xref: /freebsd/sys/dev/sym/sym_hipd.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*-
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 
65 #include <sys/param.h>
66 
67 /*
68  *  Driver configuration options.
69  */
70 #include "opt_sym.h"
71 #include <dev/sym/sym_conf.h>
72 
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/endian.h>
76 #include <sys/kernel.h>
77 #include <sys/lock.h>
78 #include <sys/mutex.h>
79 #include <sys/module.h>
80 #include <sys/bus.h>
81 
82 #include <sys/proc.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <machine/atomic.h>
90 
91 #ifdef __sparc64__
92 #include <dev/ofw/openfirm.h>
93 #include <machine/ofw_machdep.h>
94 #endif
95 
96 #include <sys/rman.h>
97 
98 #include <cam/cam.h>
99 #include <cam/cam_ccb.h>
100 #include <cam/cam_sim.h>
101 #include <cam/cam_xpt_sim.h>
102 #include <cam/cam_debug.h>
103 
104 #include <cam/scsi/scsi_all.h>
105 #include <cam/scsi/scsi_message.h>
106 
107 /* Short and quite clear integer types */
108 typedef int8_t    s8;
109 typedef int16_t   s16;
110 typedef	int32_t   s32;
111 typedef u_int8_t  u8;
112 typedef u_int16_t u16;
113 typedef	u_int32_t u32;
114 
115 /*
116  *  Driver definitions.
117  */
118 #include <dev/sym/sym_defs.h>
119 #include <dev/sym/sym_fw.h>
120 
121 /*
122  *  IA32 architecture does not reorder STORES and prevents
123  *  LOADS from passing STORES. It is called `program order'
124  *  by Intel and allows device drivers to deal with memory
125  *  ordering by only ensuring that the code is not reordered
126  *  by the compiler when ordering is required.
127  *  Other architectures implement a weaker ordering that
128  *  requires memory barriers (and also IO barriers when they
129  *  make sense) to be used.
130  */
131 #if	defined	__i386__ || defined __amd64__
132 #define MEMORY_BARRIER()	do { ; } while(0)
133 #elif	defined	__powerpc__
134 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
135 #elif	defined	__sparc64__
136 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
137 #elif	defined	__arm__
138 #define MEMORY_BARRIER()	dmb()
139 #else
140 #error	"Not supported platform"
141 #endif
142 
143 /*
144  *  A la VMS/CAM-3 queue management.
145  */
146 typedef struct sym_quehead {
147 	struct sym_quehead *flink;	/* Forward  pointer */
148 	struct sym_quehead *blink;	/* Backward pointer */
149 } SYM_QUEHEAD;
150 
151 #define sym_que_init(ptr) do { \
152 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
153 } while (0)
154 
155 static __inline void __sym_que_add(struct sym_quehead * new,
156 	struct sym_quehead * blink,
157 	struct sym_quehead * flink)
158 {
159 	flink->blink	= new;
160 	new->flink	= flink;
161 	new->blink	= blink;
162 	blink->flink	= new;
163 }
164 
165 static __inline void __sym_que_del(struct sym_quehead * blink,
166 	struct sym_quehead * flink)
167 {
168 	flink->blink = blink;
169 	blink->flink = flink;
170 }
171 
172 static __inline int sym_que_empty(struct sym_quehead *head)
173 {
174 	return head->flink == head;
175 }
176 
177 static __inline void sym_que_splice(struct sym_quehead *list,
178 	struct sym_quehead *head)
179 {
180 	struct sym_quehead *first = list->flink;
181 
182 	if (first != list) {
183 		struct sym_quehead *last = list->blink;
184 		struct sym_quehead *at   = head->flink;
185 
186 		first->blink = head;
187 		head->flink  = first;
188 
189 		last->flink = at;
190 		at->blink   = last;
191 	}
192 }
193 
194 #define sym_que_entry(ptr, type, member) \
195 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
196 
197 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
198 
199 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
200 
201 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
202 
203 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
204 {
205 	struct sym_quehead *elem = head->flink;
206 
207 	if (elem != head)
208 		__sym_que_del(head, elem->flink);
209 	else
210 		elem = NULL;
211 	return elem;
212 }
213 
214 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
215 
216 /*
217  *  This one may be useful.
218  */
219 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
220 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
221 /*
222  *  FreeBSD does not offer our kind of queue in the CAM CCB.
223  *  So, we have to cast.
224  */
225 #define sym_qptr(p)	((struct sym_quehead *) (p))
226 
227 /*
228  *  Simple bitmap operations.
229  */
230 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
231 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
232 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
233 
234 /*
235  *  Number of tasks per device we want to handle.
236  */
237 #if	SYM_CONF_MAX_TAG_ORDER > 8
238 #error	"more than 256 tags per logical unit not allowed."
239 #endif
240 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
241 
242 /*
243  *  Donnot use more tasks that we can handle.
244  */
245 #ifndef	SYM_CONF_MAX_TAG
246 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
247 #endif
248 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
249 #undef	SYM_CONF_MAX_TAG
250 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
251 #endif
252 
253 /*
254  *    This one means 'NO TAG for this job'
255  */
256 #define NO_TAG	(256)
257 
258 /*
259  *  Number of SCSI targets.
260  */
261 #if	SYM_CONF_MAX_TARGET > 16
262 #error	"more than 16 targets not allowed."
263 #endif
264 
265 /*
266  *  Number of logical units per target.
267  */
268 #if	SYM_CONF_MAX_LUN > 64
269 #error	"more than 64 logical units per target not allowed."
270 #endif
271 
272 /*
273  *    Asynchronous pre-scaler (ns). Shall be 40 for
274  *    the SCSI timings to be compliant.
275  */
276 #define	SYM_CONF_MIN_ASYNC (40)
277 
278 /*
279  *  Number of entries in the START and DONE queues.
280  *
281  *  We limit to 1 PAGE in order to succeed allocation of
282  *  these queues. Each entry is 8 bytes long (2 DWORDS).
283  */
284 #ifdef	SYM_CONF_MAX_START
285 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
286 #else
287 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
288 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
289 #endif
290 
291 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
292 #undef	SYM_CONF_MAX_QUEUE
293 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
294 #undef	SYM_CONF_MAX_START
295 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
296 #endif
297 
298 /*
299  *  For this one, we want a short name :-)
300  */
301 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
302 
303 /*
304  *  Active debugging tags and verbosity.
305  */
306 #define DEBUG_ALLOC	(0x0001)
307 #define DEBUG_PHASE	(0x0002)
308 #define DEBUG_POLL	(0x0004)
309 #define DEBUG_QUEUE	(0x0008)
310 #define DEBUG_RESULT	(0x0010)
311 #define DEBUG_SCATTER	(0x0020)
312 #define DEBUG_SCRIPT	(0x0040)
313 #define DEBUG_TINY	(0x0080)
314 #define DEBUG_TIMING	(0x0100)
315 #define DEBUG_NEGO	(0x0200)
316 #define DEBUG_TAGS	(0x0400)
317 #define DEBUG_POINTER	(0x0800)
318 
319 #if 0
320 static int sym_debug = 0;
321 	#define DEBUG_FLAGS sym_debug
322 #else
323 /*	#define DEBUG_FLAGS (0x0631) */
324 	#define DEBUG_FLAGS (0x0000)
325 
326 #endif
327 #define sym_verbose	(np->verbose)
328 
329 /*
330  *  Insert a delay in micro-seconds and milli-seconds.
331  */
332 static void UDELAY(int us) { DELAY(us); }
333 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
334 
335 /*
336  *  Simple power of two buddy-like allocator.
337  *
338  *  This simple code is not intended to be fast, but to
339  *  provide power of 2 aligned memory allocations.
340  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
341  *  this allocator allows simple and fast address calculations
342  *  from the SCRIPTS code. In addition, cache line alignment
343  *  is guaranteed for power of 2 cache line size.
344  *
345  *  This allocator has been developed for the Linux sym53c8xx
346  *  driver, since this O/S does not provide naturally aligned
347  *  allocations.
348  *  It has the advantage of allowing the driver to use private
349  *  pages of memory that will be useful if we ever need to deal
350  *  with IO MMUs for PCI.
351  */
352 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
353 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
354 #if 0
355 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
356 #endif
357 #define MEMO_WARN	1
358 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
359 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
360 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
361 
362 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
363 #define free_pages(p)		free((p), M_DEVBUF)
364 
365 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
366 
367 typedef struct m_link {		/* Link between free memory chunks */
368 	struct m_link *next;
369 } m_link_s;
370 
371 typedef struct m_vtob {		/* Virtual to Bus address translation */
372 	struct m_vtob	*next;
373 	bus_dmamap_t	dmamap;	/* Map for this chunk */
374 	m_addr_t	vaddr;	/* Virtual address */
375 	m_addr_t	baddr;	/* Bus physical address */
376 } m_vtob_s;
377 /* Hash this stuff a bit to speed up translations */
378 #define VTOB_HASH_SHIFT		5
379 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
380 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
381 #define VTOB_HASH_CODE(m)	\
382 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
383 
384 typedef struct m_pool {		/* Memory pool of a given kind */
385 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
386 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
387 	m_addr_t (*getp)(struct m_pool *);
388 #ifdef	MEMO_FREE_UNUSED
389 	void (*freep)(struct m_pool *, m_addr_t);
390 #endif
391 #define M_GETP()		mp->getp(mp)
392 #define M_FREEP(p)		mp->freep(mp, p)
393 	int nump;
394 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
395 	struct m_pool *next;
396 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
397 } m_pool_s;
398 
399 static void *___sym_malloc(m_pool_s *mp, int size)
400 {
401 	int i = 0;
402 	int s = (1 << MEMO_SHIFT);
403 	int j;
404 	m_addr_t a;
405 	m_link_s *h = mp->h;
406 
407 	if (size > MEMO_CLUSTER_SIZE)
408 		return NULL;
409 
410 	while (size > s) {
411 		s <<= 1;
412 		++i;
413 	}
414 
415 	j = i;
416 	while (!h[j].next) {
417 		if (s == MEMO_CLUSTER_SIZE) {
418 			h[j].next = (m_link_s *) M_GETP();
419 			if (h[j].next)
420 				h[j].next->next = NULL;
421 			break;
422 		}
423 		++j;
424 		s <<= 1;
425 	}
426 	a = (m_addr_t) h[j].next;
427 	if (a) {
428 		h[j].next = h[j].next->next;
429 		while (j > i) {
430 			j -= 1;
431 			s >>= 1;
432 			h[j].next = (m_link_s *) (a+s);
433 			h[j].next->next = NULL;
434 		}
435 	}
436 #ifdef DEBUG
437 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
438 #endif
439 	return (void *) a;
440 }
441 
442 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
443 {
444 	int i = 0;
445 	int s = (1 << MEMO_SHIFT);
446 	m_link_s *q;
447 	m_addr_t a, b;
448 	m_link_s *h = mp->h;
449 
450 #ifdef DEBUG
451 	printf("___sym_mfree(%p, %d)\n", ptr, size);
452 #endif
453 
454 	if (size > MEMO_CLUSTER_SIZE)
455 		return;
456 
457 	while (size > s) {
458 		s <<= 1;
459 		++i;
460 	}
461 
462 	a = (m_addr_t) ptr;
463 
464 	while (1) {
465 #ifdef MEMO_FREE_UNUSED
466 		if (s == MEMO_CLUSTER_SIZE) {
467 			M_FREEP(a);
468 			break;
469 		}
470 #endif
471 		b = a ^ s;
472 		q = &h[i];
473 		while (q->next && q->next != (m_link_s *) b) {
474 			q = q->next;
475 		}
476 		if (!q->next) {
477 			((m_link_s *) a)->next = h[i].next;
478 			h[i].next = (m_link_s *) a;
479 			break;
480 		}
481 		q->next = q->next->next;
482 		a = a & b;
483 		s <<= 1;
484 		++i;
485 	}
486 }
487 
488 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
489 {
490 	void *p;
491 
492 	p = ___sym_malloc(mp, size);
493 
494 	if (DEBUG_FLAGS & DEBUG_ALLOC)
495 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
496 
497 	if (p)
498 		bzero(p, size);
499 	else if (uflags & MEMO_WARN)
500 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
501 
502 	return p;
503 }
504 
505 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
506 
507 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
508 {
509 	if (DEBUG_FLAGS & DEBUG_ALLOC)
510 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
511 
512 	___sym_mfree(mp, ptr, size);
513 
514 }
515 
516 /*
517  * Default memory pool we donnot need to involve in DMA.
518  */
519 /*
520  * With the `bus dma abstraction', we use a separate pool for
521  * memory we donnot need to involve in DMA.
522  */
523 static m_addr_t ___mp0_getp(m_pool_s *mp)
524 {
525 	m_addr_t m = (m_addr_t) get_pages();
526 	if (m)
527 		++mp->nump;
528 	return m;
529 }
530 
531 #ifdef	MEMO_FREE_UNUSED
532 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
533 {
534 	free_pages(m);
535 	--mp->nump;
536 }
537 #endif
538 
539 #ifdef	MEMO_FREE_UNUSED
540 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
541 #else
542 static m_pool_s mp0 = {0, 0, ___mp0_getp};
543 #endif
544 
545 /*
546  * Actual memory allocation routine for non-DMAed memory.
547  */
548 static void *sym_calloc(int size, char *name)
549 {
550 	void *m;
551 	/* Lock */
552 	m = __sym_calloc(&mp0, size, name);
553 	/* Unlock */
554 	return m;
555 }
556 
557 /*
558  * Actual memory allocation routine for non-DMAed memory.
559  */
560 static void sym_mfree(void *ptr, int size, char *name)
561 {
562 	/* Lock */
563 	__sym_mfree(&mp0, ptr, size, name);
564 	/* Unlock */
565 }
566 
567 /*
568  * DMAable pools.
569  */
570 /*
571  * With `bus dma abstraction', we use a separate pool per parent
572  * BUS handle. A reverse table (hashed) is maintained for virtual
573  * to BUS address translation.
574  */
575 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused,
576     int error)
577 {
578 	bus_addr_t *baddr;
579 
580 	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
581 
582 	baddr = (bus_addr_t *)arg;
583 	if (error)
584 		*baddr = 0;
585 	else
586 		*baddr = segs->ds_addr;
587 }
588 
589 static m_addr_t ___dma_getp(m_pool_s *mp)
590 {
591 	m_vtob_s *vbp;
592 	void *vaddr = NULL;
593 	bus_addr_t baddr = 0;
594 
595 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
596 	if (!vbp)
597 		goto out_err;
598 
599 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
600 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
601 		goto out_err;
602 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
603 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
604 	if (baddr) {
605 		int hc = VTOB_HASH_CODE(vaddr);
606 		vbp->vaddr = (m_addr_t) vaddr;
607 		vbp->baddr = (m_addr_t) baddr;
608 		vbp->next = mp->vtob[hc];
609 		mp->vtob[hc] = vbp;
610 		++mp->nump;
611 		return (m_addr_t) vaddr;
612 	}
613 out_err:
614 	if (baddr)
615 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
616 	if (vaddr)
617 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
618 	if (vbp)
619 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
620 	return 0;
621 }
622 
623 #ifdef	MEMO_FREE_UNUSED
624 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
625 {
626 	m_vtob_s **vbpp, *vbp;
627 	int hc = VTOB_HASH_CODE(m);
628 
629 	vbpp = &mp->vtob[hc];
630 	while (*vbpp && (*vbpp)->vaddr != m)
631 		vbpp = &(*vbpp)->next;
632 	if (*vbpp) {
633 		vbp = *vbpp;
634 		*vbpp = (*vbpp)->next;
635 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
636 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
637 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
638 		--mp->nump;
639 	}
640 }
641 #endif
642 
643 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
644 {
645 	m_pool_s *mp;
646 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
647 	return mp;
648 }
649 
650 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
651 {
652 	m_pool_s *mp = NULL;
653 
654 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
655 	if (mp) {
656 		mp->dev_dmat = dev_dmat;
657 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
658 			       BUS_SPACE_MAXADDR_32BIT,
659 			       BUS_SPACE_MAXADDR,
660 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
661 			       MEMO_CLUSTER_SIZE, 0,
662 			       NULL, NULL, &mp->dmat)) {
663 			mp->getp = ___dma_getp;
664 #ifdef	MEMO_FREE_UNUSED
665 			mp->freep = ___dma_freep;
666 #endif
667 			mp->next = mp0.next;
668 			mp0.next = mp;
669 			return mp;
670 		}
671 	}
672 	if (mp)
673 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
674 	return NULL;
675 }
676 
677 #ifdef	MEMO_FREE_UNUSED
678 static void ___del_dma_pool(m_pool_s *p)
679 {
680 	struct m_pool **pp = &mp0.next;
681 
682 	while (*pp && *pp != p)
683 		pp = &(*pp)->next;
684 	if (*pp) {
685 		*pp = (*pp)->next;
686 		bus_dma_tag_destroy(p->dmat);
687 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
688 	}
689 }
690 #endif
691 
692 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
693 {
694 	struct m_pool *mp;
695 	void *m = NULL;
696 
697 	/* Lock */
698 	mp = ___get_dma_pool(dev_dmat);
699 	if (!mp)
700 		mp = ___cre_dma_pool(dev_dmat);
701 	if (mp)
702 		m = __sym_calloc(mp, size, name);
703 #ifdef	MEMO_FREE_UNUSED
704 	if (mp && !mp->nump)
705 		___del_dma_pool(mp);
706 #endif
707 	/* Unlock */
708 
709 	return m;
710 }
711 
712 static void
713 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
714 {
715 	struct m_pool *mp;
716 
717 	/* Lock */
718 	mp = ___get_dma_pool(dev_dmat);
719 	if (mp)
720 		__sym_mfree(mp, m, size, name);
721 #ifdef	MEMO_FREE_UNUSED
722 	if (mp && !mp->nump)
723 		___del_dma_pool(mp);
724 #endif
725 	/* Unlock */
726 }
727 
728 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
729 {
730 	m_pool_s *mp;
731 	int hc = VTOB_HASH_CODE(m);
732 	m_vtob_s *vp = NULL;
733 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
734 
735 	/* Lock */
736 	mp = ___get_dma_pool(dev_dmat);
737 	if (mp) {
738 		vp = mp->vtob[hc];
739 		while (vp && (m_addr_t) vp->vaddr != a)
740 			vp = vp->next;
741 	}
742 	/* Unlock */
743 	if (!vp)
744 		panic("sym: VTOBUS FAILED!\n");
745 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
746 }
747 
748 /*
749  * Verbs for DMAable memory handling.
750  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
751  * being discarded.
752  */
753 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
754 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
755 #define _sym_mfree_dma(np, p, s, n)	\
756 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
757 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
758 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
759 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
760 #define vtobus(p)			_vtobus(np, p)
761 
762 /*
763  *  Print a buffer in hexadecimal format.
764  */
765 static void sym_printb_hex (u_char *p, int n)
766 {
767 	while (n-- > 0)
768 		printf (" %x", *p++);
769 }
770 
771 /*
772  *  Same with a label at beginning and .\n at end.
773  */
774 static void sym_printl_hex (char *label, u_char *p, int n)
775 {
776 	printf ("%s", label);
777 	sym_printb_hex (p, n);
778 	printf (".\n");
779 }
780 
781 /*
782  *  Return a string for SCSI BUS mode.
783  */
784 static const char *sym_scsi_bus_mode(int mode)
785 {
786 	switch(mode) {
787 	case SMODE_HVD:	return "HVD";
788 	case SMODE_SE:	return "SE";
789 	case SMODE_LVD: return "LVD";
790 	}
791 	return "??";
792 }
793 
794 /*
795  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
796  */
797 #ifdef SYM_CONF_NVRAM_SUPPORT
798 static const u_char Tekram_sync[16] =
799 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
800 #endif
801 
802 /*
803  *  Union of supported NVRAM formats.
804  */
805 struct sym_nvram {
806 	int type;
807 #define	SYM_SYMBIOS_NVRAM	(1)
808 #define	SYM_TEKRAM_NVRAM	(2)
809 #ifdef	SYM_CONF_NVRAM_SUPPORT
810 	union {
811 		Symbios_nvram Symbios;
812 		Tekram_nvram Tekram;
813 	} data;
814 #endif
815 };
816 
817 /*
818  *  This one is hopefully useless, but actually useful. :-)
819  */
820 #ifndef assert
821 #define	assert(expression) { \
822 	if (!(expression)) { \
823 		(void)panic( \
824 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
825 			#expression, \
826 			__FILE__, __LINE__); \
827 	} \
828 }
829 #endif
830 
831 /*
832  *  Some provision for a possible big endian mode supported by
833  *  Symbios chips (never seen, by the way).
834  *  For now, this stuff does not deserve any comments. :)
835  */
836 #define sym_offb(o)	(o)
837 #define sym_offw(o)	(o)
838 
839 /*
840  *  Some provision for support for BIG ENDIAN CPU.
841  */
842 #define cpu_to_scr(dw)	htole32(dw)
843 #define scr_to_cpu(dw)	le32toh(dw)
844 
845 /*
846  *  Access to the chip IO registers and on-chip RAM.
847  *  We use the `bus space' interface under FreeBSD-4 and
848  *  later kernel versions.
849  */
850 #if defined(SYM_CONF_IOMAPPED)
851 
852 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
853 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
854 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
855 
856 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
857 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
858 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
859 
860 #else	/* Memory mapped IO */
861 
862 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
863 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
864 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
865 
866 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
867 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
868 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
869 
870 #endif	/* SYM_CONF_IOMAPPED */
871 
872 #define OUTRAM_OFF(o, a, l)	\
873 	bus_write_region_1(np->ram_res, (o), (a), (l))
874 
875 /*
876  *  Common definitions for both bus space and legacy IO methods.
877  */
878 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
879 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
880 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
881 
882 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
883 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
884 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
885 
886 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
887 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
888 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
889 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
890 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
891 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
892 
893 /*
894  *  We normally want the chip to have a consistent view
895  *  of driver internal data structures when we restart it.
896  *  Thus these macros.
897  */
898 #define OUTL_DSP(v)				\
899 	do {					\
900 		MEMORY_BARRIER();		\
901 		OUTL (nc_dsp, (v));		\
902 	} while (0)
903 
904 #define OUTONB_STD()				\
905 	do {					\
906 		MEMORY_BARRIER();		\
907 		OUTONB (nc_dcntl, (STD|NOCOM));	\
908 	} while (0)
909 
910 /*
911  *  Command control block states.
912  */
913 #define HS_IDLE		(0)
914 #define HS_BUSY		(1)
915 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
916 #define HS_DISCONNECT	(3)	/* Disconnected by target */
917 #define HS_WAIT		(4)	/* waiting for resource	  */
918 
919 #define HS_DONEMASK	(0x80)
920 #define HS_COMPLETE	(4|HS_DONEMASK)
921 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
922 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
923 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
924 
925 /*
926  *  Software Interrupt Codes
927  */
928 #define	SIR_BAD_SCSI_STATUS	(1)
929 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
930 #define	SIR_MSG_RECEIVED	(3)
931 #define	SIR_MSG_WEIRD		(4)
932 #define	SIR_NEGO_FAILED		(5)
933 #define	SIR_NEGO_PROTO		(6)
934 #define	SIR_SCRIPT_STOPPED	(7)
935 #define	SIR_REJECT_TO_SEND	(8)
936 #define	SIR_SWIDE_OVERRUN	(9)
937 #define	SIR_SODL_UNDERRUN	(10)
938 #define	SIR_RESEL_NO_MSG_IN	(11)
939 #define	SIR_RESEL_NO_IDENTIFY	(12)
940 #define	SIR_RESEL_BAD_LUN	(13)
941 #define	SIR_TARGET_SELECTED	(14)
942 #define	SIR_RESEL_BAD_I_T_L	(15)
943 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
944 #define	SIR_ABORT_SENT		(17)
945 #define	SIR_RESEL_ABORTED	(18)
946 #define	SIR_MSG_OUT_DONE	(19)
947 #define	SIR_COMPLETE_ERROR	(20)
948 #define	SIR_DATA_OVERRUN	(21)
949 #define	SIR_BAD_PHASE		(22)
950 #define	SIR_MAX			(22)
951 
952 /*
953  *  Extended error bit codes.
954  *  xerr_status field of struct sym_ccb.
955  */
956 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
957 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
958 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
959 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
960 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
961 
962 /*
963  *  Negotiation status.
964  *  nego_status field of struct sym_ccb.
965  */
966 #define NS_SYNC		(1)
967 #define NS_WIDE		(2)
968 #define NS_PPR		(3)
969 
970 /*
971  *  A CCB hashed table is used to retrieve CCB address
972  *  from DSA value.
973  */
974 #define CCB_HASH_SHIFT		8
975 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
976 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
977 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
978 
979 /*
980  *  Device flags.
981  */
982 #define SYM_DISC_ENABLED	(1)
983 #define SYM_TAGS_ENABLED	(1<<1)
984 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
985 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
986 
987 /*
988  *  Host adapter miscellaneous flags.
989  */
990 #define SYM_AVOID_BUS_RESET	(1)
991 #define SYM_SCAN_TARGETS_HILO	(1<<1)
992 
993 /*
994  *  Device quirks.
995  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
996  *  saving the DATA POINTER then reselects and terminates the IO.
997  *  On reselection, the automatic RESTORE DATA POINTER makes the
998  *  CURRENT DATA POINTER not point at the end of the IO.
999  *  This behaviour just breaks our calculation of the residual.
1000  *  For now, we just force an AUTO SAVE on disconnection and will
1001  *  fix that in a further driver version.
1002  */
1003 #define SYM_QUIRK_AUTOSAVE 1
1004 
1005 /*
1006  *  Misc.
1007  */
1008 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1009 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1010 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1011 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1012 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1013 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1014 
1015 #define SYM_SNOOP_TIMEOUT (10000000)
1016 #define SYM_PCI_IO	PCIR_BAR(0)
1017 #define SYM_PCI_MMIO	PCIR_BAR(1)
1018 #define SYM_PCI_RAM	PCIR_BAR(2)
1019 #define SYM_PCI_RAM64	PCIR_BAR(3)
1020 
1021 /*
1022  *  Back-pointer from the CAM CCB to our data structures.
1023  */
1024 #define sym_hcb_ptr	spriv_ptr0
1025 /* #define sym_ccb_ptr	spriv_ptr1 */
1026 
1027 /*
1028  *  We mostly have to deal with pointers.
1029  *  Thus these typedef's.
1030  */
1031 typedef struct sym_tcb *tcb_p;
1032 typedef struct sym_lcb *lcb_p;
1033 typedef struct sym_ccb *ccb_p;
1034 typedef struct sym_hcb *hcb_p;
1035 
1036 /*
1037  *  Gather negotiable parameters value
1038  */
1039 struct sym_trans {
1040 	u8 scsi_version;
1041 	u8 spi_version;
1042 	u8 period;
1043 	u8 offset;
1044 	u8 width;
1045 	u8 options;	/* PPR options */
1046 };
1047 
1048 struct sym_tinfo {
1049 	struct sym_trans current;
1050 	struct sym_trans goal;
1051 	struct sym_trans user;
1052 };
1053 
1054 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1055 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1056 
1057 /*
1058  *  Global TCB HEADER.
1059  *
1060  *  Due to lack of indirect addressing on earlier NCR chips,
1061  *  this substructure is copied from the TCB to a global
1062  *  address after selection.
1063  *  For SYMBIOS chips that support LOAD/STORE this copy is
1064  *  not needed and thus not performed.
1065  */
1066 struct sym_tcbh {
1067 	/*
1068 	 *  Scripts bus addresses of LUN table accessed from scripts.
1069 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1070 	 *  and we we want to speed-up the general case and not waste
1071 	 *  resources.
1072 	 */
1073 	u32	luntbl_sa;	/* bus address of this table	*/
1074 	u32	lun0_sa;	/* bus address of LCB #0	*/
1075 	/*
1076 	 *  Actual SYNC/WIDE IO registers value for this target.
1077 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1078 	 *  so have alignment constraints.
1079 	 */
1080 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1081 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1082 /*2*/	u_char	filler1;
1083 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1084 };
1085 
1086 /*
1087  *  Target Control Block
1088  */
1089 struct sym_tcb {
1090 	/*
1091 	 *  TCB header.
1092 	 *  Assumed at offset 0.
1093 	 */
1094 /*0*/	struct sym_tcbh head;
1095 
1096 	/*
1097 	 *  LUN table used by the SCRIPTS processor.
1098 	 *  An array of bus addresses is used on reselection.
1099 	 */
1100 	u32	*luntbl;	/* LCBs bus address table	*/
1101 
1102 	/*
1103 	 *  LUN table used by the C code.
1104 	 */
1105 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1106 #if SYM_CONF_MAX_LUN > 1
1107 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1108 #endif
1109 
1110 	/*
1111 	 *  Bitmap that tells about LUNs that succeeded at least
1112 	 *  1 IO and therefore assumed to be a real device.
1113 	 *  Avoid useless allocation of the LCB structure.
1114 	 */
1115 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1116 
1117 	/*
1118 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1119 	 *  allocated (not discovered or LCB allocation failed).
1120 	 */
1121 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1122 
1123 	/*
1124 	 *  Transfer capabilities (SIP)
1125 	 */
1126 	struct sym_tinfo tinfo;
1127 
1128 	/*
1129 	 * Keep track of the CCB used for the negotiation in order
1130 	 * to ensure that only 1 negotiation is queued at a time.
1131 	 */
1132 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1133 
1134 	/*
1135 	 *  Set when we want to reset the device.
1136 	 */
1137 	u_char	to_reset;
1138 
1139 	/*
1140 	 *  Other user settable limits and options.
1141 	 *  These limits are read from the NVRAM if present.
1142 	 */
1143 	u_char	usrflags;
1144 	u_short	usrtags;
1145 };
1146 
1147 /*
1148  *  Assert some alignments required by the chip.
1149  */
1150 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1151     offsetof(struct sym_tcb, head.sval)) &3) == 0);
1152 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1153     offsetof(struct sym_tcb, head.wval)) &3) == 0);
1154 
1155 /*
1156  *  Global LCB HEADER.
1157  *
1158  *  Due to lack of indirect addressing on earlier NCR chips,
1159  *  this substructure is copied from the LCB to a global
1160  *  address after selection.
1161  *  For SYMBIOS chips that support LOAD/STORE this copy is
1162  *  not needed and thus not performed.
1163  */
1164 struct sym_lcbh {
1165 	/*
1166 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1167 	 *  For not probed logical units, this address points to
1168 	 *  SCRIPTS that deal with bad LU handling (must be at
1169 	 *  offset zero of the LCB for that reason).
1170 	 */
1171 /*0*/	u32	resel_sa;
1172 
1173 	/*
1174 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1175 	 *  to the unique ITL nexus allowed to be disconnected.
1176 	 */
1177 	u32	itl_task_sa;
1178 
1179 	/*
1180 	 *  Task table bus address (read from SCRIPTS).
1181 	 */
1182 	u32	itlq_tbl_sa;
1183 };
1184 
1185 /*
1186  *  Logical Unit Control Block
1187  */
1188 struct sym_lcb {
1189 	/*
1190 	 *  TCB header.
1191 	 *  Assumed at offset 0.
1192 	 */
1193 /*0*/	struct sym_lcbh head;
1194 
1195 	/*
1196 	 *  Task table read from SCRIPTS that contains pointers to
1197 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1198 	 *  inside the header.
1199 	 */
1200 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1201 
1202 	/*
1203 	 *  Busy CCBs management.
1204 	 */
1205 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1206 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1207 
1208 	/*
1209 	 *  Circular tag allocation buffer.
1210 	 */
1211 	u_short	ia_tag;		/* Tag allocation index		*/
1212 	u_short	if_tag;		/* Tag release index		*/
1213 	u_char	*cb_tags;	/* Circular tags buffer		*/
1214 
1215 	/*
1216 	 *  Set when we want to clear all tasks.
1217 	 */
1218 	u_char to_clear;
1219 
1220 	/*
1221 	 *  Capabilities.
1222 	 */
1223 	u_char	user_flags;
1224 	u_char	current_flags;
1225 };
1226 
1227 /*
1228  *  Action from SCRIPTS on a task.
1229  *  Is part of the CCB, but is also used separately to plug
1230  *  error handling action to perform from SCRIPTS.
1231  */
1232 struct sym_actscr {
1233 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1234 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1235 };
1236 
1237 /*
1238  *  Phase mismatch context.
1239  *
1240  *  It is part of the CCB and is used as parameters for the
1241  *  DATA pointer. We need two contexts to handle correctly the
1242  *  SAVED DATA POINTER.
1243  */
1244 struct sym_pmc {
1245 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1246 	u32	ret;		/* SCRIPT return address	*/
1247 };
1248 
1249 /*
1250  *  LUN control block lookup.
1251  *  We use a direct pointer for LUN #0, and a table of
1252  *  pointers which is only allocated for devices that support
1253  *  LUN(s) > 0.
1254  */
1255 #if SYM_CONF_MAX_LUN <= 1
1256 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1257 #else
1258 #define sym_lp(tp, lun) \
1259 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1260 #endif
1261 
1262 /*
1263  *  Status are used by the host and the script processor.
1264  *
1265  *  The last four bytes (status[4]) are copied to the
1266  *  scratchb register (declared as scr0..scr3) just after the
1267  *  select/reselect, and copied back just after disconnecting.
1268  *  Inside the script the XX_REG are used.
1269  */
1270 
1271 /*
1272  *  Last four bytes (script)
1273  */
1274 #define  QU_REG	scr0
1275 #define  HS_REG	scr1
1276 #define  HS_PRT	nc_scr1
1277 #define  SS_REG	scr2
1278 #define  SS_PRT	nc_scr2
1279 #define  HF_REG	scr3
1280 #define  HF_PRT	nc_scr3
1281 
1282 /*
1283  *  Last four bytes (host)
1284  */
1285 #define  actualquirks  phys.head.status[0]
1286 #define  host_status   phys.head.status[1]
1287 #define  ssss_status   phys.head.status[2]
1288 #define  host_flags    phys.head.status[3]
1289 
1290 /*
1291  *  Host flags
1292  */
1293 #define HF_IN_PM0	1u
1294 #define HF_IN_PM1	(1u<<1)
1295 #define HF_ACT_PM	(1u<<2)
1296 #define HF_DP_SAVED	(1u<<3)
1297 #define HF_SENSE	(1u<<4)
1298 #define HF_EXT_ERR	(1u<<5)
1299 #define HF_DATA_IN	(1u<<6)
1300 #ifdef SYM_CONF_IARB_SUPPORT
1301 #define HF_HINT_IARB	(1u<<7)
1302 #endif
1303 
1304 /*
1305  *  Global CCB HEADER.
1306  *
1307  *  Due to lack of indirect addressing on earlier NCR chips,
1308  *  this substructure is copied from the ccb to a global
1309  *  address after selection (or reselection) and copied back
1310  *  before disconnect.
1311  *  For SYMBIOS chips that support LOAD/STORE this copy is
1312  *  not needed and thus not performed.
1313  */
1314 struct sym_ccbh {
1315 	/*
1316 	 *  Start and restart SCRIPTS addresses (must be at 0).
1317 	 */
1318 /*0*/	struct sym_actscr go;
1319 
1320 	/*
1321 	 *  SCRIPTS jump address that deal with data pointers.
1322 	 *  'savep' points to the position in the script responsible
1323 	 *  for the actual transfer of data.
1324 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1325 	 */
1326 	u32	savep;		/* Jump address to saved data pointer	*/
1327 	u32	lastp;		/* SCRIPTS address at end of data	*/
1328 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1329 
1330 	/*
1331 	 *  Status fields.
1332 	 */
1333 	u8	status[4];
1334 };
1335 
1336 /*
1337  *  Data Structure Block
1338  *
1339  *  During execution of a ccb by the script processor, the
1340  *  DSA (data structure address) register points to this
1341  *  substructure of the ccb.
1342  */
1343 struct sym_dsb {
1344 	/*
1345 	 *  CCB header.
1346 	 *  Also assumed at offset 0 of the sym_ccb structure.
1347 	 */
1348 /*0*/	struct sym_ccbh head;
1349 
1350 	/*
1351 	 *  Phase mismatch contexts.
1352 	 *  We need two to handle correctly the SAVED DATA POINTER.
1353 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1354 	 *  for address calculation from SCRIPTS.
1355 	 */
1356 	struct sym_pmc pm0;
1357 	struct sym_pmc pm1;
1358 
1359 	/*
1360 	 *  Table data for Script
1361 	 */
1362 	struct sym_tblsel  select;
1363 	struct sym_tblmove smsg;
1364 	struct sym_tblmove smsg_ext;
1365 	struct sym_tblmove cmd;
1366 	struct sym_tblmove sense;
1367 	struct sym_tblmove wresid;
1368 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1369 };
1370 
1371 /*
1372  *  Our Command Control Block
1373  */
1374 struct sym_ccb {
1375 	/*
1376 	 *  This is the data structure which is pointed by the DSA
1377 	 *  register when it is executed by the script processor.
1378 	 *  It must be the first entry.
1379 	 */
1380 	struct sym_dsb phys;
1381 
1382 	/*
1383 	 *  Pointer to CAM ccb and related stuff.
1384 	 */
1385 	struct callout ch;	/* callout handle		*/
1386 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1387 	u8	cdb_buf[16];	/* Copy of CDB			*/
1388 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1389 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1390 	int	data_len;	/* Total data length		*/
1391 	int	segments;	/* Number of SG segments	*/
1392 
1393 	/*
1394 	 *  Miscellaneous status'.
1395 	 */
1396 	u_char	nego_status;	/* Negotiation status		*/
1397 	u_char	xerr_status;	/* Extended error flags		*/
1398 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1399 
1400 	/*
1401 	 *  Message areas.
1402 	 *  We prepare a message to be sent after selection.
1403 	 *  We may use a second one if the command is rescheduled
1404 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1405 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1406 	 *  While negotiating sync or wide transfer,
1407 	 *  a SDTR or WDTR message is appended.
1408 	 */
1409 	u_char	scsi_smsg [12];
1410 	u_char	scsi_smsg2[12];
1411 
1412 	/*
1413 	 *  Auto request sense related fields.
1414 	 */
1415 	u_char	sensecmd[6];	/* Request Sense command	*/
1416 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1417 	u_char	sv_xerr_status;	/* Saved extended status	*/
1418 	int	sv_resid;	/* Saved residual		*/
1419 
1420 	/*
1421 	 *  Map for the DMA of user data.
1422 	 */
1423 	void		*arg;	/* Argument for some callback	*/
1424 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1425 	u_char		dmamapped;
1426 #define SYM_DMA_NONE	0
1427 #define SYM_DMA_READ	1
1428 #define SYM_DMA_WRITE	2
1429 	/*
1430 	 *  Other fields.
1431 	 */
1432 	u32	ccb_ba;		/* BUS address of this CCB	*/
1433 	u_short	tag;		/* Tag for this transfer	*/
1434 				/*  NO_TAG means no tag		*/
1435 	u_char	target;
1436 	u_char	lun;
1437 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1438 	SYM_QUEHEAD
1439 		link_ccbq;	/* Link to free/busy CCB queue	*/
1440 	u32	startp;		/* Initial data pointer		*/
1441 	int	ext_sg;		/* Extreme data pointer, used	*/
1442 	int	ext_ofs;	/*  to calculate the residual.	*/
1443 	u_char	to_abort;	/* Want this IO to be aborted	*/
1444 };
1445 
1446 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1447 
1448 /*
1449  *  Host Control Block
1450  */
1451 struct sym_hcb {
1452 	struct mtx	mtx;
1453 
1454 	/*
1455 	 *  Global headers.
1456 	 *  Due to poorness of addressing capabilities, earlier
1457 	 *  chips (810, 815, 825) copy part of the data structures
1458 	 *  (CCB, TCB and LCB) in fixed areas.
1459 	 */
1460 #ifdef	SYM_CONF_GENERIC_SUPPORT
1461 	struct sym_ccbh	ccb_head;
1462 	struct sym_tcbh	tcb_head;
1463 	struct sym_lcbh	lcb_head;
1464 #endif
1465 	/*
1466 	 *  Idle task and invalid task actions and
1467 	 *  their bus addresses.
1468 	 */
1469 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1470 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1471 
1472 	/*
1473 	 *  Dummy lun table to protect us against target
1474 	 *  returning bad lun number on reselection.
1475 	 */
1476 	u32	*badluntbl;	/* Table physical address	*/
1477 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1478 
1479 	/*
1480 	 *  Bus address of this host control block.
1481 	 */
1482 	u32	hcb_ba;
1483 
1484 	/*
1485 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1486 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1487 	 *  field.
1488 	 */
1489 	u32	scr_ram_seg;
1490 
1491 	/*
1492 	 *  Chip and controller indentification.
1493 	 */
1494 	device_t device;
1495 
1496 	/*
1497 	 *  Initial value of some IO register bits.
1498 	 *  These values are assumed to have been set by BIOS, and may
1499 	 *  be used to probe adapter implementation differences.
1500 	 */
1501 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1502 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1503 		sv_stest1;
1504 
1505 	/*
1506 	 *  Actual initial value of IO register bits used by the
1507 	 *  driver. They are loaded at initialisation according to
1508 	 *  features that are to be enabled/disabled.
1509 	 */
1510 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1511 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1512 
1513 	/*
1514 	 *  Target data.
1515 	 */
1516 #ifdef __amd64__
1517 	struct sym_tcb	*target;
1518 #else
1519 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1520 #endif
1521 
1522 	/*
1523 	 *  Target control block bus address array used by the SCRIPT
1524 	 *  on reselection.
1525 	 */
1526 	u32		*targtbl;
1527 	u32		targtbl_ba;
1528 
1529 	/*
1530 	 *  CAM SIM information for this instance.
1531 	 */
1532 	struct		cam_sim  *sim;
1533 	struct		cam_path *path;
1534 
1535 	/*
1536 	 *  Allocated hardware resources.
1537 	 */
1538 	struct resource	*irq_res;
1539 	struct resource	*io_res;
1540 	struct resource	*mmio_res;
1541 	struct resource	*ram_res;
1542 	int		ram_id;
1543 	void *intr;
1544 
1545 	/*
1546 	 *  Bus stuff.
1547 	 *
1548 	 *  My understanding of PCI is that all agents must share the
1549 	 *  same addressing range and model.
1550 	 *  But some hardware architecture guys provide complex and
1551 	 *  brain-deaded stuff that makes shit.
1552 	 *  This driver only support PCI compliant implementations and
1553 	 *  deals with part of the BUS stuff complexity only to fit O/S
1554 	 *  requirements.
1555 	 */
1556 
1557 	/*
1558 	 *  DMA stuff.
1559 	 */
1560 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1561 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1562 	/*
1563 	 *  BUS addresses of the chip
1564 	 */
1565 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1566 	int		mmio_ws;	/* MMIO Window size		*/
1567 
1568 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1569 	int		ram_ws;		/* RAM window size		*/
1570 
1571 	/*
1572 	 *  SCRIPTS virtual and physical bus addresses.
1573 	 *  'script'  is loaded in the on-chip RAM if present.
1574 	 *  'scripth' stays in main memory for all chips except the
1575 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1576 	 */
1577 	u_char		*scripta0;	/* Copies of script and scripth	*/
1578 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1579 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1580 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1581 	vm_offset_t	scriptb0_ba;
1582 	u_short		scripta_sz;	/* Actual size of script A	*/
1583 	u_short		scriptb_sz;	/* Actual size of script B	*/
1584 
1585 	/*
1586 	 *  Bus addresses, setup and patch methods for
1587 	 *  the selected firmware.
1588 	 */
1589 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1590 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1591 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1592 	void		(*fw_patch)(hcb_p np);
1593 	const char	*fw_name;
1594 
1595 	/*
1596 	 *  General controller parameters and configuration.
1597 	 */
1598 	u_short	device_id;	/* PCI device id		*/
1599 	u_char	revision_id;	/* PCI device revision id	*/
1600 	u_int	features;	/* Chip features map		*/
1601 	u_char	myaddr;		/* SCSI id of the adapter	*/
1602 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1603 	u_char	maxwide;	/* Maximum transfer width	*/
1604 	u_char	minsync;	/* Min sync period factor (ST)	*/
1605 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1606 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1607 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1608 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1609 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1610 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1611 	u_char	clock_divn;	/* Number of clock divisors	*/
1612 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1613 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1614 	/*
1615 	 *  Start queue management.
1616 	 *  It is filled up by the host processor and accessed by the
1617 	 *  SCRIPTS processor in order to start SCSI commands.
1618 	 */
1619 	volatile		/* Prevent code optimizations	*/
1620 	u32	*squeue;	/* Start queue virtual address	*/
1621 	u32	squeue_ba;	/* Start queue BUS address	*/
1622 	u_short	squeueput;	/* Next free slot of the queue	*/
1623 	u_short	actccbs;	/* Number of allocated CCBs	*/
1624 
1625 	/*
1626 	 *  Command completion queue.
1627 	 *  It is the same size as the start queue to avoid overflow.
1628 	 */
1629 	u_short	dqueueget;	/* Next position to scan	*/
1630 	volatile		/* Prevent code optimizations	*/
1631 	u32	*dqueue;	/* Completion (done) queue	*/
1632 	u32	dqueue_ba;	/* Done queue BUS address	*/
1633 
1634 	/*
1635 	 *  Miscellaneous buffers accessed by the scripts-processor.
1636 	 *  They shall be DWORD aligned, because they may be read or
1637 	 *  written with a script command.
1638 	 */
1639 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1640 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1641 	u32		lastmsg;	/* Last SCSI message sent	*/
1642 	u_char		scratch;	/* Scratch for SCSI receive	*/
1643 
1644 	/*
1645 	 *  Miscellaneous configuration and status parameters.
1646 	 */
1647 	u_char		usrflags;	/* Miscellaneous user flags	*/
1648 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1649 	u_char		verbose;	/* Verbosity for this controller*/
1650 	u32		cache;		/* Used for cache test at init.	*/
1651 
1652 	/*
1653 	 *  CCB lists and queue.
1654 	 */
1655 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1656 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1657 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1658 
1659 	/*
1660 	 *  During error handling and/or recovery,
1661 	 *  active CCBs that are to be completed with
1662 	 *  error or requeued are moved from the busy_ccbq
1663 	 *  to the comp_ccbq prior to completion.
1664 	 */
1665 	SYM_QUEHEAD	comp_ccbq;
1666 
1667 	/*
1668 	 *  CAM CCB pending queue.
1669 	 */
1670 	SYM_QUEHEAD	cam_ccbq;
1671 
1672 	/*
1673 	 *  IMMEDIATE ARBITRATION (IARB) control.
1674 	 *
1675 	 *  We keep track in 'last_cp' of the last CCB that has been
1676 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1677 	 *  this CCB completes. If last_cp is not zero at the moment
1678 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1679 	 *  used by the SCRIPTS as a hint for setting IARB.
1680 	 *  We donnot set more than 'iarb_max' consecutive hints for
1681 	 *  IARB in order to leave devices a chance to reselect.
1682 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1683 	 */
1684 #ifdef SYM_CONF_IARB_SUPPORT
1685 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1686 	u_short		iarb_count;	/* Actual # of these hints	*/
1687 	ccb_p		last_cp;
1688 #endif
1689 
1690 	/*
1691 	 *  Command abort handling.
1692 	 *  We need to synchronize tightly with the SCRIPTS
1693 	 *  processor in order to handle things correctly.
1694 	 */
1695 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1696 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1697 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1698 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1699 };
1700 
1701 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1702 
1703 /*
1704  *  Return the name of the controller.
1705  */
1706 static __inline const char *sym_name(hcb_p np)
1707 {
1708 	return device_get_nameunit(np->device);
1709 }
1710 
1711 /*--------------------------------------------------------------------------*/
1712 /*------------------------------ FIRMWARES ---------------------------------*/
1713 /*--------------------------------------------------------------------------*/
1714 
1715 /*
1716  *  This stuff will be moved to a separate source file when
1717  *  the driver will be broken into several source modules.
1718  */
1719 
1720 /*
1721  *  Macros used for all firmwares.
1722  */
1723 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1724 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1725 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1726 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1727 
1728 #ifdef	SYM_CONF_GENERIC_SUPPORT
1729 /*
1730  *  Allocate firmware #1 script area.
1731  */
1732 #define	SYM_FWA_SCR		sym_fw1a_scr
1733 #define	SYM_FWB_SCR		sym_fw1b_scr
1734 #include <dev/sym/sym_fw1.h>
1735 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1736 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1737 };
1738 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1739 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1740 };
1741 #undef	SYM_FWA_SCR
1742 #undef	SYM_FWB_SCR
1743 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1744 
1745 /*
1746  *  Allocate firmware #2 script area.
1747  */
1748 #define	SYM_FWA_SCR		sym_fw2a_scr
1749 #define	SYM_FWB_SCR		sym_fw2b_scr
1750 #include <dev/sym/sym_fw2.h>
1751 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1752 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1753 };
1754 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1755 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1756 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1757 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1758 };
1759 #undef	SYM_FWA_SCR
1760 #undef	SYM_FWB_SCR
1761 
1762 #undef	SYM_GEN_A
1763 #undef	SYM_GEN_B
1764 #undef	PADDR_A
1765 #undef	PADDR_B
1766 
1767 #ifdef	SYM_CONF_GENERIC_SUPPORT
1768 /*
1769  *  Patch routine for firmware #1.
1770  */
1771 static void
1772 sym_fw1_patch(hcb_p np)
1773 {
1774 	struct sym_fw1a_scr *scripta0;
1775 	struct sym_fw1b_scr *scriptb0;
1776 
1777 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1778 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1779 
1780 	/*
1781 	 *  Remove LED support if not needed.
1782 	 */
1783 	if (!(np->features & FE_LED0)) {
1784 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1785 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1786 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1787 	}
1788 
1789 #ifdef SYM_CONF_IARB_SUPPORT
1790 	/*
1791 	 *    If user does not want to use IMMEDIATE ARBITRATION
1792 	 *    when we are reselected while attempting to arbitrate,
1793 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1794 	 */
1795 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1796 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1797 #endif
1798 	/*
1799 	 *  Patch some data in SCRIPTS.
1800 	 *  - start and done queue initial bus address.
1801 	 *  - target bus address table bus address.
1802 	 */
1803 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1804 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1805 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1806 }
1807 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1808 
1809 /*
1810  *  Patch routine for firmware #2.
1811  */
1812 static void
1813 sym_fw2_patch(hcb_p np)
1814 {
1815 	struct sym_fw2a_scr *scripta0;
1816 	struct sym_fw2b_scr *scriptb0;
1817 
1818 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1819 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1820 
1821 	/*
1822 	 *  Remove LED support if not needed.
1823 	 */
1824 	if (!(np->features & FE_LED0)) {
1825 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1826 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1827 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1828 	}
1829 
1830 #ifdef SYM_CONF_IARB_SUPPORT
1831 	/*
1832 	 *    If user does not want to use IMMEDIATE ARBITRATION
1833 	 *    when we are reselected while attempting to arbitrate,
1834 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1835 	 */
1836 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1837 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1838 #endif
1839 	/*
1840 	 *  Patch some variable in SCRIPTS.
1841 	 *  - start and done queue initial bus address.
1842 	 *  - target bus address table bus address.
1843 	 */
1844 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1845 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1846 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1847 
1848 	/*
1849 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1850 	 */
1851 	if (!(np->features & FE_C10)) {
1852 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1853 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1854 	}
1855 
1856 	/*
1857 	 *  Remove a couple of work-arounds specific to C1010 if
1858 	 *  they are not desirable. See `sym_fw2.h' for more details.
1859 	 */
1860 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1861 	      np->revision_id < 0x1 &&
1862 	      np->pciclk_khz < 60000)) {
1863 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1864 		scripta0->datao_phase[1] = cpu_to_scr(0);
1865 	}
1866 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1867 	      /* np->revision_id < 0xff */ 1)) {
1868 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1869 		scripta0->sel_done[1] = cpu_to_scr(0);
1870 	}
1871 
1872 	/*
1873 	 *  Patch some other variables in SCRIPTS.
1874 	 *  These ones are loaded by the SCRIPTS processor.
1875 	 */
1876 	scriptb0->pm0_data_addr[0] =
1877 		cpu_to_scr(np->scripta_ba +
1878 			   offsetof(struct sym_fw2a_scr, pm0_data));
1879 	scriptb0->pm1_data_addr[0] =
1880 		cpu_to_scr(np->scripta_ba +
1881 			   offsetof(struct sym_fw2a_scr, pm1_data));
1882 }
1883 
1884 /*
1885  *  Fill the data area in scripts.
1886  *  To be done for all firmwares.
1887  */
1888 static void
1889 sym_fw_fill_data (u32 *in, u32 *out)
1890 {
1891 	int	i;
1892 
1893 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1894 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1895 		*in++  = offsetof (struct sym_dsb, data[i]);
1896 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1897 		*out++ = offsetof (struct sym_dsb, data[i]);
1898 	}
1899 }
1900 
1901 /*
1902  *  Setup useful script bus addresses.
1903  *  To be done for all firmwares.
1904  */
1905 static void
1906 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1907 {
1908 	u32 *pa;
1909 	const u_short *po;
1910 	int i;
1911 
1912 	/*
1913 	 *  Build the bus address table for script A
1914 	 *  from the script A offset table.
1915 	 */
1916 	po = (const u_short *) fw->a_ofs;
1917 	pa = (u32 *) &np->fwa_bas;
1918 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1919 		pa[i] = np->scripta_ba + po[i];
1920 
1921 	/*
1922 	 *  Same for script B.
1923 	 */
1924 	po = (const u_short *) fw->b_ofs;
1925 	pa = (u32 *) &np->fwb_bas;
1926 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1927 		pa[i] = np->scriptb_ba + po[i];
1928 }
1929 
1930 #ifdef	SYM_CONF_GENERIC_SUPPORT
1931 /*
1932  *  Setup routine for firmware #1.
1933  */
1934 static void
1935 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1936 {
1937 	struct sym_fw1a_scr *scripta0;
1938 
1939 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1940 
1941 	/*
1942 	 *  Fill variable parts in scripts.
1943 	 */
1944 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1945 
1946 	/*
1947 	 *  Setup bus addresses used from the C code..
1948 	 */
1949 	sym_fw_setup_bus_addresses(np, fw);
1950 }
1951 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1952 
1953 /*
1954  *  Setup routine for firmware #2.
1955  */
1956 static void
1957 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1958 {
1959 	struct sym_fw2a_scr *scripta0;
1960 
1961 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1962 
1963 	/*
1964 	 *  Fill variable parts in scripts.
1965 	 */
1966 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1967 
1968 	/*
1969 	 *  Setup bus addresses used from the C code..
1970 	 */
1971 	sym_fw_setup_bus_addresses(np, fw);
1972 }
1973 
1974 /*
1975  *  Allocate firmware descriptors.
1976  */
1977 #ifdef	SYM_CONF_GENERIC_SUPPORT
1978 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1979 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1980 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1981 
1982 /*
1983  *  Find the most appropriate firmware for a chip.
1984  */
1985 static const struct sym_fw *
1986 sym_find_firmware(const struct sym_pci_chip *chip)
1987 {
1988 	if (chip->features & FE_LDSTR)
1989 		return &sym_fw2;
1990 #ifdef	SYM_CONF_GENERIC_SUPPORT
1991 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1992 		return &sym_fw1;
1993 #endif
1994 	else
1995 		return NULL;
1996 }
1997 
1998 /*
1999  *  Bind a script to physical addresses.
2000  */
2001 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2002 {
2003 	u32 opcode, new, old, tmp1, tmp2;
2004 	u32 *end, *cur;
2005 	int relocs;
2006 
2007 	cur = start;
2008 	end = start + len/4;
2009 
2010 	while (cur < end) {
2011 
2012 		opcode = *cur;
2013 
2014 		/*
2015 		 *  If we forget to change the length
2016 		 *  in scripts, a field will be
2017 		 *  padded with 0. This is an illegal
2018 		 *  command.
2019 		 */
2020 		if (opcode == 0) {
2021 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2022 				sym_name(np), (int) (cur-start));
2023 			MDELAY (10000);
2024 			++cur;
2025 			continue;
2026 		};
2027 
2028 		/*
2029 		 *  We use the bogus value 0xf00ff00f ;-)
2030 		 *  to reserve data area in SCRIPTS.
2031 		 */
2032 		if (opcode == SCR_DATA_ZERO) {
2033 			*cur++ = 0;
2034 			continue;
2035 		}
2036 
2037 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2038 			printf ("%d:  <%x>\n", (int) (cur-start),
2039 				(unsigned)opcode);
2040 
2041 		/*
2042 		 *  We don't have to decode ALL commands
2043 		 */
2044 		switch (opcode >> 28) {
2045 		case 0xf:
2046 			/*
2047 			 *  LOAD / STORE DSA relative, don't relocate.
2048 			 */
2049 			relocs = 0;
2050 			break;
2051 		case 0xe:
2052 			/*
2053 			 *  LOAD / STORE absolute.
2054 			 */
2055 			relocs = 1;
2056 			break;
2057 		case 0xc:
2058 			/*
2059 			 *  COPY has TWO arguments.
2060 			 */
2061 			relocs = 2;
2062 			tmp1 = cur[1];
2063 			tmp2 = cur[2];
2064 			if ((tmp1 ^ tmp2) & 3) {
2065 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2066 					sym_name(np), (int) (cur-start));
2067 				MDELAY (10000);
2068 			}
2069 			/*
2070 			 *  If PREFETCH feature not enabled, remove
2071 			 *  the NO FLUSH bit if present.
2072 			 */
2073 			if ((opcode & SCR_NO_FLUSH) &&
2074 			    !(np->features & FE_PFEN)) {
2075 				opcode = (opcode & ~SCR_NO_FLUSH);
2076 			}
2077 			break;
2078 		case 0x0:
2079 			/*
2080 			 *  MOVE/CHMOV (absolute address)
2081 			 */
2082 			if (!(np->features & FE_WIDE))
2083 				opcode = (opcode | OPC_MOVE);
2084 			relocs = 1;
2085 			break;
2086 		case 0x1:
2087 			/*
2088 			 *  MOVE/CHMOV (table indirect)
2089 			 */
2090 			if (!(np->features & FE_WIDE))
2091 				opcode = (opcode | OPC_MOVE);
2092 			relocs = 0;
2093 			break;
2094 		case 0x8:
2095 			/*
2096 			 *  JUMP / CALL
2097 			 *  dont't relocate if relative :-)
2098 			 */
2099 			if (opcode & 0x00800000)
2100 				relocs = 0;
2101 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2102 				relocs = 2;
2103 			else
2104 				relocs = 1;
2105 			break;
2106 		case 0x4:
2107 		case 0x5:
2108 		case 0x6:
2109 		case 0x7:
2110 			relocs = 1;
2111 			break;
2112 		default:
2113 			relocs = 0;
2114 			break;
2115 		};
2116 
2117 		/*
2118 		 *  Scriptify:) the opcode.
2119 		 */
2120 		*cur++ = cpu_to_scr(opcode);
2121 
2122 		/*
2123 		 *  If no relocation, assume 1 argument
2124 		 *  and just scriptize:) it.
2125 		 */
2126 		if (!relocs) {
2127 			*cur = cpu_to_scr(*cur);
2128 			++cur;
2129 			continue;
2130 		}
2131 
2132 		/*
2133 		 *  Otherwise performs all needed relocations.
2134 		 */
2135 		while (relocs--) {
2136 			old = *cur;
2137 
2138 			switch (old & RELOC_MASK) {
2139 			case RELOC_REGISTER:
2140 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2141 				break;
2142 			case RELOC_LABEL_A:
2143 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2144 				break;
2145 			case RELOC_LABEL_B:
2146 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2147 				break;
2148 			case RELOC_SOFTC:
2149 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2150 				break;
2151 			case 0:
2152 				/*
2153 				 *  Don't relocate a 0 address.
2154 				 *  They are mostly used for patched or
2155 				 *  script self-modified areas.
2156 				 */
2157 				if (old == 0) {
2158 					new = old;
2159 					break;
2160 				}
2161 				/* fall through */
2162 			default:
2163 				new = 0;
2164 				panic("sym_fw_bind_script: "
2165 				      "weird relocation %x\n", old);
2166 				break;
2167 			}
2168 
2169 			*cur++ = cpu_to_scr(new);
2170 		}
2171 	};
2172 }
2173 
2174 /*---------------------------------------------------------------------------*/
2175 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2176 /*---------------------------------------------------------------------------*/
2177 
2178 /*
2179  *  Function prototypes.
2180  */
2181 static void sym_save_initial_setting (hcb_p np);
2182 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2183 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2184 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2185 static void sym_chip_reset (hcb_p np);
2186 static void sym_soft_reset (hcb_p np);
2187 static void sym_start_reset (hcb_p np);
2188 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2189 static int  sym_wakeup_done (hcb_p np);
2190 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2191 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2192 static void sym_init (hcb_p np, int reason);
2193 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2194 		        u_char *fakp);
2195 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2196 			 u_char div, u_char fak);
2197 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2198 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2199 			 u_char per, u_char wide, u_char div, u_char fak);
2200 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2201 			 u_char per, u_char wide, u_char div, u_char fak);
2202 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2203 static void sym_intr (void *arg);
2204 static void sym_poll (struct cam_sim *sim);
2205 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2206 static void sym_int_sto (hcb_p np);
2207 static void sym_int_udc (hcb_p np);
2208 static void sym_int_sbmc (hcb_p np);
2209 static void sym_int_par (hcb_p np, u_short sist);
2210 static void sym_int_ma (hcb_p np);
2211 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2212 				    int task);
2213 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2214 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2215 static void sym_sir_task_recovery (hcb_p np, int num);
2216 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2217 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2218 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2219 static int  sym_show_msg (u_char * msg);
2220 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2221 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2222 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2223 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2224 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2225 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2226 static void sym_int_sir (hcb_p np);
2227 static void sym_free_ccb (hcb_p np, ccb_p cp);
2228 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2229 static ccb_p sym_alloc_ccb (hcb_p np);
2230 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2231 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2232 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2233 static int  sym_snooptest (hcb_p np);
2234 static void sym_selectclock(hcb_p np, u_char scntl3);
2235 static void sym_getclock (hcb_p np, int mult);
2236 static int  sym_getpciclock (hcb_p np);
2237 static void sym_complete_ok (hcb_p np, ccb_p cp);
2238 static void sym_complete_error (hcb_p np, ccb_p cp);
2239 static void sym_callout (void *arg);
2240 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2241 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2242 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2243 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2244 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2245 				      ccb_p cp);
2246 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2247 					bus_dma_segment_t *psegs, int nsegs);
2248 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2249 				    bus_dma_segment_t *psegs, int nsegs);
2250 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2251 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2252 			      struct ccb_trans_settings *cts);
2253 static void sym_update_dflags(hcb_p np, u_char *flags,
2254 			      struct ccb_trans_settings *cts);
2255 
2256 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2257 static int  sym_pci_probe (device_t dev);
2258 static int  sym_pci_attach (device_t dev);
2259 
2260 static void sym_pci_free (hcb_p np);
2261 static int  sym_cam_attach (hcb_p np);
2262 static void sym_cam_free (hcb_p np);
2263 
2264 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2265 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2266 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2267 
2268 /*
2269  *  Print something which allows to retrieve the controller type,
2270  *  unit, target, lun concerned by a kernel message.
2271  */
2272 static void PRINT_TARGET (hcb_p np, int target)
2273 {
2274 	printf ("%s:%d:", sym_name(np), target);
2275 }
2276 
2277 static void PRINT_LUN(hcb_p np, int target, int lun)
2278 {
2279 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2280 }
2281 
2282 static void PRINT_ADDR (ccb_p cp)
2283 {
2284 	if (cp && cp->cam_ccb)
2285 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2286 }
2287 
2288 /*
2289  *  Take into account this ccb in the freeze count.
2290  */
2291 static void sym_freeze_cam_ccb(union ccb *ccb)
2292 {
2293 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2294 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2295 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2296 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2297 		}
2298 	}
2299 }
2300 
2301 /*
2302  *  Set the status field of a CAM CCB.
2303  */
2304 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2305 {
2306 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2307 	ccb->ccb_h.status |= status;
2308 }
2309 
2310 /*
2311  *  Get the status field of a CAM CCB.
2312  */
2313 static __inline int sym_get_cam_status(union ccb *ccb)
2314 {
2315 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2316 }
2317 
2318 /*
2319  *  Enqueue a CAM CCB.
2320  */
2321 static void sym_enqueue_cam_ccb(ccb_p cp)
2322 {
2323 	hcb_p np;
2324 	union ccb *ccb;
2325 
2326 	ccb = cp->cam_ccb;
2327 	np = (hcb_p) cp->arg;
2328 
2329 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2330 	ccb->ccb_h.status = CAM_REQ_INPROG;
2331 
2332 	callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout,
2333 			(caddr_t) ccb);
2334 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2335 	ccb->ccb_h.sym_hcb_ptr = np;
2336 
2337 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2338 }
2339 
2340 /*
2341  *  Complete a pending CAM CCB.
2342  */
2343 
2344 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2345 {
2346 
2347 	SYM_LOCK_ASSERT(MA_OWNED);
2348 
2349 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2350 		callout_stop(&cp->ch);
2351 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2352 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2353 		ccb->ccb_h.sym_hcb_ptr = NULL;
2354 	}
2355 	xpt_done(ccb);
2356 }
2357 
2358 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2359 {
2360 
2361 	SYM_LOCK_ASSERT(MA_OWNED);
2362 
2363 	sym_set_cam_status(ccb, cam_status);
2364 	xpt_done(ccb);
2365 }
2366 
2367 /*
2368  *  SYMBIOS chip clock divisor table.
2369  *
2370  *  Divisors are multiplied by 10,000,000 in order to make
2371  *  calculations more simple.
2372  */
2373 #define _5M 5000000
2374 static const u32 div_10M[] =
2375 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2376 
2377 /*
2378  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2379  *  128 transfers. All chips support at least 16 transfers
2380  *  bursts. The 825A, 875 and 895 chips support bursts of up
2381  *  to 128 transfers and the 895A and 896 support bursts of up
2382  *  to 64 transfers. All other chips support up to 16
2383  *  transfers bursts.
2384  *
2385  *  For PCI 32 bit data transfers each transfer is a DWORD.
2386  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2387  *
2388  *  We use log base 2 (burst length) as internal code, with
2389  *  value 0 meaning "burst disabled".
2390  */
2391 
2392 /*
2393  *  Burst length from burst code.
2394  */
2395 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2396 
2397 /*
2398  *  Burst code from io register bits.
2399  */
2400 #define burst_code(dmode, ctest4, ctest5) \
2401 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2402 
2403 /*
2404  *  Set initial io register bits from burst code.
2405  */
2406 static __inline void sym_init_burst(hcb_p np, u_char bc)
2407 {
2408 	np->rv_ctest4	&= ~0x80;
2409 	np->rv_dmode	&= ~(0x3 << 6);
2410 	np->rv_ctest5	&= ~0x4;
2411 
2412 	if (!bc) {
2413 		np->rv_ctest4	|= 0x80;
2414 	}
2415 	else {
2416 		--bc;
2417 		np->rv_dmode	|= ((bc & 0x3) << 6);
2418 		np->rv_ctest5	|= (bc & 0x4);
2419 	}
2420 }
2421 
2422 /*
2423  * Print out the list of targets that have some flag disabled by user.
2424  */
2425 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2426 {
2427 	int cnt;
2428 	int i;
2429 
2430 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2431 		if (i == np->myaddr)
2432 			continue;
2433 		if (np->target[i].usrflags & mask) {
2434 			if (!cnt++)
2435 				printf("%s: %s disabled for targets",
2436 					sym_name(np), msg);
2437 			printf(" %d", i);
2438 		}
2439 	}
2440 	if (cnt)
2441 		printf(".\n");
2442 }
2443 
2444 /*
2445  *  Save initial settings of some IO registers.
2446  *  Assumed to have been set by BIOS.
2447  *  We cannot reset the chip prior to reading the
2448  *  IO registers, since informations will be lost.
2449  *  Since the SCRIPTS processor may be running, this
2450  *  is not safe on paper, but it seems to work quite
2451  *  well. :)
2452  */
2453 static void sym_save_initial_setting (hcb_p np)
2454 {
2455 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2456 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2457 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2458 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2459 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2460 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2461 	np->sv_gpcntl	= INB(nc_gpcntl);
2462 	np->sv_stest1	= INB(nc_stest1);
2463 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2464 	np->sv_stest4	= INB(nc_stest4);
2465 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2466 		np->sv_scntl4	= INB(nc_scntl4);
2467 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2468 	}
2469 	else
2470 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2471 }
2472 
2473 /*
2474  *  Prepare io register values used by sym_init() according
2475  *  to selected and supported features.
2476  */
2477 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2478 {
2479 	u_char	burst_max;
2480 	u32	period;
2481 	int i;
2482 
2483 	/*
2484 	 *  Wide ?
2485 	 */
2486 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2487 
2488 	/*
2489 	 *  Get the frequency of the chip's clock.
2490 	 */
2491 	if	(np->features & FE_QUAD)
2492 		np->multiplier	= 4;
2493 	else if	(np->features & FE_DBLR)
2494 		np->multiplier	= 2;
2495 	else
2496 		np->multiplier	= 1;
2497 
2498 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2499 	np->clock_khz	*= np->multiplier;
2500 
2501 	if (np->clock_khz != 40000)
2502 		sym_getclock(np, np->multiplier);
2503 
2504 	/*
2505 	 * Divisor to be used for async (timer pre-scaler).
2506 	 */
2507 	i = np->clock_divn - 1;
2508 	while (--i >= 0) {
2509 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2510 			++i;
2511 			break;
2512 		}
2513 	}
2514 	np->rv_scntl3 = i+1;
2515 
2516 	/*
2517 	 * The C1010 uses hardwired divisors for async.
2518 	 * So, we just throw away, the async. divisor.:-)
2519 	 */
2520 	if (np->features & FE_C10)
2521 		np->rv_scntl3 = 0;
2522 
2523 	/*
2524 	 * Minimum synchronous period factor supported by the chip.
2525 	 * Btw, 'period' is in tenths of nanoseconds.
2526 	 */
2527 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2528 	if	(period <= 250)		np->minsync = 10;
2529 	else if	(period <= 303)		np->minsync = 11;
2530 	else if	(period <= 500)		np->minsync = 12;
2531 	else				np->minsync = (period + 40 - 1) / 40;
2532 
2533 	/*
2534 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2535 	 */
2536 	if	(np->minsync < 25 &&
2537 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2538 		np->minsync = 25;
2539 	else if	(np->minsync < 12 &&
2540 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2541 		np->minsync = 12;
2542 
2543 	/*
2544 	 * Maximum synchronous period factor supported by the chip.
2545 	 */
2546 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2547 	np->maxsync = period > 2540 ? 254 : period / 10;
2548 
2549 	/*
2550 	 * If chip is a C1010, guess the sync limits in DT mode.
2551 	 */
2552 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2553 		if (np->clock_khz == 160000) {
2554 			np->minsync_dt = 9;
2555 			np->maxsync_dt = 50;
2556 			np->maxoffs_dt = 62;
2557 		}
2558 	}
2559 
2560 	/*
2561 	 *  64 bit addressing  (895A/896/1010) ?
2562 	 */
2563 	if (np->features & FE_DAC)
2564 #ifdef __LP64__
2565 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2566 #else
2567 		np->rv_ccntl1	|= (DDAC);
2568 #endif
2569 
2570 	/*
2571 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2572   	 */
2573 	if (np->features & FE_NOPM)
2574 		np->rv_ccntl0	|= (ENPMJ);
2575 
2576  	/*
2577 	 *  C1010 Errata.
2578 	 *  In dual channel mode, contention occurs if internal cycles
2579 	 *  are used. Disable internal cycles.
2580 	 */
2581 	if (np->device_id == PCI_ID_LSI53C1010 &&
2582 	    np->revision_id < 0x2)
2583 		np->rv_ccntl0	|=  DILS;
2584 
2585 	/*
2586 	 *  Select burst length (dwords)
2587 	 */
2588 	burst_max	= SYM_SETUP_BURST_ORDER;
2589 	if (burst_max == 255)
2590 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2591 				       np->sv_ctest5);
2592 	if (burst_max > 7)
2593 		burst_max = 7;
2594 	if (burst_max > np->maxburst)
2595 		burst_max = np->maxburst;
2596 
2597 	/*
2598 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2599 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2600 	 *  based transactions on LOAD/STORE instructions. So we have
2601 	 *  to prevent these chips from using such PCI transactions in
2602 	 *  this driver. The generic ncr driver that does not use
2603 	 *  LOAD/STORE instructions does not need this work-around.
2604 	 */
2605 	if ((np->device_id == PCI_ID_SYM53C810 &&
2606 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2607 	    (np->device_id == PCI_ID_SYM53C860 &&
2608 	     np->revision_id <= 0x1))
2609 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2610 
2611 	/*
2612 	 *  Select all supported special features.
2613 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2614 	 *  does not help, but burst op fetch (BOF) does.
2615 	 *  Disabling PFEN makes sure BOF will be used.
2616 	 */
2617 	if (np->features & FE_ERL)
2618 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2619 	if (np->features & FE_BOF)
2620 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2621 	if (np->features & FE_ERMP)
2622 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2623 #if 1
2624 	if ((np->features & FE_PFEN) && !np->ram_ba)
2625 #else
2626 	if (np->features & FE_PFEN)
2627 #endif
2628 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2629 	if (np->features & FE_CLSE)
2630 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2631 	if (np->features & FE_WRIE)
2632 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2633 	if (np->features & FE_DFS)
2634 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2635 
2636 	/*
2637 	 *  Select some other
2638 	 */
2639 	if (SYM_SETUP_PCI_PARITY)
2640 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2641 	if (SYM_SETUP_SCSI_PARITY)
2642 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2643 
2644 	/*
2645 	 *  Get parity checking, host ID and verbose mode from NVRAM
2646 	 */
2647 	np->myaddr = 255;
2648 	sym_nvram_setup_host (np, nvram);
2649 #ifdef __sparc64__
2650 	np->myaddr = OF_getscsinitid(np->device);
2651 #endif
2652 
2653 	/*
2654 	 *  Get SCSI addr of host adapter (set by bios?).
2655 	 */
2656 	if (np->myaddr == 255) {
2657 		np->myaddr = INB(nc_scid) & 0x07;
2658 		if (!np->myaddr)
2659 			np->myaddr = SYM_SETUP_HOST_ID;
2660 	}
2661 
2662 	/*
2663 	 *  Prepare initial io register bits for burst length
2664 	 */
2665 	sym_init_burst(np, burst_max);
2666 
2667 	/*
2668 	 *  Set SCSI BUS mode.
2669 	 *  - LVD capable chips (895/895A/896/1010) report the
2670 	 *    current BUS mode through the STEST4 IO register.
2671 	 *  - For previous generation chips (825/825A/875),
2672 	 *    user has to tell us how to check against HVD,
2673 	 *    since a 100% safe algorithm is not possible.
2674 	 */
2675 	np->scsi_mode = SMODE_SE;
2676 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2677 		np->scsi_mode = (np->sv_stest4 & SMODE);
2678 	else if	(np->features & FE_DIFF) {
2679 		if (SYM_SETUP_SCSI_DIFF == 1) {
2680 			if (np->sv_scntl3) {
2681 				if (np->sv_stest2 & 0x20)
2682 					np->scsi_mode = SMODE_HVD;
2683 			}
2684 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2685 				if (!(INB(nc_gpreg) & 0x08))
2686 					np->scsi_mode = SMODE_HVD;
2687 			}
2688 		}
2689 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2690 			np->scsi_mode = SMODE_HVD;
2691 	}
2692 	if (np->scsi_mode == SMODE_HVD)
2693 		np->rv_stest2 |= 0x20;
2694 
2695 	/*
2696 	 *  Set LED support from SCRIPTS.
2697 	 *  Ignore this feature for boards known to use a
2698 	 *  specific GPIO wiring and for the 895A, 896
2699 	 *  and 1010 that drive the LED directly.
2700 	 */
2701 	if ((SYM_SETUP_SCSI_LED ||
2702 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2703 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2704 	       np->device_id == PCI_ID_SYM53C895))) &&
2705 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2706 		np->features |= FE_LED0;
2707 
2708 	/*
2709 	 *  Set irq mode.
2710 	 */
2711 	switch(SYM_SETUP_IRQ_MODE & 3) {
2712 	case 2:
2713 		np->rv_dcntl	|= IRQM;
2714 		break;
2715 	case 1:
2716 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2717 		break;
2718 	default:
2719 		break;
2720 	}
2721 
2722 	/*
2723 	 *  Configure targets according to driver setup.
2724 	 *  If NVRAM present get targets setup from NVRAM.
2725 	 */
2726 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2727 		tcb_p tp = &np->target[i];
2728 
2729 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2730 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2731 		tp->tinfo.user.period = np->minsync;
2732 		if (np->features & FE_ULTRA3)
2733 			tp->tinfo.user.period = np->minsync_dt;
2734 		tp->tinfo.user.offset = np->maxoffs;
2735 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2736 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2737 		tp->usrtags = SYM_SETUP_MAX_TAG;
2738 
2739 		sym_nvram_setup_target (np, i, nvram);
2740 
2741 		/*
2742 		 *  For now, guess PPR/DT support from the period
2743 		 *  and BUS width.
2744 		 */
2745 		if (np->features & FE_ULTRA3) {
2746 			if (tp->tinfo.user.period <= 9	&&
2747 			    tp->tinfo.user.width == BUS_16_BIT) {
2748 				tp->tinfo.user.options |= PPR_OPT_DT;
2749 				tp->tinfo.user.offset   = np->maxoffs_dt;
2750 				tp->tinfo.user.spi_version = 3;
2751 			}
2752 		}
2753 
2754 		if (!tp->usrtags)
2755 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2756 	}
2757 
2758 	/*
2759 	 *  Let user know about the settings.
2760 	 */
2761 	i = nvram->type;
2762 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2763 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2764 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2765 		np->myaddr,
2766 		(np->features & FE_ULTRA3) ? 80 :
2767 		(np->features & FE_ULTRA2) ? 40 :
2768 		(np->features & FE_ULTRA)  ? 20 : 10,
2769 		sym_scsi_bus_mode(np->scsi_mode),
2770 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2771 	/*
2772 	 *  Tell him more on demand.
2773 	 */
2774 	if (sym_verbose) {
2775 		printf("%s: %s IRQ line driver%s\n",
2776 			sym_name(np),
2777 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2778 			np->ram_ba ? ", using on-chip SRAM" : "");
2779 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2780 		if (np->features & FE_NOPM)
2781 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2782 			       sym_name(np));
2783 	}
2784 	/*
2785 	 *  And still more.
2786 	 */
2787 	if (sym_verbose > 1) {
2788 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2789 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2790 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2791 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2792 
2793 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2794 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2795 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2796 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2797 	}
2798 	/*
2799 	 *  Let user be aware of targets that have some disable flags set.
2800 	 */
2801 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2802 	if (sym_verbose)
2803 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2804 				       "SCAN FOR LUNS");
2805 
2806 	return 0;
2807 }
2808 
2809 /*
2810  *  Prepare the next negotiation message if needed.
2811  *
2812  *  Fill in the part of message buffer that contains the
2813  *  negotiation and the nego_status field of the CCB.
2814  *  Returns the size of the message in bytes.
2815  */
2816 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2817 {
2818 	tcb_p tp = &np->target[cp->target];
2819 	int msglen = 0;
2820 
2821 	/*
2822 	 *  Early C1010 chips need a work-around for DT
2823 	 *  data transfer to work.
2824 	 */
2825 	if (!(np->features & FE_U3EN))
2826 		tp->tinfo.goal.options = 0;
2827 	/*
2828 	 *  negotiate using PPR ?
2829 	 */
2830 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2831 		nego = NS_PPR;
2832 	/*
2833 	 *  negotiate wide transfers ?
2834 	 */
2835 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2836 		nego = NS_WIDE;
2837 	/*
2838 	 *  negotiate synchronous transfers?
2839 	 */
2840 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2841 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2842 		nego = NS_SYNC;
2843 
2844 	switch (nego) {
2845 	case NS_SYNC:
2846 		msgptr[msglen++] = M_EXTENDED;
2847 		msgptr[msglen++] = 3;
2848 		msgptr[msglen++] = M_X_SYNC_REQ;
2849 		msgptr[msglen++] = tp->tinfo.goal.period;
2850 		msgptr[msglen++] = tp->tinfo.goal.offset;
2851 		break;
2852 	case NS_WIDE:
2853 		msgptr[msglen++] = M_EXTENDED;
2854 		msgptr[msglen++] = 2;
2855 		msgptr[msglen++] = M_X_WIDE_REQ;
2856 		msgptr[msglen++] = tp->tinfo.goal.width;
2857 		break;
2858 	case NS_PPR:
2859 		msgptr[msglen++] = M_EXTENDED;
2860 		msgptr[msglen++] = 6;
2861 		msgptr[msglen++] = M_X_PPR_REQ;
2862 		msgptr[msglen++] = tp->tinfo.goal.period;
2863 		msgptr[msglen++] = 0;
2864 		msgptr[msglen++] = tp->tinfo.goal.offset;
2865 		msgptr[msglen++] = tp->tinfo.goal.width;
2866 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2867 		break;
2868 	};
2869 
2870 	cp->nego_status = nego;
2871 
2872 	if (nego) {
2873 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2874 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2875 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2876 					  nego == NS_WIDE ? "wide msgout" :
2877 					  "ppr msgout", msgptr);
2878 		};
2879 	};
2880 
2881 	return msglen;
2882 }
2883 
2884 /*
2885  *  Insert a job into the start queue.
2886  */
2887 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2888 {
2889 	u_short	qidx;
2890 
2891 #ifdef SYM_CONF_IARB_SUPPORT
2892 	/*
2893 	 *  If the previously queued CCB is not yet done,
2894 	 *  set the IARB hint. The SCRIPTS will go with IARB
2895 	 *  for this job when starting the previous one.
2896 	 *  We leave devices a chance to win arbitration by
2897 	 *  not using more than 'iarb_max' consecutive
2898 	 *  immediate arbitrations.
2899 	 */
2900 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2901 		np->last_cp->host_flags |= HF_HINT_IARB;
2902 		++np->iarb_count;
2903 	}
2904 	else
2905 		np->iarb_count = 0;
2906 	np->last_cp = cp;
2907 #endif
2908 
2909 	/*
2910 	 *  Insert first the idle task and then our job.
2911 	 *  The MB should ensure proper ordering.
2912 	 */
2913 	qidx = np->squeueput + 2;
2914 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2915 
2916 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2917 	MEMORY_BARRIER();
2918 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2919 
2920 	np->squeueput = qidx;
2921 
2922 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2923 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2924 
2925 	/*
2926 	 *  Script processor may be waiting for reselect.
2927 	 *  Wake it up.
2928 	 */
2929 	MEMORY_BARRIER();
2930 	OUTB (nc_istat, SIGP|np->istat_sem);
2931 }
2932 
2933 /*
2934  *  Soft reset the chip.
2935  *
2936  *  Raising SRST when the chip is running may cause
2937  *  problems on dual function chips (see below).
2938  *  On the other hand, LVD devices need some delay
2939  *  to settle and report actual BUS mode in STEST4.
2940  */
2941 static void sym_chip_reset (hcb_p np)
2942 {
2943 	OUTB (nc_istat, SRST);
2944 	UDELAY (10);
2945 	OUTB (nc_istat, 0);
2946 	UDELAY(2000);	/* For BUS MODE to settle */
2947 }
2948 
2949 /*
2950  *  Soft reset the chip.
2951  *
2952  *  Some 896 and 876 chip revisions may hang-up if we set
2953  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2954  *  are running.
2955  *  So, we need to abort the current operation prior to
2956  *  soft resetting the chip.
2957  */
2958 static void sym_soft_reset (hcb_p np)
2959 {
2960 	u_char istat;
2961 	int i;
2962 
2963 	OUTB (nc_istat, CABRT);
2964 	for (i = 1000000 ; i ; --i) {
2965 		istat = INB (nc_istat);
2966 		if (istat & SIP) {
2967 			INW (nc_sist);
2968 			continue;
2969 		}
2970 		if (istat & DIP) {
2971 			OUTB (nc_istat, 0);
2972 			INB (nc_dstat);
2973 			break;
2974 		}
2975 	}
2976 	if (!i)
2977 		printf("%s: unable to abort current chip operation.\n",
2978 			sym_name(np));
2979 	sym_chip_reset (np);
2980 }
2981 
2982 /*
2983  *  Start reset process.
2984  *
2985  *  The interrupt handler will reinitialize the chip.
2986  */
2987 static void sym_start_reset(hcb_p np)
2988 {
2989 	(void) sym_reset_scsi_bus(np, 1);
2990 }
2991 
2992 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2993 {
2994 	u32 term;
2995 	int retv = 0;
2996 
2997 	sym_soft_reset(np);	/* Soft reset the chip */
2998 	if (enab_int)
2999 		OUTW (nc_sien, RST);
3000 	/*
3001 	 *  Enable Tolerant, reset IRQD if present and
3002 	 *  properly set IRQ mode, prior to resetting the bus.
3003 	 */
3004 	OUTB (nc_stest3, TE);
3005 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3006 	OUTB (nc_scntl1, CRST);
3007 	UDELAY (200);
3008 
3009 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3010 		goto out;
3011 	/*
3012 	 *  Check for no terminators or SCSI bus shorts to ground.
3013 	 *  Read SCSI data bus, data parity bits and control signals.
3014 	 *  We are expecting RESET to be TRUE and other signals to be
3015 	 *  FALSE.
3016 	 */
3017 	term =	INB(nc_sstat0);
3018 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3019 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3020 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3021 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3022 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3023 
3024 	if (!(np->features & FE_WIDE))
3025 		term &= 0x3ffff;
3026 
3027 	if (term != (2<<7)) {
3028 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3029 			sym_name(np));
3030 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3031 			"0x%lx, expecting 0x%lx\n",
3032 			sym_name(np),
3033 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3034 			(u_long)term, (u_long)(2<<7));
3035 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3036 			retv = 1;
3037 	}
3038 out:
3039 	OUTB (nc_scntl1, 0);
3040 	/* MDELAY(100); */
3041 	return retv;
3042 }
3043 
3044 /*
3045  *  The chip may have completed jobs. Look at the DONE QUEUE.
3046  *
3047  *  On architectures that may reorder LOAD/STORE operations,
3048  *  a memory barrier may be needed after the reading of the
3049  *  so-called `flag' and prior to dealing with the data.
3050  */
3051 static int sym_wakeup_done (hcb_p np)
3052 {
3053 	ccb_p cp;
3054 	int i, n;
3055 	u32 dsa;
3056 
3057 	SYM_LOCK_ASSERT(MA_OWNED);
3058 
3059 	n = 0;
3060 	i = np->dqueueget;
3061 	while (1) {
3062 		dsa = scr_to_cpu(np->dqueue[i]);
3063 		if (!dsa)
3064 			break;
3065 		np->dqueue[i] = 0;
3066 		if ((i = i+2) >= MAX_QUEUE*2)
3067 			i = 0;
3068 
3069 		cp = sym_ccb_from_dsa(np, dsa);
3070 		if (cp) {
3071 			MEMORY_BARRIER();
3072 			sym_complete_ok (np, cp);
3073 			++n;
3074 		}
3075 		else
3076 			printf ("%s: bad DSA (%x) in done queue.\n",
3077 				sym_name(np), (u_int) dsa);
3078 	}
3079 	np->dqueueget = i;
3080 
3081 	return n;
3082 }
3083 
3084 /*
3085  *  Complete all active CCBs with error.
3086  *  Used on CHIP/SCSI RESET.
3087  */
3088 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3089 {
3090 	/*
3091 	 *  Move all active CCBs to the COMP queue
3092 	 *  and flush this queue.
3093 	 */
3094 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3095 	sym_que_init(&np->busy_ccbq);
3096 	sym_flush_comp_queue(np, cam_status);
3097 }
3098 
3099 /*
3100  *  Start chip.
3101  *
3102  *  'reason' means:
3103  *     0: initialisation.
3104  *     1: SCSI BUS RESET delivered or received.
3105  *     2: SCSI BUS MODE changed.
3106  */
3107 static void sym_init (hcb_p np, int reason)
3108 {
3109  	int	i;
3110 	u32	phys;
3111 
3112 	SYM_LOCK_ASSERT(MA_OWNED);
3113 
3114  	/*
3115 	 *  Reset chip if asked, otherwise just clear fifos.
3116  	 */
3117 	if (reason == 1)
3118 		sym_soft_reset(np);
3119 	else {
3120 		OUTB (nc_stest3, TE|CSF);
3121 		OUTONB (nc_ctest3, CLF);
3122 	}
3123 
3124 	/*
3125 	 *  Clear Start Queue
3126 	 */
3127 	phys = np->squeue_ba;
3128 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3129 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3130 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3131 	}
3132 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3133 
3134 	/*
3135 	 *  Start at first entry.
3136 	 */
3137 	np->squeueput = 0;
3138 
3139 	/*
3140 	 *  Clear Done Queue
3141 	 */
3142 	phys = np->dqueue_ba;
3143 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3144 		np->dqueue[i]   = 0;
3145 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3146 	}
3147 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3148 
3149 	/*
3150 	 *  Start at first entry.
3151 	 */
3152 	np->dqueueget = 0;
3153 
3154 	/*
3155 	 *  Install patches in scripts.
3156 	 *  This also let point to first position the start
3157 	 *  and done queue pointers used from SCRIPTS.
3158 	 */
3159 	np->fw_patch(np);
3160 
3161 	/*
3162 	 *  Wakeup all pending jobs.
3163 	 */
3164 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3165 
3166 	/*
3167 	 *  Init chip.
3168 	 */
3169 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3170 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3171 
3172 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3173 					/*  full arb., ena parity, par->ATN  */
3174 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3175 
3176 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3177 
3178 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3179 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3180 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3181 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3182 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3183 
3184 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3185 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3186 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3187 
3188 	/* Extended Sreq/Sack filtering not supported on the C10 */
3189 	if (np->features & FE_C10)
3190 		OUTB (nc_stest2, np->rv_stest2);
3191 	else
3192 		OUTB (nc_stest2, EXT|np->rv_stest2);
3193 
3194 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3195 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3196 
3197 	/*
3198 	 *  For now, disable AIP generation on C1010-66.
3199 	 */
3200 	if (np->device_id == PCI_ID_LSI53C1010_2)
3201 		OUTB (nc_aipcntl1, DISAIP);
3202 
3203 	/*
3204 	 *  C10101 Errata.
3205 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3206 	 *  STEST1 register to disable SGE. We probably should do
3207 	 *  that from SCRIPTS for each selection/reselection, but
3208 	 *  I just don't want. :)
3209 	 */
3210 	if (np->device_id == PCI_ID_LSI53C1010 &&
3211 	    /* np->revision_id < 0xff */ 1)
3212 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3213 
3214 	/*
3215 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3216 	 *  Disable overlapped arbitration for some dual function devices,
3217 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3218 	 */
3219 	if (np->device_id == PCI_ID_SYM53C875)
3220 		OUTB (nc_ctest0, (1<<5));
3221 	else if (np->device_id == PCI_ID_SYM53C896)
3222 		np->rv_ccntl0 |= DPR;
3223 
3224 	/*
3225 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3226 	 *  and/or hardware phase mismatch, since only such chips
3227 	 *  seem to support those IO registers.
3228 	 */
3229 	if (np->features & (FE_DAC|FE_NOPM)) {
3230 		OUTB (nc_ccntl0, np->rv_ccntl0);
3231 		OUTB (nc_ccntl1, np->rv_ccntl1);
3232 	}
3233 
3234 	/*
3235 	 *  If phase mismatch handled by scripts (895A/896/1010),
3236 	 *  set PM jump addresses.
3237 	 */
3238 	if (np->features & FE_NOPM) {
3239 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3240 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3241 	}
3242 
3243 	/*
3244 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3245 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3246 	 */
3247 	if (np->features & FE_LED0)
3248 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3249 	else if (np->features & FE_LEDC)
3250 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3251 
3252 	/*
3253 	 *      enable ints
3254 	 */
3255 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3256 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3257 
3258 	/*
3259 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3260 	 *  Try to eat the spurious SBMC interrupt that may occur when
3261 	 *  we reset the chip but not the SCSI BUS (at initialization).
3262 	 */
3263 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3264 		OUTONW (nc_sien, SBMC);
3265 		if (reason == 0) {
3266 			MDELAY(100);
3267 			INW (nc_sist);
3268 		}
3269 		np->scsi_mode = INB (nc_stest4) & SMODE;
3270 	}
3271 
3272 	/*
3273 	 *  Fill in target structure.
3274 	 *  Reinitialize usrsync.
3275 	 *  Reinitialize usrwide.
3276 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3277 	 */
3278 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3279 		tcb_p tp = &np->target[i];
3280 
3281 		tp->to_reset  = 0;
3282 		tp->head.sval = 0;
3283 		tp->head.wval = np->rv_scntl3;
3284 		tp->head.uval = 0;
3285 
3286 		tp->tinfo.current.period = 0;
3287 		tp->tinfo.current.offset = 0;
3288 		tp->tinfo.current.width  = BUS_8_BIT;
3289 		tp->tinfo.current.options = 0;
3290 	}
3291 
3292 	/*
3293 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3294 	 *  and start script processor.
3295 	 */
3296 	if (np->ram_ba) {
3297 		if (sym_verbose > 1)
3298 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3299 				sym_name(np));
3300 		if (np->ram_ws == 8192) {
3301 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3302 			OUTL (nc_mmws, np->scr_ram_seg);
3303 			OUTL (nc_mmrs, np->scr_ram_seg);
3304 			OUTL (nc_sfs,  np->scr_ram_seg);
3305 			phys = SCRIPTB_BA (np, start64);
3306 		}
3307 		else
3308 			phys = SCRIPTA_BA (np, init);
3309 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3310 	}
3311 	else
3312 		phys = SCRIPTA_BA (np, init);
3313 
3314 	np->istat_sem = 0;
3315 
3316 	OUTL (nc_dsa, np->hcb_ba);
3317 	OUTL_DSP (phys);
3318 
3319 	/*
3320 	 *  Notify the XPT about the RESET condition.
3321 	 */
3322 	if (reason != 0)
3323 		xpt_async(AC_BUS_RESET, np->path, NULL);
3324 }
3325 
3326 /*
3327  *  Get clock factor and sync divisor for a given
3328  *  synchronous factor period.
3329  */
3330 static int
3331 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3332 {
3333 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3334 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3335 	u32	fak;			/* Sync factor in sxfer		*/
3336 	u32	per;			/* Period in tenths of ns	*/
3337 	u32	kpc;			/* (per * clk)			*/
3338 	int	ret;
3339 
3340 	/*
3341 	 *  Compute the synchronous period in tenths of nano-seconds
3342 	 */
3343 	if (dt && sfac <= 9)	per = 125;
3344 	else if	(sfac <= 10)	per = 250;
3345 	else if	(sfac == 11)	per = 303;
3346 	else if	(sfac == 12)	per = 500;
3347 	else			per = 40 * sfac;
3348 	ret = per;
3349 
3350 	kpc = per * clk;
3351 	if (dt)
3352 		kpc <<= 1;
3353 
3354 	/*
3355 	 *  For earliest C10 revision 0, we cannot use extra
3356 	 *  clocks for the setting of the SCSI clocking.
3357 	 *  Note that this limits the lowest sync data transfer
3358 	 *  to 5 Mega-transfers per second and may result in
3359 	 *  using higher clock divisors.
3360 	 */
3361 #if 1
3362 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3363 		/*
3364 		 *  Look for the lowest clock divisor that allows an
3365 		 *  output speed not faster than the period.
3366 		 */
3367 		while (div > 0) {
3368 			--div;
3369 			if (kpc > (div_10M[div] << 2)) {
3370 				++div;
3371 				break;
3372 			}
3373 		}
3374 		fak = 0;			/* No extra clocks */
3375 		if (div == np->clock_divn) {	/* Are we too fast ? */
3376 			ret = -1;
3377 		}
3378 		*divp = div;
3379 		*fakp = fak;
3380 		return ret;
3381 	}
3382 #endif
3383 
3384 	/*
3385 	 *  Look for the greatest clock divisor that allows an
3386 	 *  input speed faster than the period.
3387 	 */
3388 	while (div-- > 0)
3389 		if (kpc >= (div_10M[div] << 2)) break;
3390 
3391 	/*
3392 	 *  Calculate the lowest clock factor that allows an output
3393 	 *  speed not faster than the period, and the max output speed.
3394 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3395 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3396 	 */
3397 	if (dt) {
3398 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3399 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3400 	}
3401 	else {
3402 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3403 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3404 	}
3405 
3406 	/*
3407 	 *  Check against our hardware limits, or bugs :).
3408 	 */
3409 	if (fak > 2)	{fak = 2; ret = -1;}
3410 
3411 	/*
3412 	 *  Compute and return sync parameters.
3413 	 */
3414 	*divp = div;
3415 	*fakp = fak;
3416 
3417 	return ret;
3418 }
3419 
3420 /*
3421  *  Tell the SCSI layer about the new transfer parameters.
3422  */
3423 static void
3424 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3425 {
3426 	struct ccb_trans_settings cts;
3427 	struct cam_path *path;
3428 	int sts;
3429 	tcb_p tp = &np->target[target];
3430 
3431 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3432 	                      CAM_LUN_WILDCARD);
3433 	if (sts != CAM_REQ_CMP)
3434 		return;
3435 
3436 	bzero(&cts, sizeof(cts));
3437 
3438 #define	cts__scsi (cts.proto_specific.scsi)
3439 #define	cts__spi  (cts.xport_specific.spi)
3440 
3441 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3442 	cts.protocol  = PROTO_SCSI;
3443 	cts.transport = XPORT_SPI;
3444 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3445 	cts.transport_version = tp->tinfo.current.spi_version;
3446 
3447 	cts__spi.valid = spi_valid;
3448 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3449 		cts__spi.sync_period = tp->tinfo.current.period;
3450 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3451 		cts__spi.sync_offset = tp->tinfo.current.offset;
3452 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3453 		cts__spi.bus_width   = tp->tinfo.current.width;
3454 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3455 		cts__spi.ppr_options = tp->tinfo.current.options;
3456 #undef cts__spi
3457 #undef cts__scsi
3458 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3459 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3460 	xpt_free_path(path);
3461 }
3462 
3463 #define SYM_SPI_VALID_WDTR		\
3464 	CTS_SPI_VALID_BUS_WIDTH |	\
3465 	CTS_SPI_VALID_SYNC_RATE |	\
3466 	CTS_SPI_VALID_SYNC_OFFSET
3467 #define SYM_SPI_VALID_SDTR		\
3468 	CTS_SPI_VALID_SYNC_RATE |	\
3469 	CTS_SPI_VALID_SYNC_OFFSET
3470 #define SYM_SPI_VALID_PPR		\
3471 	CTS_SPI_VALID_PPR_OPTIONS |	\
3472 	CTS_SPI_VALID_BUS_WIDTH |	\
3473 	CTS_SPI_VALID_SYNC_RATE |	\
3474 	CTS_SPI_VALID_SYNC_OFFSET
3475 
3476 /*
3477  *  We received a WDTR.
3478  *  Let everything be aware of the changes.
3479  */
3480 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3481 {
3482 	tcb_p tp = &np->target[cp->target];
3483 
3484 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3485 
3486 	/*
3487 	 *  Tell the SCSI layer about the new transfer parameters.
3488 	 */
3489 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3490 	tp->tinfo.current.offset = 0;
3491 	tp->tinfo.current.period = 0;
3492 	tp->tinfo.current.options = 0;
3493 
3494 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3495 }
3496 
3497 /*
3498  *  We received a SDTR.
3499  *  Let everything be aware of the changes.
3500  */
3501 static void
3502 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3503 {
3504 	tcb_p tp = &np->target[cp->target];
3505 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3506 
3507 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3508 
3509 	/*
3510 	 *  Tell the SCSI layer about the new transfer parameters.
3511 	 */
3512 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3513 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3514 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3515 
3516 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3517 }
3518 
3519 /*
3520  *  We received a PPR.
3521  *  Let everything be aware of the changes.
3522  */
3523 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3524 			 u_char per, u_char wide, u_char div, u_char fak)
3525 {
3526 	tcb_p tp = &np->target[cp->target];
3527 
3528 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3529 
3530 	/*
3531 	 *  Tell the SCSI layer about the new transfer parameters.
3532 	 */
3533 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3534 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3535 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3536 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3537 
3538 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3539 }
3540 
3541 /*
3542  *  Switch trans mode for current job and it's target.
3543  */
3544 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3545 			 u_char per, u_char wide, u_char div, u_char fak)
3546 {
3547 	SYM_QUEHEAD *qp;
3548 	union	ccb *ccb;
3549 	tcb_p tp;
3550 	u_char target = INB (nc_sdid) & 0x0f;
3551 	u_char sval, wval, uval;
3552 
3553 	assert (cp);
3554 	if (!cp) return;
3555 	ccb = cp->cam_ccb;
3556 	assert (ccb);
3557 	if (!ccb) return;
3558 	assert (target == (cp->target & 0xf));
3559 	tp = &np->target[target];
3560 
3561 	sval = tp->head.sval;
3562 	wval = tp->head.wval;
3563 	uval = tp->head.uval;
3564 
3565 #if 0
3566 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3567 		sval, wval, uval, np->rv_scntl3);
3568 #endif
3569 	/*
3570 	 *  Set the offset.
3571 	 */
3572 	if (!(np->features & FE_C10))
3573 		sval = (sval & ~0x1f) | ofs;
3574 	else
3575 		sval = (sval & ~0x3f) | ofs;
3576 
3577 	/*
3578 	 *  Set the sync divisor and extra clock factor.
3579 	 */
3580 	if (ofs != 0) {
3581 		wval = (wval & ~0x70) | ((div+1) << 4);
3582 		if (!(np->features & FE_C10))
3583 			sval = (sval & ~0xe0) | (fak << 5);
3584 		else {
3585 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3586 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3587 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3588 		}
3589 	}
3590 
3591 	/*
3592 	 *  Set the bus width.
3593 	 */
3594 	wval = wval & ~EWS;
3595 	if (wide != 0)
3596 		wval |= EWS;
3597 
3598 	/*
3599 	 *  Set misc. ultra enable bits.
3600 	 */
3601 	if (np->features & FE_C10) {
3602 		uval = uval & ~(U3EN|AIPCKEN);
3603 		if (dt)	{
3604 			assert(np->features & FE_U3EN);
3605 			uval |= U3EN;
3606 		}
3607 	}
3608 	else {
3609 		wval = wval & ~ULTRA;
3610 		if (per <= 12)	wval |= ULTRA;
3611 	}
3612 
3613 	/*
3614 	 *   Stop there if sync parameters are unchanged.
3615 	 */
3616 	if (tp->head.sval == sval &&
3617 	    tp->head.wval == wval &&
3618 	    tp->head.uval == uval)
3619 		return;
3620 	tp->head.sval = sval;
3621 	tp->head.wval = wval;
3622 	tp->head.uval = uval;
3623 
3624 	/*
3625 	 *  Disable extended Sreq/Sack filtering if per < 50.
3626 	 *  Not supported on the C1010.
3627 	 */
3628 	if (per < 50 && !(np->features & FE_C10))
3629 		OUTOFFB (nc_stest2, EXT);
3630 
3631 	/*
3632 	 *  set actual value and sync_status
3633 	 */
3634 	OUTB (nc_sxfer,  tp->head.sval);
3635 	OUTB (nc_scntl3, tp->head.wval);
3636 
3637 	if (np->features & FE_C10) {
3638 		OUTB (nc_scntl4, tp->head.uval);
3639 	}
3640 
3641 	/*
3642 	 *  patch ALL busy ccbs of this target.
3643 	 */
3644 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3645 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3646 		if (cp->target != target)
3647 			continue;
3648 		cp->phys.select.sel_scntl3 = tp->head.wval;
3649 		cp->phys.select.sel_sxfer  = tp->head.sval;
3650 		if (np->features & FE_C10) {
3651 			cp->phys.select.sel_scntl4 = tp->head.uval;
3652 		}
3653 	}
3654 }
3655 
3656 /*
3657  *  log message for real hard errors
3658  *
3659  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3660  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3661  *
3662  *  exception register:
3663  *  	ds:	dstat
3664  *  	si:	sist
3665  *
3666  *  SCSI bus lines:
3667  *  	so:	control lines as driven by chip.
3668  *  	si:	control lines as seen by chip.
3669  *  	sd:	scsi data lines as seen by chip.
3670  *
3671  *  wide/fastmode:
3672  *  	sxfer:	(see the manual)
3673  *  	scntl3:	(see the manual)
3674  *
3675  *  current script command:
3676  *  	dsp:	script address (relative to start of script).
3677  *  	dbc:	first word of script command.
3678  *
3679  *  First 24 register of the chip:
3680  *  	r0..rf
3681  */
3682 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3683 {
3684 	u32	dsp;
3685 	int	script_ofs;
3686 	int	script_size;
3687 	char	*script_name;
3688 	u_char	*script_base;
3689 	int	i;
3690 
3691 	dsp	= INL (nc_dsp);
3692 
3693 	if	(dsp > np->scripta_ba &&
3694 		 dsp <= np->scripta_ba + np->scripta_sz) {
3695 		script_ofs	= dsp - np->scripta_ba;
3696 		script_size	= np->scripta_sz;
3697 		script_base	= (u_char *) np->scripta0;
3698 		script_name	= "scripta";
3699 	}
3700 	else if (np->scriptb_ba < dsp &&
3701 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3702 		script_ofs	= dsp - np->scriptb_ba;
3703 		script_size	= np->scriptb_sz;
3704 		script_base	= (u_char *) np->scriptb0;
3705 		script_name	= "scriptb";
3706 	} else {
3707 		script_ofs	= dsp;
3708 		script_size	= 0;
3709 		script_base	= 0;
3710 		script_name	= "mem";
3711 	}
3712 
3713 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3714 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3715 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3716 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3717 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3718 		(unsigned)INL (nc_dbc));
3719 
3720 	if (((script_ofs & 3) == 0) &&
3721 	    (unsigned)script_ofs < script_size) {
3722 		printf ("%s: script cmd = %08x\n", sym_name(np),
3723 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3724 	}
3725 
3726         printf ("%s: regdump:", sym_name(np));
3727         for (i=0; i<24;i++)
3728             printf (" %02x", (unsigned)INB_OFF(i));
3729         printf (".\n");
3730 
3731 	/*
3732 	 *  PCI BUS error, read the PCI ststus register.
3733 	 */
3734 	if (dstat & (MDPE|BF)) {
3735 		u_short pci_sts;
3736 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3737 		if (pci_sts & 0xf900) {
3738 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3739 			printf("%s: PCI STATUS = 0x%04x\n",
3740 				sym_name(np), pci_sts & 0xf900);
3741 		}
3742 	}
3743 }
3744 
3745 /*
3746  *  chip interrupt handler
3747  *
3748  *  In normal situations, interrupt conditions occur one at
3749  *  a time. But when something bad happens on the SCSI BUS,
3750  *  the chip may raise several interrupt flags before
3751  *  stopping and interrupting the CPU. The additionnal
3752  *  interrupt flags are stacked in some extra registers
3753  *  after the SIP and/or DIP flag has been raised in the
3754  *  ISTAT. After the CPU has read the interrupt condition
3755  *  flag from SIST or DSTAT, the chip unstacks the other
3756  *  interrupt flags and sets the corresponding bits in
3757  *  SIST or DSTAT. Since the chip starts stacking once the
3758  *  SIP or DIP flag is set, there is a small window of time
3759  *  where the stacking does not occur.
3760  *
3761  *  Typically, multiple interrupt conditions may happen in
3762  *  the following situations:
3763  *
3764  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3765  *    When a parity error is detected in input phase
3766  *    and the device switches to msg-in phase inside a
3767  *    block MOV.
3768  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3769  *    When a stupid device does not want to handle the
3770  *    recovery of an SCSI parity error.
3771  *  - Some combinations of STO, PAR, UDC, ...
3772  *    When using non compliant SCSI stuff, when user is
3773  *    doing non compliant hot tampering on the BUS, when
3774  *    something really bad happens to a device, etc ...
3775  *
3776  *  The heuristic suggested by SYMBIOS to handle
3777  *  multiple interrupts is to try unstacking all
3778  *  interrupts conditions and to handle them on some
3779  *  priority based on error severity.
3780  *  This will work when the unstacking has been
3781  *  successful, but we cannot be 100 % sure of that,
3782  *  since the CPU may have been faster to unstack than
3783  *  the chip is able to stack. Hmmm ... But it seems that
3784  *  such a situation is very unlikely to happen.
3785  *
3786  *  If this happen, for example STO caught by the CPU
3787  *  then UDC happenning before the CPU have restarted
3788  *  the SCRIPTS, the driver may wrongly complete the
3789  *  same command on UDC, since the SCRIPTS didn't restart
3790  *  and the DSA still points to the same command.
3791  *  We avoid this situation by setting the DSA to an
3792  *  invalid value when the CCB is completed and before
3793  *  restarting the SCRIPTS.
3794  *
3795  *  Another issue is that we need some section of our
3796  *  recovery procedures to be somehow uninterruptible but
3797  *  the SCRIPTS processor does not provides such a
3798  *  feature. For this reason, we handle recovery preferently
3799  *  from the C code and check against some SCRIPTS critical
3800  *  sections from the C code.
3801  *
3802  *  Hopefully, the interrupt handling of the driver is now
3803  *  able to resist to weird BUS error conditions, but donnot
3804  *  ask me for any guarantee that it will never fail. :-)
3805  *  Use at your own decision and risk.
3806  */
3807 static void sym_intr1 (hcb_p np)
3808 {
3809 	u_char	istat, istatc;
3810 	u_char	dstat;
3811 	u_short	sist;
3812 
3813 	SYM_LOCK_ASSERT(MA_OWNED);
3814 
3815 	/*
3816 	 *  interrupt on the fly ?
3817 	 *
3818 	 *  A `dummy read' is needed to ensure that the
3819 	 *  clear of the INTF flag reaches the device
3820 	 *  before the scanning of the DONE queue.
3821 	 */
3822 	istat = INB (nc_istat);
3823 	if (istat & INTF) {
3824 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3825 		istat = INB (nc_istat);		/* DUMMY READ */
3826 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3827 		(void)sym_wakeup_done (np);
3828 	};
3829 
3830 	if (!(istat & (SIP|DIP)))
3831 		return;
3832 
3833 #if 0	/* We should never get this one */
3834 	if (istat & CABRT)
3835 		OUTB (nc_istat, CABRT);
3836 #endif
3837 
3838 	/*
3839 	 *  PAR and MA interrupts may occur at the same time,
3840 	 *  and we need to know of both in order to handle
3841 	 *  this situation properly. We try to unstack SCSI
3842 	 *  interrupts for that reason. BTW, I dislike a LOT
3843 	 *  such a loop inside the interrupt routine.
3844 	 *  Even if DMA interrupt stacking is very unlikely to
3845 	 *  happen, we also try unstacking these ones, since
3846 	 *  this has no performance impact.
3847 	 */
3848 	sist	= 0;
3849 	dstat	= 0;
3850 	istatc	= istat;
3851 	do {
3852 		if (istatc & SIP)
3853 			sist  |= INW (nc_sist);
3854 		if (istatc & DIP)
3855 			dstat |= INB (nc_dstat);
3856 		istatc = INB (nc_istat);
3857 		istat |= istatc;
3858 	} while (istatc & (SIP|DIP));
3859 
3860 	if (DEBUG_FLAGS & DEBUG_TINY)
3861 		printf ("<%d|%x:%x|%x:%x>",
3862 			(int)INB(nc_scr0),
3863 			dstat,sist,
3864 			(unsigned)INL(nc_dsp),
3865 			(unsigned)INL(nc_dbc));
3866 	/*
3867 	 *  On paper, a memory barrier may be needed here.
3868 	 *  And since we are paranoid ... :)
3869 	 */
3870 	MEMORY_BARRIER();
3871 
3872 	/*
3873 	 *  First, interrupts we want to service cleanly.
3874 	 *
3875 	 *  Phase mismatch (MA) is the most frequent interrupt
3876 	 *  for chip earlier than the 896 and so we have to service
3877 	 *  it as quickly as possible.
3878 	 *  A SCSI parity error (PAR) may be combined with a phase
3879 	 *  mismatch condition (MA).
3880 	 *  Programmed interrupts (SIR) are used to call the C code
3881 	 *  from SCRIPTS.
3882 	 *  The single step interrupt (SSI) is not used in this
3883 	 *  driver.
3884 	 */
3885 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3886 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3887 		if	(sist & PAR)	sym_int_par (np, sist);
3888 		else if (sist & MA)	sym_int_ma (np);
3889 		else if (dstat & SIR)	sym_int_sir (np);
3890 		else if (dstat & SSI)	OUTONB_STD ();
3891 		else			goto unknown_int;
3892 		return;
3893 	};
3894 
3895 	/*
3896 	 *  Now, interrupts that donnot happen in normal
3897 	 *  situations and that we may need to recover from.
3898 	 *
3899 	 *  On SCSI RESET (RST), we reset everything.
3900 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3901 	 *  active CCBs with RESET status, prepare all devices
3902 	 *  for negotiating again and restart the SCRIPTS.
3903 	 *  On STO and UDC, we complete the CCB with the corres-
3904 	 *  ponding status and restart the SCRIPTS.
3905 	 */
3906 	if (sist & RST) {
3907 		xpt_print_path(np->path);
3908 		printf("SCSI BUS reset detected.\n");
3909 		sym_init (np, 1);
3910 		return;
3911 	};
3912 
3913 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3914 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3915 
3916 	if (!(sist  & (GEN|HTH|SGE)) &&
3917 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3918 		if	(sist & SBMC)	sym_int_sbmc (np);
3919 		else if (sist & STO)	sym_int_sto (np);
3920 		else if (sist & UDC)	sym_int_udc (np);
3921 		else			goto unknown_int;
3922 		return;
3923 	};
3924 
3925 	/*
3926 	 *  Now, interrupts we are not able to recover cleanly.
3927 	 *
3928 	 *  Log message for hard errors.
3929 	 *  Reset everything.
3930 	 */
3931 
3932 	sym_log_hard_error(np, sist, dstat);
3933 
3934 	if ((sist & (GEN|HTH|SGE)) ||
3935 		(dstat & (MDPE|BF|ABRT|IID))) {
3936 		sym_start_reset(np);
3937 		return;
3938 	};
3939 
3940 unknown_int:
3941 	/*
3942 	 *  We just miss the cause of the interrupt. :(
3943 	 *  Print a message. The timeout will do the real work.
3944 	 */
3945 	printf(	"%s: unknown interrupt(s) ignored, "
3946 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3947 		sym_name(np), istat, dstat, sist);
3948 }
3949 
3950 static void sym_intr(void *arg)
3951 {
3952 	hcb_p np = arg;
3953 
3954 	SYM_LOCK();
3955 
3956 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3957 	sym_intr1((hcb_p) arg);
3958 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3959 
3960 	SYM_UNLOCK();
3961 }
3962 
3963 static void sym_poll(struct cam_sim *sim)
3964 {
3965 	sym_intr1(cam_sim_softc(sim));
3966 }
3967 
3968 /*
3969  *  generic recovery from scsi interrupt
3970  *
3971  *  The doc says that when the chip gets an SCSI interrupt,
3972  *  it tries to stop in an orderly fashion, by completing
3973  *  an instruction fetch that had started or by flushing
3974  *  the DMA fifo for a write to memory that was executing.
3975  *  Such a fashion is not enough to know if the instruction
3976  *  that was just before the current DSP value has been
3977  *  executed or not.
3978  *
3979  *  There are some small SCRIPTS sections that deal with
3980  *  the start queue and the done queue that may break any
3981  *  assomption from the C code if we are interrupted
3982  *  inside, so we reset if this happens. Btw, since these
3983  *  SCRIPTS sections are executed while the SCRIPTS hasn't
3984  *  started SCSI operations, it is very unlikely to happen.
3985  *
3986  *  All the driver data structures are supposed to be
3987  *  allocated from the same 4 GB memory window, so there
3988  *  is a 1 to 1 relationship between DSA and driver data
3989  *  structures. Since we are careful :) to invalidate the
3990  *  DSA when we complete a command or when the SCRIPTS
3991  *  pushes a DSA into a queue, we can trust it when it
3992  *  points to a CCB.
3993  */
3994 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
3995 {
3996 	u32	dsp	= INL (nc_dsp);
3997 	u32	dsa	= INL (nc_dsa);
3998 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
3999 
4000 	/*
4001 	 *  If we haven't been interrupted inside the SCRIPTS
4002 	 *  critical pathes, we can safely restart the SCRIPTS
4003 	 *  and trust the DSA value if it matches a CCB.
4004 	 */
4005 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4006 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4007 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4008 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4009 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4010 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4011 	    (!(dsp > SCRIPTA_BA (np, done) &&
4012 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4013 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4014 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4015 		/*
4016 		 *  If we have a CCB, let the SCRIPTS call us back for
4017 		 *  the handling of the error with SCRATCHA filled with
4018 		 *  STARTPOS. This way, we will be able to freeze the
4019 		 *  device queue and requeue awaiting IOs.
4020 		 */
4021 		if (cp) {
4022 			cp->host_status = hsts;
4023 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4024 		}
4025 		/*
4026 		 *  Otherwise just restart the SCRIPTS.
4027 		 */
4028 		else {
4029 			OUTL (nc_dsa, 0xffffff);
4030 			OUTL_DSP (SCRIPTA_BA (np, start));
4031 		}
4032 	}
4033 	else
4034 		goto reset_all;
4035 
4036 	return;
4037 
4038 reset_all:
4039 	sym_start_reset(np);
4040 }
4041 
4042 /*
4043  *  chip exception handler for selection timeout
4044  */
4045 static void sym_int_sto (hcb_p np)
4046 {
4047 	u32 dsp	= INL (nc_dsp);
4048 
4049 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4050 
4051 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4052 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4053 	else
4054 		sym_start_reset(np);
4055 }
4056 
4057 /*
4058  *  chip exception handler for unexpected disconnect
4059  */
4060 static void sym_int_udc (hcb_p np)
4061 {
4062 	printf ("%s: unexpected disconnect\n", sym_name(np));
4063 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4064 }
4065 
4066 /*
4067  *  chip exception handler for SCSI bus mode change
4068  *
4069  *  spi2-r12 11.2.3 says a transceiver mode change must
4070  *  generate a reset event and a device that detects a reset
4071  *  event shall initiate a hard reset. It says also that a
4072  *  device that detects a mode change shall set data transfer
4073  *  mode to eight bit asynchronous, etc...
4074  *  So, just reinitializing all except chip should be enough.
4075  */
4076 static void sym_int_sbmc (hcb_p np)
4077 {
4078 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4079 
4080 	/*
4081 	 *  Notify user.
4082 	 */
4083 	xpt_print_path(np->path);
4084 	printf("SCSI BUS mode change from %s to %s.\n",
4085 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4086 
4087 	/*
4088 	 *  Should suspend command processing for a few seconds and
4089 	 *  reinitialize all except the chip.
4090 	 */
4091 	sym_init (np, 2);
4092 }
4093 
4094 /*
4095  *  chip exception handler for SCSI parity error.
4096  *
4097  *  When the chip detects a SCSI parity error and is
4098  *  currently executing a (CH)MOV instruction, it does
4099  *  not interrupt immediately, but tries to finish the
4100  *  transfer of the current scatter entry before
4101  *  interrupting. The following situations may occur:
4102  *
4103  *  - The complete scatter entry has been transferred
4104  *    without the device having changed phase.
4105  *    The chip will then interrupt with the DSP pointing
4106  *    to the instruction that follows the MOV.
4107  *
4108  *  - A phase mismatch occurs before the MOV finished
4109  *    and phase errors are to be handled by the C code.
4110  *    The chip will then interrupt with both PAR and MA
4111  *    conditions set.
4112  *
4113  *  - A phase mismatch occurs before the MOV finished and
4114  *    phase errors are to be handled by SCRIPTS.
4115  *    The chip will load the DSP with the phase mismatch
4116  *    JUMP address and interrupt the host processor.
4117  */
4118 static void sym_int_par (hcb_p np, u_short sist)
4119 {
4120 	u_char	hsts	= INB (HS_PRT);
4121 	u32	dsp	= INL (nc_dsp);
4122 	u32	dbc	= INL (nc_dbc);
4123 	u32	dsa	= INL (nc_dsa);
4124 	u_char	sbcl	= INB (nc_sbcl);
4125 	u_char	cmd	= dbc >> 24;
4126 	int phase	= cmd & 7;
4127 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4128 
4129 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4130 		sym_name(np), hsts, dbc, sbcl);
4131 
4132 	/*
4133 	 *  Check that the chip is connected to the SCSI BUS.
4134 	 */
4135 	if (!(INB (nc_scntl1) & ISCON)) {
4136 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4137 		return;
4138 	}
4139 
4140 	/*
4141 	 *  If the nexus is not clearly identified, reset the bus.
4142 	 *  We will try to do better later.
4143 	 */
4144 	if (!cp)
4145 		goto reset_all;
4146 
4147 	/*
4148 	 *  Check instruction was a MOV, direction was INPUT and
4149 	 *  ATN is asserted.
4150 	 */
4151 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4152 		goto reset_all;
4153 
4154 	/*
4155 	 *  Keep track of the parity error.
4156 	 */
4157 	OUTONB (HF_PRT, HF_EXT_ERR);
4158 	cp->xerr_status |= XE_PARITY_ERR;
4159 
4160 	/*
4161 	 *  Prepare the message to send to the device.
4162 	 */
4163 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4164 
4165 	/*
4166 	 *  If the old phase was DATA IN phase, we have to deal with
4167 	 *  the 3 situations described above.
4168 	 *  For other input phases (MSG IN and STATUS), the device
4169 	 *  must resend the whole thing that failed parity checking
4170 	 *  or signal error. So, jumping to dispatcher should be OK.
4171 	 */
4172 	if (phase == 1 || phase == 5) {
4173 		/* Phase mismatch handled by SCRIPTS */
4174 		if (dsp == SCRIPTB_BA (np, pm_handle))
4175 			OUTL_DSP (dsp);
4176 		/* Phase mismatch handled by the C code */
4177 		else if (sist & MA)
4178 			sym_int_ma (np);
4179 		/* No phase mismatch occurred */
4180 		else {
4181 			OUTL (nc_temp, dsp);
4182 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4183 		}
4184 	}
4185 	else
4186 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4187 	return;
4188 
4189 reset_all:
4190 	sym_start_reset(np);
4191 }
4192 
4193 /*
4194  *  chip exception handler for phase errors.
4195  *
4196  *  We have to construct a new transfer descriptor,
4197  *  to transfer the rest of the current block.
4198  */
4199 static void sym_int_ma (hcb_p np)
4200 {
4201 	u32	dbc;
4202 	u32	rest;
4203 	u32	dsp;
4204 	u32	dsa;
4205 	u32	nxtdsp;
4206 	u32	*vdsp;
4207 	u32	oadr, olen;
4208 	u32	*tblp;
4209         u32	newcmd;
4210 	u_int	delta;
4211 	u_char	cmd;
4212 	u_char	hflags, hflags0;
4213 	struct	sym_pmc *pm;
4214 	ccb_p	cp;
4215 
4216 	dsp	= INL (nc_dsp);
4217 	dbc	= INL (nc_dbc);
4218 	dsa	= INL (nc_dsa);
4219 
4220 	cmd	= dbc >> 24;
4221 	rest	= dbc & 0xffffff;
4222 	delta	= 0;
4223 
4224 	/*
4225 	 *  locate matching cp if any.
4226 	 */
4227 	cp = sym_ccb_from_dsa(np, dsa);
4228 
4229 	/*
4230 	 *  Donnot take into account dma fifo and various buffers in
4231 	 *  INPUT phase since the chip flushes everything before
4232 	 *  raising the MA interrupt for interrupted INPUT phases.
4233 	 *  For DATA IN phase, we will check for the SWIDE later.
4234 	 */
4235 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4236 		u_char ss0, ss2;
4237 
4238 		if (np->features & FE_DFBC)
4239 			delta = INW (nc_dfbc);
4240 		else {
4241 			u32 dfifo;
4242 
4243 			/*
4244 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4245 			 */
4246 			dfifo = INL(nc_dfifo);
4247 
4248 			/*
4249 			 *  Calculate remaining bytes in DMA fifo.
4250 			 *  (CTEST5 = dfifo >> 16)
4251 			 */
4252 			if (dfifo & (DFS << 16))
4253 				delta = ((((dfifo >> 8) & 0x300) |
4254 				          (dfifo & 0xff)) - rest) & 0x3ff;
4255 			else
4256 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4257 		}
4258 
4259 		/*
4260 		 *  The data in the dma fifo has not been transferred to
4261 		 *  the target -> add the amount to the rest
4262 		 *  and clear the data.
4263 		 *  Check the sstat2 register in case of wide transfer.
4264 		 */
4265 		rest += delta;
4266 		ss0  = INB (nc_sstat0);
4267 		if (ss0 & OLF) rest++;
4268 		if (!(np->features & FE_C10))
4269 			if (ss0 & ORF) rest++;
4270 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4271 			ss2 = INB (nc_sstat2);
4272 			if (ss2 & OLF1) rest++;
4273 			if (!(np->features & FE_C10))
4274 				if (ss2 & ORF1) rest++;
4275 		};
4276 
4277 		/*
4278 		 *  Clear fifos.
4279 		 */
4280 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4281 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4282 	}
4283 
4284 	/*
4285 	 *  log the information
4286 	 */
4287 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4288 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4289 			(unsigned) rest, (unsigned) delta);
4290 
4291 	/*
4292 	 *  try to find the interrupted script command,
4293 	 *  and the address at which to continue.
4294 	 */
4295 	vdsp	= 0;
4296 	nxtdsp	= 0;
4297 	if	(dsp >  np->scripta_ba &&
4298 		 dsp <= np->scripta_ba + np->scripta_sz) {
4299 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4300 		nxtdsp = dsp;
4301 	}
4302 	else if	(dsp >  np->scriptb_ba &&
4303 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4304 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4305 		nxtdsp = dsp;
4306 	}
4307 
4308 	/*
4309 	 *  log the information
4310 	 */
4311 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4312 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4313 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4314 	};
4315 
4316 	if (!vdsp) {
4317 		printf ("%s: interrupted SCRIPT address not found.\n",
4318 			sym_name (np));
4319 		goto reset_all;
4320 	}
4321 
4322 	if (!cp) {
4323 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4324 			sym_name (np));
4325 		goto reset_all;
4326 	}
4327 
4328 	/*
4329 	 *  get old startaddress and old length.
4330 	 */
4331 	oadr = scr_to_cpu(vdsp[1]);
4332 
4333 	if (cmd & 0x10) {	/* Table indirect */
4334 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4335 		olen = scr_to_cpu(tblp[0]);
4336 		oadr = scr_to_cpu(tblp[1]);
4337 	} else {
4338 		tblp = (u32 *) 0;
4339 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4340 	};
4341 
4342 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4343 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4344 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4345 			tblp,
4346 			(unsigned) olen,
4347 			(unsigned) oadr);
4348 	};
4349 
4350 	/*
4351 	 *  check cmd against assumed interrupted script command.
4352 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4353 	 *  the phase.
4354 	 */
4355 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4356 		PRINT_ADDR(cp);
4357 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4358 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4359 
4360 		goto reset_all;
4361 	};
4362 
4363 	/*
4364 	 *  if old phase not dataphase, leave here.
4365 	 */
4366 	if (cmd & 2) {
4367 		PRINT_ADDR(cp);
4368 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4369 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4370 			(unsigned)oadr, (unsigned)rest);
4371 		goto unexpected_phase;
4372 	};
4373 
4374 	/*
4375 	 *  Choose the correct PM save area.
4376 	 *
4377 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4378 	 *  this stuff. The equivalent code is implemented in
4379 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4380 	 *  handle PM from the SCRIPTS processor.
4381 	 */
4382 	hflags0 = INB (HF_PRT);
4383 	hflags = hflags0;
4384 
4385 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4386 		if (hflags & HF_IN_PM0)
4387 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4388 		else if	(hflags & HF_IN_PM1)
4389 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4390 
4391 		if (hflags & HF_DP_SAVED)
4392 			hflags ^= HF_ACT_PM;
4393 	}
4394 
4395 	if (!(hflags & HF_ACT_PM)) {
4396 		pm = &cp->phys.pm0;
4397 		newcmd = SCRIPTA_BA (np, pm0_data);
4398 	}
4399 	else {
4400 		pm = &cp->phys.pm1;
4401 		newcmd = SCRIPTA_BA (np, pm1_data);
4402 	}
4403 
4404 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4405 	if (hflags != hflags0)
4406 		OUTB (HF_PRT, hflags);
4407 
4408 	/*
4409 	 *  fillin the phase mismatch context
4410 	 */
4411 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4412 	pm->sg.size = cpu_to_scr(rest);
4413 	pm->ret     = cpu_to_scr(nxtdsp);
4414 
4415 	/*
4416 	 *  If we have a SWIDE,
4417 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4418 	 *  - compute the SCRIPTS address to restart from,
4419 	 *  - move current data pointer context by one byte.
4420 	 */
4421 	nxtdsp = SCRIPTA_BA (np, dispatch);
4422 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4423 	    (INB (nc_scntl2) & WSR)) {
4424 		u32 tmp;
4425 
4426 		/*
4427 		 *  Set up the table indirect for the MOVE
4428 		 *  of the residual byte and adjust the data
4429 		 *  pointer context.
4430 		 */
4431 		tmp = scr_to_cpu(pm->sg.addr);
4432 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4433 		pm->sg.addr = cpu_to_scr(tmp + 1);
4434 		tmp = scr_to_cpu(pm->sg.size);
4435 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4436 		pm->sg.size = cpu_to_scr(tmp - 1);
4437 
4438 		/*
4439 		 *  If only the residual byte is to be moved,
4440 		 *  no PM context is needed.
4441 		 */
4442 		if ((tmp&0xffffff) == 1)
4443 			newcmd = pm->ret;
4444 
4445 		/*
4446 		 *  Prepare the address of SCRIPTS that will
4447 		 *  move the residual byte to memory.
4448 		 */
4449 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4450 	}
4451 
4452 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4453 		PRINT_ADDR(cp);
4454 		printf ("PM %x %x %x / %x %x %x.\n",
4455 			hflags0, hflags, newcmd,
4456 			(unsigned)scr_to_cpu(pm->sg.addr),
4457 			(unsigned)scr_to_cpu(pm->sg.size),
4458 			(unsigned)scr_to_cpu(pm->ret));
4459 	}
4460 
4461 	/*
4462 	 *  Restart the SCRIPTS processor.
4463 	 */
4464 	OUTL (nc_temp, newcmd);
4465 	OUTL_DSP (nxtdsp);
4466 	return;
4467 
4468 	/*
4469 	 *  Unexpected phase changes that occurs when the current phase
4470 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4471 	 *  Such event may only happen when the SCRIPTS is using a
4472 	 *  multibyte SCSI MOVE.
4473 	 *
4474 	 *  Phase change		Some possible cause
4475 	 *
4476 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4477 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4478 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4479 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4480 	 *  			negotiation messages.
4481 	 *
4482 	 *  The code below does not care of the new phase and so
4483 	 *  trusts the target. Why to annoy it ?
4484 	 *  If the interrupted phase is COMMAND phase, we restart at
4485 	 *  dispatcher.
4486 	 *  If a target does not get all the messages after selection,
4487 	 *  the code assumes blindly that the target discards extended
4488 	 *  messages and clears the negotiation status.
4489 	 *  If the target does not want all our response to negotiation,
4490 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4491 	 *  bloat for such a should_not_happen situation).
4492 	 *  In all other situation, we reset the BUS.
4493 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4494 	 */
4495 unexpected_phase:
4496 	dsp -= 8;
4497 	nxtdsp = 0;
4498 
4499 	switch (cmd & 7) {
4500 	case 2:	/* COMMAND phase */
4501 		nxtdsp = SCRIPTA_BA (np, dispatch);
4502 		break;
4503 #if 0
4504 	case 3:	/* STATUS  phase */
4505 		nxtdsp = SCRIPTA_BA (np, dispatch);
4506 		break;
4507 #endif
4508 	case 6:	/* MSG OUT phase */
4509 		/*
4510 		 *  If the device may want to use untagged when we want
4511 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4512 		 *  since we will not be able to handle reselect.
4513 		 *  Otherwise, we just don't care.
4514 		 */
4515 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4516 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4517 				cp->host_status = HS_BUSY;
4518 				np->msgout[0] = M_IDENTIFY | cp->lun;
4519 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4520 			}
4521 			else
4522 				nxtdsp = SCRIPTB_BA (np, ident_break);
4523 		}
4524 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4525 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4526 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4527 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4528 		}
4529 		break;
4530 #if 0
4531 	case 7:	/* MSG IN  phase */
4532 		nxtdsp = SCRIPTA_BA (np, clrack);
4533 		break;
4534 #endif
4535 	}
4536 
4537 	if (nxtdsp) {
4538 		OUTL_DSP (nxtdsp);
4539 		return;
4540 	}
4541 
4542 reset_all:
4543 	sym_start_reset(np);
4544 }
4545 
4546 /*
4547  *  Dequeue from the START queue all CCBs that match
4548  *  a given target/lun/task condition (-1 means all),
4549  *  and move them from the BUSY queue to the COMP queue
4550  *  with CAM_REQUEUE_REQ status condition.
4551  *  This function is used during error handling/recovery.
4552  *  It is called with SCRIPTS not running.
4553  */
4554 static int
4555 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4556 {
4557 	int j;
4558 	ccb_p cp;
4559 
4560 	/*
4561 	 *  Make sure the starting index is within range.
4562 	 */
4563 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4564 
4565 	/*
4566 	 *  Walk until end of START queue and dequeue every job
4567 	 *  that matches the target/lun/task condition.
4568 	 */
4569 	j = i;
4570 	while (i != np->squeueput) {
4571 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4572 		assert(cp);
4573 #ifdef SYM_CONF_IARB_SUPPORT
4574 		/* Forget hints for IARB, they may be no longer relevant */
4575 		cp->host_flags &= ~HF_HINT_IARB;
4576 #endif
4577 		if ((target == -1 || cp->target == target) &&
4578 		    (lun    == -1 || cp->lun    == lun)    &&
4579 		    (task   == -1 || cp->tag    == task)) {
4580 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4581 			sym_remque(&cp->link_ccbq);
4582 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4583 		}
4584 		else {
4585 			if (i != j)
4586 				np->squeue[j] = np->squeue[i];
4587 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4588 		}
4589 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4590 	}
4591 	if (i != j)		/* Copy back the idle task if needed */
4592 		np->squeue[j] = np->squeue[i];
4593 	np->squeueput = j;	/* Update our current start queue pointer */
4594 
4595 	return (i - j) / 2;
4596 }
4597 
4598 /*
4599  *  Complete all CCBs queued to the COMP queue.
4600  *
4601  *  These CCBs are assumed:
4602  *  - Not to be referenced either by devices or
4603  *    SCRIPTS-related queues and datas.
4604  *  - To have to be completed with an error condition
4605  *    or requeued.
4606  *
4607  *  The device queue freeze count is incremented
4608  *  for each CCB that does not prevent this.
4609  *  This function is called when all CCBs involved
4610  *  in error handling/recovery have been reaped.
4611  */
4612 static void
4613 sym_flush_comp_queue(hcb_p np, int cam_status)
4614 {
4615 	SYM_QUEHEAD *qp;
4616 	ccb_p cp;
4617 
4618 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4619 		union ccb *ccb;
4620 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4621 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4622 		/* Leave quiet CCBs waiting for resources */
4623 		if (cp->host_status == HS_WAIT)
4624 			continue;
4625 		ccb = cp->cam_ccb;
4626 		if (cam_status)
4627 			sym_set_cam_status(ccb, cam_status);
4628 		sym_freeze_cam_ccb(ccb);
4629 		sym_xpt_done(np, ccb, cp);
4630 		sym_free_ccb(np, cp);
4631 	}
4632 }
4633 
4634 /*
4635  *  chip handler for bad SCSI status condition
4636  *
4637  *  In case of bad SCSI status, we unqueue all the tasks
4638  *  currently queued to the controller but not yet started
4639  *  and then restart the SCRIPTS processor immediately.
4640  *
4641  *  QUEUE FULL and BUSY conditions are handled the same way.
4642  *  Basically all the not yet started tasks are requeued in
4643  *  device queue and the queue is frozen until a completion.
4644  *
4645  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4646  *  the CCB of the failed command to prepare a REQUEST SENSE
4647  *  SCSI command and queue it to the controller queue.
4648  *
4649  *  SCRATCHA is assumed to have been loaded with STARTPOS
4650  *  before the SCRIPTS called the C code.
4651  */
4652 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4653 {
4654 	tcb_p tp	= &np->target[cp->target];
4655 	u32		startp;
4656 	u_char		s_status = cp->ssss_status;
4657 	u_char		h_flags  = cp->host_flags;
4658 	int		msglen;
4659 	int		nego;
4660 	int		i;
4661 
4662 	SYM_LOCK_ASSERT(MA_OWNED);
4663 
4664 	/*
4665 	 *  Compute the index of the next job to start from SCRIPTS.
4666 	 */
4667 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4668 
4669 	/*
4670 	 *  The last CCB queued used for IARB hint may be
4671 	 *  no longer relevant. Forget it.
4672 	 */
4673 #ifdef SYM_CONF_IARB_SUPPORT
4674 	if (np->last_cp)
4675 		np->last_cp = NULL;
4676 #endif
4677 
4678 	/*
4679 	 *  Now deal with the SCSI status.
4680 	 */
4681 	switch(s_status) {
4682 	case S_BUSY:
4683 	case S_QUEUE_FULL:
4684 		if (sym_verbose >= 2) {
4685 			PRINT_ADDR(cp);
4686 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4687 		}
4688 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4689 		sym_complete_error (np, cp);
4690 		break;
4691 	case S_TERMINATED:
4692 	case S_CHECK_COND:
4693 		/*
4694 		 *  If we get an SCSI error when requesting sense, give up.
4695 		 */
4696 		if (h_flags & HF_SENSE) {
4697 			sym_complete_error (np, cp);
4698 			break;
4699 		}
4700 
4701 		/*
4702 		 *  Dequeue all queued CCBs for that device not yet started,
4703 		 *  and restart the SCRIPTS processor immediately.
4704 		 */
4705 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4706 		OUTL_DSP (SCRIPTA_BA (np, start));
4707 
4708  		/*
4709 		 *  Save some info of the actual IO.
4710 		 *  Compute the data residual.
4711 		 */
4712 		cp->sv_scsi_status = cp->ssss_status;
4713 		cp->sv_xerr_status = cp->xerr_status;
4714 		cp->sv_resid = sym_compute_residual(np, cp);
4715 
4716 		/*
4717 		 *  Prepare all needed data structures for
4718 		 *  requesting sense data.
4719 		 */
4720 
4721 		/*
4722 		 *  identify message
4723 		 */
4724 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4725 		msglen = 1;
4726 
4727 		/*
4728 		 *  If we are currently using anything different from
4729 		 *  async. 8 bit data transfers with that target,
4730 		 *  start a negotiation, since the device may want
4731 		 *  to report us a UNIT ATTENTION condition due to
4732 		 *  a cause we currently ignore, and we donnot want
4733 		 *  to be stuck with WIDE and/or SYNC data transfer.
4734 		 *
4735 		 *  cp->nego_status is filled by sym_prepare_nego().
4736 		 */
4737 		cp->nego_status = 0;
4738 		nego = 0;
4739 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4740 			nego = NS_PPR;
4741 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4742 			nego = NS_WIDE;
4743 		else if (tp->tinfo.current.offset != 0)
4744 			nego = NS_SYNC;
4745 		if (nego)
4746 			msglen +=
4747 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4748 		/*
4749 		 *  Message table indirect structure.
4750 		 */
4751 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4752 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4753 
4754 		/*
4755 		 *  sense command
4756 		 */
4757 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4758 		cp->phys.cmd.size	= cpu_to_scr(6);
4759 
4760 		/*
4761 		 *  patch requested size into sense command
4762 		 */
4763 		cp->sensecmd[0]		= 0x03;
4764 		cp->sensecmd[1]		= cp->lun << 5;
4765 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4766 			cp->sensecmd[1]	= 0;
4767 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4768 		cp->data_len		= SYM_SNS_BBUF_LEN;
4769 
4770 		/*
4771 		 *  sense data
4772 		 */
4773 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4774 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4775 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4776 
4777 		/*
4778 		 *  requeue the command.
4779 		 */
4780 		startp = SCRIPTB_BA (np, sdata_in);
4781 
4782 		cp->phys.head.savep	= cpu_to_scr(startp);
4783 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4784 		cp->phys.head.lastp	= cpu_to_scr(startp);
4785 		cp->startp	= cpu_to_scr(startp);
4786 
4787 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4788 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4789 		cp->ssss_status = S_ILLEGAL;
4790 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4791 		cp->xerr_status = 0;
4792 		cp->extra_bytes = 0;
4793 
4794 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4795 
4796 		/*
4797 		 *  Requeue the command.
4798 		 */
4799 		sym_put_start_queue(np, cp);
4800 
4801 		/*
4802 		 *  Give back to upper layer everything we have dequeued.
4803 		 */
4804 		sym_flush_comp_queue(np, 0);
4805 		break;
4806 	}
4807 }
4808 
4809 /*
4810  *  After a device has accepted some management message
4811  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4812  *  a device signals a UNIT ATTENTION condition, some
4813  *  tasks are thrown away by the device. We are required
4814  *  to reflect that on our tasks list since the device
4815  *  will never complete these tasks.
4816  *
4817  *  This function move from the BUSY queue to the COMP
4818  *  queue all disconnected CCBs for a given target that
4819  *  match the following criteria:
4820  *  - lun=-1  means any logical UNIT otherwise a given one.
4821  *  - task=-1 means any task, otherwise a given one.
4822  */
4823 static int
4824 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4825 {
4826 	SYM_QUEHEAD qtmp, *qp;
4827 	int i = 0;
4828 	ccb_p cp;
4829 
4830 	/*
4831 	 *  Move the entire BUSY queue to our temporary queue.
4832 	 */
4833 	sym_que_init(&qtmp);
4834 	sym_que_splice(&np->busy_ccbq, &qtmp);
4835 	sym_que_init(&np->busy_ccbq);
4836 
4837 	/*
4838 	 *  Put all CCBs that matches our criteria into
4839 	 *  the COMP queue and put back other ones into
4840 	 *  the BUSY queue.
4841 	 */
4842 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4843 		union ccb *ccb;
4844 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4845 		ccb = cp->cam_ccb;
4846 		if (cp->host_status != HS_DISCONNECT ||
4847 		    cp->target != target	     ||
4848 		    (lun  != -1 && cp->lun != lun)   ||
4849 		    (task != -1 &&
4850 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4851 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4852 			continue;
4853 		}
4854 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4855 
4856 		/* Preserve the software timeout condition */
4857 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4858 			sym_set_cam_status(ccb, cam_status);
4859 		++i;
4860 #if 0
4861 printf("XXXX TASK @%p CLEARED\n", cp);
4862 #endif
4863 	}
4864 	return i;
4865 }
4866 
4867 /*
4868  *  chip handler for TASKS recovery
4869  *
4870  *  We cannot safely abort a command, while the SCRIPTS
4871  *  processor is running, since we just would be in race
4872  *  with it.
4873  *
4874  *  As long as we have tasks to abort, we keep the SEM
4875  *  bit set in the ISTAT. When this bit is set, the
4876  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4877  *  each time it enters the scheduler.
4878  *
4879  *  If we have to reset a target, clear tasks of a unit,
4880  *  or to perform the abort of a disconnected job, we
4881  *  restart the SCRIPTS for selecting the target. Once
4882  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4883  *  If it loses arbitration, the SCRIPTS will interrupt again
4884  *  the next time it will enter its scheduler, and so on ...
4885  *
4886  *  On SIR_TARGET_SELECTED, we scan for the more
4887  *  appropriate thing to do:
4888  *
4889  *  - If nothing, we just sent a M_ABORT message to the
4890  *    target to get rid of the useless SCSI bus ownership.
4891  *    According to the specs, no tasks shall be affected.
4892  *  - If the target is to be reset, we send it a M_RESET
4893  *    message.
4894  *  - If a logical UNIT is to be cleared , we send the
4895  *    IDENTIFY(lun) + M_ABORT.
4896  *  - If an untagged task is to be aborted, we send the
4897  *    IDENTIFY(lun) + M_ABORT.
4898  *  - If a tagged task is to be aborted, we send the
4899  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4900  *
4901  *  Once our 'kiss of death' :) message has been accepted
4902  *  by the target, the SCRIPTS interrupts again
4903  *  (SIR_ABORT_SENT). On this interrupt, we complete
4904  *  all the CCBs that should have been aborted by the
4905  *  target according to our message.
4906  */
4907 static void sym_sir_task_recovery(hcb_p np, int num)
4908 {
4909 	SYM_QUEHEAD *qp;
4910 	ccb_p cp;
4911 	tcb_p tp;
4912 	int target=-1, lun=-1, task;
4913 	int i, k;
4914 
4915 	switch(num) {
4916 	/*
4917 	 *  The SCRIPTS processor stopped before starting
4918 	 *  the next command in order to allow us to perform
4919 	 *  some task recovery.
4920 	 */
4921 	case SIR_SCRIPT_STOPPED:
4922 		/*
4923 		 *  Do we have any target to reset or unit to clear ?
4924 		 */
4925 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4926 			tp = &np->target[i];
4927 			if (tp->to_reset ||
4928 			    (tp->lun0p && tp->lun0p->to_clear)) {
4929 				target = i;
4930 				break;
4931 			}
4932 			if (!tp->lunmp)
4933 				continue;
4934 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4935 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4936 					target	= i;
4937 					break;
4938 				}
4939 			}
4940 			if (target != -1)
4941 				break;
4942 		}
4943 
4944 		/*
4945 		 *  If not, walk the busy queue for any
4946 		 *  disconnected CCB to be aborted.
4947 		 */
4948 		if (target == -1) {
4949 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4950 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4951 				if (cp->host_status != HS_DISCONNECT)
4952 					continue;
4953 				if (cp->to_abort) {
4954 					target = cp->target;
4955 					break;
4956 				}
4957 			}
4958 		}
4959 
4960 		/*
4961 		 *  If some target is to be selected,
4962 		 *  prepare and start the selection.
4963 		 */
4964 		if (target != -1) {
4965 			tp = &np->target[target];
4966 			np->abrt_sel.sel_id	= target;
4967 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4968 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4969 			OUTL(nc_dsa, np->hcb_ba);
4970 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4971 			return;
4972 		}
4973 
4974 		/*
4975 		 *  Now look for a CCB to abort that haven't started yet.
4976 		 *  Btw, the SCRIPTS processor is still stopped, so
4977 		 *  we are not in race.
4978 		 */
4979 		i = 0;
4980 		cp = NULL;
4981 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4982 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4983 			if (cp->host_status != HS_BUSY &&
4984 			    cp->host_status != HS_NEGOTIATE)
4985 				continue;
4986 			if (!cp->to_abort)
4987 				continue;
4988 #ifdef SYM_CONF_IARB_SUPPORT
4989 			/*
4990 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4991 			 *    want to cancel the last queued CCB, since the
4992 			 *    SCRIPTS may have anticipated the selection.
4993 			 */
4994 			if (cp == np->last_cp) {
4995 				cp->to_abort = 0;
4996 				continue;
4997 			}
4998 #endif
4999 			i = 1;	/* Means we have found some */
5000 			break;
5001 		}
5002 		if (!i) {
5003 			/*
5004 			 *  We are done, so we donnot need
5005 			 *  to synchronize with the SCRIPTS anylonger.
5006 			 *  Remove the SEM flag from the ISTAT.
5007 			 */
5008 			np->istat_sem = 0;
5009 			OUTB (nc_istat, SIGP);
5010 			break;
5011 		}
5012 		/*
5013 		 *  Compute index of next position in the start
5014 		 *  queue the SCRIPTS intends to start and dequeue
5015 		 *  all CCBs for that device that haven't been started.
5016 		 */
5017 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5018 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5019 
5020 		/*
5021 		 *  Make sure at least our IO to abort has been dequeued.
5022 		 */
5023 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5024 
5025 		/*
5026 		 *  Keep track in cam status of the reason of the abort.
5027 		 */
5028 		if (cp->to_abort == 2)
5029 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5030 		else
5031 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5032 
5033 		/*
5034 		 *  Complete with error everything that we have dequeued.
5035 	 	 */
5036 		sym_flush_comp_queue(np, 0);
5037 		break;
5038 	/*
5039 	 *  The SCRIPTS processor has selected a target
5040 	 *  we may have some manual recovery to perform for.
5041 	 */
5042 	case SIR_TARGET_SELECTED:
5043 		target = (INB (nc_sdid) & 0xf);
5044 		tp = &np->target[target];
5045 
5046 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5047 
5048 		/*
5049 		 *  If the target is to be reset, prepare a
5050 		 *  M_RESET message and clear the to_reset flag
5051 		 *  since we donnot expect this operation to fail.
5052 		 */
5053 		if (tp->to_reset) {
5054 			np->abrt_msg[0] = M_RESET;
5055 			np->abrt_tbl.size = 1;
5056 			tp->to_reset = 0;
5057 			break;
5058 		}
5059 
5060 		/*
5061 		 *  Otherwise, look for some logical unit to be cleared.
5062 		 */
5063 		if (tp->lun0p && tp->lun0p->to_clear)
5064 			lun = 0;
5065 		else if (tp->lunmp) {
5066 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5067 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5068 					lun = k;
5069 					break;
5070 				}
5071 			}
5072 		}
5073 
5074 		/*
5075 		 *  If a logical unit is to be cleared, prepare
5076 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5077 		 */
5078 		if (lun != -1) {
5079 			lcb_p lp = sym_lp(tp, lun);
5080 			lp->to_clear = 0; /* We donnot expect to fail here */
5081 			np->abrt_msg[0] = M_IDENTIFY | lun;
5082 			np->abrt_msg[1] = M_ABORT;
5083 			np->abrt_tbl.size = 2;
5084 			break;
5085 		}
5086 
5087 		/*
5088 		 *  Otherwise, look for some disconnected job to
5089 		 *  abort for this target.
5090 		 */
5091 		i = 0;
5092 		cp = NULL;
5093 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5094 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5095 			if (cp->host_status != HS_DISCONNECT)
5096 				continue;
5097 			if (cp->target != target)
5098 				continue;
5099 			if (!cp->to_abort)
5100 				continue;
5101 			i = 1;	/* Means we have some */
5102 			break;
5103 		}
5104 
5105 		/*
5106 		 *  If we have none, probably since the device has
5107 		 *  completed the command before we won abitration,
5108 		 *  send a M_ABORT message without IDENTIFY.
5109 		 *  According to the specs, the device must just
5110 		 *  disconnect the BUS and not abort any task.
5111 		 */
5112 		if (!i) {
5113 			np->abrt_msg[0] = M_ABORT;
5114 			np->abrt_tbl.size = 1;
5115 			break;
5116 		}
5117 
5118 		/*
5119 		 *  We have some task to abort.
5120 		 *  Set the IDENTIFY(lun)
5121 		 */
5122 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5123 
5124 		/*
5125 		 *  If we want to abort an untagged command, we
5126 		 *  will send an IDENTIFY + M_ABORT.
5127 		 *  Otherwise (tagged command), we will send
5128 		 *  an IDENTIFY + task attributes + ABORT TAG.
5129 		 */
5130 		if (cp->tag == NO_TAG) {
5131 			np->abrt_msg[1] = M_ABORT;
5132 			np->abrt_tbl.size = 2;
5133 		}
5134 		else {
5135 			np->abrt_msg[1] = cp->scsi_smsg[1];
5136 			np->abrt_msg[2] = cp->scsi_smsg[2];
5137 			np->abrt_msg[3] = M_ABORT_TAG;
5138 			np->abrt_tbl.size = 4;
5139 		}
5140 		/*
5141 		 *  Keep track of software timeout condition, since the
5142 		 *  peripheral driver may not count retries on abort
5143 		 *  conditions not due to timeout.
5144 		 */
5145 		if (cp->to_abort == 2)
5146 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5147 		cp->to_abort = 0; /* We donnot expect to fail here */
5148 		break;
5149 
5150 	/*
5151 	 *  The target has accepted our message and switched
5152 	 *  to BUS FREE phase as we expected.
5153 	 */
5154 	case SIR_ABORT_SENT:
5155 		target = (INB (nc_sdid) & 0xf);
5156 		tp = &np->target[target];
5157 
5158 		/*
5159 		**  If we didn't abort anything, leave here.
5160 		*/
5161 		if (np->abrt_msg[0] == M_ABORT)
5162 			break;
5163 
5164 		/*
5165 		 *  If we sent a M_RESET, then a hardware reset has
5166 		 *  been performed by the target.
5167 		 *  - Reset everything to async 8 bit
5168 		 *  - Tell ourself to negotiate next time :-)
5169 		 *  - Prepare to clear all disconnected CCBs for
5170 		 *    this target from our task list (lun=task=-1)
5171 		 */
5172 		lun = -1;
5173 		task = -1;
5174 		if (np->abrt_msg[0] == M_RESET) {
5175 			tp->head.sval = 0;
5176 			tp->head.wval = np->rv_scntl3;
5177 			tp->head.uval = 0;
5178 			tp->tinfo.current.period = 0;
5179 			tp->tinfo.current.offset = 0;
5180 			tp->tinfo.current.width  = BUS_8_BIT;
5181 			tp->tinfo.current.options = 0;
5182 		}
5183 
5184 		/*
5185 		 *  Otherwise, check for the LUN and TASK(s)
5186 		 *  concerned by the cancelation.
5187 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5188 		 *  or an ABORT message :-)
5189 		 */
5190 		else {
5191 			lun = np->abrt_msg[0] & 0x3f;
5192 			if (np->abrt_msg[1] == M_ABORT_TAG)
5193 				task = np->abrt_msg[2];
5194 		}
5195 
5196 		/*
5197 		 *  Complete all the CCBs the device should have
5198 		 *  aborted due to our 'kiss of death' message.
5199 		 */
5200 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5201 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5202 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5203 		sym_flush_comp_queue(np, 0);
5204 
5205 		/*
5206 		 *  If we sent a BDR, make uper layer aware of that.
5207 		 */
5208 		if (np->abrt_msg[0] == M_RESET)
5209 			xpt_async(AC_SENT_BDR, np->path, NULL);
5210 		break;
5211 	}
5212 
5213 	/*
5214 	 *  Print to the log the message we intend to send.
5215 	 */
5216 	if (num == SIR_TARGET_SELECTED) {
5217 		PRINT_TARGET(np, target);
5218 		sym_printl_hex("control msgout:", np->abrt_msg,
5219 			      np->abrt_tbl.size);
5220 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5221 	}
5222 
5223 	/*
5224 	 *  Let the SCRIPTS processor continue.
5225 	 */
5226 	OUTONB_STD ();
5227 }
5228 
5229 /*
5230  *  Gerard's alchemy:) that deals with with the data
5231  *  pointer for both MDP and the residual calculation.
5232  *
5233  *  I didn't want to bloat the code by more than 200
5234  *  lignes for the handling of both MDP and the residual.
5235  *  This has been achieved by using a data pointer
5236  *  representation consisting in an index in the data
5237  *  array (dp_sg) and a negative offset (dp_ofs) that
5238  *  have the following meaning:
5239  *
5240  *  - dp_sg = SYM_CONF_MAX_SG
5241  *    we are at the end of the data script.
5242  *  - dp_sg < SYM_CONF_MAX_SG
5243  *    dp_sg points to the next entry of the scatter array
5244  *    we want to transfer.
5245  *  - dp_ofs < 0
5246  *    dp_ofs represents the residual of bytes of the
5247  *    previous entry scatter entry we will send first.
5248  *  - dp_ofs = 0
5249  *    no residual to send first.
5250  *
5251  *  The function sym_evaluate_dp() accepts an arbitray
5252  *  offset (basically from the MDP message) and returns
5253  *  the corresponding values of dp_sg and dp_ofs.
5254  */
5255 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5256 {
5257 	u32	dp_scr;
5258 	int	dp_ofs, dp_sg, dp_sgmin;
5259 	int	tmp;
5260 	struct sym_pmc *pm;
5261 
5262 	/*
5263 	 *  Compute the resulted data pointer in term of a script
5264 	 *  address within some DATA script and a signed byte offset.
5265 	 */
5266 	dp_scr = scr;
5267 	dp_ofs = *ofs;
5268 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5269 		pm = &cp->phys.pm0;
5270 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5271 		pm = &cp->phys.pm1;
5272 	else
5273 		pm = NULL;
5274 
5275 	if (pm) {
5276 		dp_scr  = scr_to_cpu(pm->ret);
5277 		dp_ofs -= scr_to_cpu(pm->sg.size);
5278 	}
5279 
5280 	/*
5281 	 *  If we are auto-sensing, then we are done.
5282 	 */
5283 	if (cp->host_flags & HF_SENSE) {
5284 		*ofs = dp_ofs;
5285 		return 0;
5286 	}
5287 
5288 	/*
5289 	 *  Deduce the index of the sg entry.
5290 	 *  Keep track of the index of the first valid entry.
5291 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5292 	 *  end of the data.
5293 	 */
5294 	tmp = scr_to_cpu(cp->phys.head.goalp);
5295 	dp_sg = SYM_CONF_MAX_SG;
5296 	if (dp_scr != tmp)
5297 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5298 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5299 
5300 	/*
5301 	 *  Move to the sg entry the data pointer belongs to.
5302 	 *
5303 	 *  If we are inside the data area, we expect result to be:
5304 	 *
5305 	 *  Either,
5306 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5307 	 *      the data pointer belongs to (or the end of the data)
5308 	 *  Or,
5309 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5310 	 *      the data pointer belongs to + 1.
5311 	 */
5312 	if (dp_ofs < 0) {
5313 		int n;
5314 		while (dp_sg > dp_sgmin) {
5315 			--dp_sg;
5316 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5317 			n = dp_ofs + (tmp & 0xffffff);
5318 			if (n > 0) {
5319 				++dp_sg;
5320 				break;
5321 			}
5322 			dp_ofs = n;
5323 		}
5324 	}
5325 	else if (dp_ofs > 0) {
5326 		while (dp_sg < SYM_CONF_MAX_SG) {
5327 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5328 			dp_ofs -= (tmp & 0xffffff);
5329 			++dp_sg;
5330 			if (dp_ofs <= 0)
5331 				break;
5332 		}
5333 	}
5334 
5335 	/*
5336 	 *  Make sure the data pointer is inside the data area.
5337 	 *  If not, return some error.
5338 	 */
5339 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5340 		goto out_err;
5341 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5342 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5343 		goto out_err;
5344 
5345 	/*
5346 	 *  Save the extreme pointer if needed.
5347 	 */
5348 	if (dp_sg > cp->ext_sg ||
5349             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5350 		cp->ext_sg  = dp_sg;
5351 		cp->ext_ofs = dp_ofs;
5352 	}
5353 
5354 	/*
5355 	 *  Return data.
5356 	 */
5357 	*ofs = dp_ofs;
5358 	return dp_sg;
5359 
5360 out_err:
5361 	return -1;
5362 }
5363 
5364 /*
5365  *  chip handler for MODIFY DATA POINTER MESSAGE
5366  *
5367  *  We also call this function on IGNORE WIDE RESIDUE
5368  *  messages that do not match a SWIDE full condition.
5369  *  Btw, we assume in that situation that such a message
5370  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5371  */
5372 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5373 {
5374 	int dp_ofs	= ofs;
5375 	u32	dp_scr	= INL (nc_temp);
5376 	u32	dp_ret;
5377 	u32	tmp;
5378 	u_char	hflags;
5379 	int	dp_sg;
5380 	struct	sym_pmc *pm;
5381 
5382 	/*
5383 	 *  Not supported for auto-sense.
5384 	 */
5385 	if (cp->host_flags & HF_SENSE)
5386 		goto out_reject;
5387 
5388 	/*
5389 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5390 	 *  to the resulted data pointer.
5391 	 */
5392 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5393 	if (dp_sg < 0)
5394 		goto out_reject;
5395 
5396 	/*
5397 	 *  And our alchemy:) allows to easily calculate the data
5398 	 *  script address we want to return for the next data phase.
5399 	 */
5400 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5401 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5402 
5403 	/*
5404 	 *  If offset / scatter entry is zero we donnot need
5405 	 *  a context for the new current data pointer.
5406 	 */
5407 	if (dp_ofs == 0) {
5408 		dp_scr = dp_ret;
5409 		goto out_ok;
5410 	}
5411 
5412 	/*
5413 	 *  Get a context for the new current data pointer.
5414 	 */
5415 	hflags = INB (HF_PRT);
5416 
5417 	if (hflags & HF_DP_SAVED)
5418 		hflags ^= HF_ACT_PM;
5419 
5420 	if (!(hflags & HF_ACT_PM)) {
5421 		pm  = &cp->phys.pm0;
5422 		dp_scr = SCRIPTA_BA (np, pm0_data);
5423 	}
5424 	else {
5425 		pm = &cp->phys.pm1;
5426 		dp_scr = SCRIPTA_BA (np, pm1_data);
5427 	}
5428 
5429 	hflags &= ~(HF_DP_SAVED);
5430 
5431 	OUTB (HF_PRT, hflags);
5432 
5433 	/*
5434 	 *  Set up the new current data pointer.
5435 	 *  ofs < 0 there, and for the next data phase, we
5436 	 *  want to transfer part of the data of the sg entry
5437 	 *  corresponding to index dp_sg-1 prior to returning
5438 	 *  to the main data script.
5439 	 */
5440 	pm->ret = cpu_to_scr(dp_ret);
5441 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5442 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5443 	pm->sg.addr = cpu_to_scr(tmp);
5444 	pm->sg.size = cpu_to_scr(-dp_ofs);
5445 
5446 out_ok:
5447 	OUTL (nc_temp, dp_scr);
5448 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5449 	return;
5450 
5451 out_reject:
5452 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5453 }
5454 
5455 /*
5456  *  chip calculation of the data residual.
5457  *
5458  *  As I used to say, the requirement of data residual
5459  *  in SCSI is broken, useless and cannot be achieved
5460  *  without huge complexity.
5461  *  But most OSes and even the official CAM require it.
5462  *  When stupidity happens to be so widely spread inside
5463  *  a community, it gets hard to convince.
5464  *
5465  *  Anyway, I don't care, since I am not going to use
5466  *  any software that considers this data residual as
5467  *  a relevant information. :)
5468  */
5469 static int sym_compute_residual(hcb_p np, ccb_p cp)
5470 {
5471 	int dp_sg, dp_sgmin, resid = 0;
5472 	int dp_ofs = 0;
5473 
5474 	/*
5475 	 *  Check for some data lost or just thrown away.
5476 	 *  We are not required to be quite accurate in this
5477 	 *  situation. Btw, if we are odd for output and the
5478 	 *  device claims some more data, it may well happen
5479 	 *  than our residual be zero. :-)
5480 	 */
5481 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5482 		if (cp->xerr_status & XE_EXTRA_DATA)
5483 			resid -= cp->extra_bytes;
5484 		if (cp->xerr_status & XE_SODL_UNRUN)
5485 			++resid;
5486 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5487 			--resid;
5488 	}
5489 
5490 	/*
5491 	 *  If all data has been transferred,
5492 	 *  there is no residual.
5493 	 */
5494 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5495 		return resid;
5496 
5497 	/*
5498 	 *  If no data transfer occurs, or if the data
5499 	 *  pointer is weird, return full residual.
5500 	 */
5501 	if (cp->startp == cp->phys.head.lastp ||
5502 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5503 			    &dp_ofs) < 0) {
5504 		return cp->data_len;
5505 	}
5506 
5507 	/*
5508 	 *  If we were auto-sensing, then we are done.
5509 	 */
5510 	if (cp->host_flags & HF_SENSE) {
5511 		return -dp_ofs;
5512 	}
5513 
5514 	/*
5515 	 *  We are now full comfortable in the computation
5516 	 *  of the data residual (2's complement).
5517 	 */
5518 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5519 	resid = -cp->ext_ofs;
5520 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5521 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5522 		resid += (tmp & 0xffffff);
5523 	}
5524 
5525 	/*
5526 	 *  Hopefully, the result is not too wrong.
5527 	 */
5528 	return resid;
5529 }
5530 
5531 /*
5532  *  Print out the content of a SCSI message.
5533  */
5534 static int sym_show_msg (u_char * msg)
5535 {
5536 	u_char i;
5537 	printf ("%x",*msg);
5538 	if (*msg==M_EXTENDED) {
5539 		for (i=1;i<8;i++) {
5540 			if (i-1>msg[1]) break;
5541 			printf ("-%x",msg[i]);
5542 		};
5543 		return (i+1);
5544 	} else if ((*msg & 0xf0) == 0x20) {
5545 		printf ("-%x",msg[1]);
5546 		return (2);
5547 	};
5548 	return (1);
5549 }
5550 
5551 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5552 {
5553 	PRINT_ADDR(cp);
5554 	if (label)
5555 		printf ("%s: ", label);
5556 
5557 	(void) sym_show_msg (msg);
5558 	printf (".\n");
5559 }
5560 
5561 /*
5562  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5563  *
5564  *  When we try to negotiate, we append the negotiation message
5565  *  to the identify and (maybe) simple tag message.
5566  *  The host status field is set to HS_NEGOTIATE to mark this
5567  *  situation.
5568  *
5569  *  If the target doesn't answer this message immediately
5570  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5571  *  will be raised eventually.
5572  *  The handler removes the HS_NEGOTIATE status, and sets the
5573  *  negotiated value to the default (async / nowide).
5574  *
5575  *  If we receive a matching answer immediately, we check it
5576  *  for validity, and set the values.
5577  *
5578  *  If we receive a Reject message immediately, we assume the
5579  *  negotiation has failed, and fall back to standard values.
5580  *
5581  *  If we receive a negotiation message while not in HS_NEGOTIATE
5582  *  state, it's a target initiated negotiation. We prepare a
5583  *  (hopefully) valid answer, set our parameters, and send back
5584  *  this answer to the target.
5585  *
5586  *  If the target doesn't fetch the answer (no message out phase),
5587  *  we assume the negotiation has failed, and fall back to default
5588  *  settings (SIR_NEGO_PROTO interrupt).
5589  *
5590  *  When we set the values, we adjust them in all ccbs belonging
5591  *  to this target, in the controller's register, and in the "phys"
5592  *  field of the controller's struct sym_hcb.
5593  */
5594 
5595 /*
5596  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5597  */
5598 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5599 {
5600 	u_char	chg, ofs, per, fak, div;
5601 	int	req = 1;
5602 
5603 	/*
5604 	 *  Synchronous request message received.
5605 	 */
5606 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5607 		sym_print_msg(cp, "sync msgin", np->msgin);
5608 	};
5609 
5610 	/*
5611 	 * request or answer ?
5612 	 */
5613 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5614 		OUTB (HS_PRT, HS_BUSY);
5615 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5616 			goto reject_it;
5617 		req = 0;
5618 	}
5619 
5620 	/*
5621 	 *  get requested values.
5622 	 */
5623 	chg = 0;
5624 	per = np->msgin[3];
5625 	ofs = np->msgin[4];
5626 
5627 	/*
5628 	 *  check values against our limits.
5629 	 */
5630 	if (ofs) {
5631 		if (ofs > np->maxoffs)
5632 			{chg = 1; ofs = np->maxoffs;}
5633 		if (req) {
5634 			if (ofs > tp->tinfo.user.offset)
5635 				{chg = 1; ofs = tp->tinfo.user.offset;}
5636 		}
5637 	}
5638 
5639 	if (ofs) {
5640 		if (per < np->minsync)
5641 			{chg = 1; per = np->minsync;}
5642 		if (req) {
5643 			if (per < tp->tinfo.user.period)
5644 				{chg = 1; per = tp->tinfo.user.period;}
5645 		}
5646 	}
5647 
5648 	div = fak = 0;
5649 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5650 		goto reject_it;
5651 
5652 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5653 		PRINT_ADDR(cp);
5654 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5655 			ofs, per, div, fak, chg);
5656 	}
5657 
5658 	/*
5659 	 *  This was an answer message
5660 	 */
5661 	if (req == 0) {
5662 		if (chg) 	/* Answer wasn't acceptable. */
5663 			goto reject_it;
5664 		sym_setsync (np, cp, ofs, per, div, fak);
5665 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5666 		return;
5667 	}
5668 
5669 	/*
5670 	 *  It was a request. Set value and
5671 	 *  prepare an answer message
5672 	 */
5673 	sym_setsync (np, cp, ofs, per, div, fak);
5674 
5675 	np->msgout[0] = M_EXTENDED;
5676 	np->msgout[1] = 3;
5677 	np->msgout[2] = M_X_SYNC_REQ;
5678 	np->msgout[3] = per;
5679 	np->msgout[4] = ofs;
5680 
5681 	cp->nego_status = NS_SYNC;
5682 
5683 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5684 		sym_print_msg(cp, "sync msgout", np->msgout);
5685 	}
5686 
5687 	np->msgin [0] = M_NOOP;
5688 
5689 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5690 	return;
5691 reject_it:
5692 	sym_setsync (np, cp, 0, 0, 0, 0);
5693 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5694 }
5695 
5696 /*
5697  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5698  */
5699 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5700 {
5701 	u_char	chg, ofs, per, fak, dt, div, wide;
5702 	int	req = 1;
5703 
5704 	/*
5705 	 * Synchronous request message received.
5706 	 */
5707 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5708 		sym_print_msg(cp, "ppr msgin", np->msgin);
5709 	};
5710 
5711 	/*
5712 	 *  get requested values.
5713 	 */
5714 	chg  = 0;
5715 	per  = np->msgin[3];
5716 	ofs  = np->msgin[5];
5717 	wide = np->msgin[6];
5718 	dt   = np->msgin[7] & PPR_OPT_DT;
5719 
5720 	/*
5721 	 * request or answer ?
5722 	 */
5723 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5724 		OUTB (HS_PRT, HS_BUSY);
5725 		if (cp->nego_status && cp->nego_status != NS_PPR)
5726 			goto reject_it;
5727 		req = 0;
5728 	}
5729 
5730 	/*
5731 	 *  check values against our limits.
5732 	 */
5733 	if (wide > np->maxwide)
5734 		{chg = 1; wide = np->maxwide;}
5735 	if (!wide || !(np->features & FE_ULTRA3))
5736 		dt &= ~PPR_OPT_DT;
5737 	if (req) {
5738 		if (wide > tp->tinfo.user.width)
5739 			{chg = 1; wide = tp->tinfo.user.width;}
5740 	}
5741 
5742 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5743 		dt &= ~PPR_OPT_DT;
5744 
5745 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5746 
5747 	if (ofs) {
5748 		if (dt) {
5749 			if (ofs > np->maxoffs_dt)
5750 				{chg = 1; ofs = np->maxoffs_dt;}
5751 		}
5752 		else if (ofs > np->maxoffs)
5753 			{chg = 1; ofs = np->maxoffs;}
5754 		if (req) {
5755 			if (ofs > tp->tinfo.user.offset)
5756 				{chg = 1; ofs = tp->tinfo.user.offset;}
5757 		}
5758 	}
5759 
5760 	if (ofs) {
5761 		if (dt) {
5762 			if (per < np->minsync_dt)
5763 				{chg = 1; per = np->minsync_dt;}
5764 		}
5765 		else if (per < np->minsync)
5766 			{chg = 1; per = np->minsync;}
5767 		if (req) {
5768 			if (per < tp->tinfo.user.period)
5769 				{chg = 1; per = tp->tinfo.user.period;}
5770 		}
5771 	}
5772 
5773 	div = fak = 0;
5774 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5775 		goto reject_it;
5776 
5777 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5778 		PRINT_ADDR(cp);
5779 		printf ("ppr: "
5780 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5781 			dt, ofs, per, wide, div, fak, chg);
5782 	}
5783 
5784 	/*
5785 	 *  It was an answer.
5786 	 */
5787 	if (req == 0) {
5788 		if (chg) 	/* Answer wasn't acceptable */
5789 			goto reject_it;
5790 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5791 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5792 		return;
5793 	}
5794 
5795 	/*
5796 	 *  It was a request. Set value and
5797 	 *  prepare an answer message
5798 	 */
5799 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5800 
5801 	np->msgout[0] = M_EXTENDED;
5802 	np->msgout[1] = 6;
5803 	np->msgout[2] = M_X_PPR_REQ;
5804 	np->msgout[3] = per;
5805 	np->msgout[4] = 0;
5806 	np->msgout[5] = ofs;
5807 	np->msgout[6] = wide;
5808 	np->msgout[7] = dt;
5809 
5810 	cp->nego_status = NS_PPR;
5811 
5812 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5813 		sym_print_msg(cp, "ppr msgout", np->msgout);
5814 	}
5815 
5816 	np->msgin [0] = M_NOOP;
5817 
5818 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5819 	return;
5820 reject_it:
5821 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5822 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5823 	/*
5824 	 *  If it was a device response that should result in
5825 	 *  ST, we may want to try a legacy negotiation later.
5826 	 */
5827 	if (!req && !dt) {
5828 		tp->tinfo.goal.options = 0;
5829 		tp->tinfo.goal.width   = wide;
5830 		tp->tinfo.goal.period  = per;
5831 		tp->tinfo.goal.offset  = ofs;
5832 	}
5833 }
5834 
5835 /*
5836  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5837  */
5838 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5839 {
5840 	u_char	chg, wide;
5841 	int	req = 1;
5842 
5843 	/*
5844 	 *  Wide request message received.
5845 	 */
5846 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5847 		sym_print_msg(cp, "wide msgin", np->msgin);
5848 	};
5849 
5850 	/*
5851 	 * Is it a request from the device?
5852 	 */
5853 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5854 		OUTB (HS_PRT, HS_BUSY);
5855 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5856 			goto reject_it;
5857 		req = 0;
5858 	}
5859 
5860 	/*
5861 	 *  get requested values.
5862 	 */
5863 	chg  = 0;
5864 	wide = np->msgin[3];
5865 
5866 	/*
5867 	 *  check values against driver limits.
5868 	 */
5869 	if (wide > np->maxwide)
5870 		{chg = 1; wide = np->maxwide;}
5871 	if (req) {
5872 		if (wide > tp->tinfo.user.width)
5873 			{chg = 1; wide = tp->tinfo.user.width;}
5874 	}
5875 
5876 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5877 		PRINT_ADDR(cp);
5878 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5879 	}
5880 
5881 	/*
5882 	 * This was an answer message
5883 	 */
5884 	if (req == 0) {
5885 		if (chg)	/*  Answer wasn't acceptable. */
5886 			goto reject_it;
5887 		sym_setwide (np, cp, wide);
5888 
5889 		/*
5890 		 * Negotiate for SYNC immediately after WIDE response.
5891 		 * This allows to negotiate for both WIDE and SYNC on
5892 		 * a single SCSI command (Suggested by Justin Gibbs).
5893 		 */
5894 		if (tp->tinfo.goal.offset) {
5895 			np->msgout[0] = M_EXTENDED;
5896 			np->msgout[1] = 3;
5897 			np->msgout[2] = M_X_SYNC_REQ;
5898 			np->msgout[3] = tp->tinfo.goal.period;
5899 			np->msgout[4] = tp->tinfo.goal.offset;
5900 
5901 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5902 				sym_print_msg(cp, "sync msgout", np->msgout);
5903 			}
5904 
5905 			cp->nego_status = NS_SYNC;
5906 			OUTB (HS_PRT, HS_NEGOTIATE);
5907 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5908 			return;
5909 		}
5910 
5911 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5912 		return;
5913 	};
5914 
5915 	/*
5916 	 *  It was a request, set value and
5917 	 *  prepare an answer message
5918 	 */
5919 	sym_setwide (np, cp, wide);
5920 
5921 	np->msgout[0] = M_EXTENDED;
5922 	np->msgout[1] = 2;
5923 	np->msgout[2] = M_X_WIDE_REQ;
5924 	np->msgout[3] = wide;
5925 
5926 	np->msgin [0] = M_NOOP;
5927 
5928 	cp->nego_status = NS_WIDE;
5929 
5930 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5931 		sym_print_msg(cp, "wide msgout", np->msgout);
5932 	}
5933 
5934 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5935 	return;
5936 reject_it:
5937 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5938 }
5939 
5940 /*
5941  *  Reset SYNC or WIDE to default settings.
5942  *
5943  *  Called when a negotiation does not succeed either
5944  *  on rejection or on protocol error.
5945  *
5946  *  If it was a PPR that made problems, we may want to
5947  *  try a legacy negotiation later.
5948  */
5949 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5950 {
5951 	/*
5952 	 *  any error in negotiation:
5953 	 *  fall back to default mode.
5954 	 */
5955 	switch (cp->nego_status) {
5956 	case NS_PPR:
5957 #if 0
5958 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5959 #else
5960 		tp->tinfo.goal.options = 0;
5961 		if (tp->tinfo.goal.period < np->minsync)
5962 			tp->tinfo.goal.period = np->minsync;
5963 		if (tp->tinfo.goal.offset > np->maxoffs)
5964 			tp->tinfo.goal.offset = np->maxoffs;
5965 #endif
5966 		break;
5967 	case NS_SYNC:
5968 		sym_setsync (np, cp, 0, 0, 0, 0);
5969 		break;
5970 	case NS_WIDE:
5971 		sym_setwide (np, cp, 0);
5972 		break;
5973 	};
5974 	np->msgin [0] = M_NOOP;
5975 	np->msgout[0] = M_NOOP;
5976 	cp->nego_status = 0;
5977 }
5978 
5979 /*
5980  *  chip handler for MESSAGE REJECT received in response to
5981  *  a WIDE or SYNCHRONOUS negotiation.
5982  */
5983 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5984 {
5985 	sym_nego_default(np, tp, cp);
5986 	OUTB (HS_PRT, HS_BUSY);
5987 }
5988 
5989 /*
5990  *  chip exception handler for programmed interrupts.
5991  */
5992 static void sym_int_sir (hcb_p np)
5993 {
5994 	u_char	num	= INB (nc_dsps);
5995 	u32	dsa	= INL (nc_dsa);
5996 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
5997 	u_char	target	= INB (nc_sdid) & 0x0f;
5998 	tcb_p	tp	= &np->target[target];
5999 	int	tmp;
6000 
6001 	SYM_LOCK_ASSERT(MA_OWNED);
6002 
6003 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6004 
6005 	switch (num) {
6006 	/*
6007 	 *  Command has been completed with error condition
6008 	 *  or has been auto-sensed.
6009 	 */
6010 	case SIR_COMPLETE_ERROR:
6011 		sym_complete_error(np, cp);
6012 		return;
6013 	/*
6014 	 *  The C code is currently trying to recover from something.
6015 	 *  Typically, user want to abort some command.
6016 	 */
6017 	case SIR_SCRIPT_STOPPED:
6018 	case SIR_TARGET_SELECTED:
6019 	case SIR_ABORT_SENT:
6020 		sym_sir_task_recovery(np, num);
6021 		return;
6022 	/*
6023 	 *  The device didn't go to MSG OUT phase after having
6024 	 *  been selected with ATN. We donnot want to handle
6025 	 *  that.
6026 	 */
6027 	case SIR_SEL_ATN_NO_MSG_OUT:
6028 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6029 			sym_name (np), target);
6030 		goto out_stuck;
6031 	/*
6032 	 *  The device didn't switch to MSG IN phase after
6033 	 *  having reseleted the initiator.
6034 	 */
6035 	case SIR_RESEL_NO_MSG_IN:
6036 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6037 			sym_name (np), target);
6038 		goto out_stuck;
6039 	/*
6040 	 *  After reselection, the device sent a message that wasn't
6041 	 *  an IDENTIFY.
6042 	 */
6043 	case SIR_RESEL_NO_IDENTIFY:
6044 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6045 			sym_name (np), target);
6046 		goto out_stuck;
6047 	/*
6048 	 *  The device reselected a LUN we donnot know about.
6049 	 */
6050 	case SIR_RESEL_BAD_LUN:
6051 		np->msgout[0] = M_RESET;
6052 		goto out;
6053 	/*
6054 	 *  The device reselected for an untagged nexus and we
6055 	 *  haven't any.
6056 	 */
6057 	case SIR_RESEL_BAD_I_T_L:
6058 		np->msgout[0] = M_ABORT;
6059 		goto out;
6060 	/*
6061 	 *  The device reselected for a tagged nexus that we donnot
6062 	 *  have.
6063 	 */
6064 	case SIR_RESEL_BAD_I_T_L_Q:
6065 		np->msgout[0] = M_ABORT_TAG;
6066 		goto out;
6067 	/*
6068 	 *  The SCRIPTS let us know that the device has grabbed
6069 	 *  our message and will abort the job.
6070 	 */
6071 	case SIR_RESEL_ABORTED:
6072 		np->lastmsg = np->msgout[0];
6073 		np->msgout[0] = M_NOOP;
6074 		printf ("%s:%d: message %x sent on bad reselection.\n",
6075 			sym_name (np), target, np->lastmsg);
6076 		goto out;
6077 	/*
6078 	 *  The SCRIPTS let us know that a message has been
6079 	 *  successfully sent to the device.
6080 	 */
6081 	case SIR_MSG_OUT_DONE:
6082 		np->lastmsg = np->msgout[0];
6083 		np->msgout[0] = M_NOOP;
6084 		/* Should we really care of that */
6085 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6086 			if (cp) {
6087 				cp->xerr_status &= ~XE_PARITY_ERR;
6088 				if (!cp->xerr_status)
6089 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6090 			}
6091 		}
6092 		goto out;
6093 	/*
6094 	 *  The device didn't send a GOOD SCSI status.
6095 	 *  We may have some work to do prior to allow
6096 	 *  the SCRIPTS processor to continue.
6097 	 */
6098 	case SIR_BAD_SCSI_STATUS:
6099 		if (!cp)
6100 			goto out;
6101 		sym_sir_bad_scsi_status(np, cp);
6102 		return;
6103 	/*
6104 	 *  We are asked by the SCRIPTS to prepare a
6105 	 *  REJECT message.
6106 	 */
6107 	case SIR_REJECT_TO_SEND:
6108 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6109 		np->msgout[0] = M_REJECT;
6110 		goto out;
6111 	/*
6112 	 *  We have been ODD at the end of a DATA IN
6113 	 *  transfer and the device didn't send a
6114 	 *  IGNORE WIDE RESIDUE message.
6115 	 *  It is a data overrun condition.
6116 	 */
6117 	case SIR_SWIDE_OVERRUN:
6118 		if (cp) {
6119 			OUTONB (HF_PRT, HF_EXT_ERR);
6120 			cp->xerr_status |= XE_SWIDE_OVRUN;
6121 		}
6122 		goto out;
6123 	/*
6124 	 *  We have been ODD at the end of a DATA OUT
6125 	 *  transfer.
6126 	 *  It is a data underrun condition.
6127 	 */
6128 	case SIR_SODL_UNDERRUN:
6129 		if (cp) {
6130 			OUTONB (HF_PRT, HF_EXT_ERR);
6131 			cp->xerr_status |= XE_SODL_UNRUN;
6132 		}
6133 		goto out;
6134 	/*
6135 	 *  The device wants us to tranfer more data than
6136 	 *  expected or in the wrong direction.
6137 	 *  The number of extra bytes is in scratcha.
6138 	 *  It is a data overrun condition.
6139 	 */
6140 	case SIR_DATA_OVERRUN:
6141 		if (cp) {
6142 			OUTONB (HF_PRT, HF_EXT_ERR);
6143 			cp->xerr_status |= XE_EXTRA_DATA;
6144 			cp->extra_bytes += INL (nc_scratcha);
6145 		}
6146 		goto out;
6147 	/*
6148 	 *  The device switched to an illegal phase (4/5).
6149 	 */
6150 	case SIR_BAD_PHASE:
6151 		if (cp) {
6152 			OUTONB (HF_PRT, HF_EXT_ERR);
6153 			cp->xerr_status |= XE_BAD_PHASE;
6154 		}
6155 		goto out;
6156 	/*
6157 	 *  We received a message.
6158 	 */
6159 	case SIR_MSG_RECEIVED:
6160 		if (!cp)
6161 			goto out_stuck;
6162 		switch (np->msgin [0]) {
6163 		/*
6164 		 *  We received an extended message.
6165 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6166 		 *  and reject all other extended messages.
6167 		 */
6168 		case M_EXTENDED:
6169 			switch (np->msgin [2]) {
6170 			case M_X_MODIFY_DP:
6171 				if (DEBUG_FLAGS & DEBUG_POINTER)
6172 					sym_print_msg(cp,"modify DP",np->msgin);
6173 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6174 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6175 				sym_modify_dp(np, cp, tmp);
6176 				return;
6177 			case M_X_SYNC_REQ:
6178 				sym_sync_nego(np, tp, cp);
6179 				return;
6180 			case M_X_PPR_REQ:
6181 				sym_ppr_nego(np, tp, cp);
6182 				return;
6183 			case M_X_WIDE_REQ:
6184 				sym_wide_nego(np, tp, cp);
6185 				return;
6186 			default:
6187 				goto out_reject;
6188 			}
6189 			break;
6190 		/*
6191 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6192 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6193 		 *  RESIDUE messages that haven't been anticipated by
6194 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6195 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6196 		 */
6197 		case M_IGN_RESIDUE:
6198 			if (DEBUG_FLAGS & DEBUG_POINTER)
6199 				sym_print_msg(cp,"ign wide residue", np->msgin);
6200 			sym_modify_dp(np, cp, -1);
6201 			return;
6202 		case M_REJECT:
6203 			if (INB (HS_PRT) == HS_NEGOTIATE)
6204 				sym_nego_rejected(np, tp, cp);
6205 			else {
6206 				PRINT_ADDR(cp);
6207 				printf ("M_REJECT received (%x:%x).\n",
6208 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6209 			}
6210 			goto out_clrack;
6211 			break;
6212 		default:
6213 			goto out_reject;
6214 		}
6215 		break;
6216 	/*
6217 	 *  We received an unknown message.
6218 	 *  Ignore all MSG IN phases and reject it.
6219 	 */
6220 	case SIR_MSG_WEIRD:
6221 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6222 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6223 		return;
6224 	/*
6225 	 *  Negotiation failed.
6226 	 *  Target does not send us the reply.
6227 	 *  Remove the HS_NEGOTIATE status.
6228 	 */
6229 	case SIR_NEGO_FAILED:
6230 		OUTB (HS_PRT, HS_BUSY);
6231 	/*
6232 	 *  Negotiation failed.
6233 	 *  Target does not want answer message.
6234 	 */
6235 	case SIR_NEGO_PROTO:
6236 		sym_nego_default(np, tp, cp);
6237 		goto out;
6238 	};
6239 
6240 out:
6241 	OUTONB_STD ();
6242 	return;
6243 out_reject:
6244 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6245 	return;
6246 out_clrack:
6247 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6248 	return;
6249 out_stuck:
6250 	return;
6251 }
6252 
6253 /*
6254  *  Acquire a control block
6255  */
6256 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6257 {
6258 	tcb_p tp = &np->target[tn];
6259 	lcb_p lp = sym_lp(tp, ln);
6260 	u_short tag = NO_TAG;
6261 	SYM_QUEHEAD *qp;
6262 	ccb_p cp = (ccb_p) NULL;
6263 
6264 	/*
6265 	 *  Look for a free CCB
6266 	 */
6267 	if (sym_que_empty(&np->free_ccbq))
6268 		goto out;
6269 	qp = sym_remque_head(&np->free_ccbq);
6270 	if (!qp)
6271 		goto out;
6272 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6273 
6274 	/*
6275 	 *  If the LCB is not yet available and the LUN
6276 	 *  has been probed ok, try to allocate the LCB.
6277 	 */
6278 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6279 		lp = sym_alloc_lcb(np, tn, ln);
6280 		if (!lp)
6281 			goto out_free;
6282 	}
6283 
6284 	/*
6285 	 *  If the LCB is not available here, then the
6286 	 *  logical unit is not yet discovered. For those
6287 	 *  ones only accept 1 SCSI IO per logical unit,
6288 	 *  since we cannot allow disconnections.
6289 	 */
6290 	if (!lp) {
6291 		if (!sym_is_bit(tp->busy0_map, ln))
6292 			sym_set_bit(tp->busy0_map, ln);
6293 		else
6294 			goto out_free;
6295 	} else {
6296 		/*
6297 		 *  If we have been asked for a tagged command.
6298 		 */
6299 		if (tag_order) {
6300 			/*
6301 			 *  Debugging purpose.
6302 			 */
6303 			assert(lp->busy_itl == 0);
6304 			/*
6305 			 *  Allocate resources for tags if not yet.
6306 			 */
6307 			if (!lp->cb_tags) {
6308 				sym_alloc_lcb_tags(np, tn, ln);
6309 				if (!lp->cb_tags)
6310 					goto out_free;
6311 			}
6312 			/*
6313 			 *  Get a tag for this SCSI IO and set up
6314 			 *  the CCB bus address for reselection,
6315 			 *  and count it for this LUN.
6316 			 *  Toggle reselect path to tagged.
6317 			 */
6318 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6319 				tag = lp->cb_tags[lp->ia_tag];
6320 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6321 					lp->ia_tag = 0;
6322 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6323 				++lp->busy_itlq;
6324 				lp->head.resel_sa =
6325 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6326 			}
6327 			else
6328 				goto out_free;
6329 		}
6330 		/*
6331 		 *  This command will not be tagged.
6332 		 *  If we already have either a tagged or untagged
6333 		 *  one, refuse to overlap this untagged one.
6334 		 */
6335 		else {
6336 			/*
6337 			 *  Debugging purpose.
6338 			 */
6339 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6340 			/*
6341 			 *  Count this nexus for this LUN.
6342 			 *  Set up the CCB bus address for reselection.
6343 			 *  Toggle reselect path to untagged.
6344 			 */
6345 			if (++lp->busy_itl == 1) {
6346 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6347 				lp->head.resel_sa =
6348 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6349 			}
6350 			else
6351 				goto out_free;
6352 		}
6353 	}
6354 	/*
6355 	 *  Put the CCB into the busy queue.
6356 	 */
6357 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6358 
6359 	/*
6360 	 *  Remember all informations needed to free this CCB.
6361 	 */
6362 	cp->to_abort = 0;
6363 	cp->tag	   = tag;
6364 	cp->target = tn;
6365 	cp->lun    = ln;
6366 
6367 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6368 		PRINT_LUN(np, tn, ln);
6369 		printf ("ccb @%p using tag %d.\n", cp, tag);
6370 	}
6371 
6372 out:
6373 	return cp;
6374 out_free:
6375 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6376 	return NULL;
6377 }
6378 
6379 /*
6380  *  Release one control block
6381  */
6382 static void sym_free_ccb(hcb_p np, ccb_p cp)
6383 {
6384 	tcb_p tp = &np->target[cp->target];
6385 	lcb_p lp = sym_lp(tp, cp->lun);
6386 
6387 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6388 		PRINT_LUN(np, cp->target, cp->lun);
6389 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6390 	}
6391 
6392 	/*
6393 	 *  If LCB available,
6394 	 */
6395 	if (lp) {
6396 		/*
6397 		 *  If tagged, release the tag, set the relect path
6398 		 */
6399 		if (cp->tag != NO_TAG) {
6400 			/*
6401 			 *  Free the tag value.
6402 			 */
6403 			lp->cb_tags[lp->if_tag] = cp->tag;
6404 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6405 				lp->if_tag = 0;
6406 			/*
6407 			 *  Make the reselect path invalid,
6408 			 *  and uncount this CCB.
6409 			 */
6410 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6411 			--lp->busy_itlq;
6412 		} else {	/* Untagged */
6413 			/*
6414 			 *  Make the reselect path invalid,
6415 			 *  and uncount this CCB.
6416 			 */
6417 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6418 			--lp->busy_itl;
6419 		}
6420 		/*
6421 		 *  If no JOB active, make the LUN reselect path invalid.
6422 		 */
6423 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6424 			lp->head.resel_sa =
6425 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6426 	}
6427 	/*
6428 	 *  Otherwise, we only accept 1 IO per LUN.
6429 	 *  Clear the bit that keeps track of this IO.
6430 	 */
6431 	else
6432 		sym_clr_bit(tp->busy0_map, cp->lun);
6433 
6434 	/*
6435 	 *  We donnot queue more than 1 ccb per target
6436 	 *  with negotiation at any time. If this ccb was
6437 	 *  used for negotiation, clear this info in the tcb.
6438 	 */
6439 	if (cp == tp->nego_cp)
6440 		tp->nego_cp = NULL;
6441 
6442 #ifdef SYM_CONF_IARB_SUPPORT
6443 	/*
6444 	 *  If we just complete the last queued CCB,
6445 	 *  clear this info that is no longer relevant.
6446 	 */
6447 	if (cp == np->last_cp)
6448 		np->last_cp = NULL;
6449 #endif
6450 
6451 	/*
6452 	 *  Unmap user data from DMA map if needed.
6453 	 */
6454 	if (cp->dmamapped) {
6455 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6456 		cp->dmamapped = 0;
6457 	}
6458 
6459 	/*
6460 	 *  Make this CCB available.
6461 	 */
6462 	cp->cam_ccb = NULL;
6463 	cp->host_status = HS_IDLE;
6464 	sym_remque(&cp->link_ccbq);
6465 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6466 }
6467 
6468 /*
6469  *  Allocate a CCB from memory and initialize its fixed part.
6470  */
6471 static ccb_p sym_alloc_ccb(hcb_p np)
6472 {
6473 	ccb_p cp = NULL;
6474 	int hcode;
6475 
6476 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6477 
6478 	/*
6479 	 *  Prevent from allocating more CCBs than we can
6480 	 *  queue to the controller.
6481 	 */
6482 	if (np->actccbs >= SYM_CONF_MAX_START)
6483 		return NULL;
6484 
6485 	/*
6486 	 *  Allocate memory for this CCB.
6487 	 */
6488 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6489 	if (!cp)
6490 		return NULL;
6491 
6492 	/*
6493 	 *  Allocate a bounce buffer for sense data.
6494 	 */
6495 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6496 	if (!cp->sns_bbuf)
6497 		goto out_free;
6498 
6499 	/*
6500 	 *  Allocate a map for the DMA of user data.
6501 	 */
6502 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6503 		goto out_free;
6504 	/*
6505 	 *  Count it.
6506 	 */
6507 	np->actccbs++;
6508 
6509 	/*
6510 	 * Initialize the callout.
6511 	 */
6512 	callout_init(&cp->ch, 1);
6513 
6514 	/*
6515 	 *  Compute the bus address of this ccb.
6516 	 */
6517 	cp->ccb_ba = vtobus(cp);
6518 
6519 	/*
6520 	 *  Insert this ccb into the hashed list.
6521 	 */
6522 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6523 	cp->link_ccbh = np->ccbh[hcode];
6524 	np->ccbh[hcode] = cp;
6525 
6526 	/*
6527 	 *  Initialize the start and restart actions.
6528 	 */
6529 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6530 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6531 
6532  	/*
6533 	 *  Initilialyze some other fields.
6534 	 */
6535 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6536 
6537 	/*
6538 	 *  Chain into free ccb queue.
6539 	 */
6540 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6541 
6542 	return cp;
6543 out_free:
6544 	if (cp->sns_bbuf)
6545 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6546 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6547 	return NULL;
6548 }
6549 
6550 /*
6551  *  Look up a CCB from a DSA value.
6552  */
6553 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6554 {
6555 	int hcode;
6556 	ccb_p cp;
6557 
6558 	hcode = CCB_HASH_CODE(dsa);
6559 	cp = np->ccbh[hcode];
6560 	while (cp) {
6561 		if (cp->ccb_ba == dsa)
6562 			break;
6563 		cp = cp->link_ccbh;
6564 	}
6565 
6566 	return cp;
6567 }
6568 
6569 /*
6570  *  Lun control block allocation and initialization.
6571  */
6572 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6573 {
6574 	tcb_p tp = &np->target[tn];
6575 	lcb_p lp = sym_lp(tp, ln);
6576 
6577 	/*
6578 	 *  Already done, just return.
6579 	 */
6580 	if (lp)
6581 		return lp;
6582 	/*
6583 	 *  Check against some race.
6584 	 */
6585 	assert(!sym_is_bit(tp->busy0_map, ln));
6586 
6587 	/*
6588 	 *  Allocate the LCB bus address array.
6589 	 *  Compute the bus address of this table.
6590 	 */
6591 	if (ln && !tp->luntbl) {
6592 		int i;
6593 
6594 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6595 		if (!tp->luntbl)
6596 			goto fail;
6597 		for (i = 0 ; i < 64 ; i++)
6598 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6599 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6600 	}
6601 
6602 	/*
6603 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6604 	 */
6605 	if (ln && !tp->lunmp) {
6606 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6607 				   "LUNMP");
6608 		if (!tp->lunmp)
6609 			goto fail;
6610 	}
6611 
6612 	/*
6613 	 *  Allocate the lcb.
6614 	 *  Make it available to the chip.
6615 	 */
6616 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6617 	if (!lp)
6618 		goto fail;
6619 	if (ln) {
6620 		tp->lunmp[ln] = lp;
6621 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6622 	}
6623 	else {
6624 		tp->lun0p = lp;
6625 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6626 	}
6627 
6628 	/*
6629 	 *  Let the itl task point to error handling.
6630 	 */
6631 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6632 
6633 	/*
6634 	 *  Set the reselect pattern to our default. :)
6635 	 */
6636 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6637 
6638 	/*
6639 	 *  Set user capabilities.
6640 	 */
6641 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6642 
6643 fail:
6644 	return lp;
6645 }
6646 
6647 /*
6648  *  Allocate LCB resources for tagged command queuing.
6649  */
6650 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6651 {
6652 	tcb_p tp = &np->target[tn];
6653 	lcb_p lp = sym_lp(tp, ln);
6654 	int i;
6655 
6656 	/*
6657 	 *  If LCB not available, try to allocate it.
6658 	 */
6659 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6660 		return;
6661 
6662 	/*
6663 	 *  Allocate the task table and and the tag allocation
6664 	 *  circular buffer. We want both or none.
6665 	 */
6666 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6667 	if (!lp->itlq_tbl)
6668 		return;
6669 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6670 	if (!lp->cb_tags) {
6671 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6672 		lp->itlq_tbl = 0;
6673 		return;
6674 	}
6675 
6676 	/*
6677 	 *  Initialize the task table with invalid entries.
6678 	 */
6679 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6680 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6681 
6682 	/*
6683 	 *  Fill up the tag buffer with tag numbers.
6684 	 */
6685 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6686 		lp->cb_tags[i] = i;
6687 
6688 	/*
6689 	 *  Make the task table available to SCRIPTS,
6690 	 *  And accept tagged commands now.
6691 	 */
6692 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6693 }
6694 
6695 /*
6696  *  Test the pci bus snoop logic :-(
6697  *
6698  *  Has to be called with interrupts disabled.
6699  */
6700 #ifndef SYM_CONF_IOMAPPED
6701 static int sym_regtest (hcb_p np)
6702 {
6703 	register volatile u32 data;
6704 	/*
6705 	 *  chip registers may NOT be cached.
6706 	 *  write 0xffffffff to a read only register area,
6707 	 *  and try to read it back.
6708 	 */
6709 	data = 0xffffffff;
6710 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6711 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6712 #if 1
6713 	if (data == 0xffffffff) {
6714 #else
6715 	if ((data & 0xe2f0fffd) != 0x02000080) {
6716 #endif
6717 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6718 			(unsigned) data);
6719 		return (0x10);
6720 	};
6721 	return (0);
6722 }
6723 #endif
6724 
6725 static int sym_snooptest (hcb_p np)
6726 {
6727 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6728 	int	i, err=0;
6729 #ifndef SYM_CONF_IOMAPPED
6730 	err |= sym_regtest (np);
6731 	if (err) return (err);
6732 #endif
6733 restart_test:
6734 	/*
6735 	 *  Enable Master Parity Checking as we intend
6736 	 *  to enable it for normal operations.
6737 	 */
6738 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6739 	/*
6740 	 *  init
6741 	 */
6742 	pc  = SCRIPTB0_BA (np, snooptest);
6743 	host_wr = 1;
6744 	sym_wr  = 2;
6745 	/*
6746 	 *  Set memory and register.
6747 	 */
6748 	np->cache = cpu_to_scr(host_wr);
6749 	OUTL (nc_temp, sym_wr);
6750 	/*
6751 	 *  Start script (exchange values)
6752 	 */
6753 	OUTL (nc_dsa, np->hcb_ba);
6754 	OUTL_DSP (pc);
6755 	/*
6756 	 *  Wait 'til done (with timeout)
6757 	 */
6758 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6759 		if (INB(nc_istat) & (INTF|SIP|DIP))
6760 			break;
6761 	if (i>=SYM_SNOOP_TIMEOUT) {
6762 		printf ("CACHE TEST FAILED: timeout.\n");
6763 		return (0x20);
6764 	};
6765 	/*
6766 	 *  Check for fatal DMA errors.
6767 	 */
6768 	dstat = INB (nc_dstat);
6769 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6770 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6771 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6772 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6773 			sym_name(np));
6774 		np->rv_ctest4 &= ~MPEE;
6775 		goto restart_test;
6776 	}
6777 #endif
6778 	if (dstat & (MDPE|BF|IID)) {
6779 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6780 		return (0x80);
6781 	}
6782 	/*
6783 	 *  Save termination position.
6784 	 */
6785 	pc = INL (nc_dsp);
6786 	/*
6787 	 *  Read memory and register.
6788 	 */
6789 	host_rd = scr_to_cpu(np->cache);
6790 	sym_rd  = INL (nc_scratcha);
6791 	sym_bk  = INL (nc_temp);
6792 
6793 	/*
6794 	 *  Check termination position.
6795 	 */
6796 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6797 		printf ("CACHE TEST FAILED: script execution failed.\n");
6798 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6799 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6800 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6801 		return (0x40);
6802 	};
6803 	/*
6804 	 *  Show results.
6805 	 */
6806 	if (host_wr != sym_rd) {
6807 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6808 			(int) host_wr, (int) sym_rd);
6809 		err |= 1;
6810 	};
6811 	if (host_rd != sym_wr) {
6812 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6813 			(int) sym_wr, (int) host_rd);
6814 		err |= 2;
6815 	};
6816 	if (sym_bk != sym_wr) {
6817 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6818 			(int) sym_wr, (int) sym_bk);
6819 		err |= 4;
6820 	};
6821 
6822 	return (err);
6823 }
6824 
6825 /*
6826  *  Determine the chip's clock frequency.
6827  *
6828  *  This is essential for the negotiation of the synchronous
6829  *  transfer rate.
6830  *
6831  *  Note: we have to return the correct value.
6832  *  THERE IS NO SAFE DEFAULT VALUE.
6833  *
6834  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6835  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6836  *  do not have a clock doubler and so are provided with a
6837  *  80 MHz clock. All other fast20 boards incorporate a doubler
6838  *  and so should be delivered with a 40 MHz clock.
6839  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6840  *  clock and provide a clock quadrupler (160 Mhz).
6841  */
6842 
6843 /*
6844  *  Select SCSI clock frequency
6845  */
6846 static void sym_selectclock(hcb_p np, u_char scntl3)
6847 {
6848 	/*
6849 	 *  If multiplier not present or not selected, leave here.
6850 	 */
6851 	if (np->multiplier <= 1) {
6852 		OUTB(nc_scntl3,	scntl3);
6853 		return;
6854 	}
6855 
6856 	if (sym_verbose >= 2)
6857 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6858 
6859 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6860 	/*
6861 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6862 	 *  Otherwise wait 20 micro-seconds.
6863 	 */
6864 	if (np->features & FE_LCKFRQ) {
6865 		int i = 20;
6866 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6867 			UDELAY (20);
6868 		if (!i)
6869 			printf("%s: the chip cannot lock the frequency\n",
6870 				sym_name(np));
6871 	} else
6872 		UDELAY (20);
6873 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6874 	OUTB(nc_scntl3,	scntl3);
6875 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6876 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6877 }
6878 
6879 /*
6880  *  calculate SCSI clock frequency (in KHz)
6881  */
6882 static unsigned getfreq (hcb_p np, int gen)
6883 {
6884 	unsigned int ms = 0;
6885 	unsigned int f;
6886 
6887 	/*
6888 	 * Measure GEN timer delay in order
6889 	 * to calculate SCSI clock frequency
6890 	 *
6891 	 * This code will never execute too
6892 	 * many loop iterations (if DELAY is
6893 	 * reasonably correct). It could get
6894 	 * too low a delay (too high a freq.)
6895 	 * if the CPU is slow executing the
6896 	 * loop for some reason (an NMI, for
6897 	 * example). For this reason we will
6898 	 * if multiple measurements are to be
6899 	 * performed trust the higher delay
6900 	 * (lower frequency returned).
6901 	 */
6902 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6903 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6904 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6905 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6906 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6907 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6908 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6909 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6910 		UDELAY (1000);	/* count ms */
6911 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6912  	/*
6913  	 * set prescaler to divide by whatever 0 means
6914  	 * 0 ought to choose divide by 2, but appears
6915  	 * to set divide by 3.5 mode in my 53c810 ...
6916  	 */
6917  	OUTB (nc_scntl3, 0);
6918 
6919   	/*
6920  	 * adjust for prescaler, and convert into KHz
6921   	 */
6922 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6923 
6924 	if (sym_verbose >= 2)
6925 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6926 			sym_name(np), gen, ms, f);
6927 
6928 	return f;
6929 }
6930 
6931 static unsigned sym_getfreq (hcb_p np)
6932 {
6933 	u_int f1, f2;
6934 	int gen = 11;
6935 
6936 	(void) getfreq (np, gen);	/* throw away first result */
6937 	f1 = getfreq (np, gen);
6938 	f2 = getfreq (np, gen);
6939 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6940 	return f1;
6941 }
6942 
6943 /*
6944  *  Get/probe chip SCSI clock frequency
6945  */
6946 static void sym_getclock (hcb_p np, int mult)
6947 {
6948 	unsigned char scntl3 = np->sv_scntl3;
6949 	unsigned char stest1 = np->sv_stest1;
6950 	unsigned f1;
6951 
6952 	/*
6953 	 *  For the C10 core, assume 40 MHz.
6954 	 */
6955 	if (np->features & FE_C10) {
6956 		np->multiplier = mult;
6957 		np->clock_khz = 40000 * mult;
6958 		return;
6959 	}
6960 
6961 	np->multiplier = 1;
6962 	f1 = 40000;
6963 	/*
6964 	 *  True with 875/895/896/895A with clock multiplier selected
6965 	 */
6966 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6967 		if (sym_verbose >= 2)
6968 			printf ("%s: clock multiplier found\n", sym_name(np));
6969 		np->multiplier = mult;
6970 	}
6971 
6972 	/*
6973 	 *  If multiplier not found or scntl3 not 7,5,3,
6974 	 *  reset chip and get frequency from general purpose timer.
6975 	 *  Otherwise trust scntl3 BIOS setting.
6976 	 */
6977 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6978 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6979 		f1 = sym_getfreq (np);
6980 
6981 		if (sym_verbose)
6982 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
6983 
6984 		if	(f1 <	45000)		f1 =  40000;
6985 		else if (f1 <	55000)		f1 =  50000;
6986 		else				f1 =  80000;
6987 
6988 		if (f1 < 80000 && mult > 1) {
6989 			if (sym_verbose >= 2)
6990 				printf ("%s: clock multiplier assumed\n",
6991 					sym_name(np));
6992 			np->multiplier	= mult;
6993 		}
6994 	} else {
6995 		if	((scntl3 & 7) == 3)	f1 =  40000;
6996 		else if	((scntl3 & 7) == 5)	f1 =  80000;
6997 		else 				f1 = 160000;
6998 
6999 		f1 /= np->multiplier;
7000 	}
7001 
7002 	/*
7003 	 *  Compute controller synchronous parameters.
7004 	 */
7005 	f1		*= np->multiplier;
7006 	np->clock_khz	= f1;
7007 }
7008 
7009 /*
7010  *  Get/probe PCI clock frequency
7011  */
7012 static int sym_getpciclock (hcb_p np)
7013 {
7014 	int f = 0;
7015 
7016 	/*
7017 	 *  For the C1010-33, this doesn't work.
7018 	 *  For the C1010-66, this will be tested when I'll have
7019 	 *  such a beast to play with.
7020 	 */
7021 	if (!(np->features & FE_C10)) {
7022 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7023 		f = (int) sym_getfreq (np);
7024 		OUTB (nc_stest1, 0);
7025 	}
7026 	np->pciclk_khz = f;
7027 
7028 	return f;
7029 }
7030 
7031 /*============= DRIVER ACTION/COMPLETION ====================*/
7032 
7033 /*
7034  *  Print something that tells about extended errors.
7035  */
7036 static void sym_print_xerr(ccb_p cp, int x_status)
7037 {
7038 	if (x_status & XE_PARITY_ERR) {
7039 		PRINT_ADDR(cp);
7040 		printf ("unrecovered SCSI parity error.\n");
7041 	}
7042 	if (x_status & XE_EXTRA_DATA) {
7043 		PRINT_ADDR(cp);
7044 		printf ("extraneous data discarded.\n");
7045 	}
7046 	if (x_status & XE_BAD_PHASE) {
7047 		PRINT_ADDR(cp);
7048 		printf ("illegal scsi phase (4/5).\n");
7049 	}
7050 	if (x_status & XE_SODL_UNRUN) {
7051 		PRINT_ADDR(cp);
7052 		printf ("ODD transfer in DATA OUT phase.\n");
7053 	}
7054 	if (x_status & XE_SWIDE_OVRUN) {
7055 		PRINT_ADDR(cp);
7056 		printf ("ODD transfer in DATA IN phase.\n");
7057 	}
7058 }
7059 
7060 /*
7061  *  Choose the more appropriate CAM status if
7062  *  the IO encountered an extended error.
7063  */
7064 static int sym_xerr_cam_status(int cam_status, int x_status)
7065 {
7066 	if (x_status) {
7067 		if	(x_status & XE_PARITY_ERR)
7068 			cam_status = CAM_UNCOR_PARITY;
7069 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7070 			cam_status = CAM_DATA_RUN_ERR;
7071 		else if	(x_status & XE_BAD_PHASE)
7072 			cam_status = CAM_REQ_CMP_ERR;
7073 		else
7074 			cam_status = CAM_REQ_CMP_ERR;
7075 	}
7076 	return cam_status;
7077 }
7078 
7079 /*
7080  *  Complete execution of a SCSI command with extented
7081  *  error, SCSI status error, or having been auto-sensed.
7082  *
7083  *  The SCRIPTS processor is not running there, so we
7084  *  can safely access IO registers and remove JOBs from
7085  *  the START queue.
7086  *  SCRATCHA is assumed to have been loaded with STARTPOS
7087  *  before the SCRIPTS called the C code.
7088  */
7089 static void sym_complete_error (hcb_p np, ccb_p cp)
7090 {
7091 	struct ccb_scsiio *csio;
7092 	u_int cam_status;
7093 	int i, sense_returned;
7094 
7095 	SYM_LOCK_ASSERT(MA_OWNED);
7096 
7097 	/*
7098 	 *  Paranoid check. :)
7099 	 */
7100 	if (!cp || !cp->cam_ccb)
7101 		return;
7102 
7103 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7104 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7105 			cp->host_status, cp->ssss_status, cp->host_flags,
7106 			cp->target, cp->lun);
7107 		MDELAY(100);
7108 	}
7109 
7110 	/*
7111 	 *  Get CAM command pointer.
7112 	 */
7113 	csio = &cp->cam_ccb->csio;
7114 
7115 	/*
7116 	 *  Check for extended errors.
7117 	 */
7118 	if (cp->xerr_status) {
7119 		if (sym_verbose)
7120 			sym_print_xerr(cp, cp->xerr_status);
7121 		if (cp->host_status == HS_COMPLETE)
7122 			cp->host_status = HS_COMP_ERR;
7123 	}
7124 
7125 	/*
7126 	 *  Calculate the residual.
7127 	 */
7128 	csio->sense_resid = 0;
7129 	csio->resid = sym_compute_residual(np, cp);
7130 
7131 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7132 		csio->resid  = 0;	/* throw them away. :)		   */
7133 		cp->sv_resid = 0;
7134 	}
7135 
7136 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7137 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7138 		csio->sense_resid = csio->resid;	/* Swap residuals */
7139 		csio->resid       = cp->sv_resid;
7140 		cp->sv_resid	  = 0;
7141 		if (sym_verbose && cp->sv_xerr_status)
7142 			sym_print_xerr(cp, cp->sv_xerr_status);
7143 		if (cp->host_status == HS_COMPLETE &&
7144 		    cp->ssss_status == S_GOOD &&
7145 		    cp->xerr_status == 0) {
7146 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7147 							 cp->sv_xerr_status);
7148 			cam_status |= CAM_AUTOSNS_VALID;
7149 			/*
7150 			 *  Bounce back the sense data to user and
7151 			 *  fix the residual.
7152 			 */
7153 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7154 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7155 			if (sense_returned < csio->sense_len)
7156 				csio->sense_resid = csio->sense_len -
7157 				    sense_returned;
7158 			else
7159 				csio->sense_resid = 0;
7160 			bcopy(cp->sns_bbuf, &csio->sense_data,
7161 			    MIN(csio->sense_len, sense_returned));
7162 #if 0
7163 			/*
7164 			 *  If the device reports a UNIT ATTENTION condition
7165 			 *  due to a RESET condition, we should consider all
7166 			 *  disconnect CCBs for this unit as aborted.
7167 			 */
7168 			if (1) {
7169 				u_char *p;
7170 				p  = (u_char *) csio->sense_data;
7171 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7172 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7173 							cp->target,cp->lun, -1);
7174 			}
7175 #endif
7176 		}
7177 		else
7178 			cam_status = CAM_AUTOSENSE_FAIL;
7179 	}
7180 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7181 		csio->scsi_status = cp->ssss_status;
7182 		cam_status = CAM_SCSI_STATUS_ERROR;
7183 	}
7184 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7185 		cam_status = CAM_SEL_TIMEOUT;
7186 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7187 		cam_status = CAM_UNEXP_BUSFREE;
7188 	else {						/* Extended error */
7189 		if (sym_verbose) {
7190 			PRINT_ADDR(cp);
7191 			printf ("COMMAND FAILED (%x %x %x).\n",
7192 				cp->host_status, cp->ssss_status,
7193 				cp->xerr_status);
7194 		}
7195 		csio->scsi_status = cp->ssss_status;
7196 		/*
7197 		 *  Set the most appropriate value for CAM status.
7198 		 */
7199 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7200 						 cp->xerr_status);
7201 	}
7202 
7203 	/*
7204 	 *  Dequeue all queued CCBs for that device
7205 	 *  not yet started by SCRIPTS.
7206 	 */
7207 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7208 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7209 
7210 	/*
7211 	 *  Restart the SCRIPTS processor.
7212 	 */
7213 	OUTL_DSP (SCRIPTA_BA (np, start));
7214 
7215 	/*
7216 	 *  Synchronize DMA map if needed.
7217 	 */
7218 	if (cp->dmamapped) {
7219 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7220 			(cp->dmamapped == SYM_DMA_READ ?
7221 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7222 	}
7223 	/*
7224 	 *  Add this one to the COMP queue.
7225 	 *  Complete all those commands with either error
7226 	 *  or requeue condition.
7227 	 */
7228 	sym_set_cam_status((union ccb *) csio, cam_status);
7229 	sym_remque(&cp->link_ccbq);
7230 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7231 	sym_flush_comp_queue(np, 0);
7232 }
7233 
7234 /*
7235  *  Complete execution of a successful SCSI command.
7236  *
7237  *  Only successful commands go to the DONE queue,
7238  *  since we need to have the SCRIPTS processor
7239  *  stopped on any error condition.
7240  *  The SCRIPTS processor is running while we are
7241  *  completing successful commands.
7242  */
7243 static void sym_complete_ok (hcb_p np, ccb_p cp)
7244 {
7245 	struct ccb_scsiio *csio;
7246 	tcb_p tp;
7247 	lcb_p lp;
7248 
7249 	SYM_LOCK_ASSERT(MA_OWNED);
7250 
7251 	/*
7252 	 *  Paranoid check. :)
7253 	 */
7254 	if (!cp || !cp->cam_ccb)
7255 		return;
7256 	assert (cp->host_status == HS_COMPLETE);
7257 
7258 	/*
7259 	 *  Get command, target and lun pointers.
7260 	 */
7261 	csio = &cp->cam_ccb->csio;
7262 	tp = &np->target[cp->target];
7263 	lp = sym_lp(tp, cp->lun);
7264 
7265 	/*
7266 	 *  Assume device discovered on first success.
7267 	 */
7268 	if (!lp)
7269 		sym_set_bit(tp->lun_map, cp->lun);
7270 
7271 	/*
7272 	 *  If all data have been transferred, given than no
7273 	 *  extended error did occur, there is no residual.
7274 	 */
7275 	csio->resid = 0;
7276 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7277 		csio->resid = sym_compute_residual(np, cp);
7278 
7279 	/*
7280 	 *  Wrong transfer residuals may be worse than just always
7281 	 *  returning zero. User can disable this feature from
7282 	 *  sym_conf.h. Residual support is enabled by default.
7283 	 */
7284 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7285 		csio->resid  = 0;
7286 
7287 	/*
7288 	 *  Synchronize DMA map if needed.
7289 	 */
7290 	if (cp->dmamapped) {
7291 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7292 			(cp->dmamapped == SYM_DMA_READ ?
7293 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7294 	}
7295 	/*
7296 	 *  Set status and complete the command.
7297 	 */
7298 	csio->scsi_status = cp->ssss_status;
7299 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7300 	sym_xpt_done(np, (union ccb *) csio, cp);
7301 	sym_free_ccb(np, cp);
7302 }
7303 
7304 /*
7305  *  Our callout handler
7306  */
7307 static void sym_callout(void *arg)
7308 {
7309 	union ccb *ccb = (union ccb *) arg;
7310 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7311 
7312 	/*
7313 	 *  Check that the CAM CCB is still queued.
7314 	 */
7315 	if (!np)
7316 		return;
7317 
7318 	SYM_LOCK();
7319 
7320 	switch(ccb->ccb_h.func_code) {
7321 	case XPT_SCSI_IO:
7322 		(void) sym_abort_scsiio(np, ccb, 1);
7323 		break;
7324 	default:
7325 		break;
7326 	}
7327 
7328 	SYM_UNLOCK();
7329 }
7330 
7331 /*
7332  *  Abort an SCSI IO.
7333  */
7334 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7335 {
7336 	ccb_p cp;
7337 	SYM_QUEHEAD *qp;
7338 
7339 	SYM_LOCK_ASSERT(MA_OWNED);
7340 
7341 	/*
7342 	 *  Look up our CCB control block.
7343 	 */
7344 	cp = NULL;
7345 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7346 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7347 		if (cp2->cam_ccb == ccb) {
7348 			cp = cp2;
7349 			break;
7350 		}
7351 	}
7352 	if (!cp || cp->host_status == HS_WAIT)
7353 		return -1;
7354 
7355 	/*
7356 	 *  If a previous abort didn't succeed in time,
7357 	 *  perform a BUS reset.
7358 	 */
7359 	if (cp->to_abort) {
7360 		sym_reset_scsi_bus(np, 1);
7361 		return 0;
7362 	}
7363 
7364 	/*
7365 	 *  Mark the CCB for abort and allow time for.
7366 	 */
7367 	cp->to_abort = timed_out ? 2 : 1;
7368 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7369 
7370 	/*
7371 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7372 	 */
7373 	np->istat_sem = SEM;
7374 	OUTB (nc_istat, SIGP|SEM);
7375 	return 0;
7376 }
7377 
7378 /*
7379  *  Reset a SCSI device (all LUNs of a target).
7380  */
7381 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7382 {
7383 	tcb_p tp;
7384 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7385 
7386 	SYM_LOCK_ASSERT(MA_OWNED);
7387 
7388 	if (ccb_h->target_id   == np->myaddr ||
7389 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7390 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7391 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7392 		return;
7393 	}
7394 
7395 	tp = &np->target[ccb_h->target_id];
7396 
7397 	tp->to_reset = 1;
7398 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7399 
7400 	np->istat_sem = SEM;
7401 	OUTB (nc_istat, SIGP|SEM);
7402 }
7403 
7404 /*
7405  *  SIM action entry point.
7406  */
7407 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7408 {
7409 	hcb_p	np;
7410 	tcb_p	tp;
7411 	lcb_p	lp;
7412 	ccb_p	cp;
7413 	int 	tmp;
7414 	u_char	idmsg, *msgptr;
7415 	u_int   msglen;
7416 	struct	ccb_scsiio *csio;
7417 	struct	ccb_hdr  *ccb_h;
7418 
7419 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7420 
7421 	/*
7422 	 *  Retrieve our controller data structure.
7423 	 */
7424 	np = (hcb_p) cam_sim_softc(sim);
7425 
7426 	SYM_LOCK_ASSERT(MA_OWNED);
7427 
7428 	/*
7429 	 *  The common case is SCSI IO.
7430 	 *  We deal with other ones elsewhere.
7431 	 */
7432 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7433 		sym_action2(sim, ccb);
7434 		return;
7435 	}
7436 	csio  = &ccb->csio;
7437 	ccb_h = &csio->ccb_h;
7438 
7439 	/*
7440 	 *  Work around races.
7441 	 */
7442 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7443 		xpt_done(ccb);
7444 		return;
7445 	}
7446 
7447 	/*
7448 	 *  Minimal checkings, so that we will not
7449 	 *  go outside our tables.
7450 	 */
7451 	if (ccb_h->target_id   == np->myaddr ||
7452 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7453 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7454 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7455 		return;
7456         }
7457 
7458 	/*
7459 	 *  Retrieve the target and lun descriptors.
7460 	 */
7461 	tp = &np->target[ccb_h->target_id];
7462 	lp = sym_lp(tp, ccb_h->target_lun);
7463 
7464 	/*
7465 	 *  Complete the 1st INQUIRY command with error
7466 	 *  condition if the device is flagged NOSCAN
7467 	 *  at BOOT in the NVRAM. This may speed up
7468 	 *  the boot and maintain coherency with BIOS
7469 	 *  device numbering. Clearing the flag allows
7470 	 *  user to rescan skipped devices later.
7471 	 *  We also return error for devices not flagged
7472 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7473 	 *  devices behave badly when asked for some non
7474 	 *  zero LUN. Btw, this is an absolute hack.:-)
7475 	 */
7476 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7477 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7478 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7479 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7480 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7481 		     ccb_h->target_lun != 0)) {
7482 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7483 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7484 			return;
7485 		}
7486 	}
7487 
7488 	/*
7489 	 *  Get a control block for this IO.
7490 	 */
7491 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7492 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7493 	if (!cp) {
7494 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7495 		return;
7496 	}
7497 
7498 	/*
7499 	 *  Keep track of the IO in our CCB.
7500 	 */
7501 	cp->cam_ccb = ccb;
7502 
7503 	/*
7504 	 *  Build the IDENTIFY message.
7505 	 */
7506 	idmsg = M_IDENTIFY | cp->lun;
7507 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7508 		idmsg |= 0x40;
7509 
7510 	msgptr = cp->scsi_smsg;
7511 	msglen = 0;
7512 	msgptr[msglen++] = idmsg;
7513 
7514 	/*
7515 	 *  Build the tag message if present.
7516 	 */
7517 	if (cp->tag != NO_TAG) {
7518 		u_char order = csio->tag_action;
7519 
7520 		switch(order) {
7521 		case M_ORDERED_TAG:
7522 			break;
7523 		case M_HEAD_TAG:
7524 			break;
7525 		default:
7526 			order = M_SIMPLE_TAG;
7527 		}
7528 		msgptr[msglen++] = order;
7529 
7530 		/*
7531 		 *  For less than 128 tags, actual tags are numbered
7532 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7533 		 *  with devices that have problems with #TAG 0 or too
7534 		 *  great #TAG numbers. For more tags (up to 256),
7535 		 *  we use directly our tag number.
7536 		 */
7537 #if SYM_CONF_MAX_TASK > (512/4)
7538 		msgptr[msglen++] = cp->tag;
7539 #else
7540 		msgptr[msglen++] = (cp->tag << 1) + 1;
7541 #endif
7542 	}
7543 
7544 	/*
7545 	 *  Build a negotiation message if needed.
7546 	 *  (nego_status is filled by sym_prepare_nego())
7547 	 */
7548 	cp->nego_status = 0;
7549 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7550 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7551 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7552 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7553 		if (!tp->nego_cp && lp)
7554 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7555 	}
7556 
7557 	/*
7558 	 *  Fill in our ccb
7559 	 */
7560 
7561 	/*
7562 	 *  Startqueue
7563 	 */
7564 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7565 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7566 
7567 	/*
7568 	 *  select
7569 	 */
7570 	cp->phys.select.sel_id		= cp->target;
7571 	cp->phys.select.sel_scntl3	= tp->head.wval;
7572 	cp->phys.select.sel_sxfer	= tp->head.sval;
7573 	cp->phys.select.sel_scntl4	= tp->head.uval;
7574 
7575 	/*
7576 	 *  message
7577 	 */
7578 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7579 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7580 
7581 	/*
7582 	 *  command
7583 	 */
7584 	if (sym_setup_cdb(np, csio, cp) < 0) {
7585 		sym_xpt_done(np, ccb, cp);
7586 		sym_free_ccb(np, cp);
7587 		return;
7588 	}
7589 
7590 	/*
7591 	 *  status
7592 	 */
7593 #if	0	/* Provision */
7594 	cp->actualquirks	= tp->quirks;
7595 #endif
7596 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7597 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7598 	cp->ssss_status		= S_ILLEGAL;
7599 	cp->xerr_status		= 0;
7600 	cp->host_flags		= 0;
7601 	cp->extra_bytes		= 0;
7602 
7603 	/*
7604 	 *  extreme data pointer.
7605 	 *  shall be positive, so -1 is lower than lowest.:)
7606 	 */
7607 	cp->ext_sg  = -1;
7608 	cp->ext_ofs = 0;
7609 
7610 	/*
7611 	 *  Build the data descriptor block
7612 	 *  and start the IO.
7613 	 */
7614 	sym_setup_data_and_start(np, csio, cp);
7615 }
7616 
7617 /*
7618  *  Setup buffers and pointers that address the CDB.
7619  *  I bet, physical CDBs will never be used on the planet,
7620  *  since they can be bounced without significant overhead.
7621  */
7622 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7623 {
7624 	struct ccb_hdr *ccb_h;
7625 	u32	cmd_ba;
7626 	int	cmd_len;
7627 
7628 	SYM_LOCK_ASSERT(MA_OWNED);
7629 
7630 	ccb_h = &csio->ccb_h;
7631 
7632 	/*
7633 	 *  CDB is 16 bytes max.
7634 	 */
7635 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7636 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7637 		return -1;
7638 	}
7639 	cmd_len = csio->cdb_len;
7640 
7641 	if (ccb_h->flags & CAM_CDB_POINTER) {
7642 		/* CDB is a pointer */
7643 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7644 			/* CDB pointer is virtual */
7645 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7646 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7647 		} else {
7648 			/* CDB pointer is physical */
7649 #if 0
7650 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7651 #else
7652 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7653 			return -1;
7654 #endif
7655 		}
7656 	} else {
7657 		/* CDB is in the CAM ccb (buffer) */
7658 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7659 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7660 	}
7661 
7662 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7663 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7664 
7665 	return 0;
7666 }
7667 
7668 /*
7669  *  Set up data pointers used by SCRIPTS.
7670  */
7671 static void __inline
7672 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7673 {
7674 	u32 lastp, goalp;
7675 
7676 	SYM_LOCK_ASSERT(MA_OWNED);
7677 
7678 	/*
7679 	 *  No segments means no data.
7680 	 */
7681 	if (!cp->segments)
7682 		dir = CAM_DIR_NONE;
7683 
7684 	/*
7685 	 *  Set the data pointer.
7686 	 */
7687 	switch(dir) {
7688 	case CAM_DIR_OUT:
7689 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7690 		lastp = goalp - 8 - (cp->segments * (2*4));
7691 		break;
7692 	case CAM_DIR_IN:
7693 		cp->host_flags |= HF_DATA_IN;
7694 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7695 		lastp = goalp - 8 - (cp->segments * (2*4));
7696 		break;
7697 	case CAM_DIR_NONE:
7698 	default:
7699 		lastp = goalp = SCRIPTB_BA (np, no_data);
7700 		break;
7701 	}
7702 
7703 	cp->phys.head.lastp = cpu_to_scr(lastp);
7704 	cp->phys.head.goalp = cpu_to_scr(goalp);
7705 	cp->phys.head.savep = cpu_to_scr(lastp);
7706 	cp->startp	    = cp->phys.head.savep;
7707 }
7708 
7709 /*
7710  *  Call back routine for the DMA map service.
7711  *  If bounce buffers are used (why ?), we may sleep and then
7712  *  be called there in another context.
7713  */
7714 static void
7715 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7716 {
7717 	ccb_p	cp;
7718 	hcb_p	np;
7719 	union	ccb *ccb;
7720 
7721 	cp  = (ccb_p) arg;
7722 	ccb = cp->cam_ccb;
7723 	np  = (hcb_p) cp->arg;
7724 
7725 	SYM_LOCK_ASSERT(MA_OWNED);
7726 
7727 	/*
7728 	 *  Deal with weird races.
7729 	 */
7730 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7731 		goto out_abort;
7732 
7733 	/*
7734 	 *  Deal with weird errors.
7735 	 */
7736 	if (error) {
7737 		cp->dmamapped = 0;
7738 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7739 		goto out_abort;
7740 	}
7741 
7742 	/*
7743 	 *  Build the data descriptor for the chip.
7744 	 */
7745 	if (nsegs) {
7746 		int retv;
7747 		/* 896 rev 1 requires to be careful about boundaries */
7748 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7749 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7750 		else
7751 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7752 		if (retv < 0) {
7753 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7754 			goto out_abort;
7755 		}
7756 	}
7757 
7758 	/*
7759 	 *  Synchronize the DMA map only if we have
7760 	 *  actually mapped the data.
7761 	 */
7762 	if (cp->dmamapped) {
7763 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7764 			(cp->dmamapped == SYM_DMA_READ ?
7765 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7766 	}
7767 
7768 	/*
7769 	 *  Set host status to busy state.
7770 	 *  May have been set back to HS_WAIT to avoid a race.
7771 	 */
7772 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7773 
7774 	/*
7775 	 *  Set data pointers.
7776 	 */
7777 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7778 
7779 	/*
7780 	 *  Enqueue this IO in our pending queue.
7781 	 */
7782 	sym_enqueue_cam_ccb(cp);
7783 
7784 	/*
7785 	 *  When `#ifed 1', the code below makes the driver
7786 	 *  panic on the first attempt to write to a SCSI device.
7787 	 *  It is the first test we want to do after a driver
7788 	 *  change that does not seem obviously safe. :)
7789 	 */
7790 #if 0
7791 	switch (cp->cdb_buf[0]) {
7792 	case 0x0A: case 0x2A: case 0xAA:
7793 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7794 		MDELAY(10000);
7795 		break;
7796 	default:
7797 		break;
7798 	}
7799 #endif
7800 	/*
7801 	 *  Activate this job.
7802 	 */
7803 	sym_put_start_queue(np, cp);
7804 	return;
7805 out_abort:
7806 	sym_xpt_done(np, ccb, cp);
7807 	sym_free_ccb(np, cp);
7808 }
7809 
7810 /*
7811  *  How complex it gets to deal with the data in CAM.
7812  *  The Bus Dma stuff makes things still more complex.
7813  */
7814 static void
7815 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7816 {
7817 	struct ccb_hdr *ccb_h;
7818 	int dir, retv;
7819 
7820 	SYM_LOCK_ASSERT(MA_OWNED);
7821 
7822 	ccb_h = &csio->ccb_h;
7823 
7824 	/*
7825 	 *  Now deal with the data.
7826 	 */
7827 	cp->data_len = csio->dxfer_len;
7828 	cp->arg      = np;
7829 
7830 	/*
7831 	 *  No direction means no data.
7832 	 */
7833 	dir = (ccb_h->flags & CAM_DIR_MASK);
7834 	if (dir == CAM_DIR_NONE) {
7835 		sym_execute_ccb(cp, NULL, 0, 0);
7836 		return;
7837 	}
7838 
7839 	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7840 	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7841 			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7842 	if (retv == EINPROGRESS) {
7843 		cp->host_status	= HS_WAIT;
7844 		xpt_freeze_simq(np->sim, 1);
7845 		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7846 	}
7847 }
7848 
7849 /*
7850  *  Move the scatter list to our data block.
7851  */
7852 static int
7853 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7854 			     bus_dma_segment_t *psegs, int nsegs)
7855 {
7856 	struct sym_tblmove *data;
7857 	bus_dma_segment_t *psegs2;
7858 
7859 	SYM_LOCK_ASSERT(MA_OWNED);
7860 
7861 	if (nsegs > SYM_CONF_MAX_SG)
7862 		return -1;
7863 
7864 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7865 	psegs2 = &psegs[nsegs-1];
7866 	cp->segments = nsegs;
7867 
7868 	while (1) {
7869 		data->addr = cpu_to_scr(psegs2->ds_addr);
7870 		data->size = cpu_to_scr(psegs2->ds_len);
7871 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7872 			printf ("%s scatter: paddr=%lx len=%ld\n",
7873 				sym_name(np), (long) psegs2->ds_addr,
7874 				(long) psegs2->ds_len);
7875 		}
7876 		if (psegs2 != psegs) {
7877 			--data;
7878 			--psegs2;
7879 			continue;
7880 		}
7881 		break;
7882 	}
7883 	return 0;
7884 }
7885 
7886 /*
7887  *  Scatter a SG list with physical addresses into bus addressable chunks.
7888  */
7889 static int
7890 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7891 {
7892 	u_long	ps, pe, pn;
7893 	u_long	k;
7894 	int s, t;
7895 
7896 	SYM_LOCK_ASSERT(MA_OWNED);
7897 
7898 	s  = SYM_CONF_MAX_SG - 1;
7899 	t  = nsegs - 1;
7900 	ps = psegs[t].ds_addr;
7901 	pe = ps + psegs[t].ds_len;
7902 
7903 	while (s >= 0) {
7904 		pn = (pe - 1) & ~(SYM_CONF_DMA_BOUNDARY - 1);
7905 		if (pn <= ps)
7906 			pn = ps;
7907 		k = pe - pn;
7908 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7909 			printf ("%s scatter: paddr=%lx len=%ld\n",
7910 				sym_name(np), pn, k);
7911 		}
7912 		cp->phys.data[s].addr = cpu_to_scr(pn);
7913 		cp->phys.data[s].size = cpu_to_scr(k);
7914 		--s;
7915 		if (pn == ps) {
7916 			if (--t < 0)
7917 				break;
7918 			ps = psegs[t].ds_addr;
7919 			pe = ps + psegs[t].ds_len;
7920 		}
7921 		else
7922 			pe = pn;
7923 	}
7924 
7925 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7926 
7927 	return t >= 0 ? -1 : 0;
7928 }
7929 
7930 /*
7931  *  SIM action for non performance critical stuff.
7932  */
7933 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7934 {
7935 	union ccb *abort_ccb;
7936 	struct ccb_hdr *ccb_h;
7937 	struct ccb_pathinq *cpi;
7938 	struct ccb_trans_settings *cts;
7939 	struct sym_trans *tip;
7940 	hcb_p	np;
7941 	tcb_p	tp;
7942 	lcb_p	lp;
7943 	u_char dflags;
7944 
7945 	/*
7946 	 *  Retrieve our controller data structure.
7947 	 */
7948 	np = (hcb_p) cam_sim_softc(sim);
7949 
7950 	SYM_LOCK_ASSERT(MA_OWNED);
7951 
7952 	ccb_h = &ccb->ccb_h;
7953 
7954 	switch (ccb_h->func_code) {
7955 	case XPT_SET_TRAN_SETTINGS:
7956 		cts  = &ccb->cts;
7957 		tp = &np->target[ccb_h->target_id];
7958 
7959 		/*
7960 		 *  Update SPI transport settings in TARGET control block.
7961 		 *  Update SCSI device settings in LUN control block.
7962 		 */
7963 		lp = sym_lp(tp, ccb_h->target_lun);
7964 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7965 			sym_update_trans(np, &tp->tinfo.goal, cts);
7966 			if (lp)
7967 				sym_update_dflags(np, &lp->current_flags, cts);
7968 		}
7969 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7970 			sym_update_trans(np, &tp->tinfo.user, cts);
7971 			if (lp)
7972 				sym_update_dflags(np, &lp->user_flags, cts);
7973 		}
7974 
7975 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7976 		break;
7977 	case XPT_GET_TRAN_SETTINGS:
7978 		cts = &ccb->cts;
7979 		tp = &np->target[ccb_h->target_id];
7980 		lp = sym_lp(tp, ccb_h->target_lun);
7981 
7982 #define	cts__scsi (&cts->proto_specific.scsi)
7983 #define	cts__spi  (&cts->xport_specific.spi)
7984 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7985 			tip = &tp->tinfo.current;
7986 			dflags = lp ? lp->current_flags : 0;
7987 		}
7988 		else {
7989 			tip = &tp->tinfo.user;
7990 			dflags = lp ? lp->user_flags : tp->usrflags;
7991 		}
7992 
7993 		cts->protocol  = PROTO_SCSI;
7994 		cts->transport = XPORT_SPI;
7995 		cts->protocol_version  = tip->scsi_version;
7996 		cts->transport_version = tip->spi_version;
7997 
7998 		cts__spi->sync_period = tip->period;
7999 		cts__spi->sync_offset = tip->offset;
8000 		cts__spi->bus_width   = tip->width;
8001 		cts__spi->ppr_options = tip->options;
8002 
8003 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8004 		                | CTS_SPI_VALID_SYNC_OFFSET
8005 		                | CTS_SPI_VALID_BUS_WIDTH
8006 		                | CTS_SPI_VALID_PPR_OPTIONS;
8007 
8008 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8009 		if (dflags & SYM_DISC_ENABLED)
8010 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8011 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8012 
8013 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8014 		if (dflags & SYM_TAGS_ENABLED)
8015 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8016 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8017 #undef	cts__spi
8018 #undef	cts__scsi
8019 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8020 		break;
8021 	case XPT_CALC_GEOMETRY:
8022 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8023 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8024 		break;
8025 	case XPT_PATH_INQ:
8026 		cpi = &ccb->cpi;
8027 		cpi->version_num = 1;
8028 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8029 		if ((np->features & FE_WIDE) != 0)
8030 			cpi->hba_inquiry |= PI_WIDE_16;
8031 		cpi->target_sprt = 0;
8032 		cpi->hba_misc = PIM_UNMAPPED;
8033 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8034 			cpi->hba_misc |= PIM_SCANHILO;
8035 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8036 			cpi->hba_misc |= PIM_NOBUSRESET;
8037 		cpi->hba_eng_cnt = 0;
8038 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8039 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8040 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8041 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8042 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8043 		cpi->bus_id = cam_sim_bus(sim);
8044 		cpi->initiator_id = np->myaddr;
8045 		cpi->base_transfer_speed = 3300;
8046 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8047 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8048 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8049 		cpi->unit_number = cam_sim_unit(sim);
8050 
8051 		cpi->protocol = PROTO_SCSI;
8052 		cpi->protocol_version = SCSI_REV_2;
8053 		cpi->transport = XPORT_SPI;
8054 		cpi->transport_version = 2;
8055 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8056 		if (np->features & FE_ULTRA3) {
8057 			cpi->transport_version = 3;
8058 			cpi->xport_specific.spi.ppr_options =
8059 			    SID_SPI_CLOCK_DT_ST;
8060 		}
8061 		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8062 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8063 		break;
8064 	case XPT_ABORT:
8065 		abort_ccb = ccb->cab.abort_ccb;
8066 		switch(abort_ccb->ccb_h.func_code) {
8067 		case XPT_SCSI_IO:
8068 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8069 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8070 				break;
8071 			}
8072 		default:
8073 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8074 			break;
8075 		}
8076 		break;
8077 	case XPT_RESET_DEV:
8078 		sym_reset_dev(np, ccb);
8079 		break;
8080 	case XPT_RESET_BUS:
8081 		sym_reset_scsi_bus(np, 0);
8082 		if (sym_verbose) {
8083 			xpt_print_path(np->path);
8084 			printf("SCSI BUS reset delivered.\n");
8085 		}
8086 		sym_init (np, 1);
8087 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8088 		break;
8089 	case XPT_ACCEPT_TARGET_IO:
8090 	case XPT_CONT_TARGET_IO:
8091 	case XPT_EN_LUN:
8092 	case XPT_NOTIFY_ACK:
8093 	case XPT_IMMED_NOTIFY:
8094 	case XPT_TERM_IO:
8095 	default:
8096 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8097 		break;
8098 	}
8099 }
8100 
8101 /*
8102  *  Asynchronous notification handler.
8103  */
8104 static void
8105 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8106 {
8107 	hcb_p np;
8108 	struct cam_sim *sim;
8109 	u_int tn;
8110 	tcb_p tp;
8111 
8112 	sim = (struct cam_sim *) cb_arg;
8113 	np  = (hcb_p) cam_sim_softc(sim);
8114 
8115 	SYM_LOCK_ASSERT(MA_OWNED);
8116 
8117 	switch (code) {
8118 	case AC_LOST_DEVICE:
8119 		tn = xpt_path_target_id(path);
8120 		if (tn >= SYM_CONF_MAX_TARGET)
8121 			break;
8122 
8123 		tp = &np->target[tn];
8124 
8125 		tp->to_reset  = 0;
8126 		tp->head.sval = 0;
8127 		tp->head.wval = np->rv_scntl3;
8128 		tp->head.uval = 0;
8129 
8130 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8131 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8132 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8133 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8134 
8135 		break;
8136 	default:
8137 		break;
8138 	}
8139 }
8140 
8141 /*
8142  *  Update transfer settings of a target.
8143  */
8144 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8145     struct ccb_trans_settings *cts)
8146 {
8147 
8148 	SYM_LOCK_ASSERT(MA_OWNED);
8149 
8150 	/*
8151 	 *  Update the infos.
8152 	 */
8153 #define cts__spi (&cts->xport_specific.spi)
8154 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8155 		tip->width = cts__spi->bus_width;
8156 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8157 		tip->offset = cts__spi->sync_offset;
8158 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8159 		tip->period = cts__spi->sync_period;
8160 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8161 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8162 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8163 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8164 		tip->scsi_version = cts->protocol_version;
8165 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8166 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8167 		tip->spi_version = cts->transport_version;
8168 #undef cts__spi
8169 	/*
8170 	 *  Scale against driver configuration limits.
8171 	 */
8172 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8173 	if (tip->period && tip->offset) {
8174 		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8175 		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8176 	} else {
8177 		tip->offset = 0;
8178 		tip->period = 0;
8179 	}
8180 
8181 	/*
8182 	 *  Scale against actual controller BUS width.
8183 	 */
8184 	if (tip->width > np->maxwide)
8185 		tip->width  = np->maxwide;
8186 
8187 	/*
8188 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8189 	 */
8190 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8191 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8192 		tip->options &= ~PPR_OPT_DT;
8193 	}
8194 
8195 	/*
8196 	 *  Scale period factor and offset against controller limits.
8197 	 */
8198 	if (tip->offset && tip->period) {
8199 		if (tip->options & PPR_OPT_DT) {
8200 			if (tip->period < np->minsync_dt)
8201 				tip->period = np->minsync_dt;
8202 			if (tip->period > np->maxsync_dt)
8203 				tip->period = np->maxsync_dt;
8204 			if (tip->offset > np->maxoffs_dt)
8205 				tip->offset = np->maxoffs_dt;
8206 		}
8207 		else {
8208 			if (tip->period < np->minsync)
8209 				tip->period = np->minsync;
8210 			if (tip->period > np->maxsync)
8211 				tip->period = np->maxsync;
8212 			if (tip->offset > np->maxoffs)
8213 				tip->offset = np->maxoffs;
8214 		}
8215 	}
8216 }
8217 
8218 /*
8219  *  Update flags for a device (logical unit).
8220  */
8221 static void
8222 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8223 {
8224 
8225 	SYM_LOCK_ASSERT(MA_OWNED);
8226 
8227 #define	cts__scsi (&cts->proto_specific.scsi)
8228 #define	cts__spi  (&cts->xport_specific.spi)
8229 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8230 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8231 			*flags |= SYM_DISC_ENABLED;
8232 		else
8233 			*flags &= ~SYM_DISC_ENABLED;
8234 	}
8235 
8236 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8237 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8238 			*flags |= SYM_TAGS_ENABLED;
8239 		else
8240 			*flags &= ~SYM_TAGS_ENABLED;
8241 	}
8242 #undef	cts__spi
8243 #undef	cts__scsi
8244 }
8245 
8246 /*============= DRIVER INITIALISATION ==================*/
8247 
8248 static device_method_t sym_pci_methods[] = {
8249 	DEVMETHOD(device_probe,	 sym_pci_probe),
8250 	DEVMETHOD(device_attach, sym_pci_attach),
8251 	DEVMETHOD_END
8252 };
8253 
8254 static driver_t sym_pci_driver = {
8255 	"sym",
8256 	sym_pci_methods,
8257 	1	/* no softc */
8258 };
8259 
8260 static devclass_t sym_devclass;
8261 
8262 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL);
8263 MODULE_DEPEND(sym, cam, 1, 1, 1);
8264 MODULE_DEPEND(sym, pci, 1, 1, 1);
8265 
8266 static const struct sym_pci_chip sym_pci_dev_table[] = {
8267  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8268  FE_ERL}
8269  ,
8270 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8271  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8272  FE_BOF}
8273  ,
8274 #else
8275  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8276  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8277  ,
8278 #endif
8279  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8280  FE_BOF|FE_ERL}
8281  ,
8282  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8283  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8284  ,
8285  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8286  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8287  ,
8288  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8289  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8290  ,
8291  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8292  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8293  FE_RAM|FE_DIFF}
8294  ,
8295  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8296  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8297  FE_RAM|FE_DIFF}
8298  ,
8299  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8300  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8301  FE_RAM|FE_DIFF}
8302  ,
8303  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8304  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8305  FE_RAM|FE_DIFF}
8306  ,
8307 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8308  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8309  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8310  FE_RAM|FE_LCKFRQ}
8311  ,
8312 #else
8313  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8314  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8315  FE_RAM|FE_LCKFRQ}
8316  ,
8317 #endif
8318  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8319  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8320  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8321  ,
8322  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8323  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8324  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8325  ,
8326  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8327  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8328  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8329  FE_C10}
8330  ,
8331  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8332  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8333  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8334  FE_C10|FE_U3EN}
8335  ,
8336  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8337  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8338  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8339  FE_C10|FE_U3EN}
8340  ,
8341  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8342  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8343  FE_RAM|FE_IO256|FE_LEDC}
8344 };
8345 
8346 /*
8347  *  Look up the chip table.
8348  *
8349  *  Return a pointer to the chip entry if found,
8350  *  zero otherwise.
8351  */
8352 static const struct sym_pci_chip *
8353 sym_find_pci_chip(device_t dev)
8354 {
8355 	const struct	sym_pci_chip *chip;
8356 	int	i;
8357 	u_short	device_id;
8358 	u_char	revision;
8359 
8360 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8361 		return NULL;
8362 
8363 	device_id = pci_get_device(dev);
8364 	revision  = pci_get_revid(dev);
8365 
8366 	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8367 		chip = &sym_pci_dev_table[i];
8368 		if (device_id != chip->device_id)
8369 			continue;
8370 		if (revision > chip->revision_id)
8371 			continue;
8372 		return chip;
8373 	}
8374 
8375 	return NULL;
8376 }
8377 
8378 /*
8379  *  Tell upper layer if the chip is supported.
8380  */
8381 static int
8382 sym_pci_probe(device_t dev)
8383 {
8384 	const struct	sym_pci_chip *chip;
8385 
8386 	chip = sym_find_pci_chip(dev);
8387 	if (chip && sym_find_firmware(chip)) {
8388 		device_set_desc(dev, chip->name);
8389 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8390 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8391 	}
8392 	return ENXIO;
8393 }
8394 
8395 /*
8396  *  Attach a sym53c8xx device.
8397  */
8398 static int
8399 sym_pci_attach(device_t dev)
8400 {
8401 	const struct	sym_pci_chip *chip;
8402 	u_short	command;
8403 	u_char	cachelnsz;
8404 	struct	sym_hcb *np = NULL;
8405 	struct	sym_nvram nvram;
8406 	const struct	sym_fw *fw = NULL;
8407 	int 	i;
8408 	bus_dma_tag_t	bus_dmat;
8409 
8410 	bus_dmat = bus_get_dma_tag(dev);
8411 
8412 	/*
8413 	 *  Only probed devices should be attached.
8414 	 *  We just enjoy being paranoid. :)
8415 	 */
8416 	chip = sym_find_pci_chip(dev);
8417 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8418 		return (ENXIO);
8419 
8420 	/*
8421 	 *  Allocate immediately the host control block,
8422 	 *  since we are only expecting to succeed. :)
8423 	 *  We keep track in the HCB of all the resources that
8424 	 *  are to be released on error.
8425 	 */
8426 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8427 	if (np)
8428 		np->bus_dmat = bus_dmat;
8429 	else
8430 		return (ENXIO);
8431 	device_set_softc(dev, np);
8432 
8433 	SYM_LOCK_INIT();
8434 
8435 	/*
8436 	 *  Copy some useful infos to the HCB.
8437 	 */
8438 	np->hcb_ba	 = vtobus(np);
8439 	np->verbose	 = bootverbose;
8440 	np->device	 = dev;
8441 	np->device_id	 = pci_get_device(dev);
8442 	np->revision_id  = pci_get_revid(dev);
8443 	np->features	 = chip->features;
8444 	np->clock_divn	 = chip->nr_divisor;
8445 	np->maxoffs	 = chip->offset_max;
8446 	np->maxburst	 = chip->burst_max;
8447 	np->scripta_sz	 = fw->a_size;
8448 	np->scriptb_sz	 = fw->b_size;
8449 	np->fw_setup	 = fw->setup;
8450 	np->fw_patch	 = fw->patch;
8451 	np->fw_name	 = fw->name;
8452 
8453 #ifdef __amd64__
8454 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8455 			"TARGET");
8456 	if (!np->target)
8457 		goto attach_failed;
8458 #endif
8459 
8460 	/*
8461 	 *  Initialize the CCB free and busy queues.
8462 	 */
8463 	sym_que_init(&np->free_ccbq);
8464 	sym_que_init(&np->busy_ccbq);
8465 	sym_que_init(&np->comp_ccbq);
8466 	sym_que_init(&np->cam_ccbq);
8467 
8468 	/*
8469 	 *  Allocate a tag for the DMA of user data.
8470 	 */
8471 	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8472 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8473 	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8474 	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8475 		device_printf(dev, "failed to create DMA tag.\n");
8476 		goto attach_failed;
8477 	}
8478 
8479 	/*
8480 	 *  Read and apply some fix-ups to the PCI COMMAND
8481 	 *  register. We want the chip to be enabled for:
8482 	 *  - BUS mastering
8483 	 *  - PCI parity checking (reporting would also be fine)
8484 	 *  - Write And Invalidate.
8485 	 */
8486 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8487 	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8488 	    PCIM_CMD_MWRICEN;
8489 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8490 
8491 	/*
8492 	 *  Let the device know about the cache line size,
8493 	 *  if it doesn't yet.
8494 	 */
8495 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8496 	if (!cachelnsz) {
8497 		cachelnsz = 8;
8498 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8499 	}
8500 
8501 	/*
8502 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8503 	 */
8504 	i = SYM_PCI_MMIO;
8505 	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8506 	    RF_ACTIVE);
8507 	if (!np->mmio_res) {
8508 		device_printf(dev, "failed to allocate MMIO resources\n");
8509 		goto attach_failed;
8510 	}
8511 	np->mmio_ba = rman_get_start(np->mmio_res);
8512 
8513 	/*
8514 	 *  Allocate the IRQ.
8515 	 */
8516 	i = 0;
8517 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8518 					     RF_ACTIVE | RF_SHAREABLE);
8519 	if (!np->irq_res) {
8520 		device_printf(dev, "failed to allocate IRQ resource\n");
8521 		goto attach_failed;
8522 	}
8523 
8524 #ifdef	SYM_CONF_IOMAPPED
8525 	/*
8526 	 *  User want us to use normal IO with PCI.
8527 	 *  Alloc/get/map/retrieve everything that deals with IO.
8528 	 */
8529 	i = SYM_PCI_IO;
8530 	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8531 	if (!np->io_res) {
8532 		device_printf(dev, "failed to allocate IO resources\n");
8533 		goto attach_failed;
8534 	}
8535 
8536 #endif /* SYM_CONF_IOMAPPED */
8537 
8538 	/*
8539 	 *  If the chip has RAM.
8540 	 *  Alloc/get/map/retrieve the corresponding resources.
8541 	 */
8542 	if (np->features & (FE_RAM|FE_RAM8K)) {
8543 		int regs_id = SYM_PCI_RAM;
8544 		if (np->features & FE_64BIT)
8545 			regs_id = SYM_PCI_RAM64;
8546 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8547 						     &regs_id, RF_ACTIVE);
8548 		if (!np->ram_res) {
8549 			device_printf(dev,"failed to allocate RAM resources\n");
8550 			goto attach_failed;
8551 		}
8552 		np->ram_id  = regs_id;
8553 		np->ram_ba = rman_get_start(np->ram_res);
8554 	}
8555 
8556 	/*
8557 	 *  Save setting of some IO registers, so we will
8558 	 *  be able to probe specific implementations.
8559 	 */
8560 	sym_save_initial_setting (np);
8561 
8562 	/*
8563 	 *  Reset the chip now, since it has been reported
8564 	 *  that SCSI clock calibration may not work properly
8565 	 *  if the chip is currently active.
8566 	 */
8567 	sym_chip_reset (np);
8568 
8569 	/*
8570 	 *  Try to read the user set-up.
8571 	 */
8572 	(void) sym_read_nvram(np, &nvram);
8573 
8574 	/*
8575 	 *  Prepare controller and devices settings, according
8576 	 *  to chip features, user set-up and driver set-up.
8577 	 */
8578 	(void) sym_prepare_setting(np, &nvram);
8579 
8580 	/*
8581 	 *  Check the PCI clock frequency.
8582 	 *  Must be performed after prepare_setting since it destroys
8583 	 *  STEST1 that is used to probe for the clock doubler.
8584 	 */
8585 	i = sym_getpciclock(np);
8586 	if (i > 37000)
8587 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8588 
8589 	/*
8590 	 *  Allocate the start queue.
8591 	 */
8592 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8593 	if (!np->squeue)
8594 		goto attach_failed;
8595 	np->squeue_ba = vtobus(np->squeue);
8596 
8597 	/*
8598 	 *  Allocate the done queue.
8599 	 */
8600 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8601 	if (!np->dqueue)
8602 		goto attach_failed;
8603 	np->dqueue_ba = vtobus(np->dqueue);
8604 
8605 	/*
8606 	 *  Allocate the target bus address array.
8607 	 */
8608 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8609 	if (!np->targtbl)
8610 		goto attach_failed;
8611 	np->targtbl_ba = vtobus(np->targtbl);
8612 
8613 	/*
8614 	 *  Allocate SCRIPTS areas.
8615 	 */
8616 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8617 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8618 	if (!np->scripta0 || !np->scriptb0)
8619 		goto attach_failed;
8620 
8621 	/*
8622 	 *  Allocate the CCBs. We need at least ONE.
8623 	 */
8624 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8625 		;
8626 	if (i < 1)
8627 		goto attach_failed;
8628 
8629 	/*
8630 	 *  Calculate BUS addresses where we are going
8631 	 *  to load the SCRIPTS.
8632 	 */
8633 	np->scripta_ba	= vtobus(np->scripta0);
8634 	np->scriptb_ba	= vtobus(np->scriptb0);
8635 	np->scriptb0_ba	= np->scriptb_ba;
8636 
8637 	if (np->ram_ba) {
8638 		np->scripta_ba	= np->ram_ba;
8639 		if (np->features & FE_RAM8K) {
8640 			np->ram_ws = 8192;
8641 			np->scriptb_ba = np->scripta_ba + 4096;
8642 #ifdef __LP64__
8643 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8644 #endif
8645 		}
8646 		else
8647 			np->ram_ws = 4096;
8648 	}
8649 
8650 	/*
8651 	 *  Copy scripts to controller instance.
8652 	 */
8653 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8654 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8655 
8656 	/*
8657 	 *  Setup variable parts in scripts and compute
8658 	 *  scripts bus addresses used from the C code.
8659 	 */
8660 	np->fw_setup(np, fw);
8661 
8662 	/*
8663 	 *  Bind SCRIPTS with physical addresses usable by the
8664 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8665 	 */
8666 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8667 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8668 
8669 #ifdef SYM_CONF_IARB_SUPPORT
8670 	/*
8671 	 *    If user wants IARB to be set when we win arbitration
8672 	 *    and have other jobs, compute the max number of consecutive
8673 	 *    settings of IARB hints before we leave devices a chance to
8674 	 *    arbitrate for reselection.
8675 	 */
8676 #ifdef	SYM_SETUP_IARB_MAX
8677 	np->iarb_max = SYM_SETUP_IARB_MAX;
8678 #else
8679 	np->iarb_max = 4;
8680 #endif
8681 #endif
8682 
8683 	/*
8684 	 *  Prepare the idle and invalid task actions.
8685 	 */
8686 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8687 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8688 	np->idletask_ba		= vtobus(&np->idletask);
8689 
8690 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8691 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8692 	np->notask_ba		= vtobus(&np->notask);
8693 
8694 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8695 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8696 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8697 
8698 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8699 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8700 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8701 
8702 	/*
8703 	 *  Allocate and prepare the lun JUMP table that is used
8704 	 *  for a target prior the probing of devices (bad lun table).
8705 	 *  A private table will be allocated for the target on the
8706 	 *  first INQUIRY response received.
8707 	 */
8708 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8709 	if (!np->badluntbl)
8710 		goto attach_failed;
8711 
8712 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8713 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8714 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8715 
8716 	/*
8717 	 *  Prepare the bus address array that contains the bus
8718 	 *  address of each target control block.
8719 	 *  For now, assume all logical units are wrong. :)
8720 	 */
8721 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8722 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8723 		np->target[i].head.luntbl_sa =
8724 				cpu_to_scr(vtobus(np->badluntbl));
8725 		np->target[i].head.lun0_sa =
8726 				cpu_to_scr(vtobus(&np->badlun_sa));
8727 	}
8728 
8729 	/*
8730 	 *  Now check the cache handling of the pci chipset.
8731 	 */
8732 	if (sym_snooptest (np)) {
8733 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8734 		goto attach_failed;
8735 	};
8736 
8737 	/*
8738 	 *  Now deal with CAM.
8739 	 *  Hopefully, we will succeed with that one.:)
8740 	 */
8741 	if (!sym_cam_attach(np))
8742 		goto attach_failed;
8743 
8744 	/*
8745 	 *  Sigh! we are done.
8746 	 */
8747 	return 0;
8748 
8749 	/*
8750 	 *  We have failed.
8751 	 *  We will try to free all the resources we have
8752 	 *  allocated, but if we are a boot device, this
8753 	 *  will not help that much.;)
8754 	 */
8755 attach_failed:
8756 	if (np)
8757 		sym_pci_free(np);
8758 	return ENXIO;
8759 }
8760 
8761 /*
8762  *  Free everything that have been allocated for this device.
8763  */
8764 static void sym_pci_free(hcb_p np)
8765 {
8766 	SYM_QUEHEAD *qp;
8767 	ccb_p cp;
8768 	tcb_p tp;
8769 	lcb_p lp;
8770 	int target, lun;
8771 
8772 	/*
8773 	 *  First free CAM resources.
8774 	 */
8775 	sym_cam_free(np);
8776 
8777 	/*
8778 	 *  Now every should be quiet for us to
8779 	 *  free other resources.
8780 	 */
8781 	if (np->ram_res)
8782 		bus_release_resource(np->device, SYS_RES_MEMORY,
8783 				     np->ram_id, np->ram_res);
8784 	if (np->mmio_res)
8785 		bus_release_resource(np->device, SYS_RES_MEMORY,
8786 				     SYM_PCI_MMIO, np->mmio_res);
8787 	if (np->io_res)
8788 		bus_release_resource(np->device, SYS_RES_IOPORT,
8789 				     SYM_PCI_IO, np->io_res);
8790 	if (np->irq_res)
8791 		bus_release_resource(np->device, SYS_RES_IRQ,
8792 				     0, np->irq_res);
8793 
8794 	if (np->scriptb0)
8795 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8796 	if (np->scripta0)
8797 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8798 	if (np->squeue)
8799 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8800 	if (np->dqueue)
8801 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8802 
8803 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8804 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8805 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8806 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8807 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8808 	}
8809 
8810 	if (np->badluntbl)
8811 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8812 
8813 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8814 		tp = &np->target[target];
8815 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8816 			lp = sym_lp(tp, lun);
8817 			if (!lp)
8818 				continue;
8819 			if (lp->itlq_tbl)
8820 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8821 				       "ITLQ_TBL");
8822 			if (lp->cb_tags)
8823 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8824 				       "CB_TAGS");
8825 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8826 		}
8827 #if SYM_CONF_MAX_LUN > 1
8828 		if (tp->lunmp)
8829 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8830 			       "LUNMP");
8831 #endif
8832 	}
8833 #ifdef __amd64__
8834 	if (np->target)
8835 		sym_mfree_dma(np->target,
8836 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8837 #endif
8838 	if (np->targtbl)
8839 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8840 	if (np->data_dmat)
8841 		bus_dma_tag_destroy(np->data_dmat);
8842 	if (SYM_LOCK_INITIALIZED() != 0)
8843 		SYM_LOCK_DESTROY();
8844 	device_set_softc(np->device, NULL);
8845 	sym_mfree_dma(np, sizeof(*np), "HCB");
8846 }
8847 
8848 /*
8849  *  Allocate CAM resources and register a bus to CAM.
8850  */
8851 static int sym_cam_attach(hcb_p np)
8852 {
8853 	struct cam_devq *devq = NULL;
8854 	struct cam_sim *sim = NULL;
8855 	struct cam_path *path = NULL;
8856 	int err;
8857 
8858 	/*
8859 	 *  Establish our interrupt handler.
8860 	 */
8861 	err = bus_setup_intr(np->device, np->irq_res,
8862 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8863 			NULL, sym_intr, np, &np->intr);
8864 	if (err) {
8865 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8866 			      err);
8867 		goto fail;
8868 	}
8869 
8870 	/*
8871 	 *  Create the device queue for our sym SIM.
8872 	 */
8873 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8874 	if (!devq)
8875 		goto fail;
8876 
8877 	/*
8878 	 *  Construct our SIM entry.
8879 	 */
8880 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8881 			device_get_unit(np->device),
8882 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8883 	if (!sim)
8884 		goto fail;
8885 
8886 	SYM_LOCK();
8887 
8888 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8889 		goto fail;
8890 	np->sim = sim;
8891 
8892 	if (xpt_create_path(&path, NULL,
8893 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8894 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8895 		goto fail;
8896 	}
8897 	np->path = path;
8898 
8899 	/*
8900 	 *  Establish our async notification handler.
8901 	 */
8902 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) !=
8903 	    CAM_REQ_CMP)
8904 		goto fail;
8905 
8906 	/*
8907 	 *  Start the chip now, without resetting the BUS, since
8908 	 *  it seems that this must stay under control of CAM.
8909 	 *  With LVD/SE capable chips and BUS in SE mode, we may
8910 	 *  get a spurious SMBC interrupt.
8911 	 */
8912 	sym_init (np, 0);
8913 
8914 	SYM_UNLOCK();
8915 
8916 	return 1;
8917 fail:
8918 	if (sim)
8919 		cam_sim_free(sim, FALSE);
8920 	if (devq)
8921 		cam_simq_free(devq);
8922 
8923 	SYM_UNLOCK();
8924 
8925 	sym_cam_free(np);
8926 
8927 	return 0;
8928 }
8929 
8930 /*
8931  *  Free everything that deals with CAM.
8932  */
8933 static void sym_cam_free(hcb_p np)
8934 {
8935 
8936 	SYM_LOCK_ASSERT(MA_NOTOWNED);
8937 
8938 	if (np->intr) {
8939 		bus_teardown_intr(np->device, np->irq_res, np->intr);
8940 		np->intr = NULL;
8941 	}
8942 
8943 	SYM_LOCK();
8944 
8945 	if (np->sim) {
8946 		xpt_bus_deregister(cam_sim_path(np->sim));
8947 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8948 		np->sim = NULL;
8949 	}
8950 	if (np->path) {
8951 		xpt_free_path(np->path);
8952 		np->path = NULL;
8953 	}
8954 
8955 	SYM_UNLOCK();
8956 }
8957 
8958 /*============ OPTIONNAL NVRAM SUPPORT =================*/
8959 
8960 /*
8961  *  Get host setup from NVRAM.
8962  */
8963 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8964 {
8965 #ifdef SYM_CONF_NVRAM_SUPPORT
8966 	/*
8967 	 *  Get parity checking, host ID, verbose mode
8968 	 *  and miscellaneous host flags from NVRAM.
8969 	 */
8970 	switch(nvram->type) {
8971 	case SYM_SYMBIOS_NVRAM:
8972 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8973 			np->rv_scntl0  &= ~0x0a;
8974 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8975 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8976 			np->verbose += 1;
8977 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8978 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8979 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8980 			np->usrflags |= SYM_AVOID_BUS_RESET;
8981 		break;
8982 	case SYM_TEKRAM_NVRAM:
8983 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8984 		break;
8985 	default:
8986 		break;
8987 	}
8988 #endif
8989 }
8990 
8991 /*
8992  *  Get target setup from NVRAM.
8993  */
8994 #ifdef SYM_CONF_NVRAM_SUPPORT
8995 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8996 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8997 #endif
8998 
8999 static void
9000 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9001 {
9002 #ifdef SYM_CONF_NVRAM_SUPPORT
9003 	switch(nvp->type) {
9004 	case SYM_SYMBIOS_NVRAM:
9005 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9006 		break;
9007 	case SYM_TEKRAM_NVRAM:
9008 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9009 		break;
9010 	default:
9011 		break;
9012 	}
9013 #endif
9014 }
9015 
9016 #ifdef SYM_CONF_NVRAM_SUPPORT
9017 /*
9018  *  Get target set-up from Symbios format NVRAM.
9019  */
9020 static void
9021 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9022 {
9023 	tcb_p tp = &np->target[target];
9024 	Symbios_target *tn = &nvram->target[target];
9025 
9026 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9027 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9028 	tp->usrtags =
9029 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9030 
9031 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9032 		tp->usrflags &= ~SYM_DISC_ENABLED;
9033 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9034 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9035 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9036 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9037 }
9038 
9039 /*
9040  *  Get target set-up from Tekram format NVRAM.
9041  */
9042 static void
9043 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9044 {
9045 	tcb_p tp = &np->target[target];
9046 	struct Tekram_target *tn = &nvram->target[target];
9047 	int i;
9048 
9049 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9050 		i = tn->sync_index & 0xf;
9051 		tp->tinfo.user.period = Tekram_sync[i];
9052 	}
9053 
9054 	tp->tinfo.user.width =
9055 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9056 
9057 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9058 		tp->usrtags = 2 << nvram->max_tags_index;
9059 	}
9060 
9061 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9062 		tp->usrflags |= SYM_DISC_ENABLED;
9063 
9064 	/* If any device does not support parity, we will not use this option */
9065 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9066 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9067 }
9068 
9069 #ifdef	SYM_CONF_DEBUG_NVRAM
9070 /*
9071  *  Dump Symbios format NVRAM for debugging purpose.
9072  */
9073 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9074 {
9075 	int i;
9076 
9077 	/* display Symbios nvram host data */
9078 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9079 		sym_name(np), nvram->host_id & 0x0f,
9080 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9081 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9082 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9083 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9084 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9085 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9086 
9087 	/* display Symbios nvram drive data */
9088 	for (i = 0 ; i < 15 ; i++) {
9089 		struct Symbios_target *tn = &nvram->target[i];
9090 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9091 		sym_name(np), i,
9092 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9093 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9094 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9095 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9096 		tn->bus_width,
9097 		tn->sync_period / 4,
9098 		tn->timeout);
9099 	}
9100 }
9101 
9102 /*
9103  *  Dump TEKRAM format NVRAM for debugging purpose.
9104  */
9105 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9106 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9107 {
9108 	int i, tags, boot_delay;
9109 	char *rem;
9110 
9111 	/* display Tekram nvram host data */
9112 	tags = 2 << nvram->max_tags_index;
9113 	boot_delay = 0;
9114 	if (nvram->boot_delay_index < 6)
9115 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9116 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9117 	default:
9118 	case 0:	rem = "";			break;
9119 	case 1: rem = " REMOVABLE=boot device";	break;
9120 	case 2: rem = " REMOVABLE=all";		break;
9121 	}
9122 
9123 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9124 		sym_name(np), nvram->host_id & 0x0f,
9125 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9126 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9127 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9128 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9129 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9130 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9131 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9132 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9133 		rem, boot_delay, tags);
9134 
9135 	/* display Tekram nvram drive data */
9136 	for (i = 0; i <= 15; i++) {
9137 		int sync, j;
9138 		struct Tekram_target *tn = &nvram->target[i];
9139 		j = tn->sync_index & 0xf;
9140 		sync = Tekram_sync[j];
9141 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9142 		sym_name(np), i,
9143 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9144 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9145 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9146 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9147 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9148 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9149 		sync);
9150 	}
9151 }
9152 #endif	/* SYM_CONF_DEBUG_NVRAM */
9153 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9154 
9155 /*
9156  *  Try reading Symbios or Tekram NVRAM
9157  */
9158 #ifdef SYM_CONF_NVRAM_SUPPORT
9159 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9160 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9161 #endif
9162 
9163 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9164 {
9165 #ifdef SYM_CONF_NVRAM_SUPPORT
9166 	/*
9167 	 *  Try to read SYMBIOS nvram.
9168 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9169 	 */
9170 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9171 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9172 		nvp->type = SYM_SYMBIOS_NVRAM;
9173 #ifdef SYM_CONF_DEBUG_NVRAM
9174 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9175 #endif
9176 	}
9177 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9178 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9179 		nvp->type = SYM_TEKRAM_NVRAM;
9180 #ifdef SYM_CONF_DEBUG_NVRAM
9181 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9182 #endif
9183 	}
9184 	else
9185 		nvp->type = 0;
9186 #else
9187 	nvp->type = 0;
9188 #endif
9189 	return nvp->type;
9190 }
9191 
9192 #ifdef SYM_CONF_NVRAM_SUPPORT
9193 /*
9194  *  24C16 EEPROM reading.
9195  *
9196  *  GPOI0 - data in/data out
9197  *  GPIO1 - clock
9198  *  Symbios NVRAM wiring now also used by Tekram.
9199  */
9200 
9201 #define SET_BIT 0
9202 #define CLR_BIT 1
9203 #define SET_CLK 2
9204 #define CLR_CLK 3
9205 
9206 /*
9207  *  Set/clear data/clock bit in GPIO0
9208  */
9209 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9210 			  int bit_mode)
9211 {
9212 	UDELAY (5);
9213 	switch (bit_mode){
9214 	case SET_BIT:
9215 		*gpreg |= write_bit;
9216 		break;
9217 	case CLR_BIT:
9218 		*gpreg &= 0xfe;
9219 		break;
9220 	case SET_CLK:
9221 		*gpreg |= 0x02;
9222 		break;
9223 	case CLR_CLK:
9224 		*gpreg &= 0xfd;
9225 		break;
9226 
9227 	}
9228 	OUTB (nc_gpreg, *gpreg);
9229 	UDELAY (5);
9230 }
9231 
9232 /*
9233  *  Send START condition to NVRAM to wake it up.
9234  */
9235 static void S24C16_start(hcb_p np, u_char *gpreg)
9236 {
9237 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9238 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9239 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9240 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9241 }
9242 
9243 /*
9244  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9245  */
9246 static void S24C16_stop(hcb_p np, u_char *gpreg)
9247 {
9248 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9249 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9250 }
9251 
9252 /*
9253  *  Read or write a bit to the NVRAM,
9254  *  read if GPIO0 input else write if GPIO0 output
9255  */
9256 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9257 			 u_char *gpreg)
9258 {
9259 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9260 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9261 	if (read_bit)
9262 		*read_bit = INB (nc_gpreg);
9263 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9264 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9265 }
9266 
9267 /*
9268  *  Output an ACK to the NVRAM after reading,
9269  *  change GPIO0 to output and when done back to an input
9270  */
9271 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9272 			    u_char *gpcntl)
9273 {
9274 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9275 	S24C16_do_bit(np, 0, write_bit, gpreg);
9276 	OUTB (nc_gpcntl, *gpcntl);
9277 }
9278 
9279 /*
9280  *  Input an ACK from NVRAM after writing,
9281  *  change GPIO0 to input and when done back to an output
9282  */
9283 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9284 			   u_char *gpcntl)
9285 {
9286 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9287 	S24C16_do_bit(np, read_bit, 1, gpreg);
9288 	OUTB (nc_gpcntl, *gpcntl);
9289 }
9290 
9291 /*
9292  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9293  *  GPIO0 must already be set as an output
9294  */
9295 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9296 			     u_char *gpreg, u_char *gpcntl)
9297 {
9298 	int x;
9299 
9300 	for (x = 0; x < 8; x++)
9301 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9302 
9303 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9304 }
9305 
9306 /*
9307  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9308  *  GPIO0 must already be set as an input
9309  */
9310 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9311 			    u_char *gpreg, u_char *gpcntl)
9312 {
9313 	int x;
9314 	u_char read_bit;
9315 
9316 	*read_data = 0;
9317 	for (x = 0; x < 8; x++) {
9318 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9319 		*read_data |= ((read_bit & 0x01) << (7 - x));
9320 	}
9321 
9322 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9323 }
9324 
9325 /*
9326  *  Read 'len' bytes starting at 'offset'.
9327  */
9328 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9329 {
9330 	u_char	gpcntl, gpreg;
9331 	u_char	old_gpcntl, old_gpreg;
9332 	u_char	ack_data;
9333 	int	retv = 1;
9334 	int	x;
9335 
9336 	/* save current state of GPCNTL and GPREG */
9337 	old_gpreg	= INB (nc_gpreg);
9338 	old_gpcntl	= INB (nc_gpcntl);
9339 	gpcntl		= old_gpcntl & 0x1c;
9340 
9341 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9342 	OUTB (nc_gpreg,  old_gpreg);
9343 	OUTB (nc_gpcntl, gpcntl);
9344 
9345 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9346 	gpreg = old_gpreg;
9347 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9348 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9349 
9350 	/* now set NVRAM inactive with GPIO0/1 both high */
9351 	S24C16_stop(np, &gpreg);
9352 
9353 	/* activate NVRAM */
9354 	S24C16_start(np, &gpreg);
9355 
9356 	/* write device code and random address MSB */
9357 	S24C16_write_byte(np, &ack_data,
9358 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9359 	if (ack_data & 0x01)
9360 		goto out;
9361 
9362 	/* write random address LSB */
9363 	S24C16_write_byte(np, &ack_data,
9364 		offset & 0xff, &gpreg, &gpcntl);
9365 	if (ack_data & 0x01)
9366 		goto out;
9367 
9368 	/* regenerate START state to set up for reading */
9369 	S24C16_start(np, &gpreg);
9370 
9371 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9372 	S24C16_write_byte(np, &ack_data,
9373 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9374 	if (ack_data & 0x01)
9375 		goto out;
9376 
9377 	/* now set up GPIO0 for inputting data */
9378 	gpcntl |= 0x01;
9379 	OUTB (nc_gpcntl, gpcntl);
9380 
9381 	/* input all requested data - only part of total NVRAM */
9382 	for (x = 0; x < len; x++)
9383 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9384 
9385 	/* finally put NVRAM back in inactive mode */
9386 	gpcntl &= 0xfe;
9387 	OUTB (nc_gpcntl, gpcntl);
9388 	S24C16_stop(np, &gpreg);
9389 	retv = 0;
9390 out:
9391 	/* return GPIO0/1 to original states after having accessed NVRAM */
9392 	OUTB (nc_gpcntl, old_gpcntl);
9393 	OUTB (nc_gpreg,  old_gpreg);
9394 
9395 	return retv;
9396 }
9397 
9398 #undef SET_BIT /* 0 */
9399 #undef CLR_BIT /* 1 */
9400 #undef SET_CLK /* 2 */
9401 #undef CLR_CLK /* 3 */
9402 
9403 /*
9404  *  Try reading Symbios NVRAM.
9405  *  Return 0 if OK.
9406  */
9407 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9408 {
9409 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9410 	u_char *data = (u_char *) nvram;
9411 	int len  = sizeof(*nvram);
9412 	u_short	csum;
9413 	int x;
9414 
9415 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9416 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9417 		return 1;
9418 
9419 	/* check valid NVRAM signature, verify byte count and checksum */
9420 	if (nvram->type != 0 ||
9421 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9422 	    nvram->byte_count != len - 12)
9423 		return 1;
9424 
9425 	/* verify checksum */
9426 	for (x = 6, csum = 0; x < len - 6; x++)
9427 		csum += data[x];
9428 	if (csum != nvram->checksum)
9429 		return 1;
9430 
9431 	return 0;
9432 }
9433 
9434 /*
9435  *  93C46 EEPROM reading.
9436  *
9437  *  GPOI0 - data in
9438  *  GPIO1 - data out
9439  *  GPIO2 - clock
9440  *  GPIO4 - chip select
9441  *
9442  *  Used by Tekram.
9443  */
9444 
9445 /*
9446  *  Pulse clock bit in GPIO0
9447  */
9448 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9449 {
9450 	OUTB (nc_gpreg, *gpreg | 0x04);
9451 	UDELAY (2);
9452 	OUTB (nc_gpreg, *gpreg);
9453 }
9454 
9455 /*
9456  *  Read bit from NVRAM
9457  */
9458 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9459 {
9460 	UDELAY (2);
9461 	T93C46_Clk(np, gpreg);
9462 	*read_bit = INB (nc_gpreg);
9463 }
9464 
9465 /*
9466  *  Write bit to GPIO0
9467  */
9468 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9469 {
9470 	if (write_bit & 0x01)
9471 		*gpreg |= 0x02;
9472 	else
9473 		*gpreg &= 0xfd;
9474 
9475 	*gpreg |= 0x10;
9476 
9477 	OUTB (nc_gpreg, *gpreg);
9478 	UDELAY (2);
9479 
9480 	T93C46_Clk(np, gpreg);
9481 }
9482 
9483 /*
9484  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9485  */
9486 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9487 {
9488 	*gpreg &= 0xef;
9489 	OUTB (nc_gpreg, *gpreg);
9490 	UDELAY (2);
9491 
9492 	T93C46_Clk(np, gpreg);
9493 }
9494 
9495 /*
9496  *  Send read command and address to NVRAM
9497  */
9498 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9499 				u_char *read_bit, u_char *gpreg)
9500 {
9501 	int x;
9502 
9503 	/* send 9 bits, start bit (1), command (2), address (6)  */
9504 	for (x = 0; x < 9; x++)
9505 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9506 
9507 	*read_bit = INB (nc_gpreg);
9508 }
9509 
9510 /*
9511  *  READ 2 bytes from the NVRAM
9512  */
9513 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9514 {
9515 	int x;
9516 	u_char read_bit;
9517 
9518 	*nvram_data = 0;
9519 	for (x = 0; x < 16; x++) {
9520 		T93C46_Read_Bit(np, &read_bit, gpreg);
9521 
9522 		if (read_bit & 0x01)
9523 			*nvram_data |=  (0x01 << (15 - x));
9524 		else
9525 			*nvram_data &= ~(0x01 << (15 - x));
9526 	}
9527 }
9528 
9529 /*
9530  *  Read Tekram NvRAM data.
9531  */
9532 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9533 {
9534 	u_char	read_bit;
9535 	int	x;
9536 
9537 	for (x = 0; x < len; x++)  {
9538 
9539 		/* output read command and address */
9540 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9541 		if (read_bit & 0x01)
9542 			return 1; /* Bad */
9543 		T93C46_Read_Word(np, &data[x], gpreg);
9544 		T93C46_Stop(np, gpreg);
9545 	}
9546 
9547 	return 0;
9548 }
9549 
9550 /*
9551  *  Try reading 93C46 Tekram NVRAM.
9552  */
9553 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9554 {
9555 	u_char gpcntl, gpreg;
9556 	u_char old_gpcntl, old_gpreg;
9557 	int retv = 1;
9558 
9559 	/* save current state of GPCNTL and GPREG */
9560 	old_gpreg	= INB (nc_gpreg);
9561 	old_gpcntl	= INB (nc_gpcntl);
9562 
9563 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9564 	   1/2/4 out */
9565 	gpreg = old_gpreg & 0xe9;
9566 	OUTB (nc_gpreg, gpreg);
9567 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9568 	OUTB (nc_gpcntl, gpcntl);
9569 
9570 	/* input all of NVRAM, 64 words */
9571 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9572 				sizeof(*nvram) / sizeof(short), &gpreg);
9573 
9574 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9575 	OUTB (nc_gpcntl, old_gpcntl);
9576 	OUTB (nc_gpreg,  old_gpreg);
9577 
9578 	return retv;
9579 }
9580 
9581 /*
9582  *  Try reading Tekram NVRAM.
9583  *  Return 0 if OK.
9584  */
9585 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9586 {
9587 	u_char *data = (u_char *) nvram;
9588 	int len = sizeof(*nvram);
9589 	u_short	csum;
9590 	int x;
9591 
9592 	switch (np->device_id) {
9593 	case PCI_ID_SYM53C885:
9594 	case PCI_ID_SYM53C895:
9595 	case PCI_ID_SYM53C896:
9596 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9597 					  data, len);
9598 		break;
9599 	case PCI_ID_SYM53C875:
9600 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9601 					  data, len);
9602 		if (!x)
9603 			break;
9604 	default:
9605 		x = sym_read_T93C46_nvram(np, nvram);
9606 		break;
9607 	}
9608 	if (x)
9609 		return 1;
9610 
9611 	/* verify checksum */
9612 	for (x = 0, csum = 0; x < len - 1; x += 2)
9613 		csum += data[x] + (data[x+1] << 8);
9614 	if (csum != 0x1234)
9615 		return 1;
9616 
9617 	return 0;
9618 }
9619 
9620 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9621