xref: /freebsd/sys/dev/sym/sym_hipd.c (revision 488ab515d6cc02f6f743f0badfc8e94eb553cd30)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5  *  PCI-SCSI controllers.
6  *
7  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
8  *
9  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
10  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
12  *
13  *
14  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15  *  Copyright (C) 1998-1999  Gerard Roudier
16  *
17  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
19  *
20  *  The original ncr driver has been written for 386bsd and FreeBSD by
21  *          Wolfgang Stanglmeier        <wolf@cologne.de>
22  *          Stefan Esser                <se@mi.Uni-Koeln.de>
23  *  Copyright (C) 1994  Wolfgang Stanglmeier
24  *
25  *  The initialisation code, and part of the code that addresses
26  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27  *  written by Justin T. Gibbs.
28  *
29  *  Other major contributions:
30  *
31  *  NVRAM detection and reading.
32  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33  *
34  *-----------------------------------------------------------------------------
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
64 
65 /* #define SYM_DEBUG_GENERIC_SUPPORT */
66 
67 #include <sys/param.h>
68 
69 /*
70  *  Driver configuration options.
71  */
72 #include "opt_sym.h"
73 #include <dev/sym/sym_conf.h>
74 
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mutex.h>
81 #include <sys/module.h>
82 #include <sys/bus.h>
83 
84 #include <sys/proc.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <machine/atomic.h>
92 
93 #ifdef __sparc64__
94 #include <dev/ofw/openfirm.h>
95 #include <machine/ofw_machdep.h>
96 #endif
97 
98 #include <sys/rman.h>
99 
100 #include <cam/cam.h>
101 #include <cam/cam_ccb.h>
102 #include <cam/cam_sim.h>
103 #include <cam/cam_xpt_sim.h>
104 #include <cam/cam_debug.h>
105 
106 #include <cam/scsi/scsi_all.h>
107 #include <cam/scsi/scsi_message.h>
108 
109 /* Short and quite clear integer types */
110 typedef int8_t    s8;
111 typedef int16_t   s16;
112 typedef	int32_t   s32;
113 typedef u_int8_t  u8;
114 typedef u_int16_t u16;
115 typedef	u_int32_t u32;
116 
117 /*
118  *  Driver definitions.
119  */
120 #include <dev/sym/sym_defs.h>
121 #include <dev/sym/sym_fw.h>
122 
123 /*
124  *  IA32 architecture does not reorder STORES and prevents
125  *  LOADS from passing STORES. It is called `program order'
126  *  by Intel and allows device drivers to deal with memory
127  *  ordering by only ensuring that the code is not reordered
128  *  by the compiler when ordering is required.
129  *  Other architectures implement a weaker ordering that
130  *  requires memory barriers (and also IO barriers when they
131  *  make sense) to be used.
132  */
133 #if	defined	__i386__ || defined __amd64__
134 #define MEMORY_BARRIER()	do { ; } while(0)
135 #elif	defined	__powerpc__
136 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
137 #elif	defined	__sparc64__
138 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
139 #elif	defined	__arm__
140 #define MEMORY_BARRIER()	dmb()
141 #elif	defined	__aarch64__
142 #define MEMORY_BARRIER()	dmb(sy)
143 #elif	defined __riscv
144 #define MEMORY_BARRIER()	fence()
145 #else
146 #error	"Not supported platform"
147 #endif
148 
149 /*
150  *  A la VMS/CAM-3 queue management.
151  */
152 typedef struct sym_quehead {
153 	struct sym_quehead *flink;	/* Forward  pointer */
154 	struct sym_quehead *blink;	/* Backward pointer */
155 } SYM_QUEHEAD;
156 
157 #define sym_que_init(ptr) do { \
158 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
159 } while (0)
160 
161 static __inline void __sym_que_add(struct sym_quehead * new,
162 	struct sym_quehead * blink,
163 	struct sym_quehead * flink)
164 {
165 	flink->blink	= new;
166 	new->flink	= flink;
167 	new->blink	= blink;
168 	blink->flink	= new;
169 }
170 
171 static __inline void __sym_que_del(struct sym_quehead * blink,
172 	struct sym_quehead * flink)
173 {
174 	flink->blink = blink;
175 	blink->flink = flink;
176 }
177 
178 static __inline int sym_que_empty(struct sym_quehead *head)
179 {
180 	return head->flink == head;
181 }
182 
183 static __inline void sym_que_splice(struct sym_quehead *list,
184 	struct sym_quehead *head)
185 {
186 	struct sym_quehead *first = list->flink;
187 
188 	if (first != list) {
189 		struct sym_quehead *last = list->blink;
190 		struct sym_quehead *at   = head->flink;
191 
192 		first->blink = head;
193 		head->flink  = first;
194 
195 		last->flink = at;
196 		at->blink   = last;
197 	}
198 }
199 
200 #define sym_que_entry(ptr, type, member) \
201 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
202 
203 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
204 
205 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
206 
207 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
208 
209 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
210 {
211 	struct sym_quehead *elem = head->flink;
212 
213 	if (elem != head)
214 		__sym_que_del(head, elem->flink);
215 	else
216 		elem = NULL;
217 	return elem;
218 }
219 
220 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
221 
222 /*
223  *  This one may be useful.
224  */
225 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
226 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
227 /*
228  *  FreeBSD does not offer our kind of queue in the CAM CCB.
229  *  So, we have to cast.
230  */
231 #define sym_qptr(p)	((struct sym_quehead *) (p))
232 
233 /*
234  *  Simple bitmap operations.
235  */
236 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
237 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
238 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
239 
240 /*
241  *  Number of tasks per device we want to handle.
242  */
243 #if	SYM_CONF_MAX_TAG_ORDER > 8
244 #error	"more than 256 tags per logical unit not allowed."
245 #endif
246 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
247 
248 /*
249  *  Donnot use more tasks that we can handle.
250  */
251 #ifndef	SYM_CONF_MAX_TAG
252 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
253 #endif
254 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
255 #undef	SYM_CONF_MAX_TAG
256 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
257 #endif
258 
259 /*
260  *    This one means 'NO TAG for this job'
261  */
262 #define NO_TAG	(256)
263 
264 /*
265  *  Number of SCSI targets.
266  */
267 #if	SYM_CONF_MAX_TARGET > 16
268 #error	"more than 16 targets not allowed."
269 #endif
270 
271 /*
272  *  Number of logical units per target.
273  */
274 #if	SYM_CONF_MAX_LUN > 64
275 #error	"more than 64 logical units per target not allowed."
276 #endif
277 
278 /*
279  *    Asynchronous pre-scaler (ns). Shall be 40 for
280  *    the SCSI timings to be compliant.
281  */
282 #define	SYM_CONF_MIN_ASYNC (40)
283 
284 /*
285  *  Number of entries in the START and DONE queues.
286  *
287  *  We limit to 1 PAGE in order to succeed allocation of
288  *  these queues. Each entry is 8 bytes long (2 DWORDS).
289  */
290 #ifdef	SYM_CONF_MAX_START
291 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
292 #else
293 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
294 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
295 #endif
296 
297 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
298 #undef	SYM_CONF_MAX_QUEUE
299 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
300 #undef	SYM_CONF_MAX_START
301 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
302 #endif
303 
304 /*
305  *  For this one, we want a short name :-)
306  */
307 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
308 
309 /*
310  *  Active debugging tags and verbosity.
311  */
312 #define DEBUG_ALLOC	(0x0001)
313 #define DEBUG_PHASE	(0x0002)
314 #define DEBUG_POLL	(0x0004)
315 #define DEBUG_QUEUE	(0x0008)
316 #define DEBUG_RESULT	(0x0010)
317 #define DEBUG_SCATTER	(0x0020)
318 #define DEBUG_SCRIPT	(0x0040)
319 #define DEBUG_TINY	(0x0080)
320 #define DEBUG_TIMING	(0x0100)
321 #define DEBUG_NEGO	(0x0200)
322 #define DEBUG_TAGS	(0x0400)
323 #define DEBUG_POINTER	(0x0800)
324 
325 #if 0
326 static int sym_debug = 0;
327 	#define DEBUG_FLAGS sym_debug
328 #else
329 /*	#define DEBUG_FLAGS (0x0631) */
330 	#define DEBUG_FLAGS (0x0000)
331 
332 #endif
333 #define sym_verbose	(np->verbose)
334 
335 /*
336  *  Insert a delay in micro-seconds and milli-seconds.
337  */
338 static void UDELAY(int us) { DELAY(us); }
339 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
340 
341 /*
342  *  Simple power of two buddy-like allocator.
343  *
344  *  This simple code is not intended to be fast, but to
345  *  provide power of 2 aligned memory allocations.
346  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
347  *  this allocator allows simple and fast address calculations
348  *  from the SCRIPTS code. In addition, cache line alignment
349  *  is guaranteed for power of 2 cache line size.
350  *
351  *  This allocator has been developed for the Linux sym53c8xx
352  *  driver, since this O/S does not provide naturally aligned
353  *  allocations.
354  *  It has the advantage of allowing the driver to use private
355  *  pages of memory that will be useful if we ever need to deal
356  *  with IO MMUs for PCI.
357  */
358 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
359 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
360 #if 0
361 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
362 #endif
363 #define MEMO_WARN	1
364 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
365 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
366 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
367 
368 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
369 #define free_pages(p)		free((p), M_DEVBUF)
370 
371 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
372 
373 typedef struct m_link {		/* Link between free memory chunks */
374 	struct m_link *next;
375 } m_link_s;
376 
377 typedef struct m_vtob {		/* Virtual to Bus address translation */
378 	struct m_vtob	*next;
379 	bus_dmamap_t	dmamap;	/* Map for this chunk */
380 	m_addr_t	vaddr;	/* Virtual address */
381 	m_addr_t	baddr;	/* Bus physical address */
382 } m_vtob_s;
383 /* Hash this stuff a bit to speed up translations */
384 #define VTOB_HASH_SHIFT		5
385 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
386 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
387 #define VTOB_HASH_CODE(m)	\
388 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
389 
390 typedef struct m_pool {		/* Memory pool of a given kind */
391 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
392 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
393 	m_addr_t (*getp)(struct m_pool *);
394 #ifdef	MEMO_FREE_UNUSED
395 	void (*freep)(struct m_pool *, m_addr_t);
396 #endif
397 #define M_GETP()		mp->getp(mp)
398 #define M_FREEP(p)		mp->freep(mp, p)
399 	int nump;
400 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
401 	struct m_pool *next;
402 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
403 } m_pool_s;
404 
405 static void *___sym_malloc(m_pool_s *mp, int size)
406 {
407 	int i = 0;
408 	int s = (1 << MEMO_SHIFT);
409 	int j;
410 	m_addr_t a;
411 	m_link_s *h = mp->h;
412 
413 	if (size > MEMO_CLUSTER_SIZE)
414 		return NULL;
415 
416 	while (size > s) {
417 		s <<= 1;
418 		++i;
419 	}
420 
421 	j = i;
422 	while (!h[j].next) {
423 		if (s == MEMO_CLUSTER_SIZE) {
424 			h[j].next = (m_link_s *) M_GETP();
425 			if (h[j].next)
426 				h[j].next->next = NULL;
427 			break;
428 		}
429 		++j;
430 		s <<= 1;
431 	}
432 	a = (m_addr_t) h[j].next;
433 	if (a) {
434 		h[j].next = h[j].next->next;
435 		while (j > i) {
436 			j -= 1;
437 			s >>= 1;
438 			h[j].next = (m_link_s *) (a+s);
439 			h[j].next->next = NULL;
440 		}
441 	}
442 #ifdef DEBUG
443 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
444 #endif
445 	return (void *) a;
446 }
447 
448 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
449 {
450 	int i = 0;
451 	int s = (1 << MEMO_SHIFT);
452 	m_link_s *q;
453 	m_addr_t a, b;
454 	m_link_s *h = mp->h;
455 
456 #ifdef DEBUG
457 	printf("___sym_mfree(%p, %d)\n", ptr, size);
458 #endif
459 
460 	if (size > MEMO_CLUSTER_SIZE)
461 		return;
462 
463 	while (size > s) {
464 		s <<= 1;
465 		++i;
466 	}
467 
468 	a = (m_addr_t) ptr;
469 
470 	while (1) {
471 #ifdef MEMO_FREE_UNUSED
472 		if (s == MEMO_CLUSTER_SIZE) {
473 			M_FREEP(a);
474 			break;
475 		}
476 #endif
477 		b = a ^ s;
478 		q = &h[i];
479 		while (q->next && q->next != (m_link_s *) b) {
480 			q = q->next;
481 		}
482 		if (!q->next) {
483 			((m_link_s *) a)->next = h[i].next;
484 			h[i].next = (m_link_s *) a;
485 			break;
486 		}
487 		q->next = q->next->next;
488 		a = a & b;
489 		s <<= 1;
490 		++i;
491 	}
492 }
493 
494 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
495 {
496 	void *p;
497 
498 	p = ___sym_malloc(mp, size);
499 
500 	if (DEBUG_FLAGS & DEBUG_ALLOC)
501 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
502 
503 	if (p)
504 		bzero(p, size);
505 	else if (uflags & MEMO_WARN)
506 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
507 
508 	return p;
509 }
510 
511 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
512 
513 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
514 {
515 	if (DEBUG_FLAGS & DEBUG_ALLOC)
516 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
517 
518 	___sym_mfree(mp, ptr, size);
519 
520 }
521 
522 /*
523  * Default memory pool we donnot need to involve in DMA.
524  */
525 /*
526  * With the `bus dma abstraction', we use a separate pool for
527  * memory we donnot need to involve in DMA.
528  */
529 static m_addr_t ___mp0_getp(m_pool_s *mp)
530 {
531 	m_addr_t m = (m_addr_t) get_pages();
532 	if (m)
533 		++mp->nump;
534 	return m;
535 }
536 
537 #ifdef	MEMO_FREE_UNUSED
538 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
539 {
540 	free_pages(m);
541 	--mp->nump;
542 }
543 #endif
544 
545 #ifdef	MEMO_FREE_UNUSED
546 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
547 #else
548 static m_pool_s mp0 = {0, 0, ___mp0_getp};
549 #endif
550 
551 /*
552  * Actual memory allocation routine for non-DMAed memory.
553  */
554 static void *sym_calloc(int size, char *name)
555 {
556 	void *m;
557 	/* Lock */
558 	m = __sym_calloc(&mp0, size, name);
559 	/* Unlock */
560 	return m;
561 }
562 
563 /*
564  * Actual memory allocation routine for non-DMAed memory.
565  */
566 static void sym_mfree(void *ptr, int size, char *name)
567 {
568 	/* Lock */
569 	__sym_mfree(&mp0, ptr, size, name);
570 	/* Unlock */
571 }
572 
573 /*
574  * DMAable pools.
575  */
576 /*
577  * With `bus dma abstraction', we use a separate pool per parent
578  * BUS handle. A reverse table (hashed) is maintained for virtual
579  * to BUS address translation.
580  */
581 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused,
582     int error)
583 {
584 	bus_addr_t *baddr;
585 
586 	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
587 
588 	baddr = (bus_addr_t *)arg;
589 	if (error)
590 		*baddr = 0;
591 	else
592 		*baddr = segs->ds_addr;
593 }
594 
595 static m_addr_t ___dma_getp(m_pool_s *mp)
596 {
597 	m_vtob_s *vbp;
598 	void *vaddr = NULL;
599 	bus_addr_t baddr = 0;
600 
601 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
602 	if (!vbp)
603 		goto out_err;
604 
605 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
606 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
607 		goto out_err;
608 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
609 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
610 	if (baddr) {
611 		int hc = VTOB_HASH_CODE(vaddr);
612 		vbp->vaddr = (m_addr_t) vaddr;
613 		vbp->baddr = (m_addr_t) baddr;
614 		vbp->next = mp->vtob[hc];
615 		mp->vtob[hc] = vbp;
616 		++mp->nump;
617 		return (m_addr_t) vaddr;
618 	}
619 out_err:
620 	if (baddr)
621 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
622 	if (vaddr)
623 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
624 	if (vbp)
625 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
626 	return 0;
627 }
628 
629 #ifdef	MEMO_FREE_UNUSED
630 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
631 {
632 	m_vtob_s **vbpp, *vbp;
633 	int hc = VTOB_HASH_CODE(m);
634 
635 	vbpp = &mp->vtob[hc];
636 	while (*vbpp && (*vbpp)->vaddr != m)
637 		vbpp = &(*vbpp)->next;
638 	if (*vbpp) {
639 		vbp = *vbpp;
640 		*vbpp = (*vbpp)->next;
641 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
642 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
643 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
644 		--mp->nump;
645 	}
646 }
647 #endif
648 
649 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
650 {
651 	m_pool_s *mp;
652 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
653 	return mp;
654 }
655 
656 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
657 {
658 	m_pool_s *mp = NULL;
659 
660 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
661 	if (mp) {
662 		mp->dev_dmat = dev_dmat;
663 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
664 			       BUS_SPACE_MAXADDR_32BIT,
665 			       BUS_SPACE_MAXADDR,
666 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
667 			       MEMO_CLUSTER_SIZE, 0,
668 			       NULL, NULL, &mp->dmat)) {
669 			mp->getp = ___dma_getp;
670 #ifdef	MEMO_FREE_UNUSED
671 			mp->freep = ___dma_freep;
672 #endif
673 			mp->next = mp0.next;
674 			mp0.next = mp;
675 			return mp;
676 		}
677 	}
678 	if (mp)
679 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
680 	return NULL;
681 }
682 
683 #ifdef	MEMO_FREE_UNUSED
684 static void ___del_dma_pool(m_pool_s *p)
685 {
686 	struct m_pool **pp = &mp0.next;
687 
688 	while (*pp && *pp != p)
689 		pp = &(*pp)->next;
690 	if (*pp) {
691 		*pp = (*pp)->next;
692 		bus_dma_tag_destroy(p->dmat);
693 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
694 	}
695 }
696 #endif
697 
698 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
699 {
700 	struct m_pool *mp;
701 	void *m = NULL;
702 
703 	/* Lock */
704 	mp = ___get_dma_pool(dev_dmat);
705 	if (!mp)
706 		mp = ___cre_dma_pool(dev_dmat);
707 	if (mp)
708 		m = __sym_calloc(mp, size, name);
709 #ifdef	MEMO_FREE_UNUSED
710 	if (mp && !mp->nump)
711 		___del_dma_pool(mp);
712 #endif
713 	/* Unlock */
714 
715 	return m;
716 }
717 
718 static void
719 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
720 {
721 	struct m_pool *mp;
722 
723 	/* Lock */
724 	mp = ___get_dma_pool(dev_dmat);
725 	if (mp)
726 		__sym_mfree(mp, m, size, name);
727 #ifdef	MEMO_FREE_UNUSED
728 	if (mp && !mp->nump)
729 		___del_dma_pool(mp);
730 #endif
731 	/* Unlock */
732 }
733 
734 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
735 {
736 	m_pool_s *mp;
737 	int hc = VTOB_HASH_CODE(m);
738 	m_vtob_s *vp = NULL;
739 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
740 
741 	/* Lock */
742 	mp = ___get_dma_pool(dev_dmat);
743 	if (mp) {
744 		vp = mp->vtob[hc];
745 		while (vp && (m_addr_t) vp->vaddr != a)
746 			vp = vp->next;
747 	}
748 	/* Unlock */
749 	if (!vp)
750 		panic("sym: VTOBUS FAILED!\n");
751 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
752 }
753 
754 /*
755  * Verbs for DMAable memory handling.
756  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
757  * being discarded.
758  */
759 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
760 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
761 #define _sym_mfree_dma(np, p, s, n)	\
762 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
763 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
764 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
765 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
766 #define vtobus(p)			_vtobus(np, p)
767 
768 /*
769  *  Print a buffer in hexadecimal format.
770  */
771 static void sym_printb_hex (u_char *p, int n)
772 {
773 	while (n-- > 0)
774 		printf (" %x", *p++);
775 }
776 
777 /*
778  *  Same with a label at beginning and .\n at end.
779  */
780 static void sym_printl_hex (char *label, u_char *p, int n)
781 {
782 	printf ("%s", label);
783 	sym_printb_hex (p, n);
784 	printf (".\n");
785 }
786 
787 /*
788  *  Return a string for SCSI BUS mode.
789  */
790 static const char *sym_scsi_bus_mode(int mode)
791 {
792 	switch(mode) {
793 	case SMODE_HVD:	return "HVD";
794 	case SMODE_SE:	return "SE";
795 	case SMODE_LVD: return "LVD";
796 	}
797 	return "??";
798 }
799 
800 /*
801  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
802  */
803 #ifdef SYM_CONF_NVRAM_SUPPORT
804 static const u_char Tekram_sync[16] =
805 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
806 #endif
807 
808 /*
809  *  Union of supported NVRAM formats.
810  */
811 struct sym_nvram {
812 	int type;
813 #define	SYM_SYMBIOS_NVRAM	(1)
814 #define	SYM_TEKRAM_NVRAM	(2)
815 #ifdef	SYM_CONF_NVRAM_SUPPORT
816 	union {
817 		Symbios_nvram Symbios;
818 		Tekram_nvram Tekram;
819 	} data;
820 #endif
821 };
822 
823 /*
824  *  This one is hopefully useless, but actually useful. :-)
825  */
826 #ifndef assert
827 #define	assert(expression) { \
828 	if (!(expression)) { \
829 		(void)panic( \
830 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
831 			#expression, \
832 			__FILE__, __LINE__); \
833 	} \
834 }
835 #endif
836 
837 /*
838  *  Some provision for a possible big endian mode supported by
839  *  Symbios chips (never seen, by the way).
840  *  For now, this stuff does not deserve any comments. :)
841  */
842 #define sym_offb(o)	(o)
843 #define sym_offw(o)	(o)
844 
845 /*
846  *  Some provision for support for BIG ENDIAN CPU.
847  */
848 #define cpu_to_scr(dw)	htole32(dw)
849 #define scr_to_cpu(dw)	le32toh(dw)
850 
851 /*
852  *  Access to the chip IO registers and on-chip RAM.
853  *  We use the `bus space' interface under FreeBSD-4 and
854  *  later kernel versions.
855  */
856 #if defined(SYM_CONF_IOMAPPED)
857 
858 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
859 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
860 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
861 
862 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
863 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
864 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
865 
866 #else	/* Memory mapped IO */
867 
868 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
869 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
870 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
871 
872 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
873 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
874 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
875 
876 #endif	/* SYM_CONF_IOMAPPED */
877 
878 #define OUTRAM_OFF(o, a, l)	\
879 	bus_write_region_1(np->ram_res, (o), (a), (l))
880 
881 /*
882  *  Common definitions for both bus space and legacy IO methods.
883  */
884 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
885 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
886 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
887 
888 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
889 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
890 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
891 
892 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
893 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
894 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
895 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
896 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
897 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
898 
899 /*
900  *  We normally want the chip to have a consistent view
901  *  of driver internal data structures when we restart it.
902  *  Thus these macros.
903  */
904 #define OUTL_DSP(v)				\
905 	do {					\
906 		MEMORY_BARRIER();		\
907 		OUTL (nc_dsp, (v));		\
908 	} while (0)
909 
910 #define OUTONB_STD()				\
911 	do {					\
912 		MEMORY_BARRIER();		\
913 		OUTONB (nc_dcntl, (STD|NOCOM));	\
914 	} while (0)
915 
916 /*
917  *  Command control block states.
918  */
919 #define HS_IDLE		(0)
920 #define HS_BUSY		(1)
921 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
922 #define HS_DISCONNECT	(3)	/* Disconnected by target */
923 #define HS_WAIT		(4)	/* waiting for resource	  */
924 
925 #define HS_DONEMASK	(0x80)
926 #define HS_COMPLETE	(4|HS_DONEMASK)
927 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
928 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
929 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
930 
931 /*
932  *  Software Interrupt Codes
933  */
934 #define	SIR_BAD_SCSI_STATUS	(1)
935 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
936 #define	SIR_MSG_RECEIVED	(3)
937 #define	SIR_MSG_WEIRD		(4)
938 #define	SIR_NEGO_FAILED		(5)
939 #define	SIR_NEGO_PROTO		(6)
940 #define	SIR_SCRIPT_STOPPED	(7)
941 #define	SIR_REJECT_TO_SEND	(8)
942 #define	SIR_SWIDE_OVERRUN	(9)
943 #define	SIR_SODL_UNDERRUN	(10)
944 #define	SIR_RESEL_NO_MSG_IN	(11)
945 #define	SIR_RESEL_NO_IDENTIFY	(12)
946 #define	SIR_RESEL_BAD_LUN	(13)
947 #define	SIR_TARGET_SELECTED	(14)
948 #define	SIR_RESEL_BAD_I_T_L	(15)
949 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
950 #define	SIR_ABORT_SENT		(17)
951 #define	SIR_RESEL_ABORTED	(18)
952 #define	SIR_MSG_OUT_DONE	(19)
953 #define	SIR_COMPLETE_ERROR	(20)
954 #define	SIR_DATA_OVERRUN	(21)
955 #define	SIR_BAD_PHASE		(22)
956 #define	SIR_MAX			(22)
957 
958 /*
959  *  Extended error bit codes.
960  *  xerr_status field of struct sym_ccb.
961  */
962 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
963 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
964 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
965 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
966 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
967 
968 /*
969  *  Negotiation status.
970  *  nego_status field of struct sym_ccb.
971  */
972 #define NS_SYNC		(1)
973 #define NS_WIDE		(2)
974 #define NS_PPR		(3)
975 
976 /*
977  *  A CCB hashed table is used to retrieve CCB address
978  *  from DSA value.
979  */
980 #define CCB_HASH_SHIFT		8
981 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
982 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
983 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
984 
985 /*
986  *  Device flags.
987  */
988 #define SYM_DISC_ENABLED	(1)
989 #define SYM_TAGS_ENABLED	(1<<1)
990 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
991 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
992 
993 /*
994  *  Host adapter miscellaneous flags.
995  */
996 #define SYM_AVOID_BUS_RESET	(1)
997 #define SYM_SCAN_TARGETS_HILO	(1<<1)
998 
999 /*
1000  *  Device quirks.
1001  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1002  *  saving the DATA POINTER then reselects and terminates the IO.
1003  *  On reselection, the automatic RESTORE DATA POINTER makes the
1004  *  CURRENT DATA POINTER not point at the end of the IO.
1005  *  This behaviour just breaks our calculation of the residual.
1006  *  For now, we just force an AUTO SAVE on disconnection and will
1007  *  fix that in a further driver version.
1008  */
1009 #define SYM_QUIRK_AUTOSAVE 1
1010 
1011 /*
1012  *  Misc.
1013  */
1014 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1015 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1016 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1017 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1018 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1019 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1020 
1021 #define SYM_SNOOP_TIMEOUT (10000000)
1022 #define SYM_PCI_IO	PCIR_BAR(0)
1023 #define SYM_PCI_MMIO	PCIR_BAR(1)
1024 #define SYM_PCI_RAM	PCIR_BAR(2)
1025 #define SYM_PCI_RAM64	PCIR_BAR(3)
1026 
1027 /*
1028  *  Back-pointer from the CAM CCB to our data structures.
1029  */
1030 #define sym_hcb_ptr	spriv_ptr0
1031 /* #define sym_ccb_ptr	spriv_ptr1 */
1032 
1033 /*
1034  *  We mostly have to deal with pointers.
1035  *  Thus these typedef's.
1036  */
1037 typedef struct sym_tcb *tcb_p;
1038 typedef struct sym_lcb *lcb_p;
1039 typedef struct sym_ccb *ccb_p;
1040 typedef struct sym_hcb *hcb_p;
1041 
1042 /*
1043  *  Gather negotiable parameters value
1044  */
1045 struct sym_trans {
1046 	u8 scsi_version;
1047 	u8 spi_version;
1048 	u8 period;
1049 	u8 offset;
1050 	u8 width;
1051 	u8 options;	/* PPR options */
1052 };
1053 
1054 struct sym_tinfo {
1055 	struct sym_trans current;
1056 	struct sym_trans goal;
1057 	struct sym_trans user;
1058 };
1059 
1060 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1061 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1062 
1063 /*
1064  *  Global TCB HEADER.
1065  *
1066  *  Due to lack of indirect addressing on earlier NCR chips,
1067  *  this substructure is copied from the TCB to a global
1068  *  address after selection.
1069  *  For SYMBIOS chips that support LOAD/STORE this copy is
1070  *  not needed and thus not performed.
1071  */
1072 struct sym_tcbh {
1073 	/*
1074 	 *  Scripts bus addresses of LUN table accessed from scripts.
1075 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1076 	 *  and we we want to speed-up the general case and not waste
1077 	 *  resources.
1078 	 */
1079 	u32	luntbl_sa;	/* bus address of this table	*/
1080 	u32	lun0_sa;	/* bus address of LCB #0	*/
1081 	/*
1082 	 *  Actual SYNC/WIDE IO registers value for this target.
1083 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1084 	 *  so have alignment constraints.
1085 	 */
1086 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1087 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1088 /*2*/	u_char	filler1;
1089 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1090 };
1091 
1092 /*
1093  *  Target Control Block
1094  */
1095 struct sym_tcb {
1096 	/*
1097 	 *  TCB header.
1098 	 *  Assumed at offset 0.
1099 	 */
1100 /*0*/	struct sym_tcbh head;
1101 
1102 	/*
1103 	 *  LUN table used by the SCRIPTS processor.
1104 	 *  An array of bus addresses is used on reselection.
1105 	 */
1106 	u32	*luntbl;	/* LCBs bus address table	*/
1107 
1108 	/*
1109 	 *  LUN table used by the C code.
1110 	 */
1111 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1112 #if SYM_CONF_MAX_LUN > 1
1113 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1114 #endif
1115 
1116 	/*
1117 	 *  Bitmap that tells about LUNs that succeeded at least
1118 	 *  1 IO and therefore assumed to be a real device.
1119 	 *  Avoid useless allocation of the LCB structure.
1120 	 */
1121 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1122 
1123 	/*
1124 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1125 	 *  allocated (not discovered or LCB allocation failed).
1126 	 */
1127 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1128 
1129 	/*
1130 	 *  Transfer capabilities (SIP)
1131 	 */
1132 	struct sym_tinfo tinfo;
1133 
1134 	/*
1135 	 * Keep track of the CCB used for the negotiation in order
1136 	 * to ensure that only 1 negotiation is queued at a time.
1137 	 */
1138 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1139 
1140 	/*
1141 	 *  Set when we want to reset the device.
1142 	 */
1143 	u_char	to_reset;
1144 
1145 	/*
1146 	 *  Other user settable limits and options.
1147 	 *  These limits are read from the NVRAM if present.
1148 	 */
1149 	u_char	usrflags;
1150 	u_short	usrtags;
1151 };
1152 
1153 /*
1154  *  Assert some alignments required by the chip.
1155  */
1156 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1157     offsetof(struct sym_tcb, head.sval)) &3) == 0);
1158 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1159     offsetof(struct sym_tcb, head.wval)) &3) == 0);
1160 
1161 /*
1162  *  Global LCB HEADER.
1163  *
1164  *  Due to lack of indirect addressing on earlier NCR chips,
1165  *  this substructure is copied from the LCB to a global
1166  *  address after selection.
1167  *  For SYMBIOS chips that support LOAD/STORE this copy is
1168  *  not needed and thus not performed.
1169  */
1170 struct sym_lcbh {
1171 	/*
1172 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1173 	 *  For not probed logical units, this address points to
1174 	 *  SCRIPTS that deal with bad LU handling (must be at
1175 	 *  offset zero of the LCB for that reason).
1176 	 */
1177 /*0*/	u32	resel_sa;
1178 
1179 	/*
1180 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1181 	 *  to the unique ITL nexus allowed to be disconnected.
1182 	 */
1183 	u32	itl_task_sa;
1184 
1185 	/*
1186 	 *  Task table bus address (read from SCRIPTS).
1187 	 */
1188 	u32	itlq_tbl_sa;
1189 };
1190 
1191 /*
1192  *  Logical Unit Control Block
1193  */
1194 struct sym_lcb {
1195 	/*
1196 	 *  TCB header.
1197 	 *  Assumed at offset 0.
1198 	 */
1199 /*0*/	struct sym_lcbh head;
1200 
1201 	/*
1202 	 *  Task table read from SCRIPTS that contains pointers to
1203 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1204 	 *  inside the header.
1205 	 */
1206 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1207 
1208 	/*
1209 	 *  Busy CCBs management.
1210 	 */
1211 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1212 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1213 
1214 	/*
1215 	 *  Circular tag allocation buffer.
1216 	 */
1217 	u_short	ia_tag;		/* Tag allocation index		*/
1218 	u_short	if_tag;		/* Tag release index		*/
1219 	u_char	*cb_tags;	/* Circular tags buffer		*/
1220 
1221 	/*
1222 	 *  Set when we want to clear all tasks.
1223 	 */
1224 	u_char to_clear;
1225 
1226 	/*
1227 	 *  Capabilities.
1228 	 */
1229 	u_char	user_flags;
1230 	u_char	current_flags;
1231 };
1232 
1233 /*
1234  *  Action from SCRIPTS on a task.
1235  *  Is part of the CCB, but is also used separately to plug
1236  *  error handling action to perform from SCRIPTS.
1237  */
1238 struct sym_actscr {
1239 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1240 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1241 };
1242 
1243 /*
1244  *  Phase mismatch context.
1245  *
1246  *  It is part of the CCB and is used as parameters for the
1247  *  DATA pointer. We need two contexts to handle correctly the
1248  *  SAVED DATA POINTER.
1249  */
1250 struct sym_pmc {
1251 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1252 	u32	ret;		/* SCRIPT return address	*/
1253 };
1254 
1255 /*
1256  *  LUN control block lookup.
1257  *  We use a direct pointer for LUN #0, and a table of
1258  *  pointers which is only allocated for devices that support
1259  *  LUN(s) > 0.
1260  */
1261 #if SYM_CONF_MAX_LUN <= 1
1262 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1263 #else
1264 #define sym_lp(tp, lun) \
1265 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1266 #endif
1267 
1268 /*
1269  *  Status are used by the host and the script processor.
1270  *
1271  *  The last four bytes (status[4]) are copied to the
1272  *  scratchb register (declared as scr0..scr3) just after the
1273  *  select/reselect, and copied back just after disconnecting.
1274  *  Inside the script the XX_REG are used.
1275  */
1276 
1277 /*
1278  *  Last four bytes (script)
1279  */
1280 #define  QU_REG	scr0
1281 #define  HS_REG	scr1
1282 #define  HS_PRT	nc_scr1
1283 #define  SS_REG	scr2
1284 #define  SS_PRT	nc_scr2
1285 #define  HF_REG	scr3
1286 #define  HF_PRT	nc_scr3
1287 
1288 /*
1289  *  Last four bytes (host)
1290  */
1291 #define  actualquirks  phys.head.status[0]
1292 #define  host_status   phys.head.status[1]
1293 #define  ssss_status   phys.head.status[2]
1294 #define  host_flags    phys.head.status[3]
1295 
1296 /*
1297  *  Host flags
1298  */
1299 #define HF_IN_PM0	1u
1300 #define HF_IN_PM1	(1u<<1)
1301 #define HF_ACT_PM	(1u<<2)
1302 #define HF_DP_SAVED	(1u<<3)
1303 #define HF_SENSE	(1u<<4)
1304 #define HF_EXT_ERR	(1u<<5)
1305 #define HF_DATA_IN	(1u<<6)
1306 #ifdef SYM_CONF_IARB_SUPPORT
1307 #define HF_HINT_IARB	(1u<<7)
1308 #endif
1309 
1310 /*
1311  *  Global CCB HEADER.
1312  *
1313  *  Due to lack of indirect addressing on earlier NCR chips,
1314  *  this substructure is copied from the ccb to a global
1315  *  address after selection (or reselection) and copied back
1316  *  before disconnect.
1317  *  For SYMBIOS chips that support LOAD/STORE this copy is
1318  *  not needed and thus not performed.
1319  */
1320 struct sym_ccbh {
1321 	/*
1322 	 *  Start and restart SCRIPTS addresses (must be at 0).
1323 	 */
1324 /*0*/	struct sym_actscr go;
1325 
1326 	/*
1327 	 *  SCRIPTS jump address that deal with data pointers.
1328 	 *  'savep' points to the position in the script responsible
1329 	 *  for the actual transfer of data.
1330 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1331 	 */
1332 	u32	savep;		/* Jump address to saved data pointer	*/
1333 	u32	lastp;		/* SCRIPTS address at end of data	*/
1334 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1335 
1336 	/*
1337 	 *  Status fields.
1338 	 */
1339 	u8	status[4];
1340 };
1341 
1342 /*
1343  *  Data Structure Block
1344  *
1345  *  During execution of a ccb by the script processor, the
1346  *  DSA (data structure address) register points to this
1347  *  substructure of the ccb.
1348  */
1349 struct sym_dsb {
1350 	/*
1351 	 *  CCB header.
1352 	 *  Also assumed at offset 0 of the sym_ccb structure.
1353 	 */
1354 /*0*/	struct sym_ccbh head;
1355 
1356 	/*
1357 	 *  Phase mismatch contexts.
1358 	 *  We need two to handle correctly the SAVED DATA POINTER.
1359 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1360 	 *  for address calculation from SCRIPTS.
1361 	 */
1362 	struct sym_pmc pm0;
1363 	struct sym_pmc pm1;
1364 
1365 	/*
1366 	 *  Table data for Script
1367 	 */
1368 	struct sym_tblsel  select;
1369 	struct sym_tblmove smsg;
1370 	struct sym_tblmove smsg_ext;
1371 	struct sym_tblmove cmd;
1372 	struct sym_tblmove sense;
1373 	struct sym_tblmove wresid;
1374 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1375 };
1376 
1377 /*
1378  *  Our Command Control Block
1379  */
1380 struct sym_ccb {
1381 	/*
1382 	 *  This is the data structure which is pointed by the DSA
1383 	 *  register when it is executed by the script processor.
1384 	 *  It must be the first entry.
1385 	 */
1386 	struct sym_dsb phys;
1387 
1388 	/*
1389 	 *  Pointer to CAM ccb and related stuff.
1390 	 */
1391 	struct callout ch;	/* callout handle		*/
1392 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1393 	u8	cdb_buf[16];	/* Copy of CDB			*/
1394 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1395 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1396 	int	data_len;	/* Total data length		*/
1397 	int	segments;	/* Number of SG segments	*/
1398 
1399 	/*
1400 	 *  Miscellaneous status'.
1401 	 */
1402 	u_char	nego_status;	/* Negotiation status		*/
1403 	u_char	xerr_status;	/* Extended error flags		*/
1404 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1405 
1406 	/*
1407 	 *  Message areas.
1408 	 *  We prepare a message to be sent after selection.
1409 	 *  We may use a second one if the command is rescheduled
1410 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1411 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1412 	 *  While negotiating sync or wide transfer,
1413 	 *  a SDTR or WDTR message is appended.
1414 	 */
1415 	u_char	scsi_smsg [12];
1416 	u_char	scsi_smsg2[12];
1417 
1418 	/*
1419 	 *  Auto request sense related fields.
1420 	 */
1421 	u_char	sensecmd[6];	/* Request Sense command	*/
1422 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1423 	u_char	sv_xerr_status;	/* Saved extended status	*/
1424 	int	sv_resid;	/* Saved residual		*/
1425 
1426 	/*
1427 	 *  Map for the DMA of user data.
1428 	 */
1429 	void		*arg;	/* Argument for some callback	*/
1430 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1431 	u_char		dmamapped;
1432 #define SYM_DMA_NONE	0
1433 #define SYM_DMA_READ	1
1434 #define SYM_DMA_WRITE	2
1435 	/*
1436 	 *  Other fields.
1437 	 */
1438 	u32	ccb_ba;		/* BUS address of this CCB	*/
1439 	u_short	tag;		/* Tag for this transfer	*/
1440 				/*  NO_TAG means no tag		*/
1441 	u_char	target;
1442 	u_char	lun;
1443 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1444 	SYM_QUEHEAD
1445 		link_ccbq;	/* Link to free/busy CCB queue	*/
1446 	u32	startp;		/* Initial data pointer		*/
1447 	int	ext_sg;		/* Extreme data pointer, used	*/
1448 	int	ext_ofs;	/*  to calculate the residual.	*/
1449 	u_char	to_abort;	/* Want this IO to be aborted	*/
1450 };
1451 
1452 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1453 
1454 /*
1455  *  Host Control Block
1456  */
1457 struct sym_hcb {
1458 	struct mtx	mtx;
1459 
1460 	/*
1461 	 *  Global headers.
1462 	 *  Due to poorness of addressing capabilities, earlier
1463 	 *  chips (810, 815, 825) copy part of the data structures
1464 	 *  (CCB, TCB and LCB) in fixed areas.
1465 	 */
1466 #ifdef	SYM_CONF_GENERIC_SUPPORT
1467 	struct sym_ccbh	ccb_head;
1468 	struct sym_tcbh	tcb_head;
1469 	struct sym_lcbh	lcb_head;
1470 #endif
1471 	/*
1472 	 *  Idle task and invalid task actions and
1473 	 *  their bus addresses.
1474 	 */
1475 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1476 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1477 
1478 	/*
1479 	 *  Dummy lun table to protect us against target
1480 	 *  returning bad lun number on reselection.
1481 	 */
1482 	u32	*badluntbl;	/* Table physical address	*/
1483 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1484 
1485 	/*
1486 	 *  Bus address of this host control block.
1487 	 */
1488 	u32	hcb_ba;
1489 
1490 	/*
1491 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1492 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1493 	 *  field.
1494 	 */
1495 	u32	scr_ram_seg;
1496 
1497 	/*
1498 	 *  Chip and controller indentification.
1499 	 */
1500 	device_t device;
1501 
1502 	/*
1503 	 *  Initial value of some IO register bits.
1504 	 *  These values are assumed to have been set by BIOS, and may
1505 	 *  be used to probe adapter implementation differences.
1506 	 */
1507 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1508 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1509 		sv_stest1;
1510 
1511 	/*
1512 	 *  Actual initial value of IO register bits used by the
1513 	 *  driver. They are loaded at initialisation according to
1514 	 *  features that are to be enabled/disabled.
1515 	 */
1516 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1517 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1518 
1519 	/*
1520 	 *  Target data.
1521 	 */
1522 #ifdef __amd64__
1523 	struct sym_tcb	*target;
1524 #else
1525 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1526 #endif
1527 
1528 	/*
1529 	 *  Target control block bus address array used by the SCRIPT
1530 	 *  on reselection.
1531 	 */
1532 	u32		*targtbl;
1533 	u32		targtbl_ba;
1534 
1535 	/*
1536 	 *  CAM SIM information for this instance.
1537 	 */
1538 	struct		cam_sim  *sim;
1539 	struct		cam_path *path;
1540 
1541 	/*
1542 	 *  Allocated hardware resources.
1543 	 */
1544 	struct resource	*irq_res;
1545 	struct resource	*io_res;
1546 	struct resource	*mmio_res;
1547 	struct resource	*ram_res;
1548 	int		ram_id;
1549 	void *intr;
1550 
1551 	/*
1552 	 *  Bus stuff.
1553 	 *
1554 	 *  My understanding of PCI is that all agents must share the
1555 	 *  same addressing range and model.
1556 	 *  But some hardware architecture guys provide complex and
1557 	 *  brain-deaded stuff that makes shit.
1558 	 *  This driver only support PCI compliant implementations and
1559 	 *  deals with part of the BUS stuff complexity only to fit O/S
1560 	 *  requirements.
1561 	 */
1562 
1563 	/*
1564 	 *  DMA stuff.
1565 	 */
1566 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1567 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1568 	/*
1569 	 *  BUS addresses of the chip
1570 	 */
1571 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1572 	int		mmio_ws;	/* MMIO Window size		*/
1573 
1574 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1575 	int		ram_ws;		/* RAM window size		*/
1576 
1577 	/*
1578 	 *  SCRIPTS virtual and physical bus addresses.
1579 	 *  'script'  is loaded in the on-chip RAM if present.
1580 	 *  'scripth' stays in main memory for all chips except the
1581 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1582 	 */
1583 	u_char		*scripta0;	/* Copies of script and scripth	*/
1584 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1585 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1586 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1587 	vm_offset_t	scriptb0_ba;
1588 	u_short		scripta_sz;	/* Actual size of script A	*/
1589 	u_short		scriptb_sz;	/* Actual size of script B	*/
1590 
1591 	/*
1592 	 *  Bus addresses, setup and patch methods for
1593 	 *  the selected firmware.
1594 	 */
1595 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1596 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1597 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1598 	void		(*fw_patch)(hcb_p np);
1599 	const char	*fw_name;
1600 
1601 	/*
1602 	 *  General controller parameters and configuration.
1603 	 */
1604 	u_short	device_id;	/* PCI device id		*/
1605 	u_char	revision_id;	/* PCI device revision id	*/
1606 	u_int	features;	/* Chip features map		*/
1607 	u_char	myaddr;		/* SCSI id of the adapter	*/
1608 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1609 	u_char	maxwide;	/* Maximum transfer width	*/
1610 	u_char	minsync;	/* Min sync period factor (ST)	*/
1611 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1612 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1613 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1614 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1615 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1616 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1617 	u_char	clock_divn;	/* Number of clock divisors	*/
1618 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1619 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1620 	/*
1621 	 *  Start queue management.
1622 	 *  It is filled up by the host processor and accessed by the
1623 	 *  SCRIPTS processor in order to start SCSI commands.
1624 	 */
1625 	volatile		/* Prevent code optimizations	*/
1626 	u32	*squeue;	/* Start queue virtual address	*/
1627 	u32	squeue_ba;	/* Start queue BUS address	*/
1628 	u_short	squeueput;	/* Next free slot of the queue	*/
1629 	u_short	actccbs;	/* Number of allocated CCBs	*/
1630 
1631 	/*
1632 	 *  Command completion queue.
1633 	 *  It is the same size as the start queue to avoid overflow.
1634 	 */
1635 	u_short	dqueueget;	/* Next position to scan	*/
1636 	volatile		/* Prevent code optimizations	*/
1637 	u32	*dqueue;	/* Completion (done) queue	*/
1638 	u32	dqueue_ba;	/* Done queue BUS address	*/
1639 
1640 	/*
1641 	 *  Miscellaneous buffers accessed by the scripts-processor.
1642 	 *  They shall be DWORD aligned, because they may be read or
1643 	 *  written with a script command.
1644 	 */
1645 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1646 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1647 	u32		lastmsg;	/* Last SCSI message sent	*/
1648 	u_char		scratch;	/* Scratch for SCSI receive	*/
1649 
1650 	/*
1651 	 *  Miscellaneous configuration and status parameters.
1652 	 */
1653 	u_char		usrflags;	/* Miscellaneous user flags	*/
1654 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1655 	u_char		verbose;	/* Verbosity for this controller*/
1656 	u32		cache;		/* Used for cache test at init.	*/
1657 
1658 	/*
1659 	 *  CCB lists and queue.
1660 	 */
1661 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1662 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1663 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1664 
1665 	/*
1666 	 *  During error handling and/or recovery,
1667 	 *  active CCBs that are to be completed with
1668 	 *  error or requeued are moved from the busy_ccbq
1669 	 *  to the comp_ccbq prior to completion.
1670 	 */
1671 	SYM_QUEHEAD	comp_ccbq;
1672 
1673 	/*
1674 	 *  CAM CCB pending queue.
1675 	 */
1676 	SYM_QUEHEAD	cam_ccbq;
1677 
1678 	/*
1679 	 *  IMMEDIATE ARBITRATION (IARB) control.
1680 	 *
1681 	 *  We keep track in 'last_cp' of the last CCB that has been
1682 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1683 	 *  this CCB completes. If last_cp is not zero at the moment
1684 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1685 	 *  used by the SCRIPTS as a hint for setting IARB.
1686 	 *  We donnot set more than 'iarb_max' consecutive hints for
1687 	 *  IARB in order to leave devices a chance to reselect.
1688 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1689 	 */
1690 #ifdef SYM_CONF_IARB_SUPPORT
1691 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1692 	u_short		iarb_count;	/* Actual # of these hints	*/
1693 	ccb_p		last_cp;
1694 #endif
1695 
1696 	/*
1697 	 *  Command abort handling.
1698 	 *  We need to synchronize tightly with the SCRIPTS
1699 	 *  processor in order to handle things correctly.
1700 	 */
1701 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1702 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1703 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1704 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1705 };
1706 
1707 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1708 
1709 /*
1710  *  Return the name of the controller.
1711  */
1712 static __inline const char *sym_name(hcb_p np)
1713 {
1714 	return device_get_nameunit(np->device);
1715 }
1716 
1717 /*--------------------------------------------------------------------------*/
1718 /*------------------------------ FIRMWARES ---------------------------------*/
1719 /*--------------------------------------------------------------------------*/
1720 
1721 /*
1722  *  This stuff will be moved to a separate source file when
1723  *  the driver will be broken into several source modules.
1724  */
1725 
1726 /*
1727  *  Macros used for all firmwares.
1728  */
1729 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1730 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1731 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1732 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1733 
1734 #ifdef	SYM_CONF_GENERIC_SUPPORT
1735 /*
1736  *  Allocate firmware #1 script area.
1737  */
1738 #define	SYM_FWA_SCR		sym_fw1a_scr
1739 #define	SYM_FWB_SCR		sym_fw1b_scr
1740 #include <dev/sym/sym_fw1.h>
1741 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1742 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1743 };
1744 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1745 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1746 };
1747 #undef	SYM_FWA_SCR
1748 #undef	SYM_FWB_SCR
1749 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1750 
1751 /*
1752  *  Allocate firmware #2 script area.
1753  */
1754 #define	SYM_FWA_SCR		sym_fw2a_scr
1755 #define	SYM_FWB_SCR		sym_fw2b_scr
1756 #include <dev/sym/sym_fw2.h>
1757 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1758 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1759 };
1760 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1761 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1762 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1763 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1764 };
1765 #undef	SYM_FWA_SCR
1766 #undef	SYM_FWB_SCR
1767 
1768 #undef	SYM_GEN_A
1769 #undef	SYM_GEN_B
1770 #undef	PADDR_A
1771 #undef	PADDR_B
1772 
1773 #ifdef	SYM_CONF_GENERIC_SUPPORT
1774 /*
1775  *  Patch routine for firmware #1.
1776  */
1777 static void
1778 sym_fw1_patch(hcb_p np)
1779 {
1780 	struct sym_fw1a_scr *scripta0;
1781 	struct sym_fw1b_scr *scriptb0;
1782 
1783 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1784 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1785 
1786 	/*
1787 	 *  Remove LED support if not needed.
1788 	 */
1789 	if (!(np->features & FE_LED0)) {
1790 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1791 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1792 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1793 	}
1794 
1795 #ifdef SYM_CONF_IARB_SUPPORT
1796 	/*
1797 	 *    If user does not want to use IMMEDIATE ARBITRATION
1798 	 *    when we are reselected while attempting to arbitrate,
1799 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1800 	 */
1801 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1802 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1803 #endif
1804 	/*
1805 	 *  Patch some data in SCRIPTS.
1806 	 *  - start and done queue initial bus address.
1807 	 *  - target bus address table bus address.
1808 	 */
1809 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1810 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1811 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1812 }
1813 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1814 
1815 /*
1816  *  Patch routine for firmware #2.
1817  */
1818 static void
1819 sym_fw2_patch(hcb_p np)
1820 {
1821 	struct sym_fw2a_scr *scripta0;
1822 	struct sym_fw2b_scr *scriptb0;
1823 
1824 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1825 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1826 
1827 	/*
1828 	 *  Remove LED support if not needed.
1829 	 */
1830 	if (!(np->features & FE_LED0)) {
1831 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1832 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1833 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1834 	}
1835 
1836 #ifdef SYM_CONF_IARB_SUPPORT
1837 	/*
1838 	 *    If user does not want to use IMMEDIATE ARBITRATION
1839 	 *    when we are reselected while attempting to arbitrate,
1840 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1841 	 */
1842 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1843 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1844 #endif
1845 	/*
1846 	 *  Patch some variable in SCRIPTS.
1847 	 *  - start and done queue initial bus address.
1848 	 *  - target bus address table bus address.
1849 	 */
1850 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1851 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1852 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1853 
1854 	/*
1855 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1856 	 */
1857 	if (!(np->features & FE_C10)) {
1858 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1859 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1860 	}
1861 
1862 	/*
1863 	 *  Remove a couple of work-arounds specific to C1010 if
1864 	 *  they are not desirable. See `sym_fw2.h' for more details.
1865 	 */
1866 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1867 	      np->revision_id < 0x1 &&
1868 	      np->pciclk_khz < 60000)) {
1869 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1870 		scripta0->datao_phase[1] = cpu_to_scr(0);
1871 	}
1872 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1873 	      /* np->revision_id < 0xff */ 1)) {
1874 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1875 		scripta0->sel_done[1] = cpu_to_scr(0);
1876 	}
1877 
1878 	/*
1879 	 *  Patch some other variables in SCRIPTS.
1880 	 *  These ones are loaded by the SCRIPTS processor.
1881 	 */
1882 	scriptb0->pm0_data_addr[0] =
1883 		cpu_to_scr(np->scripta_ba +
1884 			   offsetof(struct sym_fw2a_scr, pm0_data));
1885 	scriptb0->pm1_data_addr[0] =
1886 		cpu_to_scr(np->scripta_ba +
1887 			   offsetof(struct sym_fw2a_scr, pm1_data));
1888 }
1889 
1890 /*
1891  *  Fill the data area in scripts.
1892  *  To be done for all firmwares.
1893  */
1894 static void
1895 sym_fw_fill_data (u32 *in, u32 *out)
1896 {
1897 	int	i;
1898 
1899 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1900 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1901 		*in++  = offsetof (struct sym_dsb, data[i]);
1902 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1903 		*out++ = offsetof (struct sym_dsb, data[i]);
1904 	}
1905 }
1906 
1907 /*
1908  *  Setup useful script bus addresses.
1909  *  To be done for all firmwares.
1910  */
1911 static void
1912 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1913 {
1914 	u32 *pa;
1915 	const u_short *po;
1916 	int i;
1917 
1918 	/*
1919 	 *  Build the bus address table for script A
1920 	 *  from the script A offset table.
1921 	 */
1922 	po = (const u_short *) fw->a_ofs;
1923 	pa = (u32 *) &np->fwa_bas;
1924 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1925 		pa[i] = np->scripta_ba + po[i];
1926 
1927 	/*
1928 	 *  Same for script B.
1929 	 */
1930 	po = (const u_short *) fw->b_ofs;
1931 	pa = (u32 *) &np->fwb_bas;
1932 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1933 		pa[i] = np->scriptb_ba + po[i];
1934 }
1935 
1936 #ifdef	SYM_CONF_GENERIC_SUPPORT
1937 /*
1938  *  Setup routine for firmware #1.
1939  */
1940 static void
1941 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1942 {
1943 	struct sym_fw1a_scr *scripta0;
1944 
1945 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1946 
1947 	/*
1948 	 *  Fill variable parts in scripts.
1949 	 */
1950 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1951 
1952 	/*
1953 	 *  Setup bus addresses used from the C code..
1954 	 */
1955 	sym_fw_setup_bus_addresses(np, fw);
1956 }
1957 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1958 
1959 /*
1960  *  Setup routine for firmware #2.
1961  */
1962 static void
1963 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1964 {
1965 	struct sym_fw2a_scr *scripta0;
1966 
1967 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1968 
1969 	/*
1970 	 *  Fill variable parts in scripts.
1971 	 */
1972 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1973 
1974 	/*
1975 	 *  Setup bus addresses used from the C code..
1976 	 */
1977 	sym_fw_setup_bus_addresses(np, fw);
1978 }
1979 
1980 /*
1981  *  Allocate firmware descriptors.
1982  */
1983 #ifdef	SYM_CONF_GENERIC_SUPPORT
1984 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1985 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1986 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1987 
1988 /*
1989  *  Find the most appropriate firmware for a chip.
1990  */
1991 static const struct sym_fw *
1992 sym_find_firmware(const struct sym_pci_chip *chip)
1993 {
1994 	if (chip->features & FE_LDSTR)
1995 		return &sym_fw2;
1996 #ifdef	SYM_CONF_GENERIC_SUPPORT
1997 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1998 		return &sym_fw1;
1999 #endif
2000 	else
2001 		return NULL;
2002 }
2003 
2004 /*
2005  *  Bind a script to physical addresses.
2006  */
2007 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2008 {
2009 	u32 opcode, new, old, tmp1, tmp2;
2010 	u32 *end, *cur;
2011 	int relocs;
2012 
2013 	cur = start;
2014 	end = start + len/4;
2015 
2016 	while (cur < end) {
2017 
2018 		opcode = *cur;
2019 
2020 		/*
2021 		 *  If we forget to change the length
2022 		 *  in scripts, a field will be
2023 		 *  padded with 0. This is an illegal
2024 		 *  command.
2025 		 */
2026 		if (opcode == 0) {
2027 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2028 				sym_name(np), (int) (cur-start));
2029 			MDELAY (10000);
2030 			++cur;
2031 			continue;
2032 		}
2033 
2034 		/*
2035 		 *  We use the bogus value 0xf00ff00f ;-)
2036 		 *  to reserve data area in SCRIPTS.
2037 		 */
2038 		if (opcode == SCR_DATA_ZERO) {
2039 			*cur++ = 0;
2040 			continue;
2041 		}
2042 
2043 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2044 			printf ("%d:  <%x>\n", (int) (cur-start),
2045 				(unsigned)opcode);
2046 
2047 		/*
2048 		 *  We don't have to decode ALL commands
2049 		 */
2050 		switch (opcode >> 28) {
2051 		case 0xf:
2052 			/*
2053 			 *  LOAD / STORE DSA relative, don't relocate.
2054 			 */
2055 			relocs = 0;
2056 			break;
2057 		case 0xe:
2058 			/*
2059 			 *  LOAD / STORE absolute.
2060 			 */
2061 			relocs = 1;
2062 			break;
2063 		case 0xc:
2064 			/*
2065 			 *  COPY has TWO arguments.
2066 			 */
2067 			relocs = 2;
2068 			tmp1 = cur[1];
2069 			tmp2 = cur[2];
2070 			if ((tmp1 ^ tmp2) & 3) {
2071 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2072 					sym_name(np), (int) (cur-start));
2073 				MDELAY (10000);
2074 			}
2075 			/*
2076 			 *  If PREFETCH feature not enabled, remove
2077 			 *  the NO FLUSH bit if present.
2078 			 */
2079 			if ((opcode & SCR_NO_FLUSH) &&
2080 			    !(np->features & FE_PFEN)) {
2081 				opcode = (opcode & ~SCR_NO_FLUSH);
2082 			}
2083 			break;
2084 		case 0x0:
2085 			/*
2086 			 *  MOVE/CHMOV (absolute address)
2087 			 */
2088 			if (!(np->features & FE_WIDE))
2089 				opcode = (opcode | OPC_MOVE);
2090 			relocs = 1;
2091 			break;
2092 		case 0x1:
2093 			/*
2094 			 *  MOVE/CHMOV (table indirect)
2095 			 */
2096 			if (!(np->features & FE_WIDE))
2097 				opcode = (opcode | OPC_MOVE);
2098 			relocs = 0;
2099 			break;
2100 		case 0x8:
2101 			/*
2102 			 *  JUMP / CALL
2103 			 *  dont't relocate if relative :-)
2104 			 */
2105 			if (opcode & 0x00800000)
2106 				relocs = 0;
2107 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2108 				relocs = 2;
2109 			else
2110 				relocs = 1;
2111 			break;
2112 		case 0x4:
2113 		case 0x5:
2114 		case 0x6:
2115 		case 0x7:
2116 			relocs = 1;
2117 			break;
2118 		default:
2119 			relocs = 0;
2120 			break;
2121 		}
2122 
2123 		/*
2124 		 *  Scriptify:) the opcode.
2125 		 */
2126 		*cur++ = cpu_to_scr(opcode);
2127 
2128 		/*
2129 		 *  If no relocation, assume 1 argument
2130 		 *  and just scriptize:) it.
2131 		 */
2132 		if (!relocs) {
2133 			*cur = cpu_to_scr(*cur);
2134 			++cur;
2135 			continue;
2136 		}
2137 
2138 		/*
2139 		 *  Otherwise performs all needed relocations.
2140 		 */
2141 		while (relocs--) {
2142 			old = *cur;
2143 
2144 			switch (old & RELOC_MASK) {
2145 			case RELOC_REGISTER:
2146 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2147 				break;
2148 			case RELOC_LABEL_A:
2149 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2150 				break;
2151 			case RELOC_LABEL_B:
2152 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2153 				break;
2154 			case RELOC_SOFTC:
2155 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2156 				break;
2157 			case 0:
2158 				/*
2159 				 *  Don't relocate a 0 address.
2160 				 *  They are mostly used for patched or
2161 				 *  script self-modified areas.
2162 				 */
2163 				if (old == 0) {
2164 					new = old;
2165 					break;
2166 				}
2167 				/* fall through */
2168 			default:
2169 				new = 0;
2170 				panic("sym_fw_bind_script: "
2171 				      "weird relocation %x\n", old);
2172 				break;
2173 			}
2174 
2175 			*cur++ = cpu_to_scr(new);
2176 		}
2177 	}
2178 }
2179 
2180 /*---------------------------------------------------------------------------*/
2181 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2182 /*---------------------------------------------------------------------------*/
2183 
2184 /*
2185  *  Function prototypes.
2186  */
2187 static void sym_save_initial_setting (hcb_p np);
2188 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2189 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2190 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2191 static void sym_chip_reset (hcb_p np);
2192 static void sym_soft_reset (hcb_p np);
2193 static void sym_start_reset (hcb_p np);
2194 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2195 static int  sym_wakeup_done (hcb_p np);
2196 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2197 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2198 static void sym_init (hcb_p np, int reason);
2199 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2200 		        u_char *fakp);
2201 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2202 			 u_char div, u_char fak);
2203 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2204 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2205 			 u_char per, u_char wide, u_char div, u_char fak);
2206 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2207 			 u_char per, u_char wide, u_char div, u_char fak);
2208 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2209 static void sym_intr (void *arg);
2210 static void sym_poll (struct cam_sim *sim);
2211 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2212 static void sym_int_sto (hcb_p np);
2213 static void sym_int_udc (hcb_p np);
2214 static void sym_int_sbmc (hcb_p np);
2215 static void sym_int_par (hcb_p np, u_short sist);
2216 static void sym_int_ma (hcb_p np);
2217 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2218 				    int task);
2219 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2220 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2221 static void sym_sir_task_recovery (hcb_p np, int num);
2222 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2223 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2224 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2225 static int  sym_show_msg (u_char * msg);
2226 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2227 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2228 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2229 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2230 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2231 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2232 static void sym_int_sir (hcb_p np);
2233 static void sym_free_ccb (hcb_p np, ccb_p cp);
2234 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2235 static ccb_p sym_alloc_ccb (hcb_p np);
2236 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2237 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2238 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2239 static int  sym_snooptest (hcb_p np);
2240 static void sym_selectclock(hcb_p np, u_char scntl3);
2241 static void sym_getclock (hcb_p np, int mult);
2242 static int  sym_getpciclock (hcb_p np);
2243 static void sym_complete_ok (hcb_p np, ccb_p cp);
2244 static void sym_complete_error (hcb_p np, ccb_p cp);
2245 static void sym_callout (void *arg);
2246 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2247 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2248 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2249 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2250 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2251 				      ccb_p cp);
2252 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2253 					bus_dma_segment_t *psegs, int nsegs);
2254 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2255 				    bus_dma_segment_t *psegs, int nsegs);
2256 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2257 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2258 			      struct ccb_trans_settings *cts);
2259 static void sym_update_dflags(hcb_p np, u_char *flags,
2260 			      struct ccb_trans_settings *cts);
2261 
2262 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2263 static int  sym_pci_probe (device_t dev);
2264 static int  sym_pci_attach (device_t dev);
2265 
2266 static void sym_pci_free (hcb_p np);
2267 static int  sym_cam_attach (hcb_p np);
2268 static void sym_cam_free (hcb_p np);
2269 
2270 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2271 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2272 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2273 
2274 /*
2275  *  Print something which allows to retrieve the controller type,
2276  *  unit, target, lun concerned by a kernel message.
2277  */
2278 static void PRINT_TARGET (hcb_p np, int target)
2279 {
2280 	printf ("%s:%d:", sym_name(np), target);
2281 }
2282 
2283 static void PRINT_LUN(hcb_p np, int target, int lun)
2284 {
2285 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2286 }
2287 
2288 static void PRINT_ADDR (ccb_p cp)
2289 {
2290 	if (cp && cp->cam_ccb)
2291 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2292 }
2293 
2294 /*
2295  *  Take into account this ccb in the freeze count.
2296  */
2297 static void sym_freeze_cam_ccb(union ccb *ccb)
2298 {
2299 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2300 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2301 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2302 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2303 		}
2304 	}
2305 }
2306 
2307 /*
2308  *  Set the status field of a CAM CCB.
2309  */
2310 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2311 {
2312 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2313 	ccb->ccb_h.status |= status;
2314 }
2315 
2316 /*
2317  *  Get the status field of a CAM CCB.
2318  */
2319 static __inline int sym_get_cam_status(union ccb *ccb)
2320 {
2321 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2322 }
2323 
2324 /*
2325  *  Enqueue a CAM CCB.
2326  */
2327 static void sym_enqueue_cam_ccb(ccb_p cp)
2328 {
2329 	hcb_p np;
2330 	union ccb *ccb;
2331 
2332 	ccb = cp->cam_ccb;
2333 	np = (hcb_p) cp->arg;
2334 
2335 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2336 	ccb->ccb_h.status = CAM_REQ_INPROG;
2337 
2338 	callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2339 	    (caddr_t)ccb, 0);
2340 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2341 	ccb->ccb_h.sym_hcb_ptr = np;
2342 
2343 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2344 }
2345 
2346 /*
2347  *  Complete a pending CAM CCB.
2348  */
2349 
2350 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2351 {
2352 
2353 	SYM_LOCK_ASSERT(MA_OWNED);
2354 
2355 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2356 		callout_stop(&cp->ch);
2357 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2358 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2359 		ccb->ccb_h.sym_hcb_ptr = NULL;
2360 	}
2361 	xpt_done(ccb);
2362 }
2363 
2364 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2365 {
2366 
2367 	SYM_LOCK_ASSERT(MA_OWNED);
2368 
2369 	sym_set_cam_status(ccb, cam_status);
2370 	xpt_done(ccb);
2371 }
2372 
2373 /*
2374  *  SYMBIOS chip clock divisor table.
2375  *
2376  *  Divisors are multiplied by 10,000,000 in order to make
2377  *  calculations more simple.
2378  */
2379 #define _5M 5000000
2380 static const u32 div_10M[] =
2381 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2382 
2383 /*
2384  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2385  *  128 transfers. All chips support at least 16 transfers
2386  *  bursts. The 825A, 875 and 895 chips support bursts of up
2387  *  to 128 transfers and the 895A and 896 support bursts of up
2388  *  to 64 transfers. All other chips support up to 16
2389  *  transfers bursts.
2390  *
2391  *  For PCI 32 bit data transfers each transfer is a DWORD.
2392  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2393  *
2394  *  We use log base 2 (burst length) as internal code, with
2395  *  value 0 meaning "burst disabled".
2396  */
2397 
2398 /*
2399  *  Burst length from burst code.
2400  */
2401 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2402 
2403 /*
2404  *  Burst code from io register bits.
2405  */
2406 #define burst_code(dmode, ctest4, ctest5) \
2407 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2408 
2409 /*
2410  *  Set initial io register bits from burst code.
2411  */
2412 static __inline void sym_init_burst(hcb_p np, u_char bc)
2413 {
2414 	np->rv_ctest4	&= ~0x80;
2415 	np->rv_dmode	&= ~(0x3 << 6);
2416 	np->rv_ctest5	&= ~0x4;
2417 
2418 	if (!bc) {
2419 		np->rv_ctest4	|= 0x80;
2420 	}
2421 	else {
2422 		--bc;
2423 		np->rv_dmode	|= ((bc & 0x3) << 6);
2424 		np->rv_ctest5	|= (bc & 0x4);
2425 	}
2426 }
2427 
2428 /*
2429  * Print out the list of targets that have some flag disabled by user.
2430  */
2431 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2432 {
2433 	int cnt;
2434 	int i;
2435 
2436 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2437 		if (i == np->myaddr)
2438 			continue;
2439 		if (np->target[i].usrflags & mask) {
2440 			if (!cnt++)
2441 				printf("%s: %s disabled for targets",
2442 					sym_name(np), msg);
2443 			printf(" %d", i);
2444 		}
2445 	}
2446 	if (cnt)
2447 		printf(".\n");
2448 }
2449 
2450 /*
2451  *  Save initial settings of some IO registers.
2452  *  Assumed to have been set by BIOS.
2453  *  We cannot reset the chip prior to reading the
2454  *  IO registers, since informations will be lost.
2455  *  Since the SCRIPTS processor may be running, this
2456  *  is not safe on paper, but it seems to work quite
2457  *  well. :)
2458  */
2459 static void sym_save_initial_setting (hcb_p np)
2460 {
2461 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2462 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2463 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2464 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2465 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2466 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2467 	np->sv_gpcntl	= INB(nc_gpcntl);
2468 	np->sv_stest1	= INB(nc_stest1);
2469 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2470 	np->sv_stest4	= INB(nc_stest4);
2471 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2472 		np->sv_scntl4	= INB(nc_scntl4);
2473 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2474 	}
2475 	else
2476 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2477 }
2478 
2479 /*
2480  *  Prepare io register values used by sym_init() according
2481  *  to selected and supported features.
2482  */
2483 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2484 {
2485 	u_char	burst_max;
2486 	u32	period;
2487 	int i;
2488 
2489 	/*
2490 	 *  Wide ?
2491 	 */
2492 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2493 
2494 	/*
2495 	 *  Get the frequency of the chip's clock.
2496 	 */
2497 	if	(np->features & FE_QUAD)
2498 		np->multiplier	= 4;
2499 	else if	(np->features & FE_DBLR)
2500 		np->multiplier	= 2;
2501 	else
2502 		np->multiplier	= 1;
2503 
2504 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2505 	np->clock_khz	*= np->multiplier;
2506 
2507 	if (np->clock_khz != 40000)
2508 		sym_getclock(np, np->multiplier);
2509 
2510 	/*
2511 	 * Divisor to be used for async (timer pre-scaler).
2512 	 */
2513 	i = np->clock_divn - 1;
2514 	while (--i >= 0) {
2515 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2516 			++i;
2517 			break;
2518 		}
2519 	}
2520 	np->rv_scntl3 = i+1;
2521 
2522 	/*
2523 	 * The C1010 uses hardwired divisors for async.
2524 	 * So, we just throw away, the async. divisor.:-)
2525 	 */
2526 	if (np->features & FE_C10)
2527 		np->rv_scntl3 = 0;
2528 
2529 	/*
2530 	 * Minimum synchronous period factor supported by the chip.
2531 	 * Btw, 'period' is in tenths of nanoseconds.
2532 	 */
2533 	period = howmany(4 * div_10M[0], np->clock_khz);
2534 	if	(period <= 250)		np->minsync = 10;
2535 	else if	(period <= 303)		np->minsync = 11;
2536 	else if	(period <= 500)		np->minsync = 12;
2537 	else				np->minsync = howmany(period, 40);
2538 
2539 	/*
2540 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2541 	 */
2542 	if	(np->minsync < 25 &&
2543 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2544 		np->minsync = 25;
2545 	else if	(np->minsync < 12 &&
2546 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2547 		np->minsync = 12;
2548 
2549 	/*
2550 	 * Maximum synchronous period factor supported by the chip.
2551 	 */
2552 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2553 	np->maxsync = period > 2540 ? 254 : period / 10;
2554 
2555 	/*
2556 	 * If chip is a C1010, guess the sync limits in DT mode.
2557 	 */
2558 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2559 		if (np->clock_khz == 160000) {
2560 			np->minsync_dt = 9;
2561 			np->maxsync_dt = 50;
2562 			np->maxoffs_dt = 62;
2563 		}
2564 	}
2565 
2566 	/*
2567 	 *  64 bit addressing  (895A/896/1010) ?
2568 	 */
2569 	if (np->features & FE_DAC)
2570 #ifdef __LP64__
2571 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2572 #else
2573 		np->rv_ccntl1	|= (DDAC);
2574 #endif
2575 
2576 	/*
2577 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2578   	 */
2579 	if (np->features & FE_NOPM)
2580 		np->rv_ccntl0	|= (ENPMJ);
2581 
2582  	/*
2583 	 *  C1010 Errata.
2584 	 *  In dual channel mode, contention occurs if internal cycles
2585 	 *  are used. Disable internal cycles.
2586 	 */
2587 	if (np->device_id == PCI_ID_LSI53C1010 &&
2588 	    np->revision_id < 0x2)
2589 		np->rv_ccntl0	|=  DILS;
2590 
2591 	/*
2592 	 *  Select burst length (dwords)
2593 	 */
2594 	burst_max	= SYM_SETUP_BURST_ORDER;
2595 	if (burst_max == 255)
2596 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2597 				       np->sv_ctest5);
2598 	if (burst_max > 7)
2599 		burst_max = 7;
2600 	if (burst_max > np->maxburst)
2601 		burst_max = np->maxburst;
2602 
2603 	/*
2604 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2605 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2606 	 *  based transactions on LOAD/STORE instructions. So we have
2607 	 *  to prevent these chips from using such PCI transactions in
2608 	 *  this driver. The generic ncr driver that does not use
2609 	 *  LOAD/STORE instructions does not need this work-around.
2610 	 */
2611 	if ((np->device_id == PCI_ID_SYM53C810 &&
2612 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2613 	    (np->device_id == PCI_ID_SYM53C860 &&
2614 	     np->revision_id <= 0x1))
2615 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2616 
2617 	/*
2618 	 *  Select all supported special features.
2619 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2620 	 *  does not help, but burst op fetch (BOF) does.
2621 	 *  Disabling PFEN makes sure BOF will be used.
2622 	 */
2623 	if (np->features & FE_ERL)
2624 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2625 	if (np->features & FE_BOF)
2626 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2627 	if (np->features & FE_ERMP)
2628 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2629 #if 1
2630 	if ((np->features & FE_PFEN) && !np->ram_ba)
2631 #else
2632 	if (np->features & FE_PFEN)
2633 #endif
2634 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2635 	if (np->features & FE_CLSE)
2636 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2637 	if (np->features & FE_WRIE)
2638 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2639 	if (np->features & FE_DFS)
2640 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2641 
2642 	/*
2643 	 *  Select some other
2644 	 */
2645 	if (SYM_SETUP_PCI_PARITY)
2646 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2647 	if (SYM_SETUP_SCSI_PARITY)
2648 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2649 
2650 	/*
2651 	 *  Get parity checking, host ID and verbose mode from NVRAM
2652 	 */
2653 	np->myaddr = 255;
2654 	sym_nvram_setup_host (np, nvram);
2655 #ifdef __sparc64__
2656 	np->myaddr = OF_getscsinitid(np->device);
2657 #endif
2658 
2659 	/*
2660 	 *  Get SCSI addr of host adapter (set by bios?).
2661 	 */
2662 	if (np->myaddr == 255) {
2663 		np->myaddr = INB(nc_scid) & 0x07;
2664 		if (!np->myaddr)
2665 			np->myaddr = SYM_SETUP_HOST_ID;
2666 	}
2667 
2668 	/*
2669 	 *  Prepare initial io register bits for burst length
2670 	 */
2671 	sym_init_burst(np, burst_max);
2672 
2673 	/*
2674 	 *  Set SCSI BUS mode.
2675 	 *  - LVD capable chips (895/895A/896/1010) report the
2676 	 *    current BUS mode through the STEST4 IO register.
2677 	 *  - For previous generation chips (825/825A/875),
2678 	 *    user has to tell us how to check against HVD,
2679 	 *    since a 100% safe algorithm is not possible.
2680 	 */
2681 	np->scsi_mode = SMODE_SE;
2682 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2683 		np->scsi_mode = (np->sv_stest4 & SMODE);
2684 	else if	(np->features & FE_DIFF) {
2685 		if (SYM_SETUP_SCSI_DIFF == 1) {
2686 			if (np->sv_scntl3) {
2687 				if (np->sv_stest2 & 0x20)
2688 					np->scsi_mode = SMODE_HVD;
2689 			}
2690 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2691 				if (!(INB(nc_gpreg) & 0x08))
2692 					np->scsi_mode = SMODE_HVD;
2693 			}
2694 		}
2695 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2696 			np->scsi_mode = SMODE_HVD;
2697 	}
2698 	if (np->scsi_mode == SMODE_HVD)
2699 		np->rv_stest2 |= 0x20;
2700 
2701 	/*
2702 	 *  Set LED support from SCRIPTS.
2703 	 *  Ignore this feature for boards known to use a
2704 	 *  specific GPIO wiring and for the 895A, 896
2705 	 *  and 1010 that drive the LED directly.
2706 	 */
2707 	if ((SYM_SETUP_SCSI_LED ||
2708 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2709 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2710 	       np->device_id == PCI_ID_SYM53C895))) &&
2711 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2712 		np->features |= FE_LED0;
2713 
2714 	/*
2715 	 *  Set irq mode.
2716 	 */
2717 	switch(SYM_SETUP_IRQ_MODE & 3) {
2718 	case 2:
2719 		np->rv_dcntl	|= IRQM;
2720 		break;
2721 	case 1:
2722 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2723 		break;
2724 	default:
2725 		break;
2726 	}
2727 
2728 	/*
2729 	 *  Configure targets according to driver setup.
2730 	 *  If NVRAM present get targets setup from NVRAM.
2731 	 */
2732 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2733 		tcb_p tp = &np->target[i];
2734 
2735 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2736 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2737 		tp->tinfo.user.period = np->minsync;
2738 		if (np->features & FE_ULTRA3)
2739 			tp->tinfo.user.period = np->minsync_dt;
2740 		tp->tinfo.user.offset = np->maxoffs;
2741 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2742 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2743 		tp->usrtags = SYM_SETUP_MAX_TAG;
2744 
2745 		sym_nvram_setup_target (np, i, nvram);
2746 
2747 		/*
2748 		 *  For now, guess PPR/DT support from the period
2749 		 *  and BUS width.
2750 		 */
2751 		if (np->features & FE_ULTRA3) {
2752 			if (tp->tinfo.user.period <= 9	&&
2753 			    tp->tinfo.user.width == BUS_16_BIT) {
2754 				tp->tinfo.user.options |= PPR_OPT_DT;
2755 				tp->tinfo.user.offset   = np->maxoffs_dt;
2756 				tp->tinfo.user.spi_version = 3;
2757 			}
2758 		}
2759 
2760 		if (!tp->usrtags)
2761 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2762 	}
2763 
2764 	/*
2765 	 *  Let user know about the settings.
2766 	 */
2767 	i = nvram->type;
2768 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2769 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2770 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2771 		np->myaddr,
2772 		(np->features & FE_ULTRA3) ? 80 :
2773 		(np->features & FE_ULTRA2) ? 40 :
2774 		(np->features & FE_ULTRA)  ? 20 : 10,
2775 		sym_scsi_bus_mode(np->scsi_mode),
2776 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2777 	/*
2778 	 *  Tell him more on demand.
2779 	 */
2780 	if (sym_verbose) {
2781 		printf("%s: %s IRQ line driver%s\n",
2782 			sym_name(np),
2783 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2784 			np->ram_ba ? ", using on-chip SRAM" : "");
2785 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2786 		if (np->features & FE_NOPM)
2787 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2788 			       sym_name(np));
2789 	}
2790 	/*
2791 	 *  And still more.
2792 	 */
2793 	if (sym_verbose > 1) {
2794 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2795 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2796 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2797 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2798 
2799 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2800 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2801 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2802 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2803 	}
2804 	/*
2805 	 *  Let user be aware of targets that have some disable flags set.
2806 	 */
2807 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2808 	if (sym_verbose)
2809 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2810 				       "SCAN FOR LUNS");
2811 
2812 	return 0;
2813 }
2814 
2815 /*
2816  *  Prepare the next negotiation message if needed.
2817  *
2818  *  Fill in the part of message buffer that contains the
2819  *  negotiation and the nego_status field of the CCB.
2820  *  Returns the size of the message in bytes.
2821  */
2822 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2823 {
2824 	tcb_p tp = &np->target[cp->target];
2825 	int msglen = 0;
2826 
2827 	/*
2828 	 *  Early C1010 chips need a work-around for DT
2829 	 *  data transfer to work.
2830 	 */
2831 	if (!(np->features & FE_U3EN))
2832 		tp->tinfo.goal.options = 0;
2833 	/*
2834 	 *  negotiate using PPR ?
2835 	 */
2836 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2837 		nego = NS_PPR;
2838 	/*
2839 	 *  negotiate wide transfers ?
2840 	 */
2841 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2842 		nego = NS_WIDE;
2843 	/*
2844 	 *  negotiate synchronous transfers?
2845 	 */
2846 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2847 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2848 		nego = NS_SYNC;
2849 
2850 	switch (nego) {
2851 	case NS_SYNC:
2852 		msgptr[msglen++] = M_EXTENDED;
2853 		msgptr[msglen++] = 3;
2854 		msgptr[msglen++] = M_X_SYNC_REQ;
2855 		msgptr[msglen++] = tp->tinfo.goal.period;
2856 		msgptr[msglen++] = tp->tinfo.goal.offset;
2857 		break;
2858 	case NS_WIDE:
2859 		msgptr[msglen++] = M_EXTENDED;
2860 		msgptr[msglen++] = 2;
2861 		msgptr[msglen++] = M_X_WIDE_REQ;
2862 		msgptr[msglen++] = tp->tinfo.goal.width;
2863 		break;
2864 	case NS_PPR:
2865 		msgptr[msglen++] = M_EXTENDED;
2866 		msgptr[msglen++] = 6;
2867 		msgptr[msglen++] = M_X_PPR_REQ;
2868 		msgptr[msglen++] = tp->tinfo.goal.period;
2869 		msgptr[msglen++] = 0;
2870 		msgptr[msglen++] = tp->tinfo.goal.offset;
2871 		msgptr[msglen++] = tp->tinfo.goal.width;
2872 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2873 		break;
2874 	}
2875 
2876 	cp->nego_status = nego;
2877 
2878 	if (nego) {
2879 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2880 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2881 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2882 					  nego == NS_WIDE ? "wide msgout" :
2883 					  "ppr msgout", msgptr);
2884 		}
2885 	}
2886 
2887 	return msglen;
2888 }
2889 
2890 /*
2891  *  Insert a job into the start queue.
2892  */
2893 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2894 {
2895 	u_short	qidx;
2896 
2897 #ifdef SYM_CONF_IARB_SUPPORT
2898 	/*
2899 	 *  If the previously queued CCB is not yet done,
2900 	 *  set the IARB hint. The SCRIPTS will go with IARB
2901 	 *  for this job when starting the previous one.
2902 	 *  We leave devices a chance to win arbitration by
2903 	 *  not using more than 'iarb_max' consecutive
2904 	 *  immediate arbitrations.
2905 	 */
2906 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2907 		np->last_cp->host_flags |= HF_HINT_IARB;
2908 		++np->iarb_count;
2909 	}
2910 	else
2911 		np->iarb_count = 0;
2912 	np->last_cp = cp;
2913 #endif
2914 
2915 	/*
2916 	 *  Insert first the idle task and then our job.
2917 	 *  The MB should ensure proper ordering.
2918 	 */
2919 	qidx = np->squeueput + 2;
2920 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2921 
2922 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2923 	MEMORY_BARRIER();
2924 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2925 
2926 	np->squeueput = qidx;
2927 
2928 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2929 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2930 
2931 	/*
2932 	 *  Script processor may be waiting for reselect.
2933 	 *  Wake it up.
2934 	 */
2935 	MEMORY_BARRIER();
2936 	OUTB (nc_istat, SIGP|np->istat_sem);
2937 }
2938 
2939 /*
2940  *  Soft reset the chip.
2941  *
2942  *  Raising SRST when the chip is running may cause
2943  *  problems on dual function chips (see below).
2944  *  On the other hand, LVD devices need some delay
2945  *  to settle and report actual BUS mode in STEST4.
2946  */
2947 static void sym_chip_reset (hcb_p np)
2948 {
2949 	OUTB (nc_istat, SRST);
2950 	UDELAY (10);
2951 	OUTB (nc_istat, 0);
2952 	UDELAY(2000);	/* For BUS MODE to settle */
2953 }
2954 
2955 /*
2956  *  Soft reset the chip.
2957  *
2958  *  Some 896 and 876 chip revisions may hang-up if we set
2959  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2960  *  are running.
2961  *  So, we need to abort the current operation prior to
2962  *  soft resetting the chip.
2963  */
2964 static void sym_soft_reset (hcb_p np)
2965 {
2966 	u_char istat;
2967 	int i;
2968 
2969 	OUTB (nc_istat, CABRT);
2970 	for (i = 1000000 ; i ; --i) {
2971 		istat = INB (nc_istat);
2972 		if (istat & SIP) {
2973 			INW (nc_sist);
2974 			continue;
2975 		}
2976 		if (istat & DIP) {
2977 			OUTB (nc_istat, 0);
2978 			INB (nc_dstat);
2979 			break;
2980 		}
2981 	}
2982 	if (!i)
2983 		printf("%s: unable to abort current chip operation.\n",
2984 			sym_name(np));
2985 	sym_chip_reset (np);
2986 }
2987 
2988 /*
2989  *  Start reset process.
2990  *
2991  *  The interrupt handler will reinitialize the chip.
2992  */
2993 static void sym_start_reset(hcb_p np)
2994 {
2995 	(void) sym_reset_scsi_bus(np, 1);
2996 }
2997 
2998 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2999 {
3000 	u32 term;
3001 	int retv = 0;
3002 
3003 	sym_soft_reset(np);	/* Soft reset the chip */
3004 	if (enab_int)
3005 		OUTW (nc_sien, RST);
3006 	/*
3007 	 *  Enable Tolerant, reset IRQD if present and
3008 	 *  properly set IRQ mode, prior to resetting the bus.
3009 	 */
3010 	OUTB (nc_stest3, TE);
3011 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3012 	OUTB (nc_scntl1, CRST);
3013 	UDELAY (200);
3014 
3015 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3016 		goto out;
3017 	/*
3018 	 *  Check for no terminators or SCSI bus shorts to ground.
3019 	 *  Read SCSI data bus, data parity bits and control signals.
3020 	 *  We are expecting RESET to be TRUE and other signals to be
3021 	 *  FALSE.
3022 	 */
3023 	term =	INB(nc_sstat0);
3024 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3025 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3026 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3027 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3028 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3029 
3030 	if (!(np->features & FE_WIDE))
3031 		term &= 0x3ffff;
3032 
3033 	if (term != (2<<7)) {
3034 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3035 			sym_name(np));
3036 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3037 			"0x%lx, expecting 0x%lx\n",
3038 			sym_name(np),
3039 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3040 			(u_long)term, (u_long)(2<<7));
3041 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3042 			retv = 1;
3043 	}
3044 out:
3045 	OUTB (nc_scntl1, 0);
3046 	/* MDELAY(100); */
3047 	return retv;
3048 }
3049 
3050 /*
3051  *  The chip may have completed jobs. Look at the DONE QUEUE.
3052  *
3053  *  On architectures that may reorder LOAD/STORE operations,
3054  *  a memory barrier may be needed after the reading of the
3055  *  so-called `flag' and prior to dealing with the data.
3056  */
3057 static int sym_wakeup_done (hcb_p np)
3058 {
3059 	ccb_p cp;
3060 	int i, n;
3061 	u32 dsa;
3062 
3063 	SYM_LOCK_ASSERT(MA_OWNED);
3064 
3065 	n = 0;
3066 	i = np->dqueueget;
3067 	while (1) {
3068 		dsa = scr_to_cpu(np->dqueue[i]);
3069 		if (!dsa)
3070 			break;
3071 		np->dqueue[i] = 0;
3072 		if ((i = i+2) >= MAX_QUEUE*2)
3073 			i = 0;
3074 
3075 		cp = sym_ccb_from_dsa(np, dsa);
3076 		if (cp) {
3077 			MEMORY_BARRIER();
3078 			sym_complete_ok (np, cp);
3079 			++n;
3080 		}
3081 		else
3082 			printf ("%s: bad DSA (%x) in done queue.\n",
3083 				sym_name(np), (u_int) dsa);
3084 	}
3085 	np->dqueueget = i;
3086 
3087 	return n;
3088 }
3089 
3090 /*
3091  *  Complete all active CCBs with error.
3092  *  Used on CHIP/SCSI RESET.
3093  */
3094 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3095 {
3096 	/*
3097 	 *  Move all active CCBs to the COMP queue
3098 	 *  and flush this queue.
3099 	 */
3100 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3101 	sym_que_init(&np->busy_ccbq);
3102 	sym_flush_comp_queue(np, cam_status);
3103 }
3104 
3105 /*
3106  *  Start chip.
3107  *
3108  *  'reason' means:
3109  *     0: initialisation.
3110  *     1: SCSI BUS RESET delivered or received.
3111  *     2: SCSI BUS MODE changed.
3112  */
3113 static void sym_init (hcb_p np, int reason)
3114 {
3115  	int	i;
3116 	u32	phys;
3117 
3118 	SYM_LOCK_ASSERT(MA_OWNED);
3119 
3120  	/*
3121 	 *  Reset chip if asked, otherwise just clear fifos.
3122  	 */
3123 	if (reason == 1)
3124 		sym_soft_reset(np);
3125 	else {
3126 		OUTB (nc_stest3, TE|CSF);
3127 		OUTONB (nc_ctest3, CLF);
3128 	}
3129 
3130 	/*
3131 	 *  Clear Start Queue
3132 	 */
3133 	phys = np->squeue_ba;
3134 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3135 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3136 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3137 	}
3138 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3139 
3140 	/*
3141 	 *  Start at first entry.
3142 	 */
3143 	np->squeueput = 0;
3144 
3145 	/*
3146 	 *  Clear Done Queue
3147 	 */
3148 	phys = np->dqueue_ba;
3149 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3150 		np->dqueue[i]   = 0;
3151 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3152 	}
3153 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3154 
3155 	/*
3156 	 *  Start at first entry.
3157 	 */
3158 	np->dqueueget = 0;
3159 
3160 	/*
3161 	 *  Install patches in scripts.
3162 	 *  This also let point to first position the start
3163 	 *  and done queue pointers used from SCRIPTS.
3164 	 */
3165 	np->fw_patch(np);
3166 
3167 	/*
3168 	 *  Wakeup all pending jobs.
3169 	 */
3170 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3171 
3172 	/*
3173 	 *  Init chip.
3174 	 */
3175 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3176 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3177 
3178 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3179 					/*  full arb., ena parity, par->ATN  */
3180 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3181 
3182 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3183 
3184 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3185 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3186 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3187 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3188 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3189 
3190 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3191 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3192 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3193 
3194 	/* Extended Sreq/Sack filtering not supported on the C10 */
3195 	if (np->features & FE_C10)
3196 		OUTB (nc_stest2, np->rv_stest2);
3197 	else
3198 		OUTB (nc_stest2, EXT|np->rv_stest2);
3199 
3200 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3201 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3202 
3203 	/*
3204 	 *  For now, disable AIP generation on C1010-66.
3205 	 */
3206 	if (np->device_id == PCI_ID_LSI53C1010_2)
3207 		OUTB (nc_aipcntl1, DISAIP);
3208 
3209 	/*
3210 	 *  C10101 Errata.
3211 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3212 	 *  STEST1 register to disable SGE. We probably should do
3213 	 *  that from SCRIPTS for each selection/reselection, but
3214 	 *  I just don't want. :)
3215 	 */
3216 	if (np->device_id == PCI_ID_LSI53C1010 &&
3217 	    /* np->revision_id < 0xff */ 1)
3218 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3219 
3220 	/*
3221 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3222 	 *  Disable overlapped arbitration for some dual function devices,
3223 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3224 	 */
3225 	if (np->device_id == PCI_ID_SYM53C875)
3226 		OUTB (nc_ctest0, (1<<5));
3227 	else if (np->device_id == PCI_ID_SYM53C896)
3228 		np->rv_ccntl0 |= DPR;
3229 
3230 	/*
3231 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3232 	 *  and/or hardware phase mismatch, since only such chips
3233 	 *  seem to support those IO registers.
3234 	 */
3235 	if (np->features & (FE_DAC|FE_NOPM)) {
3236 		OUTB (nc_ccntl0, np->rv_ccntl0);
3237 		OUTB (nc_ccntl1, np->rv_ccntl1);
3238 	}
3239 
3240 	/*
3241 	 *  If phase mismatch handled by scripts (895A/896/1010),
3242 	 *  set PM jump addresses.
3243 	 */
3244 	if (np->features & FE_NOPM) {
3245 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3246 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3247 	}
3248 
3249 	/*
3250 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3251 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3252 	 */
3253 	if (np->features & FE_LED0)
3254 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3255 	else if (np->features & FE_LEDC)
3256 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3257 
3258 	/*
3259 	 *      enable ints
3260 	 */
3261 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3262 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3263 
3264 	/*
3265 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3266 	 *  Try to eat the spurious SBMC interrupt that may occur when
3267 	 *  we reset the chip but not the SCSI BUS (at initialization).
3268 	 */
3269 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3270 		OUTONW (nc_sien, SBMC);
3271 		if (reason == 0) {
3272 			MDELAY(100);
3273 			INW (nc_sist);
3274 		}
3275 		np->scsi_mode = INB (nc_stest4) & SMODE;
3276 	}
3277 
3278 	/*
3279 	 *  Fill in target structure.
3280 	 *  Reinitialize usrsync.
3281 	 *  Reinitialize usrwide.
3282 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3283 	 */
3284 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3285 		tcb_p tp = &np->target[i];
3286 
3287 		tp->to_reset  = 0;
3288 		tp->head.sval = 0;
3289 		tp->head.wval = np->rv_scntl3;
3290 		tp->head.uval = 0;
3291 
3292 		tp->tinfo.current.period = 0;
3293 		tp->tinfo.current.offset = 0;
3294 		tp->tinfo.current.width  = BUS_8_BIT;
3295 		tp->tinfo.current.options = 0;
3296 	}
3297 
3298 	/*
3299 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3300 	 *  and start script processor.
3301 	 */
3302 	if (np->ram_ba) {
3303 		if (sym_verbose > 1)
3304 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3305 				sym_name(np));
3306 		if (np->ram_ws == 8192) {
3307 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3308 			OUTL (nc_mmws, np->scr_ram_seg);
3309 			OUTL (nc_mmrs, np->scr_ram_seg);
3310 			OUTL (nc_sfs,  np->scr_ram_seg);
3311 			phys = SCRIPTB_BA (np, start64);
3312 		}
3313 		else
3314 			phys = SCRIPTA_BA (np, init);
3315 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3316 	}
3317 	else
3318 		phys = SCRIPTA_BA (np, init);
3319 
3320 	np->istat_sem = 0;
3321 
3322 	OUTL (nc_dsa, np->hcb_ba);
3323 	OUTL_DSP (phys);
3324 
3325 	/*
3326 	 *  Notify the XPT about the RESET condition.
3327 	 */
3328 	if (reason != 0)
3329 		xpt_async(AC_BUS_RESET, np->path, NULL);
3330 }
3331 
3332 /*
3333  *  Get clock factor and sync divisor for a given
3334  *  synchronous factor period.
3335  */
3336 static int
3337 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3338 {
3339 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3340 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3341 	u32	fak;			/* Sync factor in sxfer		*/
3342 	u32	per;			/* Period in tenths of ns	*/
3343 	u32	kpc;			/* (per * clk)			*/
3344 	int	ret;
3345 
3346 	/*
3347 	 *  Compute the synchronous period in tenths of nano-seconds
3348 	 */
3349 	if (dt && sfac <= 9)	per = 125;
3350 	else if	(sfac <= 10)	per = 250;
3351 	else if	(sfac == 11)	per = 303;
3352 	else if	(sfac == 12)	per = 500;
3353 	else			per = 40 * sfac;
3354 	ret = per;
3355 
3356 	kpc = per * clk;
3357 	if (dt)
3358 		kpc <<= 1;
3359 
3360 	/*
3361 	 *  For earliest C10 revision 0, we cannot use extra
3362 	 *  clocks for the setting of the SCSI clocking.
3363 	 *  Note that this limits the lowest sync data transfer
3364 	 *  to 5 Mega-transfers per second and may result in
3365 	 *  using higher clock divisors.
3366 	 */
3367 #if 1
3368 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3369 		/*
3370 		 *  Look for the lowest clock divisor that allows an
3371 		 *  output speed not faster than the period.
3372 		 */
3373 		while (div > 0) {
3374 			--div;
3375 			if (kpc > (div_10M[div] << 2)) {
3376 				++div;
3377 				break;
3378 			}
3379 		}
3380 		fak = 0;			/* No extra clocks */
3381 		if (div == np->clock_divn) {	/* Are we too fast ? */
3382 			ret = -1;
3383 		}
3384 		*divp = div;
3385 		*fakp = fak;
3386 		return ret;
3387 	}
3388 #endif
3389 
3390 	/*
3391 	 *  Look for the greatest clock divisor that allows an
3392 	 *  input speed faster than the period.
3393 	 */
3394 	while (div-- > 0)
3395 		if (kpc >= (div_10M[div] << 2)) break;
3396 
3397 	/*
3398 	 *  Calculate the lowest clock factor that allows an output
3399 	 *  speed not faster than the period, and the max output speed.
3400 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3401 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3402 	 */
3403 	if (dt) {
3404 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3405 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3406 	}
3407 	else {
3408 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3409 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3410 	}
3411 
3412 	/*
3413 	 *  Check against our hardware limits, or bugs :).
3414 	 */
3415 	if (fak > 2)	{fak = 2; ret = -1;}
3416 
3417 	/*
3418 	 *  Compute and return sync parameters.
3419 	 */
3420 	*divp = div;
3421 	*fakp = fak;
3422 
3423 	return ret;
3424 }
3425 
3426 /*
3427  *  Tell the SCSI layer about the new transfer parameters.
3428  */
3429 static void
3430 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3431 {
3432 	struct ccb_trans_settings cts;
3433 	struct cam_path *path;
3434 	int sts;
3435 	tcb_p tp = &np->target[target];
3436 
3437 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3438 	                      CAM_LUN_WILDCARD);
3439 	if (sts != CAM_REQ_CMP)
3440 		return;
3441 
3442 	bzero(&cts, sizeof(cts));
3443 
3444 #define	cts__scsi (cts.proto_specific.scsi)
3445 #define	cts__spi  (cts.xport_specific.spi)
3446 
3447 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3448 	cts.protocol  = PROTO_SCSI;
3449 	cts.transport = XPORT_SPI;
3450 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3451 	cts.transport_version = tp->tinfo.current.spi_version;
3452 
3453 	cts__spi.valid = spi_valid;
3454 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3455 		cts__spi.sync_period = tp->tinfo.current.period;
3456 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3457 		cts__spi.sync_offset = tp->tinfo.current.offset;
3458 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3459 		cts__spi.bus_width   = tp->tinfo.current.width;
3460 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3461 		cts__spi.ppr_options = tp->tinfo.current.options;
3462 #undef cts__spi
3463 #undef cts__scsi
3464 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3465 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3466 	xpt_free_path(path);
3467 }
3468 
3469 #define SYM_SPI_VALID_WDTR		\
3470 	CTS_SPI_VALID_BUS_WIDTH |	\
3471 	CTS_SPI_VALID_SYNC_RATE |	\
3472 	CTS_SPI_VALID_SYNC_OFFSET
3473 #define SYM_SPI_VALID_SDTR		\
3474 	CTS_SPI_VALID_SYNC_RATE |	\
3475 	CTS_SPI_VALID_SYNC_OFFSET
3476 #define SYM_SPI_VALID_PPR		\
3477 	CTS_SPI_VALID_PPR_OPTIONS |	\
3478 	CTS_SPI_VALID_BUS_WIDTH |	\
3479 	CTS_SPI_VALID_SYNC_RATE |	\
3480 	CTS_SPI_VALID_SYNC_OFFSET
3481 
3482 /*
3483  *  We received a WDTR.
3484  *  Let everything be aware of the changes.
3485  */
3486 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3487 {
3488 	tcb_p tp = &np->target[cp->target];
3489 
3490 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3491 
3492 	/*
3493 	 *  Tell the SCSI layer about the new transfer parameters.
3494 	 */
3495 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3496 	tp->tinfo.current.offset = 0;
3497 	tp->tinfo.current.period = 0;
3498 	tp->tinfo.current.options = 0;
3499 
3500 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3501 }
3502 
3503 /*
3504  *  We received a SDTR.
3505  *  Let everything be aware of the changes.
3506  */
3507 static void
3508 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3509 {
3510 	tcb_p tp = &np->target[cp->target];
3511 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3512 
3513 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3514 
3515 	/*
3516 	 *  Tell the SCSI layer about the new transfer parameters.
3517 	 */
3518 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3519 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3520 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3521 
3522 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3523 }
3524 
3525 /*
3526  *  We received a PPR.
3527  *  Let everything be aware of the changes.
3528  */
3529 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3530 			 u_char per, u_char wide, u_char div, u_char fak)
3531 {
3532 	tcb_p tp = &np->target[cp->target];
3533 
3534 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3535 
3536 	/*
3537 	 *  Tell the SCSI layer about the new transfer parameters.
3538 	 */
3539 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3540 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3541 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3542 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3543 
3544 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3545 }
3546 
3547 /*
3548  *  Switch trans mode for current job and it's target.
3549  */
3550 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3551 			 u_char per, u_char wide, u_char div, u_char fak)
3552 {
3553 	SYM_QUEHEAD *qp;
3554 	union	ccb *ccb;
3555 	tcb_p tp;
3556 	u_char target = INB (nc_sdid) & 0x0f;
3557 	u_char sval, wval, uval;
3558 
3559 	assert (cp);
3560 	if (!cp) return;
3561 	ccb = cp->cam_ccb;
3562 	assert (ccb);
3563 	if (!ccb) return;
3564 	assert (target == (cp->target & 0xf));
3565 	tp = &np->target[target];
3566 
3567 	sval = tp->head.sval;
3568 	wval = tp->head.wval;
3569 	uval = tp->head.uval;
3570 
3571 #if 0
3572 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3573 		sval, wval, uval, np->rv_scntl3);
3574 #endif
3575 	/*
3576 	 *  Set the offset.
3577 	 */
3578 	if (!(np->features & FE_C10))
3579 		sval = (sval & ~0x1f) | ofs;
3580 	else
3581 		sval = (sval & ~0x3f) | ofs;
3582 
3583 	/*
3584 	 *  Set the sync divisor and extra clock factor.
3585 	 */
3586 	if (ofs != 0) {
3587 		wval = (wval & ~0x70) | ((div+1) << 4);
3588 		if (!(np->features & FE_C10))
3589 			sval = (sval & ~0xe0) | (fak << 5);
3590 		else {
3591 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3592 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3593 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3594 		}
3595 	}
3596 
3597 	/*
3598 	 *  Set the bus width.
3599 	 */
3600 	wval = wval & ~EWS;
3601 	if (wide != 0)
3602 		wval |= EWS;
3603 
3604 	/*
3605 	 *  Set misc. ultra enable bits.
3606 	 */
3607 	if (np->features & FE_C10) {
3608 		uval = uval & ~(U3EN|AIPCKEN);
3609 		if (dt)	{
3610 			assert(np->features & FE_U3EN);
3611 			uval |= U3EN;
3612 		}
3613 	}
3614 	else {
3615 		wval = wval & ~ULTRA;
3616 		if (per <= 12)	wval |= ULTRA;
3617 	}
3618 
3619 	/*
3620 	 *   Stop there if sync parameters are unchanged.
3621 	 */
3622 	if (tp->head.sval == sval &&
3623 	    tp->head.wval == wval &&
3624 	    tp->head.uval == uval)
3625 		return;
3626 	tp->head.sval = sval;
3627 	tp->head.wval = wval;
3628 	tp->head.uval = uval;
3629 
3630 	/*
3631 	 *  Disable extended Sreq/Sack filtering if per < 50.
3632 	 *  Not supported on the C1010.
3633 	 */
3634 	if (per < 50 && !(np->features & FE_C10))
3635 		OUTOFFB (nc_stest2, EXT);
3636 
3637 	/*
3638 	 *  set actual value and sync_status
3639 	 */
3640 	OUTB (nc_sxfer,  tp->head.sval);
3641 	OUTB (nc_scntl3, tp->head.wval);
3642 
3643 	if (np->features & FE_C10) {
3644 		OUTB (nc_scntl4, tp->head.uval);
3645 	}
3646 
3647 	/*
3648 	 *  patch ALL busy ccbs of this target.
3649 	 */
3650 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3651 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3652 		if (cp->target != target)
3653 			continue;
3654 		cp->phys.select.sel_scntl3 = tp->head.wval;
3655 		cp->phys.select.sel_sxfer  = tp->head.sval;
3656 		if (np->features & FE_C10) {
3657 			cp->phys.select.sel_scntl4 = tp->head.uval;
3658 		}
3659 	}
3660 }
3661 
3662 /*
3663  *  log message for real hard errors
3664  *
3665  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3666  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3667  *
3668  *  exception register:
3669  *  	ds:	dstat
3670  *  	si:	sist
3671  *
3672  *  SCSI bus lines:
3673  *  	so:	control lines as driven by chip.
3674  *  	si:	control lines as seen by chip.
3675  *  	sd:	scsi data lines as seen by chip.
3676  *
3677  *  wide/fastmode:
3678  *  	sxfer:	(see the manual)
3679  *  	scntl3:	(see the manual)
3680  *
3681  *  current script command:
3682  *  	dsp:	script address (relative to start of script).
3683  *  	dbc:	first word of script command.
3684  *
3685  *  First 24 register of the chip:
3686  *  	r0..rf
3687  */
3688 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3689 {
3690 	u32	dsp;
3691 	int	script_ofs;
3692 	int	script_size;
3693 	char	*script_name;
3694 	u_char	*script_base;
3695 	int	i;
3696 
3697 	dsp	= INL (nc_dsp);
3698 
3699 	if	(dsp > np->scripta_ba &&
3700 		 dsp <= np->scripta_ba + np->scripta_sz) {
3701 		script_ofs	= dsp - np->scripta_ba;
3702 		script_size	= np->scripta_sz;
3703 		script_base	= (u_char *) np->scripta0;
3704 		script_name	= "scripta";
3705 	}
3706 	else if (np->scriptb_ba < dsp &&
3707 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3708 		script_ofs	= dsp - np->scriptb_ba;
3709 		script_size	= np->scriptb_sz;
3710 		script_base	= (u_char *) np->scriptb0;
3711 		script_name	= "scriptb";
3712 	} else {
3713 		script_ofs	= dsp;
3714 		script_size	= 0;
3715 		script_base	= NULL;
3716 		script_name	= "mem";
3717 	}
3718 
3719 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3720 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3721 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3722 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3723 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3724 		(unsigned)INL (nc_dbc));
3725 
3726 	if (((script_ofs & 3) == 0) &&
3727 	    (unsigned)script_ofs < script_size) {
3728 		printf ("%s: script cmd = %08x\n", sym_name(np),
3729 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3730 	}
3731 
3732         printf ("%s: regdump:", sym_name(np));
3733         for (i=0; i<24;i++)
3734             printf (" %02x", (unsigned)INB_OFF(i));
3735         printf (".\n");
3736 
3737 	/*
3738 	 *  PCI BUS error, read the PCI ststus register.
3739 	 */
3740 	if (dstat & (MDPE|BF)) {
3741 		u_short pci_sts;
3742 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3743 		if (pci_sts & 0xf900) {
3744 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3745 			printf("%s: PCI STATUS = 0x%04x\n",
3746 				sym_name(np), pci_sts & 0xf900);
3747 		}
3748 	}
3749 }
3750 
3751 /*
3752  *  chip interrupt handler
3753  *
3754  *  In normal situations, interrupt conditions occur one at
3755  *  a time. But when something bad happens on the SCSI BUS,
3756  *  the chip may raise several interrupt flags before
3757  *  stopping and interrupting the CPU. The additionnal
3758  *  interrupt flags are stacked in some extra registers
3759  *  after the SIP and/or DIP flag has been raised in the
3760  *  ISTAT. After the CPU has read the interrupt condition
3761  *  flag from SIST or DSTAT, the chip unstacks the other
3762  *  interrupt flags and sets the corresponding bits in
3763  *  SIST or DSTAT. Since the chip starts stacking once the
3764  *  SIP or DIP flag is set, there is a small window of time
3765  *  where the stacking does not occur.
3766  *
3767  *  Typically, multiple interrupt conditions may happen in
3768  *  the following situations:
3769  *
3770  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3771  *    When a parity error is detected in input phase
3772  *    and the device switches to msg-in phase inside a
3773  *    block MOV.
3774  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3775  *    When a stupid device does not want to handle the
3776  *    recovery of an SCSI parity error.
3777  *  - Some combinations of STO, PAR, UDC, ...
3778  *    When using non compliant SCSI stuff, when user is
3779  *    doing non compliant hot tampering on the BUS, when
3780  *    something really bad happens to a device, etc ...
3781  *
3782  *  The heuristic suggested by SYMBIOS to handle
3783  *  multiple interrupts is to try unstacking all
3784  *  interrupts conditions and to handle them on some
3785  *  priority based on error severity.
3786  *  This will work when the unstacking has been
3787  *  successful, but we cannot be 100 % sure of that,
3788  *  since the CPU may have been faster to unstack than
3789  *  the chip is able to stack. Hmmm ... But it seems that
3790  *  such a situation is very unlikely to happen.
3791  *
3792  *  If this happen, for example STO caught by the CPU
3793  *  then UDC happenning before the CPU have restarted
3794  *  the SCRIPTS, the driver may wrongly complete the
3795  *  same command on UDC, since the SCRIPTS didn't restart
3796  *  and the DSA still points to the same command.
3797  *  We avoid this situation by setting the DSA to an
3798  *  invalid value when the CCB is completed and before
3799  *  restarting the SCRIPTS.
3800  *
3801  *  Another issue is that we need some section of our
3802  *  recovery procedures to be somehow uninterruptible but
3803  *  the SCRIPTS processor does not provides such a
3804  *  feature. For this reason, we handle recovery preferently
3805  *  from the C code and check against some SCRIPTS critical
3806  *  sections from the C code.
3807  *
3808  *  Hopefully, the interrupt handling of the driver is now
3809  *  able to resist to weird BUS error conditions, but donnot
3810  *  ask me for any guarantee that it will never fail. :-)
3811  *  Use at your own decision and risk.
3812  */
3813 static void sym_intr1 (hcb_p np)
3814 {
3815 	u_char	istat, istatc;
3816 	u_char	dstat;
3817 	u_short	sist;
3818 
3819 	SYM_LOCK_ASSERT(MA_OWNED);
3820 
3821 	/*
3822 	 *  interrupt on the fly ?
3823 	 *
3824 	 *  A `dummy read' is needed to ensure that the
3825 	 *  clear of the INTF flag reaches the device
3826 	 *  before the scanning of the DONE queue.
3827 	 */
3828 	istat = INB (nc_istat);
3829 	if (istat & INTF) {
3830 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3831 		istat = INB (nc_istat);		/* DUMMY READ */
3832 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3833 		(void)sym_wakeup_done (np);
3834 	}
3835 
3836 	if (!(istat & (SIP|DIP)))
3837 		return;
3838 
3839 #if 0	/* We should never get this one */
3840 	if (istat & CABRT)
3841 		OUTB (nc_istat, CABRT);
3842 #endif
3843 
3844 	/*
3845 	 *  PAR and MA interrupts may occur at the same time,
3846 	 *  and we need to know of both in order to handle
3847 	 *  this situation properly. We try to unstack SCSI
3848 	 *  interrupts for that reason. BTW, I dislike a LOT
3849 	 *  such a loop inside the interrupt routine.
3850 	 *  Even if DMA interrupt stacking is very unlikely to
3851 	 *  happen, we also try unstacking these ones, since
3852 	 *  this has no performance impact.
3853 	 */
3854 	sist	= 0;
3855 	dstat	= 0;
3856 	istatc	= istat;
3857 	do {
3858 		if (istatc & SIP)
3859 			sist  |= INW (nc_sist);
3860 		if (istatc & DIP)
3861 			dstat |= INB (nc_dstat);
3862 		istatc = INB (nc_istat);
3863 		istat |= istatc;
3864 	} while (istatc & (SIP|DIP));
3865 
3866 	if (DEBUG_FLAGS & DEBUG_TINY)
3867 		printf ("<%d|%x:%x|%x:%x>",
3868 			(int)INB(nc_scr0),
3869 			dstat,sist,
3870 			(unsigned)INL(nc_dsp),
3871 			(unsigned)INL(nc_dbc));
3872 	/*
3873 	 *  On paper, a memory barrier may be needed here.
3874 	 *  And since we are paranoid ... :)
3875 	 */
3876 	MEMORY_BARRIER();
3877 
3878 	/*
3879 	 *  First, interrupts we want to service cleanly.
3880 	 *
3881 	 *  Phase mismatch (MA) is the most frequent interrupt
3882 	 *  for chip earlier than the 896 and so we have to service
3883 	 *  it as quickly as possible.
3884 	 *  A SCSI parity error (PAR) may be combined with a phase
3885 	 *  mismatch condition (MA).
3886 	 *  Programmed interrupts (SIR) are used to call the C code
3887 	 *  from SCRIPTS.
3888 	 *  The single step interrupt (SSI) is not used in this
3889 	 *  driver.
3890 	 */
3891 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3892 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3893 		if	(sist & PAR)	sym_int_par (np, sist);
3894 		else if (sist & MA)	sym_int_ma (np);
3895 		else if (dstat & SIR)	sym_int_sir (np);
3896 		else if (dstat & SSI)	OUTONB_STD ();
3897 		else			goto unknown_int;
3898 		return;
3899 	}
3900 
3901 	/*
3902 	 *  Now, interrupts that donnot happen in normal
3903 	 *  situations and that we may need to recover from.
3904 	 *
3905 	 *  On SCSI RESET (RST), we reset everything.
3906 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3907 	 *  active CCBs with RESET status, prepare all devices
3908 	 *  for negotiating again and restart the SCRIPTS.
3909 	 *  On STO and UDC, we complete the CCB with the corres-
3910 	 *  ponding status and restart the SCRIPTS.
3911 	 */
3912 	if (sist & RST) {
3913 		xpt_print_path(np->path);
3914 		printf("SCSI BUS reset detected.\n");
3915 		sym_init (np, 1);
3916 		return;
3917 	}
3918 
3919 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3920 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3921 
3922 	if (!(sist  & (GEN|HTH|SGE)) &&
3923 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3924 		if	(sist & SBMC)	sym_int_sbmc (np);
3925 		else if (sist & STO)	sym_int_sto (np);
3926 		else if (sist & UDC)	sym_int_udc (np);
3927 		else			goto unknown_int;
3928 		return;
3929 	}
3930 
3931 	/*
3932 	 *  Now, interrupts we are not able to recover cleanly.
3933 	 *
3934 	 *  Log message for hard errors.
3935 	 *  Reset everything.
3936 	 */
3937 
3938 	sym_log_hard_error(np, sist, dstat);
3939 
3940 	if ((sist & (GEN|HTH|SGE)) ||
3941 		(dstat & (MDPE|BF|ABRT|IID))) {
3942 		sym_start_reset(np);
3943 		return;
3944 	}
3945 
3946 unknown_int:
3947 	/*
3948 	 *  We just miss the cause of the interrupt. :(
3949 	 *  Print a message. The timeout will do the real work.
3950 	 */
3951 	printf(	"%s: unknown interrupt(s) ignored, "
3952 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3953 		sym_name(np), istat, dstat, sist);
3954 }
3955 
3956 static void sym_intr(void *arg)
3957 {
3958 	hcb_p np = arg;
3959 
3960 	SYM_LOCK();
3961 
3962 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3963 	sym_intr1((hcb_p) arg);
3964 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3965 
3966 	SYM_UNLOCK();
3967 }
3968 
3969 static void sym_poll(struct cam_sim *sim)
3970 {
3971 	sym_intr1(cam_sim_softc(sim));
3972 }
3973 
3974 /*
3975  *  generic recovery from scsi interrupt
3976  *
3977  *  The doc says that when the chip gets an SCSI interrupt,
3978  *  it tries to stop in an orderly fashion, by completing
3979  *  an instruction fetch that had started or by flushing
3980  *  the DMA fifo for a write to memory that was executing.
3981  *  Such a fashion is not enough to know if the instruction
3982  *  that was just before the current DSP value has been
3983  *  executed or not.
3984  *
3985  *  There are some small SCRIPTS sections that deal with
3986  *  the start queue and the done queue that may break any
3987  *  assomption from the C code if we are interrupted
3988  *  inside, so we reset if this happens. Btw, since these
3989  *  SCRIPTS sections are executed while the SCRIPTS hasn't
3990  *  started SCSI operations, it is very unlikely to happen.
3991  *
3992  *  All the driver data structures are supposed to be
3993  *  allocated from the same 4 GB memory window, so there
3994  *  is a 1 to 1 relationship between DSA and driver data
3995  *  structures. Since we are careful :) to invalidate the
3996  *  DSA when we complete a command or when the SCRIPTS
3997  *  pushes a DSA into a queue, we can trust it when it
3998  *  points to a CCB.
3999  */
4000 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4001 {
4002 	u32	dsp	= INL (nc_dsp);
4003 	u32	dsa	= INL (nc_dsa);
4004 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4005 
4006 	/*
4007 	 *  If we haven't been interrupted inside the SCRIPTS
4008 	 *  critical paths, we can safely restart the SCRIPTS
4009 	 *  and trust the DSA value if it matches a CCB.
4010 	 */
4011 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4012 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4013 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4014 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4015 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4016 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4017 	    (!(dsp > SCRIPTA_BA (np, done) &&
4018 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4019 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4020 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4021 		/*
4022 		 *  If we have a CCB, let the SCRIPTS call us back for
4023 		 *  the handling of the error with SCRATCHA filled with
4024 		 *  STARTPOS. This way, we will be able to freeze the
4025 		 *  device queue and requeue awaiting IOs.
4026 		 */
4027 		if (cp) {
4028 			cp->host_status = hsts;
4029 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4030 		}
4031 		/*
4032 		 *  Otherwise just restart the SCRIPTS.
4033 		 */
4034 		else {
4035 			OUTL (nc_dsa, 0xffffff);
4036 			OUTL_DSP (SCRIPTA_BA (np, start));
4037 		}
4038 	}
4039 	else
4040 		goto reset_all;
4041 
4042 	return;
4043 
4044 reset_all:
4045 	sym_start_reset(np);
4046 }
4047 
4048 /*
4049  *  chip exception handler for selection timeout
4050  */
4051 static void sym_int_sto (hcb_p np)
4052 {
4053 	u32 dsp	= INL (nc_dsp);
4054 
4055 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4056 
4057 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4058 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4059 	else
4060 		sym_start_reset(np);
4061 }
4062 
4063 /*
4064  *  chip exception handler for unexpected disconnect
4065  */
4066 static void sym_int_udc (hcb_p np)
4067 {
4068 	printf ("%s: unexpected disconnect\n", sym_name(np));
4069 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4070 }
4071 
4072 /*
4073  *  chip exception handler for SCSI bus mode change
4074  *
4075  *  spi2-r12 11.2.3 says a transceiver mode change must
4076  *  generate a reset event and a device that detects a reset
4077  *  event shall initiate a hard reset. It says also that a
4078  *  device that detects a mode change shall set data transfer
4079  *  mode to eight bit asynchronous, etc...
4080  *  So, just reinitializing all except chip should be enough.
4081  */
4082 static void sym_int_sbmc (hcb_p np)
4083 {
4084 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4085 
4086 	/*
4087 	 *  Notify user.
4088 	 */
4089 	xpt_print_path(np->path);
4090 	printf("SCSI BUS mode change from %s to %s.\n",
4091 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4092 
4093 	/*
4094 	 *  Should suspend command processing for a few seconds and
4095 	 *  reinitialize all except the chip.
4096 	 */
4097 	sym_init (np, 2);
4098 }
4099 
4100 /*
4101  *  chip exception handler for SCSI parity error.
4102  *
4103  *  When the chip detects a SCSI parity error and is
4104  *  currently executing a (CH)MOV instruction, it does
4105  *  not interrupt immediately, but tries to finish the
4106  *  transfer of the current scatter entry before
4107  *  interrupting. The following situations may occur:
4108  *
4109  *  - The complete scatter entry has been transferred
4110  *    without the device having changed phase.
4111  *    The chip will then interrupt with the DSP pointing
4112  *    to the instruction that follows the MOV.
4113  *
4114  *  - A phase mismatch occurs before the MOV finished
4115  *    and phase errors are to be handled by the C code.
4116  *    The chip will then interrupt with both PAR and MA
4117  *    conditions set.
4118  *
4119  *  - A phase mismatch occurs before the MOV finished and
4120  *    phase errors are to be handled by SCRIPTS.
4121  *    The chip will load the DSP with the phase mismatch
4122  *    JUMP address and interrupt the host processor.
4123  */
4124 static void sym_int_par (hcb_p np, u_short sist)
4125 {
4126 	u_char	hsts	= INB (HS_PRT);
4127 	u32	dsp	= INL (nc_dsp);
4128 	u32	dbc	= INL (nc_dbc);
4129 	u32	dsa	= INL (nc_dsa);
4130 	u_char	sbcl	= INB (nc_sbcl);
4131 	u_char	cmd	= dbc >> 24;
4132 	int phase	= cmd & 7;
4133 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4134 
4135 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4136 		sym_name(np), hsts, dbc, sbcl);
4137 
4138 	/*
4139 	 *  Check that the chip is connected to the SCSI BUS.
4140 	 */
4141 	if (!(INB (nc_scntl1) & ISCON)) {
4142 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4143 		return;
4144 	}
4145 
4146 	/*
4147 	 *  If the nexus is not clearly identified, reset the bus.
4148 	 *  We will try to do better later.
4149 	 */
4150 	if (!cp)
4151 		goto reset_all;
4152 
4153 	/*
4154 	 *  Check instruction was a MOV, direction was INPUT and
4155 	 *  ATN is asserted.
4156 	 */
4157 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4158 		goto reset_all;
4159 
4160 	/*
4161 	 *  Keep track of the parity error.
4162 	 */
4163 	OUTONB (HF_PRT, HF_EXT_ERR);
4164 	cp->xerr_status |= XE_PARITY_ERR;
4165 
4166 	/*
4167 	 *  Prepare the message to send to the device.
4168 	 */
4169 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4170 
4171 	/*
4172 	 *  If the old phase was DATA IN phase, we have to deal with
4173 	 *  the 3 situations described above.
4174 	 *  For other input phases (MSG IN and STATUS), the device
4175 	 *  must resend the whole thing that failed parity checking
4176 	 *  or signal error. So, jumping to dispatcher should be OK.
4177 	 */
4178 	if (phase == 1 || phase == 5) {
4179 		/* Phase mismatch handled by SCRIPTS */
4180 		if (dsp == SCRIPTB_BA (np, pm_handle))
4181 			OUTL_DSP (dsp);
4182 		/* Phase mismatch handled by the C code */
4183 		else if (sist & MA)
4184 			sym_int_ma (np);
4185 		/* No phase mismatch occurred */
4186 		else {
4187 			OUTL (nc_temp, dsp);
4188 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4189 		}
4190 	}
4191 	else
4192 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4193 	return;
4194 
4195 reset_all:
4196 	sym_start_reset(np);
4197 }
4198 
4199 /*
4200  *  chip exception handler for phase errors.
4201  *
4202  *  We have to construct a new transfer descriptor,
4203  *  to transfer the rest of the current block.
4204  */
4205 static void sym_int_ma (hcb_p np)
4206 {
4207 	u32	dbc;
4208 	u32	rest;
4209 	u32	dsp;
4210 	u32	dsa;
4211 	u32	nxtdsp;
4212 	u32	*vdsp;
4213 	u32	oadr, olen;
4214 	u32	*tblp;
4215         u32	newcmd;
4216 	u_int	delta;
4217 	u_char	cmd;
4218 	u_char	hflags, hflags0;
4219 	struct	sym_pmc *pm;
4220 	ccb_p	cp;
4221 
4222 	dsp	= INL (nc_dsp);
4223 	dbc	= INL (nc_dbc);
4224 	dsa	= INL (nc_dsa);
4225 
4226 	cmd	= dbc >> 24;
4227 	rest	= dbc & 0xffffff;
4228 	delta	= 0;
4229 
4230 	/*
4231 	 *  locate matching cp if any.
4232 	 */
4233 	cp = sym_ccb_from_dsa(np, dsa);
4234 
4235 	/*
4236 	 *  Donnot take into account dma fifo and various buffers in
4237 	 *  INPUT phase since the chip flushes everything before
4238 	 *  raising the MA interrupt for interrupted INPUT phases.
4239 	 *  For DATA IN phase, we will check for the SWIDE later.
4240 	 */
4241 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4242 		u_char ss0, ss2;
4243 
4244 		if (np->features & FE_DFBC)
4245 			delta = INW (nc_dfbc);
4246 		else {
4247 			u32 dfifo;
4248 
4249 			/*
4250 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4251 			 */
4252 			dfifo = INL(nc_dfifo);
4253 
4254 			/*
4255 			 *  Calculate remaining bytes in DMA fifo.
4256 			 *  (CTEST5 = dfifo >> 16)
4257 			 */
4258 			if (dfifo & (DFS << 16))
4259 				delta = ((((dfifo >> 8) & 0x300) |
4260 				          (dfifo & 0xff)) - rest) & 0x3ff;
4261 			else
4262 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4263 		}
4264 
4265 		/*
4266 		 *  The data in the dma fifo has not been transferred to
4267 		 *  the target -> add the amount to the rest
4268 		 *  and clear the data.
4269 		 *  Check the sstat2 register in case of wide transfer.
4270 		 */
4271 		rest += delta;
4272 		ss0  = INB (nc_sstat0);
4273 		if (ss0 & OLF) rest++;
4274 		if (!(np->features & FE_C10))
4275 			if (ss0 & ORF) rest++;
4276 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4277 			ss2 = INB (nc_sstat2);
4278 			if (ss2 & OLF1) rest++;
4279 			if (!(np->features & FE_C10))
4280 				if (ss2 & ORF1) rest++;
4281 		}
4282 
4283 		/*
4284 		 *  Clear fifos.
4285 		 */
4286 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4287 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4288 	}
4289 
4290 	/*
4291 	 *  log the information
4292 	 */
4293 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4294 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4295 			(unsigned) rest, (unsigned) delta);
4296 
4297 	/*
4298 	 *  try to find the interrupted script command,
4299 	 *  and the address at which to continue.
4300 	 */
4301 	vdsp	= NULL;
4302 	nxtdsp	= 0;
4303 	if	(dsp >  np->scripta_ba &&
4304 		 dsp <= np->scripta_ba + np->scripta_sz) {
4305 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4306 		nxtdsp = dsp;
4307 	}
4308 	else if	(dsp >  np->scriptb_ba &&
4309 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4310 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4311 		nxtdsp = dsp;
4312 	}
4313 
4314 	/*
4315 	 *  log the information
4316 	 */
4317 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4318 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4319 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4320 	}
4321 
4322 	if (!vdsp) {
4323 		printf ("%s: interrupted SCRIPT address not found.\n",
4324 			sym_name (np));
4325 		goto reset_all;
4326 	}
4327 
4328 	if (!cp) {
4329 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4330 			sym_name (np));
4331 		goto reset_all;
4332 	}
4333 
4334 	/*
4335 	 *  get old startaddress and old length.
4336 	 */
4337 	oadr = scr_to_cpu(vdsp[1]);
4338 
4339 	if (cmd & 0x10) {	/* Table indirect */
4340 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4341 		olen = scr_to_cpu(tblp[0]);
4342 		oadr = scr_to_cpu(tblp[1]);
4343 	} else {
4344 		tblp = (u32 *) 0;
4345 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4346 	}
4347 
4348 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4349 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4350 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4351 			tblp,
4352 			(unsigned) olen,
4353 			(unsigned) oadr);
4354 	}
4355 
4356 	/*
4357 	 *  check cmd against assumed interrupted script command.
4358 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4359 	 *  the phase.
4360 	 */
4361 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4362 		PRINT_ADDR(cp);
4363 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4364 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4365 
4366 		goto reset_all;
4367 	}
4368 
4369 	/*
4370 	 *  if old phase not dataphase, leave here.
4371 	 */
4372 	if (cmd & 2) {
4373 		PRINT_ADDR(cp);
4374 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4375 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4376 			(unsigned)oadr, (unsigned)rest);
4377 		goto unexpected_phase;
4378 	}
4379 
4380 	/*
4381 	 *  Choose the correct PM save area.
4382 	 *
4383 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4384 	 *  this stuff. The equivalent code is implemented in
4385 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4386 	 *  handle PM from the SCRIPTS processor.
4387 	 */
4388 	hflags0 = INB (HF_PRT);
4389 	hflags = hflags0;
4390 
4391 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4392 		if (hflags & HF_IN_PM0)
4393 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4394 		else if	(hflags & HF_IN_PM1)
4395 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4396 
4397 		if (hflags & HF_DP_SAVED)
4398 			hflags ^= HF_ACT_PM;
4399 	}
4400 
4401 	if (!(hflags & HF_ACT_PM)) {
4402 		pm = &cp->phys.pm0;
4403 		newcmd = SCRIPTA_BA (np, pm0_data);
4404 	}
4405 	else {
4406 		pm = &cp->phys.pm1;
4407 		newcmd = SCRIPTA_BA (np, pm1_data);
4408 	}
4409 
4410 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4411 	if (hflags != hflags0)
4412 		OUTB (HF_PRT, hflags);
4413 
4414 	/*
4415 	 *  fillin the phase mismatch context
4416 	 */
4417 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4418 	pm->sg.size = cpu_to_scr(rest);
4419 	pm->ret     = cpu_to_scr(nxtdsp);
4420 
4421 	/*
4422 	 *  If we have a SWIDE,
4423 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4424 	 *  - compute the SCRIPTS address to restart from,
4425 	 *  - move current data pointer context by one byte.
4426 	 */
4427 	nxtdsp = SCRIPTA_BA (np, dispatch);
4428 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4429 	    (INB (nc_scntl2) & WSR)) {
4430 		u32 tmp;
4431 
4432 		/*
4433 		 *  Set up the table indirect for the MOVE
4434 		 *  of the residual byte and adjust the data
4435 		 *  pointer context.
4436 		 */
4437 		tmp = scr_to_cpu(pm->sg.addr);
4438 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4439 		pm->sg.addr = cpu_to_scr(tmp + 1);
4440 		tmp = scr_to_cpu(pm->sg.size);
4441 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4442 		pm->sg.size = cpu_to_scr(tmp - 1);
4443 
4444 		/*
4445 		 *  If only the residual byte is to be moved,
4446 		 *  no PM context is needed.
4447 		 */
4448 		if ((tmp&0xffffff) == 1)
4449 			newcmd = pm->ret;
4450 
4451 		/*
4452 		 *  Prepare the address of SCRIPTS that will
4453 		 *  move the residual byte to memory.
4454 		 */
4455 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4456 	}
4457 
4458 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4459 		PRINT_ADDR(cp);
4460 		printf ("PM %x %x %x / %x %x %x.\n",
4461 			hflags0, hflags, newcmd,
4462 			(unsigned)scr_to_cpu(pm->sg.addr),
4463 			(unsigned)scr_to_cpu(pm->sg.size),
4464 			(unsigned)scr_to_cpu(pm->ret));
4465 	}
4466 
4467 	/*
4468 	 *  Restart the SCRIPTS processor.
4469 	 */
4470 	OUTL (nc_temp, newcmd);
4471 	OUTL_DSP (nxtdsp);
4472 	return;
4473 
4474 	/*
4475 	 *  Unexpected phase changes that occurs when the current phase
4476 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4477 	 *  Such event may only happen when the SCRIPTS is using a
4478 	 *  multibyte SCSI MOVE.
4479 	 *
4480 	 *  Phase change		Some possible cause
4481 	 *
4482 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4483 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4484 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4485 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4486 	 *  			negotiation messages.
4487 	 *
4488 	 *  The code below does not care of the new phase and so
4489 	 *  trusts the target. Why to annoy it ?
4490 	 *  If the interrupted phase is COMMAND phase, we restart at
4491 	 *  dispatcher.
4492 	 *  If a target does not get all the messages after selection,
4493 	 *  the code assumes blindly that the target discards extended
4494 	 *  messages and clears the negotiation status.
4495 	 *  If the target does not want all our response to negotiation,
4496 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4497 	 *  bloat for such a should_not_happen situation).
4498 	 *  In all other situation, we reset the BUS.
4499 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4500 	 */
4501 unexpected_phase:
4502 	dsp -= 8;
4503 	nxtdsp = 0;
4504 
4505 	switch (cmd & 7) {
4506 	case 2:	/* COMMAND phase */
4507 		nxtdsp = SCRIPTA_BA (np, dispatch);
4508 		break;
4509 #if 0
4510 	case 3:	/* STATUS  phase */
4511 		nxtdsp = SCRIPTA_BA (np, dispatch);
4512 		break;
4513 #endif
4514 	case 6:	/* MSG OUT phase */
4515 		/*
4516 		 *  If the device may want to use untagged when we want
4517 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4518 		 *  since we will not be able to handle reselect.
4519 		 *  Otherwise, we just don't care.
4520 		 */
4521 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4522 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4523 				cp->host_status = HS_BUSY;
4524 				np->msgout[0] = M_IDENTIFY | cp->lun;
4525 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4526 			}
4527 			else
4528 				nxtdsp = SCRIPTB_BA (np, ident_break);
4529 		}
4530 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4531 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4532 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4533 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4534 		}
4535 		break;
4536 #if 0
4537 	case 7:	/* MSG IN  phase */
4538 		nxtdsp = SCRIPTA_BA (np, clrack);
4539 		break;
4540 #endif
4541 	}
4542 
4543 	if (nxtdsp) {
4544 		OUTL_DSP (nxtdsp);
4545 		return;
4546 	}
4547 
4548 reset_all:
4549 	sym_start_reset(np);
4550 }
4551 
4552 /*
4553  *  Dequeue from the START queue all CCBs that match
4554  *  a given target/lun/task condition (-1 means all),
4555  *  and move them from the BUSY queue to the COMP queue
4556  *  with CAM_REQUEUE_REQ status condition.
4557  *  This function is used during error handling/recovery.
4558  *  It is called with SCRIPTS not running.
4559  */
4560 static int
4561 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4562 {
4563 	int j;
4564 	ccb_p cp;
4565 
4566 	/*
4567 	 *  Make sure the starting index is within range.
4568 	 */
4569 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4570 
4571 	/*
4572 	 *  Walk until end of START queue and dequeue every job
4573 	 *  that matches the target/lun/task condition.
4574 	 */
4575 	j = i;
4576 	while (i != np->squeueput) {
4577 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4578 		assert(cp);
4579 #ifdef SYM_CONF_IARB_SUPPORT
4580 		/* Forget hints for IARB, they may be no longer relevant */
4581 		cp->host_flags &= ~HF_HINT_IARB;
4582 #endif
4583 		if ((target == -1 || cp->target == target) &&
4584 		    (lun    == -1 || cp->lun    == lun)    &&
4585 		    (task   == -1 || cp->tag    == task)) {
4586 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4587 			sym_remque(&cp->link_ccbq);
4588 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4589 		}
4590 		else {
4591 			if (i != j)
4592 				np->squeue[j] = np->squeue[i];
4593 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4594 		}
4595 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4596 	}
4597 	if (i != j)		/* Copy back the idle task if needed */
4598 		np->squeue[j] = np->squeue[i];
4599 	np->squeueput = j;	/* Update our current start queue pointer */
4600 
4601 	return (i - j) / 2;
4602 }
4603 
4604 /*
4605  *  Complete all CCBs queued to the COMP queue.
4606  *
4607  *  These CCBs are assumed:
4608  *  - Not to be referenced either by devices or
4609  *    SCRIPTS-related queues and datas.
4610  *  - To have to be completed with an error condition
4611  *    or requeued.
4612  *
4613  *  The device queue freeze count is incremented
4614  *  for each CCB that does not prevent this.
4615  *  This function is called when all CCBs involved
4616  *  in error handling/recovery have been reaped.
4617  */
4618 static void
4619 sym_flush_comp_queue(hcb_p np, int cam_status)
4620 {
4621 	SYM_QUEHEAD *qp;
4622 	ccb_p cp;
4623 
4624 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4625 		union ccb *ccb;
4626 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4627 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4628 		/* Leave quiet CCBs waiting for resources */
4629 		if (cp->host_status == HS_WAIT)
4630 			continue;
4631 		ccb = cp->cam_ccb;
4632 		if (cam_status)
4633 			sym_set_cam_status(ccb, cam_status);
4634 		sym_freeze_cam_ccb(ccb);
4635 		sym_xpt_done(np, ccb, cp);
4636 		sym_free_ccb(np, cp);
4637 	}
4638 }
4639 
4640 /*
4641  *  chip handler for bad SCSI status condition
4642  *
4643  *  In case of bad SCSI status, we unqueue all the tasks
4644  *  currently queued to the controller but not yet started
4645  *  and then restart the SCRIPTS processor immediately.
4646  *
4647  *  QUEUE FULL and BUSY conditions are handled the same way.
4648  *  Basically all the not yet started tasks are requeued in
4649  *  device queue and the queue is frozen until a completion.
4650  *
4651  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4652  *  the CCB of the failed command to prepare a REQUEST SENSE
4653  *  SCSI command and queue it to the controller queue.
4654  *
4655  *  SCRATCHA is assumed to have been loaded with STARTPOS
4656  *  before the SCRIPTS called the C code.
4657  */
4658 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4659 {
4660 	tcb_p tp	= &np->target[cp->target];
4661 	u32		startp;
4662 	u_char		s_status = cp->ssss_status;
4663 	u_char		h_flags  = cp->host_flags;
4664 	int		msglen;
4665 	int		nego;
4666 	int		i;
4667 
4668 	SYM_LOCK_ASSERT(MA_OWNED);
4669 
4670 	/*
4671 	 *  Compute the index of the next job to start from SCRIPTS.
4672 	 */
4673 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4674 
4675 	/*
4676 	 *  The last CCB queued used for IARB hint may be
4677 	 *  no longer relevant. Forget it.
4678 	 */
4679 #ifdef SYM_CONF_IARB_SUPPORT
4680 	if (np->last_cp)
4681 		np->last_cp = NULL;
4682 #endif
4683 
4684 	/*
4685 	 *  Now deal with the SCSI status.
4686 	 */
4687 	switch(s_status) {
4688 	case S_BUSY:
4689 	case S_QUEUE_FULL:
4690 		if (sym_verbose >= 2) {
4691 			PRINT_ADDR(cp);
4692 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4693 		}
4694 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4695 		sym_complete_error (np, cp);
4696 		break;
4697 	case S_TERMINATED:
4698 	case S_CHECK_COND:
4699 		/*
4700 		 *  If we get an SCSI error when requesting sense, give up.
4701 		 */
4702 		if (h_flags & HF_SENSE) {
4703 			sym_complete_error (np, cp);
4704 			break;
4705 		}
4706 
4707 		/*
4708 		 *  Dequeue all queued CCBs for that device not yet started,
4709 		 *  and restart the SCRIPTS processor immediately.
4710 		 */
4711 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4712 		OUTL_DSP (SCRIPTA_BA (np, start));
4713 
4714  		/*
4715 		 *  Save some info of the actual IO.
4716 		 *  Compute the data residual.
4717 		 */
4718 		cp->sv_scsi_status = cp->ssss_status;
4719 		cp->sv_xerr_status = cp->xerr_status;
4720 		cp->sv_resid = sym_compute_residual(np, cp);
4721 
4722 		/*
4723 		 *  Prepare all needed data structures for
4724 		 *  requesting sense data.
4725 		 */
4726 
4727 		/*
4728 		 *  identify message
4729 		 */
4730 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4731 		msglen = 1;
4732 
4733 		/*
4734 		 *  If we are currently using anything different from
4735 		 *  async. 8 bit data transfers with that target,
4736 		 *  start a negotiation, since the device may want
4737 		 *  to report us a UNIT ATTENTION condition due to
4738 		 *  a cause we currently ignore, and we donnot want
4739 		 *  to be stuck with WIDE and/or SYNC data transfer.
4740 		 *
4741 		 *  cp->nego_status is filled by sym_prepare_nego().
4742 		 */
4743 		cp->nego_status = 0;
4744 		nego = 0;
4745 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4746 			nego = NS_PPR;
4747 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4748 			nego = NS_WIDE;
4749 		else if (tp->tinfo.current.offset != 0)
4750 			nego = NS_SYNC;
4751 		if (nego)
4752 			msglen +=
4753 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4754 		/*
4755 		 *  Message table indirect structure.
4756 		 */
4757 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4758 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4759 
4760 		/*
4761 		 *  sense command
4762 		 */
4763 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4764 		cp->phys.cmd.size	= cpu_to_scr(6);
4765 
4766 		/*
4767 		 *  patch requested size into sense command
4768 		 */
4769 		cp->sensecmd[0]		= 0x03;
4770 		cp->sensecmd[1]		= cp->lun << 5;
4771 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4772 			cp->sensecmd[1]	= 0;
4773 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4774 		cp->data_len		= SYM_SNS_BBUF_LEN;
4775 
4776 		/*
4777 		 *  sense data
4778 		 */
4779 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4780 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4781 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4782 
4783 		/*
4784 		 *  requeue the command.
4785 		 */
4786 		startp = SCRIPTB_BA (np, sdata_in);
4787 
4788 		cp->phys.head.savep	= cpu_to_scr(startp);
4789 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4790 		cp->phys.head.lastp	= cpu_to_scr(startp);
4791 		cp->startp	= cpu_to_scr(startp);
4792 
4793 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4794 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4795 		cp->ssss_status = S_ILLEGAL;
4796 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4797 		cp->xerr_status = 0;
4798 		cp->extra_bytes = 0;
4799 
4800 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4801 
4802 		/*
4803 		 *  Requeue the command.
4804 		 */
4805 		sym_put_start_queue(np, cp);
4806 
4807 		/*
4808 		 *  Give back to upper layer everything we have dequeued.
4809 		 */
4810 		sym_flush_comp_queue(np, 0);
4811 		break;
4812 	}
4813 }
4814 
4815 /*
4816  *  After a device has accepted some management message
4817  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4818  *  a device signals a UNIT ATTENTION condition, some
4819  *  tasks are thrown away by the device. We are required
4820  *  to reflect that on our tasks list since the device
4821  *  will never complete these tasks.
4822  *
4823  *  This function move from the BUSY queue to the COMP
4824  *  queue all disconnected CCBs for a given target that
4825  *  match the following criteria:
4826  *  - lun=-1  means any logical UNIT otherwise a given one.
4827  *  - task=-1 means any task, otherwise a given one.
4828  */
4829 static int
4830 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4831 {
4832 	SYM_QUEHEAD qtmp, *qp;
4833 	int i = 0;
4834 	ccb_p cp;
4835 
4836 	/*
4837 	 *  Move the entire BUSY queue to our temporary queue.
4838 	 */
4839 	sym_que_init(&qtmp);
4840 	sym_que_splice(&np->busy_ccbq, &qtmp);
4841 	sym_que_init(&np->busy_ccbq);
4842 
4843 	/*
4844 	 *  Put all CCBs that matches our criteria into
4845 	 *  the COMP queue and put back other ones into
4846 	 *  the BUSY queue.
4847 	 */
4848 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4849 		union ccb *ccb;
4850 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4851 		ccb = cp->cam_ccb;
4852 		if (cp->host_status != HS_DISCONNECT ||
4853 		    cp->target != target	     ||
4854 		    (lun  != -1 && cp->lun != lun)   ||
4855 		    (task != -1 &&
4856 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4857 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4858 			continue;
4859 		}
4860 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4861 
4862 		/* Preserve the software timeout condition */
4863 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4864 			sym_set_cam_status(ccb, cam_status);
4865 		++i;
4866 #if 0
4867 printf("XXXX TASK @%p CLEARED\n", cp);
4868 #endif
4869 	}
4870 	return i;
4871 }
4872 
4873 /*
4874  *  chip handler for TASKS recovery
4875  *
4876  *  We cannot safely abort a command, while the SCRIPTS
4877  *  processor is running, since we just would be in race
4878  *  with it.
4879  *
4880  *  As long as we have tasks to abort, we keep the SEM
4881  *  bit set in the ISTAT. When this bit is set, the
4882  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4883  *  each time it enters the scheduler.
4884  *
4885  *  If we have to reset a target, clear tasks of a unit,
4886  *  or to perform the abort of a disconnected job, we
4887  *  restart the SCRIPTS for selecting the target. Once
4888  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4889  *  If it loses arbitration, the SCRIPTS will interrupt again
4890  *  the next time it will enter its scheduler, and so on ...
4891  *
4892  *  On SIR_TARGET_SELECTED, we scan for the more
4893  *  appropriate thing to do:
4894  *
4895  *  - If nothing, we just sent a M_ABORT message to the
4896  *    target to get rid of the useless SCSI bus ownership.
4897  *    According to the specs, no tasks shall be affected.
4898  *  - If the target is to be reset, we send it a M_RESET
4899  *    message.
4900  *  - If a logical UNIT is to be cleared , we send the
4901  *    IDENTIFY(lun) + M_ABORT.
4902  *  - If an untagged task is to be aborted, we send the
4903  *    IDENTIFY(lun) + M_ABORT.
4904  *  - If a tagged task is to be aborted, we send the
4905  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4906  *
4907  *  Once our 'kiss of death' :) message has been accepted
4908  *  by the target, the SCRIPTS interrupts again
4909  *  (SIR_ABORT_SENT). On this interrupt, we complete
4910  *  all the CCBs that should have been aborted by the
4911  *  target according to our message.
4912  */
4913 static void sym_sir_task_recovery(hcb_p np, int num)
4914 {
4915 	SYM_QUEHEAD *qp;
4916 	ccb_p cp;
4917 	tcb_p tp;
4918 	int target=-1, lun=-1, task;
4919 	int i, k;
4920 
4921 	switch(num) {
4922 	/*
4923 	 *  The SCRIPTS processor stopped before starting
4924 	 *  the next command in order to allow us to perform
4925 	 *  some task recovery.
4926 	 */
4927 	case SIR_SCRIPT_STOPPED:
4928 		/*
4929 		 *  Do we have any target to reset or unit to clear ?
4930 		 */
4931 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4932 			tp = &np->target[i];
4933 			if (tp->to_reset ||
4934 			    (tp->lun0p && tp->lun0p->to_clear)) {
4935 				target = i;
4936 				break;
4937 			}
4938 			if (!tp->lunmp)
4939 				continue;
4940 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4941 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4942 					target	= i;
4943 					break;
4944 				}
4945 			}
4946 			if (target != -1)
4947 				break;
4948 		}
4949 
4950 		/*
4951 		 *  If not, walk the busy queue for any
4952 		 *  disconnected CCB to be aborted.
4953 		 */
4954 		if (target == -1) {
4955 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4956 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4957 				if (cp->host_status != HS_DISCONNECT)
4958 					continue;
4959 				if (cp->to_abort) {
4960 					target = cp->target;
4961 					break;
4962 				}
4963 			}
4964 		}
4965 
4966 		/*
4967 		 *  If some target is to be selected,
4968 		 *  prepare and start the selection.
4969 		 */
4970 		if (target != -1) {
4971 			tp = &np->target[target];
4972 			np->abrt_sel.sel_id	= target;
4973 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4974 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4975 			OUTL(nc_dsa, np->hcb_ba);
4976 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4977 			return;
4978 		}
4979 
4980 		/*
4981 		 *  Now look for a CCB to abort that haven't started yet.
4982 		 *  Btw, the SCRIPTS processor is still stopped, so
4983 		 *  we are not in race.
4984 		 */
4985 		i = 0;
4986 		cp = NULL;
4987 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4988 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4989 			if (cp->host_status != HS_BUSY &&
4990 			    cp->host_status != HS_NEGOTIATE)
4991 				continue;
4992 			if (!cp->to_abort)
4993 				continue;
4994 #ifdef SYM_CONF_IARB_SUPPORT
4995 			/*
4996 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4997 			 *    want to cancel the last queued CCB, since the
4998 			 *    SCRIPTS may have anticipated the selection.
4999 			 */
5000 			if (cp == np->last_cp) {
5001 				cp->to_abort = 0;
5002 				continue;
5003 			}
5004 #endif
5005 			i = 1;	/* Means we have found some */
5006 			break;
5007 		}
5008 		if (!i) {
5009 			/*
5010 			 *  We are done, so we donnot need
5011 			 *  to synchronize with the SCRIPTS anylonger.
5012 			 *  Remove the SEM flag from the ISTAT.
5013 			 */
5014 			np->istat_sem = 0;
5015 			OUTB (nc_istat, SIGP);
5016 			break;
5017 		}
5018 		/*
5019 		 *  Compute index of next position in the start
5020 		 *  queue the SCRIPTS intends to start and dequeue
5021 		 *  all CCBs for that device that haven't been started.
5022 		 */
5023 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5024 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5025 
5026 		/*
5027 		 *  Make sure at least our IO to abort has been dequeued.
5028 		 */
5029 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5030 
5031 		/*
5032 		 *  Keep track in cam status of the reason of the abort.
5033 		 */
5034 		if (cp->to_abort == 2)
5035 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5036 		else
5037 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5038 
5039 		/*
5040 		 *  Complete with error everything that we have dequeued.
5041 	 	 */
5042 		sym_flush_comp_queue(np, 0);
5043 		break;
5044 	/*
5045 	 *  The SCRIPTS processor has selected a target
5046 	 *  we may have some manual recovery to perform for.
5047 	 */
5048 	case SIR_TARGET_SELECTED:
5049 		target = (INB (nc_sdid) & 0xf);
5050 		tp = &np->target[target];
5051 
5052 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5053 
5054 		/*
5055 		 *  If the target is to be reset, prepare a
5056 		 *  M_RESET message and clear the to_reset flag
5057 		 *  since we donnot expect this operation to fail.
5058 		 */
5059 		if (tp->to_reset) {
5060 			np->abrt_msg[0] = M_RESET;
5061 			np->abrt_tbl.size = 1;
5062 			tp->to_reset = 0;
5063 			break;
5064 		}
5065 
5066 		/*
5067 		 *  Otherwise, look for some logical unit to be cleared.
5068 		 */
5069 		if (tp->lun0p && tp->lun0p->to_clear)
5070 			lun = 0;
5071 		else if (tp->lunmp) {
5072 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5073 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5074 					lun = k;
5075 					break;
5076 				}
5077 			}
5078 		}
5079 
5080 		/*
5081 		 *  If a logical unit is to be cleared, prepare
5082 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5083 		 */
5084 		if (lun != -1) {
5085 			lcb_p lp = sym_lp(tp, lun);
5086 			lp->to_clear = 0; /* We donnot expect to fail here */
5087 			np->abrt_msg[0] = M_IDENTIFY | lun;
5088 			np->abrt_msg[1] = M_ABORT;
5089 			np->abrt_tbl.size = 2;
5090 			break;
5091 		}
5092 
5093 		/*
5094 		 *  Otherwise, look for some disconnected job to
5095 		 *  abort for this target.
5096 		 */
5097 		i = 0;
5098 		cp = NULL;
5099 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5100 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5101 			if (cp->host_status != HS_DISCONNECT)
5102 				continue;
5103 			if (cp->target != target)
5104 				continue;
5105 			if (!cp->to_abort)
5106 				continue;
5107 			i = 1;	/* Means we have some */
5108 			break;
5109 		}
5110 
5111 		/*
5112 		 *  If we have none, probably since the device has
5113 		 *  completed the command before we won abitration,
5114 		 *  send a M_ABORT message without IDENTIFY.
5115 		 *  According to the specs, the device must just
5116 		 *  disconnect the BUS and not abort any task.
5117 		 */
5118 		if (!i) {
5119 			np->abrt_msg[0] = M_ABORT;
5120 			np->abrt_tbl.size = 1;
5121 			break;
5122 		}
5123 
5124 		/*
5125 		 *  We have some task to abort.
5126 		 *  Set the IDENTIFY(lun)
5127 		 */
5128 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5129 
5130 		/*
5131 		 *  If we want to abort an untagged command, we
5132 		 *  will send an IDENTIFY + M_ABORT.
5133 		 *  Otherwise (tagged command), we will send
5134 		 *  an IDENTIFY + task attributes + ABORT TAG.
5135 		 */
5136 		if (cp->tag == NO_TAG) {
5137 			np->abrt_msg[1] = M_ABORT;
5138 			np->abrt_tbl.size = 2;
5139 		}
5140 		else {
5141 			np->abrt_msg[1] = cp->scsi_smsg[1];
5142 			np->abrt_msg[2] = cp->scsi_smsg[2];
5143 			np->abrt_msg[3] = M_ABORT_TAG;
5144 			np->abrt_tbl.size = 4;
5145 		}
5146 		/*
5147 		 *  Keep track of software timeout condition, since the
5148 		 *  peripheral driver may not count retries on abort
5149 		 *  conditions not due to timeout.
5150 		 */
5151 		if (cp->to_abort == 2)
5152 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5153 		cp->to_abort = 0; /* We donnot expect to fail here */
5154 		break;
5155 
5156 	/*
5157 	 *  The target has accepted our message and switched
5158 	 *  to BUS FREE phase as we expected.
5159 	 */
5160 	case SIR_ABORT_SENT:
5161 		target = (INB (nc_sdid) & 0xf);
5162 		tp = &np->target[target];
5163 
5164 		/*
5165 		**  If we didn't abort anything, leave here.
5166 		*/
5167 		if (np->abrt_msg[0] == M_ABORT)
5168 			break;
5169 
5170 		/*
5171 		 *  If we sent a M_RESET, then a hardware reset has
5172 		 *  been performed by the target.
5173 		 *  - Reset everything to async 8 bit
5174 		 *  - Tell ourself to negotiate next time :-)
5175 		 *  - Prepare to clear all disconnected CCBs for
5176 		 *    this target from our task list (lun=task=-1)
5177 		 */
5178 		lun = -1;
5179 		task = -1;
5180 		if (np->abrt_msg[0] == M_RESET) {
5181 			tp->head.sval = 0;
5182 			tp->head.wval = np->rv_scntl3;
5183 			tp->head.uval = 0;
5184 			tp->tinfo.current.period = 0;
5185 			tp->tinfo.current.offset = 0;
5186 			tp->tinfo.current.width  = BUS_8_BIT;
5187 			tp->tinfo.current.options = 0;
5188 		}
5189 
5190 		/*
5191 		 *  Otherwise, check for the LUN and TASK(s)
5192 		 *  concerned by the cancellation.
5193 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5194 		 *  or an ABORT message :-)
5195 		 */
5196 		else {
5197 			lun = np->abrt_msg[0] & 0x3f;
5198 			if (np->abrt_msg[1] == M_ABORT_TAG)
5199 				task = np->abrt_msg[2];
5200 		}
5201 
5202 		/*
5203 		 *  Complete all the CCBs the device should have
5204 		 *  aborted due to our 'kiss of death' message.
5205 		 */
5206 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5207 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5208 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5209 		sym_flush_comp_queue(np, 0);
5210 
5211 		/*
5212 		 *  If we sent a BDR, make uper layer aware of that.
5213 		 */
5214 		if (np->abrt_msg[0] == M_RESET)
5215 			xpt_async(AC_SENT_BDR, np->path, NULL);
5216 		break;
5217 	}
5218 
5219 	/*
5220 	 *  Print to the log the message we intend to send.
5221 	 */
5222 	if (num == SIR_TARGET_SELECTED) {
5223 		PRINT_TARGET(np, target);
5224 		sym_printl_hex("control msgout:", np->abrt_msg,
5225 			      np->abrt_tbl.size);
5226 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5227 	}
5228 
5229 	/*
5230 	 *  Let the SCRIPTS processor continue.
5231 	 */
5232 	OUTONB_STD ();
5233 }
5234 
5235 /*
5236  *  Gerard's alchemy:) that deals with with the data
5237  *  pointer for both MDP and the residual calculation.
5238  *
5239  *  I didn't want to bloat the code by more than 200
5240  *  lignes for the handling of both MDP and the residual.
5241  *  This has been achieved by using a data pointer
5242  *  representation consisting in an index in the data
5243  *  array (dp_sg) and a negative offset (dp_ofs) that
5244  *  have the following meaning:
5245  *
5246  *  - dp_sg = SYM_CONF_MAX_SG
5247  *    we are at the end of the data script.
5248  *  - dp_sg < SYM_CONF_MAX_SG
5249  *    dp_sg points to the next entry of the scatter array
5250  *    we want to transfer.
5251  *  - dp_ofs < 0
5252  *    dp_ofs represents the residual of bytes of the
5253  *    previous entry scatter entry we will send first.
5254  *  - dp_ofs = 0
5255  *    no residual to send first.
5256  *
5257  *  The function sym_evaluate_dp() accepts an arbitray
5258  *  offset (basically from the MDP message) and returns
5259  *  the corresponding values of dp_sg and dp_ofs.
5260  */
5261 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5262 {
5263 	u32	dp_scr;
5264 	int	dp_ofs, dp_sg, dp_sgmin;
5265 	int	tmp;
5266 	struct sym_pmc *pm;
5267 
5268 	/*
5269 	 *  Compute the resulted data pointer in term of a script
5270 	 *  address within some DATA script and a signed byte offset.
5271 	 */
5272 	dp_scr = scr;
5273 	dp_ofs = *ofs;
5274 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5275 		pm = &cp->phys.pm0;
5276 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5277 		pm = &cp->phys.pm1;
5278 	else
5279 		pm = NULL;
5280 
5281 	if (pm) {
5282 		dp_scr  = scr_to_cpu(pm->ret);
5283 		dp_ofs -= scr_to_cpu(pm->sg.size);
5284 	}
5285 
5286 	/*
5287 	 *  If we are auto-sensing, then we are done.
5288 	 */
5289 	if (cp->host_flags & HF_SENSE) {
5290 		*ofs = dp_ofs;
5291 		return 0;
5292 	}
5293 
5294 	/*
5295 	 *  Deduce the index of the sg entry.
5296 	 *  Keep track of the index of the first valid entry.
5297 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5298 	 *  end of the data.
5299 	 */
5300 	tmp = scr_to_cpu(cp->phys.head.goalp);
5301 	dp_sg = SYM_CONF_MAX_SG;
5302 	if (dp_scr != tmp)
5303 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5304 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5305 
5306 	/*
5307 	 *  Move to the sg entry the data pointer belongs to.
5308 	 *
5309 	 *  If we are inside the data area, we expect result to be:
5310 	 *
5311 	 *  Either,
5312 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5313 	 *      the data pointer belongs to (or the end of the data)
5314 	 *  Or,
5315 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5316 	 *      the data pointer belongs to + 1.
5317 	 */
5318 	if (dp_ofs < 0) {
5319 		int n;
5320 		while (dp_sg > dp_sgmin) {
5321 			--dp_sg;
5322 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5323 			n = dp_ofs + (tmp & 0xffffff);
5324 			if (n > 0) {
5325 				++dp_sg;
5326 				break;
5327 			}
5328 			dp_ofs = n;
5329 		}
5330 	}
5331 	else if (dp_ofs > 0) {
5332 		while (dp_sg < SYM_CONF_MAX_SG) {
5333 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5334 			dp_ofs -= (tmp & 0xffffff);
5335 			++dp_sg;
5336 			if (dp_ofs <= 0)
5337 				break;
5338 		}
5339 	}
5340 
5341 	/*
5342 	 *  Make sure the data pointer is inside the data area.
5343 	 *  If not, return some error.
5344 	 */
5345 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5346 		goto out_err;
5347 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5348 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5349 		goto out_err;
5350 
5351 	/*
5352 	 *  Save the extreme pointer if needed.
5353 	 */
5354 	if (dp_sg > cp->ext_sg ||
5355             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5356 		cp->ext_sg  = dp_sg;
5357 		cp->ext_ofs = dp_ofs;
5358 	}
5359 
5360 	/*
5361 	 *  Return data.
5362 	 */
5363 	*ofs = dp_ofs;
5364 	return dp_sg;
5365 
5366 out_err:
5367 	return -1;
5368 }
5369 
5370 /*
5371  *  chip handler for MODIFY DATA POINTER MESSAGE
5372  *
5373  *  We also call this function on IGNORE WIDE RESIDUE
5374  *  messages that do not match a SWIDE full condition.
5375  *  Btw, we assume in that situation that such a message
5376  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5377  */
5378 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5379 {
5380 	int dp_ofs	= ofs;
5381 	u32	dp_scr	= INL (nc_temp);
5382 	u32	dp_ret;
5383 	u32	tmp;
5384 	u_char	hflags;
5385 	int	dp_sg;
5386 	struct	sym_pmc *pm;
5387 
5388 	/*
5389 	 *  Not supported for auto-sense.
5390 	 */
5391 	if (cp->host_flags & HF_SENSE)
5392 		goto out_reject;
5393 
5394 	/*
5395 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5396 	 *  to the resulted data pointer.
5397 	 */
5398 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5399 	if (dp_sg < 0)
5400 		goto out_reject;
5401 
5402 	/*
5403 	 *  And our alchemy:) allows to easily calculate the data
5404 	 *  script address we want to return for the next data phase.
5405 	 */
5406 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5407 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5408 
5409 	/*
5410 	 *  If offset / scatter entry is zero we donnot need
5411 	 *  a context for the new current data pointer.
5412 	 */
5413 	if (dp_ofs == 0) {
5414 		dp_scr = dp_ret;
5415 		goto out_ok;
5416 	}
5417 
5418 	/*
5419 	 *  Get a context for the new current data pointer.
5420 	 */
5421 	hflags = INB (HF_PRT);
5422 
5423 	if (hflags & HF_DP_SAVED)
5424 		hflags ^= HF_ACT_PM;
5425 
5426 	if (!(hflags & HF_ACT_PM)) {
5427 		pm  = &cp->phys.pm0;
5428 		dp_scr = SCRIPTA_BA (np, pm0_data);
5429 	}
5430 	else {
5431 		pm = &cp->phys.pm1;
5432 		dp_scr = SCRIPTA_BA (np, pm1_data);
5433 	}
5434 
5435 	hflags &= ~(HF_DP_SAVED);
5436 
5437 	OUTB (HF_PRT, hflags);
5438 
5439 	/*
5440 	 *  Set up the new current data pointer.
5441 	 *  ofs < 0 there, and for the next data phase, we
5442 	 *  want to transfer part of the data of the sg entry
5443 	 *  corresponding to index dp_sg-1 prior to returning
5444 	 *  to the main data script.
5445 	 */
5446 	pm->ret = cpu_to_scr(dp_ret);
5447 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5448 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5449 	pm->sg.addr = cpu_to_scr(tmp);
5450 	pm->sg.size = cpu_to_scr(-dp_ofs);
5451 
5452 out_ok:
5453 	OUTL (nc_temp, dp_scr);
5454 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5455 	return;
5456 
5457 out_reject:
5458 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5459 }
5460 
5461 /*
5462  *  chip calculation of the data residual.
5463  *
5464  *  As I used to say, the requirement of data residual
5465  *  in SCSI is broken, useless and cannot be achieved
5466  *  without huge complexity.
5467  *  But most OSes and even the official CAM require it.
5468  *  When stupidity happens to be so widely spread inside
5469  *  a community, it gets hard to convince.
5470  *
5471  *  Anyway, I don't care, since I am not going to use
5472  *  any software that considers this data residual as
5473  *  a relevant information. :)
5474  */
5475 static int sym_compute_residual(hcb_p np, ccb_p cp)
5476 {
5477 	int dp_sg, dp_sgmin, resid = 0;
5478 	int dp_ofs = 0;
5479 
5480 	/*
5481 	 *  Check for some data lost or just thrown away.
5482 	 *  We are not required to be quite accurate in this
5483 	 *  situation. Btw, if we are odd for output and the
5484 	 *  device claims some more data, it may well happen
5485 	 *  than our residual be zero. :-)
5486 	 */
5487 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5488 		if (cp->xerr_status & XE_EXTRA_DATA)
5489 			resid -= cp->extra_bytes;
5490 		if (cp->xerr_status & XE_SODL_UNRUN)
5491 			++resid;
5492 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5493 			--resid;
5494 	}
5495 
5496 	/*
5497 	 *  If all data has been transferred,
5498 	 *  there is no residual.
5499 	 */
5500 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5501 		return resid;
5502 
5503 	/*
5504 	 *  If no data transfer occurs, or if the data
5505 	 *  pointer is weird, return full residual.
5506 	 */
5507 	if (cp->startp == cp->phys.head.lastp ||
5508 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5509 			    &dp_ofs) < 0) {
5510 		return cp->data_len;
5511 	}
5512 
5513 	/*
5514 	 *  If we were auto-sensing, then we are done.
5515 	 */
5516 	if (cp->host_flags & HF_SENSE) {
5517 		return -dp_ofs;
5518 	}
5519 
5520 	/*
5521 	 *  We are now full comfortable in the computation
5522 	 *  of the data residual (2's complement).
5523 	 */
5524 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5525 	resid = -cp->ext_ofs;
5526 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5527 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5528 		resid += (tmp & 0xffffff);
5529 	}
5530 
5531 	/*
5532 	 *  Hopefully, the result is not too wrong.
5533 	 */
5534 	return resid;
5535 }
5536 
5537 /*
5538  *  Print out the content of a SCSI message.
5539  */
5540 static int sym_show_msg (u_char * msg)
5541 {
5542 	u_char i;
5543 	printf ("%x",*msg);
5544 	if (*msg==M_EXTENDED) {
5545 		for (i=1;i<8;i++) {
5546 			if (i-1>msg[1]) break;
5547 			printf ("-%x",msg[i]);
5548 		}
5549 		return (i+1);
5550 	} else if ((*msg & 0xf0) == 0x20) {
5551 		printf ("-%x",msg[1]);
5552 		return (2);
5553 	}
5554 	return (1);
5555 }
5556 
5557 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5558 {
5559 	PRINT_ADDR(cp);
5560 	if (label)
5561 		printf ("%s: ", label);
5562 
5563 	(void) sym_show_msg (msg);
5564 	printf (".\n");
5565 }
5566 
5567 /*
5568  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5569  *
5570  *  When we try to negotiate, we append the negotiation message
5571  *  to the identify and (maybe) simple tag message.
5572  *  The host status field is set to HS_NEGOTIATE to mark this
5573  *  situation.
5574  *
5575  *  If the target doesn't answer this message immediately
5576  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5577  *  will be raised eventually.
5578  *  The handler removes the HS_NEGOTIATE status, and sets the
5579  *  negotiated value to the default (async / nowide).
5580  *
5581  *  If we receive a matching answer immediately, we check it
5582  *  for validity, and set the values.
5583  *
5584  *  If we receive a Reject message immediately, we assume the
5585  *  negotiation has failed, and fall back to standard values.
5586  *
5587  *  If we receive a negotiation message while not in HS_NEGOTIATE
5588  *  state, it's a target initiated negotiation. We prepare a
5589  *  (hopefully) valid answer, set our parameters, and send back
5590  *  this answer to the target.
5591  *
5592  *  If the target doesn't fetch the answer (no message out phase),
5593  *  we assume the negotiation has failed, and fall back to default
5594  *  settings (SIR_NEGO_PROTO interrupt).
5595  *
5596  *  When we set the values, we adjust them in all ccbs belonging
5597  *  to this target, in the controller's register, and in the "phys"
5598  *  field of the controller's struct sym_hcb.
5599  */
5600 
5601 /*
5602  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5603  */
5604 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5605 {
5606 	u_char	chg, ofs, per, fak, div;
5607 	int	req = 1;
5608 
5609 	/*
5610 	 *  Synchronous request message received.
5611 	 */
5612 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5613 		sym_print_msg(cp, "sync msgin", np->msgin);
5614 	}
5615 
5616 	/*
5617 	 * request or answer ?
5618 	 */
5619 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5620 		OUTB (HS_PRT, HS_BUSY);
5621 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5622 			goto reject_it;
5623 		req = 0;
5624 	}
5625 
5626 	/*
5627 	 *  get requested values.
5628 	 */
5629 	chg = 0;
5630 	per = np->msgin[3];
5631 	ofs = np->msgin[4];
5632 
5633 	/*
5634 	 *  check values against our limits.
5635 	 */
5636 	if (ofs) {
5637 		if (ofs > np->maxoffs)
5638 			{chg = 1; ofs = np->maxoffs;}
5639 		if (req) {
5640 			if (ofs > tp->tinfo.user.offset)
5641 				{chg = 1; ofs = tp->tinfo.user.offset;}
5642 		}
5643 	}
5644 
5645 	if (ofs) {
5646 		if (per < np->minsync)
5647 			{chg = 1; per = np->minsync;}
5648 		if (req) {
5649 			if (per < tp->tinfo.user.period)
5650 				{chg = 1; per = tp->tinfo.user.period;}
5651 		}
5652 	}
5653 
5654 	div = fak = 0;
5655 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5656 		goto reject_it;
5657 
5658 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5659 		PRINT_ADDR(cp);
5660 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5661 			ofs, per, div, fak, chg);
5662 	}
5663 
5664 	/*
5665 	 *  This was an answer message
5666 	 */
5667 	if (req == 0) {
5668 		if (chg) 	/* Answer wasn't acceptable. */
5669 			goto reject_it;
5670 		sym_setsync (np, cp, ofs, per, div, fak);
5671 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5672 		return;
5673 	}
5674 
5675 	/*
5676 	 *  It was a request. Set value and
5677 	 *  prepare an answer message
5678 	 */
5679 	sym_setsync (np, cp, ofs, per, div, fak);
5680 
5681 	np->msgout[0] = M_EXTENDED;
5682 	np->msgout[1] = 3;
5683 	np->msgout[2] = M_X_SYNC_REQ;
5684 	np->msgout[3] = per;
5685 	np->msgout[4] = ofs;
5686 
5687 	cp->nego_status = NS_SYNC;
5688 
5689 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5690 		sym_print_msg(cp, "sync msgout", np->msgout);
5691 	}
5692 
5693 	np->msgin [0] = M_NOOP;
5694 
5695 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5696 	return;
5697 reject_it:
5698 	sym_setsync (np, cp, 0, 0, 0, 0);
5699 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5700 }
5701 
5702 /*
5703  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5704  */
5705 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5706 {
5707 	u_char	chg, ofs, per, fak, dt, div, wide;
5708 	int	req = 1;
5709 
5710 	/*
5711 	 * Synchronous request message received.
5712 	 */
5713 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5714 		sym_print_msg(cp, "ppr msgin", np->msgin);
5715 	}
5716 
5717 	/*
5718 	 *  get requested values.
5719 	 */
5720 	chg  = 0;
5721 	per  = np->msgin[3];
5722 	ofs  = np->msgin[5];
5723 	wide = np->msgin[6];
5724 	dt   = np->msgin[7] & PPR_OPT_DT;
5725 
5726 	/*
5727 	 * request or answer ?
5728 	 */
5729 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5730 		OUTB (HS_PRT, HS_BUSY);
5731 		if (cp->nego_status && cp->nego_status != NS_PPR)
5732 			goto reject_it;
5733 		req = 0;
5734 	}
5735 
5736 	/*
5737 	 *  check values against our limits.
5738 	 */
5739 	if (wide > np->maxwide)
5740 		{chg = 1; wide = np->maxwide;}
5741 	if (!wide || !(np->features & FE_ULTRA3))
5742 		dt &= ~PPR_OPT_DT;
5743 	if (req) {
5744 		if (wide > tp->tinfo.user.width)
5745 			{chg = 1; wide = tp->tinfo.user.width;}
5746 	}
5747 
5748 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5749 		dt &= ~PPR_OPT_DT;
5750 
5751 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5752 
5753 	if (ofs) {
5754 		if (dt) {
5755 			if (ofs > np->maxoffs_dt)
5756 				{chg = 1; ofs = np->maxoffs_dt;}
5757 		}
5758 		else if (ofs > np->maxoffs)
5759 			{chg = 1; ofs = np->maxoffs;}
5760 		if (req) {
5761 			if (ofs > tp->tinfo.user.offset)
5762 				{chg = 1; ofs = tp->tinfo.user.offset;}
5763 		}
5764 	}
5765 
5766 	if (ofs) {
5767 		if (dt) {
5768 			if (per < np->minsync_dt)
5769 				{chg = 1; per = np->minsync_dt;}
5770 		}
5771 		else if (per < np->minsync)
5772 			{chg = 1; per = np->minsync;}
5773 		if (req) {
5774 			if (per < tp->tinfo.user.period)
5775 				{chg = 1; per = tp->tinfo.user.period;}
5776 		}
5777 	}
5778 
5779 	div = fak = 0;
5780 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5781 		goto reject_it;
5782 
5783 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5784 		PRINT_ADDR(cp);
5785 		printf ("ppr: "
5786 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5787 			dt, ofs, per, wide, div, fak, chg);
5788 	}
5789 
5790 	/*
5791 	 *  It was an answer.
5792 	 */
5793 	if (req == 0) {
5794 		if (chg) 	/* Answer wasn't acceptable */
5795 			goto reject_it;
5796 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5797 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5798 		return;
5799 	}
5800 
5801 	/*
5802 	 *  It was a request. Set value and
5803 	 *  prepare an answer message
5804 	 */
5805 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5806 
5807 	np->msgout[0] = M_EXTENDED;
5808 	np->msgout[1] = 6;
5809 	np->msgout[2] = M_X_PPR_REQ;
5810 	np->msgout[3] = per;
5811 	np->msgout[4] = 0;
5812 	np->msgout[5] = ofs;
5813 	np->msgout[6] = wide;
5814 	np->msgout[7] = dt;
5815 
5816 	cp->nego_status = NS_PPR;
5817 
5818 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5819 		sym_print_msg(cp, "ppr msgout", np->msgout);
5820 	}
5821 
5822 	np->msgin [0] = M_NOOP;
5823 
5824 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5825 	return;
5826 reject_it:
5827 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5828 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5829 	/*
5830 	 *  If it was a device response that should result in
5831 	 *  ST, we may want to try a legacy negotiation later.
5832 	 */
5833 	if (!req && !dt) {
5834 		tp->tinfo.goal.options = 0;
5835 		tp->tinfo.goal.width   = wide;
5836 		tp->tinfo.goal.period  = per;
5837 		tp->tinfo.goal.offset  = ofs;
5838 	}
5839 }
5840 
5841 /*
5842  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5843  */
5844 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5845 {
5846 	u_char	chg, wide;
5847 	int	req = 1;
5848 
5849 	/*
5850 	 *  Wide request message received.
5851 	 */
5852 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5853 		sym_print_msg(cp, "wide msgin", np->msgin);
5854 	}
5855 
5856 	/*
5857 	 * Is it a request from the device?
5858 	 */
5859 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5860 		OUTB (HS_PRT, HS_BUSY);
5861 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5862 			goto reject_it;
5863 		req = 0;
5864 	}
5865 
5866 	/*
5867 	 *  get requested values.
5868 	 */
5869 	chg  = 0;
5870 	wide = np->msgin[3];
5871 
5872 	/*
5873 	 *  check values against driver limits.
5874 	 */
5875 	if (wide > np->maxwide)
5876 		{chg = 1; wide = np->maxwide;}
5877 	if (req) {
5878 		if (wide > tp->tinfo.user.width)
5879 			{chg = 1; wide = tp->tinfo.user.width;}
5880 	}
5881 
5882 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5883 		PRINT_ADDR(cp);
5884 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5885 	}
5886 
5887 	/*
5888 	 * This was an answer message
5889 	 */
5890 	if (req == 0) {
5891 		if (chg)	/*  Answer wasn't acceptable. */
5892 			goto reject_it;
5893 		sym_setwide (np, cp, wide);
5894 
5895 		/*
5896 		 * Negotiate for SYNC immediately after WIDE response.
5897 		 * This allows to negotiate for both WIDE and SYNC on
5898 		 * a single SCSI command (Suggested by Justin Gibbs).
5899 		 */
5900 		if (tp->tinfo.goal.offset) {
5901 			np->msgout[0] = M_EXTENDED;
5902 			np->msgout[1] = 3;
5903 			np->msgout[2] = M_X_SYNC_REQ;
5904 			np->msgout[3] = tp->tinfo.goal.period;
5905 			np->msgout[4] = tp->tinfo.goal.offset;
5906 
5907 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5908 				sym_print_msg(cp, "sync msgout", np->msgout);
5909 			}
5910 
5911 			cp->nego_status = NS_SYNC;
5912 			OUTB (HS_PRT, HS_NEGOTIATE);
5913 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5914 			return;
5915 		}
5916 
5917 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5918 		return;
5919 	}
5920 
5921 	/*
5922 	 *  It was a request, set value and
5923 	 *  prepare an answer message
5924 	 */
5925 	sym_setwide (np, cp, wide);
5926 
5927 	np->msgout[0] = M_EXTENDED;
5928 	np->msgout[1] = 2;
5929 	np->msgout[2] = M_X_WIDE_REQ;
5930 	np->msgout[3] = wide;
5931 
5932 	np->msgin [0] = M_NOOP;
5933 
5934 	cp->nego_status = NS_WIDE;
5935 
5936 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5937 		sym_print_msg(cp, "wide msgout", np->msgout);
5938 	}
5939 
5940 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5941 	return;
5942 reject_it:
5943 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5944 }
5945 
5946 /*
5947  *  Reset SYNC or WIDE to default settings.
5948  *
5949  *  Called when a negotiation does not succeed either
5950  *  on rejection or on protocol error.
5951  *
5952  *  If it was a PPR that made problems, we may want to
5953  *  try a legacy negotiation later.
5954  */
5955 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5956 {
5957 	/*
5958 	 *  any error in negotiation:
5959 	 *  fall back to default mode.
5960 	 */
5961 	switch (cp->nego_status) {
5962 	case NS_PPR:
5963 #if 0
5964 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5965 #else
5966 		tp->tinfo.goal.options = 0;
5967 		if (tp->tinfo.goal.period < np->minsync)
5968 			tp->tinfo.goal.period = np->minsync;
5969 		if (tp->tinfo.goal.offset > np->maxoffs)
5970 			tp->tinfo.goal.offset = np->maxoffs;
5971 #endif
5972 		break;
5973 	case NS_SYNC:
5974 		sym_setsync (np, cp, 0, 0, 0, 0);
5975 		break;
5976 	case NS_WIDE:
5977 		sym_setwide (np, cp, 0);
5978 		break;
5979 	}
5980 	np->msgin [0] = M_NOOP;
5981 	np->msgout[0] = M_NOOP;
5982 	cp->nego_status = 0;
5983 }
5984 
5985 /*
5986  *  chip handler for MESSAGE REJECT received in response to
5987  *  a WIDE or SYNCHRONOUS negotiation.
5988  */
5989 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5990 {
5991 	sym_nego_default(np, tp, cp);
5992 	OUTB (HS_PRT, HS_BUSY);
5993 }
5994 
5995 /*
5996  *  chip exception handler for programmed interrupts.
5997  */
5998 static void sym_int_sir (hcb_p np)
5999 {
6000 	u_char	num	= INB (nc_dsps);
6001 	u32	dsa	= INL (nc_dsa);
6002 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6003 	u_char	target	= INB (nc_sdid) & 0x0f;
6004 	tcb_p	tp	= &np->target[target];
6005 	int	tmp;
6006 
6007 	SYM_LOCK_ASSERT(MA_OWNED);
6008 
6009 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6010 
6011 	switch (num) {
6012 	/*
6013 	 *  Command has been completed with error condition
6014 	 *  or has been auto-sensed.
6015 	 */
6016 	case SIR_COMPLETE_ERROR:
6017 		sym_complete_error(np, cp);
6018 		return;
6019 	/*
6020 	 *  The C code is currently trying to recover from something.
6021 	 *  Typically, user want to abort some command.
6022 	 */
6023 	case SIR_SCRIPT_STOPPED:
6024 	case SIR_TARGET_SELECTED:
6025 	case SIR_ABORT_SENT:
6026 		sym_sir_task_recovery(np, num);
6027 		return;
6028 	/*
6029 	 *  The device didn't go to MSG OUT phase after having
6030 	 *  been selected with ATN. We donnot want to handle
6031 	 *  that.
6032 	 */
6033 	case SIR_SEL_ATN_NO_MSG_OUT:
6034 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6035 			sym_name (np), target);
6036 		goto out_stuck;
6037 	/*
6038 	 *  The device didn't switch to MSG IN phase after
6039 	 *  having reseleted the initiator.
6040 	 */
6041 	case SIR_RESEL_NO_MSG_IN:
6042 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6043 			sym_name (np), target);
6044 		goto out_stuck;
6045 	/*
6046 	 *  After reselection, the device sent a message that wasn't
6047 	 *  an IDENTIFY.
6048 	 */
6049 	case SIR_RESEL_NO_IDENTIFY:
6050 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6051 			sym_name (np), target);
6052 		goto out_stuck;
6053 	/*
6054 	 *  The device reselected a LUN we donnot know about.
6055 	 */
6056 	case SIR_RESEL_BAD_LUN:
6057 		np->msgout[0] = M_RESET;
6058 		goto out;
6059 	/*
6060 	 *  The device reselected for an untagged nexus and we
6061 	 *  haven't any.
6062 	 */
6063 	case SIR_RESEL_BAD_I_T_L:
6064 		np->msgout[0] = M_ABORT;
6065 		goto out;
6066 	/*
6067 	 *  The device reselected for a tagged nexus that we donnot
6068 	 *  have.
6069 	 */
6070 	case SIR_RESEL_BAD_I_T_L_Q:
6071 		np->msgout[0] = M_ABORT_TAG;
6072 		goto out;
6073 	/*
6074 	 *  The SCRIPTS let us know that the device has grabbed
6075 	 *  our message and will abort the job.
6076 	 */
6077 	case SIR_RESEL_ABORTED:
6078 		np->lastmsg = np->msgout[0];
6079 		np->msgout[0] = M_NOOP;
6080 		printf ("%s:%d: message %x sent on bad reselection.\n",
6081 			sym_name (np), target, np->lastmsg);
6082 		goto out;
6083 	/*
6084 	 *  The SCRIPTS let us know that a message has been
6085 	 *  successfully sent to the device.
6086 	 */
6087 	case SIR_MSG_OUT_DONE:
6088 		np->lastmsg = np->msgout[0];
6089 		np->msgout[0] = M_NOOP;
6090 		/* Should we really care of that */
6091 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6092 			if (cp) {
6093 				cp->xerr_status &= ~XE_PARITY_ERR;
6094 				if (!cp->xerr_status)
6095 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6096 			}
6097 		}
6098 		goto out;
6099 	/*
6100 	 *  The device didn't send a GOOD SCSI status.
6101 	 *  We may have some work to do prior to allow
6102 	 *  the SCRIPTS processor to continue.
6103 	 */
6104 	case SIR_BAD_SCSI_STATUS:
6105 		if (!cp)
6106 			goto out;
6107 		sym_sir_bad_scsi_status(np, cp);
6108 		return;
6109 	/*
6110 	 *  We are asked by the SCRIPTS to prepare a
6111 	 *  REJECT message.
6112 	 */
6113 	case SIR_REJECT_TO_SEND:
6114 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6115 		np->msgout[0] = M_REJECT;
6116 		goto out;
6117 	/*
6118 	 *  We have been ODD at the end of a DATA IN
6119 	 *  transfer and the device didn't send a
6120 	 *  IGNORE WIDE RESIDUE message.
6121 	 *  It is a data overrun condition.
6122 	 */
6123 	case SIR_SWIDE_OVERRUN:
6124 		if (cp) {
6125 			OUTONB (HF_PRT, HF_EXT_ERR);
6126 			cp->xerr_status |= XE_SWIDE_OVRUN;
6127 		}
6128 		goto out;
6129 	/*
6130 	 *  We have been ODD at the end of a DATA OUT
6131 	 *  transfer.
6132 	 *  It is a data underrun condition.
6133 	 */
6134 	case SIR_SODL_UNDERRUN:
6135 		if (cp) {
6136 			OUTONB (HF_PRT, HF_EXT_ERR);
6137 			cp->xerr_status |= XE_SODL_UNRUN;
6138 		}
6139 		goto out;
6140 	/*
6141 	 *  The device wants us to transfer more data than
6142 	 *  expected or in the wrong direction.
6143 	 *  The number of extra bytes is in scratcha.
6144 	 *  It is a data overrun condition.
6145 	 */
6146 	case SIR_DATA_OVERRUN:
6147 		if (cp) {
6148 			OUTONB (HF_PRT, HF_EXT_ERR);
6149 			cp->xerr_status |= XE_EXTRA_DATA;
6150 			cp->extra_bytes += INL (nc_scratcha);
6151 		}
6152 		goto out;
6153 	/*
6154 	 *  The device switched to an illegal phase (4/5).
6155 	 */
6156 	case SIR_BAD_PHASE:
6157 		if (cp) {
6158 			OUTONB (HF_PRT, HF_EXT_ERR);
6159 			cp->xerr_status |= XE_BAD_PHASE;
6160 		}
6161 		goto out;
6162 	/*
6163 	 *  We received a message.
6164 	 */
6165 	case SIR_MSG_RECEIVED:
6166 		if (!cp)
6167 			goto out_stuck;
6168 		switch (np->msgin [0]) {
6169 		/*
6170 		 *  We received an extended message.
6171 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6172 		 *  and reject all other extended messages.
6173 		 */
6174 		case M_EXTENDED:
6175 			switch (np->msgin [2]) {
6176 			case M_X_MODIFY_DP:
6177 				if (DEBUG_FLAGS & DEBUG_POINTER)
6178 					sym_print_msg(cp,"modify DP",np->msgin);
6179 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6180 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6181 				sym_modify_dp(np, cp, tmp);
6182 				return;
6183 			case M_X_SYNC_REQ:
6184 				sym_sync_nego(np, tp, cp);
6185 				return;
6186 			case M_X_PPR_REQ:
6187 				sym_ppr_nego(np, tp, cp);
6188 				return;
6189 			case M_X_WIDE_REQ:
6190 				sym_wide_nego(np, tp, cp);
6191 				return;
6192 			default:
6193 				goto out_reject;
6194 			}
6195 			break;
6196 		/*
6197 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6198 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6199 		 *  RESIDUE messages that haven't been anticipated by
6200 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6201 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6202 		 */
6203 		case M_IGN_RESIDUE:
6204 			if (DEBUG_FLAGS & DEBUG_POINTER)
6205 				sym_print_msg(cp,"ign wide residue", np->msgin);
6206 			sym_modify_dp(np, cp, -1);
6207 			return;
6208 		case M_REJECT:
6209 			if (INB (HS_PRT) == HS_NEGOTIATE)
6210 				sym_nego_rejected(np, tp, cp);
6211 			else {
6212 				PRINT_ADDR(cp);
6213 				printf ("M_REJECT received (%x:%x).\n",
6214 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6215 			}
6216 			goto out_clrack;
6217 			break;
6218 		default:
6219 			goto out_reject;
6220 		}
6221 		break;
6222 	/*
6223 	 *  We received an unknown message.
6224 	 *  Ignore all MSG IN phases and reject it.
6225 	 */
6226 	case SIR_MSG_WEIRD:
6227 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6228 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6229 		return;
6230 	/*
6231 	 *  Negotiation failed.
6232 	 *  Target does not send us the reply.
6233 	 *  Remove the HS_NEGOTIATE status.
6234 	 */
6235 	case SIR_NEGO_FAILED:
6236 		OUTB (HS_PRT, HS_BUSY);
6237 	/*
6238 	 *  Negotiation failed.
6239 	 *  Target does not want answer message.
6240 	 */
6241 	case SIR_NEGO_PROTO:
6242 		sym_nego_default(np, tp, cp);
6243 		goto out;
6244 	}
6245 
6246 out:
6247 	OUTONB_STD ();
6248 	return;
6249 out_reject:
6250 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6251 	return;
6252 out_clrack:
6253 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6254 	return;
6255 out_stuck:
6256 	return;
6257 }
6258 
6259 /*
6260  *  Acquire a control block
6261  */
6262 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6263 {
6264 	tcb_p tp = &np->target[tn];
6265 	lcb_p lp = sym_lp(tp, ln);
6266 	u_short tag = NO_TAG;
6267 	SYM_QUEHEAD *qp;
6268 	ccb_p cp = (ccb_p) NULL;
6269 
6270 	/*
6271 	 *  Look for a free CCB
6272 	 */
6273 	if (sym_que_empty(&np->free_ccbq))
6274 		goto out;
6275 	qp = sym_remque_head(&np->free_ccbq);
6276 	if (!qp)
6277 		goto out;
6278 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6279 
6280 	/*
6281 	 *  If the LCB is not yet available and the LUN
6282 	 *  has been probed ok, try to allocate the LCB.
6283 	 */
6284 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6285 		lp = sym_alloc_lcb(np, tn, ln);
6286 		if (!lp)
6287 			goto out_free;
6288 	}
6289 
6290 	/*
6291 	 *  If the LCB is not available here, then the
6292 	 *  logical unit is not yet discovered. For those
6293 	 *  ones only accept 1 SCSI IO per logical unit,
6294 	 *  since we cannot allow disconnections.
6295 	 */
6296 	if (!lp) {
6297 		if (!sym_is_bit(tp->busy0_map, ln))
6298 			sym_set_bit(tp->busy0_map, ln);
6299 		else
6300 			goto out_free;
6301 	} else {
6302 		/*
6303 		 *  If we have been asked for a tagged command.
6304 		 */
6305 		if (tag_order) {
6306 			/*
6307 			 *  Debugging purpose.
6308 			 */
6309 			assert(lp->busy_itl == 0);
6310 			/*
6311 			 *  Allocate resources for tags if not yet.
6312 			 */
6313 			if (!lp->cb_tags) {
6314 				sym_alloc_lcb_tags(np, tn, ln);
6315 				if (!lp->cb_tags)
6316 					goto out_free;
6317 			}
6318 			/*
6319 			 *  Get a tag for this SCSI IO and set up
6320 			 *  the CCB bus address for reselection,
6321 			 *  and count it for this LUN.
6322 			 *  Toggle reselect path to tagged.
6323 			 */
6324 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6325 				tag = lp->cb_tags[lp->ia_tag];
6326 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6327 					lp->ia_tag = 0;
6328 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6329 				++lp->busy_itlq;
6330 				lp->head.resel_sa =
6331 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6332 			}
6333 			else
6334 				goto out_free;
6335 		}
6336 		/*
6337 		 *  This command will not be tagged.
6338 		 *  If we already have either a tagged or untagged
6339 		 *  one, refuse to overlap this untagged one.
6340 		 */
6341 		else {
6342 			/*
6343 			 *  Debugging purpose.
6344 			 */
6345 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6346 			/*
6347 			 *  Count this nexus for this LUN.
6348 			 *  Set up the CCB bus address for reselection.
6349 			 *  Toggle reselect path to untagged.
6350 			 */
6351 			if (++lp->busy_itl == 1) {
6352 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6353 				lp->head.resel_sa =
6354 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6355 			}
6356 			else
6357 				goto out_free;
6358 		}
6359 	}
6360 	/*
6361 	 *  Put the CCB into the busy queue.
6362 	 */
6363 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6364 
6365 	/*
6366 	 *  Remember all informations needed to free this CCB.
6367 	 */
6368 	cp->to_abort = 0;
6369 	cp->tag	   = tag;
6370 	cp->target = tn;
6371 	cp->lun    = ln;
6372 
6373 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6374 		PRINT_LUN(np, tn, ln);
6375 		printf ("ccb @%p using tag %d.\n", cp, tag);
6376 	}
6377 
6378 out:
6379 	return cp;
6380 out_free:
6381 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6382 	return NULL;
6383 }
6384 
6385 /*
6386  *  Release one control block
6387  */
6388 static void sym_free_ccb(hcb_p np, ccb_p cp)
6389 {
6390 	tcb_p tp = &np->target[cp->target];
6391 	lcb_p lp = sym_lp(tp, cp->lun);
6392 
6393 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6394 		PRINT_LUN(np, cp->target, cp->lun);
6395 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6396 	}
6397 
6398 	/*
6399 	 *  If LCB available,
6400 	 */
6401 	if (lp) {
6402 		/*
6403 		 *  If tagged, release the tag, set the relect path
6404 		 */
6405 		if (cp->tag != NO_TAG) {
6406 			/*
6407 			 *  Free the tag value.
6408 			 */
6409 			lp->cb_tags[lp->if_tag] = cp->tag;
6410 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6411 				lp->if_tag = 0;
6412 			/*
6413 			 *  Make the reselect path invalid,
6414 			 *  and uncount this CCB.
6415 			 */
6416 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6417 			--lp->busy_itlq;
6418 		} else {	/* Untagged */
6419 			/*
6420 			 *  Make the reselect path invalid,
6421 			 *  and uncount this CCB.
6422 			 */
6423 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6424 			--lp->busy_itl;
6425 		}
6426 		/*
6427 		 *  If no JOB active, make the LUN reselect path invalid.
6428 		 */
6429 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6430 			lp->head.resel_sa =
6431 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6432 	}
6433 	/*
6434 	 *  Otherwise, we only accept 1 IO per LUN.
6435 	 *  Clear the bit that keeps track of this IO.
6436 	 */
6437 	else
6438 		sym_clr_bit(tp->busy0_map, cp->lun);
6439 
6440 	/*
6441 	 *  We donnot queue more than 1 ccb per target
6442 	 *  with negotiation at any time. If this ccb was
6443 	 *  used for negotiation, clear this info in the tcb.
6444 	 */
6445 	if (cp == tp->nego_cp)
6446 		tp->nego_cp = NULL;
6447 
6448 #ifdef SYM_CONF_IARB_SUPPORT
6449 	/*
6450 	 *  If we just complete the last queued CCB,
6451 	 *  clear this info that is no longer relevant.
6452 	 */
6453 	if (cp == np->last_cp)
6454 		np->last_cp = NULL;
6455 #endif
6456 
6457 	/*
6458 	 *  Unmap user data from DMA map if needed.
6459 	 */
6460 	if (cp->dmamapped) {
6461 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6462 		cp->dmamapped = 0;
6463 	}
6464 
6465 	/*
6466 	 *  Make this CCB available.
6467 	 */
6468 	cp->cam_ccb = NULL;
6469 	cp->host_status = HS_IDLE;
6470 	sym_remque(&cp->link_ccbq);
6471 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6472 }
6473 
6474 /*
6475  *  Allocate a CCB from memory and initialize its fixed part.
6476  */
6477 static ccb_p sym_alloc_ccb(hcb_p np)
6478 {
6479 	ccb_p cp = NULL;
6480 	int hcode;
6481 
6482 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6483 
6484 	/*
6485 	 *  Prevent from allocating more CCBs than we can
6486 	 *  queue to the controller.
6487 	 */
6488 	if (np->actccbs >= SYM_CONF_MAX_START)
6489 		return NULL;
6490 
6491 	/*
6492 	 *  Allocate memory for this CCB.
6493 	 */
6494 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6495 	if (!cp)
6496 		return NULL;
6497 
6498 	/*
6499 	 *  Allocate a bounce buffer for sense data.
6500 	 */
6501 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6502 	if (!cp->sns_bbuf)
6503 		goto out_free;
6504 
6505 	/*
6506 	 *  Allocate a map for the DMA of user data.
6507 	 */
6508 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6509 		goto out_free;
6510 	/*
6511 	 *  Count it.
6512 	 */
6513 	np->actccbs++;
6514 
6515 	/*
6516 	 * Initialize the callout.
6517 	 */
6518 	callout_init(&cp->ch, 1);
6519 
6520 	/*
6521 	 *  Compute the bus address of this ccb.
6522 	 */
6523 	cp->ccb_ba = vtobus(cp);
6524 
6525 	/*
6526 	 *  Insert this ccb into the hashed list.
6527 	 */
6528 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6529 	cp->link_ccbh = np->ccbh[hcode];
6530 	np->ccbh[hcode] = cp;
6531 
6532 	/*
6533 	 *  Initialize the start and restart actions.
6534 	 */
6535 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6536 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6537 
6538  	/*
6539 	 *  Initilialyze some other fields.
6540 	 */
6541 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6542 
6543 	/*
6544 	 *  Chain into free ccb queue.
6545 	 */
6546 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6547 
6548 	return cp;
6549 out_free:
6550 	if (cp->sns_bbuf)
6551 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6552 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6553 	return NULL;
6554 }
6555 
6556 /*
6557  *  Look up a CCB from a DSA value.
6558  */
6559 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6560 {
6561 	int hcode;
6562 	ccb_p cp;
6563 
6564 	hcode = CCB_HASH_CODE(dsa);
6565 	cp = np->ccbh[hcode];
6566 	while (cp) {
6567 		if (cp->ccb_ba == dsa)
6568 			break;
6569 		cp = cp->link_ccbh;
6570 	}
6571 
6572 	return cp;
6573 }
6574 
6575 /*
6576  *  Lun control block allocation and initialization.
6577  */
6578 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6579 {
6580 	tcb_p tp = &np->target[tn];
6581 	lcb_p lp = sym_lp(tp, ln);
6582 
6583 	/*
6584 	 *  Already done, just return.
6585 	 */
6586 	if (lp)
6587 		return lp;
6588 	/*
6589 	 *  Check against some race.
6590 	 */
6591 	assert(!sym_is_bit(tp->busy0_map, ln));
6592 
6593 	/*
6594 	 *  Allocate the LCB bus address array.
6595 	 *  Compute the bus address of this table.
6596 	 */
6597 	if (ln && !tp->luntbl) {
6598 		int i;
6599 
6600 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6601 		if (!tp->luntbl)
6602 			goto fail;
6603 		for (i = 0 ; i < 64 ; i++)
6604 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6605 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6606 	}
6607 
6608 	/*
6609 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6610 	 */
6611 	if (ln && !tp->lunmp) {
6612 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6613 				   "LUNMP");
6614 		if (!tp->lunmp)
6615 			goto fail;
6616 	}
6617 
6618 	/*
6619 	 *  Allocate the lcb.
6620 	 *  Make it available to the chip.
6621 	 */
6622 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6623 	if (!lp)
6624 		goto fail;
6625 	if (ln) {
6626 		tp->lunmp[ln] = lp;
6627 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6628 	}
6629 	else {
6630 		tp->lun0p = lp;
6631 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6632 	}
6633 
6634 	/*
6635 	 *  Let the itl task point to error handling.
6636 	 */
6637 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6638 
6639 	/*
6640 	 *  Set the reselect pattern to our default. :)
6641 	 */
6642 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6643 
6644 	/*
6645 	 *  Set user capabilities.
6646 	 */
6647 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6648 
6649 fail:
6650 	return lp;
6651 }
6652 
6653 /*
6654  *  Allocate LCB resources for tagged command queuing.
6655  */
6656 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6657 {
6658 	tcb_p tp = &np->target[tn];
6659 	lcb_p lp = sym_lp(tp, ln);
6660 	int i;
6661 
6662 	/*
6663 	 *  If LCB not available, try to allocate it.
6664 	 */
6665 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6666 		return;
6667 
6668 	/*
6669 	 *  Allocate the task table and and the tag allocation
6670 	 *  circular buffer. We want both or none.
6671 	 */
6672 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6673 	if (!lp->itlq_tbl)
6674 		return;
6675 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6676 	if (!lp->cb_tags) {
6677 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6678 		lp->itlq_tbl = NULL;
6679 		return;
6680 	}
6681 
6682 	/*
6683 	 *  Initialize the task table with invalid entries.
6684 	 */
6685 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6686 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6687 
6688 	/*
6689 	 *  Fill up the tag buffer with tag numbers.
6690 	 */
6691 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6692 		lp->cb_tags[i] = i;
6693 
6694 	/*
6695 	 *  Make the task table available to SCRIPTS,
6696 	 *  And accept tagged commands now.
6697 	 */
6698 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6699 }
6700 
6701 /*
6702  *  Test the pci bus snoop logic :-(
6703  *
6704  *  Has to be called with interrupts disabled.
6705  */
6706 #ifndef SYM_CONF_IOMAPPED
6707 static int sym_regtest (hcb_p np)
6708 {
6709 	register volatile u32 data;
6710 	/*
6711 	 *  chip registers may NOT be cached.
6712 	 *  write 0xffffffff to a read only register area,
6713 	 *  and try to read it back.
6714 	 */
6715 	data = 0xffffffff;
6716 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6717 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6718 #if 1
6719 	if (data == 0xffffffff) {
6720 #else
6721 	if ((data & 0xe2f0fffd) != 0x02000080) {
6722 #endif
6723 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6724 			(unsigned) data);
6725 		return (0x10);
6726 	}
6727 	return (0);
6728 }
6729 #endif
6730 
6731 static int sym_snooptest (hcb_p np)
6732 {
6733 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6734 	int	i, err=0;
6735 #ifndef SYM_CONF_IOMAPPED
6736 	err |= sym_regtest (np);
6737 	if (err) return (err);
6738 #endif
6739 restart_test:
6740 	/*
6741 	 *  Enable Master Parity Checking as we intend
6742 	 *  to enable it for normal operations.
6743 	 */
6744 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6745 	/*
6746 	 *  init
6747 	 */
6748 	pc  = SCRIPTB0_BA (np, snooptest);
6749 	host_wr = 1;
6750 	sym_wr  = 2;
6751 	/*
6752 	 *  Set memory and register.
6753 	 */
6754 	np->cache = cpu_to_scr(host_wr);
6755 	OUTL (nc_temp, sym_wr);
6756 	/*
6757 	 *  Start script (exchange values)
6758 	 */
6759 	OUTL (nc_dsa, np->hcb_ba);
6760 	OUTL_DSP (pc);
6761 	/*
6762 	 *  Wait 'til done (with timeout)
6763 	 */
6764 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6765 		if (INB(nc_istat) & (INTF|SIP|DIP))
6766 			break;
6767 	if (i>=SYM_SNOOP_TIMEOUT) {
6768 		printf ("CACHE TEST FAILED: timeout.\n");
6769 		return (0x20);
6770 	}
6771 	/*
6772 	 *  Check for fatal DMA errors.
6773 	 */
6774 	dstat = INB (nc_dstat);
6775 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6776 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6777 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6778 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6779 			sym_name(np));
6780 		np->rv_ctest4 &= ~MPEE;
6781 		goto restart_test;
6782 	}
6783 #endif
6784 	if (dstat & (MDPE|BF|IID)) {
6785 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6786 		return (0x80);
6787 	}
6788 	/*
6789 	 *  Save termination position.
6790 	 */
6791 	pc = INL (nc_dsp);
6792 	/*
6793 	 *  Read memory and register.
6794 	 */
6795 	host_rd = scr_to_cpu(np->cache);
6796 	sym_rd  = INL (nc_scratcha);
6797 	sym_bk  = INL (nc_temp);
6798 
6799 	/*
6800 	 *  Check termination position.
6801 	 */
6802 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6803 		printf ("CACHE TEST FAILED: script execution failed.\n");
6804 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6805 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6806 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6807 		return (0x40);
6808 	}
6809 	/*
6810 	 *  Show results.
6811 	 */
6812 	if (host_wr != sym_rd) {
6813 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6814 			(int) host_wr, (int) sym_rd);
6815 		err |= 1;
6816 	}
6817 	if (host_rd != sym_wr) {
6818 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6819 			(int) sym_wr, (int) host_rd);
6820 		err |= 2;
6821 	}
6822 	if (sym_bk != sym_wr) {
6823 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6824 			(int) sym_wr, (int) sym_bk);
6825 		err |= 4;
6826 	}
6827 
6828 	return (err);
6829 }
6830 
6831 /*
6832  *  Determine the chip's clock frequency.
6833  *
6834  *  This is essential for the negotiation of the synchronous
6835  *  transfer rate.
6836  *
6837  *  Note: we have to return the correct value.
6838  *  THERE IS NO SAFE DEFAULT VALUE.
6839  *
6840  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6841  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6842  *  do not have a clock doubler and so are provided with a
6843  *  80 MHz clock. All other fast20 boards incorporate a doubler
6844  *  and so should be delivered with a 40 MHz clock.
6845  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6846  *  clock and provide a clock quadrupler (160 Mhz).
6847  */
6848 
6849 /*
6850  *  Select SCSI clock frequency
6851  */
6852 static void sym_selectclock(hcb_p np, u_char scntl3)
6853 {
6854 	/*
6855 	 *  If multiplier not present or not selected, leave here.
6856 	 */
6857 	if (np->multiplier <= 1) {
6858 		OUTB(nc_scntl3,	scntl3);
6859 		return;
6860 	}
6861 
6862 	if (sym_verbose >= 2)
6863 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6864 
6865 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6866 	/*
6867 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6868 	 *  Otherwise wait 20 micro-seconds.
6869 	 */
6870 	if (np->features & FE_LCKFRQ) {
6871 		int i = 20;
6872 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6873 			UDELAY (20);
6874 		if (!i)
6875 			printf("%s: the chip cannot lock the frequency\n",
6876 				sym_name(np));
6877 	} else
6878 		UDELAY (20);
6879 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6880 	OUTB(nc_scntl3,	scntl3);
6881 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6882 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6883 }
6884 
6885 /*
6886  *  calculate SCSI clock frequency (in KHz)
6887  */
6888 static unsigned getfreq (hcb_p np, int gen)
6889 {
6890 	unsigned int ms = 0;
6891 	unsigned int f;
6892 
6893 	/*
6894 	 * Measure GEN timer delay in order
6895 	 * to calculate SCSI clock frequency
6896 	 *
6897 	 * This code will never execute too
6898 	 * many loop iterations (if DELAY is
6899 	 * reasonably correct). It could get
6900 	 * too low a delay (too high a freq.)
6901 	 * if the CPU is slow executing the
6902 	 * loop for some reason (an NMI, for
6903 	 * example). For this reason we will
6904 	 * if multiple measurements are to be
6905 	 * performed trust the higher delay
6906 	 * (lower frequency returned).
6907 	 */
6908 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6909 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6910 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6911 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6912 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6913 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6914 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6915 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6916 		UDELAY (1000);	/* count ms */
6917 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6918  	/*
6919  	 * set prescaler to divide by whatever 0 means
6920  	 * 0 ought to choose divide by 2, but appears
6921  	 * to set divide by 3.5 mode in my 53c810 ...
6922  	 */
6923  	OUTB (nc_scntl3, 0);
6924 
6925   	/*
6926  	 * adjust for prescaler, and convert into KHz
6927   	 */
6928 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6929 
6930 	if (sym_verbose >= 2)
6931 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6932 			sym_name(np), gen, ms, f);
6933 
6934 	return f;
6935 }
6936 
6937 static unsigned sym_getfreq (hcb_p np)
6938 {
6939 	u_int f1, f2;
6940 	int gen = 11;
6941 
6942 	(void) getfreq (np, gen);	/* throw away first result */
6943 	f1 = getfreq (np, gen);
6944 	f2 = getfreq (np, gen);
6945 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6946 	return f1;
6947 }
6948 
6949 /*
6950  *  Get/probe chip SCSI clock frequency
6951  */
6952 static void sym_getclock (hcb_p np, int mult)
6953 {
6954 	unsigned char scntl3 = np->sv_scntl3;
6955 	unsigned char stest1 = np->sv_stest1;
6956 	unsigned f1;
6957 
6958 	/*
6959 	 *  For the C10 core, assume 40 MHz.
6960 	 */
6961 	if (np->features & FE_C10) {
6962 		np->multiplier = mult;
6963 		np->clock_khz = 40000 * mult;
6964 		return;
6965 	}
6966 
6967 	np->multiplier = 1;
6968 	f1 = 40000;
6969 	/*
6970 	 *  True with 875/895/896/895A with clock multiplier selected
6971 	 */
6972 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6973 		if (sym_verbose >= 2)
6974 			printf ("%s: clock multiplier found\n", sym_name(np));
6975 		np->multiplier = mult;
6976 	}
6977 
6978 	/*
6979 	 *  If multiplier not found or scntl3 not 7,5,3,
6980 	 *  reset chip and get frequency from general purpose timer.
6981 	 *  Otherwise trust scntl3 BIOS setting.
6982 	 */
6983 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6984 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6985 		f1 = sym_getfreq (np);
6986 
6987 		if (sym_verbose)
6988 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
6989 
6990 		if	(f1 <	45000)		f1 =  40000;
6991 		else if (f1 <	55000)		f1 =  50000;
6992 		else				f1 =  80000;
6993 
6994 		if (f1 < 80000 && mult > 1) {
6995 			if (sym_verbose >= 2)
6996 				printf ("%s: clock multiplier assumed\n",
6997 					sym_name(np));
6998 			np->multiplier	= mult;
6999 		}
7000 	} else {
7001 		if	((scntl3 & 7) == 3)	f1 =  40000;
7002 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7003 		else 				f1 = 160000;
7004 
7005 		f1 /= np->multiplier;
7006 	}
7007 
7008 	/*
7009 	 *  Compute controller synchronous parameters.
7010 	 */
7011 	f1		*= np->multiplier;
7012 	np->clock_khz	= f1;
7013 }
7014 
7015 /*
7016  *  Get/probe PCI clock frequency
7017  */
7018 static int sym_getpciclock (hcb_p np)
7019 {
7020 	int f = 0;
7021 
7022 	/*
7023 	 *  For the C1010-33, this doesn't work.
7024 	 *  For the C1010-66, this will be tested when I'll have
7025 	 *  such a beast to play with.
7026 	 */
7027 	if (!(np->features & FE_C10)) {
7028 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7029 		f = (int) sym_getfreq (np);
7030 		OUTB (nc_stest1, 0);
7031 	}
7032 	np->pciclk_khz = f;
7033 
7034 	return f;
7035 }
7036 
7037 /*============= DRIVER ACTION/COMPLETION ====================*/
7038 
7039 /*
7040  *  Print something that tells about extended errors.
7041  */
7042 static void sym_print_xerr(ccb_p cp, int x_status)
7043 {
7044 	if (x_status & XE_PARITY_ERR) {
7045 		PRINT_ADDR(cp);
7046 		printf ("unrecovered SCSI parity error.\n");
7047 	}
7048 	if (x_status & XE_EXTRA_DATA) {
7049 		PRINT_ADDR(cp);
7050 		printf ("extraneous data discarded.\n");
7051 	}
7052 	if (x_status & XE_BAD_PHASE) {
7053 		PRINT_ADDR(cp);
7054 		printf ("illegal scsi phase (4/5).\n");
7055 	}
7056 	if (x_status & XE_SODL_UNRUN) {
7057 		PRINT_ADDR(cp);
7058 		printf ("ODD transfer in DATA OUT phase.\n");
7059 	}
7060 	if (x_status & XE_SWIDE_OVRUN) {
7061 		PRINT_ADDR(cp);
7062 		printf ("ODD transfer in DATA IN phase.\n");
7063 	}
7064 }
7065 
7066 /*
7067  *  Choose the more appropriate CAM status if
7068  *  the IO encountered an extended error.
7069  */
7070 static int sym_xerr_cam_status(int cam_status, int x_status)
7071 {
7072 	if (x_status) {
7073 		if	(x_status & XE_PARITY_ERR)
7074 			cam_status = CAM_UNCOR_PARITY;
7075 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7076 			cam_status = CAM_DATA_RUN_ERR;
7077 		else if	(x_status & XE_BAD_PHASE)
7078 			cam_status = CAM_REQ_CMP_ERR;
7079 		else
7080 			cam_status = CAM_REQ_CMP_ERR;
7081 	}
7082 	return cam_status;
7083 }
7084 
7085 /*
7086  *  Complete execution of a SCSI command with extented
7087  *  error, SCSI status error, or having been auto-sensed.
7088  *
7089  *  The SCRIPTS processor is not running there, so we
7090  *  can safely access IO registers and remove JOBs from
7091  *  the START queue.
7092  *  SCRATCHA is assumed to have been loaded with STARTPOS
7093  *  before the SCRIPTS called the C code.
7094  */
7095 static void sym_complete_error (hcb_p np, ccb_p cp)
7096 {
7097 	struct ccb_scsiio *csio;
7098 	u_int cam_status;
7099 	int i, sense_returned;
7100 
7101 	SYM_LOCK_ASSERT(MA_OWNED);
7102 
7103 	/*
7104 	 *  Paranoid check. :)
7105 	 */
7106 	if (!cp || !cp->cam_ccb)
7107 		return;
7108 
7109 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7110 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7111 			cp->host_status, cp->ssss_status, cp->host_flags,
7112 			cp->target, cp->lun);
7113 		MDELAY(100);
7114 	}
7115 
7116 	/*
7117 	 *  Get CAM command pointer.
7118 	 */
7119 	csio = &cp->cam_ccb->csio;
7120 
7121 	/*
7122 	 *  Check for extended errors.
7123 	 */
7124 	if (cp->xerr_status) {
7125 		if (sym_verbose)
7126 			sym_print_xerr(cp, cp->xerr_status);
7127 		if (cp->host_status == HS_COMPLETE)
7128 			cp->host_status = HS_COMP_ERR;
7129 	}
7130 
7131 	/*
7132 	 *  Calculate the residual.
7133 	 */
7134 	csio->sense_resid = 0;
7135 	csio->resid = sym_compute_residual(np, cp);
7136 
7137 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7138 		csio->resid  = 0;	/* throw them away. :)		   */
7139 		cp->sv_resid = 0;
7140 	}
7141 
7142 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7143 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7144 		csio->sense_resid = csio->resid;	/* Swap residuals */
7145 		csio->resid       = cp->sv_resid;
7146 		cp->sv_resid	  = 0;
7147 		if (sym_verbose && cp->sv_xerr_status)
7148 			sym_print_xerr(cp, cp->sv_xerr_status);
7149 		if (cp->host_status == HS_COMPLETE &&
7150 		    cp->ssss_status == S_GOOD &&
7151 		    cp->xerr_status == 0) {
7152 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7153 							 cp->sv_xerr_status);
7154 			cam_status |= CAM_AUTOSNS_VALID;
7155 			/*
7156 			 *  Bounce back the sense data to user and
7157 			 *  fix the residual.
7158 			 */
7159 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7160 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7161 			if (sense_returned < csio->sense_len)
7162 				csio->sense_resid = csio->sense_len -
7163 				    sense_returned;
7164 			else
7165 				csio->sense_resid = 0;
7166 			bcopy(cp->sns_bbuf, &csio->sense_data,
7167 			    MIN(csio->sense_len, sense_returned));
7168 #if 0
7169 			/*
7170 			 *  If the device reports a UNIT ATTENTION condition
7171 			 *  due to a RESET condition, we should consider all
7172 			 *  disconnect CCBs for this unit as aborted.
7173 			 */
7174 			if (1) {
7175 				u_char *p;
7176 				p  = (u_char *) csio->sense_data;
7177 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7178 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7179 							cp->target,cp->lun, -1);
7180 			}
7181 #endif
7182 		}
7183 		else
7184 			cam_status = CAM_AUTOSENSE_FAIL;
7185 	}
7186 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7187 		csio->scsi_status = cp->ssss_status;
7188 		cam_status = CAM_SCSI_STATUS_ERROR;
7189 	}
7190 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7191 		cam_status = CAM_SEL_TIMEOUT;
7192 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7193 		cam_status = CAM_UNEXP_BUSFREE;
7194 	else {						/* Extended error */
7195 		if (sym_verbose) {
7196 			PRINT_ADDR(cp);
7197 			printf ("COMMAND FAILED (%x %x %x).\n",
7198 				cp->host_status, cp->ssss_status,
7199 				cp->xerr_status);
7200 		}
7201 		csio->scsi_status = cp->ssss_status;
7202 		/*
7203 		 *  Set the most appropriate value for CAM status.
7204 		 */
7205 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7206 						 cp->xerr_status);
7207 	}
7208 
7209 	/*
7210 	 *  Dequeue all queued CCBs for that device
7211 	 *  not yet started by SCRIPTS.
7212 	 */
7213 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7214 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7215 
7216 	/*
7217 	 *  Restart the SCRIPTS processor.
7218 	 */
7219 	OUTL_DSP (SCRIPTA_BA (np, start));
7220 
7221 	/*
7222 	 *  Synchronize DMA map if needed.
7223 	 */
7224 	if (cp->dmamapped) {
7225 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7226 			(cp->dmamapped == SYM_DMA_READ ?
7227 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7228 	}
7229 	/*
7230 	 *  Add this one to the COMP queue.
7231 	 *  Complete all those commands with either error
7232 	 *  or requeue condition.
7233 	 */
7234 	sym_set_cam_status((union ccb *) csio, cam_status);
7235 	sym_remque(&cp->link_ccbq);
7236 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7237 	sym_flush_comp_queue(np, 0);
7238 }
7239 
7240 /*
7241  *  Complete execution of a successful SCSI command.
7242  *
7243  *  Only successful commands go to the DONE queue,
7244  *  since we need to have the SCRIPTS processor
7245  *  stopped on any error condition.
7246  *  The SCRIPTS processor is running while we are
7247  *  completing successful commands.
7248  */
7249 static void sym_complete_ok (hcb_p np, ccb_p cp)
7250 {
7251 	struct ccb_scsiio *csio;
7252 	tcb_p tp;
7253 	lcb_p lp;
7254 
7255 	SYM_LOCK_ASSERT(MA_OWNED);
7256 
7257 	/*
7258 	 *  Paranoid check. :)
7259 	 */
7260 	if (!cp || !cp->cam_ccb)
7261 		return;
7262 	assert (cp->host_status == HS_COMPLETE);
7263 
7264 	/*
7265 	 *  Get command, target and lun pointers.
7266 	 */
7267 	csio = &cp->cam_ccb->csio;
7268 	tp = &np->target[cp->target];
7269 	lp = sym_lp(tp, cp->lun);
7270 
7271 	/*
7272 	 *  Assume device discovered on first success.
7273 	 */
7274 	if (!lp)
7275 		sym_set_bit(tp->lun_map, cp->lun);
7276 
7277 	/*
7278 	 *  If all data have been transferred, given than no
7279 	 *  extended error did occur, there is no residual.
7280 	 */
7281 	csio->resid = 0;
7282 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7283 		csio->resid = sym_compute_residual(np, cp);
7284 
7285 	/*
7286 	 *  Wrong transfer residuals may be worse than just always
7287 	 *  returning zero. User can disable this feature from
7288 	 *  sym_conf.h. Residual support is enabled by default.
7289 	 */
7290 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7291 		csio->resid  = 0;
7292 
7293 	/*
7294 	 *  Synchronize DMA map if needed.
7295 	 */
7296 	if (cp->dmamapped) {
7297 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7298 			(cp->dmamapped == SYM_DMA_READ ?
7299 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7300 	}
7301 	/*
7302 	 *  Set status and complete the command.
7303 	 */
7304 	csio->scsi_status = cp->ssss_status;
7305 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7306 	sym_xpt_done(np, (union ccb *) csio, cp);
7307 	sym_free_ccb(np, cp);
7308 }
7309 
7310 /*
7311  *  Our callout handler
7312  */
7313 static void sym_callout(void *arg)
7314 {
7315 	union ccb *ccb = (union ccb *) arg;
7316 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7317 
7318 	/*
7319 	 *  Check that the CAM CCB is still queued.
7320 	 */
7321 	if (!np)
7322 		return;
7323 
7324 	SYM_LOCK();
7325 
7326 	switch(ccb->ccb_h.func_code) {
7327 	case XPT_SCSI_IO:
7328 		(void) sym_abort_scsiio(np, ccb, 1);
7329 		break;
7330 	default:
7331 		break;
7332 	}
7333 
7334 	SYM_UNLOCK();
7335 }
7336 
7337 /*
7338  *  Abort an SCSI IO.
7339  */
7340 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7341 {
7342 	ccb_p cp;
7343 	SYM_QUEHEAD *qp;
7344 
7345 	SYM_LOCK_ASSERT(MA_OWNED);
7346 
7347 	/*
7348 	 *  Look up our CCB control block.
7349 	 */
7350 	cp = NULL;
7351 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7352 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7353 		if (cp2->cam_ccb == ccb) {
7354 			cp = cp2;
7355 			break;
7356 		}
7357 	}
7358 	if (!cp || cp->host_status == HS_WAIT)
7359 		return -1;
7360 
7361 	/*
7362 	 *  If a previous abort didn't succeed in time,
7363 	 *  perform a BUS reset.
7364 	 */
7365 	if (cp->to_abort) {
7366 		sym_reset_scsi_bus(np, 1);
7367 		return 0;
7368 	}
7369 
7370 	/*
7371 	 *  Mark the CCB for abort and allow time for.
7372 	 */
7373 	cp->to_abort = timed_out ? 2 : 1;
7374 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7375 
7376 	/*
7377 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7378 	 */
7379 	np->istat_sem = SEM;
7380 	OUTB (nc_istat, SIGP|SEM);
7381 	return 0;
7382 }
7383 
7384 /*
7385  *  Reset a SCSI device (all LUNs of a target).
7386  */
7387 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7388 {
7389 	tcb_p tp;
7390 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7391 
7392 	SYM_LOCK_ASSERT(MA_OWNED);
7393 
7394 	if (ccb_h->target_id   == np->myaddr ||
7395 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7396 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7397 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7398 		return;
7399 	}
7400 
7401 	tp = &np->target[ccb_h->target_id];
7402 
7403 	tp->to_reset = 1;
7404 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7405 
7406 	np->istat_sem = SEM;
7407 	OUTB (nc_istat, SIGP|SEM);
7408 }
7409 
7410 /*
7411  *  SIM action entry point.
7412  */
7413 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7414 {
7415 	hcb_p	np;
7416 	tcb_p	tp;
7417 	lcb_p	lp;
7418 	ccb_p	cp;
7419 	int 	tmp;
7420 	u_char	idmsg, *msgptr;
7421 	u_int   msglen;
7422 	struct	ccb_scsiio *csio;
7423 	struct	ccb_hdr  *ccb_h;
7424 
7425 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7426 
7427 	/*
7428 	 *  Retrieve our controller data structure.
7429 	 */
7430 	np = (hcb_p) cam_sim_softc(sim);
7431 
7432 	SYM_LOCK_ASSERT(MA_OWNED);
7433 
7434 	/*
7435 	 *  The common case is SCSI IO.
7436 	 *  We deal with other ones elsewhere.
7437 	 */
7438 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7439 		sym_action2(sim, ccb);
7440 		return;
7441 	}
7442 	csio  = &ccb->csio;
7443 	ccb_h = &csio->ccb_h;
7444 
7445 	/*
7446 	 *  Work around races.
7447 	 */
7448 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7449 		xpt_done(ccb);
7450 		return;
7451 	}
7452 
7453 	/*
7454 	 *  Minimal checkings, so that we will not
7455 	 *  go outside our tables.
7456 	 */
7457 	if (ccb_h->target_id   == np->myaddr ||
7458 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7459 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7460 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7461 		return;
7462         }
7463 
7464 	/*
7465 	 *  Retrieve the target and lun descriptors.
7466 	 */
7467 	tp = &np->target[ccb_h->target_id];
7468 	lp = sym_lp(tp, ccb_h->target_lun);
7469 
7470 	/*
7471 	 *  Complete the 1st INQUIRY command with error
7472 	 *  condition if the device is flagged NOSCAN
7473 	 *  at BOOT in the NVRAM. This may speed up
7474 	 *  the boot and maintain coherency with BIOS
7475 	 *  device numbering. Clearing the flag allows
7476 	 *  user to rescan skipped devices later.
7477 	 *  We also return error for devices not flagged
7478 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7479 	 *  devices behave badly when asked for some non
7480 	 *  zero LUN. Btw, this is an absolute hack.:-)
7481 	 */
7482 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7483 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7484 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7485 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7486 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7487 		     ccb_h->target_lun != 0)) {
7488 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7489 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7490 			return;
7491 		}
7492 	}
7493 
7494 	/*
7495 	 *  Get a control block for this IO.
7496 	 */
7497 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7498 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7499 	if (!cp) {
7500 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7501 		return;
7502 	}
7503 
7504 	/*
7505 	 *  Keep track of the IO in our CCB.
7506 	 */
7507 	cp->cam_ccb = ccb;
7508 
7509 	/*
7510 	 *  Build the IDENTIFY message.
7511 	 */
7512 	idmsg = M_IDENTIFY | cp->lun;
7513 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7514 		idmsg |= 0x40;
7515 
7516 	msgptr = cp->scsi_smsg;
7517 	msglen = 0;
7518 	msgptr[msglen++] = idmsg;
7519 
7520 	/*
7521 	 *  Build the tag message if present.
7522 	 */
7523 	if (cp->tag != NO_TAG) {
7524 		u_char order = csio->tag_action;
7525 
7526 		switch(order) {
7527 		case M_ORDERED_TAG:
7528 			break;
7529 		case M_HEAD_TAG:
7530 			break;
7531 		default:
7532 			order = M_SIMPLE_TAG;
7533 		}
7534 		msgptr[msglen++] = order;
7535 
7536 		/*
7537 		 *  For less than 128 tags, actual tags are numbered
7538 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7539 		 *  with devices that have problems with #TAG 0 or too
7540 		 *  great #TAG numbers. For more tags (up to 256),
7541 		 *  we use directly our tag number.
7542 		 */
7543 #if SYM_CONF_MAX_TASK > (512/4)
7544 		msgptr[msglen++] = cp->tag;
7545 #else
7546 		msgptr[msglen++] = (cp->tag << 1) + 1;
7547 #endif
7548 	}
7549 
7550 	/*
7551 	 *  Build a negotiation message if needed.
7552 	 *  (nego_status is filled by sym_prepare_nego())
7553 	 */
7554 	cp->nego_status = 0;
7555 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7556 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7557 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7558 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7559 		if (!tp->nego_cp && lp)
7560 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7561 	}
7562 
7563 	/*
7564 	 *  Fill in our ccb
7565 	 */
7566 
7567 	/*
7568 	 *  Startqueue
7569 	 */
7570 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7571 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7572 
7573 	/*
7574 	 *  select
7575 	 */
7576 	cp->phys.select.sel_id		= cp->target;
7577 	cp->phys.select.sel_scntl3	= tp->head.wval;
7578 	cp->phys.select.sel_sxfer	= tp->head.sval;
7579 	cp->phys.select.sel_scntl4	= tp->head.uval;
7580 
7581 	/*
7582 	 *  message
7583 	 */
7584 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7585 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7586 
7587 	/*
7588 	 *  command
7589 	 */
7590 	if (sym_setup_cdb(np, csio, cp) < 0) {
7591 		sym_xpt_done(np, ccb, cp);
7592 		sym_free_ccb(np, cp);
7593 		return;
7594 	}
7595 
7596 	/*
7597 	 *  status
7598 	 */
7599 #if	0	/* Provision */
7600 	cp->actualquirks	= tp->quirks;
7601 #endif
7602 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7603 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7604 	cp->ssss_status		= S_ILLEGAL;
7605 	cp->xerr_status		= 0;
7606 	cp->host_flags		= 0;
7607 	cp->extra_bytes		= 0;
7608 
7609 	/*
7610 	 *  extreme data pointer.
7611 	 *  shall be positive, so -1 is lower than lowest.:)
7612 	 */
7613 	cp->ext_sg  = -1;
7614 	cp->ext_ofs = 0;
7615 
7616 	/*
7617 	 *  Build the data descriptor block
7618 	 *  and start the IO.
7619 	 */
7620 	sym_setup_data_and_start(np, csio, cp);
7621 }
7622 
7623 /*
7624  *  Setup buffers and pointers that address the CDB.
7625  *  I bet, physical CDBs will never be used on the planet,
7626  *  since they can be bounced without significant overhead.
7627  */
7628 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7629 {
7630 	struct ccb_hdr *ccb_h;
7631 	u32	cmd_ba;
7632 	int	cmd_len;
7633 
7634 	SYM_LOCK_ASSERT(MA_OWNED);
7635 
7636 	ccb_h = &csio->ccb_h;
7637 
7638 	/*
7639 	 *  CDB is 16 bytes max.
7640 	 */
7641 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7642 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7643 		return -1;
7644 	}
7645 	cmd_len = csio->cdb_len;
7646 
7647 	if (ccb_h->flags & CAM_CDB_POINTER) {
7648 		/* CDB is a pointer */
7649 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7650 			/* CDB pointer is virtual */
7651 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7652 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7653 		} else {
7654 			/* CDB pointer is physical */
7655 #if 0
7656 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7657 #else
7658 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7659 			return -1;
7660 #endif
7661 		}
7662 	} else {
7663 		/* CDB is in the CAM ccb (buffer) */
7664 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7665 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7666 	}
7667 
7668 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7669 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7670 
7671 	return 0;
7672 }
7673 
7674 /*
7675  *  Set up data pointers used by SCRIPTS.
7676  */
7677 static void __inline
7678 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7679 {
7680 	u32 lastp, goalp;
7681 
7682 	SYM_LOCK_ASSERT(MA_OWNED);
7683 
7684 	/*
7685 	 *  No segments means no data.
7686 	 */
7687 	if (!cp->segments)
7688 		dir = CAM_DIR_NONE;
7689 
7690 	/*
7691 	 *  Set the data pointer.
7692 	 */
7693 	switch(dir) {
7694 	case CAM_DIR_OUT:
7695 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7696 		lastp = goalp - 8 - (cp->segments * (2*4));
7697 		break;
7698 	case CAM_DIR_IN:
7699 		cp->host_flags |= HF_DATA_IN;
7700 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7701 		lastp = goalp - 8 - (cp->segments * (2*4));
7702 		break;
7703 	case CAM_DIR_NONE:
7704 	default:
7705 		lastp = goalp = SCRIPTB_BA (np, no_data);
7706 		break;
7707 	}
7708 
7709 	cp->phys.head.lastp = cpu_to_scr(lastp);
7710 	cp->phys.head.goalp = cpu_to_scr(goalp);
7711 	cp->phys.head.savep = cpu_to_scr(lastp);
7712 	cp->startp	    = cp->phys.head.savep;
7713 }
7714 
7715 /*
7716  *  Call back routine for the DMA map service.
7717  *  If bounce buffers are used (why ?), we may sleep and then
7718  *  be called there in another context.
7719  */
7720 static void
7721 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7722 {
7723 	ccb_p	cp;
7724 	hcb_p	np;
7725 	union	ccb *ccb;
7726 
7727 	cp  = (ccb_p) arg;
7728 	ccb = cp->cam_ccb;
7729 	np  = (hcb_p) cp->arg;
7730 
7731 	SYM_LOCK_ASSERT(MA_OWNED);
7732 
7733 	/*
7734 	 *  Deal with weird races.
7735 	 */
7736 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7737 		goto out_abort;
7738 
7739 	/*
7740 	 *  Deal with weird errors.
7741 	 */
7742 	if (error) {
7743 		cp->dmamapped = 0;
7744 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7745 		goto out_abort;
7746 	}
7747 
7748 	/*
7749 	 *  Build the data descriptor for the chip.
7750 	 */
7751 	if (nsegs) {
7752 		int retv;
7753 		/* 896 rev 1 requires to be careful about boundaries */
7754 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7755 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7756 		else
7757 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7758 		if (retv < 0) {
7759 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7760 			goto out_abort;
7761 		}
7762 	}
7763 
7764 	/*
7765 	 *  Synchronize the DMA map only if we have
7766 	 *  actually mapped the data.
7767 	 */
7768 	if (cp->dmamapped) {
7769 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7770 			(cp->dmamapped == SYM_DMA_READ ?
7771 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7772 	}
7773 
7774 	/*
7775 	 *  Set host status to busy state.
7776 	 *  May have been set back to HS_WAIT to avoid a race.
7777 	 */
7778 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7779 
7780 	/*
7781 	 *  Set data pointers.
7782 	 */
7783 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7784 
7785 	/*
7786 	 *  Enqueue this IO in our pending queue.
7787 	 */
7788 	sym_enqueue_cam_ccb(cp);
7789 
7790 	/*
7791 	 *  When `#ifed 1', the code below makes the driver
7792 	 *  panic on the first attempt to write to a SCSI device.
7793 	 *  It is the first test we want to do after a driver
7794 	 *  change that does not seem obviously safe. :)
7795 	 */
7796 #if 0
7797 	switch (cp->cdb_buf[0]) {
7798 	case 0x0A: case 0x2A: case 0xAA:
7799 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7800 		MDELAY(10000);
7801 		break;
7802 	default:
7803 		break;
7804 	}
7805 #endif
7806 	/*
7807 	 *  Activate this job.
7808 	 */
7809 	sym_put_start_queue(np, cp);
7810 	return;
7811 out_abort:
7812 	sym_xpt_done(np, ccb, cp);
7813 	sym_free_ccb(np, cp);
7814 }
7815 
7816 /*
7817  *  How complex it gets to deal with the data in CAM.
7818  *  The Bus Dma stuff makes things still more complex.
7819  */
7820 static void
7821 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7822 {
7823 	struct ccb_hdr *ccb_h;
7824 	int dir, retv;
7825 
7826 	SYM_LOCK_ASSERT(MA_OWNED);
7827 
7828 	ccb_h = &csio->ccb_h;
7829 
7830 	/*
7831 	 *  Now deal with the data.
7832 	 */
7833 	cp->data_len = csio->dxfer_len;
7834 	cp->arg      = np;
7835 
7836 	/*
7837 	 *  No direction means no data.
7838 	 */
7839 	dir = (ccb_h->flags & CAM_DIR_MASK);
7840 	if (dir == CAM_DIR_NONE) {
7841 		sym_execute_ccb(cp, NULL, 0, 0);
7842 		return;
7843 	}
7844 
7845 	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7846 	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7847 			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7848 	if (retv == EINPROGRESS) {
7849 		cp->host_status	= HS_WAIT;
7850 		xpt_freeze_simq(np->sim, 1);
7851 		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7852 	}
7853 }
7854 
7855 /*
7856  *  Move the scatter list to our data block.
7857  */
7858 static int
7859 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7860 			     bus_dma_segment_t *psegs, int nsegs)
7861 {
7862 	struct sym_tblmove *data;
7863 	bus_dma_segment_t *psegs2;
7864 
7865 	SYM_LOCK_ASSERT(MA_OWNED);
7866 
7867 	if (nsegs > SYM_CONF_MAX_SG)
7868 		return -1;
7869 
7870 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7871 	psegs2 = &psegs[nsegs-1];
7872 	cp->segments = nsegs;
7873 
7874 	while (1) {
7875 		data->addr = cpu_to_scr(psegs2->ds_addr);
7876 		data->size = cpu_to_scr(psegs2->ds_len);
7877 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7878 			printf ("%s scatter: paddr=%lx len=%ld\n",
7879 				sym_name(np), (long) psegs2->ds_addr,
7880 				(long) psegs2->ds_len);
7881 		}
7882 		if (psegs2 != psegs) {
7883 			--data;
7884 			--psegs2;
7885 			continue;
7886 		}
7887 		break;
7888 	}
7889 	return 0;
7890 }
7891 
7892 /*
7893  *  Scatter a SG list with physical addresses into bus addressable chunks.
7894  */
7895 static int
7896 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7897 {
7898 	u_long	ps, pe, pn;
7899 	u_long	k;
7900 	int s, t;
7901 
7902 	SYM_LOCK_ASSERT(MA_OWNED);
7903 
7904 	s  = SYM_CONF_MAX_SG - 1;
7905 	t  = nsegs - 1;
7906 	ps = psegs[t].ds_addr;
7907 	pe = ps + psegs[t].ds_len;
7908 
7909 	while (s >= 0) {
7910 		pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY);
7911 		if (pn <= ps)
7912 			pn = ps;
7913 		k = pe - pn;
7914 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7915 			printf ("%s scatter: paddr=%lx len=%ld\n",
7916 				sym_name(np), pn, k);
7917 		}
7918 		cp->phys.data[s].addr = cpu_to_scr(pn);
7919 		cp->phys.data[s].size = cpu_to_scr(k);
7920 		--s;
7921 		if (pn == ps) {
7922 			if (--t < 0)
7923 				break;
7924 			ps = psegs[t].ds_addr;
7925 			pe = ps + psegs[t].ds_len;
7926 		}
7927 		else
7928 			pe = pn;
7929 	}
7930 
7931 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7932 
7933 	return t >= 0 ? -1 : 0;
7934 }
7935 
7936 /*
7937  *  SIM action for non performance critical stuff.
7938  */
7939 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7940 {
7941 	union ccb *abort_ccb;
7942 	struct ccb_hdr *ccb_h;
7943 	struct ccb_pathinq *cpi;
7944 	struct ccb_trans_settings *cts;
7945 	struct sym_trans *tip;
7946 	hcb_p	np;
7947 	tcb_p	tp;
7948 	lcb_p	lp;
7949 	u_char dflags;
7950 
7951 	/*
7952 	 *  Retrieve our controller data structure.
7953 	 */
7954 	np = (hcb_p) cam_sim_softc(sim);
7955 
7956 	SYM_LOCK_ASSERT(MA_OWNED);
7957 
7958 	ccb_h = &ccb->ccb_h;
7959 
7960 	switch (ccb_h->func_code) {
7961 	case XPT_SET_TRAN_SETTINGS:
7962 		cts  = &ccb->cts;
7963 		tp = &np->target[ccb_h->target_id];
7964 
7965 		/*
7966 		 *  Update SPI transport settings in TARGET control block.
7967 		 *  Update SCSI device settings in LUN control block.
7968 		 */
7969 		lp = sym_lp(tp, ccb_h->target_lun);
7970 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7971 			sym_update_trans(np, &tp->tinfo.goal, cts);
7972 			if (lp)
7973 				sym_update_dflags(np, &lp->current_flags, cts);
7974 		}
7975 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7976 			sym_update_trans(np, &tp->tinfo.user, cts);
7977 			if (lp)
7978 				sym_update_dflags(np, &lp->user_flags, cts);
7979 		}
7980 
7981 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7982 		break;
7983 	case XPT_GET_TRAN_SETTINGS:
7984 		cts = &ccb->cts;
7985 		tp = &np->target[ccb_h->target_id];
7986 		lp = sym_lp(tp, ccb_h->target_lun);
7987 
7988 #define	cts__scsi (&cts->proto_specific.scsi)
7989 #define	cts__spi  (&cts->xport_specific.spi)
7990 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7991 			tip = &tp->tinfo.current;
7992 			dflags = lp ? lp->current_flags : 0;
7993 		}
7994 		else {
7995 			tip = &tp->tinfo.user;
7996 			dflags = lp ? lp->user_flags : tp->usrflags;
7997 		}
7998 
7999 		cts->protocol  = PROTO_SCSI;
8000 		cts->transport = XPORT_SPI;
8001 		cts->protocol_version  = tip->scsi_version;
8002 		cts->transport_version = tip->spi_version;
8003 
8004 		cts__spi->sync_period = tip->period;
8005 		cts__spi->sync_offset = tip->offset;
8006 		cts__spi->bus_width   = tip->width;
8007 		cts__spi->ppr_options = tip->options;
8008 
8009 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8010 		                | CTS_SPI_VALID_SYNC_OFFSET
8011 		                | CTS_SPI_VALID_BUS_WIDTH
8012 		                | CTS_SPI_VALID_PPR_OPTIONS;
8013 
8014 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8015 		if (dflags & SYM_DISC_ENABLED)
8016 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8017 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8018 
8019 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8020 		if (dflags & SYM_TAGS_ENABLED)
8021 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8022 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8023 #undef	cts__spi
8024 #undef	cts__scsi
8025 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8026 		break;
8027 	case XPT_CALC_GEOMETRY:
8028 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8029 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8030 		break;
8031 	case XPT_PATH_INQ:
8032 		cpi = &ccb->cpi;
8033 		cpi->version_num = 1;
8034 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8035 		if ((np->features & FE_WIDE) != 0)
8036 			cpi->hba_inquiry |= PI_WIDE_16;
8037 		cpi->target_sprt = 0;
8038 		cpi->hba_misc = PIM_UNMAPPED;
8039 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8040 			cpi->hba_misc |= PIM_SCANHILO;
8041 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8042 			cpi->hba_misc |= PIM_NOBUSRESET;
8043 		cpi->hba_eng_cnt = 0;
8044 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8045 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8046 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8047 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8048 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8049 		cpi->bus_id = cam_sim_bus(sim);
8050 		cpi->initiator_id = np->myaddr;
8051 		cpi->base_transfer_speed = 3300;
8052 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8053 		strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8054 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8055 		cpi->unit_number = cam_sim_unit(sim);
8056 
8057 		cpi->protocol = PROTO_SCSI;
8058 		cpi->protocol_version = SCSI_REV_2;
8059 		cpi->transport = XPORT_SPI;
8060 		cpi->transport_version = 2;
8061 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8062 		if (np->features & FE_ULTRA3) {
8063 			cpi->transport_version = 3;
8064 			cpi->xport_specific.spi.ppr_options =
8065 			    SID_SPI_CLOCK_DT_ST;
8066 		}
8067 		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8068 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8069 		break;
8070 	case XPT_ABORT:
8071 		abort_ccb = ccb->cab.abort_ccb;
8072 		switch(abort_ccb->ccb_h.func_code) {
8073 		case XPT_SCSI_IO:
8074 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8075 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8076 				break;
8077 			}
8078 		default:
8079 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8080 			break;
8081 		}
8082 		break;
8083 	case XPT_RESET_DEV:
8084 		sym_reset_dev(np, ccb);
8085 		break;
8086 	case XPT_RESET_BUS:
8087 		sym_reset_scsi_bus(np, 0);
8088 		if (sym_verbose) {
8089 			xpt_print_path(np->path);
8090 			printf("SCSI BUS reset delivered.\n");
8091 		}
8092 		sym_init (np, 1);
8093 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8094 		break;
8095 	case XPT_TERM_IO:
8096 	default:
8097 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8098 		break;
8099 	}
8100 }
8101 
8102 /*
8103  *  Asynchronous notification handler.
8104  */
8105 static void
8106 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8107 {
8108 	hcb_p np;
8109 	struct cam_sim *sim;
8110 	u_int tn;
8111 	tcb_p tp;
8112 
8113 	sim = (struct cam_sim *) cb_arg;
8114 	np  = (hcb_p) cam_sim_softc(sim);
8115 
8116 	SYM_LOCK_ASSERT(MA_OWNED);
8117 
8118 	switch (code) {
8119 	case AC_LOST_DEVICE:
8120 		tn = xpt_path_target_id(path);
8121 		if (tn >= SYM_CONF_MAX_TARGET)
8122 			break;
8123 
8124 		tp = &np->target[tn];
8125 
8126 		tp->to_reset  = 0;
8127 		tp->head.sval = 0;
8128 		tp->head.wval = np->rv_scntl3;
8129 		tp->head.uval = 0;
8130 
8131 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8132 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8133 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8134 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8135 
8136 		break;
8137 	default:
8138 		break;
8139 	}
8140 }
8141 
8142 /*
8143  *  Update transfer settings of a target.
8144  */
8145 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8146     struct ccb_trans_settings *cts)
8147 {
8148 
8149 	SYM_LOCK_ASSERT(MA_OWNED);
8150 
8151 	/*
8152 	 *  Update the infos.
8153 	 */
8154 #define cts__spi (&cts->xport_specific.spi)
8155 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8156 		tip->width = cts__spi->bus_width;
8157 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8158 		tip->offset = cts__spi->sync_offset;
8159 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8160 		tip->period = cts__spi->sync_period;
8161 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8162 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8163 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8164 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8165 		tip->scsi_version = cts->protocol_version;
8166 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8167 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8168 		tip->spi_version = cts->transport_version;
8169 #undef cts__spi
8170 	/*
8171 	 *  Scale against driver configuration limits.
8172 	 */
8173 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8174 	if (tip->period && tip->offset) {
8175 		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8176 		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8177 	} else {
8178 		tip->offset = 0;
8179 		tip->period = 0;
8180 	}
8181 
8182 	/*
8183 	 *  Scale against actual controller BUS width.
8184 	 */
8185 	if (tip->width > np->maxwide)
8186 		tip->width  = np->maxwide;
8187 
8188 	/*
8189 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8190 	 */
8191 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8192 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8193 		tip->options &= ~PPR_OPT_DT;
8194 	}
8195 
8196 	/*
8197 	 *  Scale period factor and offset against controller limits.
8198 	 */
8199 	if (tip->offset && tip->period) {
8200 		if (tip->options & PPR_OPT_DT) {
8201 			if (tip->period < np->minsync_dt)
8202 				tip->period = np->minsync_dt;
8203 			if (tip->period > np->maxsync_dt)
8204 				tip->period = np->maxsync_dt;
8205 			if (tip->offset > np->maxoffs_dt)
8206 				tip->offset = np->maxoffs_dt;
8207 		}
8208 		else {
8209 			if (tip->period < np->minsync)
8210 				tip->period = np->minsync;
8211 			if (tip->period > np->maxsync)
8212 				tip->period = np->maxsync;
8213 			if (tip->offset > np->maxoffs)
8214 				tip->offset = np->maxoffs;
8215 		}
8216 	}
8217 }
8218 
8219 /*
8220  *  Update flags for a device (logical unit).
8221  */
8222 static void
8223 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8224 {
8225 
8226 	SYM_LOCK_ASSERT(MA_OWNED);
8227 
8228 #define	cts__scsi (&cts->proto_specific.scsi)
8229 #define	cts__spi  (&cts->xport_specific.spi)
8230 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8231 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8232 			*flags |= SYM_DISC_ENABLED;
8233 		else
8234 			*flags &= ~SYM_DISC_ENABLED;
8235 	}
8236 
8237 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8238 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8239 			*flags |= SYM_TAGS_ENABLED;
8240 		else
8241 			*flags &= ~SYM_TAGS_ENABLED;
8242 	}
8243 #undef	cts__spi
8244 #undef	cts__scsi
8245 }
8246 
8247 /*============= DRIVER INITIALISATION ==================*/
8248 
8249 static device_method_t sym_pci_methods[] = {
8250 	DEVMETHOD(device_probe,	 sym_pci_probe),
8251 	DEVMETHOD(device_attach, sym_pci_attach),
8252 	DEVMETHOD_END
8253 };
8254 
8255 static driver_t sym_pci_driver = {
8256 	"sym",
8257 	sym_pci_methods,
8258 	1	/* no softc */
8259 };
8260 
8261 static devclass_t sym_devclass;
8262 
8263 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL);
8264 MODULE_DEPEND(sym, cam, 1, 1, 1);
8265 MODULE_DEPEND(sym, pci, 1, 1, 1);
8266 
8267 static const struct sym_pci_chip sym_pci_dev_table[] = {
8268  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8269  FE_ERL}
8270  ,
8271 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8272  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8273  FE_BOF}
8274  ,
8275 #else
8276  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8277  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8278  ,
8279 #endif
8280  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8281  FE_BOF|FE_ERL}
8282  ,
8283  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8284  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8285  ,
8286  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8287  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8288  ,
8289  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8290  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8291  ,
8292  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8293  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8294  FE_RAM|FE_DIFF}
8295  ,
8296  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8297  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8298  FE_RAM|FE_DIFF}
8299  ,
8300  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8301  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8302  FE_RAM|FE_DIFF}
8303  ,
8304  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8305  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8306  FE_RAM|FE_DIFF}
8307  ,
8308 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8309  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8310  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8311  FE_RAM|FE_LCKFRQ}
8312  ,
8313 #else
8314  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8315  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8316  FE_RAM|FE_LCKFRQ}
8317  ,
8318 #endif
8319  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8320  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8321  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8322  ,
8323  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8324  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8325  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8326  ,
8327  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8328  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8329  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8330  FE_C10}
8331  ,
8332  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8333  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8334  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8335  FE_C10|FE_U3EN}
8336  ,
8337  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8338  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8339  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8340  FE_C10|FE_U3EN}
8341  ,
8342  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8343  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8344  FE_RAM|FE_IO256|FE_LEDC}
8345 };
8346 
8347 /*
8348  *  Look up the chip table.
8349  *
8350  *  Return a pointer to the chip entry if found,
8351  *  zero otherwise.
8352  */
8353 static const struct sym_pci_chip *
8354 sym_find_pci_chip(device_t dev)
8355 {
8356 	const struct	sym_pci_chip *chip;
8357 	int	i;
8358 	u_short	device_id;
8359 	u_char	revision;
8360 
8361 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8362 		return NULL;
8363 
8364 	device_id = pci_get_device(dev);
8365 	revision  = pci_get_revid(dev);
8366 
8367 	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8368 		chip = &sym_pci_dev_table[i];
8369 		if (device_id != chip->device_id)
8370 			continue;
8371 		if (revision > chip->revision_id)
8372 			continue;
8373 		return chip;
8374 	}
8375 
8376 	return NULL;
8377 }
8378 
8379 /*
8380  *  Tell upper layer if the chip is supported.
8381  */
8382 static int
8383 sym_pci_probe(device_t dev)
8384 {
8385 	const struct	sym_pci_chip *chip;
8386 
8387 	chip = sym_find_pci_chip(dev);
8388 	if (chip && sym_find_firmware(chip)) {
8389 		device_set_desc(dev, chip->name);
8390 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8391 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8392 	}
8393 	return ENXIO;
8394 }
8395 
8396 /*
8397  *  Attach a sym53c8xx device.
8398  */
8399 static int
8400 sym_pci_attach(device_t dev)
8401 {
8402 	const struct	sym_pci_chip *chip;
8403 	u_short	command;
8404 	u_char	cachelnsz;
8405 	struct	sym_hcb *np = NULL;
8406 	struct	sym_nvram nvram;
8407 	const struct	sym_fw *fw = NULL;
8408 	int 	i;
8409 	bus_dma_tag_t	bus_dmat;
8410 
8411 	bus_dmat = bus_get_dma_tag(dev);
8412 
8413 	/*
8414 	 *  Only probed devices should be attached.
8415 	 *  We just enjoy being paranoid. :)
8416 	 */
8417 	chip = sym_find_pci_chip(dev);
8418 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8419 		return (ENXIO);
8420 
8421 	/*
8422 	 *  Allocate immediately the host control block,
8423 	 *  since we are only expecting to succeed. :)
8424 	 *  We keep track in the HCB of all the resources that
8425 	 *  are to be released on error.
8426 	 */
8427 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8428 	if (np)
8429 		np->bus_dmat = bus_dmat;
8430 	else
8431 		return (ENXIO);
8432 	device_set_softc(dev, np);
8433 
8434 	SYM_LOCK_INIT();
8435 
8436 	/*
8437 	 *  Copy some useful infos to the HCB.
8438 	 */
8439 	np->hcb_ba	 = vtobus(np);
8440 	np->verbose	 = bootverbose;
8441 	np->device	 = dev;
8442 	np->device_id	 = pci_get_device(dev);
8443 	np->revision_id  = pci_get_revid(dev);
8444 	np->features	 = chip->features;
8445 	np->clock_divn	 = chip->nr_divisor;
8446 	np->maxoffs	 = chip->offset_max;
8447 	np->maxburst	 = chip->burst_max;
8448 	np->scripta_sz	 = fw->a_size;
8449 	np->scriptb_sz	 = fw->b_size;
8450 	np->fw_setup	 = fw->setup;
8451 	np->fw_patch	 = fw->patch;
8452 	np->fw_name	 = fw->name;
8453 
8454 #ifdef __amd64__
8455 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8456 			"TARGET");
8457 	if (!np->target)
8458 		goto attach_failed;
8459 #endif
8460 
8461 	/*
8462 	 *  Initialize the CCB free and busy queues.
8463 	 */
8464 	sym_que_init(&np->free_ccbq);
8465 	sym_que_init(&np->busy_ccbq);
8466 	sym_que_init(&np->comp_ccbq);
8467 	sym_que_init(&np->cam_ccbq);
8468 
8469 	/*
8470 	 *  Allocate a tag for the DMA of user data.
8471 	 */
8472 	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8473 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8474 	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8475 	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8476 		device_printf(dev, "failed to create DMA tag.\n");
8477 		goto attach_failed;
8478 	}
8479 
8480 	/*
8481 	 *  Read and apply some fix-ups to the PCI COMMAND
8482 	 *  register. We want the chip to be enabled for:
8483 	 *  - BUS mastering
8484 	 *  - PCI parity checking (reporting would also be fine)
8485 	 *  - Write And Invalidate.
8486 	 */
8487 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8488 	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8489 	    PCIM_CMD_MWRICEN;
8490 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8491 
8492 	/*
8493 	 *  Let the device know about the cache line size,
8494 	 *  if it doesn't yet.
8495 	 */
8496 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8497 	if (!cachelnsz) {
8498 		cachelnsz = 8;
8499 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8500 	}
8501 
8502 	/*
8503 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8504 	 */
8505 	i = SYM_PCI_MMIO;
8506 	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8507 	    RF_ACTIVE);
8508 	if (!np->mmio_res) {
8509 		device_printf(dev, "failed to allocate MMIO resources\n");
8510 		goto attach_failed;
8511 	}
8512 	np->mmio_ba = rman_get_start(np->mmio_res);
8513 
8514 	/*
8515 	 *  Allocate the IRQ.
8516 	 */
8517 	i = 0;
8518 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8519 					     RF_ACTIVE | RF_SHAREABLE);
8520 	if (!np->irq_res) {
8521 		device_printf(dev, "failed to allocate IRQ resource\n");
8522 		goto attach_failed;
8523 	}
8524 
8525 #ifdef	SYM_CONF_IOMAPPED
8526 	/*
8527 	 *  User want us to use normal IO with PCI.
8528 	 *  Alloc/get/map/retrieve everything that deals with IO.
8529 	 */
8530 	i = SYM_PCI_IO;
8531 	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8532 	if (!np->io_res) {
8533 		device_printf(dev, "failed to allocate IO resources\n");
8534 		goto attach_failed;
8535 	}
8536 
8537 #endif /* SYM_CONF_IOMAPPED */
8538 
8539 	/*
8540 	 *  If the chip has RAM.
8541 	 *  Alloc/get/map/retrieve the corresponding resources.
8542 	 */
8543 	if (np->features & (FE_RAM|FE_RAM8K)) {
8544 		int regs_id = SYM_PCI_RAM;
8545 		if (np->features & FE_64BIT)
8546 			regs_id = SYM_PCI_RAM64;
8547 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8548 						     &regs_id, RF_ACTIVE);
8549 		if (!np->ram_res) {
8550 			device_printf(dev,"failed to allocate RAM resources\n");
8551 			goto attach_failed;
8552 		}
8553 		np->ram_id  = regs_id;
8554 		np->ram_ba = rman_get_start(np->ram_res);
8555 	}
8556 
8557 	/*
8558 	 *  Save setting of some IO registers, so we will
8559 	 *  be able to probe specific implementations.
8560 	 */
8561 	sym_save_initial_setting (np);
8562 
8563 	/*
8564 	 *  Reset the chip now, since it has been reported
8565 	 *  that SCSI clock calibration may not work properly
8566 	 *  if the chip is currently active.
8567 	 */
8568 	sym_chip_reset (np);
8569 
8570 	/*
8571 	 *  Try to read the user set-up.
8572 	 */
8573 	(void) sym_read_nvram(np, &nvram);
8574 
8575 	/*
8576 	 *  Prepare controller and devices settings, according
8577 	 *  to chip features, user set-up and driver set-up.
8578 	 */
8579 	(void) sym_prepare_setting(np, &nvram);
8580 
8581 	/*
8582 	 *  Check the PCI clock frequency.
8583 	 *  Must be performed after prepare_setting since it destroys
8584 	 *  STEST1 that is used to probe for the clock doubler.
8585 	 */
8586 	i = sym_getpciclock(np);
8587 	if (i > 37000)
8588 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8589 
8590 	/*
8591 	 *  Allocate the start queue.
8592 	 */
8593 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8594 	if (!np->squeue)
8595 		goto attach_failed;
8596 	np->squeue_ba = vtobus(np->squeue);
8597 
8598 	/*
8599 	 *  Allocate the done queue.
8600 	 */
8601 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8602 	if (!np->dqueue)
8603 		goto attach_failed;
8604 	np->dqueue_ba = vtobus(np->dqueue);
8605 
8606 	/*
8607 	 *  Allocate the target bus address array.
8608 	 */
8609 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8610 	if (!np->targtbl)
8611 		goto attach_failed;
8612 	np->targtbl_ba = vtobus(np->targtbl);
8613 
8614 	/*
8615 	 *  Allocate SCRIPTS areas.
8616 	 */
8617 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8618 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8619 	if (!np->scripta0 || !np->scriptb0)
8620 		goto attach_failed;
8621 
8622 	/*
8623 	 *  Allocate the CCBs. We need at least ONE.
8624 	 */
8625 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8626 		;
8627 	if (i < 1)
8628 		goto attach_failed;
8629 
8630 	/*
8631 	 *  Calculate BUS addresses where we are going
8632 	 *  to load the SCRIPTS.
8633 	 */
8634 	np->scripta_ba	= vtobus(np->scripta0);
8635 	np->scriptb_ba	= vtobus(np->scriptb0);
8636 	np->scriptb0_ba	= np->scriptb_ba;
8637 
8638 	if (np->ram_ba) {
8639 		np->scripta_ba	= np->ram_ba;
8640 		if (np->features & FE_RAM8K) {
8641 			np->ram_ws = 8192;
8642 			np->scriptb_ba = np->scripta_ba + 4096;
8643 #ifdef __LP64__
8644 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8645 #endif
8646 		}
8647 		else
8648 			np->ram_ws = 4096;
8649 	}
8650 
8651 	/*
8652 	 *  Copy scripts to controller instance.
8653 	 */
8654 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8655 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8656 
8657 	/*
8658 	 *  Setup variable parts in scripts and compute
8659 	 *  scripts bus addresses used from the C code.
8660 	 */
8661 	np->fw_setup(np, fw);
8662 
8663 	/*
8664 	 *  Bind SCRIPTS with physical addresses usable by the
8665 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8666 	 */
8667 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8668 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8669 
8670 #ifdef SYM_CONF_IARB_SUPPORT
8671 	/*
8672 	 *    If user wants IARB to be set when we win arbitration
8673 	 *    and have other jobs, compute the max number of consecutive
8674 	 *    settings of IARB hints before we leave devices a chance to
8675 	 *    arbitrate for reselection.
8676 	 */
8677 #ifdef	SYM_SETUP_IARB_MAX
8678 	np->iarb_max = SYM_SETUP_IARB_MAX;
8679 #else
8680 	np->iarb_max = 4;
8681 #endif
8682 #endif
8683 
8684 	/*
8685 	 *  Prepare the idle and invalid task actions.
8686 	 */
8687 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8688 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8689 	np->idletask_ba		= vtobus(&np->idletask);
8690 
8691 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8692 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8693 	np->notask_ba		= vtobus(&np->notask);
8694 
8695 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8696 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8697 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8698 
8699 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8700 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8701 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8702 
8703 	/*
8704 	 *  Allocate and prepare the lun JUMP table that is used
8705 	 *  for a target prior the probing of devices (bad lun table).
8706 	 *  A private table will be allocated for the target on the
8707 	 *  first INQUIRY response received.
8708 	 */
8709 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8710 	if (!np->badluntbl)
8711 		goto attach_failed;
8712 
8713 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8714 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8715 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8716 
8717 	/*
8718 	 *  Prepare the bus address array that contains the bus
8719 	 *  address of each target control block.
8720 	 *  For now, assume all logical units are wrong. :)
8721 	 */
8722 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8723 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8724 		np->target[i].head.luntbl_sa =
8725 				cpu_to_scr(vtobus(np->badluntbl));
8726 		np->target[i].head.lun0_sa =
8727 				cpu_to_scr(vtobus(&np->badlun_sa));
8728 	}
8729 
8730 	/*
8731 	 *  Now check the cache handling of the pci chipset.
8732 	 */
8733 	if (sym_snooptest (np)) {
8734 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8735 		goto attach_failed;
8736 	}
8737 
8738 	/*
8739 	 *  Now deal with CAM.
8740 	 *  Hopefully, we will succeed with that one.:)
8741 	 */
8742 	if (!sym_cam_attach(np))
8743 		goto attach_failed;
8744 
8745 	/*
8746 	 *  Sigh! we are done.
8747 	 */
8748 	return 0;
8749 
8750 	/*
8751 	 *  We have failed.
8752 	 *  We will try to free all the resources we have
8753 	 *  allocated, but if we are a boot device, this
8754 	 *  will not help that much.;)
8755 	 */
8756 attach_failed:
8757 	if (np)
8758 		sym_pci_free(np);
8759 	return ENXIO;
8760 }
8761 
8762 /*
8763  *  Free everything that have been allocated for this device.
8764  */
8765 static void sym_pci_free(hcb_p np)
8766 {
8767 	SYM_QUEHEAD *qp;
8768 	ccb_p cp;
8769 	tcb_p tp;
8770 	lcb_p lp;
8771 	int target, lun;
8772 
8773 	/*
8774 	 *  First free CAM resources.
8775 	 */
8776 	sym_cam_free(np);
8777 
8778 	/*
8779 	 *  Now every should be quiet for us to
8780 	 *  free other resources.
8781 	 */
8782 	if (np->ram_res)
8783 		bus_release_resource(np->device, SYS_RES_MEMORY,
8784 				     np->ram_id, np->ram_res);
8785 	if (np->mmio_res)
8786 		bus_release_resource(np->device, SYS_RES_MEMORY,
8787 				     SYM_PCI_MMIO, np->mmio_res);
8788 	if (np->io_res)
8789 		bus_release_resource(np->device, SYS_RES_IOPORT,
8790 				     SYM_PCI_IO, np->io_res);
8791 	if (np->irq_res)
8792 		bus_release_resource(np->device, SYS_RES_IRQ,
8793 				     0, np->irq_res);
8794 
8795 	if (np->scriptb0)
8796 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8797 	if (np->scripta0)
8798 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8799 	if (np->squeue)
8800 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8801 	if (np->dqueue)
8802 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8803 
8804 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8805 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8806 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8807 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8808 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8809 	}
8810 
8811 	if (np->badluntbl)
8812 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8813 
8814 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8815 		tp = &np->target[target];
8816 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8817 			lp = sym_lp(tp, lun);
8818 			if (!lp)
8819 				continue;
8820 			if (lp->itlq_tbl)
8821 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8822 				       "ITLQ_TBL");
8823 			if (lp->cb_tags)
8824 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8825 				       "CB_TAGS");
8826 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8827 		}
8828 #if SYM_CONF_MAX_LUN > 1
8829 		if (tp->lunmp)
8830 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8831 			       "LUNMP");
8832 #endif
8833 	}
8834 #ifdef __amd64__
8835 	if (np->target)
8836 		sym_mfree_dma(np->target,
8837 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8838 #endif
8839 	if (np->targtbl)
8840 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8841 	if (np->data_dmat)
8842 		bus_dma_tag_destroy(np->data_dmat);
8843 	if (SYM_LOCK_INITIALIZED() != 0)
8844 		SYM_LOCK_DESTROY();
8845 	device_set_softc(np->device, NULL);
8846 	sym_mfree_dma(np, sizeof(*np), "HCB");
8847 }
8848 
8849 /*
8850  *  Allocate CAM resources and register a bus to CAM.
8851  */
8852 static int sym_cam_attach(hcb_p np)
8853 {
8854 	struct cam_devq *devq = NULL;
8855 	struct cam_sim *sim = NULL;
8856 	struct cam_path *path = NULL;
8857 	int err;
8858 
8859 	/*
8860 	 *  Establish our interrupt handler.
8861 	 */
8862 	err = bus_setup_intr(np->device, np->irq_res,
8863 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8864 			NULL, sym_intr, np, &np->intr);
8865 	if (err) {
8866 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8867 			      err);
8868 		goto fail;
8869 	}
8870 
8871 	/*
8872 	 *  Create the device queue for our sym SIM.
8873 	 */
8874 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8875 	if (!devq)
8876 		goto fail;
8877 
8878 	/*
8879 	 *  Construct our SIM entry.
8880 	 */
8881 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8882 			device_get_unit(np->device),
8883 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8884 	if (!sim)
8885 		goto fail;
8886 
8887 	SYM_LOCK();
8888 
8889 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8890 		goto fail;
8891 	np->sim = sim;
8892 	sim = NULL;
8893 
8894 	if (xpt_create_path(&path, NULL,
8895 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8896 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8897 		goto fail;
8898 	}
8899 	np->path = path;
8900 
8901 	/*
8902 	 *  Establish our async notification handler.
8903 	 */
8904 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) !=
8905 	    CAM_REQ_CMP)
8906 		goto fail;
8907 
8908 	/*
8909 	 *  Start the chip now, without resetting the BUS, since
8910 	 *  it seems that this must stay under control of CAM.
8911 	 *  With LVD/SE capable chips and BUS in SE mode, we may
8912 	 *  get a spurious SMBC interrupt.
8913 	 */
8914 	sym_init (np, 0);
8915 
8916 	SYM_UNLOCK();
8917 
8918 	return 1;
8919 fail:
8920 	if (sim)
8921 		cam_sim_free(sim, FALSE);
8922 	if (devq)
8923 		cam_simq_free(devq);
8924 
8925 	SYM_UNLOCK();
8926 
8927 	sym_cam_free(np);
8928 
8929 	return 0;
8930 }
8931 
8932 /*
8933  *  Free everything that deals with CAM.
8934  */
8935 static void sym_cam_free(hcb_p np)
8936 {
8937 
8938 	SYM_LOCK_ASSERT(MA_NOTOWNED);
8939 
8940 	if (np->intr) {
8941 		bus_teardown_intr(np->device, np->irq_res, np->intr);
8942 		np->intr = NULL;
8943 	}
8944 
8945 	SYM_LOCK();
8946 
8947 	if (np->sim) {
8948 		xpt_bus_deregister(cam_sim_path(np->sim));
8949 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8950 		np->sim = NULL;
8951 	}
8952 	if (np->path) {
8953 		xpt_free_path(np->path);
8954 		np->path = NULL;
8955 	}
8956 
8957 	SYM_UNLOCK();
8958 }
8959 
8960 /*============ OPTIONNAL NVRAM SUPPORT =================*/
8961 
8962 /*
8963  *  Get host setup from NVRAM.
8964  */
8965 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8966 {
8967 #ifdef SYM_CONF_NVRAM_SUPPORT
8968 	/*
8969 	 *  Get parity checking, host ID, verbose mode
8970 	 *  and miscellaneous host flags from NVRAM.
8971 	 */
8972 	switch(nvram->type) {
8973 	case SYM_SYMBIOS_NVRAM:
8974 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8975 			np->rv_scntl0  &= ~0x0a;
8976 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8977 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8978 			np->verbose += 1;
8979 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8980 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8981 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8982 			np->usrflags |= SYM_AVOID_BUS_RESET;
8983 		break;
8984 	case SYM_TEKRAM_NVRAM:
8985 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8986 		break;
8987 	default:
8988 		break;
8989 	}
8990 #endif
8991 }
8992 
8993 /*
8994  *  Get target setup from NVRAM.
8995  */
8996 #ifdef SYM_CONF_NVRAM_SUPPORT
8997 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8998 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8999 #endif
9000 
9001 static void
9002 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9003 {
9004 #ifdef SYM_CONF_NVRAM_SUPPORT
9005 	switch(nvp->type) {
9006 	case SYM_SYMBIOS_NVRAM:
9007 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9008 		break;
9009 	case SYM_TEKRAM_NVRAM:
9010 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9011 		break;
9012 	default:
9013 		break;
9014 	}
9015 #endif
9016 }
9017 
9018 #ifdef SYM_CONF_NVRAM_SUPPORT
9019 /*
9020  *  Get target set-up from Symbios format NVRAM.
9021  */
9022 static void
9023 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9024 {
9025 	tcb_p tp = &np->target[target];
9026 	Symbios_target *tn = &nvram->target[target];
9027 
9028 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9029 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9030 	tp->usrtags =
9031 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9032 
9033 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9034 		tp->usrflags &= ~SYM_DISC_ENABLED;
9035 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9036 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9037 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9038 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9039 }
9040 
9041 /*
9042  *  Get target set-up from Tekram format NVRAM.
9043  */
9044 static void
9045 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9046 {
9047 	tcb_p tp = &np->target[target];
9048 	struct Tekram_target *tn = &nvram->target[target];
9049 	int i;
9050 
9051 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9052 		i = tn->sync_index & 0xf;
9053 		tp->tinfo.user.period = Tekram_sync[i];
9054 	}
9055 
9056 	tp->tinfo.user.width =
9057 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9058 
9059 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9060 		tp->usrtags = 2 << nvram->max_tags_index;
9061 	}
9062 
9063 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9064 		tp->usrflags |= SYM_DISC_ENABLED;
9065 
9066 	/* If any device does not support parity, we will not use this option */
9067 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9068 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9069 }
9070 
9071 #ifdef	SYM_CONF_DEBUG_NVRAM
9072 /*
9073  *  Dump Symbios format NVRAM for debugging purpose.
9074  */
9075 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9076 {
9077 	int i;
9078 
9079 	/* display Symbios nvram host data */
9080 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9081 		sym_name(np), nvram->host_id & 0x0f,
9082 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9083 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9084 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9085 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9086 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9087 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9088 
9089 	/* display Symbios nvram drive data */
9090 	for (i = 0 ; i < 15 ; i++) {
9091 		struct Symbios_target *tn = &nvram->target[i];
9092 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9093 		sym_name(np), i,
9094 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9095 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9096 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9097 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9098 		tn->bus_width,
9099 		tn->sync_period / 4,
9100 		tn->timeout);
9101 	}
9102 }
9103 
9104 /*
9105  *  Dump TEKRAM format NVRAM for debugging purpose.
9106  */
9107 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9108 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9109 {
9110 	int i, tags, boot_delay;
9111 	char *rem;
9112 
9113 	/* display Tekram nvram host data */
9114 	tags = 2 << nvram->max_tags_index;
9115 	boot_delay = 0;
9116 	if (nvram->boot_delay_index < 6)
9117 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9118 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9119 	default:
9120 	case 0:	rem = "";			break;
9121 	case 1: rem = " REMOVABLE=boot device";	break;
9122 	case 2: rem = " REMOVABLE=all";		break;
9123 	}
9124 
9125 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9126 		sym_name(np), nvram->host_id & 0x0f,
9127 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9128 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9129 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9130 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9131 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9132 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9133 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9134 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9135 		rem, boot_delay, tags);
9136 
9137 	/* display Tekram nvram drive data */
9138 	for (i = 0; i <= 15; i++) {
9139 		int sync, j;
9140 		struct Tekram_target *tn = &nvram->target[i];
9141 		j = tn->sync_index & 0xf;
9142 		sync = Tekram_sync[j];
9143 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9144 		sym_name(np), i,
9145 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9146 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9147 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9148 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9149 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9150 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9151 		sync);
9152 	}
9153 }
9154 #endif	/* SYM_CONF_DEBUG_NVRAM */
9155 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9156 
9157 /*
9158  *  Try reading Symbios or Tekram NVRAM
9159  */
9160 #ifdef SYM_CONF_NVRAM_SUPPORT
9161 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9162 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9163 #endif
9164 
9165 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9166 {
9167 #ifdef SYM_CONF_NVRAM_SUPPORT
9168 	/*
9169 	 *  Try to read SYMBIOS nvram.
9170 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9171 	 */
9172 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9173 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9174 		nvp->type = SYM_SYMBIOS_NVRAM;
9175 #ifdef SYM_CONF_DEBUG_NVRAM
9176 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9177 #endif
9178 	}
9179 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9180 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9181 		nvp->type = SYM_TEKRAM_NVRAM;
9182 #ifdef SYM_CONF_DEBUG_NVRAM
9183 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9184 #endif
9185 	}
9186 	else
9187 		nvp->type = 0;
9188 #else
9189 	nvp->type = 0;
9190 #endif
9191 	return nvp->type;
9192 }
9193 
9194 #ifdef SYM_CONF_NVRAM_SUPPORT
9195 /*
9196  *  24C16 EEPROM reading.
9197  *
9198  *  GPOI0 - data in/data out
9199  *  GPIO1 - clock
9200  *  Symbios NVRAM wiring now also used by Tekram.
9201  */
9202 
9203 #define SET_BIT 0
9204 #define CLR_BIT 1
9205 #define SET_CLK 2
9206 #define CLR_CLK 3
9207 
9208 /*
9209  *  Set/clear data/clock bit in GPIO0
9210  */
9211 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9212 			  int bit_mode)
9213 {
9214 	UDELAY (5);
9215 	switch (bit_mode){
9216 	case SET_BIT:
9217 		*gpreg |= write_bit;
9218 		break;
9219 	case CLR_BIT:
9220 		*gpreg &= 0xfe;
9221 		break;
9222 	case SET_CLK:
9223 		*gpreg |= 0x02;
9224 		break;
9225 	case CLR_CLK:
9226 		*gpreg &= 0xfd;
9227 		break;
9228 
9229 	}
9230 	OUTB (nc_gpreg, *gpreg);
9231 	UDELAY (5);
9232 }
9233 
9234 /*
9235  *  Send START condition to NVRAM to wake it up.
9236  */
9237 static void S24C16_start(hcb_p np, u_char *gpreg)
9238 {
9239 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9240 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9241 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9242 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9243 }
9244 
9245 /*
9246  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9247  */
9248 static void S24C16_stop(hcb_p np, u_char *gpreg)
9249 {
9250 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9251 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9252 }
9253 
9254 /*
9255  *  Read or write a bit to the NVRAM,
9256  *  read if GPIO0 input else write if GPIO0 output
9257  */
9258 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9259 			 u_char *gpreg)
9260 {
9261 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9262 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9263 	if (read_bit)
9264 		*read_bit = INB (nc_gpreg);
9265 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9266 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9267 }
9268 
9269 /*
9270  *  Output an ACK to the NVRAM after reading,
9271  *  change GPIO0 to output and when done back to an input
9272  */
9273 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9274 			    u_char *gpcntl)
9275 {
9276 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9277 	S24C16_do_bit(np, 0, write_bit, gpreg);
9278 	OUTB (nc_gpcntl, *gpcntl);
9279 }
9280 
9281 /*
9282  *  Input an ACK from NVRAM after writing,
9283  *  change GPIO0 to input and when done back to an output
9284  */
9285 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9286 			   u_char *gpcntl)
9287 {
9288 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9289 	S24C16_do_bit(np, read_bit, 1, gpreg);
9290 	OUTB (nc_gpcntl, *gpcntl);
9291 }
9292 
9293 /*
9294  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9295  *  GPIO0 must already be set as an output
9296  */
9297 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9298 			     u_char *gpreg, u_char *gpcntl)
9299 {
9300 	int x;
9301 
9302 	for (x = 0; x < 8; x++)
9303 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9304 
9305 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9306 }
9307 
9308 /*
9309  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9310  *  GPIO0 must already be set as an input
9311  */
9312 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9313 			    u_char *gpreg, u_char *gpcntl)
9314 {
9315 	int x;
9316 	u_char read_bit;
9317 
9318 	*read_data = 0;
9319 	for (x = 0; x < 8; x++) {
9320 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9321 		*read_data |= ((read_bit & 0x01) << (7 - x));
9322 	}
9323 
9324 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9325 }
9326 
9327 /*
9328  *  Read 'len' bytes starting at 'offset'.
9329  */
9330 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9331 {
9332 	u_char	gpcntl, gpreg;
9333 	u_char	old_gpcntl, old_gpreg;
9334 	u_char	ack_data;
9335 	int	retv = 1;
9336 	int	x;
9337 
9338 	/* save current state of GPCNTL and GPREG */
9339 	old_gpreg	= INB (nc_gpreg);
9340 	old_gpcntl	= INB (nc_gpcntl);
9341 	gpcntl		= old_gpcntl & 0x1c;
9342 
9343 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9344 	OUTB (nc_gpreg,  old_gpreg);
9345 	OUTB (nc_gpcntl, gpcntl);
9346 
9347 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9348 	gpreg = old_gpreg;
9349 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9350 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9351 
9352 	/* now set NVRAM inactive with GPIO0/1 both high */
9353 	S24C16_stop(np, &gpreg);
9354 
9355 	/* activate NVRAM */
9356 	S24C16_start(np, &gpreg);
9357 
9358 	/* write device code and random address MSB */
9359 	S24C16_write_byte(np, &ack_data,
9360 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9361 	if (ack_data & 0x01)
9362 		goto out;
9363 
9364 	/* write random address LSB */
9365 	S24C16_write_byte(np, &ack_data,
9366 		offset & 0xff, &gpreg, &gpcntl);
9367 	if (ack_data & 0x01)
9368 		goto out;
9369 
9370 	/* regenerate START state to set up for reading */
9371 	S24C16_start(np, &gpreg);
9372 
9373 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9374 	S24C16_write_byte(np, &ack_data,
9375 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9376 	if (ack_data & 0x01)
9377 		goto out;
9378 
9379 	/* now set up GPIO0 for inputting data */
9380 	gpcntl |= 0x01;
9381 	OUTB (nc_gpcntl, gpcntl);
9382 
9383 	/* input all requested data - only part of total NVRAM */
9384 	for (x = 0; x < len; x++)
9385 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9386 
9387 	/* finally put NVRAM back in inactive mode */
9388 	gpcntl &= 0xfe;
9389 	OUTB (nc_gpcntl, gpcntl);
9390 	S24C16_stop(np, &gpreg);
9391 	retv = 0;
9392 out:
9393 	/* return GPIO0/1 to original states after having accessed NVRAM */
9394 	OUTB (nc_gpcntl, old_gpcntl);
9395 	OUTB (nc_gpreg,  old_gpreg);
9396 
9397 	return retv;
9398 }
9399 
9400 #undef SET_BIT /* 0 */
9401 #undef CLR_BIT /* 1 */
9402 #undef SET_CLK /* 2 */
9403 #undef CLR_CLK /* 3 */
9404 
9405 /*
9406  *  Try reading Symbios NVRAM.
9407  *  Return 0 if OK.
9408  */
9409 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9410 {
9411 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9412 	u_char *data = (u_char *) nvram;
9413 	int len  = sizeof(*nvram);
9414 	u_short	csum;
9415 	int x;
9416 
9417 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9418 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9419 		return 1;
9420 
9421 	/* check valid NVRAM signature, verify byte count and checksum */
9422 	if (nvram->type != 0 ||
9423 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9424 	    nvram->byte_count != len - 12)
9425 		return 1;
9426 
9427 	/* verify checksum */
9428 	for (x = 6, csum = 0; x < len - 6; x++)
9429 		csum += data[x];
9430 	if (csum != nvram->checksum)
9431 		return 1;
9432 
9433 	return 0;
9434 }
9435 
9436 /*
9437  *  93C46 EEPROM reading.
9438  *
9439  *  GPOI0 - data in
9440  *  GPIO1 - data out
9441  *  GPIO2 - clock
9442  *  GPIO4 - chip select
9443  *
9444  *  Used by Tekram.
9445  */
9446 
9447 /*
9448  *  Pulse clock bit in GPIO0
9449  */
9450 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9451 {
9452 	OUTB (nc_gpreg, *gpreg | 0x04);
9453 	UDELAY (2);
9454 	OUTB (nc_gpreg, *gpreg);
9455 }
9456 
9457 /*
9458  *  Read bit from NVRAM
9459  */
9460 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9461 {
9462 	UDELAY (2);
9463 	T93C46_Clk(np, gpreg);
9464 	*read_bit = INB (nc_gpreg);
9465 }
9466 
9467 /*
9468  *  Write bit to GPIO0
9469  */
9470 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9471 {
9472 	if (write_bit & 0x01)
9473 		*gpreg |= 0x02;
9474 	else
9475 		*gpreg &= 0xfd;
9476 
9477 	*gpreg |= 0x10;
9478 
9479 	OUTB (nc_gpreg, *gpreg);
9480 	UDELAY (2);
9481 
9482 	T93C46_Clk(np, gpreg);
9483 }
9484 
9485 /*
9486  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9487  */
9488 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9489 {
9490 	*gpreg &= 0xef;
9491 	OUTB (nc_gpreg, *gpreg);
9492 	UDELAY (2);
9493 
9494 	T93C46_Clk(np, gpreg);
9495 }
9496 
9497 /*
9498  *  Send read command and address to NVRAM
9499  */
9500 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9501 				u_char *read_bit, u_char *gpreg)
9502 {
9503 	int x;
9504 
9505 	/* send 9 bits, start bit (1), command (2), address (6)  */
9506 	for (x = 0; x < 9; x++)
9507 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9508 
9509 	*read_bit = INB (nc_gpreg);
9510 }
9511 
9512 /*
9513  *  READ 2 bytes from the NVRAM
9514  */
9515 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9516 {
9517 	int x;
9518 	u_char read_bit;
9519 
9520 	*nvram_data = 0;
9521 	for (x = 0; x < 16; x++) {
9522 		T93C46_Read_Bit(np, &read_bit, gpreg);
9523 
9524 		if (read_bit & 0x01)
9525 			*nvram_data |=  (0x01 << (15 - x));
9526 		else
9527 			*nvram_data &= ~(0x01 << (15 - x));
9528 	}
9529 }
9530 
9531 /*
9532  *  Read Tekram NvRAM data.
9533  */
9534 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9535 {
9536 	u_char	read_bit;
9537 	int	x;
9538 
9539 	for (x = 0; x < len; x++)  {
9540 
9541 		/* output read command and address */
9542 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9543 		if (read_bit & 0x01)
9544 			return 1; /* Bad */
9545 		T93C46_Read_Word(np, &data[x], gpreg);
9546 		T93C46_Stop(np, gpreg);
9547 	}
9548 
9549 	return 0;
9550 }
9551 
9552 /*
9553  *  Try reading 93C46 Tekram NVRAM.
9554  */
9555 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9556 {
9557 	u_char gpcntl, gpreg;
9558 	u_char old_gpcntl, old_gpreg;
9559 	int retv = 1;
9560 
9561 	/* save current state of GPCNTL and GPREG */
9562 	old_gpreg	= INB (nc_gpreg);
9563 	old_gpcntl	= INB (nc_gpcntl);
9564 
9565 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9566 	   1/2/4 out */
9567 	gpreg = old_gpreg & 0xe9;
9568 	OUTB (nc_gpreg, gpreg);
9569 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9570 	OUTB (nc_gpcntl, gpcntl);
9571 
9572 	/* input all of NVRAM, 64 words */
9573 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9574 				sizeof(*nvram) / sizeof(short), &gpreg);
9575 
9576 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9577 	OUTB (nc_gpcntl, old_gpcntl);
9578 	OUTB (nc_gpreg,  old_gpreg);
9579 
9580 	return retv;
9581 }
9582 
9583 /*
9584  *  Try reading Tekram NVRAM.
9585  *  Return 0 if OK.
9586  */
9587 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9588 {
9589 	u_char *data = (u_char *) nvram;
9590 	int len = sizeof(*nvram);
9591 	u_short	csum;
9592 	int x;
9593 
9594 	switch (np->device_id) {
9595 	case PCI_ID_SYM53C885:
9596 	case PCI_ID_SYM53C895:
9597 	case PCI_ID_SYM53C896:
9598 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9599 					  data, len);
9600 		break;
9601 	case PCI_ID_SYM53C875:
9602 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9603 					  data, len);
9604 		if (!x)
9605 			break;
9606 	default:
9607 		x = sym_read_T93C46_nvram(np, nvram);
9608 		break;
9609 	}
9610 	if (x)
9611 		return 1;
9612 
9613 	/* verify checksum */
9614 	for (x = 0, csum = 0; x < len - 1; x += 2)
9615 		csum += data[x] + (data[x+1] << 8);
9616 	if (csum != 0x1234)
9617 		return 1;
9618 
9619 	return 0;
9620 }
9621 
9622 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9623