, ccb_p cp); 2263 static void sym_callout (void *arg); 2264 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2265 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2266 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2267 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2268 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2269 ccb_p cp); 2270 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2271 bus_dma_segment_t *psegs, int nsegs); 2272 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2273 bus_dma_segment_t *psegs, int nsegs); 2274 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2275 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2276 struct ccb_trans_settings *cts); 2277 static void sym_update_dflags(hcb_p np, u_char *flags, 2278 struct ccb_trans_settings *cts); 2279 2280 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2281 static int sym_pci_probe (device_t dev); 2282 static int sym_pci_attach (device_t dev); 2283 2284 static void sym_pci_free (hcb_p np); 2285 static int sym_cam_attach (hcb_p np); 2286 static void sym_cam_free (hcb_p np); 2287 2288 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2289 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2290 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2291 2292 /* 2293 * Print something which allows to retrieve the controller type, 2294 * unit, target, lun concerned by a kernel message. 2295 */ 2296 static void PRINT_TARGET (hcb_p np, int target) 2297 { 2298 printf ("%s:%d:", sym_name(np), target); 2299 } 2300 2301 static void PRINT_LUN(hcb_p np, int target, int lun) 2302 { 2303 printf ("%s:%d:%d:", sym_name(np), target, lun); 2304 } 2305 2306 static void PRINT_ADDR (ccb_p cp) 2307 { 2308 if (cp && cp->cam_ccb) 2309 xpt_print_path(cp->cam_ccb->ccb_h.path); 2310 } 2311 2312 /* 2313 * Take into account this ccb in the freeze count. 2314 */ 2315 static void sym_freeze_cam_ccb(union ccb *ccb) 2316 { 2317 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2318 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2319 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2320 xpt_freeze_devq(ccb->ccb_h.path, 1); 2321 } 2322 } 2323 } 2324 2325 /* 2326 * Set the status field of a CAM CCB. 2327 */ 2328 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2329 { 2330 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2331 ccb->ccb_h.status |= status; 2332 } 2333 2334 /* 2335 * Get the status field of a CAM CCB. 2336 */ 2337 static __inline int sym_get_cam_status(union ccb *ccb) 2338 { 2339 return ccb->ccb_h.status & CAM_STATUS_MASK; 2340 } 2341 2342 /* 2343 * Enqueue a CAM CCB. 2344 */ 2345 static void sym_enqueue_cam_ccb(ccb_p cp) 2346 { 2347 hcb_p np; 2348 union ccb *ccb; 2349 2350 ccb = cp->cam_ccb; 2351 np = (hcb_p) cp->arg; 2352 2353 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2354 ccb->ccb_h.status = CAM_REQ_INPROG; 2355 2356 callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout, 2357 (caddr_t) ccb); 2358 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2359 ccb->ccb_h.sym_hcb_ptr = np; 2360 2361 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2362 } 2363 2364 /* 2365 * Complete a pending CAM CCB. 2366 */ 2367 static void _sym_xpt_done(hcb_p np, union ccb *ccb) 2368 { 2369 SYM_LOCK_ASSERT(MA_OWNED); 2370 2371 KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0, 2372 ("%s: status=CAM_SIM_QUEUED", __func__)); 2373 2374 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2375 sym_freeze_cam_ccb(ccb); 2376 xpt_done(ccb); 2377 } 2378 2379 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2380 { 2381 SYM_LOCK_ASSERT(MA_OWNED); 2382 2383 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2384 callout_stop(&cp->ch); 2385 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2386 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2387 ccb->ccb_h.sym_hcb_ptr = NULL; 2388 } 2389 _sym_xpt_done(np, ccb); 2390 } 2391 2392 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2393 { 2394 SYM_LOCK_ASSERT(MA_OWNED); 2395 2396 sym_set_cam_status(ccb, cam_status); 2397 _sym_xpt_done(np, ccb); 2398 } 2399 2400 /* 2401 * SYMBIOS chip clock divisor table. 2402 * 2403 * Divisors are multiplied by 10,000,000 in order to make 2404 * calculations more simple. 2405 */ 2406 #define _5M 5000000 2407 static const u32 div_10M[] = 2408 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2409 2410 /* 2411 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2412 * 128 transfers. All chips support at least 16 transfers 2413 * bursts. The 825A, 875 and 895 chips support bursts of up 2414 * to 128 transfers and the 895A and 896 support bursts of up 2415 * to 64 transfers. All other chips support up to 16 2416 * transfers bursts. 2417 * 2418 * For PCI 32 bit data transfers each transfer is a DWORD. 2419 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2420 * 2421 * We use log base 2 (burst length) as internal code, with 2422 * value 0 meaning "burst disabled". 2423 */ 2424 2425 /* 2426 * Burst length from burst code. 2427 */ 2428 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2429 2430 /* 2431 * Burst code from io register bits. 2432 */ 2433 #define burst_code(dmode, ctest4, ctest5) \ 2434 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2435 2436 /* 2437 * Set initial io register bits from burst code. 2438 */ 2439 static __inline void sym_init_burst(hcb_p np, u_char bc) 2440 { 2441 np->rv_ctest4 &= ~0x80; 2442 np->rv_dmode &= ~(0x3 << 6); 2443 np->rv_ctest5 &= ~0x4; 2444 2445 if (!bc) { 2446 np->rv_ctest4 |= 0x80; 2447 } 2448 else { 2449 --bc; 2450 np->rv_dmode |= ((bc & 0x3) << 6); 2451 np->rv_ctest5 |= (bc & 0x4); 2452 } 2453 } 2454 2455 2456 /* 2457 * Print out the list of targets that have some flag disabled by user. 2458 */ 2459 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2460 { 2461 int cnt; 2462 int i; 2463 2464 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2465 if (i == np->myaddr) 2466 continue; 2467 if (np->target[i].usrflags & mask) { 2468 if (!cnt++) 2469 printf("%s: %s disabled for targets", 2470 sym_name(np), msg); 2471 printf(" %d", i); 2472 } 2473 } 2474 if (cnt) 2475 printf(".\n"); 2476 } 2477 2478 /* 2479 * Save initial settings of some IO registers. 2480 * Assumed to have been set by BIOS. 2481 * We cannot reset the chip prior to reading the 2482 * IO registers, since informations will be lost. 2483 * Since the SCRIPTS processor may be running, this 2484 * is not safe on paper, but it seems to work quite 2485 * well. :) 2486 */ 2487 static void sym_save_initial_setting (hcb_p np) 2488 { 2489 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2490 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2491 np->sv_dmode = INB(nc_dmode) & 0xce; 2492 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2493 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2494 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2495 np->sv_gpcntl = INB(nc_gpcntl); 2496 np->sv_stest1 = INB(nc_stest1); 2497 np->sv_stest2 = INB(nc_stest2) & 0x20; 2498 np->sv_stest4 = INB(nc_stest4); 2499 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2500 np->sv_scntl4 = INB(nc_scntl4); 2501 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2502 } 2503 else 2504 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2505 } 2506 2507 /* 2508 * Prepare io register values used by sym_init() according 2509 * to selected and supported features. 2510 */ 2511 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2512 { 2513 u_char burst_max; 2514 u32 period; 2515 int i; 2516 2517 /* 2518 * Wide ? 2519 */ 2520 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2521 2522 /* 2523 * Get the frequency of the chip's clock. 2524 */ 2525 if (np->features & FE_QUAD) 2526 np->multiplier = 4; 2527 else if (np->features & FE_DBLR) 2528 np->multiplier = 2; 2529 else 2530 np->multiplier = 1; 2531 2532 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2533 np->clock_khz *= np->multiplier; 2534 2535 if (np->clock_khz != 40000) 2536 sym_getclock(np, np->multiplier); 2537 2538 /* 2539 * Divisor to be used for async (timer pre-scaler). 2540 */ 2541 i = np->clock_divn - 1; 2542 while (--i >= 0) { 2543 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2544 ++i; 2545 break; 2546 } 2547 } 2548 np->rv_scntl3 = i+1; 2549 2550 /* 2551 * The C1010 uses hardwired divisors for async. 2552 * So, we just throw away, the async. divisor.:-) 2553 */ 2554 if (np->features & FE_C10) 2555 np->rv_scntl3 = 0; 2556 2557 /* 2558 * Minimum synchronous period factor supported by the chip. 2559 * Btw, 'period' is in tenths of nanoseconds. 2560 */ 2561 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2562 if (period <= 250) np->minsync = 10; 2563 else if (period <= 303) np->minsync = 11; 2564 else if (period <= 500) np->minsync = 12; 2565 else np->minsync = (period + 40 - 1) / 40; 2566 2567 /* 2568 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2569 */ 2570 if (np->minsync < 25 && 2571 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2572 np->minsync = 25; 2573 else if (np->minsync < 12 && 2574 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2575 np->minsync = 12; 2576 2577 /* 2578 * Maximum synchronous period factor supported by the chip. 2579 */ 2580 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2581 np->maxsync = period > 2540 ? 254 : period / 10; 2582 2583 /* 2584 * If chip is a C1010, guess the sync limits in DT mode. 2585 */ 2586 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2587 if (np->clock_khz == 160000) { 2588 np->minsync_dt = 9; 2589 np->maxsync_dt = 50; 2590 np->maxoffs_dt = 62; 2591 } 2592 } 2593 2594 /* 2595 * 64 bit addressing (895A/896/1010) ? 2596 */ 2597 if (np->features & FE_DAC) 2598 #ifdef __LP64__ 2599 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2600 #else 2601 np->rv_ccntl1 |= (DDAC); 2602 #endif 2603 2604 /* 2605 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2606 */ 2607 if (np->features & FE_NOPM) 2608 np->rv_ccntl0 |= (ENPMJ); 2609 2610 /* 2611 * C1010 Errata. 2612 * In dual channel mode, contention occurs if internal cycles 2613 * are used. Disable internal cycles. 2614 */ 2615 if (np->device_id == PCI_ID_LSI53C1010 && 2616 np->revision_id < 0x2) 2617 np->rv_ccntl0 |= DILS; 2618 2619 /* 2620 * Select burst length (dwords) 2621 */ 2622 burst_max = SYM_SETUP_BURST_ORDER; 2623 if (burst_max == 255) 2624 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2625 np->sv_ctest5); 2626 if (burst_max > 7) 2627 burst_max = 7; 2628 if (burst_max > np->maxburst) 2629 burst_max = np->maxburst; 2630 2631 /* 2632 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2633 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2634 * based transactions on LOAD/STORE instructions. So we have 2635 * to prevent these chips from using such PCI transactions in 2636 * this driver. The generic ncr driver that does not use 2637 * LOAD/STORE instructions does not need this work-around. 2638 */ 2639 if ((np->device_id == PCI_ID_SYM53C810 && 2640 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2641 (np->device_id == PCI_ID_SYM53C860 && 2642 np->revision_id <= 0x1)) 2643 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2644 2645 /* 2646 * Select all supported special features. 2647 * If we are using on-board RAM for scripts, prefetch (PFEN) 2648 * does not help, but burst op fetch (BOF) does. 2649 * Disabling PFEN makes sure BOF will be used. 2650 */ 2651 if (np->features & FE_ERL) 2652 np->rv_dmode |= ERL; /* Enable Read Line */ 2653 if (np->features & FE_BOF) 2654 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2655 if (np->features & FE_ERMP) 2656 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2657 #if 1 2658 if ((np->features & FE_PFEN) && !np->ram_ba) 2659 #else 2660 if (np->features & FE_PFEN) 2661 #endif 2662 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2663 if (np->features & FE_CLSE) 2664 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2665 if (np->features & FE_WRIE) 2666 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2667 if (np->features & FE_DFS) 2668 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2669 2670 /* 2671 * Select some other 2672 */ 2673 if (SYM_SETUP_PCI_PARITY) 2674 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2675 if (SYM_SETUP_SCSI_PARITY) 2676 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2677 2678 /* 2679 * Get parity checking, host ID and verbose mode from NVRAM 2680 */ 2681 np->myaddr = 255; 2682 sym_nvram_setup_host (np, nvram); 2683 #ifdef __sparc64__ 2684 np->myaddr = OF_getscsinitid(np->device); 2685 #endif 2686 2687 /* 2688 * Get SCSI addr of host adapter (set by bios?). 2689 */ 2690 if (np->myaddr == 255) { 2691 np->myaddr = INB(nc_scid) & 0x07; 2692 if (!np->myaddr) 2693 np->myaddr = SYM_SETUP_HOST_ID; 2694 } 2695 2696 /* 2697 * Prepare initial io register bits for burst length 2698 */ 2699 sym_init_burst(np, burst_max); 2700 2701 /* 2702 * Set SCSI BUS mode. 2703 * - LVD capable chips (895/895A/896/1010) report the 2704 * current BUS mode through the STEST4 IO register. 2705 * - For previous generation chips (825/825A/875), 2706 * user has to tell us how to check against HVD, 2707 * since a 100% safe algorithm is not possible. 2708 */ 2709 np->scsi_mode = SMODE_SE; 2710 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2711 np->scsi_mode = (np->sv_stest4 & SMODE); 2712 else if (np->features & FE_DIFF) { 2713 if (SYM_SETUP_SCSI_DIFF == 1) { 2714 if (np->sv_scntl3) { 2715 if (np->sv_stest2 & 0x20) 2716 np->scsi_mode = SMODE_HVD; 2717 } 2718 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2719 if (!(INB(nc_gpreg) & 0x08)) 2720 np->scsi_mode = SMODE_HVD; 2721 } 2722 } 2723 else if (SYM_SETUP_SCSI_DIFF == 2) 2724 np->scsi_mode = SMODE_HVD; 2725 } 2726 if (np->scsi_mode == SMODE_HVD) 2727 np->rv_stest2 |= 0x20; 2728 2729 /* 2730 * Set LED support from SCRIPTS. 2731 * Ignore this feature for boards known to use a 2732 * specific GPIO wiring and for the 895A, 896 2733 * and 1010 that drive the LED directly. 2734 */ 2735 if ((SYM_SETUP_SCSI_LED || 2736 (nvram->type == SYM_SYMBIOS_NVRAM || 2737 (nvram->type == SYM_TEKRAM_NVRAM && 2738 np->device_id == PCI_ID_SYM53C895))) && 2739 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2740 np->features |= FE_LED0; 2741 2742 /* 2743 * Set irq mode. 2744 */ 2745 switch(SYM_SETUP_IRQ_MODE & 3) { 2746 case 2: 2747 np->rv_dcntl |= IRQM; 2748 break; 2749 case 1: 2750 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2751 break; 2752 default: 2753 break; 2754 } 2755 2756 /* 2757 * Configure targets according to driver setup. 2758 * If NVRAM present get targets setup from NVRAM. 2759 */ 2760 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2761 tcb_p tp = &np->target[i]; 2762 2763 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2764 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2765 tp->tinfo.user.period = np->minsync; 2766 if (np->features & FE_ULTRA3) 2767 tp->tinfo.user.period = np->minsync_dt; 2768 tp->tinfo.user.offset = np->maxoffs; 2769 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2770 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2771 tp->usrtags = SYM_SETUP_MAX_TAG; 2772 2773 sym_nvram_setup_target (np, i, nvram); 2774 2775 /* 2776 * For now, guess PPR/DT support from the period 2777 * and BUS width. 2778 */ 2779 if (np->features & FE_ULTRA3) { 2780 if (tp->tinfo.user.period <= 9 && 2781 tp->tinfo.user.width == BUS_16_BIT) { 2782 tp->tinfo.user.options |= PPR_OPT_DT; 2783 tp->tinfo.user.offset = np->maxoffs_dt; 2784 tp->tinfo.user.spi_version = 3; 2785 } 2786 } 2787 2788 if (!tp->usrtags) 2789 tp->usrflags &= ~SYM_TAGS_ENABLED; 2790 } 2791 2792 /* 2793 * Let user know about the settings. 2794 */ 2795 i = nvram->type; 2796 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2797 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2798 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2799 np->myaddr, 2800 (np->features & FE_ULTRA3) ? 80 : 2801 (np->features & FE_ULTRA2) ? 40 : 2802 (np->features & FE_ULTRA) ? 20 : 10, 2803 sym_scsi_bus_mode(np->scsi_mode), 2804 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2805 /* 2806 * Tell him more on demand. 2807 */ 2808 if (sym_verbose) { 2809 printf("%s: %s IRQ line driver%s\n", 2810 sym_name(np), 2811 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2812 np->ram_ba ? ", using on-chip SRAM" : ""); 2813 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2814 if (np->features & FE_NOPM) 2815 printf("%s: handling phase mismatch from SCRIPTS.\n", 2816 sym_name(np)); 2817 } 2818 /* 2819 * And still more. 2820 */ 2821 if (sym_verbose > 1) { 2822 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2823 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2824 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2825 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2826 2827 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2828 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2829 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2830 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2831 } 2832 /* 2833 * Let user be aware of targets that have some disable flags set. 2834 */ 2835 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2836 if (sym_verbose) 2837 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2838 "SCAN FOR LUNS"); 2839 2840 return 0; 2841 } 2842 2843 /* 2844 * Prepare the next negotiation message if needed. 2845 * 2846 * Fill in the part of message buffer that contains the 2847 * negotiation and the nego_status field of the CCB. 2848 * Returns the size of the message in bytes. 2849 */ 2850 2851 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2852 { 2853 tcb_p tp = &np->target[cp->target]; 2854 int msglen = 0; 2855 2856 /* 2857 * Early C1010 chips need a work-around for DT 2858 * data transfer to work. 2859 */ 2860 if (!(np->features & FE_U3EN)) 2861 tp->tinfo.goal.options = 0; 2862 /* 2863 * negotiate using PPR ? 2864 */ 2865 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2866 nego = NS_PPR; 2867 /* 2868 * negotiate wide transfers ? 2869 */ 2870 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2871 nego = NS_WIDE; 2872 /* 2873 * negotiate synchronous transfers? 2874 */ 2875 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2876 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2877 nego = NS_SYNC; 2878 2879 switch (nego) { 2880 case NS_SYNC: 2881 msgptr[msglen++] = M_EXTENDED; 2882 msgptr[msglen++] = 3; 2883 msgptr[msglen++] = M_X_SYNC_REQ; 2884 msgptr[msglen++] = tp->tinfo.goal.period; 2885 msgptr[msglen++] = tp->tinfo.goal.offset; 2886 break; 2887 case NS_WIDE: 2888 msgptr[msglen++] = M_EXTENDED; 2889 msgptr[msglen++] = 2; 2890 msgptr[msglen++] = M_X_WIDE_REQ; 2891 msgptr[msglen++] = tp->tinfo.goal.width; 2892 break; 2893 case NS_PPR: 2894 msgptr[msglen++] = M_EXTENDED; 2895 msgptr[msglen++] = 6; 2896 msgptr[msglen++] = M_X_PPR_REQ; 2897 msgptr[msglen++] = tp->tinfo.goal.period; 2898 msgptr[msglen++] = 0; 2899 msgptr[msglen++] = tp->tinfo.goal.offset; 2900 msgptr[msglen++] = tp->tinfo.goal.width; 2901 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2902 break; 2903 }; 2904 2905 cp->nego_status = nego; 2906 2907 if (nego) { 2908 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2909 if (DEBUG_FLAGS & DEBUG_NEGO) { 2910 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2911 nego == NS_WIDE ? "wide msgout" : 2912 "ppr msgout", msgptr); 2913 }; 2914 }; 2915 2916 return msglen; 2917 } 2918 2919 /* 2920 * Insert a job into the start queue. 2921 */ 2922 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2923 { 2924 u_short qidx; 2925 2926 #ifdef SYM_CONF_IARB_SUPPORT 2927 /* 2928 * If the previously queued CCB is not yet done, 2929 * set the IARB hint. The SCRIPTS will go with IARB 2930 * for this job when starting the previous one. 2931 * We leave devices a chance to win arbitration by 2932 * not using more than 'iarb_max' consecutive 2933 * immediate arbitrations. 2934 */ 2935 if (np->last_cp && np->iarb_count < np->iarb_max) { 2936 np->last_cp->host_flags |= HF_HINT_IARB; 2937 ++np->iarb_count; 2938 } 2939 else 2940 np->iarb_count = 0; 2941 np->last_cp = cp; 2942 #endif 2943 2944 /* 2945 * Insert first the idle task and then our job. 2946 * The MB should ensure proper ordering. 2947 */ 2948 qidx = np->squeueput + 2; 2949 if (qidx >= MAX_QUEUE*2) qidx = 0; 2950 2951 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2952 MEMORY_BARRIER(); 2953 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2954 2955 np->squeueput = qidx; 2956 2957 if (DEBUG_FLAGS & DEBUG_QUEUE) 2958 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2959 2960 /* 2961 * Script processor may be waiting for reselect. 2962 * Wake it up. 2963 */ 2964 MEMORY_BARRIER(); 2965 OUTB (nc_istat, SIGP|np->istat_sem); 2966 } 2967 2968 2969 /* 2970 * Soft reset the chip. 2971 * 2972 * Raising SRST when the chip is running may cause 2973 * problems on dual function chips (see below). 2974 * On the other hand, LVD devices need some delay 2975 * to settle and report actual BUS mode in STEST4. 2976 */ 2977 static void sym_chip_reset (hcb_p np) 2978 { 2979 OUTB (nc_istat, SRST); 2980 UDELAY (10); 2981 OUTB (nc_istat, 0); 2982 UDELAY(2000); /* For BUS MODE to settle */ 2983 } 2984 2985 /* 2986 * Soft reset the chip. 2987 * 2988 * Some 896 and 876 chip revisions may hang-up if we set 2989 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2990 * are running. 2991 * So, we need to abort the current operation prior to 2992 * soft resetting the chip. 2993 */ 2994 static void sym_soft_reset (hcb_p np) 2995 { 2996 u_char istat; 2997 int i; 2998 2999 OUTB (nc_istat, CABRT); 3000 for (i = 1000000 ; i ; --i) { 3001 istat = INB (nc_istat); 3002 if (istat & SIP) { 3003 INW (nc_sist); 3004 continue; 3005 } 3006 if (istat & DIP) { 3007 OUTB (nc_istat, 0); 3008 INB (nc_dstat); 3009 break; 3010 } 3011 } 3012 if (!i) 3013 printf("%s: unable to abort current chip operation.\n", 3014 sym_name(np)); 3015 sym_chip_reset (np); 3016 } 3017 3018 /* 3019 * Start reset process. 3020 * 3021 * The interrupt handler will reinitialize the chip. 3022 */ 3023 static void sym_start_reset(hcb_p np) 3024 { 3025 (void) sym_reset_scsi_bus(np, 1); 3026 } 3027 3028 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3029 { 3030 u32 term; 3031 int retv = 0; 3032 3033 sym_soft_reset(np); /* Soft reset the chip */ 3034 if (enab_int) 3035 OUTW (nc_sien, RST); 3036 /* 3037 * Enable Tolerant, reset IRQD if present and 3038 * properly set IRQ mode, prior to resetting the bus. 3039 */ 3040 OUTB (nc_stest3, TE); 3041 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3042 OUTB (nc_scntl1, CRST); 3043 UDELAY (200); 3044 3045 if (!SYM_SETUP_SCSI_BUS_CHECK) 3046 goto out; 3047 /* 3048 * Check for no terminators or SCSI bus shorts to ground. 3049 * Read SCSI data bus, data parity bits and control signals. 3050 * We are expecting RESET to be TRUE and other signals to be 3051 * FALSE. 3052 */ 3053 term = INB(nc_sstat0); 3054 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3055 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3056 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3057 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3058 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3059 3060 if (!(np->features & FE_WIDE)) 3061 term &= 0x3ffff; 3062 3063 if (term != (2<<7)) { 3064 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3065 sym_name(np)); 3066 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3067 "0x%lx, expecting 0x%lx\n", 3068 sym_name(np), 3069 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3070 (u_long)term, (u_long)(2<<7)); 3071 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3072 retv = 1; 3073 } 3074 out: 3075 OUTB (nc_scntl1, 0); 3076 /* MDELAY(100); */ 3077 return retv; 3078 } 3079 3080 /* 3081 * The chip may have completed jobs. Look at the DONE QUEUE. 3082 * 3083 * On architectures that may reorder LOAD/STORE operations, 3084 * a memory barrier may be needed after the reading of the 3085 * so-called `flag' and prior to dealing with the data. 3086 */ 3087 static int sym_wakeup_done (hcb_p np) 3088 { 3089 ccb_p cp; 3090 int i, n; 3091 u32 dsa; 3092 3093 SYM_LOCK_ASSERT(MA_OWNED); 3094 3095 n = 0; 3096 i = np->dqueueget; 3097 while (1) { 3098 dsa = scr_to_cpu(np->dqueue[i]); 3099 if (!dsa) 3100 break; 3101 np->dqueue[i] = 0; 3102 if ((i = i+2) >= MAX_QUEUE*2) 3103 i = 0; 3104 3105 cp = sym_ccb_from_dsa(np, dsa); 3106 if (cp) { 3107 MEMORY_BARRIER(); 3108 sym_complete_ok (np, cp); 3109 ++n; 3110 } 3111 else 3112 printf ("%s: bad DSA (%x) in done queue.\n", 3113 sym_name(np), (u_int) dsa); 3114 } 3115 np->dqueueget = i; 3116 3117 return n; 3118 } 3119 3120 /* 3121 * Complete all active CCBs with error. 3122 * Used on CHIP/SCSI RESET. 3123 */ 3124 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3125 { 3126 /* 3127 * Move all active CCBs to the COMP queue 3128 * and flush this queue. 3129 */ 3130 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3131 sym_que_init(&np->busy_ccbq); 3132 sym_flush_comp_queue(np, cam_status); 3133 } 3134 3135 /* 3136 * Start chip. 3137 * 3138 * 'reason' means: 3139 * 0: initialisation. 3140 * 1: SCSI BUS RESET delivered or received. 3141 * 2: SCSI BUS MODE changed. 3142 */ 3143 static void sym_init (hcb_p np, int reason) 3144 { 3145 int i; 3146 u32 phys; 3147 3148 SYM_LOCK_ASSERT(MA_OWNED); 3149 3150 /* 3151 * Reset chip if asked, otherwise just clear fifos. 3152 */ 3153 if (reason == 1) 3154 sym_soft_reset(np); 3155 else { 3156 OUTB (nc_stest3, TE|CSF); 3157 OUTONB (nc_ctest3, CLF); 3158 } 3159 3160 /* 3161 * Clear Start Queue 3162 */ 3163 phys = np->squeue_ba; 3164 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3165 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3166 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3167 } 3168 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3169 3170 /* 3171 * Start at first entry. 3172 */ 3173 np->squeueput = 0; 3174 3175 /* 3176 * Clear Done Queue 3177 */ 3178 phys = np->dqueue_ba; 3179 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3180 np->dqueue[i] = 0; 3181 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3182 } 3183 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3184 3185 /* 3186 * Start at first entry. 3187 */ 3188 np->dqueueget = 0; 3189 3190 /* 3191 * Install patches in scripts. 3192 * This also let point to first position the start 3193 * and done queue pointers used from SCRIPTS. 3194 */ 3195 np->fw_patch(np); 3196 3197 /* 3198 * Wakeup all pending jobs. 3199 */ 3200 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3201 3202 /* 3203 * Init chip. 3204 */ 3205 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3206 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3207 3208 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3209 /* full arb., ena parity, par->ATN */ 3210 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3211 3212 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3213 3214 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3215 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3216 OUTB (nc_istat , SIGP ); /* Signal Process */ 3217 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3218 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3219 3220 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3221 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3222 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3223 3224 /* Extended Sreq/Sack filtering not supported on the C10 */ 3225 if (np->features & FE_C10) 3226 OUTB (nc_stest2, np->rv_stest2); 3227 else 3228 OUTB (nc_stest2, EXT|np->rv_stest2); 3229 3230 OUTB (nc_stest3, TE); /* TolerANT enable */ 3231 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3232 3233 /* 3234 * For now, disable AIP generation on C1010-66. 3235 */ 3236 if (np->device_id == PCI_ID_LSI53C1010_2) 3237 OUTB (nc_aipcntl1, DISAIP); 3238 3239 /* 3240 * C10101 Errata. 3241 * Errant SGE's when in narrow. Write bits 4 & 5 of 3242 * STEST1 register to disable SGE. We probably should do 3243 * that from SCRIPTS for each selection/reselection, but 3244 * I just don't want. :) 3245 */ 3246 if (np->device_id == PCI_ID_LSI53C1010 && 3247 /* np->revision_id < 0xff */ 1) 3248 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3249 3250 /* 3251 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3252 * Disable overlapped arbitration for some dual function devices, 3253 * regardless revision id (kind of post-chip-design feature. ;-)) 3254 */ 3255 if (np->device_id == PCI_ID_SYM53C875) 3256 OUTB (nc_ctest0, (1<<5)); 3257 else if (np->device_id == PCI_ID_SYM53C896) 3258 np->rv_ccntl0 |= DPR; 3259 3260 /* 3261 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3262 * and/or hardware phase mismatch, since only such chips 3263 * seem to support those IO registers. 3264 */ 3265 if (np->features & (FE_DAC|FE_NOPM)) { 3266 OUTB (nc_ccntl0, np->rv_ccntl0); 3267 OUTB (nc_ccntl1, np->rv_ccntl1); 3268 } 3269 3270 /* 3271 * If phase mismatch handled by scripts (895A/896/1010), 3272 * set PM jump addresses. 3273 */ 3274 if (np->features & FE_NOPM) { 3275 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3276 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3277 } 3278 3279 /* 3280 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3281 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3282 */ 3283 if (np->features & FE_LED0) 3284 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3285 else if (np->features & FE_LEDC) 3286 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3287 3288 /* 3289 * enable ints 3290 */ 3291 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3292 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3293 3294 /* 3295 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3296 * Try to eat the spurious SBMC interrupt that may occur when 3297 * we reset the chip but not the SCSI BUS (at initialization). 3298 */ 3299 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3300 OUTONW (nc_sien, SBMC); 3301 if (reason == 0) { 3302 MDELAY(100); 3303 INW (nc_sist); 3304 } 3305 np->scsi_mode = INB (nc_stest4) & SMODE; 3306 } 3307 3308 /* 3309 * Fill in target structure. 3310 * Reinitialize usrsync. 3311 * Reinitialize usrwide. 3312 * Prepare sync negotiation according to actual SCSI bus mode. 3313 */ 3314 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3315 tcb_p tp = &np->target[i]; 3316 3317 tp->to_reset = 0; 3318 tp->head.sval = 0; 3319 tp->head.wval = np->rv_scntl3; 3320 tp->head.uval = 0; 3321 3322 tp->tinfo.current.period = 0; 3323 tp->tinfo.current.offset = 0; 3324 tp->tinfo.current.width = BUS_8_BIT; 3325 tp->tinfo.current.options = 0; 3326 } 3327 3328 /* 3329 * Download SCSI SCRIPTS to on-chip RAM if present, 3330 * and start script processor. 3331 */ 3332 if (np->ram_ba) { 3333 if (sym_verbose > 1) 3334 printf ("%s: Downloading SCSI SCRIPTS.\n", 3335 sym_name(np)); 3336 if (np->ram_ws == 8192) { 3337 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3338 OUTL (nc_mmws, np->scr_ram_seg); 3339 OUTL (nc_mmrs, np->scr_ram_seg); 3340 OUTL (nc_sfs, np->scr_ram_seg); 3341 phys = SCRIPTB_BA (np, start64); 3342 } 3343 else 3344 phys = SCRIPTA_BA (np, init); 3345 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3346 } 3347 else 3348 phys = SCRIPTA_BA (np, init); 3349 3350 np->istat_sem = 0; 3351 3352 OUTL (nc_dsa, np->hcb_ba); 3353 OUTL_DSP (phys); 3354 3355 /* 3356 * Notify the XPT about the RESET condition. 3357 */ 3358 if (reason != 0) 3359 xpt_async(AC_BUS_RESET, np->path, NULL); 3360 } 3361 3362 /* 3363 * Get clock factor and sync divisor for a given 3364 * synchronous factor period. 3365 */ 3366 static int 3367 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3368 { 3369 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3370 int div = np->clock_divn; /* Number of divisors supported */ 3371 u32 fak; /* Sync factor in sxfer */ 3372 u32 per; /* Period in tenths of ns */ 3373 u32 kpc; /* (per * clk) */ 3374 int ret; 3375 3376 /* 3377 * Compute the synchronous period in tenths of nano-seconds 3378 */ 3379 if (dt && sfac <= 9) per = 125; 3380 else if (sfac <= 10) per = 250; 3381 else if (sfac == 11) per = 303; 3382 else if (sfac == 12) per = 500; 3383 else per = 40 * sfac; 3384 ret = per; 3385 3386 kpc = per * clk; 3387 if (dt) 3388 kpc <<= 1; 3389 3390 /* 3391 * For earliest C10 revision 0, we cannot use extra 3392 * clocks for the setting of the SCSI clocking. 3393 * Note that this limits the lowest sync data transfer 3394 * to 5 Mega-transfers per second and may result in 3395 * using higher clock divisors. 3396 */ 3397 #if 1 3398 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3399 /* 3400 * Look for the lowest clock divisor that allows an 3401 * output speed not faster than the period. 3402 */ 3403 while (div > 0) { 3404 --div; 3405 if (kpc > (div_10M[div] << 2)) { 3406 ++div; 3407 break; 3408 } 3409 } 3410 fak = 0; /* No extra clocks */ 3411 if (div == np->clock_divn) { /* Are we too fast ? */ 3412 ret = -1; 3413 } 3414 *divp = div; 3415 *fakp = fak; 3416 return ret; 3417 } 3418 #endif 3419 3420 /* 3421 * Look for the greatest clock divisor that allows an 3422 * input speed faster than the period. 3423 */ 3424 while (div-- > 0) 3425 if (kpc >= (div_10M[div] << 2)) break; 3426 3427 /* 3428 * Calculate the lowest clock factor that allows an output 3429 * speed not faster than the period, and the max output speed. 3430 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3431 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3432 */ 3433 if (dt) { 3434 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3435 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3436 } 3437 else { 3438 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3439 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3440 } 3441 3442 /* 3443 * Check against our hardware limits, or bugs :). 3444 */ 3445 if (fak < 0) {fak = 0; ret = -1;} 3446 if (fak > 2) {fak = 2; ret = -1;} 3447 3448 /* 3449 * Compute and return sync parameters. 3450 */ 3451 *divp = div; 3452 *fakp = fak; 3453 3454 return ret; 3455 } 3456 3457 /* 3458 * Tell the SCSI layer about the new transfer parameters. 3459 */ 3460 static void 3461 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3462 { 3463 struct ccb_trans_settings cts; 3464 struct cam_path *path; 3465 int sts; 3466 tcb_p tp = &np->target[target]; 3467 3468 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3469 CAM_LUN_WILDCARD); 3470 if (sts != CAM_REQ_CMP) 3471 return; 3472 3473 bzero(&cts, sizeof(cts)); 3474 3475 #define cts__scsi (cts.proto_specific.scsi) 3476 #define cts__spi (cts.xport_specific.spi) 3477 3478 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3479 cts.protocol = PROTO_SCSI; 3480 cts.transport = XPORT_SPI; 3481 cts.protocol_version = tp->tinfo.current.scsi_version; 3482 cts.transport_version = tp->tinfo.current.spi_version; 3483 3484 cts__spi.valid = spi_valid; 3485 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3486 cts__spi.sync_period = tp->tinfo.current.period; 3487 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3488 cts__spi.sync_offset = tp->tinfo.current.offset; 3489 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3490 cts__spi.bus_width = tp->tinfo.current.width; 3491 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3492 cts__spi.ppr_options = tp->tinfo.current.options; 3493 #undef cts__spi 3494 #undef cts__scsi 3495 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3496 xpt_async(AC_TRANSFER_NEG, path, &cts); 3497 xpt_free_path(path); 3498 } 3499 3500 #define SYM_SPI_VALID_WDTR \ 3501 CTS_SPI_VALID_BUS_WIDTH | \ 3502 CTS_SPI_VALID_SYNC_RATE | \ 3503 CTS_SPI_VALID_SYNC_OFFSET 3504 #define SYM_SPI_VALID_SDTR \ 3505 CTS_SPI_VALID_SYNC_RATE | \ 3506 CTS_SPI_VALID_SYNC_OFFSET 3507 #define SYM_SPI_VALID_PPR \ 3508 CTS_SPI_VALID_PPR_OPTIONS | \ 3509 CTS_SPI_VALID_BUS_WIDTH | \ 3510 CTS_SPI_VALID_SYNC_RATE | \ 3511 CTS_SPI_VALID_SYNC_OFFSET 3512 3513 /* 3514 * We received a WDTR. 3515 * Let everything be aware of the changes. 3516 */ 3517 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3518 { 3519 tcb_p tp = &np->target[cp->target]; 3520 3521 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3522 3523 /* 3524 * Tell the SCSI layer about the new transfer parameters. 3525 */ 3526 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3527 tp->tinfo.current.offset = 0; 3528 tp->tinfo.current.period = 0; 3529 tp->tinfo.current.options = 0; 3530 3531 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3532 } 3533 3534 /* 3535 * We received a SDTR. 3536 * Let everything be aware of the changes. 3537 */ 3538 static void 3539 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3540 { 3541 tcb_p tp = &np->target[cp->target]; 3542 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3543 3544 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3545 3546 /* 3547 * Tell the SCSI layer about the new transfer parameters. 3548 */ 3549 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3550 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3551 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3552 3553 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3554 } 3555 3556 /* 3557 * We received a PPR. 3558 * Let everything be aware of the changes. 3559 */ 3560 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3561 u_char per, u_char wide, u_char div, u_char fak) 3562 { 3563 tcb_p tp = &np->target[cp->target]; 3564 3565 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3566 3567 /* 3568 * Tell the SCSI layer about the new transfer parameters. 3569 */ 3570 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3571 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3572 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3573 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3574 3575 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3576 } 3577 3578 /* 3579 * Switch trans mode for current job and it's target. 3580 */ 3581 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3582 u_char per, u_char wide, u_char div, u_char fak) 3583 { 3584 SYM_QUEHEAD *qp; 3585 union ccb *ccb; 3586 tcb_p tp; 3587 u_char target = INB (nc_sdid) & 0x0f; 3588 u_char sval, wval, uval; 3589 3590 assert (cp); 3591 if (!cp) return; 3592 ccb = cp->cam_ccb; 3593 assert (ccb); 3594 if (!ccb) return; 3595 assert (target == (cp->target & 0xf)); 3596 tp = &np->target[target]; 3597 3598 sval = tp->head.sval; 3599 wval = tp->head.wval; 3600 uval = tp->head.uval; 3601 3602 #if 0 3603 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3604 sval, wval, uval, np->rv_scntl3); 3605 #endif 3606 /* 3607 * Set the offset. 3608 */ 3609 if (!(np->features & FE_C10)) 3610 sval = (sval & ~0x1f) | ofs; 3611 else 3612 sval = (sval & ~0x3f) | ofs; 3613 3614 /* 3615 * Set the sync divisor and extra clock factor. 3616 */ 3617 if (ofs != 0) { 3618 wval = (wval & ~0x70) | ((div+1) << 4); 3619 if (!(np->features & FE_C10)) 3620 sval = (sval & ~0xe0) | (fak << 5); 3621 else { 3622 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3623 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3624 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3625 } 3626 } 3627 3628 /* 3629 * Set the bus width. 3630 */ 3631 wval = wval & ~EWS; 3632 if (wide != 0) 3633 wval |= EWS; 3634 3635 /* 3636 * Set misc. ultra enable bits. 3637 */ 3638 if (np->features & FE_C10) { 3639 uval = uval & ~(U3EN|AIPCKEN); 3640 if (dt) { 3641 assert(np->features & FE_U3EN); 3642 uval |= U3EN; 3643 } 3644 } 3645 else { 3646 wval = wval & ~ULTRA; 3647 if (per <= 12) wval |= ULTRA; 3648 } 3649 3650 /* 3651 * Stop there if sync parameters are unchanged. 3652 */ 3653 if (tp->head.sval == sval && 3654 tp->head.wval == wval && 3655 tp->head.uval == uval) 3656 return; 3657 tp->head.sval = sval; 3658 tp->head.wval = wval; 3659 tp->head.uval = uval; 3660 3661 /* 3662 * Disable extended Sreq/Sack filtering if per < 50. 3663 * Not supported on the C1010. 3664 */ 3665 if (per < 50 && !(np->features & FE_C10)) 3666 OUTOFFB (nc_stest2, EXT); 3667 3668 /* 3669 * set actual value and sync_status 3670 */ 3671 OUTB (nc_sxfer, tp->head.sval); 3672 OUTB (nc_scntl3, tp->head.wval); 3673 3674 if (np->features & FE_C10) { 3675 OUTB (nc_scntl4, tp->head.uval); 3676 } 3677 3678 /* 3679 * patch ALL busy ccbs of this target. 3680 */ 3681 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3682 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3683 if (cp->target != target) 3684 continue; 3685 cp->phys.select.sel_scntl3 = tp->head.wval; 3686 cp->phys.select.sel_sxfer = tp->head.sval; 3687 if (np->features & FE_C10) { 3688 cp->phys.select.sel_scntl4 = tp->head.uval; 3689 } 3690 } 3691 } 3692 3693 /* 3694 * log message for real hard errors 3695 * 3696 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3697 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3698 * 3699 * exception register: 3700 * ds: dstat 3701 * si: sist 3702 * 3703 * SCSI bus lines: 3704 * so: control lines as driven by chip. 3705 * si: control lines as seen by chip. 3706 * sd: scsi data lines as seen by chip. 3707 * 3708 * wide/fastmode: 3709 * sxfer: (see the manual) 3710 * scntl3: (see the manual) 3711 * 3712 * current script command: 3713 * dsp: script address (relative to start of script). 3714 * dbc: first word of script command. 3715 * 3716 * First 24 register of the chip: 3717 * r0..rf 3718 */ 3719 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3720 { 3721 u32 dsp; 3722 int script_ofs; 3723 int script_size; 3724 char *script_name; 3725 u_char *script_base; 3726 int i; 3727 3728 dsp = INL (nc_dsp); 3729 3730 if (dsp > np->scripta_ba && 3731 dsp <= np->scripta_ba + np->scripta_sz) { 3732 script_ofs = dsp - np->scripta_ba; 3733 script_size = np->scripta_sz; 3734 script_base = (u_char *) np->scripta0; 3735 script_name = "scripta"; 3736 } 3737 else if (np->scriptb_ba < dsp && 3738 dsp <= np->scriptb_ba + np->scriptb_sz) { 3739 script_ofs = dsp - np->scriptb_ba; 3740 script_size = np->scriptb_sz; 3741 script_base = (u_char *) np->scriptb0; 3742 script_name = "scriptb"; 3743 } else { 3744 script_ofs = dsp; 3745 script_size = 0; 3746 script_base = 0; 3747 script_name = "mem"; 3748 } 3749 3750 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3751 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3752 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3753 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3754 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3755 (unsigned)INL (nc_dbc)); 3756 3757 if (((script_ofs & 3) == 0) && 3758 (unsigned)script_ofs < script_size) { 3759 printf ("%s: script cmd = %08x\n", sym_name(np), 3760 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3761 } 3762 3763 printf ("%s: regdump:", sym_name(np)); 3764 for (i=0; i<24;i++) 3765 printf (" %02x", (unsigned)INB_OFF(i)); 3766 printf (".\n"); 3767 3768 /* 3769 * PCI BUS error, read the PCI ststus register. 3770 */ 3771 if (dstat & (MDPE|BF)) { 3772 u_short pci_sts; 3773 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3774 if (pci_sts & 0xf900) { 3775 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3776 printf("%s: PCI STATUS = 0x%04x\n", 3777 sym_name(np), pci_sts & 0xf900); 3778 } 3779 } 3780 } 3781 3782 /* 3783 * chip interrupt handler 3784 * 3785 * In normal situations, interrupt conditions occur one at 3786 * a time. But when something bad happens on the SCSI BUS, 3787 * the chip may raise several interrupt flags before 3788 * stopping and interrupting the CPU. The additionnal 3789 * interrupt flags are stacked in some extra registers 3790 * after the SIP and/or DIP flag has been raised in the 3791 * ISTAT. After the CPU has read the interrupt condition 3792 * flag from SIST or DSTAT, the chip unstacks the other 3793 * interrupt flags and sets the corresponding bits in 3794 * SIST or DSTAT. Since the chip starts stacking once the 3795 * SIP or DIP flag is set, there is a small window of time 3796 * where the stacking does not occur. 3797 * 3798 * Typically, multiple interrupt conditions may happen in 3799 * the following situations: 3800 * 3801 * - SCSI parity error + Phase mismatch (PAR|MA) 3802 * When a parity error is detected in input phase 3803 * and the device switches to msg-in phase inside a 3804 * block MOV. 3805 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3806 * When a stupid device does not want to handle the 3807 * recovery of an SCSI parity error. 3808 * - Some combinations of STO, PAR, UDC, ... 3809 * When using non compliant SCSI stuff, when user is 3810 * doing non compliant hot tampering on the BUS, when 3811 * something really bad happens to a device, etc ... 3812 * 3813 * The heuristic suggested by SYMBIOS to handle 3814 * multiple interrupts is to try unstacking all 3815 * interrupts conditions and to handle them on some 3816 * priority based on error severity. 3817 * This will work when the unstacking has been 3818 * successful, but we cannot be 100 % sure of that, 3819 * since the CPU may have been faster to unstack than 3820 * the chip is able to stack. Hmmm ... But it seems that 3821 * such a situation is very unlikely to happen. 3822 * 3823 * If this happen, for example STO caught by the CPU 3824 * then UDC happenning before the CPU have restarted 3825 * the SCRIPTS, the driver may wrongly complete the 3826 * same command on UDC, since the SCRIPTS didn't restart 3827 * and the DSA still points to the same command. 3828 * We avoid this situation by setting the DSA to an 3829 * invalid value when the CCB is completed and before 3830 * restarting the SCRIPTS. 3831 * 3832 * Another issue is that we need some section of our 3833 * recovery procedures to be somehow uninterruptible but 3834 * the SCRIPTS processor does not provides such a 3835 * feature. For this reason, we handle recovery preferently 3836 * from the C code and check against some SCRIPTS critical 3837 * sections from the C code. 3838 * 3839 * Hopefully, the interrupt handling of the driver is now 3840 * able to resist to weird BUS error conditions, but donnot 3841 * ask me for any guarantee that it will never fail. :-) 3842 * Use at your own decision and risk. 3843 */ 3844 3845 static void sym_intr1 (hcb_p np) 3846 { 3847 u_char istat, istatc; 3848 u_char dstat; 3849 u_short sist; 3850 3851 SYM_LOCK_ASSERT(MA_OWNED); 3852 3853 /* 3854 * interrupt on the fly ? 3855 * 3856 * A `dummy read' is needed to ensure that the 3857 * clear of the INTF flag reaches the device 3858 * before the scanning of the DONE queue. 3859 */ 3860 istat = INB (nc_istat); 3861 if (istat & INTF) { 3862 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3863 istat = INB (nc_istat); /* DUMMY READ */ 3864 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3865 (void)sym_wakeup_done (np); 3866 }; 3867 3868 if (!(istat & (SIP|DIP))) 3869 return; 3870 3871 #if 0 /* We should never get this one */ 3872 if (istat & CABRT) 3873 OUTB (nc_istat, CABRT); 3874 #endif 3875 3876 /* 3877 * PAR and MA interrupts may occur at the same time, 3878 * and we need to know of both in order to handle 3879 * this situation properly. We try to unstack SCSI 3880 * interrupts for that reason. BTW, I dislike a LOT 3881 * such a loop inside the interrupt routine. 3882 * Even if DMA interrupt stacking is very unlikely to 3883 * happen, we also try unstacking these ones, since 3884 * this has no performance impact. 3885 */ 3886 sist = 0; 3887 dstat = 0; 3888 istatc = istat; 3889 do { 3890 if (istatc & SIP) 3891 sist |= INW (nc_sist); 3892 if (istatc & DIP) 3893 dstat |= INB (nc_dstat); 3894 istatc = INB (nc_istat); 3895 istat |= istatc; 3896 } while (istatc & (SIP|DIP)); 3897 3898 if (DEBUG_FLAGS & DEBUG_TINY) 3899 printf ("<%d|%x:%x|%x:%x>", 3900 (int)INB(nc_scr0), 3901 dstat,sist, 3902 (unsigned)INL(nc_dsp), 3903 (unsigned)INL(nc_dbc)); 3904 /* 3905 * On paper, a memory barrier may be needed here. 3906 * And since we are paranoid ... :) 3907 */ 3908 MEMORY_BARRIER(); 3909 3910 /* 3911 * First, interrupts we want to service cleanly. 3912 * 3913 * Phase mismatch (MA) is the most frequent interrupt 3914 * for chip earlier than the 896 and so we have to service 3915 * it as quickly as possible. 3916 * A SCSI parity error (PAR) may be combined with a phase 3917 * mismatch condition (MA). 3918 * Programmed interrupts (SIR) are used to call the C code 3919 * from SCRIPTS. 3920 * The single step interrupt (SSI) is not used in this 3921 * driver. 3922 */ 3923 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3924 !(dstat & (MDPE|BF|ABRT|IID))) { 3925 if (sist & PAR) sym_int_par (np, sist); 3926 else if (sist & MA) sym_int_ma (np); 3927 else if (dstat & SIR) sym_int_sir (np); 3928 else if (dstat & SSI) OUTONB_STD (); 3929 else goto unknown_int; 3930 return; 3931 }; 3932 3933 /* 3934 * Now, interrupts that donnot happen in normal 3935 * situations and that we may need to recover from. 3936 * 3937 * On SCSI RESET (RST), we reset everything. 3938 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3939 * active CCBs with RESET status, prepare all devices 3940 * for negotiating again and restart the SCRIPTS. 3941 * On STO and UDC, we complete the CCB with the corres- 3942 * ponding status and restart the SCRIPTS. 3943 */ 3944 if (sist & RST) { 3945 xpt_print_path(np->path); 3946 printf("SCSI BUS reset detected.\n"); 3947 sym_init (np, 1); 3948 return; 3949 }; 3950 3951 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3952 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3953 3954 if (!(sist & (GEN|HTH|SGE)) && 3955 !(dstat & (MDPE|BF|ABRT|IID))) { 3956 if (sist & SBMC) sym_int_sbmc (np); 3957 else if (sist & STO) sym_int_sto (np); 3958 else if (sist & UDC) sym_int_udc (np); 3959 else goto unknown_int; 3960 return; 3961 }; 3962 3963 /* 3964 * Now, interrupts we are not able to recover cleanly. 3965 * 3966 * Log message for hard errors. 3967 * Reset everything. 3968 */ 3969 3970 sym_log_hard_error(np, sist, dstat); 3971 3972 if ((sist & (GEN|HTH|SGE)) || 3973 (dstat & (MDPE|BF|ABRT|IID))) { 3974 sym_start_reset(np); 3975 return; 3976 }; 3977 3978 unknown_int: 3979 /* 3980 * We just miss the cause of the interrupt. :( 3981 * Print a message. The timeout will do the real work. 3982 */ 3983 printf( "%s: unknown interrupt(s) ignored, " 3984 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3985 sym_name(np), istat, dstat, sist); 3986 } 3987 3988 static void sym_intr(void *arg) 3989 { 3990 hcb_p np = arg; 3991 3992 SYM_LOCK(); 3993 3994 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3995 sym_intr1((hcb_p) arg); 3996 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3997 3998 SYM_UNLOCK(); 3999 } 4000 4001 static void sym_poll(struct cam_sim *sim) 4002 { 4003 sym_intr1(cam_sim_softc(sim)); 4004 } 4005 4006 4007 /* 4008 * generic recovery from scsi interrupt 4009 * 4010 * The doc says that when the chip gets an SCSI interrupt, 4011 * it tries to stop in an orderly fashion, by completing 4012 * an instruction fetch that had started or by flushing 4013 * the DMA fifo for a write to memory that was executing. 4014 * Such a fashion is not enough to know if the instruction 4015 * that was just before the current DSP value has been 4016 * executed or not. 4017 * 4018 * There are some small SCRIPTS sections that deal with 4019 * the start queue and the done queue that may break any 4020 * assomption from the C code if we are interrupted 4021 * inside, so we reset if this happens. Btw, since these 4022 * SCRIPTS sections are executed while the SCRIPTS hasn't 4023 * started SCSI operations, it is very unlikely to happen. 4024 * 4025 * All the driver data structures are supposed to be 4026 * allocated from the same 4 GB memory window, so there 4027 * is a 1 to 1 relationship between DSA and driver data 4028 * structures. Since we are careful :) to invalidate the 4029 * DSA when we complete a command or when the SCRIPTS 4030 * pushes a DSA into a queue, we can trust it when it 4031 * points to a CCB. 4032 */ 4033 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4034 { 4035 u32 dsp = INL (nc_dsp); 4036 u32 dsa = INL (nc_dsa); 4037 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4038 4039 /* 4040 * If we haven't been interrupted inside the SCRIPTS 4041 * critical pathes, we can safely restart the SCRIPTS 4042 * and trust the DSA value if it matches a CCB. 4043 */ 4044 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4045 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4046 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4047 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4048 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4049 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4050 (!(dsp > SCRIPTA_BA (np, done) && 4051 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4052 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4053 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4054 /* 4055 * If we have a CCB, let the SCRIPTS call us back for 4056 * the handling of the error with SCRATCHA filled with 4057 * STARTPOS. This way, we will be able to freeze the 4058 * device queue and requeue awaiting IOs. 4059 */ 4060 if (cp) { 4061 cp->host_status = hsts; 4062 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4063 } 4064 /* 4065 * Otherwise just restart the SCRIPTS. 4066 */ 4067 else { 4068 OUTL (nc_dsa, 0xffffff); 4069 OUTL_DSP (SCRIPTA_BA (np, start)); 4070 } 4071 } 4072 else 4073 goto reset_all; 4074 4075 return; 4076 4077 reset_all: 4078 sym_start_reset(np); 4079 } 4080 4081 /* 4082 * chip exception handler for selection timeout 4083 */ 4084 static void sym_int_sto (hcb_p np) 4085 { 4086 u32 dsp = INL (nc_dsp); 4087 4088 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4089 4090 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4091 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4092 else 4093 sym_start_reset(np); 4094 } 4095 4096 /* 4097 * chip exception handler for unexpected disconnect 4098 */ 4099 static void sym_int_udc (hcb_p np) 4100 { 4101 printf ("%s: unexpected disconnect\n", sym_name(np)); 4102 sym_recover_scsi_int(np, HS_UNEXPECTED); 4103 } 4104 4105 /* 4106 * chip exception handler for SCSI bus mode change 4107 * 4108 * spi2-r12 11.2.3 says a transceiver mode change must 4109 * generate a reset event and a device that detects a reset 4110 * event shall initiate a hard reset. It says also that a 4111 * device that detects a mode change shall set data transfer 4112 * mode to eight bit asynchronous, etc... 4113 * So, just reinitializing all except chip should be enough. 4114 */ 4115 static void sym_int_sbmc (hcb_p np) 4116 { 4117 u_char scsi_mode = INB (nc_stest4) & SMODE; 4118 4119 /* 4120 * Notify user. 4121 */ 4122 xpt_print_path(np->path); 4123 printf("SCSI BUS mode change from %s to %s.\n", 4124 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4125 4126 /* 4127 * Should suspend command processing for a few seconds and 4128 * reinitialize all except the chip. 4129 */ 4130 sym_init (np, 2); 4131 } 4132 4133 /* 4134 * chip exception handler for SCSI parity error. 4135 * 4136 * When the chip detects a SCSI parity error and is 4137 * currently executing a (CH)MOV instruction, it does 4138 * not interrupt immediately, but tries to finish the 4139 * transfer of the current scatter entry before 4140 * interrupting. The following situations may occur: 4141 * 4142 * - The complete scatter entry has been transferred 4143 * without the device having changed phase. 4144 * The chip will then interrupt with the DSP pointing 4145 * to the instruction that follows the MOV. 4146 * 4147 * - A phase mismatch occurs before the MOV finished 4148 * and phase errors are to be handled by the C code. 4149 * The chip will then interrupt with both PAR and MA 4150 * conditions set. 4151 * 4152 * - A phase mismatch occurs before the MOV finished and 4153 * phase errors are to be handled by SCRIPTS. 4154 * The chip will load the DSP with the phase mismatch 4155 * JUMP address and interrupt the host processor. 4156 */ 4157 static void sym_int_par (hcb_p np, u_short sist) 4158 { 4159 u_char hsts = INB (HS_PRT); 4160 u32 dsp = INL (nc_dsp); 4161 u32 dbc = INL (nc_dbc); 4162 u32 dsa = INL (nc_dsa); 4163 u_char sbcl = INB (nc_sbcl); 4164 u_char cmd = dbc >> 24; 4165 int phase = cmd & 7; 4166 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4167 4168 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4169 sym_name(np), hsts, dbc, sbcl); 4170 4171 /* 4172 * Check that the chip is connected to the SCSI BUS. 4173 */ 4174 if (!(INB (nc_scntl1) & ISCON)) { 4175 sym_recover_scsi_int(np, HS_UNEXPECTED); 4176 return; 4177 } 4178 4179 /* 4180 * If the nexus is not clearly identified, reset the bus. 4181 * We will try to do better later. 4182 */ 4183 if (!cp) 4184 goto reset_all; 4185 4186 /* 4187 * Check instruction was a MOV, direction was INPUT and 4188 * ATN is asserted. 4189 */ 4190 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4191 goto reset_all; 4192 4193 /* 4194 * Keep track of the parity error. 4195 */ 4196 OUTONB (HF_PRT, HF_EXT_ERR); 4197 cp->xerr_status |= XE_PARITY_ERR; 4198 4199 /* 4200 * Prepare the message to send to the device. 4201 */ 4202 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4203 4204 /* 4205 * If the old phase was DATA IN phase, we have to deal with 4206 * the 3 situations described above. 4207 * For other input phases (MSG IN and STATUS), the device 4208 * must resend the whole thing that failed parity checking 4209 * or signal error. So, jumping to dispatcher should be OK. 4210 */ 4211 if (phase == 1 || phase == 5) { 4212 /* Phase mismatch handled by SCRIPTS */ 4213 if (dsp == SCRIPTB_BA (np, pm_handle)) 4214 OUTL_DSP (dsp); 4215 /* Phase mismatch handled by the C code */ 4216 else if (sist & MA) 4217 sym_int_ma (np); 4218 /* No phase mismatch occurred */ 4219 else { 4220 OUTL (nc_temp, dsp); 4221 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4222 } 4223 } 4224 else 4225 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4226 return; 4227 4228 reset_all: 4229 sym_start_reset(np); 4230 } 4231 4232 /* 4233 * chip exception handler for phase errors. 4234 * 4235 * We have to construct a new transfer descriptor, 4236 * to transfer the rest of the current block. 4237 */ 4238 static void sym_int_ma (hcb_p np) 4239 { 4240 u32 dbc; 4241 u32 rest; 4242 u32 dsp; 4243 u32 dsa; 4244 u32 nxtdsp; 4245 u32 *vdsp; 4246 u32 oadr, olen; 4247 u32 *tblp; 4248 u32 newcmd; 4249 u_int delta; 4250 u_char cmd; 4251 u_char hflags, hflags0; 4252 struct sym_pmc *pm; 4253 ccb_p cp; 4254 4255 dsp = INL (nc_dsp); 4256 dbc = INL (nc_dbc); 4257 dsa = INL (nc_dsa); 4258 4259 cmd = dbc >> 24; 4260 rest = dbc & 0xffffff; 4261 delta = 0; 4262 4263 /* 4264 * locate matching cp if any. 4265 */ 4266 cp = sym_ccb_from_dsa(np, dsa); 4267 4268 /* 4269 * Donnot take into account dma fifo and various buffers in 4270 * INPUT phase since the chip flushes everything before 4271 * raising the MA interrupt for interrupted INPUT phases. 4272 * For DATA IN phase, we will check for the SWIDE later. 4273 */ 4274 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4275 u_char ss0, ss2; 4276 4277 if (np->features & FE_DFBC) 4278 delta = INW (nc_dfbc); 4279 else { 4280 u32 dfifo; 4281 4282 /* 4283 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4284 */ 4285 dfifo = INL(nc_dfifo); 4286 4287 /* 4288 * Calculate remaining bytes in DMA fifo. 4289 * (CTEST5 = dfifo >> 16) 4290 */ 4291 if (dfifo & (DFS << 16)) 4292 delta = ((((dfifo >> 8) & 0x300) | 4293 (dfifo & 0xff)) - rest) & 0x3ff; 4294 else 4295 delta = ((dfifo & 0xff) - rest) & 0x7f; 4296 } 4297 4298 /* 4299 * The data in the dma fifo has not been transferred to 4300 * the target -> add the amount to the rest 4301 * and clear the data. 4302 * Check the sstat2 register in case of wide transfer. 4303 */ 4304 rest += delta; 4305 ss0 = INB (nc_sstat0); 4306 if (ss0 & OLF) rest++; 4307 if (!(np->features & FE_C10)) 4308 if (ss0 & ORF) rest++; 4309 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4310 ss2 = INB (nc_sstat2); 4311 if (ss2 & OLF1) rest++; 4312 if (!(np->features & FE_C10)) 4313 if (ss2 & ORF1) rest++; 4314 }; 4315 4316 /* 4317 * Clear fifos. 4318 */ 4319 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4320 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4321 } 4322 4323 /* 4324 * log the information 4325 */ 4326 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4327 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4328 (unsigned) rest, (unsigned) delta); 4329 4330 /* 4331 * try to find the interrupted script command, 4332 * and the address at which to continue. 4333 */ 4334 vdsp = 0; 4335 nxtdsp = 0; 4336 if (dsp > np->scripta_ba && 4337 dsp <= np->scripta_ba + np->scripta_sz) { 4338 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4339 nxtdsp = dsp; 4340 } 4341 else if (dsp > np->scriptb_ba && 4342 dsp <= np->scriptb_ba + np->scriptb_sz) { 4343 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4344 nxtdsp = dsp; 4345 } 4346 4347 /* 4348 * log the information 4349 */ 4350 if (DEBUG_FLAGS & DEBUG_PHASE) { 4351 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4352 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4353 }; 4354 4355 if (!vdsp) { 4356 printf ("%s: interrupted SCRIPT address not found.\n", 4357 sym_name (np)); 4358 goto reset_all; 4359 } 4360 4361 if (!cp) { 4362 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4363 sym_name (np)); 4364 goto reset_all; 4365 } 4366 4367 /* 4368 * get old startaddress and old length. 4369 */ 4370 oadr = scr_to_cpu(vdsp[1]); 4371 4372 if (cmd & 0x10) { /* Table indirect */ 4373 tblp = (u32 *) ((char*) &cp->phys + oadr); 4374 olen = scr_to_cpu(tblp[0]); 4375 oadr = scr_to_cpu(tblp[1]); 4376 } else { 4377 tblp = (u32 *) 0; 4378 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4379 }; 4380 4381 if (DEBUG_FLAGS & DEBUG_PHASE) { 4382 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4383 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4384 tblp, 4385 (unsigned) olen, 4386 (unsigned) oadr); 4387 }; 4388 4389 /* 4390 * check cmd against assumed interrupted script command. 4391 * If dt data phase, the MOVE instruction hasn't bit 4 of 4392 * the phase. 4393 */ 4394 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4395 PRINT_ADDR(cp); 4396 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4397 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4398 4399 goto reset_all; 4400 }; 4401 4402 /* 4403 * if old phase not dataphase, leave here. 4404 */ 4405 if (cmd & 2) { 4406 PRINT_ADDR(cp); 4407 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4408 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4409 (unsigned)oadr, (unsigned)rest); 4410 goto unexpected_phase; 4411 }; 4412 4413 /* 4414 * Choose the correct PM save area. 4415 * 4416 * Look at the PM_SAVE SCRIPT if you want to understand 4417 * this stuff. The equivalent code is implemented in 4418 * SCRIPTS for the 895A, 896 and 1010 that are able to 4419 * handle PM from the SCRIPTS processor. 4420 */ 4421 hflags0 = INB (HF_PRT); 4422 hflags = hflags0; 4423 4424 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4425 if (hflags & HF_IN_PM0) 4426 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4427 else if (hflags & HF_IN_PM1) 4428 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4429 4430 if (hflags & HF_DP_SAVED) 4431 hflags ^= HF_ACT_PM; 4432 } 4433 4434 if (!(hflags & HF_ACT_PM)) { 4435 pm = &cp->phys.pm0; 4436 newcmd = SCRIPTA_BA (np, pm0_data); 4437 } 4438 else { 4439 pm = &cp->phys.pm1; 4440 newcmd = SCRIPTA_BA (np, pm1_data); 4441 } 4442 4443 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4444 if (hflags != hflags0) 4445 OUTB (HF_PRT, hflags); 4446 4447 /* 4448 * fillin the phase mismatch context 4449 */ 4450 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4451 pm->sg.size = cpu_to_scr(rest); 4452 pm->ret = cpu_to_scr(nxtdsp); 4453 4454 /* 4455 * If we have a SWIDE, 4456 * - prepare the address to write the SWIDE from SCRIPTS, 4457 * - compute the SCRIPTS address to restart from, 4458 * - move current data pointer context by one byte. 4459 */ 4460 nxtdsp = SCRIPTA_BA (np, dispatch); 4461 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4462 (INB (nc_scntl2) & WSR)) { 4463 u32 tmp; 4464 4465 /* 4466 * Set up the table indirect for the MOVE 4467 * of the residual byte and adjust the data 4468 * pointer context. 4469 */ 4470 tmp = scr_to_cpu(pm->sg.addr); 4471 cp->phys.wresid.addr = cpu_to_scr(tmp); 4472 pm->sg.addr = cpu_to_scr(tmp + 1); 4473 tmp = scr_to_cpu(pm->sg.size); 4474 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4475 pm->sg.size = cpu_to_scr(tmp - 1); 4476 4477 /* 4478 * If only the residual byte is to be moved, 4479 * no PM context is needed. 4480 */ 4481 if ((tmp&0xffffff) == 1) 4482 newcmd = pm->ret; 4483 4484 /* 4485 * Prepare the address of SCRIPTS that will 4486 * move the residual byte to memory. 4487 */ 4488 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4489 } 4490 4491 if (DEBUG_FLAGS & DEBUG_PHASE) { 4492 PRINT_ADDR(cp); 4493 printf ("PM %x %x %x / %x %x %x.\n", 4494 hflags0, hflags, newcmd, 4495 (unsigned)scr_to_cpu(pm->sg.addr), 4496 (unsigned)scr_to_cpu(pm->sg.size), 4497 (unsigned)scr_to_cpu(pm->ret)); 4498 } 4499 4500 /* 4501 * Restart the SCRIPTS processor. 4502 */ 4503 OUTL (nc_temp, newcmd); 4504 OUTL_DSP (nxtdsp); 4505 return; 4506 4507 /* 4508 * Unexpected phase changes that occurs when the current phase 4509 * is not a DATA IN or DATA OUT phase are due to error conditions. 4510 * Such event may only happen when the SCRIPTS is using a 4511 * multibyte SCSI MOVE. 4512 * 4513 * Phase change Some possible cause 4514 * 4515 * COMMAND --> MSG IN SCSI parity error detected by target. 4516 * COMMAND --> STATUS Bad command or refused by target. 4517 * MSG OUT --> MSG IN Message rejected by target. 4518 * MSG OUT --> COMMAND Bogus target that discards extended 4519 * negotiation messages. 4520 * 4521 * The code below does not care of the new phase and so 4522 * trusts the target. Why to annoy it ? 4523 * If the interrupted phase is COMMAND phase, we restart at 4524 * dispatcher. 4525 * If a target does not get all the messages after selection, 4526 * the code assumes blindly that the target discards extended 4527 * messages and clears the negotiation status. 4528 * If the target does not want all our response to negotiation, 4529 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4530 * bloat for such a should_not_happen situation). 4531 * In all other situation, we reset the BUS. 4532 * Are these assumptions reasonnable ? (Wait and see ...) 4533 */ 4534 unexpected_phase: 4535 dsp -= 8; 4536 nxtdsp = 0; 4537 4538 switch (cmd & 7) { 4539 case 2: /* COMMAND phase */ 4540 nxtdsp = SCRIPTA_BA (np, dispatch); 4541 break; 4542 #if 0 4543 case 3: /* STATUS phase */ 4544 nxtdsp = SCRIPTA_BA (np, dispatch); 4545 break; 4546 #endif 4547 case 6: /* MSG OUT phase */ 4548 /* 4549 * If the device may want to use untagged when we want 4550 * tagged, we prepare an IDENTIFY without disc. granted, 4551 * since we will not be able to handle reselect. 4552 * Otherwise, we just don't care. 4553 */ 4554 if (dsp == SCRIPTA_BA (np, send_ident)) { 4555 if (cp->tag != NO_TAG && olen - rest <= 3) { 4556 cp->host_status = HS_BUSY; 4557 np->msgout[0] = M_IDENTIFY | cp->lun; 4558 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4559 } 4560 else 4561 nxtdsp = SCRIPTB_BA (np, ident_break); 4562 } 4563 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4564 dsp == SCRIPTB_BA (np, send_sdtr) || 4565 dsp == SCRIPTB_BA (np, send_ppr)) { 4566 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4567 } 4568 break; 4569 #if 0 4570 case 7: /* MSG IN phase */ 4571 nxtdsp = SCRIPTA_BA (np, clrack); 4572 break; 4573 #endif 4574 } 4575 4576 if (nxtdsp) { 4577 OUTL_DSP (nxtdsp); 4578 return; 4579 } 4580 4581 reset_all: 4582 sym_start_reset(np); 4583 } 4584 4585 /* 4586 * Dequeue from the START queue all CCBs that match 4587 * a given target/lun/task condition (-1 means all), 4588 * and move them from the BUSY queue to the COMP queue 4589 * with CAM_REQUEUE_REQ status condition. 4590 * This function is used during error handling/recovery. 4591 * It is called with SCRIPTS not running. 4592 */ 4593 static int 4594 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4595 { 4596 int j; 4597 ccb_p cp; 4598 4599 /* 4600 * Make sure the starting index is within range. 4601 */ 4602 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4603 4604 /* 4605 * Walk until end of START queue and dequeue every job 4606 * that matches the target/lun/task condition. 4607 */ 4608 j = i; 4609 while (i != np->squeueput) { 4610 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4611 assert(cp); 4612 #ifdef SYM_CONF_IARB_SUPPORT 4613 /* Forget hints for IARB, they may be no longer relevant */ 4614 cp->host_flags &= ~HF_HINT_IARB; 4615 #endif 4616 if ((target == -1 || cp->target == target) && 4617 (lun == -1 || cp->lun == lun) && 4618 (task == -1 || cp->tag == task)) { 4619 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4620 sym_remque(&cp->link_ccbq); 4621 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4622 } 4623 else { 4624 if (i != j) 4625 np->squeue[j] = np->squeue[i]; 4626 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4627 } 4628 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4629 } 4630 if (i != j) /* Copy back the idle task if needed */ 4631 np->squeue[j] = np->squeue[i]; 4632 np->squeueput = j; /* Update our current start queue pointer */ 4633 4634 return (i - j) / 2; 4635 } 4636 4637 /* 4638 * Complete all CCBs queued to the COMP queue. 4639 * 4640 * These CCBs are assumed: 4641 * - Not to be referenced either by devices or 4642 * SCRIPTS-related queues and datas. 4643 * - To have to be completed with an error condition 4644 * or requeued. 4645 * 4646 * The device queue freeze count is incremented 4647 * for each CCB that does not prevent this. 4648 * This function is called when all CCBs involved 4649 * in error handling/recovery have been reaped. 4650 */ 4651 static void 4652 sym_flush_comp_queue(hcb_p np, int cam_status) 4653 { 4654 SYM_QUEHEAD *qp; 4655 ccb_p cp; 4656 4657 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4658 union ccb *ccb; 4659 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4660 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4661 /* Leave quiet CCBs waiting for resources */ 4662 if (cp->host_status == HS_WAIT) 4663 continue; 4664 ccb = cp->cam_ccb; 4665 if (cam_status) 4666 sym_set_cam_status(ccb, cam_status); 4667 sym_freeze_cam_ccb(ccb); 4668 sym_xpt_done(np, ccb, cp); 4669 sym_free_ccb(np, cp); 4670 } 4671 } 4672 4673 /* 4674 * chip handler for bad SCSI status condition 4675 * 4676 * In case of bad SCSI status, we unqueue all the tasks 4677 * currently queued to the controller but not yet started 4678 * and then restart the SCRIPTS processor immediately. 4679 * 4680 * QUEUE FULL and BUSY conditions are handled the same way. 4681 * Basically all the not yet started tasks are requeued in 4682 * device queue and the queue is frozen until a completion. 4683 * 4684 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4685 * the CCB of the failed command to prepare a REQUEST SENSE 4686 * SCSI command and queue it to the controller queue. 4687 * 4688 * SCRATCHA is assumed to have been loaded with STARTPOS 4689 * before the SCRIPTS called the C code. 4690 */ 4691 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4692 { 4693 tcb_p tp = &np->target[cp->target]; 4694 u32 startp; 4695 u_char s_status = cp->ssss_status; 4696 u_char h_flags = cp->host_flags; 4697 int msglen; 4698 int nego; 4699 int i; 4700 4701 SYM_LOCK_ASSERT(MA_OWNED); 4702 4703 /* 4704 * Compute the index of the next job to start from SCRIPTS. 4705 */ 4706 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4707 4708 /* 4709 * The last CCB queued used for IARB hint may be 4710 * no longer relevant. Forget it. 4711 */ 4712 #ifdef SYM_CONF_IARB_SUPPORT 4713 if (np->last_cp) 4714 np->last_cp = NULL; 4715 #endif 4716 4717 /* 4718 * Now deal with the SCSI status. 4719 */ 4720 switch(s_status) { 4721 case S_BUSY: 4722 case S_QUEUE_FULL: 4723 if (sym_verbose >= 2) { 4724 PRINT_ADDR(cp); 4725 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4726 } 4727 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4728 sym_complete_error (np, cp); 4729 break; 4730 case S_TERMINATED: 4731 case S_CHECK_COND: 4732 /* 4733 * If we get an SCSI error when requesting sense, give up. 4734 */ 4735 if (h_flags & HF_SENSE) { 4736 sym_complete_error (np, cp); 4737 break; 4738 } 4739 4740 /* 4741 * Dequeue all queued CCBs for that device not yet started, 4742 * and restart the SCRIPTS processor immediately. 4743 */ 4744 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4745 OUTL_DSP (SCRIPTA_BA (np, start)); 4746 4747 /* 4748 * Save some info of the actual IO. 4749 * Compute the data residual. 4750 */ 4751 cp->sv_scsi_status = cp->ssss_status; 4752 cp->sv_xerr_status = cp->xerr_status; 4753 cp->sv_resid = sym_compute_residual(np, cp); 4754 4755 /* 4756 * Prepare all needed data structures for 4757 * requesting sense data. 4758 */ 4759 4760 /* 4761 * identify message 4762 */ 4763 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4764 msglen = 1; 4765 4766 /* 4767 * If we are currently using anything different from 4768 * async. 8 bit data transfers with that target, 4769 * start a negotiation, since the device may want 4770 * to report us a UNIT ATTENTION condition due to 4771 * a cause we currently ignore, and we donnot want 4772 * to be stuck with WIDE and/or SYNC data transfer. 4773 * 4774 * cp->nego_status is filled by sym_prepare_nego(). 4775 */ 4776 cp->nego_status = 0; 4777 nego = 0; 4778 if (tp->tinfo.current.options & PPR_OPT_MASK) 4779 nego = NS_PPR; 4780 else if (tp->tinfo.current.width != BUS_8_BIT) 4781 nego = NS_WIDE; 4782 else if (tp->tinfo.current.offset != 0) 4783 nego = NS_SYNC; 4784 if (nego) 4785 msglen += 4786 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4787 /* 4788 * Message table indirect structure. 4789 */ 4790 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4791 cp->phys.smsg.size = cpu_to_scr(msglen); 4792 4793 /* 4794 * sense command 4795 */ 4796 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4797 cp->phys.cmd.size = cpu_to_scr(6); 4798 4799 /* 4800 * patch requested size into sense command 4801 */ 4802 cp->sensecmd[0] = 0x03; 4803 cp->sensecmd[1] = cp->lun << 5; 4804 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4805 cp->sensecmd[1] = 0; 4806 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4807 cp->data_len = SYM_SNS_BBUF_LEN; 4808 4809 /* 4810 * sense data 4811 */ 4812 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4813 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4814 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4815 4816 /* 4817 * requeue the command. 4818 */ 4819 startp = SCRIPTB_BA (np, sdata_in); 4820 4821 cp->phys.head.savep = cpu_to_scr(startp); 4822 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4823 cp->phys.head.lastp = cpu_to_scr(startp); 4824 cp->startp = cpu_to_scr(startp); 4825 4826 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4827 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4828 cp->ssss_status = S_ILLEGAL; 4829 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4830 cp->xerr_status = 0; 4831 cp->extra_bytes = 0; 4832 4833 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4834 4835 /* 4836 * Requeue the command. 4837 */ 4838 sym_put_start_queue(np, cp); 4839 4840 /* 4841 * Give back to upper layer everything we have dequeued. 4842 */ 4843 sym_flush_comp_queue(np, 0); 4844 break; 4845 } 4846 } 4847 4848 /* 4849 * After a device has accepted some management message 4850 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4851 * a device signals a UNIT ATTENTION condition, some 4852 * tasks are thrown away by the device. We are required 4853 * to reflect that on our tasks list since the device 4854 * will never complete these tasks. 4855 * 4856 * This function move from the BUSY queue to the COMP 4857 * queue all disconnected CCBs for a given target that 4858 * match the following criteria: 4859 * - lun=-1 means any logical UNIT otherwise a given one. 4860 * - task=-1 means any task, otherwise a given one. 4861 */ 4862 static int 4863 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4864 { 4865 SYM_QUEHEAD qtmp, *qp; 4866 int i = 0; 4867 ccb_p cp; 4868 4869 /* 4870 * Move the entire BUSY queue to our temporary queue. 4871 */ 4872 sym_que_init(&qtmp); 4873 sym_que_splice(&np->busy_ccbq, &qtmp); 4874 sym_que_init(&np->busy_ccbq); 4875 4876 /* 4877 * Put all CCBs that matches our criteria into 4878 * the COMP queue and put back other ones into 4879 * the BUSY queue. 4880 */ 4881 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4882 union ccb *ccb; 4883 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4884 ccb = cp->cam_ccb; 4885 if (cp->host_status != HS_DISCONNECT || 4886 cp->target != target || 4887 (lun != -1 && cp->lun != lun) || 4888 (task != -1 && 4889 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4890 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4891 continue; 4892 } 4893 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4894 4895 /* Preserve the software timeout condition */ 4896 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4897 sym_set_cam_status(ccb, cam_status); 4898 ++i; 4899 #if 0 4900 printf("XXXX TASK @%p CLEARED\n", cp); 4901 #endif 4902 } 4903 return i; 4904 } 4905 4906 /* 4907 * chip handler for TASKS recovery 4908 * 4909 * We cannot safely abort a command, while the SCRIPTS 4910 * processor is running, since we just would be in race 4911 * with it. 4912 * 4913 * As long as we have tasks to abort, we keep the SEM 4914 * bit set in the ISTAT. When this bit is set, the 4915 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4916 * each time it enters the scheduler. 4917 * 4918 * If we have to reset a target, clear tasks of a unit, 4919 * or to perform the abort of a disconnected job, we 4920 * restart the SCRIPTS for selecting the target. Once 4921 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4922 * If it loses arbitration, the SCRIPTS will interrupt again 4923 * the next time it will enter its scheduler, and so on ... 4924 * 4925 * On SIR_TARGET_SELECTED, we scan for the more 4926 * appropriate thing to do: 4927 * 4928 * - If nothing, we just sent a M_ABORT message to the 4929 * target to get rid of the useless SCSI bus ownership. 4930 * According to the specs, no tasks shall be affected. 4931 * - If the target is to be reset, we send it a M_RESET 4932 * message. 4933 * - If a logical UNIT is to be cleared , we send the 4934 * IDENTIFY(lun) + M_ABORT. 4935 * - If an untagged task is to be aborted, we send the 4936 * IDENTIFY(lun) + M_ABORT. 4937 * - If a tagged task is to be aborted, we send the 4938 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4939 * 4940 * Once our 'kiss of death' :) message has been accepted 4941 * by the target, the SCRIPTS interrupts again 4942 * (SIR_ABORT_SENT). On this interrupt, we complete 4943 * all the CCBs that should have been aborted by the 4944 * target according to our message. 4945 */ 4946 static void sym_sir_task_recovery(hcb_p np, int num) 4947 { 4948 SYM_QUEHEAD *qp; 4949 ccb_p cp; 4950 tcb_p tp; 4951 int target=-1, lun=-1, task; 4952 int i, k; 4953 4954 switch(num) { 4955 /* 4956 * The SCRIPTS processor stopped before starting 4957 * the next command in order to allow us to perform 4958 * some task recovery. 4959 */ 4960 case SIR_SCRIPT_STOPPED: 4961 /* 4962 * Do we have any target to reset or unit to clear ? 4963 */ 4964 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4965 tp = &np->target[i]; 4966 if (tp->to_reset || 4967 (tp->lun0p && tp->lun0p->to_clear)) { 4968 target = i; 4969 break; 4970 } 4971 if (!tp->lunmp) 4972 continue; 4973 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4974 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4975 target = i; 4976 break; 4977 } 4978 } 4979 if (target != -1) 4980 break; 4981 } 4982 4983 /* 4984 * If not, walk the busy queue for any 4985 * disconnected CCB to be aborted. 4986 */ 4987 if (target == -1) { 4988 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4989 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4990 if (cp->host_status != HS_DISCONNECT) 4991 continue; 4992 if (cp->to_abort) { 4993 target = cp->target; 4994 break; 4995 } 4996 } 4997 } 4998 4999 /* 5000 * If some target is to be selected, 5001 * prepare and start the selection. 5002 */ 5003 if (target != -1) { 5004 tp = &np->target[target]; 5005 np->abrt_sel.sel_id = target; 5006 np->abrt_sel.sel_scntl3 = tp->head.wval; 5007 np->abrt_sel.sel_sxfer = tp->head.sval; 5008 OUTL(nc_dsa, np->hcb_ba); 5009 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 5010 return; 5011 } 5012 5013 /* 5014 * Now look for a CCB to abort that haven't started yet. 5015 * Btw, the SCRIPTS processor is still stopped, so 5016 * we are not in race. 5017 */ 5018 i = 0; 5019 cp = NULL; 5020 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5021 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5022 if (cp->host_status != HS_BUSY && 5023 cp->host_status != HS_NEGOTIATE) 5024 continue; 5025 if (!cp->to_abort) 5026 continue; 5027 #ifdef SYM_CONF_IARB_SUPPORT 5028 /* 5029 * If we are using IMMEDIATE ARBITRATION, we donnot 5030 * want to cancel the last queued CCB, since the 5031 * SCRIPTS may have anticipated the selection. 5032 */ 5033 if (cp == np->last_cp) { 5034 cp->to_abort = 0; 5035 continue; 5036 } 5037 #endif 5038 i = 1; /* Means we have found some */ 5039 break; 5040 } 5041 if (!i) { 5042 /* 5043 * We are done, so we donnot need 5044 * to synchronize with the SCRIPTS anylonger. 5045 * Remove the SEM flag from the ISTAT. 5046 */ 5047 np->istat_sem = 0; 5048 OUTB (nc_istat, SIGP); 5049 break; 5050 } 5051 /* 5052 * Compute index of next position in the start 5053 * queue the SCRIPTS intends to start and dequeue 5054 * all CCBs for that device that haven't been started. 5055 */ 5056 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5057 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5058 5059 /* 5060 * Make sure at least our IO to abort has been dequeued. 5061 */ 5062 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5063 5064 /* 5065 * Keep track in cam status of the reason of the abort. 5066 */ 5067 if (cp->to_abort == 2) 5068 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5069 else 5070 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5071 5072 /* 5073 * Complete with error everything that we have dequeued. 5074 */ 5075 sym_flush_comp_queue(np, 0); 5076 break; 5077 /* 5078 * The SCRIPTS processor has selected a target 5079 * we may have some manual recovery to perform for. 5080 */ 5081 case SIR_TARGET_SELECTED: 5082 target = (INB (nc_sdid) & 0xf); 5083 tp = &np->target[target]; 5084 5085 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5086 5087 /* 5088 * If the target is to be reset, prepare a 5089 * M_RESET message and clear the to_reset flag 5090 * since we donnot expect this operation to fail. 5091 */ 5092 if (tp->to_reset) { 5093 np->abrt_msg[0] = M_RESET; 5094 np->abrt_tbl.size = 1; 5095 tp->to_reset = 0; 5096 break; 5097 } 5098 5099 /* 5100 * Otherwise, look for some logical unit to be cleared. 5101 */ 5102 if (tp->lun0p && tp->lun0p->to_clear) 5103 lun = 0; 5104 else if (tp->lunmp) { 5105 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5106 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5107 lun = k; 5108 break; 5109 } 5110 } 5111 } 5112 5113 /* 5114 * If a logical unit is to be cleared, prepare 5115 * an IDENTIFY(lun) + ABORT MESSAGE. 5116 */ 5117 if (lun != -1) { 5118 lcb_p lp = sym_lp(np, tp, lun); 5119 lp->to_clear = 0; /* We donnot expect to fail here */ 5120 np->abrt_msg[0] = M_IDENTIFY | lun; 5121 np->abrt_msg[1] = M_ABORT; 5122 np->abrt_tbl.size = 2; 5123 break; 5124 } 5125 5126 /* 5127 * Otherwise, look for some disconnected job to 5128 * abort for this target. 5129 */ 5130 i = 0; 5131 cp = NULL; 5132 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5133 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5134 if (cp->host_status != HS_DISCONNECT) 5135 continue; 5136 if (cp->target != target) 5137 continue; 5138 if (!cp->to_abort) 5139 continue; 5140 i = 1; /* Means we have some */ 5141 break; 5142 } 5143 5144 /* 5145 * If we have none, probably since the device has 5146 * completed the command before we won abitration, 5147 * send a M_ABORT message without IDENTIFY. 5148 * According to the specs, the device must just 5149 * disconnect the BUS and not abort any task. 5150 */ 5151 if (!i) { 5152 np->abrt_msg[0] = M_ABORT; 5153 np->abrt_tbl.size = 1; 5154 break; 5155 } 5156 5157 /* 5158 * We have some task to abort. 5159 * Set the IDENTIFY(lun) 5160 */ 5161 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5162 5163 /* 5164 * If we want to abort an untagged command, we 5165 * will send an IDENTIFY + M_ABORT. 5166 * Otherwise (tagged command), we will send 5167 * an IDENTIFY + task attributes + ABORT TAG. 5168 */ 5169 if (cp->tag == NO_TAG) { 5170 np->abrt_msg[1] = M_ABORT; 5171 np->abrt_tbl.size = 2; 5172 } 5173 else { 5174 np->abrt_msg[1] = cp->scsi_smsg[1]; 5175 np->abrt_msg[2] = cp->scsi_smsg[2]; 5176 np->abrt_msg[3] = M_ABORT_TAG; 5177 np->abrt_tbl.size = 4; 5178 } 5179 /* 5180 * Keep track of software timeout condition, since the 5181 * peripheral driver may not count retries on abort 5182 * conditions not due to timeout. 5183 */ 5184 if (cp->to_abort == 2) 5185 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5186 cp->to_abort = 0; /* We donnot expect to fail here */ 5187 break; 5188 5189 /* 5190 * The target has accepted our message and switched 5191 * to BUS FREE phase as we expected. 5192 */ 5193 case SIR_ABORT_SENT: 5194 target = (INB (nc_sdid) & 0xf); 5195 tp = &np->target[target]; 5196 5197 /* 5198 ** If we didn't abort anything, leave here. 5199 */ 5200 if (np->abrt_msg[0] == M_ABORT) 5201 break; 5202 5203 /* 5204 * If we sent a M_RESET, then a hardware reset has 5205 * been performed by the target. 5206 * - Reset everything to async 8 bit 5207 * - Tell ourself to negotiate next time :-) 5208 * - Prepare to clear all disconnected CCBs for 5209 * this target from our task list (lun=task=-1) 5210 */ 5211 lun = -1; 5212 task = -1; 5213 if (np->abrt_msg[0] == M_RESET) { 5214 tp->head.sval = 0; 5215 tp->head.wval = np->rv_scntl3; 5216 tp->head.uval = 0; 5217 tp->tinfo.current.period = 0; 5218 tp->tinfo.current.offset = 0; 5219 tp->tinfo.current.width = BUS_8_BIT; 5220 tp->tinfo.current.options = 0; 5221 } 5222 5223 /* 5224 * Otherwise, check for the LUN and TASK(s) 5225 * concerned by the cancelation. 5226 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5227 * or an ABORT message :-) 5228 */ 5229 else { 5230 lun = np->abrt_msg[0] & 0x3f; 5231 if (np->abrt_msg[1] == M_ABORT_TAG) 5232 task = np->abrt_msg[2]; 5233 } 5234 5235 /* 5236 * Complete all the CCBs the device should have 5237 * aborted due to our 'kiss of death' message. 5238 */ 5239 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5240 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5241 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5242 sym_flush_comp_queue(np, 0); 5243 5244 /* 5245 * If we sent a BDR, make uper layer aware of that. 5246 */ 5247 if (np->abrt_msg[0] == M_RESET) 5248 xpt_async(AC_SENT_BDR, np->path, NULL); 5249 break; 5250 } 5251 5252 /* 5253 * Print to the log the message we intend to send. 5254 */ 5255 if (num == SIR_TARGET_SELECTED) { 5256 PRINT_TARGET(np, target); 5257 sym_printl_hex("control msgout:", np->abrt_msg, 5258 np->abrt_tbl.size); 5259 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5260 } 5261 5262 /* 5263 * Let the SCRIPTS processor continue. 5264 */ 5265 OUTONB_STD (); 5266 } 5267 5268 /* 5269 * Gerard's alchemy:) that deals with with the data 5270 * pointer for both MDP and the residual calculation. 5271 * 5272 * I didn't want to bloat the code by more than 200 5273 * lignes for the handling of both MDP and the residual. 5274 * This has been achieved by using a data pointer 5275 * representation consisting in an index in the data 5276 * array (dp_sg) and a negative offset (dp_ofs) that 5277 * have the following meaning: 5278 * 5279 * - dp_sg = SYM_CONF_MAX_SG 5280 * we are at the end of the data script. 5281 * - dp_sg < SYM_CONF_MAX_SG 5282 * dp_sg points to the next entry of the scatter array 5283 * we want to transfer. 5284 * - dp_ofs < 0 5285 * dp_ofs represents the residual of bytes of the 5286 * previous entry scatter entry we will send first. 5287 * - dp_ofs = 0 5288 * no residual to send first. 5289 * 5290 * The function sym_evaluate_dp() accepts an arbitray 5291 * offset (basically from the MDP message) and returns 5292 * the corresponding values of dp_sg and dp_ofs. 5293 */ 5294 5295 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5296 { 5297 u32 dp_scr; 5298 int dp_ofs, dp_sg, dp_sgmin; 5299 int tmp; 5300 struct sym_pmc *pm; 5301 5302 /* 5303 * Compute the resulted data pointer in term of a script 5304 * address within some DATA script and a signed byte offset. 5305 */ 5306 dp_scr = scr; 5307 dp_ofs = *ofs; 5308 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5309 pm = &cp->phys.pm0; 5310 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5311 pm = &cp->phys.pm1; 5312 else 5313 pm = NULL; 5314 5315 if (pm) { 5316 dp_scr = scr_to_cpu(pm->ret); 5317 dp_ofs -= scr_to_cpu(pm->sg.size); 5318 } 5319 5320 /* 5321 * If we are auto-sensing, then we are done. 5322 */ 5323 if (cp->host_flags & HF_SENSE) { 5324 *ofs = dp_ofs; 5325 return 0; 5326 } 5327 5328 /* 5329 * Deduce the index of the sg entry. 5330 * Keep track of the index of the first valid entry. 5331 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5332 * end of the data. 5333 */ 5334 tmp = scr_to_cpu(cp->phys.head.goalp); 5335 dp_sg = SYM_CONF_MAX_SG; 5336 if (dp_scr != tmp) 5337 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5338 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5339 5340 /* 5341 * Move to the sg entry the data pointer belongs to. 5342 * 5343 * If we are inside the data area, we expect result to be: 5344 * 5345 * Either, 5346 * dp_ofs = 0 and dp_sg is the index of the sg entry 5347 * the data pointer belongs to (or the end of the data) 5348 * Or, 5349 * dp_ofs < 0 and dp_sg is the index of the sg entry 5350 * the data pointer belongs to + 1. 5351 */ 5352 if (dp_ofs < 0) { 5353 int n; 5354 while (dp_sg > dp_sgmin) { 5355 --dp_sg; 5356 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5357 n = dp_ofs + (tmp & 0xffffff); 5358 if (n > 0) { 5359 ++dp_sg; 5360 break; 5361 } 5362 dp_ofs = n; 5363 } 5364 } 5365 else if (dp_ofs > 0) { 5366 while (dp_sg < SYM_CONF_MAX_SG) { 5367 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5368 dp_ofs -= (tmp & 0xffffff); 5369 ++dp_sg; 5370 if (dp_ofs <= 0) 5371 break; 5372 } 5373 } 5374 5375 /* 5376 * Make sure the data pointer is inside the data area. 5377 * If not, return some error. 5378 */ 5379 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5380 goto out_err; 5381 else if (dp_sg > SYM_CONF_MAX_SG || 5382 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5383 goto out_err; 5384 5385 /* 5386 * Save the extreme pointer if needed. 5387 */ 5388 if (dp_sg > cp->ext_sg || 5389 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5390 cp->ext_sg = dp_sg; 5391 cp->ext_ofs = dp_ofs; 5392 } 5393 5394 /* 5395 * Return data. 5396 */ 5397 *ofs = dp_ofs; 5398 return dp_sg; 5399 5400 out_err: 5401 return -1; 5402 } 5403 5404 /* 5405 * chip handler for MODIFY DATA POINTER MESSAGE 5406 * 5407 * We also call this function on IGNORE WIDE RESIDUE 5408 * messages that do not match a SWIDE full condition. 5409 * Btw, we assume in that situation that such a message 5410 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5411 */ 5412 5413 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5414 { 5415 int dp_ofs = ofs; 5416 u32 dp_scr = INL (nc_temp); 5417 u32 dp_ret; 5418 u32 tmp; 5419 u_char hflags; 5420 int dp_sg; 5421 struct sym_pmc *pm; 5422 5423 /* 5424 * Not supported for auto-sense. 5425 */ 5426 if (cp->host_flags & HF_SENSE) 5427 goto out_reject; 5428 5429 /* 5430 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5431 * to the resulted data pointer. 5432 */ 5433 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5434 if (dp_sg < 0) 5435 goto out_reject; 5436 5437 /* 5438 * And our alchemy:) allows to easily calculate the data 5439 * script address we want to return for the next data phase. 5440 */ 5441 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5442 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5443 5444 /* 5445 * If offset / scatter entry is zero we donnot need 5446 * a context for the new current data pointer. 5447 */ 5448 if (dp_ofs == 0) { 5449 dp_scr = dp_ret; 5450 goto out_ok; 5451 } 5452 5453 /* 5454 * Get a context for the new current data pointer. 5455 */ 5456 hflags = INB (HF_PRT); 5457 5458 if (hflags & HF_DP_SAVED) 5459 hflags ^= HF_ACT_PM; 5460 5461 if (!(hflags & HF_ACT_PM)) { 5462 pm = &cp->phys.pm0; 5463 dp_scr = SCRIPTA_BA (np, pm0_data); 5464 } 5465 else { 5466 pm = &cp->phys.pm1; 5467 dp_scr = SCRIPTA_BA (np, pm1_data); 5468 } 5469 5470 hflags &= ~(HF_DP_SAVED); 5471 5472 OUTB (HF_PRT, hflags); 5473 5474 /* 5475 * Set up the new current data pointer. 5476 * ofs < 0 there, and for the next data phase, we 5477 * want to transfer part of the data of the sg entry 5478 * corresponding to index dp_sg-1 prior to returning 5479 * to the main data script. 5480 */ 5481 pm->ret = cpu_to_scr(dp_ret); 5482 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5483 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5484 pm->sg.addr = cpu_to_scr(tmp); 5485 pm->sg.size = cpu_to_scr(-dp_ofs); 5486 5487 out_ok: 5488 OUTL (nc_temp, dp_scr); 5489 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5490 return; 5491 5492 out_reject: 5493 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5494 } 5495 5496 5497 /* 5498 * chip calculation of the data residual. 5499 * 5500 * As I used to say, the requirement of data residual 5501 * in SCSI is broken, useless and cannot be achieved 5502 * without huge complexity. 5503 * But most OSes and even the official CAM require it. 5504 * When stupidity happens to be so widely spread inside 5505 * a community, it gets hard to convince. 5506 * 5507 * Anyway, I don't care, since I am not going to use 5508 * any software that considers this data residual as 5509 * a relevant information. :) 5510 */ 5511 5512 static int sym_compute_residual(hcb_p np, ccb_p cp) 5513 { 5514 int dp_sg, dp_sgmin, resid = 0; 5515 int dp_ofs = 0; 5516 5517 /* 5518 * Check for some data lost or just thrown away. 5519 * We are not required to be quite accurate in this 5520 * situation. Btw, if we are odd for output and the 5521 * device claims some more data, it may well happen 5522 * than our residual be zero. :-) 5523 */ 5524 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5525 if (cp->xerr_status & XE_EXTRA_DATA) 5526 resid -= cp->extra_bytes; 5527 if (cp->xerr_status & XE_SODL_UNRUN) 5528 ++resid; 5529 if (cp->xerr_status & XE_SWIDE_OVRUN) 5530 --resid; 5531 } 5532 5533 /* 5534 * If all data has been transferred, 5535 * there is no residual. 5536 */ 5537 if (cp->phys.head.lastp == cp->phys.head.goalp) 5538 return resid; 5539 5540 /* 5541 * If no data transfer occurs, or if the data 5542 * pointer is weird, return full residual. 5543 */ 5544 if (cp->startp == cp->phys.head.lastp || 5545 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5546 &dp_ofs) < 0) { 5547 return cp->data_len; 5548 } 5549 5550 /* 5551 * If we were auto-sensing, then we are done. 5552 */ 5553 if (cp->host_flags & HF_SENSE) { 5554 return -dp_ofs; 5555 } 5556 5557 /* 5558 * We are now full comfortable in the computation 5559 * of the data residual (2's complement). 5560 */ 5561 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5562 resid = -cp->ext_ofs; 5563 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5564 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5565 resid += (tmp & 0xffffff); 5566 } 5567 5568 /* 5569 * Hopefully, the result is not too wrong. 5570 */ 5571 return resid; 5572 } 5573 5574 /* 5575 * Print out the content of a SCSI message. 5576 */ 5577 5578 static int sym_show_msg (u_char * msg) 5579 { 5580 u_char i; 5581 printf ("%x",*msg); 5582 if (*msg==M_EXTENDED) { 5583 for (i=1;i<8;i++) { 5584 if (i-1>msg[1]) break; 5585 printf ("-%x",msg[i]); 5586 }; 5587 return (i+1); 5588 } else if ((*msg & 0xf0) == 0x20) { 5589 printf ("-%x",msg[1]); 5590 return (2); 5591 }; 5592 return (1); 5593 } 5594 5595 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5596 { 5597 PRINT_ADDR(cp); 5598 if (label) 5599 printf ("%s: ", label); 5600 5601 (void) sym_show_msg (msg); 5602 printf (".\n"); 5603 } 5604 5605 /* 5606 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5607 * 5608 * When we try to negotiate, we append the negotiation message 5609 * to the identify and (maybe) simple tag message. 5610 * The host status field is set to HS_NEGOTIATE to mark this 5611 * situation. 5612 * 5613 * If the target doesn't answer this message immediately 5614 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5615 * will be raised eventually. 5616 * The handler removes the HS_NEGOTIATE status, and sets the 5617 * negotiated value to the default (async / nowide). 5618 * 5619 * If we receive a matching answer immediately, we check it 5620 * for validity, and set the values. 5621 * 5622 * If we receive a Reject message immediately, we assume the 5623 * negotiation has failed, and fall back to standard values. 5624 * 5625 * If we receive a negotiation message while not in HS_NEGOTIATE 5626 * state, it's a target initiated negotiation. We prepare a 5627 * (hopefully) valid answer, set our parameters, and send back 5628 * this answer to the target. 5629 * 5630 * If the target doesn't fetch the answer (no message out phase), 5631 * we assume the negotiation has failed, and fall back to default 5632 * settings (SIR_NEGO_PROTO interrupt). 5633 * 5634 * When we set the values, we adjust them in all ccbs belonging 5635 * to this target, in the controller's register, and in the "phys" 5636 * field of the controller's struct sym_hcb. 5637 */ 5638 5639 /* 5640 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5641 */ 5642 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5643 { 5644 u_char chg, ofs, per, fak, div; 5645 int req = 1; 5646 5647 /* 5648 * Synchronous request message received. 5649 */ 5650 if (DEBUG_FLAGS & DEBUG_NEGO) { 5651 sym_print_msg(cp, "sync msgin", np->msgin); 5652 }; 5653 5654 /* 5655 * request or answer ? 5656 */ 5657 if (INB (HS_PRT) == HS_NEGOTIATE) { 5658 OUTB (HS_PRT, HS_BUSY); 5659 if (cp->nego_status && cp->nego_status != NS_SYNC) 5660 goto reject_it; 5661 req = 0; 5662 } 5663 5664 /* 5665 * get requested values. 5666 */ 5667 chg = 0; 5668 per = np->msgin[3]; 5669 ofs = np->msgin[4]; 5670 5671 /* 5672 * check values against our limits. 5673 */ 5674 if (ofs) { 5675 if (ofs > np->maxoffs) 5676 {chg = 1; ofs = np->maxoffs;} 5677 if (req) { 5678 if (ofs > tp->tinfo.user.offset) 5679 {chg = 1; ofs = tp->tinfo.user.offset;} 5680 } 5681 } 5682 5683 if (ofs) { 5684 if (per < np->minsync) 5685 {chg = 1; per = np->minsync;} 5686 if (req) { 5687 if (per < tp->tinfo.user.period) 5688 {chg = 1; per = tp->tinfo.user.period;} 5689 } 5690 } 5691 5692 div = fak = 0; 5693 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5694 goto reject_it; 5695 5696 if (DEBUG_FLAGS & DEBUG_NEGO) { 5697 PRINT_ADDR(cp); 5698 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5699 ofs, per, div, fak, chg); 5700 } 5701 5702 /* 5703 * This was an answer message 5704 */ 5705 if (req == 0) { 5706 if (chg) /* Answer wasn't acceptable. */ 5707 goto reject_it; 5708 sym_setsync (np, cp, ofs, per, div, fak); 5709 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5710 return; 5711 } 5712 5713 /* 5714 * It was a request. Set value and 5715 * prepare an answer message 5716 */ 5717 sym_setsync (np, cp, ofs, per, div, fak); 5718 5719 np->msgout[0] = M_EXTENDED; 5720 np->msgout[1] = 3; 5721 np->msgout[2] = M_X_SYNC_REQ; 5722 np->msgout[3] = per; 5723 np->msgout[4] = ofs; 5724 5725 cp->nego_status = NS_SYNC; 5726 5727 if (DEBUG_FLAGS & DEBUG_NEGO) { 5728 sym_print_msg(cp, "sync msgout", np->msgout); 5729 } 5730 5731 np->msgin [0] = M_NOOP; 5732 5733 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5734 return; 5735 reject_it: 5736 sym_setsync (np, cp, 0, 0, 0, 0); 5737 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5738 } 5739 5740 /* 5741 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5742 */ 5743 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5744 { 5745 u_char chg, ofs, per, fak, dt, div, wide; 5746 int req = 1; 5747 5748 /* 5749 * Synchronous request message received. 5750 */ 5751 if (DEBUG_FLAGS & DEBUG_NEGO) { 5752 sym_print_msg(cp, "ppr msgin", np->msgin); 5753 }; 5754 5755 /* 5756 * get requested values. 5757 */ 5758 chg = 0; 5759 per = np->msgin[3]; 5760 ofs = np->msgin[5]; 5761 wide = np->msgin[6]; 5762 dt = np->msgin[7] & PPR_OPT_DT; 5763 5764 /* 5765 * request or answer ? 5766 */ 5767 if (INB (HS_PRT) == HS_NEGOTIATE) { 5768 OUTB (HS_PRT, HS_BUSY); 5769 if (cp->nego_status && cp->nego_status != NS_PPR) 5770 goto reject_it; 5771 req = 0; 5772 } 5773 5774 /* 5775 * check values against our limits. 5776 */ 5777 if (wide > np->maxwide) 5778 {chg = 1; wide = np->maxwide;} 5779 if (!wide || !(np->features & FE_ULTRA3)) 5780 dt &= ~PPR_OPT_DT; 5781 if (req) { 5782 if (wide > tp->tinfo.user.width) 5783 {chg = 1; wide = tp->tinfo.user.width;} 5784 } 5785 5786 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5787 dt &= ~PPR_OPT_DT; 5788 5789 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5790 5791 if (ofs) { 5792 if (dt) { 5793 if (ofs > np->maxoffs_dt) 5794 {chg = 1; ofs = np->maxoffs_dt;} 5795 } 5796 else if (ofs > np->maxoffs) 5797 {chg = 1; ofs = np->maxoffs;} 5798 if (req) { 5799 if (ofs > tp->tinfo.user.offset) 5800 {chg = 1; ofs = tp->tinfo.user.offset;} 5801 } 5802 } 5803 5804 if (ofs) { 5805 if (dt) { 5806 if (per < np->minsync_dt) 5807 {chg = 1; per = np->minsync_dt;} 5808 } 5809 else if (per < np->minsync) 5810 {chg = 1; per = np->minsync;} 5811 if (req) { 5812 if (per < tp->tinfo.user.period) 5813 {chg = 1; per = tp->tinfo.user.period;} 5814 } 5815 } 5816 5817 div = fak = 0; 5818 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5819 goto reject_it; 5820 5821 if (DEBUG_FLAGS & DEBUG_NEGO) { 5822 PRINT_ADDR(cp); 5823 printf ("ppr: " 5824 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5825 dt, ofs, per, wide, div, fak, chg); 5826 } 5827 5828 /* 5829 * It was an answer. 5830 */ 5831 if (req == 0) { 5832 if (chg) /* Answer wasn't acceptable */ 5833 goto reject_it; 5834 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5835 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5836 return; 5837 } 5838 5839 /* 5840 * It was a request. Set value and 5841 * prepare an answer message 5842 */ 5843 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5844 5845 np->msgout[0] = M_EXTENDED; 5846 np->msgout[1] = 6; 5847 np->msgout[2] = M_X_PPR_REQ; 5848 np->msgout[3] = per; 5849 np->msgout[4] = 0; 5850 np->msgout[5] = ofs; 5851 np->msgout[6] = wide; 5852 np->msgout[7] = dt; 5853 5854 cp->nego_status = NS_PPR; 5855 5856 if (DEBUG_FLAGS & DEBUG_NEGO) { 5857 sym_print_msg(cp, "ppr msgout", np->msgout); 5858 } 5859 5860 np->msgin [0] = M_NOOP; 5861 5862 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5863 return; 5864 reject_it: 5865 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5866 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5867 /* 5868 * If it was a device response that should result in 5869 * ST, we may want to try a legacy negotiation later. 5870 */ 5871 if (!req && !dt) { 5872 tp->tinfo.goal.options = 0; 5873 tp->tinfo.goal.width = wide; 5874 tp->tinfo.goal.period = per; 5875 tp->tinfo.goal.offset = ofs; 5876 } 5877 } 5878 5879 /* 5880 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5881 */ 5882 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5883 { 5884 u_char chg, wide; 5885 int req = 1; 5886 5887 /* 5888 * Wide request message received. 5889 */ 5890 if (DEBUG_FLAGS & DEBUG_NEGO) { 5891 sym_print_msg(cp, "wide msgin", np->msgin); 5892 }; 5893 5894 /* 5895 * Is it a request from the device? 5896 */ 5897 if (INB (HS_PRT) == HS_NEGOTIATE) { 5898 OUTB (HS_PRT, HS_BUSY); 5899 if (cp->nego_status && cp->nego_status != NS_WIDE) 5900 goto reject_it; 5901 req = 0; 5902 } 5903 5904 /* 5905 * get requested values. 5906 */ 5907 chg = 0; 5908 wide = np->msgin[3]; 5909 5910 /* 5911 * check values against driver limits. 5912 */ 5913 if (wide > np->maxwide) 5914 {chg = 1; wide = np->maxwide;} 5915 if (req) { 5916 if (wide > tp->tinfo.user.width) 5917 {chg = 1; wide = tp->tinfo.user.width;} 5918 } 5919 5920 if (DEBUG_FLAGS & DEBUG_NEGO) { 5921 PRINT_ADDR(cp); 5922 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5923 } 5924 5925 /* 5926 * This was an answer message 5927 */ 5928 if (req == 0) { 5929 if (chg) /* Answer wasn't acceptable. */ 5930 goto reject_it; 5931 sym_setwide (np, cp, wide); 5932 5933 /* 5934 * Negotiate for SYNC immediately after WIDE response. 5935 * This allows to negotiate for both WIDE and SYNC on 5936 * a single SCSI command (Suggested by Justin Gibbs). 5937 */ 5938 if (tp->tinfo.goal.offset) { 5939 np->msgout[0] = M_EXTENDED; 5940 np->msgout[1] = 3; 5941 np->msgout[2] = M_X_SYNC_REQ; 5942 np->msgout[3] = tp->tinfo.goal.period; 5943 np->msgout[4] = tp->tinfo.goal.offset; 5944 5945 if (DEBUG_FLAGS & DEBUG_NEGO) { 5946 sym_print_msg(cp, "sync msgout", np->msgout); 5947 } 5948 5949 cp->nego_status = NS_SYNC; 5950 OUTB (HS_PRT, HS_NEGOTIATE); 5951 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5952 return; 5953 } 5954 5955 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5956 return; 5957 }; 5958 5959 /* 5960 * It was a request, set value and 5961 * prepare an answer message 5962 */ 5963 sym_setwide (np, cp, wide); 5964 5965 np->msgout[0] = M_EXTENDED; 5966 np->msgout[1] = 2; 5967 np->msgout[2] = M_X_WIDE_REQ; 5968 np->msgout[3] = wide; 5969 5970 np->msgin [0] = M_NOOP; 5971 5972 cp->nego_status = NS_WIDE; 5973 5974 if (DEBUG_FLAGS & DEBUG_NEGO) { 5975 sym_print_msg(cp, "wide msgout", np->msgout); 5976 } 5977 5978 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5979 return; 5980 reject_it: 5981 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5982 } 5983 5984 /* 5985 * Reset SYNC or WIDE to default settings. 5986 * 5987 * Called when a negotiation does not succeed either 5988 * on rejection or on protocol error. 5989 * 5990 * If it was a PPR that made problems, we may want to 5991 * try a legacy negotiation later. 5992 */ 5993 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5994 { 5995 /* 5996 * any error in negotiation: 5997 * fall back to default mode. 5998 */ 5999 switch (cp->nego_status) { 6000 case NS_PPR: 6001 #if 0 6002 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6003 #else 6004 tp->tinfo.goal.options = 0; 6005 if (tp->tinfo.goal.period < np->minsync) 6006 tp->tinfo.goal.period = np->minsync; 6007 if (tp->tinfo.goal.offset > np->maxoffs) 6008 tp->tinfo.goal.offset = np->maxoffs; 6009 #endif 6010 break; 6011 case NS_SYNC: 6012 sym_setsync (np, cp, 0, 0, 0, 0); 6013 break; 6014 case NS_WIDE: 6015 sym_setwide (np, cp, 0); 6016 break; 6017 }; 6018 np->msgin [0] = M_NOOP; 6019 np->msgout[0] = M_NOOP; 6020 cp->nego_status = 0; 6021 } 6022 6023 /* 6024 * chip handler for MESSAGE REJECT received in response to 6025 * a WIDE or SYNCHRONOUS negotiation. 6026 */ 6027 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6028 { 6029 sym_nego_default(np, tp, cp); 6030 OUTB (HS_PRT, HS_BUSY); 6031 } 6032 6033 /* 6034 * chip exception handler for programmed interrupts. 6035 */ 6036 static void sym_int_sir (hcb_p np) 6037 { 6038 u_char num = INB (nc_dsps); 6039 u32 dsa = INL (nc_dsa); 6040 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6041 u_char target = INB (nc_sdid) & 0x0f; 6042 tcb_p tp = &np->target[target]; 6043 int tmp; 6044 6045 SYM_LOCK_ASSERT(MA_OWNED); 6046 6047 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6048 6049 switch (num) { 6050 /* 6051 * Command has been completed with error condition 6052 * or has been auto-sensed. 6053 */ 6054 case SIR_COMPLETE_ERROR: 6055 sym_complete_error(np, cp); 6056 return; 6057 /* 6058 * The C code is currently trying to recover from something. 6059 * Typically, user want to abort some command. 6060 */ 6061 case SIR_SCRIPT_STOPPED: 6062 case SIR_TARGET_SELECTED: 6063 case SIR_ABORT_SENT: 6064 sym_sir_task_recovery(np, num); 6065 return; 6066 /* 6067 * The device didn't go to MSG OUT phase after having 6068 * been selected with ATN. We donnot want to handle 6069 * that. 6070 */ 6071 case SIR_SEL_ATN_NO_MSG_OUT: 6072 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6073 sym_name (np), target); 6074 goto out_stuck; 6075 /* 6076 * The device didn't switch to MSG IN phase after 6077 * having reseleted the initiator. 6078 */ 6079 case SIR_RESEL_NO_MSG_IN: 6080 printf ("%s:%d: No MSG IN phase after reselection.\n", 6081 sym_name (np), target); 6082 goto out_stuck; 6083 /* 6084 * After reselection, the device sent a message that wasn't 6085 * an IDENTIFY. 6086 */ 6087 case SIR_RESEL_NO_IDENTIFY: 6088 printf ("%s:%d: No IDENTIFY after reselection.\n", 6089 sym_name (np), target); 6090 goto out_stuck; 6091 /* 6092 * The device reselected a LUN we donnot know about. 6093 */ 6094 case SIR_RESEL_BAD_LUN: 6095 np->msgout[0] = M_RESET; 6096 goto out; 6097 /* 6098 * The device reselected for an untagged nexus and we 6099 * haven't any. 6100 */ 6101 case SIR_RESEL_BAD_I_T_L: 6102 np->msgout[0] = M_ABORT; 6103 goto out; 6104 /* 6105 * The device reselected for a tagged nexus that we donnot 6106 * have. 6107 */ 6108 case SIR_RESEL_BAD_I_T_L_Q: 6109 np->msgout[0] = M_ABORT_TAG; 6110 goto out; 6111 /* 6112 * The SCRIPTS let us know that the device has grabbed 6113 * our message and will abort the job. 6114 */ 6115 case SIR_RESEL_ABORTED: 6116 np->lastmsg = np->msgout[0]; 6117 np->msgout[0] = M_NOOP; 6118 printf ("%s:%d: message %x sent on bad reselection.\n", 6119 sym_name (np), target, np->lastmsg); 6120 goto out; 6121 /* 6122 * The SCRIPTS let us know that a message has been 6123 * successfully sent to the device. 6124 */ 6125 case SIR_MSG_OUT_DONE: 6126 np->lastmsg = np->msgout[0]; 6127 np->msgout[0] = M_NOOP; 6128 /* Should we really care of that */ 6129 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6130 if (cp) { 6131 cp->xerr_status &= ~XE_PARITY_ERR; 6132 if (!cp->xerr_status) 6133 OUTOFFB (HF_PRT, HF_EXT_ERR); 6134 } 6135 } 6136 goto out; 6137 /* 6138 * The device didn't send a GOOD SCSI status. 6139 * We may have some work to do prior to allow 6140 * the SCRIPTS processor to continue. 6141 */ 6142 case SIR_BAD_SCSI_STATUS: 6143 if (!cp) 6144 goto out; 6145 sym_sir_bad_scsi_status(np, num, cp); 6146 return; 6147 /* 6148 * We are asked by the SCRIPTS to prepare a 6149 * REJECT message. 6150 */ 6151 case SIR_REJECT_TO_SEND: 6152 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6153 np->msgout[0] = M_REJECT; 6154 goto out; 6155 /* 6156 * We have been ODD at the end of a DATA IN 6157 * transfer and the device didn't send a 6158 * IGNORE WIDE RESIDUE message. 6159 * It is a data overrun condition. 6160 */ 6161 case SIR_SWIDE_OVERRUN: 6162 if (cp) { 6163 OUTONB (HF_PRT, HF_EXT_ERR); 6164 cp->xerr_status |= XE_SWIDE_OVRUN; 6165 } 6166 goto out; 6167 /* 6168 * We have been ODD at the end of a DATA OUT 6169 * transfer. 6170 * It is a data underrun condition. 6171 */ 6172 case SIR_SODL_UNDERRUN: 6173 if (cp) { 6174 OUTONB (HF_PRT, HF_EXT_ERR); 6175 cp->xerr_status |= XE_SODL_UNRUN; 6176 } 6177 goto out; 6178 /* 6179 * The device wants us to tranfer more data than 6180 * expected or in the wrong direction. 6181 * The number of extra bytes is in scratcha. 6182 * It is a data overrun condition. 6183 */ 6184 case SIR_DATA_OVERRUN: 6185 if (cp) { 6186 OUTONB (HF_PRT, HF_EXT_ERR); 6187 cp->xerr_status |= XE_EXTRA_DATA; 6188 cp->extra_bytes += INL (nc_scratcha); 6189 } 6190 goto out; 6191 /* 6192 * The device switched to an illegal phase (4/5). 6193 */ 6194 case SIR_BAD_PHASE: 6195 if (cp) { 6196 OUTONB (HF_PRT, HF_EXT_ERR); 6197 cp->xerr_status |= XE_BAD_PHASE; 6198 } 6199 goto out; 6200 /* 6201 * We received a message. 6202 */ 6203 case SIR_MSG_RECEIVED: 6204 if (!cp) 6205 goto out_stuck; 6206 switch (np->msgin [0]) { 6207 /* 6208 * We received an extended message. 6209 * We handle MODIFY DATA POINTER, SDTR, WDTR 6210 * and reject all other extended messages. 6211 */ 6212 case M_EXTENDED: 6213 switch (np->msgin [2]) { 6214 case M_X_MODIFY_DP: 6215 if (DEBUG_FLAGS & DEBUG_POINTER) 6216 sym_print_msg(cp,"modify DP",np->msgin); 6217 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6218 (np->msgin[5]<<8) + (np->msgin[6]); 6219 sym_modify_dp(np, tp, cp, tmp); 6220 return; 6221 case M_X_SYNC_REQ: 6222 sym_sync_nego(np, tp, cp); 6223 return; 6224 case M_X_PPR_REQ: 6225 sym_ppr_nego(np, tp, cp); 6226 return; 6227 case M_X_WIDE_REQ: 6228 sym_wide_nego(np, tp, cp); 6229 return; 6230 default: 6231 goto out_reject; 6232 } 6233 break; 6234 /* 6235 * We received a 1/2 byte message not handled from SCRIPTS. 6236 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6237 * RESIDUE messages that haven't been anticipated by 6238 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6239 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6240 */ 6241 case M_IGN_RESIDUE: 6242 if (DEBUG_FLAGS & DEBUG_POINTER) 6243 sym_print_msg(cp,"ign wide residue", np->msgin); 6244 sym_modify_dp(np, tp, cp, -1); 6245 return; 6246 case M_REJECT: 6247 if (INB (HS_PRT) == HS_NEGOTIATE) 6248 sym_nego_rejected(np, tp, cp); 6249 else { 6250 PRINT_ADDR(cp); 6251 printf ("M_REJECT received (%x:%x).\n", 6252 scr_to_cpu(np->lastmsg), np->msgout[0]); 6253 } 6254 goto out_clrack; 6255 break; 6256 default: 6257 goto out_reject; 6258 } 6259 break; 6260 /* 6261 * We received an unknown message. 6262 * Ignore all MSG IN phases and reject it. 6263 */ 6264 case SIR_MSG_WEIRD: 6265 sym_print_msg(cp, "WEIRD message received", np->msgin); 6266 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6267 return; 6268 /* 6269 * Negotiation failed. 6270 * Target does not send us the reply. 6271 * Remove the HS_NEGOTIATE status. 6272 */ 6273 case SIR_NEGO_FAILED: 6274 OUTB (HS_PRT, HS_BUSY); 6275 /* 6276 * Negotiation failed. 6277 * Target does not want answer message. 6278 */ 6279 case SIR_NEGO_PROTO: 6280 sym_nego_default(np, tp, cp); 6281 goto out; 6282 }; 6283 6284 out: 6285 OUTONB_STD (); 6286 return; 6287 out_reject: 6288 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6289 return; 6290 out_clrack: 6291 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6292 return; 6293 out_stuck: 6294 return; 6295 } 6296 6297 /* 6298 * Acquire a control block 6299 */ 6300 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6301 { 6302 tcb_p tp = &np->target[tn]; 6303 lcb_p lp = sym_lp(np, tp, ln); 6304 u_short tag = NO_TAG; 6305 SYM_QUEHEAD *qp; 6306 ccb_p cp = (ccb_p) NULL; 6307 6308 /* 6309 * Look for a free CCB 6310 */ 6311 if (sym_que_empty(&np->free_ccbq)) 6312 goto out; 6313 qp = sym_remque_head(&np->free_ccbq); 6314 if (!qp) 6315 goto out; 6316 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6317 6318 /* 6319 * If the LCB is not yet available and the LUN 6320 * has been probed ok, try to allocate the LCB. 6321 */ 6322 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6323 lp = sym_alloc_lcb(np, tn, ln); 6324 if (!lp) 6325 goto out_free; 6326 } 6327 6328 /* 6329 * If the LCB is not available here, then the 6330 * logical unit is not yet discovered. For those 6331 * ones only accept 1 SCSI IO per logical unit, 6332 * since we cannot allow disconnections. 6333 */ 6334 if (!lp) { 6335 if (!sym_is_bit(tp->busy0_map, ln)) 6336 sym_set_bit(tp->busy0_map, ln); 6337 else 6338 goto out_free; 6339 } else { 6340 /* 6341 * If we have been asked for a tagged command. 6342 */ 6343 if (tag_order) { 6344 /* 6345 * Debugging purpose. 6346 */ 6347 assert(lp->busy_itl == 0); 6348 /* 6349 * Allocate resources for tags if not yet. 6350 */ 6351 if (!lp->cb_tags) { 6352 sym_alloc_lcb_tags(np, tn, ln); 6353 if (!lp->cb_tags) 6354 goto out_free; 6355 } 6356 /* 6357 * Get a tag for this SCSI IO and set up 6358 * the CCB bus address for reselection, 6359 * and count it for this LUN. 6360 * Toggle reselect path to tagged. 6361 */ 6362 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6363 tag = lp->cb_tags[lp->ia_tag]; 6364 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6365 lp->ia_tag = 0; 6366 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6367 ++lp->busy_itlq; 6368 lp->head.resel_sa = 6369 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6370 } 6371 else 6372 goto out_free; 6373 } 6374 /* 6375 * This command will not be tagged. 6376 * If we already have either a tagged or untagged 6377 * one, refuse to overlap this untagged one. 6378 */ 6379 else { 6380 /* 6381 * Debugging purpose. 6382 */ 6383 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6384 /* 6385 * Count this nexus for this LUN. 6386 * Set up the CCB bus address for reselection. 6387 * Toggle reselect path to untagged. 6388 */ 6389 if (++lp->busy_itl == 1) { 6390 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6391 lp->head.resel_sa = 6392 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6393 } 6394 else 6395 goto out_free; 6396 } 6397 } 6398 /* 6399 * Put the CCB into the busy queue. 6400 */ 6401 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6402 6403 /* 6404 * Remember all informations needed to free this CCB. 6405 */ 6406 cp->to_abort = 0; 6407 cp->tag = tag; 6408 cp->target = tn; 6409 cp->lun = ln; 6410 6411 if (DEBUG_FLAGS & DEBUG_TAGS) { 6412 PRINT_LUN(np, tn, ln); 6413 printf ("ccb @%p using tag %d.\n", cp, tag); 6414 } 6415 6416 out: 6417 return cp; 6418 out_free: 6419 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6420 return NULL; 6421 } 6422 6423 /* 6424 * Release one control block 6425 */ 6426 static void sym_free_ccb (hcb_p np, ccb_p cp) 6427 { 6428 tcb_p tp = &np->target[cp->target]; 6429 lcb_p lp = sym_lp(np, tp, cp->lun); 6430 6431 if (DEBUG_FLAGS & DEBUG_TAGS) { 6432 PRINT_LUN(np, cp->target, cp->lun); 6433 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6434 } 6435 6436 /* 6437 * If LCB available, 6438 */ 6439 if (lp) { 6440 /* 6441 * If tagged, release the tag, set the relect path 6442 */ 6443 if (cp->tag != NO_TAG) { 6444 /* 6445 * Free the tag value. 6446 */ 6447 lp->cb_tags[lp->if_tag] = cp->tag; 6448 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6449 lp->if_tag = 0; 6450 /* 6451 * Make the reselect path invalid, 6452 * and uncount this CCB. 6453 */ 6454 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6455 --lp->busy_itlq; 6456 } else { /* Untagged */ 6457 /* 6458 * Make the reselect path invalid, 6459 * and uncount this CCB. 6460 */ 6461 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6462 --lp->busy_itl; 6463 } 6464 /* 6465 * If no JOB active, make the LUN reselect path invalid. 6466 */ 6467 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6468 lp->head.resel_sa = 6469 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6470 } 6471 /* 6472 * Otherwise, we only accept 1 IO per LUN. 6473 * Clear the bit that keeps track of this IO. 6474 */ 6475 else 6476 sym_clr_bit(tp->busy0_map, cp->lun); 6477 6478 /* 6479 * We donnot queue more than 1 ccb per target 6480 * with negotiation at any time. If this ccb was 6481 * used for negotiation, clear this info in the tcb. 6482 */ 6483 if (cp == tp->nego_cp) 6484 tp->nego_cp = NULL; 6485 6486 #ifdef SYM_CONF_IARB_SUPPORT 6487 /* 6488 * If we just complete the last queued CCB, 6489 * clear this info that is no longer relevant. 6490 */ 6491 if (cp == np->last_cp) 6492 np->last_cp = NULL; 6493 #endif 6494 6495 /* 6496 * Unmap user data from DMA map if needed. 6497 */ 6498 if (cp->dmamapped) { 6499 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6500 cp->dmamapped = 0; 6501 } 6502 6503 /* 6504 * Make this CCB available. 6505 */ 6506 cp->cam_ccb = NULL; 6507 cp->host_status = HS_IDLE; 6508 sym_remque(&cp->link_ccbq); 6509 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6510 } 6511 6512 /* 6513 * Allocate a CCB from memory and initialize its fixed part. 6514 */ 6515 static ccb_p sym_alloc_ccb(hcb_p np) 6516 { 6517 ccb_p cp = NULL; 6518 int hcode; 6519 6520 SYM_LOCK_ASSERT(MA_NOTOWNED); 6521 6522 /* 6523 * Prevent from allocating more CCBs than we can 6524 * queue to the controller. 6525 */ 6526 if (np->actccbs >= SYM_CONF_MAX_START) 6527 return NULL; 6528 6529 /* 6530 * Allocate memory for this CCB. 6531 */ 6532 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6533 if (!cp) 6534 return NULL; 6535 6536 /* 6537 * Allocate a bounce buffer for sense data. 6538 */ 6539 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6540 if (!cp->sns_bbuf) 6541 goto out_free; 6542 6543 /* 6544 * Allocate a map for the DMA of user data. 6545 */ 6546 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6547 goto out_free; 6548 /* 6549 * Count it. 6550 */ 6551 np->actccbs++; 6552 6553 /* 6554 * Initialize the callout. 6555 */ 6556 callout_init(&cp->ch, 1); 6557 6558 /* 6559 * Compute the bus address of this ccb. 6560 */ 6561 cp->ccb_ba = vtobus(cp); 6562 6563 /* 6564 * Insert this ccb into the hashed list. 6565 */ 6566 hcode = CCB_HASH_CODE(cp->ccb_ba); 6567 cp->link_ccbh = np->ccbh[hcode]; 6568 np->ccbh[hcode] = cp; 6569 6570 /* 6571 * Initialize the start and restart actions. 6572 */ 6573 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6574 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6575 6576 /* 6577 * Initilialyze some other fields. 6578 */ 6579 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6580 6581 /* 6582 * Chain into free ccb queue. 6583 */ 6584 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6585 6586 return cp; 6587 out_free: 6588 if (cp->sns_bbuf) 6589 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6590 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6591 return NULL; 6592 } 6593 6594 /* 6595 * Look up a CCB from a DSA value. 6596 */ 6597 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6598 { 6599 int hcode; 6600 ccb_p cp; 6601 6602 hcode = CCB_HASH_CODE(dsa); 6603 cp = np->ccbh[hcode]; 6604 while (cp) { 6605 if (cp->ccb_ba == dsa) 6606 break; 6607 cp = cp->link_ccbh; 6608 } 6609 6610 return cp; 6611 } 6612 6613 /* 6614 * Target control block initialisation. 6615 * Nothing important to do at the moment. 6616 */ 6617 static void sym_init_tcb (hcb_p np, u_char tn) 6618 { 6619 /* 6620 * Check some alignments required by the chip. 6621 */ 6622 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6623 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6624 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6625 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6626 } 6627 6628 /* 6629 * Lun control block allocation and initialization. 6630 */ 6631 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6632 { 6633 tcb_p tp = &np->target[tn]; 6634 lcb_p lp = sym_lp(np, tp, ln); 6635 6636 /* 6637 * Already done, just return. 6638 */ 6639 if (lp) 6640 return lp; 6641 /* 6642 * Check against some race. 6643 */ 6644 assert(!sym_is_bit(tp->busy0_map, ln)); 6645 6646 /* 6647 * Initialize the target control block if not yet. 6648 */ 6649 sym_init_tcb (np, tn); 6650 6651 /* 6652 * Allocate the LCB bus address array. 6653 * Compute the bus address of this table. 6654 */ 6655 if (ln && !tp->luntbl) { 6656 int i; 6657 6658 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6659 if (!tp->luntbl) 6660 goto fail; 6661 for (i = 0 ; i < 64 ; i++) 6662 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6663 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6664 } 6665 6666 /* 6667 * Allocate the table of pointers for LUN(s) > 0, if needed. 6668 */ 6669 if (ln && !tp->lunmp) { 6670 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6671 "LUNMP"); 6672 if (!tp->lunmp) 6673 goto fail; 6674 } 6675 6676 /* 6677 * Allocate the lcb. 6678 * Make it available to the chip. 6679 */ 6680 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6681 if (!lp) 6682 goto fail; 6683 if (ln) { 6684 tp->lunmp[ln] = lp; 6685 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6686 } 6687 else { 6688 tp->lun0p = lp; 6689 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6690 } 6691 6692 /* 6693 * Let the itl task point to error handling. 6694 */ 6695 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6696 6697 /* 6698 * Set the reselect pattern to our default. :) 6699 */ 6700 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6701 6702 /* 6703 * Set user capabilities. 6704 */ 6705 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6706 6707 fail: 6708 return lp; 6709 } 6710 6711 /* 6712 * Allocate LCB resources for tagged command queuing. 6713 */ 6714 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6715 { 6716 tcb_p tp = &np->target[tn]; 6717 lcb_p lp = sym_lp(np, tp, ln); 6718 int i; 6719 6720 /* 6721 * If LCB not available, try to allocate it. 6722 */ 6723 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6724 return; 6725 6726 /* 6727 * Allocate the task table and and the tag allocation 6728 * circular buffer. We want both or none. 6729 */ 6730 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6731 if (!lp->itlq_tbl) 6732 return; 6733 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6734 if (!lp->cb_tags) { 6735 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6736 lp->itlq_tbl = 0; 6737 return; 6738 } 6739 6740 /* 6741 * Initialize the task table with invalid entries. 6742 */ 6743 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6744 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6745 6746 /* 6747 * Fill up the tag buffer with tag numbers. 6748 */ 6749 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6750 lp->cb_tags[i] = i; 6751 6752 /* 6753 * Make the task table available to SCRIPTS, 6754 * And accept tagged commands now. 6755 */ 6756 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6757 } 6758 6759 /* 6760 * Test the pci bus snoop logic :-( 6761 * 6762 * Has to be called with interrupts disabled. 6763 */ 6764 #ifndef SYM_CONF_IOMAPPED 6765 static int sym_regtest (hcb_p np) 6766 { 6767 register volatile u32 data; 6768 /* 6769 * chip registers may NOT be cached. 6770 * write 0xffffffff to a read only register area, 6771 * and try to read it back. 6772 */ 6773 data = 0xffffffff; 6774 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6775 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6776 #if 1 6777 if (data == 0xffffffff) { 6778 #else 6779 if ((data & 0xe2f0fffd) != 0x02000080) { 6780 #endif 6781 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6782 (unsigned) data); 6783 return (0x10); 6784 }; 6785 return (0); 6786 } 6787 #endif 6788 6789 static int sym_snooptest (hcb_p np) 6790 { 6791 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6792 int i, err=0; 6793 #ifndef SYM_CONF_IOMAPPED 6794 err |= sym_regtest (np); 6795 if (err) return (err); 6796 #endif 6797 restart_test: 6798 /* 6799 * Enable Master Parity Checking as we intend 6800 * to enable it for normal operations. 6801 */ 6802 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6803 /* 6804 * init 6805 */ 6806 pc = SCRIPTB0_BA (np, snooptest); 6807 host_wr = 1; 6808 sym_wr = 2; 6809 /* 6810 * Set memory and register. 6811 */ 6812 np->cache = cpu_to_scr(host_wr); 6813 OUTL (nc_temp, sym_wr); 6814 /* 6815 * Start script (exchange values) 6816 */ 6817 OUTL (nc_dsa, np->hcb_ba); 6818 OUTL_DSP (pc); 6819 /* 6820 * Wait 'til done (with timeout) 6821 */ 6822 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6823 if (INB(nc_istat) & (INTF|SIP|DIP)) 6824 break; 6825 if (i>=SYM_SNOOP_TIMEOUT) { 6826 printf ("CACHE TEST FAILED: timeout.\n"); 6827 return (0x20); 6828 }; 6829 /* 6830 * Check for fatal DMA errors. 6831 */ 6832 dstat = INB (nc_dstat); 6833 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6834 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6835 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6836 "DISABLING MASTER DATA PARITY CHECKING.\n", 6837 sym_name(np)); 6838 np->rv_ctest4 &= ~MPEE; 6839 goto restart_test; 6840 } 6841 #endif 6842 if (dstat & (MDPE|BF|IID)) { 6843 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6844 return (0x80); 6845 } 6846 /* 6847 * Save termination position. 6848 */ 6849 pc = INL (nc_dsp); 6850 /* 6851 * Read memory and register. 6852 */ 6853 host_rd = scr_to_cpu(np->cache); 6854 sym_rd = INL (nc_scratcha); 6855 sym_bk = INL (nc_temp); 6856 6857 /* 6858 * Check termination position. 6859 */ 6860 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6861 printf ("CACHE TEST FAILED: script execution failed.\n"); 6862 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6863 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6864 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6865 return (0x40); 6866 }; 6867 /* 6868 * Show results. 6869 */ 6870 if (host_wr != sym_rd) { 6871 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6872 (int) host_wr, (int) sym_rd); 6873 err |= 1; 6874 }; 6875 if (host_rd != sym_wr) { 6876 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6877 (int) sym_wr, (int) host_rd); 6878 err |= 2; 6879 }; 6880 if (sym_bk != sym_wr) { 6881 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6882 (int) sym_wr, (int) sym_bk); 6883 err |= 4; 6884 }; 6885 6886 return (err); 6887 } 6888 6889 /* 6890 * Determine the chip's clock frequency. 6891 * 6892 * This is essential for the negotiation of the synchronous 6893 * transfer rate. 6894 * 6895 * Note: we have to return the correct value. 6896 * THERE IS NO SAFE DEFAULT VALUE. 6897 * 6898 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6899 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6900 * do not have a clock doubler and so are provided with a 6901 * 80 MHz clock. All other fast20 boards incorporate a doubler 6902 * and so should be delivered with a 40 MHz clock. 6903 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6904 * clock and provide a clock quadrupler (160 Mhz). 6905 */ 6906 6907 /* 6908 * Select SCSI clock frequency 6909 */ 6910 static void sym_selectclock(hcb_p np, u_char scntl3) 6911 { 6912 /* 6913 * If multiplier not present or not selected, leave here. 6914 */ 6915 if (np->multiplier <= 1) { 6916 OUTB(nc_scntl3, scntl3); 6917 return; 6918 } 6919 6920 if (sym_verbose >= 2) 6921 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6922 6923 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6924 /* 6925 * Wait for the LCKFRQ bit to be set if supported by the chip. 6926 * Otherwise wait 20 micro-seconds. 6927 */ 6928 if (np->features & FE_LCKFRQ) { 6929 int i = 20; 6930 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6931 UDELAY (20); 6932 if (!i) 6933 printf("%s: the chip cannot lock the frequency\n", 6934 sym_name(np)); 6935 } else 6936 UDELAY (20); 6937 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6938 OUTB(nc_scntl3, scntl3); 6939 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6940 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6941 } 6942 6943 /* 6944 * calculate SCSI clock frequency (in KHz) 6945 */ 6946 static unsigned getfreq (hcb_p np, int gen) 6947 { 6948 unsigned int ms = 0; 6949 unsigned int f; 6950 6951 /* 6952 * Measure GEN timer delay in order 6953 * to calculate SCSI clock frequency 6954 * 6955 * This code will never execute too 6956 * many loop iterations (if DELAY is 6957 * reasonably correct). It could get 6958 * too low a delay (too high a freq.) 6959 * if the CPU is slow executing the 6960 * loop for some reason (an NMI, for 6961 * example). For this reason we will 6962 * if multiple measurements are to be 6963 * performed trust the higher delay 6964 * (lower frequency returned). 6965 */ 6966 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6967 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6968 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6969 (void) INW (nc_sist); /* another one, just to be sure :) */ 6970 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6971 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6972 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6973 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6974 UDELAY (1000); /* count ms */ 6975 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6976 /* 6977 * set prescaler to divide by whatever 0 means 6978 * 0 ought to choose divide by 2, but appears 6979 * to set divide by 3.5 mode in my 53c810 ... 6980 */ 6981 OUTB (nc_scntl3, 0); 6982 6983 /* 6984 * adjust for prescaler, and convert into KHz 6985 */ 6986 f = ms ? ((1 << gen) * 4340) / ms : 0; 6987 6988 if (sym_verbose >= 2) 6989 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6990 sym_name(np), gen, ms, f); 6991 6992 return f; 6993 } 6994 6995 static unsigned sym_getfreq (hcb_p np) 6996 { 6997 u_int f1, f2; 6998 int gen = 11; 6999 7000 (void) getfreq (np, gen); /* throw away first result */ 7001 f1 = getfreq (np, gen); 7002 f2 = getfreq (np, gen); 7003 if (f1 > f2) f1 = f2; /* trust lower result */ 7004 return f1; 7005 } 7006 7007 /* 7008 * Get/probe chip SCSI clock frequency 7009 */ 7010 static void sym_getclock (hcb_p np, int mult) 7011 { 7012 unsigned char scntl3 = np->sv_scntl3; 7013 unsigned char stest1 = np->sv_stest1; 7014 unsigned f1; 7015 7016 /* 7017 * For the C10 core, assume 40 MHz. 7018 */ 7019 if (np->features & FE_C10) { 7020 np->multiplier = mult; 7021 np->clock_khz = 40000 * mult; 7022 return; 7023 } 7024 7025 np->multiplier = 1; 7026 f1 = 40000; 7027 /* 7028 * True with 875/895/896/895A with clock multiplier selected 7029 */ 7030 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7031 if (sym_verbose >= 2) 7032 printf ("%s: clock multiplier found\n", sym_name(np)); 7033 np->multiplier = mult; 7034 } 7035 7036 /* 7037 * If multiplier not found or scntl3 not 7,5,3, 7038 * reset chip and get frequency from general purpose timer. 7039 * Otherwise trust scntl3 BIOS setting. 7040 */ 7041 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7042 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7043 f1 = sym_getfreq (np); 7044 7045 if (sym_verbose) 7046 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7047 7048 if (f1 < 45000) f1 = 40000; 7049 else if (f1 < 55000) f1 = 50000; 7050 else f1 = 80000; 7051 7052 if (f1 < 80000 && mult > 1) { 7053 if (sym_verbose >= 2) 7054 printf ("%s: clock multiplier assumed\n", 7055 sym_name(np)); 7056 np->multiplier = mult; 7057 } 7058 } else { 7059 if ((scntl3 & 7) == 3) f1 = 40000; 7060 else if ((scntl3 & 7) == 5) f1 = 80000; 7061 else f1 = 160000; 7062 7063 f1 /= np->multiplier; 7064 } 7065 7066 /* 7067 * Compute controller synchronous parameters. 7068 */ 7069 f1 *= np->multiplier; 7070 np->clock_khz = f1; 7071 } 7072 7073 /* 7074 * Get/probe PCI clock frequency 7075 */ 7076 static int sym_getpciclock (hcb_p np) 7077 { 7078 int f = 0; 7079 7080 /* 7081 * For the C1010-33, this doesn't work. 7082 * For the C1010-66, this will be tested when I'll have 7083 * such a beast to play with. 7084 */ 7085 if (!(np->features & FE_C10)) { 7086 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7087 f = (int) sym_getfreq (np); 7088 OUTB (nc_stest1, 0); 7089 } 7090 np->pciclk_khz = f; 7091 7092 return f; 7093 } 7094 7095 /*============= DRIVER ACTION/COMPLETION ====================*/ 7096 7097 /* 7098 * Print something that tells about extended errors. 7099 */ 7100 static void sym_print_xerr(ccb_p cp, int x_status) 7101 { 7102 if (x_status & XE_PARITY_ERR) { 7103 PRINT_ADDR(cp); 7104 printf ("unrecovered SCSI parity error.\n"); 7105 } 7106 if (x_status & XE_EXTRA_DATA) { 7107 PRINT_ADDR(cp); 7108 printf ("extraneous data discarded.\n"); 7109 } 7110 if (x_status & XE_BAD_PHASE) { 7111 PRINT_ADDR(cp); 7112 printf ("illegal scsi phase (4/5).\n"); 7113 } 7114 if (x_status & XE_SODL_UNRUN) { 7115 PRINT_ADDR(cp); 7116 printf ("ODD transfer in DATA OUT phase.\n"); 7117 } 7118 if (x_status & XE_SWIDE_OVRUN) { 7119 PRINT_ADDR(cp); 7120 printf ("ODD transfer in DATA IN phase.\n"); 7121 } 7122 } 7123 7124 /* 7125 * Choose the more appropriate CAM status if 7126 * the IO encountered an extended error. 7127 */ 7128 static int sym_xerr_cam_status(int cam_status, int x_status) 7129 { 7130 if (x_status) { 7131 if (x_status & XE_PARITY_ERR) 7132 cam_status = CAM_UNCOR_PARITY; 7133 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7134 cam_status = CAM_DATA_RUN_ERR; 7135 else if (x_status & XE_BAD_PHASE) 7136 cam_status = CAM_REQ_CMP_ERR; 7137 else 7138 cam_status = CAM_REQ_CMP_ERR; 7139 } 7140 return cam_status; 7141 } 7142 7143 /* 7144 * Complete execution of a SCSI command with extented 7145 * error, SCSI status error, or having been auto-sensed. 7146 * 7147 * The SCRIPTS processor is not running there, so we 7148 * can safely access IO registers and remove JOBs from 7149 * the START queue. 7150 * SCRATCHA is assumed to have been loaded with STARTPOS 7151 * before the SCRIPTS called the C code. 7152 */ 7153 static void sym_complete_error (hcb_p np, ccb_p cp) 7154 { 7155 struct ccb_scsiio *csio; 7156 u_int cam_status; 7157 int i, sense_returned; 7158 7159 SYM_LOCK_ASSERT(MA_OWNED); 7160 7161 /* 7162 * Paranoid check. :) 7163 */ 7164 if (!cp || !cp->cam_ccb) 7165 return; 7166 7167 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7168 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7169 cp->host_status, cp->ssss_status, cp->host_flags, 7170 cp->target, cp->lun); 7171 MDELAY(100); 7172 } 7173 7174 /* 7175 * Get CAM command pointer. 7176 */ 7177 csio = &cp->cam_ccb->csio; 7178 7179 /* 7180 * Check for extended errors. 7181 */ 7182 if (cp->xerr_status) { 7183 if (sym_verbose) 7184 sym_print_xerr(cp, cp->xerr_status); 7185 if (cp->host_status == HS_COMPLETE) 7186 cp->host_status = HS_COMP_ERR; 7187 } 7188 7189 /* 7190 * Calculate the residual. 7191 */ 7192 csio->sense_resid = 0; 7193 csio->resid = sym_compute_residual(np, cp); 7194 7195 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7196 csio->resid = 0; /* throw them away. :) */ 7197 cp->sv_resid = 0; 7198 } 7199 7200 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7201 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7202 csio->sense_resid = csio->resid; /* Swap residuals */ 7203 csio->resid = cp->sv_resid; 7204 cp->sv_resid = 0; 7205 if (sym_verbose && cp->sv_xerr_status) 7206 sym_print_xerr(cp, cp->sv_xerr_status); 7207 if (cp->host_status == HS_COMPLETE && 7208 cp->ssss_status == S_GOOD && 7209 cp->xerr_status == 0) { 7210 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7211 cp->sv_xerr_status); 7212 cam_status |= CAM_AUTOSNS_VALID; 7213 /* 7214 * Bounce back the sense data to user and 7215 * fix the residual. 7216 */ 7217 bzero(&csio->sense_data, sizeof(csio->sense_data)); 7218 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid; 7219 if (sense_returned < csio->sense_len) 7220 csio->sense_resid = csio->sense_len - 7221 sense_returned; 7222 else 7223 csio->sense_resid = 0; 7224 bcopy(cp->sns_bbuf, &csio->sense_data, 7225 MIN(csio->sense_len, sense_returned)); 7226 #if 0 7227 /* 7228 * If the device reports a UNIT ATTENTION condition 7229 * due to a RESET condition, we should consider all 7230 * disconnect CCBs for this unit as aborted. 7231 */ 7232 if (1) { 7233 u_char *p; 7234 p = (u_char *) csio->sense_data; 7235 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7236 sym_clear_tasks(np, CAM_REQ_ABORTED, 7237 cp->target,cp->lun, -1); 7238 } 7239 #endif 7240 } 7241 else 7242 cam_status = CAM_AUTOSENSE_FAIL; 7243 } 7244 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7245 csio->scsi_status = cp->ssss_status; 7246 cam_status = CAM_SCSI_STATUS_ERROR; 7247 } 7248 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7249 cam_status = CAM_SEL_TIMEOUT; 7250 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7251 cam_status = CAM_UNEXP_BUSFREE; 7252 else { /* Extended error */ 7253 if (sym_verbose) { 7254 PRINT_ADDR(cp); 7255 printf ("COMMAND FAILED (%x %x %x).\n", 7256 cp->host_status, cp->ssss_status, 7257 cp->xerr_status); 7258 } 7259 csio->scsi_status = cp->ssss_status; 7260 /* 7261 * Set the most appropriate value for CAM status. 7262 */ 7263 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7264 cp->xerr_status); 7265 } 7266 7267 /* 7268 * Dequeue all queued CCBs for that device 7269 * not yet started by SCRIPTS. 7270 */ 7271 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7272 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7273 7274 /* 7275 * Restart the SCRIPTS processor. 7276 */ 7277 OUTL_DSP (SCRIPTA_BA (np, start)); 7278 7279 /* 7280 * Synchronize DMA map if needed. 7281 */ 7282 if (cp->dmamapped) { 7283 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7284 (cp->dmamapped == SYM_DMA_READ ? 7285 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7286 } 7287 /* 7288 * Add this one to the COMP queue. 7289 * Complete all those commands with either error 7290 * or requeue condition. 7291 */ 7292 sym_set_cam_status((union ccb *) csio, cam_status); 7293 sym_remque(&cp->link_ccbq); 7294 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7295 sym_flush_comp_queue(np, 0); 7296 } 7297 7298 /* 7299 * Complete execution of a successful SCSI command. 7300 * 7301 * Only successful commands go to the DONE queue, 7302 * since we need to have the SCRIPTS processor 7303 * stopped on any error condition. 7304 * The SCRIPTS processor is running while we are 7305 * completing successful commands. 7306 */ 7307 static void sym_complete_ok (hcb_p np, ccb_p cp) 7308 { 7309 struct ccb_scsiio *csio; 7310 tcb_p tp; 7311 lcb_p lp; 7312 7313 SYM_LOCK_ASSERT(MA_OWNED); 7314 7315 /* 7316 * Paranoid check. :) 7317 */ 7318 if (!cp || !cp->cam_ccb) 7319 return; 7320 assert (cp->host_status == HS_COMPLETE); 7321 7322 /* 7323 * Get command, target and lun pointers. 7324 */ 7325 csio = &cp->cam_ccb->csio; 7326 tp = &np->target[cp->target]; 7327 lp = sym_lp(np, tp, cp->lun); 7328 7329 /* 7330 * Assume device discovered on first success. 7331 */ 7332 if (!lp) 7333 sym_set_bit(tp->lun_map, cp->lun); 7334 7335 /* 7336 * If all data have been transferred, given than no 7337 * extended error did occur, there is no residual. 7338 */ 7339 csio->resid = 0; 7340 if (cp->phys.head.lastp != cp->phys.head.goalp) 7341 csio->resid = sym_compute_residual(np, cp); 7342 7343 /* 7344 * Wrong transfer residuals may be worse than just always 7345 * returning zero. User can disable this feature from 7346 * sym_conf.h. Residual support is enabled by default. 7347 */ 7348 if (!SYM_CONF_RESIDUAL_SUPPORT) 7349 csio->resid = 0; 7350 7351 /* 7352 * Synchronize DMA map if needed. 7353 */ 7354 if (cp->dmamapped) { 7355 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7356 (cp->dmamapped == SYM_DMA_READ ? 7357 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7358 } 7359 /* 7360 * Set status and complete the command. 7361 */ 7362 csio->scsi_status = cp->ssss_status; 7363 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7364 sym_xpt_done(np, (union ccb *) csio, cp); 7365 sym_free_ccb(np, cp); 7366 } 7367 7368 /* 7369 * Our callout handler 7370 */ 7371 static void sym_callout(void *arg) 7372 { 7373 union ccb *ccb = (union ccb *) arg; 7374 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7375 7376 /* 7377 * Check that the CAM CCB is still queued. 7378 */ 7379 if (!np) 7380 return; 7381 7382 SYM_LOCK(); 7383 7384 switch(ccb->ccb_h.func_code) { 7385 case XPT_SCSI_IO: 7386 (void) sym_abort_scsiio(np, ccb, 1); 7387 break; 7388 default: 7389 break; 7390 } 7391 7392 SYM_UNLOCK(); 7393 } 7394 7395 /* 7396 * Abort an SCSI IO. 7397 */ 7398 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7399 { 7400 ccb_p cp; 7401 SYM_QUEHEAD *qp; 7402 7403 SYM_LOCK_ASSERT(MA_OWNED); 7404 7405 /* 7406 * Look up our CCB control block. 7407 */ 7408 cp = NULL; 7409 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7410 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7411 if (cp2->cam_ccb == ccb) { 7412 cp = cp2; 7413 break; 7414 } 7415 } 7416 if (!cp || cp->host_status == HS_WAIT) 7417 return -1; 7418 7419 /* 7420 * If a previous abort didn't succeed in time, 7421 * perform a BUS reset. 7422 */ 7423 if (cp->to_abort) { 7424 sym_reset_scsi_bus(np, 1); 7425 return 0; 7426 } 7427 7428 /* 7429 * Mark the CCB for abort and allow time for. 7430 */ 7431 cp->to_abort = timed_out ? 2 : 1; 7432 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7433 7434 /* 7435 * Tell the SCRIPTS processor to stop and synchronize with us. 7436 */ 7437 np->istat_sem = SEM; 7438 OUTB (nc_istat, SIGP|SEM); 7439 return 0; 7440 } 7441 7442 /* 7443 * Reset a SCSI device (all LUNs of a target). 7444 */ 7445 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7446 { 7447 tcb_p tp; 7448 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7449 7450 SYM_LOCK_ASSERT(MA_OWNED); 7451 7452 if (ccb_h->target_id == np->myaddr || 7453 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7454 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7455 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7456 return; 7457 } 7458 7459 tp = &np->target[ccb_h->target_id]; 7460 7461 tp->to_reset = 1; 7462 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7463 7464 np->istat_sem = SEM; 7465 OUTB (nc_istat, SIGP|SEM); 7466 } 7467 7468 /* 7469 * SIM action entry point. 7470 */ 7471 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7472 { 7473 hcb_p np; 7474 tcb_p tp; 7475 lcb_p lp; 7476 ccb_p cp; 7477 int tmp; 7478 u_char idmsg, *msgptr; 7479 u_int msglen; 7480 struct ccb_scsiio *csio; 7481 struct ccb_hdr *ccb_h; 7482 7483 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7484 7485 /* 7486 * Retrieve our controller data structure. 7487 */ 7488 np = (hcb_p) cam_sim_softc(sim); 7489 7490 SYM_LOCK_ASSERT(MA_OWNED); 7491 7492 /* 7493 * The common case is SCSI IO. 7494 * We deal with other ones elsewhere. 7495 */ 7496 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7497 sym_action2(sim, ccb); 7498 return; 7499 } 7500 csio = &ccb->csio; 7501 ccb_h = &csio->ccb_h; 7502 7503 /* 7504 * Work around races. 7505 */ 7506 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7507 xpt_done(ccb); 7508 return; 7509 } 7510 7511 /* 7512 * Minimal checkings, so that we will not 7513 * go outside our tables. 7514 */ 7515 if (ccb_h->target_id == np->myaddr || 7516 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7517 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7518 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7519 return; 7520 } 7521 7522 /* 7523 * Retrieve the target and lun descriptors. 7524 */ 7525 tp = &np->target[ccb_h->target_id]; 7526 lp = sym_lp(np, tp, ccb_h->target_lun); 7527 7528 /* 7529 * Complete the 1st INQUIRY command with error 7530 * condition if the device is flagged NOSCAN 7531 * at BOOT in the NVRAM. This may speed up 7532 * the boot and maintain coherency with BIOS 7533 * device numbering. Clearing the flag allows 7534 * user to rescan skipped devices later. 7535 * We also return error for devices not flagged 7536 * for SCAN LUNS in the NVRAM since some mono-lun 7537 * devices behave badly when asked for some non 7538 * zero LUN. Btw, this is an absolute hack.:-) 7539 */ 7540 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7541 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7542 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7543 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7544 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7545 ccb_h->target_lun != 0)) { 7546 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7547 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7548 return; 7549 } 7550 } 7551 7552 /* 7553 * Get a control block for this IO. 7554 */ 7555 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7556 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7557 if (!cp) { 7558 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7559 return; 7560 } 7561 7562 /* 7563 * Keep track of the IO in our CCB. 7564 */ 7565 cp->cam_ccb = ccb; 7566 7567 /* 7568 * Build the IDENTIFY message. 7569 */ 7570 idmsg = M_IDENTIFY | cp->lun; 7571 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7572 idmsg |= 0x40; 7573 7574 msgptr = cp->scsi_smsg; 7575 msglen = 0; 7576 msgptr[msglen++] = idmsg; 7577 7578 /* 7579 * Build the tag message if present. 7580 */ 7581 if (cp->tag != NO_TAG) { 7582 u_char order = csio->tag_action; 7583 7584 switch(order) { 7585 case M_ORDERED_TAG: 7586 break; 7587 case M_HEAD_TAG: 7588 break; 7589 default: 7590 order = M_SIMPLE_TAG; 7591 } 7592 msgptr[msglen++] = order; 7593 7594 /* 7595 * For less than 128 tags, actual tags are numbered 7596 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7597 * with devices that have problems with #TAG 0 or too 7598 * great #TAG numbers. For more tags (up to 256), 7599 * we use directly our tag number. 7600 */ 7601 #if SYM_CONF_MAX_TASK > (512/4) 7602 msgptr[msglen++] = cp->tag; 7603 #else 7604 msgptr[msglen++] = (cp->tag << 1) + 1; 7605 #endif 7606 } 7607 7608 /* 7609 * Build a negotiation message if needed. 7610 * (nego_status is filled by sym_prepare_nego()) 7611 */ 7612 cp->nego_status = 0; 7613 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7614 tp->tinfo.current.period != tp->tinfo.goal.period || 7615 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7616 tp->tinfo.current.options != tp->tinfo.goal.options) { 7617 if (!tp->nego_cp && lp) 7618 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7619 } 7620 7621 /* 7622 * Fill in our ccb 7623 */ 7624 7625 /* 7626 * Startqueue 7627 */ 7628 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7629 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7630 7631 /* 7632 * select 7633 */ 7634 cp->phys.select.sel_id = cp->target; 7635 cp->phys.select.sel_scntl3 = tp->head.wval; 7636 cp->phys.select.sel_sxfer = tp->head.sval; 7637 cp->phys.select.sel_scntl4 = tp->head.uval; 7638 7639 /* 7640 * message 7641 */ 7642 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7643 cp->phys.smsg.size = cpu_to_scr(msglen); 7644 7645 /* 7646 * command 7647 */ 7648 if (sym_setup_cdb(np, csio, cp) < 0) { 7649 sym_xpt_done(np, ccb, cp); 7650 sym_free_ccb(np, cp); 7651 return; 7652 } 7653 7654 /* 7655 * status 7656 */ 7657 #if 0 /* Provision */ 7658 cp->actualquirks = tp->quirks; 7659 #endif 7660 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7661 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7662 cp->ssss_status = S_ILLEGAL; 7663 cp->xerr_status = 0; 7664 cp->host_flags = 0; 7665 cp->extra_bytes = 0; 7666 7667 /* 7668 * extreme data pointer. 7669 * shall be positive, so -1 is lower than lowest.:) 7670 */ 7671 cp->ext_sg = -1; 7672 cp->ext_ofs = 0; 7673 7674 /* 7675 * Build the data descriptor block 7676 * and start the IO. 7677 */ 7678 sym_setup_data_and_start(np, csio, cp); 7679 } 7680 7681 /* 7682 * Setup buffers and pointers that address the CDB. 7683 * I bet, physical CDBs will never be used on the planet, 7684 * since they can be bounced without significant overhead. 7685 */ 7686 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7687 { 7688 struct ccb_hdr *ccb_h; 7689 u32 cmd_ba; 7690 int cmd_len; 7691 7692 SYM_LOCK_ASSERT(MA_OWNED); 7693 7694 ccb_h = &csio->ccb_h; 7695 7696 /* 7697 * CDB is 16 bytes max. 7698 */ 7699 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7700 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7701 return -1; 7702 } 7703 cmd_len = csio->cdb_len; 7704 7705 if (ccb_h->flags & CAM_CDB_POINTER) { 7706 /* CDB is a pointer */ 7707 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7708 /* CDB pointer is virtual */ 7709 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7710 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7711 } else { 7712 /* CDB pointer is physical */ 7713 #if 0 7714 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7715 #else 7716 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7717 return -1; 7718 #endif 7719 } 7720 } else { 7721 /* CDB is in the CAM ccb (buffer) */ 7722 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7723 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7724 } 7725 7726 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7727 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7728 7729 return 0; 7730 } 7731 7732 /* 7733 * Set up data pointers used by SCRIPTS. 7734 */ 7735 static void __inline 7736 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7737 { 7738 u32 lastp, goalp; 7739 7740 SYM_LOCK_ASSERT(MA_OWNED); 7741 7742 /* 7743 * No segments means no data. 7744 */ 7745 if (!cp->segments) 7746 dir = CAM_DIR_NONE; 7747 7748 /* 7749 * Set the data pointer. 7750 */ 7751 switch(dir) { 7752 case CAM_DIR_OUT: 7753 goalp = SCRIPTA_BA (np, data_out2) + 8; 7754 lastp = goalp - 8 - (cp->segments * (2*4)); 7755 break; 7756 case CAM_DIR_IN: 7757 cp->host_flags |= HF_DATA_IN; 7758 goalp = SCRIPTA_BA (np, data_in2) + 8; 7759 lastp = goalp - 8 - (cp->segments * (2*4)); 7760 break; 7761 case CAM_DIR_NONE: 7762 default: 7763 lastp = goalp = SCRIPTB_BA (np, no_data); 7764 break; 7765 } 7766 7767 cp->phys.head.lastp = cpu_to_scr(lastp); 7768 cp->phys.head.goalp = cpu_to_scr(goalp); 7769 cp->phys.head.savep = cpu_to_scr(lastp); 7770 cp->startp = cp->phys.head.savep; 7771 } 7772 7773 7774 /* 7775 * Call back routine for the DMA map service. 7776 * If bounce buffers are used (why ?), we may sleep and then 7777 * be called there in another context. 7778 */ 7779 static void 7780 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7781 { 7782 ccb_p cp; 7783 hcb_p np; 7784 union ccb *ccb; 7785 7786 cp = (ccb_p) arg; 7787 ccb = cp->cam_ccb; 7788 np = (hcb_p) cp->arg; 7789 7790 SYM_LOCK_ASSERT(MA_OWNED); 7791 7792 /* 7793 * Deal with weird races. 7794 */ 7795 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7796 goto out_abort; 7797 7798 /* 7799 * Deal with weird errors. 7800 */ 7801 if (error) { 7802 cp->dmamapped = 0; 7803 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7804 goto out_abort; 7805 } 7806 7807 /* 7808 * Build the data descriptor for the chip. 7809 */ 7810 if (nsegs) { 7811 int retv; 7812 /* 896 rev 1 requires to be careful about boundaries */ 7813 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7814 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7815 else 7816 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7817 if (retv < 0) { 7818 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7819 goto out_abort; 7820 } 7821 } 7822 7823 /* 7824 * Synchronize the DMA map only if we have 7825 * actually mapped the data. 7826 */ 7827 if (cp->dmamapped) { 7828 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7829 (cp->dmamapped == SYM_DMA_READ ? 7830 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7831 } 7832 7833 /* 7834 * Set host status to busy state. 7835 * May have been set back to HS_WAIT to avoid a race. 7836 */ 7837 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7838 7839 /* 7840 * Set data pointers. 7841 */ 7842 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7843 7844 /* 7845 * Enqueue this IO in our pending queue. 7846 */ 7847 sym_enqueue_cam_ccb(cp); 7848 7849 /* 7850 * When `#ifed 1', the code below makes the driver 7851 * panic on the first attempt to write to a SCSI device. 7852 * It is the first test we want to do after a driver 7853 * change that does not seem obviously safe. :) 7854 */ 7855 #if 0 7856 switch (cp->cdb_buf[0]) { 7857 case 0x0A: case 0x2A: case 0xAA: 7858 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7859 MDELAY(10000); 7860 break; 7861 default: 7862 break; 7863 } 7864 #endif 7865 /* 7866 * Activate this job. 7867 */ 7868 sym_put_start_queue(np, cp); 7869 return; 7870 out_abort: 7871 sym_xpt_done(np, ccb, cp); 7872 sym_free_ccb(np, cp); 7873 } 7874 7875 /* 7876 * How complex it gets to deal with the data in CAM. 7877 * The Bus Dma stuff makes things still more complex. 7878 */ 7879 static void 7880 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7881 { 7882 struct ccb_hdr *ccb_h; 7883 int dir, retv; 7884 7885 SYM_LOCK_ASSERT(MA_OWNED); 7886 7887 ccb_h = &csio->ccb_h; 7888 7889 /* 7890 * Now deal with the data. 7891 */ 7892 cp->data_len = csio->dxfer_len; 7893 cp->arg = np; 7894 7895 /* 7896 * No direction means no data. 7897 */ 7898 dir = (ccb_h->flags & CAM_DIR_MASK); 7899 if (dir == CAM_DIR_NONE) { 7900 sym_execute_ccb(cp, NULL, 0, 0); 7901 return; 7902 } 7903 7904 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 7905 /* Single buffer */ 7906 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7907 /* Buffer is virtual */ 7908 cp->dmamapped = (dir == CAM_DIR_IN) ? 7909 SYM_DMA_READ : SYM_DMA_WRITE; 7910 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 7911 csio->data_ptr, csio->dxfer_len, 7912 sym_execute_ccb, cp, 0); 7913 if (retv == EINPROGRESS) { 7914 cp->host_status = HS_WAIT; 7915 xpt_freeze_simq(np->sim, 1); 7916 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7917 } 7918 } else { 7919 /* Buffer is physical */ 7920 struct bus_dma_segment seg; 7921 7922 seg.ds_addr = (bus_addr_t) csio->data_ptr; 7923 sym_execute_ccb(cp, &seg, 1, 0); 7924 } 7925 } else { 7926 /* Scatter/gather list */ 7927 struct bus_dma_segment *segs; 7928 7929 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 7930 /* The SG list pointer is physical */ 7931 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7932 goto out_abort; 7933 } 7934 7935 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7936 /* SG buffer pointers are virtual */ 7937 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7938 goto out_abort; 7939 } 7940 7941 /* SG buffer pointers are physical */ 7942 segs = (struct bus_dma_segment *)csio->data_ptr; 7943 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 7944 } 7945 return; 7946 out_abort: 7947 sym_xpt_done(np, (union ccb *) csio, cp); 7948 sym_free_ccb(np, cp); 7949 } 7950 7951 /* 7952 * Move the scatter list to our data block. 7953 */ 7954 static int 7955 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7956 bus_dma_segment_t *psegs, int nsegs) 7957 { 7958 struct sym_tblmove *data; 7959 bus_dma_segment_t *psegs2; 7960 7961 SYM_LOCK_ASSERT(MA_OWNED); 7962 7963 if (nsegs > SYM_CONF_MAX_SG) 7964 return -1; 7965 7966 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7967 psegs2 = &psegs[nsegs-1]; 7968 cp->segments = nsegs; 7969 7970 while (1) { 7971 data->addr = cpu_to_scr(psegs2->ds_addr); 7972 data->size = cpu_to_scr(psegs2->ds_len); 7973 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7974 printf ("%s scatter: paddr=%lx len=%ld\n", 7975 sym_name(np), (long) psegs2->ds_addr, 7976 (long) psegs2->ds_len); 7977 } 7978 if (psegs2 != psegs) { 7979 --data; 7980 --psegs2; 7981 continue; 7982 } 7983 break; 7984 } 7985 return 0; 7986 } 7987 7988 7989 /* 7990 * Scatter a SG list with physical addresses into bus addressable chunks. 7991 * We need to ensure 16MB boundaries not to be crossed during DMA of 7992 * each segment, due to some chips being flawed. 7993 */ 7994 #define BOUND_MASK ((1UL<<24)-1) 7995 static int 7996 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7997 { 7998 u_long ps, pe, pn; 7999 u_long k; 8000 int s, t; 8001 8002 SYM_LOCK_ASSERT(MA_OWNED); 8003 8004 s = SYM_CONF_MAX_SG - 1; 8005 t = nsegs - 1; 8006 ps = psegs[t].ds_addr; 8007 pe = ps + psegs[t].ds_len; 8008 8009 while (s >= 0) { 8010 pn = (pe - 1) & ~BOUND_MASK; 8011 if (pn <= ps) 8012 pn = ps; 8013 k = pe - pn; 8014 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8015 printf ("%s scatter: paddr=%lx len=%ld\n", 8016 sym_name(np), pn, k); 8017 } 8018 cp->phys.data[s].addr = cpu_to_scr(pn); 8019 cp->phys.data[s].size = cpu_to_scr(k); 8020 --s; 8021 if (pn == ps) { 8022 if (--t < 0) 8023 break; 8024 ps = psegs[t].ds_addr; 8025 pe = ps + psegs[t].ds_len; 8026 } 8027 else 8028 pe = pn; 8029 } 8030 8031 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8032 8033 return t >= 0 ? -1 : 0; 8034 } 8035 #undef BOUND_MASK 8036 8037 /* 8038 * SIM action for non performance critical stuff. 8039 */ 8040 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8041 { 8042 hcb_p np; 8043 tcb_p tp; 8044 lcb_p lp; 8045 struct ccb_hdr *ccb_h; 8046 8047 /* 8048 * Retrieve our controller data structure. 8049 */ 8050 np = (hcb_p) cam_sim_softc(sim); 8051 8052 SYM_LOCK_ASSERT(MA_OWNED); 8053 8054 ccb_h = &ccb->ccb_h; 8055 8056 switch (ccb_h->func_code) { 8057 case XPT_SET_TRAN_SETTINGS: 8058 { 8059 struct ccb_trans_settings *cts; 8060 8061 cts = &ccb->cts; 8062 tp = &np->target[ccb_h->target_id]; 8063 8064 /* 8065 * Update SPI transport settings in TARGET control block. 8066 * Update SCSI device settings in LUN control block. 8067 */ 8068 lp = sym_lp(np, tp, ccb_h->target_lun); 8069 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8070 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8071 if (lp) 8072 sym_update_dflags(np, &lp->current_flags, cts); 8073 } 8074 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8075 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8076 if (lp) 8077 sym_update_dflags(np, &lp->user_flags, cts); 8078 } 8079 8080 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8081 break; 8082 } 8083 case XPT_GET_TRAN_SETTINGS: 8084 { 8085 struct ccb_trans_settings *cts; 8086 struct sym_trans *tip; 8087 u_char dflags; 8088 8089 cts = &ccb->cts; 8090 tp = &np->target[ccb_h->target_id]; 8091 lp = sym_lp(np, tp, ccb_h->target_lun); 8092 8093 #define cts__scsi (&cts->proto_specific.scsi) 8094 #define cts__spi (&cts->xport_specific.spi) 8095 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8096 tip = &tp->tinfo.current; 8097 dflags = lp ? lp->current_flags : 0; 8098 } 8099 else { 8100 tip = &tp->tinfo.user; 8101 dflags = lp ? lp->user_flags : tp->usrflags; 8102 } 8103 8104 cts->protocol = PROTO_SCSI; 8105 cts->transport = XPORT_SPI; 8106 cts->protocol_version = tip->scsi_version; 8107 cts->transport_version = tip->spi_version; 8108 8109 cts__spi->sync_period = tip->period; 8110 cts__spi->sync_offset = tip->offset; 8111 cts__spi->bus_width = tip->width; 8112 cts__spi->ppr_options = tip->options; 8113 8114 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8115 | CTS_SPI_VALID_SYNC_OFFSET 8116 | CTS_SPI_VALID_BUS_WIDTH 8117 | CTS_SPI_VALID_PPR_OPTIONS; 8118 8119 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8120 if (dflags & SYM_DISC_ENABLED) 8121 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8122 cts__spi->valid |= CTS_SPI_VALID_DISC; 8123 8124 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8125 if (dflags & SYM_TAGS_ENABLED) 8126 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8127 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8128 #undef cts__spi 8129 #undef cts__scsi 8130 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8131 break; 8132 } 8133 case XPT_CALC_GEOMETRY: 8134 { 8135 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8136 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8137 break; 8138 } 8139 case XPT_PATH_INQ: 8140 { 8141 struct ccb_pathinq *cpi = &ccb->cpi; 8142 cpi->version_num = 1; 8143 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8144 if ((np->features & FE_WIDE) != 0) 8145 cpi->hba_inquiry |= PI_WIDE_16; 8146 cpi->target_sprt = 0; 8147 cpi->hba_misc = 0; 8148 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8149 cpi->hba_misc |= PIM_SCANHILO; 8150 if (np->usrflags & SYM_AVOID_BUS_RESET) 8151 cpi->hba_misc |= PIM_NOBUSRESET; 8152 cpi->hba_eng_cnt = 0; 8153 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8154 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8155 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8156 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8157 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8158 cpi->bus_id = cam_sim_bus(sim); 8159 cpi->initiator_id = np->myaddr; 8160 cpi->base_transfer_speed = 3300; 8161 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8162 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8163 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8164 cpi->unit_number = cam_sim_unit(sim); 8165 8166 cpi->protocol = PROTO_SCSI; 8167 cpi->protocol_version = SCSI_REV_2; 8168 cpi->transport = XPORT_SPI; 8169 cpi->transport_version = 2; 8170 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8171 if (np->features & FE_ULTRA3) { 8172 cpi->transport_version = 3; 8173 cpi->xport_specific.spi.ppr_options = 8174 SID_SPI_CLOCK_DT_ST; 8175 } 8176 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8177 break; 8178 } 8179 case XPT_ABORT: 8180 { 8181 union ccb *abort_ccb = ccb->cab.abort_ccb; 8182 switch(abort_ccb->ccb_h.func_code) { 8183 case XPT_SCSI_IO: 8184 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8185 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8186 break; 8187 } 8188 default: 8189 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8190 break; 8191 } 8192 break; 8193 } 8194 case XPT_RESET_DEV: 8195 { 8196 sym_reset_dev(np, ccb); 8197 break; 8198 } 8199 case XPT_RESET_BUS: 8200 { 8201 sym_reset_scsi_bus(np, 0); 8202 if (sym_verbose) { 8203 xpt_print_path(np->path); 8204 printf("SCSI BUS reset delivered.\n"); 8205 } 8206 sym_init (np, 1); 8207 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8208 break; 8209 } 8210 case XPT_ACCEPT_TARGET_IO: 8211 case XPT_CONT_TARGET_IO: 8212 case XPT_EN_LUN: 8213 case XPT_NOTIFY_ACK: 8214 case XPT_IMMED_NOTIFY: 8215 case XPT_TERM_IO: 8216 default: 8217 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8218 break; 8219 } 8220 } 8221 8222 /* 8223 * Asynchronous notification handler. 8224 */ 8225 static void 8226 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8227 { 8228 hcb_p np; 8229 struct cam_sim *sim; 8230 u_int tn; 8231 tcb_p tp; 8232 8233 sim = (struct cam_sim *) cb_arg; 8234 np = (hcb_p) cam_sim_softc(sim); 8235 8236 SYM_LOCK_ASSERT(MA_OWNED); 8237 8238 switch (code) { 8239 case AC_LOST_DEVICE: 8240 tn = xpt_path_target_id(path); 8241 if (tn >= SYM_CONF_MAX_TARGET) 8242 break; 8243 8244 tp = &np->target[tn]; 8245 8246 tp->to_reset = 0; 8247 tp->head.sval = 0; 8248 tp->head.wval = np->rv_scntl3; 8249 tp->head.uval = 0; 8250 8251 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8252 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8253 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8254 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8255 8256 break; 8257 default: 8258 break; 8259 } 8260 } 8261 8262 /* 8263 * Update transfer settings of a target. 8264 */ 8265 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8266 struct ccb_trans_settings *cts) 8267 { 8268 SYM_LOCK_ASSERT(MA_OWNED); 8269 8270 /* 8271 * Update the infos. 8272 */ 8273 #define cts__spi (&cts->xport_specific.spi) 8274 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8275 tip->width = cts__spi->bus_width; 8276 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8277 tip->offset = cts__spi->sync_offset; 8278 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8279 tip->period = cts__spi->sync_period; 8280 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8281 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8282 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8283 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8284 tip->scsi_version = cts->protocol_version; 8285 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8286 cts->transport_version != XPORT_VERSION_UNKNOWN) 8287 tip->spi_version = cts->transport_version; 8288 #undef cts__spi 8289 /* 8290 * Scale against driver configuration limits. 8291 */ 8292 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8293 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8294 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8295 8296 /* 8297 * Scale against actual controller BUS width. 8298 */ 8299 if (tip->width > np->maxwide) 8300 tip->width = np->maxwide; 8301 8302 /* 8303 * Only accept DT if controller supports and SYNC/WIDE asked. 8304 */ 8305 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8306 !(tip->width == BUS_16_BIT && tip->offset)) { 8307 tip->options &= ~PPR_OPT_DT; 8308 } 8309 8310 /* 8311 * Scale period factor and offset against controller limits. 8312 */ 8313 if (tip->options & PPR_OPT_DT) { 8314 if (tip->period < np->minsync_dt) 8315 tip->period = np->minsync_dt; 8316 if (tip->period > np->maxsync_dt) 8317 tip->period = np->maxsync_dt; 8318 if (tip->offset > np->maxoffs_dt) 8319 tip->offset = np->maxoffs_dt; 8320 } 8321 else { 8322 if (tip->period < np->minsync) 8323 tip->period = np->minsync; 8324 if (tip->period > np->maxsync) 8325 tip->period = np->maxsync; 8326 if (tip->offset > np->maxoffs) 8327 tip->offset = np->maxoffs; 8328 } 8329 } 8330 8331 /* 8332 * Update flags for a device (logical unit). 8333 */ 8334 static void 8335 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8336 { 8337 SYM_LOCK_ASSERT(MA_OWNED); 8338 8339 #define cts__scsi (&cts->proto_specific.scsi) 8340 #define cts__spi (&cts->xport_specific.spi) 8341 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8342 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8343 *flags |= SYM_DISC_ENABLED; 8344 else 8345 *flags &= ~SYM_DISC_ENABLED; 8346 } 8347 8348 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8349 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8350 *flags |= SYM_TAGS_ENABLED; 8351 else 8352 *flags &= ~SYM_TAGS_ENABLED; 8353 } 8354 #undef cts__spi 8355 #undef cts__scsi 8356 } 8357 8358 8359 /*============= DRIVER INITIALISATION ==================*/ 8360 8361 8362 static device_method_t sym_pci_methods[] = { 8363 DEVMETHOD(device_probe, sym_pci_probe), 8364 DEVMETHOD(device_attach, sym_pci_attach), 8365 { 0, 0 } 8366 }; 8367 8368 static driver_t sym_pci_driver = { 8369 "sym", 8370 sym_pci_methods, 8371 1 /* no softc */ 8372 }; 8373 8374 static devclass_t sym_devclass; 8375 8376 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8377 MODULE_DEPEND(sym, cam, 1, 1, 1); 8378 MODULE_DEPEND(sym, pci, 1, 1, 1); 8379 8380 8381 static const struct sym_pci_chip sym_pci_dev_table[] = { 8382 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8383 FE_ERL} 8384 , 8385 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8386 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8387 FE_BOF} 8388 , 8389 #else 8390 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8391 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8392 , 8393 #endif 8394 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8395 FE_BOF|FE_ERL} 8396 , 8397 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8398 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8399 , 8400 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8401 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8402 , 8403 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8404 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8405 , 8406 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8407 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8408 FE_RAM|FE_DIFF} 8409 , 8410 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8411 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8412 FE_RAM|FE_DIFF} 8413 , 8414 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8415 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8416 FE_RAM|FE_DIFF} 8417 , 8418 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8419 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8420 FE_RAM|FE_DIFF} 8421 , 8422 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8423 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8424 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8425 FE_RAM|FE_LCKFRQ} 8426 , 8427 #else 8428 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8429 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8430 FE_RAM|FE_LCKFRQ} 8431 , 8432 #endif 8433 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8434 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8435 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8436 , 8437 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8438 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8439 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8440 , 8441 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8442 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8443 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8444 FE_C10} 8445 , 8446 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8447 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8448 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8449 FE_C10|FE_U3EN} 8450 , 8451 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8452 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8453 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8454 FE_C10|FE_U3EN} 8455 , 8456 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8457 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8458 FE_RAM|FE_IO256|FE_LEDC} 8459 }; 8460 8461 #define sym_pci_num_devs \ 8462 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8463 8464 /* 8465 * Look up the chip table. 8466 * 8467 * Return a pointer to the chip entry if found, 8468 * zero otherwise. 8469 */ 8470 static const struct sym_pci_chip * 8471 sym_find_pci_chip(device_t dev) 8472 { 8473 const struct sym_pci_chip *chip; 8474 int i; 8475 u_short device_id; 8476 u_char revision; 8477 8478 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8479 return NULL; 8480 8481 device_id = pci_get_device(dev); 8482 revision = pci_get_revid(dev); 8483 8484 for (i = 0; i < sym_pci_num_devs; i++) { 8485 chip = &sym_pci_dev_table[i]; 8486 if (device_id != chip->device_id) 8487 continue; 8488 if (revision > chip->revision_id) 8489 continue; 8490 return chip; 8491 } 8492 8493 return NULL; 8494 } 8495 8496 /* 8497 * Tell upper layer if the chip is supported. 8498 */ 8499 static int 8500 sym_pci_probe(device_t dev) 8501 { 8502 const struct sym_pci_chip *chip; 8503 8504 chip = sym_find_pci_chip(dev); 8505 if (chip && sym_find_firmware(chip)) { 8506 device_set_desc(dev, chip->name); 8507 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? 8508 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; 8509 } 8510 return ENXIO; 8511 } 8512 8513 /* 8514 * Attach a sym53c8xx device. 8515 */ 8516 static int 8517 sym_pci_attach(device_t dev) 8518 { 8519 const struct sym_pci_chip *chip; 8520 u_short command; 8521 u_char cachelnsz; 8522 struct sym_hcb *np = NULL; 8523 struct sym_nvram nvram; 8524 const struct sym_fw *fw = NULL; 8525 int i; 8526 bus_dma_tag_t bus_dmat; 8527 8528 bus_dmat = bus_get_dma_tag(dev); 8529 8530 /* 8531 * Only probed devices should be attached. 8532 * We just enjoy being paranoid. :) 8533 */ 8534 chip = sym_find_pci_chip(dev); 8535 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8536 return (ENXIO); 8537 8538 /* 8539 * Allocate immediately the host control block, 8540 * since we are only expecting to succeed. :) 8541 * We keep track in the HCB of all the resources that 8542 * are to be released on error. 8543 */ 8544 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8545 if (np) 8546 np->bus_dmat = bus_dmat; 8547 else 8548 return (ENXIO); 8549 device_set_softc(dev, np); 8550 8551 SYM_LOCK_INIT(); 8552 8553 /* 8554 * Copy some useful infos to the HCB. 8555 */ 8556 np->hcb_ba = vtobus(np); 8557 np->verbose = bootverbose; 8558 np->device = dev; 8559 np->device_id = pci_get_device(dev); 8560 np->revision_id = pci_get_revid(dev); 8561 np->features = chip->features; 8562 np->clock_divn = chip->nr_divisor; 8563 np->maxoffs = chip->offset_max; 8564 np->maxburst = chip->burst_max; 8565 np->scripta_sz = fw->a_size; 8566 np->scriptb_sz = fw->b_size; 8567 np->fw_setup = fw->setup; 8568 np->fw_patch = fw->patch; 8569 np->fw_name = fw->name; 8570 8571 #ifdef __amd64__ 8572 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8573 "TARGET"); 8574 if (!np->target) 8575 goto attach_failed; 8576 #endif 8577 8578 /* 8579 * Initialize the CCB free and busy queues. 8580 */ 8581 sym_que_init(&np->free_ccbq); 8582 sym_que_init(&np->busy_ccbq); 8583 sym_que_init(&np->comp_ccbq); 8584 sym_que_init(&np->cam_ccbq); 8585 8586 /* 8587 * Allocate a tag for the DMA of user data. 8588 */ 8589 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 8590 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 8591 NULL, NULL, 8592 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 8593 (1<<24), 0, busdma_lock_mutex, &np->mtx, 8594 &np->data_dmat)) { 8595 device_printf(dev, "failed to create DMA tag.\n"); 8596 goto attach_failed; 8597 } 8598 /* 8599 * Read and apply some fix-ups to the PCI COMMAND 8600 * register. We want the chip to be enabled for: 8601 * - BUS mastering 8602 * - PCI parity checking (reporting would also be fine) 8603 * - Write And Invalidate. 8604 */ 8605 command = pci_read_config(dev, PCIR_COMMAND, 2); 8606 command |= PCIM_CMD_BUSMASTEREN; 8607 command |= PCIM_CMD_PERRESPEN; 8608 command |= /* PCIM_CMD_MWIEN */ 0x0010; 8609 pci_write_config(dev, PCIR_COMMAND, command, 2); 8610 8611 /* 8612 * Let the device know about the cache line size, 8613 * if it doesn't yet. 8614 */ 8615 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8616 if (!cachelnsz) { 8617 cachelnsz = 8; 8618 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8619 } 8620 8621 /* 8622 * Alloc/get/map/retrieve everything that deals with MMIO. 8623 */ 8624 if ((command & PCIM_CMD_MEMEN) != 0) { 8625 int regs_id = SYM_PCI_MMIO; 8626 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8627 ®s_id, RF_ACTIVE); 8628 } 8629 if (!np->mmio_res) { 8630 device_printf(dev, "failed to allocate MMIO resources\n"); 8631 goto attach_failed; 8632 } 8633 np->mmio_ba = rman_get_start(np->mmio_res); 8634 8635 /* 8636 * Allocate the IRQ. 8637 */ 8638 i = 0; 8639 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8640 RF_ACTIVE | RF_SHAREABLE); 8641 if (!np->irq_res) { 8642 device_printf(dev, "failed to allocate IRQ resource\n"); 8643 goto attach_failed; 8644 } 8645 8646 #ifdef SYM_CONF_IOMAPPED 8647 /* 8648 * User want us to use normal IO with PCI. 8649 * Alloc/get/map/retrieve everything that deals with IO. 8650 */ 8651 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 8652 int regs_id = SYM_PCI_IO; 8653 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 8654 ®s_id, RF_ACTIVE); 8655 } 8656 if (!np->io_res) { 8657 device_printf(dev, "failed to allocate IO resources\n"); 8658 goto attach_failed; 8659 } 8660 8661 #endif /* SYM_CONF_IOMAPPED */ 8662 8663 /* 8664 * If the chip has RAM. 8665 * Alloc/get/map/retrieve the corresponding resources. 8666 */ 8667 if ((np->features & (FE_RAM|FE_RAM8K)) && 8668 (command & PCIM_CMD_MEMEN) != 0) { 8669 int regs_id = SYM_PCI_RAM; 8670 if (np->features & FE_64BIT) 8671 regs_id = SYM_PCI_RAM64; 8672 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8673 ®s_id, RF_ACTIVE); 8674 if (!np->ram_res) { 8675 device_printf(dev,"failed to allocate RAM resources\n"); 8676 goto attach_failed; 8677 } 8678 np->ram_id = regs_id; 8679 np->ram_ba = rman_get_start(np->ram_res); 8680 } 8681 8682 /* 8683 * Save setting of some IO registers, so we will 8684 * be able to probe specific implementations. 8685 */ 8686 sym_save_initial_setting (np); 8687 8688 /* 8689 * Reset the chip now, since it has been reported 8690 * that SCSI clock calibration may not work properly 8691 * if the chip is currently active. 8692 */ 8693 sym_chip_reset (np); 8694 8695 /* 8696 * Try to read the user set-up. 8697 */ 8698 (void) sym_read_nvram(np, &nvram); 8699 8700 /* 8701 * Prepare controller and devices settings, according 8702 * to chip features, user set-up and driver set-up. 8703 */ 8704 (void) sym_prepare_setting(np, &nvram); 8705 8706 /* 8707 * Check the PCI clock frequency. 8708 * Must be performed after prepare_setting since it destroys 8709 * STEST1 that is used to probe for the clock doubler. 8710 */ 8711 i = sym_getpciclock(np); 8712 if (i > 37000) 8713 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8714 8715 /* 8716 * Allocate the start queue. 8717 */ 8718 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8719 if (!np->squeue) 8720 goto attach_failed; 8721 np->squeue_ba = vtobus(np->squeue); 8722 8723 /* 8724 * Allocate the done queue. 8725 */ 8726 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8727 if (!np->dqueue) 8728 goto attach_failed; 8729 np->dqueue_ba = vtobus(np->dqueue); 8730 8731 /* 8732 * Allocate the target bus address array. 8733 */ 8734 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8735 if (!np->targtbl) 8736 goto attach_failed; 8737 np->targtbl_ba = vtobus(np->targtbl); 8738 8739 /* 8740 * Allocate SCRIPTS areas. 8741 */ 8742 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8743 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8744 if (!np->scripta0 || !np->scriptb0) 8745 goto attach_failed; 8746 8747 /* 8748 * Allocate the CCBs. We need at least ONE. 8749 */ 8750 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8751 ; 8752 if (i < 1) 8753 goto attach_failed; 8754 8755 /* 8756 * Calculate BUS addresses where we are going 8757 * to load the SCRIPTS. 8758 */ 8759 np->scripta_ba = vtobus(np->scripta0); 8760 np->scriptb_ba = vtobus(np->scriptb0); 8761 np->scriptb0_ba = np->scriptb_ba; 8762 8763 if (np->ram_ba) { 8764 np->scripta_ba = np->ram_ba; 8765 if (np->features & FE_RAM8K) { 8766 np->ram_ws = 8192; 8767 np->scriptb_ba = np->scripta_ba + 4096; 8768 #ifdef __LP64__ 8769 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8770 #endif 8771 } 8772 else 8773 np->ram_ws = 4096; 8774 } 8775 8776 /* 8777 * Copy scripts to controller instance. 8778 */ 8779 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8780 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8781 8782 /* 8783 * Setup variable parts in scripts and compute 8784 * scripts bus addresses used from the C code. 8785 */ 8786 np->fw_setup(np, fw); 8787 8788 /* 8789 * Bind SCRIPTS with physical addresses usable by the 8790 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8791 */ 8792 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8793 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8794 8795 #ifdef SYM_CONF_IARB_SUPPORT 8796 /* 8797 * If user wants IARB to be set when we win arbitration 8798 * and have other jobs, compute the max number of consecutive 8799 * settings of IARB hints before we leave devices a chance to 8800 * arbitrate for reselection. 8801 */ 8802 #ifdef SYM_SETUP_IARB_MAX 8803 np->iarb_max = SYM_SETUP_IARB_MAX; 8804 #else 8805 np->iarb_max = 4; 8806 #endif 8807 #endif 8808 8809 /* 8810 * Prepare the idle and invalid task actions. 8811 */ 8812 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8813 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8814 np->idletask_ba = vtobus(&np->idletask); 8815 8816 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8817 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8818 np->notask_ba = vtobus(&np->notask); 8819 8820 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8821 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8822 np->bad_itl_ba = vtobus(&np->bad_itl); 8823 8824 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8825 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8826 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8827 8828 /* 8829 * Allocate and prepare the lun JUMP table that is used 8830 * for a target prior the probing of devices (bad lun table). 8831 * A private table will be allocated for the target on the 8832 * first INQUIRY response received. 8833 */ 8834 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8835 if (!np->badluntbl) 8836 goto attach_failed; 8837 8838 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8839 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8840 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8841 8842 /* 8843 * Prepare the bus address array that contains the bus 8844 * address of each target control block. 8845 * For now, assume all logical units are wrong. :) 8846 */ 8847 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8848 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8849 np->target[i].head.luntbl_sa = 8850 cpu_to_scr(vtobus(np->badluntbl)); 8851 np->target[i].head.lun0_sa = 8852 cpu_to_scr(vtobus(&np->badlun_sa)); 8853 } 8854 8855 /* 8856 * Now check the cache handling of the pci chipset. 8857 */ 8858 if (sym_snooptest (np)) { 8859 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8860 goto attach_failed; 8861 }; 8862 8863 /* 8864 * Now deal with CAM. 8865 * Hopefully, we will succeed with that one.:) 8866 */ 8867 if (!sym_cam_attach(np)) 8868 goto attach_failed; 8869 8870 /* 8871 * Sigh! we are done. 8872 */ 8873 return 0; 8874 8875 /* 8876 * We have failed. 8877 * We will try to free all the resources we have 8878 * allocated, but if we are a boot device, this 8879 * will not help that much.;) 8880 */ 8881 attach_failed: 8882 if (np) 8883 sym_pci_free(np); 8884 return ENXIO; 8885 } 8886 8887 /* 8888 * Free everything that have been allocated for this device. 8889 */ 8890 static void sym_pci_free(hcb_p np) 8891 { 8892 SYM_QUEHEAD *qp; 8893 ccb_p cp; 8894 tcb_p tp; 8895 lcb_p lp; 8896 int target, lun; 8897 8898 /* 8899 * First free CAM resources. 8900 */ 8901 sym_cam_free(np); 8902 8903 /* 8904 * Now every should be quiet for us to 8905 * free other resources. 8906 */ 8907 if (np->ram_res) 8908 bus_release_resource(np->device, SYS_RES_MEMORY, 8909 np->ram_id, np->ram_res); 8910 if (np->mmio_res) 8911 bus_release_resource(np->device, SYS_RES_MEMORY, 8912 SYM_PCI_MMIO, np->mmio_res); 8913 if (np->io_res) 8914 bus_release_resource(np->device, SYS_RES_IOPORT, 8915 SYM_PCI_IO, np->io_res); 8916 if (np->irq_res) 8917 bus_release_resource(np->device, SYS_RES_IRQ, 8918 0, np->irq_res); 8919 8920 if (np->scriptb0) 8921 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8922 if (np->scripta0) 8923 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8924 if (np->squeue) 8925 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8926 if (np->dqueue) 8927 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8928 8929 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8930 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8931 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8932 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8933 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8934 } 8935 8936 if (np->badluntbl) 8937 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8938 8939 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8940 tp = &np->target[target]; 8941 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8942 lp = sym_lp(np, tp, lun); 8943 if (!lp) 8944 continue; 8945 if (lp->itlq_tbl) 8946 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8947 "ITLQ_TBL"); 8948 if (lp->cb_tags) 8949 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8950 "CB_TAGS"); 8951 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8952 } 8953 #if SYM_CONF_MAX_LUN > 1 8954 if (tp->lunmp) 8955 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8956 "LUNMP"); 8957 #endif 8958 } 8959 #ifdef __amd64__ 8960 if (np->target) 8961 sym_mfree_dma(np->target, 8962 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8963 #endif 8964 if (np->targtbl) 8965 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8966 if (np->data_dmat) 8967 bus_dma_tag_destroy(np->data_dmat); 8968 if (SYM_LOCK_INITIALIZED() != 0) 8969 SYM_LOCK_DESTROY(); 8970 device_set_softc(np->device, NULL); 8971 sym_mfree_dma(np, sizeof(*np), "HCB"); 8972 } 8973 8974 /* 8975 * Allocate CAM resources and register a bus to CAM. 8976 */ 8977 static int sym_cam_attach(hcb_p np) 8978 { 8979 struct cam_devq *devq = NULL; 8980 struct cam_sim *sim = NULL; 8981 struct cam_path *path = NULL; 8982 int err; 8983 8984 /* 8985 * Establish our interrupt handler. 8986 */ 8987 err = bus_setup_intr(np->device, np->irq_res, 8988 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8989 NULL, sym_intr, np, &np->intr); 8990 if (err) { 8991 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8992 err); 8993 goto fail; 8994 } 8995 8996 /* 8997 * Create the device queue for our sym SIM. 8998 */ 8999 devq = cam_simq_alloc(SYM_CONF_MAX_START); 9000 if (!devq) 9001 goto fail; 9002 9003 /* 9004 * Construct our SIM entry. 9005 */ 9006 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 9007 device_get_unit(np->device), 9008 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 9009 if (!sim) 9010 goto fail; 9011 9012 SYM_LOCK(); 9013 9014 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 9015 goto fail; 9016 np->sim = sim; 9017 9018 if (xpt_create_path(&path, 0, 9019 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 9020 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 9021 goto fail; 9022 } 9023 np->path = path; 9024 9025 /* 9026 * Establish our async notification handler. 9027 */ 9028 if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) != 9029 CAM_REQ_CMP) 9030 goto fail; 9031 9032 /* 9033 * Start the chip now, without resetting the BUS, since 9034 * it seems that this must stay under control of CAM. 9035 * With LVD/SE capable chips and BUS in SE mode, we may 9036 * get a spurious SMBC interrupt. 9037 */ 9038 sym_init (np, 0); 9039 9040 SYM_UNLOCK(); 9041 9042 return 1; 9043 fail: 9044 if (sim) 9045 cam_sim_free(sim, FALSE); 9046 if (devq) 9047 cam_simq_free(devq); 9048 9049 SYM_UNLOCK(); 9050 9051 sym_cam_free(np); 9052 9053 return 0; 9054 } 9055 9056 /* 9057 * Free everything that deals with CAM. 9058 */ 9059 static void sym_cam_free(hcb_p np) 9060 { 9061 SYM_LOCK_ASSERT(MA_NOTOWNED); 9062 9063 if (np->intr) { 9064 bus_teardown_intr(np->device, np->irq_res, np->intr); 9065 np->intr = NULL; 9066 } 9067 9068 SYM_LOCK(); 9069 9070 if (np->sim) { 9071 xpt_bus_deregister(cam_sim_path(np->sim)); 9072 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9073 np->sim = NULL; 9074 } 9075 if (np->path) { 9076 xpt_free_path(np->path); 9077 np->path = NULL; 9078 } 9079 9080 SYM_UNLOCK(); 9081 } 9082 9083 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9084 9085 /* 9086 * Get host setup from NVRAM. 9087 */ 9088 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9089 { 9090 #ifdef SYM_CONF_NVRAM_SUPPORT 9091 /* 9092 * Get parity checking, host ID, verbose mode 9093 * and miscellaneous host flags from NVRAM. 9094 */ 9095 switch(nvram->type) { 9096 case SYM_SYMBIOS_NVRAM: 9097 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9098 np->rv_scntl0 &= ~0x0a; 9099 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9100 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9101 np->verbose += 1; 9102 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9103 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9104 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9105 np->usrflags |= SYM_AVOID_BUS_RESET; 9106 break; 9107 case SYM_TEKRAM_NVRAM: 9108 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9109 break; 9110 default: 9111 break; 9112 } 9113 #endif 9114 } 9115 9116 /* 9117 * Get target setup from NVRAM. 9118 */ 9119 #ifdef SYM_CONF_NVRAM_SUPPORT 9120 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9121 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9122 #endif 9123 9124 static void 9125 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9126 { 9127 #ifdef SYM_CONF_NVRAM_SUPPORT 9128 switch(nvp->type) { 9129 case SYM_SYMBIOS_NVRAM: 9130 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9131 break; 9132 case SYM_TEKRAM_NVRAM: 9133 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9134 break; 9135 default: 9136 break; 9137 } 9138 #endif 9139 } 9140 9141 #ifdef SYM_CONF_NVRAM_SUPPORT 9142 /* 9143 * Get target set-up from Symbios format NVRAM. 9144 */ 9145 static void 9146 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9147 { 9148 tcb_p tp = &np->target[target]; 9149 Symbios_target *tn = &nvram->target[target]; 9150 9151 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9152 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9153 tp->usrtags = 9154 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9155 9156 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9157 tp->usrflags &= ~SYM_DISC_ENABLED; 9158 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9159 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9160 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9161 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9162 } 9163 9164 /* 9165 * Get target set-up from Tekram format NVRAM. 9166 */ 9167 static void 9168 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9169 { 9170 tcb_p tp = &np->target[target]; 9171 struct Tekram_target *tn = &nvram->target[target]; 9172 int i; 9173 9174 if (tn->flags & TEKRAM_SYNC_NEGO) { 9175 i = tn->sync_index & 0xf; 9176 tp->tinfo.user.period = Tekram_sync[i]; 9177 } 9178 9179 tp->tinfo.user.width = 9180 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9181 9182 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9183 tp->usrtags = 2 << nvram->max_tags_index; 9184 } 9185 9186 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9187 tp->usrflags |= SYM_DISC_ENABLED; 9188 9189 /* If any device does not support parity, we will not use this option */ 9190 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9191 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9192 } 9193 9194 #ifdef SYM_CONF_DEBUG_NVRAM 9195 /* 9196 * Dump Symbios format NVRAM for debugging purpose. 9197 */ 9198 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9199 { 9200 int i; 9201 9202 /* display Symbios nvram host data */ 9203 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9204 sym_name(np), nvram->host_id & 0x0f, 9205 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9206 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9207 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9208 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9209 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9210 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9211 9212 /* display Symbios nvram drive data */ 9213 for (i = 0 ; i < 15 ; i++) { 9214 struct Symbios_target *tn = &nvram->target[i]; 9215 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9216 sym_name(np), i, 9217 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9218 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9219 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9220 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9221 tn->bus_width, 9222 tn->sync_period / 4, 9223 tn->timeout); 9224 } 9225 } 9226 9227 /* 9228 * Dump TEKRAM format NVRAM for debugging purpose. 9229 */ 9230 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9231 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9232 { 9233 int i, tags, boot_delay; 9234 char *rem; 9235 9236 /* display Tekram nvram host data */ 9237 tags = 2 << nvram->max_tags_index; 9238 boot_delay = 0; 9239 if (nvram->boot_delay_index < 6) 9240 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9241 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9242 default: 9243 case 0: rem = ""; break; 9244 case 1: rem = " REMOVABLE=boot device"; break; 9245 case 2: rem = " REMOVABLE=all"; break; 9246 } 9247 9248 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9249 sym_name(np), nvram->host_id & 0x0f, 9250 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9251 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9252 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9253 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9254 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9255 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9256 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9257 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9258 rem, boot_delay, tags); 9259 9260 /* display Tekram nvram drive data */ 9261 for (i = 0; i <= 15; i++) { 9262 int sync, j; 9263 struct Tekram_target *tn = &nvram->target[i]; 9264 j = tn->sync_index & 0xf; 9265 sync = Tekram_sync[j]; 9266 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9267 sym_name(np), i, 9268 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9269 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9270 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9271 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9272 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9273 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9274 sync); 9275 } 9276 } 9277 #endif /* SYM_CONF_DEBUG_NVRAM */ 9278 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9279 9280 9281 /* 9282 * Try reading Symbios or Tekram NVRAM 9283 */ 9284 #ifdef SYM_CONF_NVRAM_SUPPORT 9285 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9286 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9287 #endif 9288 9289 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9290 { 9291 #ifdef SYM_CONF_NVRAM_SUPPORT 9292 /* 9293 * Try to read SYMBIOS nvram. 9294 * Try to read TEKRAM nvram if Symbios nvram not found. 9295 */ 9296 if (SYM_SETUP_SYMBIOS_NVRAM && 9297 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9298 nvp->type = SYM_SYMBIOS_NVRAM; 9299 #ifdef SYM_CONF_DEBUG_NVRAM 9300 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9301 #endif 9302 } 9303 else if (SYM_SETUP_TEKRAM_NVRAM && 9304 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9305 nvp->type = SYM_TEKRAM_NVRAM; 9306 #ifdef SYM_CONF_DEBUG_NVRAM 9307 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9308 #endif 9309 } 9310 else 9311 nvp->type = 0; 9312 #else 9313 nvp->type = 0; 9314 #endif 9315 return nvp->type; 9316 } 9317 9318 9319 #ifdef SYM_CONF_NVRAM_SUPPORT 9320 /* 9321 * 24C16 EEPROM reading. 9322 * 9323 * GPOI0 - data in/data out 9324 * GPIO1 - clock 9325 * Symbios NVRAM wiring now also used by Tekram. 9326 */ 9327 9328 #define SET_BIT 0 9329 #define CLR_BIT 1 9330 #define SET_CLK 2 9331 #define CLR_CLK 3 9332 9333 /* 9334 * Set/clear data/clock bit in GPIO0 9335 */ 9336 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9337 int bit_mode) 9338 { 9339 UDELAY (5); 9340 switch (bit_mode){ 9341 case SET_BIT: 9342 *gpreg |= write_bit; 9343 break; 9344 case CLR_BIT: 9345 *gpreg &= 0xfe; 9346 break; 9347 case SET_CLK: 9348 *gpreg |= 0x02; 9349 break; 9350 case CLR_CLK: 9351 *gpreg &= 0xfd; 9352 break; 9353 9354 } 9355 OUTB (nc_gpreg, *gpreg); 9356 UDELAY (5); 9357 } 9358 9359 /* 9360 * Send START condition to NVRAM to wake it up. 9361 */ 9362 static void S24C16_start(hcb_p np, u_char *gpreg) 9363 { 9364 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9365 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9366 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9367 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9368 } 9369 9370 /* 9371 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9372 */ 9373 static void S24C16_stop(hcb_p np, u_char *gpreg) 9374 { 9375 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9376 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9377 } 9378 9379 /* 9380 * Read or write a bit to the NVRAM, 9381 * read if GPIO0 input else write if GPIO0 output 9382 */ 9383 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9384 u_char *gpreg) 9385 { 9386 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9387 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9388 if (read_bit) 9389 *read_bit = INB (nc_gpreg); 9390 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9391 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9392 } 9393 9394 /* 9395 * Output an ACK to the NVRAM after reading, 9396 * change GPIO0 to output and when done back to an input 9397 */ 9398 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9399 u_char *gpcntl) 9400 { 9401 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9402 S24C16_do_bit(np, 0, write_bit, gpreg); 9403 OUTB (nc_gpcntl, *gpcntl); 9404 } 9405 9406 /* 9407 * Input an ACK from NVRAM after writing, 9408 * change GPIO0 to input and when done back to an output 9409 */ 9410 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9411 u_char *gpcntl) 9412 { 9413 OUTB (nc_gpcntl, *gpcntl | 0x01); 9414 S24C16_do_bit(np, read_bit, 1, gpreg); 9415 OUTB (nc_gpcntl, *gpcntl); 9416 } 9417 9418 /* 9419 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9420 * GPIO0 must already be set as an output 9421 */ 9422 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9423 u_char *gpreg, u_char *gpcntl) 9424 { 9425 int x; 9426 9427 for (x = 0; x < 8; x++) 9428 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9429 9430 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9431 } 9432 9433 /* 9434 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9435 * GPIO0 must already be set as an input 9436 */ 9437 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9438 u_char *gpreg, u_char *gpcntl) 9439 { 9440 int x; 9441 u_char read_bit; 9442 9443 *read_data = 0; 9444 for (x = 0; x < 8; x++) { 9445 S24C16_do_bit(np, &read_bit, 1, gpreg); 9446 *read_data |= ((read_bit & 0x01) << (7 - x)); 9447 } 9448 9449 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9450 } 9451 9452 /* 9453 * Read 'len' bytes starting at 'offset'. 9454 */ 9455 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9456 { 9457 u_char gpcntl, gpreg; 9458 u_char old_gpcntl, old_gpreg; 9459 u_char ack_data; 9460 int retv = 1; 9461 int x; 9462 9463 /* save current state of GPCNTL and GPREG */ 9464 old_gpreg = INB (nc_gpreg); 9465 old_gpcntl = INB (nc_gpcntl); 9466 gpcntl = old_gpcntl & 0x1c; 9467 9468 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9469 OUTB (nc_gpreg, old_gpreg); 9470 OUTB (nc_gpcntl, gpcntl); 9471 9472 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9473 gpreg = old_gpreg; 9474 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9475 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9476 9477 /* now set NVRAM inactive with GPIO0/1 both high */ 9478 S24C16_stop(np, &gpreg); 9479 9480 /* activate NVRAM */ 9481 S24C16_start(np, &gpreg); 9482 9483 /* write device code and random address MSB */ 9484 S24C16_write_byte(np, &ack_data, 9485 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9486 if (ack_data & 0x01) 9487 goto out; 9488 9489 /* write random address LSB */ 9490 S24C16_write_byte(np, &ack_data, 9491 offset & 0xff, &gpreg, &gpcntl); 9492 if (ack_data & 0x01) 9493 goto out; 9494 9495 /* regenerate START state to set up for reading */ 9496 S24C16_start(np, &gpreg); 9497 9498 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9499 S24C16_write_byte(np, &ack_data, 9500 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9501 if (ack_data & 0x01) 9502 goto out; 9503 9504 /* now set up GPIO0 for inputting data */ 9505 gpcntl |= 0x01; 9506 OUTB (nc_gpcntl, gpcntl); 9507 9508 /* input all requested data - only part of total NVRAM */ 9509 for (x = 0; x < len; x++) 9510 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9511 9512 /* finally put NVRAM back in inactive mode */ 9513 gpcntl &= 0xfe; 9514 OUTB (nc_gpcntl, gpcntl); 9515 S24C16_stop(np, &gpreg); 9516 retv = 0; 9517 out: 9518 /* return GPIO0/1 to original states after having accessed NVRAM */ 9519 OUTB (nc_gpcntl, old_gpcntl); 9520 OUTB (nc_gpreg, old_gpreg); 9521 9522 return retv; 9523 } 9524 9525 #undef SET_BIT /* 0 */ 9526 #undef CLR_BIT /* 1 */ 9527 #undef SET_CLK /* 2 */ 9528 #undef CLR_CLK /* 3 */ 9529 9530 /* 9531 * Try reading Symbios NVRAM. 9532 * Return 0 if OK. 9533 */ 9534 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9535 { 9536 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9537 u_char *data = (u_char *) nvram; 9538 int len = sizeof(*nvram); 9539 u_short csum; 9540 int x; 9541 9542 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9543 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9544 return 1; 9545 9546 /* check valid NVRAM signature, verify byte count and checksum */ 9547 if (nvram->type != 0 || 9548 bcmp(nvram->trailer, Symbios_trailer, 6) || 9549 nvram->byte_count != len - 12) 9550 return 1; 9551 9552 /* verify checksum */ 9553 for (x = 6, csum = 0; x < len - 6; x++) 9554 csum += data[x]; 9555 if (csum != nvram->checksum) 9556 return 1; 9557 9558 return 0; 9559 } 9560 9561 /* 9562 * 93C46 EEPROM reading. 9563 * 9564 * GPOI0 - data in 9565 * GPIO1 - data out 9566 * GPIO2 - clock 9567 * GPIO4 - chip select 9568 * 9569 * Used by Tekram. 9570 */ 9571 9572 /* 9573 * Pulse clock bit in GPIO0 9574 */ 9575 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9576 { 9577 OUTB (nc_gpreg, *gpreg | 0x04); 9578 UDELAY (2); 9579 OUTB (nc_gpreg, *gpreg); 9580 } 9581 9582 /* 9583 * Read bit from NVRAM 9584 */ 9585 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9586 { 9587 UDELAY (2); 9588 T93C46_Clk(np, gpreg); 9589 *read_bit = INB (nc_gpreg); 9590 } 9591 9592 /* 9593 * Write bit to GPIO0 9594 */ 9595 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9596 { 9597 if (write_bit & 0x01) 9598 *gpreg |= 0x02; 9599 else 9600 *gpreg &= 0xfd; 9601 9602 *gpreg |= 0x10; 9603 9604 OUTB (nc_gpreg, *gpreg); 9605 UDELAY (2); 9606 9607 T93C46_Clk(np, gpreg); 9608 } 9609 9610 /* 9611 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9612 */ 9613 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9614 { 9615 *gpreg &= 0xef; 9616 OUTB (nc_gpreg, *gpreg); 9617 UDELAY (2); 9618 9619 T93C46_Clk(np, gpreg); 9620 } 9621 9622 /* 9623 * Send read command and address to NVRAM 9624 */ 9625 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9626 u_char *read_bit, u_char *gpreg) 9627 { 9628 int x; 9629 9630 /* send 9 bits, start bit (1), command (2), address (6) */ 9631 for (x = 0; x < 9; x++) 9632 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9633 9634 *read_bit = INB (nc_gpreg); 9635 } 9636 9637 /* 9638 * READ 2 bytes from the NVRAM 9639 */ 9640 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9641 { 9642 int x; 9643 u_char read_bit; 9644 9645 *nvram_data = 0; 9646 for (x = 0; x < 16; x++) { 9647 T93C46_Read_Bit(np, &read_bit, gpreg); 9648 9649 if (read_bit & 0x01) 9650 *nvram_data |= (0x01 << (15 - x)); 9651 else 9652 *nvram_data &= ~(0x01 << (15 - x)); 9653 } 9654 } 9655 9656 /* 9657 * Read Tekram NvRAM data. 9658 */ 9659 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9660 { 9661 u_char read_bit; 9662 int x; 9663 9664 for (x = 0; x < len; x++) { 9665 9666 /* output read command and address */ 9667 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9668 if (read_bit & 0x01) 9669 return 1; /* Bad */ 9670 T93C46_Read_Word(np, &data[x], gpreg); 9671 T93C46_Stop(np, gpreg); 9672 } 9673 9674 return 0; 9675 } 9676 9677 /* 9678 * Try reading 93C46 Tekram NVRAM. 9679 */ 9680 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9681 { 9682 u_char gpcntl, gpreg; 9683 u_char old_gpcntl, old_gpreg; 9684 int retv = 1; 9685 9686 /* save current state of GPCNTL and GPREG */ 9687 old_gpreg = INB (nc_gpreg); 9688 old_gpcntl = INB (nc_gpcntl); 9689 9690 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9691 1/2/4 out */ 9692 gpreg = old_gpreg & 0xe9; 9693 OUTB (nc_gpreg, gpreg); 9694 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9695 OUTB (nc_gpcntl, gpcntl); 9696 9697 /* input all of NVRAM, 64 words */ 9698 retv = T93C46_Read_Data(np, (u_short *) nvram, 9699 sizeof(*nvram) / sizeof(short), &gpreg); 9700 9701 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9702 OUTB (nc_gpcntl, old_gpcntl); 9703 OUTB (nc_gpreg, old_gpreg); 9704 9705 return retv; 9706 } 9707 9708 /* 9709 * Try reading Tekram NVRAM. 9710 * Return 0 if OK. 9711 */ 9712 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9713 { 9714 u_char *data = (u_char *) nvram; 9715 int len = sizeof(*nvram); 9716 u_short csum; 9717 int x; 9718 9719 switch (np->device_id) { 9720 case PCI_ID_SYM53C885: 9721 case PCI_ID_SYM53C895: 9722 case PCI_ID_SYM53C896: 9723 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9724 data, len); 9725 break; 9726 case PCI_ID_SYM53C875: 9727 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9728 data, len); 9729 if (!x) 9730 break; 9731 default: 9732 x = sym_read_T93C46_nvram(np, nvram); 9733 break; 9734 } 9735 if (x) 9736 return 1; 9737 9738 /* verify checksum */ 9739 for (x = 0, csum = 0; x < len - 1; x += 2) 9740 csum += data[x] + (data[x+1] << 8); 9741 if (csum != 0x1234) 9742 return 1; 9743 9744 return 0; 9745 } 9746 9747 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9748