1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 #include <sys/systm.h> 74 #include <sys/malloc.h> 75 #include <sys/endian.h> 76 #include <sys/kernel.h> 77 #include <sys/lock.h> 78 #include <sys/mutex.h> 79 #include <sys/module.h> 80 #include <sys/bus.h> 81 82 #include <sys/proc.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <machine/bus.h> 88 #include <machine/resource.h> 89 90 #ifdef __sparc64__ 91 #include <dev/ofw/openfirm.h> 92 #include <machine/ofw_machdep.h> 93 #endif 94 95 #include <sys/rman.h> 96 97 #include <cam/cam.h> 98 #include <cam/cam_ccb.h> 99 #include <cam/cam_sim.h> 100 #include <cam/cam_xpt_sim.h> 101 #include <cam/cam_debug.h> 102 103 #include <cam/scsi/scsi_all.h> 104 #include <cam/scsi/scsi_message.h> 105 106 /* Short and quite clear integer types */ 107 typedef int8_t s8; 108 typedef int16_t s16; 109 typedef int32_t s32; 110 typedef u_int8_t u8; 111 typedef u_int16_t u16; 112 typedef u_int32_t u32; 113 114 /* 115 * Driver definitions. 116 */ 117 #include <dev/sym/sym_defs.h> 118 #include <dev/sym/sym_fw.h> 119 120 /* 121 * IA32 architecture does not reorder STORES and prevents 122 * LOADS from passing STORES. It is called `program order' 123 * by Intel and allows device drivers to deal with memory 124 * ordering by only ensuring that the code is not reordered 125 * by the compiler when ordering is required. 126 * Other architectures implement a weaker ordering that 127 * requires memory barriers (and also IO barriers when they 128 * make sense) to be used. 129 */ 130 #if defined __i386__ || defined __amd64__ 131 #define MEMORY_BARRIER() do { ; } while(0) 132 #elif defined __powerpc__ 133 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 134 #elif defined __ia64__ 135 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 136 #elif defined __sparc64__ 137 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 138 #else 139 #error "Not supported platform" 140 #endif 141 142 /* 143 * A la VMS/CAM-3 queue management. 144 */ 145 typedef struct sym_quehead { 146 struct sym_quehead *flink; /* Forward pointer */ 147 struct sym_quehead *blink; /* Backward pointer */ 148 } SYM_QUEHEAD; 149 150 #define sym_que_init(ptr) do { \ 151 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 152 } while (0) 153 154 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 155 { 156 return (head->flink == head) ? NULL : head->flink; 157 } 158 159 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 160 { 161 return (head->blink == head) ? NULL : head->blink; 162 } 163 164 static __inline void __sym_que_add(struct sym_quehead * new, 165 struct sym_quehead * blink, 166 struct sym_quehead * flink) 167 { 168 flink->blink = new; 169 new->flink = flink; 170 new->blink = blink; 171 blink->flink = new; 172 } 173 174 static __inline void __sym_que_del(struct sym_quehead * blink, 175 struct sym_quehead * flink) 176 { 177 flink->blink = blink; 178 blink->flink = flink; 179 } 180 181 static __inline int sym_que_empty(struct sym_quehead *head) 182 { 183 return head->flink == head; 184 } 185 186 static __inline void sym_que_splice(struct sym_quehead *list, 187 struct sym_quehead *head) 188 { 189 struct sym_quehead *first = list->flink; 190 191 if (first != list) { 192 struct sym_quehead *last = list->blink; 193 struct sym_quehead *at = head->flink; 194 195 first->blink = head; 196 head->flink = first; 197 198 last->flink = at; 199 at->blink = last; 200 } 201 } 202 203 #define sym_que_entry(ptr, type, member) \ 204 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 205 206 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 207 208 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 209 210 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 211 212 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 213 { 214 struct sym_quehead *elem = head->flink; 215 216 if (elem != head) 217 __sym_que_del(head, elem->flink); 218 else 219 elem = NULL; 220 return elem; 221 } 222 223 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 224 225 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 226 { 227 struct sym_quehead *elem = head->blink; 228 229 if (elem != head) 230 __sym_que_del(elem->blink, head); 231 else 232 elem = NULL; 233 return elem; 234 } 235 236 /* 237 * This one may be useful. 238 */ 239 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 240 for (qp = (head)->flink; qp != (head); qp = qp->flink) 241 /* 242 * FreeBSD does not offer our kind of queue in the CAM CCB. 243 * So, we have to cast. 244 */ 245 #define sym_qptr(p) ((struct sym_quehead *) (p)) 246 247 /* 248 * Simple bitmap operations. 249 */ 250 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 251 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 252 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 253 254 /* 255 * Number of tasks per device we want to handle. 256 */ 257 #if SYM_CONF_MAX_TAG_ORDER > 8 258 #error "more than 256 tags per logical unit not allowed." 259 #endif 260 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 261 262 /* 263 * Donnot use more tasks that we can handle. 264 */ 265 #ifndef SYM_CONF_MAX_TAG 266 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 267 #endif 268 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 269 #undef SYM_CONF_MAX_TAG 270 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 271 #endif 272 273 /* 274 * This one means 'NO TAG for this job' 275 */ 276 #define NO_TAG (256) 277 278 /* 279 * Number of SCSI targets. 280 */ 281 #if SYM_CONF_MAX_TARGET > 16 282 #error "more than 16 targets not allowed." 283 #endif 284 285 /* 286 * Number of logical units per target. 287 */ 288 #if SYM_CONF_MAX_LUN > 64 289 #error "more than 64 logical units per target not allowed." 290 #endif 291 292 /* 293 * Asynchronous pre-scaler (ns). Shall be 40 for 294 * the SCSI timings to be compliant. 295 */ 296 #define SYM_CONF_MIN_ASYNC (40) 297 298 /* 299 * Number of entries in the START and DONE queues. 300 * 301 * We limit to 1 PAGE in order to succeed allocation of 302 * these queues. Each entry is 8 bytes long (2 DWORDS). 303 */ 304 #ifdef SYM_CONF_MAX_START 305 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 306 #else 307 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 308 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 309 #endif 310 311 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 312 #undef SYM_CONF_MAX_QUEUE 313 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 314 #undef SYM_CONF_MAX_START 315 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 316 #endif 317 318 /* 319 * For this one, we want a short name :-) 320 */ 321 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 322 323 /* 324 * Active debugging tags and verbosity. 325 */ 326 #define DEBUG_ALLOC (0x0001) 327 #define DEBUG_PHASE (0x0002) 328 #define DEBUG_POLL (0x0004) 329 #define DEBUG_QUEUE (0x0008) 330 #define DEBUG_RESULT (0x0010) 331 #define DEBUG_SCATTER (0x0020) 332 #define DEBUG_SCRIPT (0x0040) 333 #define DEBUG_TINY (0x0080) 334 #define DEBUG_TIMING (0x0100) 335 #define DEBUG_NEGO (0x0200) 336 #define DEBUG_TAGS (0x0400) 337 #define DEBUG_POINTER (0x0800) 338 339 #if 0 340 static int sym_debug = 0; 341 #define DEBUG_FLAGS sym_debug 342 #else 343 /* #define DEBUG_FLAGS (0x0631) */ 344 #define DEBUG_FLAGS (0x0000) 345 346 #endif 347 #define sym_verbose (np->verbose) 348 349 /* 350 * Insert a delay in micro-seconds and milli-seconds. 351 */ 352 static void UDELAY(int us) { DELAY(us); } 353 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 354 355 /* 356 * Simple power of two buddy-like allocator. 357 * 358 * This simple code is not intended to be fast, but to 359 * provide power of 2 aligned memory allocations. 360 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 361 * this allocator allows simple and fast address calculations 362 * from the SCRIPTS code. In addition, cache line alignment 363 * is guaranteed for power of 2 cache line size. 364 * 365 * This allocator has been developed for the Linux sym53c8xx 366 * driver, since this O/S does not provide naturally aligned 367 * allocations. 368 * It has the advantage of allowing the driver to use private 369 * pages of memory that will be useful if we ever need to deal 370 * with IO MMUs for PCI. 371 */ 372 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 373 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 374 #if 0 375 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 376 #endif 377 #define MEMO_WARN 1 378 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 379 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 380 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 381 382 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 383 #define free_pages(p) free((p), M_DEVBUF) 384 385 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 386 387 typedef struct m_link { /* Link between free memory chunks */ 388 struct m_link *next; 389 } m_link_s; 390 391 typedef struct m_vtob { /* Virtual to Bus address translation */ 392 struct m_vtob *next; 393 bus_dmamap_t dmamap; /* Map for this chunk */ 394 m_addr_t vaddr; /* Virtual address */ 395 m_addr_t baddr; /* Bus physical address */ 396 } m_vtob_s; 397 /* Hash this stuff a bit to speed up translations */ 398 #define VTOB_HASH_SHIFT 5 399 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 400 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 401 #define VTOB_HASH_CODE(m) \ 402 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 403 404 typedef struct m_pool { /* Memory pool of a given kind */ 405 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 406 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 407 m_addr_t (*getp)(struct m_pool *); 408 #ifdef MEMO_FREE_UNUSED 409 void (*freep)(struct m_pool *, m_addr_t); 410 #endif 411 #define M_GETP() mp->getp(mp) 412 #define M_FREEP(p) mp->freep(mp, p) 413 int nump; 414 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 415 struct m_pool *next; 416 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 417 } m_pool_s; 418 419 static void *___sym_malloc(m_pool_s *mp, int size) 420 { 421 int i = 0; 422 int s = (1 << MEMO_SHIFT); 423 int j; 424 m_addr_t a; 425 m_link_s *h = mp->h; 426 427 if (size > MEMO_CLUSTER_SIZE) 428 return NULL; 429 430 while (size > s) { 431 s <<= 1; 432 ++i; 433 } 434 435 j = i; 436 while (!h[j].next) { 437 if (s == MEMO_CLUSTER_SIZE) { 438 h[j].next = (m_link_s *) M_GETP(); 439 if (h[j].next) 440 h[j].next->next = NULL; 441 break; 442 } 443 ++j; 444 s <<= 1; 445 } 446 a = (m_addr_t) h[j].next; 447 if (a) { 448 h[j].next = h[j].next->next; 449 while (j > i) { 450 j -= 1; 451 s >>= 1; 452 h[j].next = (m_link_s *) (a+s); 453 h[j].next->next = NULL; 454 } 455 } 456 #ifdef DEBUG 457 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 458 #endif 459 return (void *) a; 460 } 461 462 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 463 { 464 int i = 0; 465 int s = (1 << MEMO_SHIFT); 466 m_link_s *q; 467 m_addr_t a, b; 468 m_link_s *h = mp->h; 469 470 #ifdef DEBUG 471 printf("___sym_mfree(%p, %d)\n", ptr, size); 472 #endif 473 474 if (size > MEMO_CLUSTER_SIZE) 475 return; 476 477 while (size > s) { 478 s <<= 1; 479 ++i; 480 } 481 482 a = (m_addr_t) ptr; 483 484 while (1) { 485 #ifdef MEMO_FREE_UNUSED 486 if (s == MEMO_CLUSTER_SIZE) { 487 M_FREEP(a); 488 break; 489 } 490 #endif 491 b = a ^ s; 492 q = &h[i]; 493 while (q->next && q->next != (m_link_s *) b) { 494 q = q->next; 495 } 496 if (!q->next) { 497 ((m_link_s *) a)->next = h[i].next; 498 h[i].next = (m_link_s *) a; 499 break; 500 } 501 q->next = q->next->next; 502 a = a & b; 503 s <<= 1; 504 ++i; 505 } 506 } 507 508 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 509 { 510 void *p; 511 512 p = ___sym_malloc(mp, size); 513 514 if (DEBUG_FLAGS & DEBUG_ALLOC) 515 printf ("new %-10s[%4d] @%p.\n", name, size, p); 516 517 if (p) 518 bzero(p, size); 519 else if (uflags & MEMO_WARN) 520 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 521 522 return p; 523 } 524 525 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 526 527 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 528 { 529 if (DEBUG_FLAGS & DEBUG_ALLOC) 530 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 531 532 ___sym_mfree(mp, ptr, size); 533 534 } 535 536 /* 537 * Default memory pool we donnot need to involve in DMA. 538 */ 539 /* 540 * With the `bus dma abstraction', we use a separate pool for 541 * memory we donnot need to involve in DMA. 542 */ 543 static m_addr_t ___mp0_getp(m_pool_s *mp) 544 { 545 m_addr_t m = (m_addr_t) get_pages(); 546 if (m) 547 ++mp->nump; 548 return m; 549 } 550 551 #ifdef MEMO_FREE_UNUSED 552 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 553 { 554 free_pages(m); 555 --mp->nump; 556 } 557 #endif 558 559 #ifdef MEMO_FREE_UNUSED 560 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 561 #else 562 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 563 #endif 564 565 /* 566 * Actual memory allocation routine for non-DMAed memory. 567 */ 568 static void *sym_calloc(int size, char *name) 569 { 570 void *m; 571 /* Lock */ 572 m = __sym_calloc(&mp0, size, name); 573 /* Unlock */ 574 return m; 575 } 576 577 /* 578 * Actual memory allocation routine for non-DMAed memory. 579 */ 580 static void sym_mfree(void *ptr, int size, char *name) 581 { 582 /* Lock */ 583 __sym_mfree(&mp0, ptr, size, name); 584 /* Unlock */ 585 } 586 587 /* 588 * DMAable pools. 589 */ 590 /* 591 * With `bus dma abstraction', we use a separate pool per parent 592 * BUS handle. A reverse table (hashed) is maintained for virtual 593 * to BUS address translation. 594 */ 595 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 596 { 597 bus_addr_t *baddr; 598 baddr = (bus_addr_t *)arg; 599 *baddr = segs->ds_addr; 600 } 601 602 static m_addr_t ___dma_getp(m_pool_s *mp) 603 { 604 m_vtob_s *vbp; 605 void *vaddr = NULL; 606 bus_addr_t baddr = 0; 607 608 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 609 if (!vbp) 610 goto out_err; 611 612 if (bus_dmamem_alloc(mp->dmat, &vaddr, 613 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 614 goto out_err; 615 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 616 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 617 if (baddr) { 618 int hc = VTOB_HASH_CODE(vaddr); 619 vbp->vaddr = (m_addr_t) vaddr; 620 vbp->baddr = (m_addr_t) baddr; 621 vbp->next = mp->vtob[hc]; 622 mp->vtob[hc] = vbp; 623 ++mp->nump; 624 return (m_addr_t) vaddr; 625 } 626 out_err: 627 if (baddr) 628 bus_dmamap_unload(mp->dmat, vbp->dmamap); 629 if (vaddr) 630 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 631 if (vbp) { 632 if (vbp->dmamap) 633 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 634 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 635 } 636 return 0; 637 } 638 639 #ifdef MEMO_FREE_UNUSED 640 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 641 { 642 m_vtob_s **vbpp, *vbp; 643 int hc = VTOB_HASH_CODE(m); 644 645 vbpp = &mp->vtob[hc]; 646 while (*vbpp && (*vbpp)->vaddr != m) 647 vbpp = &(*vbpp)->next; 648 if (*vbpp) { 649 vbp = *vbpp; 650 *vbpp = (*vbpp)->next; 651 bus_dmamap_unload(mp->dmat, vbp->dmamap); 652 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 653 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 654 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 655 --mp->nump; 656 } 657 } 658 #endif 659 660 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 661 { 662 m_pool_s *mp; 663 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 664 return mp; 665 } 666 667 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 668 { 669 m_pool_s *mp = NULL; 670 671 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 672 if (mp) { 673 mp->dev_dmat = dev_dmat; 674 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 675 BUS_SPACE_MAXADDR_32BIT, 676 BUS_SPACE_MAXADDR, 677 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 678 MEMO_CLUSTER_SIZE, 0, 679 NULL, NULL, &mp->dmat)) { 680 mp->getp = ___dma_getp; 681 #ifdef MEMO_FREE_UNUSED 682 mp->freep = ___dma_freep; 683 #endif 684 mp->next = mp0.next; 685 mp0.next = mp; 686 return mp; 687 } 688 } 689 if (mp) 690 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 691 return NULL; 692 } 693 694 #ifdef MEMO_FREE_UNUSED 695 static void ___del_dma_pool(m_pool_s *p) 696 { 697 struct m_pool **pp = &mp0.next; 698 699 while (*pp && *pp != p) 700 pp = &(*pp)->next; 701 if (*pp) { 702 *pp = (*pp)->next; 703 bus_dma_tag_destroy(p->dmat); 704 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 705 } 706 } 707 #endif 708 709 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 710 { 711 struct m_pool *mp; 712 void *m = NULL; 713 714 /* Lock */ 715 mp = ___get_dma_pool(dev_dmat); 716 if (!mp) 717 mp = ___cre_dma_pool(dev_dmat); 718 if (mp) 719 m = __sym_calloc(mp, size, name); 720 #ifdef MEMO_FREE_UNUSED 721 if (mp && !mp->nump) 722 ___del_dma_pool(mp); 723 #endif 724 /* Unlock */ 725 726 return m; 727 } 728 729 static void 730 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 731 { 732 struct m_pool *mp; 733 734 /* Lock */ 735 mp = ___get_dma_pool(dev_dmat); 736 if (mp) 737 __sym_mfree(mp, m, size, name); 738 #ifdef MEMO_FREE_UNUSED 739 if (mp && !mp->nump) 740 ___del_dma_pool(mp); 741 #endif 742 /* Unlock */ 743 } 744 745 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 746 { 747 m_pool_s *mp; 748 int hc = VTOB_HASH_CODE(m); 749 m_vtob_s *vp = NULL; 750 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 751 752 /* Lock */ 753 mp = ___get_dma_pool(dev_dmat); 754 if (mp) { 755 vp = mp->vtob[hc]; 756 while (vp && (m_addr_t) vp->vaddr != a) 757 vp = vp->next; 758 } 759 /* Unlock */ 760 if (!vp) 761 panic("sym: VTOBUS FAILED!\n"); 762 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 763 } 764 765 /* 766 * Verbs for DMAable memory handling. 767 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 768 * being discarded. 769 */ 770 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 771 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 772 #define _sym_mfree_dma(np, p, s, n) \ 773 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 774 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 775 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 776 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 777 #define vtobus(p) _vtobus(np, p) 778 779 /* 780 * Print a buffer in hexadecimal format. 781 */ 782 static void sym_printb_hex (u_char *p, int n) 783 { 784 while (n-- > 0) 785 printf (" %x", *p++); 786 } 787 788 /* 789 * Same with a label at beginning and .\n at end. 790 */ 791 static void sym_printl_hex (char *label, u_char *p, int n) 792 { 793 printf ("%s", label); 794 sym_printb_hex (p, n); 795 printf (".\n"); 796 } 797 798 /* 799 * Return a string for SCSI BUS mode. 800 */ 801 static const char *sym_scsi_bus_mode(int mode) 802 { 803 switch(mode) { 804 case SMODE_HVD: return "HVD"; 805 case SMODE_SE: return "SE"; 806 case SMODE_LVD: return "LVD"; 807 } 808 return "??"; 809 } 810 811 /* 812 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 813 */ 814 #ifdef SYM_CONF_NVRAM_SUPPORT 815 static const u_char Tekram_sync[16] = 816 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 817 #endif 818 819 /* 820 * Union of supported NVRAM formats. 821 */ 822 struct sym_nvram { 823 int type; 824 #define SYM_SYMBIOS_NVRAM (1) 825 #define SYM_TEKRAM_NVRAM (2) 826 #ifdef SYM_CONF_NVRAM_SUPPORT 827 union { 828 Symbios_nvram Symbios; 829 Tekram_nvram Tekram; 830 } data; 831 #endif 832 }; 833 834 /* 835 * This one is hopefully useless, but actually useful. :-) 836 */ 837 #ifndef assert 838 #define assert(expression) { \ 839 if (!(expression)) { \ 840 (void)panic( \ 841 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 842 #expression, \ 843 __FILE__, __LINE__); \ 844 } \ 845 } 846 #endif 847 848 /* 849 * Some provision for a possible big endian mode supported by 850 * Symbios chips (never seen, by the way). 851 * For now, this stuff does not deserve any comments. :) 852 */ 853 #define sym_offb(o) (o) 854 #define sym_offw(o) (o) 855 856 /* 857 * Some provision for support for BIG ENDIAN CPU. 858 */ 859 #define cpu_to_scr(dw) htole32(dw) 860 #define scr_to_cpu(dw) le32toh(dw) 861 862 /* 863 * Access to the chip IO registers and on-chip RAM. 864 * We use the `bus space' interface under FreeBSD-4 and 865 * later kernel versions. 866 */ 867 #if defined(SYM_CONF_IOMAPPED) 868 869 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 870 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 871 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 872 873 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 874 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 875 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 876 877 #else /* Memory mapped IO */ 878 879 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 880 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 881 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 882 883 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 884 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 885 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 886 887 #endif /* SYM_CONF_IOMAPPED */ 888 889 #define OUTRAM_OFF(o, a, l) \ 890 bus_write_region_1(np->ram_res, (o), (a), (l)) 891 892 /* 893 * Common definitions for both bus space and legacy IO methods. 894 */ 895 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 896 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 897 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 898 899 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 900 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 901 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 902 903 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 904 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 905 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 906 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 907 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 908 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 909 910 /* 911 * We normally want the chip to have a consistent view 912 * of driver internal data structures when we restart it. 913 * Thus these macros. 914 */ 915 #define OUTL_DSP(v) \ 916 do { \ 917 MEMORY_BARRIER(); \ 918 OUTL (nc_dsp, (v)); \ 919 } while (0) 920 921 #define OUTONB_STD() \ 922 do { \ 923 MEMORY_BARRIER(); \ 924 OUTONB (nc_dcntl, (STD|NOCOM)); \ 925 } while (0) 926 927 /* 928 * Command control block states. 929 */ 930 #define HS_IDLE (0) 931 #define HS_BUSY (1) 932 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 933 #define HS_DISCONNECT (3) /* Disconnected by target */ 934 #define HS_WAIT (4) /* waiting for resource */ 935 936 #define HS_DONEMASK (0x80) 937 #define HS_COMPLETE (4|HS_DONEMASK) 938 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 939 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 940 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 941 942 /* 943 * Software Interrupt Codes 944 */ 945 #define SIR_BAD_SCSI_STATUS (1) 946 #define SIR_SEL_ATN_NO_MSG_OUT (2) 947 #define SIR_MSG_RECEIVED (3) 948 #define SIR_MSG_WEIRD (4) 949 #define SIR_NEGO_FAILED (5) 950 #define SIR_NEGO_PROTO (6) 951 #define SIR_SCRIPT_STOPPED (7) 952 #define SIR_REJECT_TO_SEND (8) 953 #define SIR_SWIDE_OVERRUN (9) 954 #define SIR_SODL_UNDERRUN (10) 955 #define SIR_RESEL_NO_MSG_IN (11) 956 #define SIR_RESEL_NO_IDENTIFY (12) 957 #define SIR_RESEL_BAD_LUN (13) 958 #define SIR_TARGET_SELECTED (14) 959 #define SIR_RESEL_BAD_I_T_L (15) 960 #define SIR_RESEL_BAD_I_T_L_Q (16) 961 #define SIR_ABORT_SENT (17) 962 #define SIR_RESEL_ABORTED (18) 963 #define SIR_MSG_OUT_DONE (19) 964 #define SIR_COMPLETE_ERROR (20) 965 #define SIR_DATA_OVERRUN (21) 966 #define SIR_BAD_PHASE (22) 967 #define SIR_MAX (22) 968 969 /* 970 * Extended error bit codes. 971 * xerr_status field of struct sym_ccb. 972 */ 973 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 974 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 975 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 976 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 977 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 978 979 /* 980 * Negotiation status. 981 * nego_status field of struct sym_ccb. 982 */ 983 #define NS_SYNC (1) 984 #define NS_WIDE (2) 985 #define NS_PPR (3) 986 987 /* 988 * A CCB hashed table is used to retrieve CCB address 989 * from DSA value. 990 */ 991 #define CCB_HASH_SHIFT 8 992 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 993 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 994 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 995 996 /* 997 * Device flags. 998 */ 999 #define SYM_DISC_ENABLED (1) 1000 #define SYM_TAGS_ENABLED (1<<1) 1001 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1002 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1003 1004 /* 1005 * Host adapter miscellaneous flags. 1006 */ 1007 #define SYM_AVOID_BUS_RESET (1) 1008 #define SYM_SCAN_TARGETS_HILO (1<<1) 1009 1010 /* 1011 * Device quirks. 1012 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1013 * saving the DATA POINTER then reselects and terminates the IO. 1014 * On reselection, the automatic RESTORE DATA POINTER makes the 1015 * CURRENT DATA POINTER not point at the end of the IO. 1016 * This behaviour just breaks our calculation of the residual. 1017 * For now, we just force an AUTO SAVE on disconnection and will 1018 * fix that in a further driver version. 1019 */ 1020 #define SYM_QUIRK_AUTOSAVE 1 1021 1022 /* 1023 * Misc. 1024 */ 1025 #define SYM_LOCK() mtx_lock(&np->mtx) 1026 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1027 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1028 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1029 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1030 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1031 1032 #define SYM_SNOOP_TIMEOUT (10000000) 1033 #define SYM_PCI_IO PCIR_BAR(0) 1034 #define SYM_PCI_MMIO PCIR_BAR(1) 1035 #define SYM_PCI_RAM PCIR_BAR(2) 1036 #define SYM_PCI_RAM64 PCIR_BAR(3) 1037 1038 /* 1039 * Back-pointer from the CAM CCB to our data structures. 1040 */ 1041 #define sym_hcb_ptr spriv_ptr0 1042 /* #define sym_ccb_ptr spriv_ptr1 */ 1043 1044 /* 1045 * We mostly have to deal with pointers. 1046 * Thus these typedef's. 1047 */ 1048 typedef struct sym_tcb *tcb_p; 1049 typedef struct sym_lcb *lcb_p; 1050 typedef struct sym_ccb *ccb_p; 1051 typedef struct sym_hcb *hcb_p; 1052 1053 /* 1054 * Gather negotiable parameters value 1055 */ 1056 struct sym_trans { 1057 u8 scsi_version; 1058 u8 spi_version; 1059 u8 period; 1060 u8 offset; 1061 u8 width; 1062 u8 options; /* PPR options */ 1063 }; 1064 1065 struct sym_tinfo { 1066 struct sym_trans current; 1067 struct sym_trans goal; 1068 struct sym_trans user; 1069 }; 1070 1071 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1072 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1073 1074 /* 1075 * Global TCB HEADER. 1076 * 1077 * Due to lack of indirect addressing on earlier NCR chips, 1078 * this substructure is copied from the TCB to a global 1079 * address after selection. 1080 * For SYMBIOS chips that support LOAD/STORE this copy is 1081 * not needed and thus not performed. 1082 */ 1083 struct sym_tcbh { 1084 /* 1085 * Scripts bus addresses of LUN table accessed from scripts. 1086 * LUN #0 is a special case, since multi-lun devices are rare, 1087 * and we we want to speed-up the general case and not waste 1088 * resources. 1089 */ 1090 u32 luntbl_sa; /* bus address of this table */ 1091 u32 lun0_sa; /* bus address of LCB #0 */ 1092 /* 1093 * Actual SYNC/WIDE IO registers value for this target. 1094 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1095 * so have alignment constraints. 1096 */ 1097 /*0*/ u_char uval; /* -> SCNTL4 register */ 1098 /*1*/ u_char sval; /* -> SXFER io register */ 1099 /*2*/ u_char filler1; 1100 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1101 }; 1102 1103 /* 1104 * Target Control Block 1105 */ 1106 struct sym_tcb { 1107 /* 1108 * TCB header. 1109 * Assumed at offset 0. 1110 */ 1111 /*0*/ struct sym_tcbh head; 1112 1113 /* 1114 * LUN table used by the SCRIPTS processor. 1115 * An array of bus addresses is used on reselection. 1116 */ 1117 u32 *luntbl; /* LCBs bus address table */ 1118 1119 /* 1120 * LUN table used by the C code. 1121 */ 1122 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1123 #if SYM_CONF_MAX_LUN > 1 1124 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1125 #endif 1126 1127 /* 1128 * Bitmap that tells about LUNs that succeeded at least 1129 * 1 IO and therefore assumed to be a real device. 1130 * Avoid useless allocation of the LCB structure. 1131 */ 1132 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1133 1134 /* 1135 * Bitmap that tells about LUNs that haven't yet an LCB 1136 * allocated (not discovered or LCB allocation failed). 1137 */ 1138 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1139 1140 /* 1141 * Transfer capabilities (SIP) 1142 */ 1143 struct sym_tinfo tinfo; 1144 1145 /* 1146 * Keep track of the CCB used for the negotiation in order 1147 * to ensure that only 1 negotiation is queued at a time. 1148 */ 1149 ccb_p nego_cp; /* CCB used for the nego */ 1150 1151 /* 1152 * Set when we want to reset the device. 1153 */ 1154 u_char to_reset; 1155 1156 /* 1157 * Other user settable limits and options. 1158 * These limits are read from the NVRAM if present. 1159 */ 1160 u_char usrflags; 1161 u_short usrtags; 1162 }; 1163 1164 /* 1165 * Global LCB HEADER. 1166 * 1167 * Due to lack of indirect addressing on earlier NCR chips, 1168 * this substructure is copied from the LCB to a global 1169 * address after selection. 1170 * For SYMBIOS chips that support LOAD/STORE this copy is 1171 * not needed and thus not performed. 1172 */ 1173 struct sym_lcbh { 1174 /* 1175 * SCRIPTS address jumped by SCRIPTS on reselection. 1176 * For not probed logical units, this address points to 1177 * SCRIPTS that deal with bad LU handling (must be at 1178 * offset zero of the LCB for that reason). 1179 */ 1180 /*0*/ u32 resel_sa; 1181 1182 /* 1183 * Task (bus address of a CCB) read from SCRIPTS that points 1184 * to the unique ITL nexus allowed to be disconnected. 1185 */ 1186 u32 itl_task_sa; 1187 1188 /* 1189 * Task table bus address (read from SCRIPTS). 1190 */ 1191 u32 itlq_tbl_sa; 1192 }; 1193 1194 /* 1195 * Logical Unit Control Block 1196 */ 1197 struct sym_lcb { 1198 /* 1199 * TCB header. 1200 * Assumed at offset 0. 1201 */ 1202 /*0*/ struct sym_lcbh head; 1203 1204 /* 1205 * Task table read from SCRIPTS that contains pointers to 1206 * ITLQ nexuses. The bus address read from SCRIPTS is 1207 * inside the header. 1208 */ 1209 u32 *itlq_tbl; /* Kernel virtual address */ 1210 1211 /* 1212 * Busy CCBs management. 1213 */ 1214 u_short busy_itlq; /* Number of busy tagged CCBs */ 1215 u_short busy_itl; /* Number of busy untagged CCBs */ 1216 1217 /* 1218 * Circular tag allocation buffer. 1219 */ 1220 u_short ia_tag; /* Tag allocation index */ 1221 u_short if_tag; /* Tag release index */ 1222 u_char *cb_tags; /* Circular tags buffer */ 1223 1224 /* 1225 * Set when we want to clear all tasks. 1226 */ 1227 u_char to_clear; 1228 1229 /* 1230 * Capabilities. 1231 */ 1232 u_char user_flags; 1233 u_char current_flags; 1234 }; 1235 1236 /* 1237 * Action from SCRIPTS on a task. 1238 * Is part of the CCB, but is also used separately to plug 1239 * error handling action to perform from SCRIPTS. 1240 */ 1241 struct sym_actscr { 1242 u32 start; /* Jumped by SCRIPTS after selection */ 1243 u32 restart; /* Jumped by SCRIPTS on relection */ 1244 }; 1245 1246 /* 1247 * Phase mismatch context. 1248 * 1249 * It is part of the CCB and is used as parameters for the 1250 * DATA pointer. We need two contexts to handle correctly the 1251 * SAVED DATA POINTER. 1252 */ 1253 struct sym_pmc { 1254 struct sym_tblmove sg; /* Updated interrupted SG block */ 1255 u32 ret; /* SCRIPT return address */ 1256 }; 1257 1258 /* 1259 * LUN control block lookup. 1260 * We use a direct pointer for LUN #0, and a table of 1261 * pointers which is only allocated for devices that support 1262 * LUN(s) > 0. 1263 */ 1264 #if SYM_CONF_MAX_LUN <= 1 1265 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1266 #else 1267 #define sym_lp(np, tp, lun) \ 1268 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1269 #endif 1270 1271 /* 1272 * Status are used by the host and the script processor. 1273 * 1274 * The last four bytes (status[4]) are copied to the 1275 * scratchb register (declared as scr0..scr3) just after the 1276 * select/reselect, and copied back just after disconnecting. 1277 * Inside the script the XX_REG are used. 1278 */ 1279 1280 /* 1281 * Last four bytes (script) 1282 */ 1283 #define QU_REG scr0 1284 #define HS_REG scr1 1285 #define HS_PRT nc_scr1 1286 #define SS_REG scr2 1287 #define SS_PRT nc_scr2 1288 #define HF_REG scr3 1289 #define HF_PRT nc_scr3 1290 1291 /* 1292 * Last four bytes (host) 1293 */ 1294 #define actualquirks phys.head.status[0] 1295 #define host_status phys.head.status[1] 1296 #define ssss_status phys.head.status[2] 1297 #define host_flags phys.head.status[3] 1298 1299 /* 1300 * Host flags 1301 */ 1302 #define HF_IN_PM0 1u 1303 #define HF_IN_PM1 (1u<<1) 1304 #define HF_ACT_PM (1u<<2) 1305 #define HF_DP_SAVED (1u<<3) 1306 #define HF_SENSE (1u<<4) 1307 #define HF_EXT_ERR (1u<<5) 1308 #define HF_DATA_IN (1u<<6) 1309 #ifdef SYM_CONF_IARB_SUPPORT 1310 #define HF_HINT_IARB (1u<<7) 1311 #endif 1312 1313 /* 1314 * Global CCB HEADER. 1315 * 1316 * Due to lack of indirect addressing on earlier NCR chips, 1317 * this substructure is copied from the ccb to a global 1318 * address after selection (or reselection) and copied back 1319 * before disconnect. 1320 * For SYMBIOS chips that support LOAD/STORE this copy is 1321 * not needed and thus not performed. 1322 */ 1323 struct sym_ccbh { 1324 /* 1325 * Start and restart SCRIPTS addresses (must be at 0). 1326 */ 1327 /*0*/ struct sym_actscr go; 1328 1329 /* 1330 * SCRIPTS jump address that deal with data pointers. 1331 * 'savep' points to the position in the script responsible 1332 * for the actual transfer of data. 1333 * It's written on reception of a SAVE_DATA_POINTER message. 1334 */ 1335 u32 savep; /* Jump address to saved data pointer */ 1336 u32 lastp; /* SCRIPTS address at end of data */ 1337 u32 goalp; /* Not accessed for now from SCRIPTS */ 1338 1339 /* 1340 * Status fields. 1341 */ 1342 u8 status[4]; 1343 }; 1344 1345 /* 1346 * Data Structure Block 1347 * 1348 * During execution of a ccb by the script processor, the 1349 * DSA (data structure address) register points to this 1350 * substructure of the ccb. 1351 */ 1352 struct sym_dsb { 1353 /* 1354 * CCB header. 1355 * Also assumed at offset 0 of the sym_ccb structure. 1356 */ 1357 /*0*/ struct sym_ccbh head; 1358 1359 /* 1360 * Phase mismatch contexts. 1361 * We need two to handle correctly the SAVED DATA POINTER. 1362 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1363 * for address calculation from SCRIPTS. 1364 */ 1365 struct sym_pmc pm0; 1366 struct sym_pmc pm1; 1367 1368 /* 1369 * Table data for Script 1370 */ 1371 struct sym_tblsel select; 1372 struct sym_tblmove smsg; 1373 struct sym_tblmove smsg_ext; 1374 struct sym_tblmove cmd; 1375 struct sym_tblmove sense; 1376 struct sym_tblmove wresid; 1377 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1378 }; 1379 1380 /* 1381 * Our Command Control Block 1382 */ 1383 struct sym_ccb { 1384 /* 1385 * This is the data structure which is pointed by the DSA 1386 * register when it is executed by the script processor. 1387 * It must be the first entry. 1388 */ 1389 struct sym_dsb phys; 1390 1391 /* 1392 * Pointer to CAM ccb and related stuff. 1393 */ 1394 struct callout ch; /* callout handle */ 1395 union ccb *cam_ccb; /* CAM scsiio ccb */ 1396 u8 cdb_buf[16]; /* Copy of CDB */ 1397 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1398 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1399 int data_len; /* Total data length */ 1400 int segments; /* Number of SG segments */ 1401 1402 /* 1403 * Miscellaneous status'. 1404 */ 1405 u_char nego_status; /* Negotiation status */ 1406 u_char xerr_status; /* Extended error flags */ 1407 u32 extra_bytes; /* Extraneous bytes transferred */ 1408 1409 /* 1410 * Message areas. 1411 * We prepare a message to be sent after selection. 1412 * We may use a second one if the command is rescheduled 1413 * due to CHECK_CONDITION or COMMAND TERMINATED. 1414 * Contents are IDENTIFY and SIMPLE_TAG. 1415 * While negotiating sync or wide transfer, 1416 * a SDTR or WDTR message is appended. 1417 */ 1418 u_char scsi_smsg [12]; 1419 u_char scsi_smsg2[12]; 1420 1421 /* 1422 * Auto request sense related fields. 1423 */ 1424 u_char sensecmd[6]; /* Request Sense command */ 1425 u_char sv_scsi_status; /* Saved SCSI status */ 1426 u_char sv_xerr_status; /* Saved extended status */ 1427 int sv_resid; /* Saved residual */ 1428 1429 /* 1430 * Map for the DMA of user data. 1431 */ 1432 void *arg; /* Argument for some callback */ 1433 bus_dmamap_t dmamap; /* DMA map for user data */ 1434 u_char dmamapped; 1435 #define SYM_DMA_NONE 0 1436 #define SYM_DMA_READ 1 1437 #define SYM_DMA_WRITE 2 1438 /* 1439 * Other fields. 1440 */ 1441 u32 ccb_ba; /* BUS address of this CCB */ 1442 u_short tag; /* Tag for this transfer */ 1443 /* NO_TAG means no tag */ 1444 u_char target; 1445 u_char lun; 1446 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1447 SYM_QUEHEAD 1448 link_ccbq; /* Link to free/busy CCB queue */ 1449 u32 startp; /* Initial data pointer */ 1450 int ext_sg; /* Extreme data pointer, used */ 1451 int ext_ofs; /* to calculate the residual. */ 1452 u_char to_abort; /* Want this IO to be aborted */ 1453 }; 1454 1455 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1456 1457 /* 1458 * Host Control Block 1459 */ 1460 struct sym_hcb { 1461 struct mtx mtx; 1462 1463 /* 1464 * Global headers. 1465 * Due to poorness of addressing capabilities, earlier 1466 * chips (810, 815, 825) copy part of the data structures 1467 * (CCB, TCB and LCB) in fixed areas. 1468 */ 1469 #ifdef SYM_CONF_GENERIC_SUPPORT 1470 struct sym_ccbh ccb_head; 1471 struct sym_tcbh tcb_head; 1472 struct sym_lcbh lcb_head; 1473 #endif 1474 /* 1475 * Idle task and invalid task actions and 1476 * their bus addresses. 1477 */ 1478 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1479 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1480 1481 /* 1482 * Dummy lun table to protect us against target 1483 * returning bad lun number on reselection. 1484 */ 1485 u32 *badluntbl; /* Table physical address */ 1486 u32 badlun_sa; /* SCRIPT handler BUS address */ 1487 1488 /* 1489 * Bus address of this host control block. 1490 */ 1491 u32 hcb_ba; 1492 1493 /* 1494 * Bit 32-63 of the on-chip RAM bus address in LE format. 1495 * The START_RAM64 script loads the MMRS and MMWS from this 1496 * field. 1497 */ 1498 u32 scr_ram_seg; 1499 1500 /* 1501 * Chip and controller indentification. 1502 */ 1503 device_t device; 1504 1505 /* 1506 * Initial value of some IO register bits. 1507 * These values are assumed to have been set by BIOS, and may 1508 * be used to probe adapter implementation differences. 1509 */ 1510 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1511 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1512 sv_stest1; 1513 1514 /* 1515 * Actual initial value of IO register bits used by the 1516 * driver. They are loaded at initialisation according to 1517 * features that are to be enabled/disabled. 1518 */ 1519 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1520 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1521 1522 /* 1523 * Target data. 1524 */ 1525 #ifdef __amd64__ 1526 struct sym_tcb *target; 1527 #else 1528 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1529 #endif 1530 1531 /* 1532 * Target control block bus address array used by the SCRIPT 1533 * on reselection. 1534 */ 1535 u32 *targtbl; 1536 u32 targtbl_ba; 1537 1538 /* 1539 * CAM SIM information for this instance. 1540 */ 1541 struct cam_sim *sim; 1542 struct cam_path *path; 1543 1544 /* 1545 * Allocated hardware resources. 1546 */ 1547 struct resource *irq_res; 1548 struct resource *io_res; 1549 struct resource *mmio_res; 1550 struct resource *ram_res; 1551 int ram_id; 1552 void *intr; 1553 1554 /* 1555 * Bus stuff. 1556 * 1557 * My understanding of PCI is that all agents must share the 1558 * same addressing range and model. 1559 * But some hardware architecture guys provide complex and 1560 * brain-deaded stuff that makes shit. 1561 * This driver only support PCI compliant implementations and 1562 * deals with part of the BUS stuff complexity only to fit O/S 1563 * requirements. 1564 */ 1565 1566 /* 1567 * DMA stuff. 1568 */ 1569 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1570 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1571 /* 1572 * BUS addresses of the chip 1573 */ 1574 vm_offset_t mmio_ba; /* MMIO BUS address */ 1575 int mmio_ws; /* MMIO Window size */ 1576 1577 vm_offset_t ram_ba; /* RAM BUS address */ 1578 int ram_ws; /* RAM window size */ 1579 1580 /* 1581 * SCRIPTS virtual and physical bus addresses. 1582 * 'script' is loaded in the on-chip RAM if present. 1583 * 'scripth' stays in main memory for all chips except the 1584 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1585 */ 1586 u_char *scripta0; /* Copies of script and scripth */ 1587 u_char *scriptb0; /* Copies of script and scripth */ 1588 vm_offset_t scripta_ba; /* Actual script and scripth */ 1589 vm_offset_t scriptb_ba; /* bus addresses. */ 1590 vm_offset_t scriptb0_ba; 1591 u_short scripta_sz; /* Actual size of script A */ 1592 u_short scriptb_sz; /* Actual size of script B */ 1593 1594 /* 1595 * Bus addresses, setup and patch methods for 1596 * the selected firmware. 1597 */ 1598 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1599 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1600 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1601 void (*fw_patch)(hcb_p np); 1602 const char *fw_name; 1603 1604 /* 1605 * General controller parameters and configuration. 1606 */ 1607 u_short device_id; /* PCI device id */ 1608 u_char revision_id; /* PCI device revision id */ 1609 u_int features; /* Chip features map */ 1610 u_char myaddr; /* SCSI id of the adapter */ 1611 u_char maxburst; /* log base 2 of dwords burst */ 1612 u_char maxwide; /* Maximum transfer width */ 1613 u_char minsync; /* Min sync period factor (ST) */ 1614 u_char maxsync; /* Max sync period factor (ST) */ 1615 u_char maxoffs; /* Max scsi offset (ST) */ 1616 u_char minsync_dt; /* Min sync period factor (DT) */ 1617 u_char maxsync_dt; /* Max sync period factor (DT) */ 1618 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1619 u_char multiplier; /* Clock multiplier (1,2,4) */ 1620 u_char clock_divn; /* Number of clock divisors */ 1621 u32 clock_khz; /* SCSI clock frequency in KHz */ 1622 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1623 /* 1624 * Start queue management. 1625 * It is filled up by the host processor and accessed by the 1626 * SCRIPTS processor in order to start SCSI commands. 1627 */ 1628 volatile /* Prevent code optimizations */ 1629 u32 *squeue; /* Start queue virtual address */ 1630 u32 squeue_ba; /* Start queue BUS address */ 1631 u_short squeueput; /* Next free slot of the queue */ 1632 u_short actccbs; /* Number of allocated CCBs */ 1633 1634 /* 1635 * Command completion queue. 1636 * It is the same size as the start queue to avoid overflow. 1637 */ 1638 u_short dqueueget; /* Next position to scan */ 1639 volatile /* Prevent code optimizations */ 1640 u32 *dqueue; /* Completion (done) queue */ 1641 u32 dqueue_ba; /* Done queue BUS address */ 1642 1643 /* 1644 * Miscellaneous buffers accessed by the scripts-processor. 1645 * They shall be DWORD aligned, because they may be read or 1646 * written with a script command. 1647 */ 1648 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1649 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1650 u32 lastmsg; /* Last SCSI message sent */ 1651 u_char scratch; /* Scratch for SCSI receive */ 1652 1653 /* 1654 * Miscellaneous configuration and status parameters. 1655 */ 1656 u_char usrflags; /* Miscellaneous user flags */ 1657 u_char scsi_mode; /* Current SCSI BUS mode */ 1658 u_char verbose; /* Verbosity for this controller*/ 1659 u32 cache; /* Used for cache test at init. */ 1660 1661 /* 1662 * CCB lists and queue. 1663 */ 1664 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1665 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1666 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1667 1668 /* 1669 * During error handling and/or recovery, 1670 * active CCBs that are to be completed with 1671 * error or requeued are moved from the busy_ccbq 1672 * to the comp_ccbq prior to completion. 1673 */ 1674 SYM_QUEHEAD comp_ccbq; 1675 1676 /* 1677 * CAM CCB pending queue. 1678 */ 1679 SYM_QUEHEAD cam_ccbq; 1680 1681 /* 1682 * IMMEDIATE ARBITRATION (IARB) control. 1683 * 1684 * We keep track in 'last_cp' of the last CCB that has been 1685 * queued to the SCRIPTS processor and clear 'last_cp' when 1686 * this CCB completes. If last_cp is not zero at the moment 1687 * we queue a new CCB, we set a flag in 'last_cp' that is 1688 * used by the SCRIPTS as a hint for setting IARB. 1689 * We donnot set more than 'iarb_max' consecutive hints for 1690 * IARB in order to leave devices a chance to reselect. 1691 * By the way, any non zero value of 'iarb_max' is unfair. :) 1692 */ 1693 #ifdef SYM_CONF_IARB_SUPPORT 1694 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1695 u_short iarb_count; /* Actual # of these hints */ 1696 ccb_p last_cp; 1697 #endif 1698 1699 /* 1700 * Command abort handling. 1701 * We need to synchronize tightly with the SCRIPTS 1702 * processor in order to handle things correctly. 1703 */ 1704 u_char abrt_msg[4]; /* Message to send buffer */ 1705 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1706 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1707 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1708 }; 1709 1710 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1711 1712 /* 1713 * Return the name of the controller. 1714 */ 1715 static __inline const char *sym_name(hcb_p np) 1716 { 1717 return device_get_nameunit(np->device); 1718 } 1719 1720 /*--------------------------------------------------------------------------*/ 1721 /*------------------------------ FIRMWARES ---------------------------------*/ 1722 /*--------------------------------------------------------------------------*/ 1723 1724 /* 1725 * This stuff will be moved to a separate source file when 1726 * the driver will be broken into several source modules. 1727 */ 1728 1729 /* 1730 * Macros used for all firmwares. 1731 */ 1732 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1733 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1734 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1735 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1736 1737 #ifdef SYM_CONF_GENERIC_SUPPORT 1738 /* 1739 * Allocate firmware #1 script area. 1740 */ 1741 #define SYM_FWA_SCR sym_fw1a_scr 1742 #define SYM_FWB_SCR sym_fw1b_scr 1743 #include <dev/sym/sym_fw1.h> 1744 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1745 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1746 }; 1747 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1748 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1749 }; 1750 #undef SYM_FWA_SCR 1751 #undef SYM_FWB_SCR 1752 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1753 1754 /* 1755 * Allocate firmware #2 script area. 1756 */ 1757 #define SYM_FWA_SCR sym_fw2a_scr 1758 #define SYM_FWB_SCR sym_fw2b_scr 1759 #include <dev/sym/sym_fw2.h> 1760 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1761 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1762 }; 1763 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1764 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1765 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1766 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1767 }; 1768 #undef SYM_FWA_SCR 1769 #undef SYM_FWB_SCR 1770 1771 #undef SYM_GEN_A 1772 #undef SYM_GEN_B 1773 #undef PADDR_A 1774 #undef PADDR_B 1775 1776 #ifdef SYM_CONF_GENERIC_SUPPORT 1777 /* 1778 * Patch routine for firmware #1. 1779 */ 1780 static void 1781 sym_fw1_patch(hcb_p np) 1782 { 1783 struct sym_fw1a_scr *scripta0; 1784 struct sym_fw1b_scr *scriptb0; 1785 1786 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1787 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1788 1789 /* 1790 * Remove LED support if not needed. 1791 */ 1792 if (!(np->features & FE_LED0)) { 1793 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1794 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1795 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1796 } 1797 1798 #ifdef SYM_CONF_IARB_SUPPORT 1799 /* 1800 * If user does not want to use IMMEDIATE ARBITRATION 1801 * when we are reselected while attempting to arbitrate, 1802 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1803 */ 1804 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1805 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1806 #endif 1807 /* 1808 * Patch some data in SCRIPTS. 1809 * - start and done queue initial bus address. 1810 * - target bus address table bus address. 1811 */ 1812 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1813 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1814 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1815 } 1816 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1817 1818 /* 1819 * Patch routine for firmware #2. 1820 */ 1821 static void 1822 sym_fw2_patch(hcb_p np) 1823 { 1824 struct sym_fw2a_scr *scripta0; 1825 struct sym_fw2b_scr *scriptb0; 1826 1827 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1828 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1829 1830 /* 1831 * Remove LED support if not needed. 1832 */ 1833 if (!(np->features & FE_LED0)) { 1834 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1835 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1836 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1837 } 1838 1839 #ifdef SYM_CONF_IARB_SUPPORT 1840 /* 1841 * If user does not want to use IMMEDIATE ARBITRATION 1842 * when we are reselected while attempting to arbitrate, 1843 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1844 */ 1845 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1846 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1847 #endif 1848 /* 1849 * Patch some variable in SCRIPTS. 1850 * - start and done queue initial bus address. 1851 * - target bus address table bus address. 1852 */ 1853 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1854 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1855 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1856 1857 /* 1858 * Remove the load of SCNTL4 on reselection if not a C10. 1859 */ 1860 if (!(np->features & FE_C10)) { 1861 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1862 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1863 } 1864 1865 /* 1866 * Remove a couple of work-arounds specific to C1010 if 1867 * they are not desirable. See `sym_fw2.h' for more details. 1868 */ 1869 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1870 np->revision_id < 0x1 && 1871 np->pciclk_khz < 60000)) { 1872 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1873 scripta0->datao_phase[1] = cpu_to_scr(0); 1874 } 1875 if (!(np->device_id == PCI_ID_LSI53C1010 && 1876 /* np->revision_id < 0xff */ 1)) { 1877 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1878 scripta0->sel_done[1] = cpu_to_scr(0); 1879 } 1880 1881 /* 1882 * Patch some other variables in SCRIPTS. 1883 * These ones are loaded by the SCRIPTS processor. 1884 */ 1885 scriptb0->pm0_data_addr[0] = 1886 cpu_to_scr(np->scripta_ba + 1887 offsetof(struct sym_fw2a_scr, pm0_data)); 1888 scriptb0->pm1_data_addr[0] = 1889 cpu_to_scr(np->scripta_ba + 1890 offsetof(struct sym_fw2a_scr, pm1_data)); 1891 } 1892 1893 /* 1894 * Fill the data area in scripts. 1895 * To be done for all firmwares. 1896 */ 1897 static void 1898 sym_fw_fill_data (u32 *in, u32 *out) 1899 { 1900 int i; 1901 1902 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1903 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1904 *in++ = offsetof (struct sym_dsb, data[i]); 1905 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1906 *out++ = offsetof (struct sym_dsb, data[i]); 1907 } 1908 } 1909 1910 /* 1911 * Setup useful script bus addresses. 1912 * To be done for all firmwares. 1913 */ 1914 static void 1915 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1916 { 1917 u32 *pa; 1918 const u_short *po; 1919 int i; 1920 1921 /* 1922 * Build the bus address table for script A 1923 * from the script A offset table. 1924 */ 1925 po = (const u_short *) fw->a_ofs; 1926 pa = (u32 *) &np->fwa_bas; 1927 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1928 pa[i] = np->scripta_ba + po[i]; 1929 1930 /* 1931 * Same for script B. 1932 */ 1933 po = (const u_short *) fw->b_ofs; 1934 pa = (u32 *) &np->fwb_bas; 1935 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1936 pa[i] = np->scriptb_ba + po[i]; 1937 } 1938 1939 #ifdef SYM_CONF_GENERIC_SUPPORT 1940 /* 1941 * Setup routine for firmware #1. 1942 */ 1943 static void 1944 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1945 { 1946 struct sym_fw1a_scr *scripta0; 1947 1948 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1949 1950 /* 1951 * Fill variable parts in scripts. 1952 */ 1953 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1954 1955 /* 1956 * Setup bus addresses used from the C code.. 1957 */ 1958 sym_fw_setup_bus_addresses(np, fw); 1959 } 1960 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1961 1962 /* 1963 * Setup routine for firmware #2. 1964 */ 1965 static void 1966 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1967 { 1968 struct sym_fw2a_scr *scripta0; 1969 1970 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1971 1972 /* 1973 * Fill variable parts in scripts. 1974 */ 1975 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1976 1977 /* 1978 * Setup bus addresses used from the C code.. 1979 */ 1980 sym_fw_setup_bus_addresses(np, fw); 1981 } 1982 1983 /* 1984 * Allocate firmware descriptors. 1985 */ 1986 #ifdef SYM_CONF_GENERIC_SUPPORT 1987 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 1988 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1989 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 1990 1991 /* 1992 * Find the most appropriate firmware for a chip. 1993 */ 1994 static const struct sym_fw * 1995 sym_find_firmware(const struct sym_pci_chip *chip) 1996 { 1997 if (chip->features & FE_LDSTR) 1998 return &sym_fw2; 1999 #ifdef SYM_CONF_GENERIC_SUPPORT 2000 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2001 return &sym_fw1; 2002 #endif 2003 else 2004 return NULL; 2005 } 2006 2007 /* 2008 * Bind a script to physical addresses. 2009 */ 2010 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2011 { 2012 u32 opcode, new, old, tmp1, tmp2; 2013 u32 *end, *cur; 2014 int relocs; 2015 2016 cur = start; 2017 end = start + len/4; 2018 2019 while (cur < end) { 2020 2021 opcode = *cur; 2022 2023 /* 2024 * If we forget to change the length 2025 * in scripts, a field will be 2026 * padded with 0. This is an illegal 2027 * command. 2028 */ 2029 if (opcode == 0) { 2030 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2031 sym_name(np), (int) (cur-start)); 2032 MDELAY (10000); 2033 ++cur; 2034 continue; 2035 }; 2036 2037 /* 2038 * We use the bogus value 0xf00ff00f ;-) 2039 * to reserve data area in SCRIPTS. 2040 */ 2041 if (opcode == SCR_DATA_ZERO) { 2042 *cur++ = 0; 2043 continue; 2044 } 2045 2046 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2047 printf ("%d: <%x>\n", (int) (cur-start), 2048 (unsigned)opcode); 2049 2050 /* 2051 * We don't have to decode ALL commands 2052 */ 2053 switch (opcode >> 28) { 2054 case 0xf: 2055 /* 2056 * LOAD / STORE DSA relative, don't relocate. 2057 */ 2058 relocs = 0; 2059 break; 2060 case 0xe: 2061 /* 2062 * LOAD / STORE absolute. 2063 */ 2064 relocs = 1; 2065 break; 2066 case 0xc: 2067 /* 2068 * COPY has TWO arguments. 2069 */ 2070 relocs = 2; 2071 tmp1 = cur[1]; 2072 tmp2 = cur[2]; 2073 if ((tmp1 ^ tmp2) & 3) { 2074 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2075 sym_name(np), (int) (cur-start)); 2076 MDELAY (10000); 2077 } 2078 /* 2079 * If PREFETCH feature not enabled, remove 2080 * the NO FLUSH bit if present. 2081 */ 2082 if ((opcode & SCR_NO_FLUSH) && 2083 !(np->features & FE_PFEN)) { 2084 opcode = (opcode & ~SCR_NO_FLUSH); 2085 } 2086 break; 2087 case 0x0: 2088 /* 2089 * MOVE/CHMOV (absolute address) 2090 */ 2091 if (!(np->features & FE_WIDE)) 2092 opcode = (opcode | OPC_MOVE); 2093 relocs = 1; 2094 break; 2095 case 0x1: 2096 /* 2097 * MOVE/CHMOV (table indirect) 2098 */ 2099 if (!(np->features & FE_WIDE)) 2100 opcode = (opcode | OPC_MOVE); 2101 relocs = 0; 2102 break; 2103 case 0x8: 2104 /* 2105 * JUMP / CALL 2106 * dont't relocate if relative :-) 2107 */ 2108 if (opcode & 0x00800000) 2109 relocs = 0; 2110 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2111 relocs = 2; 2112 else 2113 relocs = 1; 2114 break; 2115 case 0x4: 2116 case 0x5: 2117 case 0x6: 2118 case 0x7: 2119 relocs = 1; 2120 break; 2121 default: 2122 relocs = 0; 2123 break; 2124 }; 2125 2126 /* 2127 * Scriptify:) the opcode. 2128 */ 2129 *cur++ = cpu_to_scr(opcode); 2130 2131 /* 2132 * If no relocation, assume 1 argument 2133 * and just scriptize:) it. 2134 */ 2135 if (!relocs) { 2136 *cur = cpu_to_scr(*cur); 2137 ++cur; 2138 continue; 2139 } 2140 2141 /* 2142 * Otherwise performs all needed relocations. 2143 */ 2144 while (relocs--) { 2145 old = *cur; 2146 2147 switch (old & RELOC_MASK) { 2148 case RELOC_REGISTER: 2149 new = (old & ~RELOC_MASK) + np->mmio_ba; 2150 break; 2151 case RELOC_LABEL_A: 2152 new = (old & ~RELOC_MASK) + np->scripta_ba; 2153 break; 2154 case RELOC_LABEL_B: 2155 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2156 break; 2157 case RELOC_SOFTC: 2158 new = (old & ~RELOC_MASK) + np->hcb_ba; 2159 break; 2160 case 0: 2161 /* 2162 * Don't relocate a 0 address. 2163 * They are mostly used for patched or 2164 * script self-modified areas. 2165 */ 2166 if (old == 0) { 2167 new = old; 2168 break; 2169 } 2170 /* fall through */ 2171 default: 2172 new = 0; 2173 panic("sym_fw_bind_script: " 2174 "weird relocation %x\n", old); 2175 break; 2176 } 2177 2178 *cur++ = cpu_to_scr(new); 2179 } 2180 }; 2181 } 2182 2183 /*---------------------------------------------------------------------------*/ 2184 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2185 /*---------------------------------------------------------------------------*/ 2186 2187 /* 2188 * Function prototypes. 2189 */ 2190 static void sym_save_initial_setting (hcb_p np); 2191 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2192 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2193 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2194 static void sym_chip_reset (hcb_p np); 2195 static void sym_soft_reset (hcb_p np); 2196 static void sym_start_reset (hcb_p np); 2197 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2198 static int sym_wakeup_done (hcb_p np); 2199 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2200 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2201 static void sym_init (hcb_p np, int reason); 2202 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2203 u_char *fakp); 2204 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2205 u_char div, u_char fak); 2206 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2207 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2208 u_char per, u_char wide, u_char div, u_char fak); 2209 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2210 u_char per, u_char wide, u_char div, u_char fak); 2211 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2212 static void sym_intr (void *arg); 2213 static void sym_poll (struct cam_sim *sim); 2214 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2215 static void sym_int_sto (hcb_p np); 2216 static void sym_int_udc (hcb_p np); 2217 static void sym_int_sbmc (hcb_p np); 2218 static void sym_int_par (hcb_p np, u_short sist); 2219 static void sym_int_ma (hcb_p np); 2220 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2221 int task); 2222 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2223 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2224 static void sym_sir_task_recovery (hcb_p np, int num); 2225 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2226 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2227 static int sym_compute_residual (hcb_p np, ccb_p cp); 2228 static int sym_show_msg (u_char * msg); 2229 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2230 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2231 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2232 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2233 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2234 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2235 static void sym_int_sir (hcb_p np); 2236 static void sym_free_ccb (hcb_p np, ccb_p cp); 2237 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2238 static ccb_p sym_alloc_ccb (hcb_p np); 2239 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2240 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2241 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2242 static int sym_snooptest (hcb_p np); 2243 static void sym_selectclock(hcb_p np, u_char scntl3); 2244 static void sym_getclock (hcb_p np, int mult); 2245 static int sym_getpciclock (hcb_p np); 2246 static void sym_complete_ok (hcb_p np, ccb_p cp); 2247 static void sym_complete_error (hcb_p np, ccb_p cp); 2248 static void sym_callout (void *arg); 2249 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2250 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2251 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2252 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2253 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2254 ccb_p cp); 2255 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2256 bus_dma_segment_t *psegs, int nsegs); 2257 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2258 bus_dma_segment_t *psegs, int nsegs); 2259 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2260 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2261 struct ccb_trans_settings *cts); 2262 static void sym_update_dflags(hcb_p np, u_char *flags, 2263 struct ccb_trans_settings *cts); 2264 2265 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2266 static int sym_pci_probe (device_t dev); 2267 static int sym_pci_attach (device_t dev); 2268 2269 static void sym_pci_free (hcb_p np); 2270 static int sym_cam_attach (hcb_p np); 2271 static void sym_cam_free (hcb_p np); 2272 2273 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2274 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2275 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2276 2277 /* 2278 * Print something which allows to retrieve the controller type, 2279 * unit, target, lun concerned by a kernel message. 2280 */ 2281 static void PRINT_TARGET (hcb_p np, int target) 2282 { 2283 printf ("%s:%d:", sym_name(np), target); 2284 } 2285 2286 static void PRINT_LUN(hcb_p np, int target, int lun) 2287 { 2288 printf ("%s:%d:%d:", sym_name(np), target, lun); 2289 } 2290 2291 static void PRINT_ADDR (ccb_p cp) 2292 { 2293 if (cp && cp->cam_ccb) 2294 xpt_print_path(cp->cam_ccb->ccb_h.path); 2295 } 2296 2297 /* 2298 * Take into account this ccb in the freeze count. 2299 */ 2300 static void sym_freeze_cam_ccb(union ccb *ccb) 2301 { 2302 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2303 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2304 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2305 xpt_freeze_devq(ccb->ccb_h.path, 1); 2306 } 2307 } 2308 } 2309 2310 /* 2311 * Set the status field of a CAM CCB. 2312 */ 2313 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2314 { 2315 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2316 ccb->ccb_h.status |= status; 2317 } 2318 2319 /* 2320 * Get the status field of a CAM CCB. 2321 */ 2322 static __inline int sym_get_cam_status(union ccb *ccb) 2323 { 2324 return ccb->ccb_h.status & CAM_STATUS_MASK; 2325 } 2326 2327 /* 2328 * Enqueue a CAM CCB. 2329 */ 2330 static void sym_enqueue_cam_ccb(ccb_p cp) 2331 { 2332 hcb_p np; 2333 union ccb *ccb; 2334 2335 ccb = cp->cam_ccb; 2336 np = (hcb_p) cp->arg; 2337 2338 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2339 ccb->ccb_h.status = CAM_REQ_INPROG; 2340 2341 callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout, 2342 (caddr_t) ccb); 2343 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2344 ccb->ccb_h.sym_hcb_ptr = np; 2345 2346 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2347 } 2348 2349 /* 2350 * Complete a pending CAM CCB. 2351 */ 2352 static void _sym_xpt_done(hcb_p np, union ccb *ccb) 2353 { 2354 SYM_LOCK_ASSERT(MA_OWNED); 2355 2356 KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0, 2357 ("%s: status=CAM_SIM_QUEUED", __func__)); 2358 2359 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2360 sym_freeze_cam_ccb(ccb); 2361 xpt_done(ccb); 2362 } 2363 2364 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2365 { 2366 SYM_LOCK_ASSERT(MA_OWNED); 2367 2368 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2369 callout_stop(&cp->ch); 2370 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2371 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2372 ccb->ccb_h.sym_hcb_ptr = NULL; 2373 } 2374 _sym_xpt_done(np, ccb); 2375 } 2376 2377 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2378 { 2379 SYM_LOCK_ASSERT(MA_OWNED); 2380 2381 sym_set_cam_status(ccb, cam_status); 2382 _sym_xpt_done(np, ccb); 2383 } 2384 2385 /* 2386 * SYMBIOS chip clock divisor table. 2387 * 2388 * Divisors are multiplied by 10,000,000 in order to make 2389 * calculations more simple. 2390 */ 2391 #define _5M 5000000 2392 static const u32 div_10M[] = 2393 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2394 2395 /* 2396 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2397 * 128 transfers. All chips support at least 16 transfers 2398 * bursts. The 825A, 875 and 895 chips support bursts of up 2399 * to 128 transfers and the 895A and 896 support bursts of up 2400 * to 64 transfers. All other chips support up to 16 2401 * transfers bursts. 2402 * 2403 * For PCI 32 bit data transfers each transfer is a DWORD. 2404 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2405 * 2406 * We use log base 2 (burst length) as internal code, with 2407 * value 0 meaning "burst disabled". 2408 */ 2409 2410 /* 2411 * Burst length from burst code. 2412 */ 2413 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2414 2415 /* 2416 * Burst code from io register bits. 2417 */ 2418 #define burst_code(dmode, ctest4, ctest5) \ 2419 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2420 2421 /* 2422 * Set initial io register bits from burst code. 2423 */ 2424 static __inline void sym_init_burst(hcb_p np, u_char bc) 2425 { 2426 np->rv_ctest4 &= ~0x80; 2427 np->rv_dmode &= ~(0x3 << 6); 2428 np->rv_ctest5 &= ~0x4; 2429 2430 if (!bc) { 2431 np->rv_ctest4 |= 0x80; 2432 } 2433 else { 2434 --bc; 2435 np->rv_dmode |= ((bc & 0x3) << 6); 2436 np->rv_ctest5 |= (bc & 0x4); 2437 } 2438 } 2439 2440 /* 2441 * Print out the list of targets that have some flag disabled by user. 2442 */ 2443 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2444 { 2445 int cnt; 2446 int i; 2447 2448 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2449 if (i == np->myaddr) 2450 continue; 2451 if (np->target[i].usrflags & mask) { 2452 if (!cnt++) 2453 printf("%s: %s disabled for targets", 2454 sym_name(np), msg); 2455 printf(" %d", i); 2456 } 2457 } 2458 if (cnt) 2459 printf(".\n"); 2460 } 2461 2462 /* 2463 * Save initial settings of some IO registers. 2464 * Assumed to have been set by BIOS. 2465 * We cannot reset the chip prior to reading the 2466 * IO registers, since informations will be lost. 2467 * Since the SCRIPTS processor may be running, this 2468 * is not safe on paper, but it seems to work quite 2469 * well. :) 2470 */ 2471 static void sym_save_initial_setting (hcb_p np) 2472 { 2473 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2474 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2475 np->sv_dmode = INB(nc_dmode) & 0xce; 2476 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2477 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2478 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2479 np->sv_gpcntl = INB(nc_gpcntl); 2480 np->sv_stest1 = INB(nc_stest1); 2481 np->sv_stest2 = INB(nc_stest2) & 0x20; 2482 np->sv_stest4 = INB(nc_stest4); 2483 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2484 np->sv_scntl4 = INB(nc_scntl4); 2485 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2486 } 2487 else 2488 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2489 } 2490 2491 /* 2492 * Prepare io register values used by sym_init() according 2493 * to selected and supported features. 2494 */ 2495 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2496 { 2497 u_char burst_max; 2498 u32 period; 2499 int i; 2500 2501 /* 2502 * Wide ? 2503 */ 2504 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2505 2506 /* 2507 * Get the frequency of the chip's clock. 2508 */ 2509 if (np->features & FE_QUAD) 2510 np->multiplier = 4; 2511 else if (np->features & FE_DBLR) 2512 np->multiplier = 2; 2513 else 2514 np->multiplier = 1; 2515 2516 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2517 np->clock_khz *= np->multiplier; 2518 2519 if (np->clock_khz != 40000) 2520 sym_getclock(np, np->multiplier); 2521 2522 /* 2523 * Divisor to be used for async (timer pre-scaler). 2524 */ 2525 i = np->clock_divn - 1; 2526 while (--i >= 0) { 2527 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2528 ++i; 2529 break; 2530 } 2531 } 2532 np->rv_scntl3 = i+1; 2533 2534 /* 2535 * The C1010 uses hardwired divisors for async. 2536 * So, we just throw away, the async. divisor.:-) 2537 */ 2538 if (np->features & FE_C10) 2539 np->rv_scntl3 = 0; 2540 2541 /* 2542 * Minimum synchronous period factor supported by the chip. 2543 * Btw, 'period' is in tenths of nanoseconds. 2544 */ 2545 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2546 if (period <= 250) np->minsync = 10; 2547 else if (period <= 303) np->minsync = 11; 2548 else if (period <= 500) np->minsync = 12; 2549 else np->minsync = (period + 40 - 1) / 40; 2550 2551 /* 2552 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2553 */ 2554 if (np->minsync < 25 && 2555 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2556 np->minsync = 25; 2557 else if (np->minsync < 12 && 2558 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2559 np->minsync = 12; 2560 2561 /* 2562 * Maximum synchronous period factor supported by the chip. 2563 */ 2564 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2565 np->maxsync = period > 2540 ? 254 : period / 10; 2566 2567 /* 2568 * If chip is a C1010, guess the sync limits in DT mode. 2569 */ 2570 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2571 if (np->clock_khz == 160000) { 2572 np->minsync_dt = 9; 2573 np->maxsync_dt = 50; 2574 np->maxoffs_dt = 62; 2575 } 2576 } 2577 2578 /* 2579 * 64 bit addressing (895A/896/1010) ? 2580 */ 2581 if (np->features & FE_DAC) 2582 #ifdef __LP64__ 2583 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2584 #else 2585 np->rv_ccntl1 |= (DDAC); 2586 #endif 2587 2588 /* 2589 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2590 */ 2591 if (np->features & FE_NOPM) 2592 np->rv_ccntl0 |= (ENPMJ); 2593 2594 /* 2595 * C1010 Errata. 2596 * In dual channel mode, contention occurs if internal cycles 2597 * are used. Disable internal cycles. 2598 */ 2599 if (np->device_id == PCI_ID_LSI53C1010 && 2600 np->revision_id < 0x2) 2601 np->rv_ccntl0 |= DILS; 2602 2603 /* 2604 * Select burst length (dwords) 2605 */ 2606 burst_max = SYM_SETUP_BURST_ORDER; 2607 if (burst_max == 255) 2608 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2609 np->sv_ctest5); 2610 if (burst_max > 7) 2611 burst_max = 7; 2612 if (burst_max > np->maxburst) 2613 burst_max = np->maxburst; 2614 2615 /* 2616 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2617 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2618 * based transactions on LOAD/STORE instructions. So we have 2619 * to prevent these chips from using such PCI transactions in 2620 * this driver. The generic ncr driver that does not use 2621 * LOAD/STORE instructions does not need this work-around. 2622 */ 2623 if ((np->device_id == PCI_ID_SYM53C810 && 2624 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2625 (np->device_id == PCI_ID_SYM53C860 && 2626 np->revision_id <= 0x1)) 2627 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2628 2629 /* 2630 * Select all supported special features. 2631 * If we are using on-board RAM for scripts, prefetch (PFEN) 2632 * does not help, but burst op fetch (BOF) does. 2633 * Disabling PFEN makes sure BOF will be used. 2634 */ 2635 if (np->features & FE_ERL) 2636 np->rv_dmode |= ERL; /* Enable Read Line */ 2637 if (np->features & FE_BOF) 2638 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2639 if (np->features & FE_ERMP) 2640 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2641 #if 1 2642 if ((np->features & FE_PFEN) && !np->ram_ba) 2643 #else 2644 if (np->features & FE_PFEN) 2645 #endif 2646 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2647 if (np->features & FE_CLSE) 2648 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2649 if (np->features & FE_WRIE) 2650 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2651 if (np->features & FE_DFS) 2652 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2653 2654 /* 2655 * Select some other 2656 */ 2657 if (SYM_SETUP_PCI_PARITY) 2658 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2659 if (SYM_SETUP_SCSI_PARITY) 2660 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2661 2662 /* 2663 * Get parity checking, host ID and verbose mode from NVRAM 2664 */ 2665 np->myaddr = 255; 2666 sym_nvram_setup_host (np, nvram); 2667 #ifdef __sparc64__ 2668 np->myaddr = OF_getscsinitid(np->device); 2669 #endif 2670 2671 /* 2672 * Get SCSI addr of host adapter (set by bios?). 2673 */ 2674 if (np->myaddr == 255) { 2675 np->myaddr = INB(nc_scid) & 0x07; 2676 if (!np->myaddr) 2677 np->myaddr = SYM_SETUP_HOST_ID; 2678 } 2679 2680 /* 2681 * Prepare initial io register bits for burst length 2682 */ 2683 sym_init_burst(np, burst_max); 2684 2685 /* 2686 * Set SCSI BUS mode. 2687 * - LVD capable chips (895/895A/896/1010) report the 2688 * current BUS mode through the STEST4 IO register. 2689 * - For previous generation chips (825/825A/875), 2690 * user has to tell us how to check against HVD, 2691 * since a 100% safe algorithm is not possible. 2692 */ 2693 np->scsi_mode = SMODE_SE; 2694 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2695 np->scsi_mode = (np->sv_stest4 & SMODE); 2696 else if (np->features & FE_DIFF) { 2697 if (SYM_SETUP_SCSI_DIFF == 1) { 2698 if (np->sv_scntl3) { 2699 if (np->sv_stest2 & 0x20) 2700 np->scsi_mode = SMODE_HVD; 2701 } 2702 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2703 if (!(INB(nc_gpreg) & 0x08)) 2704 np->scsi_mode = SMODE_HVD; 2705 } 2706 } 2707 else if (SYM_SETUP_SCSI_DIFF == 2) 2708 np->scsi_mode = SMODE_HVD; 2709 } 2710 if (np->scsi_mode == SMODE_HVD) 2711 np->rv_stest2 |= 0x20; 2712 2713 /* 2714 * Set LED support from SCRIPTS. 2715 * Ignore this feature for boards known to use a 2716 * specific GPIO wiring and for the 895A, 896 2717 * and 1010 that drive the LED directly. 2718 */ 2719 if ((SYM_SETUP_SCSI_LED || 2720 (nvram->type == SYM_SYMBIOS_NVRAM || 2721 (nvram->type == SYM_TEKRAM_NVRAM && 2722 np->device_id == PCI_ID_SYM53C895))) && 2723 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2724 np->features |= FE_LED0; 2725 2726 /* 2727 * Set irq mode. 2728 */ 2729 switch(SYM_SETUP_IRQ_MODE & 3) { 2730 case 2: 2731 np->rv_dcntl |= IRQM; 2732 break; 2733 case 1: 2734 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2735 break; 2736 default: 2737 break; 2738 } 2739 2740 /* 2741 * Configure targets according to driver setup. 2742 * If NVRAM present get targets setup from NVRAM. 2743 */ 2744 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2745 tcb_p tp = &np->target[i]; 2746 2747 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2748 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2749 tp->tinfo.user.period = np->minsync; 2750 if (np->features & FE_ULTRA3) 2751 tp->tinfo.user.period = np->minsync_dt; 2752 tp->tinfo.user.offset = np->maxoffs; 2753 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2754 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2755 tp->usrtags = SYM_SETUP_MAX_TAG; 2756 2757 sym_nvram_setup_target (np, i, nvram); 2758 2759 /* 2760 * For now, guess PPR/DT support from the period 2761 * and BUS width. 2762 */ 2763 if (np->features & FE_ULTRA3) { 2764 if (tp->tinfo.user.period <= 9 && 2765 tp->tinfo.user.width == BUS_16_BIT) { 2766 tp->tinfo.user.options |= PPR_OPT_DT; 2767 tp->tinfo.user.offset = np->maxoffs_dt; 2768 tp->tinfo.user.spi_version = 3; 2769 } 2770 } 2771 2772 if (!tp->usrtags) 2773 tp->usrflags &= ~SYM_TAGS_ENABLED; 2774 } 2775 2776 /* 2777 * Let user know about the settings. 2778 */ 2779 i = nvram->type; 2780 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2781 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2782 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2783 np->myaddr, 2784 (np->features & FE_ULTRA3) ? 80 : 2785 (np->features & FE_ULTRA2) ? 40 : 2786 (np->features & FE_ULTRA) ? 20 : 10, 2787 sym_scsi_bus_mode(np->scsi_mode), 2788 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2789 /* 2790 * Tell him more on demand. 2791 */ 2792 if (sym_verbose) { 2793 printf("%s: %s IRQ line driver%s\n", 2794 sym_name(np), 2795 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2796 np->ram_ba ? ", using on-chip SRAM" : ""); 2797 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2798 if (np->features & FE_NOPM) 2799 printf("%s: handling phase mismatch from SCRIPTS.\n", 2800 sym_name(np)); 2801 } 2802 /* 2803 * And still more. 2804 */ 2805 if (sym_verbose > 1) { 2806 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2807 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2808 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2809 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2810 2811 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2812 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2813 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2814 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2815 } 2816 /* 2817 * Let user be aware of targets that have some disable flags set. 2818 */ 2819 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2820 if (sym_verbose) 2821 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2822 "SCAN FOR LUNS"); 2823 2824 return 0; 2825 } 2826 2827 /* 2828 * Prepare the next negotiation message if needed. 2829 * 2830 * Fill in the part of message buffer that contains the 2831 * negotiation and the nego_status field of the CCB. 2832 * Returns the size of the message in bytes. 2833 */ 2834 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2835 { 2836 tcb_p tp = &np->target[cp->target]; 2837 int msglen = 0; 2838 2839 /* 2840 * Early C1010 chips need a work-around for DT 2841 * data transfer to work. 2842 */ 2843 if (!(np->features & FE_U3EN)) 2844 tp->tinfo.goal.options = 0; 2845 /* 2846 * negotiate using PPR ? 2847 */ 2848 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2849 nego = NS_PPR; 2850 /* 2851 * negotiate wide transfers ? 2852 */ 2853 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2854 nego = NS_WIDE; 2855 /* 2856 * negotiate synchronous transfers? 2857 */ 2858 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2859 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2860 nego = NS_SYNC; 2861 2862 switch (nego) { 2863 case NS_SYNC: 2864 msgptr[msglen++] = M_EXTENDED; 2865 msgptr[msglen++] = 3; 2866 msgptr[msglen++] = M_X_SYNC_REQ; 2867 msgptr[msglen++] = tp->tinfo.goal.period; 2868 msgptr[msglen++] = tp->tinfo.goal.offset; 2869 break; 2870 case NS_WIDE: 2871 msgptr[msglen++] = M_EXTENDED; 2872 msgptr[msglen++] = 2; 2873 msgptr[msglen++] = M_X_WIDE_REQ; 2874 msgptr[msglen++] = tp->tinfo.goal.width; 2875 break; 2876 case NS_PPR: 2877 msgptr[msglen++] = M_EXTENDED; 2878 msgptr[msglen++] = 6; 2879 msgptr[msglen++] = M_X_PPR_REQ; 2880 msgptr[msglen++] = tp->tinfo.goal.period; 2881 msgptr[msglen++] = 0; 2882 msgptr[msglen++] = tp->tinfo.goal.offset; 2883 msgptr[msglen++] = tp->tinfo.goal.width; 2884 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2885 break; 2886 }; 2887 2888 cp->nego_status = nego; 2889 2890 if (nego) { 2891 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2892 if (DEBUG_FLAGS & DEBUG_NEGO) { 2893 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2894 nego == NS_WIDE ? "wide msgout" : 2895 "ppr msgout", msgptr); 2896 }; 2897 }; 2898 2899 return msglen; 2900 } 2901 2902 /* 2903 * Insert a job into the start queue. 2904 */ 2905 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2906 { 2907 u_short qidx; 2908 2909 #ifdef SYM_CONF_IARB_SUPPORT 2910 /* 2911 * If the previously queued CCB is not yet done, 2912 * set the IARB hint. The SCRIPTS will go with IARB 2913 * for this job when starting the previous one. 2914 * We leave devices a chance to win arbitration by 2915 * not using more than 'iarb_max' consecutive 2916 * immediate arbitrations. 2917 */ 2918 if (np->last_cp && np->iarb_count < np->iarb_max) { 2919 np->last_cp->host_flags |= HF_HINT_IARB; 2920 ++np->iarb_count; 2921 } 2922 else 2923 np->iarb_count = 0; 2924 np->last_cp = cp; 2925 #endif 2926 2927 /* 2928 * Insert first the idle task and then our job. 2929 * The MB should ensure proper ordering. 2930 */ 2931 qidx = np->squeueput + 2; 2932 if (qidx >= MAX_QUEUE*2) qidx = 0; 2933 2934 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2935 MEMORY_BARRIER(); 2936 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2937 2938 np->squeueput = qidx; 2939 2940 if (DEBUG_FLAGS & DEBUG_QUEUE) 2941 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2942 2943 /* 2944 * Script processor may be waiting for reselect. 2945 * Wake it up. 2946 */ 2947 MEMORY_BARRIER(); 2948 OUTB (nc_istat, SIGP|np->istat_sem); 2949 } 2950 2951 /* 2952 * Soft reset the chip. 2953 * 2954 * Raising SRST when the chip is running may cause 2955 * problems on dual function chips (see below). 2956 * On the other hand, LVD devices need some delay 2957 * to settle and report actual BUS mode in STEST4. 2958 */ 2959 static void sym_chip_reset (hcb_p np) 2960 { 2961 OUTB (nc_istat, SRST); 2962 UDELAY (10); 2963 OUTB (nc_istat, 0); 2964 UDELAY(2000); /* For BUS MODE to settle */ 2965 } 2966 2967 /* 2968 * Soft reset the chip. 2969 * 2970 * Some 896 and 876 chip revisions may hang-up if we set 2971 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2972 * are running. 2973 * So, we need to abort the current operation prior to 2974 * soft resetting the chip. 2975 */ 2976 static void sym_soft_reset (hcb_p np) 2977 { 2978 u_char istat; 2979 int i; 2980 2981 OUTB (nc_istat, CABRT); 2982 for (i = 1000000 ; i ; --i) { 2983 istat = INB (nc_istat); 2984 if (istat & SIP) { 2985 INW (nc_sist); 2986 continue; 2987 } 2988 if (istat & DIP) { 2989 OUTB (nc_istat, 0); 2990 INB (nc_dstat); 2991 break; 2992 } 2993 } 2994 if (!i) 2995 printf("%s: unable to abort current chip operation.\n", 2996 sym_name(np)); 2997 sym_chip_reset (np); 2998 } 2999 3000 /* 3001 * Start reset process. 3002 * 3003 * The interrupt handler will reinitialize the chip. 3004 */ 3005 static void sym_start_reset(hcb_p np) 3006 { 3007 (void) sym_reset_scsi_bus(np, 1); 3008 } 3009 3010 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3011 { 3012 u32 term; 3013 int retv = 0; 3014 3015 sym_soft_reset(np); /* Soft reset the chip */ 3016 if (enab_int) 3017 OUTW (nc_sien, RST); 3018 /* 3019 * Enable Tolerant, reset IRQD if present and 3020 * properly set IRQ mode, prior to resetting the bus. 3021 */ 3022 OUTB (nc_stest3, TE); 3023 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3024 OUTB (nc_scntl1, CRST); 3025 UDELAY (200); 3026 3027 if (!SYM_SETUP_SCSI_BUS_CHECK) 3028 goto out; 3029 /* 3030 * Check for no terminators or SCSI bus shorts to ground. 3031 * Read SCSI data bus, data parity bits and control signals. 3032 * We are expecting RESET to be TRUE and other signals to be 3033 * FALSE. 3034 */ 3035 term = INB(nc_sstat0); 3036 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3037 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3038 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3039 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3040 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3041 3042 if (!(np->features & FE_WIDE)) 3043 term &= 0x3ffff; 3044 3045 if (term != (2<<7)) { 3046 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3047 sym_name(np)); 3048 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3049 "0x%lx, expecting 0x%lx\n", 3050 sym_name(np), 3051 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3052 (u_long)term, (u_long)(2<<7)); 3053 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3054 retv = 1; 3055 } 3056 out: 3057 OUTB (nc_scntl1, 0); 3058 /* MDELAY(100); */ 3059 return retv; 3060 } 3061 3062 /* 3063 * The chip may have completed jobs. Look at the DONE QUEUE. 3064 * 3065 * On architectures that may reorder LOAD/STORE operations, 3066 * a memory barrier may be needed after the reading of the 3067 * so-called `flag' and prior to dealing with the data. 3068 */ 3069 static int sym_wakeup_done (hcb_p np) 3070 { 3071 ccb_p cp; 3072 int i, n; 3073 u32 dsa; 3074 3075 SYM_LOCK_ASSERT(MA_OWNED); 3076 3077 n = 0; 3078 i = np->dqueueget; 3079 while (1) { 3080 dsa = scr_to_cpu(np->dqueue[i]); 3081 if (!dsa) 3082 break; 3083 np->dqueue[i] = 0; 3084 if ((i = i+2) >= MAX_QUEUE*2) 3085 i = 0; 3086 3087 cp = sym_ccb_from_dsa(np, dsa); 3088 if (cp) { 3089 MEMORY_BARRIER(); 3090 sym_complete_ok (np, cp); 3091 ++n; 3092 } 3093 else 3094 printf ("%s: bad DSA (%x) in done queue.\n", 3095 sym_name(np), (u_int) dsa); 3096 } 3097 np->dqueueget = i; 3098 3099 return n; 3100 } 3101 3102 /* 3103 * Complete all active CCBs with error. 3104 * Used on CHIP/SCSI RESET. 3105 */ 3106 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3107 { 3108 /* 3109 * Move all active CCBs to the COMP queue 3110 * and flush this queue. 3111 */ 3112 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3113 sym_que_init(&np->busy_ccbq); 3114 sym_flush_comp_queue(np, cam_status); 3115 } 3116 3117 /* 3118 * Start chip. 3119 * 3120 * 'reason' means: 3121 * 0: initialisation. 3122 * 1: SCSI BUS RESET delivered or received. 3123 * 2: SCSI BUS MODE changed. 3124 */ 3125 static void sym_init (hcb_p np, int reason) 3126 { 3127 int i; 3128 u32 phys; 3129 3130 SYM_LOCK_ASSERT(MA_OWNED); 3131 3132 /* 3133 * Reset chip if asked, otherwise just clear fifos. 3134 */ 3135 if (reason == 1) 3136 sym_soft_reset(np); 3137 else { 3138 OUTB (nc_stest3, TE|CSF); 3139 OUTONB (nc_ctest3, CLF); 3140 } 3141 3142 /* 3143 * Clear Start Queue 3144 */ 3145 phys = np->squeue_ba; 3146 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3147 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3148 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3149 } 3150 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3151 3152 /* 3153 * Start at first entry. 3154 */ 3155 np->squeueput = 0; 3156 3157 /* 3158 * Clear Done Queue 3159 */ 3160 phys = np->dqueue_ba; 3161 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3162 np->dqueue[i] = 0; 3163 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3164 } 3165 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3166 3167 /* 3168 * Start at first entry. 3169 */ 3170 np->dqueueget = 0; 3171 3172 /* 3173 * Install patches in scripts. 3174 * This also let point to first position the start 3175 * and done queue pointers used from SCRIPTS. 3176 */ 3177 np->fw_patch(np); 3178 3179 /* 3180 * Wakeup all pending jobs. 3181 */ 3182 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3183 3184 /* 3185 * Init chip. 3186 */ 3187 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3188 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3189 3190 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3191 /* full arb., ena parity, par->ATN */ 3192 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3193 3194 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3195 3196 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3197 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3198 OUTB (nc_istat , SIGP ); /* Signal Process */ 3199 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3200 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3201 3202 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3203 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3204 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3205 3206 /* Extended Sreq/Sack filtering not supported on the C10 */ 3207 if (np->features & FE_C10) 3208 OUTB (nc_stest2, np->rv_stest2); 3209 else 3210 OUTB (nc_stest2, EXT|np->rv_stest2); 3211 3212 OUTB (nc_stest3, TE); /* TolerANT enable */ 3213 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3214 3215 /* 3216 * For now, disable AIP generation on C1010-66. 3217 */ 3218 if (np->device_id == PCI_ID_LSI53C1010_2) 3219 OUTB (nc_aipcntl1, DISAIP); 3220 3221 /* 3222 * C10101 Errata. 3223 * Errant SGE's when in narrow. Write bits 4 & 5 of 3224 * STEST1 register to disable SGE. We probably should do 3225 * that from SCRIPTS for each selection/reselection, but 3226 * I just don't want. :) 3227 */ 3228 if (np->device_id == PCI_ID_LSI53C1010 && 3229 /* np->revision_id < 0xff */ 1) 3230 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3231 3232 /* 3233 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3234 * Disable overlapped arbitration for some dual function devices, 3235 * regardless revision id (kind of post-chip-design feature. ;-)) 3236 */ 3237 if (np->device_id == PCI_ID_SYM53C875) 3238 OUTB (nc_ctest0, (1<<5)); 3239 else if (np->device_id == PCI_ID_SYM53C896) 3240 np->rv_ccntl0 |= DPR; 3241 3242 /* 3243 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3244 * and/or hardware phase mismatch, since only such chips 3245 * seem to support those IO registers. 3246 */ 3247 if (np->features & (FE_DAC|FE_NOPM)) { 3248 OUTB (nc_ccntl0, np->rv_ccntl0); 3249 OUTB (nc_ccntl1, np->rv_ccntl1); 3250 } 3251 3252 /* 3253 * If phase mismatch handled by scripts (895A/896/1010), 3254 * set PM jump addresses. 3255 */ 3256 if (np->features & FE_NOPM) { 3257 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3258 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3259 } 3260 3261 /* 3262 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3263 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3264 */ 3265 if (np->features & FE_LED0) 3266 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3267 else if (np->features & FE_LEDC) 3268 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3269 3270 /* 3271 * enable ints 3272 */ 3273 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3274 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3275 3276 /* 3277 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3278 * Try to eat the spurious SBMC interrupt that may occur when 3279 * we reset the chip but not the SCSI BUS (at initialization). 3280 */ 3281 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3282 OUTONW (nc_sien, SBMC); 3283 if (reason == 0) { 3284 MDELAY(100); 3285 INW (nc_sist); 3286 } 3287 np->scsi_mode = INB (nc_stest4) & SMODE; 3288 } 3289 3290 /* 3291 * Fill in target structure. 3292 * Reinitialize usrsync. 3293 * Reinitialize usrwide. 3294 * Prepare sync negotiation according to actual SCSI bus mode. 3295 */ 3296 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3297 tcb_p tp = &np->target[i]; 3298 3299 tp->to_reset = 0; 3300 tp->head.sval = 0; 3301 tp->head.wval = np->rv_scntl3; 3302 tp->head.uval = 0; 3303 3304 tp->tinfo.current.period = 0; 3305 tp->tinfo.current.offset = 0; 3306 tp->tinfo.current.width = BUS_8_BIT; 3307 tp->tinfo.current.options = 0; 3308 } 3309 3310 /* 3311 * Download SCSI SCRIPTS to on-chip RAM if present, 3312 * and start script processor. 3313 */ 3314 if (np->ram_ba) { 3315 if (sym_verbose > 1) 3316 printf ("%s: Downloading SCSI SCRIPTS.\n", 3317 sym_name(np)); 3318 if (np->ram_ws == 8192) { 3319 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3320 OUTL (nc_mmws, np->scr_ram_seg); 3321 OUTL (nc_mmrs, np->scr_ram_seg); 3322 OUTL (nc_sfs, np->scr_ram_seg); 3323 phys = SCRIPTB_BA (np, start64); 3324 } 3325 else 3326 phys = SCRIPTA_BA (np, init); 3327 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3328 } 3329 else 3330 phys = SCRIPTA_BA (np, init); 3331 3332 np->istat_sem = 0; 3333 3334 OUTL (nc_dsa, np->hcb_ba); 3335 OUTL_DSP (phys); 3336 3337 /* 3338 * Notify the XPT about the RESET condition. 3339 */ 3340 if (reason != 0) 3341 xpt_async(AC_BUS_RESET, np->path, NULL); 3342 } 3343 3344 /* 3345 * Get clock factor and sync divisor for a given 3346 * synchronous factor period. 3347 */ 3348 static int 3349 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3350 { 3351 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3352 int div = np->clock_divn; /* Number of divisors supported */ 3353 u32 fak; /* Sync factor in sxfer */ 3354 u32 per; /* Period in tenths of ns */ 3355 u32 kpc; /* (per * clk) */ 3356 int ret; 3357 3358 /* 3359 * Compute the synchronous period in tenths of nano-seconds 3360 */ 3361 if (dt && sfac <= 9) per = 125; 3362 else if (sfac <= 10) per = 250; 3363 else if (sfac == 11) per = 303; 3364 else if (sfac == 12) per = 500; 3365 else per = 40 * sfac; 3366 ret = per; 3367 3368 kpc = per * clk; 3369 if (dt) 3370 kpc <<= 1; 3371 3372 /* 3373 * For earliest C10 revision 0, we cannot use extra 3374 * clocks for the setting of the SCSI clocking. 3375 * Note that this limits the lowest sync data transfer 3376 * to 5 Mega-transfers per second and may result in 3377 * using higher clock divisors. 3378 */ 3379 #if 1 3380 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3381 /* 3382 * Look for the lowest clock divisor that allows an 3383 * output speed not faster than the period. 3384 */ 3385 while (div > 0) { 3386 --div; 3387 if (kpc > (div_10M[div] << 2)) { 3388 ++div; 3389 break; 3390 } 3391 } 3392 fak = 0; /* No extra clocks */ 3393 if (div == np->clock_divn) { /* Are we too fast ? */ 3394 ret = -1; 3395 } 3396 *divp = div; 3397 *fakp = fak; 3398 return ret; 3399 } 3400 #endif 3401 3402 /* 3403 * Look for the greatest clock divisor that allows an 3404 * input speed faster than the period. 3405 */ 3406 while (div-- > 0) 3407 if (kpc >= (div_10M[div] << 2)) break; 3408 3409 /* 3410 * Calculate the lowest clock factor that allows an output 3411 * speed not faster than the period, and the max output speed. 3412 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3413 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3414 */ 3415 if (dt) { 3416 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3417 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3418 } 3419 else { 3420 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3421 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3422 } 3423 3424 /* 3425 * Check against our hardware limits, or bugs :). 3426 */ 3427 if (fak < 0) {fak = 0; ret = -1;} 3428 if (fak > 2) {fak = 2; ret = -1;} 3429 3430 /* 3431 * Compute and return sync parameters. 3432 */ 3433 *divp = div; 3434 *fakp = fak; 3435 3436 return ret; 3437 } 3438 3439 /* 3440 * Tell the SCSI layer about the new transfer parameters. 3441 */ 3442 static void 3443 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3444 { 3445 struct ccb_trans_settings cts; 3446 struct cam_path *path; 3447 int sts; 3448 tcb_p tp = &np->target[target]; 3449 3450 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3451 CAM_LUN_WILDCARD); 3452 if (sts != CAM_REQ_CMP) 3453 return; 3454 3455 bzero(&cts, sizeof(cts)); 3456 3457 #define cts__scsi (cts.proto_specific.scsi) 3458 #define cts__spi (cts.xport_specific.spi) 3459 3460 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3461 cts.protocol = PROTO_SCSI; 3462 cts.transport = XPORT_SPI; 3463 cts.protocol_version = tp->tinfo.current.scsi_version; 3464 cts.transport_version = tp->tinfo.current.spi_version; 3465 3466 cts__spi.valid = spi_valid; 3467 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3468 cts__spi.sync_period = tp->tinfo.current.period; 3469 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3470 cts__spi.sync_offset = tp->tinfo.current.offset; 3471 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3472 cts__spi.bus_width = tp->tinfo.current.width; 3473 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3474 cts__spi.ppr_options = tp->tinfo.current.options; 3475 #undef cts__spi 3476 #undef cts__scsi 3477 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3478 xpt_async(AC_TRANSFER_NEG, path, &cts); 3479 xpt_free_path(path); 3480 } 3481 3482 #define SYM_SPI_VALID_WDTR \ 3483 CTS_SPI_VALID_BUS_WIDTH | \ 3484 CTS_SPI_VALID_SYNC_RATE | \ 3485 CTS_SPI_VALID_SYNC_OFFSET 3486 #define SYM_SPI_VALID_SDTR \ 3487 CTS_SPI_VALID_SYNC_RATE | \ 3488 CTS_SPI_VALID_SYNC_OFFSET 3489 #define SYM_SPI_VALID_PPR \ 3490 CTS_SPI_VALID_PPR_OPTIONS | \ 3491 CTS_SPI_VALID_BUS_WIDTH | \ 3492 CTS_SPI_VALID_SYNC_RATE | \ 3493 CTS_SPI_VALID_SYNC_OFFSET 3494 3495 /* 3496 * We received a WDTR. 3497 * Let everything be aware of the changes. 3498 */ 3499 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3500 { 3501 tcb_p tp = &np->target[cp->target]; 3502 3503 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3504 3505 /* 3506 * Tell the SCSI layer about the new transfer parameters. 3507 */ 3508 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3509 tp->tinfo.current.offset = 0; 3510 tp->tinfo.current.period = 0; 3511 tp->tinfo.current.options = 0; 3512 3513 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3514 } 3515 3516 /* 3517 * We received a SDTR. 3518 * Let everything be aware of the changes. 3519 */ 3520 static void 3521 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3522 { 3523 tcb_p tp = &np->target[cp->target]; 3524 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3525 3526 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3527 3528 /* 3529 * Tell the SCSI layer about the new transfer parameters. 3530 */ 3531 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3532 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3533 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3534 3535 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3536 } 3537 3538 /* 3539 * We received a PPR. 3540 * Let everything be aware of the changes. 3541 */ 3542 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3543 u_char per, u_char wide, u_char div, u_char fak) 3544 { 3545 tcb_p tp = &np->target[cp->target]; 3546 3547 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3548 3549 /* 3550 * Tell the SCSI layer about the new transfer parameters. 3551 */ 3552 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3553 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3554 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3555 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3556 3557 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3558 } 3559 3560 /* 3561 * Switch trans mode for current job and it's target. 3562 */ 3563 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3564 u_char per, u_char wide, u_char div, u_char fak) 3565 { 3566 SYM_QUEHEAD *qp; 3567 union ccb *ccb; 3568 tcb_p tp; 3569 u_char target = INB (nc_sdid) & 0x0f; 3570 u_char sval, wval, uval; 3571 3572 assert (cp); 3573 if (!cp) return; 3574 ccb = cp->cam_ccb; 3575 assert (ccb); 3576 if (!ccb) return; 3577 assert (target == (cp->target & 0xf)); 3578 tp = &np->target[target]; 3579 3580 sval = tp->head.sval; 3581 wval = tp->head.wval; 3582 uval = tp->head.uval; 3583 3584 #if 0 3585 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3586 sval, wval, uval, np->rv_scntl3); 3587 #endif 3588 /* 3589 * Set the offset. 3590 */ 3591 if (!(np->features & FE_C10)) 3592 sval = (sval & ~0x1f) | ofs; 3593 else 3594 sval = (sval & ~0x3f) | ofs; 3595 3596 /* 3597 * Set the sync divisor and extra clock factor. 3598 */ 3599 if (ofs != 0) { 3600 wval = (wval & ~0x70) | ((div+1) << 4); 3601 if (!(np->features & FE_C10)) 3602 sval = (sval & ~0xe0) | (fak << 5); 3603 else { 3604 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3605 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3606 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3607 } 3608 } 3609 3610 /* 3611 * Set the bus width. 3612 */ 3613 wval = wval & ~EWS; 3614 if (wide != 0) 3615 wval |= EWS; 3616 3617 /* 3618 * Set misc. ultra enable bits. 3619 */ 3620 if (np->features & FE_C10) { 3621 uval = uval & ~(U3EN|AIPCKEN); 3622 if (dt) { 3623 assert(np->features & FE_U3EN); 3624 uval |= U3EN; 3625 } 3626 } 3627 else { 3628 wval = wval & ~ULTRA; 3629 if (per <= 12) wval |= ULTRA; 3630 } 3631 3632 /* 3633 * Stop there if sync parameters are unchanged. 3634 */ 3635 if (tp->head.sval == sval && 3636 tp->head.wval == wval && 3637 tp->head.uval == uval) 3638 return; 3639 tp->head.sval = sval; 3640 tp->head.wval = wval; 3641 tp->head.uval = uval; 3642 3643 /* 3644 * Disable extended Sreq/Sack filtering if per < 50. 3645 * Not supported on the C1010. 3646 */ 3647 if (per < 50 && !(np->features & FE_C10)) 3648 OUTOFFB (nc_stest2, EXT); 3649 3650 /* 3651 * set actual value and sync_status 3652 */ 3653 OUTB (nc_sxfer, tp->head.sval); 3654 OUTB (nc_scntl3, tp->head.wval); 3655 3656 if (np->features & FE_C10) { 3657 OUTB (nc_scntl4, tp->head.uval); 3658 } 3659 3660 /* 3661 * patch ALL busy ccbs of this target. 3662 */ 3663 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3664 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3665 if (cp->target != target) 3666 continue; 3667 cp->phys.select.sel_scntl3 = tp->head.wval; 3668 cp->phys.select.sel_sxfer = tp->head.sval; 3669 if (np->features & FE_C10) { 3670 cp->phys.select.sel_scntl4 = tp->head.uval; 3671 } 3672 } 3673 } 3674 3675 /* 3676 * log message for real hard errors 3677 * 3678 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3679 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3680 * 3681 * exception register: 3682 * ds: dstat 3683 * si: sist 3684 * 3685 * SCSI bus lines: 3686 * so: control lines as driven by chip. 3687 * si: control lines as seen by chip. 3688 * sd: scsi data lines as seen by chip. 3689 * 3690 * wide/fastmode: 3691 * sxfer: (see the manual) 3692 * scntl3: (see the manual) 3693 * 3694 * current script command: 3695 * dsp: script address (relative to start of script). 3696 * dbc: first word of script command. 3697 * 3698 * First 24 register of the chip: 3699 * r0..rf 3700 */ 3701 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3702 { 3703 u32 dsp; 3704 int script_ofs; 3705 int script_size; 3706 char *script_name; 3707 u_char *script_base; 3708 int i; 3709 3710 dsp = INL (nc_dsp); 3711 3712 if (dsp > np->scripta_ba && 3713 dsp <= np->scripta_ba + np->scripta_sz) { 3714 script_ofs = dsp - np->scripta_ba; 3715 script_size = np->scripta_sz; 3716 script_base = (u_char *) np->scripta0; 3717 script_name = "scripta"; 3718 } 3719 else if (np->scriptb_ba < dsp && 3720 dsp <= np->scriptb_ba + np->scriptb_sz) { 3721 script_ofs = dsp - np->scriptb_ba; 3722 script_size = np->scriptb_sz; 3723 script_base = (u_char *) np->scriptb0; 3724 script_name = "scriptb"; 3725 } else { 3726 script_ofs = dsp; 3727 script_size = 0; 3728 script_base = 0; 3729 script_name = "mem"; 3730 } 3731 3732 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3733 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3734 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3735 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3736 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3737 (unsigned)INL (nc_dbc)); 3738 3739 if (((script_ofs & 3) == 0) && 3740 (unsigned)script_ofs < script_size) { 3741 printf ("%s: script cmd = %08x\n", sym_name(np), 3742 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3743 } 3744 3745 printf ("%s: regdump:", sym_name(np)); 3746 for (i=0; i<24;i++) 3747 printf (" %02x", (unsigned)INB_OFF(i)); 3748 printf (".\n"); 3749 3750 /* 3751 * PCI BUS error, read the PCI ststus register. 3752 */ 3753 if (dstat & (MDPE|BF)) { 3754 u_short pci_sts; 3755 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3756 if (pci_sts & 0xf900) { 3757 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3758 printf("%s: PCI STATUS = 0x%04x\n", 3759 sym_name(np), pci_sts & 0xf900); 3760 } 3761 } 3762 } 3763 3764 /* 3765 * chip interrupt handler 3766 * 3767 * In normal situations, interrupt conditions occur one at 3768 * a time. But when something bad happens on the SCSI BUS, 3769 * the chip may raise several interrupt flags before 3770 * stopping and interrupting the CPU. The additionnal 3771 * interrupt flags are stacked in some extra registers 3772 * after the SIP and/or DIP flag has been raised in the 3773 * ISTAT. After the CPU has read the interrupt condition 3774 * flag from SIST or DSTAT, the chip unstacks the other 3775 * interrupt flags and sets the corresponding bits in 3776 * SIST or DSTAT. Since the chip starts stacking once the 3777 * SIP or DIP flag is set, there is a small window of time 3778 * where the stacking does not occur. 3779 * 3780 * Typically, multiple interrupt conditions may happen in 3781 * the following situations: 3782 * 3783 * - SCSI parity error + Phase mismatch (PAR|MA) 3784 * When a parity error is detected in input phase 3785 * and the device switches to msg-in phase inside a 3786 * block MOV. 3787 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3788 * When a stupid device does not want to handle the 3789 * recovery of an SCSI parity error. 3790 * - Some combinations of STO, PAR, UDC, ... 3791 * When using non compliant SCSI stuff, when user is 3792 * doing non compliant hot tampering on the BUS, when 3793 * something really bad happens to a device, etc ... 3794 * 3795 * The heuristic suggested by SYMBIOS to handle 3796 * multiple interrupts is to try unstacking all 3797 * interrupts conditions and to handle them on some 3798 * priority based on error severity. 3799 * This will work when the unstacking has been 3800 * successful, but we cannot be 100 % sure of that, 3801 * since the CPU may have been faster to unstack than 3802 * the chip is able to stack. Hmmm ... But it seems that 3803 * such a situation is very unlikely to happen. 3804 * 3805 * If this happen, for example STO caught by the CPU 3806 * then UDC happenning before the CPU have restarted 3807 * the SCRIPTS, the driver may wrongly complete the 3808 * same command on UDC, since the SCRIPTS didn't restart 3809 * and the DSA still points to the same command. 3810 * We avoid this situation by setting the DSA to an 3811 * invalid value when the CCB is completed and before 3812 * restarting the SCRIPTS. 3813 * 3814 * Another issue is that we need some section of our 3815 * recovery procedures to be somehow uninterruptible but 3816 * the SCRIPTS processor does not provides such a 3817 * feature. For this reason, we handle recovery preferently 3818 * from the C code and check against some SCRIPTS critical 3819 * sections from the C code. 3820 * 3821 * Hopefully, the interrupt handling of the driver is now 3822 * able to resist to weird BUS error conditions, but donnot 3823 * ask me for any guarantee that it will never fail. :-) 3824 * Use at your own decision and risk. 3825 */ 3826 static void sym_intr1 (hcb_p np) 3827 { 3828 u_char istat, istatc; 3829 u_char dstat; 3830 u_short sist; 3831 3832 SYM_LOCK_ASSERT(MA_OWNED); 3833 3834 /* 3835 * interrupt on the fly ? 3836 * 3837 * A `dummy read' is needed to ensure that the 3838 * clear of the INTF flag reaches the device 3839 * before the scanning of the DONE queue. 3840 */ 3841 istat = INB (nc_istat); 3842 if (istat & INTF) { 3843 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3844 istat = INB (nc_istat); /* DUMMY READ */ 3845 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3846 (void)sym_wakeup_done (np); 3847 }; 3848 3849 if (!(istat & (SIP|DIP))) 3850 return; 3851 3852 #if 0 /* We should never get this one */ 3853 if (istat & CABRT) 3854 OUTB (nc_istat, CABRT); 3855 #endif 3856 3857 /* 3858 * PAR and MA interrupts may occur at the same time, 3859 * and we need to know of both in order to handle 3860 * this situation properly. We try to unstack SCSI 3861 * interrupts for that reason. BTW, I dislike a LOT 3862 * such a loop inside the interrupt routine. 3863 * Even if DMA interrupt stacking is very unlikely to 3864 * happen, we also try unstacking these ones, since 3865 * this has no performance impact. 3866 */ 3867 sist = 0; 3868 dstat = 0; 3869 istatc = istat; 3870 do { 3871 if (istatc & SIP) 3872 sist |= INW (nc_sist); 3873 if (istatc & DIP) 3874 dstat |= INB (nc_dstat); 3875 istatc = INB (nc_istat); 3876 istat |= istatc; 3877 } while (istatc & (SIP|DIP)); 3878 3879 if (DEBUG_FLAGS & DEBUG_TINY) 3880 printf ("<%d|%x:%x|%x:%x>", 3881 (int)INB(nc_scr0), 3882 dstat,sist, 3883 (unsigned)INL(nc_dsp), 3884 (unsigned)INL(nc_dbc)); 3885 /* 3886 * On paper, a memory barrier may be needed here. 3887 * And since we are paranoid ... :) 3888 */ 3889 MEMORY_BARRIER(); 3890 3891 /* 3892 * First, interrupts we want to service cleanly. 3893 * 3894 * Phase mismatch (MA) is the most frequent interrupt 3895 * for chip earlier than the 896 and so we have to service 3896 * it as quickly as possible. 3897 * A SCSI parity error (PAR) may be combined with a phase 3898 * mismatch condition (MA). 3899 * Programmed interrupts (SIR) are used to call the C code 3900 * from SCRIPTS. 3901 * The single step interrupt (SSI) is not used in this 3902 * driver. 3903 */ 3904 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3905 !(dstat & (MDPE|BF|ABRT|IID))) { 3906 if (sist & PAR) sym_int_par (np, sist); 3907 else if (sist & MA) sym_int_ma (np); 3908 else if (dstat & SIR) sym_int_sir (np); 3909 else if (dstat & SSI) OUTONB_STD (); 3910 else goto unknown_int; 3911 return; 3912 }; 3913 3914 /* 3915 * Now, interrupts that donnot happen in normal 3916 * situations and that we may need to recover from. 3917 * 3918 * On SCSI RESET (RST), we reset everything. 3919 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3920 * active CCBs with RESET status, prepare all devices 3921 * for negotiating again and restart the SCRIPTS. 3922 * On STO and UDC, we complete the CCB with the corres- 3923 * ponding status and restart the SCRIPTS. 3924 */ 3925 if (sist & RST) { 3926 xpt_print_path(np->path); 3927 printf("SCSI BUS reset detected.\n"); 3928 sym_init (np, 1); 3929 return; 3930 }; 3931 3932 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3933 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3934 3935 if (!(sist & (GEN|HTH|SGE)) && 3936 !(dstat & (MDPE|BF|ABRT|IID))) { 3937 if (sist & SBMC) sym_int_sbmc (np); 3938 else if (sist & STO) sym_int_sto (np); 3939 else if (sist & UDC) sym_int_udc (np); 3940 else goto unknown_int; 3941 return; 3942 }; 3943 3944 /* 3945 * Now, interrupts we are not able to recover cleanly. 3946 * 3947 * Log message for hard errors. 3948 * Reset everything. 3949 */ 3950 3951 sym_log_hard_error(np, sist, dstat); 3952 3953 if ((sist & (GEN|HTH|SGE)) || 3954 (dstat & (MDPE|BF|ABRT|IID))) { 3955 sym_start_reset(np); 3956 return; 3957 }; 3958 3959 unknown_int: 3960 /* 3961 * We just miss the cause of the interrupt. :( 3962 * Print a message. The timeout will do the real work. 3963 */ 3964 printf( "%s: unknown interrupt(s) ignored, " 3965 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3966 sym_name(np), istat, dstat, sist); 3967 } 3968 3969 static void sym_intr(void *arg) 3970 { 3971 hcb_p np = arg; 3972 3973 SYM_LOCK(); 3974 3975 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3976 sym_intr1((hcb_p) arg); 3977 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3978 3979 SYM_UNLOCK(); 3980 } 3981 3982 static void sym_poll(struct cam_sim *sim) 3983 { 3984 sym_intr1(cam_sim_softc(sim)); 3985 } 3986 3987 /* 3988 * generic recovery from scsi interrupt 3989 * 3990 * The doc says that when the chip gets an SCSI interrupt, 3991 * it tries to stop in an orderly fashion, by completing 3992 * an instruction fetch that had started or by flushing 3993 * the DMA fifo for a write to memory that was executing. 3994 * Such a fashion is not enough to know if the instruction 3995 * that was just before the current DSP value has been 3996 * executed or not. 3997 * 3998 * There are some small SCRIPTS sections that deal with 3999 * the start queue and the done queue that may break any 4000 * assomption from the C code if we are interrupted 4001 * inside, so we reset if this happens. Btw, since these 4002 * SCRIPTS sections are executed while the SCRIPTS hasn't 4003 * started SCSI operations, it is very unlikely to happen. 4004 * 4005 * All the driver data structures are supposed to be 4006 * allocated from the same 4 GB memory window, so there 4007 * is a 1 to 1 relationship between DSA and driver data 4008 * structures. Since we are careful :) to invalidate the 4009 * DSA when we complete a command or when the SCRIPTS 4010 * pushes a DSA into a queue, we can trust it when it 4011 * points to a CCB. 4012 */ 4013 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4014 { 4015 u32 dsp = INL (nc_dsp); 4016 u32 dsa = INL (nc_dsa); 4017 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4018 4019 /* 4020 * If we haven't been interrupted inside the SCRIPTS 4021 * critical pathes, we can safely restart the SCRIPTS 4022 * and trust the DSA value if it matches a CCB. 4023 */ 4024 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4025 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4026 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4027 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4028 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4029 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4030 (!(dsp > SCRIPTA_BA (np, done) && 4031 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4032 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4033 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4034 /* 4035 * If we have a CCB, let the SCRIPTS call us back for 4036 * the handling of the error with SCRATCHA filled with 4037 * STARTPOS. This way, we will be able to freeze the 4038 * device queue and requeue awaiting IOs. 4039 */ 4040 if (cp) { 4041 cp->host_status = hsts; 4042 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4043 } 4044 /* 4045 * Otherwise just restart the SCRIPTS. 4046 */ 4047 else { 4048 OUTL (nc_dsa, 0xffffff); 4049 OUTL_DSP (SCRIPTA_BA (np, start)); 4050 } 4051 } 4052 else 4053 goto reset_all; 4054 4055 return; 4056 4057 reset_all: 4058 sym_start_reset(np); 4059 } 4060 4061 /* 4062 * chip exception handler for selection timeout 4063 */ 4064 static void sym_int_sto (hcb_p np) 4065 { 4066 u32 dsp = INL (nc_dsp); 4067 4068 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4069 4070 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4071 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4072 else 4073 sym_start_reset(np); 4074 } 4075 4076 /* 4077 * chip exception handler for unexpected disconnect 4078 */ 4079 static void sym_int_udc (hcb_p np) 4080 { 4081 printf ("%s: unexpected disconnect\n", sym_name(np)); 4082 sym_recover_scsi_int(np, HS_UNEXPECTED); 4083 } 4084 4085 /* 4086 * chip exception handler for SCSI bus mode change 4087 * 4088 * spi2-r12 11.2.3 says a transceiver mode change must 4089 * generate a reset event and a device that detects a reset 4090 * event shall initiate a hard reset. It says also that a 4091 * device that detects a mode change shall set data transfer 4092 * mode to eight bit asynchronous, etc... 4093 * So, just reinitializing all except chip should be enough. 4094 */ 4095 static void sym_int_sbmc (hcb_p np) 4096 { 4097 u_char scsi_mode = INB (nc_stest4) & SMODE; 4098 4099 /* 4100 * Notify user. 4101 */ 4102 xpt_print_path(np->path); 4103 printf("SCSI BUS mode change from %s to %s.\n", 4104 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4105 4106 /* 4107 * Should suspend command processing for a few seconds and 4108 * reinitialize all except the chip. 4109 */ 4110 sym_init (np, 2); 4111 } 4112 4113 /* 4114 * chip exception handler for SCSI parity error. 4115 * 4116 * When the chip detects a SCSI parity error and is 4117 * currently executing a (CH)MOV instruction, it does 4118 * not interrupt immediately, but tries to finish the 4119 * transfer of the current scatter entry before 4120 * interrupting. The following situations may occur: 4121 * 4122 * - The complete scatter entry has been transferred 4123 * without the device having changed phase. 4124 * The chip will then interrupt with the DSP pointing 4125 * to the instruction that follows the MOV. 4126 * 4127 * - A phase mismatch occurs before the MOV finished 4128 * and phase errors are to be handled by the C code. 4129 * The chip will then interrupt with both PAR and MA 4130 * conditions set. 4131 * 4132 * - A phase mismatch occurs before the MOV finished and 4133 * phase errors are to be handled by SCRIPTS. 4134 * The chip will load the DSP with the phase mismatch 4135 * JUMP address and interrupt the host processor. 4136 */ 4137 static void sym_int_par (hcb_p np, u_short sist) 4138 { 4139 u_char hsts = INB (HS_PRT); 4140 u32 dsp = INL (nc_dsp); 4141 u32 dbc = INL (nc_dbc); 4142 u32 dsa = INL (nc_dsa); 4143 u_char sbcl = INB (nc_sbcl); 4144 u_char cmd = dbc >> 24; 4145 int phase = cmd & 7; 4146 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4147 4148 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4149 sym_name(np), hsts, dbc, sbcl); 4150 4151 /* 4152 * Check that the chip is connected to the SCSI BUS. 4153 */ 4154 if (!(INB (nc_scntl1) & ISCON)) { 4155 sym_recover_scsi_int(np, HS_UNEXPECTED); 4156 return; 4157 } 4158 4159 /* 4160 * If the nexus is not clearly identified, reset the bus. 4161 * We will try to do better later. 4162 */ 4163 if (!cp) 4164 goto reset_all; 4165 4166 /* 4167 * Check instruction was a MOV, direction was INPUT and 4168 * ATN is asserted. 4169 */ 4170 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4171 goto reset_all; 4172 4173 /* 4174 * Keep track of the parity error. 4175 */ 4176 OUTONB (HF_PRT, HF_EXT_ERR); 4177 cp->xerr_status |= XE_PARITY_ERR; 4178 4179 /* 4180 * Prepare the message to send to the device. 4181 */ 4182 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4183 4184 /* 4185 * If the old phase was DATA IN phase, we have to deal with 4186 * the 3 situations described above. 4187 * For other input phases (MSG IN and STATUS), the device 4188 * must resend the whole thing that failed parity checking 4189 * or signal error. So, jumping to dispatcher should be OK. 4190 */ 4191 if (phase == 1 || phase == 5) { 4192 /* Phase mismatch handled by SCRIPTS */ 4193 if (dsp == SCRIPTB_BA (np, pm_handle)) 4194 OUTL_DSP (dsp); 4195 /* Phase mismatch handled by the C code */ 4196 else if (sist & MA) 4197 sym_int_ma (np); 4198 /* No phase mismatch occurred */ 4199 else { 4200 OUTL (nc_temp, dsp); 4201 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4202 } 4203 } 4204 else 4205 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4206 return; 4207 4208 reset_all: 4209 sym_start_reset(np); 4210 } 4211 4212 /* 4213 * chip exception handler for phase errors. 4214 * 4215 * We have to construct a new transfer descriptor, 4216 * to transfer the rest of the current block. 4217 */ 4218 static void sym_int_ma (hcb_p np) 4219 { 4220 u32 dbc; 4221 u32 rest; 4222 u32 dsp; 4223 u32 dsa; 4224 u32 nxtdsp; 4225 u32 *vdsp; 4226 u32 oadr, olen; 4227 u32 *tblp; 4228 u32 newcmd; 4229 u_int delta; 4230 u_char cmd; 4231 u_char hflags, hflags0; 4232 struct sym_pmc *pm; 4233 ccb_p cp; 4234 4235 dsp = INL (nc_dsp); 4236 dbc = INL (nc_dbc); 4237 dsa = INL (nc_dsa); 4238 4239 cmd = dbc >> 24; 4240 rest = dbc & 0xffffff; 4241 delta = 0; 4242 4243 /* 4244 * locate matching cp if any. 4245 */ 4246 cp = sym_ccb_from_dsa(np, dsa); 4247 4248 /* 4249 * Donnot take into account dma fifo and various buffers in 4250 * INPUT phase since the chip flushes everything before 4251 * raising the MA interrupt for interrupted INPUT phases. 4252 * For DATA IN phase, we will check for the SWIDE later. 4253 */ 4254 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4255 u_char ss0, ss2; 4256 4257 if (np->features & FE_DFBC) 4258 delta = INW (nc_dfbc); 4259 else { 4260 u32 dfifo; 4261 4262 /* 4263 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4264 */ 4265 dfifo = INL(nc_dfifo); 4266 4267 /* 4268 * Calculate remaining bytes in DMA fifo. 4269 * (CTEST5 = dfifo >> 16) 4270 */ 4271 if (dfifo & (DFS << 16)) 4272 delta = ((((dfifo >> 8) & 0x300) | 4273 (dfifo & 0xff)) - rest) & 0x3ff; 4274 else 4275 delta = ((dfifo & 0xff) - rest) & 0x7f; 4276 } 4277 4278 /* 4279 * The data in the dma fifo has not been transferred to 4280 * the target -> add the amount to the rest 4281 * and clear the data. 4282 * Check the sstat2 register in case of wide transfer. 4283 */ 4284 rest += delta; 4285 ss0 = INB (nc_sstat0); 4286 if (ss0 & OLF) rest++; 4287 if (!(np->features & FE_C10)) 4288 if (ss0 & ORF) rest++; 4289 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4290 ss2 = INB (nc_sstat2); 4291 if (ss2 & OLF1) rest++; 4292 if (!(np->features & FE_C10)) 4293 if (ss2 & ORF1) rest++; 4294 }; 4295 4296 /* 4297 * Clear fifos. 4298 */ 4299 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4300 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4301 } 4302 4303 /* 4304 * log the information 4305 */ 4306 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4307 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4308 (unsigned) rest, (unsigned) delta); 4309 4310 /* 4311 * try to find the interrupted script command, 4312 * and the address at which to continue. 4313 */ 4314 vdsp = 0; 4315 nxtdsp = 0; 4316 if (dsp > np->scripta_ba && 4317 dsp <= np->scripta_ba + np->scripta_sz) { 4318 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4319 nxtdsp = dsp; 4320 } 4321 else if (dsp > np->scriptb_ba && 4322 dsp <= np->scriptb_ba + np->scriptb_sz) { 4323 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4324 nxtdsp = dsp; 4325 } 4326 4327 /* 4328 * log the information 4329 */ 4330 if (DEBUG_FLAGS & DEBUG_PHASE) { 4331 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4332 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4333 }; 4334 4335 if (!vdsp) { 4336 printf ("%s: interrupted SCRIPT address not found.\n", 4337 sym_name (np)); 4338 goto reset_all; 4339 } 4340 4341 if (!cp) { 4342 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4343 sym_name (np)); 4344 goto reset_all; 4345 } 4346 4347 /* 4348 * get old startaddress and old length. 4349 */ 4350 oadr = scr_to_cpu(vdsp[1]); 4351 4352 if (cmd & 0x10) { /* Table indirect */ 4353 tblp = (u32 *) ((char*) &cp->phys + oadr); 4354 olen = scr_to_cpu(tblp[0]); 4355 oadr = scr_to_cpu(tblp[1]); 4356 } else { 4357 tblp = (u32 *) 0; 4358 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4359 }; 4360 4361 if (DEBUG_FLAGS & DEBUG_PHASE) { 4362 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4363 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4364 tblp, 4365 (unsigned) olen, 4366 (unsigned) oadr); 4367 }; 4368 4369 /* 4370 * check cmd against assumed interrupted script command. 4371 * If dt data phase, the MOVE instruction hasn't bit 4 of 4372 * the phase. 4373 */ 4374 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4375 PRINT_ADDR(cp); 4376 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4377 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4378 4379 goto reset_all; 4380 }; 4381 4382 /* 4383 * if old phase not dataphase, leave here. 4384 */ 4385 if (cmd & 2) { 4386 PRINT_ADDR(cp); 4387 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4388 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4389 (unsigned)oadr, (unsigned)rest); 4390 goto unexpected_phase; 4391 }; 4392 4393 /* 4394 * Choose the correct PM save area. 4395 * 4396 * Look at the PM_SAVE SCRIPT if you want to understand 4397 * this stuff. The equivalent code is implemented in 4398 * SCRIPTS for the 895A, 896 and 1010 that are able to 4399 * handle PM from the SCRIPTS processor. 4400 */ 4401 hflags0 = INB (HF_PRT); 4402 hflags = hflags0; 4403 4404 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4405 if (hflags & HF_IN_PM0) 4406 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4407 else if (hflags & HF_IN_PM1) 4408 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4409 4410 if (hflags & HF_DP_SAVED) 4411 hflags ^= HF_ACT_PM; 4412 } 4413 4414 if (!(hflags & HF_ACT_PM)) { 4415 pm = &cp->phys.pm0; 4416 newcmd = SCRIPTA_BA (np, pm0_data); 4417 } 4418 else { 4419 pm = &cp->phys.pm1; 4420 newcmd = SCRIPTA_BA (np, pm1_data); 4421 } 4422 4423 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4424 if (hflags != hflags0) 4425 OUTB (HF_PRT, hflags); 4426 4427 /* 4428 * fillin the phase mismatch context 4429 */ 4430 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4431 pm->sg.size = cpu_to_scr(rest); 4432 pm->ret = cpu_to_scr(nxtdsp); 4433 4434 /* 4435 * If we have a SWIDE, 4436 * - prepare the address to write the SWIDE from SCRIPTS, 4437 * - compute the SCRIPTS address to restart from, 4438 * - move current data pointer context by one byte. 4439 */ 4440 nxtdsp = SCRIPTA_BA (np, dispatch); 4441 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4442 (INB (nc_scntl2) & WSR)) { 4443 u32 tmp; 4444 4445 /* 4446 * Set up the table indirect for the MOVE 4447 * of the residual byte and adjust the data 4448 * pointer context. 4449 */ 4450 tmp = scr_to_cpu(pm->sg.addr); 4451 cp->phys.wresid.addr = cpu_to_scr(tmp); 4452 pm->sg.addr = cpu_to_scr(tmp + 1); 4453 tmp = scr_to_cpu(pm->sg.size); 4454 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4455 pm->sg.size = cpu_to_scr(tmp - 1); 4456 4457 /* 4458 * If only the residual byte is to be moved, 4459 * no PM context is needed. 4460 */ 4461 if ((tmp&0xffffff) == 1) 4462 newcmd = pm->ret; 4463 4464 /* 4465 * Prepare the address of SCRIPTS that will 4466 * move the residual byte to memory. 4467 */ 4468 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4469 } 4470 4471 if (DEBUG_FLAGS & DEBUG_PHASE) { 4472 PRINT_ADDR(cp); 4473 printf ("PM %x %x %x / %x %x %x.\n", 4474 hflags0, hflags, newcmd, 4475 (unsigned)scr_to_cpu(pm->sg.addr), 4476 (unsigned)scr_to_cpu(pm->sg.size), 4477 (unsigned)scr_to_cpu(pm->ret)); 4478 } 4479 4480 /* 4481 * Restart the SCRIPTS processor. 4482 */ 4483 OUTL (nc_temp, newcmd); 4484 OUTL_DSP (nxtdsp); 4485 return; 4486 4487 /* 4488 * Unexpected phase changes that occurs when the current phase 4489 * is not a DATA IN or DATA OUT phase are due to error conditions. 4490 * Such event may only happen when the SCRIPTS is using a 4491 * multibyte SCSI MOVE. 4492 * 4493 * Phase change Some possible cause 4494 * 4495 * COMMAND --> MSG IN SCSI parity error detected by target. 4496 * COMMAND --> STATUS Bad command or refused by target. 4497 * MSG OUT --> MSG IN Message rejected by target. 4498 * MSG OUT --> COMMAND Bogus target that discards extended 4499 * negotiation messages. 4500 * 4501 * The code below does not care of the new phase and so 4502 * trusts the target. Why to annoy it ? 4503 * If the interrupted phase is COMMAND phase, we restart at 4504 * dispatcher. 4505 * If a target does not get all the messages after selection, 4506 * the code assumes blindly that the target discards extended 4507 * messages and clears the negotiation status. 4508 * If the target does not want all our response to negotiation, 4509 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4510 * bloat for such a should_not_happen situation). 4511 * In all other situation, we reset the BUS. 4512 * Are these assumptions reasonnable ? (Wait and see ...) 4513 */ 4514 unexpected_phase: 4515 dsp -= 8; 4516 nxtdsp = 0; 4517 4518 switch (cmd & 7) { 4519 case 2: /* COMMAND phase */ 4520 nxtdsp = SCRIPTA_BA (np, dispatch); 4521 break; 4522 #if 0 4523 case 3: /* STATUS phase */ 4524 nxtdsp = SCRIPTA_BA (np, dispatch); 4525 break; 4526 #endif 4527 case 6: /* MSG OUT phase */ 4528 /* 4529 * If the device may want to use untagged when we want 4530 * tagged, we prepare an IDENTIFY without disc. granted, 4531 * since we will not be able to handle reselect. 4532 * Otherwise, we just don't care. 4533 */ 4534 if (dsp == SCRIPTA_BA (np, send_ident)) { 4535 if (cp->tag != NO_TAG && olen - rest <= 3) { 4536 cp->host_status = HS_BUSY; 4537 np->msgout[0] = M_IDENTIFY | cp->lun; 4538 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4539 } 4540 else 4541 nxtdsp = SCRIPTB_BA (np, ident_break); 4542 } 4543 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4544 dsp == SCRIPTB_BA (np, send_sdtr) || 4545 dsp == SCRIPTB_BA (np, send_ppr)) { 4546 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4547 } 4548 break; 4549 #if 0 4550 case 7: /* MSG IN phase */ 4551 nxtdsp = SCRIPTA_BA (np, clrack); 4552 break; 4553 #endif 4554 } 4555 4556 if (nxtdsp) { 4557 OUTL_DSP (nxtdsp); 4558 return; 4559 } 4560 4561 reset_all: 4562 sym_start_reset(np); 4563 } 4564 4565 /* 4566 * Dequeue from the START queue all CCBs that match 4567 * a given target/lun/task condition (-1 means all), 4568 * and move them from the BUSY queue to the COMP queue 4569 * with CAM_REQUEUE_REQ status condition. 4570 * This function is used during error handling/recovery. 4571 * It is called with SCRIPTS not running. 4572 */ 4573 static int 4574 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4575 { 4576 int j; 4577 ccb_p cp; 4578 4579 /* 4580 * Make sure the starting index is within range. 4581 */ 4582 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4583 4584 /* 4585 * Walk until end of START queue and dequeue every job 4586 * that matches the target/lun/task condition. 4587 */ 4588 j = i; 4589 while (i != np->squeueput) { 4590 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4591 assert(cp); 4592 #ifdef SYM_CONF_IARB_SUPPORT 4593 /* Forget hints for IARB, they may be no longer relevant */ 4594 cp->host_flags &= ~HF_HINT_IARB; 4595 #endif 4596 if ((target == -1 || cp->target == target) && 4597 (lun == -1 || cp->lun == lun) && 4598 (task == -1 || cp->tag == task)) { 4599 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4600 sym_remque(&cp->link_ccbq); 4601 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4602 } 4603 else { 4604 if (i != j) 4605 np->squeue[j] = np->squeue[i]; 4606 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4607 } 4608 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4609 } 4610 if (i != j) /* Copy back the idle task if needed */ 4611 np->squeue[j] = np->squeue[i]; 4612 np->squeueput = j; /* Update our current start queue pointer */ 4613 4614 return (i - j) / 2; 4615 } 4616 4617 /* 4618 * Complete all CCBs queued to the COMP queue. 4619 * 4620 * These CCBs are assumed: 4621 * - Not to be referenced either by devices or 4622 * SCRIPTS-related queues and datas. 4623 * - To have to be completed with an error condition 4624 * or requeued. 4625 * 4626 * The device queue freeze count is incremented 4627 * for each CCB that does not prevent this. 4628 * This function is called when all CCBs involved 4629 * in error handling/recovery have been reaped. 4630 */ 4631 static void 4632 sym_flush_comp_queue(hcb_p np, int cam_status) 4633 { 4634 SYM_QUEHEAD *qp; 4635 ccb_p cp; 4636 4637 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4638 union ccb *ccb; 4639 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4640 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4641 /* Leave quiet CCBs waiting for resources */ 4642 if (cp->host_status == HS_WAIT) 4643 continue; 4644 ccb = cp->cam_ccb; 4645 if (cam_status) 4646 sym_set_cam_status(ccb, cam_status); 4647 sym_freeze_cam_ccb(ccb); 4648 sym_xpt_done(np, ccb, cp); 4649 sym_free_ccb(np, cp); 4650 } 4651 } 4652 4653 /* 4654 * chip handler for bad SCSI status condition 4655 * 4656 * In case of bad SCSI status, we unqueue all the tasks 4657 * currently queued to the controller but not yet started 4658 * and then restart the SCRIPTS processor immediately. 4659 * 4660 * QUEUE FULL and BUSY conditions are handled the same way. 4661 * Basically all the not yet started tasks are requeued in 4662 * device queue and the queue is frozen until a completion. 4663 * 4664 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4665 * the CCB of the failed command to prepare a REQUEST SENSE 4666 * SCSI command and queue it to the controller queue. 4667 * 4668 * SCRATCHA is assumed to have been loaded with STARTPOS 4669 * before the SCRIPTS called the C code. 4670 */ 4671 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4672 { 4673 tcb_p tp = &np->target[cp->target]; 4674 u32 startp; 4675 u_char s_status = cp->ssss_status; 4676 u_char h_flags = cp->host_flags; 4677 int msglen; 4678 int nego; 4679 int i; 4680 4681 SYM_LOCK_ASSERT(MA_OWNED); 4682 4683 /* 4684 * Compute the index of the next job to start from SCRIPTS. 4685 */ 4686 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4687 4688 /* 4689 * The last CCB queued used for IARB hint may be 4690 * no longer relevant. Forget it. 4691 */ 4692 #ifdef SYM_CONF_IARB_SUPPORT 4693 if (np->last_cp) 4694 np->last_cp = NULL; 4695 #endif 4696 4697 /* 4698 * Now deal with the SCSI status. 4699 */ 4700 switch(s_status) { 4701 case S_BUSY: 4702 case S_QUEUE_FULL: 4703 if (sym_verbose >= 2) { 4704 PRINT_ADDR(cp); 4705 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4706 } 4707 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4708 sym_complete_error (np, cp); 4709 break; 4710 case S_TERMINATED: 4711 case S_CHECK_COND: 4712 /* 4713 * If we get an SCSI error when requesting sense, give up. 4714 */ 4715 if (h_flags & HF_SENSE) { 4716 sym_complete_error (np, cp); 4717 break; 4718 } 4719 4720 /* 4721 * Dequeue all queued CCBs for that device not yet started, 4722 * and restart the SCRIPTS processor immediately. 4723 */ 4724 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4725 OUTL_DSP (SCRIPTA_BA (np, start)); 4726 4727 /* 4728 * Save some info of the actual IO. 4729 * Compute the data residual. 4730 */ 4731 cp->sv_scsi_status = cp->ssss_status; 4732 cp->sv_xerr_status = cp->xerr_status; 4733 cp->sv_resid = sym_compute_residual(np, cp); 4734 4735 /* 4736 * Prepare all needed data structures for 4737 * requesting sense data. 4738 */ 4739 4740 /* 4741 * identify message 4742 */ 4743 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4744 msglen = 1; 4745 4746 /* 4747 * If we are currently using anything different from 4748 * async. 8 bit data transfers with that target, 4749 * start a negotiation, since the device may want 4750 * to report us a UNIT ATTENTION condition due to 4751 * a cause we currently ignore, and we donnot want 4752 * to be stuck with WIDE and/or SYNC data transfer. 4753 * 4754 * cp->nego_status is filled by sym_prepare_nego(). 4755 */ 4756 cp->nego_status = 0; 4757 nego = 0; 4758 if (tp->tinfo.current.options & PPR_OPT_MASK) 4759 nego = NS_PPR; 4760 else if (tp->tinfo.current.width != BUS_8_BIT) 4761 nego = NS_WIDE; 4762 else if (tp->tinfo.current.offset != 0) 4763 nego = NS_SYNC; 4764 if (nego) 4765 msglen += 4766 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4767 /* 4768 * Message table indirect structure. 4769 */ 4770 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4771 cp->phys.smsg.size = cpu_to_scr(msglen); 4772 4773 /* 4774 * sense command 4775 */ 4776 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4777 cp->phys.cmd.size = cpu_to_scr(6); 4778 4779 /* 4780 * patch requested size into sense command 4781 */ 4782 cp->sensecmd[0] = 0x03; 4783 cp->sensecmd[1] = cp->lun << 5; 4784 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4785 cp->sensecmd[1] = 0; 4786 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4787 cp->data_len = SYM_SNS_BBUF_LEN; 4788 4789 /* 4790 * sense data 4791 */ 4792 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4793 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4794 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4795 4796 /* 4797 * requeue the command. 4798 */ 4799 startp = SCRIPTB_BA (np, sdata_in); 4800 4801 cp->phys.head.savep = cpu_to_scr(startp); 4802 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4803 cp->phys.head.lastp = cpu_to_scr(startp); 4804 cp->startp = cpu_to_scr(startp); 4805 4806 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4807 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4808 cp->ssss_status = S_ILLEGAL; 4809 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4810 cp->xerr_status = 0; 4811 cp->extra_bytes = 0; 4812 4813 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4814 4815 /* 4816 * Requeue the command. 4817 */ 4818 sym_put_start_queue(np, cp); 4819 4820 /* 4821 * Give back to upper layer everything we have dequeued. 4822 */ 4823 sym_flush_comp_queue(np, 0); 4824 break; 4825 } 4826 } 4827 4828 /* 4829 * After a device has accepted some management message 4830 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4831 * a device signals a UNIT ATTENTION condition, some 4832 * tasks are thrown away by the device. We are required 4833 * to reflect that on our tasks list since the device 4834 * will never complete these tasks. 4835 * 4836 * This function move from the BUSY queue to the COMP 4837 * queue all disconnected CCBs for a given target that 4838 * match the following criteria: 4839 * - lun=-1 means any logical UNIT otherwise a given one. 4840 * - task=-1 means any task, otherwise a given one. 4841 */ 4842 static int 4843 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4844 { 4845 SYM_QUEHEAD qtmp, *qp; 4846 int i = 0; 4847 ccb_p cp; 4848 4849 /* 4850 * Move the entire BUSY queue to our temporary queue. 4851 */ 4852 sym_que_init(&qtmp); 4853 sym_que_splice(&np->busy_ccbq, &qtmp); 4854 sym_que_init(&np->busy_ccbq); 4855 4856 /* 4857 * Put all CCBs that matches our criteria into 4858 * the COMP queue and put back other ones into 4859 * the BUSY queue. 4860 */ 4861 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4862 union ccb *ccb; 4863 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4864 ccb = cp->cam_ccb; 4865 if (cp->host_status != HS_DISCONNECT || 4866 cp->target != target || 4867 (lun != -1 && cp->lun != lun) || 4868 (task != -1 && 4869 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4870 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4871 continue; 4872 } 4873 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4874 4875 /* Preserve the software timeout condition */ 4876 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4877 sym_set_cam_status(ccb, cam_status); 4878 ++i; 4879 #if 0 4880 printf("XXXX TASK @%p CLEARED\n", cp); 4881 #endif 4882 } 4883 return i; 4884 } 4885 4886 /* 4887 * chip handler for TASKS recovery 4888 * 4889 * We cannot safely abort a command, while the SCRIPTS 4890 * processor is running, since we just would be in race 4891 * with it. 4892 * 4893 * As long as we have tasks to abort, we keep the SEM 4894 * bit set in the ISTAT. When this bit is set, the 4895 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4896 * each time it enters the scheduler. 4897 * 4898 * If we have to reset a target, clear tasks of a unit, 4899 * or to perform the abort of a disconnected job, we 4900 * restart the SCRIPTS for selecting the target. Once 4901 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4902 * If it loses arbitration, the SCRIPTS will interrupt again 4903 * the next time it will enter its scheduler, and so on ... 4904 * 4905 * On SIR_TARGET_SELECTED, we scan for the more 4906 * appropriate thing to do: 4907 * 4908 * - If nothing, we just sent a M_ABORT message to the 4909 * target to get rid of the useless SCSI bus ownership. 4910 * According to the specs, no tasks shall be affected. 4911 * - If the target is to be reset, we send it a M_RESET 4912 * message. 4913 * - If a logical UNIT is to be cleared , we send the 4914 * IDENTIFY(lun) + M_ABORT. 4915 * - If an untagged task is to be aborted, we send the 4916 * IDENTIFY(lun) + M_ABORT. 4917 * - If a tagged task is to be aborted, we send the 4918 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4919 * 4920 * Once our 'kiss of death' :) message has been accepted 4921 * by the target, the SCRIPTS interrupts again 4922 * (SIR_ABORT_SENT). On this interrupt, we complete 4923 * all the CCBs that should have been aborted by the 4924 * target according to our message. 4925 */ 4926 static void sym_sir_task_recovery(hcb_p np, int num) 4927 { 4928 SYM_QUEHEAD *qp; 4929 ccb_p cp; 4930 tcb_p tp; 4931 int target=-1, lun=-1, task; 4932 int i, k; 4933 4934 switch(num) { 4935 /* 4936 * The SCRIPTS processor stopped before starting 4937 * the next command in order to allow us to perform 4938 * some task recovery. 4939 */ 4940 case SIR_SCRIPT_STOPPED: 4941 /* 4942 * Do we have any target to reset or unit to clear ? 4943 */ 4944 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4945 tp = &np->target[i]; 4946 if (tp->to_reset || 4947 (tp->lun0p && tp->lun0p->to_clear)) { 4948 target = i; 4949 break; 4950 } 4951 if (!tp->lunmp) 4952 continue; 4953 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4954 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4955 target = i; 4956 break; 4957 } 4958 } 4959 if (target != -1) 4960 break; 4961 } 4962 4963 /* 4964 * If not, walk the busy queue for any 4965 * disconnected CCB to be aborted. 4966 */ 4967 if (target == -1) { 4968 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4969 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4970 if (cp->host_status != HS_DISCONNECT) 4971 continue; 4972 if (cp->to_abort) { 4973 target = cp->target; 4974 break; 4975 } 4976 } 4977 } 4978 4979 /* 4980 * If some target is to be selected, 4981 * prepare and start the selection. 4982 */ 4983 if (target != -1) { 4984 tp = &np->target[target]; 4985 np->abrt_sel.sel_id = target; 4986 np->abrt_sel.sel_scntl3 = tp->head.wval; 4987 np->abrt_sel.sel_sxfer = tp->head.sval; 4988 OUTL(nc_dsa, np->hcb_ba); 4989 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 4990 return; 4991 } 4992 4993 /* 4994 * Now look for a CCB to abort that haven't started yet. 4995 * Btw, the SCRIPTS processor is still stopped, so 4996 * we are not in race. 4997 */ 4998 i = 0; 4999 cp = NULL; 5000 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5001 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5002 if (cp->host_status != HS_BUSY && 5003 cp->host_status != HS_NEGOTIATE) 5004 continue; 5005 if (!cp->to_abort) 5006 continue; 5007 #ifdef SYM_CONF_IARB_SUPPORT 5008 /* 5009 * If we are using IMMEDIATE ARBITRATION, we donnot 5010 * want to cancel the last queued CCB, since the 5011 * SCRIPTS may have anticipated the selection. 5012 */ 5013 if (cp == np->last_cp) { 5014 cp->to_abort = 0; 5015 continue; 5016 } 5017 #endif 5018 i = 1; /* Means we have found some */ 5019 break; 5020 } 5021 if (!i) { 5022 /* 5023 * We are done, so we donnot need 5024 * to synchronize with the SCRIPTS anylonger. 5025 * Remove the SEM flag from the ISTAT. 5026 */ 5027 np->istat_sem = 0; 5028 OUTB (nc_istat, SIGP); 5029 break; 5030 } 5031 /* 5032 * Compute index of next position in the start 5033 * queue the SCRIPTS intends to start and dequeue 5034 * all CCBs for that device that haven't been started. 5035 */ 5036 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5037 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5038 5039 /* 5040 * Make sure at least our IO to abort has been dequeued. 5041 */ 5042 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5043 5044 /* 5045 * Keep track in cam status of the reason of the abort. 5046 */ 5047 if (cp->to_abort == 2) 5048 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5049 else 5050 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5051 5052 /* 5053 * Complete with error everything that we have dequeued. 5054 */ 5055 sym_flush_comp_queue(np, 0); 5056 break; 5057 /* 5058 * The SCRIPTS processor has selected a target 5059 * we may have some manual recovery to perform for. 5060 */ 5061 case SIR_TARGET_SELECTED: 5062 target = (INB (nc_sdid) & 0xf); 5063 tp = &np->target[target]; 5064 5065 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5066 5067 /* 5068 * If the target is to be reset, prepare a 5069 * M_RESET message and clear the to_reset flag 5070 * since we donnot expect this operation to fail. 5071 */ 5072 if (tp->to_reset) { 5073 np->abrt_msg[0] = M_RESET; 5074 np->abrt_tbl.size = 1; 5075 tp->to_reset = 0; 5076 break; 5077 } 5078 5079 /* 5080 * Otherwise, look for some logical unit to be cleared. 5081 */ 5082 if (tp->lun0p && tp->lun0p->to_clear) 5083 lun = 0; 5084 else if (tp->lunmp) { 5085 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5086 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5087 lun = k; 5088 break; 5089 } 5090 } 5091 } 5092 5093 /* 5094 * If a logical unit is to be cleared, prepare 5095 * an IDENTIFY(lun) + ABORT MESSAGE. 5096 */ 5097 if (lun != -1) { 5098 lcb_p lp = sym_lp(np, tp, lun); 5099 lp->to_clear = 0; /* We donnot expect to fail here */ 5100 np->abrt_msg[0] = M_IDENTIFY | lun; 5101 np->abrt_msg[1] = M_ABORT; 5102 np->abrt_tbl.size = 2; 5103 break; 5104 } 5105 5106 /* 5107 * Otherwise, look for some disconnected job to 5108 * abort for this target. 5109 */ 5110 i = 0; 5111 cp = NULL; 5112 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5113 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5114 if (cp->host_status != HS_DISCONNECT) 5115 continue; 5116 if (cp->target != target) 5117 continue; 5118 if (!cp->to_abort) 5119 continue; 5120 i = 1; /* Means we have some */ 5121 break; 5122 } 5123 5124 /* 5125 * If we have none, probably since the device has 5126 * completed the command before we won abitration, 5127 * send a M_ABORT message without IDENTIFY. 5128 * According to the specs, the device must just 5129 * disconnect the BUS and not abort any task. 5130 */ 5131 if (!i) { 5132 np->abrt_msg[0] = M_ABORT; 5133 np->abrt_tbl.size = 1; 5134 break; 5135 } 5136 5137 /* 5138 * We have some task to abort. 5139 * Set the IDENTIFY(lun) 5140 */ 5141 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5142 5143 /* 5144 * If we want to abort an untagged command, we 5145 * will send an IDENTIFY + M_ABORT. 5146 * Otherwise (tagged command), we will send 5147 * an IDENTIFY + task attributes + ABORT TAG. 5148 */ 5149 if (cp->tag == NO_TAG) { 5150 np->abrt_msg[1] = M_ABORT; 5151 np->abrt_tbl.size = 2; 5152 } 5153 else { 5154 np->abrt_msg[1] = cp->scsi_smsg[1]; 5155 np->abrt_msg[2] = cp->scsi_smsg[2]; 5156 np->abrt_msg[3] = M_ABORT_TAG; 5157 np->abrt_tbl.size = 4; 5158 } 5159 /* 5160 * Keep track of software timeout condition, since the 5161 * peripheral driver may not count retries on abort 5162 * conditions not due to timeout. 5163 */ 5164 if (cp->to_abort == 2) 5165 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5166 cp->to_abort = 0; /* We donnot expect to fail here */ 5167 break; 5168 5169 /* 5170 * The target has accepted our message and switched 5171 * to BUS FREE phase as we expected. 5172 */ 5173 case SIR_ABORT_SENT: 5174 target = (INB (nc_sdid) & 0xf); 5175 tp = &np->target[target]; 5176 5177 /* 5178 ** If we didn't abort anything, leave here. 5179 */ 5180 if (np->abrt_msg[0] == M_ABORT) 5181 break; 5182 5183 /* 5184 * If we sent a M_RESET, then a hardware reset has 5185 * been performed by the target. 5186 * - Reset everything to async 8 bit 5187 * - Tell ourself to negotiate next time :-) 5188 * - Prepare to clear all disconnected CCBs for 5189 * this target from our task list (lun=task=-1) 5190 */ 5191 lun = -1; 5192 task = -1; 5193 if (np->abrt_msg[0] == M_RESET) { 5194 tp->head.sval = 0; 5195 tp->head.wval = np->rv_scntl3; 5196 tp->head.uval = 0; 5197 tp->tinfo.current.period = 0; 5198 tp->tinfo.current.offset = 0; 5199 tp->tinfo.current.width = BUS_8_BIT; 5200 tp->tinfo.current.options = 0; 5201 } 5202 5203 /* 5204 * Otherwise, check for the LUN and TASK(s) 5205 * concerned by the cancelation. 5206 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5207 * or an ABORT message :-) 5208 */ 5209 else { 5210 lun = np->abrt_msg[0] & 0x3f; 5211 if (np->abrt_msg[1] == M_ABORT_TAG) 5212 task = np->abrt_msg[2]; 5213 } 5214 5215 /* 5216 * Complete all the CCBs the device should have 5217 * aborted due to our 'kiss of death' message. 5218 */ 5219 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5220 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5221 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5222 sym_flush_comp_queue(np, 0); 5223 5224 /* 5225 * If we sent a BDR, make uper layer aware of that. 5226 */ 5227 if (np->abrt_msg[0] == M_RESET) 5228 xpt_async(AC_SENT_BDR, np->path, NULL); 5229 break; 5230 } 5231 5232 /* 5233 * Print to the log the message we intend to send. 5234 */ 5235 if (num == SIR_TARGET_SELECTED) { 5236 PRINT_TARGET(np, target); 5237 sym_printl_hex("control msgout:", np->abrt_msg, 5238 np->abrt_tbl.size); 5239 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5240 } 5241 5242 /* 5243 * Let the SCRIPTS processor continue. 5244 */ 5245 OUTONB_STD (); 5246 } 5247 5248 /* 5249 * Gerard's alchemy:) that deals with with the data 5250 * pointer for both MDP and the residual calculation. 5251 * 5252 * I didn't want to bloat the code by more than 200 5253 * lignes for the handling of both MDP and the residual. 5254 * This has been achieved by using a data pointer 5255 * representation consisting in an index in the data 5256 * array (dp_sg) and a negative offset (dp_ofs) that 5257 * have the following meaning: 5258 * 5259 * - dp_sg = SYM_CONF_MAX_SG 5260 * we are at the end of the data script. 5261 * - dp_sg < SYM_CONF_MAX_SG 5262 * dp_sg points to the next entry of the scatter array 5263 * we want to transfer. 5264 * - dp_ofs < 0 5265 * dp_ofs represents the residual of bytes of the 5266 * previous entry scatter entry we will send first. 5267 * - dp_ofs = 0 5268 * no residual to send first. 5269 * 5270 * The function sym_evaluate_dp() accepts an arbitray 5271 * offset (basically from the MDP message) and returns 5272 * the corresponding values of dp_sg and dp_ofs. 5273 */ 5274 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5275 { 5276 u32 dp_scr; 5277 int dp_ofs, dp_sg, dp_sgmin; 5278 int tmp; 5279 struct sym_pmc *pm; 5280 5281 /* 5282 * Compute the resulted data pointer in term of a script 5283 * address within some DATA script and a signed byte offset. 5284 */ 5285 dp_scr = scr; 5286 dp_ofs = *ofs; 5287 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5288 pm = &cp->phys.pm0; 5289 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5290 pm = &cp->phys.pm1; 5291 else 5292 pm = NULL; 5293 5294 if (pm) { 5295 dp_scr = scr_to_cpu(pm->ret); 5296 dp_ofs -= scr_to_cpu(pm->sg.size); 5297 } 5298 5299 /* 5300 * If we are auto-sensing, then we are done. 5301 */ 5302 if (cp->host_flags & HF_SENSE) { 5303 *ofs = dp_ofs; 5304 return 0; 5305 } 5306 5307 /* 5308 * Deduce the index of the sg entry. 5309 * Keep track of the index of the first valid entry. 5310 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5311 * end of the data. 5312 */ 5313 tmp = scr_to_cpu(cp->phys.head.goalp); 5314 dp_sg = SYM_CONF_MAX_SG; 5315 if (dp_scr != tmp) 5316 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5317 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5318 5319 /* 5320 * Move to the sg entry the data pointer belongs to. 5321 * 5322 * If we are inside the data area, we expect result to be: 5323 * 5324 * Either, 5325 * dp_ofs = 0 and dp_sg is the index of the sg entry 5326 * the data pointer belongs to (or the end of the data) 5327 * Or, 5328 * dp_ofs < 0 and dp_sg is the index of the sg entry 5329 * the data pointer belongs to + 1. 5330 */ 5331 if (dp_ofs < 0) { 5332 int n; 5333 while (dp_sg > dp_sgmin) { 5334 --dp_sg; 5335 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5336 n = dp_ofs + (tmp & 0xffffff); 5337 if (n > 0) { 5338 ++dp_sg; 5339 break; 5340 } 5341 dp_ofs = n; 5342 } 5343 } 5344 else if (dp_ofs > 0) { 5345 while (dp_sg < SYM_CONF_MAX_SG) { 5346 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5347 dp_ofs -= (tmp & 0xffffff); 5348 ++dp_sg; 5349 if (dp_ofs <= 0) 5350 break; 5351 } 5352 } 5353 5354 /* 5355 * Make sure the data pointer is inside the data area. 5356 * If not, return some error. 5357 */ 5358 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5359 goto out_err; 5360 else if (dp_sg > SYM_CONF_MAX_SG || 5361 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5362 goto out_err; 5363 5364 /* 5365 * Save the extreme pointer if needed. 5366 */ 5367 if (dp_sg > cp->ext_sg || 5368 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5369 cp->ext_sg = dp_sg; 5370 cp->ext_ofs = dp_ofs; 5371 } 5372 5373 /* 5374 * Return data. 5375 */ 5376 *ofs = dp_ofs; 5377 return dp_sg; 5378 5379 out_err: 5380 return -1; 5381 } 5382 5383 /* 5384 * chip handler for MODIFY DATA POINTER MESSAGE 5385 * 5386 * We also call this function on IGNORE WIDE RESIDUE 5387 * messages that do not match a SWIDE full condition. 5388 * Btw, we assume in that situation that such a message 5389 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5390 */ 5391 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5392 { 5393 int dp_ofs = ofs; 5394 u32 dp_scr = INL (nc_temp); 5395 u32 dp_ret; 5396 u32 tmp; 5397 u_char hflags; 5398 int dp_sg; 5399 struct sym_pmc *pm; 5400 5401 /* 5402 * Not supported for auto-sense. 5403 */ 5404 if (cp->host_flags & HF_SENSE) 5405 goto out_reject; 5406 5407 /* 5408 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5409 * to the resulted data pointer. 5410 */ 5411 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5412 if (dp_sg < 0) 5413 goto out_reject; 5414 5415 /* 5416 * And our alchemy:) allows to easily calculate the data 5417 * script address we want to return for the next data phase. 5418 */ 5419 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5420 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5421 5422 /* 5423 * If offset / scatter entry is zero we donnot need 5424 * a context for the new current data pointer. 5425 */ 5426 if (dp_ofs == 0) { 5427 dp_scr = dp_ret; 5428 goto out_ok; 5429 } 5430 5431 /* 5432 * Get a context for the new current data pointer. 5433 */ 5434 hflags = INB (HF_PRT); 5435 5436 if (hflags & HF_DP_SAVED) 5437 hflags ^= HF_ACT_PM; 5438 5439 if (!(hflags & HF_ACT_PM)) { 5440 pm = &cp->phys.pm0; 5441 dp_scr = SCRIPTA_BA (np, pm0_data); 5442 } 5443 else { 5444 pm = &cp->phys.pm1; 5445 dp_scr = SCRIPTA_BA (np, pm1_data); 5446 } 5447 5448 hflags &= ~(HF_DP_SAVED); 5449 5450 OUTB (HF_PRT, hflags); 5451 5452 /* 5453 * Set up the new current data pointer. 5454 * ofs < 0 there, and for the next data phase, we 5455 * want to transfer part of the data of the sg entry 5456 * corresponding to index dp_sg-1 prior to returning 5457 * to the main data script. 5458 */ 5459 pm->ret = cpu_to_scr(dp_ret); 5460 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5461 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5462 pm->sg.addr = cpu_to_scr(tmp); 5463 pm->sg.size = cpu_to_scr(-dp_ofs); 5464 5465 out_ok: 5466 OUTL (nc_temp, dp_scr); 5467 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5468 return; 5469 5470 out_reject: 5471 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5472 } 5473 5474 /* 5475 * chip calculation of the data residual. 5476 * 5477 * As I used to say, the requirement of data residual 5478 * in SCSI is broken, useless and cannot be achieved 5479 * without huge complexity. 5480 * But most OSes and even the official CAM require it. 5481 * When stupidity happens to be so widely spread inside 5482 * a community, it gets hard to convince. 5483 * 5484 * Anyway, I don't care, since I am not going to use 5485 * any software that considers this data residual as 5486 * a relevant information. :) 5487 */ 5488 static int sym_compute_residual(hcb_p np, ccb_p cp) 5489 { 5490 int dp_sg, dp_sgmin, resid = 0; 5491 int dp_ofs = 0; 5492 5493 /* 5494 * Check for some data lost or just thrown away. 5495 * We are not required to be quite accurate in this 5496 * situation. Btw, if we are odd for output and the 5497 * device claims some more data, it may well happen 5498 * than our residual be zero. :-) 5499 */ 5500 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5501 if (cp->xerr_status & XE_EXTRA_DATA) 5502 resid -= cp->extra_bytes; 5503 if (cp->xerr_status & XE_SODL_UNRUN) 5504 ++resid; 5505 if (cp->xerr_status & XE_SWIDE_OVRUN) 5506 --resid; 5507 } 5508 5509 /* 5510 * If all data has been transferred, 5511 * there is no residual. 5512 */ 5513 if (cp->phys.head.lastp == cp->phys.head.goalp) 5514 return resid; 5515 5516 /* 5517 * If no data transfer occurs, or if the data 5518 * pointer is weird, return full residual. 5519 */ 5520 if (cp->startp == cp->phys.head.lastp || 5521 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5522 &dp_ofs) < 0) { 5523 return cp->data_len; 5524 } 5525 5526 /* 5527 * If we were auto-sensing, then we are done. 5528 */ 5529 if (cp->host_flags & HF_SENSE) { 5530 return -dp_ofs; 5531 } 5532 5533 /* 5534 * We are now full comfortable in the computation 5535 * of the data residual (2's complement). 5536 */ 5537 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5538 resid = -cp->ext_ofs; 5539 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5540 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5541 resid += (tmp & 0xffffff); 5542 } 5543 5544 /* 5545 * Hopefully, the result is not too wrong. 5546 */ 5547 return resid; 5548 } 5549 5550 /* 5551 * Print out the content of a SCSI message. 5552 */ 5553 static int sym_show_msg (u_char * msg) 5554 { 5555 u_char i; 5556 printf ("%x",*msg); 5557 if (*msg==M_EXTENDED) { 5558 for (i=1;i<8;i++) { 5559 if (i-1>msg[1]) break; 5560 printf ("-%x",msg[i]); 5561 }; 5562 return (i+1); 5563 } else if ((*msg & 0xf0) == 0x20) { 5564 printf ("-%x",msg[1]); 5565 return (2); 5566 }; 5567 return (1); 5568 } 5569 5570 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5571 { 5572 PRINT_ADDR(cp); 5573 if (label) 5574 printf ("%s: ", label); 5575 5576 (void) sym_show_msg (msg); 5577 printf (".\n"); 5578 } 5579 5580 /* 5581 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5582 * 5583 * When we try to negotiate, we append the negotiation message 5584 * to the identify and (maybe) simple tag message. 5585 * The host status field is set to HS_NEGOTIATE to mark this 5586 * situation. 5587 * 5588 * If the target doesn't answer this message immediately 5589 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5590 * will be raised eventually. 5591 * The handler removes the HS_NEGOTIATE status, and sets the 5592 * negotiated value to the default (async / nowide). 5593 * 5594 * If we receive a matching answer immediately, we check it 5595 * for validity, and set the values. 5596 * 5597 * If we receive a Reject message immediately, we assume the 5598 * negotiation has failed, and fall back to standard values. 5599 * 5600 * If we receive a negotiation message while not in HS_NEGOTIATE 5601 * state, it's a target initiated negotiation. We prepare a 5602 * (hopefully) valid answer, set our parameters, and send back 5603 * this answer to the target. 5604 * 5605 * If the target doesn't fetch the answer (no message out phase), 5606 * we assume the negotiation has failed, and fall back to default 5607 * settings (SIR_NEGO_PROTO interrupt). 5608 * 5609 * When we set the values, we adjust them in all ccbs belonging 5610 * to this target, in the controller's register, and in the "phys" 5611 * field of the controller's struct sym_hcb. 5612 */ 5613 5614 /* 5615 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5616 */ 5617 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5618 { 5619 u_char chg, ofs, per, fak, div; 5620 int req = 1; 5621 5622 /* 5623 * Synchronous request message received. 5624 */ 5625 if (DEBUG_FLAGS & DEBUG_NEGO) { 5626 sym_print_msg(cp, "sync msgin", np->msgin); 5627 }; 5628 5629 /* 5630 * request or answer ? 5631 */ 5632 if (INB (HS_PRT) == HS_NEGOTIATE) { 5633 OUTB (HS_PRT, HS_BUSY); 5634 if (cp->nego_status && cp->nego_status != NS_SYNC) 5635 goto reject_it; 5636 req = 0; 5637 } 5638 5639 /* 5640 * get requested values. 5641 */ 5642 chg = 0; 5643 per = np->msgin[3]; 5644 ofs = np->msgin[4]; 5645 5646 /* 5647 * check values against our limits. 5648 */ 5649 if (ofs) { 5650 if (ofs > np->maxoffs) 5651 {chg = 1; ofs = np->maxoffs;} 5652 if (req) { 5653 if (ofs > tp->tinfo.user.offset) 5654 {chg = 1; ofs = tp->tinfo.user.offset;} 5655 } 5656 } 5657 5658 if (ofs) { 5659 if (per < np->minsync) 5660 {chg = 1; per = np->minsync;} 5661 if (req) { 5662 if (per < tp->tinfo.user.period) 5663 {chg = 1; per = tp->tinfo.user.period;} 5664 } 5665 } 5666 5667 div = fak = 0; 5668 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5669 goto reject_it; 5670 5671 if (DEBUG_FLAGS & DEBUG_NEGO) { 5672 PRINT_ADDR(cp); 5673 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5674 ofs, per, div, fak, chg); 5675 } 5676 5677 /* 5678 * This was an answer message 5679 */ 5680 if (req == 0) { 5681 if (chg) /* Answer wasn't acceptable. */ 5682 goto reject_it; 5683 sym_setsync (np, cp, ofs, per, div, fak); 5684 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5685 return; 5686 } 5687 5688 /* 5689 * It was a request. Set value and 5690 * prepare an answer message 5691 */ 5692 sym_setsync (np, cp, ofs, per, div, fak); 5693 5694 np->msgout[0] = M_EXTENDED; 5695 np->msgout[1] = 3; 5696 np->msgout[2] = M_X_SYNC_REQ; 5697 np->msgout[3] = per; 5698 np->msgout[4] = ofs; 5699 5700 cp->nego_status = NS_SYNC; 5701 5702 if (DEBUG_FLAGS & DEBUG_NEGO) { 5703 sym_print_msg(cp, "sync msgout", np->msgout); 5704 } 5705 5706 np->msgin [0] = M_NOOP; 5707 5708 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5709 return; 5710 reject_it: 5711 sym_setsync (np, cp, 0, 0, 0, 0); 5712 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5713 } 5714 5715 /* 5716 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5717 */ 5718 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5719 { 5720 u_char chg, ofs, per, fak, dt, div, wide; 5721 int req = 1; 5722 5723 /* 5724 * Synchronous request message received. 5725 */ 5726 if (DEBUG_FLAGS & DEBUG_NEGO) { 5727 sym_print_msg(cp, "ppr msgin", np->msgin); 5728 }; 5729 5730 /* 5731 * get requested values. 5732 */ 5733 chg = 0; 5734 per = np->msgin[3]; 5735 ofs = np->msgin[5]; 5736 wide = np->msgin[6]; 5737 dt = np->msgin[7] & PPR_OPT_DT; 5738 5739 /* 5740 * request or answer ? 5741 */ 5742 if (INB (HS_PRT) == HS_NEGOTIATE) { 5743 OUTB (HS_PRT, HS_BUSY); 5744 if (cp->nego_status && cp->nego_status != NS_PPR) 5745 goto reject_it; 5746 req = 0; 5747 } 5748 5749 /* 5750 * check values against our limits. 5751 */ 5752 if (wide > np->maxwide) 5753 {chg = 1; wide = np->maxwide;} 5754 if (!wide || !(np->features & FE_ULTRA3)) 5755 dt &= ~PPR_OPT_DT; 5756 if (req) { 5757 if (wide > tp->tinfo.user.width) 5758 {chg = 1; wide = tp->tinfo.user.width;} 5759 } 5760 5761 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5762 dt &= ~PPR_OPT_DT; 5763 5764 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5765 5766 if (ofs) { 5767 if (dt) { 5768 if (ofs > np->maxoffs_dt) 5769 {chg = 1; ofs = np->maxoffs_dt;} 5770 } 5771 else if (ofs > np->maxoffs) 5772 {chg = 1; ofs = np->maxoffs;} 5773 if (req) { 5774 if (ofs > tp->tinfo.user.offset) 5775 {chg = 1; ofs = tp->tinfo.user.offset;} 5776 } 5777 } 5778 5779 if (ofs) { 5780 if (dt) { 5781 if (per < np->minsync_dt) 5782 {chg = 1; per = np->minsync_dt;} 5783 } 5784 else if (per < np->minsync) 5785 {chg = 1; per = np->minsync;} 5786 if (req) { 5787 if (per < tp->tinfo.user.period) 5788 {chg = 1; per = tp->tinfo.user.period;} 5789 } 5790 } 5791 5792 div = fak = 0; 5793 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5794 goto reject_it; 5795 5796 if (DEBUG_FLAGS & DEBUG_NEGO) { 5797 PRINT_ADDR(cp); 5798 printf ("ppr: " 5799 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5800 dt, ofs, per, wide, div, fak, chg); 5801 } 5802 5803 /* 5804 * It was an answer. 5805 */ 5806 if (req == 0) { 5807 if (chg) /* Answer wasn't acceptable */ 5808 goto reject_it; 5809 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5810 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5811 return; 5812 } 5813 5814 /* 5815 * It was a request. Set value and 5816 * prepare an answer message 5817 */ 5818 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5819 5820 np->msgout[0] = M_EXTENDED; 5821 np->msgout[1] = 6; 5822 np->msgout[2] = M_X_PPR_REQ; 5823 np->msgout[3] = per; 5824 np->msgout[4] = 0; 5825 np->msgout[5] = ofs; 5826 np->msgout[6] = wide; 5827 np->msgout[7] = dt; 5828 5829 cp->nego_status = NS_PPR; 5830 5831 if (DEBUG_FLAGS & DEBUG_NEGO) { 5832 sym_print_msg(cp, "ppr msgout", np->msgout); 5833 } 5834 5835 np->msgin [0] = M_NOOP; 5836 5837 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5838 return; 5839 reject_it: 5840 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5841 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5842 /* 5843 * If it was a device response that should result in 5844 * ST, we may want to try a legacy negotiation later. 5845 */ 5846 if (!req && !dt) { 5847 tp->tinfo.goal.options = 0; 5848 tp->tinfo.goal.width = wide; 5849 tp->tinfo.goal.period = per; 5850 tp->tinfo.goal.offset = ofs; 5851 } 5852 } 5853 5854 /* 5855 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5856 */ 5857 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5858 { 5859 u_char chg, wide; 5860 int req = 1; 5861 5862 /* 5863 * Wide request message received. 5864 */ 5865 if (DEBUG_FLAGS & DEBUG_NEGO) { 5866 sym_print_msg(cp, "wide msgin", np->msgin); 5867 }; 5868 5869 /* 5870 * Is it a request from the device? 5871 */ 5872 if (INB (HS_PRT) == HS_NEGOTIATE) { 5873 OUTB (HS_PRT, HS_BUSY); 5874 if (cp->nego_status && cp->nego_status != NS_WIDE) 5875 goto reject_it; 5876 req = 0; 5877 } 5878 5879 /* 5880 * get requested values. 5881 */ 5882 chg = 0; 5883 wide = np->msgin[3]; 5884 5885 /* 5886 * check values against driver limits. 5887 */ 5888 if (wide > np->maxwide) 5889 {chg = 1; wide = np->maxwide;} 5890 if (req) { 5891 if (wide > tp->tinfo.user.width) 5892 {chg = 1; wide = tp->tinfo.user.width;} 5893 } 5894 5895 if (DEBUG_FLAGS & DEBUG_NEGO) { 5896 PRINT_ADDR(cp); 5897 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5898 } 5899 5900 /* 5901 * This was an answer message 5902 */ 5903 if (req == 0) { 5904 if (chg) /* Answer wasn't acceptable. */ 5905 goto reject_it; 5906 sym_setwide (np, cp, wide); 5907 5908 /* 5909 * Negotiate for SYNC immediately after WIDE response. 5910 * This allows to negotiate for both WIDE and SYNC on 5911 * a single SCSI command (Suggested by Justin Gibbs). 5912 */ 5913 if (tp->tinfo.goal.offset) { 5914 np->msgout[0] = M_EXTENDED; 5915 np->msgout[1] = 3; 5916 np->msgout[2] = M_X_SYNC_REQ; 5917 np->msgout[3] = tp->tinfo.goal.period; 5918 np->msgout[4] = tp->tinfo.goal.offset; 5919 5920 if (DEBUG_FLAGS & DEBUG_NEGO) { 5921 sym_print_msg(cp, "sync msgout", np->msgout); 5922 } 5923 5924 cp->nego_status = NS_SYNC; 5925 OUTB (HS_PRT, HS_NEGOTIATE); 5926 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5927 return; 5928 } 5929 5930 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5931 return; 5932 }; 5933 5934 /* 5935 * It was a request, set value and 5936 * prepare an answer message 5937 */ 5938 sym_setwide (np, cp, wide); 5939 5940 np->msgout[0] = M_EXTENDED; 5941 np->msgout[1] = 2; 5942 np->msgout[2] = M_X_WIDE_REQ; 5943 np->msgout[3] = wide; 5944 5945 np->msgin [0] = M_NOOP; 5946 5947 cp->nego_status = NS_WIDE; 5948 5949 if (DEBUG_FLAGS & DEBUG_NEGO) { 5950 sym_print_msg(cp, "wide msgout", np->msgout); 5951 } 5952 5953 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5954 return; 5955 reject_it: 5956 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5957 } 5958 5959 /* 5960 * Reset SYNC or WIDE to default settings. 5961 * 5962 * Called when a negotiation does not succeed either 5963 * on rejection or on protocol error. 5964 * 5965 * If it was a PPR that made problems, we may want to 5966 * try a legacy negotiation later. 5967 */ 5968 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5969 { 5970 /* 5971 * any error in negotiation: 5972 * fall back to default mode. 5973 */ 5974 switch (cp->nego_status) { 5975 case NS_PPR: 5976 #if 0 5977 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5978 #else 5979 tp->tinfo.goal.options = 0; 5980 if (tp->tinfo.goal.period < np->minsync) 5981 tp->tinfo.goal.period = np->minsync; 5982 if (tp->tinfo.goal.offset > np->maxoffs) 5983 tp->tinfo.goal.offset = np->maxoffs; 5984 #endif 5985 break; 5986 case NS_SYNC: 5987 sym_setsync (np, cp, 0, 0, 0, 0); 5988 break; 5989 case NS_WIDE: 5990 sym_setwide (np, cp, 0); 5991 break; 5992 }; 5993 np->msgin [0] = M_NOOP; 5994 np->msgout[0] = M_NOOP; 5995 cp->nego_status = 0; 5996 } 5997 5998 /* 5999 * chip handler for MESSAGE REJECT received in response to 6000 * a WIDE or SYNCHRONOUS negotiation. 6001 */ 6002 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6003 { 6004 sym_nego_default(np, tp, cp); 6005 OUTB (HS_PRT, HS_BUSY); 6006 } 6007 6008 /* 6009 * chip exception handler for programmed interrupts. 6010 */ 6011 static void sym_int_sir (hcb_p np) 6012 { 6013 u_char num = INB (nc_dsps); 6014 u32 dsa = INL (nc_dsa); 6015 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6016 u_char target = INB (nc_sdid) & 0x0f; 6017 tcb_p tp = &np->target[target]; 6018 int tmp; 6019 6020 SYM_LOCK_ASSERT(MA_OWNED); 6021 6022 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6023 6024 switch (num) { 6025 /* 6026 * Command has been completed with error condition 6027 * or has been auto-sensed. 6028 */ 6029 case SIR_COMPLETE_ERROR: 6030 sym_complete_error(np, cp); 6031 return; 6032 /* 6033 * The C code is currently trying to recover from something. 6034 * Typically, user want to abort some command. 6035 */ 6036 case SIR_SCRIPT_STOPPED: 6037 case SIR_TARGET_SELECTED: 6038 case SIR_ABORT_SENT: 6039 sym_sir_task_recovery(np, num); 6040 return; 6041 /* 6042 * The device didn't go to MSG OUT phase after having 6043 * been selected with ATN. We donnot want to handle 6044 * that. 6045 */ 6046 case SIR_SEL_ATN_NO_MSG_OUT: 6047 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6048 sym_name (np), target); 6049 goto out_stuck; 6050 /* 6051 * The device didn't switch to MSG IN phase after 6052 * having reseleted the initiator. 6053 */ 6054 case SIR_RESEL_NO_MSG_IN: 6055 printf ("%s:%d: No MSG IN phase after reselection.\n", 6056 sym_name (np), target); 6057 goto out_stuck; 6058 /* 6059 * After reselection, the device sent a message that wasn't 6060 * an IDENTIFY. 6061 */ 6062 case SIR_RESEL_NO_IDENTIFY: 6063 printf ("%s:%d: No IDENTIFY after reselection.\n", 6064 sym_name (np), target); 6065 goto out_stuck; 6066 /* 6067 * The device reselected a LUN we donnot know about. 6068 */ 6069 case SIR_RESEL_BAD_LUN: 6070 np->msgout[0] = M_RESET; 6071 goto out; 6072 /* 6073 * The device reselected for an untagged nexus and we 6074 * haven't any. 6075 */ 6076 case SIR_RESEL_BAD_I_T_L: 6077 np->msgout[0] = M_ABORT; 6078 goto out; 6079 /* 6080 * The device reselected for a tagged nexus that we donnot 6081 * have. 6082 */ 6083 case SIR_RESEL_BAD_I_T_L_Q: 6084 np->msgout[0] = M_ABORT_TAG; 6085 goto out; 6086 /* 6087 * The SCRIPTS let us know that the device has grabbed 6088 * our message and will abort the job. 6089 */ 6090 case SIR_RESEL_ABORTED: 6091 np->lastmsg = np->msgout[0]; 6092 np->msgout[0] = M_NOOP; 6093 printf ("%s:%d: message %x sent on bad reselection.\n", 6094 sym_name (np), target, np->lastmsg); 6095 goto out; 6096 /* 6097 * The SCRIPTS let us know that a message has been 6098 * successfully sent to the device. 6099 */ 6100 case SIR_MSG_OUT_DONE: 6101 np->lastmsg = np->msgout[0]; 6102 np->msgout[0] = M_NOOP; 6103 /* Should we really care of that */ 6104 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6105 if (cp) { 6106 cp->xerr_status &= ~XE_PARITY_ERR; 6107 if (!cp->xerr_status) 6108 OUTOFFB (HF_PRT, HF_EXT_ERR); 6109 } 6110 } 6111 goto out; 6112 /* 6113 * The device didn't send a GOOD SCSI status. 6114 * We may have some work to do prior to allow 6115 * the SCRIPTS processor to continue. 6116 */ 6117 case SIR_BAD_SCSI_STATUS: 6118 if (!cp) 6119 goto out; 6120 sym_sir_bad_scsi_status(np, num, cp); 6121 return; 6122 /* 6123 * We are asked by the SCRIPTS to prepare a 6124 * REJECT message. 6125 */ 6126 case SIR_REJECT_TO_SEND: 6127 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6128 np->msgout[0] = M_REJECT; 6129 goto out; 6130 /* 6131 * We have been ODD at the end of a DATA IN 6132 * transfer and the device didn't send a 6133 * IGNORE WIDE RESIDUE message. 6134 * It is a data overrun condition. 6135 */ 6136 case SIR_SWIDE_OVERRUN: 6137 if (cp) { 6138 OUTONB (HF_PRT, HF_EXT_ERR); 6139 cp->xerr_status |= XE_SWIDE_OVRUN; 6140 } 6141 goto out; 6142 /* 6143 * We have been ODD at the end of a DATA OUT 6144 * transfer. 6145 * It is a data underrun condition. 6146 */ 6147 case SIR_SODL_UNDERRUN: 6148 if (cp) { 6149 OUTONB (HF_PRT, HF_EXT_ERR); 6150 cp->xerr_status |= XE_SODL_UNRUN; 6151 } 6152 goto out; 6153 /* 6154 * The device wants us to tranfer more data than 6155 * expected or in the wrong direction. 6156 * The number of extra bytes is in scratcha. 6157 * It is a data overrun condition. 6158 */ 6159 case SIR_DATA_OVERRUN: 6160 if (cp) { 6161 OUTONB (HF_PRT, HF_EXT_ERR); 6162 cp->xerr_status |= XE_EXTRA_DATA; 6163 cp->extra_bytes += INL (nc_scratcha); 6164 } 6165 goto out; 6166 /* 6167 * The device switched to an illegal phase (4/5). 6168 */ 6169 case SIR_BAD_PHASE: 6170 if (cp) { 6171 OUTONB (HF_PRT, HF_EXT_ERR); 6172 cp->xerr_status |= XE_BAD_PHASE; 6173 } 6174 goto out; 6175 /* 6176 * We received a message. 6177 */ 6178 case SIR_MSG_RECEIVED: 6179 if (!cp) 6180 goto out_stuck; 6181 switch (np->msgin [0]) { 6182 /* 6183 * We received an extended message. 6184 * We handle MODIFY DATA POINTER, SDTR, WDTR 6185 * and reject all other extended messages. 6186 */ 6187 case M_EXTENDED: 6188 switch (np->msgin [2]) { 6189 case M_X_MODIFY_DP: 6190 if (DEBUG_FLAGS & DEBUG_POINTER) 6191 sym_print_msg(cp,"modify DP",np->msgin); 6192 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6193 (np->msgin[5]<<8) + (np->msgin[6]); 6194 sym_modify_dp(np, tp, cp, tmp); 6195 return; 6196 case M_X_SYNC_REQ: 6197 sym_sync_nego(np, tp, cp); 6198 return; 6199 case M_X_PPR_REQ: 6200 sym_ppr_nego(np, tp, cp); 6201 return; 6202 case M_X_WIDE_REQ: 6203 sym_wide_nego(np, tp, cp); 6204 return; 6205 default: 6206 goto out_reject; 6207 } 6208 break; 6209 /* 6210 * We received a 1/2 byte message not handled from SCRIPTS. 6211 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6212 * RESIDUE messages that haven't been anticipated by 6213 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6214 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6215 */ 6216 case M_IGN_RESIDUE: 6217 if (DEBUG_FLAGS & DEBUG_POINTER) 6218 sym_print_msg(cp,"ign wide residue", np->msgin); 6219 sym_modify_dp(np, tp, cp, -1); 6220 return; 6221 case M_REJECT: 6222 if (INB (HS_PRT) == HS_NEGOTIATE) 6223 sym_nego_rejected(np, tp, cp); 6224 else { 6225 PRINT_ADDR(cp); 6226 printf ("M_REJECT received (%x:%x).\n", 6227 scr_to_cpu(np->lastmsg), np->msgout[0]); 6228 } 6229 goto out_clrack; 6230 break; 6231 default: 6232 goto out_reject; 6233 } 6234 break; 6235 /* 6236 * We received an unknown message. 6237 * Ignore all MSG IN phases and reject it. 6238 */ 6239 case SIR_MSG_WEIRD: 6240 sym_print_msg(cp, "WEIRD message received", np->msgin); 6241 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6242 return; 6243 /* 6244 * Negotiation failed. 6245 * Target does not send us the reply. 6246 * Remove the HS_NEGOTIATE status. 6247 */ 6248 case SIR_NEGO_FAILED: 6249 OUTB (HS_PRT, HS_BUSY); 6250 /* 6251 * Negotiation failed. 6252 * Target does not want answer message. 6253 */ 6254 case SIR_NEGO_PROTO: 6255 sym_nego_default(np, tp, cp); 6256 goto out; 6257 }; 6258 6259 out: 6260 OUTONB_STD (); 6261 return; 6262 out_reject: 6263 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6264 return; 6265 out_clrack: 6266 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6267 return; 6268 out_stuck: 6269 return; 6270 } 6271 6272 /* 6273 * Acquire a control block 6274 */ 6275 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6276 { 6277 tcb_p tp = &np->target[tn]; 6278 lcb_p lp = sym_lp(np, tp, ln); 6279 u_short tag = NO_TAG; 6280 SYM_QUEHEAD *qp; 6281 ccb_p cp = (ccb_p) NULL; 6282 6283 /* 6284 * Look for a free CCB 6285 */ 6286 if (sym_que_empty(&np->free_ccbq)) 6287 goto out; 6288 qp = sym_remque_head(&np->free_ccbq); 6289 if (!qp) 6290 goto out; 6291 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6292 6293 /* 6294 * If the LCB is not yet available and the LUN 6295 * has been probed ok, try to allocate the LCB. 6296 */ 6297 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6298 lp = sym_alloc_lcb(np, tn, ln); 6299 if (!lp) 6300 goto out_free; 6301 } 6302 6303 /* 6304 * If the LCB is not available here, then the 6305 * logical unit is not yet discovered. For those 6306 * ones only accept 1 SCSI IO per logical unit, 6307 * since we cannot allow disconnections. 6308 */ 6309 if (!lp) { 6310 if (!sym_is_bit(tp->busy0_map, ln)) 6311 sym_set_bit(tp->busy0_map, ln); 6312 else 6313 goto out_free; 6314 } else { 6315 /* 6316 * If we have been asked for a tagged command. 6317 */ 6318 if (tag_order) { 6319 /* 6320 * Debugging purpose. 6321 */ 6322 assert(lp->busy_itl == 0); 6323 /* 6324 * Allocate resources for tags if not yet. 6325 */ 6326 if (!lp->cb_tags) { 6327 sym_alloc_lcb_tags(np, tn, ln); 6328 if (!lp->cb_tags) 6329 goto out_free; 6330 } 6331 /* 6332 * Get a tag for this SCSI IO and set up 6333 * the CCB bus address for reselection, 6334 * and count it for this LUN. 6335 * Toggle reselect path to tagged. 6336 */ 6337 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6338 tag = lp->cb_tags[lp->ia_tag]; 6339 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6340 lp->ia_tag = 0; 6341 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6342 ++lp->busy_itlq; 6343 lp->head.resel_sa = 6344 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6345 } 6346 else 6347 goto out_free; 6348 } 6349 /* 6350 * This command will not be tagged. 6351 * If we already have either a tagged or untagged 6352 * one, refuse to overlap this untagged one. 6353 */ 6354 else { 6355 /* 6356 * Debugging purpose. 6357 */ 6358 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6359 /* 6360 * Count this nexus for this LUN. 6361 * Set up the CCB bus address for reselection. 6362 * Toggle reselect path to untagged. 6363 */ 6364 if (++lp->busy_itl == 1) { 6365 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6366 lp->head.resel_sa = 6367 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6368 } 6369 else 6370 goto out_free; 6371 } 6372 } 6373 /* 6374 * Put the CCB into the busy queue. 6375 */ 6376 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6377 6378 /* 6379 * Remember all informations needed to free this CCB. 6380 */ 6381 cp->to_abort = 0; 6382 cp->tag = tag; 6383 cp->target = tn; 6384 cp->lun = ln; 6385 6386 if (DEBUG_FLAGS & DEBUG_TAGS) { 6387 PRINT_LUN(np, tn, ln); 6388 printf ("ccb @%p using tag %d.\n", cp, tag); 6389 } 6390 6391 out: 6392 return cp; 6393 out_free: 6394 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6395 return NULL; 6396 } 6397 6398 /* 6399 * Release one control block 6400 */ 6401 static void sym_free_ccb (hcb_p np, ccb_p cp) 6402 { 6403 tcb_p tp = &np->target[cp->target]; 6404 lcb_p lp = sym_lp(np, tp, cp->lun); 6405 6406 if (DEBUG_FLAGS & DEBUG_TAGS) { 6407 PRINT_LUN(np, cp->target, cp->lun); 6408 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6409 } 6410 6411 /* 6412 * If LCB available, 6413 */ 6414 if (lp) { 6415 /* 6416 * If tagged, release the tag, set the relect path 6417 */ 6418 if (cp->tag != NO_TAG) { 6419 /* 6420 * Free the tag value. 6421 */ 6422 lp->cb_tags[lp->if_tag] = cp->tag; 6423 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6424 lp->if_tag = 0; 6425 /* 6426 * Make the reselect path invalid, 6427 * and uncount this CCB. 6428 */ 6429 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6430 --lp->busy_itlq; 6431 } else { /* Untagged */ 6432 /* 6433 * Make the reselect path invalid, 6434 * and uncount this CCB. 6435 */ 6436 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6437 --lp->busy_itl; 6438 } 6439 /* 6440 * If no JOB active, make the LUN reselect path invalid. 6441 */ 6442 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6443 lp->head.resel_sa = 6444 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6445 } 6446 /* 6447 * Otherwise, we only accept 1 IO per LUN. 6448 * Clear the bit that keeps track of this IO. 6449 */ 6450 else 6451 sym_clr_bit(tp->busy0_map, cp->lun); 6452 6453 /* 6454 * We donnot queue more than 1 ccb per target 6455 * with negotiation at any time. If this ccb was 6456 * used for negotiation, clear this info in the tcb. 6457 */ 6458 if (cp == tp->nego_cp) 6459 tp->nego_cp = NULL; 6460 6461 #ifdef SYM_CONF_IARB_SUPPORT 6462 /* 6463 * If we just complete the last queued CCB, 6464 * clear this info that is no longer relevant. 6465 */ 6466 if (cp == np->last_cp) 6467 np->last_cp = NULL; 6468 #endif 6469 6470 /* 6471 * Unmap user data from DMA map if needed. 6472 */ 6473 if (cp->dmamapped) { 6474 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6475 cp->dmamapped = 0; 6476 } 6477 6478 /* 6479 * Make this CCB available. 6480 */ 6481 cp->cam_ccb = NULL; 6482 cp->host_status = HS_IDLE; 6483 sym_remque(&cp->link_ccbq); 6484 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6485 } 6486 6487 /* 6488 * Allocate a CCB from memory and initialize its fixed part. 6489 */ 6490 static ccb_p sym_alloc_ccb(hcb_p np) 6491 { 6492 ccb_p cp = NULL; 6493 int hcode; 6494 6495 SYM_LOCK_ASSERT(MA_NOTOWNED); 6496 6497 /* 6498 * Prevent from allocating more CCBs than we can 6499 * queue to the controller. 6500 */ 6501 if (np->actccbs >= SYM_CONF_MAX_START) 6502 return NULL; 6503 6504 /* 6505 * Allocate memory for this CCB. 6506 */ 6507 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6508 if (!cp) 6509 return NULL; 6510 6511 /* 6512 * Allocate a bounce buffer for sense data. 6513 */ 6514 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6515 if (!cp->sns_bbuf) 6516 goto out_free; 6517 6518 /* 6519 * Allocate a map for the DMA of user data. 6520 */ 6521 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6522 goto out_free; 6523 /* 6524 * Count it. 6525 */ 6526 np->actccbs++; 6527 6528 /* 6529 * Initialize the callout. 6530 */ 6531 callout_init(&cp->ch, 1); 6532 6533 /* 6534 * Compute the bus address of this ccb. 6535 */ 6536 cp->ccb_ba = vtobus(cp); 6537 6538 /* 6539 * Insert this ccb into the hashed list. 6540 */ 6541 hcode = CCB_HASH_CODE(cp->ccb_ba); 6542 cp->link_ccbh = np->ccbh[hcode]; 6543 np->ccbh[hcode] = cp; 6544 6545 /* 6546 * Initialize the start and restart actions. 6547 */ 6548 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6549 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6550 6551 /* 6552 * Initilialyze some other fields. 6553 */ 6554 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6555 6556 /* 6557 * Chain into free ccb queue. 6558 */ 6559 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6560 6561 return cp; 6562 out_free: 6563 if (cp->sns_bbuf) 6564 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6565 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6566 return NULL; 6567 } 6568 6569 /* 6570 * Look up a CCB from a DSA value. 6571 */ 6572 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6573 { 6574 int hcode; 6575 ccb_p cp; 6576 6577 hcode = CCB_HASH_CODE(dsa); 6578 cp = np->ccbh[hcode]; 6579 while (cp) { 6580 if (cp->ccb_ba == dsa) 6581 break; 6582 cp = cp->link_ccbh; 6583 } 6584 6585 return cp; 6586 } 6587 6588 /* 6589 * Target control block initialisation. 6590 * Nothing important to do at the moment. 6591 */ 6592 static void sym_init_tcb (hcb_p np, u_char tn) 6593 { 6594 /* 6595 * Check some alignments required by the chip. 6596 */ 6597 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6598 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6599 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6600 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6601 } 6602 6603 /* 6604 * Lun control block allocation and initialization. 6605 */ 6606 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6607 { 6608 tcb_p tp = &np->target[tn]; 6609 lcb_p lp = sym_lp(np, tp, ln); 6610 6611 /* 6612 * Already done, just return. 6613 */ 6614 if (lp) 6615 return lp; 6616 /* 6617 * Check against some race. 6618 */ 6619 assert(!sym_is_bit(tp->busy0_map, ln)); 6620 6621 /* 6622 * Initialize the target control block if not yet. 6623 */ 6624 sym_init_tcb (np, tn); 6625 6626 /* 6627 * Allocate the LCB bus address array. 6628 * Compute the bus address of this table. 6629 */ 6630 if (ln && !tp->luntbl) { 6631 int i; 6632 6633 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6634 if (!tp->luntbl) 6635 goto fail; 6636 for (i = 0 ; i < 64 ; i++) 6637 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6638 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6639 } 6640 6641 /* 6642 * Allocate the table of pointers for LUN(s) > 0, if needed. 6643 */ 6644 if (ln && !tp->lunmp) { 6645 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6646 "LUNMP"); 6647 if (!tp->lunmp) 6648 goto fail; 6649 } 6650 6651 /* 6652 * Allocate the lcb. 6653 * Make it available to the chip. 6654 */ 6655 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6656 if (!lp) 6657 goto fail; 6658 if (ln) { 6659 tp->lunmp[ln] = lp; 6660 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6661 } 6662 else { 6663 tp->lun0p = lp; 6664 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6665 } 6666 6667 /* 6668 * Let the itl task point to error handling. 6669 */ 6670 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6671 6672 /* 6673 * Set the reselect pattern to our default. :) 6674 */ 6675 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6676 6677 /* 6678 * Set user capabilities. 6679 */ 6680 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6681 6682 fail: 6683 return lp; 6684 } 6685 6686 /* 6687 * Allocate LCB resources for tagged command queuing. 6688 */ 6689 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6690 { 6691 tcb_p tp = &np->target[tn]; 6692 lcb_p lp = sym_lp(np, tp, ln); 6693 int i; 6694 6695 /* 6696 * If LCB not available, try to allocate it. 6697 */ 6698 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6699 return; 6700 6701 /* 6702 * Allocate the task table and and the tag allocation 6703 * circular buffer. We want both or none. 6704 */ 6705 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6706 if (!lp->itlq_tbl) 6707 return; 6708 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6709 if (!lp->cb_tags) { 6710 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6711 lp->itlq_tbl = 0; 6712 return; 6713 } 6714 6715 /* 6716 * Initialize the task table with invalid entries. 6717 */ 6718 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6719 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6720 6721 /* 6722 * Fill up the tag buffer with tag numbers. 6723 */ 6724 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6725 lp->cb_tags[i] = i; 6726 6727 /* 6728 * Make the task table available to SCRIPTS, 6729 * And accept tagged commands now. 6730 */ 6731 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6732 } 6733 6734 /* 6735 * Test the pci bus snoop logic :-( 6736 * 6737 * Has to be called with interrupts disabled. 6738 */ 6739 #ifndef SYM_CONF_IOMAPPED 6740 static int sym_regtest (hcb_p np) 6741 { 6742 register volatile u32 data; 6743 /* 6744 * chip registers may NOT be cached. 6745 * write 0xffffffff to a read only register area, 6746 * and try to read it back. 6747 */ 6748 data = 0xffffffff; 6749 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6750 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6751 #if 1 6752 if (data == 0xffffffff) { 6753 #else 6754 if ((data & 0xe2f0fffd) != 0x02000080) { 6755 #endif 6756 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6757 (unsigned) data); 6758 return (0x10); 6759 }; 6760 return (0); 6761 } 6762 #endif 6763 6764 static int sym_snooptest (hcb_p np) 6765 { 6766 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6767 int i, err=0; 6768 #ifndef SYM_CONF_IOMAPPED 6769 err |= sym_regtest (np); 6770 if (err) return (err); 6771 #endif 6772 restart_test: 6773 /* 6774 * Enable Master Parity Checking as we intend 6775 * to enable it for normal operations. 6776 */ 6777 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6778 /* 6779 * init 6780 */ 6781 pc = SCRIPTB0_BA (np, snooptest); 6782 host_wr = 1; 6783 sym_wr = 2; 6784 /* 6785 * Set memory and register. 6786 */ 6787 np->cache = cpu_to_scr(host_wr); 6788 OUTL (nc_temp, sym_wr); 6789 /* 6790 * Start script (exchange values) 6791 */ 6792 OUTL (nc_dsa, np->hcb_ba); 6793 OUTL_DSP (pc); 6794 /* 6795 * Wait 'til done (with timeout) 6796 */ 6797 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6798 if (INB(nc_istat) & (INTF|SIP|DIP)) 6799 break; 6800 if (i>=SYM_SNOOP_TIMEOUT) { 6801 printf ("CACHE TEST FAILED: timeout.\n"); 6802 return (0x20); 6803 }; 6804 /* 6805 * Check for fatal DMA errors. 6806 */ 6807 dstat = INB (nc_dstat); 6808 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6809 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6810 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6811 "DISABLING MASTER DATA PARITY CHECKING.\n", 6812 sym_name(np)); 6813 np->rv_ctest4 &= ~MPEE; 6814 goto restart_test; 6815 } 6816 #endif 6817 if (dstat & (MDPE|BF|IID)) { 6818 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6819 return (0x80); 6820 } 6821 /* 6822 * Save termination position. 6823 */ 6824 pc = INL (nc_dsp); 6825 /* 6826 * Read memory and register. 6827 */ 6828 host_rd = scr_to_cpu(np->cache); 6829 sym_rd = INL (nc_scratcha); 6830 sym_bk = INL (nc_temp); 6831 6832 /* 6833 * Check termination position. 6834 */ 6835 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6836 printf ("CACHE TEST FAILED: script execution failed.\n"); 6837 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6838 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6839 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6840 return (0x40); 6841 }; 6842 /* 6843 * Show results. 6844 */ 6845 if (host_wr != sym_rd) { 6846 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6847 (int) host_wr, (int) sym_rd); 6848 err |= 1; 6849 }; 6850 if (host_rd != sym_wr) { 6851 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6852 (int) sym_wr, (int) host_rd); 6853 err |= 2; 6854 }; 6855 if (sym_bk != sym_wr) { 6856 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6857 (int) sym_wr, (int) sym_bk); 6858 err |= 4; 6859 }; 6860 6861 return (err); 6862 } 6863 6864 /* 6865 * Determine the chip's clock frequency. 6866 * 6867 * This is essential for the negotiation of the synchronous 6868 * transfer rate. 6869 * 6870 * Note: we have to return the correct value. 6871 * THERE IS NO SAFE DEFAULT VALUE. 6872 * 6873 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6874 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6875 * do not have a clock doubler and so are provided with a 6876 * 80 MHz clock. All other fast20 boards incorporate a doubler 6877 * and so should be delivered with a 40 MHz clock. 6878 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6879 * clock and provide a clock quadrupler (160 Mhz). 6880 */ 6881 6882 /* 6883 * Select SCSI clock frequency 6884 */ 6885 static void sym_selectclock(hcb_p np, u_char scntl3) 6886 { 6887 /* 6888 * If multiplier not present or not selected, leave here. 6889 */ 6890 if (np->multiplier <= 1) { 6891 OUTB(nc_scntl3, scntl3); 6892 return; 6893 } 6894 6895 if (sym_verbose >= 2) 6896 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6897 6898 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6899 /* 6900 * Wait for the LCKFRQ bit to be set if supported by the chip. 6901 * Otherwise wait 20 micro-seconds. 6902 */ 6903 if (np->features & FE_LCKFRQ) { 6904 int i = 20; 6905 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6906 UDELAY (20); 6907 if (!i) 6908 printf("%s: the chip cannot lock the frequency\n", 6909 sym_name(np)); 6910 } else 6911 UDELAY (20); 6912 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6913 OUTB(nc_scntl3, scntl3); 6914 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6915 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6916 } 6917 6918 /* 6919 * calculate SCSI clock frequency (in KHz) 6920 */ 6921 static unsigned getfreq (hcb_p np, int gen) 6922 { 6923 unsigned int ms = 0; 6924 unsigned int f; 6925 6926 /* 6927 * Measure GEN timer delay in order 6928 * to calculate SCSI clock frequency 6929 * 6930 * This code will never execute too 6931 * many loop iterations (if DELAY is 6932 * reasonably correct). It could get 6933 * too low a delay (too high a freq.) 6934 * if the CPU is slow executing the 6935 * loop for some reason (an NMI, for 6936 * example). For this reason we will 6937 * if multiple measurements are to be 6938 * performed trust the higher delay 6939 * (lower frequency returned). 6940 */ 6941 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6942 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6943 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6944 (void) INW (nc_sist); /* another one, just to be sure :) */ 6945 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6946 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6947 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6948 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6949 UDELAY (1000); /* count ms */ 6950 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6951 /* 6952 * set prescaler to divide by whatever 0 means 6953 * 0 ought to choose divide by 2, but appears 6954 * to set divide by 3.5 mode in my 53c810 ... 6955 */ 6956 OUTB (nc_scntl3, 0); 6957 6958 /* 6959 * adjust for prescaler, and convert into KHz 6960 */ 6961 f = ms ? ((1 << gen) * 4340) / ms : 0; 6962 6963 if (sym_verbose >= 2) 6964 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6965 sym_name(np), gen, ms, f); 6966 6967 return f; 6968 } 6969 6970 static unsigned sym_getfreq (hcb_p np) 6971 { 6972 u_int f1, f2; 6973 int gen = 11; 6974 6975 (void) getfreq (np, gen); /* throw away first result */ 6976 f1 = getfreq (np, gen); 6977 f2 = getfreq (np, gen); 6978 if (f1 > f2) f1 = f2; /* trust lower result */ 6979 return f1; 6980 } 6981 6982 /* 6983 * Get/probe chip SCSI clock frequency 6984 */ 6985 static void sym_getclock (hcb_p np, int mult) 6986 { 6987 unsigned char scntl3 = np->sv_scntl3; 6988 unsigned char stest1 = np->sv_stest1; 6989 unsigned f1; 6990 6991 /* 6992 * For the C10 core, assume 40 MHz. 6993 */ 6994 if (np->features & FE_C10) { 6995 np->multiplier = mult; 6996 np->clock_khz = 40000 * mult; 6997 return; 6998 } 6999 7000 np->multiplier = 1; 7001 f1 = 40000; 7002 /* 7003 * True with 875/895/896/895A with clock multiplier selected 7004 */ 7005 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7006 if (sym_verbose >= 2) 7007 printf ("%s: clock multiplier found\n", sym_name(np)); 7008 np->multiplier = mult; 7009 } 7010 7011 /* 7012 * If multiplier not found or scntl3 not 7,5,3, 7013 * reset chip and get frequency from general purpose timer. 7014 * Otherwise trust scntl3 BIOS setting. 7015 */ 7016 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7017 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7018 f1 = sym_getfreq (np); 7019 7020 if (sym_verbose) 7021 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7022 7023 if (f1 < 45000) f1 = 40000; 7024 else if (f1 < 55000) f1 = 50000; 7025 else f1 = 80000; 7026 7027 if (f1 < 80000 && mult > 1) { 7028 if (sym_verbose >= 2) 7029 printf ("%s: clock multiplier assumed\n", 7030 sym_name(np)); 7031 np->multiplier = mult; 7032 } 7033 } else { 7034 if ((scntl3 & 7) == 3) f1 = 40000; 7035 else if ((scntl3 & 7) == 5) f1 = 80000; 7036 else f1 = 160000; 7037 7038 f1 /= np->multiplier; 7039 } 7040 7041 /* 7042 * Compute controller synchronous parameters. 7043 */ 7044 f1 *= np->multiplier; 7045 np->clock_khz = f1; 7046 } 7047 7048 /* 7049 * Get/probe PCI clock frequency 7050 */ 7051 static int sym_getpciclock (hcb_p np) 7052 { 7053 int f = 0; 7054 7055 /* 7056 * For the C1010-33, this doesn't work. 7057 * For the C1010-66, this will be tested when I'll have 7058 * such a beast to play with. 7059 */ 7060 if (!(np->features & FE_C10)) { 7061 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7062 f = (int) sym_getfreq (np); 7063 OUTB (nc_stest1, 0); 7064 } 7065 np->pciclk_khz = f; 7066 7067 return f; 7068 } 7069 7070 /*============= DRIVER ACTION/COMPLETION ====================*/ 7071 7072 /* 7073 * Print something that tells about extended errors. 7074 */ 7075 static void sym_print_xerr(ccb_p cp, int x_status) 7076 { 7077 if (x_status & XE_PARITY_ERR) { 7078 PRINT_ADDR(cp); 7079 printf ("unrecovered SCSI parity error.\n"); 7080 } 7081 if (x_status & XE_EXTRA_DATA) { 7082 PRINT_ADDR(cp); 7083 printf ("extraneous data discarded.\n"); 7084 } 7085 if (x_status & XE_BAD_PHASE) { 7086 PRINT_ADDR(cp); 7087 printf ("illegal scsi phase (4/5).\n"); 7088 } 7089 if (x_status & XE_SODL_UNRUN) { 7090 PRINT_ADDR(cp); 7091 printf ("ODD transfer in DATA OUT phase.\n"); 7092 } 7093 if (x_status & XE_SWIDE_OVRUN) { 7094 PRINT_ADDR(cp); 7095 printf ("ODD transfer in DATA IN phase.\n"); 7096 } 7097 } 7098 7099 /* 7100 * Choose the more appropriate CAM status if 7101 * the IO encountered an extended error. 7102 */ 7103 static int sym_xerr_cam_status(int cam_status, int x_status) 7104 { 7105 if (x_status) { 7106 if (x_status & XE_PARITY_ERR) 7107 cam_status = CAM_UNCOR_PARITY; 7108 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7109 cam_status = CAM_DATA_RUN_ERR; 7110 else if (x_status & XE_BAD_PHASE) 7111 cam_status = CAM_REQ_CMP_ERR; 7112 else 7113 cam_status = CAM_REQ_CMP_ERR; 7114 } 7115 return cam_status; 7116 } 7117 7118 /* 7119 * Complete execution of a SCSI command with extented 7120 * error, SCSI status error, or having been auto-sensed. 7121 * 7122 * The SCRIPTS processor is not running there, so we 7123 * can safely access IO registers and remove JOBs from 7124 * the START queue. 7125 * SCRATCHA is assumed to have been loaded with STARTPOS 7126 * before the SCRIPTS called the C code. 7127 */ 7128 static void sym_complete_error (hcb_p np, ccb_p cp) 7129 { 7130 struct ccb_scsiio *csio; 7131 u_int cam_status; 7132 int i, sense_returned; 7133 7134 SYM_LOCK_ASSERT(MA_OWNED); 7135 7136 /* 7137 * Paranoid check. :) 7138 */ 7139 if (!cp || !cp->cam_ccb) 7140 return; 7141 7142 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7143 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7144 cp->host_status, cp->ssss_status, cp->host_flags, 7145 cp->target, cp->lun); 7146 MDELAY(100); 7147 } 7148 7149 /* 7150 * Get CAM command pointer. 7151 */ 7152 csio = &cp->cam_ccb->csio; 7153 7154 /* 7155 * Check for extended errors. 7156 */ 7157 if (cp->xerr_status) { 7158 if (sym_verbose) 7159 sym_print_xerr(cp, cp->xerr_status); 7160 if (cp->host_status == HS_COMPLETE) 7161 cp->host_status = HS_COMP_ERR; 7162 } 7163 7164 /* 7165 * Calculate the residual. 7166 */ 7167 csio->sense_resid = 0; 7168 csio->resid = sym_compute_residual(np, cp); 7169 7170 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7171 csio->resid = 0; /* throw them away. :) */ 7172 cp->sv_resid = 0; 7173 } 7174 7175 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7176 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7177 csio->sense_resid = csio->resid; /* Swap residuals */ 7178 csio->resid = cp->sv_resid; 7179 cp->sv_resid = 0; 7180 if (sym_verbose && cp->sv_xerr_status) 7181 sym_print_xerr(cp, cp->sv_xerr_status); 7182 if (cp->host_status == HS_COMPLETE && 7183 cp->ssss_status == S_GOOD && 7184 cp->xerr_status == 0) { 7185 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7186 cp->sv_xerr_status); 7187 cam_status |= CAM_AUTOSNS_VALID; 7188 /* 7189 * Bounce back the sense data to user and 7190 * fix the residual. 7191 */ 7192 bzero(&csio->sense_data, sizeof(csio->sense_data)); 7193 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid; 7194 if (sense_returned < csio->sense_len) 7195 csio->sense_resid = csio->sense_len - 7196 sense_returned; 7197 else 7198 csio->sense_resid = 0; 7199 bcopy(cp->sns_bbuf, &csio->sense_data, 7200 MIN(csio->sense_len, sense_returned)); 7201 #if 0 7202 /* 7203 * If the device reports a UNIT ATTENTION condition 7204 * due to a RESET condition, we should consider all 7205 * disconnect CCBs for this unit as aborted. 7206 */ 7207 if (1) { 7208 u_char *p; 7209 p = (u_char *) csio->sense_data; 7210 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7211 sym_clear_tasks(np, CAM_REQ_ABORTED, 7212 cp->target,cp->lun, -1); 7213 } 7214 #endif 7215 } 7216 else 7217 cam_status = CAM_AUTOSENSE_FAIL; 7218 } 7219 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7220 csio->scsi_status = cp->ssss_status; 7221 cam_status = CAM_SCSI_STATUS_ERROR; 7222 } 7223 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7224 cam_status = CAM_SEL_TIMEOUT; 7225 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7226 cam_status = CAM_UNEXP_BUSFREE; 7227 else { /* Extended error */ 7228 if (sym_verbose) { 7229 PRINT_ADDR(cp); 7230 printf ("COMMAND FAILED (%x %x %x).\n", 7231 cp->host_status, cp->ssss_status, 7232 cp->xerr_status); 7233 } 7234 csio->scsi_status = cp->ssss_status; 7235 /* 7236 * Set the most appropriate value for CAM status. 7237 */ 7238 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7239 cp->xerr_status); 7240 } 7241 7242 /* 7243 * Dequeue all queued CCBs for that device 7244 * not yet started by SCRIPTS. 7245 */ 7246 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7247 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7248 7249 /* 7250 * Restart the SCRIPTS processor. 7251 */ 7252 OUTL_DSP (SCRIPTA_BA (np, start)); 7253 7254 /* 7255 * Synchronize DMA map if needed. 7256 */ 7257 if (cp->dmamapped) { 7258 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7259 (cp->dmamapped == SYM_DMA_READ ? 7260 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7261 } 7262 /* 7263 * Add this one to the COMP queue. 7264 * Complete all those commands with either error 7265 * or requeue condition. 7266 */ 7267 sym_set_cam_status((union ccb *) csio, cam_status); 7268 sym_remque(&cp->link_ccbq); 7269 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7270 sym_flush_comp_queue(np, 0); 7271 } 7272 7273 /* 7274 * Complete execution of a successful SCSI command. 7275 * 7276 * Only successful commands go to the DONE queue, 7277 * since we need to have the SCRIPTS processor 7278 * stopped on any error condition. 7279 * The SCRIPTS processor is running while we are 7280 * completing successful commands. 7281 */ 7282 static void sym_complete_ok (hcb_p np, ccb_p cp) 7283 { 7284 struct ccb_scsiio *csio; 7285 tcb_p tp; 7286 lcb_p lp; 7287 7288 SYM_LOCK_ASSERT(MA_OWNED); 7289 7290 /* 7291 * Paranoid check. :) 7292 */ 7293 if (!cp || !cp->cam_ccb) 7294 return; 7295 assert (cp->host_status == HS_COMPLETE); 7296 7297 /* 7298 * Get command, target and lun pointers. 7299 */ 7300 csio = &cp->cam_ccb->csio; 7301 tp = &np->target[cp->target]; 7302 lp = sym_lp(np, tp, cp->lun); 7303 7304 /* 7305 * Assume device discovered on first success. 7306 */ 7307 if (!lp) 7308 sym_set_bit(tp->lun_map, cp->lun); 7309 7310 /* 7311 * If all data have been transferred, given than no 7312 * extended error did occur, there is no residual. 7313 */ 7314 csio->resid = 0; 7315 if (cp->phys.head.lastp != cp->phys.head.goalp) 7316 csio->resid = sym_compute_residual(np, cp); 7317 7318 /* 7319 * Wrong transfer residuals may be worse than just always 7320 * returning zero. User can disable this feature from 7321 * sym_conf.h. Residual support is enabled by default. 7322 */ 7323 if (!SYM_CONF_RESIDUAL_SUPPORT) 7324 csio->resid = 0; 7325 7326 /* 7327 * Synchronize DMA map if needed. 7328 */ 7329 if (cp->dmamapped) { 7330 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7331 (cp->dmamapped == SYM_DMA_READ ? 7332 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7333 } 7334 /* 7335 * Set status and complete the command. 7336 */ 7337 csio->scsi_status = cp->ssss_status; 7338 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7339 sym_xpt_done(np, (union ccb *) csio, cp); 7340 sym_free_ccb(np, cp); 7341 } 7342 7343 /* 7344 * Our callout handler 7345 */ 7346 static void sym_callout(void *arg) 7347 { 7348 union ccb *ccb = (union ccb *) arg; 7349 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7350 7351 /* 7352 * Check that the CAM CCB is still queued. 7353 */ 7354 if (!np) 7355 return; 7356 7357 SYM_LOCK(); 7358 7359 switch(ccb->ccb_h.func_code) { 7360 case XPT_SCSI_IO: 7361 (void) sym_abort_scsiio(np, ccb, 1); 7362 break; 7363 default: 7364 break; 7365 } 7366 7367 SYM_UNLOCK(); 7368 } 7369 7370 /* 7371 * Abort an SCSI IO. 7372 */ 7373 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7374 { 7375 ccb_p cp; 7376 SYM_QUEHEAD *qp; 7377 7378 SYM_LOCK_ASSERT(MA_OWNED); 7379 7380 /* 7381 * Look up our CCB control block. 7382 */ 7383 cp = NULL; 7384 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7385 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7386 if (cp2->cam_ccb == ccb) { 7387 cp = cp2; 7388 break; 7389 } 7390 } 7391 if (!cp || cp->host_status == HS_WAIT) 7392 return -1; 7393 7394 /* 7395 * If a previous abort didn't succeed in time, 7396 * perform a BUS reset. 7397 */ 7398 if (cp->to_abort) { 7399 sym_reset_scsi_bus(np, 1); 7400 return 0; 7401 } 7402 7403 /* 7404 * Mark the CCB for abort and allow time for. 7405 */ 7406 cp->to_abort = timed_out ? 2 : 1; 7407 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7408 7409 /* 7410 * Tell the SCRIPTS processor to stop and synchronize with us. 7411 */ 7412 np->istat_sem = SEM; 7413 OUTB (nc_istat, SIGP|SEM); 7414 return 0; 7415 } 7416 7417 /* 7418 * Reset a SCSI device (all LUNs of a target). 7419 */ 7420 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7421 { 7422 tcb_p tp; 7423 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7424 7425 SYM_LOCK_ASSERT(MA_OWNED); 7426 7427 if (ccb_h->target_id == np->myaddr || 7428 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7429 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7430 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7431 return; 7432 } 7433 7434 tp = &np->target[ccb_h->target_id]; 7435 7436 tp->to_reset = 1; 7437 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7438 7439 np->istat_sem = SEM; 7440 OUTB (nc_istat, SIGP|SEM); 7441 } 7442 7443 /* 7444 * SIM action entry point. 7445 */ 7446 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7447 { 7448 hcb_p np; 7449 tcb_p tp; 7450 lcb_p lp; 7451 ccb_p cp; 7452 int tmp; 7453 u_char idmsg, *msgptr; 7454 u_int msglen; 7455 struct ccb_scsiio *csio; 7456 struct ccb_hdr *ccb_h; 7457 7458 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7459 7460 /* 7461 * Retrieve our controller data structure. 7462 */ 7463 np = (hcb_p) cam_sim_softc(sim); 7464 7465 SYM_LOCK_ASSERT(MA_OWNED); 7466 7467 /* 7468 * The common case is SCSI IO. 7469 * We deal with other ones elsewhere. 7470 */ 7471 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7472 sym_action2(sim, ccb); 7473 return; 7474 } 7475 csio = &ccb->csio; 7476 ccb_h = &csio->ccb_h; 7477 7478 /* 7479 * Work around races. 7480 */ 7481 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7482 xpt_done(ccb); 7483 return; 7484 } 7485 7486 /* 7487 * Minimal checkings, so that we will not 7488 * go outside our tables. 7489 */ 7490 if (ccb_h->target_id == np->myaddr || 7491 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7492 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7493 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7494 return; 7495 } 7496 7497 /* 7498 * Retrieve the target and lun descriptors. 7499 */ 7500 tp = &np->target[ccb_h->target_id]; 7501 lp = sym_lp(np, tp, ccb_h->target_lun); 7502 7503 /* 7504 * Complete the 1st INQUIRY command with error 7505 * condition if the device is flagged NOSCAN 7506 * at BOOT in the NVRAM. This may speed up 7507 * the boot and maintain coherency with BIOS 7508 * device numbering. Clearing the flag allows 7509 * user to rescan skipped devices later. 7510 * We also return error for devices not flagged 7511 * for SCAN LUNS in the NVRAM since some mono-lun 7512 * devices behave badly when asked for some non 7513 * zero LUN. Btw, this is an absolute hack.:-) 7514 */ 7515 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7516 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7517 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7518 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7519 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7520 ccb_h->target_lun != 0)) { 7521 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7522 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7523 return; 7524 } 7525 } 7526 7527 /* 7528 * Get a control block for this IO. 7529 */ 7530 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7531 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7532 if (!cp) { 7533 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7534 return; 7535 } 7536 7537 /* 7538 * Keep track of the IO in our CCB. 7539 */ 7540 cp->cam_ccb = ccb; 7541 7542 /* 7543 * Build the IDENTIFY message. 7544 */ 7545 idmsg = M_IDENTIFY | cp->lun; 7546 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7547 idmsg |= 0x40; 7548 7549 msgptr = cp->scsi_smsg; 7550 msglen = 0; 7551 msgptr[msglen++] = idmsg; 7552 7553 /* 7554 * Build the tag message if present. 7555 */ 7556 if (cp->tag != NO_TAG) { 7557 u_char order = csio->tag_action; 7558 7559 switch(order) { 7560 case M_ORDERED_TAG: 7561 break; 7562 case M_HEAD_TAG: 7563 break; 7564 default: 7565 order = M_SIMPLE_TAG; 7566 } 7567 msgptr[msglen++] = order; 7568 7569 /* 7570 * For less than 128 tags, actual tags are numbered 7571 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7572 * with devices that have problems with #TAG 0 or too 7573 * great #TAG numbers. For more tags (up to 256), 7574 * we use directly our tag number. 7575 */ 7576 #if SYM_CONF_MAX_TASK > (512/4) 7577 msgptr[msglen++] = cp->tag; 7578 #else 7579 msgptr[msglen++] = (cp->tag << 1) + 1; 7580 #endif 7581 } 7582 7583 /* 7584 * Build a negotiation message if needed. 7585 * (nego_status is filled by sym_prepare_nego()) 7586 */ 7587 cp->nego_status = 0; 7588 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7589 tp->tinfo.current.period != tp->tinfo.goal.period || 7590 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7591 tp->tinfo.current.options != tp->tinfo.goal.options) { 7592 if (!tp->nego_cp && lp) 7593 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7594 } 7595 7596 /* 7597 * Fill in our ccb 7598 */ 7599 7600 /* 7601 * Startqueue 7602 */ 7603 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7604 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7605 7606 /* 7607 * select 7608 */ 7609 cp->phys.select.sel_id = cp->target; 7610 cp->phys.select.sel_scntl3 = tp->head.wval; 7611 cp->phys.select.sel_sxfer = tp->head.sval; 7612 cp->phys.select.sel_scntl4 = tp->head.uval; 7613 7614 /* 7615 * message 7616 */ 7617 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7618 cp->phys.smsg.size = cpu_to_scr(msglen); 7619 7620 /* 7621 * command 7622 */ 7623 if (sym_setup_cdb(np, csio, cp) < 0) { 7624 sym_xpt_done(np, ccb, cp); 7625 sym_free_ccb(np, cp); 7626 return; 7627 } 7628 7629 /* 7630 * status 7631 */ 7632 #if 0 /* Provision */ 7633 cp->actualquirks = tp->quirks; 7634 #endif 7635 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7636 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7637 cp->ssss_status = S_ILLEGAL; 7638 cp->xerr_status = 0; 7639 cp->host_flags = 0; 7640 cp->extra_bytes = 0; 7641 7642 /* 7643 * extreme data pointer. 7644 * shall be positive, so -1 is lower than lowest.:) 7645 */ 7646 cp->ext_sg = -1; 7647 cp->ext_ofs = 0; 7648 7649 /* 7650 * Build the data descriptor block 7651 * and start the IO. 7652 */ 7653 sym_setup_data_and_start(np, csio, cp); 7654 } 7655 7656 /* 7657 * Setup buffers and pointers that address the CDB. 7658 * I bet, physical CDBs will never be used on the planet, 7659 * since they can be bounced without significant overhead. 7660 */ 7661 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7662 { 7663 struct ccb_hdr *ccb_h; 7664 u32 cmd_ba; 7665 int cmd_len; 7666 7667 SYM_LOCK_ASSERT(MA_OWNED); 7668 7669 ccb_h = &csio->ccb_h; 7670 7671 /* 7672 * CDB is 16 bytes max. 7673 */ 7674 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7675 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7676 return -1; 7677 } 7678 cmd_len = csio->cdb_len; 7679 7680 if (ccb_h->flags & CAM_CDB_POINTER) { 7681 /* CDB is a pointer */ 7682 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7683 /* CDB pointer is virtual */ 7684 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7685 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7686 } else { 7687 /* CDB pointer is physical */ 7688 #if 0 7689 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7690 #else 7691 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7692 return -1; 7693 #endif 7694 } 7695 } else { 7696 /* CDB is in the CAM ccb (buffer) */ 7697 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7698 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7699 } 7700 7701 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7702 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7703 7704 return 0; 7705 } 7706 7707 /* 7708 * Set up data pointers used by SCRIPTS. 7709 */ 7710 static void __inline 7711 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7712 { 7713 u32 lastp, goalp; 7714 7715 SYM_LOCK_ASSERT(MA_OWNED); 7716 7717 /* 7718 * No segments means no data. 7719 */ 7720 if (!cp->segments) 7721 dir = CAM_DIR_NONE; 7722 7723 /* 7724 * Set the data pointer. 7725 */ 7726 switch(dir) { 7727 case CAM_DIR_OUT: 7728 goalp = SCRIPTA_BA (np, data_out2) + 8; 7729 lastp = goalp - 8 - (cp->segments * (2*4)); 7730 break; 7731 case CAM_DIR_IN: 7732 cp->host_flags |= HF_DATA_IN; 7733 goalp = SCRIPTA_BA (np, data_in2) + 8; 7734 lastp = goalp - 8 - (cp->segments * (2*4)); 7735 break; 7736 case CAM_DIR_NONE: 7737 default: 7738 lastp = goalp = SCRIPTB_BA (np, no_data); 7739 break; 7740 } 7741 7742 cp->phys.head.lastp = cpu_to_scr(lastp); 7743 cp->phys.head.goalp = cpu_to_scr(goalp); 7744 cp->phys.head.savep = cpu_to_scr(lastp); 7745 cp->startp = cp->phys.head.savep; 7746 } 7747 7748 /* 7749 * Call back routine for the DMA map service. 7750 * If bounce buffers are used (why ?), we may sleep and then 7751 * be called there in another context. 7752 */ 7753 static void 7754 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7755 { 7756 ccb_p cp; 7757 hcb_p np; 7758 union ccb *ccb; 7759 7760 cp = (ccb_p) arg; 7761 ccb = cp->cam_ccb; 7762 np = (hcb_p) cp->arg; 7763 7764 SYM_LOCK_ASSERT(MA_OWNED); 7765 7766 /* 7767 * Deal with weird races. 7768 */ 7769 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7770 goto out_abort; 7771 7772 /* 7773 * Deal with weird errors. 7774 */ 7775 if (error) { 7776 cp->dmamapped = 0; 7777 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7778 goto out_abort; 7779 } 7780 7781 /* 7782 * Build the data descriptor for the chip. 7783 */ 7784 if (nsegs) { 7785 int retv; 7786 /* 896 rev 1 requires to be careful about boundaries */ 7787 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7788 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7789 else 7790 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7791 if (retv < 0) { 7792 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7793 goto out_abort; 7794 } 7795 } 7796 7797 /* 7798 * Synchronize the DMA map only if we have 7799 * actually mapped the data. 7800 */ 7801 if (cp->dmamapped) { 7802 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7803 (cp->dmamapped == SYM_DMA_READ ? 7804 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7805 } 7806 7807 /* 7808 * Set host status to busy state. 7809 * May have been set back to HS_WAIT to avoid a race. 7810 */ 7811 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7812 7813 /* 7814 * Set data pointers. 7815 */ 7816 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7817 7818 /* 7819 * Enqueue this IO in our pending queue. 7820 */ 7821 sym_enqueue_cam_ccb(cp); 7822 7823 /* 7824 * When `#ifed 1', the code below makes the driver 7825 * panic on the first attempt to write to a SCSI device. 7826 * It is the first test we want to do after a driver 7827 * change that does not seem obviously safe. :) 7828 */ 7829 #if 0 7830 switch (cp->cdb_buf[0]) { 7831 case 0x0A: case 0x2A: case 0xAA: 7832 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7833 MDELAY(10000); 7834 break; 7835 default: 7836 break; 7837 } 7838 #endif 7839 /* 7840 * Activate this job. 7841 */ 7842 sym_put_start_queue(np, cp); 7843 return; 7844 out_abort: 7845 sym_xpt_done(np, ccb, cp); 7846 sym_free_ccb(np, cp); 7847 } 7848 7849 /* 7850 * How complex it gets to deal with the data in CAM. 7851 * The Bus Dma stuff makes things still more complex. 7852 */ 7853 static void 7854 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7855 { 7856 struct ccb_hdr *ccb_h; 7857 int dir, retv; 7858 7859 SYM_LOCK_ASSERT(MA_OWNED); 7860 7861 ccb_h = &csio->ccb_h; 7862 7863 /* 7864 * Now deal with the data. 7865 */ 7866 cp->data_len = csio->dxfer_len; 7867 cp->arg = np; 7868 7869 /* 7870 * No direction means no data. 7871 */ 7872 dir = (ccb_h->flags & CAM_DIR_MASK); 7873 if (dir == CAM_DIR_NONE) { 7874 sym_execute_ccb(cp, NULL, 0, 0); 7875 return; 7876 } 7877 7878 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 7879 /* Single buffer */ 7880 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7881 /* Buffer is virtual */ 7882 cp->dmamapped = (dir == CAM_DIR_IN) ? 7883 SYM_DMA_READ : SYM_DMA_WRITE; 7884 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 7885 csio->data_ptr, csio->dxfer_len, 7886 sym_execute_ccb, cp, 0); 7887 if (retv == EINPROGRESS) { 7888 cp->host_status = HS_WAIT; 7889 xpt_freeze_simq(np->sim, 1); 7890 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7891 } 7892 } else { 7893 /* Buffer is physical */ 7894 struct bus_dma_segment seg; 7895 7896 seg.ds_addr = (bus_addr_t) csio->data_ptr; 7897 sym_execute_ccb(cp, &seg, 1, 0); 7898 } 7899 } else { 7900 /* Scatter/gather list */ 7901 struct bus_dma_segment *segs; 7902 7903 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 7904 /* The SG list pointer is physical */ 7905 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7906 goto out_abort; 7907 } 7908 7909 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7910 /* SG buffer pointers are virtual */ 7911 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7912 goto out_abort; 7913 } 7914 7915 /* SG buffer pointers are physical */ 7916 segs = (struct bus_dma_segment *)csio->data_ptr; 7917 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 7918 } 7919 return; 7920 out_abort: 7921 sym_xpt_done(np, (union ccb *) csio, cp); 7922 sym_free_ccb(np, cp); 7923 } 7924 7925 /* 7926 * Move the scatter list to our data block. 7927 */ 7928 static int 7929 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7930 bus_dma_segment_t *psegs, int nsegs) 7931 { 7932 struct sym_tblmove *data; 7933 bus_dma_segment_t *psegs2; 7934 7935 SYM_LOCK_ASSERT(MA_OWNED); 7936 7937 if (nsegs > SYM_CONF_MAX_SG) 7938 return -1; 7939 7940 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7941 psegs2 = &psegs[nsegs-1]; 7942 cp->segments = nsegs; 7943 7944 while (1) { 7945 data->addr = cpu_to_scr(psegs2->ds_addr); 7946 data->size = cpu_to_scr(psegs2->ds_len); 7947 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7948 printf ("%s scatter: paddr=%lx len=%ld\n", 7949 sym_name(np), (long) psegs2->ds_addr, 7950 (long) psegs2->ds_len); 7951 } 7952 if (psegs2 != psegs) { 7953 --data; 7954 --psegs2; 7955 continue; 7956 } 7957 break; 7958 } 7959 return 0; 7960 } 7961 7962 /* 7963 * Scatter a SG list with physical addresses into bus addressable chunks. 7964 */ 7965 static int 7966 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7967 { 7968 u_long ps, pe, pn; 7969 u_long k; 7970 int s, t; 7971 7972 SYM_LOCK_ASSERT(MA_OWNED); 7973 7974 s = SYM_CONF_MAX_SG - 1; 7975 t = nsegs - 1; 7976 ps = psegs[t].ds_addr; 7977 pe = ps + psegs[t].ds_len; 7978 7979 while (s >= 0) { 7980 pn = (pe - 1) & ~(SYM_CONF_DMA_BOUNDARY - 1); 7981 if (pn <= ps) 7982 pn = ps; 7983 k = pe - pn; 7984 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7985 printf ("%s scatter: paddr=%lx len=%ld\n", 7986 sym_name(np), pn, k); 7987 } 7988 cp->phys.data[s].addr = cpu_to_scr(pn); 7989 cp->phys.data[s].size = cpu_to_scr(k); 7990 --s; 7991 if (pn == ps) { 7992 if (--t < 0) 7993 break; 7994 ps = psegs[t].ds_addr; 7995 pe = ps + psegs[t].ds_len; 7996 } 7997 else 7998 pe = pn; 7999 } 8000 8001 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8002 8003 return t >= 0 ? -1 : 0; 8004 } 8005 8006 /* 8007 * SIM action for non performance critical stuff. 8008 */ 8009 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8010 { 8011 union ccb *abort_ccb; 8012 struct ccb_hdr *ccb_h; 8013 struct ccb_pathinq *cpi; 8014 struct ccb_trans_settings *cts; 8015 struct sym_trans *tip; 8016 hcb_p np; 8017 tcb_p tp; 8018 lcb_p lp; 8019 u_char dflags; 8020 8021 /* 8022 * Retrieve our controller data structure. 8023 */ 8024 np = (hcb_p) cam_sim_softc(sim); 8025 8026 SYM_LOCK_ASSERT(MA_OWNED); 8027 8028 ccb_h = &ccb->ccb_h; 8029 8030 switch (ccb_h->func_code) { 8031 case XPT_SET_TRAN_SETTINGS: 8032 cts = &ccb->cts; 8033 tp = &np->target[ccb_h->target_id]; 8034 8035 /* 8036 * Update SPI transport settings in TARGET control block. 8037 * Update SCSI device settings in LUN control block. 8038 */ 8039 lp = sym_lp(np, tp, ccb_h->target_lun); 8040 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8041 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8042 if (lp) 8043 sym_update_dflags(np, &lp->current_flags, cts); 8044 } 8045 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8046 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8047 if (lp) 8048 sym_update_dflags(np, &lp->user_flags, cts); 8049 } 8050 8051 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8052 break; 8053 case XPT_GET_TRAN_SETTINGS: 8054 cts = &ccb->cts; 8055 tp = &np->target[ccb_h->target_id]; 8056 lp = sym_lp(np, tp, ccb_h->target_lun); 8057 8058 #define cts__scsi (&cts->proto_specific.scsi) 8059 #define cts__spi (&cts->xport_specific.spi) 8060 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8061 tip = &tp->tinfo.current; 8062 dflags = lp ? lp->current_flags : 0; 8063 } 8064 else { 8065 tip = &tp->tinfo.user; 8066 dflags = lp ? lp->user_flags : tp->usrflags; 8067 } 8068 8069 cts->protocol = PROTO_SCSI; 8070 cts->transport = XPORT_SPI; 8071 cts->protocol_version = tip->scsi_version; 8072 cts->transport_version = tip->spi_version; 8073 8074 cts__spi->sync_period = tip->period; 8075 cts__spi->sync_offset = tip->offset; 8076 cts__spi->bus_width = tip->width; 8077 cts__spi->ppr_options = tip->options; 8078 8079 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8080 | CTS_SPI_VALID_SYNC_OFFSET 8081 | CTS_SPI_VALID_BUS_WIDTH 8082 | CTS_SPI_VALID_PPR_OPTIONS; 8083 8084 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8085 if (dflags & SYM_DISC_ENABLED) 8086 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8087 cts__spi->valid |= CTS_SPI_VALID_DISC; 8088 8089 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8090 if (dflags & SYM_TAGS_ENABLED) 8091 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8092 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8093 #undef cts__spi 8094 #undef cts__scsi 8095 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8096 break; 8097 case XPT_CALC_GEOMETRY: 8098 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8099 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8100 break; 8101 case XPT_PATH_INQ: 8102 cpi = &ccb->cpi; 8103 cpi->version_num = 1; 8104 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8105 if ((np->features & FE_WIDE) != 0) 8106 cpi->hba_inquiry |= PI_WIDE_16; 8107 cpi->target_sprt = 0; 8108 cpi->hba_misc = 0; 8109 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8110 cpi->hba_misc |= PIM_SCANHILO; 8111 if (np->usrflags & SYM_AVOID_BUS_RESET) 8112 cpi->hba_misc |= PIM_NOBUSRESET; 8113 cpi->hba_eng_cnt = 0; 8114 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8115 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8116 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8117 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8118 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8119 cpi->bus_id = cam_sim_bus(sim); 8120 cpi->initiator_id = np->myaddr; 8121 cpi->base_transfer_speed = 3300; 8122 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8123 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8124 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8125 cpi->unit_number = cam_sim_unit(sim); 8126 8127 cpi->protocol = PROTO_SCSI; 8128 cpi->protocol_version = SCSI_REV_2; 8129 cpi->transport = XPORT_SPI; 8130 cpi->transport_version = 2; 8131 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8132 if (np->features & FE_ULTRA3) { 8133 cpi->transport_version = 3; 8134 cpi->xport_specific.spi.ppr_options = 8135 SID_SPI_CLOCK_DT_ST; 8136 } 8137 cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE; 8138 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8139 break; 8140 case XPT_ABORT: 8141 abort_ccb = ccb->cab.abort_ccb; 8142 switch(abort_ccb->ccb_h.func_code) { 8143 case XPT_SCSI_IO: 8144 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8145 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8146 break; 8147 } 8148 default: 8149 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8150 break; 8151 } 8152 break; 8153 case XPT_RESET_DEV: 8154 sym_reset_dev(np, ccb); 8155 break; 8156 case XPT_RESET_BUS: 8157 sym_reset_scsi_bus(np, 0); 8158 if (sym_verbose) { 8159 xpt_print_path(np->path); 8160 printf("SCSI BUS reset delivered.\n"); 8161 } 8162 sym_init (np, 1); 8163 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8164 break; 8165 case XPT_ACCEPT_TARGET_IO: 8166 case XPT_CONT_TARGET_IO: 8167 case XPT_EN_LUN: 8168 case XPT_NOTIFY_ACK: 8169 case XPT_IMMED_NOTIFY: 8170 case XPT_TERM_IO: 8171 default: 8172 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8173 break; 8174 } 8175 } 8176 8177 /* 8178 * Asynchronous notification handler. 8179 */ 8180 static void 8181 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8182 { 8183 hcb_p np; 8184 struct cam_sim *sim; 8185 u_int tn; 8186 tcb_p tp; 8187 8188 sim = (struct cam_sim *) cb_arg; 8189 np = (hcb_p) cam_sim_softc(sim); 8190 8191 SYM_LOCK_ASSERT(MA_OWNED); 8192 8193 switch (code) { 8194 case AC_LOST_DEVICE: 8195 tn = xpt_path_target_id(path); 8196 if (tn >= SYM_CONF_MAX_TARGET) 8197 break; 8198 8199 tp = &np->target[tn]; 8200 8201 tp->to_reset = 0; 8202 tp->head.sval = 0; 8203 tp->head.wval = np->rv_scntl3; 8204 tp->head.uval = 0; 8205 8206 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8207 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8208 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8209 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8210 8211 break; 8212 default: 8213 break; 8214 } 8215 } 8216 8217 /* 8218 * Update transfer settings of a target. 8219 */ 8220 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8221 struct ccb_trans_settings *cts) 8222 { 8223 SYM_LOCK_ASSERT(MA_OWNED); 8224 8225 /* 8226 * Update the infos. 8227 */ 8228 #define cts__spi (&cts->xport_specific.spi) 8229 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8230 tip->width = cts__spi->bus_width; 8231 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8232 tip->offset = cts__spi->sync_offset; 8233 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8234 tip->period = cts__spi->sync_period; 8235 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8236 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8237 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8238 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8239 tip->scsi_version = cts->protocol_version; 8240 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8241 cts->transport_version != XPORT_VERSION_UNKNOWN) 8242 tip->spi_version = cts->transport_version; 8243 #undef cts__spi 8244 /* 8245 * Scale against driver configuration limits. 8246 */ 8247 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8248 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8249 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8250 8251 /* 8252 * Scale against actual controller BUS width. 8253 */ 8254 if (tip->width > np->maxwide) 8255 tip->width = np->maxwide; 8256 8257 /* 8258 * Only accept DT if controller supports and SYNC/WIDE asked. 8259 */ 8260 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8261 !(tip->width == BUS_16_BIT && tip->offset)) { 8262 tip->options &= ~PPR_OPT_DT; 8263 } 8264 8265 /* 8266 * Scale period factor and offset against controller limits. 8267 */ 8268 if (tip->options & PPR_OPT_DT) { 8269 if (tip->period < np->minsync_dt) 8270 tip->period = np->minsync_dt; 8271 if (tip->period > np->maxsync_dt) 8272 tip->period = np->maxsync_dt; 8273 if (tip->offset > np->maxoffs_dt) 8274 tip->offset = np->maxoffs_dt; 8275 } 8276 else { 8277 if (tip->period < np->minsync) 8278 tip->period = np->minsync; 8279 if (tip->period > np->maxsync) 8280 tip->period = np->maxsync; 8281 if (tip->offset > np->maxoffs) 8282 tip->offset = np->maxoffs; 8283 } 8284 } 8285 8286 /* 8287 * Update flags for a device (logical unit). 8288 */ 8289 static void 8290 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8291 { 8292 SYM_LOCK_ASSERT(MA_OWNED); 8293 8294 #define cts__scsi (&cts->proto_specific.scsi) 8295 #define cts__spi (&cts->xport_specific.spi) 8296 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8297 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8298 *flags |= SYM_DISC_ENABLED; 8299 else 8300 *flags &= ~SYM_DISC_ENABLED; 8301 } 8302 8303 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8304 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8305 *flags |= SYM_TAGS_ENABLED; 8306 else 8307 *flags &= ~SYM_TAGS_ENABLED; 8308 } 8309 #undef cts__spi 8310 #undef cts__scsi 8311 } 8312 8313 /*============= DRIVER INITIALISATION ==================*/ 8314 8315 static device_method_t sym_pci_methods[] = { 8316 DEVMETHOD(device_probe, sym_pci_probe), 8317 DEVMETHOD(device_attach, sym_pci_attach), 8318 DEVMETHOD_END 8319 }; 8320 8321 static driver_t sym_pci_driver = { 8322 "sym", 8323 sym_pci_methods, 8324 1 /* no softc */ 8325 }; 8326 8327 static devclass_t sym_devclass; 8328 8329 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL); 8330 MODULE_DEPEND(sym, cam, 1, 1, 1); 8331 MODULE_DEPEND(sym, pci, 1, 1, 1); 8332 8333 static const struct sym_pci_chip sym_pci_dev_table[] = { 8334 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8335 FE_ERL} 8336 , 8337 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8338 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8339 FE_BOF} 8340 , 8341 #else 8342 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8343 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8344 , 8345 #endif 8346 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8347 FE_BOF|FE_ERL} 8348 , 8349 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8350 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8351 , 8352 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8353 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8354 , 8355 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8356 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8357 , 8358 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8359 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8360 FE_RAM|FE_DIFF} 8361 , 8362 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8363 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8364 FE_RAM|FE_DIFF} 8365 , 8366 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8367 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8368 FE_RAM|FE_DIFF} 8369 , 8370 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8371 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8372 FE_RAM|FE_DIFF} 8373 , 8374 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8375 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8376 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8377 FE_RAM|FE_LCKFRQ} 8378 , 8379 #else 8380 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8381 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8382 FE_RAM|FE_LCKFRQ} 8383 , 8384 #endif 8385 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8386 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8387 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8388 , 8389 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8390 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8391 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8392 , 8393 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8394 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8395 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8396 FE_C10} 8397 , 8398 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8399 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8400 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8401 FE_C10|FE_U3EN} 8402 , 8403 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8404 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8405 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8406 FE_C10|FE_U3EN} 8407 , 8408 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8409 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8410 FE_RAM|FE_IO256|FE_LEDC} 8411 }; 8412 8413 /* 8414 * Look up the chip table. 8415 * 8416 * Return a pointer to the chip entry if found, 8417 * zero otherwise. 8418 */ 8419 static const struct sym_pci_chip * 8420 sym_find_pci_chip(device_t dev) 8421 { 8422 const struct sym_pci_chip *chip; 8423 int i; 8424 u_short device_id; 8425 u_char revision; 8426 8427 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8428 return NULL; 8429 8430 device_id = pci_get_device(dev); 8431 revision = pci_get_revid(dev); 8432 8433 for (i = 0; i < nitems(sym_pci_dev_table); i++) { 8434 chip = &sym_pci_dev_table[i]; 8435 if (device_id != chip->device_id) 8436 continue; 8437 if (revision > chip->revision_id) 8438 continue; 8439 return chip; 8440 } 8441 8442 return NULL; 8443 } 8444 8445 /* 8446 * Tell upper layer if the chip is supported. 8447 */ 8448 static int 8449 sym_pci_probe(device_t dev) 8450 { 8451 const struct sym_pci_chip *chip; 8452 8453 chip = sym_find_pci_chip(dev); 8454 if (chip && sym_find_firmware(chip)) { 8455 device_set_desc(dev, chip->name); 8456 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? 8457 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; 8458 } 8459 return ENXIO; 8460 } 8461 8462 /* 8463 * Attach a sym53c8xx device. 8464 */ 8465 static int 8466 sym_pci_attach(device_t dev) 8467 { 8468 const struct sym_pci_chip *chip; 8469 u_short command; 8470 u_char cachelnsz; 8471 struct sym_hcb *np = NULL; 8472 struct sym_nvram nvram; 8473 const struct sym_fw *fw = NULL; 8474 int i; 8475 bus_dma_tag_t bus_dmat; 8476 8477 bus_dmat = bus_get_dma_tag(dev); 8478 8479 /* 8480 * Only probed devices should be attached. 8481 * We just enjoy being paranoid. :) 8482 */ 8483 chip = sym_find_pci_chip(dev); 8484 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8485 return (ENXIO); 8486 8487 /* 8488 * Allocate immediately the host control block, 8489 * since we are only expecting to succeed. :) 8490 * We keep track in the HCB of all the resources that 8491 * are to be released on error. 8492 */ 8493 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8494 if (np) 8495 np->bus_dmat = bus_dmat; 8496 else 8497 return (ENXIO); 8498 device_set_softc(dev, np); 8499 8500 SYM_LOCK_INIT(); 8501 8502 /* 8503 * Copy some useful infos to the HCB. 8504 */ 8505 np->hcb_ba = vtobus(np); 8506 np->verbose = bootverbose; 8507 np->device = dev; 8508 np->device_id = pci_get_device(dev); 8509 np->revision_id = pci_get_revid(dev); 8510 np->features = chip->features; 8511 np->clock_divn = chip->nr_divisor; 8512 np->maxoffs = chip->offset_max; 8513 np->maxburst = chip->burst_max; 8514 np->scripta_sz = fw->a_size; 8515 np->scriptb_sz = fw->b_size; 8516 np->fw_setup = fw->setup; 8517 np->fw_patch = fw->patch; 8518 np->fw_name = fw->name; 8519 8520 #ifdef __amd64__ 8521 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8522 "TARGET"); 8523 if (!np->target) 8524 goto attach_failed; 8525 #endif 8526 8527 /* 8528 * Initialize the CCB free and busy queues. 8529 */ 8530 sym_que_init(&np->free_ccbq); 8531 sym_que_init(&np->busy_ccbq); 8532 sym_que_init(&np->comp_ccbq); 8533 sym_que_init(&np->cam_ccbq); 8534 8535 /* 8536 * Allocate a tag for the DMA of user data. 8537 */ 8538 if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY, 8539 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 8540 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY, 8541 BUS_DMA_ALLOCNOW, busdma_lock_mutex, &np->mtx, &np->data_dmat)) { 8542 device_printf(dev, "failed to create DMA tag.\n"); 8543 goto attach_failed; 8544 } 8545 8546 /* 8547 * Read and apply some fix-ups to the PCI COMMAND 8548 * register. We want the chip to be enabled for: 8549 * - BUS mastering 8550 * - PCI parity checking (reporting would also be fine) 8551 * - Write And Invalidate. 8552 */ 8553 command = pci_read_config(dev, PCIR_COMMAND, 2); 8554 command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN | 8555 PCIM_CMD_MWRICEN; 8556 pci_write_config(dev, PCIR_COMMAND, command, 2); 8557 8558 /* 8559 * Let the device know about the cache line size, 8560 * if it doesn't yet. 8561 */ 8562 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8563 if (!cachelnsz) { 8564 cachelnsz = 8; 8565 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8566 } 8567 8568 /* 8569 * Alloc/get/map/retrieve everything that deals with MMIO. 8570 */ 8571 if ((command & PCIM_CMD_MEMEN) != 0) { 8572 int regs_id = SYM_PCI_MMIO; 8573 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8574 ®s_id, RF_ACTIVE); 8575 } 8576 if (!np->mmio_res) { 8577 device_printf(dev, "failed to allocate MMIO resources\n"); 8578 goto attach_failed; 8579 } 8580 np->mmio_ba = rman_get_start(np->mmio_res); 8581 8582 /* 8583 * Allocate the IRQ. 8584 */ 8585 i = 0; 8586 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8587 RF_ACTIVE | RF_SHAREABLE); 8588 if (!np->irq_res) { 8589 device_printf(dev, "failed to allocate IRQ resource\n"); 8590 goto attach_failed; 8591 } 8592 8593 #ifdef SYM_CONF_IOMAPPED 8594 /* 8595 * User want us to use normal IO with PCI. 8596 * Alloc/get/map/retrieve everything that deals with IO. 8597 */ 8598 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 8599 int regs_id = SYM_PCI_IO; 8600 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 8601 ®s_id, RF_ACTIVE); 8602 } 8603 if (!np->io_res) { 8604 device_printf(dev, "failed to allocate IO resources\n"); 8605 goto attach_failed; 8606 } 8607 8608 #endif /* SYM_CONF_IOMAPPED */ 8609 8610 /* 8611 * If the chip has RAM. 8612 * Alloc/get/map/retrieve the corresponding resources. 8613 */ 8614 if ((np->features & (FE_RAM|FE_RAM8K)) && 8615 (command & PCIM_CMD_MEMEN) != 0) { 8616 int regs_id = SYM_PCI_RAM; 8617 if (np->features & FE_64BIT) 8618 regs_id = SYM_PCI_RAM64; 8619 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8620 ®s_id, RF_ACTIVE); 8621 if (!np->ram_res) { 8622 device_printf(dev,"failed to allocate RAM resources\n"); 8623 goto attach_failed; 8624 } 8625 np->ram_id = regs_id; 8626 np->ram_ba = rman_get_start(np->ram_res); 8627 } 8628 8629 /* 8630 * Save setting of some IO registers, so we will 8631 * be able to probe specific implementations. 8632 */ 8633 sym_save_initial_setting (np); 8634 8635 /* 8636 * Reset the chip now, since it has been reported 8637 * that SCSI clock calibration may not work properly 8638 * if the chip is currently active. 8639 */ 8640 sym_chip_reset (np); 8641 8642 /* 8643 * Try to read the user set-up. 8644 */ 8645 (void) sym_read_nvram(np, &nvram); 8646 8647 /* 8648 * Prepare controller and devices settings, according 8649 * to chip features, user set-up and driver set-up. 8650 */ 8651 (void) sym_prepare_setting(np, &nvram); 8652 8653 /* 8654 * Check the PCI clock frequency. 8655 * Must be performed after prepare_setting since it destroys 8656 * STEST1 that is used to probe for the clock doubler. 8657 */ 8658 i = sym_getpciclock(np); 8659 if (i > 37000) 8660 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8661 8662 /* 8663 * Allocate the start queue. 8664 */ 8665 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8666 if (!np->squeue) 8667 goto attach_failed; 8668 np->squeue_ba = vtobus(np->squeue); 8669 8670 /* 8671 * Allocate the done queue. 8672 */ 8673 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8674 if (!np->dqueue) 8675 goto attach_failed; 8676 np->dqueue_ba = vtobus(np->dqueue); 8677 8678 /* 8679 * Allocate the target bus address array. 8680 */ 8681 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8682 if (!np->targtbl) 8683 goto attach_failed; 8684 np->targtbl_ba = vtobus(np->targtbl); 8685 8686 /* 8687 * Allocate SCRIPTS areas. 8688 */ 8689 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8690 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8691 if (!np->scripta0 || !np->scriptb0) 8692 goto attach_failed; 8693 8694 /* 8695 * Allocate the CCBs. We need at least ONE. 8696 */ 8697 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8698 ; 8699 if (i < 1) 8700 goto attach_failed; 8701 8702 /* 8703 * Calculate BUS addresses where we are going 8704 * to load the SCRIPTS. 8705 */ 8706 np->scripta_ba = vtobus(np->scripta0); 8707 np->scriptb_ba = vtobus(np->scriptb0); 8708 np->scriptb0_ba = np->scriptb_ba; 8709 8710 if (np->ram_ba) { 8711 np->scripta_ba = np->ram_ba; 8712 if (np->features & FE_RAM8K) { 8713 np->ram_ws = 8192; 8714 np->scriptb_ba = np->scripta_ba + 4096; 8715 #ifdef __LP64__ 8716 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8717 #endif 8718 } 8719 else 8720 np->ram_ws = 4096; 8721 } 8722 8723 /* 8724 * Copy scripts to controller instance. 8725 */ 8726 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8727 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8728 8729 /* 8730 * Setup variable parts in scripts and compute 8731 * scripts bus addresses used from the C code. 8732 */ 8733 np->fw_setup(np, fw); 8734 8735 /* 8736 * Bind SCRIPTS with physical addresses usable by the 8737 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8738 */ 8739 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8740 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8741 8742 #ifdef SYM_CONF_IARB_SUPPORT 8743 /* 8744 * If user wants IARB to be set when we win arbitration 8745 * and have other jobs, compute the max number of consecutive 8746 * settings of IARB hints before we leave devices a chance to 8747 * arbitrate for reselection. 8748 */ 8749 #ifdef SYM_SETUP_IARB_MAX 8750 np->iarb_max = SYM_SETUP_IARB_MAX; 8751 #else 8752 np->iarb_max = 4; 8753 #endif 8754 #endif 8755 8756 /* 8757 * Prepare the idle and invalid task actions. 8758 */ 8759 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8760 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8761 np->idletask_ba = vtobus(&np->idletask); 8762 8763 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8764 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8765 np->notask_ba = vtobus(&np->notask); 8766 8767 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8768 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8769 np->bad_itl_ba = vtobus(&np->bad_itl); 8770 8771 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8772 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8773 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8774 8775 /* 8776 * Allocate and prepare the lun JUMP table that is used 8777 * for a target prior the probing of devices (bad lun table). 8778 * A private table will be allocated for the target on the 8779 * first INQUIRY response received. 8780 */ 8781 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8782 if (!np->badluntbl) 8783 goto attach_failed; 8784 8785 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8786 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8787 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8788 8789 /* 8790 * Prepare the bus address array that contains the bus 8791 * address of each target control block. 8792 * For now, assume all logical units are wrong. :) 8793 */ 8794 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8795 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8796 np->target[i].head.luntbl_sa = 8797 cpu_to_scr(vtobus(np->badluntbl)); 8798 np->target[i].head.lun0_sa = 8799 cpu_to_scr(vtobus(&np->badlun_sa)); 8800 } 8801 8802 /* 8803 * Now check the cache handling of the pci chipset. 8804 */ 8805 if (sym_snooptest (np)) { 8806 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8807 goto attach_failed; 8808 }; 8809 8810 /* 8811 * Now deal with CAM. 8812 * Hopefully, we will succeed with that one.:) 8813 */ 8814 if (!sym_cam_attach(np)) 8815 goto attach_failed; 8816 8817 /* 8818 * Sigh! we are done. 8819 */ 8820 return 0; 8821 8822 /* 8823 * We have failed. 8824 * We will try to free all the resources we have 8825 * allocated, but if we are a boot device, this 8826 * will not help that much.;) 8827 */ 8828 attach_failed: 8829 if (np) 8830 sym_pci_free(np); 8831 return ENXIO; 8832 } 8833 8834 /* 8835 * Free everything that have been allocated for this device. 8836 */ 8837 static void sym_pci_free(hcb_p np) 8838 { 8839 SYM_QUEHEAD *qp; 8840 ccb_p cp; 8841 tcb_p tp; 8842 lcb_p lp; 8843 int target, lun; 8844 8845 /* 8846 * First free CAM resources. 8847 */ 8848 sym_cam_free(np); 8849 8850 /* 8851 * Now every should be quiet for us to 8852 * free other resources. 8853 */ 8854 if (np->ram_res) 8855 bus_release_resource(np->device, SYS_RES_MEMORY, 8856 np->ram_id, np->ram_res); 8857 if (np->mmio_res) 8858 bus_release_resource(np->device, SYS_RES_MEMORY, 8859 SYM_PCI_MMIO, np->mmio_res); 8860 if (np->io_res) 8861 bus_release_resource(np->device, SYS_RES_IOPORT, 8862 SYM_PCI_IO, np->io_res); 8863 if (np->irq_res) 8864 bus_release_resource(np->device, SYS_RES_IRQ, 8865 0, np->irq_res); 8866 8867 if (np->scriptb0) 8868 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8869 if (np->scripta0) 8870 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8871 if (np->squeue) 8872 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8873 if (np->dqueue) 8874 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8875 8876 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8877 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8878 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8879 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8880 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8881 } 8882 8883 if (np->badluntbl) 8884 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8885 8886 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8887 tp = &np->target[target]; 8888 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8889 lp = sym_lp(np, tp, lun); 8890 if (!lp) 8891 continue; 8892 if (lp->itlq_tbl) 8893 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8894 "ITLQ_TBL"); 8895 if (lp->cb_tags) 8896 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8897 "CB_TAGS"); 8898 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8899 } 8900 #if SYM_CONF_MAX_LUN > 1 8901 if (tp->lunmp) 8902 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8903 "LUNMP"); 8904 #endif 8905 } 8906 #ifdef __amd64__ 8907 if (np->target) 8908 sym_mfree_dma(np->target, 8909 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8910 #endif 8911 if (np->targtbl) 8912 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8913 if (np->data_dmat) 8914 bus_dma_tag_destroy(np->data_dmat); 8915 if (SYM_LOCK_INITIALIZED() != 0) 8916 SYM_LOCK_DESTROY(); 8917 device_set_softc(np->device, NULL); 8918 sym_mfree_dma(np, sizeof(*np), "HCB"); 8919 } 8920 8921 /* 8922 * Allocate CAM resources and register a bus to CAM. 8923 */ 8924 static int sym_cam_attach(hcb_p np) 8925 { 8926 struct cam_devq *devq = NULL; 8927 struct cam_sim *sim = NULL; 8928 struct cam_path *path = NULL; 8929 int err; 8930 8931 /* 8932 * Establish our interrupt handler. 8933 */ 8934 err = bus_setup_intr(np->device, np->irq_res, 8935 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8936 NULL, sym_intr, np, &np->intr); 8937 if (err) { 8938 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8939 err); 8940 goto fail; 8941 } 8942 8943 /* 8944 * Create the device queue for our sym SIM. 8945 */ 8946 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8947 if (!devq) 8948 goto fail; 8949 8950 /* 8951 * Construct our SIM entry. 8952 */ 8953 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 8954 device_get_unit(np->device), 8955 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 8956 if (!sim) 8957 goto fail; 8958 8959 SYM_LOCK(); 8960 8961 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 8962 goto fail; 8963 np->sim = sim; 8964 8965 if (xpt_create_path(&path, 0, 8966 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 8967 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 8968 goto fail; 8969 } 8970 np->path = path; 8971 8972 /* 8973 * Establish our async notification handler. 8974 */ 8975 if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) != 8976 CAM_REQ_CMP) 8977 goto fail; 8978 8979 /* 8980 * Start the chip now, without resetting the BUS, since 8981 * it seems that this must stay under control of CAM. 8982 * With LVD/SE capable chips and BUS in SE mode, we may 8983 * get a spurious SMBC interrupt. 8984 */ 8985 sym_init (np, 0); 8986 8987 SYM_UNLOCK(); 8988 8989 return 1; 8990 fail: 8991 if (sim) 8992 cam_sim_free(sim, FALSE); 8993 if (devq) 8994 cam_simq_free(devq); 8995 8996 SYM_UNLOCK(); 8997 8998 sym_cam_free(np); 8999 9000 return 0; 9001 } 9002 9003 /* 9004 * Free everything that deals with CAM. 9005 */ 9006 static void sym_cam_free(hcb_p np) 9007 { 9008 SYM_LOCK_ASSERT(MA_NOTOWNED); 9009 9010 if (np->intr) { 9011 bus_teardown_intr(np->device, np->irq_res, np->intr); 9012 np->intr = NULL; 9013 } 9014 9015 SYM_LOCK(); 9016 9017 if (np->sim) { 9018 xpt_bus_deregister(cam_sim_path(np->sim)); 9019 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9020 np->sim = NULL; 9021 } 9022 if (np->path) { 9023 xpt_free_path(np->path); 9024 np->path = NULL; 9025 } 9026 9027 SYM_UNLOCK(); 9028 } 9029 9030 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9031 9032 /* 9033 * Get host setup from NVRAM. 9034 */ 9035 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9036 { 9037 #ifdef SYM_CONF_NVRAM_SUPPORT 9038 /* 9039 * Get parity checking, host ID, verbose mode 9040 * and miscellaneous host flags from NVRAM. 9041 */ 9042 switch(nvram->type) { 9043 case SYM_SYMBIOS_NVRAM: 9044 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9045 np->rv_scntl0 &= ~0x0a; 9046 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9047 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9048 np->verbose += 1; 9049 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9050 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9051 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9052 np->usrflags |= SYM_AVOID_BUS_RESET; 9053 break; 9054 case SYM_TEKRAM_NVRAM: 9055 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9056 break; 9057 default: 9058 break; 9059 } 9060 #endif 9061 } 9062 9063 /* 9064 * Get target setup from NVRAM. 9065 */ 9066 #ifdef SYM_CONF_NVRAM_SUPPORT 9067 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9068 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9069 #endif 9070 9071 static void 9072 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9073 { 9074 #ifdef SYM_CONF_NVRAM_SUPPORT 9075 switch(nvp->type) { 9076 case SYM_SYMBIOS_NVRAM: 9077 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9078 break; 9079 case SYM_TEKRAM_NVRAM: 9080 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9081 break; 9082 default: 9083 break; 9084 } 9085 #endif 9086 } 9087 9088 #ifdef SYM_CONF_NVRAM_SUPPORT 9089 /* 9090 * Get target set-up from Symbios format NVRAM. 9091 */ 9092 static void 9093 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9094 { 9095 tcb_p tp = &np->target[target]; 9096 Symbios_target *tn = &nvram->target[target]; 9097 9098 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9099 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9100 tp->usrtags = 9101 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9102 9103 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9104 tp->usrflags &= ~SYM_DISC_ENABLED; 9105 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9106 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9107 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9108 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9109 } 9110 9111 /* 9112 * Get target set-up from Tekram format NVRAM. 9113 */ 9114 static void 9115 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9116 { 9117 tcb_p tp = &np->target[target]; 9118 struct Tekram_target *tn = &nvram->target[target]; 9119 int i; 9120 9121 if (tn->flags & TEKRAM_SYNC_NEGO) { 9122 i = tn->sync_index & 0xf; 9123 tp->tinfo.user.period = Tekram_sync[i]; 9124 } 9125 9126 tp->tinfo.user.width = 9127 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9128 9129 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9130 tp->usrtags = 2 << nvram->max_tags_index; 9131 } 9132 9133 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9134 tp->usrflags |= SYM_DISC_ENABLED; 9135 9136 /* If any device does not support parity, we will not use this option */ 9137 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9138 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9139 } 9140 9141 #ifdef SYM_CONF_DEBUG_NVRAM 9142 /* 9143 * Dump Symbios format NVRAM for debugging purpose. 9144 */ 9145 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9146 { 9147 int i; 9148 9149 /* display Symbios nvram host data */ 9150 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9151 sym_name(np), nvram->host_id & 0x0f, 9152 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9153 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9154 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9155 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9156 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9157 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9158 9159 /* display Symbios nvram drive data */ 9160 for (i = 0 ; i < 15 ; i++) { 9161 struct Symbios_target *tn = &nvram->target[i]; 9162 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9163 sym_name(np), i, 9164 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9165 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9166 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9167 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9168 tn->bus_width, 9169 tn->sync_period / 4, 9170 tn->timeout); 9171 } 9172 } 9173 9174 /* 9175 * Dump TEKRAM format NVRAM for debugging purpose. 9176 */ 9177 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9178 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9179 { 9180 int i, tags, boot_delay; 9181 char *rem; 9182 9183 /* display Tekram nvram host data */ 9184 tags = 2 << nvram->max_tags_index; 9185 boot_delay = 0; 9186 if (nvram->boot_delay_index < 6) 9187 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9188 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9189 default: 9190 case 0: rem = ""; break; 9191 case 1: rem = " REMOVABLE=boot device"; break; 9192 case 2: rem = " REMOVABLE=all"; break; 9193 } 9194 9195 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9196 sym_name(np), nvram->host_id & 0x0f, 9197 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9198 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9199 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9200 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9201 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9202 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9203 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9204 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9205 rem, boot_delay, tags); 9206 9207 /* display Tekram nvram drive data */ 9208 for (i = 0; i <= 15; i++) { 9209 int sync, j; 9210 struct Tekram_target *tn = &nvram->target[i]; 9211 j = tn->sync_index & 0xf; 9212 sync = Tekram_sync[j]; 9213 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9214 sym_name(np), i, 9215 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9216 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9217 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9218 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9219 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9220 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9221 sync); 9222 } 9223 } 9224 #endif /* SYM_CONF_DEBUG_NVRAM */ 9225 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9226 9227 /* 9228 * Try reading Symbios or Tekram NVRAM 9229 */ 9230 #ifdef SYM_CONF_NVRAM_SUPPORT 9231 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9232 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9233 #endif 9234 9235 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9236 { 9237 #ifdef SYM_CONF_NVRAM_SUPPORT 9238 /* 9239 * Try to read SYMBIOS nvram. 9240 * Try to read TEKRAM nvram if Symbios nvram not found. 9241 */ 9242 if (SYM_SETUP_SYMBIOS_NVRAM && 9243 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9244 nvp->type = SYM_SYMBIOS_NVRAM; 9245 #ifdef SYM_CONF_DEBUG_NVRAM 9246 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9247 #endif 9248 } 9249 else if (SYM_SETUP_TEKRAM_NVRAM && 9250 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9251 nvp->type = SYM_TEKRAM_NVRAM; 9252 #ifdef SYM_CONF_DEBUG_NVRAM 9253 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9254 #endif 9255 } 9256 else 9257 nvp->type = 0; 9258 #else 9259 nvp->type = 0; 9260 #endif 9261 return nvp->type; 9262 } 9263 9264 #ifdef SYM_CONF_NVRAM_SUPPORT 9265 /* 9266 * 24C16 EEPROM reading. 9267 * 9268 * GPOI0 - data in/data out 9269 * GPIO1 - clock 9270 * Symbios NVRAM wiring now also used by Tekram. 9271 */ 9272 9273 #define SET_BIT 0 9274 #define CLR_BIT 1 9275 #define SET_CLK 2 9276 #define CLR_CLK 3 9277 9278 /* 9279 * Set/clear data/clock bit in GPIO0 9280 */ 9281 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9282 int bit_mode) 9283 { 9284 UDELAY (5); 9285 switch (bit_mode){ 9286 case SET_BIT: 9287 *gpreg |= write_bit; 9288 break; 9289 case CLR_BIT: 9290 *gpreg &= 0xfe; 9291 break; 9292 case SET_CLK: 9293 *gpreg |= 0x02; 9294 break; 9295 case CLR_CLK: 9296 *gpreg &= 0xfd; 9297 break; 9298 9299 } 9300 OUTB (nc_gpreg, *gpreg); 9301 UDELAY (5); 9302 } 9303 9304 /* 9305 * Send START condition to NVRAM to wake it up. 9306 */ 9307 static void S24C16_start(hcb_p np, u_char *gpreg) 9308 { 9309 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9310 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9311 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9312 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9313 } 9314 9315 /* 9316 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9317 */ 9318 static void S24C16_stop(hcb_p np, u_char *gpreg) 9319 { 9320 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9321 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9322 } 9323 9324 /* 9325 * Read or write a bit to the NVRAM, 9326 * read if GPIO0 input else write if GPIO0 output 9327 */ 9328 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9329 u_char *gpreg) 9330 { 9331 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9332 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9333 if (read_bit) 9334 *read_bit = INB (nc_gpreg); 9335 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9336 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9337 } 9338 9339 /* 9340 * Output an ACK to the NVRAM after reading, 9341 * change GPIO0 to output and when done back to an input 9342 */ 9343 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9344 u_char *gpcntl) 9345 { 9346 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9347 S24C16_do_bit(np, 0, write_bit, gpreg); 9348 OUTB (nc_gpcntl, *gpcntl); 9349 } 9350 9351 /* 9352 * Input an ACK from NVRAM after writing, 9353 * change GPIO0 to input and when done back to an output 9354 */ 9355 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9356 u_char *gpcntl) 9357 { 9358 OUTB (nc_gpcntl, *gpcntl | 0x01); 9359 S24C16_do_bit(np, read_bit, 1, gpreg); 9360 OUTB (nc_gpcntl, *gpcntl); 9361 } 9362 9363 /* 9364 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9365 * GPIO0 must already be set as an output 9366 */ 9367 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9368 u_char *gpreg, u_char *gpcntl) 9369 { 9370 int x; 9371 9372 for (x = 0; x < 8; x++) 9373 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9374 9375 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9376 } 9377 9378 /* 9379 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9380 * GPIO0 must already be set as an input 9381 */ 9382 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9383 u_char *gpreg, u_char *gpcntl) 9384 { 9385 int x; 9386 u_char read_bit; 9387 9388 *read_data = 0; 9389 for (x = 0; x < 8; x++) { 9390 S24C16_do_bit(np, &read_bit, 1, gpreg); 9391 *read_data |= ((read_bit & 0x01) << (7 - x)); 9392 } 9393 9394 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9395 } 9396 9397 /* 9398 * Read 'len' bytes starting at 'offset'. 9399 */ 9400 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9401 { 9402 u_char gpcntl, gpreg; 9403 u_char old_gpcntl, old_gpreg; 9404 u_char ack_data; 9405 int retv = 1; 9406 int x; 9407 9408 /* save current state of GPCNTL and GPREG */ 9409 old_gpreg = INB (nc_gpreg); 9410 old_gpcntl = INB (nc_gpcntl); 9411 gpcntl = old_gpcntl & 0x1c; 9412 9413 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9414 OUTB (nc_gpreg, old_gpreg); 9415 OUTB (nc_gpcntl, gpcntl); 9416 9417 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9418 gpreg = old_gpreg; 9419 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9420 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9421 9422 /* now set NVRAM inactive with GPIO0/1 both high */ 9423 S24C16_stop(np, &gpreg); 9424 9425 /* activate NVRAM */ 9426 S24C16_start(np, &gpreg); 9427 9428 /* write device code and random address MSB */ 9429 S24C16_write_byte(np, &ack_data, 9430 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9431 if (ack_data & 0x01) 9432 goto out; 9433 9434 /* write random address LSB */ 9435 S24C16_write_byte(np, &ack_data, 9436 offset & 0xff, &gpreg, &gpcntl); 9437 if (ack_data & 0x01) 9438 goto out; 9439 9440 /* regenerate START state to set up for reading */ 9441 S24C16_start(np, &gpreg); 9442 9443 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9444 S24C16_write_byte(np, &ack_data, 9445 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9446 if (ack_data & 0x01) 9447 goto out; 9448 9449 /* now set up GPIO0 for inputting data */ 9450 gpcntl |= 0x01; 9451 OUTB (nc_gpcntl, gpcntl); 9452 9453 /* input all requested data - only part of total NVRAM */ 9454 for (x = 0; x < len; x++) 9455 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9456 9457 /* finally put NVRAM back in inactive mode */ 9458 gpcntl &= 0xfe; 9459 OUTB (nc_gpcntl, gpcntl); 9460 S24C16_stop(np, &gpreg); 9461 retv = 0; 9462 out: 9463 /* return GPIO0/1 to original states after having accessed NVRAM */ 9464 OUTB (nc_gpcntl, old_gpcntl); 9465 OUTB (nc_gpreg, old_gpreg); 9466 9467 return retv; 9468 } 9469 9470 #undef SET_BIT /* 0 */ 9471 #undef CLR_BIT /* 1 */ 9472 #undef SET_CLK /* 2 */ 9473 #undef CLR_CLK /* 3 */ 9474 9475 /* 9476 * Try reading Symbios NVRAM. 9477 * Return 0 if OK. 9478 */ 9479 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9480 { 9481 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9482 u_char *data = (u_char *) nvram; 9483 int len = sizeof(*nvram); 9484 u_short csum; 9485 int x; 9486 9487 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9488 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9489 return 1; 9490 9491 /* check valid NVRAM signature, verify byte count and checksum */ 9492 if (nvram->type != 0 || 9493 bcmp(nvram->trailer, Symbios_trailer, 6) || 9494 nvram->byte_count != len - 12) 9495 return 1; 9496 9497 /* verify checksum */ 9498 for (x = 6, csum = 0; x < len - 6; x++) 9499 csum += data[x]; 9500 if (csum != nvram->checksum) 9501 return 1; 9502 9503 return 0; 9504 } 9505 9506 /* 9507 * 93C46 EEPROM reading. 9508 * 9509 * GPOI0 - data in 9510 * GPIO1 - data out 9511 * GPIO2 - clock 9512 * GPIO4 - chip select 9513 * 9514 * Used by Tekram. 9515 */ 9516 9517 /* 9518 * Pulse clock bit in GPIO0 9519 */ 9520 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9521 { 9522 OUTB (nc_gpreg, *gpreg | 0x04); 9523 UDELAY (2); 9524 OUTB (nc_gpreg, *gpreg); 9525 } 9526 9527 /* 9528 * Read bit from NVRAM 9529 */ 9530 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9531 { 9532 UDELAY (2); 9533 T93C46_Clk(np, gpreg); 9534 *read_bit = INB (nc_gpreg); 9535 } 9536 9537 /* 9538 * Write bit to GPIO0 9539 */ 9540 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9541 { 9542 if (write_bit & 0x01) 9543 *gpreg |= 0x02; 9544 else 9545 *gpreg &= 0xfd; 9546 9547 *gpreg |= 0x10; 9548 9549 OUTB (nc_gpreg, *gpreg); 9550 UDELAY (2); 9551 9552 T93C46_Clk(np, gpreg); 9553 } 9554 9555 /* 9556 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9557 */ 9558 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9559 { 9560 *gpreg &= 0xef; 9561 OUTB (nc_gpreg, *gpreg); 9562 UDELAY (2); 9563 9564 T93C46_Clk(np, gpreg); 9565 } 9566 9567 /* 9568 * Send read command and address to NVRAM 9569 */ 9570 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9571 u_char *read_bit, u_char *gpreg) 9572 { 9573 int x; 9574 9575 /* send 9 bits, start bit (1), command (2), address (6) */ 9576 for (x = 0; x < 9; x++) 9577 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9578 9579 *read_bit = INB (nc_gpreg); 9580 } 9581 9582 /* 9583 * READ 2 bytes from the NVRAM 9584 */ 9585 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9586 { 9587 int x; 9588 u_char read_bit; 9589 9590 *nvram_data = 0; 9591 for (x = 0; x < 16; x++) { 9592 T93C46_Read_Bit(np, &read_bit, gpreg); 9593 9594 if (read_bit & 0x01) 9595 *nvram_data |= (0x01 << (15 - x)); 9596 else 9597 *nvram_data &= ~(0x01 << (15 - x)); 9598 } 9599 } 9600 9601 /* 9602 * Read Tekram NvRAM data. 9603 */ 9604 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9605 { 9606 u_char read_bit; 9607 int x; 9608 9609 for (x = 0; x < len; x++) { 9610 9611 /* output read command and address */ 9612 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9613 if (read_bit & 0x01) 9614 return 1; /* Bad */ 9615 T93C46_Read_Word(np, &data[x], gpreg); 9616 T93C46_Stop(np, gpreg); 9617 } 9618 9619 return 0; 9620 } 9621 9622 /* 9623 * Try reading 93C46 Tekram NVRAM. 9624 */ 9625 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9626 { 9627 u_char gpcntl, gpreg; 9628 u_char old_gpcntl, old_gpreg; 9629 int retv = 1; 9630 9631 /* save current state of GPCNTL and GPREG */ 9632 old_gpreg = INB (nc_gpreg); 9633 old_gpcntl = INB (nc_gpcntl); 9634 9635 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9636 1/2/4 out */ 9637 gpreg = old_gpreg & 0xe9; 9638 OUTB (nc_gpreg, gpreg); 9639 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9640 OUTB (nc_gpcntl, gpcntl); 9641 9642 /* input all of NVRAM, 64 words */ 9643 retv = T93C46_Read_Data(np, (u_short *) nvram, 9644 sizeof(*nvram) / sizeof(short), &gpreg); 9645 9646 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9647 OUTB (nc_gpcntl, old_gpcntl); 9648 OUTB (nc_gpreg, old_gpreg); 9649 9650 return retv; 9651 } 9652 9653 /* 9654 * Try reading Tekram NVRAM. 9655 * Return 0 if OK. 9656 */ 9657 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9658 { 9659 u_char *data = (u_char *) nvram; 9660 int len = sizeof(*nvram); 9661 u_short csum; 9662 int x; 9663 9664 switch (np->device_id) { 9665 case PCI_ID_SYM53C885: 9666 case PCI_ID_SYM53C895: 9667 case PCI_ID_SYM53C896: 9668 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9669 data, len); 9670 break; 9671 case PCI_ID_SYM53C875: 9672 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9673 data, len); 9674 if (!x) 9675 break; 9676 default: 9677 x = sym_read_T93C46_nvram(np, nvram); 9678 break; 9679 } 9680 if (x) 9681 return 1; 9682 9683 /* verify checksum */ 9684 for (x = 0, csum = 0; x < len - 1; x += 2) 9685 csum += data[x] + (data[x+1] << 8); 9686 if (csum != 0x1234) 9687 return 1; 9688 9689 return 0; 9690 } 9691 9692 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9693