1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 5 * PCI-SCSI controllers. 6 * 7 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 8 * 9 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 10 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 11 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 12 * 13 * 14 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 15 * Copyright (C) 1998-1999 Gerard Roudier 16 * 17 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 18 * a port of the FreeBSD ncr driver to Linux-1.2.13. 19 * 20 * The original ncr driver has been written for 386bsd and FreeBSD by 21 * Wolfgang Stanglmeier <wolf@cologne.de> 22 * Stefan Esser <se@mi.Uni-Koeln.de> 23 * Copyright (C) 1994 Wolfgang Stanglmeier 24 * 25 * The initialisation code, and part of the code that addresses 26 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 27 * written by Justin T. Gibbs. 28 * 29 * Other major contributions: 30 * 31 * NVRAM detection and reading. 32 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 33 * 34 *----------------------------------------------------------------------------- 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. The name of the author may not be used to endorse or promote products 45 * derived from this software without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 51 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 */ 59 60 #include <sys/cdefs.h> 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 #include <sys/systm.h> 74 #include <sys/malloc.h> 75 #include <sys/endian.h> 76 #include <sys/kernel.h> 77 #include <sys/lock.h> 78 #include <sys/mutex.h> 79 #include <sys/module.h> 80 #include <sys/bus.h> 81 82 #include <sys/proc.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <machine/bus.h> 88 #include <machine/resource.h> 89 #include <machine/atomic.h> 90 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 #include <cam/cam_sim.h> 96 #include <cam/cam_xpt_sim.h> 97 #include <cam/cam_debug.h> 98 99 #include <cam/scsi/scsi_all.h> 100 #include <cam/scsi/scsi_message.h> 101 102 /* Short and quite clear integer types */ 103 typedef int8_t s8; 104 typedef int16_t s16; 105 typedef int32_t s32; 106 typedef u_int8_t u8; 107 typedef u_int16_t u16; 108 typedef u_int32_t u32; 109 110 /* 111 * Driver definitions. 112 */ 113 #include <dev/sym/sym_defs.h> 114 #include <dev/sym/sym_fw.h> 115 116 /* 117 * IA32 architecture does not reorder STORES and prevents 118 * LOADS from passing STORES. It is called `program order' 119 * by Intel and allows device drivers to deal with memory 120 * ordering by only ensuring that the code is not reordered 121 * by the compiler when ordering is required. 122 * Other architectures implement a weaker ordering that 123 * requires memory barriers (and also IO barriers when they 124 * make sense) to be used. 125 */ 126 #if defined __i386__ || defined __amd64__ 127 #define MEMORY_BARRIER() do { ; } while(0) 128 #elif defined __powerpc__ 129 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 130 #elif defined __arm__ 131 #define MEMORY_BARRIER() dmb() 132 #elif defined __aarch64__ 133 #define MEMORY_BARRIER() dmb(sy) 134 #elif defined __riscv 135 #define MEMORY_BARRIER() fence() 136 #else 137 #error "Not supported platform" 138 #endif 139 140 /* 141 * A la VMS/CAM-3 queue management. 142 */ 143 typedef struct sym_quehead { 144 struct sym_quehead *flink; /* Forward pointer */ 145 struct sym_quehead *blink; /* Backward pointer */ 146 } SYM_QUEHEAD; 147 148 #define sym_que_init(ptr) do { \ 149 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 150 } while (0) 151 152 static __inline void __sym_que_add(struct sym_quehead * new, 153 struct sym_quehead * blink, 154 struct sym_quehead * flink) 155 { 156 flink->blink = new; 157 new->flink = flink; 158 new->blink = blink; 159 blink->flink = new; 160 } 161 162 static __inline void __sym_que_del(struct sym_quehead * blink, 163 struct sym_quehead * flink) 164 { 165 flink->blink = blink; 166 blink->flink = flink; 167 } 168 169 static __inline int sym_que_empty(struct sym_quehead *head) 170 { 171 return head->flink == head; 172 } 173 174 static __inline void sym_que_splice(struct sym_quehead *list, 175 struct sym_quehead *head) 176 { 177 struct sym_quehead *first = list->flink; 178 179 if (first != list) { 180 struct sym_quehead *last = list->blink; 181 struct sym_quehead *at = head->flink; 182 183 first->blink = head; 184 head->flink = first; 185 186 last->flink = at; 187 at->blink = last; 188 } 189 } 190 191 #define sym_que_entry(ptr, type, member) \ 192 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 193 194 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 195 196 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 197 198 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 199 200 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 201 { 202 struct sym_quehead *elem = head->flink; 203 204 if (elem != head) 205 __sym_que_del(head, elem->flink); 206 else 207 elem = NULL; 208 return elem; 209 } 210 211 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 212 213 /* 214 * This one may be useful. 215 */ 216 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 217 for (qp = (head)->flink; qp != (head); qp = qp->flink) 218 /* 219 * FreeBSD does not offer our kind of queue in the CAM CCB. 220 * So, we have to cast. 221 */ 222 #define sym_qptr(p) ((struct sym_quehead *) (p)) 223 224 /* 225 * Simple bitmap operations. 226 */ 227 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 228 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 229 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 230 231 /* 232 * Number of tasks per device we want to handle. 233 */ 234 #if SYM_CONF_MAX_TAG_ORDER > 8 235 #error "more than 256 tags per logical unit not allowed." 236 #endif 237 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 238 239 /* 240 * Donnot use more tasks that we can handle. 241 */ 242 #ifndef SYM_CONF_MAX_TAG 243 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 244 #endif 245 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 246 #undef SYM_CONF_MAX_TAG 247 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 248 #endif 249 250 /* 251 * This one means 'NO TAG for this job' 252 */ 253 #define NO_TAG (256) 254 255 /* 256 * Number of SCSI targets. 257 */ 258 #if SYM_CONF_MAX_TARGET > 16 259 #error "more than 16 targets not allowed." 260 #endif 261 262 /* 263 * Number of logical units per target. 264 */ 265 #if SYM_CONF_MAX_LUN > 64 266 #error "more than 64 logical units per target not allowed." 267 #endif 268 269 /* 270 * Asynchronous pre-scaler (ns). Shall be 40 for 271 * the SCSI timings to be compliant. 272 */ 273 #define SYM_CONF_MIN_ASYNC (40) 274 275 /* 276 * Number of entries in the START and DONE queues. 277 * 278 * We limit to 1 PAGE in order to succeed allocation of 279 * these queues. Each entry is 8 bytes long (2 DWORDS). 280 */ 281 #ifdef SYM_CONF_MAX_START 282 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 283 #else 284 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 285 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 286 #endif 287 288 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 289 #undef SYM_CONF_MAX_QUEUE 290 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 291 #undef SYM_CONF_MAX_START 292 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 293 #endif 294 295 /* 296 * For this one, we want a short name :-) 297 */ 298 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 299 300 /* 301 * Active debugging tags and verbosity. 302 */ 303 #define DEBUG_ALLOC (0x0001) 304 #define DEBUG_PHASE (0x0002) 305 #define DEBUG_POLL (0x0004) 306 #define DEBUG_QUEUE (0x0008) 307 #define DEBUG_RESULT (0x0010) 308 #define DEBUG_SCATTER (0x0020) 309 #define DEBUG_SCRIPT (0x0040) 310 #define DEBUG_TINY (0x0080) 311 #define DEBUG_TIMING (0x0100) 312 #define DEBUG_NEGO (0x0200) 313 #define DEBUG_TAGS (0x0400) 314 #define DEBUG_POINTER (0x0800) 315 316 #if 0 317 static int sym_debug = 0; 318 #define DEBUG_FLAGS sym_debug 319 #else 320 /* #define DEBUG_FLAGS (0x0631) */ 321 #define DEBUG_FLAGS (0x0000) 322 323 #endif 324 #define sym_verbose (np->verbose) 325 326 /* 327 * Insert a delay in micro-seconds and milli-seconds. 328 */ 329 static void UDELAY(int us) { DELAY(us); } 330 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 331 332 /* 333 * Simple power of two buddy-like allocator. 334 * 335 * This simple code is not intended to be fast, but to 336 * provide power of 2 aligned memory allocations. 337 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 338 * this allocator allows simple and fast address calculations 339 * from the SCRIPTS code. In addition, cache line alignment 340 * is guaranteed for power of 2 cache line size. 341 * 342 * This allocator has been developed for the Linux sym53c8xx 343 * driver, since this O/S does not provide naturally aligned 344 * allocations. 345 * It has the advantage of allowing the driver to use private 346 * pages of memory that will be useful if we ever need to deal 347 * with IO MMUs for PCI. 348 */ 349 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 350 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 351 #if 0 352 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 353 #endif 354 #define MEMO_WARN 1 355 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 356 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 357 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 358 359 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 360 #define free_pages(p) free((p), M_DEVBUF) 361 362 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 363 364 typedef struct m_link { /* Link between free memory chunks */ 365 struct m_link *next; 366 } m_link_s; 367 368 typedef struct m_vtob { /* Virtual to Bus address translation */ 369 struct m_vtob *next; 370 bus_dmamap_t dmamap; /* Map for this chunk */ 371 m_addr_t vaddr; /* Virtual address */ 372 m_addr_t baddr; /* Bus physical address */ 373 } m_vtob_s; 374 /* Hash this stuff a bit to speed up translations */ 375 #define VTOB_HASH_SHIFT 5 376 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 377 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 378 #define VTOB_HASH_CODE(m) \ 379 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 380 381 typedef struct m_pool { /* Memory pool of a given kind */ 382 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 383 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 384 m_addr_t (*getp)(struct m_pool *); 385 #ifdef MEMO_FREE_UNUSED 386 void (*freep)(struct m_pool *, m_addr_t); 387 #endif 388 #define M_GETP() mp->getp(mp) 389 #define M_FREEP(p) mp->freep(mp, p) 390 int nump; 391 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 392 struct m_pool *next; 393 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 394 } m_pool_s; 395 396 static void *___sym_malloc(m_pool_s *mp, int size) 397 { 398 int i = 0; 399 int s = (1 << MEMO_SHIFT); 400 int j; 401 m_addr_t a; 402 m_link_s *h = mp->h; 403 404 if (size > MEMO_CLUSTER_SIZE) 405 return NULL; 406 407 while (size > s) { 408 s <<= 1; 409 ++i; 410 } 411 412 j = i; 413 while (!h[j].next) { 414 if (s == MEMO_CLUSTER_SIZE) { 415 h[j].next = (m_link_s *) M_GETP(); 416 if (h[j].next) 417 h[j].next->next = NULL; 418 break; 419 } 420 ++j; 421 s <<= 1; 422 } 423 a = (m_addr_t) h[j].next; 424 if (a) { 425 h[j].next = h[j].next->next; 426 while (j > i) { 427 j -= 1; 428 s >>= 1; 429 h[j].next = (m_link_s *) (a+s); 430 h[j].next->next = NULL; 431 } 432 } 433 #ifdef DEBUG 434 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 435 #endif 436 return (void *) a; 437 } 438 439 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 440 { 441 int i = 0; 442 int s = (1 << MEMO_SHIFT); 443 m_link_s *q; 444 m_addr_t a, b; 445 m_link_s *h = mp->h; 446 447 #ifdef DEBUG 448 printf("___sym_mfree(%p, %d)\n", ptr, size); 449 #endif 450 451 if (size > MEMO_CLUSTER_SIZE) 452 return; 453 454 while (size > s) { 455 s <<= 1; 456 ++i; 457 } 458 459 a = (m_addr_t) ptr; 460 461 while (1) { 462 #ifdef MEMO_FREE_UNUSED 463 if (s == MEMO_CLUSTER_SIZE) { 464 M_FREEP(a); 465 break; 466 } 467 #endif 468 b = a ^ s; 469 q = &h[i]; 470 while (q->next && q->next != (m_link_s *) b) { 471 q = q->next; 472 } 473 if (!q->next) { 474 ((m_link_s *) a)->next = h[i].next; 475 h[i].next = (m_link_s *) a; 476 break; 477 } 478 q->next = q->next->next; 479 a = a & b; 480 s <<= 1; 481 ++i; 482 } 483 } 484 485 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 486 { 487 void *p; 488 489 p = ___sym_malloc(mp, size); 490 491 if (DEBUG_FLAGS & DEBUG_ALLOC) 492 printf ("new %-10s[%4d] @%p.\n", name, size, p); 493 494 if (p) 495 bzero(p, size); 496 else if (uflags & MEMO_WARN) 497 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 498 499 return p; 500 } 501 502 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 503 504 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 505 { 506 if (DEBUG_FLAGS & DEBUG_ALLOC) 507 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 508 509 ___sym_mfree(mp, ptr, size); 510 511 } 512 513 /* 514 * Default memory pool we donnot need to involve in DMA. 515 */ 516 /* 517 * With the `bus dma abstraction', we use a separate pool for 518 * memory we donnot need to involve in DMA. 519 */ 520 static m_addr_t ___mp0_getp(m_pool_s *mp) 521 { 522 m_addr_t m = (m_addr_t) get_pages(); 523 if (m) 524 ++mp->nump; 525 return m; 526 } 527 528 #ifdef MEMO_FREE_UNUSED 529 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 530 { 531 free_pages(m); 532 --mp->nump; 533 } 534 #endif 535 536 #ifdef MEMO_FREE_UNUSED 537 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 538 #else 539 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 540 #endif 541 542 /* 543 * Actual memory allocation routine for non-DMAed memory. 544 */ 545 static void *sym_calloc(int size, char *name) 546 { 547 void *m; 548 /* Lock */ 549 m = __sym_calloc(&mp0, size, name); 550 /* Unlock */ 551 return m; 552 } 553 554 /* 555 * Actual memory allocation routine for non-DMAed memory. 556 */ 557 static void sym_mfree(void *ptr, int size, char *name) 558 { 559 /* Lock */ 560 __sym_mfree(&mp0, ptr, size, name); 561 /* Unlock */ 562 } 563 564 /* 565 * DMAable pools. 566 */ 567 /* 568 * With `bus dma abstraction', we use a separate pool per parent 569 * BUS handle. A reverse table (hashed) is maintained for virtual 570 * to BUS address translation. 571 */ 572 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __diagused, 573 int error) 574 { 575 bus_addr_t *baddr; 576 577 KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg)); 578 579 baddr = (bus_addr_t *)arg; 580 if (error) 581 *baddr = 0; 582 else 583 *baddr = segs->ds_addr; 584 } 585 586 static m_addr_t ___dma_getp(m_pool_s *mp) 587 { 588 m_vtob_s *vbp; 589 void *vaddr = NULL; 590 bus_addr_t baddr = 0; 591 592 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 593 if (!vbp) 594 goto out_err; 595 596 if (bus_dmamem_alloc(mp->dmat, &vaddr, 597 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 598 goto out_err; 599 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 600 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 601 if (baddr) { 602 int hc = VTOB_HASH_CODE(vaddr); 603 vbp->vaddr = (m_addr_t) vaddr; 604 vbp->baddr = (m_addr_t) baddr; 605 vbp->next = mp->vtob[hc]; 606 mp->vtob[hc] = vbp; 607 ++mp->nump; 608 return (m_addr_t) vaddr; 609 } 610 out_err: 611 if (vaddr) 612 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 613 if (vbp) 614 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 615 return 0; 616 } 617 618 #ifdef MEMO_FREE_UNUSED 619 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 620 { 621 m_vtob_s **vbpp, *vbp; 622 int hc = VTOB_HASH_CODE(m); 623 624 vbpp = &mp->vtob[hc]; 625 while (*vbpp && (*vbpp)->vaddr != m) 626 vbpp = &(*vbpp)->next; 627 if (*vbpp) { 628 vbp = *vbpp; 629 *vbpp = (*vbpp)->next; 630 bus_dmamap_unload(mp->dmat, vbp->dmamap); 631 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 632 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 633 --mp->nump; 634 } 635 } 636 #endif 637 638 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 639 { 640 m_pool_s *mp; 641 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 642 return mp; 643 } 644 645 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 646 { 647 m_pool_s *mp = NULL; 648 649 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 650 if (mp) { 651 mp->dev_dmat = dev_dmat; 652 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 653 BUS_SPACE_MAXADDR_32BIT, 654 BUS_SPACE_MAXADDR, 655 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 656 MEMO_CLUSTER_SIZE, 0, 657 NULL, NULL, &mp->dmat)) { 658 mp->getp = ___dma_getp; 659 #ifdef MEMO_FREE_UNUSED 660 mp->freep = ___dma_freep; 661 #endif 662 mp->next = mp0.next; 663 mp0.next = mp; 664 return mp; 665 } 666 } 667 if (mp) 668 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 669 return NULL; 670 } 671 672 #ifdef MEMO_FREE_UNUSED 673 static void ___del_dma_pool(m_pool_s *p) 674 { 675 struct m_pool **pp = &mp0.next; 676 677 while (*pp && *pp != p) 678 pp = &(*pp)->next; 679 if (*pp) { 680 *pp = (*pp)->next; 681 bus_dma_tag_destroy(p->dmat); 682 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 683 } 684 } 685 #endif 686 687 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 688 { 689 struct m_pool *mp; 690 void *m = NULL; 691 692 /* Lock */ 693 mp = ___get_dma_pool(dev_dmat); 694 if (!mp) 695 mp = ___cre_dma_pool(dev_dmat); 696 if (mp) 697 m = __sym_calloc(mp, size, name); 698 #ifdef MEMO_FREE_UNUSED 699 if (mp && !mp->nump) 700 ___del_dma_pool(mp); 701 #endif 702 /* Unlock */ 703 704 return m; 705 } 706 707 static void 708 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 709 { 710 struct m_pool *mp; 711 712 /* Lock */ 713 mp = ___get_dma_pool(dev_dmat); 714 if (mp) 715 __sym_mfree(mp, m, size, name); 716 #ifdef MEMO_FREE_UNUSED 717 if (mp && !mp->nump) 718 ___del_dma_pool(mp); 719 #endif 720 /* Unlock */ 721 } 722 723 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 724 { 725 m_pool_s *mp; 726 int hc = VTOB_HASH_CODE(m); 727 m_vtob_s *vp = NULL; 728 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 729 730 /* Lock */ 731 mp = ___get_dma_pool(dev_dmat); 732 if (mp) { 733 vp = mp->vtob[hc]; 734 while (vp && (m_addr_t) vp->vaddr != a) 735 vp = vp->next; 736 } 737 /* Unlock */ 738 if (!vp) 739 panic("sym: VTOBUS FAILED!\n"); 740 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 741 } 742 743 /* 744 * Verbs for DMAable memory handling. 745 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 746 * being discarded. 747 */ 748 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 749 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 750 #define _sym_mfree_dma(np, p, s, n) \ 751 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 752 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 753 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 754 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 755 #define vtobus(p) _vtobus(np, p) 756 757 /* 758 * Print a buffer in hexadecimal format. 759 */ 760 static void sym_printb_hex (u_char *p, int n) 761 { 762 while (n-- > 0) 763 printf (" %x", *p++); 764 } 765 766 /* 767 * Same with a label at beginning and .\n at end. 768 */ 769 static void sym_printl_hex (char *label, u_char *p, int n) 770 { 771 printf ("%s", label); 772 sym_printb_hex (p, n); 773 printf (".\n"); 774 } 775 776 /* 777 * Return a string for SCSI BUS mode. 778 */ 779 static const char *sym_scsi_bus_mode(int mode) 780 { 781 switch(mode) { 782 case SMODE_HVD: return "HVD"; 783 case SMODE_SE: return "SE"; 784 case SMODE_LVD: return "LVD"; 785 } 786 return "??"; 787 } 788 789 /* 790 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 791 */ 792 #ifdef SYM_CONF_NVRAM_SUPPORT 793 static const u_char Tekram_sync[16] = 794 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 795 #endif 796 797 /* 798 * Union of supported NVRAM formats. 799 */ 800 struct sym_nvram { 801 int type; 802 #define SYM_SYMBIOS_NVRAM (1) 803 #define SYM_TEKRAM_NVRAM (2) 804 #ifdef SYM_CONF_NVRAM_SUPPORT 805 union { 806 Symbios_nvram Symbios; 807 Tekram_nvram Tekram; 808 } data; 809 #endif 810 }; 811 812 /* 813 * This one is hopefully useless, but actually useful. :-) 814 */ 815 #ifndef assert 816 #define assert(expression) { \ 817 if (!(expression)) { \ 818 (void)panic( \ 819 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 820 #expression, \ 821 __FILE__, __LINE__); \ 822 } \ 823 } 824 #endif 825 826 /* 827 * Some provision for a possible big endian mode supported by 828 * Symbios chips (never seen, by the way). 829 * For now, this stuff does not deserve any comments. :) 830 */ 831 #define sym_offb(o) (o) 832 #define sym_offw(o) (o) 833 834 /* 835 * Some provision for support for BIG ENDIAN CPU. 836 */ 837 #define cpu_to_scr(dw) htole32(dw) 838 #define scr_to_cpu(dw) le32toh(dw) 839 840 /* 841 * Access to the chip IO registers and on-chip RAM. 842 * We use the `bus space' interface under FreeBSD-4 and 843 * later kernel versions. 844 */ 845 #if defined(SYM_CONF_IOMAPPED) 846 847 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 848 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 849 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 850 851 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 852 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 853 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 854 855 #else /* Memory mapped IO */ 856 857 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 858 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 859 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 860 861 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 862 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 863 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 864 865 #endif /* SYM_CONF_IOMAPPED */ 866 867 #define OUTRAM_OFF(o, a, l) \ 868 bus_write_region_1(np->ram_res, (o), (a), (l)) 869 870 /* 871 * Common definitions for both bus space and legacy IO methods. 872 */ 873 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 874 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 875 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 876 877 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 878 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 879 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 880 881 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 882 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 883 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 884 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 885 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 886 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 887 888 /* 889 * We normally want the chip to have a consistent view 890 * of driver internal data structures when we restart it. 891 * Thus these macros. 892 */ 893 #define OUTL_DSP(v) \ 894 do { \ 895 MEMORY_BARRIER(); \ 896 OUTL (nc_dsp, (v)); \ 897 } while (0) 898 899 #define OUTONB_STD() \ 900 do { \ 901 MEMORY_BARRIER(); \ 902 OUTONB (nc_dcntl, (STD|NOCOM)); \ 903 } while (0) 904 905 /* 906 * Command control block states. 907 */ 908 #define HS_IDLE (0) 909 #define HS_BUSY (1) 910 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 911 #define HS_DISCONNECT (3) /* Disconnected by target */ 912 #define HS_WAIT (4) /* waiting for resource */ 913 914 #define HS_DONEMASK (0x80) 915 #define HS_COMPLETE (4|HS_DONEMASK) 916 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 917 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 918 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 919 920 /* 921 * Software Interrupt Codes 922 */ 923 #define SIR_BAD_SCSI_STATUS (1) 924 #define SIR_SEL_ATN_NO_MSG_OUT (2) 925 #define SIR_MSG_RECEIVED (3) 926 #define SIR_MSG_WEIRD (4) 927 #define SIR_NEGO_FAILED (5) 928 #define SIR_NEGO_PROTO (6) 929 #define SIR_SCRIPT_STOPPED (7) 930 #define SIR_REJECT_TO_SEND (8) 931 #define SIR_SWIDE_OVERRUN (9) 932 #define SIR_SODL_UNDERRUN (10) 933 #define SIR_RESEL_NO_MSG_IN (11) 934 #define SIR_RESEL_NO_IDENTIFY (12) 935 #define SIR_RESEL_BAD_LUN (13) 936 #define SIR_TARGET_SELECTED (14) 937 #define SIR_RESEL_BAD_I_T_L (15) 938 #define SIR_RESEL_BAD_I_T_L_Q (16) 939 #define SIR_ABORT_SENT (17) 940 #define SIR_RESEL_ABORTED (18) 941 #define SIR_MSG_OUT_DONE (19) 942 #define SIR_COMPLETE_ERROR (20) 943 #define SIR_DATA_OVERRUN (21) 944 #define SIR_BAD_PHASE (22) 945 #define SIR_MAX (22) 946 947 /* 948 * Extended error bit codes. 949 * xerr_status field of struct sym_ccb. 950 */ 951 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 952 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 953 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 954 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 955 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 956 957 /* 958 * Negotiation status. 959 * nego_status field of struct sym_ccb. 960 */ 961 #define NS_SYNC (1) 962 #define NS_WIDE (2) 963 #define NS_PPR (3) 964 965 /* 966 * A CCB hashed table is used to retrieve CCB address 967 * from DSA value. 968 */ 969 #define CCB_HASH_SHIFT 8 970 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 971 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 972 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 973 974 /* 975 * Device flags. 976 */ 977 #define SYM_DISC_ENABLED (1) 978 #define SYM_TAGS_ENABLED (1<<1) 979 #define SYM_SCAN_BOOT_DISABLED (1<<2) 980 #define SYM_SCAN_LUNS_DISABLED (1<<3) 981 982 /* 983 * Host adapter miscellaneous flags. 984 */ 985 #define SYM_AVOID_BUS_RESET (1) 986 #define SYM_SCAN_TARGETS_HILO (1<<1) 987 988 /* 989 * Device quirks. 990 * Some devices, for example the CHEETAH 2 LVD, disconnects without 991 * saving the DATA POINTER then reselects and terminates the IO. 992 * On reselection, the automatic RESTORE DATA POINTER makes the 993 * CURRENT DATA POINTER not point at the end of the IO. 994 * This behaviour just breaks our calculation of the residual. 995 * For now, we just force an AUTO SAVE on disconnection and will 996 * fix that in a further driver version. 997 */ 998 #define SYM_QUIRK_AUTOSAVE 1 999 1000 /* 1001 * Misc. 1002 */ 1003 #define SYM_LOCK() mtx_lock(&np->mtx) 1004 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1005 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1006 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1007 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1008 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1009 1010 #define SYM_SNOOP_TIMEOUT (10000000) 1011 #define SYM_PCI_IO PCIR_BAR(0) 1012 #define SYM_PCI_MMIO PCIR_BAR(1) 1013 #define SYM_PCI_RAM PCIR_BAR(2) 1014 #define SYM_PCI_RAM64 PCIR_BAR(3) 1015 1016 /* 1017 * Back-pointer from the CAM CCB to our data structures. 1018 */ 1019 #define sym_hcb_ptr spriv_ptr0 1020 /* #define sym_ccb_ptr spriv_ptr1 */ 1021 1022 /* 1023 * We mostly have to deal with pointers. 1024 * Thus these typedef's. 1025 */ 1026 typedef struct sym_tcb *tcb_p; 1027 typedef struct sym_lcb *lcb_p; 1028 typedef struct sym_ccb *ccb_p; 1029 typedef struct sym_hcb *hcb_p; 1030 1031 /* 1032 * Gather negotiable parameters value 1033 */ 1034 struct sym_trans { 1035 u8 scsi_version; 1036 u8 spi_version; 1037 u8 period; 1038 u8 offset; 1039 u8 width; 1040 u8 options; /* PPR options */ 1041 }; 1042 1043 struct sym_tinfo { 1044 struct sym_trans current; 1045 struct sym_trans goal; 1046 struct sym_trans user; 1047 }; 1048 1049 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1050 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1051 1052 /* 1053 * Global TCB HEADER. 1054 * 1055 * Due to lack of indirect addressing on earlier NCR chips, 1056 * this substructure is copied from the TCB to a global 1057 * address after selection. 1058 * For SYMBIOS chips that support LOAD/STORE this copy is 1059 * not needed and thus not performed. 1060 */ 1061 struct sym_tcbh { 1062 /* 1063 * Scripts bus addresses of LUN table accessed from scripts. 1064 * LUN #0 is a special case, since multi-lun devices are rare, 1065 * and we we want to speed-up the general case and not waste 1066 * resources. 1067 */ 1068 u32 luntbl_sa; /* bus address of this table */ 1069 u32 lun0_sa; /* bus address of LCB #0 */ 1070 /* 1071 * Actual SYNC/WIDE IO registers value for this target. 1072 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1073 * so have alignment constraints. 1074 */ 1075 /*0*/ u_char uval; /* -> SCNTL4 register */ 1076 /*1*/ u_char sval; /* -> SXFER io register */ 1077 /*2*/ u_char filler1; 1078 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1079 }; 1080 1081 /* 1082 * Target Control Block 1083 */ 1084 struct sym_tcb { 1085 /* 1086 * TCB header. 1087 * Assumed at offset 0. 1088 */ 1089 /*0*/ struct sym_tcbh head; 1090 1091 /* 1092 * LUN table used by the SCRIPTS processor. 1093 * An array of bus addresses is used on reselection. 1094 */ 1095 u32 *luntbl; /* LCBs bus address table */ 1096 1097 /* 1098 * LUN table used by the C code. 1099 */ 1100 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1101 #if SYM_CONF_MAX_LUN > 1 1102 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1103 #endif 1104 1105 /* 1106 * Bitmap that tells about LUNs that succeeded at least 1107 * 1 IO and therefore assumed to be a real device. 1108 * Avoid useless allocation of the LCB structure. 1109 */ 1110 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1111 1112 /* 1113 * Bitmap that tells about LUNs that haven't yet an LCB 1114 * allocated (not discovered or LCB allocation failed). 1115 */ 1116 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1117 1118 /* 1119 * Transfer capabilities (SIP) 1120 */ 1121 struct sym_tinfo tinfo; 1122 1123 /* 1124 * Keep track of the CCB used for the negotiation in order 1125 * to ensure that only 1 negotiation is queued at a time. 1126 */ 1127 ccb_p nego_cp; /* CCB used for the nego */ 1128 1129 /* 1130 * Set when we want to reset the device. 1131 */ 1132 u_char to_reset; 1133 1134 /* 1135 * Other user settable limits and options. 1136 * These limits are read from the NVRAM if present. 1137 */ 1138 u_char usrflags; 1139 u_short usrtags; 1140 }; 1141 1142 /* 1143 * Assert some alignments required by the chip. 1144 */ 1145 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^ 1146 offsetof(struct sym_tcb, head.sval)) &3) == 0); 1147 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^ 1148 offsetof(struct sym_tcb, head.wval)) &3) == 0); 1149 1150 /* 1151 * Global LCB HEADER. 1152 * 1153 * Due to lack of indirect addressing on earlier NCR chips, 1154 * this substructure is copied from the LCB to a global 1155 * address after selection. 1156 * For SYMBIOS chips that support LOAD/STORE this copy is 1157 * not needed and thus not performed. 1158 */ 1159 struct sym_lcbh { 1160 /* 1161 * SCRIPTS address jumped by SCRIPTS on reselection. 1162 * For not probed logical units, this address points to 1163 * SCRIPTS that deal with bad LU handling (must be at 1164 * offset zero of the LCB for that reason). 1165 */ 1166 /*0*/ u32 resel_sa; 1167 1168 /* 1169 * Task (bus address of a CCB) read from SCRIPTS that points 1170 * to the unique ITL nexus allowed to be disconnected. 1171 */ 1172 u32 itl_task_sa; 1173 1174 /* 1175 * Task table bus address (read from SCRIPTS). 1176 */ 1177 u32 itlq_tbl_sa; 1178 }; 1179 1180 /* 1181 * Logical Unit Control Block 1182 */ 1183 struct sym_lcb { 1184 /* 1185 * TCB header. 1186 * Assumed at offset 0. 1187 */ 1188 /*0*/ struct sym_lcbh head; 1189 1190 /* 1191 * Task table read from SCRIPTS that contains pointers to 1192 * ITLQ nexuses. The bus address read from SCRIPTS is 1193 * inside the header. 1194 */ 1195 u32 *itlq_tbl; /* Kernel virtual address */ 1196 1197 /* 1198 * Busy CCBs management. 1199 */ 1200 u_short busy_itlq; /* Number of busy tagged CCBs */ 1201 u_short busy_itl; /* Number of busy untagged CCBs */ 1202 1203 /* 1204 * Circular tag allocation buffer. 1205 */ 1206 u_short ia_tag; /* Tag allocation index */ 1207 u_short if_tag; /* Tag release index */ 1208 u_char *cb_tags; /* Circular tags buffer */ 1209 1210 /* 1211 * Set when we want to clear all tasks. 1212 */ 1213 u_char to_clear; 1214 1215 /* 1216 * Capabilities. 1217 */ 1218 u_char user_flags; 1219 u_char current_flags; 1220 }; 1221 1222 /* 1223 * Action from SCRIPTS on a task. 1224 * Is part of the CCB, but is also used separately to plug 1225 * error handling action to perform from SCRIPTS. 1226 */ 1227 struct sym_actscr { 1228 u32 start; /* Jumped by SCRIPTS after selection */ 1229 u32 restart; /* Jumped by SCRIPTS on relection */ 1230 }; 1231 1232 /* 1233 * Phase mismatch context. 1234 * 1235 * It is part of the CCB and is used as parameters for the 1236 * DATA pointer. We need two contexts to handle correctly the 1237 * SAVED DATA POINTER. 1238 */ 1239 struct sym_pmc { 1240 struct sym_tblmove sg; /* Updated interrupted SG block */ 1241 u32 ret; /* SCRIPT return address */ 1242 }; 1243 1244 /* 1245 * LUN control block lookup. 1246 * We use a direct pointer for LUN #0, and a table of 1247 * pointers which is only allocated for devices that support 1248 * LUN(s) > 0. 1249 */ 1250 #if SYM_CONF_MAX_LUN <= 1 1251 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0 1252 #else 1253 #define sym_lp(tp, lun) \ 1254 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1255 #endif 1256 1257 /* 1258 * Status are used by the host and the script processor. 1259 * 1260 * The last four bytes (status[4]) are copied to the 1261 * scratchb register (declared as scr0..scr3) just after the 1262 * select/reselect, and copied back just after disconnecting. 1263 * Inside the script the XX_REG are used. 1264 */ 1265 1266 /* 1267 * Last four bytes (script) 1268 */ 1269 #define QU_REG scr0 1270 #define HS_REG scr1 1271 #define HS_PRT nc_scr1 1272 #define SS_REG scr2 1273 #define SS_PRT nc_scr2 1274 #define HF_REG scr3 1275 #define HF_PRT nc_scr3 1276 1277 /* 1278 * Last four bytes (host) 1279 */ 1280 #define actualquirks phys.head.status[0] 1281 #define host_status phys.head.status[1] 1282 #define ssss_status phys.head.status[2] 1283 #define host_flags phys.head.status[3] 1284 1285 /* 1286 * Host flags 1287 */ 1288 #define HF_IN_PM0 1u 1289 #define HF_IN_PM1 (1u<<1) 1290 #define HF_ACT_PM (1u<<2) 1291 #define HF_DP_SAVED (1u<<3) 1292 #define HF_SENSE (1u<<4) 1293 #define HF_EXT_ERR (1u<<5) 1294 #define HF_DATA_IN (1u<<6) 1295 #ifdef SYM_CONF_IARB_SUPPORT 1296 #define HF_HINT_IARB (1u<<7) 1297 #endif 1298 1299 /* 1300 * Global CCB HEADER. 1301 * 1302 * Due to lack of indirect addressing on earlier NCR chips, 1303 * this substructure is copied from the ccb to a global 1304 * address after selection (or reselection) and copied back 1305 * before disconnect. 1306 * For SYMBIOS chips that support LOAD/STORE this copy is 1307 * not needed and thus not performed. 1308 */ 1309 struct sym_ccbh { 1310 /* 1311 * Start and restart SCRIPTS addresses (must be at 0). 1312 */ 1313 /*0*/ struct sym_actscr go; 1314 1315 /* 1316 * SCRIPTS jump address that deal with data pointers. 1317 * 'savep' points to the position in the script responsible 1318 * for the actual transfer of data. 1319 * It's written on reception of a SAVE_DATA_POINTER message. 1320 */ 1321 u32 savep; /* Jump address to saved data pointer */ 1322 u32 lastp; /* SCRIPTS address at end of data */ 1323 u32 goalp; /* Not accessed for now from SCRIPTS */ 1324 1325 /* 1326 * Status fields. 1327 */ 1328 u8 status[4]; 1329 }; 1330 1331 /* 1332 * Data Structure Block 1333 * 1334 * During execution of a ccb by the script processor, the 1335 * DSA (data structure address) register points to this 1336 * substructure of the ccb. 1337 */ 1338 struct sym_dsb { 1339 /* 1340 * CCB header. 1341 * Also assumed at offset 0 of the sym_ccb structure. 1342 */ 1343 /*0*/ struct sym_ccbh head; 1344 1345 /* 1346 * Phase mismatch contexts. 1347 * We need two to handle correctly the SAVED DATA POINTER. 1348 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1349 * for address calculation from SCRIPTS. 1350 */ 1351 struct sym_pmc pm0; 1352 struct sym_pmc pm1; 1353 1354 /* 1355 * Table data for Script 1356 */ 1357 struct sym_tblsel select; 1358 struct sym_tblmove smsg; 1359 struct sym_tblmove smsg_ext; 1360 struct sym_tblmove cmd; 1361 struct sym_tblmove sense; 1362 struct sym_tblmove wresid; 1363 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1364 }; 1365 1366 /* 1367 * Our Command Control Block 1368 */ 1369 struct sym_ccb { 1370 /* 1371 * This is the data structure which is pointed by the DSA 1372 * register when it is executed by the script processor. 1373 * It must be the first entry. 1374 */ 1375 struct sym_dsb phys; 1376 1377 /* 1378 * Pointer to CAM ccb and related stuff. 1379 */ 1380 struct callout ch; /* callout handle */ 1381 union ccb *cam_ccb; /* CAM scsiio ccb */ 1382 u8 cdb_buf[16]; /* Copy of CDB */ 1383 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1384 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1385 int data_len; /* Total data length */ 1386 int segments; /* Number of SG segments */ 1387 1388 /* 1389 * Miscellaneous status'. 1390 */ 1391 u_char nego_status; /* Negotiation status */ 1392 u_char xerr_status; /* Extended error flags */ 1393 u32 extra_bytes; /* Extraneous bytes transferred */ 1394 1395 /* 1396 * Message areas. 1397 * We prepare a message to be sent after selection. 1398 * We may use a second one if the command is rescheduled 1399 * due to CHECK_CONDITION or COMMAND TERMINATED. 1400 * Contents are IDENTIFY and SIMPLE_TAG. 1401 * While negotiating sync or wide transfer, 1402 * a SDTR or WDTR message is appended. 1403 */ 1404 u_char scsi_smsg [12]; 1405 u_char scsi_smsg2[12]; 1406 1407 /* 1408 * Auto request sense related fields. 1409 */ 1410 u_char sensecmd[6]; /* Request Sense command */ 1411 u_char sv_scsi_status; /* Saved SCSI status */ 1412 u_char sv_xerr_status; /* Saved extended status */ 1413 int sv_resid; /* Saved residual */ 1414 1415 /* 1416 * Map for the DMA of user data. 1417 */ 1418 void *arg; /* Argument for some callback */ 1419 bus_dmamap_t dmamap; /* DMA map for user data */ 1420 u_char dmamapped; 1421 #define SYM_DMA_NONE 0 1422 #define SYM_DMA_READ 1 1423 #define SYM_DMA_WRITE 2 1424 /* 1425 * Other fields. 1426 */ 1427 u32 ccb_ba; /* BUS address of this CCB */ 1428 u_short tag; /* Tag for this transfer */ 1429 /* NO_TAG means no tag */ 1430 u_char target; 1431 u_char lun; 1432 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1433 SYM_QUEHEAD 1434 link_ccbq; /* Link to free/busy CCB queue */ 1435 u32 startp; /* Initial data pointer */ 1436 int ext_sg; /* Extreme data pointer, used */ 1437 int ext_ofs; /* to calculate the residual. */ 1438 u_char to_abort; /* Want this IO to be aborted */ 1439 }; 1440 1441 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1442 1443 /* 1444 * Host Control Block 1445 */ 1446 struct sym_hcb { 1447 struct mtx mtx; 1448 1449 /* 1450 * Global headers. 1451 * Due to poorness of addressing capabilities, earlier 1452 * chips (810, 815, 825) copy part of the data structures 1453 * (CCB, TCB and LCB) in fixed areas. 1454 */ 1455 #ifdef SYM_CONF_GENERIC_SUPPORT 1456 struct sym_ccbh ccb_head; 1457 struct sym_tcbh tcb_head; 1458 struct sym_lcbh lcb_head; 1459 #endif 1460 /* 1461 * Idle task and invalid task actions and 1462 * their bus addresses. 1463 */ 1464 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1465 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1466 1467 /* 1468 * Dummy lun table to protect us against target 1469 * returning bad lun number on reselection. 1470 */ 1471 u32 *badluntbl; /* Table physical address */ 1472 u32 badlun_sa; /* SCRIPT handler BUS address */ 1473 1474 /* 1475 * Bus address of this host control block. 1476 */ 1477 u32 hcb_ba; 1478 1479 /* 1480 * Bit 32-63 of the on-chip RAM bus address in LE format. 1481 * The START_RAM64 script loads the MMRS and MMWS from this 1482 * field. 1483 */ 1484 u32 scr_ram_seg; 1485 1486 /* 1487 * Chip and controller indentification. 1488 */ 1489 device_t device; 1490 1491 /* 1492 * Initial value of some IO register bits. 1493 * These values are assumed to have been set by BIOS, and may 1494 * be used to probe adapter implementation differences. 1495 */ 1496 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1497 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1498 sv_stest1; 1499 1500 /* 1501 * Actual initial value of IO register bits used by the 1502 * driver. They are loaded at initialisation according to 1503 * features that are to be enabled/disabled. 1504 */ 1505 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1506 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1507 1508 /* 1509 * Target data. 1510 */ 1511 #ifdef __amd64__ 1512 struct sym_tcb *target; 1513 #else 1514 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1515 #endif 1516 1517 /* 1518 * Target control block bus address array used by the SCRIPT 1519 * on reselection. 1520 */ 1521 u32 *targtbl; 1522 u32 targtbl_ba; 1523 1524 /* 1525 * CAM SIM information for this instance. 1526 */ 1527 struct cam_sim *sim; 1528 struct cam_path *path; 1529 1530 /* 1531 * Allocated hardware resources. 1532 */ 1533 struct resource *irq_res; 1534 struct resource *io_res; 1535 struct resource *mmio_res; 1536 struct resource *ram_res; 1537 int ram_id; 1538 void *intr; 1539 1540 /* 1541 * Bus stuff. 1542 * 1543 * My understanding of PCI is that all agents must share the 1544 * same addressing range and model. 1545 * But some hardware architecture guys provide complex and 1546 * brain-deaded stuff that makes shit. 1547 * This driver only support PCI compliant implementations and 1548 * deals with part of the BUS stuff complexity only to fit O/S 1549 * requirements. 1550 */ 1551 1552 /* 1553 * DMA stuff. 1554 */ 1555 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1556 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1557 /* 1558 * BUS addresses of the chip 1559 */ 1560 vm_offset_t mmio_ba; /* MMIO BUS address */ 1561 int mmio_ws; /* MMIO Window size */ 1562 1563 vm_offset_t ram_ba; /* RAM BUS address */ 1564 int ram_ws; /* RAM window size */ 1565 1566 /* 1567 * SCRIPTS virtual and physical bus addresses. 1568 * 'script' is loaded in the on-chip RAM if present. 1569 * 'scripth' stays in main memory for all chips except the 1570 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1571 */ 1572 u_char *scripta0; /* Copies of script and scripth */ 1573 u_char *scriptb0; /* Copies of script and scripth */ 1574 vm_offset_t scripta_ba; /* Actual script and scripth */ 1575 vm_offset_t scriptb_ba; /* bus addresses. */ 1576 vm_offset_t scriptb0_ba; 1577 u_short scripta_sz; /* Actual size of script A */ 1578 u_short scriptb_sz; /* Actual size of script B */ 1579 1580 /* 1581 * Bus addresses, setup and patch methods for 1582 * the selected firmware. 1583 */ 1584 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1585 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1586 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1587 void (*fw_patch)(hcb_p np); 1588 const char *fw_name; 1589 1590 /* 1591 * General controller parameters and configuration. 1592 */ 1593 u_short device_id; /* PCI device id */ 1594 u_char revision_id; /* PCI device revision id */ 1595 u_int features; /* Chip features map */ 1596 u_char myaddr; /* SCSI id of the adapter */ 1597 u_char maxburst; /* log base 2 of dwords burst */ 1598 u_char maxwide; /* Maximum transfer width */ 1599 u_char minsync; /* Min sync period factor (ST) */ 1600 u_char maxsync; /* Max sync period factor (ST) */ 1601 u_char maxoffs; /* Max scsi offset (ST) */ 1602 u_char minsync_dt; /* Min sync period factor (DT) */ 1603 u_char maxsync_dt; /* Max sync period factor (DT) */ 1604 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1605 u_char multiplier; /* Clock multiplier (1,2,4) */ 1606 u_char clock_divn; /* Number of clock divisors */ 1607 u32 clock_khz; /* SCSI clock frequency in KHz */ 1608 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1609 /* 1610 * Start queue management. 1611 * It is filled up by the host processor and accessed by the 1612 * SCRIPTS processor in order to start SCSI commands. 1613 */ 1614 volatile /* Prevent code optimizations */ 1615 u32 *squeue; /* Start queue virtual address */ 1616 u32 squeue_ba; /* Start queue BUS address */ 1617 u_short squeueput; /* Next free slot of the queue */ 1618 u_short actccbs; /* Number of allocated CCBs */ 1619 1620 /* 1621 * Command completion queue. 1622 * It is the same size as the start queue to avoid overflow. 1623 */ 1624 u_short dqueueget; /* Next position to scan */ 1625 volatile /* Prevent code optimizations */ 1626 u32 *dqueue; /* Completion (done) queue */ 1627 u32 dqueue_ba; /* Done queue BUS address */ 1628 1629 /* 1630 * Miscellaneous buffers accessed by the scripts-processor. 1631 * They shall be DWORD aligned, because they may be read or 1632 * written with a script command. 1633 */ 1634 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1635 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1636 u32 lastmsg; /* Last SCSI message sent */ 1637 u_char scratch; /* Scratch for SCSI receive */ 1638 1639 /* 1640 * Miscellaneous configuration and status parameters. 1641 */ 1642 u_char usrflags; /* Miscellaneous user flags */ 1643 u_char scsi_mode; /* Current SCSI BUS mode */ 1644 u_char verbose; /* Verbosity for this controller*/ 1645 u32 cache; /* Used for cache test at init. */ 1646 1647 /* 1648 * CCB lists and queue. 1649 */ 1650 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1651 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1652 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1653 1654 /* 1655 * During error handling and/or recovery, 1656 * active CCBs that are to be completed with 1657 * error or requeued are moved from the busy_ccbq 1658 * to the comp_ccbq prior to completion. 1659 */ 1660 SYM_QUEHEAD comp_ccbq; 1661 1662 /* 1663 * CAM CCB pending queue. 1664 */ 1665 SYM_QUEHEAD cam_ccbq; 1666 1667 /* 1668 * IMMEDIATE ARBITRATION (IARB) control. 1669 * 1670 * We keep track in 'last_cp' of the last CCB that has been 1671 * queued to the SCRIPTS processor and clear 'last_cp' when 1672 * this CCB completes. If last_cp is not zero at the moment 1673 * we queue a new CCB, we set a flag in 'last_cp' that is 1674 * used by the SCRIPTS as a hint for setting IARB. 1675 * We donnot set more than 'iarb_max' consecutive hints for 1676 * IARB in order to leave devices a chance to reselect. 1677 * By the way, any non zero value of 'iarb_max' is unfair. :) 1678 */ 1679 #ifdef SYM_CONF_IARB_SUPPORT 1680 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1681 u_short iarb_count; /* Actual # of these hints */ 1682 ccb_p last_cp; 1683 #endif 1684 1685 /* 1686 * Command abort handling. 1687 * We need to synchronize tightly with the SCRIPTS 1688 * processor in order to handle things correctly. 1689 */ 1690 u_char abrt_msg[4]; /* Message to send buffer */ 1691 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1692 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1693 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1694 }; 1695 1696 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1697 1698 /* 1699 * Return the name of the controller. 1700 */ 1701 static __inline const char *sym_name(hcb_p np) 1702 { 1703 return device_get_nameunit(np->device); 1704 } 1705 1706 /*--------------------------------------------------------------------------*/ 1707 /*------------------------------ FIRMWARES ---------------------------------*/ 1708 /*--------------------------------------------------------------------------*/ 1709 1710 /* 1711 * This stuff will be moved to a separate source file when 1712 * the driver will be broken into several source modules. 1713 */ 1714 1715 /* 1716 * Macros used for all firmwares. 1717 */ 1718 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1719 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1720 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1721 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1722 1723 #ifdef SYM_CONF_GENERIC_SUPPORT 1724 /* 1725 * Allocate firmware #1 script area. 1726 */ 1727 #define SYM_FWA_SCR sym_fw1a_scr 1728 #define SYM_FWB_SCR sym_fw1b_scr 1729 #include <dev/sym/sym_fw1.h> 1730 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1731 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1732 }; 1733 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1734 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1735 }; 1736 #undef SYM_FWA_SCR 1737 #undef SYM_FWB_SCR 1738 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1739 1740 /* 1741 * Allocate firmware #2 script area. 1742 */ 1743 #define SYM_FWA_SCR sym_fw2a_scr 1744 #define SYM_FWB_SCR sym_fw2b_scr 1745 #include <dev/sym/sym_fw2.h> 1746 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1747 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1748 }; 1749 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1750 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1751 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1752 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1753 }; 1754 #undef SYM_FWA_SCR 1755 #undef SYM_FWB_SCR 1756 1757 #undef SYM_GEN_A 1758 #undef SYM_GEN_B 1759 #undef PADDR_A 1760 #undef PADDR_B 1761 1762 #ifdef SYM_CONF_GENERIC_SUPPORT 1763 /* 1764 * Patch routine for firmware #1. 1765 */ 1766 static void 1767 sym_fw1_patch(hcb_p np) 1768 { 1769 struct sym_fw1a_scr *scripta0; 1770 struct sym_fw1b_scr *scriptb0; 1771 1772 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1773 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1774 1775 /* 1776 * Remove LED support if not needed. 1777 */ 1778 if (!(np->features & FE_LED0)) { 1779 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1780 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1781 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1782 } 1783 1784 #ifdef SYM_CONF_IARB_SUPPORT 1785 /* 1786 * If user does not want to use IMMEDIATE ARBITRATION 1787 * when we are reselected while attempting to arbitrate, 1788 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1789 */ 1790 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1791 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1792 #endif 1793 /* 1794 * Patch some data in SCRIPTS. 1795 * - start and done queue initial bus address. 1796 * - target bus address table bus address. 1797 */ 1798 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1799 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1800 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1801 } 1802 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1803 1804 /* 1805 * Patch routine for firmware #2. 1806 */ 1807 static void 1808 sym_fw2_patch(hcb_p np) 1809 { 1810 struct sym_fw2a_scr *scripta0; 1811 struct sym_fw2b_scr *scriptb0; 1812 1813 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1814 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1815 1816 /* 1817 * Remove LED support if not needed. 1818 */ 1819 if (!(np->features & FE_LED0)) { 1820 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1821 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1822 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1823 } 1824 1825 #ifdef SYM_CONF_IARB_SUPPORT 1826 /* 1827 * If user does not want to use IMMEDIATE ARBITRATION 1828 * when we are reselected while attempting to arbitrate, 1829 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1830 */ 1831 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1832 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1833 #endif 1834 /* 1835 * Patch some variable in SCRIPTS. 1836 * - start and done queue initial bus address. 1837 * - target bus address table bus address. 1838 */ 1839 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1840 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1841 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1842 1843 /* 1844 * Remove the load of SCNTL4 on reselection if not a C10. 1845 */ 1846 if (!(np->features & FE_C10)) { 1847 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1848 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1849 } 1850 1851 /* 1852 * Remove a couple of work-arounds specific to C1010 if 1853 * they are not desirable. See `sym_fw2.h' for more details. 1854 */ 1855 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1856 np->revision_id < 0x1 && 1857 np->pciclk_khz < 60000)) { 1858 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1859 scripta0->datao_phase[1] = cpu_to_scr(0); 1860 } 1861 if (!(np->device_id == PCI_ID_LSI53C1010 && 1862 /* np->revision_id < 0xff */ 1)) { 1863 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1864 scripta0->sel_done[1] = cpu_to_scr(0); 1865 } 1866 1867 /* 1868 * Patch some other variables in SCRIPTS. 1869 * These ones are loaded by the SCRIPTS processor. 1870 */ 1871 scriptb0->pm0_data_addr[0] = 1872 cpu_to_scr(np->scripta_ba + 1873 offsetof(struct sym_fw2a_scr, pm0_data)); 1874 scriptb0->pm1_data_addr[0] = 1875 cpu_to_scr(np->scripta_ba + 1876 offsetof(struct sym_fw2a_scr, pm1_data)); 1877 } 1878 1879 /* 1880 * Fill the data area in scripts. 1881 * To be done for all firmwares. 1882 */ 1883 static void 1884 sym_fw_fill_data (u32 *in, u32 *out) 1885 { 1886 int i; 1887 1888 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1889 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1890 *in++ = offsetof (struct sym_dsb, data[i]); 1891 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1892 *out++ = offsetof (struct sym_dsb, data[i]); 1893 } 1894 } 1895 1896 /* 1897 * Setup useful script bus addresses. 1898 * To be done for all firmwares. 1899 */ 1900 static void 1901 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1902 { 1903 u32 *pa; 1904 const u_short *po; 1905 int i; 1906 1907 /* 1908 * Build the bus address table for script A 1909 * from the script A offset table. 1910 */ 1911 po = (const u_short *) fw->a_ofs; 1912 pa = (u32 *) &np->fwa_bas; 1913 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1914 pa[i] = np->scripta_ba + po[i]; 1915 1916 /* 1917 * Same for script B. 1918 */ 1919 po = (const u_short *) fw->b_ofs; 1920 pa = (u32 *) &np->fwb_bas; 1921 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1922 pa[i] = np->scriptb_ba + po[i]; 1923 } 1924 1925 #ifdef SYM_CONF_GENERIC_SUPPORT 1926 /* 1927 * Setup routine for firmware #1. 1928 */ 1929 static void 1930 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1931 { 1932 struct sym_fw1a_scr *scripta0; 1933 1934 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1935 1936 /* 1937 * Fill variable parts in scripts. 1938 */ 1939 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1940 1941 /* 1942 * Setup bus addresses used from the C code.. 1943 */ 1944 sym_fw_setup_bus_addresses(np, fw); 1945 } 1946 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1947 1948 /* 1949 * Setup routine for firmware #2. 1950 */ 1951 static void 1952 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1953 { 1954 struct sym_fw2a_scr *scripta0; 1955 1956 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1957 1958 /* 1959 * Fill variable parts in scripts. 1960 */ 1961 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1962 1963 /* 1964 * Setup bus addresses used from the C code.. 1965 */ 1966 sym_fw_setup_bus_addresses(np, fw); 1967 } 1968 1969 /* 1970 * Allocate firmware descriptors. 1971 */ 1972 #ifdef SYM_CONF_GENERIC_SUPPORT 1973 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 1974 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1975 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 1976 1977 /* 1978 * Find the most appropriate firmware for a chip. 1979 */ 1980 static const struct sym_fw * 1981 sym_find_firmware(const struct sym_pci_chip *chip) 1982 { 1983 if (chip->features & FE_LDSTR) 1984 return &sym_fw2; 1985 #ifdef SYM_CONF_GENERIC_SUPPORT 1986 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 1987 return &sym_fw1; 1988 #endif 1989 else 1990 return NULL; 1991 } 1992 1993 /* 1994 * Bind a script to physical addresses. 1995 */ 1996 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 1997 { 1998 u32 opcode, new, old, tmp1, tmp2; 1999 u32 *end, *cur; 2000 int relocs; 2001 2002 cur = start; 2003 end = start + len/4; 2004 2005 while (cur < end) { 2006 opcode = *cur; 2007 2008 /* 2009 * If we forget to change the length 2010 * in scripts, a field will be 2011 * padded with 0. This is an illegal 2012 * command. 2013 */ 2014 if (opcode == 0) { 2015 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2016 sym_name(np), (int) (cur-start)); 2017 MDELAY (10000); 2018 ++cur; 2019 continue; 2020 } 2021 2022 /* 2023 * We use the bogus value 0xf00ff00f ;-) 2024 * to reserve data area in SCRIPTS. 2025 */ 2026 if (opcode == SCR_DATA_ZERO) { 2027 *cur++ = 0; 2028 continue; 2029 } 2030 2031 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2032 printf ("%d: <%x>\n", (int) (cur-start), 2033 (unsigned)opcode); 2034 2035 /* 2036 * We don't have to decode ALL commands 2037 */ 2038 switch (opcode >> 28) { 2039 case 0xf: 2040 /* 2041 * LOAD / STORE DSA relative, don't relocate. 2042 */ 2043 relocs = 0; 2044 break; 2045 case 0xe: 2046 /* 2047 * LOAD / STORE absolute. 2048 */ 2049 relocs = 1; 2050 break; 2051 case 0xc: 2052 /* 2053 * COPY has TWO arguments. 2054 */ 2055 relocs = 2; 2056 tmp1 = cur[1]; 2057 tmp2 = cur[2]; 2058 if ((tmp1 ^ tmp2) & 3) { 2059 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2060 sym_name(np), (int) (cur-start)); 2061 MDELAY (10000); 2062 } 2063 /* 2064 * If PREFETCH feature not enabled, remove 2065 * the NO FLUSH bit if present. 2066 */ 2067 if ((opcode & SCR_NO_FLUSH) && 2068 !(np->features & FE_PFEN)) { 2069 opcode = (opcode & ~SCR_NO_FLUSH); 2070 } 2071 break; 2072 case 0x0: 2073 /* 2074 * MOVE/CHMOV (absolute address) 2075 */ 2076 if (!(np->features & FE_WIDE)) 2077 opcode = (opcode | OPC_MOVE); 2078 relocs = 1; 2079 break; 2080 case 0x1: 2081 /* 2082 * MOVE/CHMOV (table indirect) 2083 */ 2084 if (!(np->features & FE_WIDE)) 2085 opcode = (opcode | OPC_MOVE); 2086 relocs = 0; 2087 break; 2088 case 0x8: 2089 /* 2090 * JUMP / CALL 2091 * dont't relocate if relative :-) 2092 */ 2093 if (opcode & 0x00800000) 2094 relocs = 0; 2095 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2096 relocs = 2; 2097 else 2098 relocs = 1; 2099 break; 2100 case 0x4: 2101 case 0x5: 2102 case 0x6: 2103 case 0x7: 2104 relocs = 1; 2105 break; 2106 default: 2107 relocs = 0; 2108 break; 2109 } 2110 2111 /* 2112 * Scriptify:) the opcode. 2113 */ 2114 *cur++ = cpu_to_scr(opcode); 2115 2116 /* 2117 * If no relocation, assume 1 argument 2118 * and just scriptize:) it. 2119 */ 2120 if (!relocs) { 2121 *cur = cpu_to_scr(*cur); 2122 ++cur; 2123 continue; 2124 } 2125 2126 /* 2127 * Otherwise performs all needed relocations. 2128 */ 2129 while (relocs--) { 2130 old = *cur; 2131 2132 switch (old & RELOC_MASK) { 2133 case RELOC_REGISTER: 2134 new = (old & ~RELOC_MASK) + np->mmio_ba; 2135 break; 2136 case RELOC_LABEL_A: 2137 new = (old & ~RELOC_MASK) + np->scripta_ba; 2138 break; 2139 case RELOC_LABEL_B: 2140 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2141 break; 2142 case RELOC_SOFTC: 2143 new = (old & ~RELOC_MASK) + np->hcb_ba; 2144 break; 2145 case 0: 2146 /* 2147 * Don't relocate a 0 address. 2148 * They are mostly used for patched or 2149 * script self-modified areas. 2150 */ 2151 if (old == 0) { 2152 new = old; 2153 break; 2154 } 2155 /* fall through */ 2156 default: 2157 new = 0; 2158 panic("sym_fw_bind_script: " 2159 "weird relocation %x\n", old); 2160 break; 2161 } 2162 2163 *cur++ = cpu_to_scr(new); 2164 } 2165 } 2166 } 2167 2168 /*---------------------------------------------------------------------------*/ 2169 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2170 /*---------------------------------------------------------------------------*/ 2171 2172 /* 2173 * Function prototypes. 2174 */ 2175 static void sym_save_initial_setting (hcb_p np); 2176 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2177 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2178 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2179 static void sym_chip_reset (hcb_p np); 2180 static void sym_soft_reset (hcb_p np); 2181 static void sym_start_reset (hcb_p np); 2182 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2183 static int sym_wakeup_done (hcb_p np); 2184 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2185 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2186 static void sym_init (hcb_p np, int reason); 2187 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2188 u_char *fakp); 2189 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2190 u_char div, u_char fak); 2191 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2192 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2193 u_char per, u_char wide, u_char div, u_char fak); 2194 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2195 u_char per, u_char wide, u_char div, u_char fak); 2196 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2197 static void sym_intr (void *arg); 2198 static void sym_poll (struct cam_sim *sim); 2199 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2200 static void sym_int_sto (hcb_p np); 2201 static void sym_int_udc (hcb_p np); 2202 static void sym_int_sbmc (hcb_p np); 2203 static void sym_int_par (hcb_p np, u_short sist); 2204 static void sym_int_ma (hcb_p np); 2205 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2206 int task); 2207 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp); 2208 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2209 static void sym_sir_task_recovery (hcb_p np, int num); 2210 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2211 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs); 2212 static int sym_compute_residual (hcb_p np, ccb_p cp); 2213 static int sym_show_msg (u_char * msg); 2214 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2215 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2216 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2217 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2218 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2219 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2220 static void sym_int_sir (hcb_p np); 2221 static void sym_free_ccb (hcb_p np, ccb_p cp); 2222 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2223 static ccb_p sym_alloc_ccb (hcb_p np); 2224 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2225 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2226 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2227 static int sym_snooptest (hcb_p np); 2228 static void sym_selectclock(hcb_p np, u_char scntl3); 2229 static void sym_getclock (hcb_p np, int mult); 2230 static int sym_getpciclock (hcb_p np); 2231 static void sym_complete_ok (hcb_p np, ccb_p cp); 2232 static void sym_complete_error (hcb_p np, ccb_p cp); 2233 static void sym_callout (void *arg); 2234 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2235 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2236 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2237 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2238 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2239 ccb_p cp); 2240 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2241 bus_dma_segment_t *psegs, int nsegs); 2242 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2243 bus_dma_segment_t *psegs, int nsegs); 2244 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2245 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 2246 struct ccb_trans_settings *cts); 2247 static void sym_update_dflags(hcb_p np, u_char *flags, 2248 struct ccb_trans_settings *cts); 2249 2250 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2251 static int sym_pci_probe (device_t dev); 2252 static int sym_pci_attach (device_t dev); 2253 2254 static void sym_pci_free (hcb_p np); 2255 static int sym_cam_attach (hcb_p np); 2256 static void sym_cam_free (hcb_p np); 2257 2258 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2259 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2260 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2261 2262 /* 2263 * Print something which allows to retrieve the controller type, 2264 * unit, target, lun concerned by a kernel message. 2265 */ 2266 static void PRINT_TARGET (hcb_p np, int target) 2267 { 2268 printf ("%s:%d:", sym_name(np), target); 2269 } 2270 2271 static void PRINT_LUN(hcb_p np, int target, int lun) 2272 { 2273 printf ("%s:%d:%d:", sym_name(np), target, lun); 2274 } 2275 2276 static void PRINT_ADDR (ccb_p cp) 2277 { 2278 if (cp && cp->cam_ccb) 2279 xpt_print_path(cp->cam_ccb->ccb_h.path); 2280 } 2281 2282 /* 2283 * Take into account this ccb in the freeze count. 2284 */ 2285 static void sym_freeze_cam_ccb(union ccb *ccb) 2286 { 2287 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2288 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2289 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2290 xpt_freeze_devq(ccb->ccb_h.path, 1); 2291 } 2292 } 2293 } 2294 2295 /* 2296 * Set the status field of a CAM CCB. 2297 */ 2298 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2299 { 2300 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2301 ccb->ccb_h.status |= status; 2302 } 2303 2304 /* 2305 * Get the status field of a CAM CCB. 2306 */ 2307 static __inline int sym_get_cam_status(union ccb *ccb) 2308 { 2309 return ccb->ccb_h.status & CAM_STATUS_MASK; 2310 } 2311 2312 /* 2313 * Enqueue a CAM CCB. 2314 */ 2315 static void sym_enqueue_cam_ccb(ccb_p cp) 2316 { 2317 hcb_p np; 2318 union ccb *ccb; 2319 2320 ccb = cp->cam_ccb; 2321 np = (hcb_p) cp->arg; 2322 2323 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2324 ccb->ccb_h.status = CAM_REQ_INPROG; 2325 2326 callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout, 2327 (caddr_t)ccb, 0); 2328 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2329 ccb->ccb_h.sym_hcb_ptr = np; 2330 2331 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2332 } 2333 2334 /* 2335 * Complete a pending CAM CCB. 2336 */ 2337 2338 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2339 { 2340 2341 SYM_LOCK_ASSERT(MA_OWNED); 2342 2343 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2344 callout_stop(&cp->ch); 2345 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2346 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2347 ccb->ccb_h.sym_hcb_ptr = NULL; 2348 } 2349 xpt_done(ccb); 2350 } 2351 2352 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2353 { 2354 2355 SYM_LOCK_ASSERT(MA_OWNED); 2356 2357 sym_set_cam_status(ccb, cam_status); 2358 xpt_done(ccb); 2359 } 2360 2361 /* 2362 * SYMBIOS chip clock divisor table. 2363 * 2364 * Divisors are multiplied by 10,000,000 in order to make 2365 * calculations more simple. 2366 */ 2367 #define _5M 5000000 2368 static const u32 div_10M[] = 2369 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2370 2371 /* 2372 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2373 * 128 transfers. All chips support at least 16 transfers 2374 * bursts. The 825A, 875 and 895 chips support bursts of up 2375 * to 128 transfers and the 895A and 896 support bursts of up 2376 * to 64 transfers. All other chips support up to 16 2377 * transfers bursts. 2378 * 2379 * For PCI 32 bit data transfers each transfer is a DWORD. 2380 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2381 * 2382 * We use log base 2 (burst length) as internal code, with 2383 * value 0 meaning "burst disabled". 2384 */ 2385 2386 /* 2387 * Burst length from burst code. 2388 */ 2389 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2390 2391 /* 2392 * Burst code from io register bits. 2393 */ 2394 #define burst_code(dmode, ctest4, ctest5) \ 2395 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2396 2397 /* 2398 * Set initial io register bits from burst code. 2399 */ 2400 static __inline void sym_init_burst(hcb_p np, u_char bc) 2401 { 2402 np->rv_ctest4 &= ~0x80; 2403 np->rv_dmode &= ~(0x3 << 6); 2404 np->rv_ctest5 &= ~0x4; 2405 2406 if (!bc) { 2407 np->rv_ctest4 |= 0x80; 2408 } 2409 else { 2410 --bc; 2411 np->rv_dmode |= ((bc & 0x3) << 6); 2412 np->rv_ctest5 |= (bc & 0x4); 2413 } 2414 } 2415 2416 /* 2417 * Print out the list of targets that have some flag disabled by user. 2418 */ 2419 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2420 { 2421 int cnt; 2422 int i; 2423 2424 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2425 if (i == np->myaddr) 2426 continue; 2427 if (np->target[i].usrflags & mask) { 2428 if (!cnt++) 2429 printf("%s: %s disabled for targets", 2430 sym_name(np), msg); 2431 printf(" %d", i); 2432 } 2433 } 2434 if (cnt) 2435 printf(".\n"); 2436 } 2437 2438 /* 2439 * Save initial settings of some IO registers. 2440 * Assumed to have been set by BIOS. 2441 * We cannot reset the chip prior to reading the 2442 * IO registers, since informations will be lost. 2443 * Since the SCRIPTS processor may be running, this 2444 * is not safe on paper, but it seems to work quite 2445 * well. :) 2446 */ 2447 static void sym_save_initial_setting (hcb_p np) 2448 { 2449 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2450 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2451 np->sv_dmode = INB(nc_dmode) & 0xce; 2452 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2453 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2454 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2455 np->sv_gpcntl = INB(nc_gpcntl); 2456 np->sv_stest1 = INB(nc_stest1); 2457 np->sv_stest2 = INB(nc_stest2) & 0x20; 2458 np->sv_stest4 = INB(nc_stest4); 2459 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2460 np->sv_scntl4 = INB(nc_scntl4); 2461 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2462 } 2463 else 2464 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2465 } 2466 2467 /* 2468 * Prepare io register values used by sym_init() according 2469 * to selected and supported features. 2470 */ 2471 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2472 { 2473 u_char burst_max; 2474 u32 period; 2475 int i; 2476 2477 /* 2478 * Wide ? 2479 */ 2480 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2481 2482 /* 2483 * Get the frequency of the chip's clock. 2484 */ 2485 if (np->features & FE_QUAD) 2486 np->multiplier = 4; 2487 else if (np->features & FE_DBLR) 2488 np->multiplier = 2; 2489 else 2490 np->multiplier = 1; 2491 2492 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2493 np->clock_khz *= np->multiplier; 2494 2495 if (np->clock_khz != 40000) 2496 sym_getclock(np, np->multiplier); 2497 2498 /* 2499 * Divisor to be used for async (timer pre-scaler). 2500 */ 2501 i = np->clock_divn - 1; 2502 while (--i >= 0) { 2503 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2504 ++i; 2505 break; 2506 } 2507 } 2508 np->rv_scntl3 = i+1; 2509 2510 /* 2511 * The C1010 uses hardwired divisors for async. 2512 * So, we just throw away, the async. divisor.:-) 2513 */ 2514 if (np->features & FE_C10) 2515 np->rv_scntl3 = 0; 2516 2517 /* 2518 * Minimum synchronous period factor supported by the chip. 2519 * Btw, 'period' is in tenths of nanoseconds. 2520 */ 2521 period = howmany(4 * div_10M[0], np->clock_khz); 2522 if (period <= 250) np->minsync = 10; 2523 else if (period <= 303) np->minsync = 11; 2524 else if (period <= 500) np->minsync = 12; 2525 else np->minsync = howmany(period, 40); 2526 2527 /* 2528 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2529 */ 2530 if (np->minsync < 25 && 2531 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2532 np->minsync = 25; 2533 else if (np->minsync < 12 && 2534 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2535 np->minsync = 12; 2536 2537 /* 2538 * Maximum synchronous period factor supported by the chip. 2539 */ 2540 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2541 np->maxsync = period > 2540 ? 254 : period / 10; 2542 2543 /* 2544 * If chip is a C1010, guess the sync limits in DT mode. 2545 */ 2546 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2547 if (np->clock_khz == 160000) { 2548 np->minsync_dt = 9; 2549 np->maxsync_dt = 50; 2550 np->maxoffs_dt = 62; 2551 } 2552 } 2553 2554 /* 2555 * 64 bit addressing (895A/896/1010) ? 2556 */ 2557 if (np->features & FE_DAC) 2558 #ifdef __LP64__ 2559 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2560 #else 2561 np->rv_ccntl1 |= (DDAC); 2562 #endif 2563 2564 /* 2565 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2566 */ 2567 if (np->features & FE_NOPM) 2568 np->rv_ccntl0 |= (ENPMJ); 2569 2570 /* 2571 * C1010 Errata. 2572 * In dual channel mode, contention occurs if internal cycles 2573 * are used. Disable internal cycles. 2574 */ 2575 if (np->device_id == PCI_ID_LSI53C1010 && 2576 np->revision_id < 0x2) 2577 np->rv_ccntl0 |= DILS; 2578 2579 /* 2580 * Select burst length (dwords) 2581 */ 2582 burst_max = SYM_SETUP_BURST_ORDER; 2583 if (burst_max == 255) 2584 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2585 np->sv_ctest5); 2586 if (burst_max > 7) 2587 burst_max = 7; 2588 if (burst_max > np->maxburst) 2589 burst_max = np->maxburst; 2590 2591 /* 2592 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2593 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2594 * based transactions on LOAD/STORE instructions. So we have 2595 * to prevent these chips from using such PCI transactions in 2596 * this driver. The generic ncr driver that does not use 2597 * LOAD/STORE instructions does not need this work-around. 2598 */ 2599 if ((np->device_id == PCI_ID_SYM53C810 && 2600 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2601 (np->device_id == PCI_ID_SYM53C860 && 2602 np->revision_id <= 0x1)) 2603 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2604 2605 /* 2606 * Select all supported special features. 2607 * If we are using on-board RAM for scripts, prefetch (PFEN) 2608 * does not help, but burst op fetch (BOF) does. 2609 * Disabling PFEN makes sure BOF will be used. 2610 */ 2611 if (np->features & FE_ERL) 2612 np->rv_dmode |= ERL; /* Enable Read Line */ 2613 if (np->features & FE_BOF) 2614 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2615 if (np->features & FE_ERMP) 2616 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2617 #if 1 2618 if ((np->features & FE_PFEN) && !np->ram_ba) 2619 #else 2620 if (np->features & FE_PFEN) 2621 #endif 2622 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2623 if (np->features & FE_CLSE) 2624 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2625 if (np->features & FE_WRIE) 2626 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2627 if (np->features & FE_DFS) 2628 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2629 2630 /* 2631 * Select some other 2632 */ 2633 if (SYM_SETUP_PCI_PARITY) 2634 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2635 if (SYM_SETUP_SCSI_PARITY) 2636 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2637 2638 /* 2639 * Get parity checking, host ID and verbose mode from NVRAM 2640 */ 2641 np->myaddr = 255; 2642 sym_nvram_setup_host (np, nvram); 2643 2644 /* 2645 * Get SCSI addr of host adapter (set by bios?). 2646 */ 2647 if (np->myaddr == 255) { 2648 np->myaddr = INB(nc_scid) & 0x07; 2649 if (!np->myaddr) 2650 np->myaddr = SYM_SETUP_HOST_ID; 2651 } 2652 2653 /* 2654 * Prepare initial io register bits for burst length 2655 */ 2656 sym_init_burst(np, burst_max); 2657 2658 /* 2659 * Set SCSI BUS mode. 2660 * - LVD capable chips (895/895A/896/1010) report the 2661 * current BUS mode through the STEST4 IO register. 2662 * - For previous generation chips (825/825A/875), 2663 * user has to tell us how to check against HVD, 2664 * since a 100% safe algorithm is not possible. 2665 */ 2666 np->scsi_mode = SMODE_SE; 2667 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2668 np->scsi_mode = (np->sv_stest4 & SMODE); 2669 else if (np->features & FE_DIFF) { 2670 if (SYM_SETUP_SCSI_DIFF == 1) { 2671 if (np->sv_scntl3) { 2672 if (np->sv_stest2 & 0x20) 2673 np->scsi_mode = SMODE_HVD; 2674 } 2675 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2676 if (!(INB(nc_gpreg) & 0x08)) 2677 np->scsi_mode = SMODE_HVD; 2678 } 2679 } 2680 else if (SYM_SETUP_SCSI_DIFF == 2) 2681 np->scsi_mode = SMODE_HVD; 2682 } 2683 if (np->scsi_mode == SMODE_HVD) 2684 np->rv_stest2 |= 0x20; 2685 2686 /* 2687 * Set LED support from SCRIPTS. 2688 * Ignore this feature for boards known to use a 2689 * specific GPIO wiring and for the 895A, 896 2690 * and 1010 that drive the LED directly. 2691 */ 2692 if ((SYM_SETUP_SCSI_LED || 2693 (nvram->type == SYM_SYMBIOS_NVRAM || 2694 (nvram->type == SYM_TEKRAM_NVRAM && 2695 np->device_id == PCI_ID_SYM53C895))) && 2696 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2697 np->features |= FE_LED0; 2698 2699 /* 2700 * Set irq mode. 2701 */ 2702 switch(SYM_SETUP_IRQ_MODE & 3) { 2703 case 2: 2704 np->rv_dcntl |= IRQM; 2705 break; 2706 case 1: 2707 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2708 break; 2709 default: 2710 break; 2711 } 2712 2713 /* 2714 * Configure targets according to driver setup. 2715 * If NVRAM present get targets setup from NVRAM. 2716 */ 2717 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2718 tcb_p tp = &np->target[i]; 2719 2720 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2721 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2722 tp->tinfo.user.period = np->minsync; 2723 if (np->features & FE_ULTRA3) 2724 tp->tinfo.user.period = np->minsync_dt; 2725 tp->tinfo.user.offset = np->maxoffs; 2726 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2727 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2728 tp->usrtags = SYM_SETUP_MAX_TAG; 2729 2730 sym_nvram_setup_target (np, i, nvram); 2731 2732 /* 2733 * For now, guess PPR/DT support from the period 2734 * and BUS width. 2735 */ 2736 if (np->features & FE_ULTRA3) { 2737 if (tp->tinfo.user.period <= 9 && 2738 tp->tinfo.user.width == BUS_16_BIT) { 2739 tp->tinfo.user.options |= PPR_OPT_DT; 2740 tp->tinfo.user.offset = np->maxoffs_dt; 2741 tp->tinfo.user.spi_version = 3; 2742 } 2743 } 2744 2745 if (!tp->usrtags) 2746 tp->usrflags &= ~SYM_TAGS_ENABLED; 2747 } 2748 2749 /* 2750 * Let user know about the settings. 2751 */ 2752 i = nvram->type; 2753 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2754 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2755 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2756 np->myaddr, 2757 (np->features & FE_ULTRA3) ? 80 : 2758 (np->features & FE_ULTRA2) ? 40 : 2759 (np->features & FE_ULTRA) ? 20 : 10, 2760 sym_scsi_bus_mode(np->scsi_mode), 2761 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2762 /* 2763 * Tell him more on demand. 2764 */ 2765 if (sym_verbose) { 2766 printf("%s: %s IRQ line driver%s\n", 2767 sym_name(np), 2768 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2769 np->ram_ba ? ", using on-chip SRAM" : ""); 2770 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2771 if (np->features & FE_NOPM) 2772 printf("%s: handling phase mismatch from SCRIPTS.\n", 2773 sym_name(np)); 2774 } 2775 /* 2776 * And still more. 2777 */ 2778 if (sym_verbose > 1) { 2779 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2780 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2781 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2782 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2783 2784 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2785 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2786 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2787 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2788 } 2789 /* 2790 * Let user be aware of targets that have some disable flags set. 2791 */ 2792 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2793 if (sym_verbose) 2794 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2795 "SCAN FOR LUNS"); 2796 2797 return 0; 2798 } 2799 2800 /* 2801 * Prepare the next negotiation message if needed. 2802 * 2803 * Fill in the part of message buffer that contains the 2804 * negotiation and the nego_status field of the CCB. 2805 * Returns the size of the message in bytes. 2806 */ 2807 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2808 { 2809 tcb_p tp = &np->target[cp->target]; 2810 int msglen = 0; 2811 2812 /* 2813 * Early C1010 chips need a work-around for DT 2814 * data transfer to work. 2815 */ 2816 if (!(np->features & FE_U3EN)) 2817 tp->tinfo.goal.options = 0; 2818 /* 2819 * negotiate using PPR ? 2820 */ 2821 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2822 nego = NS_PPR; 2823 /* 2824 * negotiate wide transfers ? 2825 */ 2826 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2827 nego = NS_WIDE; 2828 /* 2829 * negotiate synchronous transfers? 2830 */ 2831 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2832 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2833 nego = NS_SYNC; 2834 2835 switch (nego) { 2836 case NS_SYNC: 2837 msgptr[msglen++] = M_EXTENDED; 2838 msgptr[msglen++] = 3; 2839 msgptr[msglen++] = M_X_SYNC_REQ; 2840 msgptr[msglen++] = tp->tinfo.goal.period; 2841 msgptr[msglen++] = tp->tinfo.goal.offset; 2842 break; 2843 case NS_WIDE: 2844 msgptr[msglen++] = M_EXTENDED; 2845 msgptr[msglen++] = 2; 2846 msgptr[msglen++] = M_X_WIDE_REQ; 2847 msgptr[msglen++] = tp->tinfo.goal.width; 2848 break; 2849 case NS_PPR: 2850 msgptr[msglen++] = M_EXTENDED; 2851 msgptr[msglen++] = 6; 2852 msgptr[msglen++] = M_X_PPR_REQ; 2853 msgptr[msglen++] = tp->tinfo.goal.period; 2854 msgptr[msglen++] = 0; 2855 msgptr[msglen++] = tp->tinfo.goal.offset; 2856 msgptr[msglen++] = tp->tinfo.goal.width; 2857 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2858 break; 2859 } 2860 2861 cp->nego_status = nego; 2862 2863 if (nego) { 2864 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2865 if (DEBUG_FLAGS & DEBUG_NEGO) { 2866 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2867 nego == NS_WIDE ? "wide msgout" : 2868 "ppr msgout", msgptr); 2869 } 2870 } 2871 2872 return msglen; 2873 } 2874 2875 /* 2876 * Insert a job into the start queue. 2877 */ 2878 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2879 { 2880 u_short qidx; 2881 2882 #ifdef SYM_CONF_IARB_SUPPORT 2883 /* 2884 * If the previously queued CCB is not yet done, 2885 * set the IARB hint. The SCRIPTS will go with IARB 2886 * for this job when starting the previous one. 2887 * We leave devices a chance to win arbitration by 2888 * not using more than 'iarb_max' consecutive 2889 * immediate arbitrations. 2890 */ 2891 if (np->last_cp && np->iarb_count < np->iarb_max) { 2892 np->last_cp->host_flags |= HF_HINT_IARB; 2893 ++np->iarb_count; 2894 } 2895 else 2896 np->iarb_count = 0; 2897 np->last_cp = cp; 2898 #endif 2899 2900 /* 2901 * Insert first the idle task and then our job. 2902 * The MB should ensure proper ordering. 2903 */ 2904 qidx = np->squeueput + 2; 2905 if (qidx >= MAX_QUEUE*2) qidx = 0; 2906 2907 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2908 MEMORY_BARRIER(); 2909 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2910 2911 np->squeueput = qidx; 2912 2913 if (DEBUG_FLAGS & DEBUG_QUEUE) 2914 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2915 2916 /* 2917 * Script processor may be waiting for reselect. 2918 * Wake it up. 2919 */ 2920 MEMORY_BARRIER(); 2921 OUTB (nc_istat, SIGP|np->istat_sem); 2922 } 2923 2924 /* 2925 * Soft reset the chip. 2926 * 2927 * Raising SRST when the chip is running may cause 2928 * problems on dual function chips (see below). 2929 * On the other hand, LVD devices need some delay 2930 * to settle and report actual BUS mode in STEST4. 2931 */ 2932 static void sym_chip_reset (hcb_p np) 2933 { 2934 OUTB (nc_istat, SRST); 2935 UDELAY (10); 2936 OUTB (nc_istat, 0); 2937 UDELAY(2000); /* For BUS MODE to settle */ 2938 } 2939 2940 /* 2941 * Soft reset the chip. 2942 * 2943 * Some 896 and 876 chip revisions may hang-up if we set 2944 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2945 * are running. 2946 * So, we need to abort the current operation prior to 2947 * soft resetting the chip. 2948 */ 2949 static void sym_soft_reset (hcb_p np) 2950 { 2951 u_char istat; 2952 int i; 2953 2954 OUTB (nc_istat, CABRT); 2955 for (i = 1000000 ; i ; --i) { 2956 istat = INB (nc_istat); 2957 if (istat & SIP) { 2958 INW (nc_sist); 2959 continue; 2960 } 2961 if (istat & DIP) { 2962 OUTB (nc_istat, 0); 2963 INB (nc_dstat); 2964 break; 2965 } 2966 } 2967 if (!i) 2968 printf("%s: unable to abort current chip operation.\n", 2969 sym_name(np)); 2970 sym_chip_reset (np); 2971 } 2972 2973 /* 2974 * Start reset process. 2975 * 2976 * The interrupt handler will reinitialize the chip. 2977 */ 2978 static void sym_start_reset(hcb_p np) 2979 { 2980 (void) sym_reset_scsi_bus(np, 1); 2981 } 2982 2983 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 2984 { 2985 u32 term; 2986 int retv = 0; 2987 2988 sym_soft_reset(np); /* Soft reset the chip */ 2989 if (enab_int) 2990 OUTW (nc_sien, RST); 2991 /* 2992 * Enable Tolerant, reset IRQD if present and 2993 * properly set IRQ mode, prior to resetting the bus. 2994 */ 2995 OUTB (nc_stest3, TE); 2996 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 2997 OUTB (nc_scntl1, CRST); 2998 UDELAY (200); 2999 3000 if (!SYM_SETUP_SCSI_BUS_CHECK) 3001 goto out; 3002 /* 3003 * Check for no terminators or SCSI bus shorts to ground. 3004 * Read SCSI data bus, data parity bits and control signals. 3005 * We are expecting RESET to be TRUE and other signals to be 3006 * FALSE. 3007 */ 3008 term = INB(nc_sstat0); 3009 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3010 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3011 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3012 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3013 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3014 3015 if (!(np->features & FE_WIDE)) 3016 term &= 0x3ffff; 3017 3018 if (term != (2<<7)) { 3019 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3020 sym_name(np)); 3021 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3022 "0x%lx, expecting 0x%lx\n", 3023 sym_name(np), 3024 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3025 (u_long)term, (u_long)(2<<7)); 3026 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3027 retv = 1; 3028 } 3029 out: 3030 OUTB (nc_scntl1, 0); 3031 /* MDELAY(100); */ 3032 return retv; 3033 } 3034 3035 /* 3036 * The chip may have completed jobs. Look at the DONE QUEUE. 3037 * 3038 * On architectures that may reorder LOAD/STORE operations, 3039 * a memory barrier may be needed after the reading of the 3040 * so-called `flag' and prior to dealing with the data. 3041 */ 3042 static int sym_wakeup_done (hcb_p np) 3043 { 3044 ccb_p cp; 3045 int i, n; 3046 u32 dsa; 3047 3048 SYM_LOCK_ASSERT(MA_OWNED); 3049 3050 n = 0; 3051 i = np->dqueueget; 3052 while (1) { 3053 dsa = scr_to_cpu(np->dqueue[i]); 3054 if (!dsa) 3055 break; 3056 np->dqueue[i] = 0; 3057 if ((i = i+2) >= MAX_QUEUE*2) 3058 i = 0; 3059 3060 cp = sym_ccb_from_dsa(np, dsa); 3061 if (cp) { 3062 MEMORY_BARRIER(); 3063 sym_complete_ok (np, cp); 3064 ++n; 3065 } 3066 else 3067 printf ("%s: bad DSA (%x) in done queue.\n", 3068 sym_name(np), (u_int) dsa); 3069 } 3070 np->dqueueget = i; 3071 3072 return n; 3073 } 3074 3075 /* 3076 * Complete all active CCBs with error. 3077 * Used on CHIP/SCSI RESET. 3078 */ 3079 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3080 { 3081 /* 3082 * Move all active CCBs to the COMP queue 3083 * and flush this queue. 3084 */ 3085 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3086 sym_que_init(&np->busy_ccbq); 3087 sym_flush_comp_queue(np, cam_status); 3088 } 3089 3090 /* 3091 * Start chip. 3092 * 3093 * 'reason' means: 3094 * 0: initialisation. 3095 * 1: SCSI BUS RESET delivered or received. 3096 * 2: SCSI BUS MODE changed. 3097 */ 3098 static void sym_init (hcb_p np, int reason) 3099 { 3100 int i; 3101 u32 phys; 3102 3103 SYM_LOCK_ASSERT(MA_OWNED); 3104 3105 /* 3106 * Reset chip if asked, otherwise just clear fifos. 3107 */ 3108 if (reason == 1) 3109 sym_soft_reset(np); 3110 else { 3111 OUTB (nc_stest3, TE|CSF); 3112 OUTONB (nc_ctest3, CLF); 3113 } 3114 3115 /* 3116 * Clear Start Queue 3117 */ 3118 phys = np->squeue_ba; 3119 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3120 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3121 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3122 } 3123 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3124 3125 /* 3126 * Start at first entry. 3127 */ 3128 np->squeueput = 0; 3129 3130 /* 3131 * Clear Done Queue 3132 */ 3133 phys = np->dqueue_ba; 3134 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3135 np->dqueue[i] = 0; 3136 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3137 } 3138 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3139 3140 /* 3141 * Start at first entry. 3142 */ 3143 np->dqueueget = 0; 3144 3145 /* 3146 * Install patches in scripts. 3147 * This also let point to first position the start 3148 * and done queue pointers used from SCRIPTS. 3149 */ 3150 np->fw_patch(np); 3151 3152 /* 3153 * Wakeup all pending jobs. 3154 */ 3155 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3156 3157 /* 3158 * Init chip. 3159 */ 3160 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3161 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3162 3163 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3164 /* full arb., ena parity, par->ATN */ 3165 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3166 3167 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3168 3169 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3170 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3171 OUTB (nc_istat , SIGP ); /* Signal Process */ 3172 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3173 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3174 3175 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3176 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3177 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3178 3179 /* Extended Sreq/Sack filtering not supported on the C10 */ 3180 if (np->features & FE_C10) 3181 OUTB (nc_stest2, np->rv_stest2); 3182 else 3183 OUTB (nc_stest2, EXT|np->rv_stest2); 3184 3185 OUTB (nc_stest3, TE); /* TolerANT enable */ 3186 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3187 3188 /* 3189 * For now, disable AIP generation on C1010-66. 3190 */ 3191 if (np->device_id == PCI_ID_LSI53C1010_2) 3192 OUTB (nc_aipcntl1, DISAIP); 3193 3194 /* 3195 * C10101 Errata. 3196 * Errant SGE's when in narrow. Write bits 4 & 5 of 3197 * STEST1 register to disable SGE. We probably should do 3198 * that from SCRIPTS for each selection/reselection, but 3199 * I just don't want. :) 3200 */ 3201 if (np->device_id == PCI_ID_LSI53C1010 && 3202 /* np->revision_id < 0xff */ 1) 3203 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3204 3205 /* 3206 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3207 * Disable overlapped arbitration for some dual function devices, 3208 * regardless revision id (kind of post-chip-design feature. ;-)) 3209 */ 3210 if (np->device_id == PCI_ID_SYM53C875) 3211 OUTB (nc_ctest0, (1<<5)); 3212 else if (np->device_id == PCI_ID_SYM53C896) 3213 np->rv_ccntl0 |= DPR; 3214 3215 /* 3216 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3217 * and/or hardware phase mismatch, since only such chips 3218 * seem to support those IO registers. 3219 */ 3220 if (np->features & (FE_DAC|FE_NOPM)) { 3221 OUTB (nc_ccntl0, np->rv_ccntl0); 3222 OUTB (nc_ccntl1, np->rv_ccntl1); 3223 } 3224 3225 /* 3226 * If phase mismatch handled by scripts (895A/896/1010), 3227 * set PM jump addresses. 3228 */ 3229 if (np->features & FE_NOPM) { 3230 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3231 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3232 } 3233 3234 /* 3235 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3236 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3237 */ 3238 if (np->features & FE_LED0) 3239 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3240 else if (np->features & FE_LEDC) 3241 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3242 3243 /* 3244 * enable ints 3245 */ 3246 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3247 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3248 3249 /* 3250 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3251 * Try to eat the spurious SBMC interrupt that may occur when 3252 * we reset the chip but not the SCSI BUS (at initialization). 3253 */ 3254 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3255 OUTONW (nc_sien, SBMC); 3256 if (reason == 0) { 3257 MDELAY(100); 3258 INW (nc_sist); 3259 } 3260 np->scsi_mode = INB (nc_stest4) & SMODE; 3261 } 3262 3263 /* 3264 * Fill in target structure. 3265 * Reinitialize usrsync. 3266 * Reinitialize usrwide. 3267 * Prepare sync negotiation according to actual SCSI bus mode. 3268 */ 3269 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3270 tcb_p tp = &np->target[i]; 3271 3272 tp->to_reset = 0; 3273 tp->head.sval = 0; 3274 tp->head.wval = np->rv_scntl3; 3275 tp->head.uval = 0; 3276 3277 tp->tinfo.current.period = 0; 3278 tp->tinfo.current.offset = 0; 3279 tp->tinfo.current.width = BUS_8_BIT; 3280 tp->tinfo.current.options = 0; 3281 } 3282 3283 /* 3284 * Download SCSI SCRIPTS to on-chip RAM if present, 3285 * and start script processor. 3286 */ 3287 if (np->ram_ba) { 3288 if (sym_verbose > 1) 3289 printf ("%s: Downloading SCSI SCRIPTS.\n", 3290 sym_name(np)); 3291 if (np->ram_ws == 8192) { 3292 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3293 OUTL (nc_mmws, np->scr_ram_seg); 3294 OUTL (nc_mmrs, np->scr_ram_seg); 3295 OUTL (nc_sfs, np->scr_ram_seg); 3296 phys = SCRIPTB_BA (np, start64); 3297 } 3298 else 3299 phys = SCRIPTA_BA (np, init); 3300 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3301 } 3302 else 3303 phys = SCRIPTA_BA (np, init); 3304 3305 np->istat_sem = 0; 3306 3307 OUTL (nc_dsa, np->hcb_ba); 3308 OUTL_DSP (phys); 3309 3310 /* 3311 * Notify the XPT about the RESET condition. 3312 */ 3313 if (reason != 0) 3314 xpt_async(AC_BUS_RESET, np->path, NULL); 3315 } 3316 3317 /* 3318 * Get clock factor and sync divisor for a given 3319 * synchronous factor period. 3320 */ 3321 static int 3322 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3323 { 3324 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3325 int div = np->clock_divn; /* Number of divisors supported */ 3326 u32 fak; /* Sync factor in sxfer */ 3327 u32 per; /* Period in tenths of ns */ 3328 u32 kpc; /* (per * clk) */ 3329 int ret; 3330 3331 /* 3332 * Compute the synchronous period in tenths of nano-seconds 3333 */ 3334 if (dt && sfac <= 9) per = 125; 3335 else if (sfac <= 10) per = 250; 3336 else if (sfac == 11) per = 303; 3337 else if (sfac == 12) per = 500; 3338 else per = 40 * sfac; 3339 ret = per; 3340 3341 kpc = per * clk; 3342 if (dt) 3343 kpc <<= 1; 3344 3345 /* 3346 * For earliest C10 revision 0, we cannot use extra 3347 * clocks for the setting of the SCSI clocking. 3348 * Note that this limits the lowest sync data transfer 3349 * to 5 Mega-transfers per second and may result in 3350 * using higher clock divisors. 3351 */ 3352 #if 1 3353 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3354 /* 3355 * Look for the lowest clock divisor that allows an 3356 * output speed not faster than the period. 3357 */ 3358 while (div > 0) { 3359 --div; 3360 if (kpc > (div_10M[div] << 2)) { 3361 ++div; 3362 break; 3363 } 3364 } 3365 fak = 0; /* No extra clocks */ 3366 if (div == np->clock_divn) { /* Are we too fast ? */ 3367 ret = -1; 3368 } 3369 *divp = div; 3370 *fakp = fak; 3371 return ret; 3372 } 3373 #endif 3374 3375 /* 3376 * Look for the greatest clock divisor that allows an 3377 * input speed faster than the period. 3378 */ 3379 while (div-- > 0) 3380 if (kpc >= (div_10M[div] << 2)) break; 3381 3382 /* 3383 * Calculate the lowest clock factor that allows an output 3384 * speed not faster than the period, and the max output speed. 3385 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3386 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3387 */ 3388 if (dt) { 3389 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3390 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3391 } 3392 else { 3393 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3394 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3395 } 3396 3397 /* 3398 * Check against our hardware limits, or bugs :). 3399 */ 3400 if (fak > 2) {fak = 2; ret = -1;} 3401 3402 /* 3403 * Compute and return sync parameters. 3404 */ 3405 *divp = div; 3406 *fakp = fak; 3407 3408 return ret; 3409 } 3410 3411 /* 3412 * Tell the SCSI layer about the new transfer parameters. 3413 */ 3414 static void 3415 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3416 { 3417 struct ccb_trans_settings cts; 3418 struct cam_path *path; 3419 int sts; 3420 tcb_p tp = &np->target[target]; 3421 3422 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3423 CAM_LUN_WILDCARD); 3424 if (sts != CAM_REQ_CMP) 3425 return; 3426 3427 bzero(&cts, sizeof(cts)); 3428 3429 #define cts__scsi (cts.proto_specific.scsi) 3430 #define cts__spi (cts.xport_specific.spi) 3431 3432 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3433 cts.protocol = PROTO_SCSI; 3434 cts.transport = XPORT_SPI; 3435 cts.protocol_version = tp->tinfo.current.scsi_version; 3436 cts.transport_version = tp->tinfo.current.spi_version; 3437 3438 cts__spi.valid = spi_valid; 3439 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3440 cts__spi.sync_period = tp->tinfo.current.period; 3441 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3442 cts__spi.sync_offset = tp->tinfo.current.offset; 3443 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3444 cts__spi.bus_width = tp->tinfo.current.width; 3445 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3446 cts__spi.ppr_options = tp->tinfo.current.options; 3447 #undef cts__spi 3448 #undef cts__scsi 3449 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3450 xpt_async(AC_TRANSFER_NEG, path, &cts); 3451 xpt_free_path(path); 3452 } 3453 3454 #define SYM_SPI_VALID_WDTR \ 3455 CTS_SPI_VALID_BUS_WIDTH | \ 3456 CTS_SPI_VALID_SYNC_RATE | \ 3457 CTS_SPI_VALID_SYNC_OFFSET 3458 #define SYM_SPI_VALID_SDTR \ 3459 CTS_SPI_VALID_SYNC_RATE | \ 3460 CTS_SPI_VALID_SYNC_OFFSET 3461 #define SYM_SPI_VALID_PPR \ 3462 CTS_SPI_VALID_PPR_OPTIONS | \ 3463 CTS_SPI_VALID_BUS_WIDTH | \ 3464 CTS_SPI_VALID_SYNC_RATE | \ 3465 CTS_SPI_VALID_SYNC_OFFSET 3466 3467 /* 3468 * We received a WDTR. 3469 * Let everything be aware of the changes. 3470 */ 3471 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3472 { 3473 tcb_p tp = &np->target[cp->target]; 3474 3475 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3476 3477 /* 3478 * Tell the SCSI layer about the new transfer parameters. 3479 */ 3480 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3481 tp->tinfo.current.offset = 0; 3482 tp->tinfo.current.period = 0; 3483 tp->tinfo.current.options = 0; 3484 3485 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3486 } 3487 3488 /* 3489 * We received a SDTR. 3490 * Let everything be aware of the changes. 3491 */ 3492 static void 3493 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3494 { 3495 tcb_p tp = &np->target[cp->target]; 3496 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3497 3498 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3499 3500 /* 3501 * Tell the SCSI layer about the new transfer parameters. 3502 */ 3503 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3504 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3505 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3506 3507 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3508 } 3509 3510 /* 3511 * We received a PPR. 3512 * Let everything be aware of the changes. 3513 */ 3514 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3515 u_char per, u_char wide, u_char div, u_char fak) 3516 { 3517 tcb_p tp = &np->target[cp->target]; 3518 3519 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3520 3521 /* 3522 * Tell the SCSI layer about the new transfer parameters. 3523 */ 3524 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3525 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3526 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3527 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3528 3529 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3530 } 3531 3532 /* 3533 * Switch trans mode for current job and it's target. 3534 */ 3535 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3536 u_char per, u_char wide, u_char div, u_char fak) 3537 { 3538 SYM_QUEHEAD *qp; 3539 union ccb *ccb; 3540 tcb_p tp; 3541 u_char target = INB (nc_sdid) & 0x0f; 3542 u_char sval, wval, uval; 3543 3544 assert (cp); 3545 if (!cp) return; 3546 ccb = cp->cam_ccb; 3547 assert (ccb); 3548 if (!ccb) return; 3549 assert (target == (cp->target & 0xf)); 3550 tp = &np->target[target]; 3551 3552 sval = tp->head.sval; 3553 wval = tp->head.wval; 3554 uval = tp->head.uval; 3555 3556 #if 0 3557 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3558 sval, wval, uval, np->rv_scntl3); 3559 #endif 3560 /* 3561 * Set the offset. 3562 */ 3563 if (!(np->features & FE_C10)) 3564 sval = (sval & ~0x1f) | ofs; 3565 else 3566 sval = (sval & ~0x3f) | ofs; 3567 3568 /* 3569 * Set the sync divisor and extra clock factor. 3570 */ 3571 if (ofs != 0) { 3572 wval = (wval & ~0x70) | ((div+1) << 4); 3573 if (!(np->features & FE_C10)) 3574 sval = (sval & ~0xe0) | (fak << 5); 3575 else { 3576 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3577 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3578 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3579 } 3580 } 3581 3582 /* 3583 * Set the bus width. 3584 */ 3585 wval = wval & ~EWS; 3586 if (wide != 0) 3587 wval |= EWS; 3588 3589 /* 3590 * Set misc. ultra enable bits. 3591 */ 3592 if (np->features & FE_C10) { 3593 uval = uval & ~(U3EN|AIPCKEN); 3594 if (dt) { 3595 assert(np->features & FE_U3EN); 3596 uval |= U3EN; 3597 } 3598 } 3599 else { 3600 wval = wval & ~ULTRA; 3601 if (per <= 12) wval |= ULTRA; 3602 } 3603 3604 /* 3605 * Stop there if sync parameters are unchanged. 3606 */ 3607 if (tp->head.sval == sval && 3608 tp->head.wval == wval && 3609 tp->head.uval == uval) 3610 return; 3611 tp->head.sval = sval; 3612 tp->head.wval = wval; 3613 tp->head.uval = uval; 3614 3615 /* 3616 * Disable extended Sreq/Sack filtering if per < 50. 3617 * Not supported on the C1010. 3618 */ 3619 if (per < 50 && !(np->features & FE_C10)) 3620 OUTOFFB (nc_stest2, EXT); 3621 3622 /* 3623 * set actual value and sync_status 3624 */ 3625 OUTB (nc_sxfer, tp->head.sval); 3626 OUTB (nc_scntl3, tp->head.wval); 3627 3628 if (np->features & FE_C10) { 3629 OUTB (nc_scntl4, tp->head.uval); 3630 } 3631 3632 /* 3633 * patch ALL busy ccbs of this target. 3634 */ 3635 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3636 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3637 if (cp->target != target) 3638 continue; 3639 cp->phys.select.sel_scntl3 = tp->head.wval; 3640 cp->phys.select.sel_sxfer = tp->head.sval; 3641 if (np->features & FE_C10) { 3642 cp->phys.select.sel_scntl4 = tp->head.uval; 3643 } 3644 } 3645 } 3646 3647 /* 3648 * log message for real hard errors 3649 * 3650 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3651 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3652 * 3653 * exception register: 3654 * ds: dstat 3655 * si: sist 3656 * 3657 * SCSI bus lines: 3658 * so: control lines as driven by chip. 3659 * si: control lines as seen by chip. 3660 * sd: scsi data lines as seen by chip. 3661 * 3662 * wide/fastmode: 3663 * sxfer: (see the manual) 3664 * scntl3: (see the manual) 3665 * 3666 * current script command: 3667 * dsp: script address (relative to start of script). 3668 * dbc: first word of script command. 3669 * 3670 * First 24 register of the chip: 3671 * r0..rf 3672 */ 3673 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3674 { 3675 u32 dsp; 3676 int script_ofs; 3677 int script_size; 3678 char *script_name; 3679 u_char *script_base; 3680 int i; 3681 3682 dsp = INL (nc_dsp); 3683 3684 if (dsp > np->scripta_ba && 3685 dsp <= np->scripta_ba + np->scripta_sz) { 3686 script_ofs = dsp - np->scripta_ba; 3687 script_size = np->scripta_sz; 3688 script_base = (u_char *) np->scripta0; 3689 script_name = "scripta"; 3690 } 3691 else if (np->scriptb_ba < dsp && 3692 dsp <= np->scriptb_ba + np->scriptb_sz) { 3693 script_ofs = dsp - np->scriptb_ba; 3694 script_size = np->scriptb_sz; 3695 script_base = (u_char *) np->scriptb0; 3696 script_name = "scriptb"; 3697 } else { 3698 script_ofs = dsp; 3699 script_size = 0; 3700 script_base = NULL; 3701 script_name = "mem"; 3702 } 3703 3704 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3705 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3706 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3707 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3708 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3709 (unsigned)INL (nc_dbc)); 3710 3711 if (((script_ofs & 3) == 0) && 3712 (unsigned)script_ofs < script_size) { 3713 printf ("%s: script cmd = %08x\n", sym_name(np), 3714 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3715 } 3716 3717 printf ("%s: regdump:", sym_name(np)); 3718 for (i=0; i<24;i++) 3719 printf (" %02x", (unsigned)INB_OFF(i)); 3720 printf (".\n"); 3721 3722 /* 3723 * PCI BUS error, read the PCI ststus register. 3724 */ 3725 if (dstat & (MDPE|BF)) { 3726 u_short pci_sts; 3727 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3728 if (pci_sts & 0xf900) { 3729 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3730 printf("%s: PCI STATUS = 0x%04x\n", 3731 sym_name(np), pci_sts & 0xf900); 3732 } 3733 } 3734 } 3735 3736 /* 3737 * chip interrupt handler 3738 * 3739 * In normal situations, interrupt conditions occur one at 3740 * a time. But when something bad happens on the SCSI BUS, 3741 * the chip may raise several interrupt flags before 3742 * stopping and interrupting the CPU. The additionnal 3743 * interrupt flags are stacked in some extra registers 3744 * after the SIP and/or DIP flag has been raised in the 3745 * ISTAT. After the CPU has read the interrupt condition 3746 * flag from SIST or DSTAT, the chip unstacks the other 3747 * interrupt flags and sets the corresponding bits in 3748 * SIST or DSTAT. Since the chip starts stacking once the 3749 * SIP or DIP flag is set, there is a small window of time 3750 * where the stacking does not occur. 3751 * 3752 * Typically, multiple interrupt conditions may happen in 3753 * the following situations: 3754 * 3755 * - SCSI parity error + Phase mismatch (PAR|MA) 3756 * When a parity error is detected in input phase 3757 * and the device switches to msg-in phase inside a 3758 * block MOV. 3759 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3760 * When a stupid device does not want to handle the 3761 * recovery of an SCSI parity error. 3762 * - Some combinations of STO, PAR, UDC, ... 3763 * When using non compliant SCSI stuff, when user is 3764 * doing non compliant hot tampering on the BUS, when 3765 * something really bad happens to a device, etc ... 3766 * 3767 * The heuristic suggested by SYMBIOS to handle 3768 * multiple interrupts is to try unstacking all 3769 * interrupts conditions and to handle them on some 3770 * priority based on error severity. 3771 * This will work when the unstacking has been 3772 * successful, but we cannot be 100 % sure of that, 3773 * since the CPU may have been faster to unstack than 3774 * the chip is able to stack. Hmmm ... But it seems that 3775 * such a situation is very unlikely to happen. 3776 * 3777 * If this happen, for example STO caught by the CPU 3778 * then UDC happenning before the CPU have restarted 3779 * the SCRIPTS, the driver may wrongly complete the 3780 * same command on UDC, since the SCRIPTS didn't restart 3781 * and the DSA still points to the same command. 3782 * We avoid this situation by setting the DSA to an 3783 * invalid value when the CCB is completed and before 3784 * restarting the SCRIPTS. 3785 * 3786 * Another issue is that we need some section of our 3787 * recovery procedures to be somehow uninterruptible but 3788 * the SCRIPTS processor does not provides such a 3789 * feature. For this reason, we handle recovery preferently 3790 * from the C code and check against some SCRIPTS critical 3791 * sections from the C code. 3792 * 3793 * Hopefully, the interrupt handling of the driver is now 3794 * able to resist to weird BUS error conditions, but donnot 3795 * ask me for any guarantee that it will never fail. :-) 3796 * Use at your own decision and risk. 3797 */ 3798 static void sym_intr1 (hcb_p np) 3799 { 3800 u_char istat, istatc; 3801 u_char dstat; 3802 u_short sist; 3803 3804 SYM_LOCK_ASSERT(MA_OWNED); 3805 3806 /* 3807 * interrupt on the fly ? 3808 * 3809 * A `dummy read' is needed to ensure that the 3810 * clear of the INTF flag reaches the device 3811 * before the scanning of the DONE queue. 3812 */ 3813 istat = INB (nc_istat); 3814 if (istat & INTF) { 3815 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3816 istat = INB (nc_istat); /* DUMMY READ */ 3817 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3818 (void)sym_wakeup_done (np); 3819 } 3820 3821 if (!(istat & (SIP|DIP))) 3822 return; 3823 3824 #if 0 /* We should never get this one */ 3825 if (istat & CABRT) 3826 OUTB (nc_istat, CABRT); 3827 #endif 3828 3829 /* 3830 * PAR and MA interrupts may occur at the same time, 3831 * and we need to know of both in order to handle 3832 * this situation properly. We try to unstack SCSI 3833 * interrupts for that reason. BTW, I dislike a LOT 3834 * such a loop inside the interrupt routine. 3835 * Even if DMA interrupt stacking is very unlikely to 3836 * happen, we also try unstacking these ones, since 3837 * this has no performance impact. 3838 */ 3839 sist = 0; 3840 dstat = 0; 3841 istatc = istat; 3842 do { 3843 if (istatc & SIP) 3844 sist |= INW (nc_sist); 3845 if (istatc & DIP) 3846 dstat |= INB (nc_dstat); 3847 istatc = INB (nc_istat); 3848 istat |= istatc; 3849 } while (istatc & (SIP|DIP)); 3850 3851 if (DEBUG_FLAGS & DEBUG_TINY) 3852 printf ("<%d|%x:%x|%x:%x>", 3853 (int)INB(nc_scr0), 3854 dstat,sist, 3855 (unsigned)INL(nc_dsp), 3856 (unsigned)INL(nc_dbc)); 3857 /* 3858 * On paper, a memory barrier may be needed here. 3859 * And since we are paranoid ... :) 3860 */ 3861 MEMORY_BARRIER(); 3862 3863 /* 3864 * First, interrupts we want to service cleanly. 3865 * 3866 * Phase mismatch (MA) is the most frequent interrupt 3867 * for chip earlier than the 896 and so we have to service 3868 * it as quickly as possible. 3869 * A SCSI parity error (PAR) may be combined with a phase 3870 * mismatch condition (MA). 3871 * Programmed interrupts (SIR) are used to call the C code 3872 * from SCRIPTS. 3873 * The single step interrupt (SSI) is not used in this 3874 * driver. 3875 */ 3876 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3877 !(dstat & (MDPE|BF|ABRT|IID))) { 3878 if (sist & PAR) sym_int_par (np, sist); 3879 else if (sist & MA) sym_int_ma (np); 3880 else if (dstat & SIR) sym_int_sir (np); 3881 else if (dstat & SSI) OUTONB_STD (); 3882 else goto unknown_int; 3883 return; 3884 } 3885 3886 /* 3887 * Now, interrupts that donnot happen in normal 3888 * situations and that we may need to recover from. 3889 * 3890 * On SCSI RESET (RST), we reset everything. 3891 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3892 * active CCBs with RESET status, prepare all devices 3893 * for negotiating again and restart the SCRIPTS. 3894 * On STO and UDC, we complete the CCB with the corres- 3895 * ponding status and restart the SCRIPTS. 3896 */ 3897 if (sist & RST) { 3898 xpt_print_path(np->path); 3899 printf("SCSI BUS reset detected.\n"); 3900 sym_init (np, 1); 3901 return; 3902 } 3903 3904 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3905 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3906 3907 if (!(sist & (GEN|HTH|SGE)) && 3908 !(dstat & (MDPE|BF|ABRT|IID))) { 3909 if (sist & SBMC) sym_int_sbmc (np); 3910 else if (sist & STO) sym_int_sto (np); 3911 else if (sist & UDC) sym_int_udc (np); 3912 else goto unknown_int; 3913 return; 3914 } 3915 3916 /* 3917 * Now, interrupts we are not able to recover cleanly. 3918 * 3919 * Log message for hard errors. 3920 * Reset everything. 3921 */ 3922 3923 sym_log_hard_error(np, sist, dstat); 3924 3925 if ((sist & (GEN|HTH|SGE)) || 3926 (dstat & (MDPE|BF|ABRT|IID))) { 3927 sym_start_reset(np); 3928 return; 3929 } 3930 3931 unknown_int: 3932 /* 3933 * We just miss the cause of the interrupt. :( 3934 * Print a message. The timeout will do the real work. 3935 */ 3936 printf( "%s: unknown interrupt(s) ignored, " 3937 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3938 sym_name(np), istat, dstat, sist); 3939 } 3940 3941 static void sym_intr(void *arg) 3942 { 3943 hcb_p np = arg; 3944 3945 SYM_LOCK(); 3946 3947 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3948 sym_intr1((hcb_p) arg); 3949 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3950 3951 SYM_UNLOCK(); 3952 } 3953 3954 static void sym_poll(struct cam_sim *sim) 3955 { 3956 sym_intr1(cam_sim_softc(sim)); 3957 } 3958 3959 /* 3960 * generic recovery from scsi interrupt 3961 * 3962 * The doc says that when the chip gets an SCSI interrupt, 3963 * it tries to stop in an orderly fashion, by completing 3964 * an instruction fetch that had started or by flushing 3965 * the DMA fifo for a write to memory that was executing. 3966 * Such a fashion is not enough to know if the instruction 3967 * that was just before the current DSP value has been 3968 * executed or not. 3969 * 3970 * There are some small SCRIPTS sections that deal with 3971 * the start queue and the done queue that may break any 3972 * assomption from the C code if we are interrupted 3973 * inside, so we reset if this happens. Btw, since these 3974 * SCRIPTS sections are executed while the SCRIPTS hasn't 3975 * started SCSI operations, it is very unlikely to happen. 3976 * 3977 * All the driver data structures are supposed to be 3978 * allocated from the same 4 GB memory window, so there 3979 * is a 1 to 1 relationship between DSA and driver data 3980 * structures. Since we are careful :) to invalidate the 3981 * DSA when we complete a command or when the SCRIPTS 3982 * pushes a DSA into a queue, we can trust it when it 3983 * points to a CCB. 3984 */ 3985 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 3986 { 3987 u32 dsp = INL (nc_dsp); 3988 u32 dsa = INL (nc_dsa); 3989 ccb_p cp = sym_ccb_from_dsa(np, dsa); 3990 3991 /* 3992 * If we haven't been interrupted inside the SCRIPTS 3993 * critical paths, we can safely restart the SCRIPTS 3994 * and trust the DSA value if it matches a CCB. 3995 */ 3996 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 3997 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 3998 (!(dsp > SCRIPTA_BA (np, ungetjob) && 3999 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4000 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4001 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4002 (!(dsp > SCRIPTA_BA (np, done) && 4003 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4004 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4005 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4006 /* 4007 * If we have a CCB, let the SCRIPTS call us back for 4008 * the handling of the error with SCRATCHA filled with 4009 * STARTPOS. This way, we will be able to freeze the 4010 * device queue and requeue awaiting IOs. 4011 */ 4012 if (cp) { 4013 cp->host_status = hsts; 4014 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4015 } 4016 /* 4017 * Otherwise just restart the SCRIPTS. 4018 */ 4019 else { 4020 OUTL (nc_dsa, 0xffffff); 4021 OUTL_DSP (SCRIPTA_BA (np, start)); 4022 } 4023 } 4024 else 4025 goto reset_all; 4026 4027 return; 4028 4029 reset_all: 4030 sym_start_reset(np); 4031 } 4032 4033 /* 4034 * chip exception handler for selection timeout 4035 */ 4036 static void sym_int_sto (hcb_p np) 4037 { 4038 u32 dsp = INL (nc_dsp); 4039 4040 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4041 4042 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4043 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4044 else 4045 sym_start_reset(np); 4046 } 4047 4048 /* 4049 * chip exception handler for unexpected disconnect 4050 */ 4051 static void sym_int_udc (hcb_p np) 4052 { 4053 printf ("%s: unexpected disconnect\n", sym_name(np)); 4054 sym_recover_scsi_int(np, HS_UNEXPECTED); 4055 } 4056 4057 /* 4058 * chip exception handler for SCSI bus mode change 4059 * 4060 * spi2-r12 11.2.3 says a transceiver mode change must 4061 * generate a reset event and a device that detects a reset 4062 * event shall initiate a hard reset. It says also that a 4063 * device that detects a mode change shall set data transfer 4064 * mode to eight bit asynchronous, etc... 4065 * So, just reinitializing all except chip should be enough. 4066 */ 4067 static void sym_int_sbmc (hcb_p np) 4068 { 4069 u_char scsi_mode = INB (nc_stest4) & SMODE; 4070 4071 /* 4072 * Notify user. 4073 */ 4074 xpt_print_path(np->path); 4075 printf("SCSI BUS mode change from %s to %s.\n", 4076 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4077 4078 /* 4079 * Should suspend command processing for a few seconds and 4080 * reinitialize all except the chip. 4081 */ 4082 sym_init (np, 2); 4083 } 4084 4085 /* 4086 * chip exception handler for SCSI parity error. 4087 * 4088 * When the chip detects a SCSI parity error and is 4089 * currently executing a (CH)MOV instruction, it does 4090 * not interrupt immediately, but tries to finish the 4091 * transfer of the current scatter entry before 4092 * interrupting. The following situations may occur: 4093 * 4094 * - The complete scatter entry has been transferred 4095 * without the device having changed phase. 4096 * The chip will then interrupt with the DSP pointing 4097 * to the instruction that follows the MOV. 4098 * 4099 * - A phase mismatch occurs before the MOV finished 4100 * and phase errors are to be handled by the C code. 4101 * The chip will then interrupt with both PAR and MA 4102 * conditions set. 4103 * 4104 * - A phase mismatch occurs before the MOV finished and 4105 * phase errors are to be handled by SCRIPTS. 4106 * The chip will load the DSP with the phase mismatch 4107 * JUMP address and interrupt the host processor. 4108 */ 4109 static void sym_int_par (hcb_p np, u_short sist) 4110 { 4111 u_char hsts = INB (HS_PRT); 4112 u32 dsp = INL (nc_dsp); 4113 u32 dbc = INL (nc_dbc); 4114 u32 dsa = INL (nc_dsa); 4115 u_char sbcl = INB (nc_sbcl); 4116 u_char cmd = dbc >> 24; 4117 int phase = cmd & 7; 4118 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4119 4120 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4121 sym_name(np), hsts, dbc, sbcl); 4122 4123 /* 4124 * Check that the chip is connected to the SCSI BUS. 4125 */ 4126 if (!(INB (nc_scntl1) & ISCON)) { 4127 sym_recover_scsi_int(np, HS_UNEXPECTED); 4128 return; 4129 } 4130 4131 /* 4132 * If the nexus is not clearly identified, reset the bus. 4133 * We will try to do better later. 4134 */ 4135 if (!cp) 4136 goto reset_all; 4137 4138 /* 4139 * Check instruction was a MOV, direction was INPUT and 4140 * ATN is asserted. 4141 */ 4142 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4143 goto reset_all; 4144 4145 /* 4146 * Keep track of the parity error. 4147 */ 4148 OUTONB (HF_PRT, HF_EXT_ERR); 4149 cp->xerr_status |= XE_PARITY_ERR; 4150 4151 /* 4152 * Prepare the message to send to the device. 4153 */ 4154 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4155 4156 /* 4157 * If the old phase was DATA IN phase, we have to deal with 4158 * the 3 situations described above. 4159 * For other input phases (MSG IN and STATUS), the device 4160 * must resend the whole thing that failed parity checking 4161 * or signal error. So, jumping to dispatcher should be OK. 4162 */ 4163 if (phase == 1 || phase == 5) { 4164 /* Phase mismatch handled by SCRIPTS */ 4165 if (dsp == SCRIPTB_BA (np, pm_handle)) 4166 OUTL_DSP (dsp); 4167 /* Phase mismatch handled by the C code */ 4168 else if (sist & MA) 4169 sym_int_ma (np); 4170 /* No phase mismatch occurred */ 4171 else { 4172 OUTL (nc_temp, dsp); 4173 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4174 } 4175 } 4176 else 4177 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4178 return; 4179 4180 reset_all: 4181 sym_start_reset(np); 4182 } 4183 4184 /* 4185 * chip exception handler for phase errors. 4186 * 4187 * We have to construct a new transfer descriptor, 4188 * to transfer the rest of the current block. 4189 */ 4190 static void sym_int_ma (hcb_p np) 4191 { 4192 u32 dbc; 4193 u32 rest; 4194 u32 dsp; 4195 u32 dsa; 4196 u32 nxtdsp; 4197 u32 *vdsp; 4198 u32 oadr, olen; 4199 u32 *tblp; 4200 u32 newcmd; 4201 u_int delta; 4202 u_char cmd; 4203 u_char hflags, hflags0; 4204 struct sym_pmc *pm; 4205 ccb_p cp; 4206 4207 dsp = INL (nc_dsp); 4208 dbc = INL (nc_dbc); 4209 dsa = INL (nc_dsa); 4210 4211 cmd = dbc >> 24; 4212 rest = dbc & 0xffffff; 4213 delta = 0; 4214 4215 /* 4216 * locate matching cp if any. 4217 */ 4218 cp = sym_ccb_from_dsa(np, dsa); 4219 4220 /* 4221 * Donnot take into account dma fifo and various buffers in 4222 * INPUT phase since the chip flushes everything before 4223 * raising the MA interrupt for interrupted INPUT phases. 4224 * For DATA IN phase, we will check for the SWIDE later. 4225 */ 4226 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4227 u_char ss0, ss2; 4228 4229 if (np->features & FE_DFBC) 4230 delta = INW (nc_dfbc); 4231 else { 4232 u32 dfifo; 4233 4234 /* 4235 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4236 */ 4237 dfifo = INL(nc_dfifo); 4238 4239 /* 4240 * Calculate remaining bytes in DMA fifo. 4241 * (CTEST5 = dfifo >> 16) 4242 */ 4243 if (dfifo & (DFS << 16)) 4244 delta = ((((dfifo >> 8) & 0x300) | 4245 (dfifo & 0xff)) - rest) & 0x3ff; 4246 else 4247 delta = ((dfifo & 0xff) - rest) & 0x7f; 4248 } 4249 4250 /* 4251 * The data in the dma fifo has not been transferred to 4252 * the target -> add the amount to the rest 4253 * and clear the data. 4254 * Check the sstat2 register in case of wide transfer. 4255 */ 4256 rest += delta; 4257 ss0 = INB (nc_sstat0); 4258 if (ss0 & OLF) rest++; 4259 if (!(np->features & FE_C10)) 4260 if (ss0 & ORF) rest++; 4261 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4262 ss2 = INB (nc_sstat2); 4263 if (ss2 & OLF1) rest++; 4264 if (!(np->features & FE_C10)) 4265 if (ss2 & ORF1) rest++; 4266 } 4267 4268 /* 4269 * Clear fifos. 4270 */ 4271 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4272 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4273 } 4274 4275 /* 4276 * log the information 4277 */ 4278 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4279 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4280 (unsigned) rest, (unsigned) delta); 4281 4282 /* 4283 * try to find the interrupted script command, 4284 * and the address at which to continue. 4285 */ 4286 vdsp = NULL; 4287 nxtdsp = 0; 4288 if (dsp > np->scripta_ba && 4289 dsp <= np->scripta_ba + np->scripta_sz) { 4290 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4291 nxtdsp = dsp; 4292 } 4293 else if (dsp > np->scriptb_ba && 4294 dsp <= np->scriptb_ba + np->scriptb_sz) { 4295 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4296 nxtdsp = dsp; 4297 } 4298 4299 /* 4300 * log the information 4301 */ 4302 if (DEBUG_FLAGS & DEBUG_PHASE) { 4303 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4304 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4305 } 4306 4307 if (!vdsp) { 4308 printf ("%s: interrupted SCRIPT address not found.\n", 4309 sym_name (np)); 4310 goto reset_all; 4311 } 4312 4313 if (!cp) { 4314 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4315 sym_name (np)); 4316 goto reset_all; 4317 } 4318 4319 /* 4320 * get old startaddress and old length. 4321 */ 4322 oadr = scr_to_cpu(vdsp[1]); 4323 4324 if (cmd & 0x10) { /* Table indirect */ 4325 tblp = (u32 *) ((char*) &cp->phys + oadr); 4326 olen = scr_to_cpu(tblp[0]); 4327 oadr = scr_to_cpu(tblp[1]); 4328 } else { 4329 tblp = (u32 *) 0; 4330 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4331 } 4332 4333 if (DEBUG_FLAGS & DEBUG_PHASE) { 4334 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4335 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4336 tblp, 4337 (unsigned) olen, 4338 (unsigned) oadr); 4339 } 4340 4341 /* 4342 * check cmd against assumed interrupted script command. 4343 * If dt data phase, the MOVE instruction hasn't bit 4 of 4344 * the phase. 4345 */ 4346 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4347 PRINT_ADDR(cp); 4348 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4349 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4350 4351 goto reset_all; 4352 } 4353 4354 /* 4355 * if old phase not dataphase, leave here. 4356 */ 4357 if (cmd & 2) { 4358 PRINT_ADDR(cp); 4359 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4360 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4361 (unsigned)oadr, (unsigned)rest); 4362 goto unexpected_phase; 4363 } 4364 4365 /* 4366 * Choose the correct PM save area. 4367 * 4368 * Look at the PM_SAVE SCRIPT if you want to understand 4369 * this stuff. The equivalent code is implemented in 4370 * SCRIPTS for the 895A, 896 and 1010 that are able to 4371 * handle PM from the SCRIPTS processor. 4372 */ 4373 hflags0 = INB (HF_PRT); 4374 hflags = hflags0; 4375 4376 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4377 if (hflags & HF_IN_PM0) 4378 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4379 else if (hflags & HF_IN_PM1) 4380 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4381 4382 if (hflags & HF_DP_SAVED) 4383 hflags ^= HF_ACT_PM; 4384 } 4385 4386 if (!(hflags & HF_ACT_PM)) { 4387 pm = &cp->phys.pm0; 4388 newcmd = SCRIPTA_BA (np, pm0_data); 4389 } 4390 else { 4391 pm = &cp->phys.pm1; 4392 newcmd = SCRIPTA_BA (np, pm1_data); 4393 } 4394 4395 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4396 if (hflags != hflags0) 4397 OUTB (HF_PRT, hflags); 4398 4399 /* 4400 * fillin the phase mismatch context 4401 */ 4402 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4403 pm->sg.size = cpu_to_scr(rest); 4404 pm->ret = cpu_to_scr(nxtdsp); 4405 4406 /* 4407 * If we have a SWIDE, 4408 * - prepare the address to write the SWIDE from SCRIPTS, 4409 * - compute the SCRIPTS address to restart from, 4410 * - move current data pointer context by one byte. 4411 */ 4412 nxtdsp = SCRIPTA_BA (np, dispatch); 4413 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4414 (INB (nc_scntl2) & WSR)) { 4415 u32 tmp; 4416 4417 /* 4418 * Set up the table indirect for the MOVE 4419 * of the residual byte and adjust the data 4420 * pointer context. 4421 */ 4422 tmp = scr_to_cpu(pm->sg.addr); 4423 cp->phys.wresid.addr = cpu_to_scr(tmp); 4424 pm->sg.addr = cpu_to_scr(tmp + 1); 4425 tmp = scr_to_cpu(pm->sg.size); 4426 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4427 pm->sg.size = cpu_to_scr(tmp - 1); 4428 4429 /* 4430 * If only the residual byte is to be moved, 4431 * no PM context is needed. 4432 */ 4433 if ((tmp&0xffffff) == 1) 4434 newcmd = pm->ret; 4435 4436 /* 4437 * Prepare the address of SCRIPTS that will 4438 * move the residual byte to memory. 4439 */ 4440 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4441 } 4442 4443 if (DEBUG_FLAGS & DEBUG_PHASE) { 4444 PRINT_ADDR(cp); 4445 printf ("PM %x %x %x / %x %x %x.\n", 4446 hflags0, hflags, newcmd, 4447 (unsigned)scr_to_cpu(pm->sg.addr), 4448 (unsigned)scr_to_cpu(pm->sg.size), 4449 (unsigned)scr_to_cpu(pm->ret)); 4450 } 4451 4452 /* 4453 * Restart the SCRIPTS processor. 4454 */ 4455 OUTL (nc_temp, newcmd); 4456 OUTL_DSP (nxtdsp); 4457 return; 4458 4459 /* 4460 * Unexpected phase changes that occurs when the current phase 4461 * is not a DATA IN or DATA OUT phase are due to error conditions. 4462 * Such event may only happen when the SCRIPTS is using a 4463 * multibyte SCSI MOVE. 4464 * 4465 * Phase change Some possible cause 4466 * 4467 * COMMAND --> MSG IN SCSI parity error detected by target. 4468 * COMMAND --> STATUS Bad command or refused by target. 4469 * MSG OUT --> MSG IN Message rejected by target. 4470 * MSG OUT --> COMMAND Bogus target that discards extended 4471 * negotiation messages. 4472 * 4473 * The code below does not care of the new phase and so 4474 * trusts the target. Why to annoy it ? 4475 * If the interrupted phase is COMMAND phase, we restart at 4476 * dispatcher. 4477 * If a target does not get all the messages after selection, 4478 * the code assumes blindly that the target discards extended 4479 * messages and clears the negotiation status. 4480 * If the target does not want all our response to negotiation, 4481 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4482 * bloat for such a should_not_happen situation). 4483 * In all other situation, we reset the BUS. 4484 * Are these assumptions reasonnable ? (Wait and see ...) 4485 */ 4486 unexpected_phase: 4487 dsp -= 8; 4488 nxtdsp = 0; 4489 4490 switch (cmd & 7) { 4491 case 2: /* COMMAND phase */ 4492 nxtdsp = SCRIPTA_BA (np, dispatch); 4493 break; 4494 #if 0 4495 case 3: /* STATUS phase */ 4496 nxtdsp = SCRIPTA_BA (np, dispatch); 4497 break; 4498 #endif 4499 case 6: /* MSG OUT phase */ 4500 /* 4501 * If the device may want to use untagged when we want 4502 * tagged, we prepare an IDENTIFY without disc. granted, 4503 * since we will not be able to handle reselect. 4504 * Otherwise, we just don't care. 4505 */ 4506 if (dsp == SCRIPTA_BA (np, send_ident)) { 4507 if (cp->tag != NO_TAG && olen - rest <= 3) { 4508 cp->host_status = HS_BUSY; 4509 np->msgout[0] = M_IDENTIFY | cp->lun; 4510 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4511 } 4512 else 4513 nxtdsp = SCRIPTB_BA (np, ident_break); 4514 } 4515 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4516 dsp == SCRIPTB_BA (np, send_sdtr) || 4517 dsp == SCRIPTB_BA (np, send_ppr)) { 4518 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4519 } 4520 break; 4521 #if 0 4522 case 7: /* MSG IN phase */ 4523 nxtdsp = SCRIPTA_BA (np, clrack); 4524 break; 4525 #endif 4526 } 4527 4528 if (nxtdsp) { 4529 OUTL_DSP (nxtdsp); 4530 return; 4531 } 4532 4533 reset_all: 4534 sym_start_reset(np); 4535 } 4536 4537 /* 4538 * Dequeue from the START queue all CCBs that match 4539 * a given target/lun/task condition (-1 means all), 4540 * and move them from the BUSY queue to the COMP queue 4541 * with CAM_REQUEUE_REQ status condition. 4542 * This function is used during error handling/recovery. 4543 * It is called with SCRIPTS not running. 4544 */ 4545 static int 4546 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4547 { 4548 int j; 4549 ccb_p cp; 4550 4551 /* 4552 * Make sure the starting index is within range. 4553 */ 4554 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4555 4556 /* 4557 * Walk until end of START queue and dequeue every job 4558 * that matches the target/lun/task condition. 4559 */ 4560 j = i; 4561 while (i != np->squeueput) { 4562 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4563 assert(cp); 4564 #ifdef SYM_CONF_IARB_SUPPORT 4565 /* Forget hints for IARB, they may be no longer relevant */ 4566 cp->host_flags &= ~HF_HINT_IARB; 4567 #endif 4568 if ((target == -1 || cp->target == target) && 4569 (lun == -1 || cp->lun == lun) && 4570 (task == -1 || cp->tag == task)) { 4571 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4572 sym_remque(&cp->link_ccbq); 4573 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4574 } 4575 else { 4576 if (i != j) 4577 np->squeue[j] = np->squeue[i]; 4578 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4579 } 4580 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4581 } 4582 if (i != j) /* Copy back the idle task if needed */ 4583 np->squeue[j] = np->squeue[i]; 4584 np->squeueput = j; /* Update our current start queue pointer */ 4585 4586 return (i - j) / 2; 4587 } 4588 4589 /* 4590 * Complete all CCBs queued to the COMP queue. 4591 * 4592 * These CCBs are assumed: 4593 * - Not to be referenced either by devices or 4594 * SCRIPTS-related queues and datas. 4595 * - To have to be completed with an error condition 4596 * or requeued. 4597 * 4598 * The device queue freeze count is incremented 4599 * for each CCB that does not prevent this. 4600 * This function is called when all CCBs involved 4601 * in error handling/recovery have been reaped. 4602 */ 4603 static void 4604 sym_flush_comp_queue(hcb_p np, int cam_status) 4605 { 4606 SYM_QUEHEAD *qp; 4607 ccb_p cp; 4608 4609 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4610 union ccb *ccb; 4611 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4612 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4613 /* Leave quiet CCBs waiting for resources */ 4614 if (cp->host_status == HS_WAIT) 4615 continue; 4616 ccb = cp->cam_ccb; 4617 if (cam_status) 4618 sym_set_cam_status(ccb, cam_status); 4619 sym_freeze_cam_ccb(ccb); 4620 sym_xpt_done(np, ccb, cp); 4621 sym_free_ccb(np, cp); 4622 } 4623 } 4624 4625 /* 4626 * chip handler for bad SCSI status condition 4627 * 4628 * In case of bad SCSI status, we unqueue all the tasks 4629 * currently queued to the controller but not yet started 4630 * and then restart the SCRIPTS processor immediately. 4631 * 4632 * QUEUE FULL and BUSY conditions are handled the same way. 4633 * Basically all the not yet started tasks are requeued in 4634 * device queue and the queue is frozen until a completion. 4635 * 4636 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4637 * the CCB of the failed command to prepare a REQUEST SENSE 4638 * SCSI command and queue it to the controller queue. 4639 * 4640 * SCRATCHA is assumed to have been loaded with STARTPOS 4641 * before the SCRIPTS called the C code. 4642 */ 4643 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp) 4644 { 4645 tcb_p tp = &np->target[cp->target]; 4646 u32 startp; 4647 u_char s_status = cp->ssss_status; 4648 u_char h_flags = cp->host_flags; 4649 int msglen; 4650 int nego; 4651 int i; 4652 4653 SYM_LOCK_ASSERT(MA_OWNED); 4654 4655 /* 4656 * Compute the index of the next job to start from SCRIPTS. 4657 */ 4658 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4659 4660 /* 4661 * The last CCB queued used for IARB hint may be 4662 * no longer relevant. Forget it. 4663 */ 4664 #ifdef SYM_CONF_IARB_SUPPORT 4665 if (np->last_cp) 4666 np->last_cp = NULL; 4667 #endif 4668 4669 /* 4670 * Now deal with the SCSI status. 4671 */ 4672 switch(s_status) { 4673 case S_BUSY: 4674 case S_QUEUE_FULL: 4675 if (sym_verbose >= 2) { 4676 PRINT_ADDR(cp); 4677 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4678 } 4679 /* FALLTHROUGH */ 4680 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4681 sym_complete_error (np, cp); 4682 break; 4683 case S_TERMINATED: 4684 case S_CHECK_COND: 4685 /* 4686 * If we get an SCSI error when requesting sense, give up. 4687 */ 4688 if (h_flags & HF_SENSE) { 4689 sym_complete_error (np, cp); 4690 break; 4691 } 4692 4693 /* 4694 * Dequeue all queued CCBs for that device not yet started, 4695 * and restart the SCRIPTS processor immediately. 4696 */ 4697 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4698 OUTL_DSP (SCRIPTA_BA (np, start)); 4699 4700 /* 4701 * Save some info of the actual IO. 4702 * Compute the data residual. 4703 */ 4704 cp->sv_scsi_status = cp->ssss_status; 4705 cp->sv_xerr_status = cp->xerr_status; 4706 cp->sv_resid = sym_compute_residual(np, cp); 4707 4708 /* 4709 * Prepare all needed data structures for 4710 * requesting sense data. 4711 */ 4712 4713 /* 4714 * identify message 4715 */ 4716 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4717 msglen = 1; 4718 4719 /* 4720 * If we are currently using anything different from 4721 * async. 8 bit data transfers with that target, 4722 * start a negotiation, since the device may want 4723 * to report us a UNIT ATTENTION condition due to 4724 * a cause we currently ignore, and we donnot want 4725 * to be stuck with WIDE and/or SYNC data transfer. 4726 * 4727 * cp->nego_status is filled by sym_prepare_nego(). 4728 */ 4729 cp->nego_status = 0; 4730 nego = 0; 4731 if (tp->tinfo.current.options & PPR_OPT_MASK) 4732 nego = NS_PPR; 4733 else if (tp->tinfo.current.width != BUS_8_BIT) 4734 nego = NS_WIDE; 4735 else if (tp->tinfo.current.offset != 0) 4736 nego = NS_SYNC; 4737 if (nego) 4738 msglen += 4739 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4740 /* 4741 * Message table indirect structure. 4742 */ 4743 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4744 cp->phys.smsg.size = cpu_to_scr(msglen); 4745 4746 /* 4747 * sense command 4748 */ 4749 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4750 cp->phys.cmd.size = cpu_to_scr(6); 4751 4752 /* 4753 * patch requested size into sense command 4754 */ 4755 cp->sensecmd[0] = 0x03; 4756 cp->sensecmd[1] = cp->lun << 5; 4757 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4758 cp->sensecmd[1] = 0; 4759 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4760 cp->data_len = SYM_SNS_BBUF_LEN; 4761 4762 /* 4763 * sense data 4764 */ 4765 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4766 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4767 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4768 4769 /* 4770 * requeue the command. 4771 */ 4772 startp = SCRIPTB_BA (np, sdata_in); 4773 4774 cp->phys.head.savep = cpu_to_scr(startp); 4775 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4776 cp->phys.head.lastp = cpu_to_scr(startp); 4777 cp->startp = cpu_to_scr(startp); 4778 4779 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4780 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4781 cp->ssss_status = S_ILLEGAL; 4782 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4783 cp->xerr_status = 0; 4784 cp->extra_bytes = 0; 4785 4786 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4787 4788 /* 4789 * Requeue the command. 4790 */ 4791 sym_put_start_queue(np, cp); 4792 4793 /* 4794 * Give back to upper layer everything we have dequeued. 4795 */ 4796 sym_flush_comp_queue(np, 0); 4797 break; 4798 } 4799 } 4800 4801 /* 4802 * After a device has accepted some management message 4803 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4804 * a device signals a UNIT ATTENTION condition, some 4805 * tasks are thrown away by the device. We are required 4806 * to reflect that on our tasks list since the device 4807 * will never complete these tasks. 4808 * 4809 * This function move from the BUSY queue to the COMP 4810 * queue all disconnected CCBs for a given target that 4811 * match the following criteria: 4812 * - lun=-1 means any logical UNIT otherwise a given one. 4813 * - task=-1 means any task, otherwise a given one. 4814 */ 4815 static int 4816 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4817 { 4818 SYM_QUEHEAD qtmp, *qp; 4819 int i = 0; 4820 ccb_p cp; 4821 4822 /* 4823 * Move the entire BUSY queue to our temporary queue. 4824 */ 4825 sym_que_init(&qtmp); 4826 sym_que_splice(&np->busy_ccbq, &qtmp); 4827 sym_que_init(&np->busy_ccbq); 4828 4829 /* 4830 * Put all CCBs that matches our criteria into 4831 * the COMP queue and put back other ones into 4832 * the BUSY queue. 4833 */ 4834 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4835 union ccb *ccb; 4836 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4837 ccb = cp->cam_ccb; 4838 if (cp->host_status != HS_DISCONNECT || 4839 cp->target != target || 4840 (lun != -1 && cp->lun != lun) || 4841 (task != -1 && 4842 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4843 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4844 continue; 4845 } 4846 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4847 4848 /* Preserve the software timeout condition */ 4849 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4850 sym_set_cam_status(ccb, cam_status); 4851 ++i; 4852 #if 0 4853 printf("XXXX TASK @%p CLEARED\n", cp); 4854 #endif 4855 } 4856 return i; 4857 } 4858 4859 /* 4860 * chip handler for TASKS recovery 4861 * 4862 * We cannot safely abort a command, while the SCRIPTS 4863 * processor is running, since we just would be in race 4864 * with it. 4865 * 4866 * As long as we have tasks to abort, we keep the SEM 4867 * bit set in the ISTAT. When this bit is set, the 4868 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4869 * each time it enters the scheduler. 4870 * 4871 * If we have to reset a target, clear tasks of a unit, 4872 * or to perform the abort of a disconnected job, we 4873 * restart the SCRIPTS for selecting the target. Once 4874 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4875 * If it loses arbitration, the SCRIPTS will interrupt again 4876 * the next time it will enter its scheduler, and so on ... 4877 * 4878 * On SIR_TARGET_SELECTED, we scan for the more 4879 * appropriate thing to do: 4880 * 4881 * - If nothing, we just sent a M_ABORT message to the 4882 * target to get rid of the useless SCSI bus ownership. 4883 * According to the specs, no tasks shall be affected. 4884 * - If the target is to be reset, we send it a M_RESET 4885 * message. 4886 * - If a logical UNIT is to be cleared , we send the 4887 * IDENTIFY(lun) + M_ABORT. 4888 * - If an untagged task is to be aborted, we send the 4889 * IDENTIFY(lun) + M_ABORT. 4890 * - If a tagged task is to be aborted, we send the 4891 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4892 * 4893 * Once our 'kiss of death' :) message has been accepted 4894 * by the target, the SCRIPTS interrupts again 4895 * (SIR_ABORT_SENT). On this interrupt, we complete 4896 * all the CCBs that should have been aborted by the 4897 * target according to our message. 4898 */ 4899 static void sym_sir_task_recovery(hcb_p np, int num) 4900 { 4901 SYM_QUEHEAD *qp; 4902 ccb_p cp; 4903 tcb_p tp; 4904 int target=-1, lun=-1, task; 4905 int i, k; 4906 4907 switch(num) { 4908 /* 4909 * The SCRIPTS processor stopped before starting 4910 * the next command in order to allow us to perform 4911 * some task recovery. 4912 */ 4913 case SIR_SCRIPT_STOPPED: 4914 /* 4915 * Do we have any target to reset or unit to clear ? 4916 */ 4917 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4918 tp = &np->target[i]; 4919 if (tp->to_reset || 4920 (tp->lun0p && tp->lun0p->to_clear)) { 4921 target = i; 4922 break; 4923 } 4924 if (!tp->lunmp) 4925 continue; 4926 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4927 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4928 target = i; 4929 break; 4930 } 4931 } 4932 if (target != -1) 4933 break; 4934 } 4935 4936 /* 4937 * If not, walk the busy queue for any 4938 * disconnected CCB to be aborted. 4939 */ 4940 if (target == -1) { 4941 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4942 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4943 if (cp->host_status != HS_DISCONNECT) 4944 continue; 4945 if (cp->to_abort) { 4946 target = cp->target; 4947 break; 4948 } 4949 } 4950 } 4951 4952 /* 4953 * If some target is to be selected, 4954 * prepare and start the selection. 4955 */ 4956 if (target != -1) { 4957 tp = &np->target[target]; 4958 np->abrt_sel.sel_id = target; 4959 np->abrt_sel.sel_scntl3 = tp->head.wval; 4960 np->abrt_sel.sel_sxfer = tp->head.sval; 4961 OUTL(nc_dsa, np->hcb_ba); 4962 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 4963 return; 4964 } 4965 4966 /* 4967 * Now look for a CCB to abort that haven't started yet. 4968 * Btw, the SCRIPTS processor is still stopped, so 4969 * we are not in race. 4970 */ 4971 i = 0; 4972 cp = NULL; 4973 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4974 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4975 if (cp->host_status != HS_BUSY && 4976 cp->host_status != HS_NEGOTIATE) 4977 continue; 4978 if (!cp->to_abort) 4979 continue; 4980 #ifdef SYM_CONF_IARB_SUPPORT 4981 /* 4982 * If we are using IMMEDIATE ARBITRATION, we donnot 4983 * want to cancel the last queued CCB, since the 4984 * SCRIPTS may have anticipated the selection. 4985 */ 4986 if (cp == np->last_cp) { 4987 cp->to_abort = 0; 4988 continue; 4989 } 4990 #endif 4991 i = 1; /* Means we have found some */ 4992 break; 4993 } 4994 if (!i) { 4995 /* 4996 * We are done, so we donnot need 4997 * to synchronize with the SCRIPTS anylonger. 4998 * Remove the SEM flag from the ISTAT. 4999 */ 5000 np->istat_sem = 0; 5001 OUTB (nc_istat, SIGP); 5002 break; 5003 } 5004 /* 5005 * Compute index of next position in the start 5006 * queue the SCRIPTS intends to start and dequeue 5007 * all CCBs for that device that haven't been started. 5008 */ 5009 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5010 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5011 5012 /* 5013 * Make sure at least our IO to abort has been dequeued. 5014 */ 5015 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5016 5017 /* 5018 * Keep track in cam status of the reason of the abort. 5019 */ 5020 if (cp->to_abort == 2) 5021 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5022 else 5023 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5024 5025 /* 5026 * Complete with error everything that we have dequeued. 5027 */ 5028 sym_flush_comp_queue(np, 0); 5029 break; 5030 /* 5031 * The SCRIPTS processor has selected a target 5032 * we may have some manual recovery to perform for. 5033 */ 5034 case SIR_TARGET_SELECTED: 5035 target = (INB (nc_sdid) & 0xf); 5036 tp = &np->target[target]; 5037 5038 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5039 5040 /* 5041 * If the target is to be reset, prepare a 5042 * M_RESET message and clear the to_reset flag 5043 * since we donnot expect this operation to fail. 5044 */ 5045 if (tp->to_reset) { 5046 np->abrt_msg[0] = M_RESET; 5047 np->abrt_tbl.size = 1; 5048 tp->to_reset = 0; 5049 break; 5050 } 5051 5052 /* 5053 * Otherwise, look for some logical unit to be cleared. 5054 */ 5055 if (tp->lun0p && tp->lun0p->to_clear) 5056 lun = 0; 5057 else if (tp->lunmp) { 5058 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5059 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5060 lun = k; 5061 break; 5062 } 5063 } 5064 } 5065 5066 /* 5067 * If a logical unit is to be cleared, prepare 5068 * an IDENTIFY(lun) + ABORT MESSAGE. 5069 */ 5070 if (lun != -1) { 5071 lcb_p lp = sym_lp(tp, lun); 5072 lp->to_clear = 0; /* We donnot expect to fail here */ 5073 np->abrt_msg[0] = M_IDENTIFY | lun; 5074 np->abrt_msg[1] = M_ABORT; 5075 np->abrt_tbl.size = 2; 5076 break; 5077 } 5078 5079 /* 5080 * Otherwise, look for some disconnected job to 5081 * abort for this target. 5082 */ 5083 i = 0; 5084 cp = NULL; 5085 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5086 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5087 if (cp->host_status != HS_DISCONNECT) 5088 continue; 5089 if (cp->target != target) 5090 continue; 5091 if (!cp->to_abort) 5092 continue; 5093 i = 1; /* Means we have some */ 5094 break; 5095 } 5096 5097 /* 5098 * If we have none, probably since the device has 5099 * completed the command before we won abitration, 5100 * send a M_ABORT message without IDENTIFY. 5101 * According to the specs, the device must just 5102 * disconnect the BUS and not abort any task. 5103 */ 5104 if (!i) { 5105 np->abrt_msg[0] = M_ABORT; 5106 np->abrt_tbl.size = 1; 5107 break; 5108 } 5109 5110 /* 5111 * We have some task to abort. 5112 * Set the IDENTIFY(lun) 5113 */ 5114 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5115 5116 /* 5117 * If we want to abort an untagged command, we 5118 * will send an IDENTIFY + M_ABORT. 5119 * Otherwise (tagged command), we will send 5120 * an IDENTIFY + task attributes + ABORT TAG. 5121 */ 5122 if (cp->tag == NO_TAG) { 5123 np->abrt_msg[1] = M_ABORT; 5124 np->abrt_tbl.size = 2; 5125 } 5126 else { 5127 np->abrt_msg[1] = cp->scsi_smsg[1]; 5128 np->abrt_msg[2] = cp->scsi_smsg[2]; 5129 np->abrt_msg[3] = M_ABORT_TAG; 5130 np->abrt_tbl.size = 4; 5131 } 5132 /* 5133 * Keep track of software timeout condition, since the 5134 * peripheral driver may not count retries on abort 5135 * conditions not due to timeout. 5136 */ 5137 if (cp->to_abort == 2) 5138 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5139 cp->to_abort = 0; /* We donnot expect to fail here */ 5140 break; 5141 5142 /* 5143 * The target has accepted our message and switched 5144 * to BUS FREE phase as we expected. 5145 */ 5146 case SIR_ABORT_SENT: 5147 target = (INB (nc_sdid) & 0xf); 5148 tp = &np->target[target]; 5149 5150 /* 5151 ** If we didn't abort anything, leave here. 5152 */ 5153 if (np->abrt_msg[0] == M_ABORT) 5154 break; 5155 5156 /* 5157 * If we sent a M_RESET, then a hardware reset has 5158 * been performed by the target. 5159 * - Reset everything to async 8 bit 5160 * - Tell ourself to negotiate next time :-) 5161 * - Prepare to clear all disconnected CCBs for 5162 * this target from our task list (lun=task=-1) 5163 */ 5164 lun = -1; 5165 task = -1; 5166 if (np->abrt_msg[0] == M_RESET) { 5167 tp->head.sval = 0; 5168 tp->head.wval = np->rv_scntl3; 5169 tp->head.uval = 0; 5170 tp->tinfo.current.period = 0; 5171 tp->tinfo.current.offset = 0; 5172 tp->tinfo.current.width = BUS_8_BIT; 5173 tp->tinfo.current.options = 0; 5174 } 5175 5176 /* 5177 * Otherwise, check for the LUN and TASK(s) 5178 * concerned by the cancellation. 5179 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5180 * or an ABORT message :-) 5181 */ 5182 else { 5183 lun = np->abrt_msg[0] & 0x3f; 5184 if (np->abrt_msg[1] == M_ABORT_TAG) 5185 task = np->abrt_msg[2]; 5186 } 5187 5188 /* 5189 * Complete all the CCBs the device should have 5190 * aborted due to our 'kiss of death' message. 5191 */ 5192 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5193 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5194 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5195 sym_flush_comp_queue(np, 0); 5196 5197 /* 5198 * If we sent a BDR, make uper layer aware of that. 5199 */ 5200 if (np->abrt_msg[0] == M_RESET) 5201 xpt_async(AC_SENT_BDR, np->path, NULL); 5202 break; 5203 } 5204 5205 /* 5206 * Print to the log the message we intend to send. 5207 */ 5208 if (num == SIR_TARGET_SELECTED) { 5209 PRINT_TARGET(np, target); 5210 sym_printl_hex("control msgout:", np->abrt_msg, 5211 np->abrt_tbl.size); 5212 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5213 } 5214 5215 /* 5216 * Let the SCRIPTS processor continue. 5217 */ 5218 OUTONB_STD (); 5219 } 5220 5221 /* 5222 * Gerard's alchemy:) that deals with with the data 5223 * pointer for both MDP and the residual calculation. 5224 * 5225 * I didn't want to bloat the code by more than 200 5226 * lignes for the handling of both MDP and the residual. 5227 * This has been achieved by using a data pointer 5228 * representation consisting in an index in the data 5229 * array (dp_sg) and a negative offset (dp_ofs) that 5230 * have the following meaning: 5231 * 5232 * - dp_sg = SYM_CONF_MAX_SG 5233 * we are at the end of the data script. 5234 * - dp_sg < SYM_CONF_MAX_SG 5235 * dp_sg points to the next entry of the scatter array 5236 * we want to transfer. 5237 * - dp_ofs < 0 5238 * dp_ofs represents the residual of bytes of the 5239 * previous entry scatter entry we will send first. 5240 * - dp_ofs = 0 5241 * no residual to send first. 5242 * 5243 * The function sym_evaluate_dp() accepts an arbitray 5244 * offset (basically from the MDP message) and returns 5245 * the corresponding values of dp_sg and dp_ofs. 5246 */ 5247 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5248 { 5249 u32 dp_scr; 5250 int dp_ofs, dp_sg, dp_sgmin; 5251 int tmp; 5252 struct sym_pmc *pm; 5253 5254 /* 5255 * Compute the resulted data pointer in term of a script 5256 * address within some DATA script and a signed byte offset. 5257 */ 5258 dp_scr = scr; 5259 dp_ofs = *ofs; 5260 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5261 pm = &cp->phys.pm0; 5262 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5263 pm = &cp->phys.pm1; 5264 else 5265 pm = NULL; 5266 5267 if (pm) { 5268 dp_scr = scr_to_cpu(pm->ret); 5269 dp_ofs -= scr_to_cpu(pm->sg.size); 5270 } 5271 5272 /* 5273 * If we are auto-sensing, then we are done. 5274 */ 5275 if (cp->host_flags & HF_SENSE) { 5276 *ofs = dp_ofs; 5277 return 0; 5278 } 5279 5280 /* 5281 * Deduce the index of the sg entry. 5282 * Keep track of the index of the first valid entry. 5283 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5284 * end of the data. 5285 */ 5286 tmp = scr_to_cpu(cp->phys.head.goalp); 5287 dp_sg = SYM_CONF_MAX_SG; 5288 if (dp_scr != tmp) 5289 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5290 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5291 5292 /* 5293 * Move to the sg entry the data pointer belongs to. 5294 * 5295 * If we are inside the data area, we expect result to be: 5296 * 5297 * Either, 5298 * dp_ofs = 0 and dp_sg is the index of the sg entry 5299 * the data pointer belongs to (or the end of the data) 5300 * Or, 5301 * dp_ofs < 0 and dp_sg is the index of the sg entry 5302 * the data pointer belongs to + 1. 5303 */ 5304 if (dp_ofs < 0) { 5305 int n; 5306 while (dp_sg > dp_sgmin) { 5307 --dp_sg; 5308 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5309 n = dp_ofs + (tmp & 0xffffff); 5310 if (n > 0) { 5311 ++dp_sg; 5312 break; 5313 } 5314 dp_ofs = n; 5315 } 5316 } 5317 else if (dp_ofs > 0) { 5318 while (dp_sg < SYM_CONF_MAX_SG) { 5319 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5320 dp_ofs -= (tmp & 0xffffff); 5321 ++dp_sg; 5322 if (dp_ofs <= 0) 5323 break; 5324 } 5325 } 5326 5327 /* 5328 * Make sure the data pointer is inside the data area. 5329 * If not, return some error. 5330 */ 5331 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5332 goto out_err; 5333 else if (dp_sg > SYM_CONF_MAX_SG || 5334 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5335 goto out_err; 5336 5337 /* 5338 * Save the extreme pointer if needed. 5339 */ 5340 if (dp_sg > cp->ext_sg || 5341 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5342 cp->ext_sg = dp_sg; 5343 cp->ext_ofs = dp_ofs; 5344 } 5345 5346 /* 5347 * Return data. 5348 */ 5349 *ofs = dp_ofs; 5350 return dp_sg; 5351 5352 out_err: 5353 return -1; 5354 } 5355 5356 /* 5357 * chip handler for MODIFY DATA POINTER MESSAGE 5358 * 5359 * We also call this function on IGNORE WIDE RESIDUE 5360 * messages that do not match a SWIDE full condition. 5361 * Btw, we assume in that situation that such a message 5362 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5363 */ 5364 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs) 5365 { 5366 int dp_ofs = ofs; 5367 u32 dp_scr = INL (nc_temp); 5368 u32 dp_ret; 5369 u32 tmp; 5370 u_char hflags; 5371 int dp_sg; 5372 struct sym_pmc *pm; 5373 5374 /* 5375 * Not supported for auto-sense. 5376 */ 5377 if (cp->host_flags & HF_SENSE) 5378 goto out_reject; 5379 5380 /* 5381 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5382 * to the resulted data pointer. 5383 */ 5384 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5385 if (dp_sg < 0) 5386 goto out_reject; 5387 5388 /* 5389 * And our alchemy:) allows to easily calculate the data 5390 * script address we want to return for the next data phase. 5391 */ 5392 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5393 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5394 5395 /* 5396 * If offset / scatter entry is zero we donnot need 5397 * a context for the new current data pointer. 5398 */ 5399 if (dp_ofs == 0) { 5400 dp_scr = dp_ret; 5401 goto out_ok; 5402 } 5403 5404 /* 5405 * Get a context for the new current data pointer. 5406 */ 5407 hflags = INB (HF_PRT); 5408 5409 if (hflags & HF_DP_SAVED) 5410 hflags ^= HF_ACT_PM; 5411 5412 if (!(hflags & HF_ACT_PM)) { 5413 pm = &cp->phys.pm0; 5414 dp_scr = SCRIPTA_BA (np, pm0_data); 5415 } 5416 else { 5417 pm = &cp->phys.pm1; 5418 dp_scr = SCRIPTA_BA (np, pm1_data); 5419 } 5420 5421 hflags &= ~(HF_DP_SAVED); 5422 5423 OUTB (HF_PRT, hflags); 5424 5425 /* 5426 * Set up the new current data pointer. 5427 * ofs < 0 there, and for the next data phase, we 5428 * want to transfer part of the data of the sg entry 5429 * corresponding to index dp_sg-1 prior to returning 5430 * to the main data script. 5431 */ 5432 pm->ret = cpu_to_scr(dp_ret); 5433 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5434 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5435 pm->sg.addr = cpu_to_scr(tmp); 5436 pm->sg.size = cpu_to_scr(-dp_ofs); 5437 5438 out_ok: 5439 OUTL (nc_temp, dp_scr); 5440 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5441 return; 5442 5443 out_reject: 5444 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5445 } 5446 5447 /* 5448 * chip calculation of the data residual. 5449 * 5450 * As I used to say, the requirement of data residual 5451 * in SCSI is broken, useless and cannot be achieved 5452 * without huge complexity. 5453 * But most OSes and even the official CAM require it. 5454 * When stupidity happens to be so widely spread inside 5455 * a community, it gets hard to convince. 5456 * 5457 * Anyway, I don't care, since I am not going to use 5458 * any software that considers this data residual as 5459 * a relevant information. :) 5460 */ 5461 static int sym_compute_residual(hcb_p np, ccb_p cp) 5462 { 5463 int dp_sg, resid = 0; 5464 int dp_ofs = 0; 5465 5466 /* 5467 * Check for some data lost or just thrown away. 5468 * We are not required to be quite accurate in this 5469 * situation. Btw, if we are odd for output and the 5470 * device claims some more data, it may well happen 5471 * than our residual be zero. :-) 5472 */ 5473 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5474 if (cp->xerr_status & XE_EXTRA_DATA) 5475 resid -= cp->extra_bytes; 5476 if (cp->xerr_status & XE_SODL_UNRUN) 5477 ++resid; 5478 if (cp->xerr_status & XE_SWIDE_OVRUN) 5479 --resid; 5480 } 5481 5482 /* 5483 * If all data has been transferred, 5484 * there is no residual. 5485 */ 5486 if (cp->phys.head.lastp == cp->phys.head.goalp) 5487 return resid; 5488 5489 /* 5490 * If no data transfer occurs, or if the data 5491 * pointer is weird, return full residual. 5492 */ 5493 if (cp->startp == cp->phys.head.lastp || 5494 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5495 &dp_ofs) < 0) { 5496 return cp->data_len; 5497 } 5498 5499 /* 5500 * If we were auto-sensing, then we are done. 5501 */ 5502 if (cp->host_flags & HF_SENSE) { 5503 return -dp_ofs; 5504 } 5505 5506 /* 5507 * We are now full comfortable in the computation 5508 * of the data residual (2's complement). 5509 */ 5510 resid = -cp->ext_ofs; 5511 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5512 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5513 resid += (tmp & 0xffffff); 5514 } 5515 5516 /* 5517 * Hopefully, the result is not too wrong. 5518 */ 5519 return resid; 5520 } 5521 5522 /* 5523 * Print out the content of a SCSI message. 5524 */ 5525 static int sym_show_msg (u_char * msg) 5526 { 5527 u_char i; 5528 printf ("%x",*msg); 5529 if (*msg==M_EXTENDED) { 5530 for (i=1;i<8;i++) { 5531 if (i-1>msg[1]) break; 5532 printf ("-%x",msg[i]); 5533 } 5534 return (i+1); 5535 } else if ((*msg & 0xf0) == 0x20) { 5536 printf ("-%x",msg[1]); 5537 return (2); 5538 } 5539 return (1); 5540 } 5541 5542 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5543 { 5544 PRINT_ADDR(cp); 5545 if (label) 5546 printf ("%s: ", label); 5547 5548 (void) sym_show_msg (msg); 5549 printf (".\n"); 5550 } 5551 5552 /* 5553 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5554 * 5555 * When we try to negotiate, we append the negotiation message 5556 * to the identify and (maybe) simple tag message. 5557 * The host status field is set to HS_NEGOTIATE to mark this 5558 * situation. 5559 * 5560 * If the target doesn't answer this message immediately 5561 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5562 * will be raised eventually. 5563 * The handler removes the HS_NEGOTIATE status, and sets the 5564 * negotiated value to the default (async / nowide). 5565 * 5566 * If we receive a matching answer immediately, we check it 5567 * for validity, and set the values. 5568 * 5569 * If we receive a Reject message immediately, we assume the 5570 * negotiation has failed, and fall back to standard values. 5571 * 5572 * If we receive a negotiation message while not in HS_NEGOTIATE 5573 * state, it's a target initiated negotiation. We prepare a 5574 * (hopefully) valid answer, set our parameters, and send back 5575 * this answer to the target. 5576 * 5577 * If the target doesn't fetch the answer (no message out phase), 5578 * we assume the negotiation has failed, and fall back to default 5579 * settings (SIR_NEGO_PROTO interrupt). 5580 * 5581 * When we set the values, we adjust them in all ccbs belonging 5582 * to this target, in the controller's register, and in the "phys" 5583 * field of the controller's struct sym_hcb. 5584 */ 5585 5586 /* 5587 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5588 */ 5589 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5590 { 5591 u_char chg, ofs, per, fak, div; 5592 int req = 1; 5593 5594 /* 5595 * Synchronous request message received. 5596 */ 5597 if (DEBUG_FLAGS & DEBUG_NEGO) { 5598 sym_print_msg(cp, "sync msgin", np->msgin); 5599 } 5600 5601 /* 5602 * request or answer ? 5603 */ 5604 if (INB (HS_PRT) == HS_NEGOTIATE) { 5605 OUTB (HS_PRT, HS_BUSY); 5606 if (cp->nego_status && cp->nego_status != NS_SYNC) 5607 goto reject_it; 5608 req = 0; 5609 } 5610 5611 /* 5612 * get requested values. 5613 */ 5614 chg = 0; 5615 per = np->msgin[3]; 5616 ofs = np->msgin[4]; 5617 5618 /* 5619 * check values against our limits. 5620 */ 5621 if (ofs) { 5622 if (ofs > np->maxoffs) 5623 {chg = 1; ofs = np->maxoffs;} 5624 if (req) { 5625 if (ofs > tp->tinfo.user.offset) 5626 {chg = 1; ofs = tp->tinfo.user.offset;} 5627 } 5628 } 5629 5630 if (ofs) { 5631 if (per < np->minsync) 5632 {chg = 1; per = np->minsync;} 5633 if (req) { 5634 if (per < tp->tinfo.user.period) 5635 {chg = 1; per = tp->tinfo.user.period;} 5636 } 5637 } 5638 5639 div = fak = 0; 5640 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5641 goto reject_it; 5642 5643 if (DEBUG_FLAGS & DEBUG_NEGO) { 5644 PRINT_ADDR(cp); 5645 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5646 ofs, per, div, fak, chg); 5647 } 5648 5649 /* 5650 * This was an answer message 5651 */ 5652 if (req == 0) { 5653 if (chg) /* Answer wasn't acceptable. */ 5654 goto reject_it; 5655 sym_setsync (np, cp, ofs, per, div, fak); 5656 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5657 return; 5658 } 5659 5660 /* 5661 * It was a request. Set value and 5662 * prepare an answer message 5663 */ 5664 sym_setsync (np, cp, ofs, per, div, fak); 5665 5666 np->msgout[0] = M_EXTENDED; 5667 np->msgout[1] = 3; 5668 np->msgout[2] = M_X_SYNC_REQ; 5669 np->msgout[3] = per; 5670 np->msgout[4] = ofs; 5671 5672 cp->nego_status = NS_SYNC; 5673 5674 if (DEBUG_FLAGS & DEBUG_NEGO) { 5675 sym_print_msg(cp, "sync msgout", np->msgout); 5676 } 5677 5678 np->msgin [0] = M_NOOP; 5679 5680 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5681 return; 5682 reject_it: 5683 sym_setsync (np, cp, 0, 0, 0, 0); 5684 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5685 } 5686 5687 /* 5688 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5689 */ 5690 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5691 { 5692 u_char chg, ofs, per, fak, dt, div, wide; 5693 int req = 1; 5694 5695 /* 5696 * Synchronous request message received. 5697 */ 5698 if (DEBUG_FLAGS & DEBUG_NEGO) { 5699 sym_print_msg(cp, "ppr msgin", np->msgin); 5700 } 5701 5702 /* 5703 * get requested values. 5704 */ 5705 chg = 0; 5706 per = np->msgin[3]; 5707 ofs = np->msgin[5]; 5708 wide = np->msgin[6]; 5709 dt = np->msgin[7] & PPR_OPT_DT; 5710 5711 /* 5712 * request or answer ? 5713 */ 5714 if (INB (HS_PRT) == HS_NEGOTIATE) { 5715 OUTB (HS_PRT, HS_BUSY); 5716 if (cp->nego_status && cp->nego_status != NS_PPR) 5717 goto reject_it; 5718 req = 0; 5719 } 5720 5721 /* 5722 * check values against our limits. 5723 */ 5724 if (wide > np->maxwide) 5725 {chg = 1; wide = np->maxwide;} 5726 if (!wide || !(np->features & FE_ULTRA3)) 5727 dt &= ~PPR_OPT_DT; 5728 if (req) { 5729 if (wide > tp->tinfo.user.width) 5730 {chg = 1; wide = tp->tinfo.user.width;} 5731 } 5732 5733 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5734 dt &= ~PPR_OPT_DT; 5735 5736 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5737 5738 if (ofs) { 5739 if (dt) { 5740 if (ofs > np->maxoffs_dt) 5741 {chg = 1; ofs = np->maxoffs_dt;} 5742 } 5743 else if (ofs > np->maxoffs) 5744 {chg = 1; ofs = np->maxoffs;} 5745 if (req) { 5746 if (ofs > tp->tinfo.user.offset) 5747 {chg = 1; ofs = tp->tinfo.user.offset;} 5748 } 5749 } 5750 5751 if (ofs) { 5752 if (dt) { 5753 if (per < np->minsync_dt) 5754 {chg = 1; per = np->minsync_dt;} 5755 } 5756 else if (per < np->minsync) 5757 {chg = 1; per = np->minsync;} 5758 if (req) { 5759 if (per < tp->tinfo.user.period) 5760 {chg = 1; per = tp->tinfo.user.period;} 5761 } 5762 } 5763 5764 div = fak = 0; 5765 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5766 goto reject_it; 5767 5768 if (DEBUG_FLAGS & DEBUG_NEGO) { 5769 PRINT_ADDR(cp); 5770 printf ("ppr: " 5771 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5772 dt, ofs, per, wide, div, fak, chg); 5773 } 5774 5775 /* 5776 * It was an answer. 5777 */ 5778 if (req == 0) { 5779 if (chg) /* Answer wasn't acceptable */ 5780 goto reject_it; 5781 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5782 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5783 return; 5784 } 5785 5786 /* 5787 * It was a request. Set value and 5788 * prepare an answer message 5789 */ 5790 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5791 5792 np->msgout[0] = M_EXTENDED; 5793 np->msgout[1] = 6; 5794 np->msgout[2] = M_X_PPR_REQ; 5795 np->msgout[3] = per; 5796 np->msgout[4] = 0; 5797 np->msgout[5] = ofs; 5798 np->msgout[6] = wide; 5799 np->msgout[7] = dt; 5800 5801 cp->nego_status = NS_PPR; 5802 5803 if (DEBUG_FLAGS & DEBUG_NEGO) { 5804 sym_print_msg(cp, "ppr msgout", np->msgout); 5805 } 5806 5807 np->msgin [0] = M_NOOP; 5808 5809 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5810 return; 5811 reject_it: 5812 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5813 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5814 /* 5815 * If it was a device response that should result in 5816 * ST, we may want to try a legacy negotiation later. 5817 */ 5818 if (!req && !dt) { 5819 tp->tinfo.goal.options = 0; 5820 tp->tinfo.goal.width = wide; 5821 tp->tinfo.goal.period = per; 5822 tp->tinfo.goal.offset = ofs; 5823 } 5824 } 5825 5826 /* 5827 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5828 */ 5829 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5830 { 5831 u_char chg, wide; 5832 int req = 1; 5833 5834 /* 5835 * Wide request message received. 5836 */ 5837 if (DEBUG_FLAGS & DEBUG_NEGO) { 5838 sym_print_msg(cp, "wide msgin", np->msgin); 5839 } 5840 5841 /* 5842 * Is it a request from the device? 5843 */ 5844 if (INB (HS_PRT) == HS_NEGOTIATE) { 5845 OUTB (HS_PRT, HS_BUSY); 5846 if (cp->nego_status && cp->nego_status != NS_WIDE) 5847 goto reject_it; 5848 req = 0; 5849 } 5850 5851 /* 5852 * get requested values. 5853 */ 5854 chg = 0; 5855 wide = np->msgin[3]; 5856 5857 /* 5858 * check values against driver limits. 5859 */ 5860 if (wide > np->maxwide) 5861 {chg = 1; wide = np->maxwide;} 5862 if (req) { 5863 if (wide > tp->tinfo.user.width) 5864 {chg = 1; wide = tp->tinfo.user.width;} 5865 } 5866 5867 if (DEBUG_FLAGS & DEBUG_NEGO) { 5868 PRINT_ADDR(cp); 5869 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5870 } 5871 5872 /* 5873 * This was an answer message 5874 */ 5875 if (req == 0) { 5876 if (chg) /* Answer wasn't acceptable. */ 5877 goto reject_it; 5878 sym_setwide (np, cp, wide); 5879 5880 /* 5881 * Negotiate for SYNC immediately after WIDE response. 5882 * This allows to negotiate for both WIDE and SYNC on 5883 * a single SCSI command (Suggested by Justin Gibbs). 5884 */ 5885 if (tp->tinfo.goal.offset) { 5886 np->msgout[0] = M_EXTENDED; 5887 np->msgout[1] = 3; 5888 np->msgout[2] = M_X_SYNC_REQ; 5889 np->msgout[3] = tp->tinfo.goal.period; 5890 np->msgout[4] = tp->tinfo.goal.offset; 5891 5892 if (DEBUG_FLAGS & DEBUG_NEGO) { 5893 sym_print_msg(cp, "sync msgout", np->msgout); 5894 } 5895 5896 cp->nego_status = NS_SYNC; 5897 OUTB (HS_PRT, HS_NEGOTIATE); 5898 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5899 return; 5900 } 5901 5902 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5903 return; 5904 } 5905 5906 /* 5907 * It was a request, set value and 5908 * prepare an answer message 5909 */ 5910 sym_setwide (np, cp, wide); 5911 5912 np->msgout[0] = M_EXTENDED; 5913 np->msgout[1] = 2; 5914 np->msgout[2] = M_X_WIDE_REQ; 5915 np->msgout[3] = wide; 5916 5917 np->msgin [0] = M_NOOP; 5918 5919 cp->nego_status = NS_WIDE; 5920 5921 if (DEBUG_FLAGS & DEBUG_NEGO) { 5922 sym_print_msg(cp, "wide msgout", np->msgout); 5923 } 5924 5925 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5926 return; 5927 reject_it: 5928 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5929 } 5930 5931 /* 5932 * Reset SYNC or WIDE to default settings. 5933 * 5934 * Called when a negotiation does not succeed either 5935 * on rejection or on protocol error. 5936 * 5937 * If it was a PPR that made problems, we may want to 5938 * try a legacy negotiation later. 5939 */ 5940 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5941 { 5942 /* 5943 * any error in negotiation: 5944 * fall back to default mode. 5945 */ 5946 switch (cp->nego_status) { 5947 case NS_PPR: 5948 #if 0 5949 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5950 #else 5951 tp->tinfo.goal.options = 0; 5952 if (tp->tinfo.goal.period < np->minsync) 5953 tp->tinfo.goal.period = np->minsync; 5954 if (tp->tinfo.goal.offset > np->maxoffs) 5955 tp->tinfo.goal.offset = np->maxoffs; 5956 #endif 5957 break; 5958 case NS_SYNC: 5959 sym_setsync (np, cp, 0, 0, 0, 0); 5960 break; 5961 case NS_WIDE: 5962 sym_setwide (np, cp, 0); 5963 break; 5964 } 5965 np->msgin [0] = M_NOOP; 5966 np->msgout[0] = M_NOOP; 5967 cp->nego_status = 0; 5968 } 5969 5970 /* 5971 * chip handler for MESSAGE REJECT received in response to 5972 * a WIDE or SYNCHRONOUS negotiation. 5973 */ 5974 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 5975 { 5976 sym_nego_default(np, tp, cp); 5977 OUTB (HS_PRT, HS_BUSY); 5978 } 5979 5980 /* 5981 * chip exception handler for programmed interrupts. 5982 */ 5983 static void sym_int_sir (hcb_p np) 5984 { 5985 u_char num = INB (nc_dsps); 5986 u32 dsa = INL (nc_dsa); 5987 ccb_p cp = sym_ccb_from_dsa(np, dsa); 5988 u_char target = INB (nc_sdid) & 0x0f; 5989 tcb_p tp = &np->target[target]; 5990 int tmp; 5991 5992 SYM_LOCK_ASSERT(MA_OWNED); 5993 5994 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 5995 5996 switch (num) { 5997 /* 5998 * Command has been completed with error condition 5999 * or has been auto-sensed. 6000 */ 6001 case SIR_COMPLETE_ERROR: 6002 if (!cp) 6003 goto out; 6004 sym_complete_error(np, cp); 6005 return; 6006 /* 6007 * The C code is currently trying to recover from something. 6008 * Typically, user want to abort some command. 6009 */ 6010 case SIR_SCRIPT_STOPPED: 6011 case SIR_TARGET_SELECTED: 6012 case SIR_ABORT_SENT: 6013 sym_sir_task_recovery(np, num); 6014 return; 6015 /* 6016 * The device didn't go to MSG OUT phase after having 6017 * been selected with ATN. We donnot want to handle 6018 * that. 6019 */ 6020 case SIR_SEL_ATN_NO_MSG_OUT: 6021 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6022 sym_name (np), target); 6023 goto out_stuck; 6024 /* 6025 * The device didn't switch to MSG IN phase after 6026 * having reseleted the initiator. 6027 */ 6028 case SIR_RESEL_NO_MSG_IN: 6029 printf ("%s:%d: No MSG IN phase after reselection.\n", 6030 sym_name (np), target); 6031 goto out_stuck; 6032 /* 6033 * After reselection, the device sent a message that wasn't 6034 * an IDENTIFY. 6035 */ 6036 case SIR_RESEL_NO_IDENTIFY: 6037 printf ("%s:%d: No IDENTIFY after reselection.\n", 6038 sym_name (np), target); 6039 goto out_stuck; 6040 /* 6041 * The device reselected a LUN we donnot know about. 6042 */ 6043 case SIR_RESEL_BAD_LUN: 6044 np->msgout[0] = M_RESET; 6045 goto out; 6046 /* 6047 * The device reselected for an untagged nexus and we 6048 * haven't any. 6049 */ 6050 case SIR_RESEL_BAD_I_T_L: 6051 np->msgout[0] = M_ABORT; 6052 goto out; 6053 /* 6054 * The device reselected for a tagged nexus that we donnot 6055 * have. 6056 */ 6057 case SIR_RESEL_BAD_I_T_L_Q: 6058 np->msgout[0] = M_ABORT_TAG; 6059 goto out; 6060 /* 6061 * The SCRIPTS let us know that the device has grabbed 6062 * our message and will abort the job. 6063 */ 6064 case SIR_RESEL_ABORTED: 6065 np->lastmsg = np->msgout[0]; 6066 np->msgout[0] = M_NOOP; 6067 printf ("%s:%d: message %x sent on bad reselection.\n", 6068 sym_name (np), target, np->lastmsg); 6069 goto out; 6070 /* 6071 * The SCRIPTS let us know that a message has been 6072 * successfully sent to the device. 6073 */ 6074 case SIR_MSG_OUT_DONE: 6075 np->lastmsg = np->msgout[0]; 6076 np->msgout[0] = M_NOOP; 6077 /* Should we really care of that */ 6078 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6079 if (cp) { 6080 cp->xerr_status &= ~XE_PARITY_ERR; 6081 if (!cp->xerr_status) 6082 OUTOFFB (HF_PRT, HF_EXT_ERR); 6083 } 6084 } 6085 goto out; 6086 /* 6087 * The device didn't send a GOOD SCSI status. 6088 * We may have some work to do prior to allow 6089 * the SCRIPTS processor to continue. 6090 */ 6091 case SIR_BAD_SCSI_STATUS: 6092 if (!cp) 6093 goto out; 6094 sym_sir_bad_scsi_status(np, cp); 6095 return; 6096 /* 6097 * We are asked by the SCRIPTS to prepare a 6098 * REJECT message. 6099 */ 6100 case SIR_REJECT_TO_SEND: 6101 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6102 np->msgout[0] = M_REJECT; 6103 goto out; 6104 /* 6105 * We have been ODD at the end of a DATA IN 6106 * transfer and the device didn't send a 6107 * IGNORE WIDE RESIDUE message. 6108 * It is a data overrun condition. 6109 */ 6110 case SIR_SWIDE_OVERRUN: 6111 if (cp) { 6112 OUTONB (HF_PRT, HF_EXT_ERR); 6113 cp->xerr_status |= XE_SWIDE_OVRUN; 6114 } 6115 goto out; 6116 /* 6117 * We have been ODD at the end of a DATA OUT 6118 * transfer. 6119 * It is a data underrun condition. 6120 */ 6121 case SIR_SODL_UNDERRUN: 6122 if (cp) { 6123 OUTONB (HF_PRT, HF_EXT_ERR); 6124 cp->xerr_status |= XE_SODL_UNRUN; 6125 } 6126 goto out; 6127 /* 6128 * The device wants us to transfer more data than 6129 * expected or in the wrong direction. 6130 * The number of extra bytes is in scratcha. 6131 * It is a data overrun condition. 6132 */ 6133 case SIR_DATA_OVERRUN: 6134 if (cp) { 6135 OUTONB (HF_PRT, HF_EXT_ERR); 6136 cp->xerr_status |= XE_EXTRA_DATA; 6137 cp->extra_bytes += INL (nc_scratcha); 6138 } 6139 goto out; 6140 /* 6141 * The device switched to an illegal phase (4/5). 6142 */ 6143 case SIR_BAD_PHASE: 6144 if (cp) { 6145 OUTONB (HF_PRT, HF_EXT_ERR); 6146 cp->xerr_status |= XE_BAD_PHASE; 6147 } 6148 goto out; 6149 /* 6150 * We received a message. 6151 */ 6152 case SIR_MSG_RECEIVED: 6153 if (!cp) 6154 goto out_stuck; 6155 switch (np->msgin [0]) { 6156 /* 6157 * We received an extended message. 6158 * We handle MODIFY DATA POINTER, SDTR, WDTR 6159 * and reject all other extended messages. 6160 */ 6161 case M_EXTENDED: 6162 switch (np->msgin [2]) { 6163 case M_X_MODIFY_DP: 6164 if (DEBUG_FLAGS & DEBUG_POINTER) 6165 sym_print_msg(cp,"modify DP",np->msgin); 6166 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6167 (np->msgin[5]<<8) + (np->msgin[6]); 6168 sym_modify_dp(np, cp, tmp); 6169 return; 6170 case M_X_SYNC_REQ: 6171 sym_sync_nego(np, tp, cp); 6172 return; 6173 case M_X_PPR_REQ: 6174 sym_ppr_nego(np, tp, cp); 6175 return; 6176 case M_X_WIDE_REQ: 6177 sym_wide_nego(np, tp, cp); 6178 return; 6179 default: 6180 goto out_reject; 6181 } 6182 break; 6183 /* 6184 * We received a 1/2 byte message not handled from SCRIPTS. 6185 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6186 * RESIDUE messages that haven't been anticipated by 6187 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6188 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6189 */ 6190 case M_IGN_RESIDUE: 6191 if (DEBUG_FLAGS & DEBUG_POINTER) 6192 sym_print_msg(cp,"ign wide residue", np->msgin); 6193 sym_modify_dp(np, cp, -1); 6194 return; 6195 case M_REJECT: 6196 if (INB (HS_PRT) == HS_NEGOTIATE) 6197 sym_nego_rejected(np, tp, cp); 6198 else { 6199 PRINT_ADDR(cp); 6200 printf ("M_REJECT received (%x:%x).\n", 6201 scr_to_cpu(np->lastmsg), np->msgout[0]); 6202 } 6203 goto out_clrack; 6204 break; 6205 default: 6206 goto out_reject; 6207 } 6208 break; 6209 /* 6210 * We received an unknown message. 6211 * Ignore all MSG IN phases and reject it. 6212 */ 6213 case SIR_MSG_WEIRD: 6214 sym_print_msg(cp, "WEIRD message received", np->msgin); 6215 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6216 return; 6217 /* 6218 * Negotiation failed. 6219 * Target does not send us the reply. 6220 * Remove the HS_NEGOTIATE status. 6221 */ 6222 case SIR_NEGO_FAILED: 6223 OUTB (HS_PRT, HS_BUSY); 6224 /* 6225 * Negotiation failed. 6226 * Target does not want answer message. 6227 */ 6228 case SIR_NEGO_PROTO: 6229 if (!cp) 6230 goto out; 6231 sym_nego_default(np, tp, cp); 6232 goto out; 6233 } 6234 6235 out: 6236 OUTONB_STD (); 6237 return; 6238 out_reject: 6239 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6240 return; 6241 out_clrack: 6242 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6243 return; 6244 out_stuck: 6245 return; 6246 } 6247 6248 /* 6249 * Acquire a control block 6250 */ 6251 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6252 { 6253 tcb_p tp = &np->target[tn]; 6254 lcb_p lp = sym_lp(tp, ln); 6255 u_short tag = NO_TAG; 6256 SYM_QUEHEAD *qp; 6257 ccb_p cp = (ccb_p) NULL; 6258 6259 /* 6260 * Look for a free CCB 6261 */ 6262 if (sym_que_empty(&np->free_ccbq)) 6263 goto out; 6264 qp = sym_remque_head(&np->free_ccbq); 6265 if (!qp) 6266 goto out; 6267 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6268 6269 /* 6270 * If the LCB is not yet available and the LUN 6271 * has been probed ok, try to allocate the LCB. 6272 */ 6273 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6274 lp = sym_alloc_lcb(np, tn, ln); 6275 if (!lp) 6276 goto out_free; 6277 } 6278 6279 /* 6280 * If the LCB is not available here, then the 6281 * logical unit is not yet discovered. For those 6282 * ones only accept 1 SCSI IO per logical unit, 6283 * since we cannot allow disconnections. 6284 */ 6285 if (!lp) { 6286 if (!sym_is_bit(tp->busy0_map, ln)) 6287 sym_set_bit(tp->busy0_map, ln); 6288 else 6289 goto out_free; 6290 } else { 6291 /* 6292 * If we have been asked for a tagged command, refuse 6293 * to overlap with an existing untagged one. 6294 */ 6295 if (tag_order) { 6296 if (lp->busy_itl != 0) 6297 goto out_free; 6298 /* 6299 * Allocate resources for tags if not yet. 6300 */ 6301 if (!lp->cb_tags) { 6302 sym_alloc_lcb_tags(np, tn, ln); 6303 if (!lp->cb_tags) 6304 goto out_free; 6305 } 6306 /* 6307 * Get a tag for this SCSI IO and set up 6308 * the CCB bus address for reselection, 6309 * and count it for this LUN. 6310 * Toggle reselect path to tagged. 6311 */ 6312 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6313 tag = lp->cb_tags[lp->ia_tag]; 6314 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6315 lp->ia_tag = 0; 6316 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6317 ++lp->busy_itlq; 6318 lp->head.resel_sa = 6319 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6320 } 6321 else 6322 goto out_free; 6323 } 6324 /* 6325 * This command will not be tagged. 6326 * If we already have either a tagged or untagged 6327 * one, refuse to overlap this untagged one. 6328 */ 6329 else { 6330 if (lp->busy_itlq != 0 || lp->busy_itl != 0) 6331 goto out_free; 6332 /* 6333 * Count this nexus for this LUN. 6334 * Set up the CCB bus address for reselection. 6335 * Toggle reselect path to untagged. 6336 */ 6337 lp->busy_itl = 1; 6338 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6339 lp->head.resel_sa = 6340 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6341 } 6342 } 6343 /* 6344 * Put the CCB into the busy queue. 6345 */ 6346 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6347 6348 /* 6349 * Remember all informations needed to free this CCB. 6350 */ 6351 cp->to_abort = 0; 6352 cp->tag = tag; 6353 cp->target = tn; 6354 cp->lun = ln; 6355 6356 if (DEBUG_FLAGS & DEBUG_TAGS) { 6357 PRINT_LUN(np, tn, ln); 6358 printf ("ccb @%p using tag %d.\n", cp, tag); 6359 } 6360 6361 out: 6362 return cp; 6363 out_free: 6364 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6365 return NULL; 6366 } 6367 6368 /* 6369 * Release one control block 6370 */ 6371 static void sym_free_ccb(hcb_p np, ccb_p cp) 6372 { 6373 tcb_p tp = &np->target[cp->target]; 6374 lcb_p lp = sym_lp(tp, cp->lun); 6375 6376 if (DEBUG_FLAGS & DEBUG_TAGS) { 6377 PRINT_LUN(np, cp->target, cp->lun); 6378 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6379 } 6380 6381 /* 6382 * If LCB available, 6383 */ 6384 if (lp) { 6385 /* 6386 * If tagged, release the tag, set the reselect path. 6387 */ 6388 if (cp->tag != NO_TAG) { 6389 /* 6390 * Free the tag value. 6391 */ 6392 lp->cb_tags[lp->if_tag] = cp->tag; 6393 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6394 lp->if_tag = 0; 6395 /* 6396 * Make the reselect path invalid, 6397 * and uncount this CCB. 6398 */ 6399 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6400 --lp->busy_itlq; 6401 } else { /* Untagged */ 6402 /* 6403 * Make the reselect path invalid, 6404 * and uncount this CCB. 6405 */ 6406 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6407 lp->busy_itl = 0; 6408 } 6409 /* 6410 * If no JOB active, make the LUN reselect path invalid. 6411 */ 6412 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6413 lp->head.resel_sa = 6414 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6415 } 6416 /* 6417 * Otherwise, we only accept 1 IO per LUN. 6418 * Clear the bit that keeps track of this IO. 6419 */ 6420 else 6421 sym_clr_bit(tp->busy0_map, cp->lun); 6422 6423 /* 6424 * We donnot queue more than 1 ccb per target 6425 * with negotiation at any time. If this ccb was 6426 * used for negotiation, clear this info in the tcb. 6427 */ 6428 if (cp == tp->nego_cp) 6429 tp->nego_cp = NULL; 6430 6431 #ifdef SYM_CONF_IARB_SUPPORT 6432 /* 6433 * If we just complete the last queued CCB, 6434 * clear this info that is no longer relevant. 6435 */ 6436 if (cp == np->last_cp) 6437 np->last_cp = NULL; 6438 #endif 6439 6440 /* 6441 * Unmap user data from DMA map if needed. 6442 */ 6443 if (cp->dmamapped) { 6444 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6445 cp->dmamapped = 0; 6446 } 6447 6448 /* 6449 * Make this CCB available. 6450 */ 6451 cp->cam_ccb = NULL; 6452 cp->host_status = HS_IDLE; 6453 sym_remque(&cp->link_ccbq); 6454 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6455 } 6456 6457 /* 6458 * Allocate a CCB from memory and initialize its fixed part. 6459 */ 6460 static ccb_p sym_alloc_ccb(hcb_p np) 6461 { 6462 ccb_p cp = NULL; 6463 int hcode; 6464 6465 SYM_LOCK_ASSERT(MA_NOTOWNED); 6466 6467 /* 6468 * Prevent from allocating more CCBs than we can 6469 * queue to the controller. 6470 */ 6471 if (np->actccbs >= SYM_CONF_MAX_START) 6472 return NULL; 6473 6474 /* 6475 * Allocate memory for this CCB. 6476 */ 6477 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6478 if (!cp) 6479 return NULL; 6480 6481 /* 6482 * Allocate a bounce buffer for sense data. 6483 */ 6484 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6485 if (!cp->sns_bbuf) 6486 goto out_free; 6487 6488 /* 6489 * Allocate a map for the DMA of user data. 6490 */ 6491 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6492 goto out_free; 6493 /* 6494 * Count it. 6495 */ 6496 np->actccbs++; 6497 6498 /* 6499 * Initialize the callout. 6500 */ 6501 callout_init(&cp->ch, 1); 6502 6503 /* 6504 * Compute the bus address of this ccb. 6505 */ 6506 cp->ccb_ba = vtobus(cp); 6507 6508 /* 6509 * Insert this ccb into the hashed list. 6510 */ 6511 hcode = CCB_HASH_CODE(cp->ccb_ba); 6512 cp->link_ccbh = np->ccbh[hcode]; 6513 np->ccbh[hcode] = cp; 6514 6515 /* 6516 * Initialize the start and restart actions. 6517 */ 6518 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6519 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6520 6521 /* 6522 * Initilialyze some other fields. 6523 */ 6524 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6525 6526 /* 6527 * Chain into free ccb queue. 6528 */ 6529 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6530 6531 return cp; 6532 out_free: 6533 if (cp->sns_bbuf) 6534 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6535 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6536 return NULL; 6537 } 6538 6539 /* 6540 * Look up a CCB from a DSA value. 6541 */ 6542 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6543 { 6544 int hcode; 6545 ccb_p cp; 6546 6547 hcode = CCB_HASH_CODE(dsa); 6548 cp = np->ccbh[hcode]; 6549 while (cp) { 6550 if (cp->ccb_ba == dsa) 6551 break; 6552 cp = cp->link_ccbh; 6553 } 6554 6555 return cp; 6556 } 6557 6558 /* 6559 * Lun control block allocation and initialization. 6560 */ 6561 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6562 { 6563 tcb_p tp = &np->target[tn]; 6564 lcb_p lp = sym_lp(tp, ln); 6565 6566 /* 6567 * Already done, just return. 6568 */ 6569 if (lp) 6570 return lp; 6571 /* 6572 * Check against some race. 6573 */ 6574 assert(!sym_is_bit(tp->busy0_map, ln)); 6575 6576 /* 6577 * Allocate the LCB bus address array. 6578 * Compute the bus address of this table. 6579 */ 6580 if (ln && !tp->luntbl) { 6581 int i; 6582 6583 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6584 if (!tp->luntbl) 6585 goto fail; 6586 for (i = 0 ; i < 64 ; i++) 6587 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6588 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6589 } 6590 6591 /* 6592 * Allocate the table of pointers for LUN(s) > 0, if needed. 6593 */ 6594 if (ln && !tp->lunmp) { 6595 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6596 "LUNMP"); 6597 if (!tp->lunmp) 6598 goto fail; 6599 } 6600 6601 /* 6602 * Allocate the lcb. 6603 * Make it available to the chip. 6604 */ 6605 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6606 if (!lp) 6607 goto fail; 6608 if (ln) { 6609 tp->lunmp[ln] = lp; 6610 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6611 } 6612 else { 6613 tp->lun0p = lp; 6614 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6615 } 6616 6617 /* 6618 * Let the itl task point to error handling. 6619 */ 6620 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6621 6622 /* 6623 * Set the reselect pattern to our default. :) 6624 */ 6625 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6626 6627 /* 6628 * Set user capabilities. 6629 */ 6630 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6631 6632 fail: 6633 return lp; 6634 } 6635 6636 /* 6637 * Allocate LCB resources for tagged command queuing. 6638 */ 6639 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6640 { 6641 tcb_p tp = &np->target[tn]; 6642 lcb_p lp = sym_lp(tp, ln); 6643 int i; 6644 6645 /* 6646 * If LCB not available, try to allocate it. 6647 */ 6648 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6649 return; 6650 6651 /* 6652 * Allocate the task table and and the tag allocation 6653 * circular buffer. We want both or none. 6654 */ 6655 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6656 if (!lp->itlq_tbl) 6657 return; 6658 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6659 if (!lp->cb_tags) { 6660 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6661 lp->itlq_tbl = NULL; 6662 return; 6663 } 6664 6665 /* 6666 * Initialize the task table with invalid entries. 6667 */ 6668 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6669 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6670 6671 /* 6672 * Fill up the tag buffer with tag numbers. 6673 */ 6674 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6675 lp->cb_tags[i] = i; 6676 6677 /* 6678 * Make the task table available to SCRIPTS, 6679 * And accept tagged commands now. 6680 */ 6681 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6682 } 6683 6684 /* 6685 * Test the pci bus snoop logic :-( 6686 * 6687 * Has to be called with interrupts disabled. 6688 */ 6689 #ifndef SYM_CONF_IOMAPPED 6690 static int sym_regtest (hcb_p np) 6691 { 6692 register volatile u32 data; 6693 /* 6694 * chip registers may NOT be cached. 6695 * write 0xffffffff to a read only register area, 6696 * and try to read it back. 6697 */ 6698 data = 0xffffffff; 6699 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6700 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6701 #if 1 6702 if (data == 0xffffffff) { 6703 #else 6704 if ((data & 0xe2f0fffd) != 0x02000080) { 6705 #endif 6706 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6707 (unsigned) data); 6708 return (0x10); 6709 } 6710 return (0); 6711 } 6712 #endif 6713 6714 static int sym_snooptest (hcb_p np) 6715 { 6716 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6717 int i, err=0; 6718 #ifndef SYM_CONF_IOMAPPED 6719 err |= sym_regtest (np); 6720 if (err) return (err); 6721 #endif 6722 restart_test: 6723 /* 6724 * Enable Master Parity Checking as we intend 6725 * to enable it for normal operations. 6726 */ 6727 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6728 /* 6729 * init 6730 */ 6731 pc = SCRIPTB0_BA (np, snooptest); 6732 host_wr = 1; 6733 sym_wr = 2; 6734 /* 6735 * Set memory and register. 6736 */ 6737 np->cache = cpu_to_scr(host_wr); 6738 OUTL (nc_temp, sym_wr); 6739 /* 6740 * Start script (exchange values) 6741 */ 6742 OUTL (nc_dsa, np->hcb_ba); 6743 OUTL_DSP (pc); 6744 /* 6745 * Wait 'til done (with timeout) 6746 */ 6747 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6748 if (INB(nc_istat) & (INTF|SIP|DIP)) 6749 break; 6750 if (i>=SYM_SNOOP_TIMEOUT) { 6751 printf ("CACHE TEST FAILED: timeout.\n"); 6752 return (0x20); 6753 } 6754 /* 6755 * Check for fatal DMA errors. 6756 */ 6757 dstat = INB (nc_dstat); 6758 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6759 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6760 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6761 "DISABLING MASTER DATA PARITY CHECKING.\n", 6762 sym_name(np)); 6763 np->rv_ctest4 &= ~MPEE; 6764 goto restart_test; 6765 } 6766 #endif 6767 if (dstat & (MDPE|BF|IID)) { 6768 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6769 return (0x80); 6770 } 6771 /* 6772 * Save termination position. 6773 */ 6774 pc = INL (nc_dsp); 6775 /* 6776 * Read memory and register. 6777 */ 6778 host_rd = scr_to_cpu(np->cache); 6779 sym_rd = INL (nc_scratcha); 6780 sym_bk = INL (nc_temp); 6781 6782 /* 6783 * Check termination position. 6784 */ 6785 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6786 printf ("CACHE TEST FAILED: script execution failed.\n"); 6787 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6788 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6789 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6790 return (0x40); 6791 } 6792 /* 6793 * Show results. 6794 */ 6795 if (host_wr != sym_rd) { 6796 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6797 (int) host_wr, (int) sym_rd); 6798 err |= 1; 6799 } 6800 if (host_rd != sym_wr) { 6801 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6802 (int) sym_wr, (int) host_rd); 6803 err |= 2; 6804 } 6805 if (sym_bk != sym_wr) { 6806 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6807 (int) sym_wr, (int) sym_bk); 6808 err |= 4; 6809 } 6810 6811 return (err); 6812 } 6813 6814 /* 6815 * Determine the chip's clock frequency. 6816 * 6817 * This is essential for the negotiation of the synchronous 6818 * transfer rate. 6819 * 6820 * Note: we have to return the correct value. 6821 * THERE IS NO SAFE DEFAULT VALUE. 6822 * 6823 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6824 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6825 * do not have a clock doubler and so are provided with a 6826 * 80 MHz clock. All other fast20 boards incorporate a doubler 6827 * and so should be delivered with a 40 MHz clock. 6828 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6829 * clock and provide a clock quadrupler (160 Mhz). 6830 */ 6831 6832 /* 6833 * Select SCSI clock frequency 6834 */ 6835 static void sym_selectclock(hcb_p np, u_char scntl3) 6836 { 6837 /* 6838 * If multiplier not present or not selected, leave here. 6839 */ 6840 if (np->multiplier <= 1) { 6841 OUTB(nc_scntl3, scntl3); 6842 return; 6843 } 6844 6845 if (sym_verbose >= 2) 6846 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6847 6848 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6849 /* 6850 * Wait for the LCKFRQ bit to be set if supported by the chip. 6851 * Otherwise wait 20 micro-seconds. 6852 */ 6853 if (np->features & FE_LCKFRQ) { 6854 int i = 20; 6855 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6856 UDELAY (20); 6857 if (!i) 6858 printf("%s: the chip cannot lock the frequency\n", 6859 sym_name(np)); 6860 } else 6861 UDELAY (20); 6862 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6863 OUTB(nc_scntl3, scntl3); 6864 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6865 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6866 } 6867 6868 /* 6869 * calculate SCSI clock frequency (in KHz) 6870 */ 6871 static unsigned getfreq (hcb_p np, int gen) 6872 { 6873 unsigned int ms = 0; 6874 unsigned int f; 6875 6876 /* 6877 * Measure GEN timer delay in order 6878 * to calculate SCSI clock frequency 6879 * 6880 * This code will never execute too 6881 * many loop iterations (if DELAY is 6882 * reasonably correct). It could get 6883 * too low a delay (too high a freq.) 6884 * if the CPU is slow executing the 6885 * loop for some reason (an NMI, for 6886 * example). For this reason we will 6887 * if multiple measurements are to be 6888 * performed trust the higher delay 6889 * (lower frequency returned). 6890 */ 6891 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6892 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6893 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6894 (void) INW (nc_sist); /* another one, just to be sure :) */ 6895 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6896 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6897 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6898 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6899 UDELAY (1000); /* count ms */ 6900 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6901 /* 6902 * set prescaler to divide by whatever 0 means 6903 * 0 ought to choose divide by 2, but appears 6904 * to set divide by 3.5 mode in my 53c810 ... 6905 */ 6906 OUTB (nc_scntl3, 0); 6907 6908 /* 6909 * adjust for prescaler, and convert into KHz 6910 */ 6911 f = ms ? ((1 << gen) * 4340) / ms : 0; 6912 6913 if (sym_verbose >= 2) 6914 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6915 sym_name(np), gen, ms, f); 6916 6917 return f; 6918 } 6919 6920 static unsigned sym_getfreq (hcb_p np) 6921 { 6922 u_int f1, f2; 6923 int gen = 11; 6924 6925 (void) getfreq (np, gen); /* throw away first result */ 6926 f1 = getfreq (np, gen); 6927 f2 = getfreq (np, gen); 6928 if (f1 > f2) f1 = f2; /* trust lower result */ 6929 return f1; 6930 } 6931 6932 /* 6933 * Get/probe chip SCSI clock frequency 6934 */ 6935 static void sym_getclock (hcb_p np, int mult) 6936 { 6937 unsigned char scntl3 = np->sv_scntl3; 6938 unsigned char stest1 = np->sv_stest1; 6939 unsigned f1; 6940 6941 /* 6942 * For the C10 core, assume 40 MHz. 6943 */ 6944 if (np->features & FE_C10) { 6945 np->multiplier = mult; 6946 np->clock_khz = 40000 * mult; 6947 return; 6948 } 6949 6950 np->multiplier = 1; 6951 f1 = 40000; 6952 /* 6953 * True with 875/895/896/895A with clock multiplier selected 6954 */ 6955 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 6956 if (sym_verbose >= 2) 6957 printf ("%s: clock multiplier found\n", sym_name(np)); 6958 np->multiplier = mult; 6959 } 6960 6961 /* 6962 * If multiplier not found or scntl3 not 7,5,3, 6963 * reset chip and get frequency from general purpose timer. 6964 * Otherwise trust scntl3 BIOS setting. 6965 */ 6966 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 6967 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 6968 f1 = sym_getfreq (np); 6969 6970 if (sym_verbose) 6971 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 6972 6973 if (f1 < 45000) f1 = 40000; 6974 else if (f1 < 55000) f1 = 50000; 6975 else f1 = 80000; 6976 6977 if (f1 < 80000 && mult > 1) { 6978 if (sym_verbose >= 2) 6979 printf ("%s: clock multiplier assumed\n", 6980 sym_name(np)); 6981 np->multiplier = mult; 6982 } 6983 } else { 6984 if ((scntl3 & 7) == 3) f1 = 40000; 6985 else if ((scntl3 & 7) == 5) f1 = 80000; 6986 else f1 = 160000; 6987 6988 f1 /= np->multiplier; 6989 } 6990 6991 /* 6992 * Compute controller synchronous parameters. 6993 */ 6994 f1 *= np->multiplier; 6995 np->clock_khz = f1; 6996 } 6997 6998 /* 6999 * Get/probe PCI clock frequency 7000 */ 7001 static int sym_getpciclock (hcb_p np) 7002 { 7003 int f = 0; 7004 7005 /* 7006 * For the C1010-33, this doesn't work. 7007 * For the C1010-66, this will be tested when I'll have 7008 * such a beast to play with. 7009 */ 7010 if (!(np->features & FE_C10)) { 7011 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7012 f = (int) sym_getfreq (np); 7013 OUTB (nc_stest1, 0); 7014 } 7015 np->pciclk_khz = f; 7016 7017 return f; 7018 } 7019 7020 /*============= DRIVER ACTION/COMPLETION ====================*/ 7021 7022 /* 7023 * Print something that tells about extended errors. 7024 */ 7025 static void sym_print_xerr(ccb_p cp, int x_status) 7026 { 7027 if (x_status & XE_PARITY_ERR) { 7028 PRINT_ADDR(cp); 7029 printf ("unrecovered SCSI parity error.\n"); 7030 } 7031 if (x_status & XE_EXTRA_DATA) { 7032 PRINT_ADDR(cp); 7033 printf ("extraneous data discarded.\n"); 7034 } 7035 if (x_status & XE_BAD_PHASE) { 7036 PRINT_ADDR(cp); 7037 printf ("illegal scsi phase (4/5).\n"); 7038 } 7039 if (x_status & XE_SODL_UNRUN) { 7040 PRINT_ADDR(cp); 7041 printf ("ODD transfer in DATA OUT phase.\n"); 7042 } 7043 if (x_status & XE_SWIDE_OVRUN) { 7044 PRINT_ADDR(cp); 7045 printf ("ODD transfer in DATA IN phase.\n"); 7046 } 7047 } 7048 7049 /* 7050 * Choose the more appropriate CAM status if 7051 * the IO encountered an extended error. 7052 */ 7053 static int sym_xerr_cam_status(int cam_status, int x_status) 7054 { 7055 if (x_status) { 7056 if (x_status & XE_PARITY_ERR) 7057 cam_status = CAM_UNCOR_PARITY; 7058 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7059 cam_status = CAM_DATA_RUN_ERR; 7060 else if (x_status & XE_BAD_PHASE) 7061 cam_status = CAM_REQ_CMP_ERR; 7062 else 7063 cam_status = CAM_REQ_CMP_ERR; 7064 } 7065 return cam_status; 7066 } 7067 7068 /* 7069 * Complete execution of a SCSI command with extented 7070 * error, SCSI status error, or having been auto-sensed. 7071 * 7072 * The SCRIPTS processor is not running there, so we 7073 * can safely access IO registers and remove JOBs from 7074 * the START queue. 7075 * SCRATCHA is assumed to have been loaded with STARTPOS 7076 * before the SCRIPTS called the C code. 7077 */ 7078 static void sym_complete_error (hcb_p np, ccb_p cp) 7079 { 7080 struct ccb_scsiio *csio; 7081 u_int cam_status; 7082 int i, sense_returned; 7083 7084 SYM_LOCK_ASSERT(MA_OWNED); 7085 7086 /* 7087 * Paranoid check. :) 7088 */ 7089 if (!cp || !cp->cam_ccb) 7090 return; 7091 7092 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7093 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7094 cp->host_status, cp->ssss_status, cp->host_flags, 7095 cp->target, cp->lun); 7096 MDELAY(100); 7097 } 7098 7099 /* 7100 * Get CAM command pointer. 7101 */ 7102 csio = &cp->cam_ccb->csio; 7103 7104 /* 7105 * Check for extended errors. 7106 */ 7107 if (cp->xerr_status) { 7108 if (sym_verbose) 7109 sym_print_xerr(cp, cp->xerr_status); 7110 if (cp->host_status == HS_COMPLETE) 7111 cp->host_status = HS_COMP_ERR; 7112 } 7113 7114 /* 7115 * Calculate the residual. 7116 */ 7117 csio->sense_resid = 0; 7118 csio->resid = sym_compute_residual(np, cp); 7119 7120 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7121 csio->resid = 0; /* throw them away. :) */ 7122 cp->sv_resid = 0; 7123 } 7124 7125 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7126 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7127 csio->sense_resid = csio->resid; /* Swap residuals */ 7128 csio->resid = cp->sv_resid; 7129 cp->sv_resid = 0; 7130 if (sym_verbose && cp->sv_xerr_status) 7131 sym_print_xerr(cp, cp->sv_xerr_status); 7132 if (cp->host_status == HS_COMPLETE && 7133 cp->ssss_status == S_GOOD && 7134 cp->xerr_status == 0) { 7135 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7136 cp->sv_xerr_status); 7137 cam_status |= CAM_AUTOSNS_VALID; 7138 /* 7139 * Bounce back the sense data to user and 7140 * fix the residual. 7141 */ 7142 bzero(&csio->sense_data, sizeof(csio->sense_data)); 7143 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid; 7144 if (sense_returned < csio->sense_len) 7145 csio->sense_resid = csio->sense_len - 7146 sense_returned; 7147 else 7148 csio->sense_resid = 0; 7149 bcopy(cp->sns_bbuf, &csio->sense_data, 7150 MIN(csio->sense_len, sense_returned)); 7151 #if 0 7152 /* 7153 * If the device reports a UNIT ATTENTION condition 7154 * due to a RESET condition, we should consider all 7155 * disconnect CCBs for this unit as aborted. 7156 */ 7157 if (1) { 7158 u_char *p; 7159 p = (u_char *) csio->sense_data; 7160 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7161 sym_clear_tasks(np, CAM_REQ_ABORTED, 7162 cp->target,cp->lun, -1); 7163 } 7164 #endif 7165 } 7166 else 7167 cam_status = CAM_AUTOSENSE_FAIL; 7168 } 7169 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7170 csio->scsi_status = cp->ssss_status; 7171 cam_status = CAM_SCSI_STATUS_ERROR; 7172 } 7173 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7174 cam_status = CAM_SEL_TIMEOUT; 7175 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7176 cam_status = CAM_UNEXP_BUSFREE; 7177 else { /* Extended error */ 7178 if (sym_verbose) { 7179 PRINT_ADDR(cp); 7180 printf ("COMMAND FAILED (%x %x %x).\n", 7181 cp->host_status, cp->ssss_status, 7182 cp->xerr_status); 7183 } 7184 csio->scsi_status = cp->ssss_status; 7185 /* 7186 * Set the most appropriate value for CAM status. 7187 */ 7188 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7189 cp->xerr_status); 7190 } 7191 7192 /* 7193 * Dequeue all queued CCBs for that device 7194 * not yet started by SCRIPTS. 7195 */ 7196 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7197 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7198 7199 /* 7200 * Restart the SCRIPTS processor. 7201 */ 7202 OUTL_DSP (SCRIPTA_BA (np, start)); 7203 7204 /* 7205 * Synchronize DMA map if needed. 7206 */ 7207 if (cp->dmamapped) { 7208 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7209 (cp->dmamapped == SYM_DMA_READ ? 7210 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7211 } 7212 /* 7213 * Add this one to the COMP queue. 7214 * Complete all those commands with either error 7215 * or requeue condition. 7216 */ 7217 sym_set_cam_status((union ccb *) csio, cam_status); 7218 sym_remque(&cp->link_ccbq); 7219 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7220 sym_flush_comp_queue(np, 0); 7221 } 7222 7223 /* 7224 * Complete execution of a successful SCSI command. 7225 * 7226 * Only successful commands go to the DONE queue, 7227 * since we need to have the SCRIPTS processor 7228 * stopped on any error condition. 7229 * The SCRIPTS processor is running while we are 7230 * completing successful commands. 7231 */ 7232 static void sym_complete_ok (hcb_p np, ccb_p cp) 7233 { 7234 struct ccb_scsiio *csio; 7235 tcb_p tp; 7236 lcb_p lp; 7237 7238 SYM_LOCK_ASSERT(MA_OWNED); 7239 7240 /* 7241 * Paranoid check. :) 7242 */ 7243 if (!cp || !cp->cam_ccb) 7244 return; 7245 assert (cp->host_status == HS_COMPLETE); 7246 7247 /* 7248 * Get command, target and lun pointers. 7249 */ 7250 csio = &cp->cam_ccb->csio; 7251 tp = &np->target[cp->target]; 7252 lp = sym_lp(tp, cp->lun); 7253 7254 /* 7255 * Assume device discovered on first success. 7256 */ 7257 if (!lp) 7258 sym_set_bit(tp->lun_map, cp->lun); 7259 7260 /* 7261 * If all data have been transferred, given than no 7262 * extended error did occur, there is no residual. 7263 */ 7264 csio->resid = 0; 7265 if (cp->phys.head.lastp != cp->phys.head.goalp) 7266 csio->resid = sym_compute_residual(np, cp); 7267 7268 /* 7269 * Wrong transfer residuals may be worse than just always 7270 * returning zero. User can disable this feature from 7271 * sym_conf.h. Residual support is enabled by default. 7272 */ 7273 if (!SYM_CONF_RESIDUAL_SUPPORT) 7274 csio->resid = 0; 7275 7276 /* 7277 * Synchronize DMA map if needed. 7278 */ 7279 if (cp->dmamapped) { 7280 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7281 (cp->dmamapped == SYM_DMA_READ ? 7282 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7283 } 7284 /* 7285 * Set status and complete the command. 7286 */ 7287 csio->scsi_status = cp->ssss_status; 7288 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7289 sym_xpt_done(np, (union ccb *) csio, cp); 7290 sym_free_ccb(np, cp); 7291 } 7292 7293 /* 7294 * Our callout handler 7295 */ 7296 static void sym_callout(void *arg) 7297 { 7298 union ccb *ccb = (union ccb *) arg; 7299 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7300 7301 /* 7302 * Check that the CAM CCB is still queued. 7303 */ 7304 if (!np) 7305 return; 7306 7307 SYM_LOCK(); 7308 7309 switch(ccb->ccb_h.func_code) { 7310 case XPT_SCSI_IO: 7311 (void) sym_abort_scsiio(np, ccb, 1); 7312 break; 7313 default: 7314 break; 7315 } 7316 7317 SYM_UNLOCK(); 7318 } 7319 7320 /* 7321 * Abort an SCSI IO. 7322 */ 7323 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7324 { 7325 ccb_p cp; 7326 SYM_QUEHEAD *qp; 7327 7328 SYM_LOCK_ASSERT(MA_OWNED); 7329 7330 /* 7331 * Look up our CCB control block. 7332 */ 7333 cp = NULL; 7334 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7335 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7336 if (cp2->cam_ccb == ccb) { 7337 cp = cp2; 7338 break; 7339 } 7340 } 7341 if (!cp || cp->host_status == HS_WAIT) 7342 return -1; 7343 7344 /* 7345 * If a previous abort didn't succeed in time, 7346 * perform a BUS reset. 7347 */ 7348 if (cp->to_abort) { 7349 sym_reset_scsi_bus(np, 1); 7350 return 0; 7351 } 7352 7353 /* 7354 * Mark the CCB for abort and allow time for. 7355 */ 7356 cp->to_abort = timed_out ? 2 : 1; 7357 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7358 7359 /* 7360 * Tell the SCRIPTS processor to stop and synchronize with us. 7361 */ 7362 np->istat_sem = SEM; 7363 OUTB (nc_istat, SIGP|SEM); 7364 return 0; 7365 } 7366 7367 /* 7368 * Reset a SCSI device (all LUNs of a target). 7369 */ 7370 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7371 { 7372 tcb_p tp; 7373 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7374 7375 SYM_LOCK_ASSERT(MA_OWNED); 7376 7377 if (ccb_h->target_id == np->myaddr || 7378 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7379 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7380 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7381 return; 7382 } 7383 7384 tp = &np->target[ccb_h->target_id]; 7385 7386 tp->to_reset = 1; 7387 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7388 7389 np->istat_sem = SEM; 7390 OUTB (nc_istat, SIGP|SEM); 7391 } 7392 7393 /* 7394 * SIM action entry point. 7395 */ 7396 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7397 { 7398 hcb_p np; 7399 tcb_p tp; 7400 lcb_p lp; 7401 ccb_p cp; 7402 int tmp; 7403 u_char idmsg, *msgptr; 7404 u_int msglen; 7405 struct ccb_scsiio *csio; 7406 struct ccb_hdr *ccb_h; 7407 7408 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7409 7410 /* 7411 * Retrieve our controller data structure. 7412 */ 7413 np = (hcb_p) cam_sim_softc(sim); 7414 7415 SYM_LOCK_ASSERT(MA_OWNED); 7416 7417 /* 7418 * The common case is SCSI IO. 7419 * We deal with other ones elsewhere. 7420 */ 7421 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7422 sym_action2(sim, ccb); 7423 return; 7424 } 7425 csio = &ccb->csio; 7426 ccb_h = &csio->ccb_h; 7427 7428 /* 7429 * Work around races. 7430 */ 7431 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7432 xpt_done(ccb); 7433 return; 7434 } 7435 7436 /* 7437 * Minimal checkings, so that we will not 7438 * go outside our tables. 7439 */ 7440 if (ccb_h->target_id == np->myaddr || 7441 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7442 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7443 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7444 return; 7445 } 7446 7447 /* 7448 * Retrieve the target and lun descriptors. 7449 */ 7450 tp = &np->target[ccb_h->target_id]; 7451 lp = sym_lp(tp, ccb_h->target_lun); 7452 7453 /* 7454 * Complete the 1st INQUIRY command with error 7455 * condition if the device is flagged NOSCAN 7456 * at BOOT in the NVRAM. This may speed up 7457 * the boot and maintain coherency with BIOS 7458 * device numbering. Clearing the flag allows 7459 * user to rescan skipped devices later. 7460 * We also return error for devices not flagged 7461 * for SCAN LUNS in the NVRAM since some mono-lun 7462 * devices behave badly when asked for some non 7463 * zero LUN. Btw, this is an absolute hack.:-) 7464 */ 7465 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7466 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7467 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7468 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7469 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7470 ccb_h->target_lun != 0)) { 7471 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7472 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7473 return; 7474 } 7475 } 7476 7477 /* 7478 * Get a control block for this IO. 7479 */ 7480 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7481 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7482 if (!cp) { 7483 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7484 return; 7485 } 7486 7487 /* 7488 * Keep track of the IO in our CCB. 7489 */ 7490 cp->cam_ccb = ccb; 7491 7492 /* 7493 * Build the IDENTIFY message. 7494 */ 7495 idmsg = M_IDENTIFY | cp->lun; 7496 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7497 idmsg |= 0x40; 7498 7499 msgptr = cp->scsi_smsg; 7500 msglen = 0; 7501 msgptr[msglen++] = idmsg; 7502 7503 /* 7504 * Build the tag message if present. 7505 */ 7506 if (cp->tag != NO_TAG) { 7507 u_char order = csio->tag_action; 7508 7509 switch(order) { 7510 case M_ORDERED_TAG: 7511 break; 7512 case M_HEAD_TAG: 7513 break; 7514 default: 7515 order = M_SIMPLE_TAG; 7516 } 7517 msgptr[msglen++] = order; 7518 7519 /* 7520 * For less than 128 tags, actual tags are numbered 7521 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7522 * with devices that have problems with #TAG 0 or too 7523 * great #TAG numbers. For more tags (up to 256), 7524 * we use directly our tag number. 7525 */ 7526 #if SYM_CONF_MAX_TASK > (512/4) 7527 msgptr[msglen++] = cp->tag; 7528 #else 7529 msgptr[msglen++] = (cp->tag << 1) + 1; 7530 #endif 7531 } 7532 7533 /* 7534 * Build a negotiation message if needed. 7535 * (nego_status is filled by sym_prepare_nego()) 7536 */ 7537 cp->nego_status = 0; 7538 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7539 tp->tinfo.current.period != tp->tinfo.goal.period || 7540 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7541 tp->tinfo.current.options != tp->tinfo.goal.options) { 7542 if (!tp->nego_cp && lp) 7543 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7544 } 7545 7546 /* 7547 * Fill in our ccb 7548 */ 7549 7550 /* 7551 * Startqueue 7552 */ 7553 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7554 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7555 7556 /* 7557 * select 7558 */ 7559 cp->phys.select.sel_id = cp->target; 7560 cp->phys.select.sel_scntl3 = tp->head.wval; 7561 cp->phys.select.sel_sxfer = tp->head.sval; 7562 cp->phys.select.sel_scntl4 = tp->head.uval; 7563 7564 /* 7565 * message 7566 */ 7567 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7568 cp->phys.smsg.size = cpu_to_scr(msglen); 7569 7570 /* 7571 * command 7572 */ 7573 if (sym_setup_cdb(np, csio, cp) < 0) { 7574 sym_xpt_done(np, ccb, cp); 7575 sym_free_ccb(np, cp); 7576 return; 7577 } 7578 7579 /* 7580 * status 7581 */ 7582 #if 0 /* Provision */ 7583 cp->actualquirks = tp->quirks; 7584 #endif 7585 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7586 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7587 cp->ssss_status = S_ILLEGAL; 7588 cp->xerr_status = 0; 7589 cp->host_flags = 0; 7590 cp->extra_bytes = 0; 7591 7592 /* 7593 * extreme data pointer. 7594 * shall be positive, so -1 is lower than lowest.:) 7595 */ 7596 cp->ext_sg = -1; 7597 cp->ext_ofs = 0; 7598 7599 /* 7600 * Build the data descriptor block 7601 * and start the IO. 7602 */ 7603 sym_setup_data_and_start(np, csio, cp); 7604 } 7605 7606 /* 7607 * Setup buffers and pointers that address the CDB. 7608 * I bet, physical CDBs will never be used on the planet, 7609 * since they can be bounced without significant overhead. 7610 */ 7611 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7612 { 7613 struct ccb_hdr *ccb_h; 7614 u32 cmd_ba; 7615 int cmd_len; 7616 7617 SYM_LOCK_ASSERT(MA_OWNED); 7618 7619 ccb_h = &csio->ccb_h; 7620 7621 /* 7622 * CDB is 16 bytes max. 7623 */ 7624 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7625 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7626 return -1; 7627 } 7628 cmd_len = csio->cdb_len; 7629 7630 if (ccb_h->flags & CAM_CDB_POINTER) { 7631 /* CDB is a pointer */ 7632 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7633 /* CDB pointer is virtual */ 7634 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7635 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7636 } else { 7637 /* CDB pointer is physical */ 7638 #if 0 7639 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7640 #else 7641 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7642 return -1; 7643 #endif 7644 } 7645 } else { 7646 /* CDB is in the CAM ccb (buffer) */ 7647 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7648 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7649 } 7650 7651 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7652 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7653 7654 return 0; 7655 } 7656 7657 /* 7658 * Set up data pointers used by SCRIPTS. 7659 */ 7660 static void __inline 7661 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7662 { 7663 u32 lastp, goalp; 7664 7665 SYM_LOCK_ASSERT(MA_OWNED); 7666 7667 /* 7668 * No segments means no data. 7669 */ 7670 if (!cp->segments) 7671 dir = CAM_DIR_NONE; 7672 7673 /* 7674 * Set the data pointer. 7675 */ 7676 switch(dir) { 7677 case CAM_DIR_OUT: 7678 goalp = SCRIPTA_BA (np, data_out2) + 8; 7679 lastp = goalp - 8 - (cp->segments * (2*4)); 7680 break; 7681 case CAM_DIR_IN: 7682 cp->host_flags |= HF_DATA_IN; 7683 goalp = SCRIPTA_BA (np, data_in2) + 8; 7684 lastp = goalp - 8 - (cp->segments * (2*4)); 7685 break; 7686 case CAM_DIR_NONE: 7687 default: 7688 lastp = goalp = SCRIPTB_BA (np, no_data); 7689 break; 7690 } 7691 7692 cp->phys.head.lastp = cpu_to_scr(lastp); 7693 cp->phys.head.goalp = cpu_to_scr(goalp); 7694 cp->phys.head.savep = cpu_to_scr(lastp); 7695 cp->startp = cp->phys.head.savep; 7696 } 7697 7698 /* 7699 * Call back routine for the DMA map service. 7700 * If bounce buffers are used (why ?), we may sleep and then 7701 * be called there in another context. 7702 */ 7703 static void 7704 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7705 { 7706 ccb_p cp; 7707 hcb_p np; 7708 union ccb *ccb; 7709 7710 cp = (ccb_p) arg; 7711 ccb = cp->cam_ccb; 7712 np = (hcb_p) cp->arg; 7713 7714 SYM_LOCK_ASSERT(MA_OWNED); 7715 7716 /* 7717 * Deal with weird races. 7718 */ 7719 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7720 goto out_abort; 7721 7722 /* 7723 * Deal with weird errors. 7724 */ 7725 if (error) { 7726 cp->dmamapped = 0; 7727 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7728 goto out_abort; 7729 } 7730 7731 /* 7732 * Build the data descriptor for the chip. 7733 */ 7734 if (nsegs) { 7735 int retv; 7736 /* 896 rev 1 requires to be careful about boundaries */ 7737 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7738 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7739 else 7740 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7741 if (retv < 0) { 7742 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7743 goto out_abort; 7744 } 7745 } 7746 7747 /* 7748 * Synchronize the DMA map only if we have 7749 * actually mapped the data. 7750 */ 7751 if (cp->dmamapped) { 7752 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7753 (cp->dmamapped == SYM_DMA_READ ? 7754 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7755 } 7756 7757 /* 7758 * Set host status to busy state. 7759 * May have been set back to HS_WAIT to avoid a race. 7760 */ 7761 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7762 7763 /* 7764 * Set data pointers. 7765 */ 7766 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7767 7768 /* 7769 * Enqueue this IO in our pending queue. 7770 */ 7771 sym_enqueue_cam_ccb(cp); 7772 7773 /* 7774 * When `#ifed 1', the code below makes the driver 7775 * panic on the first attempt to write to a SCSI device. 7776 * It is the first test we want to do after a driver 7777 * change that does not seem obviously safe. :) 7778 */ 7779 #if 0 7780 switch (cp->cdb_buf[0]) { 7781 case 0x0A: case 0x2A: case 0xAA: 7782 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7783 MDELAY(10000); 7784 break; 7785 default: 7786 break; 7787 } 7788 #endif 7789 /* 7790 * Activate this job. 7791 */ 7792 sym_put_start_queue(np, cp); 7793 return; 7794 out_abort: 7795 sym_xpt_done(np, ccb, cp); 7796 sym_free_ccb(np, cp); 7797 } 7798 7799 /* 7800 * How complex it gets to deal with the data in CAM. 7801 * The Bus Dma stuff makes things still more complex. 7802 */ 7803 static void 7804 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7805 { 7806 struct ccb_hdr *ccb_h; 7807 int dir, retv; 7808 7809 SYM_LOCK_ASSERT(MA_OWNED); 7810 7811 ccb_h = &csio->ccb_h; 7812 7813 /* 7814 * Now deal with the data. 7815 */ 7816 cp->data_len = csio->dxfer_len; 7817 cp->arg = np; 7818 7819 /* 7820 * No direction means no data. 7821 */ 7822 dir = (ccb_h->flags & CAM_DIR_MASK); 7823 if (dir == CAM_DIR_NONE) { 7824 sym_execute_ccb(cp, NULL, 0, 0); 7825 return; 7826 } 7827 7828 cp->dmamapped = (dir == CAM_DIR_IN) ? SYM_DMA_READ : SYM_DMA_WRITE; 7829 retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap, 7830 (union ccb *)csio, sym_execute_ccb, cp, 0); 7831 if (retv == EINPROGRESS) { 7832 cp->host_status = HS_WAIT; 7833 xpt_freeze_simq(np->sim, 1); 7834 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7835 } 7836 } 7837 7838 /* 7839 * Move the scatter list to our data block. 7840 */ 7841 static int 7842 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7843 bus_dma_segment_t *psegs, int nsegs) 7844 { 7845 struct sym_tblmove *data; 7846 bus_dma_segment_t *psegs2; 7847 7848 SYM_LOCK_ASSERT(MA_OWNED); 7849 7850 if (nsegs > SYM_CONF_MAX_SG) 7851 return -1; 7852 7853 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7854 psegs2 = &psegs[nsegs-1]; 7855 cp->segments = nsegs; 7856 7857 while (1) { 7858 data->addr = cpu_to_scr(psegs2->ds_addr); 7859 data->size = cpu_to_scr(psegs2->ds_len); 7860 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7861 printf ("%s scatter: paddr=%lx len=%ld\n", 7862 sym_name(np), (long) psegs2->ds_addr, 7863 (long) psegs2->ds_len); 7864 } 7865 if (psegs2 != psegs) { 7866 --data; 7867 --psegs2; 7868 continue; 7869 } 7870 break; 7871 } 7872 return 0; 7873 } 7874 7875 /* 7876 * Scatter a SG list with physical addresses into bus addressable chunks. 7877 */ 7878 static int 7879 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7880 { 7881 u_long ps, pe, pn; 7882 u_long k; 7883 int s, t; 7884 7885 SYM_LOCK_ASSERT(MA_OWNED); 7886 7887 s = SYM_CONF_MAX_SG - 1; 7888 t = nsegs - 1; 7889 ps = psegs[t].ds_addr; 7890 pe = ps + psegs[t].ds_len; 7891 7892 while (s >= 0) { 7893 pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY); 7894 if (pn <= ps) 7895 pn = ps; 7896 k = pe - pn; 7897 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7898 printf ("%s scatter: paddr=%lx len=%ld\n", 7899 sym_name(np), pn, k); 7900 } 7901 cp->phys.data[s].addr = cpu_to_scr(pn); 7902 cp->phys.data[s].size = cpu_to_scr(k); 7903 --s; 7904 if (pn == ps) { 7905 if (--t < 0) 7906 break; 7907 ps = psegs[t].ds_addr; 7908 pe = ps + psegs[t].ds_len; 7909 } 7910 else 7911 pe = pn; 7912 } 7913 7914 cp->segments = SYM_CONF_MAX_SG - 1 - s; 7915 7916 return t >= 0 ? -1 : 0; 7917 } 7918 7919 /* 7920 * SIM action for non performance critical stuff. 7921 */ 7922 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 7923 { 7924 union ccb *abort_ccb; 7925 struct ccb_hdr *ccb_h; 7926 struct ccb_pathinq *cpi; 7927 struct ccb_trans_settings *cts; 7928 struct sym_trans *tip; 7929 hcb_p np; 7930 tcb_p tp; 7931 lcb_p lp; 7932 u_char dflags; 7933 7934 /* 7935 * Retrieve our controller data structure. 7936 */ 7937 np = (hcb_p) cam_sim_softc(sim); 7938 7939 SYM_LOCK_ASSERT(MA_OWNED); 7940 7941 ccb_h = &ccb->ccb_h; 7942 7943 switch (ccb_h->func_code) { 7944 case XPT_SET_TRAN_SETTINGS: 7945 cts = &ccb->cts; 7946 tp = &np->target[ccb_h->target_id]; 7947 7948 /* 7949 * Update SPI transport settings in TARGET control block. 7950 * Update SCSI device settings in LUN control block. 7951 */ 7952 lp = sym_lp(tp, ccb_h->target_lun); 7953 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7954 sym_update_trans(np, &tp->tinfo.goal, cts); 7955 if (lp) 7956 sym_update_dflags(np, &lp->current_flags, cts); 7957 } 7958 if (cts->type == CTS_TYPE_USER_SETTINGS) { 7959 sym_update_trans(np, &tp->tinfo.user, cts); 7960 if (lp) 7961 sym_update_dflags(np, &lp->user_flags, cts); 7962 } 7963 7964 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7965 break; 7966 case XPT_GET_TRAN_SETTINGS: 7967 cts = &ccb->cts; 7968 tp = &np->target[ccb_h->target_id]; 7969 lp = sym_lp(tp, ccb_h->target_lun); 7970 7971 #define cts__scsi (&cts->proto_specific.scsi) 7972 #define cts__spi (&cts->xport_specific.spi) 7973 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7974 tip = &tp->tinfo.current; 7975 dflags = lp ? lp->current_flags : 0; 7976 } 7977 else { 7978 tip = &tp->tinfo.user; 7979 dflags = lp ? lp->user_flags : tp->usrflags; 7980 } 7981 7982 cts->protocol = PROTO_SCSI; 7983 cts->transport = XPORT_SPI; 7984 cts->protocol_version = tip->scsi_version; 7985 cts->transport_version = tip->spi_version; 7986 7987 cts__spi->sync_period = tip->period; 7988 cts__spi->sync_offset = tip->offset; 7989 cts__spi->bus_width = tip->width; 7990 cts__spi->ppr_options = tip->options; 7991 7992 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 7993 | CTS_SPI_VALID_SYNC_OFFSET 7994 | CTS_SPI_VALID_BUS_WIDTH 7995 | CTS_SPI_VALID_PPR_OPTIONS; 7996 7997 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 7998 if (dflags & SYM_DISC_ENABLED) 7999 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8000 cts__spi->valid |= CTS_SPI_VALID_DISC; 8001 8002 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8003 if (dflags & SYM_TAGS_ENABLED) 8004 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8005 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8006 #undef cts__spi 8007 #undef cts__scsi 8008 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8009 break; 8010 case XPT_CALC_GEOMETRY: 8011 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8012 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8013 break; 8014 case XPT_PATH_INQ: 8015 cpi = &ccb->cpi; 8016 cpi->version_num = 1; 8017 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8018 if ((np->features & FE_WIDE) != 0) 8019 cpi->hba_inquiry |= PI_WIDE_16; 8020 cpi->target_sprt = 0; 8021 cpi->hba_misc = PIM_UNMAPPED; 8022 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8023 cpi->hba_misc |= PIM_SCANHILO; 8024 if (np->usrflags & SYM_AVOID_BUS_RESET) 8025 cpi->hba_misc |= PIM_NOBUSRESET; 8026 cpi->hba_eng_cnt = 0; 8027 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8028 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8029 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8030 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8031 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8032 cpi->bus_id = cam_sim_bus(sim); 8033 cpi->initiator_id = np->myaddr; 8034 cpi->base_transfer_speed = 3300; 8035 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8036 strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8037 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8038 cpi->unit_number = cam_sim_unit(sim); 8039 8040 cpi->protocol = PROTO_SCSI; 8041 cpi->protocol_version = SCSI_REV_2; 8042 cpi->transport = XPORT_SPI; 8043 cpi->transport_version = 2; 8044 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8045 if (np->features & FE_ULTRA3) { 8046 cpi->transport_version = 3; 8047 cpi->xport_specific.spi.ppr_options = 8048 SID_SPI_CLOCK_DT_ST; 8049 } 8050 cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE; 8051 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8052 break; 8053 case XPT_ABORT: 8054 abort_ccb = ccb->cab.abort_ccb; 8055 switch(abort_ccb->ccb_h.func_code) { 8056 case XPT_SCSI_IO: 8057 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8058 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8059 break; 8060 } 8061 default: 8062 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8063 break; 8064 } 8065 break; 8066 case XPT_RESET_DEV: 8067 sym_reset_dev(np, ccb); 8068 break; 8069 case XPT_RESET_BUS: 8070 sym_reset_scsi_bus(np, 0); 8071 if (sym_verbose) { 8072 xpt_print_path(np->path); 8073 printf("SCSI BUS reset delivered.\n"); 8074 } 8075 sym_init (np, 1); 8076 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8077 break; 8078 case XPT_TERM_IO: 8079 default: 8080 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8081 break; 8082 } 8083 } 8084 8085 /* 8086 * Asynchronous notification handler. 8087 */ 8088 static void 8089 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused) 8090 { 8091 hcb_p np; 8092 struct cam_sim *sim; 8093 u_int tn; 8094 tcb_p tp; 8095 8096 sim = (struct cam_sim *) cb_arg; 8097 np = (hcb_p) cam_sim_softc(sim); 8098 8099 SYM_LOCK_ASSERT(MA_OWNED); 8100 8101 switch (code) { 8102 case AC_LOST_DEVICE: 8103 tn = xpt_path_target_id(path); 8104 if (tn >= SYM_CONF_MAX_TARGET) 8105 break; 8106 8107 tp = &np->target[tn]; 8108 8109 tp->to_reset = 0; 8110 tp->head.sval = 0; 8111 tp->head.wval = np->rv_scntl3; 8112 tp->head.uval = 0; 8113 8114 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8115 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8116 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8117 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8118 8119 break; 8120 default: 8121 break; 8122 } 8123 } 8124 8125 /* 8126 * Update transfer settings of a target. 8127 */ 8128 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 8129 struct ccb_trans_settings *cts) 8130 { 8131 8132 SYM_LOCK_ASSERT(MA_OWNED); 8133 8134 /* 8135 * Update the infos. 8136 */ 8137 #define cts__spi (&cts->xport_specific.spi) 8138 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8139 tip->width = cts__spi->bus_width; 8140 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8141 tip->offset = cts__spi->sync_offset; 8142 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8143 tip->period = cts__spi->sync_period; 8144 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8145 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8146 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8147 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8148 tip->scsi_version = cts->protocol_version; 8149 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8150 cts->transport_version != XPORT_VERSION_UNKNOWN) 8151 tip->spi_version = cts->transport_version; 8152 #undef cts__spi 8153 /* 8154 * Scale against driver configuration limits. 8155 */ 8156 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8157 if (tip->period && tip->offset) { 8158 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8159 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8160 } else { 8161 tip->offset = 0; 8162 tip->period = 0; 8163 } 8164 8165 /* 8166 * Scale against actual controller BUS width. 8167 */ 8168 if (tip->width > np->maxwide) 8169 tip->width = np->maxwide; 8170 8171 /* 8172 * Only accept DT if controller supports and SYNC/WIDE asked. 8173 */ 8174 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8175 !(tip->width == BUS_16_BIT && tip->offset)) { 8176 tip->options &= ~PPR_OPT_DT; 8177 } 8178 8179 /* 8180 * Scale period factor and offset against controller limits. 8181 */ 8182 if (tip->offset && tip->period) { 8183 if (tip->options & PPR_OPT_DT) { 8184 if (tip->period < np->minsync_dt) 8185 tip->period = np->minsync_dt; 8186 if (tip->period > np->maxsync_dt) 8187 tip->period = np->maxsync_dt; 8188 if (tip->offset > np->maxoffs_dt) 8189 tip->offset = np->maxoffs_dt; 8190 } 8191 else { 8192 if (tip->period < np->minsync) 8193 tip->period = np->minsync; 8194 if (tip->period > np->maxsync) 8195 tip->period = np->maxsync; 8196 if (tip->offset > np->maxoffs) 8197 tip->offset = np->maxoffs; 8198 } 8199 } 8200 } 8201 8202 /* 8203 * Update flags for a device (logical unit). 8204 */ 8205 static void 8206 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8207 { 8208 8209 SYM_LOCK_ASSERT(MA_OWNED); 8210 8211 #define cts__scsi (&cts->proto_specific.scsi) 8212 #define cts__spi (&cts->xport_specific.spi) 8213 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8214 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8215 *flags |= SYM_DISC_ENABLED; 8216 else 8217 *flags &= ~SYM_DISC_ENABLED; 8218 } 8219 8220 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8221 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8222 *flags |= SYM_TAGS_ENABLED; 8223 else 8224 *flags &= ~SYM_TAGS_ENABLED; 8225 } 8226 #undef cts__spi 8227 #undef cts__scsi 8228 } 8229 8230 /*============= DRIVER INITIALISATION ==================*/ 8231 8232 static device_method_t sym_pci_methods[] = { 8233 DEVMETHOD(device_probe, sym_pci_probe), 8234 DEVMETHOD(device_attach, sym_pci_attach), 8235 DEVMETHOD_END 8236 }; 8237 8238 static driver_t sym_pci_driver = { 8239 "sym", 8240 sym_pci_methods, 8241 1 /* no softc */ 8242 }; 8243 8244 DRIVER_MODULE(sym, pci, sym_pci_driver, NULL, NULL); 8245 MODULE_DEPEND(sym, cam, 1, 1, 1); 8246 MODULE_DEPEND(sym, pci, 1, 1, 1); 8247 8248 static const struct sym_pci_chip sym_pci_dev_table[] = { 8249 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8250 FE_ERL} 8251 , 8252 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8253 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8254 FE_BOF} 8255 , 8256 #else 8257 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8258 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8259 , 8260 #endif 8261 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8262 FE_BOF|FE_ERL} 8263 , 8264 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8265 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8266 , 8267 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8268 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8269 , 8270 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8271 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8272 , 8273 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8274 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8275 FE_RAM|FE_DIFF} 8276 , 8277 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8278 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8279 FE_RAM|FE_DIFF} 8280 , 8281 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8282 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8283 FE_RAM|FE_DIFF} 8284 , 8285 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8286 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8287 FE_RAM|FE_DIFF} 8288 , 8289 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8290 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8291 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8292 FE_RAM|FE_LCKFRQ} 8293 , 8294 #else 8295 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8296 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8297 FE_RAM|FE_LCKFRQ} 8298 , 8299 #endif 8300 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8301 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8302 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8303 , 8304 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8305 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8306 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8307 , 8308 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8309 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8310 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8311 FE_C10} 8312 , 8313 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8314 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8315 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8316 FE_C10|FE_U3EN} 8317 , 8318 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8319 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8320 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8321 FE_C10|FE_U3EN} 8322 , 8323 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8324 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8325 FE_RAM|FE_IO256|FE_LEDC} 8326 }; 8327 8328 /* 8329 * Look up the chip table. 8330 * 8331 * Return a pointer to the chip entry if found, 8332 * zero otherwise. 8333 */ 8334 static const struct sym_pci_chip * 8335 sym_find_pci_chip(device_t dev) 8336 { 8337 const struct sym_pci_chip *chip; 8338 int i; 8339 u_short device_id; 8340 u_char revision; 8341 8342 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8343 return NULL; 8344 8345 device_id = pci_get_device(dev); 8346 revision = pci_get_revid(dev); 8347 8348 for (i = 0; i < nitems(sym_pci_dev_table); i++) { 8349 chip = &sym_pci_dev_table[i]; 8350 if (device_id != chip->device_id) 8351 continue; 8352 if (revision > chip->revision_id) 8353 continue; 8354 return chip; 8355 } 8356 8357 return NULL; 8358 } 8359 8360 /* 8361 * Tell upper layer if the chip is supported. 8362 */ 8363 static int 8364 sym_pci_probe(device_t dev) 8365 { 8366 const struct sym_pci_chip *chip; 8367 8368 chip = sym_find_pci_chip(dev); 8369 if (chip && sym_find_firmware(chip)) { 8370 device_set_desc(dev, chip->name); 8371 return BUS_PROBE_DEFAULT; 8372 } 8373 return ENXIO; 8374 } 8375 8376 /* 8377 * Attach a sym53c8xx device. 8378 */ 8379 static int 8380 sym_pci_attach(device_t dev) 8381 { 8382 const struct sym_pci_chip *chip; 8383 u_short command; 8384 u_char cachelnsz; 8385 struct sym_hcb *np = NULL; 8386 struct sym_nvram nvram; 8387 const struct sym_fw *fw = NULL; 8388 int i; 8389 bus_dma_tag_t bus_dmat; 8390 8391 bus_dmat = bus_get_dma_tag(dev); 8392 8393 /* 8394 * Only probed devices should be attached. 8395 * We just enjoy being paranoid. :) 8396 */ 8397 chip = sym_find_pci_chip(dev); 8398 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8399 return (ENXIO); 8400 8401 /* 8402 * Allocate immediately the host control block, 8403 * since we are only expecting to succeed. :) 8404 * We keep track in the HCB of all the resources that 8405 * are to be released on error. 8406 */ 8407 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8408 if (np) 8409 np->bus_dmat = bus_dmat; 8410 else 8411 return (ENXIO); 8412 device_set_softc(dev, np); 8413 8414 SYM_LOCK_INIT(); 8415 8416 /* 8417 * Copy some useful infos to the HCB. 8418 */ 8419 np->hcb_ba = vtobus(np); 8420 np->verbose = bootverbose; 8421 np->device = dev; 8422 np->device_id = pci_get_device(dev); 8423 np->revision_id = pci_get_revid(dev); 8424 np->features = chip->features; 8425 np->clock_divn = chip->nr_divisor; 8426 np->maxoffs = chip->offset_max; 8427 np->maxburst = chip->burst_max; 8428 np->scripta_sz = fw->a_size; 8429 np->scriptb_sz = fw->b_size; 8430 np->fw_setup = fw->setup; 8431 np->fw_patch = fw->patch; 8432 np->fw_name = fw->name; 8433 8434 #ifdef __amd64__ 8435 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8436 "TARGET"); 8437 if (!np->target) 8438 goto attach_failed; 8439 #endif 8440 8441 /* 8442 * Initialize the CCB free and busy queues. 8443 */ 8444 sym_que_init(&np->free_ccbq); 8445 sym_que_init(&np->busy_ccbq); 8446 sym_que_init(&np->comp_ccbq); 8447 sym_que_init(&np->cam_ccbq); 8448 8449 /* 8450 * Allocate a tag for the DMA of user data. 8451 */ 8452 if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY, 8453 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 8454 BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY, 8455 0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) { 8456 device_printf(dev, "failed to create DMA tag.\n"); 8457 goto attach_failed; 8458 } 8459 8460 /* 8461 * Read and apply some fix-ups to the PCI COMMAND 8462 * register. We want the chip to be enabled for: 8463 * - BUS mastering 8464 * - PCI parity checking (reporting would also be fine) 8465 * - Write And Invalidate. 8466 */ 8467 command = pci_read_config(dev, PCIR_COMMAND, 2); 8468 command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN | 8469 PCIM_CMD_MWRICEN; 8470 pci_write_config(dev, PCIR_COMMAND, command, 2); 8471 8472 /* 8473 * Let the device know about the cache line size, 8474 * if it doesn't yet. 8475 */ 8476 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8477 if (!cachelnsz) { 8478 cachelnsz = 8; 8479 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8480 } 8481 8482 /* 8483 * Alloc/get/map/retrieve everything that deals with MMIO. 8484 */ 8485 i = SYM_PCI_MMIO; 8486 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, 8487 RF_ACTIVE); 8488 if (!np->mmio_res) { 8489 device_printf(dev, "failed to allocate MMIO resources\n"); 8490 goto attach_failed; 8491 } 8492 np->mmio_ba = rman_get_start(np->mmio_res); 8493 8494 /* 8495 * Allocate the IRQ. 8496 */ 8497 i = 0; 8498 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8499 RF_ACTIVE | RF_SHAREABLE); 8500 if (!np->irq_res) { 8501 device_printf(dev, "failed to allocate IRQ resource\n"); 8502 goto attach_failed; 8503 } 8504 8505 #ifdef SYM_CONF_IOMAPPED 8506 /* 8507 * User want us to use normal IO with PCI. 8508 * Alloc/get/map/retrieve everything that deals with IO. 8509 */ 8510 i = SYM_PCI_IO; 8511 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE); 8512 if (!np->io_res) { 8513 device_printf(dev, "failed to allocate IO resources\n"); 8514 goto attach_failed; 8515 } 8516 8517 #endif /* SYM_CONF_IOMAPPED */ 8518 8519 /* 8520 * If the chip has RAM. 8521 * Alloc/get/map/retrieve the corresponding resources. 8522 */ 8523 if (np->features & (FE_RAM|FE_RAM8K)) { 8524 int regs_id = SYM_PCI_RAM; 8525 if (np->features & FE_64BIT) 8526 regs_id = SYM_PCI_RAM64; 8527 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8528 ®s_id, RF_ACTIVE); 8529 if (!np->ram_res) { 8530 device_printf(dev,"failed to allocate RAM resources\n"); 8531 goto attach_failed; 8532 } 8533 np->ram_id = regs_id; 8534 np->ram_ba = rman_get_start(np->ram_res); 8535 } 8536 8537 /* 8538 * Save setting of some IO registers, so we will 8539 * be able to probe specific implementations. 8540 */ 8541 sym_save_initial_setting (np); 8542 8543 /* 8544 * Reset the chip now, since it has been reported 8545 * that SCSI clock calibration may not work properly 8546 * if the chip is currently active. 8547 */ 8548 sym_chip_reset (np); 8549 8550 /* 8551 * Try to read the user set-up. 8552 */ 8553 (void) sym_read_nvram(np, &nvram); 8554 8555 /* 8556 * Prepare controller and devices settings, according 8557 * to chip features, user set-up and driver set-up. 8558 */ 8559 (void) sym_prepare_setting(np, &nvram); 8560 8561 /* 8562 * Check the PCI clock frequency. 8563 * Must be performed after prepare_setting since it destroys 8564 * STEST1 that is used to probe for the clock doubler. 8565 */ 8566 i = sym_getpciclock(np); 8567 if (i > 37000) 8568 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8569 8570 /* 8571 * Allocate the start queue. 8572 */ 8573 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8574 if (!np->squeue) 8575 goto attach_failed; 8576 np->squeue_ba = vtobus(np->squeue); 8577 8578 /* 8579 * Allocate the done queue. 8580 */ 8581 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8582 if (!np->dqueue) 8583 goto attach_failed; 8584 np->dqueue_ba = vtobus(np->dqueue); 8585 8586 /* 8587 * Allocate the target bus address array. 8588 */ 8589 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8590 if (!np->targtbl) 8591 goto attach_failed; 8592 np->targtbl_ba = vtobus(np->targtbl); 8593 8594 /* 8595 * Allocate SCRIPTS areas. 8596 */ 8597 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8598 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8599 if (!np->scripta0 || !np->scriptb0) 8600 goto attach_failed; 8601 8602 /* 8603 * Allocate the CCBs. We need at least ONE. 8604 */ 8605 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8606 ; 8607 if (i < 1) 8608 goto attach_failed; 8609 8610 /* 8611 * Calculate BUS addresses where we are going 8612 * to load the SCRIPTS. 8613 */ 8614 np->scripta_ba = vtobus(np->scripta0); 8615 np->scriptb_ba = vtobus(np->scriptb0); 8616 np->scriptb0_ba = np->scriptb_ba; 8617 8618 if (np->ram_ba) { 8619 np->scripta_ba = np->ram_ba; 8620 if (np->features & FE_RAM8K) { 8621 np->ram_ws = 8192; 8622 np->scriptb_ba = np->scripta_ba + 4096; 8623 #ifdef __LP64__ 8624 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8625 #endif 8626 } 8627 else 8628 np->ram_ws = 4096; 8629 } 8630 8631 /* 8632 * Copy scripts to controller instance. 8633 */ 8634 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8635 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8636 8637 /* 8638 * Setup variable parts in scripts and compute 8639 * scripts bus addresses used from the C code. 8640 */ 8641 np->fw_setup(np, fw); 8642 8643 /* 8644 * Bind SCRIPTS with physical addresses usable by the 8645 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8646 */ 8647 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8648 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8649 8650 #ifdef SYM_CONF_IARB_SUPPORT 8651 /* 8652 * If user wants IARB to be set when we win arbitration 8653 * and have other jobs, compute the max number of consecutive 8654 * settings of IARB hints before we leave devices a chance to 8655 * arbitrate for reselection. 8656 */ 8657 #ifdef SYM_SETUP_IARB_MAX 8658 np->iarb_max = SYM_SETUP_IARB_MAX; 8659 #else 8660 np->iarb_max = 4; 8661 #endif 8662 #endif 8663 8664 /* 8665 * Prepare the idle and invalid task actions. 8666 */ 8667 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8668 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8669 np->idletask_ba = vtobus(&np->idletask); 8670 8671 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8672 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8673 np->notask_ba = vtobus(&np->notask); 8674 8675 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8676 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8677 np->bad_itl_ba = vtobus(&np->bad_itl); 8678 8679 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8680 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8681 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8682 8683 /* 8684 * Allocate and prepare the lun JUMP table that is used 8685 * for a target prior the probing of devices (bad lun table). 8686 * A private table will be allocated for the target on the 8687 * first INQUIRY response received. 8688 */ 8689 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8690 if (!np->badluntbl) 8691 goto attach_failed; 8692 8693 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8694 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8695 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8696 8697 /* 8698 * Prepare the bus address array that contains the bus 8699 * address of each target control block. 8700 * For now, assume all logical units are wrong. :) 8701 */ 8702 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8703 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8704 np->target[i].head.luntbl_sa = 8705 cpu_to_scr(vtobus(np->badluntbl)); 8706 np->target[i].head.lun0_sa = 8707 cpu_to_scr(vtobus(&np->badlun_sa)); 8708 } 8709 8710 /* 8711 * Now check the cache handling of the pci chipset. 8712 */ 8713 if (sym_snooptest (np)) { 8714 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8715 goto attach_failed; 8716 } 8717 8718 /* 8719 * Now deal with CAM. 8720 * Hopefully, we will succeed with that one.:) 8721 */ 8722 if (!sym_cam_attach(np)) 8723 goto attach_failed; 8724 8725 /* 8726 * Sigh! we are done. 8727 */ 8728 return 0; 8729 8730 /* 8731 * We have failed. 8732 * We will try to free all the resources we have 8733 * allocated, but if we are a boot device, this 8734 * will not help that much.;) 8735 */ 8736 attach_failed: 8737 if (np) 8738 sym_pci_free(np); 8739 return ENXIO; 8740 } 8741 8742 /* 8743 * Free everything that have been allocated for this device. 8744 */ 8745 static void sym_pci_free(hcb_p np) 8746 { 8747 SYM_QUEHEAD *qp; 8748 ccb_p cp; 8749 tcb_p tp; 8750 lcb_p lp; 8751 int target, lun; 8752 8753 /* 8754 * First free CAM resources. 8755 */ 8756 sym_cam_free(np); 8757 8758 /* 8759 * Now every should be quiet for us to 8760 * free other resources. 8761 */ 8762 if (np->ram_res) 8763 bus_release_resource(np->device, SYS_RES_MEMORY, 8764 np->ram_id, np->ram_res); 8765 if (np->mmio_res) 8766 bus_release_resource(np->device, SYS_RES_MEMORY, 8767 SYM_PCI_MMIO, np->mmio_res); 8768 if (np->io_res) 8769 bus_release_resource(np->device, SYS_RES_IOPORT, 8770 SYM_PCI_IO, np->io_res); 8771 if (np->irq_res) 8772 bus_release_resource(np->device, SYS_RES_IRQ, 8773 0, np->irq_res); 8774 8775 if (np->scriptb0) 8776 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8777 if (np->scripta0) 8778 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8779 if (np->squeue) 8780 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8781 if (np->dqueue) 8782 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8783 8784 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8785 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8786 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8787 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8788 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8789 } 8790 8791 if (np->badluntbl) 8792 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8793 8794 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8795 tp = &np->target[target]; 8796 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8797 lp = sym_lp(tp, lun); 8798 if (!lp) 8799 continue; 8800 if (lp->itlq_tbl) 8801 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8802 "ITLQ_TBL"); 8803 if (lp->cb_tags) 8804 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8805 "CB_TAGS"); 8806 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8807 } 8808 #if SYM_CONF_MAX_LUN > 1 8809 if (tp->lunmp) 8810 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8811 "LUNMP"); 8812 #endif 8813 } 8814 #ifdef __amd64__ 8815 if (np->target) 8816 sym_mfree_dma(np->target, 8817 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8818 #endif 8819 if (np->targtbl) 8820 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8821 if (np->data_dmat) 8822 bus_dma_tag_destroy(np->data_dmat); 8823 if (SYM_LOCK_INITIALIZED() != 0) 8824 SYM_LOCK_DESTROY(); 8825 device_set_softc(np->device, NULL); 8826 sym_mfree_dma(np, sizeof(*np), "HCB"); 8827 } 8828 8829 /* 8830 * Allocate CAM resources and register a bus to CAM. 8831 */ 8832 static int sym_cam_attach(hcb_p np) 8833 { 8834 struct cam_devq *devq = NULL; 8835 struct cam_sim *sim = NULL; 8836 struct cam_path *path = NULL; 8837 int err; 8838 8839 /* 8840 * Establish our interrupt handler. 8841 */ 8842 err = bus_setup_intr(np->device, np->irq_res, 8843 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8844 NULL, sym_intr, np, &np->intr); 8845 if (err) { 8846 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8847 err); 8848 goto fail; 8849 } 8850 8851 /* 8852 * Create the device queue for our sym SIM. 8853 */ 8854 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8855 if (!devq) 8856 goto fail; 8857 8858 /* 8859 * Construct our SIM entry. 8860 */ 8861 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 8862 device_get_unit(np->device), 8863 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 8864 if (!sim) 8865 goto fail; 8866 8867 SYM_LOCK(); 8868 8869 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 8870 goto fail; 8871 np->sim = sim; 8872 sim = NULL; 8873 8874 if (xpt_create_path(&path, NULL, 8875 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 8876 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 8877 goto fail; 8878 } 8879 np->path = path; 8880 8881 /* 8882 * Establish our async notification handler. 8883 */ 8884 if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) != 8885 CAM_REQ_CMP) 8886 goto fail; 8887 8888 /* 8889 * Start the chip now, without resetting the BUS, since 8890 * it seems that this must stay under control of CAM. 8891 * With LVD/SE capable chips and BUS in SE mode, we may 8892 * get a spurious SMBC interrupt. 8893 */ 8894 sym_init (np, 0); 8895 8896 SYM_UNLOCK(); 8897 8898 return 1; 8899 fail: 8900 if (sim) 8901 cam_sim_free(sim, FALSE); 8902 if (devq) 8903 cam_simq_free(devq); 8904 8905 SYM_UNLOCK(); 8906 8907 sym_cam_free(np); 8908 8909 return 0; 8910 } 8911 8912 /* 8913 * Free everything that deals with CAM. 8914 */ 8915 static void sym_cam_free(hcb_p np) 8916 { 8917 8918 SYM_LOCK_ASSERT(MA_NOTOWNED); 8919 8920 if (np->intr) { 8921 bus_teardown_intr(np->device, np->irq_res, np->intr); 8922 np->intr = NULL; 8923 } 8924 8925 SYM_LOCK(); 8926 8927 if (np->sim) { 8928 xpt_bus_deregister(cam_sim_path(np->sim)); 8929 cam_sim_free(np->sim, /*free_devq*/ TRUE); 8930 np->sim = NULL; 8931 } 8932 if (np->path) { 8933 xpt_free_path(np->path); 8934 np->path = NULL; 8935 } 8936 8937 SYM_UNLOCK(); 8938 } 8939 8940 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 8941 8942 /* 8943 * Get host setup from NVRAM. 8944 */ 8945 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 8946 { 8947 #ifdef SYM_CONF_NVRAM_SUPPORT 8948 /* 8949 * Get parity checking, host ID, verbose mode 8950 * and miscellaneous host flags from NVRAM. 8951 */ 8952 switch(nvram->type) { 8953 case SYM_SYMBIOS_NVRAM: 8954 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 8955 np->rv_scntl0 &= ~0x0a; 8956 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 8957 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 8958 np->verbose += 1; 8959 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 8960 np->usrflags |= SYM_SCAN_TARGETS_HILO; 8961 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 8962 np->usrflags |= SYM_AVOID_BUS_RESET; 8963 break; 8964 case SYM_TEKRAM_NVRAM: 8965 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 8966 break; 8967 default: 8968 break; 8969 } 8970 #endif 8971 } 8972 8973 /* 8974 * Get target setup from NVRAM. 8975 */ 8976 #ifdef SYM_CONF_NVRAM_SUPPORT 8977 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 8978 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 8979 #endif 8980 8981 static void 8982 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 8983 { 8984 #ifdef SYM_CONF_NVRAM_SUPPORT 8985 switch(nvp->type) { 8986 case SYM_SYMBIOS_NVRAM: 8987 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 8988 break; 8989 case SYM_TEKRAM_NVRAM: 8990 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 8991 break; 8992 default: 8993 break; 8994 } 8995 #endif 8996 } 8997 8998 #ifdef SYM_CONF_NVRAM_SUPPORT 8999 /* 9000 * Get target set-up from Symbios format NVRAM. 9001 */ 9002 static void 9003 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9004 { 9005 tcb_p tp = &np->target[target]; 9006 Symbios_target *tn = &nvram->target[target]; 9007 9008 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9009 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9010 tp->usrtags = 9011 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9012 9013 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9014 tp->usrflags &= ~SYM_DISC_ENABLED; 9015 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9016 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9017 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9018 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9019 } 9020 9021 /* 9022 * Get target set-up from Tekram format NVRAM. 9023 */ 9024 static void 9025 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9026 { 9027 tcb_p tp = &np->target[target]; 9028 struct Tekram_target *tn = &nvram->target[target]; 9029 int i; 9030 9031 if (tn->flags & TEKRAM_SYNC_NEGO) { 9032 i = tn->sync_index & 0xf; 9033 tp->tinfo.user.period = Tekram_sync[i]; 9034 } 9035 9036 tp->tinfo.user.width = 9037 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9038 9039 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9040 tp->usrtags = 2 << nvram->max_tags_index; 9041 } 9042 9043 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9044 tp->usrflags |= SYM_DISC_ENABLED; 9045 9046 /* If any device does not support parity, we will not use this option */ 9047 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9048 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9049 } 9050 9051 #ifdef SYM_CONF_DEBUG_NVRAM 9052 /* 9053 * Dump Symbios format NVRAM for debugging purpose. 9054 */ 9055 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9056 { 9057 int i; 9058 9059 /* display Symbios nvram host data */ 9060 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9061 sym_name(np), nvram->host_id & 0x0f, 9062 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9063 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9064 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9065 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9066 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9067 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9068 9069 /* display Symbios nvram drive data */ 9070 for (i = 0 ; i < 15 ; i++) { 9071 struct Symbios_target *tn = &nvram->target[i]; 9072 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9073 sym_name(np), i, 9074 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9075 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9076 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9077 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9078 tn->bus_width, 9079 tn->sync_period / 4, 9080 tn->timeout); 9081 } 9082 } 9083 9084 /* 9085 * Dump TEKRAM format NVRAM for debugging purpose. 9086 */ 9087 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9088 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9089 { 9090 int i, tags, boot_delay; 9091 char *rem; 9092 9093 /* display Tekram nvram host data */ 9094 tags = 2 << nvram->max_tags_index; 9095 boot_delay = 0; 9096 if (nvram->boot_delay_index < 6) 9097 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9098 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9099 default: 9100 case 0: rem = ""; break; 9101 case 1: rem = " REMOVABLE=boot device"; break; 9102 case 2: rem = " REMOVABLE=all"; break; 9103 } 9104 9105 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9106 sym_name(np), nvram->host_id & 0x0f, 9107 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9108 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9109 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9110 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9111 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9112 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9113 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9114 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9115 rem, boot_delay, tags); 9116 9117 /* display Tekram nvram drive data */ 9118 for (i = 0; i <= 15; i++) { 9119 int sync, j; 9120 struct Tekram_target *tn = &nvram->target[i]; 9121 j = tn->sync_index & 0xf; 9122 sync = Tekram_sync[j]; 9123 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9124 sym_name(np), i, 9125 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9126 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9127 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9128 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9129 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9130 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9131 sync); 9132 } 9133 } 9134 #endif /* SYM_CONF_DEBUG_NVRAM */ 9135 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9136 9137 /* 9138 * Try reading Symbios or Tekram NVRAM 9139 */ 9140 #ifdef SYM_CONF_NVRAM_SUPPORT 9141 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9142 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9143 #endif 9144 9145 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9146 { 9147 #ifdef SYM_CONF_NVRAM_SUPPORT 9148 /* 9149 * Try to read SYMBIOS nvram. 9150 * Try to read TEKRAM nvram if Symbios nvram not found. 9151 */ 9152 if (SYM_SETUP_SYMBIOS_NVRAM && 9153 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9154 nvp->type = SYM_SYMBIOS_NVRAM; 9155 #ifdef SYM_CONF_DEBUG_NVRAM 9156 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9157 #endif 9158 } 9159 else if (SYM_SETUP_TEKRAM_NVRAM && 9160 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9161 nvp->type = SYM_TEKRAM_NVRAM; 9162 #ifdef SYM_CONF_DEBUG_NVRAM 9163 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9164 #endif 9165 } 9166 else 9167 nvp->type = 0; 9168 #else 9169 nvp->type = 0; 9170 #endif 9171 return nvp->type; 9172 } 9173 9174 #ifdef SYM_CONF_NVRAM_SUPPORT 9175 /* 9176 * 24C16 EEPROM reading. 9177 * 9178 * GPOI0 - data in/data out 9179 * GPIO1 - clock 9180 * Symbios NVRAM wiring now also used by Tekram. 9181 */ 9182 9183 #define SET_BIT 0 9184 #define CLR_BIT 1 9185 #define SET_CLK 2 9186 #define CLR_CLK 3 9187 9188 /* 9189 * Set/clear data/clock bit in GPIO0 9190 */ 9191 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9192 int bit_mode) 9193 { 9194 UDELAY (5); 9195 switch (bit_mode){ 9196 case SET_BIT: 9197 *gpreg |= write_bit; 9198 break; 9199 case CLR_BIT: 9200 *gpreg &= 0xfe; 9201 break; 9202 case SET_CLK: 9203 *gpreg |= 0x02; 9204 break; 9205 case CLR_CLK: 9206 *gpreg &= 0xfd; 9207 break; 9208 } 9209 OUTB (nc_gpreg, *gpreg); 9210 UDELAY (5); 9211 } 9212 9213 /* 9214 * Send START condition to NVRAM to wake it up. 9215 */ 9216 static void S24C16_start(hcb_p np, u_char *gpreg) 9217 { 9218 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9219 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9220 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9221 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9222 } 9223 9224 /* 9225 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9226 */ 9227 static void S24C16_stop(hcb_p np, u_char *gpreg) 9228 { 9229 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9230 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9231 } 9232 9233 /* 9234 * Read or write a bit to the NVRAM, 9235 * read if GPIO0 input else write if GPIO0 output 9236 */ 9237 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9238 u_char *gpreg) 9239 { 9240 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9241 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9242 if (read_bit) 9243 *read_bit = INB (nc_gpreg); 9244 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9245 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9246 } 9247 9248 /* 9249 * Output an ACK to the NVRAM after reading, 9250 * change GPIO0 to output and when done back to an input 9251 */ 9252 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9253 u_char *gpcntl) 9254 { 9255 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9256 S24C16_do_bit(np, 0, write_bit, gpreg); 9257 OUTB (nc_gpcntl, *gpcntl); 9258 } 9259 9260 /* 9261 * Input an ACK from NVRAM after writing, 9262 * change GPIO0 to input and when done back to an output 9263 */ 9264 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9265 u_char *gpcntl) 9266 { 9267 OUTB (nc_gpcntl, *gpcntl | 0x01); 9268 S24C16_do_bit(np, read_bit, 1, gpreg); 9269 OUTB (nc_gpcntl, *gpcntl); 9270 } 9271 9272 /* 9273 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9274 * GPIO0 must already be set as an output 9275 */ 9276 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9277 u_char *gpreg, u_char *gpcntl) 9278 { 9279 int x; 9280 9281 for (x = 0; x < 8; x++) 9282 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9283 9284 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9285 } 9286 9287 /* 9288 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9289 * GPIO0 must already be set as an input 9290 */ 9291 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9292 u_char *gpreg, u_char *gpcntl) 9293 { 9294 int x; 9295 u_char read_bit; 9296 9297 *read_data = 0; 9298 for (x = 0; x < 8; x++) { 9299 S24C16_do_bit(np, &read_bit, 1, gpreg); 9300 *read_data |= ((read_bit & 0x01) << (7 - x)); 9301 } 9302 9303 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9304 } 9305 9306 /* 9307 * Read 'len' bytes starting at 'offset'. 9308 */ 9309 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9310 { 9311 u_char gpcntl, gpreg; 9312 u_char old_gpcntl, old_gpreg; 9313 u_char ack_data; 9314 int retv = 1; 9315 int x; 9316 9317 /* save current state of GPCNTL and GPREG */ 9318 old_gpreg = INB (nc_gpreg); 9319 old_gpcntl = INB (nc_gpcntl); 9320 gpcntl = old_gpcntl & 0x1c; 9321 9322 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9323 OUTB (nc_gpreg, old_gpreg); 9324 OUTB (nc_gpcntl, gpcntl); 9325 9326 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9327 gpreg = old_gpreg; 9328 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9329 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9330 9331 /* now set NVRAM inactive with GPIO0/1 both high */ 9332 S24C16_stop(np, &gpreg); 9333 9334 /* activate NVRAM */ 9335 S24C16_start(np, &gpreg); 9336 9337 /* write device code and random address MSB */ 9338 S24C16_write_byte(np, &ack_data, 9339 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9340 if (ack_data & 0x01) 9341 goto out; 9342 9343 /* write random address LSB */ 9344 S24C16_write_byte(np, &ack_data, 9345 offset & 0xff, &gpreg, &gpcntl); 9346 if (ack_data & 0x01) 9347 goto out; 9348 9349 /* regenerate START state to set up for reading */ 9350 S24C16_start(np, &gpreg); 9351 9352 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9353 S24C16_write_byte(np, &ack_data, 9354 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9355 if (ack_data & 0x01) 9356 goto out; 9357 9358 /* now set up GPIO0 for inputting data */ 9359 gpcntl |= 0x01; 9360 OUTB (nc_gpcntl, gpcntl); 9361 9362 /* input all requested data - only part of total NVRAM */ 9363 for (x = 0; x < len; x++) 9364 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9365 9366 /* finally put NVRAM back in inactive mode */ 9367 gpcntl &= 0xfe; 9368 OUTB (nc_gpcntl, gpcntl); 9369 S24C16_stop(np, &gpreg); 9370 retv = 0; 9371 out: 9372 /* return GPIO0/1 to original states after having accessed NVRAM */ 9373 OUTB (nc_gpcntl, old_gpcntl); 9374 OUTB (nc_gpreg, old_gpreg); 9375 9376 return retv; 9377 } 9378 9379 #undef SET_BIT /* 0 */ 9380 #undef CLR_BIT /* 1 */ 9381 #undef SET_CLK /* 2 */ 9382 #undef CLR_CLK /* 3 */ 9383 9384 /* 9385 * Try reading Symbios NVRAM. 9386 * Return 0 if OK. 9387 */ 9388 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9389 { 9390 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9391 u_char *data = (u_char *) nvram; 9392 int len = sizeof(*nvram); 9393 u_short csum; 9394 int x; 9395 9396 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9397 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9398 return 1; 9399 9400 /* check valid NVRAM signature, verify byte count and checksum */ 9401 if (nvram->type != 0 || 9402 bcmp(nvram->trailer, Symbios_trailer, 6) || 9403 nvram->byte_count != len - 12) 9404 return 1; 9405 9406 /* verify checksum */ 9407 for (x = 6, csum = 0; x < len - 6; x++) 9408 csum += data[x]; 9409 if (csum != nvram->checksum) 9410 return 1; 9411 9412 return 0; 9413 } 9414 9415 /* 9416 * 93C46 EEPROM reading. 9417 * 9418 * GPOI0 - data in 9419 * GPIO1 - data out 9420 * GPIO2 - clock 9421 * GPIO4 - chip select 9422 * 9423 * Used by Tekram. 9424 */ 9425 9426 /* 9427 * Pulse clock bit in GPIO0 9428 */ 9429 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9430 { 9431 OUTB (nc_gpreg, *gpreg | 0x04); 9432 UDELAY (2); 9433 OUTB (nc_gpreg, *gpreg); 9434 } 9435 9436 /* 9437 * Read bit from NVRAM 9438 */ 9439 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9440 { 9441 UDELAY (2); 9442 T93C46_Clk(np, gpreg); 9443 *read_bit = INB (nc_gpreg); 9444 } 9445 9446 /* 9447 * Write bit to GPIO0 9448 */ 9449 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9450 { 9451 if (write_bit & 0x01) 9452 *gpreg |= 0x02; 9453 else 9454 *gpreg &= 0xfd; 9455 9456 *gpreg |= 0x10; 9457 9458 OUTB (nc_gpreg, *gpreg); 9459 UDELAY (2); 9460 9461 T93C46_Clk(np, gpreg); 9462 } 9463 9464 /* 9465 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9466 */ 9467 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9468 { 9469 *gpreg &= 0xef; 9470 OUTB (nc_gpreg, *gpreg); 9471 UDELAY (2); 9472 9473 T93C46_Clk(np, gpreg); 9474 } 9475 9476 /* 9477 * Send read command and address to NVRAM 9478 */ 9479 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9480 u_char *read_bit, u_char *gpreg) 9481 { 9482 int x; 9483 9484 /* send 9 bits, start bit (1), command (2), address (6) */ 9485 for (x = 0; x < 9; x++) 9486 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9487 9488 *read_bit = INB (nc_gpreg); 9489 } 9490 9491 /* 9492 * READ 2 bytes from the NVRAM 9493 */ 9494 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9495 { 9496 int x; 9497 u_char read_bit; 9498 9499 *nvram_data = 0; 9500 for (x = 0; x < 16; x++) { 9501 T93C46_Read_Bit(np, &read_bit, gpreg); 9502 9503 if (read_bit & 0x01) 9504 *nvram_data |= (0x01 << (15 - x)); 9505 else 9506 *nvram_data &= ~(0x01 << (15 - x)); 9507 } 9508 } 9509 9510 /* 9511 * Read Tekram NvRAM data. 9512 */ 9513 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9514 { 9515 u_char read_bit; 9516 int x; 9517 9518 for (x = 0; x < len; x++) { 9519 /* output read command and address */ 9520 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9521 if (read_bit & 0x01) 9522 return 1; /* Bad */ 9523 T93C46_Read_Word(np, &data[x], gpreg); 9524 T93C46_Stop(np, gpreg); 9525 } 9526 9527 return 0; 9528 } 9529 9530 /* 9531 * Try reading 93C46 Tekram NVRAM. 9532 */ 9533 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9534 { 9535 u_char gpcntl, gpreg; 9536 u_char old_gpcntl, old_gpreg; 9537 int retv = 1; 9538 9539 /* save current state of GPCNTL and GPREG */ 9540 old_gpreg = INB (nc_gpreg); 9541 old_gpcntl = INB (nc_gpcntl); 9542 9543 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9544 1/2/4 out */ 9545 gpreg = old_gpreg & 0xe9; 9546 OUTB (nc_gpreg, gpreg); 9547 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9548 OUTB (nc_gpcntl, gpcntl); 9549 9550 /* input all of NVRAM, 64 words */ 9551 retv = T93C46_Read_Data(np, (u_short *) nvram, 9552 sizeof(*nvram) / sizeof(short), &gpreg); 9553 9554 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9555 OUTB (nc_gpcntl, old_gpcntl); 9556 OUTB (nc_gpreg, old_gpreg); 9557 9558 return retv; 9559 } 9560 9561 /* 9562 * Try reading Tekram NVRAM. 9563 * Return 0 if OK. 9564 */ 9565 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9566 { 9567 u_char *data = (u_char *) nvram; 9568 int len = sizeof(*nvram); 9569 u_short csum; 9570 int x; 9571 9572 switch (np->device_id) { 9573 case PCI_ID_SYM53C885: 9574 case PCI_ID_SYM53C895: 9575 case PCI_ID_SYM53C896: 9576 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9577 data, len); 9578 break; 9579 case PCI_ID_SYM53C875: 9580 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9581 data, len); 9582 if (!x) 9583 break; 9584 default: 9585 x = sym_read_T93C46_nvram(np, nvram); 9586 break; 9587 } 9588 if (x) 9589 return 1; 9590 9591 /* verify checksum */ 9592 for (x = 0, csum = 0; x < len - 1; x += 2) 9593 csum += data[x] + (data[x+1] << 8); 9594 if (csum != 0x1234) 9595 return 1; 9596 9597 return 0; 9598 } 9599 9600 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9601