xref: /freebsd/sys/dev/sym/sym_hipd.c (revision 4bc42357a91961def51ab92571e0c1052a49e3e9)
1 /*-
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 
65 #include <sys/param.h>
66 
67 /*
68  *  Driver configuration options.
69  */
70 #include "opt_sym.h"
71 #include <dev/sym/sym_conf.h>
72 
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/endian.h>
76 #include <sys/kernel.h>
77 #include <sys/lock.h>
78 #include <sys/mutex.h>
79 #include <sys/module.h>
80 #include <sys/bus.h>
81 
82 #include <sys/proc.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 
90 #ifdef __sparc64__
91 #include <dev/ofw/openfirm.h>
92 #include <machine/ofw_machdep.h>
93 #endif
94 
95 #include <sys/rman.h>
96 
97 #include <cam/cam.h>
98 #include <cam/cam_ccb.h>
99 #include <cam/cam_sim.h>
100 #include <cam/cam_xpt_sim.h>
101 #include <cam/cam_debug.h>
102 
103 #include <cam/scsi/scsi_all.h>
104 #include <cam/scsi/scsi_message.h>
105 
106 /* Short and quite clear integer types */
107 typedef int8_t    s8;
108 typedef int16_t   s16;
109 typedef	int32_t   s32;
110 typedef u_int8_t  u8;
111 typedef u_int16_t u16;
112 typedef	u_int32_t u32;
113 
114 /*
115  *  Driver definitions.
116  */
117 #include <dev/sym/sym_defs.h>
118 #include <dev/sym/sym_fw.h>
119 
120 /*
121  *  IA32 architecture does not reorder STORES and prevents
122  *  LOADS from passing STORES. It is called `program order'
123  *  by Intel and allows device drivers to deal with memory
124  *  ordering by only ensuring that the code is not reordered
125  *  by the compiler when ordering is required.
126  *  Other architectures implement a weaker ordering that
127  *  requires memory barriers (and also IO barriers when they
128  *  make sense) to be used.
129  */
130 #if	defined	__i386__ || defined __amd64__
131 #define MEMORY_BARRIER()	do { ; } while(0)
132 #elif	defined	__powerpc__
133 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
134 #elif	defined	__ia64__
135 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
136 #elif	defined	__sparc64__
137 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
138 #else
139 #error	"Not supported platform"
140 #endif
141 
142 /*
143  *  A la VMS/CAM-3 queue management.
144  */
145 typedef struct sym_quehead {
146 	struct sym_quehead *flink;	/* Forward  pointer */
147 	struct sym_quehead *blink;	/* Backward pointer */
148 } SYM_QUEHEAD;
149 
150 #define sym_que_init(ptr) do { \
151 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
152 } while (0)
153 
154 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
155 {
156 	return (head->flink == head) ? NULL : head->flink;
157 }
158 
159 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
160 {
161 	return (head->blink == head) ? NULL : head->blink;
162 }
163 
164 static __inline void __sym_que_add(struct sym_quehead * new,
165 	struct sym_quehead * blink,
166 	struct sym_quehead * flink)
167 {
168 	flink->blink	= new;
169 	new->flink	= flink;
170 	new->blink	= blink;
171 	blink->flink	= new;
172 }
173 
174 static __inline void __sym_que_del(struct sym_quehead * blink,
175 	struct sym_quehead * flink)
176 {
177 	flink->blink = blink;
178 	blink->flink = flink;
179 }
180 
181 static __inline int sym_que_empty(struct sym_quehead *head)
182 {
183 	return head->flink == head;
184 }
185 
186 static __inline void sym_que_splice(struct sym_quehead *list,
187 	struct sym_quehead *head)
188 {
189 	struct sym_quehead *first = list->flink;
190 
191 	if (first != list) {
192 		struct sym_quehead *last = list->blink;
193 		struct sym_quehead *at   = head->flink;
194 
195 		first->blink = head;
196 		head->flink  = first;
197 
198 		last->flink = at;
199 		at->blink   = last;
200 	}
201 }
202 
203 #define sym_que_entry(ptr, type, member) \
204 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
205 
206 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
207 
208 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
209 
210 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
211 
212 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
213 {
214 	struct sym_quehead *elem = head->flink;
215 
216 	if (elem != head)
217 		__sym_que_del(head, elem->flink);
218 	else
219 		elem = NULL;
220 	return elem;
221 }
222 
223 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
224 
225 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
226 {
227 	struct sym_quehead *elem = head->blink;
228 
229 	if (elem != head)
230 		__sym_que_del(elem->blink, head);
231 	else
232 		elem = NULL;
233 	return elem;
234 }
235 
236 /*
237  *  This one may be useful.
238  */
239 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
240 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
241 /*
242  *  FreeBSD does not offer our kind of queue in the CAM CCB.
243  *  So, we have to cast.
244  */
245 #define sym_qptr(p)	((struct sym_quehead *) (p))
246 
247 /*
248  *  Simple bitmap operations.
249  */
250 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
251 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
252 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
253 
254 /*
255  *  Number of tasks per device we want to handle.
256  */
257 #if	SYM_CONF_MAX_TAG_ORDER > 8
258 #error	"more than 256 tags per logical unit not allowed."
259 #endif
260 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
261 
262 /*
263  *  Donnot use more tasks that we can handle.
264  */
265 #ifndef	SYM_CONF_MAX_TAG
266 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
267 #endif
268 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
269 #undef	SYM_CONF_MAX_TAG
270 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
271 #endif
272 
273 /*
274  *    This one means 'NO TAG for this job'
275  */
276 #define NO_TAG	(256)
277 
278 /*
279  *  Number of SCSI targets.
280  */
281 #if	SYM_CONF_MAX_TARGET > 16
282 #error	"more than 16 targets not allowed."
283 #endif
284 
285 /*
286  *  Number of logical units per target.
287  */
288 #if	SYM_CONF_MAX_LUN > 64
289 #error	"more than 64 logical units per target not allowed."
290 #endif
291 
292 /*
293  *    Asynchronous pre-scaler (ns). Shall be 40 for
294  *    the SCSI timings to be compliant.
295  */
296 #define	SYM_CONF_MIN_ASYNC (40)
297 
298 /*
299  *  Number of entries in the START and DONE queues.
300  *
301  *  We limit to 1 PAGE in order to succeed allocation of
302  *  these queues. Each entry is 8 bytes long (2 DWORDS).
303  */
304 #ifdef	SYM_CONF_MAX_START
305 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
306 #else
307 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
308 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
309 #endif
310 
311 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
312 #undef	SYM_CONF_MAX_QUEUE
313 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
314 #undef	SYM_CONF_MAX_START
315 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
316 #endif
317 
318 /*
319  *  For this one, we want a short name :-)
320  */
321 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
322 
323 /*
324  *  Active debugging tags and verbosity.
325  */
326 #define DEBUG_ALLOC	(0x0001)
327 #define DEBUG_PHASE	(0x0002)
328 #define DEBUG_POLL	(0x0004)
329 #define DEBUG_QUEUE	(0x0008)
330 #define DEBUG_RESULT	(0x0010)
331 #define DEBUG_SCATTER	(0x0020)
332 #define DEBUG_SCRIPT	(0x0040)
333 #define DEBUG_TINY	(0x0080)
334 #define DEBUG_TIMING	(0x0100)
335 #define DEBUG_NEGO	(0x0200)
336 #define DEBUG_TAGS	(0x0400)
337 #define DEBUG_POINTER	(0x0800)
338 
339 #if 0
340 static int sym_debug = 0;
341 	#define DEBUG_FLAGS sym_debug
342 #else
343 /*	#define DEBUG_FLAGS (0x0631) */
344 	#define DEBUG_FLAGS (0x0000)
345 
346 #endif
347 #define sym_verbose	(np->verbose)
348 
349 /*
350  *  Insert a delay in micro-seconds and milli-seconds.
351  */
352 static void UDELAY(int us) { DELAY(us); }
353 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
354 
355 /*
356  *  Simple power of two buddy-like allocator.
357  *
358  *  This simple code is not intended to be fast, but to
359  *  provide power of 2 aligned memory allocations.
360  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
361  *  this allocator allows simple and fast address calculations
362  *  from the SCRIPTS code. In addition, cache line alignment
363  *  is guaranteed for power of 2 cache line size.
364  *
365  *  This allocator has been developed for the Linux sym53c8xx
366  *  driver, since this O/S does not provide naturally aligned
367  *  allocations.
368  *  It has the advantage of allowing the driver to use private
369  *  pages of memory that will be useful if we ever need to deal
370  *  with IO MMUs for PCI.
371  */
372 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
373 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
374 #if 0
375 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
376 #endif
377 #define MEMO_WARN	1
378 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
379 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
380 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
381 
382 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
383 #define free_pages(p)		free((p), M_DEVBUF)
384 
385 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
386 
387 typedef struct m_link {		/* Link between free memory chunks */
388 	struct m_link *next;
389 } m_link_s;
390 
391 typedef struct m_vtob {		/* Virtual to Bus address translation */
392 	struct m_vtob	*next;
393 	bus_dmamap_t	dmamap;	/* Map for this chunk */
394 	m_addr_t	vaddr;	/* Virtual address */
395 	m_addr_t	baddr;	/* Bus physical address */
396 } m_vtob_s;
397 /* Hash this stuff a bit to speed up translations */
398 #define VTOB_HASH_SHIFT		5
399 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
400 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
401 #define VTOB_HASH_CODE(m)	\
402 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
403 
404 typedef struct m_pool {		/* Memory pool of a given kind */
405 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
406 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
407 	m_addr_t (*getp)(struct m_pool *);
408 #ifdef	MEMO_FREE_UNUSED
409 	void (*freep)(struct m_pool *, m_addr_t);
410 #endif
411 #define M_GETP()		mp->getp(mp)
412 #define M_FREEP(p)		mp->freep(mp, p)
413 	int nump;
414 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
415 	struct m_pool *next;
416 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
417 } m_pool_s;
418 
419 static void *___sym_malloc(m_pool_s *mp, int size)
420 {
421 	int i = 0;
422 	int s = (1 << MEMO_SHIFT);
423 	int j;
424 	m_addr_t a;
425 	m_link_s *h = mp->h;
426 
427 	if (size > MEMO_CLUSTER_SIZE)
428 		return NULL;
429 
430 	while (size > s) {
431 		s <<= 1;
432 		++i;
433 	}
434 
435 	j = i;
436 	while (!h[j].next) {
437 		if (s == MEMO_CLUSTER_SIZE) {
438 			h[j].next = (m_link_s *) M_GETP();
439 			if (h[j].next)
440 				h[j].next->next = NULL;
441 			break;
442 		}
443 		++j;
444 		s <<= 1;
445 	}
446 	a = (m_addr_t) h[j].next;
447 	if (a) {
448 		h[j].next = h[j].next->next;
449 		while (j > i) {
450 			j -= 1;
451 			s >>= 1;
452 			h[j].next = (m_link_s *) (a+s);
453 			h[j].next->next = NULL;
454 		}
455 	}
456 #ifdef DEBUG
457 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
458 #endif
459 	return (void *) a;
460 }
461 
462 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
463 {
464 	int i = 0;
465 	int s = (1 << MEMO_SHIFT);
466 	m_link_s *q;
467 	m_addr_t a, b;
468 	m_link_s *h = mp->h;
469 
470 #ifdef DEBUG
471 	printf("___sym_mfree(%p, %d)\n", ptr, size);
472 #endif
473 
474 	if (size > MEMO_CLUSTER_SIZE)
475 		return;
476 
477 	while (size > s) {
478 		s <<= 1;
479 		++i;
480 	}
481 
482 	a = (m_addr_t) ptr;
483 
484 	while (1) {
485 #ifdef MEMO_FREE_UNUSED
486 		if (s == MEMO_CLUSTER_SIZE) {
487 			M_FREEP(a);
488 			break;
489 		}
490 #endif
491 		b = a ^ s;
492 		q = &h[i];
493 		while (q->next && q->next != (m_link_s *) b) {
494 			q = q->next;
495 		}
496 		if (!q->next) {
497 			((m_link_s *) a)->next = h[i].next;
498 			h[i].next = (m_link_s *) a;
499 			break;
500 		}
501 		q->next = q->next->next;
502 		a = a & b;
503 		s <<= 1;
504 		++i;
505 	}
506 }
507 
508 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
509 {
510 	void *p;
511 
512 	p = ___sym_malloc(mp, size);
513 
514 	if (DEBUG_FLAGS & DEBUG_ALLOC)
515 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
516 
517 	if (p)
518 		bzero(p, size);
519 	else if (uflags & MEMO_WARN)
520 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
521 
522 	return p;
523 }
524 
525 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
526 
527 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
528 {
529 	if (DEBUG_FLAGS & DEBUG_ALLOC)
530 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
531 
532 	___sym_mfree(mp, ptr, size);
533 
534 }
535 
536 /*
537  * Default memory pool we donnot need to involve in DMA.
538  */
539 /*
540  * With the `bus dma abstraction', we use a separate pool for
541  * memory we donnot need to involve in DMA.
542  */
543 static m_addr_t ___mp0_getp(m_pool_s *mp)
544 {
545 	m_addr_t m = (m_addr_t) get_pages();
546 	if (m)
547 		++mp->nump;
548 	return m;
549 }
550 
551 #ifdef	MEMO_FREE_UNUSED
552 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
553 {
554 	free_pages(m);
555 	--mp->nump;
556 }
557 #endif
558 
559 #ifdef	MEMO_FREE_UNUSED
560 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
561 #else
562 static m_pool_s mp0 = {0, 0, ___mp0_getp};
563 #endif
564 
565 /*
566  * Actual memory allocation routine for non-DMAed memory.
567  */
568 static void *sym_calloc(int size, char *name)
569 {
570 	void *m;
571 	/* Lock */
572 	m = __sym_calloc(&mp0, size, name);
573 	/* Unlock */
574 	return m;
575 }
576 
577 /*
578  * Actual memory allocation routine for non-DMAed memory.
579  */
580 static void sym_mfree(void *ptr, int size, char *name)
581 {
582 	/* Lock */
583 	__sym_mfree(&mp0, ptr, size, name);
584 	/* Unlock */
585 }
586 
587 /*
588  * DMAable pools.
589  */
590 /*
591  * With `bus dma abstraction', we use a separate pool per parent
592  * BUS handle. A reverse table (hashed) is maintained for virtual
593  * to BUS address translation.
594  */
595 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
596 {
597 	bus_addr_t *baddr;
598 	baddr = (bus_addr_t *)arg;
599 	*baddr = segs->ds_addr;
600 }
601 
602 static m_addr_t ___dma_getp(m_pool_s *mp)
603 {
604 	m_vtob_s *vbp;
605 	void *vaddr = NULL;
606 	bus_addr_t baddr = 0;
607 
608 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
609 	if (!vbp)
610 		goto out_err;
611 
612 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
613 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
614 		goto out_err;
615 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
616 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
617 	if (baddr) {
618 		int hc = VTOB_HASH_CODE(vaddr);
619 		vbp->vaddr = (m_addr_t) vaddr;
620 		vbp->baddr = (m_addr_t) baddr;
621 		vbp->next = mp->vtob[hc];
622 		mp->vtob[hc] = vbp;
623 		++mp->nump;
624 		return (m_addr_t) vaddr;
625 	}
626 out_err:
627 	if (baddr)
628 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
629 	if (vaddr)
630 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
631 	if (vbp) {
632 		if (vbp->dmamap)
633 			bus_dmamap_destroy(mp->dmat, vbp->dmamap);
634 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
635 	}
636 	return 0;
637 }
638 
639 #ifdef	MEMO_FREE_UNUSED
640 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
641 {
642 	m_vtob_s **vbpp, *vbp;
643 	int hc = VTOB_HASH_CODE(m);
644 
645 	vbpp = &mp->vtob[hc];
646 	while (*vbpp && (*vbpp)->vaddr != m)
647 		vbpp = &(*vbpp)->next;
648 	if (*vbpp) {
649 		vbp = *vbpp;
650 		*vbpp = (*vbpp)->next;
651 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
652 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
653 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
654 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
655 		--mp->nump;
656 	}
657 }
658 #endif
659 
660 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
661 {
662 	m_pool_s *mp;
663 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
664 	return mp;
665 }
666 
667 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
668 {
669 	m_pool_s *mp = NULL;
670 
671 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
672 	if (mp) {
673 		mp->dev_dmat = dev_dmat;
674 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
675 			       BUS_SPACE_MAXADDR_32BIT,
676 			       BUS_SPACE_MAXADDR,
677 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
678 			       MEMO_CLUSTER_SIZE, 0,
679 			       NULL, NULL, &mp->dmat)) {
680 			mp->getp = ___dma_getp;
681 #ifdef	MEMO_FREE_UNUSED
682 			mp->freep = ___dma_freep;
683 #endif
684 			mp->next = mp0.next;
685 			mp0.next = mp;
686 			return mp;
687 		}
688 	}
689 	if (mp)
690 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
691 	return NULL;
692 }
693 
694 #ifdef	MEMO_FREE_UNUSED
695 static void ___del_dma_pool(m_pool_s *p)
696 {
697 	struct m_pool **pp = &mp0.next;
698 
699 	while (*pp && *pp != p)
700 		pp = &(*pp)->next;
701 	if (*pp) {
702 		*pp = (*pp)->next;
703 		bus_dma_tag_destroy(p->dmat);
704 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
705 	}
706 }
707 #endif
708 
709 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
710 {
711 	struct m_pool *mp;
712 	void *m = NULL;
713 
714 	/* Lock */
715 	mp = ___get_dma_pool(dev_dmat);
716 	if (!mp)
717 		mp = ___cre_dma_pool(dev_dmat);
718 	if (mp)
719 		m = __sym_calloc(mp, size, name);
720 #ifdef	MEMO_FREE_UNUSED
721 	if (mp && !mp->nump)
722 		___del_dma_pool(mp);
723 #endif
724 	/* Unlock */
725 
726 	return m;
727 }
728 
729 static void
730 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
731 {
732 	struct m_pool *mp;
733 
734 	/* Lock */
735 	mp = ___get_dma_pool(dev_dmat);
736 	if (mp)
737 		__sym_mfree(mp, m, size, name);
738 #ifdef	MEMO_FREE_UNUSED
739 	if (mp && !mp->nump)
740 		___del_dma_pool(mp);
741 #endif
742 	/* Unlock */
743 }
744 
745 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
746 {
747 	m_pool_s *mp;
748 	int hc = VTOB_HASH_CODE(m);
749 	m_vtob_s *vp = NULL;
750 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
751 
752 	/* Lock */
753 	mp = ___get_dma_pool(dev_dmat);
754 	if (mp) {
755 		vp = mp->vtob[hc];
756 		while (vp && (m_addr_t) vp->vaddr != a)
757 			vp = vp->next;
758 	}
759 	/* Unlock */
760 	if (!vp)
761 		panic("sym: VTOBUS FAILED!\n");
762 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
763 }
764 
765 /*
766  * Verbs for DMAable memory handling.
767  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
768  * being discarded.
769  */
770 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
771 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
772 #define _sym_mfree_dma(np, p, s, n)	\
773 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
774 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
775 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
776 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
777 #define vtobus(p)			_vtobus(np, p)
778 
779 /*
780  *  Print a buffer in hexadecimal format.
781  */
782 static void sym_printb_hex (u_char *p, int n)
783 {
784 	while (n-- > 0)
785 		printf (" %x", *p++);
786 }
787 
788 /*
789  *  Same with a label at beginning and .\n at end.
790  */
791 static void sym_printl_hex (char *label, u_char *p, int n)
792 {
793 	printf ("%s", label);
794 	sym_printb_hex (p, n);
795 	printf (".\n");
796 }
797 
798 /*
799  *  Return a string for SCSI BUS mode.
800  */
801 static const char *sym_scsi_bus_mode(int mode)
802 {
803 	switch(mode) {
804 	case SMODE_HVD:	return "HVD";
805 	case SMODE_SE:	return "SE";
806 	case SMODE_LVD: return "LVD";
807 	}
808 	return "??";
809 }
810 
811 /*
812  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
813  */
814 #ifdef SYM_CONF_NVRAM_SUPPORT
815 static const u_char Tekram_sync[16] =
816 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
817 #endif
818 
819 /*
820  *  Union of supported NVRAM formats.
821  */
822 struct sym_nvram {
823 	int type;
824 #define	SYM_SYMBIOS_NVRAM	(1)
825 #define	SYM_TEKRAM_NVRAM	(2)
826 #ifdef	SYM_CONF_NVRAM_SUPPORT
827 	union {
828 		Symbios_nvram Symbios;
829 		Tekram_nvram Tekram;
830 	} data;
831 #endif
832 };
833 
834 /*
835  *  This one is hopefully useless, but actually useful. :-)
836  */
837 #ifndef assert
838 #define	assert(expression) { \
839 	if (!(expression)) { \
840 		(void)panic( \
841 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
842 			#expression, \
843 			__FILE__, __LINE__); \
844 	} \
845 }
846 #endif
847 
848 /*
849  *  Some provision for a possible big endian mode supported by
850  *  Symbios chips (never seen, by the way).
851  *  For now, this stuff does not deserve any comments. :)
852  */
853 #define sym_offb(o)	(o)
854 #define sym_offw(o)	(o)
855 
856 /*
857  *  Some provision for support for BIG ENDIAN CPU.
858  */
859 #define cpu_to_scr(dw)	htole32(dw)
860 #define scr_to_cpu(dw)	le32toh(dw)
861 
862 /*
863  *  Access to the chip IO registers and on-chip RAM.
864  *  We use the `bus space' interface under FreeBSD-4 and
865  *  later kernel versions.
866  */
867 #if defined(SYM_CONF_IOMAPPED)
868 
869 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
870 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
871 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
872 
873 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
874 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
875 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
876 
877 #else	/* Memory mapped IO */
878 
879 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
880 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
881 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
882 
883 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
884 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
885 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
886 
887 #endif	/* SYM_CONF_IOMAPPED */
888 
889 #define OUTRAM_OFF(o, a, l)	\
890 	bus_write_region_1(np->ram_res, (o), (a), (l))
891 
892 /*
893  *  Common definitions for both bus space and legacy IO methods.
894  */
895 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
896 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
897 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
898 
899 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
900 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
901 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
902 
903 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
904 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
905 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
906 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
907 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
908 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
909 
910 /*
911  *  We normally want the chip to have a consistent view
912  *  of driver internal data structures when we restart it.
913  *  Thus these macros.
914  */
915 #define OUTL_DSP(v)				\
916 	do {					\
917 		MEMORY_BARRIER();		\
918 		OUTL (nc_dsp, (v));		\
919 	} while (0)
920 
921 #define OUTONB_STD()				\
922 	do {					\
923 		MEMORY_BARRIER();		\
924 		OUTONB (nc_dcntl, (STD|NOCOM));	\
925 	} while (0)
926 
927 /*
928  *  Command control block states.
929  */
930 #define HS_IDLE		(0)
931 #define HS_BUSY		(1)
932 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
933 #define HS_DISCONNECT	(3)	/* Disconnected by target */
934 #define HS_WAIT		(4)	/* waiting for resource	  */
935 
936 #define HS_DONEMASK	(0x80)
937 #define HS_COMPLETE	(4|HS_DONEMASK)
938 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
939 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
940 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
941 
942 /*
943  *  Software Interrupt Codes
944  */
945 #define	SIR_BAD_SCSI_STATUS	(1)
946 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
947 #define	SIR_MSG_RECEIVED	(3)
948 #define	SIR_MSG_WEIRD		(4)
949 #define	SIR_NEGO_FAILED		(5)
950 #define	SIR_NEGO_PROTO		(6)
951 #define	SIR_SCRIPT_STOPPED	(7)
952 #define	SIR_REJECT_TO_SEND	(8)
953 #define	SIR_SWIDE_OVERRUN	(9)
954 #define	SIR_SODL_UNDERRUN	(10)
955 #define	SIR_RESEL_NO_MSG_IN	(11)
956 #define	SIR_RESEL_NO_IDENTIFY	(12)
957 #define	SIR_RESEL_BAD_LUN	(13)
958 #define	SIR_TARGET_SELECTED	(14)
959 #define	SIR_RESEL_BAD_I_T_L	(15)
960 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
961 #define	SIR_ABORT_SENT		(17)
962 #define	SIR_RESEL_ABORTED	(18)
963 #define	SIR_MSG_OUT_DONE	(19)
964 #define	SIR_COMPLETE_ERROR	(20)
965 #define	SIR_DATA_OVERRUN	(21)
966 #define	SIR_BAD_PHASE		(22)
967 #define	SIR_MAX			(22)
968 
969 /*
970  *  Extended error bit codes.
971  *  xerr_status field of struct sym_ccb.
972  */
973 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
974 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
975 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
976 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
977 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
978 
979 /*
980  *  Negotiation status.
981  *  nego_status field of struct sym_ccb.
982  */
983 #define NS_SYNC		(1)
984 #define NS_WIDE		(2)
985 #define NS_PPR		(3)
986 
987 /*
988  *  A CCB hashed table is used to retrieve CCB address
989  *  from DSA value.
990  */
991 #define CCB_HASH_SHIFT		8
992 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
993 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
994 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
995 
996 /*
997  *  Device flags.
998  */
999 #define SYM_DISC_ENABLED	(1)
1000 #define SYM_TAGS_ENABLED	(1<<1)
1001 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1002 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1003 
1004 /*
1005  *  Host adapter miscellaneous flags.
1006  */
1007 #define SYM_AVOID_BUS_RESET	(1)
1008 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1009 
1010 /*
1011  *  Device quirks.
1012  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1013  *  saving the DATA POINTER then reselects and terminates the IO.
1014  *  On reselection, the automatic RESTORE DATA POINTER makes the
1015  *  CURRENT DATA POINTER not point at the end of the IO.
1016  *  This behaviour just breaks our calculation of the residual.
1017  *  For now, we just force an AUTO SAVE on disconnection and will
1018  *  fix that in a further driver version.
1019  */
1020 #define SYM_QUIRK_AUTOSAVE 1
1021 
1022 /*
1023  *  Misc.
1024  */
1025 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1026 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1027 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1028 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1029 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1030 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1031 
1032 #define SYM_SNOOP_TIMEOUT (10000000)
1033 #define SYM_PCI_IO	PCIR_BAR(0)
1034 #define SYM_PCI_MMIO	PCIR_BAR(1)
1035 #define SYM_PCI_RAM	PCIR_BAR(2)
1036 #define SYM_PCI_RAM64	PCIR_BAR(3)
1037 
1038 /*
1039  *  Back-pointer from the CAM CCB to our data structures.
1040  */
1041 #define sym_hcb_ptr	spriv_ptr0
1042 /* #define sym_ccb_ptr	spriv_ptr1 */
1043 
1044 /*
1045  *  We mostly have to deal with pointers.
1046  *  Thus these typedef's.
1047  */
1048 typedef struct sym_tcb *tcb_p;
1049 typedef struct sym_lcb *lcb_p;
1050 typedef struct sym_ccb *ccb_p;
1051 typedef struct sym_hcb *hcb_p;
1052 
1053 /*
1054  *  Gather negotiable parameters value
1055  */
1056 struct sym_trans {
1057 	u8 scsi_version;
1058 	u8 spi_version;
1059 	u8 period;
1060 	u8 offset;
1061 	u8 width;
1062 	u8 options;	/* PPR options */
1063 };
1064 
1065 struct sym_tinfo {
1066 	struct sym_trans current;
1067 	struct sym_trans goal;
1068 	struct sym_trans user;
1069 };
1070 
1071 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1072 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1073 
1074 /*
1075  *  Global TCB HEADER.
1076  *
1077  *  Due to lack of indirect addressing on earlier NCR chips,
1078  *  this substructure is copied from the TCB to a global
1079  *  address after selection.
1080  *  For SYMBIOS chips that support LOAD/STORE this copy is
1081  *  not needed and thus not performed.
1082  */
1083 struct sym_tcbh {
1084 	/*
1085 	 *  Scripts bus addresses of LUN table accessed from scripts.
1086 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1087 	 *  and we we want to speed-up the general case and not waste
1088 	 *  resources.
1089 	 */
1090 	u32	luntbl_sa;	/* bus address of this table	*/
1091 	u32	lun0_sa;	/* bus address of LCB #0	*/
1092 	/*
1093 	 *  Actual SYNC/WIDE IO registers value for this target.
1094 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1095 	 *  so have alignment constraints.
1096 	 */
1097 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1098 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1099 /*2*/	u_char	filler1;
1100 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1101 };
1102 
1103 /*
1104  *  Target Control Block
1105  */
1106 struct sym_tcb {
1107 	/*
1108 	 *  TCB header.
1109 	 *  Assumed at offset 0.
1110 	 */
1111 /*0*/	struct sym_tcbh head;
1112 
1113 	/*
1114 	 *  LUN table used by the SCRIPTS processor.
1115 	 *  An array of bus addresses is used on reselection.
1116 	 */
1117 	u32	*luntbl;	/* LCBs bus address table	*/
1118 
1119 	/*
1120 	 *  LUN table used by the C code.
1121 	 */
1122 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1123 #if SYM_CONF_MAX_LUN > 1
1124 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1125 #endif
1126 
1127 	/*
1128 	 *  Bitmap that tells about LUNs that succeeded at least
1129 	 *  1 IO and therefore assumed to be a real device.
1130 	 *  Avoid useless allocation of the LCB structure.
1131 	 */
1132 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1133 
1134 	/*
1135 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1136 	 *  allocated (not discovered or LCB allocation failed).
1137 	 */
1138 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1139 
1140 	/*
1141 	 *  Transfer capabilities (SIP)
1142 	 */
1143 	struct sym_tinfo tinfo;
1144 
1145 	/*
1146 	 * Keep track of the CCB used for the negotiation in order
1147 	 * to ensure that only 1 negotiation is queued at a time.
1148 	 */
1149 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1150 
1151 	/*
1152 	 *  Set when we want to reset the device.
1153 	 */
1154 	u_char	to_reset;
1155 
1156 	/*
1157 	 *  Other user settable limits and options.
1158 	 *  These limits are read from the NVRAM if present.
1159 	 */
1160 	u_char	usrflags;
1161 	u_short	usrtags;
1162 };
1163 
1164 /*
1165  *  Global LCB HEADER.
1166  *
1167  *  Due to lack of indirect addressing on earlier NCR chips,
1168  *  this substructure is copied from the LCB to a global
1169  *  address after selection.
1170  *  For SYMBIOS chips that support LOAD/STORE this copy is
1171  *  not needed and thus not performed.
1172  */
1173 struct sym_lcbh {
1174 	/*
1175 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1176 	 *  For not probed logical units, this address points to
1177 	 *  SCRIPTS that deal with bad LU handling (must be at
1178 	 *  offset zero of the LCB for that reason).
1179 	 */
1180 /*0*/	u32	resel_sa;
1181 
1182 	/*
1183 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1184 	 *  to the unique ITL nexus allowed to be disconnected.
1185 	 */
1186 	u32	itl_task_sa;
1187 
1188 	/*
1189 	 *  Task table bus address (read from SCRIPTS).
1190 	 */
1191 	u32	itlq_tbl_sa;
1192 };
1193 
1194 /*
1195  *  Logical Unit Control Block
1196  */
1197 struct sym_lcb {
1198 	/*
1199 	 *  TCB header.
1200 	 *  Assumed at offset 0.
1201 	 */
1202 /*0*/	struct sym_lcbh head;
1203 
1204 	/*
1205 	 *  Task table read from SCRIPTS that contains pointers to
1206 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1207 	 *  inside the header.
1208 	 */
1209 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1210 
1211 	/*
1212 	 *  Busy CCBs management.
1213 	 */
1214 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1215 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1216 
1217 	/*
1218 	 *  Circular tag allocation buffer.
1219 	 */
1220 	u_short	ia_tag;		/* Tag allocation index		*/
1221 	u_short	if_tag;		/* Tag release index		*/
1222 	u_char	*cb_tags;	/* Circular tags buffer		*/
1223 
1224 	/*
1225 	 *  Set when we want to clear all tasks.
1226 	 */
1227 	u_char to_clear;
1228 
1229 	/*
1230 	 *  Capabilities.
1231 	 */
1232 	u_char	user_flags;
1233 	u_char	current_flags;
1234 };
1235 
1236 /*
1237  *  Action from SCRIPTS on a task.
1238  *  Is part of the CCB, but is also used separately to plug
1239  *  error handling action to perform from SCRIPTS.
1240  */
1241 struct sym_actscr {
1242 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1243 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1244 };
1245 
1246 /*
1247  *  Phase mismatch context.
1248  *
1249  *  It is part of the CCB and is used as parameters for the
1250  *  DATA pointer. We need two contexts to handle correctly the
1251  *  SAVED DATA POINTER.
1252  */
1253 struct sym_pmc {
1254 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1255 	u32	ret;		/* SCRIPT return address	*/
1256 };
1257 
1258 /*
1259  *  LUN control block lookup.
1260  *  We use a direct pointer for LUN #0, and a table of
1261  *  pointers which is only allocated for devices that support
1262  *  LUN(s) > 0.
1263  */
1264 #if SYM_CONF_MAX_LUN <= 1
1265 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1266 #else
1267 #define sym_lp(np, tp, lun) \
1268 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1269 #endif
1270 
1271 /*
1272  *  Status are used by the host and the script processor.
1273  *
1274  *  The last four bytes (status[4]) are copied to the
1275  *  scratchb register (declared as scr0..scr3) just after the
1276  *  select/reselect, and copied back just after disconnecting.
1277  *  Inside the script the XX_REG are used.
1278  */
1279 
1280 /*
1281  *  Last four bytes (script)
1282  */
1283 #define  QU_REG	scr0
1284 #define  HS_REG	scr1
1285 #define  HS_PRT	nc_scr1
1286 #define  SS_REG	scr2
1287 #define  SS_PRT	nc_scr2
1288 #define  HF_REG	scr3
1289 #define  HF_PRT	nc_scr3
1290 
1291 /*
1292  *  Last four bytes (host)
1293  */
1294 #define  actualquirks  phys.head.status[0]
1295 #define  host_status   phys.head.status[1]
1296 #define  ssss_status   phys.head.status[2]
1297 #define  host_flags    phys.head.status[3]
1298 
1299 /*
1300  *  Host flags
1301  */
1302 #define HF_IN_PM0	1u
1303 #define HF_IN_PM1	(1u<<1)
1304 #define HF_ACT_PM	(1u<<2)
1305 #define HF_DP_SAVED	(1u<<3)
1306 #define HF_SENSE	(1u<<4)
1307 #define HF_EXT_ERR	(1u<<5)
1308 #define HF_DATA_IN	(1u<<6)
1309 #ifdef SYM_CONF_IARB_SUPPORT
1310 #define HF_HINT_IARB	(1u<<7)
1311 #endif
1312 
1313 /*
1314  *  Global CCB HEADER.
1315  *
1316  *  Due to lack of indirect addressing on earlier NCR chips,
1317  *  this substructure is copied from the ccb to a global
1318  *  address after selection (or reselection) and copied back
1319  *  before disconnect.
1320  *  For SYMBIOS chips that support LOAD/STORE this copy is
1321  *  not needed and thus not performed.
1322  */
1323 struct sym_ccbh {
1324 	/*
1325 	 *  Start and restart SCRIPTS addresses (must be at 0).
1326 	 */
1327 /*0*/	struct sym_actscr go;
1328 
1329 	/*
1330 	 *  SCRIPTS jump address that deal with data pointers.
1331 	 *  'savep' points to the position in the script responsible
1332 	 *  for the actual transfer of data.
1333 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1334 	 */
1335 	u32	savep;		/* Jump address to saved data pointer	*/
1336 	u32	lastp;		/* SCRIPTS address at end of data	*/
1337 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1338 
1339 	/*
1340 	 *  Status fields.
1341 	 */
1342 	u8	status[4];
1343 };
1344 
1345 /*
1346  *  Data Structure Block
1347  *
1348  *  During execution of a ccb by the script processor, the
1349  *  DSA (data structure address) register points to this
1350  *  substructure of the ccb.
1351  */
1352 struct sym_dsb {
1353 	/*
1354 	 *  CCB header.
1355 	 *  Also assumed at offset 0 of the sym_ccb structure.
1356 	 */
1357 /*0*/	struct sym_ccbh head;
1358 
1359 	/*
1360 	 *  Phase mismatch contexts.
1361 	 *  We need two to handle correctly the SAVED DATA POINTER.
1362 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1363 	 *  for address calculation from SCRIPTS.
1364 	 */
1365 	struct sym_pmc pm0;
1366 	struct sym_pmc pm1;
1367 
1368 	/*
1369 	 *  Table data for Script
1370 	 */
1371 	struct sym_tblsel  select;
1372 	struct sym_tblmove smsg;
1373 	struct sym_tblmove smsg_ext;
1374 	struct sym_tblmove cmd;
1375 	struct sym_tblmove sense;
1376 	struct sym_tblmove wresid;
1377 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1378 };
1379 
1380 /*
1381  *  Our Command Control Block
1382  */
1383 struct sym_ccb {
1384 	/*
1385 	 *  This is the data structure which is pointed by the DSA
1386 	 *  register when it is executed by the script processor.
1387 	 *  It must be the first entry.
1388 	 */
1389 	struct sym_dsb phys;
1390 
1391 	/*
1392 	 *  Pointer to CAM ccb and related stuff.
1393 	 */
1394 	struct callout ch;	/* callout handle		*/
1395 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1396 	u8	cdb_buf[16];	/* Copy of CDB			*/
1397 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1398 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1399 	int	data_len;	/* Total data length		*/
1400 	int	segments;	/* Number of SG segments	*/
1401 
1402 	/*
1403 	 *  Miscellaneous status'.
1404 	 */
1405 	u_char	nego_status;	/* Negotiation status		*/
1406 	u_char	xerr_status;	/* Extended error flags		*/
1407 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1408 
1409 	/*
1410 	 *  Message areas.
1411 	 *  We prepare a message to be sent after selection.
1412 	 *  We may use a second one if the command is rescheduled
1413 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1414 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1415 	 *  While negotiating sync or wide transfer,
1416 	 *  a SDTR or WDTR message is appended.
1417 	 */
1418 	u_char	scsi_smsg [12];
1419 	u_char	scsi_smsg2[12];
1420 
1421 	/*
1422 	 *  Auto request sense related fields.
1423 	 */
1424 	u_char	sensecmd[6];	/* Request Sense command	*/
1425 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1426 	u_char	sv_xerr_status;	/* Saved extended status	*/
1427 	int	sv_resid;	/* Saved residual		*/
1428 
1429 	/*
1430 	 *  Map for the DMA of user data.
1431 	 */
1432 	void		*arg;	/* Argument for some callback	*/
1433 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1434 	u_char		dmamapped;
1435 #define SYM_DMA_NONE	0
1436 #define SYM_DMA_READ	1
1437 #define SYM_DMA_WRITE	2
1438 	/*
1439 	 *  Other fields.
1440 	 */
1441 	u32	ccb_ba;		/* BUS address of this CCB	*/
1442 	u_short	tag;		/* Tag for this transfer	*/
1443 				/*  NO_TAG means no tag		*/
1444 	u_char	target;
1445 	u_char	lun;
1446 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1447 	SYM_QUEHEAD
1448 		link_ccbq;	/* Link to free/busy CCB queue	*/
1449 	u32	startp;		/* Initial data pointer		*/
1450 	int	ext_sg;		/* Extreme data pointer, used	*/
1451 	int	ext_ofs;	/*  to calculate the residual.	*/
1452 	u_char	to_abort;	/* Want this IO to be aborted	*/
1453 };
1454 
1455 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1456 
1457 /*
1458  *  Host Control Block
1459  */
1460 struct sym_hcb {
1461 	struct mtx	mtx;
1462 
1463 	/*
1464 	 *  Global headers.
1465 	 *  Due to poorness of addressing capabilities, earlier
1466 	 *  chips (810, 815, 825) copy part of the data structures
1467 	 *  (CCB, TCB and LCB) in fixed areas.
1468 	 */
1469 #ifdef	SYM_CONF_GENERIC_SUPPORT
1470 	struct sym_ccbh	ccb_head;
1471 	struct sym_tcbh	tcb_head;
1472 	struct sym_lcbh	lcb_head;
1473 #endif
1474 	/*
1475 	 *  Idle task and invalid task actions and
1476 	 *  their bus addresses.
1477 	 */
1478 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1479 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1480 
1481 	/*
1482 	 *  Dummy lun table to protect us against target
1483 	 *  returning bad lun number on reselection.
1484 	 */
1485 	u32	*badluntbl;	/* Table physical address	*/
1486 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1487 
1488 	/*
1489 	 *  Bus address of this host control block.
1490 	 */
1491 	u32	hcb_ba;
1492 
1493 	/*
1494 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1495 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1496 	 *  field.
1497 	 */
1498 	u32	scr_ram_seg;
1499 
1500 	/*
1501 	 *  Chip and controller indentification.
1502 	 */
1503 	device_t device;
1504 
1505 	/*
1506 	 *  Initial value of some IO register bits.
1507 	 *  These values are assumed to have been set by BIOS, and may
1508 	 *  be used to probe adapter implementation differences.
1509 	 */
1510 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1511 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1512 		sv_stest1;
1513 
1514 	/*
1515 	 *  Actual initial value of IO register bits used by the
1516 	 *  driver. They are loaded at initialisation according to
1517 	 *  features that are to be enabled/disabled.
1518 	 */
1519 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1520 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1521 
1522 	/*
1523 	 *  Target data.
1524 	 */
1525 #ifdef __amd64__
1526 	struct sym_tcb	*target;
1527 #else
1528 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1529 #endif
1530 
1531 	/*
1532 	 *  Target control block bus address array used by the SCRIPT
1533 	 *  on reselection.
1534 	 */
1535 	u32		*targtbl;
1536 	u32		targtbl_ba;
1537 
1538 	/*
1539 	 *  CAM SIM information for this instance.
1540 	 */
1541 	struct		cam_sim  *sim;
1542 	struct		cam_path *path;
1543 
1544 	/*
1545 	 *  Allocated hardware resources.
1546 	 */
1547 	struct resource	*irq_res;
1548 	struct resource	*io_res;
1549 	struct resource	*mmio_res;
1550 	struct resource	*ram_res;
1551 	int		ram_id;
1552 	void *intr;
1553 
1554 	/*
1555 	 *  Bus stuff.
1556 	 *
1557 	 *  My understanding of PCI is that all agents must share the
1558 	 *  same addressing range and model.
1559 	 *  But some hardware architecture guys provide complex and
1560 	 *  brain-deaded stuff that makes shit.
1561 	 *  This driver only support PCI compliant implementations and
1562 	 *  deals with part of the BUS stuff complexity only to fit O/S
1563 	 *  requirements.
1564 	 */
1565 
1566 	/*
1567 	 *  DMA stuff.
1568 	 */
1569 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1570 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1571 	/*
1572 	 *  BUS addresses of the chip
1573 	 */
1574 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1575 	int		mmio_ws;	/* MMIO Window size		*/
1576 
1577 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1578 	int		ram_ws;		/* RAM window size		*/
1579 
1580 	/*
1581 	 *  SCRIPTS virtual and physical bus addresses.
1582 	 *  'script'  is loaded in the on-chip RAM if present.
1583 	 *  'scripth' stays in main memory for all chips except the
1584 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1585 	 */
1586 	u_char		*scripta0;	/* Copies of script and scripth	*/
1587 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1588 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1589 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1590 	vm_offset_t	scriptb0_ba;
1591 	u_short		scripta_sz;	/* Actual size of script A	*/
1592 	u_short		scriptb_sz;	/* Actual size of script B	*/
1593 
1594 	/*
1595 	 *  Bus addresses, setup and patch methods for
1596 	 *  the selected firmware.
1597 	 */
1598 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1599 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1600 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1601 	void		(*fw_patch)(hcb_p np);
1602 	const char	*fw_name;
1603 
1604 	/*
1605 	 *  General controller parameters and configuration.
1606 	 */
1607 	u_short	device_id;	/* PCI device id		*/
1608 	u_char	revision_id;	/* PCI device revision id	*/
1609 	u_int	features;	/* Chip features map		*/
1610 	u_char	myaddr;		/* SCSI id of the adapter	*/
1611 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1612 	u_char	maxwide;	/* Maximum transfer width	*/
1613 	u_char	minsync;	/* Min sync period factor (ST)	*/
1614 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1615 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1616 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1617 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1618 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1619 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1620 	u_char	clock_divn;	/* Number of clock divisors	*/
1621 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1622 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1623 	/*
1624 	 *  Start queue management.
1625 	 *  It is filled up by the host processor and accessed by the
1626 	 *  SCRIPTS processor in order to start SCSI commands.
1627 	 */
1628 	volatile		/* Prevent code optimizations	*/
1629 	u32	*squeue;	/* Start queue virtual address	*/
1630 	u32	squeue_ba;	/* Start queue BUS address	*/
1631 	u_short	squeueput;	/* Next free slot of the queue	*/
1632 	u_short	actccbs;	/* Number of allocated CCBs	*/
1633 
1634 	/*
1635 	 *  Command completion queue.
1636 	 *  It is the same size as the start queue to avoid overflow.
1637 	 */
1638 	u_short	dqueueget;	/* Next position to scan	*/
1639 	volatile		/* Prevent code optimizations	*/
1640 	u32	*dqueue;	/* Completion (done) queue	*/
1641 	u32	dqueue_ba;	/* Done queue BUS address	*/
1642 
1643 	/*
1644 	 *  Miscellaneous buffers accessed by the scripts-processor.
1645 	 *  They shall be DWORD aligned, because they may be read or
1646 	 *  written with a script command.
1647 	 */
1648 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1649 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1650 	u32		lastmsg;	/* Last SCSI message sent	*/
1651 	u_char		scratch;	/* Scratch for SCSI receive	*/
1652 
1653 	/*
1654 	 *  Miscellaneous configuration and status parameters.
1655 	 */
1656 	u_char		usrflags;	/* Miscellaneous user flags	*/
1657 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1658 	u_char		verbose;	/* Verbosity for this controller*/
1659 	u32		cache;		/* Used for cache test at init.	*/
1660 
1661 	/*
1662 	 *  CCB lists and queue.
1663 	 */
1664 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1665 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1666 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1667 
1668 	/*
1669 	 *  During error handling and/or recovery,
1670 	 *  active CCBs that are to be completed with
1671 	 *  error or requeued are moved from the busy_ccbq
1672 	 *  to the comp_ccbq prior to completion.
1673 	 */
1674 	SYM_QUEHEAD	comp_ccbq;
1675 
1676 	/*
1677 	 *  CAM CCB pending queue.
1678 	 */
1679 	SYM_QUEHEAD	cam_ccbq;
1680 
1681 	/*
1682 	 *  IMMEDIATE ARBITRATION (IARB) control.
1683 	 *
1684 	 *  We keep track in 'last_cp' of the last CCB that has been
1685 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1686 	 *  this CCB completes. If last_cp is not zero at the moment
1687 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1688 	 *  used by the SCRIPTS as a hint for setting IARB.
1689 	 *  We donnot set more than 'iarb_max' consecutive hints for
1690 	 *  IARB in order to leave devices a chance to reselect.
1691 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1692 	 */
1693 #ifdef SYM_CONF_IARB_SUPPORT
1694 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1695 	u_short		iarb_count;	/* Actual # of these hints	*/
1696 	ccb_p		last_cp;
1697 #endif
1698 
1699 	/*
1700 	 *  Command abort handling.
1701 	 *  We need to synchronize tightly with the SCRIPTS
1702 	 *  processor in order to handle things correctly.
1703 	 */
1704 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1705 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1706 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1707 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1708 };
1709 
1710 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1711 
1712 /*
1713  *  Return the name of the controller.
1714  */
1715 static __inline const char *sym_name(hcb_p np)
1716 {
1717 	return device_get_nameunit(np->device);
1718 }
1719 
1720 /*--------------------------------------------------------------------------*/
1721 /*------------------------------ FIRMWARES ---------------------------------*/
1722 /*--------------------------------------------------------------------------*/
1723 
1724 /*
1725  *  This stuff will be moved to a separate source file when
1726  *  the driver will be broken into several source modules.
1727  */
1728 
1729 /*
1730  *  Macros used for all firmwares.
1731  */
1732 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1733 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1734 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1735 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1736 
1737 #ifdef	SYM_CONF_GENERIC_SUPPORT
1738 /*
1739  *  Allocate firmware #1 script area.
1740  */
1741 #define	SYM_FWA_SCR		sym_fw1a_scr
1742 #define	SYM_FWB_SCR		sym_fw1b_scr
1743 #include <dev/sym/sym_fw1.h>
1744 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1745 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1746 };
1747 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1748 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1749 };
1750 #undef	SYM_FWA_SCR
1751 #undef	SYM_FWB_SCR
1752 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1753 
1754 /*
1755  *  Allocate firmware #2 script area.
1756  */
1757 #define	SYM_FWA_SCR		sym_fw2a_scr
1758 #define	SYM_FWB_SCR		sym_fw2b_scr
1759 #include <dev/sym/sym_fw2.h>
1760 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1761 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1762 };
1763 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1764 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1765 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1766 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1767 };
1768 #undef	SYM_FWA_SCR
1769 #undef	SYM_FWB_SCR
1770 
1771 #undef	SYM_GEN_A
1772 #undef	SYM_GEN_B
1773 #undef	PADDR_A
1774 #undef	PADDR_B
1775 
1776 #ifdef	SYM_CONF_GENERIC_SUPPORT
1777 /*
1778  *  Patch routine for firmware #1.
1779  */
1780 static void
1781 sym_fw1_patch(hcb_p np)
1782 {
1783 	struct sym_fw1a_scr *scripta0;
1784 	struct sym_fw1b_scr *scriptb0;
1785 
1786 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1787 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1788 
1789 	/*
1790 	 *  Remove LED support if not needed.
1791 	 */
1792 	if (!(np->features & FE_LED0)) {
1793 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1794 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1795 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1796 	}
1797 
1798 #ifdef SYM_CONF_IARB_SUPPORT
1799 	/*
1800 	 *    If user does not want to use IMMEDIATE ARBITRATION
1801 	 *    when we are reselected while attempting to arbitrate,
1802 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1803 	 */
1804 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1805 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1806 #endif
1807 	/*
1808 	 *  Patch some data in SCRIPTS.
1809 	 *  - start and done queue initial bus address.
1810 	 *  - target bus address table bus address.
1811 	 */
1812 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1813 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1814 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1815 }
1816 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1817 
1818 /*
1819  *  Patch routine for firmware #2.
1820  */
1821 static void
1822 sym_fw2_patch(hcb_p np)
1823 {
1824 	struct sym_fw2a_scr *scripta0;
1825 	struct sym_fw2b_scr *scriptb0;
1826 
1827 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1828 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1829 
1830 	/*
1831 	 *  Remove LED support if not needed.
1832 	 */
1833 	if (!(np->features & FE_LED0)) {
1834 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1835 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1836 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1837 	}
1838 
1839 #ifdef SYM_CONF_IARB_SUPPORT
1840 	/*
1841 	 *    If user does not want to use IMMEDIATE ARBITRATION
1842 	 *    when we are reselected while attempting to arbitrate,
1843 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1844 	 */
1845 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1846 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1847 #endif
1848 	/*
1849 	 *  Patch some variable in SCRIPTS.
1850 	 *  - start and done queue initial bus address.
1851 	 *  - target bus address table bus address.
1852 	 */
1853 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1854 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1855 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1856 
1857 	/*
1858 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1859 	 */
1860 	if (!(np->features & FE_C10)) {
1861 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1862 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1863 	}
1864 
1865 	/*
1866 	 *  Remove a couple of work-arounds specific to C1010 if
1867 	 *  they are not desirable. See `sym_fw2.h' for more details.
1868 	 */
1869 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1870 	      np->revision_id < 0x1 &&
1871 	      np->pciclk_khz < 60000)) {
1872 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1873 		scripta0->datao_phase[1] = cpu_to_scr(0);
1874 	}
1875 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1876 	      /* np->revision_id < 0xff */ 1)) {
1877 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1878 		scripta0->sel_done[1] = cpu_to_scr(0);
1879 	}
1880 
1881 	/*
1882 	 *  Patch some other variables in SCRIPTS.
1883 	 *  These ones are loaded by the SCRIPTS processor.
1884 	 */
1885 	scriptb0->pm0_data_addr[0] =
1886 		cpu_to_scr(np->scripta_ba +
1887 			   offsetof(struct sym_fw2a_scr, pm0_data));
1888 	scriptb0->pm1_data_addr[0] =
1889 		cpu_to_scr(np->scripta_ba +
1890 			   offsetof(struct sym_fw2a_scr, pm1_data));
1891 }
1892 
1893 /*
1894  *  Fill the data area in scripts.
1895  *  To be done for all firmwares.
1896  */
1897 static void
1898 sym_fw_fill_data (u32 *in, u32 *out)
1899 {
1900 	int	i;
1901 
1902 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1903 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1904 		*in++  = offsetof (struct sym_dsb, data[i]);
1905 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1906 		*out++ = offsetof (struct sym_dsb, data[i]);
1907 	}
1908 }
1909 
1910 /*
1911  *  Setup useful script bus addresses.
1912  *  To be done for all firmwares.
1913  */
1914 static void
1915 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1916 {
1917 	u32 *pa;
1918 	const u_short *po;
1919 	int i;
1920 
1921 	/*
1922 	 *  Build the bus address table for script A
1923 	 *  from the script A offset table.
1924 	 */
1925 	po = (const u_short *) fw->a_ofs;
1926 	pa = (u32 *) &np->fwa_bas;
1927 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1928 		pa[i] = np->scripta_ba + po[i];
1929 
1930 	/*
1931 	 *  Same for script B.
1932 	 */
1933 	po = (const u_short *) fw->b_ofs;
1934 	pa = (u32 *) &np->fwb_bas;
1935 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1936 		pa[i] = np->scriptb_ba + po[i];
1937 }
1938 
1939 #ifdef	SYM_CONF_GENERIC_SUPPORT
1940 /*
1941  *  Setup routine for firmware #1.
1942  */
1943 static void
1944 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1945 {
1946 	struct sym_fw1a_scr *scripta0;
1947 
1948 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1949 
1950 	/*
1951 	 *  Fill variable parts in scripts.
1952 	 */
1953 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1954 
1955 	/*
1956 	 *  Setup bus addresses used from the C code..
1957 	 */
1958 	sym_fw_setup_bus_addresses(np, fw);
1959 }
1960 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1961 
1962 /*
1963  *  Setup routine for firmware #2.
1964  */
1965 static void
1966 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1967 {
1968 	struct sym_fw2a_scr *scripta0;
1969 
1970 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1971 
1972 	/*
1973 	 *  Fill variable parts in scripts.
1974 	 */
1975 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1976 
1977 	/*
1978 	 *  Setup bus addresses used from the C code..
1979 	 */
1980 	sym_fw_setup_bus_addresses(np, fw);
1981 }
1982 
1983 /*
1984  *  Allocate firmware descriptors.
1985  */
1986 #ifdef	SYM_CONF_GENERIC_SUPPORT
1987 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1988 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1989 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1990 
1991 /*
1992  *  Find the most appropriate firmware for a chip.
1993  */
1994 static const struct sym_fw *
1995 sym_find_firmware(const struct sym_pci_chip *chip)
1996 {
1997 	if (chip->features & FE_LDSTR)
1998 		return &sym_fw2;
1999 #ifdef	SYM_CONF_GENERIC_SUPPORT
2000 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2001 		return &sym_fw1;
2002 #endif
2003 	else
2004 		return NULL;
2005 }
2006 
2007 /*
2008  *  Bind a script to physical addresses.
2009  */
2010 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2011 {
2012 	u32 opcode, new, old, tmp1, tmp2;
2013 	u32 *end, *cur;
2014 	int relocs;
2015 
2016 	cur = start;
2017 	end = start + len/4;
2018 
2019 	while (cur < end) {
2020 
2021 		opcode = *cur;
2022 
2023 		/*
2024 		 *  If we forget to change the length
2025 		 *  in scripts, a field will be
2026 		 *  padded with 0. This is an illegal
2027 		 *  command.
2028 		 */
2029 		if (opcode == 0) {
2030 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2031 				sym_name(np), (int) (cur-start));
2032 			MDELAY (10000);
2033 			++cur;
2034 			continue;
2035 		};
2036 
2037 		/*
2038 		 *  We use the bogus value 0xf00ff00f ;-)
2039 		 *  to reserve data area in SCRIPTS.
2040 		 */
2041 		if (opcode == SCR_DATA_ZERO) {
2042 			*cur++ = 0;
2043 			continue;
2044 		}
2045 
2046 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2047 			printf ("%d:  <%x>\n", (int) (cur-start),
2048 				(unsigned)opcode);
2049 
2050 		/*
2051 		 *  We don't have to decode ALL commands
2052 		 */
2053 		switch (opcode >> 28) {
2054 		case 0xf:
2055 			/*
2056 			 *  LOAD / STORE DSA relative, don't relocate.
2057 			 */
2058 			relocs = 0;
2059 			break;
2060 		case 0xe:
2061 			/*
2062 			 *  LOAD / STORE absolute.
2063 			 */
2064 			relocs = 1;
2065 			break;
2066 		case 0xc:
2067 			/*
2068 			 *  COPY has TWO arguments.
2069 			 */
2070 			relocs = 2;
2071 			tmp1 = cur[1];
2072 			tmp2 = cur[2];
2073 			if ((tmp1 ^ tmp2) & 3) {
2074 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2075 					sym_name(np), (int) (cur-start));
2076 				MDELAY (10000);
2077 			}
2078 			/*
2079 			 *  If PREFETCH feature not enabled, remove
2080 			 *  the NO FLUSH bit if present.
2081 			 */
2082 			if ((opcode & SCR_NO_FLUSH) &&
2083 			    !(np->features & FE_PFEN)) {
2084 				opcode = (opcode & ~SCR_NO_FLUSH);
2085 			}
2086 			break;
2087 		case 0x0:
2088 			/*
2089 			 *  MOVE/CHMOV (absolute address)
2090 			 */
2091 			if (!(np->features & FE_WIDE))
2092 				opcode = (opcode | OPC_MOVE);
2093 			relocs = 1;
2094 			break;
2095 		case 0x1:
2096 			/*
2097 			 *  MOVE/CHMOV (table indirect)
2098 			 */
2099 			if (!(np->features & FE_WIDE))
2100 				opcode = (opcode | OPC_MOVE);
2101 			relocs = 0;
2102 			break;
2103 		case 0x8:
2104 			/*
2105 			 *  JUMP / CALL
2106 			 *  dont't relocate if relative :-)
2107 			 */
2108 			if (opcode & 0x00800000)
2109 				relocs = 0;
2110 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2111 				relocs = 2;
2112 			else
2113 				relocs = 1;
2114 			break;
2115 		case 0x4:
2116 		case 0x5:
2117 		case 0x6:
2118 		case 0x7:
2119 			relocs = 1;
2120 			break;
2121 		default:
2122 			relocs = 0;
2123 			break;
2124 		};
2125 
2126 		/*
2127 		 *  Scriptify:) the opcode.
2128 		 */
2129 		*cur++ = cpu_to_scr(opcode);
2130 
2131 		/*
2132 		 *  If no relocation, assume 1 argument
2133 		 *  and just scriptize:) it.
2134 		 */
2135 		if (!relocs) {
2136 			*cur = cpu_to_scr(*cur);
2137 			++cur;
2138 			continue;
2139 		}
2140 
2141 		/*
2142 		 *  Otherwise performs all needed relocations.
2143 		 */
2144 		while (relocs--) {
2145 			old = *cur;
2146 
2147 			switch (old & RELOC_MASK) {
2148 			case RELOC_REGISTER:
2149 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2150 				break;
2151 			case RELOC_LABEL_A:
2152 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2153 				break;
2154 			case RELOC_LABEL_B:
2155 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2156 				break;
2157 			case RELOC_SOFTC:
2158 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2159 				break;
2160 			case 0:
2161 				/*
2162 				 *  Don't relocate a 0 address.
2163 				 *  They are mostly used for patched or
2164 				 *  script self-modified areas.
2165 				 */
2166 				if (old == 0) {
2167 					new = old;
2168 					break;
2169 				}
2170 				/* fall through */
2171 			default:
2172 				new = 0;
2173 				panic("sym_fw_bind_script: "
2174 				      "weird relocation %x\n", old);
2175 				break;
2176 			}
2177 
2178 			*cur++ = cpu_to_scr(new);
2179 		}
2180 	};
2181 }
2182 
2183 /*---------------------------------------------------------------------------*/
2184 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2185 /*---------------------------------------------------------------------------*/
2186 
2187 /*
2188  *  Function prototypes.
2189  */
2190 static void sym_save_initial_setting (hcb_p np);
2191 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2192 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2193 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2194 static void sym_chip_reset (hcb_p np);
2195 static void sym_soft_reset (hcb_p np);
2196 static void sym_start_reset (hcb_p np);
2197 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2198 static int  sym_wakeup_done (hcb_p np);
2199 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2200 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2201 static void sym_init (hcb_p np, int reason);
2202 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2203 		        u_char *fakp);
2204 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2205 			 u_char div, u_char fak);
2206 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2207 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2208 			 u_char per, u_char wide, u_char div, u_char fak);
2209 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2210 			 u_char per, u_char wide, u_char div, u_char fak);
2211 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2212 static void sym_intr (void *arg);
2213 static void sym_poll (struct cam_sim *sim);
2214 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2215 static void sym_int_sto (hcb_p np);
2216 static void sym_int_udc (hcb_p np);
2217 static void sym_int_sbmc (hcb_p np);
2218 static void sym_int_par (hcb_p np, u_short sist);
2219 static void sym_int_ma (hcb_p np);
2220 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2221 				    int task);
2222 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2223 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2224 static void sym_sir_task_recovery (hcb_p np, int num);
2225 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2226 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2227 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2228 static int  sym_show_msg (u_char * msg);
2229 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2230 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2231 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2232 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2233 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2234 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2235 static void sym_int_sir (hcb_p np);
2236 static void sym_free_ccb (hcb_p np, ccb_p cp);
2237 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2238 static ccb_p sym_alloc_ccb (hcb_p np);
2239 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2240 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2241 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2242 static int  sym_snooptest (hcb_p np);
2243 static void sym_selectclock(hcb_p np, u_char scntl3);
2244 static void sym_getclock (hcb_p np, int mult);
2245 static int  sym_getpciclock (hcb_p np);
2246 static void sym_complete_ok (hcb_p np, ccb_p cp);
2247 static void sym_complete_error (hcb_p np, ccb_p cp);
2248 static void sym_callout (void *arg);
2249 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2250 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2251 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2252 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2253 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2254 				      ccb_p cp);
2255 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2256 					bus_dma_segment_t *psegs, int nsegs);
2257 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2258 				    bus_dma_segment_t *psegs, int nsegs);
2259 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2260 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2261 			      struct ccb_trans_settings *cts);
2262 static void sym_update_dflags(hcb_p np, u_char *flags,
2263 			      struct ccb_trans_settings *cts);
2264 
2265 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2266 static int  sym_pci_probe (device_t dev);
2267 static int  sym_pci_attach (device_t dev);
2268 
2269 static void sym_pci_free (hcb_p np);
2270 static int  sym_cam_attach (hcb_p np);
2271 static void sym_cam_free (hcb_p np);
2272 
2273 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2274 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2275 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2276 
2277 /*
2278  *  Print something which allows to retrieve the controller type,
2279  *  unit, target, lun concerned by a kernel message.
2280  */
2281 static void PRINT_TARGET (hcb_p np, int target)
2282 {
2283 	printf ("%s:%d:", sym_name(np), target);
2284 }
2285 
2286 static void PRINT_LUN(hcb_p np, int target, int lun)
2287 {
2288 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2289 }
2290 
2291 static void PRINT_ADDR (ccb_p cp)
2292 {
2293 	if (cp && cp->cam_ccb)
2294 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2295 }
2296 
2297 /*
2298  *  Take into account this ccb in the freeze count.
2299  */
2300 static void sym_freeze_cam_ccb(union ccb *ccb)
2301 {
2302 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2303 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2304 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2305 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2306 		}
2307 	}
2308 }
2309 
2310 /*
2311  *  Set the status field of a CAM CCB.
2312  */
2313 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2314 {
2315 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2316 	ccb->ccb_h.status |= status;
2317 }
2318 
2319 /*
2320  *  Get the status field of a CAM CCB.
2321  */
2322 static __inline int sym_get_cam_status(union ccb *ccb)
2323 {
2324 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2325 }
2326 
2327 /*
2328  *  Enqueue a CAM CCB.
2329  */
2330 static void sym_enqueue_cam_ccb(ccb_p cp)
2331 {
2332 	hcb_p np;
2333 	union ccb *ccb;
2334 
2335 	ccb = cp->cam_ccb;
2336 	np = (hcb_p) cp->arg;
2337 
2338 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2339 	ccb->ccb_h.status = CAM_REQ_INPROG;
2340 
2341 	callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout,
2342 			(caddr_t) ccb);
2343 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2344 	ccb->ccb_h.sym_hcb_ptr = np;
2345 
2346 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2347 }
2348 
2349 /*
2350  *  Complete a pending CAM CCB.
2351  */
2352 static void _sym_xpt_done(hcb_p np, union ccb *ccb)
2353 {
2354 	SYM_LOCK_ASSERT(MA_OWNED);
2355 
2356 	KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0,
2357 			("%s: status=CAM_SIM_QUEUED", __func__));
2358 
2359 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2360 		sym_freeze_cam_ccb(ccb);
2361 	xpt_done(ccb);
2362 }
2363 
2364 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2365 {
2366 	SYM_LOCK_ASSERT(MA_OWNED);
2367 
2368 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2369 		callout_stop(&cp->ch);
2370 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2371 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2372 		ccb->ccb_h.sym_hcb_ptr = NULL;
2373 	}
2374 	_sym_xpt_done(np, ccb);
2375 }
2376 
2377 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2378 {
2379 	SYM_LOCK_ASSERT(MA_OWNED);
2380 
2381 	sym_set_cam_status(ccb, cam_status);
2382 	_sym_xpt_done(np, ccb);
2383 }
2384 
2385 /*
2386  *  SYMBIOS chip clock divisor table.
2387  *
2388  *  Divisors are multiplied by 10,000,000 in order to make
2389  *  calculations more simple.
2390  */
2391 #define _5M 5000000
2392 static const u32 div_10M[] =
2393 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2394 
2395 /*
2396  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2397  *  128 transfers. All chips support at least 16 transfers
2398  *  bursts. The 825A, 875 and 895 chips support bursts of up
2399  *  to 128 transfers and the 895A and 896 support bursts of up
2400  *  to 64 transfers. All other chips support up to 16
2401  *  transfers bursts.
2402  *
2403  *  For PCI 32 bit data transfers each transfer is a DWORD.
2404  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2405  *
2406  *  We use log base 2 (burst length) as internal code, with
2407  *  value 0 meaning "burst disabled".
2408  */
2409 
2410 /*
2411  *  Burst length from burst code.
2412  */
2413 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2414 
2415 /*
2416  *  Burst code from io register bits.
2417  */
2418 #define burst_code(dmode, ctest4, ctest5) \
2419 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2420 
2421 /*
2422  *  Set initial io register bits from burst code.
2423  */
2424 static __inline void sym_init_burst(hcb_p np, u_char bc)
2425 {
2426 	np->rv_ctest4	&= ~0x80;
2427 	np->rv_dmode	&= ~(0x3 << 6);
2428 	np->rv_ctest5	&= ~0x4;
2429 
2430 	if (!bc) {
2431 		np->rv_ctest4	|= 0x80;
2432 	}
2433 	else {
2434 		--bc;
2435 		np->rv_dmode	|= ((bc & 0x3) << 6);
2436 		np->rv_ctest5	|= (bc & 0x4);
2437 	}
2438 }
2439 
2440 /*
2441  * Print out the list of targets that have some flag disabled by user.
2442  */
2443 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2444 {
2445 	int cnt;
2446 	int i;
2447 
2448 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2449 		if (i == np->myaddr)
2450 			continue;
2451 		if (np->target[i].usrflags & mask) {
2452 			if (!cnt++)
2453 				printf("%s: %s disabled for targets",
2454 					sym_name(np), msg);
2455 			printf(" %d", i);
2456 		}
2457 	}
2458 	if (cnt)
2459 		printf(".\n");
2460 }
2461 
2462 /*
2463  *  Save initial settings of some IO registers.
2464  *  Assumed to have been set by BIOS.
2465  *  We cannot reset the chip prior to reading the
2466  *  IO registers, since informations will be lost.
2467  *  Since the SCRIPTS processor may be running, this
2468  *  is not safe on paper, but it seems to work quite
2469  *  well. :)
2470  */
2471 static void sym_save_initial_setting (hcb_p np)
2472 {
2473 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2474 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2475 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2476 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2477 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2478 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2479 	np->sv_gpcntl	= INB(nc_gpcntl);
2480 	np->sv_stest1	= INB(nc_stest1);
2481 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2482 	np->sv_stest4	= INB(nc_stest4);
2483 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2484 		np->sv_scntl4	= INB(nc_scntl4);
2485 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2486 	}
2487 	else
2488 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2489 }
2490 
2491 /*
2492  *  Prepare io register values used by sym_init() according
2493  *  to selected and supported features.
2494  */
2495 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2496 {
2497 	u_char	burst_max;
2498 	u32	period;
2499 	int i;
2500 
2501 	/*
2502 	 *  Wide ?
2503 	 */
2504 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2505 
2506 	/*
2507 	 *  Get the frequency of the chip's clock.
2508 	 */
2509 	if	(np->features & FE_QUAD)
2510 		np->multiplier	= 4;
2511 	else if	(np->features & FE_DBLR)
2512 		np->multiplier	= 2;
2513 	else
2514 		np->multiplier	= 1;
2515 
2516 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2517 	np->clock_khz	*= np->multiplier;
2518 
2519 	if (np->clock_khz != 40000)
2520 		sym_getclock(np, np->multiplier);
2521 
2522 	/*
2523 	 * Divisor to be used for async (timer pre-scaler).
2524 	 */
2525 	i = np->clock_divn - 1;
2526 	while (--i >= 0) {
2527 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2528 			++i;
2529 			break;
2530 		}
2531 	}
2532 	np->rv_scntl3 = i+1;
2533 
2534 	/*
2535 	 * The C1010 uses hardwired divisors for async.
2536 	 * So, we just throw away, the async. divisor.:-)
2537 	 */
2538 	if (np->features & FE_C10)
2539 		np->rv_scntl3 = 0;
2540 
2541 	/*
2542 	 * Minimum synchronous period factor supported by the chip.
2543 	 * Btw, 'period' is in tenths of nanoseconds.
2544 	 */
2545 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2546 	if	(period <= 250)		np->minsync = 10;
2547 	else if	(period <= 303)		np->minsync = 11;
2548 	else if	(period <= 500)		np->minsync = 12;
2549 	else				np->minsync = (period + 40 - 1) / 40;
2550 
2551 	/*
2552 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2553 	 */
2554 	if	(np->minsync < 25 &&
2555 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2556 		np->minsync = 25;
2557 	else if	(np->minsync < 12 &&
2558 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2559 		np->minsync = 12;
2560 
2561 	/*
2562 	 * Maximum synchronous period factor supported by the chip.
2563 	 */
2564 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2565 	np->maxsync = period > 2540 ? 254 : period / 10;
2566 
2567 	/*
2568 	 * If chip is a C1010, guess the sync limits in DT mode.
2569 	 */
2570 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2571 		if (np->clock_khz == 160000) {
2572 			np->minsync_dt = 9;
2573 			np->maxsync_dt = 50;
2574 			np->maxoffs_dt = 62;
2575 		}
2576 	}
2577 
2578 	/*
2579 	 *  64 bit addressing  (895A/896/1010) ?
2580 	 */
2581 	if (np->features & FE_DAC)
2582 #ifdef __LP64__
2583 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2584 #else
2585 		np->rv_ccntl1	|= (DDAC);
2586 #endif
2587 
2588 	/*
2589 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2590   	 */
2591 	if (np->features & FE_NOPM)
2592 		np->rv_ccntl0	|= (ENPMJ);
2593 
2594  	/*
2595 	 *  C1010 Errata.
2596 	 *  In dual channel mode, contention occurs if internal cycles
2597 	 *  are used. Disable internal cycles.
2598 	 */
2599 	if (np->device_id == PCI_ID_LSI53C1010 &&
2600 	    np->revision_id < 0x2)
2601 		np->rv_ccntl0	|=  DILS;
2602 
2603 	/*
2604 	 *  Select burst length (dwords)
2605 	 */
2606 	burst_max	= SYM_SETUP_BURST_ORDER;
2607 	if (burst_max == 255)
2608 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2609 				       np->sv_ctest5);
2610 	if (burst_max > 7)
2611 		burst_max = 7;
2612 	if (burst_max > np->maxburst)
2613 		burst_max = np->maxburst;
2614 
2615 	/*
2616 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2617 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2618 	 *  based transactions on LOAD/STORE instructions. So we have
2619 	 *  to prevent these chips from using such PCI transactions in
2620 	 *  this driver. The generic ncr driver that does not use
2621 	 *  LOAD/STORE instructions does not need this work-around.
2622 	 */
2623 	if ((np->device_id == PCI_ID_SYM53C810 &&
2624 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2625 	    (np->device_id == PCI_ID_SYM53C860 &&
2626 	     np->revision_id <= 0x1))
2627 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2628 
2629 	/*
2630 	 *  Select all supported special features.
2631 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2632 	 *  does not help, but burst op fetch (BOF) does.
2633 	 *  Disabling PFEN makes sure BOF will be used.
2634 	 */
2635 	if (np->features & FE_ERL)
2636 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2637 	if (np->features & FE_BOF)
2638 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2639 	if (np->features & FE_ERMP)
2640 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2641 #if 1
2642 	if ((np->features & FE_PFEN) && !np->ram_ba)
2643 #else
2644 	if (np->features & FE_PFEN)
2645 #endif
2646 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2647 	if (np->features & FE_CLSE)
2648 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2649 	if (np->features & FE_WRIE)
2650 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2651 	if (np->features & FE_DFS)
2652 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2653 
2654 	/*
2655 	 *  Select some other
2656 	 */
2657 	if (SYM_SETUP_PCI_PARITY)
2658 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2659 	if (SYM_SETUP_SCSI_PARITY)
2660 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2661 
2662 	/*
2663 	 *  Get parity checking, host ID and verbose mode from NVRAM
2664 	 */
2665 	np->myaddr = 255;
2666 	sym_nvram_setup_host (np, nvram);
2667 #ifdef __sparc64__
2668 	np->myaddr = OF_getscsinitid(np->device);
2669 #endif
2670 
2671 	/*
2672 	 *  Get SCSI addr of host adapter (set by bios?).
2673 	 */
2674 	if (np->myaddr == 255) {
2675 		np->myaddr = INB(nc_scid) & 0x07;
2676 		if (!np->myaddr)
2677 			np->myaddr = SYM_SETUP_HOST_ID;
2678 	}
2679 
2680 	/*
2681 	 *  Prepare initial io register bits for burst length
2682 	 */
2683 	sym_init_burst(np, burst_max);
2684 
2685 	/*
2686 	 *  Set SCSI BUS mode.
2687 	 *  - LVD capable chips (895/895A/896/1010) report the
2688 	 *    current BUS mode through the STEST4 IO register.
2689 	 *  - For previous generation chips (825/825A/875),
2690 	 *    user has to tell us how to check against HVD,
2691 	 *    since a 100% safe algorithm is not possible.
2692 	 */
2693 	np->scsi_mode = SMODE_SE;
2694 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2695 		np->scsi_mode = (np->sv_stest4 & SMODE);
2696 	else if	(np->features & FE_DIFF) {
2697 		if (SYM_SETUP_SCSI_DIFF == 1) {
2698 			if (np->sv_scntl3) {
2699 				if (np->sv_stest2 & 0x20)
2700 					np->scsi_mode = SMODE_HVD;
2701 			}
2702 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2703 				if (!(INB(nc_gpreg) & 0x08))
2704 					np->scsi_mode = SMODE_HVD;
2705 			}
2706 		}
2707 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2708 			np->scsi_mode = SMODE_HVD;
2709 	}
2710 	if (np->scsi_mode == SMODE_HVD)
2711 		np->rv_stest2 |= 0x20;
2712 
2713 	/*
2714 	 *  Set LED support from SCRIPTS.
2715 	 *  Ignore this feature for boards known to use a
2716 	 *  specific GPIO wiring and for the 895A, 896
2717 	 *  and 1010 that drive the LED directly.
2718 	 */
2719 	if ((SYM_SETUP_SCSI_LED ||
2720 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2721 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2722 	       np->device_id == PCI_ID_SYM53C895))) &&
2723 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2724 		np->features |= FE_LED0;
2725 
2726 	/*
2727 	 *  Set irq mode.
2728 	 */
2729 	switch(SYM_SETUP_IRQ_MODE & 3) {
2730 	case 2:
2731 		np->rv_dcntl	|= IRQM;
2732 		break;
2733 	case 1:
2734 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2735 		break;
2736 	default:
2737 		break;
2738 	}
2739 
2740 	/*
2741 	 *  Configure targets according to driver setup.
2742 	 *  If NVRAM present get targets setup from NVRAM.
2743 	 */
2744 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2745 		tcb_p tp = &np->target[i];
2746 
2747 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2748 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2749 		tp->tinfo.user.period = np->minsync;
2750 		if (np->features & FE_ULTRA3)
2751 			tp->tinfo.user.period = np->minsync_dt;
2752 		tp->tinfo.user.offset = np->maxoffs;
2753 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2754 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2755 		tp->usrtags = SYM_SETUP_MAX_TAG;
2756 
2757 		sym_nvram_setup_target (np, i, nvram);
2758 
2759 		/*
2760 		 *  For now, guess PPR/DT support from the period
2761 		 *  and BUS width.
2762 		 */
2763 		if (np->features & FE_ULTRA3) {
2764 			if (tp->tinfo.user.period <= 9	&&
2765 			    tp->tinfo.user.width == BUS_16_BIT) {
2766 				tp->tinfo.user.options |= PPR_OPT_DT;
2767 				tp->tinfo.user.offset   = np->maxoffs_dt;
2768 				tp->tinfo.user.spi_version = 3;
2769 			}
2770 		}
2771 
2772 		if (!tp->usrtags)
2773 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2774 	}
2775 
2776 	/*
2777 	 *  Let user know about the settings.
2778 	 */
2779 	i = nvram->type;
2780 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2781 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2782 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2783 		np->myaddr,
2784 		(np->features & FE_ULTRA3) ? 80 :
2785 		(np->features & FE_ULTRA2) ? 40 :
2786 		(np->features & FE_ULTRA)  ? 20 : 10,
2787 		sym_scsi_bus_mode(np->scsi_mode),
2788 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2789 	/*
2790 	 *  Tell him more on demand.
2791 	 */
2792 	if (sym_verbose) {
2793 		printf("%s: %s IRQ line driver%s\n",
2794 			sym_name(np),
2795 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2796 			np->ram_ba ? ", using on-chip SRAM" : "");
2797 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2798 		if (np->features & FE_NOPM)
2799 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2800 			       sym_name(np));
2801 	}
2802 	/*
2803 	 *  And still more.
2804 	 */
2805 	if (sym_verbose > 1) {
2806 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2807 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2808 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2809 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2810 
2811 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2812 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2813 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2814 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2815 	}
2816 	/*
2817 	 *  Let user be aware of targets that have some disable flags set.
2818 	 */
2819 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2820 	if (sym_verbose)
2821 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2822 				       "SCAN FOR LUNS");
2823 
2824 	return 0;
2825 }
2826 
2827 /*
2828  *  Prepare the next negotiation message if needed.
2829  *
2830  *  Fill in the part of message buffer that contains the
2831  *  negotiation and the nego_status field of the CCB.
2832  *  Returns the size of the message in bytes.
2833  */
2834 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2835 {
2836 	tcb_p tp = &np->target[cp->target];
2837 	int msglen = 0;
2838 
2839 	/*
2840 	 *  Early C1010 chips need a work-around for DT
2841 	 *  data transfer to work.
2842 	 */
2843 	if (!(np->features & FE_U3EN))
2844 		tp->tinfo.goal.options = 0;
2845 	/*
2846 	 *  negotiate using PPR ?
2847 	 */
2848 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2849 		nego = NS_PPR;
2850 	/*
2851 	 *  negotiate wide transfers ?
2852 	 */
2853 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2854 		nego = NS_WIDE;
2855 	/*
2856 	 *  negotiate synchronous transfers?
2857 	 */
2858 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2859 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2860 		nego = NS_SYNC;
2861 
2862 	switch (nego) {
2863 	case NS_SYNC:
2864 		msgptr[msglen++] = M_EXTENDED;
2865 		msgptr[msglen++] = 3;
2866 		msgptr[msglen++] = M_X_SYNC_REQ;
2867 		msgptr[msglen++] = tp->tinfo.goal.period;
2868 		msgptr[msglen++] = tp->tinfo.goal.offset;
2869 		break;
2870 	case NS_WIDE:
2871 		msgptr[msglen++] = M_EXTENDED;
2872 		msgptr[msglen++] = 2;
2873 		msgptr[msglen++] = M_X_WIDE_REQ;
2874 		msgptr[msglen++] = tp->tinfo.goal.width;
2875 		break;
2876 	case NS_PPR:
2877 		msgptr[msglen++] = M_EXTENDED;
2878 		msgptr[msglen++] = 6;
2879 		msgptr[msglen++] = M_X_PPR_REQ;
2880 		msgptr[msglen++] = tp->tinfo.goal.period;
2881 		msgptr[msglen++] = 0;
2882 		msgptr[msglen++] = tp->tinfo.goal.offset;
2883 		msgptr[msglen++] = tp->tinfo.goal.width;
2884 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2885 		break;
2886 	};
2887 
2888 	cp->nego_status = nego;
2889 
2890 	if (nego) {
2891 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2892 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2893 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2894 					  nego == NS_WIDE ? "wide msgout" :
2895 					  "ppr msgout", msgptr);
2896 		};
2897 	};
2898 
2899 	return msglen;
2900 }
2901 
2902 /*
2903  *  Insert a job into the start queue.
2904  */
2905 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2906 {
2907 	u_short	qidx;
2908 
2909 #ifdef SYM_CONF_IARB_SUPPORT
2910 	/*
2911 	 *  If the previously queued CCB is not yet done,
2912 	 *  set the IARB hint. The SCRIPTS will go with IARB
2913 	 *  for this job when starting the previous one.
2914 	 *  We leave devices a chance to win arbitration by
2915 	 *  not using more than 'iarb_max' consecutive
2916 	 *  immediate arbitrations.
2917 	 */
2918 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2919 		np->last_cp->host_flags |= HF_HINT_IARB;
2920 		++np->iarb_count;
2921 	}
2922 	else
2923 		np->iarb_count = 0;
2924 	np->last_cp = cp;
2925 #endif
2926 
2927 	/*
2928 	 *  Insert first the idle task and then our job.
2929 	 *  The MB should ensure proper ordering.
2930 	 */
2931 	qidx = np->squeueput + 2;
2932 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2933 
2934 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2935 	MEMORY_BARRIER();
2936 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2937 
2938 	np->squeueput = qidx;
2939 
2940 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2941 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2942 
2943 	/*
2944 	 *  Script processor may be waiting for reselect.
2945 	 *  Wake it up.
2946 	 */
2947 	MEMORY_BARRIER();
2948 	OUTB (nc_istat, SIGP|np->istat_sem);
2949 }
2950 
2951 /*
2952  *  Soft reset the chip.
2953  *
2954  *  Raising SRST when the chip is running may cause
2955  *  problems on dual function chips (see below).
2956  *  On the other hand, LVD devices need some delay
2957  *  to settle and report actual BUS mode in STEST4.
2958  */
2959 static void sym_chip_reset (hcb_p np)
2960 {
2961 	OUTB (nc_istat, SRST);
2962 	UDELAY (10);
2963 	OUTB (nc_istat, 0);
2964 	UDELAY(2000);	/* For BUS MODE to settle */
2965 }
2966 
2967 /*
2968  *  Soft reset the chip.
2969  *
2970  *  Some 896 and 876 chip revisions may hang-up if we set
2971  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2972  *  are running.
2973  *  So, we need to abort the current operation prior to
2974  *  soft resetting the chip.
2975  */
2976 static void sym_soft_reset (hcb_p np)
2977 {
2978 	u_char istat;
2979 	int i;
2980 
2981 	OUTB (nc_istat, CABRT);
2982 	for (i = 1000000 ; i ; --i) {
2983 		istat = INB (nc_istat);
2984 		if (istat & SIP) {
2985 			INW (nc_sist);
2986 			continue;
2987 		}
2988 		if (istat & DIP) {
2989 			OUTB (nc_istat, 0);
2990 			INB (nc_dstat);
2991 			break;
2992 		}
2993 	}
2994 	if (!i)
2995 		printf("%s: unable to abort current chip operation.\n",
2996 			sym_name(np));
2997 	sym_chip_reset (np);
2998 }
2999 
3000 /*
3001  *  Start reset process.
3002  *
3003  *  The interrupt handler will reinitialize the chip.
3004  */
3005 static void sym_start_reset(hcb_p np)
3006 {
3007 	(void) sym_reset_scsi_bus(np, 1);
3008 }
3009 
3010 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3011 {
3012 	u32 term;
3013 	int retv = 0;
3014 
3015 	sym_soft_reset(np);	/* Soft reset the chip */
3016 	if (enab_int)
3017 		OUTW (nc_sien, RST);
3018 	/*
3019 	 *  Enable Tolerant, reset IRQD if present and
3020 	 *  properly set IRQ mode, prior to resetting the bus.
3021 	 */
3022 	OUTB (nc_stest3, TE);
3023 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3024 	OUTB (nc_scntl1, CRST);
3025 	UDELAY (200);
3026 
3027 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3028 		goto out;
3029 	/*
3030 	 *  Check for no terminators or SCSI bus shorts to ground.
3031 	 *  Read SCSI data bus, data parity bits and control signals.
3032 	 *  We are expecting RESET to be TRUE and other signals to be
3033 	 *  FALSE.
3034 	 */
3035 	term =	INB(nc_sstat0);
3036 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3037 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3038 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3039 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3040 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3041 
3042 	if (!(np->features & FE_WIDE))
3043 		term &= 0x3ffff;
3044 
3045 	if (term != (2<<7)) {
3046 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3047 			sym_name(np));
3048 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3049 			"0x%lx, expecting 0x%lx\n",
3050 			sym_name(np),
3051 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3052 			(u_long)term, (u_long)(2<<7));
3053 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3054 			retv = 1;
3055 	}
3056 out:
3057 	OUTB (nc_scntl1, 0);
3058 	/* MDELAY(100); */
3059 	return retv;
3060 }
3061 
3062 /*
3063  *  The chip may have completed jobs. Look at the DONE QUEUE.
3064  *
3065  *  On architectures that may reorder LOAD/STORE operations,
3066  *  a memory barrier may be needed after the reading of the
3067  *  so-called `flag' and prior to dealing with the data.
3068  */
3069 static int sym_wakeup_done (hcb_p np)
3070 {
3071 	ccb_p cp;
3072 	int i, n;
3073 	u32 dsa;
3074 
3075 	SYM_LOCK_ASSERT(MA_OWNED);
3076 
3077 	n = 0;
3078 	i = np->dqueueget;
3079 	while (1) {
3080 		dsa = scr_to_cpu(np->dqueue[i]);
3081 		if (!dsa)
3082 			break;
3083 		np->dqueue[i] = 0;
3084 		if ((i = i+2) >= MAX_QUEUE*2)
3085 			i = 0;
3086 
3087 		cp = sym_ccb_from_dsa(np, dsa);
3088 		if (cp) {
3089 			MEMORY_BARRIER();
3090 			sym_complete_ok (np, cp);
3091 			++n;
3092 		}
3093 		else
3094 			printf ("%s: bad DSA (%x) in done queue.\n",
3095 				sym_name(np), (u_int) dsa);
3096 	}
3097 	np->dqueueget = i;
3098 
3099 	return n;
3100 }
3101 
3102 /*
3103  *  Complete all active CCBs with error.
3104  *  Used on CHIP/SCSI RESET.
3105  */
3106 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3107 {
3108 	/*
3109 	 *  Move all active CCBs to the COMP queue
3110 	 *  and flush this queue.
3111 	 */
3112 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3113 	sym_que_init(&np->busy_ccbq);
3114 	sym_flush_comp_queue(np, cam_status);
3115 }
3116 
3117 /*
3118  *  Start chip.
3119  *
3120  *  'reason' means:
3121  *     0: initialisation.
3122  *     1: SCSI BUS RESET delivered or received.
3123  *     2: SCSI BUS MODE changed.
3124  */
3125 static void sym_init (hcb_p np, int reason)
3126 {
3127  	int	i;
3128 	u32	phys;
3129 
3130 	SYM_LOCK_ASSERT(MA_OWNED);
3131 
3132  	/*
3133 	 *  Reset chip if asked, otherwise just clear fifos.
3134  	 */
3135 	if (reason == 1)
3136 		sym_soft_reset(np);
3137 	else {
3138 		OUTB (nc_stest3, TE|CSF);
3139 		OUTONB (nc_ctest3, CLF);
3140 	}
3141 
3142 	/*
3143 	 *  Clear Start Queue
3144 	 */
3145 	phys = np->squeue_ba;
3146 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3147 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3148 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3149 	}
3150 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3151 
3152 	/*
3153 	 *  Start at first entry.
3154 	 */
3155 	np->squeueput = 0;
3156 
3157 	/*
3158 	 *  Clear Done Queue
3159 	 */
3160 	phys = np->dqueue_ba;
3161 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3162 		np->dqueue[i]   = 0;
3163 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3164 	}
3165 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3166 
3167 	/*
3168 	 *  Start at first entry.
3169 	 */
3170 	np->dqueueget = 0;
3171 
3172 	/*
3173 	 *  Install patches in scripts.
3174 	 *  This also let point to first position the start
3175 	 *  and done queue pointers used from SCRIPTS.
3176 	 */
3177 	np->fw_patch(np);
3178 
3179 	/*
3180 	 *  Wakeup all pending jobs.
3181 	 */
3182 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3183 
3184 	/*
3185 	 *  Init chip.
3186 	 */
3187 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3188 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3189 
3190 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3191 					/*  full arb., ena parity, par->ATN  */
3192 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3193 
3194 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3195 
3196 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3197 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3198 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3199 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3200 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3201 
3202 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3203 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3204 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3205 
3206 	/* Extended Sreq/Sack filtering not supported on the C10 */
3207 	if (np->features & FE_C10)
3208 		OUTB (nc_stest2, np->rv_stest2);
3209 	else
3210 		OUTB (nc_stest2, EXT|np->rv_stest2);
3211 
3212 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3213 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3214 
3215 	/*
3216 	 *  For now, disable AIP generation on C1010-66.
3217 	 */
3218 	if (np->device_id == PCI_ID_LSI53C1010_2)
3219 		OUTB (nc_aipcntl1, DISAIP);
3220 
3221 	/*
3222 	 *  C10101 Errata.
3223 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3224 	 *  STEST1 register to disable SGE. We probably should do
3225 	 *  that from SCRIPTS for each selection/reselection, but
3226 	 *  I just don't want. :)
3227 	 */
3228 	if (np->device_id == PCI_ID_LSI53C1010 &&
3229 	    /* np->revision_id < 0xff */ 1)
3230 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3231 
3232 	/*
3233 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3234 	 *  Disable overlapped arbitration for some dual function devices,
3235 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3236 	 */
3237 	if (np->device_id == PCI_ID_SYM53C875)
3238 		OUTB (nc_ctest0, (1<<5));
3239 	else if (np->device_id == PCI_ID_SYM53C896)
3240 		np->rv_ccntl0 |= DPR;
3241 
3242 	/*
3243 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3244 	 *  and/or hardware phase mismatch, since only such chips
3245 	 *  seem to support those IO registers.
3246 	 */
3247 	if (np->features & (FE_DAC|FE_NOPM)) {
3248 		OUTB (nc_ccntl0, np->rv_ccntl0);
3249 		OUTB (nc_ccntl1, np->rv_ccntl1);
3250 	}
3251 
3252 	/*
3253 	 *  If phase mismatch handled by scripts (895A/896/1010),
3254 	 *  set PM jump addresses.
3255 	 */
3256 	if (np->features & FE_NOPM) {
3257 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3258 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3259 	}
3260 
3261 	/*
3262 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3263 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3264 	 */
3265 	if (np->features & FE_LED0)
3266 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3267 	else if (np->features & FE_LEDC)
3268 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3269 
3270 	/*
3271 	 *      enable ints
3272 	 */
3273 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3274 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3275 
3276 	/*
3277 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3278 	 *  Try to eat the spurious SBMC interrupt that may occur when
3279 	 *  we reset the chip but not the SCSI BUS (at initialization).
3280 	 */
3281 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3282 		OUTONW (nc_sien, SBMC);
3283 		if (reason == 0) {
3284 			MDELAY(100);
3285 			INW (nc_sist);
3286 		}
3287 		np->scsi_mode = INB (nc_stest4) & SMODE;
3288 	}
3289 
3290 	/*
3291 	 *  Fill in target structure.
3292 	 *  Reinitialize usrsync.
3293 	 *  Reinitialize usrwide.
3294 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3295 	 */
3296 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3297 		tcb_p tp = &np->target[i];
3298 
3299 		tp->to_reset  = 0;
3300 		tp->head.sval = 0;
3301 		tp->head.wval = np->rv_scntl3;
3302 		tp->head.uval = 0;
3303 
3304 		tp->tinfo.current.period = 0;
3305 		tp->tinfo.current.offset = 0;
3306 		tp->tinfo.current.width  = BUS_8_BIT;
3307 		tp->tinfo.current.options = 0;
3308 	}
3309 
3310 	/*
3311 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3312 	 *  and start script processor.
3313 	 */
3314 	if (np->ram_ba) {
3315 		if (sym_verbose > 1)
3316 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3317 				sym_name(np));
3318 		if (np->ram_ws == 8192) {
3319 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3320 			OUTL (nc_mmws, np->scr_ram_seg);
3321 			OUTL (nc_mmrs, np->scr_ram_seg);
3322 			OUTL (nc_sfs,  np->scr_ram_seg);
3323 			phys = SCRIPTB_BA (np, start64);
3324 		}
3325 		else
3326 			phys = SCRIPTA_BA (np, init);
3327 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3328 	}
3329 	else
3330 		phys = SCRIPTA_BA (np, init);
3331 
3332 	np->istat_sem = 0;
3333 
3334 	OUTL (nc_dsa, np->hcb_ba);
3335 	OUTL_DSP (phys);
3336 
3337 	/*
3338 	 *  Notify the XPT about the RESET condition.
3339 	 */
3340 	if (reason != 0)
3341 		xpt_async(AC_BUS_RESET, np->path, NULL);
3342 }
3343 
3344 /*
3345  *  Get clock factor and sync divisor for a given
3346  *  synchronous factor period.
3347  */
3348 static int
3349 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3350 {
3351 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3352 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3353 	u32	fak;			/* Sync factor in sxfer		*/
3354 	u32	per;			/* Period in tenths of ns	*/
3355 	u32	kpc;			/* (per * clk)			*/
3356 	int	ret;
3357 
3358 	/*
3359 	 *  Compute the synchronous period in tenths of nano-seconds
3360 	 */
3361 	if (dt && sfac <= 9)	per = 125;
3362 	else if	(sfac <= 10)	per = 250;
3363 	else if	(sfac == 11)	per = 303;
3364 	else if	(sfac == 12)	per = 500;
3365 	else			per = 40 * sfac;
3366 	ret = per;
3367 
3368 	kpc = per * clk;
3369 	if (dt)
3370 		kpc <<= 1;
3371 
3372 	/*
3373 	 *  For earliest C10 revision 0, we cannot use extra
3374 	 *  clocks for the setting of the SCSI clocking.
3375 	 *  Note that this limits the lowest sync data transfer
3376 	 *  to 5 Mega-transfers per second and may result in
3377 	 *  using higher clock divisors.
3378 	 */
3379 #if 1
3380 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3381 		/*
3382 		 *  Look for the lowest clock divisor that allows an
3383 		 *  output speed not faster than the period.
3384 		 */
3385 		while (div > 0) {
3386 			--div;
3387 			if (kpc > (div_10M[div] << 2)) {
3388 				++div;
3389 				break;
3390 			}
3391 		}
3392 		fak = 0;			/* No extra clocks */
3393 		if (div == np->clock_divn) {	/* Are we too fast ? */
3394 			ret = -1;
3395 		}
3396 		*divp = div;
3397 		*fakp = fak;
3398 		return ret;
3399 	}
3400 #endif
3401 
3402 	/*
3403 	 *  Look for the greatest clock divisor that allows an
3404 	 *  input speed faster than the period.
3405 	 */
3406 	while (div-- > 0)
3407 		if (kpc >= (div_10M[div] << 2)) break;
3408 
3409 	/*
3410 	 *  Calculate the lowest clock factor that allows an output
3411 	 *  speed not faster than the period, and the max output speed.
3412 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3413 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3414 	 */
3415 	if (dt) {
3416 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3417 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3418 	}
3419 	else {
3420 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3421 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3422 	}
3423 
3424 	/*
3425 	 *  Check against our hardware limits, or bugs :).
3426 	 */
3427 	if (fak < 0)	{fak = 0; ret = -1;}
3428 	if (fak > 2)	{fak = 2; ret = -1;}
3429 
3430 	/*
3431 	 *  Compute and return sync parameters.
3432 	 */
3433 	*divp = div;
3434 	*fakp = fak;
3435 
3436 	return ret;
3437 }
3438 
3439 /*
3440  *  Tell the SCSI layer about the new transfer parameters.
3441  */
3442 static void
3443 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3444 {
3445 	struct ccb_trans_settings cts;
3446 	struct cam_path *path;
3447 	int sts;
3448 	tcb_p tp = &np->target[target];
3449 
3450 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3451 	                      CAM_LUN_WILDCARD);
3452 	if (sts != CAM_REQ_CMP)
3453 		return;
3454 
3455 	bzero(&cts, sizeof(cts));
3456 
3457 #define	cts__scsi (cts.proto_specific.scsi)
3458 #define	cts__spi  (cts.xport_specific.spi)
3459 
3460 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3461 	cts.protocol  = PROTO_SCSI;
3462 	cts.transport = XPORT_SPI;
3463 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3464 	cts.transport_version = tp->tinfo.current.spi_version;
3465 
3466 	cts__spi.valid = spi_valid;
3467 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3468 		cts__spi.sync_period = tp->tinfo.current.period;
3469 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3470 		cts__spi.sync_offset = tp->tinfo.current.offset;
3471 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3472 		cts__spi.bus_width   = tp->tinfo.current.width;
3473 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3474 		cts__spi.ppr_options = tp->tinfo.current.options;
3475 #undef cts__spi
3476 #undef cts__scsi
3477 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3478 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3479 	xpt_free_path(path);
3480 }
3481 
3482 #define SYM_SPI_VALID_WDTR		\
3483 	CTS_SPI_VALID_BUS_WIDTH |	\
3484 	CTS_SPI_VALID_SYNC_RATE |	\
3485 	CTS_SPI_VALID_SYNC_OFFSET
3486 #define SYM_SPI_VALID_SDTR		\
3487 	CTS_SPI_VALID_SYNC_RATE |	\
3488 	CTS_SPI_VALID_SYNC_OFFSET
3489 #define SYM_SPI_VALID_PPR		\
3490 	CTS_SPI_VALID_PPR_OPTIONS |	\
3491 	CTS_SPI_VALID_BUS_WIDTH |	\
3492 	CTS_SPI_VALID_SYNC_RATE |	\
3493 	CTS_SPI_VALID_SYNC_OFFSET
3494 
3495 /*
3496  *  We received a WDTR.
3497  *  Let everything be aware of the changes.
3498  */
3499 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3500 {
3501 	tcb_p tp = &np->target[cp->target];
3502 
3503 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3504 
3505 	/*
3506 	 *  Tell the SCSI layer about the new transfer parameters.
3507 	 */
3508 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3509 	tp->tinfo.current.offset = 0;
3510 	tp->tinfo.current.period = 0;
3511 	tp->tinfo.current.options = 0;
3512 
3513 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3514 }
3515 
3516 /*
3517  *  We received a SDTR.
3518  *  Let everything be aware of the changes.
3519  */
3520 static void
3521 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3522 {
3523 	tcb_p tp = &np->target[cp->target];
3524 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3525 
3526 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3527 
3528 	/*
3529 	 *  Tell the SCSI layer about the new transfer parameters.
3530 	 */
3531 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3532 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3533 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3534 
3535 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3536 }
3537 
3538 /*
3539  *  We received a PPR.
3540  *  Let everything be aware of the changes.
3541  */
3542 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3543 			 u_char per, u_char wide, u_char div, u_char fak)
3544 {
3545 	tcb_p tp = &np->target[cp->target];
3546 
3547 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3548 
3549 	/*
3550 	 *  Tell the SCSI layer about the new transfer parameters.
3551 	 */
3552 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3553 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3554 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3555 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3556 
3557 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3558 }
3559 
3560 /*
3561  *  Switch trans mode for current job and it's target.
3562  */
3563 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3564 			 u_char per, u_char wide, u_char div, u_char fak)
3565 {
3566 	SYM_QUEHEAD *qp;
3567 	union	ccb *ccb;
3568 	tcb_p tp;
3569 	u_char target = INB (nc_sdid) & 0x0f;
3570 	u_char sval, wval, uval;
3571 
3572 	assert (cp);
3573 	if (!cp) return;
3574 	ccb = cp->cam_ccb;
3575 	assert (ccb);
3576 	if (!ccb) return;
3577 	assert (target == (cp->target & 0xf));
3578 	tp = &np->target[target];
3579 
3580 	sval = tp->head.sval;
3581 	wval = tp->head.wval;
3582 	uval = tp->head.uval;
3583 
3584 #if 0
3585 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3586 		sval, wval, uval, np->rv_scntl3);
3587 #endif
3588 	/*
3589 	 *  Set the offset.
3590 	 */
3591 	if (!(np->features & FE_C10))
3592 		sval = (sval & ~0x1f) | ofs;
3593 	else
3594 		sval = (sval & ~0x3f) | ofs;
3595 
3596 	/*
3597 	 *  Set the sync divisor and extra clock factor.
3598 	 */
3599 	if (ofs != 0) {
3600 		wval = (wval & ~0x70) | ((div+1) << 4);
3601 		if (!(np->features & FE_C10))
3602 			sval = (sval & ~0xe0) | (fak << 5);
3603 		else {
3604 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3605 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3606 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3607 		}
3608 	}
3609 
3610 	/*
3611 	 *  Set the bus width.
3612 	 */
3613 	wval = wval & ~EWS;
3614 	if (wide != 0)
3615 		wval |= EWS;
3616 
3617 	/*
3618 	 *  Set misc. ultra enable bits.
3619 	 */
3620 	if (np->features & FE_C10) {
3621 		uval = uval & ~(U3EN|AIPCKEN);
3622 		if (dt)	{
3623 			assert(np->features & FE_U3EN);
3624 			uval |= U3EN;
3625 		}
3626 	}
3627 	else {
3628 		wval = wval & ~ULTRA;
3629 		if (per <= 12)	wval |= ULTRA;
3630 	}
3631 
3632 	/*
3633 	 *   Stop there if sync parameters are unchanged.
3634 	 */
3635 	if (tp->head.sval == sval &&
3636 	    tp->head.wval == wval &&
3637 	    tp->head.uval == uval)
3638 		return;
3639 	tp->head.sval = sval;
3640 	tp->head.wval = wval;
3641 	tp->head.uval = uval;
3642 
3643 	/*
3644 	 *  Disable extended Sreq/Sack filtering if per < 50.
3645 	 *  Not supported on the C1010.
3646 	 */
3647 	if (per < 50 && !(np->features & FE_C10))
3648 		OUTOFFB (nc_stest2, EXT);
3649 
3650 	/*
3651 	 *  set actual value and sync_status
3652 	 */
3653 	OUTB (nc_sxfer,  tp->head.sval);
3654 	OUTB (nc_scntl3, tp->head.wval);
3655 
3656 	if (np->features & FE_C10) {
3657 		OUTB (nc_scntl4, tp->head.uval);
3658 	}
3659 
3660 	/*
3661 	 *  patch ALL busy ccbs of this target.
3662 	 */
3663 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3664 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3665 		if (cp->target != target)
3666 			continue;
3667 		cp->phys.select.sel_scntl3 = tp->head.wval;
3668 		cp->phys.select.sel_sxfer  = tp->head.sval;
3669 		if (np->features & FE_C10) {
3670 			cp->phys.select.sel_scntl4 = tp->head.uval;
3671 		}
3672 	}
3673 }
3674 
3675 /*
3676  *  log message for real hard errors
3677  *
3678  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3679  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3680  *
3681  *  exception register:
3682  *  	ds:	dstat
3683  *  	si:	sist
3684  *
3685  *  SCSI bus lines:
3686  *  	so:	control lines as driven by chip.
3687  *  	si:	control lines as seen by chip.
3688  *  	sd:	scsi data lines as seen by chip.
3689  *
3690  *  wide/fastmode:
3691  *  	sxfer:	(see the manual)
3692  *  	scntl3:	(see the manual)
3693  *
3694  *  current script command:
3695  *  	dsp:	script address (relative to start of script).
3696  *  	dbc:	first word of script command.
3697  *
3698  *  First 24 register of the chip:
3699  *  	r0..rf
3700  */
3701 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3702 {
3703 	u32	dsp;
3704 	int	script_ofs;
3705 	int	script_size;
3706 	char	*script_name;
3707 	u_char	*script_base;
3708 	int	i;
3709 
3710 	dsp	= INL (nc_dsp);
3711 
3712 	if	(dsp > np->scripta_ba &&
3713 		 dsp <= np->scripta_ba + np->scripta_sz) {
3714 		script_ofs	= dsp - np->scripta_ba;
3715 		script_size	= np->scripta_sz;
3716 		script_base	= (u_char *) np->scripta0;
3717 		script_name	= "scripta";
3718 	}
3719 	else if (np->scriptb_ba < dsp &&
3720 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3721 		script_ofs	= dsp - np->scriptb_ba;
3722 		script_size	= np->scriptb_sz;
3723 		script_base	= (u_char *) np->scriptb0;
3724 		script_name	= "scriptb";
3725 	} else {
3726 		script_ofs	= dsp;
3727 		script_size	= 0;
3728 		script_base	= 0;
3729 		script_name	= "mem";
3730 	}
3731 
3732 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3733 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3734 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3735 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3736 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3737 		(unsigned)INL (nc_dbc));
3738 
3739 	if (((script_ofs & 3) == 0) &&
3740 	    (unsigned)script_ofs < script_size) {
3741 		printf ("%s: script cmd = %08x\n", sym_name(np),
3742 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3743 	}
3744 
3745         printf ("%s: regdump:", sym_name(np));
3746         for (i=0; i<24;i++)
3747             printf (" %02x", (unsigned)INB_OFF(i));
3748         printf (".\n");
3749 
3750 	/*
3751 	 *  PCI BUS error, read the PCI ststus register.
3752 	 */
3753 	if (dstat & (MDPE|BF)) {
3754 		u_short pci_sts;
3755 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3756 		if (pci_sts & 0xf900) {
3757 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3758 			printf("%s: PCI STATUS = 0x%04x\n",
3759 				sym_name(np), pci_sts & 0xf900);
3760 		}
3761 	}
3762 }
3763 
3764 /*
3765  *  chip interrupt handler
3766  *
3767  *  In normal situations, interrupt conditions occur one at
3768  *  a time. But when something bad happens on the SCSI BUS,
3769  *  the chip may raise several interrupt flags before
3770  *  stopping and interrupting the CPU. The additionnal
3771  *  interrupt flags are stacked in some extra registers
3772  *  after the SIP and/or DIP flag has been raised in the
3773  *  ISTAT. After the CPU has read the interrupt condition
3774  *  flag from SIST or DSTAT, the chip unstacks the other
3775  *  interrupt flags and sets the corresponding bits in
3776  *  SIST or DSTAT. Since the chip starts stacking once the
3777  *  SIP or DIP flag is set, there is a small window of time
3778  *  where the stacking does not occur.
3779  *
3780  *  Typically, multiple interrupt conditions may happen in
3781  *  the following situations:
3782  *
3783  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3784  *    When a parity error is detected in input phase
3785  *    and the device switches to msg-in phase inside a
3786  *    block MOV.
3787  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3788  *    When a stupid device does not want to handle the
3789  *    recovery of an SCSI parity error.
3790  *  - Some combinations of STO, PAR, UDC, ...
3791  *    When using non compliant SCSI stuff, when user is
3792  *    doing non compliant hot tampering on the BUS, when
3793  *    something really bad happens to a device, etc ...
3794  *
3795  *  The heuristic suggested by SYMBIOS to handle
3796  *  multiple interrupts is to try unstacking all
3797  *  interrupts conditions and to handle them on some
3798  *  priority based on error severity.
3799  *  This will work when the unstacking has been
3800  *  successful, but we cannot be 100 % sure of that,
3801  *  since the CPU may have been faster to unstack than
3802  *  the chip is able to stack. Hmmm ... But it seems that
3803  *  such a situation is very unlikely to happen.
3804  *
3805  *  If this happen, for example STO caught by the CPU
3806  *  then UDC happenning before the CPU have restarted
3807  *  the SCRIPTS, the driver may wrongly complete the
3808  *  same command on UDC, since the SCRIPTS didn't restart
3809  *  and the DSA still points to the same command.
3810  *  We avoid this situation by setting the DSA to an
3811  *  invalid value when the CCB is completed and before
3812  *  restarting the SCRIPTS.
3813  *
3814  *  Another issue is that we need some section of our
3815  *  recovery procedures to be somehow uninterruptible but
3816  *  the SCRIPTS processor does not provides such a
3817  *  feature. For this reason, we handle recovery preferently
3818  *  from the C code and check against some SCRIPTS critical
3819  *  sections from the C code.
3820  *
3821  *  Hopefully, the interrupt handling of the driver is now
3822  *  able to resist to weird BUS error conditions, but donnot
3823  *  ask me for any guarantee that it will never fail. :-)
3824  *  Use at your own decision and risk.
3825  */
3826 static void sym_intr1 (hcb_p np)
3827 {
3828 	u_char	istat, istatc;
3829 	u_char	dstat;
3830 	u_short	sist;
3831 
3832 	SYM_LOCK_ASSERT(MA_OWNED);
3833 
3834 	/*
3835 	 *  interrupt on the fly ?
3836 	 *
3837 	 *  A `dummy read' is needed to ensure that the
3838 	 *  clear of the INTF flag reaches the device
3839 	 *  before the scanning of the DONE queue.
3840 	 */
3841 	istat = INB (nc_istat);
3842 	if (istat & INTF) {
3843 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3844 		istat = INB (nc_istat);		/* DUMMY READ */
3845 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3846 		(void)sym_wakeup_done (np);
3847 	};
3848 
3849 	if (!(istat & (SIP|DIP)))
3850 		return;
3851 
3852 #if 0	/* We should never get this one */
3853 	if (istat & CABRT)
3854 		OUTB (nc_istat, CABRT);
3855 #endif
3856 
3857 	/*
3858 	 *  PAR and MA interrupts may occur at the same time,
3859 	 *  and we need to know of both in order to handle
3860 	 *  this situation properly. We try to unstack SCSI
3861 	 *  interrupts for that reason. BTW, I dislike a LOT
3862 	 *  such a loop inside the interrupt routine.
3863 	 *  Even if DMA interrupt stacking is very unlikely to
3864 	 *  happen, we also try unstacking these ones, since
3865 	 *  this has no performance impact.
3866 	 */
3867 	sist	= 0;
3868 	dstat	= 0;
3869 	istatc	= istat;
3870 	do {
3871 		if (istatc & SIP)
3872 			sist  |= INW (nc_sist);
3873 		if (istatc & DIP)
3874 			dstat |= INB (nc_dstat);
3875 		istatc = INB (nc_istat);
3876 		istat |= istatc;
3877 	} while (istatc & (SIP|DIP));
3878 
3879 	if (DEBUG_FLAGS & DEBUG_TINY)
3880 		printf ("<%d|%x:%x|%x:%x>",
3881 			(int)INB(nc_scr0),
3882 			dstat,sist,
3883 			(unsigned)INL(nc_dsp),
3884 			(unsigned)INL(nc_dbc));
3885 	/*
3886 	 *  On paper, a memory barrier may be needed here.
3887 	 *  And since we are paranoid ... :)
3888 	 */
3889 	MEMORY_BARRIER();
3890 
3891 	/*
3892 	 *  First, interrupts we want to service cleanly.
3893 	 *
3894 	 *  Phase mismatch (MA) is the most frequent interrupt
3895 	 *  for chip earlier than the 896 and so we have to service
3896 	 *  it as quickly as possible.
3897 	 *  A SCSI parity error (PAR) may be combined with a phase
3898 	 *  mismatch condition (MA).
3899 	 *  Programmed interrupts (SIR) are used to call the C code
3900 	 *  from SCRIPTS.
3901 	 *  The single step interrupt (SSI) is not used in this
3902 	 *  driver.
3903 	 */
3904 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3905 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3906 		if	(sist & PAR)	sym_int_par (np, sist);
3907 		else if (sist & MA)	sym_int_ma (np);
3908 		else if (dstat & SIR)	sym_int_sir (np);
3909 		else if (dstat & SSI)	OUTONB_STD ();
3910 		else			goto unknown_int;
3911 		return;
3912 	};
3913 
3914 	/*
3915 	 *  Now, interrupts that donnot happen in normal
3916 	 *  situations and that we may need to recover from.
3917 	 *
3918 	 *  On SCSI RESET (RST), we reset everything.
3919 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3920 	 *  active CCBs with RESET status, prepare all devices
3921 	 *  for negotiating again and restart the SCRIPTS.
3922 	 *  On STO and UDC, we complete the CCB with the corres-
3923 	 *  ponding status and restart the SCRIPTS.
3924 	 */
3925 	if (sist & RST) {
3926 		xpt_print_path(np->path);
3927 		printf("SCSI BUS reset detected.\n");
3928 		sym_init (np, 1);
3929 		return;
3930 	};
3931 
3932 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3933 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3934 
3935 	if (!(sist  & (GEN|HTH|SGE)) &&
3936 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3937 		if	(sist & SBMC)	sym_int_sbmc (np);
3938 		else if (sist & STO)	sym_int_sto (np);
3939 		else if (sist & UDC)	sym_int_udc (np);
3940 		else			goto unknown_int;
3941 		return;
3942 	};
3943 
3944 	/*
3945 	 *  Now, interrupts we are not able to recover cleanly.
3946 	 *
3947 	 *  Log message for hard errors.
3948 	 *  Reset everything.
3949 	 */
3950 
3951 	sym_log_hard_error(np, sist, dstat);
3952 
3953 	if ((sist & (GEN|HTH|SGE)) ||
3954 		(dstat & (MDPE|BF|ABRT|IID))) {
3955 		sym_start_reset(np);
3956 		return;
3957 	};
3958 
3959 unknown_int:
3960 	/*
3961 	 *  We just miss the cause of the interrupt. :(
3962 	 *  Print a message. The timeout will do the real work.
3963 	 */
3964 	printf(	"%s: unknown interrupt(s) ignored, "
3965 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3966 		sym_name(np), istat, dstat, sist);
3967 }
3968 
3969 static void sym_intr(void *arg)
3970 {
3971 	hcb_p np = arg;
3972 
3973 	SYM_LOCK();
3974 
3975 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3976 	sym_intr1((hcb_p) arg);
3977 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3978 
3979 	SYM_UNLOCK();
3980 }
3981 
3982 static void sym_poll(struct cam_sim *sim)
3983 {
3984 	sym_intr1(cam_sim_softc(sim));
3985 }
3986 
3987 /*
3988  *  generic recovery from scsi interrupt
3989  *
3990  *  The doc says that when the chip gets an SCSI interrupt,
3991  *  it tries to stop in an orderly fashion, by completing
3992  *  an instruction fetch that had started or by flushing
3993  *  the DMA fifo for a write to memory that was executing.
3994  *  Such a fashion is not enough to know if the instruction
3995  *  that was just before the current DSP value has been
3996  *  executed or not.
3997  *
3998  *  There are some small SCRIPTS sections that deal with
3999  *  the start queue and the done queue that may break any
4000  *  assomption from the C code if we are interrupted
4001  *  inside, so we reset if this happens. Btw, since these
4002  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4003  *  started SCSI operations, it is very unlikely to happen.
4004  *
4005  *  All the driver data structures are supposed to be
4006  *  allocated from the same 4 GB memory window, so there
4007  *  is a 1 to 1 relationship between DSA and driver data
4008  *  structures. Since we are careful :) to invalidate the
4009  *  DSA when we complete a command or when the SCRIPTS
4010  *  pushes a DSA into a queue, we can trust it when it
4011  *  points to a CCB.
4012  */
4013 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4014 {
4015 	u32	dsp	= INL (nc_dsp);
4016 	u32	dsa	= INL (nc_dsa);
4017 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4018 
4019 	/*
4020 	 *  If we haven't been interrupted inside the SCRIPTS
4021 	 *  critical pathes, we can safely restart the SCRIPTS
4022 	 *  and trust the DSA value if it matches a CCB.
4023 	 */
4024 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4025 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4026 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4027 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4028 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4029 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4030 	    (!(dsp > SCRIPTA_BA (np, done) &&
4031 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4032 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4033 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4034 		/*
4035 		 *  If we have a CCB, let the SCRIPTS call us back for
4036 		 *  the handling of the error with SCRATCHA filled with
4037 		 *  STARTPOS. This way, we will be able to freeze the
4038 		 *  device queue and requeue awaiting IOs.
4039 		 */
4040 		if (cp) {
4041 			cp->host_status = hsts;
4042 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4043 		}
4044 		/*
4045 		 *  Otherwise just restart the SCRIPTS.
4046 		 */
4047 		else {
4048 			OUTL (nc_dsa, 0xffffff);
4049 			OUTL_DSP (SCRIPTA_BA (np, start));
4050 		}
4051 	}
4052 	else
4053 		goto reset_all;
4054 
4055 	return;
4056 
4057 reset_all:
4058 	sym_start_reset(np);
4059 }
4060 
4061 /*
4062  *  chip exception handler for selection timeout
4063  */
4064 static void sym_int_sto (hcb_p np)
4065 {
4066 	u32 dsp	= INL (nc_dsp);
4067 
4068 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4069 
4070 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4071 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4072 	else
4073 		sym_start_reset(np);
4074 }
4075 
4076 /*
4077  *  chip exception handler for unexpected disconnect
4078  */
4079 static void sym_int_udc (hcb_p np)
4080 {
4081 	printf ("%s: unexpected disconnect\n", sym_name(np));
4082 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4083 }
4084 
4085 /*
4086  *  chip exception handler for SCSI bus mode change
4087  *
4088  *  spi2-r12 11.2.3 says a transceiver mode change must
4089  *  generate a reset event and a device that detects a reset
4090  *  event shall initiate a hard reset. It says also that a
4091  *  device that detects a mode change shall set data transfer
4092  *  mode to eight bit asynchronous, etc...
4093  *  So, just reinitializing all except chip should be enough.
4094  */
4095 static void sym_int_sbmc (hcb_p np)
4096 {
4097 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4098 
4099 	/*
4100 	 *  Notify user.
4101 	 */
4102 	xpt_print_path(np->path);
4103 	printf("SCSI BUS mode change from %s to %s.\n",
4104 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4105 
4106 	/*
4107 	 *  Should suspend command processing for a few seconds and
4108 	 *  reinitialize all except the chip.
4109 	 */
4110 	sym_init (np, 2);
4111 }
4112 
4113 /*
4114  *  chip exception handler for SCSI parity error.
4115  *
4116  *  When the chip detects a SCSI parity error and is
4117  *  currently executing a (CH)MOV instruction, it does
4118  *  not interrupt immediately, but tries to finish the
4119  *  transfer of the current scatter entry before
4120  *  interrupting. The following situations may occur:
4121  *
4122  *  - The complete scatter entry has been transferred
4123  *    without the device having changed phase.
4124  *    The chip will then interrupt with the DSP pointing
4125  *    to the instruction that follows the MOV.
4126  *
4127  *  - A phase mismatch occurs before the MOV finished
4128  *    and phase errors are to be handled by the C code.
4129  *    The chip will then interrupt with both PAR and MA
4130  *    conditions set.
4131  *
4132  *  - A phase mismatch occurs before the MOV finished and
4133  *    phase errors are to be handled by SCRIPTS.
4134  *    The chip will load the DSP with the phase mismatch
4135  *    JUMP address and interrupt the host processor.
4136  */
4137 static void sym_int_par (hcb_p np, u_short sist)
4138 {
4139 	u_char	hsts	= INB (HS_PRT);
4140 	u32	dsp	= INL (nc_dsp);
4141 	u32	dbc	= INL (nc_dbc);
4142 	u32	dsa	= INL (nc_dsa);
4143 	u_char	sbcl	= INB (nc_sbcl);
4144 	u_char	cmd	= dbc >> 24;
4145 	int phase	= cmd & 7;
4146 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4147 
4148 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4149 		sym_name(np), hsts, dbc, sbcl);
4150 
4151 	/*
4152 	 *  Check that the chip is connected to the SCSI BUS.
4153 	 */
4154 	if (!(INB (nc_scntl1) & ISCON)) {
4155 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4156 		return;
4157 	}
4158 
4159 	/*
4160 	 *  If the nexus is not clearly identified, reset the bus.
4161 	 *  We will try to do better later.
4162 	 */
4163 	if (!cp)
4164 		goto reset_all;
4165 
4166 	/*
4167 	 *  Check instruction was a MOV, direction was INPUT and
4168 	 *  ATN is asserted.
4169 	 */
4170 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4171 		goto reset_all;
4172 
4173 	/*
4174 	 *  Keep track of the parity error.
4175 	 */
4176 	OUTONB (HF_PRT, HF_EXT_ERR);
4177 	cp->xerr_status |= XE_PARITY_ERR;
4178 
4179 	/*
4180 	 *  Prepare the message to send to the device.
4181 	 */
4182 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4183 
4184 	/*
4185 	 *  If the old phase was DATA IN phase, we have to deal with
4186 	 *  the 3 situations described above.
4187 	 *  For other input phases (MSG IN and STATUS), the device
4188 	 *  must resend the whole thing that failed parity checking
4189 	 *  or signal error. So, jumping to dispatcher should be OK.
4190 	 */
4191 	if (phase == 1 || phase == 5) {
4192 		/* Phase mismatch handled by SCRIPTS */
4193 		if (dsp == SCRIPTB_BA (np, pm_handle))
4194 			OUTL_DSP (dsp);
4195 		/* Phase mismatch handled by the C code */
4196 		else if (sist & MA)
4197 			sym_int_ma (np);
4198 		/* No phase mismatch occurred */
4199 		else {
4200 			OUTL (nc_temp, dsp);
4201 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4202 		}
4203 	}
4204 	else
4205 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4206 	return;
4207 
4208 reset_all:
4209 	sym_start_reset(np);
4210 }
4211 
4212 /*
4213  *  chip exception handler for phase errors.
4214  *
4215  *  We have to construct a new transfer descriptor,
4216  *  to transfer the rest of the current block.
4217  */
4218 static void sym_int_ma (hcb_p np)
4219 {
4220 	u32	dbc;
4221 	u32	rest;
4222 	u32	dsp;
4223 	u32	dsa;
4224 	u32	nxtdsp;
4225 	u32	*vdsp;
4226 	u32	oadr, olen;
4227 	u32	*tblp;
4228         u32	newcmd;
4229 	u_int	delta;
4230 	u_char	cmd;
4231 	u_char	hflags, hflags0;
4232 	struct	sym_pmc *pm;
4233 	ccb_p	cp;
4234 
4235 	dsp	= INL (nc_dsp);
4236 	dbc	= INL (nc_dbc);
4237 	dsa	= INL (nc_dsa);
4238 
4239 	cmd	= dbc >> 24;
4240 	rest	= dbc & 0xffffff;
4241 	delta	= 0;
4242 
4243 	/*
4244 	 *  locate matching cp if any.
4245 	 */
4246 	cp = sym_ccb_from_dsa(np, dsa);
4247 
4248 	/*
4249 	 *  Donnot take into account dma fifo and various buffers in
4250 	 *  INPUT phase since the chip flushes everything before
4251 	 *  raising the MA interrupt for interrupted INPUT phases.
4252 	 *  For DATA IN phase, we will check for the SWIDE later.
4253 	 */
4254 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4255 		u_char ss0, ss2;
4256 
4257 		if (np->features & FE_DFBC)
4258 			delta = INW (nc_dfbc);
4259 		else {
4260 			u32 dfifo;
4261 
4262 			/*
4263 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4264 			 */
4265 			dfifo = INL(nc_dfifo);
4266 
4267 			/*
4268 			 *  Calculate remaining bytes in DMA fifo.
4269 			 *  (CTEST5 = dfifo >> 16)
4270 			 */
4271 			if (dfifo & (DFS << 16))
4272 				delta = ((((dfifo >> 8) & 0x300) |
4273 				          (dfifo & 0xff)) - rest) & 0x3ff;
4274 			else
4275 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4276 		}
4277 
4278 		/*
4279 		 *  The data in the dma fifo has not been transferred to
4280 		 *  the target -> add the amount to the rest
4281 		 *  and clear the data.
4282 		 *  Check the sstat2 register in case of wide transfer.
4283 		 */
4284 		rest += delta;
4285 		ss0  = INB (nc_sstat0);
4286 		if (ss0 & OLF) rest++;
4287 		if (!(np->features & FE_C10))
4288 			if (ss0 & ORF) rest++;
4289 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4290 			ss2 = INB (nc_sstat2);
4291 			if (ss2 & OLF1) rest++;
4292 			if (!(np->features & FE_C10))
4293 				if (ss2 & ORF1) rest++;
4294 		};
4295 
4296 		/*
4297 		 *  Clear fifos.
4298 		 */
4299 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4300 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4301 	}
4302 
4303 	/*
4304 	 *  log the information
4305 	 */
4306 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4307 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4308 			(unsigned) rest, (unsigned) delta);
4309 
4310 	/*
4311 	 *  try to find the interrupted script command,
4312 	 *  and the address at which to continue.
4313 	 */
4314 	vdsp	= 0;
4315 	nxtdsp	= 0;
4316 	if	(dsp >  np->scripta_ba &&
4317 		 dsp <= np->scripta_ba + np->scripta_sz) {
4318 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4319 		nxtdsp = dsp;
4320 	}
4321 	else if	(dsp >  np->scriptb_ba &&
4322 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4323 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4324 		nxtdsp = dsp;
4325 	}
4326 
4327 	/*
4328 	 *  log the information
4329 	 */
4330 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4331 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4332 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4333 	};
4334 
4335 	if (!vdsp) {
4336 		printf ("%s: interrupted SCRIPT address not found.\n",
4337 			sym_name (np));
4338 		goto reset_all;
4339 	}
4340 
4341 	if (!cp) {
4342 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4343 			sym_name (np));
4344 		goto reset_all;
4345 	}
4346 
4347 	/*
4348 	 *  get old startaddress and old length.
4349 	 */
4350 	oadr = scr_to_cpu(vdsp[1]);
4351 
4352 	if (cmd & 0x10) {	/* Table indirect */
4353 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4354 		olen = scr_to_cpu(tblp[0]);
4355 		oadr = scr_to_cpu(tblp[1]);
4356 	} else {
4357 		tblp = (u32 *) 0;
4358 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4359 	};
4360 
4361 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4362 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4363 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4364 			tblp,
4365 			(unsigned) olen,
4366 			(unsigned) oadr);
4367 	};
4368 
4369 	/*
4370 	 *  check cmd against assumed interrupted script command.
4371 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4372 	 *  the phase.
4373 	 */
4374 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4375 		PRINT_ADDR(cp);
4376 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4377 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4378 
4379 		goto reset_all;
4380 	};
4381 
4382 	/*
4383 	 *  if old phase not dataphase, leave here.
4384 	 */
4385 	if (cmd & 2) {
4386 		PRINT_ADDR(cp);
4387 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4388 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4389 			(unsigned)oadr, (unsigned)rest);
4390 		goto unexpected_phase;
4391 	};
4392 
4393 	/*
4394 	 *  Choose the correct PM save area.
4395 	 *
4396 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4397 	 *  this stuff. The equivalent code is implemented in
4398 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4399 	 *  handle PM from the SCRIPTS processor.
4400 	 */
4401 	hflags0 = INB (HF_PRT);
4402 	hflags = hflags0;
4403 
4404 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4405 		if (hflags & HF_IN_PM0)
4406 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4407 		else if	(hflags & HF_IN_PM1)
4408 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4409 
4410 		if (hflags & HF_DP_SAVED)
4411 			hflags ^= HF_ACT_PM;
4412 	}
4413 
4414 	if (!(hflags & HF_ACT_PM)) {
4415 		pm = &cp->phys.pm0;
4416 		newcmd = SCRIPTA_BA (np, pm0_data);
4417 	}
4418 	else {
4419 		pm = &cp->phys.pm1;
4420 		newcmd = SCRIPTA_BA (np, pm1_data);
4421 	}
4422 
4423 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4424 	if (hflags != hflags0)
4425 		OUTB (HF_PRT, hflags);
4426 
4427 	/*
4428 	 *  fillin the phase mismatch context
4429 	 */
4430 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4431 	pm->sg.size = cpu_to_scr(rest);
4432 	pm->ret     = cpu_to_scr(nxtdsp);
4433 
4434 	/*
4435 	 *  If we have a SWIDE,
4436 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4437 	 *  - compute the SCRIPTS address to restart from,
4438 	 *  - move current data pointer context by one byte.
4439 	 */
4440 	nxtdsp = SCRIPTA_BA (np, dispatch);
4441 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4442 	    (INB (nc_scntl2) & WSR)) {
4443 		u32 tmp;
4444 
4445 		/*
4446 		 *  Set up the table indirect for the MOVE
4447 		 *  of the residual byte and adjust the data
4448 		 *  pointer context.
4449 		 */
4450 		tmp = scr_to_cpu(pm->sg.addr);
4451 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4452 		pm->sg.addr = cpu_to_scr(tmp + 1);
4453 		tmp = scr_to_cpu(pm->sg.size);
4454 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4455 		pm->sg.size = cpu_to_scr(tmp - 1);
4456 
4457 		/*
4458 		 *  If only the residual byte is to be moved,
4459 		 *  no PM context is needed.
4460 		 */
4461 		if ((tmp&0xffffff) == 1)
4462 			newcmd = pm->ret;
4463 
4464 		/*
4465 		 *  Prepare the address of SCRIPTS that will
4466 		 *  move the residual byte to memory.
4467 		 */
4468 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4469 	}
4470 
4471 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4472 		PRINT_ADDR(cp);
4473 		printf ("PM %x %x %x / %x %x %x.\n",
4474 			hflags0, hflags, newcmd,
4475 			(unsigned)scr_to_cpu(pm->sg.addr),
4476 			(unsigned)scr_to_cpu(pm->sg.size),
4477 			(unsigned)scr_to_cpu(pm->ret));
4478 	}
4479 
4480 	/*
4481 	 *  Restart the SCRIPTS processor.
4482 	 */
4483 	OUTL (nc_temp, newcmd);
4484 	OUTL_DSP (nxtdsp);
4485 	return;
4486 
4487 	/*
4488 	 *  Unexpected phase changes that occurs when the current phase
4489 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4490 	 *  Such event may only happen when the SCRIPTS is using a
4491 	 *  multibyte SCSI MOVE.
4492 	 *
4493 	 *  Phase change		Some possible cause
4494 	 *
4495 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4496 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4497 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4498 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4499 	 *  			negotiation messages.
4500 	 *
4501 	 *  The code below does not care of the new phase and so
4502 	 *  trusts the target. Why to annoy it ?
4503 	 *  If the interrupted phase is COMMAND phase, we restart at
4504 	 *  dispatcher.
4505 	 *  If a target does not get all the messages after selection,
4506 	 *  the code assumes blindly that the target discards extended
4507 	 *  messages and clears the negotiation status.
4508 	 *  If the target does not want all our response to negotiation,
4509 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4510 	 *  bloat for such a should_not_happen situation).
4511 	 *  In all other situation, we reset the BUS.
4512 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4513 	 */
4514 unexpected_phase:
4515 	dsp -= 8;
4516 	nxtdsp = 0;
4517 
4518 	switch (cmd & 7) {
4519 	case 2:	/* COMMAND phase */
4520 		nxtdsp = SCRIPTA_BA (np, dispatch);
4521 		break;
4522 #if 0
4523 	case 3:	/* STATUS  phase */
4524 		nxtdsp = SCRIPTA_BA (np, dispatch);
4525 		break;
4526 #endif
4527 	case 6:	/* MSG OUT phase */
4528 		/*
4529 		 *  If the device may want to use untagged when we want
4530 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4531 		 *  since we will not be able to handle reselect.
4532 		 *  Otherwise, we just don't care.
4533 		 */
4534 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4535 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4536 				cp->host_status = HS_BUSY;
4537 				np->msgout[0] = M_IDENTIFY | cp->lun;
4538 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4539 			}
4540 			else
4541 				nxtdsp = SCRIPTB_BA (np, ident_break);
4542 		}
4543 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4544 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4545 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4546 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4547 		}
4548 		break;
4549 #if 0
4550 	case 7:	/* MSG IN  phase */
4551 		nxtdsp = SCRIPTA_BA (np, clrack);
4552 		break;
4553 #endif
4554 	}
4555 
4556 	if (nxtdsp) {
4557 		OUTL_DSP (nxtdsp);
4558 		return;
4559 	}
4560 
4561 reset_all:
4562 	sym_start_reset(np);
4563 }
4564 
4565 /*
4566  *  Dequeue from the START queue all CCBs that match
4567  *  a given target/lun/task condition (-1 means all),
4568  *  and move them from the BUSY queue to the COMP queue
4569  *  with CAM_REQUEUE_REQ status condition.
4570  *  This function is used during error handling/recovery.
4571  *  It is called with SCRIPTS not running.
4572  */
4573 static int
4574 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4575 {
4576 	int j;
4577 	ccb_p cp;
4578 
4579 	/*
4580 	 *  Make sure the starting index is within range.
4581 	 */
4582 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4583 
4584 	/*
4585 	 *  Walk until end of START queue and dequeue every job
4586 	 *  that matches the target/lun/task condition.
4587 	 */
4588 	j = i;
4589 	while (i != np->squeueput) {
4590 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4591 		assert(cp);
4592 #ifdef SYM_CONF_IARB_SUPPORT
4593 		/* Forget hints for IARB, they may be no longer relevant */
4594 		cp->host_flags &= ~HF_HINT_IARB;
4595 #endif
4596 		if ((target == -1 || cp->target == target) &&
4597 		    (lun    == -1 || cp->lun    == lun)    &&
4598 		    (task   == -1 || cp->tag    == task)) {
4599 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4600 			sym_remque(&cp->link_ccbq);
4601 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4602 		}
4603 		else {
4604 			if (i != j)
4605 				np->squeue[j] = np->squeue[i];
4606 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4607 		}
4608 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4609 	}
4610 	if (i != j)		/* Copy back the idle task if needed */
4611 		np->squeue[j] = np->squeue[i];
4612 	np->squeueput = j;	/* Update our current start queue pointer */
4613 
4614 	return (i - j) / 2;
4615 }
4616 
4617 /*
4618  *  Complete all CCBs queued to the COMP queue.
4619  *
4620  *  These CCBs are assumed:
4621  *  - Not to be referenced either by devices or
4622  *    SCRIPTS-related queues and datas.
4623  *  - To have to be completed with an error condition
4624  *    or requeued.
4625  *
4626  *  The device queue freeze count is incremented
4627  *  for each CCB that does not prevent this.
4628  *  This function is called when all CCBs involved
4629  *  in error handling/recovery have been reaped.
4630  */
4631 static void
4632 sym_flush_comp_queue(hcb_p np, int cam_status)
4633 {
4634 	SYM_QUEHEAD *qp;
4635 	ccb_p cp;
4636 
4637 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4638 		union ccb *ccb;
4639 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4640 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4641 		/* Leave quiet CCBs waiting for resources */
4642 		if (cp->host_status == HS_WAIT)
4643 			continue;
4644 		ccb = cp->cam_ccb;
4645 		if (cam_status)
4646 			sym_set_cam_status(ccb, cam_status);
4647 		sym_freeze_cam_ccb(ccb);
4648 		sym_xpt_done(np, ccb, cp);
4649 		sym_free_ccb(np, cp);
4650 	}
4651 }
4652 
4653 /*
4654  *  chip handler for bad SCSI status condition
4655  *
4656  *  In case of bad SCSI status, we unqueue all the tasks
4657  *  currently queued to the controller but not yet started
4658  *  and then restart the SCRIPTS processor immediately.
4659  *
4660  *  QUEUE FULL and BUSY conditions are handled the same way.
4661  *  Basically all the not yet started tasks are requeued in
4662  *  device queue and the queue is frozen until a completion.
4663  *
4664  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4665  *  the CCB of the failed command to prepare a REQUEST SENSE
4666  *  SCSI command and queue it to the controller queue.
4667  *
4668  *  SCRATCHA is assumed to have been loaded with STARTPOS
4669  *  before the SCRIPTS called the C code.
4670  */
4671 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4672 {
4673 	tcb_p tp	= &np->target[cp->target];
4674 	u32		startp;
4675 	u_char		s_status = cp->ssss_status;
4676 	u_char		h_flags  = cp->host_flags;
4677 	int		msglen;
4678 	int		nego;
4679 	int		i;
4680 
4681 	SYM_LOCK_ASSERT(MA_OWNED);
4682 
4683 	/*
4684 	 *  Compute the index of the next job to start from SCRIPTS.
4685 	 */
4686 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4687 
4688 	/*
4689 	 *  The last CCB queued used for IARB hint may be
4690 	 *  no longer relevant. Forget it.
4691 	 */
4692 #ifdef SYM_CONF_IARB_SUPPORT
4693 	if (np->last_cp)
4694 		np->last_cp = NULL;
4695 #endif
4696 
4697 	/*
4698 	 *  Now deal with the SCSI status.
4699 	 */
4700 	switch(s_status) {
4701 	case S_BUSY:
4702 	case S_QUEUE_FULL:
4703 		if (sym_verbose >= 2) {
4704 			PRINT_ADDR(cp);
4705 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4706 		}
4707 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4708 		sym_complete_error (np, cp);
4709 		break;
4710 	case S_TERMINATED:
4711 	case S_CHECK_COND:
4712 		/*
4713 		 *  If we get an SCSI error when requesting sense, give up.
4714 		 */
4715 		if (h_flags & HF_SENSE) {
4716 			sym_complete_error (np, cp);
4717 			break;
4718 		}
4719 
4720 		/*
4721 		 *  Dequeue all queued CCBs for that device not yet started,
4722 		 *  and restart the SCRIPTS processor immediately.
4723 		 */
4724 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4725 		OUTL_DSP (SCRIPTA_BA (np, start));
4726 
4727  		/*
4728 		 *  Save some info of the actual IO.
4729 		 *  Compute the data residual.
4730 		 */
4731 		cp->sv_scsi_status = cp->ssss_status;
4732 		cp->sv_xerr_status = cp->xerr_status;
4733 		cp->sv_resid = sym_compute_residual(np, cp);
4734 
4735 		/*
4736 		 *  Prepare all needed data structures for
4737 		 *  requesting sense data.
4738 		 */
4739 
4740 		/*
4741 		 *  identify message
4742 		 */
4743 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4744 		msglen = 1;
4745 
4746 		/*
4747 		 *  If we are currently using anything different from
4748 		 *  async. 8 bit data transfers with that target,
4749 		 *  start a negotiation, since the device may want
4750 		 *  to report us a UNIT ATTENTION condition due to
4751 		 *  a cause we currently ignore, and we donnot want
4752 		 *  to be stuck with WIDE and/or SYNC data transfer.
4753 		 *
4754 		 *  cp->nego_status is filled by sym_prepare_nego().
4755 		 */
4756 		cp->nego_status = 0;
4757 		nego = 0;
4758 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4759 			nego = NS_PPR;
4760 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4761 			nego = NS_WIDE;
4762 		else if (tp->tinfo.current.offset != 0)
4763 			nego = NS_SYNC;
4764 		if (nego)
4765 			msglen +=
4766 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4767 		/*
4768 		 *  Message table indirect structure.
4769 		 */
4770 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4771 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4772 
4773 		/*
4774 		 *  sense command
4775 		 */
4776 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4777 		cp->phys.cmd.size	= cpu_to_scr(6);
4778 
4779 		/*
4780 		 *  patch requested size into sense command
4781 		 */
4782 		cp->sensecmd[0]		= 0x03;
4783 		cp->sensecmd[1]		= cp->lun << 5;
4784 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4785 			cp->sensecmd[1]	= 0;
4786 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4787 		cp->data_len		= SYM_SNS_BBUF_LEN;
4788 
4789 		/*
4790 		 *  sense data
4791 		 */
4792 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4793 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4794 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4795 
4796 		/*
4797 		 *  requeue the command.
4798 		 */
4799 		startp = SCRIPTB_BA (np, sdata_in);
4800 
4801 		cp->phys.head.savep	= cpu_to_scr(startp);
4802 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4803 		cp->phys.head.lastp	= cpu_to_scr(startp);
4804 		cp->startp	= cpu_to_scr(startp);
4805 
4806 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4807 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4808 		cp->ssss_status = S_ILLEGAL;
4809 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4810 		cp->xerr_status = 0;
4811 		cp->extra_bytes = 0;
4812 
4813 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4814 
4815 		/*
4816 		 *  Requeue the command.
4817 		 */
4818 		sym_put_start_queue(np, cp);
4819 
4820 		/*
4821 		 *  Give back to upper layer everything we have dequeued.
4822 		 */
4823 		sym_flush_comp_queue(np, 0);
4824 		break;
4825 	}
4826 }
4827 
4828 /*
4829  *  After a device has accepted some management message
4830  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4831  *  a device signals a UNIT ATTENTION condition, some
4832  *  tasks are thrown away by the device. We are required
4833  *  to reflect that on our tasks list since the device
4834  *  will never complete these tasks.
4835  *
4836  *  This function move from the BUSY queue to the COMP
4837  *  queue all disconnected CCBs for a given target that
4838  *  match the following criteria:
4839  *  - lun=-1  means any logical UNIT otherwise a given one.
4840  *  - task=-1 means any task, otherwise a given one.
4841  */
4842 static int
4843 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4844 {
4845 	SYM_QUEHEAD qtmp, *qp;
4846 	int i = 0;
4847 	ccb_p cp;
4848 
4849 	/*
4850 	 *  Move the entire BUSY queue to our temporary queue.
4851 	 */
4852 	sym_que_init(&qtmp);
4853 	sym_que_splice(&np->busy_ccbq, &qtmp);
4854 	sym_que_init(&np->busy_ccbq);
4855 
4856 	/*
4857 	 *  Put all CCBs that matches our criteria into
4858 	 *  the COMP queue and put back other ones into
4859 	 *  the BUSY queue.
4860 	 */
4861 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4862 		union ccb *ccb;
4863 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4864 		ccb = cp->cam_ccb;
4865 		if (cp->host_status != HS_DISCONNECT ||
4866 		    cp->target != target	     ||
4867 		    (lun  != -1 && cp->lun != lun)   ||
4868 		    (task != -1 &&
4869 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4870 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4871 			continue;
4872 		}
4873 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4874 
4875 		/* Preserve the software timeout condition */
4876 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4877 			sym_set_cam_status(ccb, cam_status);
4878 		++i;
4879 #if 0
4880 printf("XXXX TASK @%p CLEARED\n", cp);
4881 #endif
4882 	}
4883 	return i;
4884 }
4885 
4886 /*
4887  *  chip handler for TASKS recovery
4888  *
4889  *  We cannot safely abort a command, while the SCRIPTS
4890  *  processor is running, since we just would be in race
4891  *  with it.
4892  *
4893  *  As long as we have tasks to abort, we keep the SEM
4894  *  bit set in the ISTAT. When this bit is set, the
4895  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4896  *  each time it enters the scheduler.
4897  *
4898  *  If we have to reset a target, clear tasks of a unit,
4899  *  or to perform the abort of a disconnected job, we
4900  *  restart the SCRIPTS for selecting the target. Once
4901  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4902  *  If it loses arbitration, the SCRIPTS will interrupt again
4903  *  the next time it will enter its scheduler, and so on ...
4904  *
4905  *  On SIR_TARGET_SELECTED, we scan for the more
4906  *  appropriate thing to do:
4907  *
4908  *  - If nothing, we just sent a M_ABORT message to the
4909  *    target to get rid of the useless SCSI bus ownership.
4910  *    According to the specs, no tasks shall be affected.
4911  *  - If the target is to be reset, we send it a M_RESET
4912  *    message.
4913  *  - If a logical UNIT is to be cleared , we send the
4914  *    IDENTIFY(lun) + M_ABORT.
4915  *  - If an untagged task is to be aborted, we send the
4916  *    IDENTIFY(lun) + M_ABORT.
4917  *  - If a tagged task is to be aborted, we send the
4918  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4919  *
4920  *  Once our 'kiss of death' :) message has been accepted
4921  *  by the target, the SCRIPTS interrupts again
4922  *  (SIR_ABORT_SENT). On this interrupt, we complete
4923  *  all the CCBs that should have been aborted by the
4924  *  target according to our message.
4925  */
4926 static void sym_sir_task_recovery(hcb_p np, int num)
4927 {
4928 	SYM_QUEHEAD *qp;
4929 	ccb_p cp;
4930 	tcb_p tp;
4931 	int target=-1, lun=-1, task;
4932 	int i, k;
4933 
4934 	switch(num) {
4935 	/*
4936 	 *  The SCRIPTS processor stopped before starting
4937 	 *  the next command in order to allow us to perform
4938 	 *  some task recovery.
4939 	 */
4940 	case SIR_SCRIPT_STOPPED:
4941 		/*
4942 		 *  Do we have any target to reset or unit to clear ?
4943 		 */
4944 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4945 			tp = &np->target[i];
4946 			if (tp->to_reset ||
4947 			    (tp->lun0p && tp->lun0p->to_clear)) {
4948 				target = i;
4949 				break;
4950 			}
4951 			if (!tp->lunmp)
4952 				continue;
4953 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4954 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4955 					target	= i;
4956 					break;
4957 				}
4958 			}
4959 			if (target != -1)
4960 				break;
4961 		}
4962 
4963 		/*
4964 		 *  If not, walk the busy queue for any
4965 		 *  disconnected CCB to be aborted.
4966 		 */
4967 		if (target == -1) {
4968 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4969 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4970 				if (cp->host_status != HS_DISCONNECT)
4971 					continue;
4972 				if (cp->to_abort) {
4973 					target = cp->target;
4974 					break;
4975 				}
4976 			}
4977 		}
4978 
4979 		/*
4980 		 *  If some target is to be selected,
4981 		 *  prepare and start the selection.
4982 		 */
4983 		if (target != -1) {
4984 			tp = &np->target[target];
4985 			np->abrt_sel.sel_id	= target;
4986 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4987 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4988 			OUTL(nc_dsa, np->hcb_ba);
4989 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4990 			return;
4991 		}
4992 
4993 		/*
4994 		 *  Now look for a CCB to abort that haven't started yet.
4995 		 *  Btw, the SCRIPTS processor is still stopped, so
4996 		 *  we are not in race.
4997 		 */
4998 		i = 0;
4999 		cp = NULL;
5000 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5001 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5002 			if (cp->host_status != HS_BUSY &&
5003 			    cp->host_status != HS_NEGOTIATE)
5004 				continue;
5005 			if (!cp->to_abort)
5006 				continue;
5007 #ifdef SYM_CONF_IARB_SUPPORT
5008 			/*
5009 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5010 			 *    want to cancel the last queued CCB, since the
5011 			 *    SCRIPTS may have anticipated the selection.
5012 			 */
5013 			if (cp == np->last_cp) {
5014 				cp->to_abort = 0;
5015 				continue;
5016 			}
5017 #endif
5018 			i = 1;	/* Means we have found some */
5019 			break;
5020 		}
5021 		if (!i) {
5022 			/*
5023 			 *  We are done, so we donnot need
5024 			 *  to synchronize with the SCRIPTS anylonger.
5025 			 *  Remove the SEM flag from the ISTAT.
5026 			 */
5027 			np->istat_sem = 0;
5028 			OUTB (nc_istat, SIGP);
5029 			break;
5030 		}
5031 		/*
5032 		 *  Compute index of next position in the start
5033 		 *  queue the SCRIPTS intends to start and dequeue
5034 		 *  all CCBs for that device that haven't been started.
5035 		 */
5036 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5037 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5038 
5039 		/*
5040 		 *  Make sure at least our IO to abort has been dequeued.
5041 		 */
5042 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5043 
5044 		/*
5045 		 *  Keep track in cam status of the reason of the abort.
5046 		 */
5047 		if (cp->to_abort == 2)
5048 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5049 		else
5050 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5051 
5052 		/*
5053 		 *  Complete with error everything that we have dequeued.
5054 	 	 */
5055 		sym_flush_comp_queue(np, 0);
5056 		break;
5057 	/*
5058 	 *  The SCRIPTS processor has selected a target
5059 	 *  we may have some manual recovery to perform for.
5060 	 */
5061 	case SIR_TARGET_SELECTED:
5062 		target = (INB (nc_sdid) & 0xf);
5063 		tp = &np->target[target];
5064 
5065 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5066 
5067 		/*
5068 		 *  If the target is to be reset, prepare a
5069 		 *  M_RESET message and clear the to_reset flag
5070 		 *  since we donnot expect this operation to fail.
5071 		 */
5072 		if (tp->to_reset) {
5073 			np->abrt_msg[0] = M_RESET;
5074 			np->abrt_tbl.size = 1;
5075 			tp->to_reset = 0;
5076 			break;
5077 		}
5078 
5079 		/*
5080 		 *  Otherwise, look for some logical unit to be cleared.
5081 		 */
5082 		if (tp->lun0p && tp->lun0p->to_clear)
5083 			lun = 0;
5084 		else if (tp->lunmp) {
5085 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5086 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5087 					lun = k;
5088 					break;
5089 				}
5090 			}
5091 		}
5092 
5093 		/*
5094 		 *  If a logical unit is to be cleared, prepare
5095 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5096 		 */
5097 		if (lun != -1) {
5098 			lcb_p lp = sym_lp(np, tp, lun);
5099 			lp->to_clear = 0; /* We donnot expect to fail here */
5100 			np->abrt_msg[0] = M_IDENTIFY | lun;
5101 			np->abrt_msg[1] = M_ABORT;
5102 			np->abrt_tbl.size = 2;
5103 			break;
5104 		}
5105 
5106 		/*
5107 		 *  Otherwise, look for some disconnected job to
5108 		 *  abort for this target.
5109 		 */
5110 		i = 0;
5111 		cp = NULL;
5112 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5113 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5114 			if (cp->host_status != HS_DISCONNECT)
5115 				continue;
5116 			if (cp->target != target)
5117 				continue;
5118 			if (!cp->to_abort)
5119 				continue;
5120 			i = 1;	/* Means we have some */
5121 			break;
5122 		}
5123 
5124 		/*
5125 		 *  If we have none, probably since the device has
5126 		 *  completed the command before we won abitration,
5127 		 *  send a M_ABORT message without IDENTIFY.
5128 		 *  According to the specs, the device must just
5129 		 *  disconnect the BUS and not abort any task.
5130 		 */
5131 		if (!i) {
5132 			np->abrt_msg[0] = M_ABORT;
5133 			np->abrt_tbl.size = 1;
5134 			break;
5135 		}
5136 
5137 		/*
5138 		 *  We have some task to abort.
5139 		 *  Set the IDENTIFY(lun)
5140 		 */
5141 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5142 
5143 		/*
5144 		 *  If we want to abort an untagged command, we
5145 		 *  will send an IDENTIFY + M_ABORT.
5146 		 *  Otherwise (tagged command), we will send
5147 		 *  an IDENTIFY + task attributes + ABORT TAG.
5148 		 */
5149 		if (cp->tag == NO_TAG) {
5150 			np->abrt_msg[1] = M_ABORT;
5151 			np->abrt_tbl.size = 2;
5152 		}
5153 		else {
5154 			np->abrt_msg[1] = cp->scsi_smsg[1];
5155 			np->abrt_msg[2] = cp->scsi_smsg[2];
5156 			np->abrt_msg[3] = M_ABORT_TAG;
5157 			np->abrt_tbl.size = 4;
5158 		}
5159 		/*
5160 		 *  Keep track of software timeout condition, since the
5161 		 *  peripheral driver may not count retries on abort
5162 		 *  conditions not due to timeout.
5163 		 */
5164 		if (cp->to_abort == 2)
5165 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5166 		cp->to_abort = 0; /* We donnot expect to fail here */
5167 		break;
5168 
5169 	/*
5170 	 *  The target has accepted our message and switched
5171 	 *  to BUS FREE phase as we expected.
5172 	 */
5173 	case SIR_ABORT_SENT:
5174 		target = (INB (nc_sdid) & 0xf);
5175 		tp = &np->target[target];
5176 
5177 		/*
5178 		**  If we didn't abort anything, leave here.
5179 		*/
5180 		if (np->abrt_msg[0] == M_ABORT)
5181 			break;
5182 
5183 		/*
5184 		 *  If we sent a M_RESET, then a hardware reset has
5185 		 *  been performed by the target.
5186 		 *  - Reset everything to async 8 bit
5187 		 *  - Tell ourself to negotiate next time :-)
5188 		 *  - Prepare to clear all disconnected CCBs for
5189 		 *    this target from our task list (lun=task=-1)
5190 		 */
5191 		lun = -1;
5192 		task = -1;
5193 		if (np->abrt_msg[0] == M_RESET) {
5194 			tp->head.sval = 0;
5195 			tp->head.wval = np->rv_scntl3;
5196 			tp->head.uval = 0;
5197 			tp->tinfo.current.period = 0;
5198 			tp->tinfo.current.offset = 0;
5199 			tp->tinfo.current.width  = BUS_8_BIT;
5200 			tp->tinfo.current.options = 0;
5201 		}
5202 
5203 		/*
5204 		 *  Otherwise, check for the LUN and TASK(s)
5205 		 *  concerned by the cancelation.
5206 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5207 		 *  or an ABORT message :-)
5208 		 */
5209 		else {
5210 			lun = np->abrt_msg[0] & 0x3f;
5211 			if (np->abrt_msg[1] == M_ABORT_TAG)
5212 				task = np->abrt_msg[2];
5213 		}
5214 
5215 		/*
5216 		 *  Complete all the CCBs the device should have
5217 		 *  aborted due to our 'kiss of death' message.
5218 		 */
5219 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5220 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5221 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5222 		sym_flush_comp_queue(np, 0);
5223 
5224 		/*
5225 		 *  If we sent a BDR, make uper layer aware of that.
5226 		 */
5227 		if (np->abrt_msg[0] == M_RESET)
5228 			xpt_async(AC_SENT_BDR, np->path, NULL);
5229 		break;
5230 	}
5231 
5232 	/*
5233 	 *  Print to the log the message we intend to send.
5234 	 */
5235 	if (num == SIR_TARGET_SELECTED) {
5236 		PRINT_TARGET(np, target);
5237 		sym_printl_hex("control msgout:", np->abrt_msg,
5238 			      np->abrt_tbl.size);
5239 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5240 	}
5241 
5242 	/*
5243 	 *  Let the SCRIPTS processor continue.
5244 	 */
5245 	OUTONB_STD ();
5246 }
5247 
5248 /*
5249  *  Gerard's alchemy:) that deals with with the data
5250  *  pointer for both MDP and the residual calculation.
5251  *
5252  *  I didn't want to bloat the code by more than 200
5253  *  lignes for the handling of both MDP and the residual.
5254  *  This has been achieved by using a data pointer
5255  *  representation consisting in an index in the data
5256  *  array (dp_sg) and a negative offset (dp_ofs) that
5257  *  have the following meaning:
5258  *
5259  *  - dp_sg = SYM_CONF_MAX_SG
5260  *    we are at the end of the data script.
5261  *  - dp_sg < SYM_CONF_MAX_SG
5262  *    dp_sg points to the next entry of the scatter array
5263  *    we want to transfer.
5264  *  - dp_ofs < 0
5265  *    dp_ofs represents the residual of bytes of the
5266  *    previous entry scatter entry we will send first.
5267  *  - dp_ofs = 0
5268  *    no residual to send first.
5269  *
5270  *  The function sym_evaluate_dp() accepts an arbitray
5271  *  offset (basically from the MDP message) and returns
5272  *  the corresponding values of dp_sg and dp_ofs.
5273  */
5274 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5275 {
5276 	u32	dp_scr;
5277 	int	dp_ofs, dp_sg, dp_sgmin;
5278 	int	tmp;
5279 	struct sym_pmc *pm;
5280 
5281 	/*
5282 	 *  Compute the resulted data pointer in term of a script
5283 	 *  address within some DATA script and a signed byte offset.
5284 	 */
5285 	dp_scr = scr;
5286 	dp_ofs = *ofs;
5287 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5288 		pm = &cp->phys.pm0;
5289 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5290 		pm = &cp->phys.pm1;
5291 	else
5292 		pm = NULL;
5293 
5294 	if (pm) {
5295 		dp_scr  = scr_to_cpu(pm->ret);
5296 		dp_ofs -= scr_to_cpu(pm->sg.size);
5297 	}
5298 
5299 	/*
5300 	 *  If we are auto-sensing, then we are done.
5301 	 */
5302 	if (cp->host_flags & HF_SENSE) {
5303 		*ofs = dp_ofs;
5304 		return 0;
5305 	}
5306 
5307 	/*
5308 	 *  Deduce the index of the sg entry.
5309 	 *  Keep track of the index of the first valid entry.
5310 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5311 	 *  end of the data.
5312 	 */
5313 	tmp = scr_to_cpu(cp->phys.head.goalp);
5314 	dp_sg = SYM_CONF_MAX_SG;
5315 	if (dp_scr != tmp)
5316 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5317 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5318 
5319 	/*
5320 	 *  Move to the sg entry the data pointer belongs to.
5321 	 *
5322 	 *  If we are inside the data area, we expect result to be:
5323 	 *
5324 	 *  Either,
5325 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5326 	 *      the data pointer belongs to (or the end of the data)
5327 	 *  Or,
5328 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5329 	 *      the data pointer belongs to + 1.
5330 	 */
5331 	if (dp_ofs < 0) {
5332 		int n;
5333 		while (dp_sg > dp_sgmin) {
5334 			--dp_sg;
5335 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5336 			n = dp_ofs + (tmp & 0xffffff);
5337 			if (n > 0) {
5338 				++dp_sg;
5339 				break;
5340 			}
5341 			dp_ofs = n;
5342 		}
5343 	}
5344 	else if (dp_ofs > 0) {
5345 		while (dp_sg < SYM_CONF_MAX_SG) {
5346 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5347 			dp_ofs -= (tmp & 0xffffff);
5348 			++dp_sg;
5349 			if (dp_ofs <= 0)
5350 				break;
5351 		}
5352 	}
5353 
5354 	/*
5355 	 *  Make sure the data pointer is inside the data area.
5356 	 *  If not, return some error.
5357 	 */
5358 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5359 		goto out_err;
5360 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5361 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5362 		goto out_err;
5363 
5364 	/*
5365 	 *  Save the extreme pointer if needed.
5366 	 */
5367 	if (dp_sg > cp->ext_sg ||
5368             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5369 		cp->ext_sg  = dp_sg;
5370 		cp->ext_ofs = dp_ofs;
5371 	}
5372 
5373 	/*
5374 	 *  Return data.
5375 	 */
5376 	*ofs = dp_ofs;
5377 	return dp_sg;
5378 
5379 out_err:
5380 	return -1;
5381 }
5382 
5383 /*
5384  *  chip handler for MODIFY DATA POINTER MESSAGE
5385  *
5386  *  We also call this function on IGNORE WIDE RESIDUE
5387  *  messages that do not match a SWIDE full condition.
5388  *  Btw, we assume in that situation that such a message
5389  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5390  */
5391 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5392 {
5393 	int dp_ofs	= ofs;
5394 	u32	dp_scr	= INL (nc_temp);
5395 	u32	dp_ret;
5396 	u32	tmp;
5397 	u_char	hflags;
5398 	int	dp_sg;
5399 	struct	sym_pmc *pm;
5400 
5401 	/*
5402 	 *  Not supported for auto-sense.
5403 	 */
5404 	if (cp->host_flags & HF_SENSE)
5405 		goto out_reject;
5406 
5407 	/*
5408 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5409 	 *  to the resulted data pointer.
5410 	 */
5411 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5412 	if (dp_sg < 0)
5413 		goto out_reject;
5414 
5415 	/*
5416 	 *  And our alchemy:) allows to easily calculate the data
5417 	 *  script address we want to return for the next data phase.
5418 	 */
5419 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5420 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5421 
5422 	/*
5423 	 *  If offset / scatter entry is zero we donnot need
5424 	 *  a context for the new current data pointer.
5425 	 */
5426 	if (dp_ofs == 0) {
5427 		dp_scr = dp_ret;
5428 		goto out_ok;
5429 	}
5430 
5431 	/*
5432 	 *  Get a context for the new current data pointer.
5433 	 */
5434 	hflags = INB (HF_PRT);
5435 
5436 	if (hflags & HF_DP_SAVED)
5437 		hflags ^= HF_ACT_PM;
5438 
5439 	if (!(hflags & HF_ACT_PM)) {
5440 		pm  = &cp->phys.pm0;
5441 		dp_scr = SCRIPTA_BA (np, pm0_data);
5442 	}
5443 	else {
5444 		pm = &cp->phys.pm1;
5445 		dp_scr = SCRIPTA_BA (np, pm1_data);
5446 	}
5447 
5448 	hflags &= ~(HF_DP_SAVED);
5449 
5450 	OUTB (HF_PRT, hflags);
5451 
5452 	/*
5453 	 *  Set up the new current data pointer.
5454 	 *  ofs < 0 there, and for the next data phase, we
5455 	 *  want to transfer part of the data of the sg entry
5456 	 *  corresponding to index dp_sg-1 prior to returning
5457 	 *  to the main data script.
5458 	 */
5459 	pm->ret = cpu_to_scr(dp_ret);
5460 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5461 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5462 	pm->sg.addr = cpu_to_scr(tmp);
5463 	pm->sg.size = cpu_to_scr(-dp_ofs);
5464 
5465 out_ok:
5466 	OUTL (nc_temp, dp_scr);
5467 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5468 	return;
5469 
5470 out_reject:
5471 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5472 }
5473 
5474 /*
5475  *  chip calculation of the data residual.
5476  *
5477  *  As I used to say, the requirement of data residual
5478  *  in SCSI is broken, useless and cannot be achieved
5479  *  without huge complexity.
5480  *  But most OSes and even the official CAM require it.
5481  *  When stupidity happens to be so widely spread inside
5482  *  a community, it gets hard to convince.
5483  *
5484  *  Anyway, I don't care, since I am not going to use
5485  *  any software that considers this data residual as
5486  *  a relevant information. :)
5487  */
5488 static int sym_compute_residual(hcb_p np, ccb_p cp)
5489 {
5490 	int dp_sg, dp_sgmin, resid = 0;
5491 	int dp_ofs = 0;
5492 
5493 	/*
5494 	 *  Check for some data lost or just thrown away.
5495 	 *  We are not required to be quite accurate in this
5496 	 *  situation. Btw, if we are odd for output and the
5497 	 *  device claims some more data, it may well happen
5498 	 *  than our residual be zero. :-)
5499 	 */
5500 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5501 		if (cp->xerr_status & XE_EXTRA_DATA)
5502 			resid -= cp->extra_bytes;
5503 		if (cp->xerr_status & XE_SODL_UNRUN)
5504 			++resid;
5505 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5506 			--resid;
5507 	}
5508 
5509 	/*
5510 	 *  If all data has been transferred,
5511 	 *  there is no residual.
5512 	 */
5513 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5514 		return resid;
5515 
5516 	/*
5517 	 *  If no data transfer occurs, or if the data
5518 	 *  pointer is weird, return full residual.
5519 	 */
5520 	if (cp->startp == cp->phys.head.lastp ||
5521 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5522 			    &dp_ofs) < 0) {
5523 		return cp->data_len;
5524 	}
5525 
5526 	/*
5527 	 *  If we were auto-sensing, then we are done.
5528 	 */
5529 	if (cp->host_flags & HF_SENSE) {
5530 		return -dp_ofs;
5531 	}
5532 
5533 	/*
5534 	 *  We are now full comfortable in the computation
5535 	 *  of the data residual (2's complement).
5536 	 */
5537 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5538 	resid = -cp->ext_ofs;
5539 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5540 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5541 		resid += (tmp & 0xffffff);
5542 	}
5543 
5544 	/*
5545 	 *  Hopefully, the result is not too wrong.
5546 	 */
5547 	return resid;
5548 }
5549 
5550 /*
5551  *  Print out the content of a SCSI message.
5552  */
5553 static int sym_show_msg (u_char * msg)
5554 {
5555 	u_char i;
5556 	printf ("%x",*msg);
5557 	if (*msg==M_EXTENDED) {
5558 		for (i=1;i<8;i++) {
5559 			if (i-1>msg[1]) break;
5560 			printf ("-%x",msg[i]);
5561 		};
5562 		return (i+1);
5563 	} else if ((*msg & 0xf0) == 0x20) {
5564 		printf ("-%x",msg[1]);
5565 		return (2);
5566 	};
5567 	return (1);
5568 }
5569 
5570 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5571 {
5572 	PRINT_ADDR(cp);
5573 	if (label)
5574 		printf ("%s: ", label);
5575 
5576 	(void) sym_show_msg (msg);
5577 	printf (".\n");
5578 }
5579 
5580 /*
5581  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5582  *
5583  *  When we try to negotiate, we append the negotiation message
5584  *  to the identify and (maybe) simple tag message.
5585  *  The host status field is set to HS_NEGOTIATE to mark this
5586  *  situation.
5587  *
5588  *  If the target doesn't answer this message immediately
5589  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5590  *  will be raised eventually.
5591  *  The handler removes the HS_NEGOTIATE status, and sets the
5592  *  negotiated value to the default (async / nowide).
5593  *
5594  *  If we receive a matching answer immediately, we check it
5595  *  for validity, and set the values.
5596  *
5597  *  If we receive a Reject message immediately, we assume the
5598  *  negotiation has failed, and fall back to standard values.
5599  *
5600  *  If we receive a negotiation message while not in HS_NEGOTIATE
5601  *  state, it's a target initiated negotiation. We prepare a
5602  *  (hopefully) valid answer, set our parameters, and send back
5603  *  this answer to the target.
5604  *
5605  *  If the target doesn't fetch the answer (no message out phase),
5606  *  we assume the negotiation has failed, and fall back to default
5607  *  settings (SIR_NEGO_PROTO interrupt).
5608  *
5609  *  When we set the values, we adjust them in all ccbs belonging
5610  *  to this target, in the controller's register, and in the "phys"
5611  *  field of the controller's struct sym_hcb.
5612  */
5613 
5614 /*
5615  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5616  */
5617 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5618 {
5619 	u_char	chg, ofs, per, fak, div;
5620 	int	req = 1;
5621 
5622 	/*
5623 	 *  Synchronous request message received.
5624 	 */
5625 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5626 		sym_print_msg(cp, "sync msgin", np->msgin);
5627 	};
5628 
5629 	/*
5630 	 * request or answer ?
5631 	 */
5632 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5633 		OUTB (HS_PRT, HS_BUSY);
5634 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5635 			goto reject_it;
5636 		req = 0;
5637 	}
5638 
5639 	/*
5640 	 *  get requested values.
5641 	 */
5642 	chg = 0;
5643 	per = np->msgin[3];
5644 	ofs = np->msgin[4];
5645 
5646 	/*
5647 	 *  check values against our limits.
5648 	 */
5649 	if (ofs) {
5650 		if (ofs > np->maxoffs)
5651 			{chg = 1; ofs = np->maxoffs;}
5652 		if (req) {
5653 			if (ofs > tp->tinfo.user.offset)
5654 				{chg = 1; ofs = tp->tinfo.user.offset;}
5655 		}
5656 	}
5657 
5658 	if (ofs) {
5659 		if (per < np->minsync)
5660 			{chg = 1; per = np->minsync;}
5661 		if (req) {
5662 			if (per < tp->tinfo.user.period)
5663 				{chg = 1; per = tp->tinfo.user.period;}
5664 		}
5665 	}
5666 
5667 	div = fak = 0;
5668 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5669 		goto reject_it;
5670 
5671 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5672 		PRINT_ADDR(cp);
5673 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5674 			ofs, per, div, fak, chg);
5675 	}
5676 
5677 	/*
5678 	 *  This was an answer message
5679 	 */
5680 	if (req == 0) {
5681 		if (chg) 	/* Answer wasn't acceptable. */
5682 			goto reject_it;
5683 		sym_setsync (np, cp, ofs, per, div, fak);
5684 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5685 		return;
5686 	}
5687 
5688 	/*
5689 	 *  It was a request. Set value and
5690 	 *  prepare an answer message
5691 	 */
5692 	sym_setsync (np, cp, ofs, per, div, fak);
5693 
5694 	np->msgout[0] = M_EXTENDED;
5695 	np->msgout[1] = 3;
5696 	np->msgout[2] = M_X_SYNC_REQ;
5697 	np->msgout[3] = per;
5698 	np->msgout[4] = ofs;
5699 
5700 	cp->nego_status = NS_SYNC;
5701 
5702 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5703 		sym_print_msg(cp, "sync msgout", np->msgout);
5704 	}
5705 
5706 	np->msgin [0] = M_NOOP;
5707 
5708 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5709 	return;
5710 reject_it:
5711 	sym_setsync (np, cp, 0, 0, 0, 0);
5712 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5713 }
5714 
5715 /*
5716  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5717  */
5718 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5719 {
5720 	u_char	chg, ofs, per, fak, dt, div, wide;
5721 	int	req = 1;
5722 
5723 	/*
5724 	 * Synchronous request message received.
5725 	 */
5726 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5727 		sym_print_msg(cp, "ppr msgin", np->msgin);
5728 	};
5729 
5730 	/*
5731 	 *  get requested values.
5732 	 */
5733 	chg  = 0;
5734 	per  = np->msgin[3];
5735 	ofs  = np->msgin[5];
5736 	wide = np->msgin[6];
5737 	dt   = np->msgin[7] & PPR_OPT_DT;
5738 
5739 	/*
5740 	 * request or answer ?
5741 	 */
5742 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5743 		OUTB (HS_PRT, HS_BUSY);
5744 		if (cp->nego_status && cp->nego_status != NS_PPR)
5745 			goto reject_it;
5746 		req = 0;
5747 	}
5748 
5749 	/*
5750 	 *  check values against our limits.
5751 	 */
5752 	if (wide > np->maxwide)
5753 		{chg = 1; wide = np->maxwide;}
5754 	if (!wide || !(np->features & FE_ULTRA3))
5755 		dt &= ~PPR_OPT_DT;
5756 	if (req) {
5757 		if (wide > tp->tinfo.user.width)
5758 			{chg = 1; wide = tp->tinfo.user.width;}
5759 	}
5760 
5761 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5762 		dt &= ~PPR_OPT_DT;
5763 
5764 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5765 
5766 	if (ofs) {
5767 		if (dt) {
5768 			if (ofs > np->maxoffs_dt)
5769 				{chg = 1; ofs = np->maxoffs_dt;}
5770 		}
5771 		else if (ofs > np->maxoffs)
5772 			{chg = 1; ofs = np->maxoffs;}
5773 		if (req) {
5774 			if (ofs > tp->tinfo.user.offset)
5775 				{chg = 1; ofs = tp->tinfo.user.offset;}
5776 		}
5777 	}
5778 
5779 	if (ofs) {
5780 		if (dt) {
5781 			if (per < np->minsync_dt)
5782 				{chg = 1; per = np->minsync_dt;}
5783 		}
5784 		else if (per < np->minsync)
5785 			{chg = 1; per = np->minsync;}
5786 		if (req) {
5787 			if (per < tp->tinfo.user.period)
5788 				{chg = 1; per = tp->tinfo.user.period;}
5789 		}
5790 	}
5791 
5792 	div = fak = 0;
5793 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5794 		goto reject_it;
5795 
5796 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5797 		PRINT_ADDR(cp);
5798 		printf ("ppr: "
5799 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5800 			dt, ofs, per, wide, div, fak, chg);
5801 	}
5802 
5803 	/*
5804 	 *  It was an answer.
5805 	 */
5806 	if (req == 0) {
5807 		if (chg) 	/* Answer wasn't acceptable */
5808 			goto reject_it;
5809 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5810 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5811 		return;
5812 	}
5813 
5814 	/*
5815 	 *  It was a request. Set value and
5816 	 *  prepare an answer message
5817 	 */
5818 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5819 
5820 	np->msgout[0] = M_EXTENDED;
5821 	np->msgout[1] = 6;
5822 	np->msgout[2] = M_X_PPR_REQ;
5823 	np->msgout[3] = per;
5824 	np->msgout[4] = 0;
5825 	np->msgout[5] = ofs;
5826 	np->msgout[6] = wide;
5827 	np->msgout[7] = dt;
5828 
5829 	cp->nego_status = NS_PPR;
5830 
5831 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5832 		sym_print_msg(cp, "ppr msgout", np->msgout);
5833 	}
5834 
5835 	np->msgin [0] = M_NOOP;
5836 
5837 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5838 	return;
5839 reject_it:
5840 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5841 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5842 	/*
5843 	 *  If it was a device response that should result in
5844 	 *  ST, we may want to try a legacy negotiation later.
5845 	 */
5846 	if (!req && !dt) {
5847 		tp->tinfo.goal.options = 0;
5848 		tp->tinfo.goal.width   = wide;
5849 		tp->tinfo.goal.period  = per;
5850 		tp->tinfo.goal.offset  = ofs;
5851 	}
5852 }
5853 
5854 /*
5855  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5856  */
5857 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5858 {
5859 	u_char	chg, wide;
5860 	int	req = 1;
5861 
5862 	/*
5863 	 *  Wide request message received.
5864 	 */
5865 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5866 		sym_print_msg(cp, "wide msgin", np->msgin);
5867 	};
5868 
5869 	/*
5870 	 * Is it a request from the device?
5871 	 */
5872 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5873 		OUTB (HS_PRT, HS_BUSY);
5874 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5875 			goto reject_it;
5876 		req = 0;
5877 	}
5878 
5879 	/*
5880 	 *  get requested values.
5881 	 */
5882 	chg  = 0;
5883 	wide = np->msgin[3];
5884 
5885 	/*
5886 	 *  check values against driver limits.
5887 	 */
5888 	if (wide > np->maxwide)
5889 		{chg = 1; wide = np->maxwide;}
5890 	if (req) {
5891 		if (wide > tp->tinfo.user.width)
5892 			{chg = 1; wide = tp->tinfo.user.width;}
5893 	}
5894 
5895 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5896 		PRINT_ADDR(cp);
5897 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5898 	}
5899 
5900 	/*
5901 	 * This was an answer message
5902 	 */
5903 	if (req == 0) {
5904 		if (chg)	/*  Answer wasn't acceptable. */
5905 			goto reject_it;
5906 		sym_setwide (np, cp, wide);
5907 
5908 		/*
5909 		 * Negotiate for SYNC immediately after WIDE response.
5910 		 * This allows to negotiate for both WIDE and SYNC on
5911 		 * a single SCSI command (Suggested by Justin Gibbs).
5912 		 */
5913 		if (tp->tinfo.goal.offset) {
5914 			np->msgout[0] = M_EXTENDED;
5915 			np->msgout[1] = 3;
5916 			np->msgout[2] = M_X_SYNC_REQ;
5917 			np->msgout[3] = tp->tinfo.goal.period;
5918 			np->msgout[4] = tp->tinfo.goal.offset;
5919 
5920 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5921 				sym_print_msg(cp, "sync msgout", np->msgout);
5922 			}
5923 
5924 			cp->nego_status = NS_SYNC;
5925 			OUTB (HS_PRT, HS_NEGOTIATE);
5926 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5927 			return;
5928 		}
5929 
5930 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5931 		return;
5932 	};
5933 
5934 	/*
5935 	 *  It was a request, set value and
5936 	 *  prepare an answer message
5937 	 */
5938 	sym_setwide (np, cp, wide);
5939 
5940 	np->msgout[0] = M_EXTENDED;
5941 	np->msgout[1] = 2;
5942 	np->msgout[2] = M_X_WIDE_REQ;
5943 	np->msgout[3] = wide;
5944 
5945 	np->msgin [0] = M_NOOP;
5946 
5947 	cp->nego_status = NS_WIDE;
5948 
5949 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5950 		sym_print_msg(cp, "wide msgout", np->msgout);
5951 	}
5952 
5953 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5954 	return;
5955 reject_it:
5956 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5957 }
5958 
5959 /*
5960  *  Reset SYNC or WIDE to default settings.
5961  *
5962  *  Called when a negotiation does not succeed either
5963  *  on rejection or on protocol error.
5964  *
5965  *  If it was a PPR that made problems, we may want to
5966  *  try a legacy negotiation later.
5967  */
5968 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5969 {
5970 	/*
5971 	 *  any error in negotiation:
5972 	 *  fall back to default mode.
5973 	 */
5974 	switch (cp->nego_status) {
5975 	case NS_PPR:
5976 #if 0
5977 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5978 #else
5979 		tp->tinfo.goal.options = 0;
5980 		if (tp->tinfo.goal.period < np->minsync)
5981 			tp->tinfo.goal.period = np->minsync;
5982 		if (tp->tinfo.goal.offset > np->maxoffs)
5983 			tp->tinfo.goal.offset = np->maxoffs;
5984 #endif
5985 		break;
5986 	case NS_SYNC:
5987 		sym_setsync (np, cp, 0, 0, 0, 0);
5988 		break;
5989 	case NS_WIDE:
5990 		sym_setwide (np, cp, 0);
5991 		break;
5992 	};
5993 	np->msgin [0] = M_NOOP;
5994 	np->msgout[0] = M_NOOP;
5995 	cp->nego_status = 0;
5996 }
5997 
5998 /*
5999  *  chip handler for MESSAGE REJECT received in response to
6000  *  a WIDE or SYNCHRONOUS negotiation.
6001  */
6002 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6003 {
6004 	sym_nego_default(np, tp, cp);
6005 	OUTB (HS_PRT, HS_BUSY);
6006 }
6007 
6008 /*
6009  *  chip exception handler for programmed interrupts.
6010  */
6011 static void sym_int_sir (hcb_p np)
6012 {
6013 	u_char	num	= INB (nc_dsps);
6014 	u32	dsa	= INL (nc_dsa);
6015 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6016 	u_char	target	= INB (nc_sdid) & 0x0f;
6017 	tcb_p	tp	= &np->target[target];
6018 	int	tmp;
6019 
6020 	SYM_LOCK_ASSERT(MA_OWNED);
6021 
6022 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6023 
6024 	switch (num) {
6025 	/*
6026 	 *  Command has been completed with error condition
6027 	 *  or has been auto-sensed.
6028 	 */
6029 	case SIR_COMPLETE_ERROR:
6030 		sym_complete_error(np, cp);
6031 		return;
6032 	/*
6033 	 *  The C code is currently trying to recover from something.
6034 	 *  Typically, user want to abort some command.
6035 	 */
6036 	case SIR_SCRIPT_STOPPED:
6037 	case SIR_TARGET_SELECTED:
6038 	case SIR_ABORT_SENT:
6039 		sym_sir_task_recovery(np, num);
6040 		return;
6041 	/*
6042 	 *  The device didn't go to MSG OUT phase after having
6043 	 *  been selected with ATN. We donnot want to handle
6044 	 *  that.
6045 	 */
6046 	case SIR_SEL_ATN_NO_MSG_OUT:
6047 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6048 			sym_name (np), target);
6049 		goto out_stuck;
6050 	/*
6051 	 *  The device didn't switch to MSG IN phase after
6052 	 *  having reseleted the initiator.
6053 	 */
6054 	case SIR_RESEL_NO_MSG_IN:
6055 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6056 			sym_name (np), target);
6057 		goto out_stuck;
6058 	/*
6059 	 *  After reselection, the device sent a message that wasn't
6060 	 *  an IDENTIFY.
6061 	 */
6062 	case SIR_RESEL_NO_IDENTIFY:
6063 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6064 			sym_name (np), target);
6065 		goto out_stuck;
6066 	/*
6067 	 *  The device reselected a LUN we donnot know about.
6068 	 */
6069 	case SIR_RESEL_BAD_LUN:
6070 		np->msgout[0] = M_RESET;
6071 		goto out;
6072 	/*
6073 	 *  The device reselected for an untagged nexus and we
6074 	 *  haven't any.
6075 	 */
6076 	case SIR_RESEL_BAD_I_T_L:
6077 		np->msgout[0] = M_ABORT;
6078 		goto out;
6079 	/*
6080 	 *  The device reselected for a tagged nexus that we donnot
6081 	 *  have.
6082 	 */
6083 	case SIR_RESEL_BAD_I_T_L_Q:
6084 		np->msgout[0] = M_ABORT_TAG;
6085 		goto out;
6086 	/*
6087 	 *  The SCRIPTS let us know that the device has grabbed
6088 	 *  our message and will abort the job.
6089 	 */
6090 	case SIR_RESEL_ABORTED:
6091 		np->lastmsg = np->msgout[0];
6092 		np->msgout[0] = M_NOOP;
6093 		printf ("%s:%d: message %x sent on bad reselection.\n",
6094 			sym_name (np), target, np->lastmsg);
6095 		goto out;
6096 	/*
6097 	 *  The SCRIPTS let us know that a message has been
6098 	 *  successfully sent to the device.
6099 	 */
6100 	case SIR_MSG_OUT_DONE:
6101 		np->lastmsg = np->msgout[0];
6102 		np->msgout[0] = M_NOOP;
6103 		/* Should we really care of that */
6104 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6105 			if (cp) {
6106 				cp->xerr_status &= ~XE_PARITY_ERR;
6107 				if (!cp->xerr_status)
6108 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6109 			}
6110 		}
6111 		goto out;
6112 	/*
6113 	 *  The device didn't send a GOOD SCSI status.
6114 	 *  We may have some work to do prior to allow
6115 	 *  the SCRIPTS processor to continue.
6116 	 */
6117 	case SIR_BAD_SCSI_STATUS:
6118 		if (!cp)
6119 			goto out;
6120 		sym_sir_bad_scsi_status(np, num, cp);
6121 		return;
6122 	/*
6123 	 *  We are asked by the SCRIPTS to prepare a
6124 	 *  REJECT message.
6125 	 */
6126 	case SIR_REJECT_TO_SEND:
6127 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6128 		np->msgout[0] = M_REJECT;
6129 		goto out;
6130 	/*
6131 	 *  We have been ODD at the end of a DATA IN
6132 	 *  transfer and the device didn't send a
6133 	 *  IGNORE WIDE RESIDUE message.
6134 	 *  It is a data overrun condition.
6135 	 */
6136 	case SIR_SWIDE_OVERRUN:
6137 		if (cp) {
6138 			OUTONB (HF_PRT, HF_EXT_ERR);
6139 			cp->xerr_status |= XE_SWIDE_OVRUN;
6140 		}
6141 		goto out;
6142 	/*
6143 	 *  We have been ODD at the end of a DATA OUT
6144 	 *  transfer.
6145 	 *  It is a data underrun condition.
6146 	 */
6147 	case SIR_SODL_UNDERRUN:
6148 		if (cp) {
6149 			OUTONB (HF_PRT, HF_EXT_ERR);
6150 			cp->xerr_status |= XE_SODL_UNRUN;
6151 		}
6152 		goto out;
6153 	/*
6154 	 *  The device wants us to tranfer more data than
6155 	 *  expected or in the wrong direction.
6156 	 *  The number of extra bytes is in scratcha.
6157 	 *  It is a data overrun condition.
6158 	 */
6159 	case SIR_DATA_OVERRUN:
6160 		if (cp) {
6161 			OUTONB (HF_PRT, HF_EXT_ERR);
6162 			cp->xerr_status |= XE_EXTRA_DATA;
6163 			cp->extra_bytes += INL (nc_scratcha);
6164 		}
6165 		goto out;
6166 	/*
6167 	 *  The device switched to an illegal phase (4/5).
6168 	 */
6169 	case SIR_BAD_PHASE:
6170 		if (cp) {
6171 			OUTONB (HF_PRT, HF_EXT_ERR);
6172 			cp->xerr_status |= XE_BAD_PHASE;
6173 		}
6174 		goto out;
6175 	/*
6176 	 *  We received a message.
6177 	 */
6178 	case SIR_MSG_RECEIVED:
6179 		if (!cp)
6180 			goto out_stuck;
6181 		switch (np->msgin [0]) {
6182 		/*
6183 		 *  We received an extended message.
6184 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6185 		 *  and reject all other extended messages.
6186 		 */
6187 		case M_EXTENDED:
6188 			switch (np->msgin [2]) {
6189 			case M_X_MODIFY_DP:
6190 				if (DEBUG_FLAGS & DEBUG_POINTER)
6191 					sym_print_msg(cp,"modify DP",np->msgin);
6192 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6193 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6194 				sym_modify_dp(np, tp, cp, tmp);
6195 				return;
6196 			case M_X_SYNC_REQ:
6197 				sym_sync_nego(np, tp, cp);
6198 				return;
6199 			case M_X_PPR_REQ:
6200 				sym_ppr_nego(np, tp, cp);
6201 				return;
6202 			case M_X_WIDE_REQ:
6203 				sym_wide_nego(np, tp, cp);
6204 				return;
6205 			default:
6206 				goto out_reject;
6207 			}
6208 			break;
6209 		/*
6210 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6211 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6212 		 *  RESIDUE messages that haven't been anticipated by
6213 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6214 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6215 		 */
6216 		case M_IGN_RESIDUE:
6217 			if (DEBUG_FLAGS & DEBUG_POINTER)
6218 				sym_print_msg(cp,"ign wide residue", np->msgin);
6219 			sym_modify_dp(np, tp, cp, -1);
6220 			return;
6221 		case M_REJECT:
6222 			if (INB (HS_PRT) == HS_NEGOTIATE)
6223 				sym_nego_rejected(np, tp, cp);
6224 			else {
6225 				PRINT_ADDR(cp);
6226 				printf ("M_REJECT received (%x:%x).\n",
6227 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6228 			}
6229 			goto out_clrack;
6230 			break;
6231 		default:
6232 			goto out_reject;
6233 		}
6234 		break;
6235 	/*
6236 	 *  We received an unknown message.
6237 	 *  Ignore all MSG IN phases and reject it.
6238 	 */
6239 	case SIR_MSG_WEIRD:
6240 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6241 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6242 		return;
6243 	/*
6244 	 *  Negotiation failed.
6245 	 *  Target does not send us the reply.
6246 	 *  Remove the HS_NEGOTIATE status.
6247 	 */
6248 	case SIR_NEGO_FAILED:
6249 		OUTB (HS_PRT, HS_BUSY);
6250 	/*
6251 	 *  Negotiation failed.
6252 	 *  Target does not want answer message.
6253 	 */
6254 	case SIR_NEGO_PROTO:
6255 		sym_nego_default(np, tp, cp);
6256 		goto out;
6257 	};
6258 
6259 out:
6260 	OUTONB_STD ();
6261 	return;
6262 out_reject:
6263 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6264 	return;
6265 out_clrack:
6266 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6267 	return;
6268 out_stuck:
6269 	return;
6270 }
6271 
6272 /*
6273  *  Acquire a control block
6274  */
6275 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6276 {
6277 	tcb_p tp = &np->target[tn];
6278 	lcb_p lp = sym_lp(np, tp, ln);
6279 	u_short tag = NO_TAG;
6280 	SYM_QUEHEAD *qp;
6281 	ccb_p cp = (ccb_p) NULL;
6282 
6283 	/*
6284 	 *  Look for a free CCB
6285 	 */
6286 	if (sym_que_empty(&np->free_ccbq))
6287 		goto out;
6288 	qp = sym_remque_head(&np->free_ccbq);
6289 	if (!qp)
6290 		goto out;
6291 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6292 
6293 	/*
6294 	 *  If the LCB is not yet available and the LUN
6295 	 *  has been probed ok, try to allocate the LCB.
6296 	 */
6297 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6298 		lp = sym_alloc_lcb(np, tn, ln);
6299 		if (!lp)
6300 			goto out_free;
6301 	}
6302 
6303 	/*
6304 	 *  If the LCB is not available here, then the
6305 	 *  logical unit is not yet discovered. For those
6306 	 *  ones only accept 1 SCSI IO per logical unit,
6307 	 *  since we cannot allow disconnections.
6308 	 */
6309 	if (!lp) {
6310 		if (!sym_is_bit(tp->busy0_map, ln))
6311 			sym_set_bit(tp->busy0_map, ln);
6312 		else
6313 			goto out_free;
6314 	} else {
6315 		/*
6316 		 *  If we have been asked for a tagged command.
6317 		 */
6318 		if (tag_order) {
6319 			/*
6320 			 *  Debugging purpose.
6321 			 */
6322 			assert(lp->busy_itl == 0);
6323 			/*
6324 			 *  Allocate resources for tags if not yet.
6325 			 */
6326 			if (!lp->cb_tags) {
6327 				sym_alloc_lcb_tags(np, tn, ln);
6328 				if (!lp->cb_tags)
6329 					goto out_free;
6330 			}
6331 			/*
6332 			 *  Get a tag for this SCSI IO and set up
6333 			 *  the CCB bus address for reselection,
6334 			 *  and count it for this LUN.
6335 			 *  Toggle reselect path to tagged.
6336 			 */
6337 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6338 				tag = lp->cb_tags[lp->ia_tag];
6339 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6340 					lp->ia_tag = 0;
6341 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6342 				++lp->busy_itlq;
6343 				lp->head.resel_sa =
6344 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6345 			}
6346 			else
6347 				goto out_free;
6348 		}
6349 		/*
6350 		 *  This command will not be tagged.
6351 		 *  If we already have either a tagged or untagged
6352 		 *  one, refuse to overlap this untagged one.
6353 		 */
6354 		else {
6355 			/*
6356 			 *  Debugging purpose.
6357 			 */
6358 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6359 			/*
6360 			 *  Count this nexus for this LUN.
6361 			 *  Set up the CCB bus address for reselection.
6362 			 *  Toggle reselect path to untagged.
6363 			 */
6364 			if (++lp->busy_itl == 1) {
6365 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6366 				lp->head.resel_sa =
6367 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6368 			}
6369 			else
6370 				goto out_free;
6371 		}
6372 	}
6373 	/*
6374 	 *  Put the CCB into the busy queue.
6375 	 */
6376 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6377 
6378 	/*
6379 	 *  Remember all informations needed to free this CCB.
6380 	 */
6381 	cp->to_abort = 0;
6382 	cp->tag	   = tag;
6383 	cp->target = tn;
6384 	cp->lun    = ln;
6385 
6386 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6387 		PRINT_LUN(np, tn, ln);
6388 		printf ("ccb @%p using tag %d.\n", cp, tag);
6389 	}
6390 
6391 out:
6392 	return cp;
6393 out_free:
6394 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6395 	return NULL;
6396 }
6397 
6398 /*
6399  *  Release one control block
6400  */
6401 static void sym_free_ccb (hcb_p np, ccb_p cp)
6402 {
6403 	tcb_p tp = &np->target[cp->target];
6404 	lcb_p lp = sym_lp(np, tp, cp->lun);
6405 
6406 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6407 		PRINT_LUN(np, cp->target, cp->lun);
6408 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6409 	}
6410 
6411 	/*
6412 	 *  If LCB available,
6413 	 */
6414 	if (lp) {
6415 		/*
6416 		 *  If tagged, release the tag, set the relect path
6417 		 */
6418 		if (cp->tag != NO_TAG) {
6419 			/*
6420 			 *  Free the tag value.
6421 			 */
6422 			lp->cb_tags[lp->if_tag] = cp->tag;
6423 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6424 				lp->if_tag = 0;
6425 			/*
6426 			 *  Make the reselect path invalid,
6427 			 *  and uncount this CCB.
6428 			 */
6429 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6430 			--lp->busy_itlq;
6431 		} else {	/* Untagged */
6432 			/*
6433 			 *  Make the reselect path invalid,
6434 			 *  and uncount this CCB.
6435 			 */
6436 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6437 			--lp->busy_itl;
6438 		}
6439 		/*
6440 		 *  If no JOB active, make the LUN reselect path invalid.
6441 		 */
6442 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6443 			lp->head.resel_sa =
6444 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6445 	}
6446 	/*
6447 	 *  Otherwise, we only accept 1 IO per LUN.
6448 	 *  Clear the bit that keeps track of this IO.
6449 	 */
6450 	else
6451 		sym_clr_bit(tp->busy0_map, cp->lun);
6452 
6453 	/*
6454 	 *  We donnot queue more than 1 ccb per target
6455 	 *  with negotiation at any time. If this ccb was
6456 	 *  used for negotiation, clear this info in the tcb.
6457 	 */
6458 	if (cp == tp->nego_cp)
6459 		tp->nego_cp = NULL;
6460 
6461 #ifdef SYM_CONF_IARB_SUPPORT
6462 	/*
6463 	 *  If we just complete the last queued CCB,
6464 	 *  clear this info that is no longer relevant.
6465 	 */
6466 	if (cp == np->last_cp)
6467 		np->last_cp = NULL;
6468 #endif
6469 
6470 	/*
6471 	 *  Unmap user data from DMA map if needed.
6472 	 */
6473 	if (cp->dmamapped) {
6474 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6475 		cp->dmamapped = 0;
6476 	}
6477 
6478 	/*
6479 	 *  Make this CCB available.
6480 	 */
6481 	cp->cam_ccb = NULL;
6482 	cp->host_status = HS_IDLE;
6483 	sym_remque(&cp->link_ccbq);
6484 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6485 }
6486 
6487 /*
6488  *  Allocate a CCB from memory and initialize its fixed part.
6489  */
6490 static ccb_p sym_alloc_ccb(hcb_p np)
6491 {
6492 	ccb_p cp = NULL;
6493 	int hcode;
6494 
6495 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6496 
6497 	/*
6498 	 *  Prevent from allocating more CCBs than we can
6499 	 *  queue to the controller.
6500 	 */
6501 	if (np->actccbs >= SYM_CONF_MAX_START)
6502 		return NULL;
6503 
6504 	/*
6505 	 *  Allocate memory for this CCB.
6506 	 */
6507 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6508 	if (!cp)
6509 		return NULL;
6510 
6511 	/*
6512 	 *  Allocate a bounce buffer for sense data.
6513 	 */
6514 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6515 	if (!cp->sns_bbuf)
6516 		goto out_free;
6517 
6518 	/*
6519 	 *  Allocate a map for the DMA of user data.
6520 	 */
6521 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6522 		goto out_free;
6523 	/*
6524 	 *  Count it.
6525 	 */
6526 	np->actccbs++;
6527 
6528 	/*
6529 	 * Initialize the callout.
6530 	 */
6531 	callout_init(&cp->ch, 1);
6532 
6533 	/*
6534 	 *  Compute the bus address of this ccb.
6535 	 */
6536 	cp->ccb_ba = vtobus(cp);
6537 
6538 	/*
6539 	 *  Insert this ccb into the hashed list.
6540 	 */
6541 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6542 	cp->link_ccbh = np->ccbh[hcode];
6543 	np->ccbh[hcode] = cp;
6544 
6545 	/*
6546 	 *  Initialize the start and restart actions.
6547 	 */
6548 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6549 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6550 
6551  	/*
6552 	 *  Initilialyze some other fields.
6553 	 */
6554 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6555 
6556 	/*
6557 	 *  Chain into free ccb queue.
6558 	 */
6559 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6560 
6561 	return cp;
6562 out_free:
6563 	if (cp->sns_bbuf)
6564 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6565 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6566 	return NULL;
6567 }
6568 
6569 /*
6570  *  Look up a CCB from a DSA value.
6571  */
6572 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6573 {
6574 	int hcode;
6575 	ccb_p cp;
6576 
6577 	hcode = CCB_HASH_CODE(dsa);
6578 	cp = np->ccbh[hcode];
6579 	while (cp) {
6580 		if (cp->ccb_ba == dsa)
6581 			break;
6582 		cp = cp->link_ccbh;
6583 	}
6584 
6585 	return cp;
6586 }
6587 
6588 /*
6589  *  Target control block initialisation.
6590  *  Nothing important to do at the moment.
6591  */
6592 static void sym_init_tcb (hcb_p np, u_char tn)
6593 {
6594 	/*
6595 	 *  Check some alignments required by the chip.
6596 	 */
6597 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6598 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6599 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6600 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6601 }
6602 
6603 /*
6604  *  Lun control block allocation and initialization.
6605  */
6606 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6607 {
6608 	tcb_p tp = &np->target[tn];
6609 	lcb_p lp = sym_lp(np, tp, ln);
6610 
6611 	/*
6612 	 *  Already done, just return.
6613 	 */
6614 	if (lp)
6615 		return lp;
6616 	/*
6617 	 *  Check against some race.
6618 	 */
6619 	assert(!sym_is_bit(tp->busy0_map, ln));
6620 
6621 	/*
6622 	 *  Initialize the target control block if not yet.
6623 	 */
6624 	sym_init_tcb (np, tn);
6625 
6626 	/*
6627 	 *  Allocate the LCB bus address array.
6628 	 *  Compute the bus address of this table.
6629 	 */
6630 	if (ln && !tp->luntbl) {
6631 		int i;
6632 
6633 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6634 		if (!tp->luntbl)
6635 			goto fail;
6636 		for (i = 0 ; i < 64 ; i++)
6637 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6638 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6639 	}
6640 
6641 	/*
6642 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6643 	 */
6644 	if (ln && !tp->lunmp) {
6645 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6646 				   "LUNMP");
6647 		if (!tp->lunmp)
6648 			goto fail;
6649 	}
6650 
6651 	/*
6652 	 *  Allocate the lcb.
6653 	 *  Make it available to the chip.
6654 	 */
6655 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6656 	if (!lp)
6657 		goto fail;
6658 	if (ln) {
6659 		tp->lunmp[ln] = lp;
6660 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6661 	}
6662 	else {
6663 		tp->lun0p = lp;
6664 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6665 	}
6666 
6667 	/*
6668 	 *  Let the itl task point to error handling.
6669 	 */
6670 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6671 
6672 	/*
6673 	 *  Set the reselect pattern to our default. :)
6674 	 */
6675 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6676 
6677 	/*
6678 	 *  Set user capabilities.
6679 	 */
6680 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6681 
6682 fail:
6683 	return lp;
6684 }
6685 
6686 /*
6687  *  Allocate LCB resources for tagged command queuing.
6688  */
6689 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6690 {
6691 	tcb_p tp = &np->target[tn];
6692 	lcb_p lp = sym_lp(np, tp, ln);
6693 	int i;
6694 
6695 	/*
6696 	 *  If LCB not available, try to allocate it.
6697 	 */
6698 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6699 		return;
6700 
6701 	/*
6702 	 *  Allocate the task table and and the tag allocation
6703 	 *  circular buffer. We want both or none.
6704 	 */
6705 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6706 	if (!lp->itlq_tbl)
6707 		return;
6708 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6709 	if (!lp->cb_tags) {
6710 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6711 		lp->itlq_tbl = 0;
6712 		return;
6713 	}
6714 
6715 	/*
6716 	 *  Initialize the task table with invalid entries.
6717 	 */
6718 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6719 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6720 
6721 	/*
6722 	 *  Fill up the tag buffer with tag numbers.
6723 	 */
6724 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6725 		lp->cb_tags[i] = i;
6726 
6727 	/*
6728 	 *  Make the task table available to SCRIPTS,
6729 	 *  And accept tagged commands now.
6730 	 */
6731 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6732 }
6733 
6734 /*
6735  *  Test the pci bus snoop logic :-(
6736  *
6737  *  Has to be called with interrupts disabled.
6738  */
6739 #ifndef SYM_CONF_IOMAPPED
6740 static int sym_regtest (hcb_p np)
6741 {
6742 	register volatile u32 data;
6743 	/*
6744 	 *  chip registers may NOT be cached.
6745 	 *  write 0xffffffff to a read only register area,
6746 	 *  and try to read it back.
6747 	 */
6748 	data = 0xffffffff;
6749 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6750 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6751 #if 1
6752 	if (data == 0xffffffff) {
6753 #else
6754 	if ((data & 0xe2f0fffd) != 0x02000080) {
6755 #endif
6756 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6757 			(unsigned) data);
6758 		return (0x10);
6759 	};
6760 	return (0);
6761 }
6762 #endif
6763 
6764 static int sym_snooptest (hcb_p np)
6765 {
6766 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6767 	int	i, err=0;
6768 #ifndef SYM_CONF_IOMAPPED
6769 	err |= sym_regtest (np);
6770 	if (err) return (err);
6771 #endif
6772 restart_test:
6773 	/*
6774 	 *  Enable Master Parity Checking as we intend
6775 	 *  to enable it for normal operations.
6776 	 */
6777 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6778 	/*
6779 	 *  init
6780 	 */
6781 	pc  = SCRIPTB0_BA (np, snooptest);
6782 	host_wr = 1;
6783 	sym_wr  = 2;
6784 	/*
6785 	 *  Set memory and register.
6786 	 */
6787 	np->cache = cpu_to_scr(host_wr);
6788 	OUTL (nc_temp, sym_wr);
6789 	/*
6790 	 *  Start script (exchange values)
6791 	 */
6792 	OUTL (nc_dsa, np->hcb_ba);
6793 	OUTL_DSP (pc);
6794 	/*
6795 	 *  Wait 'til done (with timeout)
6796 	 */
6797 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6798 		if (INB(nc_istat) & (INTF|SIP|DIP))
6799 			break;
6800 	if (i>=SYM_SNOOP_TIMEOUT) {
6801 		printf ("CACHE TEST FAILED: timeout.\n");
6802 		return (0x20);
6803 	};
6804 	/*
6805 	 *  Check for fatal DMA errors.
6806 	 */
6807 	dstat = INB (nc_dstat);
6808 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6809 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6810 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6811 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6812 			sym_name(np));
6813 		np->rv_ctest4 &= ~MPEE;
6814 		goto restart_test;
6815 	}
6816 #endif
6817 	if (dstat & (MDPE|BF|IID)) {
6818 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6819 		return (0x80);
6820 	}
6821 	/*
6822 	 *  Save termination position.
6823 	 */
6824 	pc = INL (nc_dsp);
6825 	/*
6826 	 *  Read memory and register.
6827 	 */
6828 	host_rd = scr_to_cpu(np->cache);
6829 	sym_rd  = INL (nc_scratcha);
6830 	sym_bk  = INL (nc_temp);
6831 
6832 	/*
6833 	 *  Check termination position.
6834 	 */
6835 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6836 		printf ("CACHE TEST FAILED: script execution failed.\n");
6837 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6838 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6839 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6840 		return (0x40);
6841 	};
6842 	/*
6843 	 *  Show results.
6844 	 */
6845 	if (host_wr != sym_rd) {
6846 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6847 			(int) host_wr, (int) sym_rd);
6848 		err |= 1;
6849 	};
6850 	if (host_rd != sym_wr) {
6851 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6852 			(int) sym_wr, (int) host_rd);
6853 		err |= 2;
6854 	};
6855 	if (sym_bk != sym_wr) {
6856 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6857 			(int) sym_wr, (int) sym_bk);
6858 		err |= 4;
6859 	};
6860 
6861 	return (err);
6862 }
6863 
6864 /*
6865  *  Determine the chip's clock frequency.
6866  *
6867  *  This is essential for the negotiation of the synchronous
6868  *  transfer rate.
6869  *
6870  *  Note: we have to return the correct value.
6871  *  THERE IS NO SAFE DEFAULT VALUE.
6872  *
6873  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6874  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6875  *  do not have a clock doubler and so are provided with a
6876  *  80 MHz clock. All other fast20 boards incorporate a doubler
6877  *  and so should be delivered with a 40 MHz clock.
6878  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6879  *  clock and provide a clock quadrupler (160 Mhz).
6880  */
6881 
6882 /*
6883  *  Select SCSI clock frequency
6884  */
6885 static void sym_selectclock(hcb_p np, u_char scntl3)
6886 {
6887 	/*
6888 	 *  If multiplier not present or not selected, leave here.
6889 	 */
6890 	if (np->multiplier <= 1) {
6891 		OUTB(nc_scntl3,	scntl3);
6892 		return;
6893 	}
6894 
6895 	if (sym_verbose >= 2)
6896 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6897 
6898 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6899 	/*
6900 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6901 	 *  Otherwise wait 20 micro-seconds.
6902 	 */
6903 	if (np->features & FE_LCKFRQ) {
6904 		int i = 20;
6905 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6906 			UDELAY (20);
6907 		if (!i)
6908 			printf("%s: the chip cannot lock the frequency\n",
6909 				sym_name(np));
6910 	} else
6911 		UDELAY (20);
6912 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6913 	OUTB(nc_scntl3,	scntl3);
6914 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6915 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6916 }
6917 
6918 /*
6919  *  calculate SCSI clock frequency (in KHz)
6920  */
6921 static unsigned getfreq (hcb_p np, int gen)
6922 {
6923 	unsigned int ms = 0;
6924 	unsigned int f;
6925 
6926 	/*
6927 	 * Measure GEN timer delay in order
6928 	 * to calculate SCSI clock frequency
6929 	 *
6930 	 * This code will never execute too
6931 	 * many loop iterations (if DELAY is
6932 	 * reasonably correct). It could get
6933 	 * too low a delay (too high a freq.)
6934 	 * if the CPU is slow executing the
6935 	 * loop for some reason (an NMI, for
6936 	 * example). For this reason we will
6937 	 * if multiple measurements are to be
6938 	 * performed trust the higher delay
6939 	 * (lower frequency returned).
6940 	 */
6941 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6942 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6943 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6944 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6945 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6946 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6947 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6948 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6949 		UDELAY (1000);	/* count ms */
6950 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6951  	/*
6952  	 * set prescaler to divide by whatever 0 means
6953  	 * 0 ought to choose divide by 2, but appears
6954  	 * to set divide by 3.5 mode in my 53c810 ...
6955  	 */
6956  	OUTB (nc_scntl3, 0);
6957 
6958   	/*
6959  	 * adjust for prescaler, and convert into KHz
6960   	 */
6961 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6962 
6963 	if (sym_verbose >= 2)
6964 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6965 			sym_name(np), gen, ms, f);
6966 
6967 	return f;
6968 }
6969 
6970 static unsigned sym_getfreq (hcb_p np)
6971 {
6972 	u_int f1, f2;
6973 	int gen = 11;
6974 
6975 	(void) getfreq (np, gen);	/* throw away first result */
6976 	f1 = getfreq (np, gen);
6977 	f2 = getfreq (np, gen);
6978 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6979 	return f1;
6980 }
6981 
6982 /*
6983  *  Get/probe chip SCSI clock frequency
6984  */
6985 static void sym_getclock (hcb_p np, int mult)
6986 {
6987 	unsigned char scntl3 = np->sv_scntl3;
6988 	unsigned char stest1 = np->sv_stest1;
6989 	unsigned f1;
6990 
6991 	/*
6992 	 *  For the C10 core, assume 40 MHz.
6993 	 */
6994 	if (np->features & FE_C10) {
6995 		np->multiplier = mult;
6996 		np->clock_khz = 40000 * mult;
6997 		return;
6998 	}
6999 
7000 	np->multiplier = 1;
7001 	f1 = 40000;
7002 	/*
7003 	 *  True with 875/895/896/895A with clock multiplier selected
7004 	 */
7005 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7006 		if (sym_verbose >= 2)
7007 			printf ("%s: clock multiplier found\n", sym_name(np));
7008 		np->multiplier = mult;
7009 	}
7010 
7011 	/*
7012 	 *  If multiplier not found or scntl3 not 7,5,3,
7013 	 *  reset chip and get frequency from general purpose timer.
7014 	 *  Otherwise trust scntl3 BIOS setting.
7015 	 */
7016 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7017 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7018 		f1 = sym_getfreq (np);
7019 
7020 		if (sym_verbose)
7021 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7022 
7023 		if	(f1 <	45000)		f1 =  40000;
7024 		else if (f1 <	55000)		f1 =  50000;
7025 		else				f1 =  80000;
7026 
7027 		if (f1 < 80000 && mult > 1) {
7028 			if (sym_verbose >= 2)
7029 				printf ("%s: clock multiplier assumed\n",
7030 					sym_name(np));
7031 			np->multiplier	= mult;
7032 		}
7033 	} else {
7034 		if	((scntl3 & 7) == 3)	f1 =  40000;
7035 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7036 		else 				f1 = 160000;
7037 
7038 		f1 /= np->multiplier;
7039 	}
7040 
7041 	/*
7042 	 *  Compute controller synchronous parameters.
7043 	 */
7044 	f1		*= np->multiplier;
7045 	np->clock_khz	= f1;
7046 }
7047 
7048 /*
7049  *  Get/probe PCI clock frequency
7050  */
7051 static int sym_getpciclock (hcb_p np)
7052 {
7053 	int f = 0;
7054 
7055 	/*
7056 	 *  For the C1010-33, this doesn't work.
7057 	 *  For the C1010-66, this will be tested when I'll have
7058 	 *  such a beast to play with.
7059 	 */
7060 	if (!(np->features & FE_C10)) {
7061 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7062 		f = (int) sym_getfreq (np);
7063 		OUTB (nc_stest1, 0);
7064 	}
7065 	np->pciclk_khz = f;
7066 
7067 	return f;
7068 }
7069 
7070 /*============= DRIVER ACTION/COMPLETION ====================*/
7071 
7072 /*
7073  *  Print something that tells about extended errors.
7074  */
7075 static void sym_print_xerr(ccb_p cp, int x_status)
7076 {
7077 	if (x_status & XE_PARITY_ERR) {
7078 		PRINT_ADDR(cp);
7079 		printf ("unrecovered SCSI parity error.\n");
7080 	}
7081 	if (x_status & XE_EXTRA_DATA) {
7082 		PRINT_ADDR(cp);
7083 		printf ("extraneous data discarded.\n");
7084 	}
7085 	if (x_status & XE_BAD_PHASE) {
7086 		PRINT_ADDR(cp);
7087 		printf ("illegal scsi phase (4/5).\n");
7088 	}
7089 	if (x_status & XE_SODL_UNRUN) {
7090 		PRINT_ADDR(cp);
7091 		printf ("ODD transfer in DATA OUT phase.\n");
7092 	}
7093 	if (x_status & XE_SWIDE_OVRUN) {
7094 		PRINT_ADDR(cp);
7095 		printf ("ODD transfer in DATA IN phase.\n");
7096 	}
7097 }
7098 
7099 /*
7100  *  Choose the more appropriate CAM status if
7101  *  the IO encountered an extended error.
7102  */
7103 static int sym_xerr_cam_status(int cam_status, int x_status)
7104 {
7105 	if (x_status) {
7106 		if	(x_status & XE_PARITY_ERR)
7107 			cam_status = CAM_UNCOR_PARITY;
7108 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7109 			cam_status = CAM_DATA_RUN_ERR;
7110 		else if	(x_status & XE_BAD_PHASE)
7111 			cam_status = CAM_REQ_CMP_ERR;
7112 		else
7113 			cam_status = CAM_REQ_CMP_ERR;
7114 	}
7115 	return cam_status;
7116 }
7117 
7118 /*
7119  *  Complete execution of a SCSI command with extented
7120  *  error, SCSI status error, or having been auto-sensed.
7121  *
7122  *  The SCRIPTS processor is not running there, so we
7123  *  can safely access IO registers and remove JOBs from
7124  *  the START queue.
7125  *  SCRATCHA is assumed to have been loaded with STARTPOS
7126  *  before the SCRIPTS called the C code.
7127  */
7128 static void sym_complete_error (hcb_p np, ccb_p cp)
7129 {
7130 	struct ccb_scsiio *csio;
7131 	u_int cam_status;
7132 	int i, sense_returned;
7133 
7134 	SYM_LOCK_ASSERT(MA_OWNED);
7135 
7136 	/*
7137 	 *  Paranoid check. :)
7138 	 */
7139 	if (!cp || !cp->cam_ccb)
7140 		return;
7141 
7142 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7143 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7144 			cp->host_status, cp->ssss_status, cp->host_flags,
7145 			cp->target, cp->lun);
7146 		MDELAY(100);
7147 	}
7148 
7149 	/*
7150 	 *  Get CAM command pointer.
7151 	 */
7152 	csio = &cp->cam_ccb->csio;
7153 
7154 	/*
7155 	 *  Check for extended errors.
7156 	 */
7157 	if (cp->xerr_status) {
7158 		if (sym_verbose)
7159 			sym_print_xerr(cp, cp->xerr_status);
7160 		if (cp->host_status == HS_COMPLETE)
7161 			cp->host_status = HS_COMP_ERR;
7162 	}
7163 
7164 	/*
7165 	 *  Calculate the residual.
7166 	 */
7167 	csio->sense_resid = 0;
7168 	csio->resid = sym_compute_residual(np, cp);
7169 
7170 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7171 		csio->resid  = 0;	/* throw them away. :)		   */
7172 		cp->sv_resid = 0;
7173 	}
7174 
7175 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7176 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7177 		csio->sense_resid = csio->resid;	/* Swap residuals */
7178 		csio->resid       = cp->sv_resid;
7179 		cp->sv_resid	  = 0;
7180 		if (sym_verbose && cp->sv_xerr_status)
7181 			sym_print_xerr(cp, cp->sv_xerr_status);
7182 		if (cp->host_status == HS_COMPLETE &&
7183 		    cp->ssss_status == S_GOOD &&
7184 		    cp->xerr_status == 0) {
7185 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7186 							 cp->sv_xerr_status);
7187 			cam_status |= CAM_AUTOSNS_VALID;
7188 			/*
7189 			 *  Bounce back the sense data to user and
7190 			 *  fix the residual.
7191 			 */
7192 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7193 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7194 			if (sense_returned < csio->sense_len)
7195 				csio->sense_resid = csio->sense_len -
7196 				    sense_returned;
7197 			else
7198 				csio->sense_resid = 0;
7199 			bcopy(cp->sns_bbuf, &csio->sense_data,
7200 			    MIN(csio->sense_len, sense_returned));
7201 #if 0
7202 			/*
7203 			 *  If the device reports a UNIT ATTENTION condition
7204 			 *  due to a RESET condition, we should consider all
7205 			 *  disconnect CCBs for this unit as aborted.
7206 			 */
7207 			if (1) {
7208 				u_char *p;
7209 				p  = (u_char *) csio->sense_data;
7210 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7211 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7212 							cp->target,cp->lun, -1);
7213 			}
7214 #endif
7215 		}
7216 		else
7217 			cam_status = CAM_AUTOSENSE_FAIL;
7218 	}
7219 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7220 		csio->scsi_status = cp->ssss_status;
7221 		cam_status = CAM_SCSI_STATUS_ERROR;
7222 	}
7223 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7224 		cam_status = CAM_SEL_TIMEOUT;
7225 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7226 		cam_status = CAM_UNEXP_BUSFREE;
7227 	else {						/* Extended error */
7228 		if (sym_verbose) {
7229 			PRINT_ADDR(cp);
7230 			printf ("COMMAND FAILED (%x %x %x).\n",
7231 				cp->host_status, cp->ssss_status,
7232 				cp->xerr_status);
7233 		}
7234 		csio->scsi_status = cp->ssss_status;
7235 		/*
7236 		 *  Set the most appropriate value for CAM status.
7237 		 */
7238 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7239 						 cp->xerr_status);
7240 	}
7241 
7242 	/*
7243 	 *  Dequeue all queued CCBs for that device
7244 	 *  not yet started by SCRIPTS.
7245 	 */
7246 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7247 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7248 
7249 	/*
7250 	 *  Restart the SCRIPTS processor.
7251 	 */
7252 	OUTL_DSP (SCRIPTA_BA (np, start));
7253 
7254 	/*
7255 	 *  Synchronize DMA map if needed.
7256 	 */
7257 	if (cp->dmamapped) {
7258 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7259 			(cp->dmamapped == SYM_DMA_READ ?
7260 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7261 	}
7262 	/*
7263 	 *  Add this one to the COMP queue.
7264 	 *  Complete all those commands with either error
7265 	 *  or requeue condition.
7266 	 */
7267 	sym_set_cam_status((union ccb *) csio, cam_status);
7268 	sym_remque(&cp->link_ccbq);
7269 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7270 	sym_flush_comp_queue(np, 0);
7271 }
7272 
7273 /*
7274  *  Complete execution of a successful SCSI command.
7275  *
7276  *  Only successful commands go to the DONE queue,
7277  *  since we need to have the SCRIPTS processor
7278  *  stopped on any error condition.
7279  *  The SCRIPTS processor is running while we are
7280  *  completing successful commands.
7281  */
7282 static void sym_complete_ok (hcb_p np, ccb_p cp)
7283 {
7284 	struct ccb_scsiio *csio;
7285 	tcb_p tp;
7286 	lcb_p lp;
7287 
7288 	SYM_LOCK_ASSERT(MA_OWNED);
7289 
7290 	/*
7291 	 *  Paranoid check. :)
7292 	 */
7293 	if (!cp || !cp->cam_ccb)
7294 		return;
7295 	assert (cp->host_status == HS_COMPLETE);
7296 
7297 	/*
7298 	 *  Get command, target and lun pointers.
7299 	 */
7300 	csio = &cp->cam_ccb->csio;
7301 	tp = &np->target[cp->target];
7302 	lp = sym_lp(np, tp, cp->lun);
7303 
7304 	/*
7305 	 *  Assume device discovered on first success.
7306 	 */
7307 	if (!lp)
7308 		sym_set_bit(tp->lun_map, cp->lun);
7309 
7310 	/*
7311 	 *  If all data have been transferred, given than no
7312 	 *  extended error did occur, there is no residual.
7313 	 */
7314 	csio->resid = 0;
7315 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7316 		csio->resid = sym_compute_residual(np, cp);
7317 
7318 	/*
7319 	 *  Wrong transfer residuals may be worse than just always
7320 	 *  returning zero. User can disable this feature from
7321 	 *  sym_conf.h. Residual support is enabled by default.
7322 	 */
7323 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7324 		csio->resid  = 0;
7325 
7326 	/*
7327 	 *  Synchronize DMA map if needed.
7328 	 */
7329 	if (cp->dmamapped) {
7330 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7331 			(cp->dmamapped == SYM_DMA_READ ?
7332 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7333 	}
7334 	/*
7335 	 *  Set status and complete the command.
7336 	 */
7337 	csio->scsi_status = cp->ssss_status;
7338 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7339 	sym_xpt_done(np, (union ccb *) csio, cp);
7340 	sym_free_ccb(np, cp);
7341 }
7342 
7343 /*
7344  *  Our callout handler
7345  */
7346 static void sym_callout(void *arg)
7347 {
7348 	union ccb *ccb = (union ccb *) arg;
7349 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7350 
7351 	/*
7352 	 *  Check that the CAM CCB is still queued.
7353 	 */
7354 	if (!np)
7355 		return;
7356 
7357 	SYM_LOCK();
7358 
7359 	switch(ccb->ccb_h.func_code) {
7360 	case XPT_SCSI_IO:
7361 		(void) sym_abort_scsiio(np, ccb, 1);
7362 		break;
7363 	default:
7364 		break;
7365 	}
7366 
7367 	SYM_UNLOCK();
7368 }
7369 
7370 /*
7371  *  Abort an SCSI IO.
7372  */
7373 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7374 {
7375 	ccb_p cp;
7376 	SYM_QUEHEAD *qp;
7377 
7378 	SYM_LOCK_ASSERT(MA_OWNED);
7379 
7380 	/*
7381 	 *  Look up our CCB control block.
7382 	 */
7383 	cp = NULL;
7384 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7385 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7386 		if (cp2->cam_ccb == ccb) {
7387 			cp = cp2;
7388 			break;
7389 		}
7390 	}
7391 	if (!cp || cp->host_status == HS_WAIT)
7392 		return -1;
7393 
7394 	/*
7395 	 *  If a previous abort didn't succeed in time,
7396 	 *  perform a BUS reset.
7397 	 */
7398 	if (cp->to_abort) {
7399 		sym_reset_scsi_bus(np, 1);
7400 		return 0;
7401 	}
7402 
7403 	/*
7404 	 *  Mark the CCB for abort and allow time for.
7405 	 */
7406 	cp->to_abort = timed_out ? 2 : 1;
7407 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7408 
7409 	/*
7410 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7411 	 */
7412 	np->istat_sem = SEM;
7413 	OUTB (nc_istat, SIGP|SEM);
7414 	return 0;
7415 }
7416 
7417 /*
7418  *  Reset a SCSI device (all LUNs of a target).
7419  */
7420 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7421 {
7422 	tcb_p tp;
7423 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7424 
7425 	SYM_LOCK_ASSERT(MA_OWNED);
7426 
7427 	if (ccb_h->target_id   == np->myaddr ||
7428 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7429 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7430 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7431 		return;
7432 	}
7433 
7434 	tp = &np->target[ccb_h->target_id];
7435 
7436 	tp->to_reset = 1;
7437 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7438 
7439 	np->istat_sem = SEM;
7440 	OUTB (nc_istat, SIGP|SEM);
7441 }
7442 
7443 /*
7444  *  SIM action entry point.
7445  */
7446 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7447 {
7448 	hcb_p	np;
7449 	tcb_p	tp;
7450 	lcb_p	lp;
7451 	ccb_p	cp;
7452 	int 	tmp;
7453 	u_char	idmsg, *msgptr;
7454 	u_int   msglen;
7455 	struct	ccb_scsiio *csio;
7456 	struct	ccb_hdr  *ccb_h;
7457 
7458 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7459 
7460 	/*
7461 	 *  Retrieve our controller data structure.
7462 	 */
7463 	np = (hcb_p) cam_sim_softc(sim);
7464 
7465 	SYM_LOCK_ASSERT(MA_OWNED);
7466 
7467 	/*
7468 	 *  The common case is SCSI IO.
7469 	 *  We deal with other ones elsewhere.
7470 	 */
7471 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7472 		sym_action2(sim, ccb);
7473 		return;
7474 	}
7475 	csio  = &ccb->csio;
7476 	ccb_h = &csio->ccb_h;
7477 
7478 	/*
7479 	 *  Work around races.
7480 	 */
7481 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7482 		xpt_done(ccb);
7483 		return;
7484 	}
7485 
7486 	/*
7487 	 *  Minimal checkings, so that we will not
7488 	 *  go outside our tables.
7489 	 */
7490 	if (ccb_h->target_id   == np->myaddr ||
7491 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7492 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7493 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7494 		return;
7495         }
7496 
7497 	/*
7498 	 *  Retrieve the target and lun descriptors.
7499 	 */
7500 	tp = &np->target[ccb_h->target_id];
7501 	lp = sym_lp(np, tp, ccb_h->target_lun);
7502 
7503 	/*
7504 	 *  Complete the 1st INQUIRY command with error
7505 	 *  condition if the device is flagged NOSCAN
7506 	 *  at BOOT in the NVRAM. This may speed up
7507 	 *  the boot and maintain coherency with BIOS
7508 	 *  device numbering. Clearing the flag allows
7509 	 *  user to rescan skipped devices later.
7510 	 *  We also return error for devices not flagged
7511 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7512 	 *  devices behave badly when asked for some non
7513 	 *  zero LUN. Btw, this is an absolute hack.:-)
7514 	 */
7515 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7516 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7517 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7518 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7519 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7520 		     ccb_h->target_lun != 0)) {
7521 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7522 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7523 			return;
7524 		}
7525 	}
7526 
7527 	/*
7528 	 *  Get a control block for this IO.
7529 	 */
7530 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7531 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7532 	if (!cp) {
7533 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7534 		return;
7535 	}
7536 
7537 	/*
7538 	 *  Keep track of the IO in our CCB.
7539 	 */
7540 	cp->cam_ccb = ccb;
7541 
7542 	/*
7543 	 *  Build the IDENTIFY message.
7544 	 */
7545 	idmsg = M_IDENTIFY | cp->lun;
7546 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7547 		idmsg |= 0x40;
7548 
7549 	msgptr = cp->scsi_smsg;
7550 	msglen = 0;
7551 	msgptr[msglen++] = idmsg;
7552 
7553 	/*
7554 	 *  Build the tag message if present.
7555 	 */
7556 	if (cp->tag != NO_TAG) {
7557 		u_char order = csio->tag_action;
7558 
7559 		switch(order) {
7560 		case M_ORDERED_TAG:
7561 			break;
7562 		case M_HEAD_TAG:
7563 			break;
7564 		default:
7565 			order = M_SIMPLE_TAG;
7566 		}
7567 		msgptr[msglen++] = order;
7568 
7569 		/*
7570 		 *  For less than 128 tags, actual tags are numbered
7571 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7572 		 *  with devices that have problems with #TAG 0 or too
7573 		 *  great #TAG numbers. For more tags (up to 256),
7574 		 *  we use directly our tag number.
7575 		 */
7576 #if SYM_CONF_MAX_TASK > (512/4)
7577 		msgptr[msglen++] = cp->tag;
7578 #else
7579 		msgptr[msglen++] = (cp->tag << 1) + 1;
7580 #endif
7581 	}
7582 
7583 	/*
7584 	 *  Build a negotiation message if needed.
7585 	 *  (nego_status is filled by sym_prepare_nego())
7586 	 */
7587 	cp->nego_status = 0;
7588 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7589 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7590 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7591 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7592 		if (!tp->nego_cp && lp)
7593 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7594 	}
7595 
7596 	/*
7597 	 *  Fill in our ccb
7598 	 */
7599 
7600 	/*
7601 	 *  Startqueue
7602 	 */
7603 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7604 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7605 
7606 	/*
7607 	 *  select
7608 	 */
7609 	cp->phys.select.sel_id		= cp->target;
7610 	cp->phys.select.sel_scntl3	= tp->head.wval;
7611 	cp->phys.select.sel_sxfer	= tp->head.sval;
7612 	cp->phys.select.sel_scntl4	= tp->head.uval;
7613 
7614 	/*
7615 	 *  message
7616 	 */
7617 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7618 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7619 
7620 	/*
7621 	 *  command
7622 	 */
7623 	if (sym_setup_cdb(np, csio, cp) < 0) {
7624 		sym_xpt_done(np, ccb, cp);
7625 		sym_free_ccb(np, cp);
7626 		return;
7627 	}
7628 
7629 	/*
7630 	 *  status
7631 	 */
7632 #if	0	/* Provision */
7633 	cp->actualquirks	= tp->quirks;
7634 #endif
7635 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7636 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7637 	cp->ssss_status		= S_ILLEGAL;
7638 	cp->xerr_status		= 0;
7639 	cp->host_flags		= 0;
7640 	cp->extra_bytes		= 0;
7641 
7642 	/*
7643 	 *  extreme data pointer.
7644 	 *  shall be positive, so -1 is lower than lowest.:)
7645 	 */
7646 	cp->ext_sg  = -1;
7647 	cp->ext_ofs = 0;
7648 
7649 	/*
7650 	 *  Build the data descriptor block
7651 	 *  and start the IO.
7652 	 */
7653 	sym_setup_data_and_start(np, csio, cp);
7654 }
7655 
7656 /*
7657  *  Setup buffers and pointers that address the CDB.
7658  *  I bet, physical CDBs will never be used on the planet,
7659  *  since they can be bounced without significant overhead.
7660  */
7661 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7662 {
7663 	struct ccb_hdr *ccb_h;
7664 	u32	cmd_ba;
7665 	int	cmd_len;
7666 
7667 	SYM_LOCK_ASSERT(MA_OWNED);
7668 
7669 	ccb_h = &csio->ccb_h;
7670 
7671 	/*
7672 	 *  CDB is 16 bytes max.
7673 	 */
7674 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7675 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7676 		return -1;
7677 	}
7678 	cmd_len = csio->cdb_len;
7679 
7680 	if (ccb_h->flags & CAM_CDB_POINTER) {
7681 		/* CDB is a pointer */
7682 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7683 			/* CDB pointer is virtual */
7684 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7685 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7686 		} else {
7687 			/* CDB pointer is physical */
7688 #if 0
7689 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7690 #else
7691 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7692 			return -1;
7693 #endif
7694 		}
7695 	} else {
7696 		/* CDB is in the CAM ccb (buffer) */
7697 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7698 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7699 	}
7700 
7701 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7702 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7703 
7704 	return 0;
7705 }
7706 
7707 /*
7708  *  Set up data pointers used by SCRIPTS.
7709  */
7710 static void __inline
7711 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7712 {
7713 	u32 lastp, goalp;
7714 
7715 	SYM_LOCK_ASSERT(MA_OWNED);
7716 
7717 	/*
7718 	 *  No segments means no data.
7719 	 */
7720 	if (!cp->segments)
7721 		dir = CAM_DIR_NONE;
7722 
7723 	/*
7724 	 *  Set the data pointer.
7725 	 */
7726 	switch(dir) {
7727 	case CAM_DIR_OUT:
7728 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7729 		lastp = goalp - 8 - (cp->segments * (2*4));
7730 		break;
7731 	case CAM_DIR_IN:
7732 		cp->host_flags |= HF_DATA_IN;
7733 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7734 		lastp = goalp - 8 - (cp->segments * (2*4));
7735 		break;
7736 	case CAM_DIR_NONE:
7737 	default:
7738 		lastp = goalp = SCRIPTB_BA (np, no_data);
7739 		break;
7740 	}
7741 
7742 	cp->phys.head.lastp = cpu_to_scr(lastp);
7743 	cp->phys.head.goalp = cpu_to_scr(goalp);
7744 	cp->phys.head.savep = cpu_to_scr(lastp);
7745 	cp->startp	    = cp->phys.head.savep;
7746 }
7747 
7748 /*
7749  *  Call back routine for the DMA map service.
7750  *  If bounce buffers are used (why ?), we may sleep and then
7751  *  be called there in another context.
7752  */
7753 static void
7754 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7755 {
7756 	ccb_p	cp;
7757 	hcb_p	np;
7758 	union	ccb *ccb;
7759 
7760 	cp  = (ccb_p) arg;
7761 	ccb = cp->cam_ccb;
7762 	np  = (hcb_p) cp->arg;
7763 
7764 	SYM_LOCK_ASSERT(MA_OWNED);
7765 
7766 	/*
7767 	 *  Deal with weird races.
7768 	 */
7769 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7770 		goto out_abort;
7771 
7772 	/*
7773 	 *  Deal with weird errors.
7774 	 */
7775 	if (error) {
7776 		cp->dmamapped = 0;
7777 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7778 		goto out_abort;
7779 	}
7780 
7781 	/*
7782 	 *  Build the data descriptor for the chip.
7783 	 */
7784 	if (nsegs) {
7785 		int retv;
7786 		/* 896 rev 1 requires to be careful about boundaries */
7787 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7788 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7789 		else
7790 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7791 		if (retv < 0) {
7792 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7793 			goto out_abort;
7794 		}
7795 	}
7796 
7797 	/*
7798 	 *  Synchronize the DMA map only if we have
7799 	 *  actually mapped the data.
7800 	 */
7801 	if (cp->dmamapped) {
7802 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7803 			(cp->dmamapped == SYM_DMA_READ ?
7804 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7805 	}
7806 
7807 	/*
7808 	 *  Set host status to busy state.
7809 	 *  May have been set back to HS_WAIT to avoid a race.
7810 	 */
7811 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7812 
7813 	/*
7814 	 *  Set data pointers.
7815 	 */
7816 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7817 
7818 	/*
7819 	 *  Enqueue this IO in our pending queue.
7820 	 */
7821 	sym_enqueue_cam_ccb(cp);
7822 
7823 	/*
7824 	 *  When `#ifed 1', the code below makes the driver
7825 	 *  panic on the first attempt to write to a SCSI device.
7826 	 *  It is the first test we want to do after a driver
7827 	 *  change that does not seem obviously safe. :)
7828 	 */
7829 #if 0
7830 	switch (cp->cdb_buf[0]) {
7831 	case 0x0A: case 0x2A: case 0xAA:
7832 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7833 		MDELAY(10000);
7834 		break;
7835 	default:
7836 		break;
7837 	}
7838 #endif
7839 	/*
7840 	 *  Activate this job.
7841 	 */
7842 	sym_put_start_queue(np, cp);
7843 	return;
7844 out_abort:
7845 	sym_xpt_done(np, ccb, cp);
7846 	sym_free_ccb(np, cp);
7847 }
7848 
7849 /*
7850  *  How complex it gets to deal with the data in CAM.
7851  *  The Bus Dma stuff makes things still more complex.
7852  */
7853 static void
7854 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7855 {
7856 	struct ccb_hdr *ccb_h;
7857 	int dir, retv;
7858 
7859 	SYM_LOCK_ASSERT(MA_OWNED);
7860 
7861 	ccb_h = &csio->ccb_h;
7862 
7863 	/*
7864 	 *  Now deal with the data.
7865 	 */
7866 	cp->data_len = csio->dxfer_len;
7867 	cp->arg      = np;
7868 
7869 	/*
7870 	 *  No direction means no data.
7871 	 */
7872 	dir = (ccb_h->flags & CAM_DIR_MASK);
7873 	if (dir == CAM_DIR_NONE) {
7874 		sym_execute_ccb(cp, NULL, 0, 0);
7875 		return;
7876 	}
7877 
7878 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
7879 		/* Single buffer */
7880 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7881 			/* Buffer is virtual */
7882 			cp->dmamapped = (dir == CAM_DIR_IN) ?
7883 						SYM_DMA_READ : SYM_DMA_WRITE;
7884 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
7885 					       csio->data_ptr, csio->dxfer_len,
7886 					       sym_execute_ccb, cp, 0);
7887 			if (retv == EINPROGRESS) {
7888 				cp->host_status	= HS_WAIT;
7889 				xpt_freeze_simq(np->sim, 1);
7890 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7891 			}
7892 		} else {
7893 			/* Buffer is physical */
7894 			struct bus_dma_segment seg;
7895 
7896 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
7897 			sym_execute_ccb(cp, &seg, 1, 0);
7898 		}
7899 	} else {
7900 		/* Scatter/gather list */
7901 		struct bus_dma_segment *segs;
7902 
7903 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
7904 			/* The SG list pointer is physical */
7905 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7906 			goto out_abort;
7907 		}
7908 
7909 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7910 			/* SG buffer pointers are virtual */
7911 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7912 			goto out_abort;
7913 		}
7914 
7915 		/* SG buffer pointers are physical */
7916 		segs  = (struct bus_dma_segment *)csio->data_ptr;
7917 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
7918 	}
7919 	return;
7920 out_abort:
7921 	sym_xpt_done(np, (union ccb *) csio, cp);
7922 	sym_free_ccb(np, cp);
7923 }
7924 
7925 /*
7926  *  Move the scatter list to our data block.
7927  */
7928 static int
7929 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7930 			     bus_dma_segment_t *psegs, int nsegs)
7931 {
7932 	struct sym_tblmove *data;
7933 	bus_dma_segment_t *psegs2;
7934 
7935 	SYM_LOCK_ASSERT(MA_OWNED);
7936 
7937 	if (nsegs > SYM_CONF_MAX_SG)
7938 		return -1;
7939 
7940 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7941 	psegs2 = &psegs[nsegs-1];
7942 	cp->segments = nsegs;
7943 
7944 	while (1) {
7945 		data->addr = cpu_to_scr(psegs2->ds_addr);
7946 		data->size = cpu_to_scr(psegs2->ds_len);
7947 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7948 			printf ("%s scatter: paddr=%lx len=%ld\n",
7949 				sym_name(np), (long) psegs2->ds_addr,
7950 				(long) psegs2->ds_len);
7951 		}
7952 		if (psegs2 != psegs) {
7953 			--data;
7954 			--psegs2;
7955 			continue;
7956 		}
7957 		break;
7958 	}
7959 	return 0;
7960 }
7961 
7962 /*
7963  *  Scatter a SG list with physical addresses into bus addressable chunks.
7964  */
7965 static int
7966 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7967 {
7968 	u_long	ps, pe, pn;
7969 	u_long	k;
7970 	int s, t;
7971 
7972 	SYM_LOCK_ASSERT(MA_OWNED);
7973 
7974 	s  = SYM_CONF_MAX_SG - 1;
7975 	t  = nsegs - 1;
7976 	ps = psegs[t].ds_addr;
7977 	pe = ps + psegs[t].ds_len;
7978 
7979 	while (s >= 0) {
7980 		pn = (pe - 1) & ~(SYM_CONF_DMA_BOUNDARY - 1);
7981 		if (pn <= ps)
7982 			pn = ps;
7983 		k = pe - pn;
7984 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7985 			printf ("%s scatter: paddr=%lx len=%ld\n",
7986 				sym_name(np), pn, k);
7987 		}
7988 		cp->phys.data[s].addr = cpu_to_scr(pn);
7989 		cp->phys.data[s].size = cpu_to_scr(k);
7990 		--s;
7991 		if (pn == ps) {
7992 			if (--t < 0)
7993 				break;
7994 			ps = psegs[t].ds_addr;
7995 			pe = ps + psegs[t].ds_len;
7996 		}
7997 		else
7998 			pe = pn;
7999 	}
8000 
8001 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8002 
8003 	return t >= 0 ? -1 : 0;
8004 }
8005 
8006 /*
8007  *  SIM action for non performance critical stuff.
8008  */
8009 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8010 {
8011 	union ccb *abort_ccb;
8012 	struct ccb_hdr *ccb_h;
8013 	struct ccb_pathinq *cpi;
8014 	struct ccb_trans_settings *cts;
8015 	struct sym_trans *tip;
8016 	hcb_p	np;
8017 	tcb_p	tp;
8018 	lcb_p	lp;
8019 	u_char dflags;
8020 
8021 	/*
8022 	 *  Retrieve our controller data structure.
8023 	 */
8024 	np = (hcb_p) cam_sim_softc(sim);
8025 
8026 	SYM_LOCK_ASSERT(MA_OWNED);
8027 
8028 	ccb_h = &ccb->ccb_h;
8029 
8030 	switch (ccb_h->func_code) {
8031 	case XPT_SET_TRAN_SETTINGS:
8032 		cts  = &ccb->cts;
8033 		tp = &np->target[ccb_h->target_id];
8034 
8035 		/*
8036 		 *  Update SPI transport settings in TARGET control block.
8037 		 *  Update SCSI device settings in LUN control block.
8038 		 */
8039 		lp = sym_lp(np, tp, ccb_h->target_lun);
8040 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8041 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8042 			if (lp)
8043 				sym_update_dflags(np, &lp->current_flags, cts);
8044 		}
8045 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8046 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8047 			if (lp)
8048 				sym_update_dflags(np, &lp->user_flags, cts);
8049 		}
8050 
8051 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8052 		break;
8053 	case XPT_GET_TRAN_SETTINGS:
8054 		cts = &ccb->cts;
8055 		tp = &np->target[ccb_h->target_id];
8056 		lp = sym_lp(np, tp, ccb_h->target_lun);
8057 
8058 #define	cts__scsi (&cts->proto_specific.scsi)
8059 #define	cts__spi  (&cts->xport_specific.spi)
8060 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8061 			tip = &tp->tinfo.current;
8062 			dflags = lp ? lp->current_flags : 0;
8063 		}
8064 		else {
8065 			tip = &tp->tinfo.user;
8066 			dflags = lp ? lp->user_flags : tp->usrflags;
8067 		}
8068 
8069 		cts->protocol  = PROTO_SCSI;
8070 		cts->transport = XPORT_SPI;
8071 		cts->protocol_version  = tip->scsi_version;
8072 		cts->transport_version = tip->spi_version;
8073 
8074 		cts__spi->sync_period = tip->period;
8075 		cts__spi->sync_offset = tip->offset;
8076 		cts__spi->bus_width   = tip->width;
8077 		cts__spi->ppr_options = tip->options;
8078 
8079 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8080 		                | CTS_SPI_VALID_SYNC_OFFSET
8081 		                | CTS_SPI_VALID_BUS_WIDTH
8082 		                | CTS_SPI_VALID_PPR_OPTIONS;
8083 
8084 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8085 		if (dflags & SYM_DISC_ENABLED)
8086 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8087 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8088 
8089 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8090 		if (dflags & SYM_TAGS_ENABLED)
8091 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8092 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8093 #undef	cts__spi
8094 #undef	cts__scsi
8095 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8096 		break;
8097 	case XPT_CALC_GEOMETRY:
8098 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8099 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8100 		break;
8101 	case XPT_PATH_INQ:
8102 		cpi = &ccb->cpi;
8103 		cpi->version_num = 1;
8104 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8105 		if ((np->features & FE_WIDE) != 0)
8106 			cpi->hba_inquiry |= PI_WIDE_16;
8107 		cpi->target_sprt = 0;
8108 		cpi->hba_misc = 0;
8109 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8110 			cpi->hba_misc |= PIM_SCANHILO;
8111 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8112 			cpi->hba_misc |= PIM_NOBUSRESET;
8113 		cpi->hba_eng_cnt = 0;
8114 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8115 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8116 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8117 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8118 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8119 		cpi->bus_id = cam_sim_bus(sim);
8120 		cpi->initiator_id = np->myaddr;
8121 		cpi->base_transfer_speed = 3300;
8122 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8123 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8124 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8125 		cpi->unit_number = cam_sim_unit(sim);
8126 
8127 		cpi->protocol = PROTO_SCSI;
8128 		cpi->protocol_version = SCSI_REV_2;
8129 		cpi->transport = XPORT_SPI;
8130 		cpi->transport_version = 2;
8131 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8132 		if (np->features & FE_ULTRA3) {
8133 			cpi->transport_version = 3;
8134 			cpi->xport_specific.spi.ppr_options =
8135 			    SID_SPI_CLOCK_DT_ST;
8136 		}
8137 		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8138 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8139 		break;
8140 	case XPT_ABORT:
8141 		abort_ccb = ccb->cab.abort_ccb;
8142 		switch(abort_ccb->ccb_h.func_code) {
8143 		case XPT_SCSI_IO:
8144 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8145 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8146 				break;
8147 			}
8148 		default:
8149 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8150 			break;
8151 		}
8152 		break;
8153 	case XPT_RESET_DEV:
8154 		sym_reset_dev(np, ccb);
8155 		break;
8156 	case XPT_RESET_BUS:
8157 		sym_reset_scsi_bus(np, 0);
8158 		if (sym_verbose) {
8159 			xpt_print_path(np->path);
8160 			printf("SCSI BUS reset delivered.\n");
8161 		}
8162 		sym_init (np, 1);
8163 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8164 		break;
8165 	case XPT_ACCEPT_TARGET_IO:
8166 	case XPT_CONT_TARGET_IO:
8167 	case XPT_EN_LUN:
8168 	case XPT_NOTIFY_ACK:
8169 	case XPT_IMMED_NOTIFY:
8170 	case XPT_TERM_IO:
8171 	default:
8172 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8173 		break;
8174 	}
8175 }
8176 
8177 /*
8178  *  Asynchronous notification handler.
8179  */
8180 static void
8181 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8182 {
8183 	hcb_p np;
8184 	struct cam_sim *sim;
8185 	u_int tn;
8186 	tcb_p tp;
8187 
8188 	sim = (struct cam_sim *) cb_arg;
8189 	np  = (hcb_p) cam_sim_softc(sim);
8190 
8191 	SYM_LOCK_ASSERT(MA_OWNED);
8192 
8193 	switch (code) {
8194 	case AC_LOST_DEVICE:
8195 		tn = xpt_path_target_id(path);
8196 		if (tn >= SYM_CONF_MAX_TARGET)
8197 			break;
8198 
8199 		tp = &np->target[tn];
8200 
8201 		tp->to_reset  = 0;
8202 		tp->head.sval = 0;
8203 		tp->head.wval = np->rv_scntl3;
8204 		tp->head.uval = 0;
8205 
8206 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8207 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8208 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8209 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8210 
8211 		break;
8212 	default:
8213 		break;
8214 	}
8215 }
8216 
8217 /*
8218  *  Update transfer settings of a target.
8219  */
8220 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8221 			    struct ccb_trans_settings *cts)
8222 {
8223 	SYM_LOCK_ASSERT(MA_OWNED);
8224 
8225 	/*
8226 	 *  Update the infos.
8227 	 */
8228 #define cts__spi (&cts->xport_specific.spi)
8229 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8230 		tip->width = cts__spi->bus_width;
8231 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8232 		tip->offset = cts__spi->sync_offset;
8233 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8234 		tip->period = cts__spi->sync_period;
8235 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8236 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8237 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8238 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8239 		tip->scsi_version = cts->protocol_version;
8240 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8241 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8242 		tip->spi_version = cts->transport_version;
8243 #undef cts__spi
8244 	/*
8245 	 *  Scale against driver configuration limits.
8246 	 */
8247 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8248 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8249 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8250 
8251 	/*
8252 	 *  Scale against actual controller BUS width.
8253 	 */
8254 	if (tip->width > np->maxwide)
8255 		tip->width  = np->maxwide;
8256 
8257 	/*
8258 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8259 	 */
8260 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8261 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8262 		tip->options &= ~PPR_OPT_DT;
8263 	}
8264 
8265 	/*
8266 	 *  Scale period factor and offset against controller limits.
8267 	 */
8268 	if (tip->options & PPR_OPT_DT) {
8269 		if (tip->period < np->minsync_dt)
8270 			tip->period = np->minsync_dt;
8271 		if (tip->period > np->maxsync_dt)
8272 			tip->period = np->maxsync_dt;
8273 		if (tip->offset > np->maxoffs_dt)
8274 			tip->offset = np->maxoffs_dt;
8275 	}
8276 	else {
8277 		if (tip->period < np->minsync)
8278 			tip->period = np->minsync;
8279 		if (tip->period > np->maxsync)
8280 			tip->period = np->maxsync;
8281 		if (tip->offset > np->maxoffs)
8282 			tip->offset = np->maxoffs;
8283 	}
8284 }
8285 
8286 /*
8287  *  Update flags for a device (logical unit).
8288  */
8289 static void
8290 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8291 {
8292 	SYM_LOCK_ASSERT(MA_OWNED);
8293 
8294 #define	cts__scsi (&cts->proto_specific.scsi)
8295 #define	cts__spi  (&cts->xport_specific.spi)
8296 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8297 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8298 			*flags |= SYM_DISC_ENABLED;
8299 		else
8300 			*flags &= ~SYM_DISC_ENABLED;
8301 	}
8302 
8303 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8304 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8305 			*flags |= SYM_TAGS_ENABLED;
8306 		else
8307 			*flags &= ~SYM_TAGS_ENABLED;
8308 	}
8309 #undef	cts__spi
8310 #undef	cts__scsi
8311 }
8312 
8313 /*============= DRIVER INITIALISATION ==================*/
8314 
8315 static device_method_t sym_pci_methods[] = {
8316 	DEVMETHOD(device_probe,	 sym_pci_probe),
8317 	DEVMETHOD(device_attach, sym_pci_attach),
8318 	DEVMETHOD_END
8319 };
8320 
8321 static driver_t sym_pci_driver = {
8322 	"sym",
8323 	sym_pci_methods,
8324 	1	/* no softc */
8325 };
8326 
8327 static devclass_t sym_devclass;
8328 
8329 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL);
8330 MODULE_DEPEND(sym, cam, 1, 1, 1);
8331 MODULE_DEPEND(sym, pci, 1, 1, 1);
8332 
8333 static const struct sym_pci_chip sym_pci_dev_table[] = {
8334  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8335  FE_ERL}
8336  ,
8337 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8338  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8339  FE_BOF}
8340  ,
8341 #else
8342  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8343  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8344  ,
8345 #endif
8346  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8347  FE_BOF|FE_ERL}
8348  ,
8349  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8350  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8351  ,
8352  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8353  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8354  ,
8355  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8356  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8357  ,
8358  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8359  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8360  FE_RAM|FE_DIFF}
8361  ,
8362  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8363  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8364  FE_RAM|FE_DIFF}
8365  ,
8366  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8367  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8368  FE_RAM|FE_DIFF}
8369  ,
8370  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8371  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8372  FE_RAM|FE_DIFF}
8373  ,
8374 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8375  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8376  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8377  FE_RAM|FE_LCKFRQ}
8378  ,
8379 #else
8380  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8381  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8382  FE_RAM|FE_LCKFRQ}
8383  ,
8384 #endif
8385  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8386  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8387  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8388  ,
8389  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8390  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8391  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8392  ,
8393  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8394  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8395  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8396  FE_C10}
8397  ,
8398  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8399  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8400  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8401  FE_C10|FE_U3EN}
8402  ,
8403  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8404  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8405  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8406  FE_C10|FE_U3EN}
8407  ,
8408  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8409  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8410  FE_RAM|FE_IO256|FE_LEDC}
8411 };
8412 
8413 /*
8414  *  Look up the chip table.
8415  *
8416  *  Return a pointer to the chip entry if found,
8417  *  zero otherwise.
8418  */
8419 static const struct sym_pci_chip *
8420 sym_find_pci_chip(device_t dev)
8421 {
8422 	const struct	sym_pci_chip *chip;
8423 	int	i;
8424 	u_short	device_id;
8425 	u_char	revision;
8426 
8427 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8428 		return NULL;
8429 
8430 	device_id = pci_get_device(dev);
8431 	revision  = pci_get_revid(dev);
8432 
8433 	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8434 		chip = &sym_pci_dev_table[i];
8435 		if (device_id != chip->device_id)
8436 			continue;
8437 		if (revision > chip->revision_id)
8438 			continue;
8439 		return chip;
8440 	}
8441 
8442 	return NULL;
8443 }
8444 
8445 /*
8446  *  Tell upper layer if the chip is supported.
8447  */
8448 static int
8449 sym_pci_probe(device_t dev)
8450 {
8451 	const struct	sym_pci_chip *chip;
8452 
8453 	chip = sym_find_pci_chip(dev);
8454 	if (chip && sym_find_firmware(chip)) {
8455 		device_set_desc(dev, chip->name);
8456 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8457 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8458 	}
8459 	return ENXIO;
8460 }
8461 
8462 /*
8463  *  Attach a sym53c8xx device.
8464  */
8465 static int
8466 sym_pci_attach(device_t dev)
8467 {
8468 	const struct	sym_pci_chip *chip;
8469 	u_short	command;
8470 	u_char	cachelnsz;
8471 	struct	sym_hcb *np = NULL;
8472 	struct	sym_nvram nvram;
8473 	const struct	sym_fw *fw = NULL;
8474 	int 	i;
8475 	bus_dma_tag_t	bus_dmat;
8476 
8477 	bus_dmat = bus_get_dma_tag(dev);
8478 
8479 	/*
8480 	 *  Only probed devices should be attached.
8481 	 *  We just enjoy being paranoid. :)
8482 	 */
8483 	chip = sym_find_pci_chip(dev);
8484 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8485 		return (ENXIO);
8486 
8487 	/*
8488 	 *  Allocate immediately the host control block,
8489 	 *  since we are only expecting to succeed. :)
8490 	 *  We keep track in the HCB of all the resources that
8491 	 *  are to be released on error.
8492 	 */
8493 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8494 	if (np)
8495 		np->bus_dmat = bus_dmat;
8496 	else
8497 		return (ENXIO);
8498 	device_set_softc(dev, np);
8499 
8500 	SYM_LOCK_INIT();
8501 
8502 	/*
8503 	 *  Copy some useful infos to the HCB.
8504 	 */
8505 	np->hcb_ba	 = vtobus(np);
8506 	np->verbose	 = bootverbose;
8507 	np->device	 = dev;
8508 	np->device_id	 = pci_get_device(dev);
8509 	np->revision_id  = pci_get_revid(dev);
8510 	np->features	 = chip->features;
8511 	np->clock_divn	 = chip->nr_divisor;
8512 	np->maxoffs	 = chip->offset_max;
8513 	np->maxburst	 = chip->burst_max;
8514 	np->scripta_sz	 = fw->a_size;
8515 	np->scriptb_sz	 = fw->b_size;
8516 	np->fw_setup	 = fw->setup;
8517 	np->fw_patch	 = fw->patch;
8518 	np->fw_name	 = fw->name;
8519 
8520 #ifdef __amd64__
8521 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8522 			"TARGET");
8523 	if (!np->target)
8524 		goto attach_failed;
8525 #endif
8526 
8527 	/*
8528 	 *  Initialize the CCB free and busy queues.
8529 	 */
8530 	sym_que_init(&np->free_ccbq);
8531 	sym_que_init(&np->busy_ccbq);
8532 	sym_que_init(&np->comp_ccbq);
8533 	sym_que_init(&np->cam_ccbq);
8534 
8535 	/*
8536 	 *  Allocate a tag for the DMA of user data.
8537 	 */
8538 	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8539 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8540 	    BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8541 	    BUS_DMA_ALLOCNOW, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8542 		device_printf(dev, "failed to create DMA tag.\n");
8543 		goto attach_failed;
8544 	}
8545 
8546 	/*
8547 	 *  Read and apply some fix-ups to the PCI COMMAND
8548 	 *  register. We want the chip to be enabled for:
8549 	 *  - BUS mastering
8550 	 *  - PCI parity checking (reporting would also be fine)
8551 	 *  - Write And Invalidate.
8552 	 */
8553 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8554 	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8555 	    PCIM_CMD_MWRICEN;
8556 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8557 
8558 	/*
8559 	 *  Let the device know about the cache line size,
8560 	 *  if it doesn't yet.
8561 	 */
8562 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8563 	if (!cachelnsz) {
8564 		cachelnsz = 8;
8565 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8566 	}
8567 
8568 	/*
8569 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8570 	 */
8571 	if ((command & PCIM_CMD_MEMEN) != 0) {
8572 		int regs_id = SYM_PCI_MMIO;
8573 		np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8574 						      &regs_id, RF_ACTIVE);
8575 	}
8576 	if (!np->mmio_res) {
8577 		device_printf(dev, "failed to allocate MMIO resources\n");
8578 		goto attach_failed;
8579 	}
8580 	np->mmio_ba = rman_get_start(np->mmio_res);
8581 
8582 	/*
8583 	 *  Allocate the IRQ.
8584 	 */
8585 	i = 0;
8586 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8587 					     RF_ACTIVE | RF_SHAREABLE);
8588 	if (!np->irq_res) {
8589 		device_printf(dev, "failed to allocate IRQ resource\n");
8590 		goto attach_failed;
8591 	}
8592 
8593 #ifdef	SYM_CONF_IOMAPPED
8594 	/*
8595 	 *  User want us to use normal IO with PCI.
8596 	 *  Alloc/get/map/retrieve everything that deals with IO.
8597 	 */
8598 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
8599 		int regs_id = SYM_PCI_IO;
8600 		np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
8601 						    &regs_id, RF_ACTIVE);
8602 	}
8603 	if (!np->io_res) {
8604 		device_printf(dev, "failed to allocate IO resources\n");
8605 		goto attach_failed;
8606 	}
8607 
8608 #endif /* SYM_CONF_IOMAPPED */
8609 
8610 	/*
8611 	 *  If the chip has RAM.
8612 	 *  Alloc/get/map/retrieve the corresponding resources.
8613 	 */
8614 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
8615 	    (command & PCIM_CMD_MEMEN) != 0) {
8616 		int regs_id = SYM_PCI_RAM;
8617 		if (np->features & FE_64BIT)
8618 			regs_id = SYM_PCI_RAM64;
8619 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8620 						     &regs_id, RF_ACTIVE);
8621 		if (!np->ram_res) {
8622 			device_printf(dev,"failed to allocate RAM resources\n");
8623 			goto attach_failed;
8624 		}
8625 		np->ram_id  = regs_id;
8626 		np->ram_ba = rman_get_start(np->ram_res);
8627 	}
8628 
8629 	/*
8630 	 *  Save setting of some IO registers, so we will
8631 	 *  be able to probe specific implementations.
8632 	 */
8633 	sym_save_initial_setting (np);
8634 
8635 	/*
8636 	 *  Reset the chip now, since it has been reported
8637 	 *  that SCSI clock calibration may not work properly
8638 	 *  if the chip is currently active.
8639 	 */
8640 	sym_chip_reset (np);
8641 
8642 	/*
8643 	 *  Try to read the user set-up.
8644 	 */
8645 	(void) sym_read_nvram(np, &nvram);
8646 
8647 	/*
8648 	 *  Prepare controller and devices settings, according
8649 	 *  to chip features, user set-up and driver set-up.
8650 	 */
8651 	(void) sym_prepare_setting(np, &nvram);
8652 
8653 	/*
8654 	 *  Check the PCI clock frequency.
8655 	 *  Must be performed after prepare_setting since it destroys
8656 	 *  STEST1 that is used to probe for the clock doubler.
8657 	 */
8658 	i = sym_getpciclock(np);
8659 	if (i > 37000)
8660 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8661 
8662 	/*
8663 	 *  Allocate the start queue.
8664 	 */
8665 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8666 	if (!np->squeue)
8667 		goto attach_failed;
8668 	np->squeue_ba = vtobus(np->squeue);
8669 
8670 	/*
8671 	 *  Allocate the done queue.
8672 	 */
8673 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8674 	if (!np->dqueue)
8675 		goto attach_failed;
8676 	np->dqueue_ba = vtobus(np->dqueue);
8677 
8678 	/*
8679 	 *  Allocate the target bus address array.
8680 	 */
8681 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8682 	if (!np->targtbl)
8683 		goto attach_failed;
8684 	np->targtbl_ba = vtobus(np->targtbl);
8685 
8686 	/*
8687 	 *  Allocate SCRIPTS areas.
8688 	 */
8689 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8690 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8691 	if (!np->scripta0 || !np->scriptb0)
8692 		goto attach_failed;
8693 
8694 	/*
8695 	 *  Allocate the CCBs. We need at least ONE.
8696 	 */
8697 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8698 		;
8699 	if (i < 1)
8700 		goto attach_failed;
8701 
8702 	/*
8703 	 *  Calculate BUS addresses where we are going
8704 	 *  to load the SCRIPTS.
8705 	 */
8706 	np->scripta_ba	= vtobus(np->scripta0);
8707 	np->scriptb_ba	= vtobus(np->scriptb0);
8708 	np->scriptb0_ba	= np->scriptb_ba;
8709 
8710 	if (np->ram_ba) {
8711 		np->scripta_ba	= np->ram_ba;
8712 		if (np->features & FE_RAM8K) {
8713 			np->ram_ws = 8192;
8714 			np->scriptb_ba = np->scripta_ba + 4096;
8715 #ifdef __LP64__
8716 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8717 #endif
8718 		}
8719 		else
8720 			np->ram_ws = 4096;
8721 	}
8722 
8723 	/*
8724 	 *  Copy scripts to controller instance.
8725 	 */
8726 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8727 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8728 
8729 	/*
8730 	 *  Setup variable parts in scripts and compute
8731 	 *  scripts bus addresses used from the C code.
8732 	 */
8733 	np->fw_setup(np, fw);
8734 
8735 	/*
8736 	 *  Bind SCRIPTS with physical addresses usable by the
8737 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8738 	 */
8739 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8740 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8741 
8742 #ifdef SYM_CONF_IARB_SUPPORT
8743 	/*
8744 	 *    If user wants IARB to be set when we win arbitration
8745 	 *    and have other jobs, compute the max number of consecutive
8746 	 *    settings of IARB hints before we leave devices a chance to
8747 	 *    arbitrate for reselection.
8748 	 */
8749 #ifdef	SYM_SETUP_IARB_MAX
8750 	np->iarb_max = SYM_SETUP_IARB_MAX;
8751 #else
8752 	np->iarb_max = 4;
8753 #endif
8754 #endif
8755 
8756 	/*
8757 	 *  Prepare the idle and invalid task actions.
8758 	 */
8759 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8760 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8761 	np->idletask_ba		= vtobus(&np->idletask);
8762 
8763 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8764 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8765 	np->notask_ba		= vtobus(&np->notask);
8766 
8767 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8768 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8769 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8770 
8771 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8772 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8773 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8774 
8775 	/*
8776 	 *  Allocate and prepare the lun JUMP table that is used
8777 	 *  for a target prior the probing of devices (bad lun table).
8778 	 *  A private table will be allocated for the target on the
8779 	 *  first INQUIRY response received.
8780 	 */
8781 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8782 	if (!np->badluntbl)
8783 		goto attach_failed;
8784 
8785 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8786 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8787 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8788 
8789 	/*
8790 	 *  Prepare the bus address array that contains the bus
8791 	 *  address of each target control block.
8792 	 *  For now, assume all logical units are wrong. :)
8793 	 */
8794 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8795 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8796 		np->target[i].head.luntbl_sa =
8797 				cpu_to_scr(vtobus(np->badluntbl));
8798 		np->target[i].head.lun0_sa =
8799 				cpu_to_scr(vtobus(&np->badlun_sa));
8800 	}
8801 
8802 	/*
8803 	 *  Now check the cache handling of the pci chipset.
8804 	 */
8805 	if (sym_snooptest (np)) {
8806 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8807 		goto attach_failed;
8808 	};
8809 
8810 	/*
8811 	 *  Now deal with CAM.
8812 	 *  Hopefully, we will succeed with that one.:)
8813 	 */
8814 	if (!sym_cam_attach(np))
8815 		goto attach_failed;
8816 
8817 	/*
8818 	 *  Sigh! we are done.
8819 	 */
8820 	return 0;
8821 
8822 	/*
8823 	 *  We have failed.
8824 	 *  We will try to free all the resources we have
8825 	 *  allocated, but if we are a boot device, this
8826 	 *  will not help that much.;)
8827 	 */
8828 attach_failed:
8829 	if (np)
8830 		sym_pci_free(np);
8831 	return ENXIO;
8832 }
8833 
8834 /*
8835  *  Free everything that have been allocated for this device.
8836  */
8837 static void sym_pci_free(hcb_p np)
8838 {
8839 	SYM_QUEHEAD *qp;
8840 	ccb_p cp;
8841 	tcb_p tp;
8842 	lcb_p lp;
8843 	int target, lun;
8844 
8845 	/*
8846 	 *  First free CAM resources.
8847 	 */
8848 	sym_cam_free(np);
8849 
8850 	/*
8851 	 *  Now every should be quiet for us to
8852 	 *  free other resources.
8853 	 */
8854 	if (np->ram_res)
8855 		bus_release_resource(np->device, SYS_RES_MEMORY,
8856 				     np->ram_id, np->ram_res);
8857 	if (np->mmio_res)
8858 		bus_release_resource(np->device, SYS_RES_MEMORY,
8859 				     SYM_PCI_MMIO, np->mmio_res);
8860 	if (np->io_res)
8861 		bus_release_resource(np->device, SYS_RES_IOPORT,
8862 				     SYM_PCI_IO, np->io_res);
8863 	if (np->irq_res)
8864 		bus_release_resource(np->device, SYS_RES_IRQ,
8865 				     0, np->irq_res);
8866 
8867 	if (np->scriptb0)
8868 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8869 	if (np->scripta0)
8870 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8871 	if (np->squeue)
8872 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8873 	if (np->dqueue)
8874 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8875 
8876 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8877 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8878 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8879 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8880 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8881 	}
8882 
8883 	if (np->badluntbl)
8884 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8885 
8886 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8887 		tp = &np->target[target];
8888 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8889 			lp = sym_lp(np, tp, lun);
8890 			if (!lp)
8891 				continue;
8892 			if (lp->itlq_tbl)
8893 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8894 				       "ITLQ_TBL");
8895 			if (lp->cb_tags)
8896 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8897 				       "CB_TAGS");
8898 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8899 		}
8900 #if SYM_CONF_MAX_LUN > 1
8901 		if (tp->lunmp)
8902 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8903 			       "LUNMP");
8904 #endif
8905 	}
8906 #ifdef __amd64__
8907 	if (np->target)
8908 		sym_mfree_dma(np->target,
8909 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8910 #endif
8911 	if (np->targtbl)
8912 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8913 	if (np->data_dmat)
8914 		bus_dma_tag_destroy(np->data_dmat);
8915 	if (SYM_LOCK_INITIALIZED() != 0)
8916 		SYM_LOCK_DESTROY();
8917 	device_set_softc(np->device, NULL);
8918 	sym_mfree_dma(np, sizeof(*np), "HCB");
8919 }
8920 
8921 /*
8922  *  Allocate CAM resources and register a bus to CAM.
8923  */
8924 static int sym_cam_attach(hcb_p np)
8925 {
8926 	struct cam_devq *devq = NULL;
8927 	struct cam_sim *sim = NULL;
8928 	struct cam_path *path = NULL;
8929 	int err;
8930 
8931 	/*
8932 	 *  Establish our interrupt handler.
8933 	 */
8934 	err = bus_setup_intr(np->device, np->irq_res,
8935 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8936 			NULL, sym_intr, np, &np->intr);
8937 	if (err) {
8938 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8939 			      err);
8940 		goto fail;
8941 	}
8942 
8943 	/*
8944 	 *  Create the device queue for our sym SIM.
8945 	 */
8946 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8947 	if (!devq)
8948 		goto fail;
8949 
8950 	/*
8951 	 *  Construct our SIM entry.
8952 	 */
8953 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8954 			device_get_unit(np->device),
8955 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8956 	if (!sim)
8957 		goto fail;
8958 
8959 	SYM_LOCK();
8960 
8961 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8962 		goto fail;
8963 	np->sim = sim;
8964 
8965 	if (xpt_create_path(&path, 0,
8966 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8967 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8968 		goto fail;
8969 	}
8970 	np->path = path;
8971 
8972 	/*
8973 	 *  Establish our async notification handler.
8974 	 */
8975 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) !=
8976 	    CAM_REQ_CMP)
8977 		goto fail;
8978 
8979 	/*
8980 	 *  Start the chip now, without resetting the BUS, since
8981 	 *  it seems that this must stay under control of CAM.
8982 	 *  With LVD/SE capable chips and BUS in SE mode, we may
8983 	 *  get a spurious SMBC interrupt.
8984 	 */
8985 	sym_init (np, 0);
8986 
8987 	SYM_UNLOCK();
8988 
8989 	return 1;
8990 fail:
8991 	if (sim)
8992 		cam_sim_free(sim, FALSE);
8993 	if (devq)
8994 		cam_simq_free(devq);
8995 
8996 	SYM_UNLOCK();
8997 
8998 	sym_cam_free(np);
8999 
9000 	return 0;
9001 }
9002 
9003 /*
9004  *  Free everything that deals with CAM.
9005  */
9006 static void sym_cam_free(hcb_p np)
9007 {
9008 	SYM_LOCK_ASSERT(MA_NOTOWNED);
9009 
9010 	if (np->intr) {
9011 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9012 		np->intr = NULL;
9013 	}
9014 
9015 	SYM_LOCK();
9016 
9017 	if (np->sim) {
9018 		xpt_bus_deregister(cam_sim_path(np->sim));
9019 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
9020 		np->sim = NULL;
9021 	}
9022 	if (np->path) {
9023 		xpt_free_path(np->path);
9024 		np->path = NULL;
9025 	}
9026 
9027 	SYM_UNLOCK();
9028 }
9029 
9030 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9031 
9032 /*
9033  *  Get host setup from NVRAM.
9034  */
9035 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9036 {
9037 #ifdef SYM_CONF_NVRAM_SUPPORT
9038 	/*
9039 	 *  Get parity checking, host ID, verbose mode
9040 	 *  and miscellaneous host flags from NVRAM.
9041 	 */
9042 	switch(nvram->type) {
9043 	case SYM_SYMBIOS_NVRAM:
9044 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9045 			np->rv_scntl0  &= ~0x0a;
9046 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9047 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9048 			np->verbose += 1;
9049 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9050 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9051 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9052 			np->usrflags |= SYM_AVOID_BUS_RESET;
9053 		break;
9054 	case SYM_TEKRAM_NVRAM:
9055 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9056 		break;
9057 	default:
9058 		break;
9059 	}
9060 #endif
9061 }
9062 
9063 /*
9064  *  Get target setup from NVRAM.
9065  */
9066 #ifdef SYM_CONF_NVRAM_SUPPORT
9067 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9068 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9069 #endif
9070 
9071 static void
9072 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9073 {
9074 #ifdef SYM_CONF_NVRAM_SUPPORT
9075 	switch(nvp->type) {
9076 	case SYM_SYMBIOS_NVRAM:
9077 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9078 		break;
9079 	case SYM_TEKRAM_NVRAM:
9080 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9081 		break;
9082 	default:
9083 		break;
9084 	}
9085 #endif
9086 }
9087 
9088 #ifdef SYM_CONF_NVRAM_SUPPORT
9089 /*
9090  *  Get target set-up from Symbios format NVRAM.
9091  */
9092 static void
9093 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9094 {
9095 	tcb_p tp = &np->target[target];
9096 	Symbios_target *tn = &nvram->target[target];
9097 
9098 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9099 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9100 	tp->usrtags =
9101 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9102 
9103 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9104 		tp->usrflags &= ~SYM_DISC_ENABLED;
9105 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9106 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9107 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9108 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9109 }
9110 
9111 /*
9112  *  Get target set-up from Tekram format NVRAM.
9113  */
9114 static void
9115 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9116 {
9117 	tcb_p tp = &np->target[target];
9118 	struct Tekram_target *tn = &nvram->target[target];
9119 	int i;
9120 
9121 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9122 		i = tn->sync_index & 0xf;
9123 		tp->tinfo.user.period = Tekram_sync[i];
9124 	}
9125 
9126 	tp->tinfo.user.width =
9127 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9128 
9129 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9130 		tp->usrtags = 2 << nvram->max_tags_index;
9131 	}
9132 
9133 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9134 		tp->usrflags |= SYM_DISC_ENABLED;
9135 
9136 	/* If any device does not support parity, we will not use this option */
9137 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9138 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9139 }
9140 
9141 #ifdef	SYM_CONF_DEBUG_NVRAM
9142 /*
9143  *  Dump Symbios format NVRAM for debugging purpose.
9144  */
9145 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9146 {
9147 	int i;
9148 
9149 	/* display Symbios nvram host data */
9150 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9151 		sym_name(np), nvram->host_id & 0x0f,
9152 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9153 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9154 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9155 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9156 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9157 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9158 
9159 	/* display Symbios nvram drive data */
9160 	for (i = 0 ; i < 15 ; i++) {
9161 		struct Symbios_target *tn = &nvram->target[i];
9162 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9163 		sym_name(np), i,
9164 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9165 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9166 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9167 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9168 		tn->bus_width,
9169 		tn->sync_period / 4,
9170 		tn->timeout);
9171 	}
9172 }
9173 
9174 /*
9175  *  Dump TEKRAM format NVRAM for debugging purpose.
9176  */
9177 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9178 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9179 {
9180 	int i, tags, boot_delay;
9181 	char *rem;
9182 
9183 	/* display Tekram nvram host data */
9184 	tags = 2 << nvram->max_tags_index;
9185 	boot_delay = 0;
9186 	if (nvram->boot_delay_index < 6)
9187 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9188 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9189 	default:
9190 	case 0:	rem = "";			break;
9191 	case 1: rem = " REMOVABLE=boot device";	break;
9192 	case 2: rem = " REMOVABLE=all";		break;
9193 	}
9194 
9195 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9196 		sym_name(np), nvram->host_id & 0x0f,
9197 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9198 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9199 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9200 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9201 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9202 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9203 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9204 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9205 		rem, boot_delay, tags);
9206 
9207 	/* display Tekram nvram drive data */
9208 	for (i = 0; i <= 15; i++) {
9209 		int sync, j;
9210 		struct Tekram_target *tn = &nvram->target[i];
9211 		j = tn->sync_index & 0xf;
9212 		sync = Tekram_sync[j];
9213 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9214 		sym_name(np), i,
9215 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9216 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9217 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9218 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9219 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9220 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9221 		sync);
9222 	}
9223 }
9224 #endif	/* SYM_CONF_DEBUG_NVRAM */
9225 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9226 
9227 /*
9228  *  Try reading Symbios or Tekram NVRAM
9229  */
9230 #ifdef SYM_CONF_NVRAM_SUPPORT
9231 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9232 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9233 #endif
9234 
9235 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9236 {
9237 #ifdef SYM_CONF_NVRAM_SUPPORT
9238 	/*
9239 	 *  Try to read SYMBIOS nvram.
9240 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9241 	 */
9242 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9243 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9244 		nvp->type = SYM_SYMBIOS_NVRAM;
9245 #ifdef SYM_CONF_DEBUG_NVRAM
9246 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9247 #endif
9248 	}
9249 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9250 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9251 		nvp->type = SYM_TEKRAM_NVRAM;
9252 #ifdef SYM_CONF_DEBUG_NVRAM
9253 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9254 #endif
9255 	}
9256 	else
9257 		nvp->type = 0;
9258 #else
9259 	nvp->type = 0;
9260 #endif
9261 	return nvp->type;
9262 }
9263 
9264 #ifdef SYM_CONF_NVRAM_SUPPORT
9265 /*
9266  *  24C16 EEPROM reading.
9267  *
9268  *  GPOI0 - data in/data out
9269  *  GPIO1 - clock
9270  *  Symbios NVRAM wiring now also used by Tekram.
9271  */
9272 
9273 #define SET_BIT 0
9274 #define CLR_BIT 1
9275 #define SET_CLK 2
9276 #define CLR_CLK 3
9277 
9278 /*
9279  *  Set/clear data/clock bit in GPIO0
9280  */
9281 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9282 			  int bit_mode)
9283 {
9284 	UDELAY (5);
9285 	switch (bit_mode){
9286 	case SET_BIT:
9287 		*gpreg |= write_bit;
9288 		break;
9289 	case CLR_BIT:
9290 		*gpreg &= 0xfe;
9291 		break;
9292 	case SET_CLK:
9293 		*gpreg |= 0x02;
9294 		break;
9295 	case CLR_CLK:
9296 		*gpreg &= 0xfd;
9297 		break;
9298 
9299 	}
9300 	OUTB (nc_gpreg, *gpreg);
9301 	UDELAY (5);
9302 }
9303 
9304 /*
9305  *  Send START condition to NVRAM to wake it up.
9306  */
9307 static void S24C16_start(hcb_p np, u_char *gpreg)
9308 {
9309 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9310 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9311 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9312 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9313 }
9314 
9315 /*
9316  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9317  */
9318 static void S24C16_stop(hcb_p np, u_char *gpreg)
9319 {
9320 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9321 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9322 }
9323 
9324 /*
9325  *  Read or write a bit to the NVRAM,
9326  *  read if GPIO0 input else write if GPIO0 output
9327  */
9328 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9329 			 u_char *gpreg)
9330 {
9331 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9332 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9333 	if (read_bit)
9334 		*read_bit = INB (nc_gpreg);
9335 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9336 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9337 }
9338 
9339 /*
9340  *  Output an ACK to the NVRAM after reading,
9341  *  change GPIO0 to output and when done back to an input
9342  */
9343 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9344 			    u_char *gpcntl)
9345 {
9346 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9347 	S24C16_do_bit(np, 0, write_bit, gpreg);
9348 	OUTB (nc_gpcntl, *gpcntl);
9349 }
9350 
9351 /*
9352  *  Input an ACK from NVRAM after writing,
9353  *  change GPIO0 to input and when done back to an output
9354  */
9355 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9356 			   u_char *gpcntl)
9357 {
9358 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9359 	S24C16_do_bit(np, read_bit, 1, gpreg);
9360 	OUTB (nc_gpcntl, *gpcntl);
9361 }
9362 
9363 /*
9364  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9365  *  GPIO0 must already be set as an output
9366  */
9367 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9368 			     u_char *gpreg, u_char *gpcntl)
9369 {
9370 	int x;
9371 
9372 	for (x = 0; x < 8; x++)
9373 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9374 
9375 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9376 }
9377 
9378 /*
9379  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9380  *  GPIO0 must already be set as an input
9381  */
9382 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9383 			    u_char *gpreg, u_char *gpcntl)
9384 {
9385 	int x;
9386 	u_char read_bit;
9387 
9388 	*read_data = 0;
9389 	for (x = 0; x < 8; x++) {
9390 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9391 		*read_data |= ((read_bit & 0x01) << (7 - x));
9392 	}
9393 
9394 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9395 }
9396 
9397 /*
9398  *  Read 'len' bytes starting at 'offset'.
9399  */
9400 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9401 {
9402 	u_char	gpcntl, gpreg;
9403 	u_char	old_gpcntl, old_gpreg;
9404 	u_char	ack_data;
9405 	int	retv = 1;
9406 	int	x;
9407 
9408 	/* save current state of GPCNTL and GPREG */
9409 	old_gpreg	= INB (nc_gpreg);
9410 	old_gpcntl	= INB (nc_gpcntl);
9411 	gpcntl		= old_gpcntl & 0x1c;
9412 
9413 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9414 	OUTB (nc_gpreg,  old_gpreg);
9415 	OUTB (nc_gpcntl, gpcntl);
9416 
9417 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9418 	gpreg = old_gpreg;
9419 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9420 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9421 
9422 	/* now set NVRAM inactive with GPIO0/1 both high */
9423 	S24C16_stop(np, &gpreg);
9424 
9425 	/* activate NVRAM */
9426 	S24C16_start(np, &gpreg);
9427 
9428 	/* write device code and random address MSB */
9429 	S24C16_write_byte(np, &ack_data,
9430 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9431 	if (ack_data & 0x01)
9432 		goto out;
9433 
9434 	/* write random address LSB */
9435 	S24C16_write_byte(np, &ack_data,
9436 		offset & 0xff, &gpreg, &gpcntl);
9437 	if (ack_data & 0x01)
9438 		goto out;
9439 
9440 	/* regenerate START state to set up for reading */
9441 	S24C16_start(np, &gpreg);
9442 
9443 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9444 	S24C16_write_byte(np, &ack_data,
9445 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9446 	if (ack_data & 0x01)
9447 		goto out;
9448 
9449 	/* now set up GPIO0 for inputting data */
9450 	gpcntl |= 0x01;
9451 	OUTB (nc_gpcntl, gpcntl);
9452 
9453 	/* input all requested data - only part of total NVRAM */
9454 	for (x = 0; x < len; x++)
9455 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9456 
9457 	/* finally put NVRAM back in inactive mode */
9458 	gpcntl &= 0xfe;
9459 	OUTB (nc_gpcntl, gpcntl);
9460 	S24C16_stop(np, &gpreg);
9461 	retv = 0;
9462 out:
9463 	/* return GPIO0/1 to original states after having accessed NVRAM */
9464 	OUTB (nc_gpcntl, old_gpcntl);
9465 	OUTB (nc_gpreg,  old_gpreg);
9466 
9467 	return retv;
9468 }
9469 
9470 #undef SET_BIT /* 0 */
9471 #undef CLR_BIT /* 1 */
9472 #undef SET_CLK /* 2 */
9473 #undef CLR_CLK /* 3 */
9474 
9475 /*
9476  *  Try reading Symbios NVRAM.
9477  *  Return 0 if OK.
9478  */
9479 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9480 {
9481 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9482 	u_char *data = (u_char *) nvram;
9483 	int len  = sizeof(*nvram);
9484 	u_short	csum;
9485 	int x;
9486 
9487 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9488 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9489 		return 1;
9490 
9491 	/* check valid NVRAM signature, verify byte count and checksum */
9492 	if (nvram->type != 0 ||
9493 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9494 	    nvram->byte_count != len - 12)
9495 		return 1;
9496 
9497 	/* verify checksum */
9498 	for (x = 6, csum = 0; x < len - 6; x++)
9499 		csum += data[x];
9500 	if (csum != nvram->checksum)
9501 		return 1;
9502 
9503 	return 0;
9504 }
9505 
9506 /*
9507  *  93C46 EEPROM reading.
9508  *
9509  *  GPOI0 - data in
9510  *  GPIO1 - data out
9511  *  GPIO2 - clock
9512  *  GPIO4 - chip select
9513  *
9514  *  Used by Tekram.
9515  */
9516 
9517 /*
9518  *  Pulse clock bit in GPIO0
9519  */
9520 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9521 {
9522 	OUTB (nc_gpreg, *gpreg | 0x04);
9523 	UDELAY (2);
9524 	OUTB (nc_gpreg, *gpreg);
9525 }
9526 
9527 /*
9528  *  Read bit from NVRAM
9529  */
9530 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9531 {
9532 	UDELAY (2);
9533 	T93C46_Clk(np, gpreg);
9534 	*read_bit = INB (nc_gpreg);
9535 }
9536 
9537 /*
9538  *  Write bit to GPIO0
9539  */
9540 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9541 {
9542 	if (write_bit & 0x01)
9543 		*gpreg |= 0x02;
9544 	else
9545 		*gpreg &= 0xfd;
9546 
9547 	*gpreg |= 0x10;
9548 
9549 	OUTB (nc_gpreg, *gpreg);
9550 	UDELAY (2);
9551 
9552 	T93C46_Clk(np, gpreg);
9553 }
9554 
9555 /*
9556  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9557  */
9558 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9559 {
9560 	*gpreg &= 0xef;
9561 	OUTB (nc_gpreg, *gpreg);
9562 	UDELAY (2);
9563 
9564 	T93C46_Clk(np, gpreg);
9565 }
9566 
9567 /*
9568  *  Send read command and address to NVRAM
9569  */
9570 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9571 				u_char *read_bit, u_char *gpreg)
9572 {
9573 	int x;
9574 
9575 	/* send 9 bits, start bit (1), command (2), address (6)  */
9576 	for (x = 0; x < 9; x++)
9577 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9578 
9579 	*read_bit = INB (nc_gpreg);
9580 }
9581 
9582 /*
9583  *  READ 2 bytes from the NVRAM
9584  */
9585 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9586 {
9587 	int x;
9588 	u_char read_bit;
9589 
9590 	*nvram_data = 0;
9591 	for (x = 0; x < 16; x++) {
9592 		T93C46_Read_Bit(np, &read_bit, gpreg);
9593 
9594 		if (read_bit & 0x01)
9595 			*nvram_data |=  (0x01 << (15 - x));
9596 		else
9597 			*nvram_data &= ~(0x01 << (15 - x));
9598 	}
9599 }
9600 
9601 /*
9602  *  Read Tekram NvRAM data.
9603  */
9604 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9605 {
9606 	u_char	read_bit;
9607 	int	x;
9608 
9609 	for (x = 0; x < len; x++)  {
9610 
9611 		/* output read command and address */
9612 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9613 		if (read_bit & 0x01)
9614 			return 1; /* Bad */
9615 		T93C46_Read_Word(np, &data[x], gpreg);
9616 		T93C46_Stop(np, gpreg);
9617 	}
9618 
9619 	return 0;
9620 }
9621 
9622 /*
9623  *  Try reading 93C46 Tekram NVRAM.
9624  */
9625 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9626 {
9627 	u_char gpcntl, gpreg;
9628 	u_char old_gpcntl, old_gpreg;
9629 	int retv = 1;
9630 
9631 	/* save current state of GPCNTL and GPREG */
9632 	old_gpreg	= INB (nc_gpreg);
9633 	old_gpcntl	= INB (nc_gpcntl);
9634 
9635 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9636 	   1/2/4 out */
9637 	gpreg = old_gpreg & 0xe9;
9638 	OUTB (nc_gpreg, gpreg);
9639 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9640 	OUTB (nc_gpcntl, gpcntl);
9641 
9642 	/* input all of NVRAM, 64 words */
9643 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9644 				sizeof(*nvram) / sizeof(short), &gpreg);
9645 
9646 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9647 	OUTB (nc_gpcntl, old_gpcntl);
9648 	OUTB (nc_gpreg,  old_gpreg);
9649 
9650 	return retv;
9651 }
9652 
9653 /*
9654  *  Try reading Tekram NVRAM.
9655  *  Return 0 if OK.
9656  */
9657 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9658 {
9659 	u_char *data = (u_char *) nvram;
9660 	int len = sizeof(*nvram);
9661 	u_short	csum;
9662 	int x;
9663 
9664 	switch (np->device_id) {
9665 	case PCI_ID_SYM53C885:
9666 	case PCI_ID_SYM53C895:
9667 	case PCI_ID_SYM53C896:
9668 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9669 					  data, len);
9670 		break;
9671 	case PCI_ID_SYM53C875:
9672 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9673 					  data, len);
9674 		if (!x)
9675 			break;
9676 	default:
9677 		x = sym_read_T93C46_nvram(np, nvram);
9678 		break;
9679 	}
9680 	if (x)
9681 		return 1;
9682 
9683 	/* verify checksum */
9684 	for (x = 0, csum = 0; x < len - 1; x += 2)
9685 		csum += data[x] + (data[x+1] << 8);
9686 	if (csum != 0x1234)
9687 		return 1;
9688 
9689 	return 0;
9690 }
9691 
9692 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9693