1 /* 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2000 Gerard Roudier <groudier@club-internet.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 /* $FreeBSD$ */ 59 60 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 61 62 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 63 /* #define CAM_NEW_TRAN_CODE */ 64 65 #include <sys/param.h> 66 67 /* 68 * Only use the BUS stuff for PCI under FreeBSD 4 and later versions. 69 * Note that the old BUS stuff also works for FreeBSD 4 and spares 70 * about 1 KB for the driver object file. 71 */ 72 #if __FreeBSD_version >= 400000 73 #define FreeBSD_Bus_Dma_Abstraction 74 #define FreeBSD_Bus_Io_Abstraction 75 #define FreeBSD_Bus_Space_Abstraction 76 #endif 77 78 /* 79 * Driver configuration options. 80 */ 81 #include "opt_sym.h" 82 #include <dev/sym/sym_conf.h> 83 84 #ifndef FreeBSD_Bus_Io_Abstraction 85 #include "ncr.h" /* To know if the ncr has been configured */ 86 #endif 87 88 #include <sys/systm.h> 89 #include <sys/malloc.h> 90 #include <sys/kernel.h> 91 #ifdef FreeBSD_Bus_Io_Abstraction 92 #include <sys/module.h> 93 #include <sys/bus.h> 94 #endif 95 96 #include <sys/proc.h> 97 98 #include <pci/pcireg.h> 99 #include <pci/pcivar.h> 100 101 #ifdef FreeBSD_Bus_Space_Abstraction 102 #include <machine/bus_memio.h> 103 /* 104 * Only include bus_pio if needed. 105 * This avoids bus space primitives to be uselessly bloated 106 * by out-of-age PIO operations. 107 */ 108 #ifdef SYM_CONF_IOMAPPED 109 #include <machine/bus_pio.h> 110 #endif 111 #endif 112 #include <machine/bus.h> 113 114 #ifdef FreeBSD_Bus_Io_Abstraction 115 #include <machine/resource.h> 116 #include <sys/rman.h> 117 #endif 118 119 #include <cam/cam.h> 120 #include <cam/cam_ccb.h> 121 #include <cam/cam_sim.h> 122 #include <cam/cam_xpt_sim.h> 123 #include <cam/cam_debug.h> 124 125 #include <cam/scsi/scsi_all.h> 126 #include <cam/scsi/scsi_message.h> 127 128 #include <vm/vm.h> 129 #include <vm/vm_param.h> 130 #include <vm/pmap.h> 131 132 /* Short and quite clear integer types */ 133 typedef int8_t s8; 134 typedef int16_t s16; 135 typedef int32_t s32; 136 typedef u_int8_t u8; 137 typedef u_int16_t u16; 138 typedef u_int32_t u32; 139 140 /* 141 * From 'cam.error_recovery_diffs.20010313.context' patch. 142 */ 143 #ifdef CAM_NEW_TRAN_CODE 144 #define FreeBSD_New_Tran_Settings 145 #endif /* CAM_NEW_TRAN_CODE */ 146 147 /* 148 * Driver definitions. 149 */ 150 #include <dev/sym/sym_defs.h> 151 #include <dev/sym/sym_fw.h> 152 153 /* 154 * IA32 architecture does not reorder STORES and prevents 155 * LOADS from passing STORES. It is called `program order' 156 * by Intel and allows device drivers to deal with memory 157 * ordering by only ensuring that the code is not reordered 158 * by the compiler when ordering is required. 159 * Other architectures implement a weaker ordering that 160 * requires memory barriers (and also IO barriers when they 161 * make sense) to be used. 162 */ 163 164 #if defined __i386__ 165 #define MEMORY_BARRIER() do { ; } while(0) 166 #elif defined __alpha__ 167 #define MEMORY_BARRIER() alpha_mb() 168 #elif defined __powerpc__ 169 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 170 #elif defined __ia64__ 171 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 172 #elif defined __sparc64__ 173 #error "Sorry, but maintainer is ignorant about sparc64 :)" 174 #else 175 #error "Not supported platform" 176 #endif 177 178 /* 179 * Portable but silly implemented byte order primitives. 180 * We define the primitives we need, since FreeBSD doesn't 181 * seem to have them yet. 182 */ 183 #if BYTE_ORDER == BIG_ENDIAN 184 185 #define __revb16(x) ( (((u16)(x) & (u16)0x00ffU) << 8) | \ 186 (((u16)(x) & (u16)0xff00U) >> 8) ) 187 #define __revb32(x) ( (((u32)(x) & 0x000000ffU) << 24) | \ 188 (((u32)(x) & 0x0000ff00U) << 8) | \ 189 (((u32)(x) & 0x00ff0000U) >> 8) | \ 190 (((u32)(x) & 0xff000000U) >> 24) ) 191 192 #define __htole16(v) __revb16(v) 193 #define __htole32(v) __revb32(v) 194 #define __le16toh(v) __htole16(v) 195 #define __le32toh(v) __htole32(v) 196 197 static __inline u16 _htole16(u16 v) { return __htole16(v); } 198 static __inline u32 _htole32(u32 v) { return __htole32(v); } 199 #define _le16toh _htole16 200 #define _le32toh _htole32 201 202 #else /* LITTLE ENDIAN */ 203 204 #define __htole16(v) (v) 205 #define __htole32(v) (v) 206 #define __le16toh(v) (v) 207 #define __le32toh(v) (v) 208 209 #define _htole16(v) (v) 210 #define _htole32(v) (v) 211 #define _le16toh(v) (v) 212 #define _le32toh(v) (v) 213 214 #endif /* BYTE_ORDER */ 215 216 /* 217 * A la VMS/CAM-3 queue management. 218 */ 219 220 typedef struct sym_quehead { 221 struct sym_quehead *flink; /* Forward pointer */ 222 struct sym_quehead *blink; /* Backward pointer */ 223 } SYM_QUEHEAD; 224 225 #define sym_que_init(ptr) do { \ 226 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 227 } while (0) 228 229 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 230 { 231 return (head->flink == head) ? 0 : head->flink; 232 } 233 234 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 235 { 236 return (head->blink == head) ? 0 : head->blink; 237 } 238 239 static __inline void __sym_que_add(struct sym_quehead * new, 240 struct sym_quehead * blink, 241 struct sym_quehead * flink) 242 { 243 flink->blink = new; 244 new->flink = flink; 245 new->blink = blink; 246 blink->flink = new; 247 } 248 249 static __inline void __sym_que_del(struct sym_quehead * blink, 250 struct sym_quehead * flink) 251 { 252 flink->blink = blink; 253 blink->flink = flink; 254 } 255 256 static __inline int sym_que_empty(struct sym_quehead *head) 257 { 258 return head->flink == head; 259 } 260 261 static __inline void sym_que_splice(struct sym_quehead *list, 262 struct sym_quehead *head) 263 { 264 struct sym_quehead *first = list->flink; 265 266 if (first != list) { 267 struct sym_quehead *last = list->blink; 268 struct sym_quehead *at = head->flink; 269 270 first->blink = head; 271 head->flink = first; 272 273 last->flink = at; 274 at->blink = last; 275 } 276 } 277 278 #define sym_que_entry(ptr, type, member) \ 279 ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member))) 280 281 282 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 283 284 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 285 286 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 287 288 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 289 { 290 struct sym_quehead *elem = head->flink; 291 292 if (elem != head) 293 __sym_que_del(head, elem->flink); 294 else 295 elem = 0; 296 return elem; 297 } 298 299 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 300 301 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 302 { 303 struct sym_quehead *elem = head->blink; 304 305 if (elem != head) 306 __sym_que_del(elem->blink, head); 307 else 308 elem = 0; 309 return elem; 310 } 311 312 /* 313 * This one may be useful. 314 */ 315 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 316 for (qp = (head)->flink; qp != (head); qp = qp->flink) 317 /* 318 * FreeBSD does not offer our kind of queue in the CAM CCB. 319 * So, we have to cast. 320 */ 321 #define sym_qptr(p) ((struct sym_quehead *) (p)) 322 323 /* 324 * Simple bitmap operations. 325 */ 326 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 327 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 328 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 329 330 /* 331 * Number of tasks per device we want to handle. 332 */ 333 #if SYM_CONF_MAX_TAG_ORDER > 8 334 #error "more than 256 tags per logical unit not allowed." 335 #endif 336 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 337 338 /* 339 * Donnot use more tasks that we can handle. 340 */ 341 #ifndef SYM_CONF_MAX_TAG 342 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 343 #endif 344 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 345 #undef SYM_CONF_MAX_TAG 346 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 347 #endif 348 349 /* 350 * This one means 'NO TAG for this job' 351 */ 352 #define NO_TAG (256) 353 354 /* 355 * Number of SCSI targets. 356 */ 357 #if SYM_CONF_MAX_TARGET > 16 358 #error "more than 16 targets not allowed." 359 #endif 360 361 /* 362 * Number of logical units per target. 363 */ 364 #if SYM_CONF_MAX_LUN > 64 365 #error "more than 64 logical units per target not allowed." 366 #endif 367 368 /* 369 * Asynchronous pre-scaler (ns). Shall be 40 for 370 * the SCSI timings to be compliant. 371 */ 372 #define SYM_CONF_MIN_ASYNC (40) 373 374 /* 375 * Number of entries in the START and DONE queues. 376 * 377 * We limit to 1 PAGE in order to succeed allocation of 378 * these queues. Each entry is 8 bytes long (2 DWORDS). 379 */ 380 #ifdef SYM_CONF_MAX_START 381 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 382 #else 383 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 384 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 385 #endif 386 387 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 388 #undef SYM_CONF_MAX_QUEUE 389 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 390 #undef SYM_CONF_MAX_START 391 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 392 #endif 393 394 /* 395 * For this one, we want a short name :-) 396 */ 397 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 398 399 /* 400 * These ones should have been already defined. 401 */ 402 #ifndef MIN 403 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) 404 #endif 405 406 /* 407 * Active debugging tags and verbosity. 408 */ 409 #define DEBUG_ALLOC (0x0001) 410 #define DEBUG_PHASE (0x0002) 411 #define DEBUG_POLL (0x0004) 412 #define DEBUG_QUEUE (0x0008) 413 #define DEBUG_RESULT (0x0010) 414 #define DEBUG_SCATTER (0x0020) 415 #define DEBUG_SCRIPT (0x0040) 416 #define DEBUG_TINY (0x0080) 417 #define DEBUG_TIMING (0x0100) 418 #define DEBUG_NEGO (0x0200) 419 #define DEBUG_TAGS (0x0400) 420 #define DEBUG_POINTER (0x0800) 421 422 #if 0 423 static int sym_debug = 0; 424 #define DEBUG_FLAGS sym_debug 425 #else 426 /* #define DEBUG_FLAGS (0x0631) */ 427 #define DEBUG_FLAGS (0x0000) 428 429 #endif 430 #define sym_verbose (np->verbose) 431 432 /* 433 * Insert a delay in micro-seconds and milli-seconds. 434 */ 435 static void UDELAY(int us) { DELAY(us); } 436 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 437 438 /* 439 * Simple power of two buddy-like allocator. 440 * 441 * This simple code is not intended to be fast, but to 442 * provide power of 2 aligned memory allocations. 443 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 444 * this allocator allows simple and fast address calculations 445 * from the SCRIPTS code. In addition, cache line alignment 446 * is guaranteed for power of 2 cache line size. 447 * 448 * This allocator has been developped for the Linux sym53c8xx 449 * driver, since this O/S does not provide naturally aligned 450 * allocations. 451 * It has the advantage of allowing the driver to use private 452 * pages of memory that will be useful if we ever need to deal 453 * with IO MMUs for PCI. 454 */ 455 456 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 457 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 458 #if 0 459 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 460 #endif 461 #define MEMO_WARN 1 462 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 463 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 464 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 465 466 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 467 #define free_pages(p) free((p), M_DEVBUF) 468 469 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 470 471 typedef struct m_link { /* Link between free memory chunks */ 472 struct m_link *next; 473 } m_link_s; 474 475 #ifdef FreeBSD_Bus_Dma_Abstraction 476 typedef struct m_vtob { /* Virtual to Bus address translation */ 477 struct m_vtob *next; 478 bus_dmamap_t dmamap; /* Map for this chunk */ 479 m_addr_t vaddr; /* Virtual address */ 480 m_addr_t baddr; /* Bus physical address */ 481 } m_vtob_s; 482 /* Hash this stuff a bit to speed up translations */ 483 #define VTOB_HASH_SHIFT 5 484 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 485 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 486 #define VTOB_HASH_CODE(m) \ 487 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 488 #endif 489 490 typedef struct m_pool { /* Memory pool of a given kind */ 491 #ifdef FreeBSD_Bus_Dma_Abstraction 492 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 493 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 494 m_addr_t (*getp)(struct m_pool *); 495 #ifdef MEMO_FREE_UNUSED 496 void (*freep)(struct m_pool *, m_addr_t); 497 #endif 498 #define M_GETP() mp->getp(mp) 499 #define M_FREEP(p) mp->freep(mp, p) 500 int nump; 501 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 502 struct m_pool *next; 503 #else 504 #define M_GETP() get_pages() 505 #define M_FREEP(p) free_pages(p) 506 #endif /* FreeBSD_Bus_Dma_Abstraction */ 507 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 508 } m_pool_s; 509 510 static void *___sym_malloc(m_pool_s *mp, int size) 511 { 512 int i = 0; 513 int s = (1 << MEMO_SHIFT); 514 int j; 515 m_addr_t a; 516 m_link_s *h = mp->h; 517 518 if (size > MEMO_CLUSTER_SIZE) 519 return 0; 520 521 while (size > s) { 522 s <<= 1; 523 ++i; 524 } 525 526 j = i; 527 while (!h[j].next) { 528 if (s == MEMO_CLUSTER_SIZE) { 529 h[j].next = (m_link_s *) M_GETP(); 530 if (h[j].next) 531 h[j].next->next = 0; 532 break; 533 } 534 ++j; 535 s <<= 1; 536 } 537 a = (m_addr_t) h[j].next; 538 if (a) { 539 h[j].next = h[j].next->next; 540 while (j > i) { 541 j -= 1; 542 s >>= 1; 543 h[j].next = (m_link_s *) (a+s); 544 h[j].next->next = 0; 545 } 546 } 547 #ifdef DEBUG 548 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 549 #endif 550 return (void *) a; 551 } 552 553 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 554 { 555 int i = 0; 556 int s = (1 << MEMO_SHIFT); 557 m_link_s *q; 558 m_addr_t a, b; 559 m_link_s *h = mp->h; 560 561 #ifdef DEBUG 562 printf("___sym_mfree(%p, %d)\n", ptr, size); 563 #endif 564 565 if (size > MEMO_CLUSTER_SIZE) 566 return; 567 568 while (size > s) { 569 s <<= 1; 570 ++i; 571 } 572 573 a = (m_addr_t) ptr; 574 575 while (1) { 576 #ifdef MEMO_FREE_UNUSED 577 if (s == MEMO_CLUSTER_SIZE) { 578 M_FREEP(a); 579 break; 580 } 581 #endif 582 b = a ^ s; 583 q = &h[i]; 584 while (q->next && q->next != (m_link_s *) b) { 585 q = q->next; 586 } 587 if (!q->next) { 588 ((m_link_s *) a)->next = h[i].next; 589 h[i].next = (m_link_s *) a; 590 break; 591 } 592 q->next = q->next->next; 593 a = a & b; 594 s <<= 1; 595 ++i; 596 } 597 } 598 599 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 600 { 601 void *p; 602 603 p = ___sym_malloc(mp, size); 604 605 if (DEBUG_FLAGS & DEBUG_ALLOC) 606 printf ("new %-10s[%4d] @%p.\n", name, size, p); 607 608 if (p) 609 bzero(p, size); 610 else if (uflags & MEMO_WARN) 611 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 612 613 return p; 614 } 615 616 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 617 618 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 619 { 620 if (DEBUG_FLAGS & DEBUG_ALLOC) 621 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 622 623 ___sym_mfree(mp, ptr, size); 624 625 } 626 627 /* 628 * Default memory pool we donnot need to involve in DMA. 629 */ 630 #ifndef FreeBSD_Bus_Dma_Abstraction 631 /* 632 * Without the `bus dma abstraction', all the memory is assumed 633 * DMAable and a single pool is all what we need. 634 */ 635 static m_pool_s mp0; 636 637 #else 638 /* 639 * With the `bus dma abstraction', we use a separate pool for 640 * memory we donnot need to involve in DMA. 641 */ 642 static m_addr_t ___mp0_getp(m_pool_s *mp) 643 { 644 m_addr_t m = (m_addr_t) get_pages(); 645 if (m) 646 ++mp->nump; 647 return m; 648 } 649 650 #ifdef MEMO_FREE_UNUSED 651 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 652 { 653 free_pages(m); 654 --mp->nump; 655 } 656 #endif 657 658 #ifdef MEMO_FREE_UNUSED 659 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 660 #else 661 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 662 #endif 663 664 #endif /* FreeBSD_Bus_Dma_Abstraction */ 665 666 /* 667 * Actual memory allocation routine for non-DMAed memory. 668 */ 669 static void *sym_calloc(int size, char *name) 670 { 671 void *m; 672 /* Lock */ 673 m = __sym_calloc(&mp0, size, name); 674 /* Unlock */ 675 return m; 676 } 677 678 /* 679 * Actual memory allocation routine for non-DMAed memory. 680 */ 681 static void sym_mfree(void *ptr, int size, char *name) 682 { 683 /* Lock */ 684 __sym_mfree(&mp0, ptr, size, name); 685 /* Unlock */ 686 } 687 688 /* 689 * DMAable pools. 690 */ 691 #ifndef FreeBSD_Bus_Dma_Abstraction 692 /* 693 * Without `bus dma abstraction', all the memory is DMAable, and 694 * only a single pool is needed (vtophys() is our friend). 695 */ 696 #define __sym_calloc_dma(b, s, n) sym_calloc(s, n) 697 #define __sym_mfree_dma(b, p, s, n) sym_mfree(p, s, n) 698 #ifdef __alpha__ 699 #define __vtobus(b, p) alpha_XXX_dmamap((vm_offset_t)(p)) 700 #else /*__i386__*/ 701 #define __vtobus(b, p) vtophys(p) 702 #endif 703 704 #else 705 /* 706 * With `bus dma abstraction', we use a separate pool per parent 707 * BUS handle. A reverse table (hashed) is maintained for virtual 708 * to BUS address translation. 709 */ 710 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 711 { 712 bus_addr_t *baddr; 713 baddr = (bus_addr_t *)arg; 714 *baddr = segs->ds_addr; 715 } 716 717 static m_addr_t ___dma_getp(m_pool_s *mp) 718 { 719 m_vtob_s *vbp; 720 void *vaddr = 0; 721 bus_addr_t baddr = 0; 722 723 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 724 if (!vbp) 725 goto out_err; 726 727 if (bus_dmamem_alloc(mp->dmat, &vaddr, 728 BUS_DMA_NOWAIT, &vbp->dmamap)) 729 goto out_err; 730 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 731 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0); 732 if (baddr) { 733 int hc = VTOB_HASH_CODE(vaddr); 734 vbp->vaddr = (m_addr_t) vaddr; 735 vbp->baddr = (m_addr_t) baddr; 736 vbp->next = mp->vtob[hc]; 737 mp->vtob[hc] = vbp; 738 ++mp->nump; 739 return (m_addr_t) vaddr; 740 } 741 out_err: 742 if (baddr) 743 bus_dmamap_unload(mp->dmat, vbp->dmamap); 744 if (vaddr) 745 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 746 if (vbp->dmamap) 747 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 748 if (vbp) 749 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 750 return 0; 751 } 752 753 #ifdef MEMO_FREE_UNUSED 754 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 755 { 756 m_vtob_s **vbpp, *vbp; 757 int hc = VTOB_HASH_CODE(m); 758 759 vbpp = &mp->vtob[hc]; 760 while (*vbpp && (*vbpp)->vaddr != m) 761 vbpp = &(*vbpp)->next; 762 if (*vbpp) { 763 vbp = *vbpp; 764 *vbpp = (*vbpp)->next; 765 bus_dmamap_unload(mp->dmat, vbp->dmamap); 766 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 767 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 768 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 769 --mp->nump; 770 } 771 } 772 #endif 773 774 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 775 { 776 m_pool_s *mp; 777 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 778 return mp; 779 } 780 781 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 782 { 783 m_pool_s *mp = 0; 784 785 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 786 if (mp) { 787 mp->dev_dmat = dev_dmat; 788 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 789 BUS_SPACE_MAXADDR_32BIT, 790 BUS_SPACE_MAXADDR_32BIT, 791 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 792 MEMO_CLUSTER_SIZE, 0, &mp->dmat)) { 793 mp->getp = ___dma_getp; 794 #ifdef MEMO_FREE_UNUSED 795 mp->freep = ___dma_freep; 796 #endif 797 mp->next = mp0.next; 798 mp0.next = mp; 799 return mp; 800 } 801 } 802 if (mp) 803 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 804 return 0; 805 } 806 807 #ifdef MEMO_FREE_UNUSED 808 static void ___del_dma_pool(m_pool_s *p) 809 { 810 struct m_pool **pp = &mp0.next; 811 812 while (*pp && *pp != p) 813 pp = &(*pp)->next; 814 if (*pp) { 815 *pp = (*pp)->next; 816 bus_dma_tag_destroy(p->dmat); 817 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 818 } 819 } 820 #endif 821 822 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 823 { 824 struct m_pool *mp; 825 void *m = 0; 826 827 /* Lock */ 828 mp = ___get_dma_pool(dev_dmat); 829 if (!mp) 830 mp = ___cre_dma_pool(dev_dmat); 831 if (mp) 832 m = __sym_calloc(mp, size, name); 833 #ifdef MEMO_FREE_UNUSED 834 if (mp && !mp->nump) 835 ___del_dma_pool(mp); 836 #endif 837 /* Unlock */ 838 839 return m; 840 } 841 842 static void 843 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 844 { 845 struct m_pool *mp; 846 847 /* Lock */ 848 mp = ___get_dma_pool(dev_dmat); 849 if (mp) 850 __sym_mfree(mp, m, size, name); 851 #ifdef MEMO_FREE_UNUSED 852 if (mp && !mp->nump) 853 ___del_dma_pool(mp); 854 #endif 855 /* Unlock */ 856 } 857 858 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 859 { 860 m_pool_s *mp; 861 int hc = VTOB_HASH_CODE(m); 862 m_vtob_s *vp = 0; 863 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 864 865 /* Lock */ 866 mp = ___get_dma_pool(dev_dmat); 867 if (mp) { 868 vp = mp->vtob[hc]; 869 while (vp && (m_addr_t) vp->vaddr != a) 870 vp = vp->next; 871 } 872 /* Unlock */ 873 if (!vp) 874 panic("sym: VTOBUS FAILED!\n"); 875 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 876 } 877 878 #endif /* FreeBSD_Bus_Dma_Abstraction */ 879 880 /* 881 * Verbs for DMAable memory handling. 882 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 883 * being discarded. 884 */ 885 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 886 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 887 #define _sym_mfree_dma(np, p, s, n) \ 888 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 889 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 890 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 891 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 892 #define vtobus(p) _vtobus(np, p) 893 894 895 /* 896 * Print a buffer in hexadecimal format. 897 */ 898 static void sym_printb_hex (u_char *p, int n) 899 { 900 while (n-- > 0) 901 printf (" %x", *p++); 902 } 903 904 /* 905 * Same with a label at beginning and .\n at end. 906 */ 907 static void sym_printl_hex (char *label, u_char *p, int n) 908 { 909 printf ("%s", label); 910 sym_printb_hex (p, n); 911 printf (".\n"); 912 } 913 914 /* 915 * Return a string for SCSI BUS mode. 916 */ 917 static char *sym_scsi_bus_mode(int mode) 918 { 919 switch(mode) { 920 case SMODE_HVD: return "HVD"; 921 case SMODE_SE: return "SE"; 922 case SMODE_LVD: return "LVD"; 923 } 924 return "??"; 925 } 926 927 /* 928 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 929 */ 930 #ifdef SYM_CONF_NVRAM_SUPPORT 931 static u_char Tekram_sync[16] = 932 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 933 #endif 934 935 /* 936 * Union of supported NVRAM formats. 937 */ 938 struct sym_nvram { 939 int type; 940 #define SYM_SYMBIOS_NVRAM (1) 941 #define SYM_TEKRAM_NVRAM (2) 942 #ifdef SYM_CONF_NVRAM_SUPPORT 943 union { 944 Symbios_nvram Symbios; 945 Tekram_nvram Tekram; 946 } data; 947 #endif 948 }; 949 950 /* 951 * This one is hopefully useless, but actually useful. :-) 952 */ 953 #ifndef assert 954 #define assert(expression) { \ 955 if (!(expression)) { \ 956 (void)panic( \ 957 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 958 #expression, \ 959 __FILE__, __LINE__); \ 960 } \ 961 } 962 #endif 963 964 /* 965 * Some provision for a possible big endian mode supported by 966 * Symbios chips (never seen, by the way). 967 * For now, this stuff does not deserve any comments. :) 968 */ 969 970 #define sym_offb(o) (o) 971 #define sym_offw(o) (o) 972 973 /* 974 * Some provision for support for BIG ENDIAN CPU. 975 * Btw, FreeBSD does not seem to be ready yet for big endian. 976 */ 977 978 #if BYTE_ORDER == BIG_ENDIAN 979 #define cpu_to_scr(dw) _htole32(dw) 980 #define scr_to_cpu(dw) _le32toh(dw) 981 #else 982 #define cpu_to_scr(dw) (dw) 983 #define scr_to_cpu(dw) (dw) 984 #endif 985 986 /* 987 * Access to the chip IO registers and on-chip RAM. 988 * We use the `bus space' interface under FreeBSD-4 and 989 * later kernel versions. 990 */ 991 992 #ifdef FreeBSD_Bus_Space_Abstraction 993 994 #if defined(SYM_CONF_IOMAPPED) 995 996 #define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o) 997 #define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o) 998 #define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o) 999 1000 #define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v)) 1001 #define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v)) 1002 #define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v)) 1003 1004 #else /* Memory mapped IO */ 1005 1006 #define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o) 1007 #define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o) 1008 #define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o) 1009 1010 #define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v)) 1011 #define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v)) 1012 #define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v)) 1013 1014 #endif /* SYM_CONF_IOMAPPED */ 1015 1016 #define OUTRAM_OFF(o, a, l) \ 1017 bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l)) 1018 1019 #else /* not defined FreeBSD_Bus_Space_Abstraction */ 1020 1021 #if BYTE_ORDER == BIG_ENDIAN 1022 #error "BIG ENDIAN support requires bus space kernel interface" 1023 #endif 1024 1025 /* 1026 * Access to the chip IO registers and on-chip RAM. 1027 * We use legacy MMIO and IO interface for FreeBSD 3.X versions. 1028 */ 1029 1030 /* 1031 * Define some understable verbs for IO and MMIO. 1032 */ 1033 #define io_read8(p) scr_to_cpu(inb((p))) 1034 #define io_read16(p) scr_to_cpu(inw((p))) 1035 #define io_read32(p) scr_to_cpu(inl((p))) 1036 #define io_write8(p, v) outb((p), cpu_to_scr(v)) 1037 #define io_write16(p, v) outw((p), cpu_to_scr(v)) 1038 #define io_write32(p, v) outl((p), cpu_to_scr(v)) 1039 1040 #ifdef __alpha__ 1041 1042 #define mmio_read8(a) readb(a) 1043 #define mmio_read16(a) readw(a) 1044 #define mmio_read32(a) readl(a) 1045 #define mmio_write8(a, b) writeb(a, b) 1046 #define mmio_write16(a, b) writew(a, b) 1047 #define mmio_write32(a, b) writel(a, b) 1048 #define memcpy_to_pci(d, s, n) memcpy_toio((u32)(d), (void *)(s), (n)) 1049 1050 #else /*__i386__*/ 1051 1052 #define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a))) 1053 #define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a))) 1054 #define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a))) 1055 #define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b) 1056 #define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b) 1057 #define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b) 1058 #define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n)) 1059 1060 #endif 1061 1062 /* 1063 * Normal IO 1064 */ 1065 #if defined(SYM_CONF_IOMAPPED) 1066 1067 #define INB_OFF(o) io_read8(np->io_port + sym_offb(o)) 1068 #define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v)) 1069 1070 #define INW_OFF(o) io_read16(np->io_port + sym_offw(o)) 1071 #define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v)) 1072 1073 #define INL_OFF(o) io_read32(np->io_port + (o)) 1074 #define OUTL_OFF(o, v) io_write32(np->io_port + (o), (v)) 1075 1076 #else /* Memory mapped IO */ 1077 1078 #define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o)) 1079 #define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v)) 1080 1081 #define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o)) 1082 #define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v)) 1083 1084 #define INL_OFF(o) mmio_read32(np->mmio_va + (o)) 1085 #define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v)) 1086 1087 #endif 1088 1089 #define OUTRAM_OFF(o, a, l) memcpy_to_pci(np->ram_va + (o), (a), (l)) 1090 1091 #endif /* FreeBSD_Bus_Space_Abstraction */ 1092 1093 /* 1094 * Common definitions for both bus space and legacy IO methods. 1095 */ 1096 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 1097 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 1098 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 1099 1100 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 1101 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 1102 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 1103 1104 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 1105 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 1106 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 1107 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 1108 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 1109 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 1110 1111 /* 1112 * We normally want the chip to have a consistent view 1113 * of driver internal data structures when we restart it. 1114 * Thus these macros. 1115 */ 1116 #define OUTL_DSP(v) \ 1117 do { \ 1118 MEMORY_BARRIER(); \ 1119 OUTL (nc_dsp, (v)); \ 1120 } while (0) 1121 1122 #define OUTONB_STD() \ 1123 do { \ 1124 MEMORY_BARRIER(); \ 1125 OUTONB (nc_dcntl, (STD|NOCOM)); \ 1126 } while (0) 1127 1128 /* 1129 * Command control block states. 1130 */ 1131 #define HS_IDLE (0) 1132 #define HS_BUSY (1) 1133 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 1134 #define HS_DISCONNECT (3) /* Disconnected by target */ 1135 #define HS_WAIT (4) /* waiting for resource */ 1136 1137 #define HS_DONEMASK (0x80) 1138 #define HS_COMPLETE (4|HS_DONEMASK) 1139 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 1140 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 1141 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 1142 1143 /* 1144 * Software Interrupt Codes 1145 */ 1146 #define SIR_BAD_SCSI_STATUS (1) 1147 #define SIR_SEL_ATN_NO_MSG_OUT (2) 1148 #define SIR_MSG_RECEIVED (3) 1149 #define SIR_MSG_WEIRD (4) 1150 #define SIR_NEGO_FAILED (5) 1151 #define SIR_NEGO_PROTO (6) 1152 #define SIR_SCRIPT_STOPPED (7) 1153 #define SIR_REJECT_TO_SEND (8) 1154 #define SIR_SWIDE_OVERRUN (9) 1155 #define SIR_SODL_UNDERRUN (10) 1156 #define SIR_RESEL_NO_MSG_IN (11) 1157 #define SIR_RESEL_NO_IDENTIFY (12) 1158 #define SIR_RESEL_BAD_LUN (13) 1159 #define SIR_TARGET_SELECTED (14) 1160 #define SIR_RESEL_BAD_I_T_L (15) 1161 #define SIR_RESEL_BAD_I_T_L_Q (16) 1162 #define SIR_ABORT_SENT (17) 1163 #define SIR_RESEL_ABORTED (18) 1164 #define SIR_MSG_OUT_DONE (19) 1165 #define SIR_COMPLETE_ERROR (20) 1166 #define SIR_DATA_OVERRUN (21) 1167 #define SIR_BAD_PHASE (22) 1168 #define SIR_MAX (22) 1169 1170 /* 1171 * Extended error bit codes. 1172 * xerr_status field of struct sym_ccb. 1173 */ 1174 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 1175 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 1176 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 1177 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 1178 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 1179 1180 /* 1181 * Negotiation status. 1182 * nego_status field of struct sym_ccb. 1183 */ 1184 #define NS_SYNC (1) 1185 #define NS_WIDE (2) 1186 #define NS_PPR (3) 1187 1188 /* 1189 * A CCB hashed table is used to retrieve CCB address 1190 * from DSA value. 1191 */ 1192 #define CCB_HASH_SHIFT 8 1193 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1194 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1195 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1196 1197 /* 1198 * Device flags. 1199 */ 1200 #define SYM_DISC_ENABLED (1) 1201 #define SYM_TAGS_ENABLED (1<<1) 1202 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1203 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1204 1205 /* 1206 * Host adapter miscellaneous flags. 1207 */ 1208 #define SYM_AVOID_BUS_RESET (1) 1209 #define SYM_SCAN_TARGETS_HILO (1<<1) 1210 1211 /* 1212 * Device quirks. 1213 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1214 * saving the DATA POINTER then reselects and terminates the IO. 1215 * On reselection, the automatic RESTORE DATA POINTER makes the 1216 * CURRENT DATA POINTER not point at the end of the IO. 1217 * This behaviour just breaks our calculation of the residual. 1218 * For now, we just force an AUTO SAVE on disconnection and will 1219 * fix that in a further driver version. 1220 */ 1221 #define SYM_QUIRK_AUTOSAVE 1 1222 1223 /* 1224 * Misc. 1225 */ 1226 #define SYM_SNOOP_TIMEOUT (10000000) 1227 #define SYM_PCI_IO PCIR_MAPS 1228 #define SYM_PCI_MMIO (PCIR_MAPS + 4) 1229 #define SYM_PCI_RAM (PCIR_MAPS + 8) 1230 #define SYM_PCI_RAM64 (PCIR_MAPS + 12) 1231 1232 /* 1233 * Back-pointer from the CAM CCB to our data structures. 1234 */ 1235 #define sym_hcb_ptr spriv_ptr0 1236 /* #define sym_ccb_ptr spriv_ptr1 */ 1237 1238 /* 1239 * We mostly have to deal with pointers. 1240 * Thus these typedef's. 1241 */ 1242 typedef struct sym_tcb *tcb_p; 1243 typedef struct sym_lcb *lcb_p; 1244 typedef struct sym_ccb *ccb_p; 1245 typedef struct sym_hcb *hcb_p; 1246 1247 /* 1248 * Gather negotiable parameters value 1249 */ 1250 struct sym_trans { 1251 #ifdef FreeBSD_New_Tran_Settings 1252 u8 scsi_version; 1253 u8 spi_version; 1254 #endif 1255 u8 period; 1256 u8 offset; 1257 u8 width; 1258 u8 options; /* PPR options */ 1259 }; 1260 1261 struct sym_tinfo { 1262 struct sym_trans current; 1263 struct sym_trans goal; 1264 struct sym_trans user; 1265 }; 1266 1267 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1268 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1269 1270 /* 1271 * Global TCB HEADER. 1272 * 1273 * Due to lack of indirect addressing on earlier NCR chips, 1274 * this substructure is copied from the TCB to a global 1275 * address after selection. 1276 * For SYMBIOS chips that support LOAD/STORE this copy is 1277 * not needed and thus not performed. 1278 */ 1279 struct sym_tcbh { 1280 /* 1281 * Scripts bus addresses of LUN table accessed from scripts. 1282 * LUN #0 is a special case, since multi-lun devices are rare, 1283 * and we we want to speed-up the general case and not waste 1284 * resources. 1285 */ 1286 u32 luntbl_sa; /* bus address of this table */ 1287 u32 lun0_sa; /* bus address of LCB #0 */ 1288 /* 1289 * Actual SYNC/WIDE IO registers value for this target. 1290 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1291 * so have alignment constraints. 1292 */ 1293 /*0*/ u_char uval; /* -> SCNTL4 register */ 1294 /*1*/ u_char sval; /* -> SXFER io register */ 1295 /*2*/ u_char filler1; 1296 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1297 }; 1298 1299 /* 1300 * Target Control Block 1301 */ 1302 struct sym_tcb { 1303 /* 1304 * TCB header. 1305 * Assumed at offset 0. 1306 */ 1307 /*0*/ struct sym_tcbh head; 1308 1309 /* 1310 * LUN table used by the SCRIPTS processor. 1311 * An array of bus addresses is used on reselection. 1312 */ 1313 u32 *luntbl; /* LCBs bus address table */ 1314 1315 /* 1316 * LUN table used by the C code. 1317 */ 1318 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1319 #if SYM_CONF_MAX_LUN > 1 1320 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1321 #endif 1322 1323 /* 1324 * Bitmap that tells about LUNs that succeeded at least 1325 * 1 IO and therefore assumed to be a real device. 1326 * Avoid useless allocation of the LCB structure. 1327 */ 1328 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1329 1330 /* 1331 * Bitmap that tells about LUNs that haven't yet an LCB 1332 * allocated (not discovered or LCB allocation failed). 1333 */ 1334 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1335 1336 /* 1337 * Transfer capabilities (SIP) 1338 */ 1339 struct sym_tinfo tinfo; 1340 1341 /* 1342 * Keep track of the CCB used for the negotiation in order 1343 * to ensure that only 1 negotiation is queued at a time. 1344 */ 1345 ccb_p nego_cp; /* CCB used for the nego */ 1346 1347 /* 1348 * Set when we want to reset the device. 1349 */ 1350 u_char to_reset; 1351 1352 /* 1353 * Other user settable limits and options. 1354 * These limits are read from the NVRAM if present. 1355 */ 1356 u_char usrflags; 1357 u_short usrtags; 1358 }; 1359 1360 /* 1361 * Global LCB HEADER. 1362 * 1363 * Due to lack of indirect addressing on earlier NCR chips, 1364 * this substructure is copied from the LCB to a global 1365 * address after selection. 1366 * For SYMBIOS chips that support LOAD/STORE this copy is 1367 * not needed and thus not performed. 1368 */ 1369 struct sym_lcbh { 1370 /* 1371 * SCRIPTS address jumped by SCRIPTS on reselection. 1372 * For not probed logical units, this address points to 1373 * SCRIPTS that deal with bad LU handling (must be at 1374 * offset zero of the LCB for that reason). 1375 */ 1376 /*0*/ u32 resel_sa; 1377 1378 /* 1379 * Task (bus address of a CCB) read from SCRIPTS that points 1380 * to the unique ITL nexus allowed to be disconnected. 1381 */ 1382 u32 itl_task_sa; 1383 1384 /* 1385 * Task table bus address (read from SCRIPTS). 1386 */ 1387 u32 itlq_tbl_sa; 1388 }; 1389 1390 /* 1391 * Logical Unit Control Block 1392 */ 1393 struct sym_lcb { 1394 /* 1395 * TCB header. 1396 * Assumed at offset 0. 1397 */ 1398 /*0*/ struct sym_lcbh head; 1399 1400 /* 1401 * Task table read from SCRIPTS that contains pointers to 1402 * ITLQ nexuses. The bus address read from SCRIPTS is 1403 * inside the header. 1404 */ 1405 u32 *itlq_tbl; /* Kernel virtual address */ 1406 1407 /* 1408 * Busy CCBs management. 1409 */ 1410 u_short busy_itlq; /* Number of busy tagged CCBs */ 1411 u_short busy_itl; /* Number of busy untagged CCBs */ 1412 1413 /* 1414 * Circular tag allocation buffer. 1415 */ 1416 u_short ia_tag; /* Tag allocation index */ 1417 u_short if_tag; /* Tag release index */ 1418 u_char *cb_tags; /* Circular tags buffer */ 1419 1420 /* 1421 * Set when we want to clear all tasks. 1422 */ 1423 u_char to_clear; 1424 1425 /* 1426 * Capabilities. 1427 */ 1428 u_char user_flags; 1429 u_char current_flags; 1430 }; 1431 1432 /* 1433 * Action from SCRIPTS on a task. 1434 * Is part of the CCB, but is also used separately to plug 1435 * error handling action to perform from SCRIPTS. 1436 */ 1437 struct sym_actscr { 1438 u32 start; /* Jumped by SCRIPTS after selection */ 1439 u32 restart; /* Jumped by SCRIPTS on relection */ 1440 }; 1441 1442 /* 1443 * Phase mismatch context. 1444 * 1445 * It is part of the CCB and is used as parameters for the 1446 * DATA pointer. We need two contexts to handle correctly the 1447 * SAVED DATA POINTER. 1448 */ 1449 struct sym_pmc { 1450 struct sym_tblmove sg; /* Updated interrupted SG block */ 1451 u32 ret; /* SCRIPT return address */ 1452 }; 1453 1454 /* 1455 * LUN control block lookup. 1456 * We use a direct pointer for LUN #0, and a table of 1457 * pointers which is only allocated for devices that support 1458 * LUN(s) > 0. 1459 */ 1460 #if SYM_CONF_MAX_LUN <= 1 1461 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1462 #else 1463 #define sym_lp(np, tp, lun) \ 1464 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1465 #endif 1466 1467 /* 1468 * Status are used by the host and the script processor. 1469 * 1470 * The last four bytes (status[4]) are copied to the 1471 * scratchb register (declared as scr0..scr3) just after the 1472 * select/reselect, and copied back just after disconnecting. 1473 * Inside the script the XX_REG are used. 1474 */ 1475 1476 /* 1477 * Last four bytes (script) 1478 */ 1479 #define QU_REG scr0 1480 #define HS_REG scr1 1481 #define HS_PRT nc_scr1 1482 #define SS_REG scr2 1483 #define SS_PRT nc_scr2 1484 #define HF_REG scr3 1485 #define HF_PRT nc_scr3 1486 1487 /* 1488 * Last four bytes (host) 1489 */ 1490 #define actualquirks phys.head.status[0] 1491 #define host_status phys.head.status[1] 1492 #define ssss_status phys.head.status[2] 1493 #define host_flags phys.head.status[3] 1494 1495 /* 1496 * Host flags 1497 */ 1498 #define HF_IN_PM0 1u 1499 #define HF_IN_PM1 (1u<<1) 1500 #define HF_ACT_PM (1u<<2) 1501 #define HF_DP_SAVED (1u<<3) 1502 #define HF_SENSE (1u<<4) 1503 #define HF_EXT_ERR (1u<<5) 1504 #define HF_DATA_IN (1u<<6) 1505 #ifdef SYM_CONF_IARB_SUPPORT 1506 #define HF_HINT_IARB (1u<<7) 1507 #endif 1508 1509 /* 1510 * Global CCB HEADER. 1511 * 1512 * Due to lack of indirect addressing on earlier NCR chips, 1513 * this substructure is copied from the ccb to a global 1514 * address after selection (or reselection) and copied back 1515 * before disconnect. 1516 * For SYMBIOS chips that support LOAD/STORE this copy is 1517 * not needed and thus not performed. 1518 */ 1519 1520 struct sym_ccbh { 1521 /* 1522 * Start and restart SCRIPTS addresses (must be at 0). 1523 */ 1524 /*0*/ struct sym_actscr go; 1525 1526 /* 1527 * SCRIPTS jump address that deal with data pointers. 1528 * 'savep' points to the position in the script responsible 1529 * for the actual transfer of data. 1530 * It's written on reception of a SAVE_DATA_POINTER message. 1531 */ 1532 u32 savep; /* Jump address to saved data pointer */ 1533 u32 lastp; /* SCRIPTS address at end of data */ 1534 u32 goalp; /* Not accessed for now from SCRIPTS */ 1535 1536 /* 1537 * Status fields. 1538 */ 1539 u8 status[4]; 1540 }; 1541 1542 /* 1543 * Data Structure Block 1544 * 1545 * During execution of a ccb by the script processor, the 1546 * DSA (data structure address) register points to this 1547 * substructure of the ccb. 1548 */ 1549 struct sym_dsb { 1550 /* 1551 * CCB header. 1552 * Also assumed at offset 0 of the sym_ccb structure. 1553 */ 1554 /*0*/ struct sym_ccbh head; 1555 1556 /* 1557 * Phase mismatch contexts. 1558 * We need two to handle correctly the SAVED DATA POINTER. 1559 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1560 * for address calculation from SCRIPTS. 1561 */ 1562 struct sym_pmc pm0; 1563 struct sym_pmc pm1; 1564 1565 /* 1566 * Table data for Script 1567 */ 1568 struct sym_tblsel select; 1569 struct sym_tblmove smsg; 1570 struct sym_tblmove smsg_ext; 1571 struct sym_tblmove cmd; 1572 struct sym_tblmove sense; 1573 struct sym_tblmove wresid; 1574 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1575 }; 1576 1577 /* 1578 * Our Command Control Block 1579 */ 1580 struct sym_ccb { 1581 /* 1582 * This is the data structure which is pointed by the DSA 1583 * register when it is executed by the script processor. 1584 * It must be the first entry. 1585 */ 1586 struct sym_dsb phys; 1587 1588 /* 1589 * Pointer to CAM ccb and related stuff. 1590 */ 1591 union ccb *cam_ccb; /* CAM scsiio ccb */ 1592 u8 cdb_buf[16]; /* Copy of CDB */ 1593 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1594 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1595 int data_len; /* Total data length */ 1596 int segments; /* Number of SG segments */ 1597 1598 /* 1599 * Miscellaneous status'. 1600 */ 1601 u_char nego_status; /* Negotiation status */ 1602 u_char xerr_status; /* Extended error flags */ 1603 u32 extra_bytes; /* Extraneous bytes transferred */ 1604 1605 /* 1606 * Message areas. 1607 * We prepare a message to be sent after selection. 1608 * We may use a second one if the command is rescheduled 1609 * due to CHECK_CONDITION or COMMAND TERMINATED. 1610 * Contents are IDENTIFY and SIMPLE_TAG. 1611 * While negotiating sync or wide transfer, 1612 * a SDTR or WDTR message is appended. 1613 */ 1614 u_char scsi_smsg [12]; 1615 u_char scsi_smsg2[12]; 1616 1617 /* 1618 * Auto request sense related fields. 1619 */ 1620 u_char sensecmd[6]; /* Request Sense command */ 1621 u_char sv_scsi_status; /* Saved SCSI status */ 1622 u_char sv_xerr_status; /* Saved extended status */ 1623 int sv_resid; /* Saved residual */ 1624 1625 /* 1626 * Map for the DMA of user data. 1627 */ 1628 #ifdef FreeBSD_Bus_Dma_Abstraction 1629 void *arg; /* Argument for some callback */ 1630 bus_dmamap_t dmamap; /* DMA map for user data */ 1631 u_char dmamapped; 1632 #define SYM_DMA_NONE 0 1633 #define SYM_DMA_READ 1 1634 #define SYM_DMA_WRITE 2 1635 #endif 1636 /* 1637 * Other fields. 1638 */ 1639 u32 ccb_ba; /* BUS address of this CCB */ 1640 u_short tag; /* Tag for this transfer */ 1641 /* NO_TAG means no tag */ 1642 u_char target; 1643 u_char lun; 1644 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1645 SYM_QUEHEAD 1646 link_ccbq; /* Link to free/busy CCB queue */ 1647 u32 startp; /* Initial data pointer */ 1648 int ext_sg; /* Extreme data pointer, used */ 1649 int ext_ofs; /* to calculate the residual. */ 1650 u_char to_abort; /* Want this IO to be aborted */ 1651 }; 1652 1653 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1654 1655 /* 1656 * Host Control Block 1657 */ 1658 struct sym_hcb { 1659 /* 1660 * Global headers. 1661 * Due to poorness of addressing capabilities, earlier 1662 * chips (810, 815, 825) copy part of the data structures 1663 * (CCB, TCB and LCB) in fixed areas. 1664 */ 1665 #ifdef SYM_CONF_GENERIC_SUPPORT 1666 struct sym_ccbh ccb_head; 1667 struct sym_tcbh tcb_head; 1668 struct sym_lcbh lcb_head; 1669 #endif 1670 /* 1671 * Idle task and invalid task actions and 1672 * their bus addresses. 1673 */ 1674 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1675 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1676 1677 /* 1678 * Dummy lun table to protect us against target 1679 * returning bad lun number on reselection. 1680 */ 1681 u32 *badluntbl; /* Table physical address */ 1682 u32 badlun_sa; /* SCRIPT handler BUS address */ 1683 1684 /* 1685 * Bus address of this host control block. 1686 */ 1687 u32 hcb_ba; 1688 1689 /* 1690 * Bit 32-63 of the on-chip RAM bus address in LE format. 1691 * The START_RAM64 script loads the MMRS and MMWS from this 1692 * field. 1693 */ 1694 u32 scr_ram_seg; 1695 1696 /* 1697 * Chip and controller indentification. 1698 */ 1699 #ifdef FreeBSD_Bus_Io_Abstraction 1700 device_t device; 1701 #else 1702 pcici_t pci_tag; 1703 #endif 1704 int unit; 1705 char inst_name[8]; 1706 1707 /* 1708 * Initial value of some IO register bits. 1709 * These values are assumed to have been set by BIOS, and may 1710 * be used to probe adapter implementation differences. 1711 */ 1712 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1713 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1714 sv_stest1; 1715 1716 /* 1717 * Actual initial value of IO register bits used by the 1718 * driver. They are loaded at initialisation according to 1719 * features that are to be enabled/disabled. 1720 */ 1721 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1722 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1723 1724 /* 1725 * Target data. 1726 */ 1727 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1728 1729 /* 1730 * Target control block bus address array used by the SCRIPT 1731 * on reselection. 1732 */ 1733 u32 *targtbl; 1734 u32 targtbl_ba; 1735 1736 /* 1737 * CAM SIM information for this instance. 1738 */ 1739 struct cam_sim *sim; 1740 struct cam_path *path; 1741 1742 /* 1743 * Allocated hardware resources. 1744 */ 1745 #ifdef FreeBSD_Bus_Io_Abstraction 1746 struct resource *irq_res; 1747 struct resource *io_res; 1748 struct resource *mmio_res; 1749 struct resource *ram_res; 1750 int ram_id; 1751 void *intr; 1752 #endif 1753 1754 /* 1755 * Bus stuff. 1756 * 1757 * My understanding of PCI is that all agents must share the 1758 * same addressing range and model. 1759 * But some hardware architecture guys provide complex and 1760 * brain-deaded stuff that makes shit. 1761 * This driver only support PCI compliant implementations and 1762 * deals with part of the BUS stuff complexity only to fit O/S 1763 * requirements. 1764 */ 1765 #ifdef FreeBSD_Bus_Io_Abstraction 1766 bus_space_handle_t io_bsh; 1767 bus_space_tag_t io_tag; 1768 bus_space_handle_t mmio_bsh; 1769 bus_space_tag_t mmio_tag; 1770 bus_space_handle_t ram_bsh; 1771 bus_space_tag_t ram_tag; 1772 #endif 1773 1774 /* 1775 * DMA stuff. 1776 */ 1777 #ifdef FreeBSD_Bus_Dma_Abstraction 1778 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1779 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1780 #endif 1781 /* 1782 * Virtual and physical bus addresses of the chip. 1783 */ 1784 vm_offset_t mmio_va; /* MMIO kernel virtual address */ 1785 vm_offset_t mmio_pa; /* MMIO CPU physical address */ 1786 vm_offset_t mmio_ba; /* MMIO BUS address */ 1787 int mmio_ws; /* MMIO Window size */ 1788 1789 vm_offset_t ram_va; /* RAM kernel virtual address */ 1790 vm_offset_t ram_pa; /* RAM CPU physical address */ 1791 vm_offset_t ram_ba; /* RAM BUS address */ 1792 int ram_ws; /* RAM window size */ 1793 u32 io_port; /* IO port address */ 1794 1795 /* 1796 * SCRIPTS virtual and physical bus addresses. 1797 * 'script' is loaded in the on-chip RAM if present. 1798 * 'scripth' stays in main memory for all chips except the 1799 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1800 */ 1801 u_char *scripta0; /* Copies of script and scripth */ 1802 u_char *scriptb0; /* Copies of script and scripth */ 1803 vm_offset_t scripta_ba; /* Actual script and scripth */ 1804 vm_offset_t scriptb_ba; /* bus addresses. */ 1805 vm_offset_t scriptb0_ba; 1806 u_short scripta_sz; /* Actual size of script A */ 1807 u_short scriptb_sz; /* Actual size of script B */ 1808 1809 /* 1810 * Bus addresses, setup and patch methods for 1811 * the selected firmware. 1812 */ 1813 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1814 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1815 void (*fw_setup)(hcb_p np, struct sym_fw *fw); 1816 void (*fw_patch)(hcb_p np); 1817 char *fw_name; 1818 1819 /* 1820 * General controller parameters and configuration. 1821 */ 1822 u_short device_id; /* PCI device id */ 1823 u_char revision_id; /* PCI device revision id */ 1824 u_int features; /* Chip features map */ 1825 u_char myaddr; /* SCSI id of the adapter */ 1826 u_char maxburst; /* log base 2 of dwords burst */ 1827 u_char maxwide; /* Maximum transfer width */ 1828 u_char minsync; /* Min sync period factor (ST) */ 1829 u_char maxsync; /* Max sync period factor (ST) */ 1830 u_char maxoffs; /* Max scsi offset (ST) */ 1831 u_char minsync_dt; /* Min sync period factor (DT) */ 1832 u_char maxsync_dt; /* Max sync period factor (DT) */ 1833 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1834 u_char multiplier; /* Clock multiplier (1,2,4) */ 1835 u_char clock_divn; /* Number of clock divisors */ 1836 u32 clock_khz; /* SCSI clock frequency in KHz */ 1837 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1838 /* 1839 * Start queue management. 1840 * It is filled up by the host processor and accessed by the 1841 * SCRIPTS processor in order to start SCSI commands. 1842 */ 1843 volatile /* Prevent code optimizations */ 1844 u32 *squeue; /* Start queue virtual address */ 1845 u32 squeue_ba; /* Start queue BUS address */ 1846 u_short squeueput; /* Next free slot of the queue */ 1847 u_short actccbs; /* Number of allocated CCBs */ 1848 1849 /* 1850 * Command completion queue. 1851 * It is the same size as the start queue to avoid overflow. 1852 */ 1853 u_short dqueueget; /* Next position to scan */ 1854 volatile /* Prevent code optimizations */ 1855 u32 *dqueue; /* Completion (done) queue */ 1856 u32 dqueue_ba; /* Done queue BUS address */ 1857 1858 /* 1859 * Miscellaneous buffers accessed by the scripts-processor. 1860 * They shall be DWORD aligned, because they may be read or 1861 * written with a script command. 1862 */ 1863 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1864 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1865 u32 lastmsg; /* Last SCSI message sent */ 1866 u_char scratch; /* Scratch for SCSI receive */ 1867 1868 /* 1869 * Miscellaneous configuration and status parameters. 1870 */ 1871 u_char usrflags; /* Miscellaneous user flags */ 1872 u_char scsi_mode; /* Current SCSI BUS mode */ 1873 u_char verbose; /* Verbosity for this controller*/ 1874 u32 cache; /* Used for cache test at init. */ 1875 1876 /* 1877 * CCB lists and queue. 1878 */ 1879 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1880 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1881 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1882 1883 /* 1884 * During error handling and/or recovery, 1885 * active CCBs that are to be completed with 1886 * error or requeued are moved from the busy_ccbq 1887 * to the comp_ccbq prior to completion. 1888 */ 1889 SYM_QUEHEAD comp_ccbq; 1890 1891 /* 1892 * CAM CCB pending queue. 1893 */ 1894 SYM_QUEHEAD cam_ccbq; 1895 1896 /* 1897 * IMMEDIATE ARBITRATION (IARB) control. 1898 * 1899 * We keep track in 'last_cp' of the last CCB that has been 1900 * queued to the SCRIPTS processor and clear 'last_cp' when 1901 * this CCB completes. If last_cp is not zero at the moment 1902 * we queue a new CCB, we set a flag in 'last_cp' that is 1903 * used by the SCRIPTS as a hint for setting IARB. 1904 * We donnot set more than 'iarb_max' consecutive hints for 1905 * IARB in order to leave devices a chance to reselect. 1906 * By the way, any non zero value of 'iarb_max' is unfair. :) 1907 */ 1908 #ifdef SYM_CONF_IARB_SUPPORT 1909 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1910 u_short iarb_count; /* Actual # of these hints */ 1911 ccb_p last_cp; 1912 #endif 1913 1914 /* 1915 * Command abort handling. 1916 * We need to synchronize tightly with the SCRIPTS 1917 * processor in order to handle things correctly. 1918 */ 1919 u_char abrt_msg[4]; /* Message to send buffer */ 1920 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1921 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1922 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1923 }; 1924 1925 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1926 1927 /* 1928 * Return the name of the controller. 1929 */ 1930 static __inline char *sym_name(hcb_p np) 1931 { 1932 return np->inst_name; 1933 } 1934 1935 /*--------------------------------------------------------------------------*/ 1936 /*------------------------------ FIRMWARES ---------------------------------*/ 1937 /*--------------------------------------------------------------------------*/ 1938 1939 /* 1940 * This stuff will be moved to a separate source file when 1941 * the driver will be broken into several source modules. 1942 */ 1943 1944 /* 1945 * Macros used for all firmwares. 1946 */ 1947 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1948 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1949 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1950 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1951 1952 1953 #ifdef SYM_CONF_GENERIC_SUPPORT 1954 /* 1955 * Allocate firmware #1 script area. 1956 */ 1957 #define SYM_FWA_SCR sym_fw1a_scr 1958 #define SYM_FWB_SCR sym_fw1b_scr 1959 #include <dev/sym/sym_fw1.h> 1960 struct sym_fwa_ofs sym_fw1a_ofs = { 1961 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1962 }; 1963 struct sym_fwb_ofs sym_fw1b_ofs = { 1964 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1965 }; 1966 #undef SYM_FWA_SCR 1967 #undef SYM_FWB_SCR 1968 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1969 1970 /* 1971 * Allocate firmware #2 script area. 1972 */ 1973 #define SYM_FWA_SCR sym_fw2a_scr 1974 #define SYM_FWB_SCR sym_fw2b_scr 1975 #include <dev/sym/sym_fw2.h> 1976 struct sym_fwa_ofs sym_fw2a_ofs = { 1977 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1978 }; 1979 struct sym_fwb_ofs sym_fw2b_ofs = { 1980 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1981 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1982 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1983 }; 1984 #undef SYM_FWA_SCR 1985 #undef SYM_FWB_SCR 1986 1987 #undef SYM_GEN_A 1988 #undef SYM_GEN_B 1989 #undef PADDR_A 1990 #undef PADDR_B 1991 1992 #ifdef SYM_CONF_GENERIC_SUPPORT 1993 /* 1994 * Patch routine for firmware #1. 1995 */ 1996 static void 1997 sym_fw1_patch(hcb_p np) 1998 { 1999 struct sym_fw1a_scr *scripta0; 2000 struct sym_fw1b_scr *scriptb0; 2001 2002 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 2003 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 2004 2005 /* 2006 * Remove LED support if not needed. 2007 */ 2008 if (!(np->features & FE_LED0)) { 2009 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 2010 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 2011 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 2012 } 2013 2014 #ifdef SYM_CONF_IARB_SUPPORT 2015 /* 2016 * If user does not want to use IMMEDIATE ARBITRATION 2017 * when we are reselected while attempting to arbitrate, 2018 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 2019 */ 2020 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 2021 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 2022 #endif 2023 /* 2024 * Patch some data in SCRIPTS. 2025 * - start and done queue initial bus address. 2026 * - target bus address table bus address. 2027 */ 2028 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 2029 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 2030 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 2031 } 2032 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2033 2034 /* 2035 * Patch routine for firmware #2. 2036 */ 2037 static void 2038 sym_fw2_patch(hcb_p np) 2039 { 2040 struct sym_fw2a_scr *scripta0; 2041 struct sym_fw2b_scr *scriptb0; 2042 2043 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2044 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2045 2046 /* 2047 * Remove LED support if not needed. 2048 */ 2049 if (!(np->features & FE_LED0)) { 2050 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 2051 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 2052 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 2053 } 2054 2055 #ifdef SYM_CONF_IARB_SUPPORT 2056 /* 2057 * If user does not want to use IMMEDIATE ARBITRATION 2058 * when we are reselected while attempting to arbitrate, 2059 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 2060 */ 2061 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 2062 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 2063 #endif 2064 /* 2065 * Patch some variable in SCRIPTS. 2066 * - start and done queue initial bus address. 2067 * - target bus address table bus address. 2068 */ 2069 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 2070 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 2071 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 2072 2073 /* 2074 * Remove the load of SCNTL4 on reselection if not a C10. 2075 */ 2076 if (!(np->features & FE_C10)) { 2077 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 2078 scripta0->resel_scntl4[1] = cpu_to_scr(0); 2079 } 2080 2081 /* 2082 * Remove a couple of work-arounds specific to C1010 if 2083 * they are not desirable. See `sym_fw2.h' for more details. 2084 */ 2085 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 2086 np->revision_id < 0x1 && 2087 np->pciclk_khz < 60000)) { 2088 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 2089 scripta0->datao_phase[1] = cpu_to_scr(0); 2090 } 2091 if (!(np->device_id == PCI_ID_LSI53C1010 && 2092 /* np->revision_id < 0xff */ 1)) { 2093 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 2094 scripta0->sel_done[1] = cpu_to_scr(0); 2095 } 2096 2097 /* 2098 * Patch some other variables in SCRIPTS. 2099 * These ones are loaded by the SCRIPTS processor. 2100 */ 2101 scriptb0->pm0_data_addr[0] = 2102 cpu_to_scr(np->scripta_ba + 2103 offsetof(struct sym_fw2a_scr, pm0_data)); 2104 scriptb0->pm1_data_addr[0] = 2105 cpu_to_scr(np->scripta_ba + 2106 offsetof(struct sym_fw2a_scr, pm1_data)); 2107 } 2108 2109 /* 2110 * Fill the data area in scripts. 2111 * To be done for all firmwares. 2112 */ 2113 static void 2114 sym_fw_fill_data (u32 *in, u32 *out) 2115 { 2116 int i; 2117 2118 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 2119 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 2120 *in++ = offsetof (struct sym_dsb, data[i]); 2121 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 2122 *out++ = offsetof (struct sym_dsb, data[i]); 2123 } 2124 } 2125 2126 /* 2127 * Setup useful script bus addresses. 2128 * To be done for all firmwares. 2129 */ 2130 static void 2131 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw) 2132 { 2133 u32 *pa; 2134 u_short *po; 2135 int i; 2136 2137 /* 2138 * Build the bus address table for script A 2139 * from the script A offset table. 2140 */ 2141 po = (u_short *) fw->a_ofs; 2142 pa = (u32 *) &np->fwa_bas; 2143 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 2144 pa[i] = np->scripta_ba + po[i]; 2145 2146 /* 2147 * Same for script B. 2148 */ 2149 po = (u_short *) fw->b_ofs; 2150 pa = (u32 *) &np->fwb_bas; 2151 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 2152 pa[i] = np->scriptb_ba + po[i]; 2153 } 2154 2155 #ifdef SYM_CONF_GENERIC_SUPPORT 2156 /* 2157 * Setup routine for firmware #1. 2158 */ 2159 static void 2160 sym_fw1_setup(hcb_p np, struct sym_fw *fw) 2161 { 2162 struct sym_fw1a_scr *scripta0; 2163 struct sym_fw1b_scr *scriptb0; 2164 2165 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 2166 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 2167 2168 /* 2169 * Fill variable parts in scripts. 2170 */ 2171 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2172 2173 /* 2174 * Setup bus addresses used from the C code.. 2175 */ 2176 sym_fw_setup_bus_addresses(np, fw); 2177 } 2178 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2179 2180 /* 2181 * Setup routine for firmware #2. 2182 */ 2183 static void 2184 sym_fw2_setup(hcb_p np, struct sym_fw *fw) 2185 { 2186 struct sym_fw2a_scr *scripta0; 2187 struct sym_fw2b_scr *scriptb0; 2188 2189 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2190 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2191 2192 /* 2193 * Fill variable parts in scripts. 2194 */ 2195 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2196 2197 /* 2198 * Setup bus addresses used from the C code.. 2199 */ 2200 sym_fw_setup_bus_addresses(np, fw); 2201 } 2202 2203 /* 2204 * Allocate firmware descriptors. 2205 */ 2206 #ifdef SYM_CONF_GENERIC_SUPPORT 2207 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2208 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2209 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2210 2211 /* 2212 * Find the most appropriate firmware for a chip. 2213 */ 2214 static struct sym_fw * 2215 sym_find_firmware(struct sym_pci_chip *chip) 2216 { 2217 if (chip->features & FE_LDSTR) 2218 return &sym_fw2; 2219 #ifdef SYM_CONF_GENERIC_SUPPORT 2220 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2221 return &sym_fw1; 2222 #endif 2223 else 2224 return 0; 2225 } 2226 2227 /* 2228 * Bind a script to physical addresses. 2229 */ 2230 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2231 { 2232 u32 opcode, new, old, tmp1, tmp2; 2233 u32 *end, *cur; 2234 int relocs; 2235 2236 cur = start; 2237 end = start + len/4; 2238 2239 while (cur < end) { 2240 2241 opcode = *cur; 2242 2243 /* 2244 * If we forget to change the length 2245 * in scripts, a field will be 2246 * padded with 0. This is an illegal 2247 * command. 2248 */ 2249 if (opcode == 0) { 2250 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2251 sym_name(np), (int) (cur-start)); 2252 MDELAY (10000); 2253 ++cur; 2254 continue; 2255 }; 2256 2257 /* 2258 * We use the bogus value 0xf00ff00f ;-) 2259 * to reserve data area in SCRIPTS. 2260 */ 2261 if (opcode == SCR_DATA_ZERO) { 2262 *cur++ = 0; 2263 continue; 2264 } 2265 2266 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2267 printf ("%d: <%x>\n", (int) (cur-start), 2268 (unsigned)opcode); 2269 2270 /* 2271 * We don't have to decode ALL commands 2272 */ 2273 switch (opcode >> 28) { 2274 case 0xf: 2275 /* 2276 * LOAD / STORE DSA relative, don't relocate. 2277 */ 2278 relocs = 0; 2279 break; 2280 case 0xe: 2281 /* 2282 * LOAD / STORE absolute. 2283 */ 2284 relocs = 1; 2285 break; 2286 case 0xc: 2287 /* 2288 * COPY has TWO arguments. 2289 */ 2290 relocs = 2; 2291 tmp1 = cur[1]; 2292 tmp2 = cur[2]; 2293 if ((tmp1 ^ tmp2) & 3) { 2294 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2295 sym_name(np), (int) (cur-start)); 2296 MDELAY (10000); 2297 } 2298 /* 2299 * If PREFETCH feature not enabled, remove 2300 * the NO FLUSH bit if present. 2301 */ 2302 if ((opcode & SCR_NO_FLUSH) && 2303 !(np->features & FE_PFEN)) { 2304 opcode = (opcode & ~SCR_NO_FLUSH); 2305 } 2306 break; 2307 case 0x0: 2308 /* 2309 * MOVE/CHMOV (absolute address) 2310 */ 2311 if (!(np->features & FE_WIDE)) 2312 opcode = (opcode | OPC_MOVE); 2313 relocs = 1; 2314 break; 2315 case 0x1: 2316 /* 2317 * MOVE/CHMOV (table indirect) 2318 */ 2319 if (!(np->features & FE_WIDE)) 2320 opcode = (opcode | OPC_MOVE); 2321 relocs = 0; 2322 break; 2323 case 0x8: 2324 /* 2325 * JUMP / CALL 2326 * dont't relocate if relative :-) 2327 */ 2328 if (opcode & 0x00800000) 2329 relocs = 0; 2330 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2331 relocs = 2; 2332 else 2333 relocs = 1; 2334 break; 2335 case 0x4: 2336 case 0x5: 2337 case 0x6: 2338 case 0x7: 2339 relocs = 1; 2340 break; 2341 default: 2342 relocs = 0; 2343 break; 2344 }; 2345 2346 /* 2347 * Scriptify:) the opcode. 2348 */ 2349 *cur++ = cpu_to_scr(opcode); 2350 2351 /* 2352 * If no relocation, assume 1 argument 2353 * and just scriptize:) it. 2354 */ 2355 if (!relocs) { 2356 *cur = cpu_to_scr(*cur); 2357 ++cur; 2358 continue; 2359 } 2360 2361 /* 2362 * Otherwise performs all needed relocations. 2363 */ 2364 while (relocs--) { 2365 old = *cur; 2366 2367 switch (old & RELOC_MASK) { 2368 case RELOC_REGISTER: 2369 new = (old & ~RELOC_MASK) + np->mmio_ba; 2370 break; 2371 case RELOC_LABEL_A: 2372 new = (old & ~RELOC_MASK) + np->scripta_ba; 2373 break; 2374 case RELOC_LABEL_B: 2375 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2376 break; 2377 case RELOC_SOFTC: 2378 new = (old & ~RELOC_MASK) + np->hcb_ba; 2379 break; 2380 case 0: 2381 /* 2382 * Don't relocate a 0 address. 2383 * They are mostly used for patched or 2384 * script self-modified areas. 2385 */ 2386 if (old == 0) { 2387 new = old; 2388 break; 2389 } 2390 /* fall through */ 2391 default: 2392 new = 0; 2393 panic("sym_fw_bind_script: " 2394 "weird relocation %x\n", old); 2395 break; 2396 } 2397 2398 *cur++ = cpu_to_scr(new); 2399 } 2400 }; 2401 } 2402 2403 /*--------------------------------------------------------------------------*/ 2404 /*--------------------------- END OF FIRMARES -----------------------------*/ 2405 /*--------------------------------------------------------------------------*/ 2406 2407 /* 2408 * Function prototypes. 2409 */ 2410 static void sym_save_initial_setting (hcb_p np); 2411 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2412 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2413 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2414 static void sym_chip_reset (hcb_p np); 2415 static void sym_soft_reset (hcb_p np); 2416 static void sym_start_reset (hcb_p np); 2417 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2418 static int sym_wakeup_done (hcb_p np); 2419 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2420 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2421 static void sym_init (hcb_p np, int reason); 2422 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2423 u_char *fakp); 2424 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2425 u_char div, u_char fak); 2426 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2427 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2428 u_char per, u_char wide, u_char div, u_char fak); 2429 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2430 u_char per, u_char wide, u_char div, u_char fak); 2431 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2432 static void sym_intr (void *arg); 2433 static void sym_poll (struct cam_sim *sim); 2434 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2435 static void sym_int_sto (hcb_p np); 2436 static void sym_int_udc (hcb_p np); 2437 static void sym_int_sbmc (hcb_p np); 2438 static void sym_int_par (hcb_p np, u_short sist); 2439 static void sym_int_ma (hcb_p np); 2440 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2441 int task); 2442 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2443 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2444 static void sym_sir_task_recovery (hcb_p np, int num); 2445 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2446 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2447 static int sym_compute_residual (hcb_p np, ccb_p cp); 2448 static int sym_show_msg (u_char * msg); 2449 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2450 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2451 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2452 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2453 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2454 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2455 static void sym_int_sir (hcb_p np); 2456 static void sym_free_ccb (hcb_p np, ccb_p cp); 2457 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2458 static ccb_p sym_alloc_ccb (hcb_p np); 2459 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2460 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2461 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2462 static int sym_snooptest (hcb_p np); 2463 static void sym_selectclock(hcb_p np, u_char scntl3); 2464 static void sym_getclock (hcb_p np, int mult); 2465 static int sym_getpciclock (hcb_p np); 2466 static void sym_complete_ok (hcb_p np, ccb_p cp); 2467 static void sym_complete_error (hcb_p np, ccb_p cp); 2468 static void sym_timeout (void *arg); 2469 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2470 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2471 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2472 static void sym_action1 (struct cam_sim *sim, union ccb *ccb); 2473 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2474 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2475 ccb_p cp); 2476 #ifdef FreeBSD_Bus_Dma_Abstraction 2477 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2478 bus_dma_segment_t *psegs, int nsegs); 2479 #else 2480 static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr, 2481 vm_size_t len); 2482 static int sym_scatter_sg_virtual (hcb_p np, ccb_p cp, 2483 bus_dma_segment_t *psegs, int nsegs); 2484 static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr, 2485 vm_size_t len); 2486 #endif 2487 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2488 bus_dma_segment_t *psegs, int nsegs); 2489 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2490 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2491 struct ccb_trans_settings *cts); 2492 static void sym_update_dflags(hcb_p np, u_char *flags, 2493 struct ccb_trans_settings *cts); 2494 2495 #ifdef FreeBSD_Bus_Io_Abstraction 2496 static struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2497 static int sym_pci_probe (device_t dev); 2498 static int sym_pci_attach (device_t dev); 2499 #else 2500 static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag); 2501 static const char *sym_pci_probe (pcici_t tag, pcidi_t type); 2502 static void sym_pci_attach (pcici_t tag, int unit); 2503 static int sym_pci_attach2 (pcici_t tag, int unit); 2504 #endif 2505 2506 static void sym_pci_free (hcb_p np); 2507 static int sym_cam_attach (hcb_p np); 2508 static void sym_cam_free (hcb_p np); 2509 2510 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2511 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2512 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2513 2514 /* 2515 * Print something which allows to retrieve the controler type, 2516 * unit, target, lun concerned by a kernel message. 2517 */ 2518 static void PRINT_TARGET (hcb_p np, int target) 2519 { 2520 printf ("%s:%d:", sym_name(np), target); 2521 } 2522 2523 static void PRINT_LUN(hcb_p np, int target, int lun) 2524 { 2525 printf ("%s:%d:%d:", sym_name(np), target, lun); 2526 } 2527 2528 static void PRINT_ADDR (ccb_p cp) 2529 { 2530 if (cp && cp->cam_ccb) 2531 xpt_print_path(cp->cam_ccb->ccb_h.path); 2532 } 2533 2534 /* 2535 * Take into account this ccb in the freeze count. 2536 */ 2537 static void sym_freeze_cam_ccb(union ccb *ccb) 2538 { 2539 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2540 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2541 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2542 xpt_freeze_devq(ccb->ccb_h.path, 1); 2543 } 2544 } 2545 } 2546 2547 /* 2548 * Set the status field of a CAM CCB. 2549 */ 2550 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2551 { 2552 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2553 ccb->ccb_h.status |= status; 2554 } 2555 2556 /* 2557 * Get the status field of a CAM CCB. 2558 */ 2559 static __inline int sym_get_cam_status(union ccb *ccb) 2560 { 2561 return ccb->ccb_h.status & CAM_STATUS_MASK; 2562 } 2563 2564 /* 2565 * Enqueue a CAM CCB. 2566 */ 2567 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) 2568 { 2569 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2570 ccb->ccb_h.status = CAM_REQ_INPROG; 2571 2572 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 2573 ccb->ccb_h.timeout*hz/1000); 2574 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2575 ccb->ccb_h.sym_hcb_ptr = np; 2576 2577 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2578 } 2579 2580 /* 2581 * Complete a pending CAM CCB. 2582 */ 2583 static void sym_xpt_done(hcb_p np, union ccb *ccb) 2584 { 2585 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2586 untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch); 2587 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2588 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2589 ccb->ccb_h.sym_hcb_ptr = 0; 2590 } 2591 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2592 sym_freeze_cam_ccb(ccb); 2593 xpt_done(ccb); 2594 } 2595 2596 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2597 { 2598 sym_set_cam_status(ccb, cam_status); 2599 sym_xpt_done(np, ccb); 2600 } 2601 2602 /* 2603 * SYMBIOS chip clock divisor table. 2604 * 2605 * Divisors are multiplied by 10,000,000 in order to make 2606 * calculations more simple. 2607 */ 2608 #define _5M 5000000 2609 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2610 2611 /* 2612 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2613 * 128 transfers. All chips support at least 16 transfers 2614 * bursts. The 825A, 875 and 895 chips support bursts of up 2615 * to 128 transfers and the 895A and 896 support bursts of up 2616 * to 64 transfers. All other chips support up to 16 2617 * transfers bursts. 2618 * 2619 * For PCI 32 bit data transfers each transfer is a DWORD. 2620 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2621 * 2622 * We use log base 2 (burst length) as internal code, with 2623 * value 0 meaning "burst disabled". 2624 */ 2625 2626 /* 2627 * Burst length from burst code. 2628 */ 2629 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2630 2631 /* 2632 * Burst code from io register bits. 2633 */ 2634 #define burst_code(dmode, ctest4, ctest5) \ 2635 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2636 2637 /* 2638 * Set initial io register bits from burst code. 2639 */ 2640 static __inline void sym_init_burst(hcb_p np, u_char bc) 2641 { 2642 np->rv_ctest4 &= ~0x80; 2643 np->rv_dmode &= ~(0x3 << 6); 2644 np->rv_ctest5 &= ~0x4; 2645 2646 if (!bc) { 2647 np->rv_ctest4 |= 0x80; 2648 } 2649 else { 2650 --bc; 2651 np->rv_dmode |= ((bc & 0x3) << 6); 2652 np->rv_ctest5 |= (bc & 0x4); 2653 } 2654 } 2655 2656 2657 /* 2658 * Print out the list of targets that have some flag disabled by user. 2659 */ 2660 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2661 { 2662 int cnt; 2663 int i; 2664 2665 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2666 if (i == np->myaddr) 2667 continue; 2668 if (np->target[i].usrflags & mask) { 2669 if (!cnt++) 2670 printf("%s: %s disabled for targets", 2671 sym_name(np), msg); 2672 printf(" %d", i); 2673 } 2674 } 2675 if (cnt) 2676 printf(".\n"); 2677 } 2678 2679 /* 2680 * Save initial settings of some IO registers. 2681 * Assumed to have been set by BIOS. 2682 * We cannot reset the chip prior to reading the 2683 * IO registers, since informations will be lost. 2684 * Since the SCRIPTS processor may be running, this 2685 * is not safe on paper, but it seems to work quite 2686 * well. :) 2687 */ 2688 static void sym_save_initial_setting (hcb_p np) 2689 { 2690 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2691 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2692 np->sv_dmode = INB(nc_dmode) & 0xce; 2693 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2694 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2695 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2696 np->sv_gpcntl = INB(nc_gpcntl); 2697 np->sv_stest1 = INB(nc_stest1); 2698 np->sv_stest2 = INB(nc_stest2) & 0x20; 2699 np->sv_stest4 = INB(nc_stest4); 2700 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2701 np->sv_scntl4 = INB(nc_scntl4); 2702 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2703 } 2704 else 2705 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2706 } 2707 2708 /* 2709 * Prepare io register values used by sym_init() according 2710 * to selected and supported features. 2711 */ 2712 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2713 { 2714 u_char burst_max; 2715 u32 period; 2716 int i; 2717 2718 /* 2719 * Wide ? 2720 */ 2721 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2722 2723 /* 2724 * Get the frequency of the chip's clock. 2725 */ 2726 if (np->features & FE_QUAD) 2727 np->multiplier = 4; 2728 else if (np->features & FE_DBLR) 2729 np->multiplier = 2; 2730 else 2731 np->multiplier = 1; 2732 2733 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2734 np->clock_khz *= np->multiplier; 2735 2736 if (np->clock_khz != 40000) 2737 sym_getclock(np, np->multiplier); 2738 2739 /* 2740 * Divisor to be used for async (timer pre-scaler). 2741 */ 2742 i = np->clock_divn - 1; 2743 while (--i >= 0) { 2744 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2745 ++i; 2746 break; 2747 } 2748 } 2749 np->rv_scntl3 = i+1; 2750 2751 /* 2752 * The C1010 uses hardwired divisors for async. 2753 * So, we just throw away, the async. divisor.:-) 2754 */ 2755 if (np->features & FE_C10) 2756 np->rv_scntl3 = 0; 2757 2758 /* 2759 * Minimum synchronous period factor supported by the chip. 2760 * Btw, 'period' is in tenths of nanoseconds. 2761 */ 2762 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2763 if (period <= 250) np->minsync = 10; 2764 else if (period <= 303) np->minsync = 11; 2765 else if (period <= 500) np->minsync = 12; 2766 else np->minsync = (period + 40 - 1) / 40; 2767 2768 /* 2769 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2770 */ 2771 if (np->minsync < 25 && 2772 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2773 np->minsync = 25; 2774 else if (np->minsync < 12 && 2775 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2776 np->minsync = 12; 2777 2778 /* 2779 * Maximum synchronous period factor supported by the chip. 2780 */ 2781 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2782 np->maxsync = period > 2540 ? 254 : period / 10; 2783 2784 /* 2785 * If chip is a C1010, guess the sync limits in DT mode. 2786 */ 2787 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2788 if (np->clock_khz == 160000) { 2789 np->minsync_dt = 9; 2790 np->maxsync_dt = 50; 2791 np->maxoffs_dt = 62; 2792 } 2793 } 2794 2795 /* 2796 * 64 bit addressing (895A/896/1010) ? 2797 */ 2798 if (np->features & FE_DAC) 2799 #if BITS_PER_LONG > 32 2800 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2801 #else 2802 np->rv_ccntl1 |= (DDAC); 2803 #endif 2804 2805 /* 2806 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2807 */ 2808 if (np->features & FE_NOPM) 2809 np->rv_ccntl0 |= (ENPMJ); 2810 2811 /* 2812 * C1010 Errata. 2813 * In dual channel mode, contention occurs if internal cycles 2814 * are used. Disable internal cycles. 2815 */ 2816 if (np->device_id == PCI_ID_LSI53C1010 && 2817 np->revision_id < 0x2) 2818 np->rv_ccntl0 |= DILS; 2819 2820 /* 2821 * Select burst length (dwords) 2822 */ 2823 burst_max = SYM_SETUP_BURST_ORDER; 2824 if (burst_max == 255) 2825 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2826 np->sv_ctest5); 2827 if (burst_max > 7) 2828 burst_max = 7; 2829 if (burst_max > np->maxburst) 2830 burst_max = np->maxburst; 2831 2832 /* 2833 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2834 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2835 * based transactions on LOAD/STORE instructions. So we have 2836 * to prevent these chips from using such PCI transactions in 2837 * this driver. The generic ncr driver that does not use 2838 * LOAD/STORE instructions does not need this work-around. 2839 */ 2840 if ((np->device_id == PCI_ID_SYM53C810 && 2841 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2842 (np->device_id == PCI_ID_SYM53C860 && 2843 np->revision_id <= 0x1)) 2844 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2845 2846 /* 2847 * Select all supported special features. 2848 * If we are using on-board RAM for scripts, prefetch (PFEN) 2849 * does not help, but burst op fetch (BOF) does. 2850 * Disabling PFEN makes sure BOF will be used. 2851 */ 2852 if (np->features & FE_ERL) 2853 np->rv_dmode |= ERL; /* Enable Read Line */ 2854 if (np->features & FE_BOF) 2855 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2856 if (np->features & FE_ERMP) 2857 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2858 #if 1 2859 if ((np->features & FE_PFEN) && !np->ram_ba) 2860 #else 2861 if (np->features & FE_PFEN) 2862 #endif 2863 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2864 if (np->features & FE_CLSE) 2865 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2866 if (np->features & FE_WRIE) 2867 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2868 if (np->features & FE_DFS) 2869 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2870 2871 /* 2872 * Select some other 2873 */ 2874 if (SYM_SETUP_PCI_PARITY) 2875 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2876 if (SYM_SETUP_SCSI_PARITY) 2877 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2878 2879 /* 2880 * Get parity checking, host ID and verbose mode from NVRAM 2881 */ 2882 np->myaddr = 255; 2883 sym_nvram_setup_host (np, nvram); 2884 2885 /* 2886 * Get SCSI addr of host adapter (set by bios?). 2887 */ 2888 if (np->myaddr == 255) { 2889 np->myaddr = INB(nc_scid) & 0x07; 2890 if (!np->myaddr) 2891 np->myaddr = SYM_SETUP_HOST_ID; 2892 } 2893 2894 /* 2895 * Prepare initial io register bits for burst length 2896 */ 2897 sym_init_burst(np, burst_max); 2898 2899 /* 2900 * Set SCSI BUS mode. 2901 * - LVD capable chips (895/895A/896/1010) report the 2902 * current BUS mode through the STEST4 IO register. 2903 * - For previous generation chips (825/825A/875), 2904 * user has to tell us how to check against HVD, 2905 * since a 100% safe algorithm is not possible. 2906 */ 2907 np->scsi_mode = SMODE_SE; 2908 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2909 np->scsi_mode = (np->sv_stest4 & SMODE); 2910 else if (np->features & FE_DIFF) { 2911 if (SYM_SETUP_SCSI_DIFF == 1) { 2912 if (np->sv_scntl3) { 2913 if (np->sv_stest2 & 0x20) 2914 np->scsi_mode = SMODE_HVD; 2915 } 2916 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2917 if (!(INB(nc_gpreg) & 0x08)) 2918 np->scsi_mode = SMODE_HVD; 2919 } 2920 } 2921 else if (SYM_SETUP_SCSI_DIFF == 2) 2922 np->scsi_mode = SMODE_HVD; 2923 } 2924 if (np->scsi_mode == SMODE_HVD) 2925 np->rv_stest2 |= 0x20; 2926 2927 /* 2928 * Set LED support from SCRIPTS. 2929 * Ignore this feature for boards known to use a 2930 * specific GPIO wiring and for the 895A, 896 2931 * and 1010 that drive the LED directly. 2932 */ 2933 if ((SYM_SETUP_SCSI_LED || 2934 (nvram->type == SYM_SYMBIOS_NVRAM || 2935 (nvram->type == SYM_TEKRAM_NVRAM && 2936 np->device_id == PCI_ID_SYM53C895))) && 2937 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2938 np->features |= FE_LED0; 2939 2940 /* 2941 * Set irq mode. 2942 */ 2943 switch(SYM_SETUP_IRQ_MODE & 3) { 2944 case 2: 2945 np->rv_dcntl |= IRQM; 2946 break; 2947 case 1: 2948 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2949 break; 2950 default: 2951 break; 2952 } 2953 2954 /* 2955 * Configure targets according to driver setup. 2956 * If NVRAM present get targets setup from NVRAM. 2957 */ 2958 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2959 tcb_p tp = &np->target[i]; 2960 2961 #ifdef FreeBSD_New_Tran_Settings 2962 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2963 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2964 #endif 2965 tp->tinfo.user.period = np->minsync; 2966 tp->tinfo.user.offset = np->maxoffs; 2967 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2968 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2969 tp->usrtags = SYM_SETUP_MAX_TAG; 2970 2971 sym_nvram_setup_target (np, i, nvram); 2972 2973 /* 2974 * For now, guess PPR/DT support from the period 2975 * and BUS width. 2976 */ 2977 if (np->features & FE_ULTRA3) { 2978 if (tp->tinfo.user.period <= 9 && 2979 tp->tinfo.user.width == BUS_16_BIT) { 2980 tp->tinfo.user.options |= PPR_OPT_DT; 2981 tp->tinfo.user.offset = np->maxoffs_dt; 2982 #ifdef FreeBSD_New_Tran_Settings 2983 tp->tinfo.user.spi_version = 3; 2984 #endif 2985 } 2986 } 2987 2988 if (!tp->usrtags) 2989 tp->usrflags &= ~SYM_TAGS_ENABLED; 2990 } 2991 2992 /* 2993 * Let user know about the settings. 2994 */ 2995 i = nvram->type; 2996 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2997 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2998 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2999 np->myaddr, 3000 (np->features & FE_ULTRA3) ? 80 : 3001 (np->features & FE_ULTRA2) ? 40 : 3002 (np->features & FE_ULTRA) ? 20 : 10, 3003 sym_scsi_bus_mode(np->scsi_mode), 3004 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 3005 /* 3006 * Tell him more on demand. 3007 */ 3008 if (sym_verbose) { 3009 printf("%s: %s IRQ line driver%s\n", 3010 sym_name(np), 3011 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 3012 np->ram_ba ? ", using on-chip SRAM" : ""); 3013 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 3014 if (np->features & FE_NOPM) 3015 printf("%s: handling phase mismatch from SCRIPTS.\n", 3016 sym_name(np)); 3017 } 3018 /* 3019 * And still more. 3020 */ 3021 if (sym_verbose > 1) { 3022 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3023 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3024 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 3025 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 3026 3027 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3028 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3029 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 3030 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 3031 } 3032 /* 3033 * Let user be aware of targets that have some disable flags set. 3034 */ 3035 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 3036 if (sym_verbose) 3037 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 3038 "SCAN FOR LUNS"); 3039 3040 return 0; 3041 } 3042 3043 /* 3044 * Prepare the next negotiation message if needed. 3045 * 3046 * Fill in the part of message buffer that contains the 3047 * negotiation and the nego_status field of the CCB. 3048 * Returns the size of the message in bytes. 3049 */ 3050 3051 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 3052 { 3053 tcb_p tp = &np->target[cp->target]; 3054 int msglen = 0; 3055 3056 /* 3057 * Early C1010 chips need a work-around for DT 3058 * data transfer to work. 3059 */ 3060 if (!(np->features & FE_U3EN)) 3061 tp->tinfo.goal.options = 0; 3062 /* 3063 * negotiate using PPR ? 3064 */ 3065 if (tp->tinfo.goal.options & PPR_OPT_MASK) 3066 nego = NS_PPR; 3067 /* 3068 * negotiate wide transfers ? 3069 */ 3070 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 3071 nego = NS_WIDE; 3072 /* 3073 * negotiate synchronous transfers? 3074 */ 3075 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 3076 tp->tinfo.current.offset != tp->tinfo.goal.offset) 3077 nego = NS_SYNC; 3078 3079 switch (nego) { 3080 case NS_SYNC: 3081 msgptr[msglen++] = M_EXTENDED; 3082 msgptr[msglen++] = 3; 3083 msgptr[msglen++] = M_X_SYNC_REQ; 3084 msgptr[msglen++] = tp->tinfo.goal.period; 3085 msgptr[msglen++] = tp->tinfo.goal.offset; 3086 break; 3087 case NS_WIDE: 3088 msgptr[msglen++] = M_EXTENDED; 3089 msgptr[msglen++] = 2; 3090 msgptr[msglen++] = M_X_WIDE_REQ; 3091 msgptr[msglen++] = tp->tinfo.goal.width; 3092 break; 3093 case NS_PPR: 3094 msgptr[msglen++] = M_EXTENDED; 3095 msgptr[msglen++] = 6; 3096 msgptr[msglen++] = M_X_PPR_REQ; 3097 msgptr[msglen++] = tp->tinfo.goal.period; 3098 msgptr[msglen++] = 0; 3099 msgptr[msglen++] = tp->tinfo.goal.offset; 3100 msgptr[msglen++] = tp->tinfo.goal.width; 3101 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 3102 break; 3103 }; 3104 3105 cp->nego_status = nego; 3106 3107 if (nego) { 3108 tp->nego_cp = cp; /* Keep track a nego will be performed */ 3109 if (DEBUG_FLAGS & DEBUG_NEGO) { 3110 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 3111 nego == NS_WIDE ? "wide msgout" : 3112 "ppr msgout", msgptr); 3113 }; 3114 }; 3115 3116 return msglen; 3117 } 3118 3119 /* 3120 * Insert a job into the start queue. 3121 */ 3122 static void sym_put_start_queue(hcb_p np, ccb_p cp) 3123 { 3124 u_short qidx; 3125 3126 #ifdef SYM_CONF_IARB_SUPPORT 3127 /* 3128 * If the previously queued CCB is not yet done, 3129 * set the IARB hint. The SCRIPTS will go with IARB 3130 * for this job when starting the previous one. 3131 * We leave devices a chance to win arbitration by 3132 * not using more than 'iarb_max' consecutive 3133 * immediate arbitrations. 3134 */ 3135 if (np->last_cp && np->iarb_count < np->iarb_max) { 3136 np->last_cp->host_flags |= HF_HINT_IARB; 3137 ++np->iarb_count; 3138 } 3139 else 3140 np->iarb_count = 0; 3141 np->last_cp = cp; 3142 #endif 3143 3144 /* 3145 * Insert first the idle task and then our job. 3146 * The MB should ensure proper ordering. 3147 */ 3148 qidx = np->squeueput + 2; 3149 if (qidx >= MAX_QUEUE*2) qidx = 0; 3150 3151 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 3152 MEMORY_BARRIER(); 3153 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 3154 3155 np->squeueput = qidx; 3156 3157 if (DEBUG_FLAGS & DEBUG_QUEUE) 3158 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 3159 3160 /* 3161 * Script processor may be waiting for reselect. 3162 * Wake it up. 3163 */ 3164 MEMORY_BARRIER(); 3165 OUTB (nc_istat, SIGP|np->istat_sem); 3166 } 3167 3168 3169 /* 3170 * Soft reset the chip. 3171 * 3172 * Raising SRST when the chip is running may cause 3173 * problems on dual function chips (see below). 3174 * On the other hand, LVD devices need some delay 3175 * to settle and report actual BUS mode in STEST4. 3176 */ 3177 static void sym_chip_reset (hcb_p np) 3178 { 3179 OUTB (nc_istat, SRST); 3180 UDELAY (10); 3181 OUTB (nc_istat, 0); 3182 UDELAY(2000); /* For BUS MODE to settle */ 3183 } 3184 3185 /* 3186 * Soft reset the chip. 3187 * 3188 * Some 896 and 876 chip revisions may hang-up if we set 3189 * the SRST (soft reset) bit at the wrong time when SCRIPTS 3190 * are running. 3191 * So, we need to abort the current operation prior to 3192 * soft resetting the chip. 3193 */ 3194 static void sym_soft_reset (hcb_p np) 3195 { 3196 u_char istat; 3197 int i; 3198 3199 OUTB (nc_istat, CABRT); 3200 for (i = 1000000 ; i ; --i) { 3201 istat = INB (nc_istat); 3202 if (istat & SIP) { 3203 INW (nc_sist); 3204 continue; 3205 } 3206 if (istat & DIP) { 3207 OUTB (nc_istat, 0); 3208 INB (nc_dstat); 3209 break; 3210 } 3211 } 3212 if (!i) 3213 printf("%s: unable to abort current chip operation.\n", 3214 sym_name(np)); 3215 sym_chip_reset (np); 3216 } 3217 3218 /* 3219 * Start reset process. 3220 * 3221 * The interrupt handler will reinitialize the chip. 3222 */ 3223 static void sym_start_reset(hcb_p np) 3224 { 3225 (void) sym_reset_scsi_bus(np, 1); 3226 } 3227 3228 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3229 { 3230 u32 term; 3231 int retv = 0; 3232 3233 sym_soft_reset(np); /* Soft reset the chip */ 3234 if (enab_int) 3235 OUTW (nc_sien, RST); 3236 /* 3237 * Enable Tolerant, reset IRQD if present and 3238 * properly set IRQ mode, prior to resetting the bus. 3239 */ 3240 OUTB (nc_stest3, TE); 3241 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3242 OUTB (nc_scntl1, CRST); 3243 UDELAY (200); 3244 3245 if (!SYM_SETUP_SCSI_BUS_CHECK) 3246 goto out; 3247 /* 3248 * Check for no terminators or SCSI bus shorts to ground. 3249 * Read SCSI data bus, data parity bits and control signals. 3250 * We are expecting RESET to be TRUE and other signals to be 3251 * FALSE. 3252 */ 3253 term = INB(nc_sstat0); 3254 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3255 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3256 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3257 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3258 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3259 3260 if (!(np->features & FE_WIDE)) 3261 term &= 0x3ffff; 3262 3263 if (term != (2<<7)) { 3264 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3265 sym_name(np)); 3266 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3267 "0x%lx, expecting 0x%lx\n", 3268 sym_name(np), 3269 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3270 (u_long)term, (u_long)(2<<7)); 3271 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3272 retv = 1; 3273 } 3274 out: 3275 OUTB (nc_scntl1, 0); 3276 /* MDELAY(100); */ 3277 return retv; 3278 } 3279 3280 /* 3281 * The chip may have completed jobs. Look at the DONE QUEUE. 3282 * 3283 * On architectures that may reorder LOAD/STORE operations, 3284 * a memory barrier may be needed after the reading of the 3285 * so-called `flag' and prior to dealing with the data. 3286 */ 3287 static int sym_wakeup_done (hcb_p np) 3288 { 3289 ccb_p cp; 3290 int i, n; 3291 u32 dsa; 3292 3293 n = 0; 3294 i = np->dqueueget; 3295 while (1) { 3296 dsa = scr_to_cpu(np->dqueue[i]); 3297 if (!dsa) 3298 break; 3299 np->dqueue[i] = 0; 3300 if ((i = i+2) >= MAX_QUEUE*2) 3301 i = 0; 3302 3303 cp = sym_ccb_from_dsa(np, dsa); 3304 if (cp) { 3305 MEMORY_BARRIER(); 3306 sym_complete_ok (np, cp); 3307 ++n; 3308 } 3309 else 3310 printf ("%s: bad DSA (%x) in done queue.\n", 3311 sym_name(np), (u_int) dsa); 3312 } 3313 np->dqueueget = i; 3314 3315 return n; 3316 } 3317 3318 /* 3319 * Complete all active CCBs with error. 3320 * Used on CHIP/SCSI RESET. 3321 */ 3322 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3323 { 3324 /* 3325 * Move all active CCBs to the COMP queue 3326 * and flush this queue. 3327 */ 3328 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3329 sym_que_init(&np->busy_ccbq); 3330 sym_flush_comp_queue(np, cam_status); 3331 } 3332 3333 /* 3334 * Start chip. 3335 * 3336 * 'reason' means: 3337 * 0: initialisation. 3338 * 1: SCSI BUS RESET delivered or received. 3339 * 2: SCSI BUS MODE changed. 3340 */ 3341 static void sym_init (hcb_p np, int reason) 3342 { 3343 int i; 3344 u32 phys; 3345 3346 /* 3347 * Reset chip if asked, otherwise just clear fifos. 3348 */ 3349 if (reason == 1) 3350 sym_soft_reset(np); 3351 else { 3352 OUTB (nc_stest3, TE|CSF); 3353 OUTONB (nc_ctest3, CLF); 3354 } 3355 3356 /* 3357 * Clear Start Queue 3358 */ 3359 phys = np->squeue_ba; 3360 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3361 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3362 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3363 } 3364 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3365 3366 /* 3367 * Start at first entry. 3368 */ 3369 np->squeueput = 0; 3370 3371 /* 3372 * Clear Done Queue 3373 */ 3374 phys = np->dqueue_ba; 3375 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3376 np->dqueue[i] = 0; 3377 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3378 } 3379 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3380 3381 /* 3382 * Start at first entry. 3383 */ 3384 np->dqueueget = 0; 3385 3386 /* 3387 * Install patches in scripts. 3388 * This also let point to first position the start 3389 * and done queue pointers used from SCRIPTS. 3390 */ 3391 np->fw_patch(np); 3392 3393 /* 3394 * Wakeup all pending jobs. 3395 */ 3396 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3397 3398 /* 3399 * Init chip. 3400 */ 3401 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3402 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3403 3404 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3405 /* full arb., ena parity, par->ATN */ 3406 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3407 3408 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3409 3410 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3411 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3412 OUTB (nc_istat , SIGP ); /* Signal Process */ 3413 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3414 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3415 3416 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3417 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3418 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3419 3420 /* Extended Sreq/Sack filtering not supported on the C10 */ 3421 if (np->features & FE_C10) 3422 OUTB (nc_stest2, np->rv_stest2); 3423 else 3424 OUTB (nc_stest2, EXT|np->rv_stest2); 3425 3426 OUTB (nc_stest3, TE); /* TolerANT enable */ 3427 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3428 3429 /* 3430 * For now, disable AIP generation on C1010-66. 3431 */ 3432 if (np->device_id == PCI_ID_LSI53C1010_2) 3433 OUTB (nc_aipcntl1, DISAIP); 3434 3435 /* 3436 * C10101 Errata. 3437 * Errant SGE's when in narrow. Write bits 4 & 5 of 3438 * STEST1 register to disable SGE. We probably should do 3439 * that from SCRIPTS for each selection/reselection, but 3440 * I just don't want. :) 3441 */ 3442 if (np->device_id == PCI_ID_LSI53C1010 && 3443 /* np->revision_id < 0xff */ 1) 3444 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3445 3446 /* 3447 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3448 * Disable overlapped arbitration for some dual function devices, 3449 * regardless revision id (kind of post-chip-design feature. ;-)) 3450 */ 3451 if (np->device_id == PCI_ID_SYM53C875) 3452 OUTB (nc_ctest0, (1<<5)); 3453 else if (np->device_id == PCI_ID_SYM53C896) 3454 np->rv_ccntl0 |= DPR; 3455 3456 /* 3457 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3458 * and/or hardware phase mismatch, since only such chips 3459 * seem to support those IO registers. 3460 */ 3461 if (np->features & (FE_DAC|FE_NOPM)) { 3462 OUTB (nc_ccntl0, np->rv_ccntl0); 3463 OUTB (nc_ccntl1, np->rv_ccntl1); 3464 } 3465 3466 /* 3467 * If phase mismatch handled by scripts (895A/896/1010), 3468 * set PM jump addresses. 3469 */ 3470 if (np->features & FE_NOPM) { 3471 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3472 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3473 } 3474 3475 /* 3476 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3477 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3478 */ 3479 if (np->features & FE_LED0) 3480 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3481 else if (np->features & FE_LEDC) 3482 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3483 3484 /* 3485 * enable ints 3486 */ 3487 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3488 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3489 3490 /* 3491 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3492 * Try to eat the spurious SBMC interrupt that may occur when 3493 * we reset the chip but not the SCSI BUS (at initialization). 3494 */ 3495 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3496 OUTONW (nc_sien, SBMC); 3497 if (reason == 0) { 3498 MDELAY(100); 3499 INW (nc_sist); 3500 } 3501 np->scsi_mode = INB (nc_stest4) & SMODE; 3502 } 3503 3504 /* 3505 * Fill in target structure. 3506 * Reinitialize usrsync. 3507 * Reinitialize usrwide. 3508 * Prepare sync negotiation according to actual SCSI bus mode. 3509 */ 3510 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3511 tcb_p tp = &np->target[i]; 3512 3513 tp->to_reset = 0; 3514 tp->head.sval = 0; 3515 tp->head.wval = np->rv_scntl3; 3516 tp->head.uval = 0; 3517 3518 tp->tinfo.current.period = 0; 3519 tp->tinfo.current.offset = 0; 3520 tp->tinfo.current.width = BUS_8_BIT; 3521 tp->tinfo.current.options = 0; 3522 } 3523 3524 /* 3525 * Download SCSI SCRIPTS to on-chip RAM if present, 3526 * and start script processor. 3527 */ 3528 if (np->ram_ba) { 3529 if (sym_verbose > 1) 3530 printf ("%s: Downloading SCSI SCRIPTS.\n", 3531 sym_name(np)); 3532 if (np->ram_ws == 8192) { 3533 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3534 OUTL (nc_mmws, np->scr_ram_seg); 3535 OUTL (nc_mmrs, np->scr_ram_seg); 3536 OUTL (nc_sfs, np->scr_ram_seg); 3537 phys = SCRIPTB_BA (np, start64); 3538 } 3539 else 3540 phys = SCRIPTA_BA (np, init); 3541 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3542 } 3543 else 3544 phys = SCRIPTA_BA (np, init); 3545 3546 np->istat_sem = 0; 3547 3548 OUTL (nc_dsa, np->hcb_ba); 3549 OUTL_DSP (phys); 3550 3551 /* 3552 * Notify the XPT about the RESET condition. 3553 */ 3554 if (reason != 0) 3555 xpt_async(AC_BUS_RESET, np->path, NULL); 3556 } 3557 3558 /* 3559 * Get clock factor and sync divisor for a given 3560 * synchronous factor period. 3561 */ 3562 static int 3563 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3564 { 3565 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3566 int div = np->clock_divn; /* Number of divisors supported */ 3567 u32 fak; /* Sync factor in sxfer */ 3568 u32 per; /* Period in tenths of ns */ 3569 u32 kpc; /* (per * clk) */ 3570 int ret; 3571 3572 /* 3573 * Compute the synchronous period in tenths of nano-seconds 3574 */ 3575 if (dt && sfac <= 9) per = 125; 3576 else if (sfac <= 10) per = 250; 3577 else if (sfac == 11) per = 303; 3578 else if (sfac == 12) per = 500; 3579 else per = 40 * sfac; 3580 ret = per; 3581 3582 kpc = per * clk; 3583 if (dt) 3584 kpc <<= 1; 3585 3586 /* 3587 * For earliest C10 revision 0, we cannot use extra 3588 * clocks for the setting of the SCSI clocking. 3589 * Note that this limits the lowest sync data transfer 3590 * to 5 Mega-transfers per second and may result in 3591 * using higher clock divisors. 3592 */ 3593 #if 1 3594 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3595 /* 3596 * Look for the lowest clock divisor that allows an 3597 * output speed not faster than the period. 3598 */ 3599 while (div > 0) { 3600 --div; 3601 if (kpc > (div_10M[div] << 2)) { 3602 ++div; 3603 break; 3604 } 3605 } 3606 fak = 0; /* No extra clocks */ 3607 if (div == np->clock_divn) { /* Are we too fast ? */ 3608 ret = -1; 3609 } 3610 *divp = div; 3611 *fakp = fak; 3612 return ret; 3613 } 3614 #endif 3615 3616 /* 3617 * Look for the greatest clock divisor that allows an 3618 * input speed faster than the period. 3619 */ 3620 while (div-- > 0) 3621 if (kpc >= (div_10M[div] << 2)) break; 3622 3623 /* 3624 * Calculate the lowest clock factor that allows an output 3625 * speed not faster than the period, and the max output speed. 3626 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3627 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3628 */ 3629 if (dt) { 3630 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3631 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3632 } 3633 else { 3634 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3635 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3636 } 3637 3638 /* 3639 * Check against our hardware limits, or bugs :). 3640 */ 3641 if (fak < 0) {fak = 0; ret = -1;} 3642 if (fak > 2) {fak = 2; ret = -1;} 3643 3644 /* 3645 * Compute and return sync parameters. 3646 */ 3647 *divp = div; 3648 *fakp = fak; 3649 3650 return ret; 3651 } 3652 3653 /* 3654 * Tell the SCSI layer about the new transfer parameters. 3655 */ 3656 static void 3657 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3658 { 3659 struct ccb_trans_settings cts; 3660 struct cam_path *path; 3661 int sts; 3662 tcb_p tp = &np->target[target]; 3663 3664 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3665 CAM_LUN_WILDCARD); 3666 if (sts != CAM_REQ_CMP) 3667 return; 3668 3669 bzero(&cts, sizeof(cts)); 3670 3671 #ifdef FreeBSD_New_Tran_Settings 3672 #define cts__scsi (cts.proto_specific.scsi) 3673 #define cts__spi (cts.xport_specific.spi) 3674 3675 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3676 cts.protocol = PROTO_SCSI; 3677 cts.transport = XPORT_SPI; 3678 cts.protocol_version = tp->tinfo.current.scsi_version; 3679 cts.transport_version = tp->tinfo.current.spi_version; 3680 3681 cts__spi.valid = spi_valid; 3682 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3683 cts__spi.sync_period = tp->tinfo.current.period; 3684 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3685 cts__spi.sync_offset = tp->tinfo.current.offset; 3686 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3687 cts__spi.bus_width = tp->tinfo.current.width; 3688 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3689 cts__spi.ppr_options = tp->tinfo.current.options; 3690 #undef cts__spi 3691 #undef cts__scsi 3692 #else 3693 cts.valid = spi_valid; 3694 if (spi_valid & CCB_TRANS_SYNC_RATE_VALID) 3695 cts.sync_period = tp->tinfo.current.period; 3696 if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID) 3697 cts.sync_offset = tp->tinfo.current.offset; 3698 if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID) 3699 cts.bus_width = tp->tinfo.current.width; 3700 #endif 3701 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3702 xpt_async(AC_TRANSFER_NEG, path, &cts); 3703 xpt_free_path(path); 3704 } 3705 3706 #ifdef FreeBSD_New_Tran_Settings 3707 #define SYM_SPI_VALID_WDTR \ 3708 CTS_SPI_VALID_BUS_WIDTH | \ 3709 CTS_SPI_VALID_SYNC_RATE | \ 3710 CTS_SPI_VALID_SYNC_OFFSET 3711 #define SYM_SPI_VALID_SDTR \ 3712 CTS_SPI_VALID_SYNC_RATE | \ 3713 CTS_SPI_VALID_SYNC_OFFSET 3714 #define SYM_SPI_VALID_PPR \ 3715 CTS_SPI_VALID_PPR_OPTIONS | \ 3716 CTS_SPI_VALID_BUS_WIDTH | \ 3717 CTS_SPI_VALID_SYNC_RATE | \ 3718 CTS_SPI_VALID_SYNC_OFFSET 3719 #else 3720 #define SYM_SPI_VALID_WDTR \ 3721 CCB_TRANS_BUS_WIDTH_VALID | \ 3722 CCB_TRANS_SYNC_RATE_VALID | \ 3723 CCB_TRANS_SYNC_OFFSET_VALID 3724 #define SYM_SPI_VALID_SDTR \ 3725 CCB_TRANS_SYNC_RATE_VALID | \ 3726 CCB_TRANS_SYNC_OFFSET_VALID 3727 #define SYM_SPI_VALID_PPR \ 3728 CCB_TRANS_BUS_WIDTH_VALID | \ 3729 CCB_TRANS_SYNC_RATE_VALID | \ 3730 CCB_TRANS_SYNC_OFFSET_VALID 3731 #endif 3732 3733 /* 3734 * We received a WDTR. 3735 * Let everything be aware of the changes. 3736 */ 3737 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3738 { 3739 tcb_p tp = &np->target[cp->target]; 3740 3741 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3742 3743 /* 3744 * Tell the SCSI layer about the new transfer parameters. 3745 */ 3746 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3747 tp->tinfo.current.offset = 0; 3748 tp->tinfo.current.period = 0; 3749 tp->tinfo.current.options = 0; 3750 3751 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3752 } 3753 3754 /* 3755 * We received a SDTR. 3756 * Let everything be aware of the changes. 3757 */ 3758 static void 3759 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3760 { 3761 tcb_p tp = &np->target[cp->target]; 3762 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3763 3764 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3765 3766 /* 3767 * Tell the SCSI layer about the new transfer parameters. 3768 */ 3769 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3770 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3771 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3772 3773 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3774 } 3775 3776 /* 3777 * We received a PPR. 3778 * Let everything be aware of the changes. 3779 */ 3780 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3781 u_char per, u_char wide, u_char div, u_char fak) 3782 { 3783 tcb_p tp = &np->target[cp->target]; 3784 3785 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3786 3787 /* 3788 * Tell the SCSI layer about the new transfer parameters. 3789 */ 3790 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3791 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3792 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3793 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3794 3795 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3796 } 3797 3798 /* 3799 * Switch trans mode for current job and it's target. 3800 */ 3801 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3802 u_char per, u_char wide, u_char div, u_char fak) 3803 { 3804 SYM_QUEHEAD *qp; 3805 union ccb *ccb; 3806 tcb_p tp; 3807 u_char target = INB (nc_sdid) & 0x0f; 3808 u_char sval, wval, uval; 3809 3810 assert (cp); 3811 if (!cp) return; 3812 ccb = cp->cam_ccb; 3813 assert (ccb); 3814 if (!ccb) return; 3815 assert (target == (cp->target & 0xf)); 3816 tp = &np->target[target]; 3817 3818 sval = tp->head.sval; 3819 wval = tp->head.wval; 3820 uval = tp->head.uval; 3821 3822 #if 0 3823 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3824 sval, wval, uval, np->rv_scntl3); 3825 #endif 3826 /* 3827 * Set the offset. 3828 */ 3829 if (!(np->features & FE_C10)) 3830 sval = (sval & ~0x1f) | ofs; 3831 else 3832 sval = (sval & ~0x3f) | ofs; 3833 3834 /* 3835 * Set the sync divisor and extra clock factor. 3836 */ 3837 if (ofs != 0) { 3838 wval = (wval & ~0x70) | ((div+1) << 4); 3839 if (!(np->features & FE_C10)) 3840 sval = (sval & ~0xe0) | (fak << 5); 3841 else { 3842 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3843 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3844 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3845 } 3846 } 3847 3848 /* 3849 * Set the bus width. 3850 */ 3851 wval = wval & ~EWS; 3852 if (wide != 0) 3853 wval |= EWS; 3854 3855 /* 3856 * Set misc. ultra enable bits. 3857 */ 3858 if (np->features & FE_C10) { 3859 uval = uval & ~(U3EN|AIPCKEN); 3860 if (dt) { 3861 assert(np->features & FE_U3EN); 3862 uval |= U3EN; 3863 } 3864 } 3865 else { 3866 wval = wval & ~ULTRA; 3867 if (per <= 12) wval |= ULTRA; 3868 } 3869 3870 /* 3871 * Stop there if sync parameters are unchanged. 3872 */ 3873 if (tp->head.sval == sval && 3874 tp->head.wval == wval && 3875 tp->head.uval == uval) 3876 return; 3877 tp->head.sval = sval; 3878 tp->head.wval = wval; 3879 tp->head.uval = uval; 3880 3881 /* 3882 * Disable extended Sreq/Sack filtering if per < 50. 3883 * Not supported on the C1010. 3884 */ 3885 if (per < 50 && !(np->features & FE_C10)) 3886 OUTOFFB (nc_stest2, EXT); 3887 3888 /* 3889 * set actual value and sync_status 3890 */ 3891 OUTB (nc_sxfer, tp->head.sval); 3892 OUTB (nc_scntl3, tp->head.wval); 3893 3894 if (np->features & FE_C10) { 3895 OUTB (nc_scntl4, tp->head.uval); 3896 } 3897 3898 /* 3899 * patch ALL busy ccbs of this target. 3900 */ 3901 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3902 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3903 if (cp->target != target) 3904 continue; 3905 cp->phys.select.sel_scntl3 = tp->head.wval; 3906 cp->phys.select.sel_sxfer = tp->head.sval; 3907 if (np->features & FE_C10) { 3908 cp->phys.select.sel_scntl4 = tp->head.uval; 3909 } 3910 } 3911 } 3912 3913 /* 3914 * log message for real hard errors 3915 * 3916 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3917 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3918 * 3919 * exception register: 3920 * ds: dstat 3921 * si: sist 3922 * 3923 * SCSI bus lines: 3924 * so: control lines as driven by chip. 3925 * si: control lines as seen by chip. 3926 * sd: scsi data lines as seen by chip. 3927 * 3928 * wide/fastmode: 3929 * sxfer: (see the manual) 3930 * scntl3: (see the manual) 3931 * 3932 * current script command: 3933 * dsp: script adress (relative to start of script). 3934 * dbc: first word of script command. 3935 * 3936 * First 24 register of the chip: 3937 * r0..rf 3938 */ 3939 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3940 { 3941 u32 dsp; 3942 int script_ofs; 3943 int script_size; 3944 char *script_name; 3945 u_char *script_base; 3946 int i; 3947 3948 dsp = INL (nc_dsp); 3949 3950 if (dsp > np->scripta_ba && 3951 dsp <= np->scripta_ba + np->scripta_sz) { 3952 script_ofs = dsp - np->scripta_ba; 3953 script_size = np->scripta_sz; 3954 script_base = (u_char *) np->scripta0; 3955 script_name = "scripta"; 3956 } 3957 else if (np->scriptb_ba < dsp && 3958 dsp <= np->scriptb_ba + np->scriptb_sz) { 3959 script_ofs = dsp - np->scriptb_ba; 3960 script_size = np->scriptb_sz; 3961 script_base = (u_char *) np->scriptb0; 3962 script_name = "scriptb"; 3963 } else { 3964 script_ofs = dsp; 3965 script_size = 0; 3966 script_base = 0; 3967 script_name = "mem"; 3968 } 3969 3970 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3971 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3972 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3973 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3974 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3975 (unsigned)INL (nc_dbc)); 3976 3977 if (((script_ofs & 3) == 0) && 3978 (unsigned)script_ofs < script_size) { 3979 printf ("%s: script cmd = %08x\n", sym_name(np), 3980 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3981 } 3982 3983 printf ("%s: regdump:", sym_name(np)); 3984 for (i=0; i<24;i++) 3985 printf (" %02x", (unsigned)INB_OFF(i)); 3986 printf (".\n"); 3987 3988 /* 3989 * PCI BUS error, read the PCI ststus register. 3990 */ 3991 if (dstat & (MDPE|BF)) { 3992 u_short pci_sts; 3993 #ifdef FreeBSD_Bus_Io_Abstraction 3994 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3995 #else 3996 pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2); 3997 #endif 3998 if (pci_sts & 0xf900) { 3999 #ifdef FreeBSD_Bus_Io_Abstraction 4000 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 4001 #else 4002 pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2); 4003 #endif 4004 printf("%s: PCI STATUS = 0x%04x\n", 4005 sym_name(np), pci_sts & 0xf900); 4006 } 4007 } 4008 } 4009 4010 /* 4011 * chip interrupt handler 4012 * 4013 * In normal situations, interrupt conditions occur one at 4014 * a time. But when something bad happens on the SCSI BUS, 4015 * the chip may raise several interrupt flags before 4016 * stopping and interrupting the CPU. The additionnal 4017 * interrupt flags are stacked in some extra registers 4018 * after the SIP and/or DIP flag has been raised in the 4019 * ISTAT. After the CPU has read the interrupt condition 4020 * flag from SIST or DSTAT, the chip unstacks the other 4021 * interrupt flags and sets the corresponding bits in 4022 * SIST or DSTAT. Since the chip starts stacking once the 4023 * SIP or DIP flag is set, there is a small window of time 4024 * where the stacking does not occur. 4025 * 4026 * Typically, multiple interrupt conditions may happen in 4027 * the following situations: 4028 * 4029 * - SCSI parity error + Phase mismatch (PAR|MA) 4030 * When an parity error is detected in input phase 4031 * and the device switches to msg-in phase inside a 4032 * block MOV. 4033 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 4034 * When a stupid device does not want to handle the 4035 * recovery of an SCSI parity error. 4036 * - Some combinations of STO, PAR, UDC, ... 4037 * When using non compliant SCSI stuff, when user is 4038 * doing non compliant hot tampering on the BUS, when 4039 * something really bad happens to a device, etc ... 4040 * 4041 * The heuristic suggested by SYMBIOS to handle 4042 * multiple interrupts is to try unstacking all 4043 * interrupts conditions and to handle them on some 4044 * priority based on error severity. 4045 * This will work when the unstacking has been 4046 * successful, but we cannot be 100 % sure of that, 4047 * since the CPU may have been faster to unstack than 4048 * the chip is able to stack. Hmmm ... But it seems that 4049 * such a situation is very unlikely to happen. 4050 * 4051 * If this happen, for example STO caught by the CPU 4052 * then UDC happenning before the CPU have restarted 4053 * the SCRIPTS, the driver may wrongly complete the 4054 * same command on UDC, since the SCRIPTS didn't restart 4055 * and the DSA still points to the same command. 4056 * We avoid this situation by setting the DSA to an 4057 * invalid value when the CCB is completed and before 4058 * restarting the SCRIPTS. 4059 * 4060 * Another issue is that we need some section of our 4061 * recovery procedures to be somehow uninterruptible but 4062 * the SCRIPTS processor does not provides such a 4063 * feature. For this reason, we handle recovery preferently 4064 * from the C code and check against some SCRIPTS critical 4065 * sections from the C code. 4066 * 4067 * Hopefully, the interrupt handling of the driver is now 4068 * able to resist to weird BUS error conditions, but donnot 4069 * ask me for any guarantee that it will never fail. :-) 4070 * Use at your own decision and risk. 4071 */ 4072 4073 static void sym_intr1 (hcb_p np) 4074 { 4075 u_char istat, istatc; 4076 u_char dstat; 4077 u_short sist; 4078 4079 /* 4080 * interrupt on the fly ? 4081 * 4082 * A `dummy read' is needed to ensure that the 4083 * clear of the INTF flag reaches the device 4084 * before the scanning of the DONE queue. 4085 */ 4086 istat = INB (nc_istat); 4087 if (istat & INTF) { 4088 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 4089 istat = INB (nc_istat); /* DUMMY READ */ 4090 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 4091 (void)sym_wakeup_done (np); 4092 }; 4093 4094 if (!(istat & (SIP|DIP))) 4095 return; 4096 4097 #if 0 /* We should never get this one */ 4098 if (istat & CABRT) 4099 OUTB (nc_istat, CABRT); 4100 #endif 4101 4102 /* 4103 * PAR and MA interrupts may occur at the same time, 4104 * and we need to know of both in order to handle 4105 * this situation properly. We try to unstack SCSI 4106 * interrupts for that reason. BTW, I dislike a LOT 4107 * such a loop inside the interrupt routine. 4108 * Even if DMA interrupt stacking is very unlikely to 4109 * happen, we also try unstacking these ones, since 4110 * this has no performance impact. 4111 */ 4112 sist = 0; 4113 dstat = 0; 4114 istatc = istat; 4115 do { 4116 if (istatc & SIP) 4117 sist |= INW (nc_sist); 4118 if (istatc & DIP) 4119 dstat |= INB (nc_dstat); 4120 istatc = INB (nc_istat); 4121 istat |= istatc; 4122 } while (istatc & (SIP|DIP)); 4123 4124 if (DEBUG_FLAGS & DEBUG_TINY) 4125 printf ("<%d|%x:%x|%x:%x>", 4126 (int)INB(nc_scr0), 4127 dstat,sist, 4128 (unsigned)INL(nc_dsp), 4129 (unsigned)INL(nc_dbc)); 4130 /* 4131 * On paper, a memory barrier may be needed here. 4132 * And since we are paranoid ... :) 4133 */ 4134 MEMORY_BARRIER(); 4135 4136 /* 4137 * First, interrupts we want to service cleanly. 4138 * 4139 * Phase mismatch (MA) is the most frequent interrupt 4140 * for chip earlier than the 896 and so we have to service 4141 * it as quickly as possible. 4142 * A SCSI parity error (PAR) may be combined with a phase 4143 * mismatch condition (MA). 4144 * Programmed interrupts (SIR) are used to call the C code 4145 * from SCRIPTS. 4146 * The single step interrupt (SSI) is not used in this 4147 * driver. 4148 */ 4149 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 4150 !(dstat & (MDPE|BF|ABRT|IID))) { 4151 if (sist & PAR) sym_int_par (np, sist); 4152 else if (sist & MA) sym_int_ma (np); 4153 else if (dstat & SIR) sym_int_sir (np); 4154 else if (dstat & SSI) OUTONB_STD (); 4155 else goto unknown_int; 4156 return; 4157 }; 4158 4159 /* 4160 * Now, interrupts that donnot happen in normal 4161 * situations and that we may need to recover from. 4162 * 4163 * On SCSI RESET (RST), we reset everything. 4164 * On SCSI BUS MODE CHANGE (SBMC), we complete all 4165 * active CCBs with RESET status, prepare all devices 4166 * for negotiating again and restart the SCRIPTS. 4167 * On STO and UDC, we complete the CCB with the corres- 4168 * ponding status and restart the SCRIPTS. 4169 */ 4170 if (sist & RST) { 4171 xpt_print_path(np->path); 4172 printf("SCSI BUS reset detected.\n"); 4173 sym_init (np, 1); 4174 return; 4175 }; 4176 4177 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4178 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4179 4180 if (!(sist & (GEN|HTH|SGE)) && 4181 !(dstat & (MDPE|BF|ABRT|IID))) { 4182 if (sist & SBMC) sym_int_sbmc (np); 4183 else if (sist & STO) sym_int_sto (np); 4184 else if (sist & UDC) sym_int_udc (np); 4185 else goto unknown_int; 4186 return; 4187 }; 4188 4189 /* 4190 * Now, interrupts we are not able to recover cleanly. 4191 * 4192 * Log message for hard errors. 4193 * Reset everything. 4194 */ 4195 4196 sym_log_hard_error(np, sist, dstat); 4197 4198 if ((sist & (GEN|HTH|SGE)) || 4199 (dstat & (MDPE|BF|ABRT|IID))) { 4200 sym_start_reset(np); 4201 return; 4202 }; 4203 4204 unknown_int: 4205 /* 4206 * We just miss the cause of the interrupt. :( 4207 * Print a message. The timeout will do the real work. 4208 */ 4209 printf( "%s: unknown interrupt(s) ignored, " 4210 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 4211 sym_name(np), istat, dstat, sist); 4212 } 4213 4214 static void sym_intr(void *arg) 4215 { 4216 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 4217 sym_intr1((hcb_p) arg); 4218 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 4219 return; 4220 } 4221 4222 static void sym_poll(struct cam_sim *sim) 4223 { 4224 int s = splcam(); 4225 sym_intr(cam_sim_softc(sim)); 4226 splx(s); 4227 } 4228 4229 4230 /* 4231 * generic recovery from scsi interrupt 4232 * 4233 * The doc says that when the chip gets an SCSI interrupt, 4234 * it tries to stop in an orderly fashion, by completing 4235 * an instruction fetch that had started or by flushing 4236 * the DMA fifo for a write to memory that was executing. 4237 * Such a fashion is not enough to know if the instruction 4238 * that was just before the current DSP value has been 4239 * executed or not. 4240 * 4241 * There are some small SCRIPTS sections that deal with 4242 * the start queue and the done queue that may break any 4243 * assomption from the C code if we are interrupted 4244 * inside, so we reset if this happens. Btw, since these 4245 * SCRIPTS sections are executed while the SCRIPTS hasn't 4246 * started SCSI operations, it is very unlikely to happen. 4247 * 4248 * All the driver data structures are supposed to be 4249 * allocated from the same 4 GB memory window, so there 4250 * is a 1 to 1 relationship between DSA and driver data 4251 * structures. Since we are careful :) to invalidate the 4252 * DSA when we complete a command or when the SCRIPTS 4253 * pushes a DSA into a queue, we can trust it when it 4254 * points to a CCB. 4255 */ 4256 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4257 { 4258 u32 dsp = INL (nc_dsp); 4259 u32 dsa = INL (nc_dsa); 4260 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4261 4262 /* 4263 * If we haven't been interrupted inside the SCRIPTS 4264 * critical pathes, we can safely restart the SCRIPTS 4265 * and trust the DSA value if it matches a CCB. 4266 */ 4267 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4268 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4269 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4270 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4271 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4272 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4273 (!(dsp > SCRIPTA_BA (np, done) && 4274 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4275 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4276 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4277 /* 4278 * If we have a CCB, let the SCRIPTS call us back for 4279 * the handling of the error with SCRATCHA filled with 4280 * STARTPOS. This way, we will be able to freeze the 4281 * device queue and requeue awaiting IOs. 4282 */ 4283 if (cp) { 4284 cp->host_status = hsts; 4285 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4286 } 4287 /* 4288 * Otherwise just restart the SCRIPTS. 4289 */ 4290 else { 4291 OUTL (nc_dsa, 0xffffff); 4292 OUTL_DSP (SCRIPTA_BA (np, start)); 4293 } 4294 } 4295 else 4296 goto reset_all; 4297 4298 return; 4299 4300 reset_all: 4301 sym_start_reset(np); 4302 } 4303 4304 /* 4305 * chip exception handler for selection timeout 4306 */ 4307 void sym_int_sto (hcb_p np) 4308 { 4309 u32 dsp = INL (nc_dsp); 4310 4311 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4312 4313 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4314 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4315 else 4316 sym_start_reset(np); 4317 } 4318 4319 /* 4320 * chip exception handler for unexpected disconnect 4321 */ 4322 void sym_int_udc (hcb_p np) 4323 { 4324 printf ("%s: unexpected disconnect\n", sym_name(np)); 4325 sym_recover_scsi_int(np, HS_UNEXPECTED); 4326 } 4327 4328 /* 4329 * chip exception handler for SCSI bus mode change 4330 * 4331 * spi2-r12 11.2.3 says a transceiver mode change must 4332 * generate a reset event and a device that detects a reset 4333 * event shall initiate a hard reset. It says also that a 4334 * device that detects a mode change shall set data transfer 4335 * mode to eight bit asynchronous, etc... 4336 * So, just reinitializing all except chip should be enough. 4337 */ 4338 static void sym_int_sbmc (hcb_p np) 4339 { 4340 u_char scsi_mode = INB (nc_stest4) & SMODE; 4341 4342 /* 4343 * Notify user. 4344 */ 4345 xpt_print_path(np->path); 4346 printf("SCSI BUS mode change from %s to %s.\n", 4347 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4348 4349 /* 4350 * Should suspend command processing for a few seconds and 4351 * reinitialize all except the chip. 4352 */ 4353 sym_init (np, 2); 4354 } 4355 4356 /* 4357 * chip exception handler for SCSI parity error. 4358 * 4359 * When the chip detects a SCSI parity error and is 4360 * currently executing a (CH)MOV instruction, it does 4361 * not interrupt immediately, but tries to finish the 4362 * transfer of the current scatter entry before 4363 * interrupting. The following situations may occur: 4364 * 4365 * - The complete scatter entry has been transferred 4366 * without the device having changed phase. 4367 * The chip will then interrupt with the DSP pointing 4368 * to the instruction that follows the MOV. 4369 * 4370 * - A phase mismatch occurs before the MOV finished 4371 * and phase errors are to be handled by the C code. 4372 * The chip will then interrupt with both PAR and MA 4373 * conditions set. 4374 * 4375 * - A phase mismatch occurs before the MOV finished and 4376 * phase errors are to be handled by SCRIPTS. 4377 * The chip will load the DSP with the phase mismatch 4378 * JUMP address and interrupt the host processor. 4379 */ 4380 static void sym_int_par (hcb_p np, u_short sist) 4381 { 4382 u_char hsts = INB (HS_PRT); 4383 u32 dsp = INL (nc_dsp); 4384 u32 dbc = INL (nc_dbc); 4385 u32 dsa = INL (nc_dsa); 4386 u_char sbcl = INB (nc_sbcl); 4387 u_char cmd = dbc >> 24; 4388 int phase = cmd & 7; 4389 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4390 4391 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4392 sym_name(np), hsts, dbc, sbcl); 4393 4394 /* 4395 * Check that the chip is connected to the SCSI BUS. 4396 */ 4397 if (!(INB (nc_scntl1) & ISCON)) { 4398 sym_recover_scsi_int(np, HS_UNEXPECTED); 4399 return; 4400 } 4401 4402 /* 4403 * If the nexus is not clearly identified, reset the bus. 4404 * We will try to do better later. 4405 */ 4406 if (!cp) 4407 goto reset_all; 4408 4409 /* 4410 * Check instruction was a MOV, direction was INPUT and 4411 * ATN is asserted. 4412 */ 4413 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4414 goto reset_all; 4415 4416 /* 4417 * Keep track of the parity error. 4418 */ 4419 OUTONB (HF_PRT, HF_EXT_ERR); 4420 cp->xerr_status |= XE_PARITY_ERR; 4421 4422 /* 4423 * Prepare the message to send to the device. 4424 */ 4425 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4426 4427 /* 4428 * If the old phase was DATA IN phase, we have to deal with 4429 * the 3 situations described above. 4430 * For other input phases (MSG IN and STATUS), the device 4431 * must resend the whole thing that failed parity checking 4432 * or signal error. So, jumping to dispatcher should be OK. 4433 */ 4434 if (phase == 1 || phase == 5) { 4435 /* Phase mismatch handled by SCRIPTS */ 4436 if (dsp == SCRIPTB_BA (np, pm_handle)) 4437 OUTL_DSP (dsp); 4438 /* Phase mismatch handled by the C code */ 4439 else if (sist & MA) 4440 sym_int_ma (np); 4441 /* No phase mismatch occurred */ 4442 else { 4443 OUTL (nc_temp, dsp); 4444 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4445 } 4446 } 4447 else 4448 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4449 return; 4450 4451 reset_all: 4452 sym_start_reset(np); 4453 return; 4454 } 4455 4456 /* 4457 * chip exception handler for phase errors. 4458 * 4459 * We have to construct a new transfer descriptor, 4460 * to transfer the rest of the current block. 4461 */ 4462 static void sym_int_ma (hcb_p np) 4463 { 4464 u32 dbc; 4465 u32 rest; 4466 u32 dsp; 4467 u32 dsa; 4468 u32 nxtdsp; 4469 u32 *vdsp; 4470 u32 oadr, olen; 4471 u32 *tblp; 4472 u32 newcmd; 4473 u_int delta; 4474 u_char cmd; 4475 u_char hflags, hflags0; 4476 struct sym_pmc *pm; 4477 ccb_p cp; 4478 4479 dsp = INL (nc_dsp); 4480 dbc = INL (nc_dbc); 4481 dsa = INL (nc_dsa); 4482 4483 cmd = dbc >> 24; 4484 rest = dbc & 0xffffff; 4485 delta = 0; 4486 4487 /* 4488 * locate matching cp if any. 4489 */ 4490 cp = sym_ccb_from_dsa(np, dsa); 4491 4492 /* 4493 * Donnot take into account dma fifo and various buffers in 4494 * INPUT phase since the chip flushes everything before 4495 * raising the MA interrupt for interrupted INPUT phases. 4496 * For DATA IN phase, we will check for the SWIDE later. 4497 */ 4498 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4499 u_char ss0, ss2; 4500 4501 if (np->features & FE_DFBC) 4502 delta = INW (nc_dfbc); 4503 else { 4504 u32 dfifo; 4505 4506 /* 4507 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4508 */ 4509 dfifo = INL(nc_dfifo); 4510 4511 /* 4512 * Calculate remaining bytes in DMA fifo. 4513 * (CTEST5 = dfifo >> 16) 4514 */ 4515 if (dfifo & (DFS << 16)) 4516 delta = ((((dfifo >> 8) & 0x300) | 4517 (dfifo & 0xff)) - rest) & 0x3ff; 4518 else 4519 delta = ((dfifo & 0xff) - rest) & 0x7f; 4520 } 4521 4522 /* 4523 * The data in the dma fifo has not been transfered to 4524 * the target -> add the amount to the rest 4525 * and clear the data. 4526 * Check the sstat2 register in case of wide transfer. 4527 */ 4528 rest += delta; 4529 ss0 = INB (nc_sstat0); 4530 if (ss0 & OLF) rest++; 4531 if (!(np->features & FE_C10)) 4532 if (ss0 & ORF) rest++; 4533 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4534 ss2 = INB (nc_sstat2); 4535 if (ss2 & OLF1) rest++; 4536 if (!(np->features & FE_C10)) 4537 if (ss2 & ORF1) rest++; 4538 }; 4539 4540 /* 4541 * Clear fifos. 4542 */ 4543 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4544 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4545 } 4546 4547 /* 4548 * log the information 4549 */ 4550 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4551 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4552 (unsigned) rest, (unsigned) delta); 4553 4554 /* 4555 * try to find the interrupted script command, 4556 * and the address at which to continue. 4557 */ 4558 vdsp = 0; 4559 nxtdsp = 0; 4560 if (dsp > np->scripta_ba && 4561 dsp <= np->scripta_ba + np->scripta_sz) { 4562 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4563 nxtdsp = dsp; 4564 } 4565 else if (dsp > np->scriptb_ba && 4566 dsp <= np->scriptb_ba + np->scriptb_sz) { 4567 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4568 nxtdsp = dsp; 4569 } 4570 4571 /* 4572 * log the information 4573 */ 4574 if (DEBUG_FLAGS & DEBUG_PHASE) { 4575 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4576 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4577 }; 4578 4579 if (!vdsp) { 4580 printf ("%s: interrupted SCRIPT address not found.\n", 4581 sym_name (np)); 4582 goto reset_all; 4583 } 4584 4585 if (!cp) { 4586 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4587 sym_name (np)); 4588 goto reset_all; 4589 } 4590 4591 /* 4592 * get old startaddress and old length. 4593 */ 4594 oadr = scr_to_cpu(vdsp[1]); 4595 4596 if (cmd & 0x10) { /* Table indirect */ 4597 tblp = (u32 *) ((char*) &cp->phys + oadr); 4598 olen = scr_to_cpu(tblp[0]); 4599 oadr = scr_to_cpu(tblp[1]); 4600 } else { 4601 tblp = (u32 *) 0; 4602 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4603 }; 4604 4605 if (DEBUG_FLAGS & DEBUG_PHASE) { 4606 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4607 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4608 tblp, 4609 (unsigned) olen, 4610 (unsigned) oadr); 4611 }; 4612 4613 /* 4614 * check cmd against assumed interrupted script command. 4615 * If dt data phase, the MOVE instruction hasn't bit 4 of 4616 * the phase. 4617 */ 4618 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4619 PRINT_ADDR(cp); 4620 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4621 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4622 4623 goto reset_all; 4624 }; 4625 4626 /* 4627 * if old phase not dataphase, leave here. 4628 */ 4629 if (cmd & 2) { 4630 PRINT_ADDR(cp); 4631 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4632 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4633 (unsigned)oadr, (unsigned)rest); 4634 goto unexpected_phase; 4635 }; 4636 4637 /* 4638 * Choose the correct PM save area. 4639 * 4640 * Look at the PM_SAVE SCRIPT if you want to understand 4641 * this stuff. The equivalent code is implemented in 4642 * SCRIPTS for the 895A, 896 and 1010 that are able to 4643 * handle PM from the SCRIPTS processor. 4644 */ 4645 hflags0 = INB (HF_PRT); 4646 hflags = hflags0; 4647 4648 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4649 if (hflags & HF_IN_PM0) 4650 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4651 else if (hflags & HF_IN_PM1) 4652 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4653 4654 if (hflags & HF_DP_SAVED) 4655 hflags ^= HF_ACT_PM; 4656 } 4657 4658 if (!(hflags & HF_ACT_PM)) { 4659 pm = &cp->phys.pm0; 4660 newcmd = SCRIPTA_BA (np, pm0_data); 4661 } 4662 else { 4663 pm = &cp->phys.pm1; 4664 newcmd = SCRIPTA_BA (np, pm1_data); 4665 } 4666 4667 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4668 if (hflags != hflags0) 4669 OUTB (HF_PRT, hflags); 4670 4671 /* 4672 * fillin the phase mismatch context 4673 */ 4674 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4675 pm->sg.size = cpu_to_scr(rest); 4676 pm->ret = cpu_to_scr(nxtdsp); 4677 4678 /* 4679 * If we have a SWIDE, 4680 * - prepare the address to write the SWIDE from SCRIPTS, 4681 * - compute the SCRIPTS address to restart from, 4682 * - move current data pointer context by one byte. 4683 */ 4684 nxtdsp = SCRIPTA_BA (np, dispatch); 4685 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4686 (INB (nc_scntl2) & WSR)) { 4687 u32 tmp; 4688 4689 /* 4690 * Set up the table indirect for the MOVE 4691 * of the residual byte and adjust the data 4692 * pointer context. 4693 */ 4694 tmp = scr_to_cpu(pm->sg.addr); 4695 cp->phys.wresid.addr = cpu_to_scr(tmp); 4696 pm->sg.addr = cpu_to_scr(tmp + 1); 4697 tmp = scr_to_cpu(pm->sg.size); 4698 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4699 pm->sg.size = cpu_to_scr(tmp - 1); 4700 4701 /* 4702 * If only the residual byte is to be moved, 4703 * no PM context is needed. 4704 */ 4705 if ((tmp&0xffffff) == 1) 4706 newcmd = pm->ret; 4707 4708 /* 4709 * Prepare the address of SCRIPTS that will 4710 * move the residual byte to memory. 4711 */ 4712 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4713 } 4714 4715 if (DEBUG_FLAGS & DEBUG_PHASE) { 4716 PRINT_ADDR(cp); 4717 printf ("PM %x %x %x / %x %x %x.\n", 4718 hflags0, hflags, newcmd, 4719 (unsigned)scr_to_cpu(pm->sg.addr), 4720 (unsigned)scr_to_cpu(pm->sg.size), 4721 (unsigned)scr_to_cpu(pm->ret)); 4722 } 4723 4724 /* 4725 * Restart the SCRIPTS processor. 4726 */ 4727 OUTL (nc_temp, newcmd); 4728 OUTL_DSP (nxtdsp); 4729 return; 4730 4731 /* 4732 * Unexpected phase changes that occurs when the current phase 4733 * is not a DATA IN or DATA OUT phase are due to error conditions. 4734 * Such event may only happen when the SCRIPTS is using a 4735 * multibyte SCSI MOVE. 4736 * 4737 * Phase change Some possible cause 4738 * 4739 * COMMAND --> MSG IN SCSI parity error detected by target. 4740 * COMMAND --> STATUS Bad command or refused by target. 4741 * MSG OUT --> MSG IN Message rejected by target. 4742 * MSG OUT --> COMMAND Bogus target that discards extended 4743 * negotiation messages. 4744 * 4745 * The code below does not care of the new phase and so 4746 * trusts the target. Why to annoy it ? 4747 * If the interrupted phase is COMMAND phase, we restart at 4748 * dispatcher. 4749 * If a target does not get all the messages after selection, 4750 * the code assumes blindly that the target discards extended 4751 * messages and clears the negotiation status. 4752 * If the target does not want all our response to negotiation, 4753 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4754 * bloat for such a should_not_happen situation). 4755 * In all other situation, we reset the BUS. 4756 * Are these assumptions reasonnable ? (Wait and see ...) 4757 */ 4758 unexpected_phase: 4759 dsp -= 8; 4760 nxtdsp = 0; 4761 4762 switch (cmd & 7) { 4763 case 2: /* COMMAND phase */ 4764 nxtdsp = SCRIPTA_BA (np, dispatch); 4765 break; 4766 #if 0 4767 case 3: /* STATUS phase */ 4768 nxtdsp = SCRIPTA_BA (np, dispatch); 4769 break; 4770 #endif 4771 case 6: /* MSG OUT phase */ 4772 /* 4773 * If the device may want to use untagged when we want 4774 * tagged, we prepare an IDENTIFY without disc. granted, 4775 * since we will not be able to handle reselect. 4776 * Otherwise, we just don't care. 4777 */ 4778 if (dsp == SCRIPTA_BA (np, send_ident)) { 4779 if (cp->tag != NO_TAG && olen - rest <= 3) { 4780 cp->host_status = HS_BUSY; 4781 np->msgout[0] = M_IDENTIFY | cp->lun; 4782 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4783 } 4784 else 4785 nxtdsp = SCRIPTB_BA (np, ident_break); 4786 } 4787 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4788 dsp == SCRIPTB_BA (np, send_sdtr) || 4789 dsp == SCRIPTB_BA (np, send_ppr)) { 4790 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4791 } 4792 break; 4793 #if 0 4794 case 7: /* MSG IN phase */ 4795 nxtdsp = SCRIPTA_BA (np, clrack); 4796 break; 4797 #endif 4798 } 4799 4800 if (nxtdsp) { 4801 OUTL_DSP (nxtdsp); 4802 return; 4803 } 4804 4805 reset_all: 4806 sym_start_reset(np); 4807 } 4808 4809 /* 4810 * Dequeue from the START queue all CCBs that match 4811 * a given target/lun/task condition (-1 means all), 4812 * and move them from the BUSY queue to the COMP queue 4813 * with CAM_REQUEUE_REQ status condition. 4814 * This function is used during error handling/recovery. 4815 * It is called with SCRIPTS not running. 4816 */ 4817 static int 4818 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4819 { 4820 int j; 4821 ccb_p cp; 4822 4823 /* 4824 * Make sure the starting index is within range. 4825 */ 4826 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4827 4828 /* 4829 * Walk until end of START queue and dequeue every job 4830 * that matches the target/lun/task condition. 4831 */ 4832 j = i; 4833 while (i != np->squeueput) { 4834 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4835 assert(cp); 4836 #ifdef SYM_CONF_IARB_SUPPORT 4837 /* Forget hints for IARB, they may be no longer relevant */ 4838 cp->host_flags &= ~HF_HINT_IARB; 4839 #endif 4840 if ((target == -1 || cp->target == target) && 4841 (lun == -1 || cp->lun == lun) && 4842 (task == -1 || cp->tag == task)) { 4843 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4844 sym_remque(&cp->link_ccbq); 4845 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4846 } 4847 else { 4848 if (i != j) 4849 np->squeue[j] = np->squeue[i]; 4850 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4851 } 4852 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4853 } 4854 if (i != j) /* Copy back the idle task if needed */ 4855 np->squeue[j] = np->squeue[i]; 4856 np->squeueput = j; /* Update our current start queue pointer */ 4857 4858 return (i - j) / 2; 4859 } 4860 4861 /* 4862 * Complete all CCBs queued to the COMP queue. 4863 * 4864 * These CCBs are assumed: 4865 * - Not to be referenced either by devices or 4866 * SCRIPTS-related queues and datas. 4867 * - To have to be completed with an error condition 4868 * or requeued. 4869 * 4870 * The device queue freeze count is incremented 4871 * for each CCB that does not prevent this. 4872 * This function is called when all CCBs involved 4873 * in error handling/recovery have been reaped. 4874 */ 4875 static void 4876 sym_flush_comp_queue(hcb_p np, int cam_status) 4877 { 4878 SYM_QUEHEAD *qp; 4879 ccb_p cp; 4880 4881 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { 4882 union ccb *ccb; 4883 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4884 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4885 /* Leave quiet CCBs waiting for resources */ 4886 if (cp->host_status == HS_WAIT) 4887 continue; 4888 ccb = cp->cam_ccb; 4889 if (cam_status) 4890 sym_set_cam_status(ccb, cam_status); 4891 sym_free_ccb(np, cp); 4892 sym_freeze_cam_ccb(ccb); 4893 sym_xpt_done(np, ccb); 4894 } 4895 } 4896 4897 /* 4898 * chip handler for bad SCSI status condition 4899 * 4900 * In case of bad SCSI status, we unqueue all the tasks 4901 * currently queued to the controller but not yet started 4902 * and then restart the SCRIPTS processor immediately. 4903 * 4904 * QUEUE FULL and BUSY conditions are handled the same way. 4905 * Basically all the not yet started tasks are requeued in 4906 * device queue and the queue is frozen until a completion. 4907 * 4908 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4909 * the CCB of the failed command to prepare a REQUEST SENSE 4910 * SCSI command and queue it to the controller queue. 4911 * 4912 * SCRATCHA is assumed to have been loaded with STARTPOS 4913 * before the SCRIPTS called the C code. 4914 */ 4915 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4916 { 4917 tcb_p tp = &np->target[cp->target]; 4918 u32 startp; 4919 u_char s_status = cp->ssss_status; 4920 u_char h_flags = cp->host_flags; 4921 int msglen; 4922 int nego; 4923 int i; 4924 4925 /* 4926 * Compute the index of the next job to start from SCRIPTS. 4927 */ 4928 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4929 4930 /* 4931 * The last CCB queued used for IARB hint may be 4932 * no longer relevant. Forget it. 4933 */ 4934 #ifdef SYM_CONF_IARB_SUPPORT 4935 if (np->last_cp) 4936 np->last_cp = 0; 4937 #endif 4938 4939 /* 4940 * Now deal with the SCSI status. 4941 */ 4942 switch(s_status) { 4943 case S_BUSY: 4944 case S_QUEUE_FULL: 4945 if (sym_verbose >= 2) { 4946 PRINT_ADDR(cp); 4947 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4948 } 4949 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4950 sym_complete_error (np, cp); 4951 break; 4952 case S_TERMINATED: 4953 case S_CHECK_COND: 4954 /* 4955 * If we get an SCSI error when requesting sense, give up. 4956 */ 4957 if (h_flags & HF_SENSE) { 4958 sym_complete_error (np, cp); 4959 break; 4960 } 4961 4962 /* 4963 * Dequeue all queued CCBs for that device not yet started, 4964 * and restart the SCRIPTS processor immediately. 4965 */ 4966 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4967 OUTL_DSP (SCRIPTA_BA (np, start)); 4968 4969 /* 4970 * Save some info of the actual IO. 4971 * Compute the data residual. 4972 */ 4973 cp->sv_scsi_status = cp->ssss_status; 4974 cp->sv_xerr_status = cp->xerr_status; 4975 cp->sv_resid = sym_compute_residual(np, cp); 4976 4977 /* 4978 * Prepare all needed data structures for 4979 * requesting sense data. 4980 */ 4981 4982 /* 4983 * identify message 4984 */ 4985 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4986 msglen = 1; 4987 4988 /* 4989 * If we are currently using anything different from 4990 * async. 8 bit data transfers with that target, 4991 * start a negotiation, since the device may want 4992 * to report us a UNIT ATTENTION condition due to 4993 * a cause we currently ignore, and we donnot want 4994 * to be stuck with WIDE and/or SYNC data transfer. 4995 * 4996 * cp->nego_status is filled by sym_prepare_nego(). 4997 */ 4998 cp->nego_status = 0; 4999 nego = 0; 5000 if (tp->tinfo.current.options & PPR_OPT_MASK) 5001 nego = NS_PPR; 5002 else if (tp->tinfo.current.width != BUS_8_BIT) 5003 nego = NS_WIDE; 5004 else if (tp->tinfo.current.offset != 0) 5005 nego = NS_SYNC; 5006 if (nego) 5007 msglen += 5008 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 5009 /* 5010 * Message table indirect structure. 5011 */ 5012 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 5013 cp->phys.smsg.size = cpu_to_scr(msglen); 5014 5015 /* 5016 * sense command 5017 */ 5018 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 5019 cp->phys.cmd.size = cpu_to_scr(6); 5020 5021 /* 5022 * patch requested size into sense command 5023 */ 5024 cp->sensecmd[0] = 0x03; 5025 cp->sensecmd[1] = cp->lun << 5; 5026 #ifdef FreeBSD_New_Tran_Settings 5027 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 5028 cp->sensecmd[1] = 0; 5029 #endif 5030 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 5031 cp->data_len = SYM_SNS_BBUF_LEN; 5032 5033 /* 5034 * sense data 5035 */ 5036 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 5037 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 5038 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 5039 5040 /* 5041 * requeue the command. 5042 */ 5043 startp = SCRIPTB_BA (np, sdata_in); 5044 5045 cp->phys.head.savep = cpu_to_scr(startp); 5046 cp->phys.head.goalp = cpu_to_scr(startp + 16); 5047 cp->phys.head.lastp = cpu_to_scr(startp); 5048 cp->startp = cpu_to_scr(startp); 5049 5050 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 5051 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 5052 cp->ssss_status = S_ILLEGAL; 5053 cp->host_flags = (HF_SENSE|HF_DATA_IN); 5054 cp->xerr_status = 0; 5055 cp->extra_bytes = 0; 5056 5057 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 5058 5059 /* 5060 * Requeue the command. 5061 */ 5062 sym_put_start_queue(np, cp); 5063 5064 /* 5065 * Give back to upper layer everything we have dequeued. 5066 */ 5067 sym_flush_comp_queue(np, 0); 5068 break; 5069 } 5070 } 5071 5072 /* 5073 * After a device has accepted some management message 5074 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 5075 * a device signals a UNIT ATTENTION condition, some 5076 * tasks are thrown away by the device. We are required 5077 * to reflect that on our tasks list since the device 5078 * will never complete these tasks. 5079 * 5080 * This function move from the BUSY queue to the COMP 5081 * queue all disconnected CCBs for a given target that 5082 * match the following criteria: 5083 * - lun=-1 means any logical UNIT otherwise a given one. 5084 * - task=-1 means any task, otherwise a given one. 5085 */ 5086 static int 5087 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 5088 { 5089 SYM_QUEHEAD qtmp, *qp; 5090 int i = 0; 5091 ccb_p cp; 5092 5093 /* 5094 * Move the entire BUSY queue to our temporary queue. 5095 */ 5096 sym_que_init(&qtmp); 5097 sym_que_splice(&np->busy_ccbq, &qtmp); 5098 sym_que_init(&np->busy_ccbq); 5099 5100 /* 5101 * Put all CCBs that matches our criteria into 5102 * the COMP queue and put back other ones into 5103 * the BUSY queue. 5104 */ 5105 while ((qp = sym_remque_head(&qtmp)) != 0) { 5106 union ccb *ccb; 5107 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5108 ccb = cp->cam_ccb; 5109 if (cp->host_status != HS_DISCONNECT || 5110 cp->target != target || 5111 (lun != -1 && cp->lun != lun) || 5112 (task != -1 && 5113 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 5114 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 5115 continue; 5116 } 5117 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 5118 5119 /* Preserve the software timeout condition */ 5120 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 5121 sym_set_cam_status(ccb, cam_status); 5122 ++i; 5123 #if 0 5124 printf("XXXX TASK @%p CLEARED\n", cp); 5125 #endif 5126 } 5127 return i; 5128 } 5129 5130 /* 5131 * chip handler for TASKS recovery 5132 * 5133 * We cannot safely abort a command, while the SCRIPTS 5134 * processor is running, since we just would be in race 5135 * with it. 5136 * 5137 * As long as we have tasks to abort, we keep the SEM 5138 * bit set in the ISTAT. When this bit is set, the 5139 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 5140 * each time it enters the scheduler. 5141 * 5142 * If we have to reset a target, clear tasks of a unit, 5143 * or to perform the abort of a disconnected job, we 5144 * restart the SCRIPTS for selecting the target. Once 5145 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 5146 * If it loses arbitration, the SCRIPTS will interrupt again 5147 * the next time it will enter its scheduler, and so on ... 5148 * 5149 * On SIR_TARGET_SELECTED, we scan for the more 5150 * appropriate thing to do: 5151 * 5152 * - If nothing, we just sent a M_ABORT message to the 5153 * target to get rid of the useless SCSI bus ownership. 5154 * According to the specs, no tasks shall be affected. 5155 * - If the target is to be reset, we send it a M_RESET 5156 * message. 5157 * - If a logical UNIT is to be cleared , we send the 5158 * IDENTIFY(lun) + M_ABORT. 5159 * - If an untagged task is to be aborted, we send the 5160 * IDENTIFY(lun) + M_ABORT. 5161 * - If a tagged task is to be aborted, we send the 5162 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 5163 * 5164 * Once our 'kiss of death' :) message has been accepted 5165 * by the target, the SCRIPTS interrupts again 5166 * (SIR_ABORT_SENT). On this interrupt, we complete 5167 * all the CCBs that should have been aborted by the 5168 * target according to our message. 5169 */ 5170 static void sym_sir_task_recovery(hcb_p np, int num) 5171 { 5172 SYM_QUEHEAD *qp; 5173 ccb_p cp; 5174 tcb_p tp; 5175 int target=-1, lun=-1, task; 5176 int i, k; 5177 5178 switch(num) { 5179 /* 5180 * The SCRIPTS processor stopped before starting 5181 * the next command in order to allow us to perform 5182 * some task recovery. 5183 */ 5184 case SIR_SCRIPT_STOPPED: 5185 /* 5186 * Do we have any target to reset or unit to clear ? 5187 */ 5188 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 5189 tp = &np->target[i]; 5190 if (tp->to_reset || 5191 (tp->lun0p && tp->lun0p->to_clear)) { 5192 target = i; 5193 break; 5194 } 5195 if (!tp->lunmp) 5196 continue; 5197 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5198 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5199 target = i; 5200 break; 5201 } 5202 } 5203 if (target != -1) 5204 break; 5205 } 5206 5207 /* 5208 * If not, walk the busy queue for any 5209 * disconnected CCB to be aborted. 5210 */ 5211 if (target == -1) { 5212 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5213 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 5214 if (cp->host_status != HS_DISCONNECT) 5215 continue; 5216 if (cp->to_abort) { 5217 target = cp->target; 5218 break; 5219 } 5220 } 5221 } 5222 5223 /* 5224 * If some target is to be selected, 5225 * prepare and start the selection. 5226 */ 5227 if (target != -1) { 5228 tp = &np->target[target]; 5229 np->abrt_sel.sel_id = target; 5230 np->abrt_sel.sel_scntl3 = tp->head.wval; 5231 np->abrt_sel.sel_sxfer = tp->head.sval; 5232 OUTL(nc_dsa, np->hcb_ba); 5233 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 5234 return; 5235 } 5236 5237 /* 5238 * Now look for a CCB to abort that haven't started yet. 5239 * Btw, the SCRIPTS processor is still stopped, so 5240 * we are not in race. 5241 */ 5242 i = 0; 5243 cp = 0; 5244 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5245 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5246 if (cp->host_status != HS_BUSY && 5247 cp->host_status != HS_NEGOTIATE) 5248 continue; 5249 if (!cp->to_abort) 5250 continue; 5251 #ifdef SYM_CONF_IARB_SUPPORT 5252 /* 5253 * If we are using IMMEDIATE ARBITRATION, we donnot 5254 * want to cancel the last queued CCB, since the 5255 * SCRIPTS may have anticipated the selection. 5256 */ 5257 if (cp == np->last_cp) { 5258 cp->to_abort = 0; 5259 continue; 5260 } 5261 #endif 5262 i = 1; /* Means we have found some */ 5263 break; 5264 } 5265 if (!i) { 5266 /* 5267 * We are done, so we donnot need 5268 * to synchronize with the SCRIPTS anylonger. 5269 * Remove the SEM flag from the ISTAT. 5270 */ 5271 np->istat_sem = 0; 5272 OUTB (nc_istat, SIGP); 5273 break; 5274 } 5275 /* 5276 * Compute index of next position in the start 5277 * queue the SCRIPTS intends to start and dequeue 5278 * all CCBs for that device that haven't been started. 5279 */ 5280 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5281 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5282 5283 /* 5284 * Make sure at least our IO to abort has been dequeued. 5285 */ 5286 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5287 5288 /* 5289 * Keep track in cam status of the reason of the abort. 5290 */ 5291 if (cp->to_abort == 2) 5292 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5293 else 5294 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5295 5296 /* 5297 * Complete with error everything that we have dequeued. 5298 */ 5299 sym_flush_comp_queue(np, 0); 5300 break; 5301 /* 5302 * The SCRIPTS processor has selected a target 5303 * we may have some manual recovery to perform for. 5304 */ 5305 case SIR_TARGET_SELECTED: 5306 target = (INB (nc_sdid) & 0xf); 5307 tp = &np->target[target]; 5308 5309 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5310 5311 /* 5312 * If the target is to be reset, prepare a 5313 * M_RESET message and clear the to_reset flag 5314 * since we donnot expect this operation to fail. 5315 */ 5316 if (tp->to_reset) { 5317 np->abrt_msg[0] = M_RESET; 5318 np->abrt_tbl.size = 1; 5319 tp->to_reset = 0; 5320 break; 5321 } 5322 5323 /* 5324 * Otherwise, look for some logical unit to be cleared. 5325 */ 5326 if (tp->lun0p && tp->lun0p->to_clear) 5327 lun = 0; 5328 else if (tp->lunmp) { 5329 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5330 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5331 lun = k; 5332 break; 5333 } 5334 } 5335 } 5336 5337 /* 5338 * If a logical unit is to be cleared, prepare 5339 * an IDENTIFY(lun) + ABORT MESSAGE. 5340 */ 5341 if (lun != -1) { 5342 lcb_p lp = sym_lp(np, tp, lun); 5343 lp->to_clear = 0; /* We donnot expect to fail here */ 5344 np->abrt_msg[0] = M_IDENTIFY | lun; 5345 np->abrt_msg[1] = M_ABORT; 5346 np->abrt_tbl.size = 2; 5347 break; 5348 } 5349 5350 /* 5351 * Otherwise, look for some disconnected job to 5352 * abort for this target. 5353 */ 5354 i = 0; 5355 cp = 0; 5356 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5357 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5358 if (cp->host_status != HS_DISCONNECT) 5359 continue; 5360 if (cp->target != target) 5361 continue; 5362 if (!cp->to_abort) 5363 continue; 5364 i = 1; /* Means we have some */ 5365 break; 5366 } 5367 5368 /* 5369 * If we have none, probably since the device has 5370 * completed the command before we won abitration, 5371 * send a M_ABORT message without IDENTIFY. 5372 * According to the specs, the device must just 5373 * disconnect the BUS and not abort any task. 5374 */ 5375 if (!i) { 5376 np->abrt_msg[0] = M_ABORT; 5377 np->abrt_tbl.size = 1; 5378 break; 5379 } 5380 5381 /* 5382 * We have some task to abort. 5383 * Set the IDENTIFY(lun) 5384 */ 5385 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5386 5387 /* 5388 * If we want to abort an untagged command, we 5389 * will send a IDENTIFY + M_ABORT. 5390 * Otherwise (tagged command), we will send 5391 * a IDENTITFY + task attributes + ABORT TAG. 5392 */ 5393 if (cp->tag == NO_TAG) { 5394 np->abrt_msg[1] = M_ABORT; 5395 np->abrt_tbl.size = 2; 5396 } 5397 else { 5398 np->abrt_msg[1] = cp->scsi_smsg[1]; 5399 np->abrt_msg[2] = cp->scsi_smsg[2]; 5400 np->abrt_msg[3] = M_ABORT_TAG; 5401 np->abrt_tbl.size = 4; 5402 } 5403 /* 5404 * Keep track of software timeout condition, since the 5405 * peripheral driver may not count retries on abort 5406 * conditions not due to timeout. 5407 */ 5408 if (cp->to_abort == 2) 5409 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5410 cp->to_abort = 0; /* We donnot expect to fail here */ 5411 break; 5412 5413 /* 5414 * The target has accepted our message and switched 5415 * to BUS FREE phase as we expected. 5416 */ 5417 case SIR_ABORT_SENT: 5418 target = (INB (nc_sdid) & 0xf); 5419 tp = &np->target[target]; 5420 5421 /* 5422 ** If we didn't abort anything, leave here. 5423 */ 5424 if (np->abrt_msg[0] == M_ABORT) 5425 break; 5426 5427 /* 5428 * If we sent a M_RESET, then a hardware reset has 5429 * been performed by the target. 5430 * - Reset everything to async 8 bit 5431 * - Tell ourself to negotiate next time :-) 5432 * - Prepare to clear all disconnected CCBs for 5433 * this target from our task list (lun=task=-1) 5434 */ 5435 lun = -1; 5436 task = -1; 5437 if (np->abrt_msg[0] == M_RESET) { 5438 tp->head.sval = 0; 5439 tp->head.wval = np->rv_scntl3; 5440 tp->head.uval = 0; 5441 tp->tinfo.current.period = 0; 5442 tp->tinfo.current.offset = 0; 5443 tp->tinfo.current.width = BUS_8_BIT; 5444 tp->tinfo.current.options = 0; 5445 } 5446 5447 /* 5448 * Otherwise, check for the LUN and TASK(s) 5449 * concerned by the cancelation. 5450 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5451 * or an ABORT message :-) 5452 */ 5453 else { 5454 lun = np->abrt_msg[0] & 0x3f; 5455 if (np->abrt_msg[1] == M_ABORT_TAG) 5456 task = np->abrt_msg[2]; 5457 } 5458 5459 /* 5460 * Complete all the CCBs the device should have 5461 * aborted due to our 'kiss of death' message. 5462 */ 5463 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5464 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5465 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5466 sym_flush_comp_queue(np, 0); 5467 5468 /* 5469 * If we sent a BDR, make uper layer aware of that. 5470 */ 5471 if (np->abrt_msg[0] == M_RESET) 5472 xpt_async(AC_SENT_BDR, np->path, NULL); 5473 break; 5474 } 5475 5476 /* 5477 * Print to the log the message we intend to send. 5478 */ 5479 if (num == SIR_TARGET_SELECTED) { 5480 PRINT_TARGET(np, target); 5481 sym_printl_hex("control msgout:", np->abrt_msg, 5482 np->abrt_tbl.size); 5483 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5484 } 5485 5486 /* 5487 * Let the SCRIPTS processor continue. 5488 */ 5489 OUTONB_STD (); 5490 } 5491 5492 /* 5493 * Gerard's alchemy:) that deals with with the data 5494 * pointer for both MDP and the residual calculation. 5495 * 5496 * I didn't want to bloat the code by more than 200 5497 * lignes for the handling of both MDP and the residual. 5498 * This has been achieved by using a data pointer 5499 * representation consisting in an index in the data 5500 * array (dp_sg) and a negative offset (dp_ofs) that 5501 * have the following meaning: 5502 * 5503 * - dp_sg = SYM_CONF_MAX_SG 5504 * we are at the end of the data script. 5505 * - dp_sg < SYM_CONF_MAX_SG 5506 * dp_sg points to the next entry of the scatter array 5507 * we want to transfer. 5508 * - dp_ofs < 0 5509 * dp_ofs represents the residual of bytes of the 5510 * previous entry scatter entry we will send first. 5511 * - dp_ofs = 0 5512 * no residual to send first. 5513 * 5514 * The function sym_evaluate_dp() accepts an arbitray 5515 * offset (basically from the MDP message) and returns 5516 * the corresponding values of dp_sg and dp_ofs. 5517 */ 5518 5519 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5520 { 5521 u32 dp_scr; 5522 int dp_ofs, dp_sg, dp_sgmin; 5523 int tmp; 5524 struct sym_pmc *pm; 5525 5526 /* 5527 * Compute the resulted data pointer in term of a script 5528 * address within some DATA script and a signed byte offset. 5529 */ 5530 dp_scr = scr; 5531 dp_ofs = *ofs; 5532 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5533 pm = &cp->phys.pm0; 5534 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5535 pm = &cp->phys.pm1; 5536 else 5537 pm = 0; 5538 5539 if (pm) { 5540 dp_scr = scr_to_cpu(pm->ret); 5541 dp_ofs -= scr_to_cpu(pm->sg.size); 5542 } 5543 5544 /* 5545 * If we are auto-sensing, then we are done. 5546 */ 5547 if (cp->host_flags & HF_SENSE) { 5548 *ofs = dp_ofs; 5549 return 0; 5550 } 5551 5552 /* 5553 * Deduce the index of the sg entry. 5554 * Keep track of the index of the first valid entry. 5555 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5556 * end of the data. 5557 */ 5558 tmp = scr_to_cpu(cp->phys.head.goalp); 5559 dp_sg = SYM_CONF_MAX_SG; 5560 if (dp_scr != tmp) 5561 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5562 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5563 5564 /* 5565 * Move to the sg entry the data pointer belongs to. 5566 * 5567 * If we are inside the data area, we expect result to be: 5568 * 5569 * Either, 5570 * dp_ofs = 0 and dp_sg is the index of the sg entry 5571 * the data pointer belongs to (or the end of the data) 5572 * Or, 5573 * dp_ofs < 0 and dp_sg is the index of the sg entry 5574 * the data pointer belongs to + 1. 5575 */ 5576 if (dp_ofs < 0) { 5577 int n; 5578 while (dp_sg > dp_sgmin) { 5579 --dp_sg; 5580 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5581 n = dp_ofs + (tmp & 0xffffff); 5582 if (n > 0) { 5583 ++dp_sg; 5584 break; 5585 } 5586 dp_ofs = n; 5587 } 5588 } 5589 else if (dp_ofs > 0) { 5590 while (dp_sg < SYM_CONF_MAX_SG) { 5591 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5592 dp_ofs -= (tmp & 0xffffff); 5593 ++dp_sg; 5594 if (dp_ofs <= 0) 5595 break; 5596 } 5597 } 5598 5599 /* 5600 * Make sure the data pointer is inside the data area. 5601 * If not, return some error. 5602 */ 5603 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5604 goto out_err; 5605 else if (dp_sg > SYM_CONF_MAX_SG || 5606 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5607 goto out_err; 5608 5609 /* 5610 * Save the extreme pointer if needed. 5611 */ 5612 if (dp_sg > cp->ext_sg || 5613 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5614 cp->ext_sg = dp_sg; 5615 cp->ext_ofs = dp_ofs; 5616 } 5617 5618 /* 5619 * Return data. 5620 */ 5621 *ofs = dp_ofs; 5622 return dp_sg; 5623 5624 out_err: 5625 return -1; 5626 } 5627 5628 /* 5629 * chip handler for MODIFY DATA POINTER MESSAGE 5630 * 5631 * We also call this function on IGNORE WIDE RESIDUE 5632 * messages that do not match a SWIDE full condition. 5633 * Btw, we assume in that situation that such a message 5634 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5635 */ 5636 5637 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5638 { 5639 int dp_ofs = ofs; 5640 u32 dp_scr = INL (nc_temp); 5641 u32 dp_ret; 5642 u32 tmp; 5643 u_char hflags; 5644 int dp_sg; 5645 struct sym_pmc *pm; 5646 5647 /* 5648 * Not supported for auto-sense. 5649 */ 5650 if (cp->host_flags & HF_SENSE) 5651 goto out_reject; 5652 5653 /* 5654 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5655 * to the resulted data pointer. 5656 */ 5657 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5658 if (dp_sg < 0) 5659 goto out_reject; 5660 5661 /* 5662 * And our alchemy:) allows to easily calculate the data 5663 * script address we want to return for the next data phase. 5664 */ 5665 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5666 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5667 5668 /* 5669 * If offset / scatter entry is zero we donnot need 5670 * a context for the new current data pointer. 5671 */ 5672 if (dp_ofs == 0) { 5673 dp_scr = dp_ret; 5674 goto out_ok; 5675 } 5676 5677 /* 5678 * Get a context for the new current data pointer. 5679 */ 5680 hflags = INB (HF_PRT); 5681 5682 if (hflags & HF_DP_SAVED) 5683 hflags ^= HF_ACT_PM; 5684 5685 if (!(hflags & HF_ACT_PM)) { 5686 pm = &cp->phys.pm0; 5687 dp_scr = SCRIPTA_BA (np, pm0_data); 5688 } 5689 else { 5690 pm = &cp->phys.pm1; 5691 dp_scr = SCRIPTA_BA (np, pm1_data); 5692 } 5693 5694 hflags &= ~(HF_DP_SAVED); 5695 5696 OUTB (HF_PRT, hflags); 5697 5698 /* 5699 * Set up the new current data pointer. 5700 * ofs < 0 there, and for the next data phase, we 5701 * want to transfer part of the data of the sg entry 5702 * corresponding to index dp_sg-1 prior to returning 5703 * to the main data script. 5704 */ 5705 pm->ret = cpu_to_scr(dp_ret); 5706 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5707 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5708 pm->sg.addr = cpu_to_scr(tmp); 5709 pm->sg.size = cpu_to_scr(-dp_ofs); 5710 5711 out_ok: 5712 OUTL (nc_temp, dp_scr); 5713 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5714 return; 5715 5716 out_reject: 5717 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5718 } 5719 5720 5721 /* 5722 * chip calculation of the data residual. 5723 * 5724 * As I used to say, the requirement of data residual 5725 * in SCSI is broken, useless and cannot be achieved 5726 * without huge complexity. 5727 * But most OSes and even the official CAM require it. 5728 * When stupidity happens to be so widely spread inside 5729 * a community, it gets hard to convince. 5730 * 5731 * Anyway, I don't care, since I am not going to use 5732 * any software that considers this data residual as 5733 * a relevant information. :) 5734 */ 5735 5736 static int sym_compute_residual(hcb_p np, ccb_p cp) 5737 { 5738 int dp_sg, dp_sgmin, resid = 0; 5739 int dp_ofs = 0; 5740 5741 /* 5742 * Check for some data lost or just thrown away. 5743 * We are not required to be quite accurate in this 5744 * situation. Btw, if we are odd for output and the 5745 * device claims some more data, it may well happen 5746 * than our residual be zero. :-) 5747 */ 5748 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5749 if (cp->xerr_status & XE_EXTRA_DATA) 5750 resid -= cp->extra_bytes; 5751 if (cp->xerr_status & XE_SODL_UNRUN) 5752 ++resid; 5753 if (cp->xerr_status & XE_SWIDE_OVRUN) 5754 --resid; 5755 } 5756 5757 /* 5758 * If all data has been transferred, 5759 * there is no residual. 5760 */ 5761 if (cp->phys.head.lastp == cp->phys.head.goalp) 5762 return resid; 5763 5764 /* 5765 * If no data transfer occurs, or if the data 5766 * pointer is weird, return full residual. 5767 */ 5768 if (cp->startp == cp->phys.head.lastp || 5769 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5770 &dp_ofs) < 0) { 5771 return cp->data_len; 5772 } 5773 5774 /* 5775 * If we were auto-sensing, then we are done. 5776 */ 5777 if (cp->host_flags & HF_SENSE) { 5778 return -dp_ofs; 5779 } 5780 5781 /* 5782 * We are now full comfortable in the computation 5783 * of the data residual (2's complement). 5784 */ 5785 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5786 resid = -cp->ext_ofs; 5787 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5788 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5789 resid += (tmp & 0xffffff); 5790 } 5791 5792 /* 5793 * Hopefully, the result is not too wrong. 5794 */ 5795 return resid; 5796 } 5797 5798 /* 5799 * Print out the content of a SCSI message. 5800 */ 5801 5802 static int sym_show_msg (u_char * msg) 5803 { 5804 u_char i; 5805 printf ("%x",*msg); 5806 if (*msg==M_EXTENDED) { 5807 for (i=1;i<8;i++) { 5808 if (i-1>msg[1]) break; 5809 printf ("-%x",msg[i]); 5810 }; 5811 return (i+1); 5812 } else if ((*msg & 0xf0) == 0x20) { 5813 printf ("-%x",msg[1]); 5814 return (2); 5815 }; 5816 return (1); 5817 } 5818 5819 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5820 { 5821 PRINT_ADDR(cp); 5822 if (label) 5823 printf ("%s: ", label); 5824 5825 (void) sym_show_msg (msg); 5826 printf (".\n"); 5827 } 5828 5829 /* 5830 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5831 * 5832 * When we try to negotiate, we append the negotiation message 5833 * to the identify and (maybe) simple tag message. 5834 * The host status field is set to HS_NEGOTIATE to mark this 5835 * situation. 5836 * 5837 * If the target doesn't answer this message immediately 5838 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5839 * will be raised eventually. 5840 * The handler removes the HS_NEGOTIATE status, and sets the 5841 * negotiated value to the default (async / nowide). 5842 * 5843 * If we receive a matching answer immediately, we check it 5844 * for validity, and set the values. 5845 * 5846 * If we receive a Reject message immediately, we assume the 5847 * negotiation has failed, and fall back to standard values. 5848 * 5849 * If we receive a negotiation message while not in HS_NEGOTIATE 5850 * state, it's a target initiated negotiation. We prepare a 5851 * (hopefully) valid answer, set our parameters, and send back 5852 * this answer to the target. 5853 * 5854 * If the target doesn't fetch the answer (no message out phase), 5855 * we assume the negotiation has failed, and fall back to default 5856 * settings (SIR_NEGO_PROTO interrupt). 5857 * 5858 * When we set the values, we adjust them in all ccbs belonging 5859 * to this target, in the controller's register, and in the "phys" 5860 * field of the controller's struct sym_hcb. 5861 */ 5862 5863 /* 5864 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5865 */ 5866 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5867 { 5868 u_char chg, ofs, per, fak, div; 5869 int req = 1; 5870 5871 /* 5872 * Synchronous request message received. 5873 */ 5874 if (DEBUG_FLAGS & DEBUG_NEGO) { 5875 sym_print_msg(cp, "sync msgin", np->msgin); 5876 }; 5877 5878 /* 5879 * request or answer ? 5880 */ 5881 if (INB (HS_PRT) == HS_NEGOTIATE) { 5882 OUTB (HS_PRT, HS_BUSY); 5883 if (cp->nego_status && cp->nego_status != NS_SYNC) 5884 goto reject_it; 5885 req = 0; 5886 } 5887 5888 /* 5889 * get requested values. 5890 */ 5891 chg = 0; 5892 per = np->msgin[3]; 5893 ofs = np->msgin[4]; 5894 5895 /* 5896 * check values against our limits. 5897 */ 5898 if (ofs) { 5899 if (ofs > np->maxoffs) 5900 {chg = 1; ofs = np->maxoffs;} 5901 if (req) { 5902 if (ofs > tp->tinfo.user.offset) 5903 {chg = 1; ofs = tp->tinfo.user.offset;} 5904 } 5905 } 5906 5907 if (ofs) { 5908 if (per < np->minsync) 5909 {chg = 1; per = np->minsync;} 5910 if (req) { 5911 if (per < tp->tinfo.user.period) 5912 {chg = 1; per = tp->tinfo.user.period;} 5913 } 5914 } 5915 5916 div = fak = 0; 5917 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5918 goto reject_it; 5919 5920 if (DEBUG_FLAGS & DEBUG_NEGO) { 5921 PRINT_ADDR(cp); 5922 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5923 ofs, per, div, fak, chg); 5924 } 5925 5926 /* 5927 * This was an answer message 5928 */ 5929 if (req == 0) { 5930 if (chg) /* Answer wasn't acceptable. */ 5931 goto reject_it; 5932 sym_setsync (np, cp, ofs, per, div, fak); 5933 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5934 return; 5935 } 5936 5937 /* 5938 * It was a request. Set value and 5939 * prepare an answer message 5940 */ 5941 sym_setsync (np, cp, ofs, per, div, fak); 5942 5943 np->msgout[0] = M_EXTENDED; 5944 np->msgout[1] = 3; 5945 np->msgout[2] = M_X_SYNC_REQ; 5946 np->msgout[3] = per; 5947 np->msgout[4] = ofs; 5948 5949 cp->nego_status = NS_SYNC; 5950 5951 if (DEBUG_FLAGS & DEBUG_NEGO) { 5952 sym_print_msg(cp, "sync msgout", np->msgout); 5953 } 5954 5955 np->msgin [0] = M_NOOP; 5956 5957 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5958 return; 5959 reject_it: 5960 sym_setsync (np, cp, 0, 0, 0, 0); 5961 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5962 } 5963 5964 /* 5965 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5966 */ 5967 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5968 { 5969 u_char chg, ofs, per, fak, dt, div, wide; 5970 int req = 1; 5971 5972 /* 5973 * Synchronous request message received. 5974 */ 5975 if (DEBUG_FLAGS & DEBUG_NEGO) { 5976 sym_print_msg(cp, "ppr msgin", np->msgin); 5977 }; 5978 5979 /* 5980 * get requested values. 5981 */ 5982 chg = 0; 5983 per = np->msgin[3]; 5984 ofs = np->msgin[5]; 5985 wide = np->msgin[6]; 5986 dt = np->msgin[7] & PPR_OPT_DT; 5987 5988 /* 5989 * request or answer ? 5990 */ 5991 if (INB (HS_PRT) == HS_NEGOTIATE) { 5992 OUTB (HS_PRT, HS_BUSY); 5993 if (cp->nego_status && cp->nego_status != NS_PPR) 5994 goto reject_it; 5995 req = 0; 5996 } 5997 5998 /* 5999 * check values against our limits. 6000 */ 6001 if (wide > np->maxwide) 6002 {chg = 1; wide = np->maxwide;} 6003 if (!wide || !(np->features & FE_ULTRA3)) 6004 dt &= ~PPR_OPT_DT; 6005 if (req) { 6006 if (wide > tp->tinfo.user.width) 6007 {chg = 1; wide = tp->tinfo.user.width;} 6008 } 6009 6010 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 6011 dt &= ~PPR_OPT_DT; 6012 6013 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 6014 6015 if (ofs) { 6016 if (dt) { 6017 if (ofs > np->maxoffs_dt) 6018 {chg = 1; ofs = np->maxoffs_dt;} 6019 } 6020 else if (ofs > np->maxoffs) 6021 {chg = 1; ofs = np->maxoffs;} 6022 if (req) { 6023 if (ofs > tp->tinfo.user.offset) 6024 {chg = 1; ofs = tp->tinfo.user.offset;} 6025 } 6026 } 6027 6028 if (ofs) { 6029 if (dt) { 6030 if (per < np->minsync_dt) 6031 {chg = 1; per = np->minsync_dt;} 6032 } 6033 else if (per < np->minsync) 6034 {chg = 1; per = np->minsync;} 6035 if (req) { 6036 if (per < tp->tinfo.user.period) 6037 {chg = 1; per = tp->tinfo.user.period;} 6038 } 6039 } 6040 6041 div = fak = 0; 6042 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 6043 goto reject_it; 6044 6045 if (DEBUG_FLAGS & DEBUG_NEGO) { 6046 PRINT_ADDR(cp); 6047 printf ("ppr: " 6048 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 6049 dt, ofs, per, wide, div, fak, chg); 6050 } 6051 6052 /* 6053 * It was an answer. 6054 */ 6055 if (req == 0) { 6056 if (chg) /* Answer wasn't acceptable */ 6057 goto reject_it; 6058 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 6059 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6060 return; 6061 } 6062 6063 /* 6064 * It was a request. Set value and 6065 * prepare an answer message 6066 */ 6067 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 6068 6069 np->msgout[0] = M_EXTENDED; 6070 np->msgout[1] = 6; 6071 np->msgout[2] = M_X_PPR_REQ; 6072 np->msgout[3] = per; 6073 np->msgout[4] = 0; 6074 np->msgout[5] = ofs; 6075 np->msgout[6] = wide; 6076 np->msgout[7] = dt; 6077 6078 cp->nego_status = NS_PPR; 6079 6080 if (DEBUG_FLAGS & DEBUG_NEGO) { 6081 sym_print_msg(cp, "ppr msgout", np->msgout); 6082 } 6083 6084 np->msgin [0] = M_NOOP; 6085 6086 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 6087 return; 6088 reject_it: 6089 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6090 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6091 /* 6092 * If it was a device response that should result in 6093 * ST, we may want to try a legacy negotiation later. 6094 */ 6095 if (!req && !dt) { 6096 tp->tinfo.goal.options = 0; 6097 tp->tinfo.goal.width = wide; 6098 tp->tinfo.goal.period = per; 6099 tp->tinfo.goal.offset = ofs; 6100 } 6101 return; 6102 } 6103 6104 /* 6105 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 6106 */ 6107 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 6108 { 6109 u_char chg, wide; 6110 int req = 1; 6111 6112 /* 6113 * Wide request message received. 6114 */ 6115 if (DEBUG_FLAGS & DEBUG_NEGO) { 6116 sym_print_msg(cp, "wide msgin", np->msgin); 6117 }; 6118 6119 /* 6120 * Is it an request from the device? 6121 */ 6122 if (INB (HS_PRT) == HS_NEGOTIATE) { 6123 OUTB (HS_PRT, HS_BUSY); 6124 if (cp->nego_status && cp->nego_status != NS_WIDE) 6125 goto reject_it; 6126 req = 0; 6127 } 6128 6129 /* 6130 * get requested values. 6131 */ 6132 chg = 0; 6133 wide = np->msgin[3]; 6134 6135 /* 6136 * check values against driver limits. 6137 */ 6138 if (wide > np->maxwide) 6139 {chg = 1; wide = np->maxwide;} 6140 if (req) { 6141 if (wide > tp->tinfo.user.width) 6142 {chg = 1; wide = tp->tinfo.user.width;} 6143 } 6144 6145 if (DEBUG_FLAGS & DEBUG_NEGO) { 6146 PRINT_ADDR(cp); 6147 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 6148 } 6149 6150 /* 6151 * This was an answer message 6152 */ 6153 if (req == 0) { 6154 if (chg) /* Answer wasn't acceptable. */ 6155 goto reject_it; 6156 sym_setwide (np, cp, wide); 6157 6158 /* 6159 * Negotiate for SYNC immediately after WIDE response. 6160 * This allows to negotiate for both WIDE and SYNC on 6161 * a single SCSI command (Suggested by Justin Gibbs). 6162 */ 6163 if (tp->tinfo.goal.offset) { 6164 np->msgout[0] = M_EXTENDED; 6165 np->msgout[1] = 3; 6166 np->msgout[2] = M_X_SYNC_REQ; 6167 np->msgout[3] = tp->tinfo.goal.period; 6168 np->msgout[4] = tp->tinfo.goal.offset; 6169 6170 if (DEBUG_FLAGS & DEBUG_NEGO) { 6171 sym_print_msg(cp, "sync msgout", np->msgout); 6172 } 6173 6174 cp->nego_status = NS_SYNC; 6175 OUTB (HS_PRT, HS_NEGOTIATE); 6176 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 6177 return; 6178 } 6179 6180 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6181 return; 6182 }; 6183 6184 /* 6185 * It was a request, set value and 6186 * prepare an answer message 6187 */ 6188 sym_setwide (np, cp, wide); 6189 6190 np->msgout[0] = M_EXTENDED; 6191 np->msgout[1] = 2; 6192 np->msgout[2] = M_X_WIDE_REQ; 6193 np->msgout[3] = wide; 6194 6195 np->msgin [0] = M_NOOP; 6196 6197 cp->nego_status = NS_WIDE; 6198 6199 if (DEBUG_FLAGS & DEBUG_NEGO) { 6200 sym_print_msg(cp, "wide msgout", np->msgout); 6201 } 6202 6203 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 6204 return; 6205 reject_it: 6206 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6207 } 6208 6209 /* 6210 * Reset SYNC or WIDE to default settings. 6211 * 6212 * Called when a negotiation does not succeed either 6213 * on rejection or on protocol error. 6214 * 6215 * If it was a PPR that made problems, we may want to 6216 * try a legacy negotiation later. 6217 */ 6218 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 6219 { 6220 /* 6221 * any error in negotiation: 6222 * fall back to default mode. 6223 */ 6224 switch (cp->nego_status) { 6225 case NS_PPR: 6226 #if 0 6227 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6228 #else 6229 tp->tinfo.goal.options = 0; 6230 if (tp->tinfo.goal.period < np->minsync) 6231 tp->tinfo.goal.period = np->minsync; 6232 if (tp->tinfo.goal.offset > np->maxoffs) 6233 tp->tinfo.goal.offset = np->maxoffs; 6234 #endif 6235 break; 6236 case NS_SYNC: 6237 sym_setsync (np, cp, 0, 0, 0, 0); 6238 break; 6239 case NS_WIDE: 6240 sym_setwide (np, cp, 0); 6241 break; 6242 }; 6243 np->msgin [0] = M_NOOP; 6244 np->msgout[0] = M_NOOP; 6245 cp->nego_status = 0; 6246 } 6247 6248 /* 6249 * chip handler for MESSAGE REJECT received in response to 6250 * a WIDE or SYNCHRONOUS negotiation. 6251 */ 6252 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6253 { 6254 sym_nego_default(np, tp, cp); 6255 OUTB (HS_PRT, HS_BUSY); 6256 } 6257 6258 /* 6259 * chip exception handler for programmed interrupts. 6260 */ 6261 void sym_int_sir (hcb_p np) 6262 { 6263 u_char num = INB (nc_dsps); 6264 u32 dsa = INL (nc_dsa); 6265 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6266 u_char target = INB (nc_sdid) & 0x0f; 6267 tcb_p tp = &np->target[target]; 6268 int tmp; 6269 6270 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6271 6272 switch (num) { 6273 /* 6274 * Command has been completed with error condition 6275 * or has been auto-sensed. 6276 */ 6277 case SIR_COMPLETE_ERROR: 6278 sym_complete_error(np, cp); 6279 return; 6280 /* 6281 * The C code is currently trying to recover from something. 6282 * Typically, user want to abort some command. 6283 */ 6284 case SIR_SCRIPT_STOPPED: 6285 case SIR_TARGET_SELECTED: 6286 case SIR_ABORT_SENT: 6287 sym_sir_task_recovery(np, num); 6288 return; 6289 /* 6290 * The device didn't go to MSG OUT phase after having 6291 * been selected with ATN. We donnot want to handle 6292 * that. 6293 */ 6294 case SIR_SEL_ATN_NO_MSG_OUT: 6295 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6296 sym_name (np), target); 6297 goto out_stuck; 6298 /* 6299 * The device didn't switch to MSG IN phase after 6300 * having reseleted the initiator. 6301 */ 6302 case SIR_RESEL_NO_MSG_IN: 6303 printf ("%s:%d: No MSG IN phase after reselection.\n", 6304 sym_name (np), target); 6305 goto out_stuck; 6306 /* 6307 * After reselection, the device sent a message that wasn't 6308 * an IDENTIFY. 6309 */ 6310 case SIR_RESEL_NO_IDENTIFY: 6311 printf ("%s:%d: No IDENTIFY after reselection.\n", 6312 sym_name (np), target); 6313 goto out_stuck; 6314 /* 6315 * The device reselected a LUN we donnot know about. 6316 */ 6317 case SIR_RESEL_BAD_LUN: 6318 np->msgout[0] = M_RESET; 6319 goto out; 6320 /* 6321 * The device reselected for an untagged nexus and we 6322 * haven't any. 6323 */ 6324 case SIR_RESEL_BAD_I_T_L: 6325 np->msgout[0] = M_ABORT; 6326 goto out; 6327 /* 6328 * The device reselected for a tagged nexus that we donnot 6329 * have. 6330 */ 6331 case SIR_RESEL_BAD_I_T_L_Q: 6332 np->msgout[0] = M_ABORT_TAG; 6333 goto out; 6334 /* 6335 * The SCRIPTS let us know that the device has grabbed 6336 * our message and will abort the job. 6337 */ 6338 case SIR_RESEL_ABORTED: 6339 np->lastmsg = np->msgout[0]; 6340 np->msgout[0] = M_NOOP; 6341 printf ("%s:%d: message %x sent on bad reselection.\n", 6342 sym_name (np), target, np->lastmsg); 6343 goto out; 6344 /* 6345 * The SCRIPTS let us know that a message has been 6346 * successfully sent to the device. 6347 */ 6348 case SIR_MSG_OUT_DONE: 6349 np->lastmsg = np->msgout[0]; 6350 np->msgout[0] = M_NOOP; 6351 /* Should we really care of that */ 6352 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6353 if (cp) { 6354 cp->xerr_status &= ~XE_PARITY_ERR; 6355 if (!cp->xerr_status) 6356 OUTOFFB (HF_PRT, HF_EXT_ERR); 6357 } 6358 } 6359 goto out; 6360 /* 6361 * The device didn't send a GOOD SCSI status. 6362 * We may have some work to do prior to allow 6363 * the SCRIPTS processor to continue. 6364 */ 6365 case SIR_BAD_SCSI_STATUS: 6366 if (!cp) 6367 goto out; 6368 sym_sir_bad_scsi_status(np, num, cp); 6369 return; 6370 /* 6371 * We are asked by the SCRIPTS to prepare a 6372 * REJECT message. 6373 */ 6374 case SIR_REJECT_TO_SEND: 6375 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6376 np->msgout[0] = M_REJECT; 6377 goto out; 6378 /* 6379 * We have been ODD at the end of a DATA IN 6380 * transfer and the device didn't send a 6381 * IGNORE WIDE RESIDUE message. 6382 * It is a data overrun condition. 6383 */ 6384 case SIR_SWIDE_OVERRUN: 6385 if (cp) { 6386 OUTONB (HF_PRT, HF_EXT_ERR); 6387 cp->xerr_status |= XE_SWIDE_OVRUN; 6388 } 6389 goto out; 6390 /* 6391 * We have been ODD at the end of a DATA OUT 6392 * transfer. 6393 * It is a data underrun condition. 6394 */ 6395 case SIR_SODL_UNDERRUN: 6396 if (cp) { 6397 OUTONB (HF_PRT, HF_EXT_ERR); 6398 cp->xerr_status |= XE_SODL_UNRUN; 6399 } 6400 goto out; 6401 /* 6402 * The device wants us to tranfer more data than 6403 * expected or in the wrong direction. 6404 * The number of extra bytes is in scratcha. 6405 * It is a data overrun condition. 6406 */ 6407 case SIR_DATA_OVERRUN: 6408 if (cp) { 6409 OUTONB (HF_PRT, HF_EXT_ERR); 6410 cp->xerr_status |= XE_EXTRA_DATA; 6411 cp->extra_bytes += INL (nc_scratcha); 6412 } 6413 goto out; 6414 /* 6415 * The device switched to an illegal phase (4/5). 6416 */ 6417 case SIR_BAD_PHASE: 6418 if (cp) { 6419 OUTONB (HF_PRT, HF_EXT_ERR); 6420 cp->xerr_status |= XE_BAD_PHASE; 6421 } 6422 goto out; 6423 /* 6424 * We received a message. 6425 */ 6426 case SIR_MSG_RECEIVED: 6427 if (!cp) 6428 goto out_stuck; 6429 switch (np->msgin [0]) { 6430 /* 6431 * We received an extended message. 6432 * We handle MODIFY DATA POINTER, SDTR, WDTR 6433 * and reject all other extended messages. 6434 */ 6435 case M_EXTENDED: 6436 switch (np->msgin [2]) { 6437 case M_X_MODIFY_DP: 6438 if (DEBUG_FLAGS & DEBUG_POINTER) 6439 sym_print_msg(cp,"modify DP",np->msgin); 6440 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6441 (np->msgin[5]<<8) + (np->msgin[6]); 6442 sym_modify_dp(np, tp, cp, tmp); 6443 return; 6444 case M_X_SYNC_REQ: 6445 sym_sync_nego(np, tp, cp); 6446 return; 6447 case M_X_PPR_REQ: 6448 sym_ppr_nego(np, tp, cp); 6449 return; 6450 case M_X_WIDE_REQ: 6451 sym_wide_nego(np, tp, cp); 6452 return; 6453 default: 6454 goto out_reject; 6455 } 6456 break; 6457 /* 6458 * We received a 1/2 byte message not handled from SCRIPTS. 6459 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6460 * RESIDUE messages that haven't been anticipated by 6461 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6462 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6463 */ 6464 case M_IGN_RESIDUE: 6465 if (DEBUG_FLAGS & DEBUG_POINTER) 6466 sym_print_msg(cp,"ign wide residue", np->msgin); 6467 sym_modify_dp(np, tp, cp, -1); 6468 return; 6469 case M_REJECT: 6470 if (INB (HS_PRT) == HS_NEGOTIATE) 6471 sym_nego_rejected(np, tp, cp); 6472 else { 6473 PRINT_ADDR(cp); 6474 printf ("M_REJECT received (%x:%x).\n", 6475 scr_to_cpu(np->lastmsg), np->msgout[0]); 6476 } 6477 goto out_clrack; 6478 break; 6479 default: 6480 goto out_reject; 6481 } 6482 break; 6483 /* 6484 * We received an unknown message. 6485 * Ignore all MSG IN phases and reject it. 6486 */ 6487 case SIR_MSG_WEIRD: 6488 sym_print_msg(cp, "WEIRD message received", np->msgin); 6489 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6490 return; 6491 /* 6492 * Negotiation failed. 6493 * Target does not send us the reply. 6494 * Remove the HS_NEGOTIATE status. 6495 */ 6496 case SIR_NEGO_FAILED: 6497 OUTB (HS_PRT, HS_BUSY); 6498 /* 6499 * Negotiation failed. 6500 * Target does not want answer message. 6501 */ 6502 case SIR_NEGO_PROTO: 6503 sym_nego_default(np, tp, cp); 6504 goto out; 6505 }; 6506 6507 out: 6508 OUTONB_STD (); 6509 return; 6510 out_reject: 6511 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6512 return; 6513 out_clrack: 6514 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6515 return; 6516 out_stuck: 6517 } 6518 6519 /* 6520 * Acquire a control block 6521 */ 6522 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6523 { 6524 tcb_p tp = &np->target[tn]; 6525 lcb_p lp = sym_lp(np, tp, ln); 6526 u_short tag = NO_TAG; 6527 SYM_QUEHEAD *qp; 6528 ccb_p cp = (ccb_p) 0; 6529 6530 /* 6531 * Look for a free CCB 6532 */ 6533 if (sym_que_empty(&np->free_ccbq)) 6534 (void) sym_alloc_ccb(np); 6535 qp = sym_remque_head(&np->free_ccbq); 6536 if (!qp) 6537 goto out; 6538 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6539 6540 /* 6541 * If the LCB is not yet available and the LUN 6542 * has been probed ok, try to allocate the LCB. 6543 */ 6544 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6545 lp = sym_alloc_lcb(np, tn, ln); 6546 if (!lp) 6547 goto out_free; 6548 } 6549 6550 /* 6551 * If the LCB is not available here, then the 6552 * logical unit is not yet discovered. For those 6553 * ones only accept 1 SCSI IO per logical unit, 6554 * since we cannot allow disconnections. 6555 */ 6556 if (!lp) { 6557 if (!sym_is_bit(tp->busy0_map, ln)) 6558 sym_set_bit(tp->busy0_map, ln); 6559 else 6560 goto out_free; 6561 } else { 6562 /* 6563 * If we have been asked for a tagged command. 6564 */ 6565 if (tag_order) { 6566 /* 6567 * Debugging purpose. 6568 */ 6569 assert(lp->busy_itl == 0); 6570 /* 6571 * Allocate resources for tags if not yet. 6572 */ 6573 if (!lp->cb_tags) { 6574 sym_alloc_lcb_tags(np, tn, ln); 6575 if (!lp->cb_tags) 6576 goto out_free; 6577 } 6578 /* 6579 * Get a tag for this SCSI IO and set up 6580 * the CCB bus address for reselection, 6581 * and count it for this LUN. 6582 * Toggle reselect path to tagged. 6583 */ 6584 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6585 tag = lp->cb_tags[lp->ia_tag]; 6586 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6587 lp->ia_tag = 0; 6588 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6589 ++lp->busy_itlq; 6590 lp->head.resel_sa = 6591 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6592 } 6593 else 6594 goto out_free; 6595 } 6596 /* 6597 * This command will not be tagged. 6598 * If we already have either a tagged or untagged 6599 * one, refuse to overlap this untagged one. 6600 */ 6601 else { 6602 /* 6603 * Debugging purpose. 6604 */ 6605 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6606 /* 6607 * Count this nexus for this LUN. 6608 * Set up the CCB bus address for reselection. 6609 * Toggle reselect path to untagged. 6610 */ 6611 if (++lp->busy_itl == 1) { 6612 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6613 lp->head.resel_sa = 6614 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6615 } 6616 else 6617 goto out_free; 6618 } 6619 } 6620 /* 6621 * Put the CCB into the busy queue. 6622 */ 6623 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6624 6625 /* 6626 * Remember all informations needed to free this CCB. 6627 */ 6628 cp->to_abort = 0; 6629 cp->tag = tag; 6630 cp->target = tn; 6631 cp->lun = ln; 6632 6633 if (DEBUG_FLAGS & DEBUG_TAGS) { 6634 PRINT_LUN(np, tn, ln); 6635 printf ("ccb @%p using tag %d.\n", cp, tag); 6636 } 6637 6638 out: 6639 return cp; 6640 out_free: 6641 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6642 return (ccb_p) 0; 6643 } 6644 6645 /* 6646 * Release one control block 6647 */ 6648 static void sym_free_ccb (hcb_p np, ccb_p cp) 6649 { 6650 tcb_p tp = &np->target[cp->target]; 6651 lcb_p lp = sym_lp(np, tp, cp->lun); 6652 6653 if (DEBUG_FLAGS & DEBUG_TAGS) { 6654 PRINT_LUN(np, cp->target, cp->lun); 6655 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6656 } 6657 6658 /* 6659 * If LCB available, 6660 */ 6661 if (lp) { 6662 /* 6663 * If tagged, release the tag, set the relect path 6664 */ 6665 if (cp->tag != NO_TAG) { 6666 /* 6667 * Free the tag value. 6668 */ 6669 lp->cb_tags[lp->if_tag] = cp->tag; 6670 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6671 lp->if_tag = 0; 6672 /* 6673 * Make the reselect path invalid, 6674 * and uncount this CCB. 6675 */ 6676 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6677 --lp->busy_itlq; 6678 } else { /* Untagged */ 6679 /* 6680 * Make the reselect path invalid, 6681 * and uncount this CCB. 6682 */ 6683 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6684 --lp->busy_itl; 6685 } 6686 /* 6687 * If no JOB active, make the LUN reselect path invalid. 6688 */ 6689 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6690 lp->head.resel_sa = 6691 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6692 } 6693 /* 6694 * Otherwise, we only accept 1 IO per LUN. 6695 * Clear the bit that keeps track of this IO. 6696 */ 6697 else 6698 sym_clr_bit(tp->busy0_map, cp->lun); 6699 6700 /* 6701 * We donnot queue more than 1 ccb per target 6702 * with negotiation at any time. If this ccb was 6703 * used for negotiation, clear this info in the tcb. 6704 */ 6705 if (cp == tp->nego_cp) 6706 tp->nego_cp = 0; 6707 6708 #ifdef SYM_CONF_IARB_SUPPORT 6709 /* 6710 * If we just complete the last queued CCB, 6711 * clear this info that is no longer relevant. 6712 */ 6713 if (cp == np->last_cp) 6714 np->last_cp = 0; 6715 #endif 6716 6717 #ifdef FreeBSD_Bus_Dma_Abstraction 6718 /* 6719 * Unmap user data from DMA map if needed. 6720 */ 6721 if (cp->dmamapped) { 6722 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6723 cp->dmamapped = 0; 6724 } 6725 #endif 6726 6727 /* 6728 * Make this CCB available. 6729 */ 6730 cp->cam_ccb = 0; 6731 cp->host_status = HS_IDLE; 6732 sym_remque(&cp->link_ccbq); 6733 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6734 } 6735 6736 /* 6737 * Allocate a CCB from memory and initialize its fixed part. 6738 */ 6739 static ccb_p sym_alloc_ccb(hcb_p np) 6740 { 6741 ccb_p cp = 0; 6742 int hcode; 6743 6744 /* 6745 * Prevent from allocating more CCBs than we can 6746 * queue to the controller. 6747 */ 6748 if (np->actccbs >= SYM_CONF_MAX_START) 6749 return 0; 6750 6751 /* 6752 * Allocate memory for this CCB. 6753 */ 6754 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6755 if (!cp) 6756 goto out_free; 6757 6758 /* 6759 * Allocate a bounce buffer for sense data. 6760 */ 6761 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6762 if (!cp->sns_bbuf) 6763 goto out_free; 6764 6765 /* 6766 * Allocate a map for the DMA of user data. 6767 */ 6768 #ifdef FreeBSD_Bus_Dma_Abstraction 6769 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6770 goto out_free; 6771 #endif 6772 /* 6773 * Count it. 6774 */ 6775 np->actccbs++; 6776 6777 /* 6778 * Compute the bus address of this ccb. 6779 */ 6780 cp->ccb_ba = vtobus(cp); 6781 6782 /* 6783 * Insert this ccb into the hashed list. 6784 */ 6785 hcode = CCB_HASH_CODE(cp->ccb_ba); 6786 cp->link_ccbh = np->ccbh[hcode]; 6787 np->ccbh[hcode] = cp; 6788 6789 /* 6790 * Initialyze the start and restart actions. 6791 */ 6792 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6793 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6794 6795 /* 6796 * Initilialyze some other fields. 6797 */ 6798 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6799 6800 /* 6801 * Chain into free ccb queue. 6802 */ 6803 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6804 6805 return cp; 6806 out_free: 6807 if (cp) { 6808 if (cp->sns_bbuf) 6809 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF"); 6810 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6811 } 6812 return 0; 6813 } 6814 6815 /* 6816 * Look up a CCB from a DSA value. 6817 */ 6818 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6819 { 6820 int hcode; 6821 ccb_p cp; 6822 6823 hcode = CCB_HASH_CODE(dsa); 6824 cp = np->ccbh[hcode]; 6825 while (cp) { 6826 if (cp->ccb_ba == dsa) 6827 break; 6828 cp = cp->link_ccbh; 6829 } 6830 6831 return cp; 6832 } 6833 6834 /* 6835 * Target control block initialisation. 6836 * Nothing important to do at the moment. 6837 */ 6838 static void sym_init_tcb (hcb_p np, u_char tn) 6839 { 6840 /* 6841 * Check some alignments required by the chip. 6842 */ 6843 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6844 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6845 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6846 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6847 } 6848 6849 /* 6850 * Lun control block allocation and initialization. 6851 */ 6852 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6853 { 6854 tcb_p tp = &np->target[tn]; 6855 lcb_p lp = sym_lp(np, tp, ln); 6856 6857 /* 6858 * Already done, just return. 6859 */ 6860 if (lp) 6861 return lp; 6862 /* 6863 * Check against some race. 6864 */ 6865 assert(!sym_is_bit(tp->busy0_map, ln)); 6866 6867 /* 6868 * Initialize the target control block if not yet. 6869 */ 6870 sym_init_tcb (np, tn); 6871 6872 /* 6873 * Allocate the LCB bus address array. 6874 * Compute the bus address of this table. 6875 */ 6876 if (ln && !tp->luntbl) { 6877 int i; 6878 6879 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6880 if (!tp->luntbl) 6881 goto fail; 6882 for (i = 0 ; i < 64 ; i++) 6883 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6884 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6885 } 6886 6887 /* 6888 * Allocate the table of pointers for LUN(s) > 0, if needed. 6889 */ 6890 if (ln && !tp->lunmp) { 6891 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6892 "LUNMP"); 6893 if (!tp->lunmp) 6894 goto fail; 6895 } 6896 6897 /* 6898 * Allocate the lcb. 6899 * Make it available to the chip. 6900 */ 6901 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6902 if (!lp) 6903 goto fail; 6904 if (ln) { 6905 tp->lunmp[ln] = lp; 6906 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6907 } 6908 else { 6909 tp->lun0p = lp; 6910 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6911 } 6912 6913 /* 6914 * Let the itl task point to error handling. 6915 */ 6916 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6917 6918 /* 6919 * Set the reselect pattern to our default. :) 6920 */ 6921 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6922 6923 /* 6924 * Set user capabilities. 6925 */ 6926 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6927 6928 fail: 6929 return lp; 6930 } 6931 6932 /* 6933 * Allocate LCB resources for tagged command queuing. 6934 */ 6935 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6936 { 6937 tcb_p tp = &np->target[tn]; 6938 lcb_p lp = sym_lp(np, tp, ln); 6939 int i; 6940 6941 /* 6942 * If LCB not available, try to allocate it. 6943 */ 6944 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6945 goto fail; 6946 6947 /* 6948 * Allocate the task table and and the tag allocation 6949 * circular buffer. We want both or none. 6950 */ 6951 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6952 if (!lp->itlq_tbl) 6953 goto fail; 6954 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6955 if (!lp->cb_tags) { 6956 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6957 lp->itlq_tbl = 0; 6958 goto fail; 6959 } 6960 6961 /* 6962 * Initialize the task table with invalid entries. 6963 */ 6964 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6965 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6966 6967 /* 6968 * Fill up the tag buffer with tag numbers. 6969 */ 6970 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6971 lp->cb_tags[i] = i; 6972 6973 /* 6974 * Make the task table available to SCRIPTS, 6975 * And accept tagged commands now. 6976 */ 6977 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6978 6979 return; 6980 fail: 6981 } 6982 6983 /* 6984 * Test the pci bus snoop logic :-( 6985 * 6986 * Has to be called with interrupts disabled. 6987 */ 6988 #ifndef SYM_CONF_IOMAPPED 6989 static int sym_regtest (hcb_p np) 6990 { 6991 register volatile u32 data; 6992 /* 6993 * chip registers may NOT be cached. 6994 * write 0xffffffff to a read only register area, 6995 * and try to read it back. 6996 */ 6997 data = 0xffffffff; 6998 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6999 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 7000 #if 1 7001 if (data == 0xffffffff) { 7002 #else 7003 if ((data & 0xe2f0fffd) != 0x02000080) { 7004 #endif 7005 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 7006 (unsigned) data); 7007 return (0x10); 7008 }; 7009 return (0); 7010 } 7011 #endif 7012 7013 static int sym_snooptest (hcb_p np) 7014 { 7015 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 7016 int i, err=0; 7017 #ifndef SYM_CONF_IOMAPPED 7018 err |= sym_regtest (np); 7019 if (err) return (err); 7020 #endif 7021 restart_test: 7022 /* 7023 * Enable Master Parity Checking as we intend 7024 * to enable it for normal operations. 7025 */ 7026 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 7027 /* 7028 * init 7029 */ 7030 pc = SCRIPTB0_BA (np, snooptest); 7031 host_wr = 1; 7032 sym_wr = 2; 7033 /* 7034 * Set memory and register. 7035 */ 7036 np->cache = cpu_to_scr(host_wr); 7037 OUTL (nc_temp, sym_wr); 7038 /* 7039 * Start script (exchange values) 7040 */ 7041 OUTL (nc_dsa, np->hcb_ba); 7042 OUTL_DSP (pc); 7043 /* 7044 * Wait 'til done (with timeout) 7045 */ 7046 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 7047 if (INB(nc_istat) & (INTF|SIP|DIP)) 7048 break; 7049 if (i>=SYM_SNOOP_TIMEOUT) { 7050 printf ("CACHE TEST FAILED: timeout.\n"); 7051 return (0x20); 7052 }; 7053 /* 7054 * Check for fatal DMA errors. 7055 */ 7056 dstat = INB (nc_dstat); 7057 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 7058 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 7059 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 7060 "DISABLING MASTER DATA PARITY CHECKING.\n", 7061 sym_name(np)); 7062 np->rv_ctest4 &= ~MPEE; 7063 goto restart_test; 7064 } 7065 #endif 7066 if (dstat & (MDPE|BF|IID)) { 7067 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 7068 return (0x80); 7069 } 7070 /* 7071 * Save termination position. 7072 */ 7073 pc = INL (nc_dsp); 7074 /* 7075 * Read memory and register. 7076 */ 7077 host_rd = scr_to_cpu(np->cache); 7078 sym_rd = INL (nc_scratcha); 7079 sym_bk = INL (nc_temp); 7080 7081 /* 7082 * Check termination position. 7083 */ 7084 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 7085 printf ("CACHE TEST FAILED: script execution failed.\n"); 7086 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 7087 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 7088 (u_long) SCRIPTB0_BA (np, snoopend) +8); 7089 return (0x40); 7090 }; 7091 /* 7092 * Show results. 7093 */ 7094 if (host_wr != sym_rd) { 7095 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 7096 (int) host_wr, (int) sym_rd); 7097 err |= 1; 7098 }; 7099 if (host_rd != sym_wr) { 7100 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 7101 (int) sym_wr, (int) host_rd); 7102 err |= 2; 7103 }; 7104 if (sym_bk != sym_wr) { 7105 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 7106 (int) sym_wr, (int) sym_bk); 7107 err |= 4; 7108 }; 7109 7110 return (err); 7111 } 7112 7113 /* 7114 * Determine the chip's clock frequency. 7115 * 7116 * This is essential for the negotiation of the synchronous 7117 * transfer rate. 7118 * 7119 * Note: we have to return the correct value. 7120 * THERE IS NO SAFE DEFAULT VALUE. 7121 * 7122 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 7123 * 53C860 and 53C875 rev. 1 support fast20 transfers but 7124 * do not have a clock doubler and so are provided with a 7125 * 80 MHz clock. All other fast20 boards incorporate a doubler 7126 * and so should be delivered with a 40 MHz clock. 7127 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 7128 * clock and provide a clock quadrupler (160 Mhz). 7129 */ 7130 7131 /* 7132 * Select SCSI clock frequency 7133 */ 7134 static void sym_selectclock(hcb_p np, u_char scntl3) 7135 { 7136 /* 7137 * If multiplier not present or not selected, leave here. 7138 */ 7139 if (np->multiplier <= 1) { 7140 OUTB(nc_scntl3, scntl3); 7141 return; 7142 } 7143 7144 if (sym_verbose >= 2) 7145 printf ("%s: enabling clock multiplier\n", sym_name(np)); 7146 7147 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 7148 /* 7149 * Wait for the LCKFRQ bit to be set if supported by the chip. 7150 * Otherwise wait 20 micro-seconds. 7151 */ 7152 if (np->features & FE_LCKFRQ) { 7153 int i = 20; 7154 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 7155 UDELAY (20); 7156 if (!i) 7157 printf("%s: the chip cannot lock the frequency\n", 7158 sym_name(np)); 7159 } else 7160 UDELAY (20); 7161 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 7162 OUTB(nc_scntl3, scntl3); 7163 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 7164 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 7165 } 7166 7167 /* 7168 * calculate SCSI clock frequency (in KHz) 7169 */ 7170 static unsigned getfreq (hcb_p np, int gen) 7171 { 7172 unsigned int ms = 0; 7173 unsigned int f; 7174 7175 /* 7176 * Measure GEN timer delay in order 7177 * to calculate SCSI clock frequency 7178 * 7179 * This code will never execute too 7180 * many loop iterations (if DELAY is 7181 * reasonably correct). It could get 7182 * too low a delay (too high a freq.) 7183 * if the CPU is slow executing the 7184 * loop for some reason (an NMI, for 7185 * example). For this reason we will 7186 * if multiple measurements are to be 7187 * performed trust the higher delay 7188 * (lower frequency returned). 7189 */ 7190 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 7191 (void) INW (nc_sist); /* clear pending scsi interrupt */ 7192 OUTB (nc_dien , 0); /* mask all dma interrupts */ 7193 (void) INW (nc_sist); /* another one, just to be sure :) */ 7194 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 7195 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7196 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 7197 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 7198 UDELAY (1000); /* count ms */ 7199 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7200 /* 7201 * set prescaler to divide by whatever 0 means 7202 * 0 ought to choose divide by 2, but appears 7203 * to set divide by 3.5 mode in my 53c810 ... 7204 */ 7205 OUTB (nc_scntl3, 0); 7206 7207 /* 7208 * adjust for prescaler, and convert into KHz 7209 */ 7210 f = ms ? ((1 << gen) * 4340) / ms : 0; 7211 7212 if (sym_verbose >= 2) 7213 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 7214 sym_name(np), gen, ms, f); 7215 7216 return f; 7217 } 7218 7219 static unsigned sym_getfreq (hcb_p np) 7220 { 7221 u_int f1, f2; 7222 int gen = 11; 7223 7224 (void) getfreq (np, gen); /* throw away first result */ 7225 f1 = getfreq (np, gen); 7226 f2 = getfreq (np, gen); 7227 if (f1 > f2) f1 = f2; /* trust lower result */ 7228 return f1; 7229 } 7230 7231 /* 7232 * Get/probe chip SCSI clock frequency 7233 */ 7234 static void sym_getclock (hcb_p np, int mult) 7235 { 7236 unsigned char scntl3 = np->sv_scntl3; 7237 unsigned char stest1 = np->sv_stest1; 7238 unsigned f1; 7239 7240 /* 7241 * For the C10 core, assume 40 MHz. 7242 */ 7243 if (np->features & FE_C10) { 7244 np->multiplier = mult; 7245 np->clock_khz = 40000 * mult; 7246 return; 7247 } 7248 7249 np->multiplier = 1; 7250 f1 = 40000; 7251 /* 7252 * True with 875/895/896/895A with clock multiplier selected 7253 */ 7254 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7255 if (sym_verbose >= 2) 7256 printf ("%s: clock multiplier found\n", sym_name(np)); 7257 np->multiplier = mult; 7258 } 7259 7260 /* 7261 * If multiplier not found or scntl3 not 7,5,3, 7262 * reset chip and get frequency from general purpose timer. 7263 * Otherwise trust scntl3 BIOS setting. 7264 */ 7265 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7266 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7267 f1 = sym_getfreq (np); 7268 7269 if (sym_verbose) 7270 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7271 7272 if (f1 < 45000) f1 = 40000; 7273 else if (f1 < 55000) f1 = 50000; 7274 else f1 = 80000; 7275 7276 if (f1 < 80000 && mult > 1) { 7277 if (sym_verbose >= 2) 7278 printf ("%s: clock multiplier assumed\n", 7279 sym_name(np)); 7280 np->multiplier = mult; 7281 } 7282 } else { 7283 if ((scntl3 & 7) == 3) f1 = 40000; 7284 else if ((scntl3 & 7) == 5) f1 = 80000; 7285 else f1 = 160000; 7286 7287 f1 /= np->multiplier; 7288 } 7289 7290 /* 7291 * Compute controller synchronous parameters. 7292 */ 7293 f1 *= np->multiplier; 7294 np->clock_khz = f1; 7295 } 7296 7297 /* 7298 * Get/probe PCI clock frequency 7299 */ 7300 static int sym_getpciclock (hcb_p np) 7301 { 7302 int f = 0; 7303 7304 /* 7305 * For the C1010-33, this doesn't work. 7306 * For the C1010-66, this will be tested when I'll have 7307 * such a beast to play with. 7308 */ 7309 if (!(np->features & FE_C10)) { 7310 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7311 f = (int) sym_getfreq (np); 7312 OUTB (nc_stest1, 0); 7313 } 7314 np->pciclk_khz = f; 7315 7316 return f; 7317 } 7318 7319 /*============= DRIVER ACTION/COMPLETION ====================*/ 7320 7321 /* 7322 * Print something that tells about extended errors. 7323 */ 7324 static void sym_print_xerr(ccb_p cp, int x_status) 7325 { 7326 if (x_status & XE_PARITY_ERR) { 7327 PRINT_ADDR(cp); 7328 printf ("unrecovered SCSI parity error.\n"); 7329 } 7330 if (x_status & XE_EXTRA_DATA) { 7331 PRINT_ADDR(cp); 7332 printf ("extraneous data discarded.\n"); 7333 } 7334 if (x_status & XE_BAD_PHASE) { 7335 PRINT_ADDR(cp); 7336 printf ("illegal scsi phase (4/5).\n"); 7337 } 7338 if (x_status & XE_SODL_UNRUN) { 7339 PRINT_ADDR(cp); 7340 printf ("ODD transfer in DATA OUT phase.\n"); 7341 } 7342 if (x_status & XE_SWIDE_OVRUN) { 7343 PRINT_ADDR(cp); 7344 printf ("ODD transfer in DATA IN phase.\n"); 7345 } 7346 } 7347 7348 /* 7349 * Choose the more appropriate CAM status if 7350 * the IO encountered an extended error. 7351 */ 7352 static int sym_xerr_cam_status(int cam_status, int x_status) 7353 { 7354 if (x_status) { 7355 if (x_status & XE_PARITY_ERR) 7356 cam_status = CAM_UNCOR_PARITY; 7357 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7358 cam_status = CAM_DATA_RUN_ERR; 7359 else if (x_status & XE_BAD_PHASE) 7360 cam_status = CAM_REQ_CMP_ERR; 7361 else 7362 cam_status = CAM_REQ_CMP_ERR; 7363 } 7364 return cam_status; 7365 } 7366 7367 /* 7368 * Complete execution of a SCSI command with extented 7369 * error, SCSI status error, or having been auto-sensed. 7370 * 7371 * The SCRIPTS processor is not running there, so we 7372 * can safely access IO registers and remove JOBs from 7373 * the START queue. 7374 * SCRATCHA is assumed to have been loaded with STARTPOS 7375 * before the SCRIPTS called the C code. 7376 */ 7377 static void sym_complete_error (hcb_p np, ccb_p cp) 7378 { 7379 struct ccb_scsiio *csio; 7380 u_int cam_status; 7381 int i; 7382 7383 /* 7384 * Paranoid check. :) 7385 */ 7386 if (!cp || !cp->cam_ccb) 7387 return; 7388 7389 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7390 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7391 cp->host_status, cp->ssss_status, cp->host_flags, 7392 cp->target, cp->lun); 7393 MDELAY(100); 7394 } 7395 7396 /* 7397 * Get CAM command pointer. 7398 */ 7399 csio = &cp->cam_ccb->csio; 7400 7401 /* 7402 * Check for extended errors. 7403 */ 7404 if (cp->xerr_status) { 7405 if (sym_verbose) 7406 sym_print_xerr(cp, cp->xerr_status); 7407 if (cp->host_status == HS_COMPLETE) 7408 cp->host_status = HS_COMP_ERR; 7409 } 7410 7411 /* 7412 * Calculate the residual. 7413 */ 7414 csio->sense_resid = 0; 7415 csio->resid = sym_compute_residual(np, cp); 7416 7417 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7418 csio->resid = 0; /* throw them away. :) */ 7419 cp->sv_resid = 0; 7420 } 7421 7422 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7423 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7424 csio->sense_resid = csio->resid; /* Swap residuals */ 7425 csio->resid = cp->sv_resid; 7426 cp->sv_resid = 0; 7427 if (sym_verbose && cp->sv_xerr_status) 7428 sym_print_xerr(cp, cp->sv_xerr_status); 7429 if (cp->host_status == HS_COMPLETE && 7430 cp->ssss_status == S_GOOD && 7431 cp->xerr_status == 0) { 7432 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7433 cp->sv_xerr_status); 7434 cam_status |= CAM_AUTOSNS_VALID; 7435 /* 7436 * Bounce back the sense data to user and 7437 * fix the residual. 7438 */ 7439 bzero(&csio->sense_data, csio->sense_len); 7440 bcopy(cp->sns_bbuf, &csio->sense_data, 7441 MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); 7442 csio->sense_resid += csio->sense_len; 7443 csio->sense_resid -= SYM_SNS_BBUF_LEN; 7444 #if 0 7445 /* 7446 * If the device reports a UNIT ATTENTION condition 7447 * due to a RESET condition, we should consider all 7448 * disconnect CCBs for this unit as aborted. 7449 */ 7450 if (1) { 7451 u_char *p; 7452 p = (u_char *) csio->sense_data; 7453 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7454 sym_clear_tasks(np, CAM_REQ_ABORTED, 7455 cp->target,cp->lun, -1); 7456 } 7457 #endif 7458 } 7459 else 7460 cam_status = CAM_AUTOSENSE_FAIL; 7461 } 7462 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7463 csio->scsi_status = cp->ssss_status; 7464 cam_status = CAM_SCSI_STATUS_ERROR; 7465 } 7466 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7467 cam_status = CAM_SEL_TIMEOUT; 7468 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7469 cam_status = CAM_UNEXP_BUSFREE; 7470 else { /* Extended error */ 7471 if (sym_verbose) { 7472 PRINT_ADDR(cp); 7473 printf ("COMMAND FAILED (%x %x %x).\n", 7474 cp->host_status, cp->ssss_status, 7475 cp->xerr_status); 7476 } 7477 csio->scsi_status = cp->ssss_status; 7478 /* 7479 * Set the most appropriate value for CAM status. 7480 */ 7481 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7482 cp->xerr_status); 7483 } 7484 7485 /* 7486 * Dequeue all queued CCBs for that device 7487 * not yet started by SCRIPTS. 7488 */ 7489 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7490 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7491 7492 /* 7493 * Restart the SCRIPTS processor. 7494 */ 7495 OUTL_DSP (SCRIPTA_BA (np, start)); 7496 7497 #ifdef FreeBSD_Bus_Dma_Abstraction 7498 /* 7499 * Synchronize DMA map if needed. 7500 */ 7501 if (cp->dmamapped) { 7502 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7503 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 7504 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7505 } 7506 #endif 7507 /* 7508 * Add this one to the COMP queue. 7509 * Complete all those commands with either error 7510 * or requeue condition. 7511 */ 7512 sym_set_cam_status((union ccb *) csio, cam_status); 7513 sym_remque(&cp->link_ccbq); 7514 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7515 sym_flush_comp_queue(np, 0); 7516 } 7517 7518 /* 7519 * Complete execution of a successful SCSI command. 7520 * 7521 * Only successful commands go to the DONE queue, 7522 * since we need to have the SCRIPTS processor 7523 * stopped on any error condition. 7524 * The SCRIPTS processor is running while we are 7525 * completing successful commands. 7526 */ 7527 static void sym_complete_ok (hcb_p np, ccb_p cp) 7528 { 7529 struct ccb_scsiio *csio; 7530 tcb_p tp; 7531 lcb_p lp; 7532 7533 /* 7534 * Paranoid check. :) 7535 */ 7536 if (!cp || !cp->cam_ccb) 7537 return; 7538 assert (cp->host_status == HS_COMPLETE); 7539 7540 /* 7541 * Get command, target and lun pointers. 7542 */ 7543 csio = &cp->cam_ccb->csio; 7544 tp = &np->target[cp->target]; 7545 lp = sym_lp(np, tp, cp->lun); 7546 7547 /* 7548 * Assume device discovered on first success. 7549 */ 7550 if (!lp) 7551 sym_set_bit(tp->lun_map, cp->lun); 7552 7553 /* 7554 * If all data have been transferred, given than no 7555 * extended error did occur, there is no residual. 7556 */ 7557 csio->resid = 0; 7558 if (cp->phys.head.lastp != cp->phys.head.goalp) 7559 csio->resid = sym_compute_residual(np, cp); 7560 7561 /* 7562 * Wrong transfer residuals may be worse than just always 7563 * returning zero. User can disable this feature from 7564 * sym_conf.h. Residual support is enabled by default. 7565 */ 7566 if (!SYM_CONF_RESIDUAL_SUPPORT) 7567 csio->resid = 0; 7568 7569 #ifdef FreeBSD_Bus_Dma_Abstraction 7570 /* 7571 * Synchronize DMA map if needed. 7572 */ 7573 if (cp->dmamapped) { 7574 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7575 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 7576 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7577 } 7578 #endif 7579 /* 7580 * Set status and complete the command. 7581 */ 7582 csio->scsi_status = cp->ssss_status; 7583 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7584 sym_free_ccb (np, cp); 7585 sym_xpt_done(np, (union ccb *) csio); 7586 } 7587 7588 /* 7589 * Our timeout handler. 7590 */ 7591 static void sym_timeout1(void *arg) 7592 { 7593 union ccb *ccb = (union ccb *) arg; 7594 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7595 7596 /* 7597 * Check that the CAM CCB is still queued. 7598 */ 7599 if (!np) 7600 return; 7601 7602 switch(ccb->ccb_h.func_code) { 7603 case XPT_SCSI_IO: 7604 (void) sym_abort_scsiio(np, ccb, 1); 7605 break; 7606 default: 7607 break; 7608 } 7609 } 7610 7611 static void sym_timeout(void *arg) 7612 { 7613 int s = splcam(); 7614 sym_timeout1(arg); 7615 splx(s); 7616 } 7617 7618 /* 7619 * Abort an SCSI IO. 7620 */ 7621 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7622 { 7623 ccb_p cp; 7624 SYM_QUEHEAD *qp; 7625 7626 /* 7627 * Look up our CCB control block. 7628 */ 7629 cp = 0; 7630 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7631 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7632 if (cp2->cam_ccb == ccb) { 7633 cp = cp2; 7634 break; 7635 } 7636 } 7637 if (!cp || cp->host_status == HS_WAIT) 7638 return -1; 7639 7640 /* 7641 * If a previous abort didn't succeed in time, 7642 * perform a BUS reset. 7643 */ 7644 if (cp->to_abort) { 7645 sym_reset_scsi_bus(np, 1); 7646 return 0; 7647 } 7648 7649 /* 7650 * Mark the CCB for abort and allow time for. 7651 */ 7652 cp->to_abort = timed_out ? 2 : 1; 7653 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz); 7654 7655 /* 7656 * Tell the SCRIPTS processor to stop and synchronize with us. 7657 */ 7658 np->istat_sem = SEM; 7659 OUTB (nc_istat, SIGP|SEM); 7660 return 0; 7661 } 7662 7663 /* 7664 * Reset a SCSI device (all LUNs of a target). 7665 */ 7666 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7667 { 7668 tcb_p tp; 7669 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7670 7671 if (ccb_h->target_id == np->myaddr || 7672 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7673 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7674 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7675 return; 7676 } 7677 7678 tp = &np->target[ccb_h->target_id]; 7679 7680 tp->to_reset = 1; 7681 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7682 7683 np->istat_sem = SEM; 7684 OUTB (nc_istat, SIGP|SEM); 7685 return; 7686 } 7687 7688 /* 7689 * SIM action entry point. 7690 */ 7691 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7692 { 7693 int s = splcam(); 7694 sym_action1(sim, ccb); 7695 splx(s); 7696 } 7697 7698 static void sym_action1(struct cam_sim *sim, union ccb *ccb) 7699 { 7700 hcb_p np; 7701 tcb_p tp; 7702 lcb_p lp; 7703 ccb_p cp; 7704 int tmp; 7705 u_char idmsg, *msgptr; 7706 u_int msglen; 7707 struct ccb_scsiio *csio; 7708 struct ccb_hdr *ccb_h; 7709 7710 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7711 7712 /* 7713 * Retrieve our controller data structure. 7714 */ 7715 np = (hcb_p) cam_sim_softc(sim); 7716 7717 /* 7718 * The common case is SCSI IO. 7719 * We deal with other ones elsewhere. 7720 */ 7721 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7722 sym_action2(sim, ccb); 7723 return; 7724 } 7725 csio = &ccb->csio; 7726 ccb_h = &csio->ccb_h; 7727 7728 /* 7729 * Work around races. 7730 */ 7731 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7732 xpt_done(ccb); 7733 return; 7734 } 7735 7736 /* 7737 * Minimal checkings, so that we will not 7738 * go outside our tables. 7739 */ 7740 if (ccb_h->target_id == np->myaddr || 7741 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7742 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7743 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7744 return; 7745 } 7746 7747 /* 7748 * Retreive the target and lun descriptors. 7749 */ 7750 tp = &np->target[ccb_h->target_id]; 7751 lp = sym_lp(np, tp, ccb_h->target_lun); 7752 7753 /* 7754 * Complete the 1st INQUIRY command with error 7755 * condition if the device is flagged NOSCAN 7756 * at BOOT in the NVRAM. This may speed up 7757 * the boot and maintain coherency with BIOS 7758 * device numbering. Clearing the flag allows 7759 * user to rescan skipped devices later. 7760 * We also return error for devices not flagged 7761 * for SCAN LUNS in the NVRAM since some mono-lun 7762 * devices behave badly when asked for some non 7763 * zero LUN. Btw, this is an absolute hack.:-) 7764 */ 7765 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7766 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7767 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7768 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7769 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7770 ccb_h->target_lun != 0)) { 7771 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7772 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7773 return; 7774 } 7775 } 7776 7777 /* 7778 * Get a control block for this IO. 7779 */ 7780 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7781 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7782 if (!cp) { 7783 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7784 return; 7785 } 7786 7787 /* 7788 * Keep track of the IO in our CCB. 7789 */ 7790 cp->cam_ccb = ccb; 7791 7792 /* 7793 * Build the IDENTIFY message. 7794 */ 7795 idmsg = M_IDENTIFY | cp->lun; 7796 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7797 idmsg |= 0x40; 7798 7799 msgptr = cp->scsi_smsg; 7800 msglen = 0; 7801 msgptr[msglen++] = idmsg; 7802 7803 /* 7804 * Build the tag message if present. 7805 */ 7806 if (cp->tag != NO_TAG) { 7807 u_char order = csio->tag_action; 7808 7809 switch(order) { 7810 case M_ORDERED_TAG: 7811 break; 7812 case M_HEAD_TAG: 7813 break; 7814 default: 7815 order = M_SIMPLE_TAG; 7816 } 7817 msgptr[msglen++] = order; 7818 7819 /* 7820 * For less than 128 tags, actual tags are numbered 7821 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7822 * with devices that have problems with #TAG 0 or too 7823 * great #TAG numbers. For more tags (up to 256), 7824 * we use directly our tag number. 7825 */ 7826 #if SYM_CONF_MAX_TASK > (512/4) 7827 msgptr[msglen++] = cp->tag; 7828 #else 7829 msgptr[msglen++] = (cp->tag << 1) + 1; 7830 #endif 7831 } 7832 7833 /* 7834 * Build a negotiation message if needed. 7835 * (nego_status is filled by sym_prepare_nego()) 7836 */ 7837 cp->nego_status = 0; 7838 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7839 tp->tinfo.current.period != tp->tinfo.goal.period || 7840 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7841 tp->tinfo.current.options != tp->tinfo.goal.options) { 7842 if (!tp->nego_cp && lp) 7843 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7844 } 7845 7846 /* 7847 * Fill in our ccb 7848 */ 7849 7850 /* 7851 * Startqueue 7852 */ 7853 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7854 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7855 7856 /* 7857 * select 7858 */ 7859 cp->phys.select.sel_id = cp->target; 7860 cp->phys.select.sel_scntl3 = tp->head.wval; 7861 cp->phys.select.sel_sxfer = tp->head.sval; 7862 cp->phys.select.sel_scntl4 = tp->head.uval; 7863 7864 /* 7865 * message 7866 */ 7867 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7868 cp->phys.smsg.size = cpu_to_scr(msglen); 7869 7870 /* 7871 * command 7872 */ 7873 if (sym_setup_cdb(np, csio, cp) < 0) { 7874 sym_free_ccb(np, cp); 7875 sym_xpt_done(np, ccb); 7876 return; 7877 } 7878 7879 /* 7880 * status 7881 */ 7882 #if 0 /* Provision */ 7883 cp->actualquirks = tp->quirks; 7884 #endif 7885 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7886 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7887 cp->ssss_status = S_ILLEGAL; 7888 cp->xerr_status = 0; 7889 cp->host_flags = 0; 7890 cp->extra_bytes = 0; 7891 7892 /* 7893 * extreme data pointer. 7894 * shall be positive, so -1 is lower than lowest.:) 7895 */ 7896 cp->ext_sg = -1; 7897 cp->ext_ofs = 0; 7898 7899 /* 7900 * Build the data descriptor block 7901 * and start the IO. 7902 */ 7903 sym_setup_data_and_start(np, csio, cp); 7904 } 7905 7906 /* 7907 * Setup buffers and pointers that address the CDB. 7908 * I bet, physical CDBs will never be used on the planet, 7909 * since they can be bounced without significant overhead. 7910 */ 7911 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7912 { 7913 struct ccb_hdr *ccb_h; 7914 u32 cmd_ba; 7915 int cmd_len; 7916 7917 ccb_h = &csio->ccb_h; 7918 7919 /* 7920 * CDB is 16 bytes max. 7921 */ 7922 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7923 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7924 return -1; 7925 } 7926 cmd_len = csio->cdb_len; 7927 7928 if (ccb_h->flags & CAM_CDB_POINTER) { 7929 /* CDB is a pointer */ 7930 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7931 /* CDB pointer is virtual */ 7932 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7933 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7934 } else { 7935 /* CDB pointer is physical */ 7936 #if 0 7937 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7938 #else 7939 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7940 return -1; 7941 #endif 7942 } 7943 } else { 7944 /* CDB is in the CAM ccb (buffer) */ 7945 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7946 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7947 } 7948 7949 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7950 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7951 7952 return 0; 7953 } 7954 7955 /* 7956 * Set up data pointers used by SCRIPTS. 7957 */ 7958 static void __inline 7959 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7960 { 7961 u32 lastp, goalp; 7962 7963 /* 7964 * No segments means no data. 7965 */ 7966 if (!cp->segments) 7967 dir = CAM_DIR_NONE; 7968 7969 /* 7970 * Set the data pointer. 7971 */ 7972 switch(dir) { 7973 case CAM_DIR_OUT: 7974 goalp = SCRIPTA_BA (np, data_out2) + 8; 7975 lastp = goalp - 8 - (cp->segments * (2*4)); 7976 break; 7977 case CAM_DIR_IN: 7978 cp->host_flags |= HF_DATA_IN; 7979 goalp = SCRIPTA_BA (np, data_in2) + 8; 7980 lastp = goalp - 8 - (cp->segments * (2*4)); 7981 break; 7982 case CAM_DIR_NONE: 7983 default: 7984 lastp = goalp = SCRIPTB_BA (np, no_data); 7985 break; 7986 } 7987 7988 cp->phys.head.lastp = cpu_to_scr(lastp); 7989 cp->phys.head.goalp = cpu_to_scr(goalp); 7990 cp->phys.head.savep = cpu_to_scr(lastp); 7991 cp->startp = cp->phys.head.savep; 7992 } 7993 7994 7995 #ifdef FreeBSD_Bus_Dma_Abstraction 7996 /* 7997 * Call back routine for the DMA map service. 7998 * If bounce buffers are used (why ?), we may sleep and then 7999 * be called there in another context. 8000 */ 8001 static void 8002 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 8003 { 8004 ccb_p cp; 8005 hcb_p np; 8006 union ccb *ccb; 8007 int s; 8008 8009 s = splcam(); 8010 8011 cp = (ccb_p) arg; 8012 ccb = cp->cam_ccb; 8013 np = (hcb_p) cp->arg; 8014 8015 /* 8016 * Deal with weird races. 8017 */ 8018 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 8019 goto out_abort; 8020 8021 /* 8022 * Deal with weird errors. 8023 */ 8024 if (error) { 8025 cp->dmamapped = 0; 8026 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 8027 goto out_abort; 8028 } 8029 8030 /* 8031 * Build the data descriptor for the chip. 8032 */ 8033 if (nsegs) { 8034 int retv; 8035 /* 896 rev 1 requires to be careful about boundaries */ 8036 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 8037 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 8038 else 8039 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 8040 if (retv < 0) { 8041 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 8042 goto out_abort; 8043 } 8044 } 8045 8046 /* 8047 * Synchronize the DMA map only if we have 8048 * actually mapped the data. 8049 */ 8050 if (cp->dmamapped) { 8051 bus_dmamap_sync(np->data_dmat, cp->dmamap, 8052 (bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ? 8053 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 8054 } 8055 8056 /* 8057 * Set host status to busy state. 8058 * May have been set back to HS_WAIT to avoid a race. 8059 */ 8060 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 8061 8062 /* 8063 * Set data pointers. 8064 */ 8065 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 8066 8067 /* 8068 * Enqueue this IO in our pending queue. 8069 */ 8070 sym_enqueue_cam_ccb(np, ccb); 8071 8072 /* 8073 * When `#ifed 1', the code below makes the driver 8074 * panic on the first attempt to write to a SCSI device. 8075 * It is the first test we want to do after a driver 8076 * change that does not seem obviously safe. :) 8077 */ 8078 #if 0 8079 switch (cp->cdb_buf[0]) { 8080 case 0x0A: case 0x2A: case 0xAA: 8081 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 8082 MDELAY(10000); 8083 break; 8084 default: 8085 break; 8086 } 8087 #endif 8088 /* 8089 * Activate this job. 8090 */ 8091 sym_put_start_queue(np, cp); 8092 out: 8093 splx(s); 8094 return; 8095 out_abort: 8096 sym_free_ccb(np, cp); 8097 sym_xpt_done(np, ccb); 8098 goto out; 8099 } 8100 8101 /* 8102 * How complex it gets to deal with the data in CAM. 8103 * The Bus Dma stuff makes things still more complex. 8104 */ 8105 static void 8106 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 8107 { 8108 struct ccb_hdr *ccb_h; 8109 int dir, retv; 8110 8111 ccb_h = &csio->ccb_h; 8112 8113 /* 8114 * Now deal with the data. 8115 */ 8116 cp->data_len = csio->dxfer_len; 8117 cp->arg = np; 8118 8119 /* 8120 * No direction means no data. 8121 */ 8122 dir = (ccb_h->flags & CAM_DIR_MASK); 8123 if (dir == CAM_DIR_NONE) { 8124 sym_execute_ccb(cp, NULL, 0, 0); 8125 return; 8126 } 8127 8128 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 8129 /* Single buffer */ 8130 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8131 /* Buffer is virtual */ 8132 int s; 8133 8134 cp->dmamapped = (dir == CAM_DIR_IN) ? 8135 SYM_DMA_READ : SYM_DMA_WRITE; 8136 s = splsoftvm(); 8137 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 8138 csio->data_ptr, csio->dxfer_len, 8139 sym_execute_ccb, cp, 0); 8140 if (retv == EINPROGRESS) { 8141 cp->host_status = HS_WAIT; 8142 xpt_freeze_simq(np->sim, 1); 8143 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 8144 } 8145 splx(s); 8146 } else { 8147 /* Buffer is physical */ 8148 struct bus_dma_segment seg; 8149 8150 seg.ds_addr = (bus_addr_t) csio->data_ptr; 8151 sym_execute_ccb(cp, &seg, 1, 0); 8152 } 8153 } else { 8154 /* Scatter/gather list */ 8155 struct bus_dma_segment *segs; 8156 8157 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 8158 /* The SG list pointer is physical */ 8159 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8160 goto out_abort; 8161 } 8162 8163 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8164 /* SG buffer pointers are virtual */ 8165 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8166 goto out_abort; 8167 } 8168 8169 /* SG buffer pointers are physical */ 8170 segs = (struct bus_dma_segment *)csio->data_ptr; 8171 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 8172 } 8173 return; 8174 out_abort: 8175 sym_free_ccb(np, cp); 8176 sym_xpt_done(np, (union ccb *) csio); 8177 } 8178 8179 /* 8180 * Move the scatter list to our data block. 8181 */ 8182 static int 8183 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 8184 bus_dma_segment_t *psegs, int nsegs) 8185 { 8186 struct sym_tblmove *data; 8187 bus_dma_segment_t *psegs2; 8188 8189 if (nsegs > SYM_CONF_MAX_SG) 8190 return -1; 8191 8192 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 8193 psegs2 = &psegs[nsegs-1]; 8194 cp->segments = nsegs; 8195 8196 while (1) { 8197 data->addr = cpu_to_scr(psegs2->ds_addr); 8198 data->size = cpu_to_scr(psegs2->ds_len); 8199 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8200 printf ("%s scatter: paddr=%lx len=%ld\n", 8201 sym_name(np), (long) psegs2->ds_addr, 8202 (long) psegs2->ds_len); 8203 } 8204 if (psegs2 != psegs) { 8205 --data; 8206 --psegs2; 8207 continue; 8208 } 8209 break; 8210 } 8211 return 0; 8212 } 8213 8214 #else /* FreeBSD_Bus_Dma_Abstraction */ 8215 8216 /* 8217 * How complex it gets to deal with the data in CAM. 8218 * Variant without the Bus Dma Abstraction option. 8219 */ 8220 static void 8221 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 8222 { 8223 struct ccb_hdr *ccb_h; 8224 int dir, retv; 8225 8226 ccb_h = &csio->ccb_h; 8227 8228 /* 8229 * Now deal with the data. 8230 */ 8231 cp->data_len = 0; 8232 cp->segments = 0; 8233 8234 /* 8235 * No direction means no data. 8236 */ 8237 dir = (ccb_h->flags & CAM_DIR_MASK); 8238 if (dir == CAM_DIR_NONE) 8239 goto end_scatter; 8240 8241 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 8242 /* Single buffer */ 8243 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8244 /* Buffer is virtual */ 8245 retv = sym_scatter_virtual(np, cp, 8246 (vm_offset_t) csio->data_ptr, 8247 (vm_size_t) csio->dxfer_len); 8248 } else { 8249 /* Buffer is physical */ 8250 retv = sym_scatter_physical(np, cp, 8251 (vm_offset_t) csio->data_ptr, 8252 (vm_size_t) csio->dxfer_len); 8253 } 8254 } else { 8255 /* Scatter/gather list */ 8256 int nsegs; 8257 struct bus_dma_segment *segs; 8258 segs = (struct bus_dma_segment *)csio->data_ptr; 8259 nsegs = csio->sglist_cnt; 8260 8261 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 8262 /* The SG list pointer is physical */ 8263 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 8264 goto out_abort; 8265 } 8266 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 8267 /* SG buffer pointers are virtual */ 8268 retv = sym_scatter_sg_virtual(np, cp, segs, nsegs); 8269 } else { 8270 /* SG buffer pointers are physical */ 8271 retv = sym_scatter_sg_physical(np, cp, segs, nsegs); 8272 } 8273 } 8274 if (retv < 0) { 8275 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 8276 goto out_abort; 8277 } 8278 8279 end_scatter: 8280 /* 8281 * Set data pointers. 8282 */ 8283 sym_setup_data_pointers(np, cp, dir); 8284 8285 /* 8286 * Enqueue this IO in our pending queue. 8287 */ 8288 sym_enqueue_cam_ccb(np, (union ccb *) csio); 8289 8290 /* 8291 * Activate this job. 8292 */ 8293 sym_put_start_queue(np, cp); 8294 8295 /* 8296 * Command is successfully queued. 8297 */ 8298 return; 8299 out_abort: 8300 sym_free_ccb(np, cp); 8301 sym_xpt_done(np, (union ccb *) csio); 8302 } 8303 8304 /* 8305 * Scatter a virtual buffer into bus addressable chunks. 8306 */ 8307 static int 8308 sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len) 8309 { 8310 u_long pe, pn; 8311 u_long n, k; 8312 int s; 8313 8314 cp->data_len += len; 8315 8316 pe = vaddr + len; 8317 n = len; 8318 s = SYM_CONF_MAX_SG - 1 - cp->segments; 8319 8320 while (n && s >= 0) { 8321 pn = (pe - 1) & ~PAGE_MASK; 8322 k = pe - pn; 8323 if (k > n) { 8324 k = n; 8325 pn = pe - n; 8326 } 8327 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8328 printf ("%s scatter: va=%lx pa=%lx siz=%ld\n", 8329 sym_name(np), pn, (u_long) vtobus(pn), k); 8330 } 8331 cp->phys.data[s].addr = cpu_to_scr(vtobus(pn)); 8332 cp->phys.data[s].size = cpu_to_scr(k); 8333 pe = pn; 8334 n -= k; 8335 --s; 8336 } 8337 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8338 8339 return n ? -1 : 0; 8340 } 8341 8342 /* 8343 * Scatter a SG list with virtual addresses into bus addressable chunks. 8344 */ 8345 static int 8346 sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8347 { 8348 int i, retv = 0; 8349 8350 for (i = nsegs - 1 ; i >= 0 ; --i) { 8351 retv = sym_scatter_virtual(np, cp, 8352 psegs[i].ds_addr, psegs[i].ds_len); 8353 if (retv < 0) 8354 break; 8355 } 8356 return retv; 8357 } 8358 8359 /* 8360 * Scatter a physical buffer into bus addressable chunks. 8361 */ 8362 static int 8363 sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len) 8364 { 8365 struct bus_dma_segment seg; 8366 8367 seg.ds_addr = paddr; 8368 seg.ds_len = len; 8369 return sym_scatter_sg_physical(np, cp, &seg, 1); 8370 } 8371 8372 #endif /* FreeBSD_Bus_Dma_Abstraction */ 8373 8374 /* 8375 * Scatter a SG list with physical addresses into bus addressable chunks. 8376 * We need to ensure 16MB boundaries not to be crossed during DMA of 8377 * each segment, due to some chips being flawed. 8378 */ 8379 #define BOUND_MASK ((1UL<<24)-1) 8380 static int 8381 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8382 { 8383 u_long ps, pe, pn; 8384 u_long k; 8385 int s, t; 8386 8387 #ifndef FreeBSD_Bus_Dma_Abstraction 8388 s = SYM_CONF_MAX_SG - 1 - cp->segments; 8389 #else 8390 s = SYM_CONF_MAX_SG - 1; 8391 #endif 8392 t = nsegs - 1; 8393 ps = psegs[t].ds_addr; 8394 pe = ps + psegs[t].ds_len; 8395 8396 while (s >= 0) { 8397 pn = (pe - 1) & ~BOUND_MASK; 8398 if (pn <= ps) 8399 pn = ps; 8400 k = pe - pn; 8401 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8402 printf ("%s scatter: paddr=%lx len=%ld\n", 8403 sym_name(np), pn, k); 8404 } 8405 cp->phys.data[s].addr = cpu_to_scr(pn); 8406 cp->phys.data[s].size = cpu_to_scr(k); 8407 #ifndef FreeBSD_Bus_Dma_Abstraction 8408 cp->data_len += k; 8409 #endif 8410 --s; 8411 if (pn == ps) { 8412 if (--t < 0) 8413 break; 8414 ps = psegs[t].ds_addr; 8415 pe = ps + psegs[t].ds_len; 8416 } 8417 else 8418 pe = pn; 8419 } 8420 8421 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8422 8423 return t >= 0 ? -1 : 0; 8424 } 8425 #undef BOUND_MASK 8426 8427 /* 8428 * SIM action for non performance critical stuff. 8429 */ 8430 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8431 { 8432 hcb_p np; 8433 tcb_p tp; 8434 lcb_p lp; 8435 struct ccb_hdr *ccb_h; 8436 8437 /* 8438 * Retrieve our controller data structure. 8439 */ 8440 np = (hcb_p) cam_sim_softc(sim); 8441 8442 ccb_h = &ccb->ccb_h; 8443 8444 switch (ccb_h->func_code) { 8445 case XPT_SET_TRAN_SETTINGS: 8446 { 8447 struct ccb_trans_settings *cts; 8448 8449 cts = &ccb->cts; 8450 tp = &np->target[ccb_h->target_id]; 8451 8452 /* 8453 * Update SPI transport settings in TARGET control block. 8454 * Update SCSI device settings in LUN control block. 8455 */ 8456 lp = sym_lp(np, tp, ccb_h->target_lun); 8457 #ifdef FreeBSD_New_Tran_Settings 8458 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8459 #else 8460 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8461 #endif 8462 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8463 if (lp) 8464 sym_update_dflags(np, &lp->current_flags, cts); 8465 } 8466 #ifdef FreeBSD_New_Tran_Settings 8467 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8468 #else 8469 if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) { 8470 #endif 8471 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8472 if (lp) 8473 sym_update_dflags(np, &lp->user_flags, cts); 8474 } 8475 8476 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8477 break; 8478 } 8479 case XPT_GET_TRAN_SETTINGS: 8480 { 8481 struct ccb_trans_settings *cts; 8482 struct sym_trans *tip; 8483 u_char dflags; 8484 8485 cts = &ccb->cts; 8486 tp = &np->target[ccb_h->target_id]; 8487 lp = sym_lp(np, tp, ccb_h->target_lun); 8488 8489 #ifdef FreeBSD_New_Tran_Settings 8490 #define cts__scsi (&cts->proto_specific.scsi) 8491 #define cts__spi (&cts->xport_specific.spi) 8492 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8493 tip = &tp->tinfo.current; 8494 dflags = lp ? lp->current_flags : 0; 8495 } 8496 else { 8497 tip = &tp->tinfo.user; 8498 dflags = lp ? lp->user_flags : tp->usrflags; 8499 } 8500 8501 cts->protocol = PROTO_SCSI; 8502 cts->transport = XPORT_SPI; 8503 cts->protocol_version = tip->scsi_version; 8504 cts->transport_version = tip->spi_version; 8505 8506 cts__spi->sync_period = tip->period; 8507 cts__spi->sync_offset = tip->offset; 8508 cts__spi->bus_width = tip->width; 8509 cts__spi->ppr_options = tip->options; 8510 8511 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8512 | CTS_SPI_VALID_SYNC_OFFSET 8513 | CTS_SPI_VALID_BUS_WIDTH 8514 | CTS_SPI_VALID_PPR_OPTIONS; 8515 8516 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8517 if (dflags & SYM_DISC_ENABLED) 8518 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8519 cts__spi->valid |= CTS_SPI_VALID_DISC; 8520 8521 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8522 if (dflags & SYM_TAGS_ENABLED) 8523 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8524 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8525 #undef cts__spi 8526 #undef cts__scsi 8527 #else 8528 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8529 tip = &tp->tinfo.current; 8530 dflags = lp ? lp->current_flags : 0; 8531 } 8532 else { 8533 tip = &tp->tinfo.user; 8534 dflags = lp ? lp->user_flags : tp->usrflags; 8535 } 8536 8537 cts->sync_period = tip->period; 8538 cts->sync_offset = tip->offset; 8539 cts->bus_width = tip->width; 8540 8541 cts->valid = CCB_TRANS_SYNC_RATE_VALID 8542 | CCB_TRANS_SYNC_OFFSET_VALID 8543 | CCB_TRANS_BUS_WIDTH_VALID; 8544 8545 cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); 8546 8547 if (dflags & SYM_DISC_ENABLED) 8548 cts->flags |= CCB_TRANS_DISC_ENB; 8549 8550 if (dflags & SYM_TAGS_ENABLED) 8551 cts->flags |= CCB_TRANS_TAG_ENB; 8552 8553 cts->valid |= CCB_TRANS_DISC_VALID; 8554 cts->valid |= CCB_TRANS_TQ_VALID; 8555 #endif 8556 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8557 break; 8558 } 8559 case XPT_CALC_GEOMETRY: 8560 { 8561 struct ccb_calc_geometry *ccg; 8562 u32 size_mb; 8563 u32 secs_per_cylinder; 8564 int extended; 8565 8566 /* 8567 * Silly DOS geometry. 8568 */ 8569 ccg = &ccb->ccg; 8570 size_mb = ccg->volume_size 8571 / ((1024L * 1024L) / ccg->block_size); 8572 extended = 1; 8573 8574 if (size_mb > 1024 && extended) { 8575 ccg->heads = 255; 8576 ccg->secs_per_track = 63; 8577 } else { 8578 ccg->heads = 64; 8579 ccg->secs_per_track = 32; 8580 } 8581 secs_per_cylinder = ccg->heads * ccg->secs_per_track; 8582 ccg->cylinders = ccg->volume_size / secs_per_cylinder; 8583 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8584 break; 8585 } 8586 case XPT_PATH_INQ: 8587 { 8588 struct ccb_pathinq *cpi = &ccb->cpi; 8589 cpi->version_num = 1; 8590 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8591 if ((np->features & FE_WIDE) != 0) 8592 cpi->hba_inquiry |= PI_WIDE_16; 8593 cpi->target_sprt = 0; 8594 cpi->hba_misc = 0; 8595 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8596 cpi->hba_misc |= PIM_SCANHILO; 8597 if (np->usrflags & SYM_AVOID_BUS_RESET) 8598 cpi->hba_misc |= PIM_NOBUSRESET; 8599 cpi->hba_eng_cnt = 0; 8600 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8601 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8602 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8603 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8604 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8605 cpi->bus_id = cam_sim_bus(sim); 8606 cpi->initiator_id = np->myaddr; 8607 cpi->base_transfer_speed = 3300; 8608 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8609 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8610 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8611 cpi->unit_number = cam_sim_unit(sim); 8612 8613 #ifdef FreeBSD_New_Tran_Settings 8614 cpi->protocol = PROTO_SCSI; 8615 cpi->protocol_version = SCSI_REV_2; 8616 cpi->transport = XPORT_SPI; 8617 cpi->transport_version = 2; 8618 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8619 if (np->features & FE_ULTRA3) { 8620 cpi->transport_version = 3; 8621 cpi->xport_specific.spi.ppr_options = 8622 SID_SPI_CLOCK_DT_ST; 8623 } 8624 #endif 8625 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8626 break; 8627 } 8628 case XPT_ABORT: 8629 { 8630 union ccb *abort_ccb = ccb->cab.abort_ccb; 8631 switch(abort_ccb->ccb_h.func_code) { 8632 case XPT_SCSI_IO: 8633 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8634 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8635 break; 8636 } 8637 default: 8638 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8639 break; 8640 } 8641 break; 8642 } 8643 case XPT_RESET_DEV: 8644 { 8645 sym_reset_dev(np, ccb); 8646 break; 8647 } 8648 case XPT_RESET_BUS: 8649 { 8650 sym_reset_scsi_bus(np, 0); 8651 if (sym_verbose) { 8652 xpt_print_path(np->path); 8653 printf("SCSI BUS reset delivered.\n"); 8654 } 8655 sym_init (np, 1); 8656 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8657 break; 8658 } 8659 case XPT_ACCEPT_TARGET_IO: 8660 case XPT_CONT_TARGET_IO: 8661 case XPT_EN_LUN: 8662 case XPT_NOTIFY_ACK: 8663 case XPT_IMMED_NOTIFY: 8664 case XPT_TERM_IO: 8665 default: 8666 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8667 break; 8668 } 8669 } 8670 8671 /* 8672 * Asynchronous notification handler. 8673 */ 8674 static void 8675 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8676 { 8677 hcb_p np; 8678 struct cam_sim *sim; 8679 u_int tn; 8680 tcb_p tp; 8681 int s; 8682 8683 s = splcam(); 8684 8685 sim = (struct cam_sim *) cb_arg; 8686 np = (hcb_p) cam_sim_softc(sim); 8687 8688 switch (code) { 8689 case AC_LOST_DEVICE: 8690 tn = xpt_path_target_id(path); 8691 if (tn >= SYM_CONF_MAX_TARGET) 8692 break; 8693 8694 tp = &np->target[tn]; 8695 8696 tp->to_reset = 0; 8697 tp->head.sval = 0; 8698 tp->head.wval = np->rv_scntl3; 8699 tp->head.uval = 0; 8700 8701 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8702 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8703 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8704 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8705 8706 break; 8707 default: 8708 break; 8709 } 8710 8711 splx(s); 8712 } 8713 8714 /* 8715 * Update transfer settings of a target. 8716 */ 8717 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8718 struct ccb_trans_settings *cts) 8719 { 8720 /* 8721 * Update the infos. 8722 */ 8723 #ifdef FreeBSD_New_Tran_Settings 8724 #define cts__spi (&cts->xport_specific.spi) 8725 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8726 tip->width = cts__spi->bus_width; 8727 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8728 tip->offset = cts__spi->sync_offset; 8729 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8730 tip->period = cts__spi->sync_period; 8731 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8732 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8733 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8734 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8735 tip->scsi_version = cts->protocol_version; 8736 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8737 cts->transport_version != XPORT_VERSION_UNKNOWN) 8738 tip->spi_version = cts->transport_version; 8739 #undef cts__spi 8740 #else 8741 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 8742 tip->width = cts->bus_width; 8743 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) 8744 tip->offset = cts->sync_offset; 8745 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) 8746 tip->period = cts->sync_period; 8747 #endif 8748 /* 8749 * Scale against driver configuration limits. 8750 */ 8751 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8752 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8753 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8754 8755 /* 8756 * Scale against actual controller BUS width. 8757 */ 8758 if (tip->width > np->maxwide) 8759 tip->width = np->maxwide; 8760 8761 #ifdef FreeBSD_New_Tran_Settings 8762 /* 8763 * Only accept DT if controller supports and SYNC/WIDE asked. 8764 */ 8765 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8766 !(tip->width == BUS_16_BIT && tip->offset)) { 8767 tip->options &= ~PPR_OPT_DT; 8768 } 8769 #else 8770 /* 8771 * For now, only assume DT if period <= 9, BUS 16 and offset != 0. 8772 */ 8773 tip->options = 0; 8774 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) && 8775 tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) { 8776 tip->options |= PPR_OPT_DT; 8777 } 8778 #endif 8779 8780 /* 8781 * Scale period factor and offset against controller limits. 8782 */ 8783 if (tip->options & PPR_OPT_DT) { 8784 if (tip->period < np->minsync_dt) 8785 tip->period = np->minsync_dt; 8786 if (tip->period > np->maxsync_dt) 8787 tip->period = np->maxsync_dt; 8788 if (tip->offset > np->maxoffs_dt) 8789 tip->offset = np->maxoffs_dt; 8790 } 8791 else { 8792 if (tip->period < np->minsync) 8793 tip->period = np->minsync; 8794 if (tip->period > np->maxsync) 8795 tip->period = np->maxsync; 8796 if (tip->offset > np->maxoffs) 8797 tip->offset = np->maxoffs; 8798 } 8799 } 8800 8801 /* 8802 * Update flags for a device (logical unit). 8803 */ 8804 static void 8805 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8806 { 8807 #ifdef FreeBSD_New_Tran_Settings 8808 #define cts__scsi (&cts->proto_specific.scsi) 8809 #define cts__spi (&cts->xport_specific.spi) 8810 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8811 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8812 *flags |= SYM_DISC_ENABLED; 8813 else 8814 *flags &= ~SYM_DISC_ENABLED; 8815 } 8816 8817 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8818 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8819 *flags |= SYM_TAGS_ENABLED; 8820 else 8821 *flags &= ~SYM_TAGS_ENABLED; 8822 } 8823 #undef cts__spi 8824 #undef cts__scsi 8825 #else 8826 if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { 8827 if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) 8828 *flags |= SYM_DISC_ENABLED; 8829 else 8830 *flags &= ~SYM_DISC_ENABLED; 8831 } 8832 8833 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 8834 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) 8835 *flags |= SYM_TAGS_ENABLED; 8836 else 8837 *flags &= ~SYM_TAGS_ENABLED; 8838 } 8839 #endif 8840 } 8841 8842 8843 /*============= DRIVER INITIALISATION ==================*/ 8844 8845 #ifdef FreeBSD_Bus_Io_Abstraction 8846 8847 static device_method_t sym_pci_methods[] = { 8848 DEVMETHOD(device_probe, sym_pci_probe), 8849 DEVMETHOD(device_attach, sym_pci_attach), 8850 { 0, 0 } 8851 }; 8852 8853 static driver_t sym_pci_driver = { 8854 "sym", 8855 sym_pci_methods, 8856 sizeof(struct sym_hcb) 8857 }; 8858 8859 static devclass_t sym_devclass; 8860 8861 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8862 8863 #else /* Pre-FreeBSD_Bus_Io_Abstraction */ 8864 8865 static u_long sym_unit; 8866 8867 static struct pci_device sym_pci_driver = { 8868 "sym", 8869 sym_pci_probe, 8870 sym_pci_attach, 8871 &sym_unit, 8872 NULL 8873 }; 8874 8875 #if __FreeBSD_version >= 400000 8876 COMPAT_PCI_DRIVER (sym, sym_pci_driver); 8877 #else 8878 DATA_SET (pcidevice_set, sym_pci_driver); 8879 #endif 8880 8881 #endif /* FreeBSD_Bus_Io_Abstraction */ 8882 8883 static struct sym_pci_chip sym_pci_dev_table[] = { 8884 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8885 FE_ERL} 8886 , 8887 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8888 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8889 FE_BOF} 8890 , 8891 #else 8892 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8893 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8894 , 8895 #endif 8896 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8897 FE_BOF|FE_ERL} 8898 , 8899 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8900 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8901 , 8902 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8903 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8904 , 8905 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8906 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8907 , 8908 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8909 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8910 FE_RAM|FE_DIFF} 8911 , 8912 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8913 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8914 FE_RAM|FE_DIFF} 8915 , 8916 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8917 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8918 FE_RAM|FE_DIFF} 8919 , 8920 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8921 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8922 FE_RAM|FE_DIFF} 8923 , 8924 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8925 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8926 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8927 FE_RAM|FE_LCKFRQ} 8928 , 8929 #else 8930 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8931 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8932 FE_RAM|FE_LCKFRQ} 8933 , 8934 #endif 8935 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8936 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8937 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8938 , 8939 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8940 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8941 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8942 , 8943 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8944 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8945 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8946 FE_C10} 8947 , 8948 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8949 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8950 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8951 FE_C10|FE_U3EN} 8952 , 8953 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8954 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8955 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8956 FE_C10|FE_U3EN} 8957 , 8958 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8959 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8960 FE_RAM|FE_IO256|FE_LEDC} 8961 }; 8962 8963 #define sym_pci_num_devs \ 8964 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8965 8966 /* 8967 * Look up the chip table. 8968 * 8969 * Return a pointer to the chip entry if found, 8970 * zero otherwise. 8971 */ 8972 static struct sym_pci_chip * 8973 #ifdef FreeBSD_Bus_Io_Abstraction 8974 sym_find_pci_chip(device_t dev) 8975 #else 8976 sym_find_pci_chip(pcici_t pci_tag) 8977 #endif 8978 { 8979 struct sym_pci_chip *chip; 8980 int i; 8981 u_short device_id; 8982 u_char revision; 8983 8984 #ifdef FreeBSD_Bus_Io_Abstraction 8985 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8986 return 0; 8987 8988 device_id = pci_get_device(dev); 8989 revision = pci_get_revid(dev); 8990 #else 8991 if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR) 8992 return 0; 8993 8994 device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); 8995 revision = pci_cfgread(pci_tag, PCIR_REVID, 1); 8996 #endif 8997 8998 for (i = 0; i < sym_pci_num_devs; i++) { 8999 chip = &sym_pci_dev_table[i]; 9000 if (device_id != chip->device_id) 9001 continue; 9002 if (revision > chip->revision_id) 9003 continue; 9004 return chip; 9005 } 9006 9007 return 0; 9008 } 9009 9010 /* 9011 * Tell upper layer if the chip is supported. 9012 */ 9013 #ifdef FreeBSD_Bus_Io_Abstraction 9014 static int 9015 sym_pci_probe(device_t dev) 9016 { 9017 struct sym_pci_chip *chip; 9018 9019 chip = sym_find_pci_chip(dev); 9020 if (chip && sym_find_firmware(chip)) { 9021 device_set_desc(dev, chip->name); 9022 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0; 9023 } 9024 return ENXIO; 9025 } 9026 #else /* Pre-FreeBSD_Bus_Io_Abstraction */ 9027 static const char * 9028 sym_pci_probe(pcici_t pci_tag, pcidi_t type) 9029 { 9030 struct sym_pci_chip *chip; 9031 9032 chip = sym_find_pci_chip(pci_tag); 9033 if (chip && sym_find_firmware(chip)) { 9034 #if NNCR > 0 9035 /* Only claim chips we are allowed to take precedence over the ncr */ 9036 if (!(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)) 9037 #else 9038 if (1) 9039 #endif 9040 return chip->name; 9041 } 9042 return 0; 9043 } 9044 #endif 9045 9046 /* 9047 * Attach a sym53c8xx device. 9048 */ 9049 #ifdef FreeBSD_Bus_Io_Abstraction 9050 static int 9051 sym_pci_attach(device_t dev) 9052 #else 9053 static void 9054 sym_pci_attach(pcici_t pci_tag, int unit) 9055 { 9056 int err = sym_pci_attach2(pci_tag, unit); 9057 if (err) 9058 printf("sym: failed to attach unit %d - err=%d.\n", unit, err); 9059 } 9060 static int 9061 sym_pci_attach2(pcici_t pci_tag, int unit) 9062 #endif 9063 { 9064 struct sym_pci_chip *chip; 9065 u_short command; 9066 u_char cachelnsz; 9067 struct sym_hcb *np = 0; 9068 struct sym_nvram nvram; 9069 struct sym_fw *fw = 0; 9070 int i; 9071 #ifdef FreeBSD_Bus_Dma_Abstraction 9072 bus_dma_tag_t bus_dmat; 9073 9074 /* 9075 * I expected to be told about a parent 9076 * DMA tag, but didn't find any. 9077 */ 9078 bus_dmat = NULL; 9079 #endif 9080 9081 /* 9082 * Only probed devices should be attached. 9083 * We just enjoy being paranoid. :) 9084 */ 9085 #ifdef FreeBSD_Bus_Io_Abstraction 9086 chip = sym_find_pci_chip(dev); 9087 #else 9088 chip = sym_find_pci_chip(pci_tag); 9089 #endif 9090 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 9091 return (ENXIO); 9092 9093 /* 9094 * Allocate immediately the host control block, 9095 * since we are only expecting to succeed. :) 9096 * We keep track in the HCB of all the resources that 9097 * are to be released on error. 9098 */ 9099 #ifdef FreeBSD_Bus_Dma_Abstraction 9100 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 9101 if (np) 9102 np->bus_dmat = bus_dmat; 9103 else 9104 goto attach_failed; 9105 #else 9106 np = sym_calloc_dma(sizeof(*np), "HCB"); 9107 if (!np) 9108 goto attach_failed; 9109 #endif 9110 9111 /* 9112 * Copy some useful infos to the HCB. 9113 */ 9114 np->hcb_ba = vtobus(np); 9115 np->verbose = bootverbose; 9116 #ifdef FreeBSD_Bus_Io_Abstraction 9117 np->device = dev; 9118 np->unit = device_get_unit(dev); 9119 np->device_id = pci_get_device(dev); 9120 np->revision_id = pci_get_revid(dev); 9121 #else 9122 np->pci_tag = pci_tag; 9123 np->unit = unit; 9124 np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); 9125 np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1); 9126 #endif 9127 np->features = chip->features; 9128 np->clock_divn = chip->nr_divisor; 9129 np->maxoffs = chip->offset_max; 9130 np->maxburst = chip->burst_max; 9131 np->scripta_sz = fw->a_size; 9132 np->scriptb_sz = fw->b_size; 9133 np->fw_setup = fw->setup; 9134 np->fw_patch = fw->patch; 9135 np->fw_name = fw->name; 9136 9137 /* 9138 * Edit its name. 9139 */ 9140 snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); 9141 9142 /* 9143 * Initialyze the CCB free and busy queues. 9144 */ 9145 sym_que_init(&np->free_ccbq); 9146 sym_que_init(&np->busy_ccbq); 9147 sym_que_init(&np->comp_ccbq); 9148 sym_que_init(&np->cam_ccbq); 9149 9150 /* 9151 * Allocate a tag for the DMA of user data. 9152 */ 9153 #ifdef FreeBSD_Bus_Dma_Abstraction 9154 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 9155 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 9156 NULL, NULL, 9157 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 9158 (1<<24), 0, &np->data_dmat)) { 9159 device_printf(dev, "failed to create DMA tag.\n"); 9160 goto attach_failed; 9161 } 9162 #endif 9163 /* 9164 * Read and apply some fix-ups to the PCI COMMAND 9165 * register. We want the chip to be enabled for: 9166 * - BUS mastering 9167 * - PCI parity checking (reporting would also be fine) 9168 * - Write And Invalidate. 9169 */ 9170 #ifdef FreeBSD_Bus_Io_Abstraction 9171 command = pci_read_config(dev, PCIR_COMMAND, 2); 9172 #else 9173 command = pci_cfgread(pci_tag, PCIR_COMMAND, 2); 9174 #endif 9175 command |= PCIM_CMD_BUSMASTEREN; 9176 command |= PCIM_CMD_PERRESPEN; 9177 command |= /* PCIM_CMD_MWIEN */ 0x0010; 9178 #ifdef FreeBSD_Bus_Io_Abstraction 9179 pci_write_config(dev, PCIR_COMMAND, command, 2); 9180 #else 9181 pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2); 9182 #endif 9183 9184 /* 9185 * Let the device know about the cache line size, 9186 * if it doesn't yet. 9187 */ 9188 #ifdef FreeBSD_Bus_Io_Abstraction 9189 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 9190 #else 9191 cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1); 9192 #endif 9193 if (!cachelnsz) { 9194 cachelnsz = 8; 9195 #ifdef FreeBSD_Bus_Io_Abstraction 9196 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 9197 #else 9198 pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1); 9199 #endif 9200 } 9201 9202 /* 9203 * Alloc/get/map/retrieve everything that deals with MMIO. 9204 */ 9205 #ifdef FreeBSD_Bus_Io_Abstraction 9206 if ((command & PCIM_CMD_MEMEN) != 0) { 9207 int regs_id = SYM_PCI_MMIO; 9208 np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 9209 0, ~0, 1, RF_ACTIVE); 9210 } 9211 if (!np->mmio_res) { 9212 device_printf(dev, "failed to allocate MMIO resources\n"); 9213 goto attach_failed; 9214 } 9215 np->mmio_bsh = rman_get_bushandle(np->mmio_res); 9216 np->mmio_tag = rman_get_bustag(np->mmio_res); 9217 np->mmio_pa = rman_get_start(np->mmio_res); 9218 np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); 9219 np->mmio_ba = np->mmio_pa; 9220 #else 9221 if ((command & PCIM_CMD_MEMEN) != 0) { 9222 vm_offset_t vaddr, paddr; 9223 if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) { 9224 printf("%s: failed to map MMIO window\n", sym_name(np)); 9225 goto attach_failed; 9226 } 9227 np->mmio_va = vaddr; 9228 np->mmio_pa = paddr; 9229 np->mmio_ba = paddr; 9230 } 9231 #endif 9232 9233 /* 9234 * Allocate the IRQ. 9235 */ 9236 #ifdef FreeBSD_Bus_Io_Abstraction 9237 i = 0; 9238 np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i, 9239 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); 9240 if (!np->irq_res) { 9241 device_printf(dev, "failed to allocate IRQ resource\n"); 9242 goto attach_failed; 9243 } 9244 #endif 9245 9246 #ifdef SYM_CONF_IOMAPPED 9247 /* 9248 * User want us to use normal IO with PCI. 9249 * Alloc/get/map/retrieve everything that deals with IO. 9250 */ 9251 #ifdef FreeBSD_Bus_Io_Abstraction 9252 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 9253 int regs_id = SYM_PCI_IO; 9254 np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, ®s_id, 9255 0, ~0, 1, RF_ACTIVE); 9256 } 9257 if (!np->io_res) { 9258 device_printf(dev, "failed to allocate IO resources\n"); 9259 goto attach_failed; 9260 } 9261 np->io_bsh = rman_get_bushandle(np->io_res); 9262 np->io_tag = rman_get_bustag(np->io_res); 9263 np->io_port = rman_get_start(np->io_res); 9264 #else 9265 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 9266 pci_port_t io_port; 9267 if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) { 9268 printf("%s: failed to map IO window\n", sym_name(np)); 9269 goto attach_failed; 9270 } 9271 np->io_port = io_port; 9272 } 9273 #endif 9274 9275 #endif /* SYM_CONF_IOMAPPED */ 9276 9277 /* 9278 * If the chip has RAM. 9279 * Alloc/get/map/retrieve the corresponding resources. 9280 */ 9281 if ((np->features & (FE_RAM|FE_RAM8K)) && 9282 (command & PCIM_CMD_MEMEN) != 0) { 9283 #ifdef FreeBSD_Bus_Io_Abstraction 9284 int regs_id = SYM_PCI_RAM; 9285 if (np->features & FE_64BIT) 9286 regs_id = SYM_PCI_RAM64; 9287 np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, 9288 0, ~0, 1, RF_ACTIVE); 9289 if (!np->ram_res) { 9290 device_printf(dev,"failed to allocate RAM resources\n"); 9291 goto attach_failed; 9292 } 9293 np->ram_id = regs_id; 9294 np->ram_bsh = rman_get_bushandle(np->ram_res); 9295 np->ram_tag = rman_get_bustag(np->ram_res); 9296 np->ram_pa = rman_get_start(np->ram_res); 9297 np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); 9298 np->ram_ba = np->ram_pa; 9299 #else 9300 vm_offset_t vaddr, paddr; 9301 int regs_id = SYM_PCI_RAM; 9302 if (np->features & FE_64BIT) 9303 regs_id = SYM_PCI_RAM64; 9304 if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) { 9305 printf("%s: failed to map RAM window\n", sym_name(np)); 9306 goto attach_failed; 9307 } 9308 np->ram_va = vaddr; 9309 np->ram_pa = paddr; 9310 np->ram_ba = paddr; 9311 #endif 9312 } 9313 9314 /* 9315 * Save setting of some IO registers, so we will 9316 * be able to probe specific implementations. 9317 */ 9318 sym_save_initial_setting (np); 9319 9320 /* 9321 * Reset the chip now, since it has been reported 9322 * that SCSI clock calibration may not work properly 9323 * if the chip is currently active. 9324 */ 9325 sym_chip_reset (np); 9326 9327 /* 9328 * Try to read the user set-up. 9329 */ 9330 (void) sym_read_nvram(np, &nvram); 9331 9332 /* 9333 * Prepare controller and devices settings, according 9334 * to chip features, user set-up and driver set-up. 9335 */ 9336 (void) sym_prepare_setting(np, &nvram); 9337 9338 /* 9339 * Check the PCI clock frequency. 9340 * Must be performed after prepare_setting since it destroys 9341 * STEST1 that is used to probe for the clock doubler. 9342 */ 9343 i = sym_getpciclock(np); 9344 if (i > 37000) 9345 #ifdef FreeBSD_Bus_Io_Abstraction 9346 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 9347 #else 9348 printf("%s: PCI BUS clock seems too high: %u KHz.\n", 9349 sym_name(np), i); 9350 #endif 9351 9352 /* 9353 * Allocate the start queue. 9354 */ 9355 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 9356 if (!np->squeue) 9357 goto attach_failed; 9358 np->squeue_ba = vtobus(np->squeue); 9359 9360 /* 9361 * Allocate the done queue. 9362 */ 9363 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 9364 if (!np->dqueue) 9365 goto attach_failed; 9366 np->dqueue_ba = vtobus(np->dqueue); 9367 9368 /* 9369 * Allocate the target bus address array. 9370 */ 9371 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 9372 if (!np->targtbl) 9373 goto attach_failed; 9374 np->targtbl_ba = cpu_to_scr(vtobus(np->targtbl)); 9375 9376 /* 9377 * Allocate SCRIPTS areas. 9378 */ 9379 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 9380 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 9381 if (!np->scripta0 || !np->scriptb0) 9382 goto attach_failed; 9383 9384 /* 9385 * Allocate some CCB. We need at least ONE. 9386 */ 9387 if (!sym_alloc_ccb(np)) 9388 goto attach_failed; 9389 9390 /* 9391 * Calculate BUS addresses where we are going 9392 * to load the SCRIPTS. 9393 */ 9394 np->scripta_ba = vtobus(np->scripta0); 9395 np->scriptb_ba = vtobus(np->scriptb0); 9396 np->scriptb0_ba = np->scriptb_ba; 9397 9398 if (np->ram_ba) { 9399 np->scripta_ba = np->ram_ba; 9400 if (np->features & FE_RAM8K) { 9401 np->ram_ws = 8192; 9402 np->scriptb_ba = np->scripta_ba + 4096; 9403 #if BITS_PER_LONG > 32 9404 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 9405 #endif 9406 } 9407 else 9408 np->ram_ws = 4096; 9409 } 9410 9411 /* 9412 * Copy scripts to controller instance. 9413 */ 9414 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 9415 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 9416 9417 /* 9418 * Setup variable parts in scripts and compute 9419 * scripts bus addresses used from the C code. 9420 */ 9421 np->fw_setup(np, fw); 9422 9423 /* 9424 * Bind SCRIPTS with physical addresses usable by the 9425 * SCRIPTS processor (as seen from the BUS = BUS addresses). 9426 */ 9427 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 9428 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 9429 9430 #ifdef SYM_CONF_IARB_SUPPORT 9431 /* 9432 * If user wants IARB to be set when we win arbitration 9433 * and have other jobs, compute the max number of consecutive 9434 * settings of IARB hints before we leave devices a chance to 9435 * arbitrate for reselection. 9436 */ 9437 #ifdef SYM_SETUP_IARB_MAX 9438 np->iarb_max = SYM_SETUP_IARB_MAX; 9439 #else 9440 np->iarb_max = 4; 9441 #endif 9442 #endif 9443 9444 /* 9445 * Prepare the idle and invalid task actions. 9446 */ 9447 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9448 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9449 np->idletask_ba = vtobus(&np->idletask); 9450 9451 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9452 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9453 np->notask_ba = vtobus(&np->notask); 9454 9455 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9456 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 9457 np->bad_itl_ba = vtobus(&np->bad_itl); 9458 9459 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 9460 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 9461 np->bad_itlq_ba = vtobus(&np->bad_itlq); 9462 9463 /* 9464 * Allocate and prepare the lun JUMP table that is used 9465 * for a target prior the probing of devices (bad lun table). 9466 * A private table will be allocated for the target on the 9467 * first INQUIRY response received. 9468 */ 9469 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 9470 if (!np->badluntbl) 9471 goto attach_failed; 9472 9473 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 9474 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 9475 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 9476 9477 /* 9478 * Prepare the bus address array that contains the bus 9479 * address of each target control block. 9480 * For now, assume all logical units are wrong. :) 9481 */ 9482 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 9483 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 9484 np->target[i].head.luntbl_sa = 9485 cpu_to_scr(vtobus(np->badluntbl)); 9486 np->target[i].head.lun0_sa = 9487 cpu_to_scr(vtobus(&np->badlun_sa)); 9488 } 9489 9490 /* 9491 * Now check the cache handling of the pci chipset. 9492 */ 9493 if (sym_snooptest (np)) { 9494 #ifdef FreeBSD_Bus_Io_Abstraction 9495 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 9496 #else 9497 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); 9498 #endif 9499 goto attach_failed; 9500 }; 9501 9502 /* 9503 * Now deal with CAM. 9504 * Hopefully, we will succeed with that one.:) 9505 */ 9506 if (!sym_cam_attach(np)) 9507 goto attach_failed; 9508 9509 /* 9510 * Sigh! we are done. 9511 */ 9512 return 0; 9513 9514 /* 9515 * We have failed. 9516 * We will try to free all the resources we have 9517 * allocated, but if we are a boot device, this 9518 * will not help that much.;) 9519 */ 9520 attach_failed: 9521 if (np) 9522 sym_pci_free(np); 9523 return ENXIO; 9524 } 9525 9526 /* 9527 * Free everything that have been allocated for this device. 9528 */ 9529 static void sym_pci_free(hcb_p np) 9530 { 9531 SYM_QUEHEAD *qp; 9532 ccb_p cp; 9533 tcb_p tp; 9534 lcb_p lp; 9535 int target, lun; 9536 int s; 9537 9538 /* 9539 * First free CAM resources. 9540 */ 9541 s = splcam(); 9542 sym_cam_free(np); 9543 splx(s); 9544 9545 /* 9546 * Now every should be quiet for us to 9547 * free other resources. 9548 */ 9549 #ifdef FreeBSD_Bus_Io_Abstraction 9550 if (np->ram_res) 9551 bus_release_resource(np->device, SYS_RES_MEMORY, 9552 np->ram_id, np->ram_res); 9553 if (np->mmio_res) 9554 bus_release_resource(np->device, SYS_RES_MEMORY, 9555 SYM_PCI_MMIO, np->mmio_res); 9556 if (np->io_res) 9557 bus_release_resource(np->device, SYS_RES_IOPORT, 9558 SYM_PCI_IO, np->io_res); 9559 if (np->irq_res) 9560 bus_release_resource(np->device, SYS_RES_IRQ, 9561 0, np->irq_res); 9562 #else 9563 /* 9564 * YEAH!!! 9565 * It seems there is no means to free MMIO resources. 9566 */ 9567 #endif 9568 9569 if (np->scriptb0) 9570 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 9571 if (np->scripta0) 9572 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 9573 if (np->squeue) 9574 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 9575 if (np->dqueue) 9576 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 9577 9578 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { 9579 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 9580 #ifdef FreeBSD_Bus_Dma_Abstraction 9581 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 9582 #endif 9583 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 9584 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 9585 } 9586 9587 if (np->badluntbl) 9588 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 9589 9590 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 9591 tp = &np->target[target]; 9592 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 9593 lp = sym_lp(np, tp, lun); 9594 if (!lp) 9595 continue; 9596 if (lp->itlq_tbl) 9597 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 9598 "ITLQ_TBL"); 9599 if (lp->cb_tags) 9600 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 9601 "CB_TAGS"); 9602 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 9603 } 9604 #if SYM_CONF_MAX_LUN > 1 9605 if (tp->lunmp) 9606 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 9607 "LUNMP"); 9608 #endif 9609 } 9610 if (np->targtbl) 9611 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 9612 #ifdef FreeBSD_Bus_Dma_Abstraction 9613 if (np->data_dmat) 9614 bus_dma_tag_destroy(np->data_dmat); 9615 #endif 9616 sym_mfree_dma(np, sizeof(*np), "HCB"); 9617 } 9618 9619 /* 9620 * Allocate CAM resources and register a bus to CAM. 9621 */ 9622 int sym_cam_attach(hcb_p np) 9623 { 9624 struct cam_devq *devq = 0; 9625 struct cam_sim *sim = 0; 9626 struct cam_path *path = 0; 9627 struct ccb_setasync csa; 9628 int err, s; 9629 9630 s = splcam(); 9631 9632 /* 9633 * Establish our interrupt handler. 9634 */ 9635 #ifdef FreeBSD_Bus_Io_Abstraction 9636 err = bus_setup_intr(np->device, np->irq_res, 9637 INTR_TYPE_CAM | INTR_ENTROPY, sym_intr, np, 9638 &np->intr); 9639 if (err) { 9640 device_printf(np->device, "bus_setup_intr() failed: %d\n", 9641 err); 9642 goto fail; 9643 } 9644 #else 9645 err = 0; 9646 if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) { 9647 printf("%s: failed to map interrupt\n", sym_name(np)); 9648 goto fail; 9649 } 9650 #endif 9651 9652 /* 9653 * Create the device queue for our sym SIM. 9654 */ 9655 devq = cam_simq_alloc(SYM_CONF_MAX_START); 9656 if (!devq) 9657 goto fail; 9658 9659 /* 9660 * Construct our SIM entry. 9661 */ 9662 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, 9663 1, SYM_SETUP_MAX_TAG, devq); 9664 if (!sim) 9665 goto fail; 9666 devq = 0; 9667 9668 if (xpt_bus_register(sim, 0) != CAM_SUCCESS) 9669 goto fail; 9670 np->sim = sim; 9671 sim = 0; 9672 9673 if (xpt_create_path(&path, 0, 9674 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 9675 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 9676 goto fail; 9677 } 9678 np->path = path; 9679 9680 /* 9681 * Hmmm... This should be useful, but I donnot want to 9682 * know about. 9683 */ 9684 #if __FreeBSD_version < 400000 9685 #ifdef __alpha__ 9686 #ifdef FreeBSD_Bus_Io_Abstraction 9687 alpha_register_pci_scsi(pci_get_bus(np->device), 9688 pci_get_slot(np->device), np->sim); 9689 #else 9690 alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim); 9691 #endif 9692 #endif 9693 #endif 9694 9695 /* 9696 * Establish our async notification handler. 9697 */ 9698 xpt_setup_ccb(&csa.ccb_h, np->path, 5); 9699 csa.ccb_h.func_code = XPT_SASYNC_CB; 9700 csa.event_enable = AC_LOST_DEVICE; 9701 csa.callback = sym_async; 9702 csa.callback_arg = np->sim; 9703 xpt_action((union ccb *)&csa); 9704 9705 /* 9706 * Start the chip now, without resetting the BUS, since 9707 * it seems that this must stay under control of CAM. 9708 * With LVD/SE capable chips and BUS in SE mode, we may 9709 * get a spurious SMBC interrupt. 9710 */ 9711 sym_init (np, 0); 9712 9713 splx(s); 9714 return 1; 9715 fail: 9716 if (sim) 9717 cam_sim_free(sim, FALSE); 9718 if (devq) 9719 cam_simq_free(devq); 9720 9721 sym_cam_free(np); 9722 9723 splx(s); 9724 return 0; 9725 } 9726 9727 /* 9728 * Free everything that deals with CAM. 9729 */ 9730 void sym_cam_free(hcb_p np) 9731 { 9732 #ifdef FreeBSD_Bus_Io_Abstraction 9733 if (np->intr) 9734 bus_teardown_intr(np->device, np->irq_res, np->intr); 9735 #else 9736 /* pci_unmap_int(np->pci_tag); */ /* Does nothing */ 9737 #endif 9738 9739 if (np->sim) { 9740 xpt_bus_deregister(cam_sim_path(np->sim)); 9741 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9742 } 9743 if (np->path) 9744 xpt_free_path(np->path); 9745 } 9746 9747 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9748 9749 /* 9750 * Get host setup from NVRAM. 9751 */ 9752 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9753 { 9754 #ifdef SYM_CONF_NVRAM_SUPPORT 9755 /* 9756 * Get parity checking, host ID, verbose mode 9757 * and miscellaneous host flags from NVRAM. 9758 */ 9759 switch(nvram->type) { 9760 case SYM_SYMBIOS_NVRAM: 9761 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9762 np->rv_scntl0 &= ~0x0a; 9763 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9764 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9765 np->verbose += 1; 9766 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9767 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9768 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9769 np->usrflags |= SYM_AVOID_BUS_RESET; 9770 break; 9771 case SYM_TEKRAM_NVRAM: 9772 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9773 break; 9774 default: 9775 break; 9776 } 9777 #endif 9778 } 9779 9780 /* 9781 * Get target setup from NVRAM. 9782 */ 9783 #ifdef SYM_CONF_NVRAM_SUPPORT 9784 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9785 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9786 #endif 9787 9788 static void 9789 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9790 { 9791 #ifdef SYM_CONF_NVRAM_SUPPORT 9792 switch(nvp->type) { 9793 case SYM_SYMBIOS_NVRAM: 9794 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9795 break; 9796 case SYM_TEKRAM_NVRAM: 9797 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9798 break; 9799 default: 9800 break; 9801 } 9802 #endif 9803 } 9804 9805 #ifdef SYM_CONF_NVRAM_SUPPORT 9806 /* 9807 * Get target set-up from Symbios format NVRAM. 9808 */ 9809 static void 9810 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9811 { 9812 tcb_p tp = &np->target[target]; 9813 Symbios_target *tn = &nvram->target[target]; 9814 9815 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9816 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9817 tp->usrtags = 9818 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9819 9820 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9821 tp->usrflags &= ~SYM_DISC_ENABLED; 9822 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9823 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9824 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9825 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9826 } 9827 9828 /* 9829 * Get target set-up from Tekram format NVRAM. 9830 */ 9831 static void 9832 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9833 { 9834 tcb_p tp = &np->target[target]; 9835 struct Tekram_target *tn = &nvram->target[target]; 9836 int i; 9837 9838 if (tn->flags & TEKRAM_SYNC_NEGO) { 9839 i = tn->sync_index & 0xf; 9840 tp->tinfo.user.period = Tekram_sync[i]; 9841 } 9842 9843 tp->tinfo.user.width = 9844 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9845 9846 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9847 tp->usrtags = 2 << nvram->max_tags_index; 9848 } 9849 9850 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9851 tp->usrflags |= SYM_DISC_ENABLED; 9852 9853 /* If any device does not support parity, we will not use this option */ 9854 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9855 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9856 } 9857 9858 #ifdef SYM_CONF_DEBUG_NVRAM 9859 /* 9860 * Dump Symbios format NVRAM for debugging purpose. 9861 */ 9862 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9863 { 9864 int i; 9865 9866 /* display Symbios nvram host data */ 9867 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9868 sym_name(np), nvram->host_id & 0x0f, 9869 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9870 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9871 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9872 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9873 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9874 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9875 9876 /* display Symbios nvram drive data */ 9877 for (i = 0 ; i < 15 ; i++) { 9878 struct Symbios_target *tn = &nvram->target[i]; 9879 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9880 sym_name(np), i, 9881 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9882 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9883 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9884 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9885 tn->bus_width, 9886 tn->sync_period / 4, 9887 tn->timeout); 9888 } 9889 } 9890 9891 /* 9892 * Dump TEKRAM format NVRAM for debugging purpose. 9893 */ 9894 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9895 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9896 { 9897 int i, tags, boot_delay; 9898 char *rem; 9899 9900 /* display Tekram nvram host data */ 9901 tags = 2 << nvram->max_tags_index; 9902 boot_delay = 0; 9903 if (nvram->boot_delay_index < 6) 9904 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9905 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9906 default: 9907 case 0: rem = ""; break; 9908 case 1: rem = " REMOVABLE=boot device"; break; 9909 case 2: rem = " REMOVABLE=all"; break; 9910 } 9911 9912 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9913 sym_name(np), nvram->host_id & 0x0f, 9914 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9915 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9916 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9917 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9918 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9919 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9920 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9921 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9922 rem, boot_delay, tags); 9923 9924 /* display Tekram nvram drive data */ 9925 for (i = 0; i <= 15; i++) { 9926 int sync, j; 9927 struct Tekram_target *tn = &nvram->target[i]; 9928 j = tn->sync_index & 0xf; 9929 sync = Tekram_sync[j]; 9930 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9931 sym_name(np), i, 9932 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9933 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9934 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9935 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9936 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9937 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9938 sync); 9939 } 9940 } 9941 #endif /* SYM_CONF_DEBUG_NVRAM */ 9942 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9943 9944 9945 /* 9946 * Try reading Symbios or Tekram NVRAM 9947 */ 9948 #ifdef SYM_CONF_NVRAM_SUPPORT 9949 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9950 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9951 #endif 9952 9953 int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9954 { 9955 #ifdef SYM_CONF_NVRAM_SUPPORT 9956 /* 9957 * Try to read SYMBIOS nvram. 9958 * Try to read TEKRAM nvram if Symbios nvram not found. 9959 */ 9960 if (SYM_SETUP_SYMBIOS_NVRAM && 9961 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9962 nvp->type = SYM_SYMBIOS_NVRAM; 9963 #ifdef SYM_CONF_DEBUG_NVRAM 9964 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9965 #endif 9966 } 9967 else if (SYM_SETUP_TEKRAM_NVRAM && 9968 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9969 nvp->type = SYM_TEKRAM_NVRAM; 9970 #ifdef SYM_CONF_DEBUG_NVRAM 9971 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9972 #endif 9973 } 9974 else 9975 nvp->type = 0; 9976 #else 9977 nvp->type = 0; 9978 #endif 9979 return nvp->type; 9980 } 9981 9982 9983 #ifdef SYM_CONF_NVRAM_SUPPORT 9984 /* 9985 * 24C16 EEPROM reading. 9986 * 9987 * GPOI0 - data in/data out 9988 * GPIO1 - clock 9989 * Symbios NVRAM wiring now also used by Tekram. 9990 */ 9991 9992 #define SET_BIT 0 9993 #define CLR_BIT 1 9994 #define SET_CLK 2 9995 #define CLR_CLK 3 9996 9997 /* 9998 * Set/clear data/clock bit in GPIO0 9999 */ 10000 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 10001 int bit_mode) 10002 { 10003 UDELAY (5); 10004 switch (bit_mode){ 10005 case SET_BIT: 10006 *gpreg |= write_bit; 10007 break; 10008 case CLR_BIT: 10009 *gpreg &= 0xfe; 10010 break; 10011 case SET_CLK: 10012 *gpreg |= 0x02; 10013 break; 10014 case CLR_CLK: 10015 *gpreg &= 0xfd; 10016 break; 10017 10018 } 10019 OUTB (nc_gpreg, *gpreg); 10020 UDELAY (5); 10021 } 10022 10023 /* 10024 * Send START condition to NVRAM to wake it up. 10025 */ 10026 static void S24C16_start(hcb_p np, u_char *gpreg) 10027 { 10028 S24C16_set_bit(np, 1, gpreg, SET_BIT); 10029 S24C16_set_bit(np, 0, gpreg, SET_CLK); 10030 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 10031 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 10032 } 10033 10034 /* 10035 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 10036 */ 10037 static void S24C16_stop(hcb_p np, u_char *gpreg) 10038 { 10039 S24C16_set_bit(np, 0, gpreg, SET_CLK); 10040 S24C16_set_bit(np, 1, gpreg, SET_BIT); 10041 } 10042 10043 /* 10044 * Read or write a bit to the NVRAM, 10045 * read if GPIO0 input else write if GPIO0 output 10046 */ 10047 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 10048 u_char *gpreg) 10049 { 10050 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 10051 S24C16_set_bit(np, 0, gpreg, SET_CLK); 10052 if (read_bit) 10053 *read_bit = INB (nc_gpreg); 10054 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 10055 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 10056 } 10057 10058 /* 10059 * Output an ACK to the NVRAM after reading, 10060 * change GPIO0 to output and when done back to an input 10061 */ 10062 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 10063 u_char *gpcntl) 10064 { 10065 OUTB (nc_gpcntl, *gpcntl & 0xfe); 10066 S24C16_do_bit(np, 0, write_bit, gpreg); 10067 OUTB (nc_gpcntl, *gpcntl); 10068 } 10069 10070 /* 10071 * Input an ACK from NVRAM after writing, 10072 * change GPIO0 to input and when done back to an output 10073 */ 10074 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 10075 u_char *gpcntl) 10076 { 10077 OUTB (nc_gpcntl, *gpcntl | 0x01); 10078 S24C16_do_bit(np, read_bit, 1, gpreg); 10079 OUTB (nc_gpcntl, *gpcntl); 10080 } 10081 10082 /* 10083 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 10084 * GPIO0 must already be set as an output 10085 */ 10086 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 10087 u_char *gpreg, u_char *gpcntl) 10088 { 10089 int x; 10090 10091 for (x = 0; x < 8; x++) 10092 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 10093 10094 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 10095 } 10096 10097 /* 10098 * READ a byte from the NVRAM and then send an ACK to say we have got it, 10099 * GPIO0 must already be set as an input 10100 */ 10101 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 10102 u_char *gpreg, u_char *gpcntl) 10103 { 10104 int x; 10105 u_char read_bit; 10106 10107 *read_data = 0; 10108 for (x = 0; x < 8; x++) { 10109 S24C16_do_bit(np, &read_bit, 1, gpreg); 10110 *read_data |= ((read_bit & 0x01) << (7 - x)); 10111 } 10112 10113 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 10114 } 10115 10116 /* 10117 * Read 'len' bytes starting at 'offset'. 10118 */ 10119 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 10120 { 10121 u_char gpcntl, gpreg; 10122 u_char old_gpcntl, old_gpreg; 10123 u_char ack_data; 10124 int retv = 1; 10125 int x; 10126 10127 /* save current state of GPCNTL and GPREG */ 10128 old_gpreg = INB (nc_gpreg); 10129 old_gpcntl = INB (nc_gpcntl); 10130 gpcntl = old_gpcntl & 0x1c; 10131 10132 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 10133 OUTB (nc_gpreg, old_gpreg); 10134 OUTB (nc_gpcntl, gpcntl); 10135 10136 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 10137 gpreg = old_gpreg; 10138 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 10139 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 10140 10141 /* now set NVRAM inactive with GPIO0/1 both high */ 10142 S24C16_stop(np, &gpreg); 10143 10144 /* activate NVRAM */ 10145 S24C16_start(np, &gpreg); 10146 10147 /* write device code and random address MSB */ 10148 S24C16_write_byte(np, &ack_data, 10149 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 10150 if (ack_data & 0x01) 10151 goto out; 10152 10153 /* write random address LSB */ 10154 S24C16_write_byte(np, &ack_data, 10155 offset & 0xff, &gpreg, &gpcntl); 10156 if (ack_data & 0x01) 10157 goto out; 10158 10159 /* regenerate START state to set up for reading */ 10160 S24C16_start(np, &gpreg); 10161 10162 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 10163 S24C16_write_byte(np, &ack_data, 10164 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 10165 if (ack_data & 0x01) 10166 goto out; 10167 10168 /* now set up GPIO0 for inputting data */ 10169 gpcntl |= 0x01; 10170 OUTB (nc_gpcntl, gpcntl); 10171 10172 /* input all requested data - only part of total NVRAM */ 10173 for (x = 0; x < len; x++) 10174 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 10175 10176 /* finally put NVRAM back in inactive mode */ 10177 gpcntl &= 0xfe; 10178 OUTB (nc_gpcntl, gpcntl); 10179 S24C16_stop(np, &gpreg); 10180 retv = 0; 10181 out: 10182 /* return GPIO0/1 to original states after having accessed NVRAM */ 10183 OUTB (nc_gpcntl, old_gpcntl); 10184 OUTB (nc_gpreg, old_gpreg); 10185 10186 return retv; 10187 } 10188 10189 #undef SET_BIT 0 10190 #undef CLR_BIT 1 10191 #undef SET_CLK 2 10192 #undef CLR_CLK 3 10193 10194 /* 10195 * Try reading Symbios NVRAM. 10196 * Return 0 if OK. 10197 */ 10198 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 10199 { 10200 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 10201 u_char *data = (u_char *) nvram; 10202 int len = sizeof(*nvram); 10203 u_short csum; 10204 int x; 10205 10206 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 10207 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 10208 return 1; 10209 10210 /* check valid NVRAM signature, verify byte count and checksum */ 10211 if (nvram->type != 0 || 10212 bcmp(nvram->trailer, Symbios_trailer, 6) || 10213 nvram->byte_count != len - 12) 10214 return 1; 10215 10216 /* verify checksum */ 10217 for (x = 6, csum = 0; x < len - 6; x++) 10218 csum += data[x]; 10219 if (csum != nvram->checksum) 10220 return 1; 10221 10222 return 0; 10223 } 10224 10225 /* 10226 * 93C46 EEPROM reading. 10227 * 10228 * GPOI0 - data in 10229 * GPIO1 - data out 10230 * GPIO2 - clock 10231 * GPIO4 - chip select 10232 * 10233 * Used by Tekram. 10234 */ 10235 10236 /* 10237 * Pulse clock bit in GPIO0 10238 */ 10239 static void T93C46_Clk(hcb_p np, u_char *gpreg) 10240 { 10241 OUTB (nc_gpreg, *gpreg | 0x04); 10242 UDELAY (2); 10243 OUTB (nc_gpreg, *gpreg); 10244 } 10245 10246 /* 10247 * Read bit from NVRAM 10248 */ 10249 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 10250 { 10251 UDELAY (2); 10252 T93C46_Clk(np, gpreg); 10253 *read_bit = INB (nc_gpreg); 10254 } 10255 10256 /* 10257 * Write bit to GPIO0 10258 */ 10259 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 10260 { 10261 if (write_bit & 0x01) 10262 *gpreg |= 0x02; 10263 else 10264 *gpreg &= 0xfd; 10265 10266 *gpreg |= 0x10; 10267 10268 OUTB (nc_gpreg, *gpreg); 10269 UDELAY (2); 10270 10271 T93C46_Clk(np, gpreg); 10272 } 10273 10274 /* 10275 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 10276 */ 10277 static void T93C46_Stop(hcb_p np, u_char *gpreg) 10278 { 10279 *gpreg &= 0xef; 10280 OUTB (nc_gpreg, *gpreg); 10281 UDELAY (2); 10282 10283 T93C46_Clk(np, gpreg); 10284 } 10285 10286 /* 10287 * Send read command and address to NVRAM 10288 */ 10289 static void T93C46_Send_Command(hcb_p np, u_short write_data, 10290 u_char *read_bit, u_char *gpreg) 10291 { 10292 int x; 10293 10294 /* send 9 bits, start bit (1), command (2), address (6) */ 10295 for (x = 0; x < 9; x++) 10296 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 10297 10298 *read_bit = INB (nc_gpreg); 10299 } 10300 10301 /* 10302 * READ 2 bytes from the NVRAM 10303 */ 10304 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 10305 { 10306 int x; 10307 u_char read_bit; 10308 10309 *nvram_data = 0; 10310 for (x = 0; x < 16; x++) { 10311 T93C46_Read_Bit(np, &read_bit, gpreg); 10312 10313 if (read_bit & 0x01) 10314 *nvram_data |= (0x01 << (15 - x)); 10315 else 10316 *nvram_data &= ~(0x01 << (15 - x)); 10317 } 10318 } 10319 10320 /* 10321 * Read Tekram NvRAM data. 10322 */ 10323 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 10324 { 10325 u_char read_bit; 10326 int x; 10327 10328 for (x = 0; x < len; x++) { 10329 10330 /* output read command and address */ 10331 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 10332 if (read_bit & 0x01) 10333 return 1; /* Bad */ 10334 T93C46_Read_Word(np, &data[x], gpreg); 10335 T93C46_Stop(np, gpreg); 10336 } 10337 10338 return 0; 10339 } 10340 10341 /* 10342 * Try reading 93C46 Tekram NVRAM. 10343 */ 10344 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 10345 { 10346 u_char gpcntl, gpreg; 10347 u_char old_gpcntl, old_gpreg; 10348 int retv = 1; 10349 10350 /* save current state of GPCNTL and GPREG */ 10351 old_gpreg = INB (nc_gpreg); 10352 old_gpcntl = INB (nc_gpcntl); 10353 10354 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 10355 1/2/4 out */ 10356 gpreg = old_gpreg & 0xe9; 10357 OUTB (nc_gpreg, gpreg); 10358 gpcntl = (old_gpcntl & 0xe9) | 0x09; 10359 OUTB (nc_gpcntl, gpcntl); 10360 10361 /* input all of NVRAM, 64 words */ 10362 retv = T93C46_Read_Data(np, (u_short *) nvram, 10363 sizeof(*nvram) / sizeof(short), &gpreg); 10364 10365 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 10366 OUTB (nc_gpcntl, old_gpcntl); 10367 OUTB (nc_gpreg, old_gpreg); 10368 10369 return retv; 10370 } 10371 10372 /* 10373 * Try reading Tekram NVRAM. 10374 * Return 0 if OK. 10375 */ 10376 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 10377 { 10378 u_char *data = (u_char *) nvram; 10379 int len = sizeof(*nvram); 10380 u_short csum; 10381 int x; 10382 10383 switch (np->device_id) { 10384 case PCI_ID_SYM53C885: 10385 case PCI_ID_SYM53C895: 10386 case PCI_ID_SYM53C896: 10387 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 10388 data, len); 10389 break; 10390 case PCI_ID_SYM53C875: 10391 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 10392 data, len); 10393 if (!x) 10394 break; 10395 default: 10396 x = sym_read_T93C46_nvram(np, nvram); 10397 break; 10398 } 10399 if (x) 10400 return 1; 10401 10402 /* verify checksum */ 10403 for (x = 0, csum = 0; x < len - 1; x += 2) 10404 csum += data[x] + (data[x+1] << 8); 10405 if (csum != 0x1234) 10406 return 1; 10407 10408 return 0; 10409 } 10410 10411 #endif /* SYM_CONF_NVRAM_SUPPORT */ 10412