1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 5 * PCI-SCSI controllers. 6 * 7 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 8 * 9 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 10 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 11 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 12 * 13 * 14 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 15 * Copyright (C) 1998-1999 Gerard Roudier 16 * 17 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 18 * a port of the FreeBSD ncr driver to Linux-1.2.13. 19 * 20 * The original ncr driver has been written for 386bsd and FreeBSD by 21 * Wolfgang Stanglmeier <wolf@cologne.de> 22 * Stefan Esser <se@mi.Uni-Koeln.de> 23 * Copyright (C) 1994 Wolfgang Stanglmeier 24 * 25 * The initialisation code, and part of the code that addresses 26 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 27 * written by Justin T. Gibbs. 28 * 29 * Other major contributions: 30 * 31 * NVRAM detection and reading. 32 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 33 * 34 *----------------------------------------------------------------------------- 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. The name of the author may not be used to endorse or promote products 45 * derived from this software without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 51 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 */ 59 60 #include <sys/cdefs.h> 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 #include <sys/systm.h> 74 #include <sys/malloc.h> 75 #include <sys/endian.h> 76 #include <sys/kernel.h> 77 #include <sys/lock.h> 78 #include <sys/mutex.h> 79 #include <sys/module.h> 80 #include <sys/bus.h> 81 82 #include <sys/proc.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <machine/bus.h> 88 #include <machine/resource.h> 89 #include <machine/atomic.h> 90 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 #include <cam/cam_sim.h> 96 #include <cam/cam_xpt_sim.h> 97 #include <cam/cam_debug.h> 98 99 #include <cam/scsi/scsi_all.h> 100 #include <cam/scsi/scsi_message.h> 101 102 /* Short and quite clear integer types */ 103 typedef int8_t s8; 104 typedef int16_t s16; 105 typedef int32_t s32; 106 typedef u_int8_t u8; 107 typedef u_int16_t u16; 108 typedef u_int32_t u32; 109 110 /* 111 * Driver definitions. 112 */ 113 #include <dev/sym/sym_defs.h> 114 #include <dev/sym/sym_fw.h> 115 116 /* 117 * IA32 architecture does not reorder STORES and prevents 118 * LOADS from passing STORES. It is called `program order' 119 * by Intel and allows device drivers to deal with memory 120 * ordering by only ensuring that the code is not reordered 121 * by the compiler when ordering is required. 122 * Other architectures implement a weaker ordering that 123 * requires memory barriers (and also IO barriers when they 124 * make sense) to be used. 125 */ 126 #if defined __i386__ || defined __amd64__ 127 #define MEMORY_BARRIER() do { ; } while(0) 128 #elif defined __powerpc__ 129 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 130 #elif defined __arm__ 131 #define MEMORY_BARRIER() dmb() 132 #elif defined __aarch64__ 133 #define MEMORY_BARRIER() dmb(sy) 134 #elif defined __riscv 135 #define MEMORY_BARRIER() fence() 136 #else 137 #error "Not supported platform" 138 #endif 139 140 /* 141 * A la VMS/CAM-3 queue management. 142 */ 143 typedef struct sym_quehead { 144 struct sym_quehead *flink; /* Forward pointer */ 145 struct sym_quehead *blink; /* Backward pointer */ 146 } SYM_QUEHEAD; 147 148 #define sym_que_init(ptr) do { \ 149 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 150 } while (0) 151 152 static __inline void __sym_que_add(struct sym_quehead * new, 153 struct sym_quehead * blink, 154 struct sym_quehead * flink) 155 { 156 flink->blink = new; 157 new->flink = flink; 158 new->blink = blink; 159 blink->flink = new; 160 } 161 162 static __inline void __sym_que_del(struct sym_quehead * blink, 163 struct sym_quehead * flink) 164 { 165 flink->blink = blink; 166 blink->flink = flink; 167 } 168 169 static __inline int sym_que_empty(struct sym_quehead *head) 170 { 171 return head->flink == head; 172 } 173 174 static __inline void sym_que_splice(struct sym_quehead *list, 175 struct sym_quehead *head) 176 { 177 struct sym_quehead *first = list->flink; 178 179 if (first != list) { 180 struct sym_quehead *last = list->blink; 181 struct sym_quehead *at = head->flink; 182 183 first->blink = head; 184 head->flink = first; 185 186 last->flink = at; 187 at->blink = last; 188 } 189 } 190 191 #define sym_que_entry(ptr, type, member) \ 192 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 193 194 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 195 196 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 197 198 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 199 200 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 201 { 202 struct sym_quehead *elem = head->flink; 203 204 if (elem != head) 205 __sym_que_del(head, elem->flink); 206 else 207 elem = NULL; 208 return elem; 209 } 210 211 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 212 213 /* 214 * This one may be useful. 215 */ 216 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 217 for (qp = (head)->flink; qp != (head); qp = qp->flink) 218 /* 219 * FreeBSD does not offer our kind of queue in the CAM CCB. 220 * So, we have to cast. 221 */ 222 #define sym_qptr(p) ((struct sym_quehead *) (p)) 223 224 /* 225 * Simple bitmap operations. 226 */ 227 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 228 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 229 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 230 231 /* 232 * Number of tasks per device we want to handle. 233 */ 234 #if SYM_CONF_MAX_TAG_ORDER > 8 235 #error "more than 256 tags per logical unit not allowed." 236 #endif 237 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 238 239 /* 240 * Donnot use more tasks that we can handle. 241 */ 242 #ifndef SYM_CONF_MAX_TAG 243 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 244 #endif 245 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 246 #undef SYM_CONF_MAX_TAG 247 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 248 #endif 249 250 /* 251 * This one means 'NO TAG for this job' 252 */ 253 #define NO_TAG (256) 254 255 /* 256 * Number of SCSI targets. 257 */ 258 #if SYM_CONF_MAX_TARGET > 16 259 #error "more than 16 targets not allowed." 260 #endif 261 262 /* 263 * Number of logical units per target. 264 */ 265 #if SYM_CONF_MAX_LUN > 64 266 #error "more than 64 logical units per target not allowed." 267 #endif 268 269 /* 270 * Asynchronous pre-scaler (ns). Shall be 40 for 271 * the SCSI timings to be compliant. 272 */ 273 #define SYM_CONF_MIN_ASYNC (40) 274 275 /* 276 * Number of entries in the START and DONE queues. 277 * 278 * We limit to 1 PAGE in order to succeed allocation of 279 * these queues. Each entry is 8 bytes long (2 DWORDS). 280 */ 281 #ifdef SYM_CONF_MAX_START 282 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 283 #else 284 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 285 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 286 #endif 287 288 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 289 #undef SYM_CONF_MAX_QUEUE 290 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 291 #undef SYM_CONF_MAX_START 292 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 293 #endif 294 295 /* 296 * For this one, we want a short name :-) 297 */ 298 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 299 300 /* 301 * Active debugging tags and verbosity. 302 */ 303 #define DEBUG_ALLOC (0x0001) 304 #define DEBUG_PHASE (0x0002) 305 #define DEBUG_POLL (0x0004) 306 #define DEBUG_QUEUE (0x0008) 307 #define DEBUG_RESULT (0x0010) 308 #define DEBUG_SCATTER (0x0020) 309 #define DEBUG_SCRIPT (0x0040) 310 #define DEBUG_TINY (0x0080) 311 #define DEBUG_TIMING (0x0100) 312 #define DEBUG_NEGO (0x0200) 313 #define DEBUG_TAGS (0x0400) 314 #define DEBUG_POINTER (0x0800) 315 316 #if 0 317 static int sym_debug = 0; 318 #define DEBUG_FLAGS sym_debug 319 #else 320 /* #define DEBUG_FLAGS (0x0631) */ 321 #define DEBUG_FLAGS (0x0000) 322 323 #endif 324 #define sym_verbose (np->verbose) 325 326 /* 327 * Insert a delay in micro-seconds and milli-seconds. 328 */ 329 static void UDELAY(int us) { DELAY(us); } 330 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 331 332 /* 333 * Simple power of two buddy-like allocator. 334 * 335 * This simple code is not intended to be fast, but to 336 * provide power of 2 aligned memory allocations. 337 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 338 * this allocator allows simple and fast address calculations 339 * from the SCRIPTS code. In addition, cache line alignment 340 * is guaranteed for power of 2 cache line size. 341 * 342 * This allocator has been developed for the Linux sym53c8xx 343 * driver, since this O/S does not provide naturally aligned 344 * allocations. 345 * It has the advantage of allowing the driver to use private 346 * pages of memory that will be useful if we ever need to deal 347 * with IO MMUs for PCI. 348 */ 349 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 350 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 351 #if 0 352 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 353 #endif 354 #define MEMO_WARN 1 355 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 356 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 357 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 358 359 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 360 #define free_pages(p) free((p), M_DEVBUF) 361 362 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 363 364 typedef struct m_link { /* Link between free memory chunks */ 365 struct m_link *next; 366 } m_link_s; 367 368 typedef struct m_vtob { /* Virtual to Bus address translation */ 369 struct m_vtob *next; 370 bus_dmamap_t dmamap; /* Map for this chunk */ 371 m_addr_t vaddr; /* Virtual address */ 372 m_addr_t baddr; /* Bus physical address */ 373 } m_vtob_s; 374 /* Hash this stuff a bit to speed up translations */ 375 #define VTOB_HASH_SHIFT 5 376 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 377 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 378 #define VTOB_HASH_CODE(m) \ 379 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 380 381 typedef struct m_pool { /* Memory pool of a given kind */ 382 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 383 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 384 m_addr_t (*getp)(struct m_pool *); 385 #ifdef MEMO_FREE_UNUSED 386 void (*freep)(struct m_pool *, m_addr_t); 387 #endif 388 #define M_GETP() mp->getp(mp) 389 #define M_FREEP(p) mp->freep(mp, p) 390 int nump; 391 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 392 struct m_pool *next; 393 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 394 } m_pool_s; 395 396 static void *___sym_malloc(m_pool_s *mp, int size) 397 { 398 int i = 0; 399 int s = (1 << MEMO_SHIFT); 400 int j; 401 m_addr_t a; 402 m_link_s *h = mp->h; 403 404 if (size > MEMO_CLUSTER_SIZE) 405 return NULL; 406 407 while (size > s) { 408 s <<= 1; 409 ++i; 410 } 411 412 j = i; 413 while (!h[j].next) { 414 if (s == MEMO_CLUSTER_SIZE) { 415 h[j].next = (m_link_s *) M_GETP(); 416 if (h[j].next) 417 h[j].next->next = NULL; 418 break; 419 } 420 ++j; 421 s <<= 1; 422 } 423 a = (m_addr_t) h[j].next; 424 if (a) { 425 h[j].next = h[j].next->next; 426 while (j > i) { 427 j -= 1; 428 s >>= 1; 429 h[j].next = (m_link_s *) (a+s); 430 h[j].next->next = NULL; 431 } 432 } 433 #ifdef DEBUG 434 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 435 #endif 436 return (void *) a; 437 } 438 439 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 440 { 441 int i = 0; 442 int s = (1 << MEMO_SHIFT); 443 m_link_s *q; 444 m_addr_t a, b; 445 m_link_s *h = mp->h; 446 447 #ifdef DEBUG 448 printf("___sym_mfree(%p, %d)\n", ptr, size); 449 #endif 450 451 if (size > MEMO_CLUSTER_SIZE) 452 return; 453 454 while (size > s) { 455 s <<= 1; 456 ++i; 457 } 458 459 a = (m_addr_t) ptr; 460 461 while (1) { 462 #ifdef MEMO_FREE_UNUSED 463 if (s == MEMO_CLUSTER_SIZE) { 464 M_FREEP(a); 465 break; 466 } 467 #endif 468 b = a ^ s; 469 q = &h[i]; 470 while (q->next && q->next != (m_link_s *) b) { 471 q = q->next; 472 } 473 if (!q->next) { 474 ((m_link_s *) a)->next = h[i].next; 475 h[i].next = (m_link_s *) a; 476 break; 477 } 478 q->next = q->next->next; 479 a = a & b; 480 s <<= 1; 481 ++i; 482 } 483 } 484 485 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 486 { 487 void *p; 488 489 p = ___sym_malloc(mp, size); 490 491 if (DEBUG_FLAGS & DEBUG_ALLOC) 492 printf ("new %-10s[%4d] @%p.\n", name, size, p); 493 494 if (p) 495 bzero(p, size); 496 else if (uflags & MEMO_WARN) 497 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 498 499 return p; 500 } 501 502 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 503 504 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 505 { 506 if (DEBUG_FLAGS & DEBUG_ALLOC) 507 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 508 509 ___sym_mfree(mp, ptr, size); 510 511 } 512 513 /* 514 * Default memory pool we donnot need to involve in DMA. 515 */ 516 /* 517 * With the `bus dma abstraction', we use a separate pool for 518 * memory we donnot need to involve in DMA. 519 */ 520 static m_addr_t ___mp0_getp(m_pool_s *mp) 521 { 522 m_addr_t m = (m_addr_t) get_pages(); 523 if (m) 524 ++mp->nump; 525 return m; 526 } 527 528 #ifdef MEMO_FREE_UNUSED 529 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 530 { 531 free_pages(m); 532 --mp->nump; 533 } 534 #endif 535 536 #ifdef MEMO_FREE_UNUSED 537 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 538 #else 539 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 540 #endif 541 542 /* 543 * Actual memory allocation routine for non-DMAed memory. 544 */ 545 static void *sym_calloc(int size, char *name) 546 { 547 void *m; 548 /* Lock */ 549 m = __sym_calloc(&mp0, size, name); 550 /* Unlock */ 551 return m; 552 } 553 554 /* 555 * Actual memory allocation routine for non-DMAed memory. 556 */ 557 static void sym_mfree(void *ptr, int size, char *name) 558 { 559 /* Lock */ 560 __sym_mfree(&mp0, ptr, size, name); 561 /* Unlock */ 562 } 563 564 /* 565 * DMAable pools. 566 */ 567 /* 568 * With `bus dma abstraction', we use a separate pool per parent 569 * BUS handle. A reverse table (hashed) is maintained for virtual 570 * to BUS address translation. 571 */ 572 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 573 { 574 bus_addr_t *baddr; 575 576 KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg)); 577 578 baddr = (bus_addr_t *)arg; 579 if (error) 580 *baddr = 0; 581 else 582 *baddr = segs->ds_addr; 583 } 584 585 static m_addr_t ___dma_getp(m_pool_s *mp) 586 { 587 m_vtob_s *vbp; 588 void *vaddr = NULL; 589 bus_addr_t baddr = 0; 590 591 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 592 if (!vbp) 593 goto out_err; 594 595 if (bus_dmamem_alloc(mp->dmat, &vaddr, 596 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 597 goto out_err; 598 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 599 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 600 if (baddr) { 601 int hc = VTOB_HASH_CODE(vaddr); 602 vbp->vaddr = (m_addr_t) vaddr; 603 vbp->baddr = (m_addr_t) baddr; 604 vbp->next = mp->vtob[hc]; 605 mp->vtob[hc] = vbp; 606 ++mp->nump; 607 return (m_addr_t) vaddr; 608 } 609 out_err: 610 if (vaddr) 611 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 612 if (vbp) 613 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 614 return 0; 615 } 616 617 #ifdef MEMO_FREE_UNUSED 618 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 619 { 620 m_vtob_s **vbpp, *vbp; 621 int hc = VTOB_HASH_CODE(m); 622 623 vbpp = &mp->vtob[hc]; 624 while (*vbpp && (*vbpp)->vaddr != m) 625 vbpp = &(*vbpp)->next; 626 if (*vbpp) { 627 vbp = *vbpp; 628 *vbpp = (*vbpp)->next; 629 bus_dmamap_unload(mp->dmat, vbp->dmamap); 630 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 631 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 632 --mp->nump; 633 } 634 } 635 #endif 636 637 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 638 { 639 m_pool_s *mp; 640 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 641 return mp; 642 } 643 644 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 645 { 646 m_pool_s *mp = NULL; 647 648 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 649 if (mp) { 650 mp->dev_dmat = dev_dmat; 651 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 652 BUS_SPACE_MAXADDR_32BIT, 653 BUS_SPACE_MAXADDR, 654 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 655 MEMO_CLUSTER_SIZE, 0, 656 NULL, NULL, &mp->dmat)) { 657 mp->getp = ___dma_getp; 658 #ifdef MEMO_FREE_UNUSED 659 mp->freep = ___dma_freep; 660 #endif 661 mp->next = mp0.next; 662 mp0.next = mp; 663 return mp; 664 } 665 } 666 if (mp) 667 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 668 return NULL; 669 } 670 671 #ifdef MEMO_FREE_UNUSED 672 static void ___del_dma_pool(m_pool_s *p) 673 { 674 struct m_pool **pp = &mp0.next; 675 676 while (*pp && *pp != p) 677 pp = &(*pp)->next; 678 if (*pp) { 679 *pp = (*pp)->next; 680 bus_dma_tag_destroy(p->dmat); 681 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 682 } 683 } 684 #endif 685 686 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 687 { 688 struct m_pool *mp; 689 void *m = NULL; 690 691 /* Lock */ 692 mp = ___get_dma_pool(dev_dmat); 693 if (!mp) 694 mp = ___cre_dma_pool(dev_dmat); 695 if (mp) 696 m = __sym_calloc(mp, size, name); 697 #ifdef MEMO_FREE_UNUSED 698 if (mp && !mp->nump) 699 ___del_dma_pool(mp); 700 #endif 701 /* Unlock */ 702 703 return m; 704 } 705 706 static void 707 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 708 { 709 struct m_pool *mp; 710 711 /* Lock */ 712 mp = ___get_dma_pool(dev_dmat); 713 if (mp) 714 __sym_mfree(mp, m, size, name); 715 #ifdef MEMO_FREE_UNUSED 716 if (mp && !mp->nump) 717 ___del_dma_pool(mp); 718 #endif 719 /* Unlock */ 720 } 721 722 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 723 { 724 m_pool_s *mp; 725 int hc = VTOB_HASH_CODE(m); 726 m_vtob_s *vp = NULL; 727 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 728 729 /* Lock */ 730 mp = ___get_dma_pool(dev_dmat); 731 if (mp) { 732 vp = mp->vtob[hc]; 733 while (vp && (m_addr_t) vp->vaddr != a) 734 vp = vp->next; 735 } 736 /* Unlock */ 737 if (!vp) 738 panic("sym: VTOBUS FAILED!\n"); 739 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 740 } 741 742 /* 743 * Verbs for DMAable memory handling. 744 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 745 * being discarded. 746 */ 747 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 748 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 749 #define _sym_mfree_dma(np, p, s, n) \ 750 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 751 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 752 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 753 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 754 #define vtobus(p) _vtobus(np, p) 755 756 /* 757 * Print a buffer in hexadecimal format. 758 */ 759 static void sym_printb_hex (u_char *p, int n) 760 { 761 while (n-- > 0) 762 printf (" %x", *p++); 763 } 764 765 /* 766 * Same with a label at beginning and .\n at end. 767 */ 768 static void sym_printl_hex (char *label, u_char *p, int n) 769 { 770 printf ("%s", label); 771 sym_printb_hex (p, n); 772 printf (".\n"); 773 } 774 775 /* 776 * Return a string for SCSI BUS mode. 777 */ 778 static const char *sym_scsi_bus_mode(int mode) 779 { 780 switch(mode) { 781 case SMODE_HVD: return "HVD"; 782 case SMODE_SE: return "SE"; 783 case SMODE_LVD: return "LVD"; 784 } 785 return "??"; 786 } 787 788 /* 789 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 790 */ 791 #ifdef SYM_CONF_NVRAM_SUPPORT 792 static const u_char Tekram_sync[16] = 793 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 794 #endif 795 796 /* 797 * Union of supported NVRAM formats. 798 */ 799 struct sym_nvram { 800 int type; 801 #define SYM_SYMBIOS_NVRAM (1) 802 #define SYM_TEKRAM_NVRAM (2) 803 #ifdef SYM_CONF_NVRAM_SUPPORT 804 union { 805 Symbios_nvram Symbios; 806 Tekram_nvram Tekram; 807 } data; 808 #endif 809 }; 810 811 /* 812 * This one is hopefully useless, but actually useful. :-) 813 */ 814 #ifndef assert 815 #define assert(expression) { \ 816 if (!(expression)) { \ 817 (void)panic( \ 818 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 819 #expression, \ 820 __FILE__, __LINE__); \ 821 } \ 822 } 823 #endif 824 825 /* 826 * Some provision for a possible big endian mode supported by 827 * Symbios chips (never seen, by the way). 828 * For now, this stuff does not deserve any comments. :) 829 */ 830 #define sym_offb(o) (o) 831 #define sym_offw(o) (o) 832 833 /* 834 * Some provision for support for BIG ENDIAN CPU. 835 */ 836 #define cpu_to_scr(dw) htole32(dw) 837 #define scr_to_cpu(dw) le32toh(dw) 838 839 /* 840 * Access to the chip IO registers and on-chip RAM. 841 * We use the `bus space' interface under FreeBSD-4 and 842 * later kernel versions. 843 */ 844 #if defined(SYM_CONF_IOMAPPED) 845 846 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 847 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 848 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 849 850 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 851 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 852 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 853 854 #else /* Memory mapped IO */ 855 856 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 857 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 858 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 859 860 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 861 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 862 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 863 864 #endif /* SYM_CONF_IOMAPPED */ 865 866 #define OUTRAM_OFF(o, a, l) \ 867 bus_write_region_1(np->ram_res, (o), (a), (l)) 868 869 /* 870 * Common definitions for both bus space and legacy IO methods. 871 */ 872 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 873 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 874 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 875 876 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 877 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 878 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 879 880 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 881 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 882 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 883 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 884 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 885 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 886 887 /* 888 * We normally want the chip to have a consistent view 889 * of driver internal data structures when we restart it. 890 * Thus these macros. 891 */ 892 #define OUTL_DSP(v) \ 893 do { \ 894 MEMORY_BARRIER(); \ 895 OUTL (nc_dsp, (v)); \ 896 } while (0) 897 898 #define OUTONB_STD() \ 899 do { \ 900 MEMORY_BARRIER(); \ 901 OUTONB (nc_dcntl, (STD|NOCOM)); \ 902 } while (0) 903 904 /* 905 * Command control block states. 906 */ 907 #define HS_IDLE (0) 908 #define HS_BUSY (1) 909 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 910 #define HS_DISCONNECT (3) /* Disconnected by target */ 911 #define HS_WAIT (4) /* waiting for resource */ 912 913 #define HS_DONEMASK (0x80) 914 #define HS_COMPLETE (4|HS_DONEMASK) 915 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 916 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 917 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 918 919 /* 920 * Software Interrupt Codes 921 */ 922 #define SIR_BAD_SCSI_STATUS (1) 923 #define SIR_SEL_ATN_NO_MSG_OUT (2) 924 #define SIR_MSG_RECEIVED (3) 925 #define SIR_MSG_WEIRD (4) 926 #define SIR_NEGO_FAILED (5) 927 #define SIR_NEGO_PROTO (6) 928 #define SIR_SCRIPT_STOPPED (7) 929 #define SIR_REJECT_TO_SEND (8) 930 #define SIR_SWIDE_OVERRUN (9) 931 #define SIR_SODL_UNDERRUN (10) 932 #define SIR_RESEL_NO_MSG_IN (11) 933 #define SIR_RESEL_NO_IDENTIFY (12) 934 #define SIR_RESEL_BAD_LUN (13) 935 #define SIR_TARGET_SELECTED (14) 936 #define SIR_RESEL_BAD_I_T_L (15) 937 #define SIR_RESEL_BAD_I_T_L_Q (16) 938 #define SIR_ABORT_SENT (17) 939 #define SIR_RESEL_ABORTED (18) 940 #define SIR_MSG_OUT_DONE (19) 941 #define SIR_COMPLETE_ERROR (20) 942 #define SIR_DATA_OVERRUN (21) 943 #define SIR_BAD_PHASE (22) 944 #define SIR_MAX (22) 945 946 /* 947 * Extended error bit codes. 948 * xerr_status field of struct sym_ccb. 949 */ 950 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 951 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 952 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 953 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 954 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 955 956 /* 957 * Negotiation status. 958 * nego_status field of struct sym_ccb. 959 */ 960 #define NS_SYNC (1) 961 #define NS_WIDE (2) 962 #define NS_PPR (3) 963 964 /* 965 * A CCB hashed table is used to retrieve CCB address 966 * from DSA value. 967 */ 968 #define CCB_HASH_SHIFT 8 969 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 970 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 971 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 972 973 /* 974 * Device flags. 975 */ 976 #define SYM_DISC_ENABLED (1) 977 #define SYM_TAGS_ENABLED (1<<1) 978 #define SYM_SCAN_BOOT_DISABLED (1<<2) 979 #define SYM_SCAN_LUNS_DISABLED (1<<3) 980 981 /* 982 * Host adapter miscellaneous flags. 983 */ 984 #define SYM_AVOID_BUS_RESET (1) 985 #define SYM_SCAN_TARGETS_HILO (1<<1) 986 987 /* 988 * Device quirks. 989 * Some devices, for example the CHEETAH 2 LVD, disconnects without 990 * saving the DATA POINTER then reselects and terminates the IO. 991 * On reselection, the automatic RESTORE DATA POINTER makes the 992 * CURRENT DATA POINTER not point at the end of the IO. 993 * This behaviour just breaks our calculation of the residual. 994 * For now, we just force an AUTO SAVE on disconnection and will 995 * fix that in a further driver version. 996 */ 997 #define SYM_QUIRK_AUTOSAVE 1 998 999 /* 1000 * Misc. 1001 */ 1002 #define SYM_LOCK() mtx_lock(&np->mtx) 1003 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1004 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1005 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1006 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1007 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1008 1009 #define SYM_SNOOP_TIMEOUT (10000000) 1010 #define SYM_PCI_IO PCIR_BAR(0) 1011 #define SYM_PCI_MMIO PCIR_BAR(1) 1012 #define SYM_PCI_RAM PCIR_BAR(2) 1013 #define SYM_PCI_RAM64 PCIR_BAR(3) 1014 1015 /* 1016 * Back-pointer from the CAM CCB to our data structures. 1017 */ 1018 #define sym_hcb_ptr spriv_ptr0 1019 /* #define sym_ccb_ptr spriv_ptr1 */ 1020 1021 /* 1022 * We mostly have to deal with pointers. 1023 * Thus these typedef's. 1024 */ 1025 typedef struct sym_tcb *tcb_p; 1026 typedef struct sym_lcb *lcb_p; 1027 typedef struct sym_ccb *ccb_p; 1028 typedef struct sym_hcb *hcb_p; 1029 1030 /* 1031 * Gather negotiable parameters value 1032 */ 1033 struct sym_trans { 1034 u8 scsi_version; 1035 u8 spi_version; 1036 u8 period; 1037 u8 offset; 1038 u8 width; 1039 u8 options; /* PPR options */ 1040 }; 1041 1042 struct sym_tinfo { 1043 struct sym_trans current; 1044 struct sym_trans goal; 1045 struct sym_trans user; 1046 }; 1047 1048 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1049 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1050 1051 /* 1052 * Global TCB HEADER. 1053 * 1054 * Due to lack of indirect addressing on earlier NCR chips, 1055 * this substructure is copied from the TCB to a global 1056 * address after selection. 1057 * For SYMBIOS chips that support LOAD/STORE this copy is 1058 * not needed and thus not performed. 1059 */ 1060 struct sym_tcbh { 1061 /* 1062 * Scripts bus addresses of LUN table accessed from scripts. 1063 * LUN #0 is a special case, since multi-lun devices are rare, 1064 * and we we want to speed-up the general case and not waste 1065 * resources. 1066 */ 1067 u32 luntbl_sa; /* bus address of this table */ 1068 u32 lun0_sa; /* bus address of LCB #0 */ 1069 /* 1070 * Actual SYNC/WIDE IO registers value for this target. 1071 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1072 * so have alignment constraints. 1073 */ 1074 /*0*/ u_char uval; /* -> SCNTL4 register */ 1075 /*1*/ u_char sval; /* -> SXFER io register */ 1076 /*2*/ u_char filler1; 1077 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1078 }; 1079 1080 /* 1081 * Target Control Block 1082 */ 1083 struct sym_tcb { 1084 /* 1085 * TCB header. 1086 * Assumed at offset 0. 1087 */ 1088 /*0*/ struct sym_tcbh head; 1089 1090 /* 1091 * LUN table used by the SCRIPTS processor. 1092 * An array of bus addresses is used on reselection. 1093 */ 1094 u32 *luntbl; /* LCBs bus address table */ 1095 1096 /* 1097 * LUN table used by the C code. 1098 */ 1099 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1100 #if SYM_CONF_MAX_LUN > 1 1101 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1102 #endif 1103 1104 /* 1105 * Bitmap that tells about LUNs that succeeded at least 1106 * 1 IO and therefore assumed to be a real device. 1107 * Avoid useless allocation of the LCB structure. 1108 */ 1109 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1110 1111 /* 1112 * Bitmap that tells about LUNs that haven't yet an LCB 1113 * allocated (not discovered or LCB allocation failed). 1114 */ 1115 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1116 1117 /* 1118 * Transfer capabilities (SIP) 1119 */ 1120 struct sym_tinfo tinfo; 1121 1122 /* 1123 * Keep track of the CCB used for the negotiation in order 1124 * to ensure that only 1 negotiation is queued at a time. 1125 */ 1126 ccb_p nego_cp; /* CCB used for the nego */ 1127 1128 /* 1129 * Set when we want to reset the device. 1130 */ 1131 u_char to_reset; 1132 1133 /* 1134 * Other user settable limits and options. 1135 * These limits are read from the NVRAM if present. 1136 */ 1137 u_char usrflags; 1138 u_short usrtags; 1139 }; 1140 1141 /* 1142 * Assert some alignments required by the chip. 1143 */ 1144 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^ 1145 offsetof(struct sym_tcb, head.sval)) &3) == 0); 1146 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^ 1147 offsetof(struct sym_tcb, head.wval)) &3) == 0); 1148 1149 /* 1150 * Global LCB HEADER. 1151 * 1152 * Due to lack of indirect addressing on earlier NCR chips, 1153 * this substructure is copied from the LCB to a global 1154 * address after selection. 1155 * For SYMBIOS chips that support LOAD/STORE this copy is 1156 * not needed and thus not performed. 1157 */ 1158 struct sym_lcbh { 1159 /* 1160 * SCRIPTS address jumped by SCRIPTS on reselection. 1161 * For not probed logical units, this address points to 1162 * SCRIPTS that deal with bad LU handling (must be at 1163 * offset zero of the LCB for that reason). 1164 */ 1165 /*0*/ u32 resel_sa; 1166 1167 /* 1168 * Task (bus address of a CCB) read from SCRIPTS that points 1169 * to the unique ITL nexus allowed to be disconnected. 1170 */ 1171 u32 itl_task_sa; 1172 1173 /* 1174 * Task table bus address (read from SCRIPTS). 1175 */ 1176 u32 itlq_tbl_sa; 1177 }; 1178 1179 /* 1180 * Logical Unit Control Block 1181 */ 1182 struct sym_lcb { 1183 /* 1184 * TCB header. 1185 * Assumed at offset 0. 1186 */ 1187 /*0*/ struct sym_lcbh head; 1188 1189 /* 1190 * Task table read from SCRIPTS that contains pointers to 1191 * ITLQ nexuses. The bus address read from SCRIPTS is 1192 * inside the header. 1193 */ 1194 u32 *itlq_tbl; /* Kernel virtual address */ 1195 1196 /* 1197 * Busy CCBs management. 1198 */ 1199 u_short busy_itlq; /* Number of busy tagged CCBs */ 1200 u_short busy_itl; /* Number of busy untagged CCBs */ 1201 1202 /* 1203 * Circular tag allocation buffer. 1204 */ 1205 u_short ia_tag; /* Tag allocation index */ 1206 u_short if_tag; /* Tag release index */ 1207 u_char *cb_tags; /* Circular tags buffer */ 1208 1209 /* 1210 * Set when we want to clear all tasks. 1211 */ 1212 u_char to_clear; 1213 1214 /* 1215 * Capabilities. 1216 */ 1217 u_char user_flags; 1218 u_char current_flags; 1219 }; 1220 1221 /* 1222 * Action from SCRIPTS on a task. 1223 * Is part of the CCB, but is also used separately to plug 1224 * error handling action to perform from SCRIPTS. 1225 */ 1226 struct sym_actscr { 1227 u32 start; /* Jumped by SCRIPTS after selection */ 1228 u32 restart; /* Jumped by SCRIPTS on relection */ 1229 }; 1230 1231 /* 1232 * Phase mismatch context. 1233 * 1234 * It is part of the CCB and is used as parameters for the 1235 * DATA pointer. We need two contexts to handle correctly the 1236 * SAVED DATA POINTER. 1237 */ 1238 struct sym_pmc { 1239 struct sym_tblmove sg; /* Updated interrupted SG block */ 1240 u32 ret; /* SCRIPT return address */ 1241 }; 1242 1243 /* 1244 * LUN control block lookup. 1245 * We use a direct pointer for LUN #0, and a table of 1246 * pointers which is only allocated for devices that support 1247 * LUN(s) > 0. 1248 */ 1249 #if SYM_CONF_MAX_LUN <= 1 1250 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0 1251 #else 1252 #define sym_lp(tp, lun) \ 1253 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1254 #endif 1255 1256 /* 1257 * Status are used by the host and the script processor. 1258 * 1259 * The last four bytes (status[4]) are copied to the 1260 * scratchb register (declared as scr0..scr3) just after the 1261 * select/reselect, and copied back just after disconnecting. 1262 * Inside the script the XX_REG are used. 1263 */ 1264 1265 /* 1266 * Last four bytes (script) 1267 */ 1268 #define QU_REG scr0 1269 #define HS_REG scr1 1270 #define HS_PRT nc_scr1 1271 #define SS_REG scr2 1272 #define SS_PRT nc_scr2 1273 #define HF_REG scr3 1274 #define HF_PRT nc_scr3 1275 1276 /* 1277 * Last four bytes (host) 1278 */ 1279 #define actualquirks phys.head.status[0] 1280 #define host_status phys.head.status[1] 1281 #define ssss_status phys.head.status[2] 1282 #define host_flags phys.head.status[3] 1283 1284 /* 1285 * Host flags 1286 */ 1287 #define HF_IN_PM0 1u 1288 #define HF_IN_PM1 (1u<<1) 1289 #define HF_ACT_PM (1u<<2) 1290 #define HF_DP_SAVED (1u<<3) 1291 #define HF_SENSE (1u<<4) 1292 #define HF_EXT_ERR (1u<<5) 1293 #define HF_DATA_IN (1u<<6) 1294 #ifdef SYM_CONF_IARB_SUPPORT 1295 #define HF_HINT_IARB (1u<<7) 1296 #endif 1297 1298 /* 1299 * Global CCB HEADER. 1300 * 1301 * Due to lack of indirect addressing on earlier NCR chips, 1302 * this substructure is copied from the ccb to a global 1303 * address after selection (or reselection) and copied back 1304 * before disconnect. 1305 * For SYMBIOS chips that support LOAD/STORE this copy is 1306 * not needed and thus not performed. 1307 */ 1308 struct sym_ccbh { 1309 /* 1310 * Start and restart SCRIPTS addresses (must be at 0). 1311 */ 1312 /*0*/ struct sym_actscr go; 1313 1314 /* 1315 * SCRIPTS jump address that deal with data pointers. 1316 * 'savep' points to the position in the script responsible 1317 * for the actual transfer of data. 1318 * It's written on reception of a SAVE_DATA_POINTER message. 1319 */ 1320 u32 savep; /* Jump address to saved data pointer */ 1321 u32 lastp; /* SCRIPTS address at end of data */ 1322 u32 goalp; /* Not accessed for now from SCRIPTS */ 1323 1324 /* 1325 * Status fields. 1326 */ 1327 u8 status[4]; 1328 }; 1329 1330 /* 1331 * Data Structure Block 1332 * 1333 * During execution of a ccb by the script processor, the 1334 * DSA (data structure address) register points to this 1335 * substructure of the ccb. 1336 */ 1337 struct sym_dsb { 1338 /* 1339 * CCB header. 1340 * Also assumed at offset 0 of the sym_ccb structure. 1341 */ 1342 /*0*/ struct sym_ccbh head; 1343 1344 /* 1345 * Phase mismatch contexts. 1346 * We need two to handle correctly the SAVED DATA POINTER. 1347 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1348 * for address calculation from SCRIPTS. 1349 */ 1350 struct sym_pmc pm0; 1351 struct sym_pmc pm1; 1352 1353 /* 1354 * Table data for Script 1355 */ 1356 struct sym_tblsel select; 1357 struct sym_tblmove smsg; 1358 struct sym_tblmove smsg_ext; 1359 struct sym_tblmove cmd; 1360 struct sym_tblmove sense; 1361 struct sym_tblmove wresid; 1362 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1363 }; 1364 1365 /* 1366 * Our Command Control Block 1367 */ 1368 struct sym_ccb { 1369 /* 1370 * This is the data structure which is pointed by the DSA 1371 * register when it is executed by the script processor. 1372 * It must be the first entry. 1373 */ 1374 struct sym_dsb phys; 1375 1376 /* 1377 * Pointer to CAM ccb and related stuff. 1378 */ 1379 struct callout ch; /* callout handle */ 1380 union ccb *cam_ccb; /* CAM scsiio ccb */ 1381 u8 cdb_buf[16]; /* Copy of CDB */ 1382 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1383 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1384 int data_len; /* Total data length */ 1385 int segments; /* Number of SG segments */ 1386 1387 /* 1388 * Miscellaneous status'. 1389 */ 1390 u_char nego_status; /* Negotiation status */ 1391 u_char xerr_status; /* Extended error flags */ 1392 u32 extra_bytes; /* Extraneous bytes transferred */ 1393 1394 /* 1395 * Message areas. 1396 * We prepare a message to be sent after selection. 1397 * We may use a second one if the command is rescheduled 1398 * due to CHECK_CONDITION or COMMAND TERMINATED. 1399 * Contents are IDENTIFY and SIMPLE_TAG. 1400 * While negotiating sync or wide transfer, 1401 * a SDTR or WDTR message is appended. 1402 */ 1403 u_char scsi_smsg [12]; 1404 u_char scsi_smsg2[12]; 1405 1406 /* 1407 * Auto request sense related fields. 1408 */ 1409 u_char sensecmd[6]; /* Request Sense command */ 1410 u_char sv_scsi_status; /* Saved SCSI status */ 1411 u_char sv_xerr_status; /* Saved extended status */ 1412 int sv_resid; /* Saved residual */ 1413 1414 /* 1415 * Map for the DMA of user data. 1416 */ 1417 void *arg; /* Argument for some callback */ 1418 bus_dmamap_t dmamap; /* DMA map for user data */ 1419 u_char dmamapped; 1420 #define SYM_DMA_NONE 0 1421 #define SYM_DMA_READ 1 1422 #define SYM_DMA_WRITE 2 1423 /* 1424 * Other fields. 1425 */ 1426 u32 ccb_ba; /* BUS address of this CCB */ 1427 u_short tag; /* Tag for this transfer */ 1428 /* NO_TAG means no tag */ 1429 u_char target; 1430 u_char lun; 1431 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1432 SYM_QUEHEAD 1433 link_ccbq; /* Link to free/busy CCB queue */ 1434 u32 startp; /* Initial data pointer */ 1435 int ext_sg; /* Extreme data pointer, used */ 1436 int ext_ofs; /* to calculate the residual. */ 1437 u_char to_abort; /* Want this IO to be aborted */ 1438 }; 1439 1440 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1441 1442 /* 1443 * Host Control Block 1444 */ 1445 struct sym_hcb { 1446 struct mtx mtx; 1447 1448 /* 1449 * Global headers. 1450 * Due to poorness of addressing capabilities, earlier 1451 * chips (810, 815, 825) copy part of the data structures 1452 * (CCB, TCB and LCB) in fixed areas. 1453 */ 1454 #ifdef SYM_CONF_GENERIC_SUPPORT 1455 struct sym_ccbh ccb_head; 1456 struct sym_tcbh tcb_head; 1457 struct sym_lcbh lcb_head; 1458 #endif 1459 /* 1460 * Idle task and invalid task actions and 1461 * their bus addresses. 1462 */ 1463 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1464 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1465 1466 /* 1467 * Dummy lun table to protect us against target 1468 * returning bad lun number on reselection. 1469 */ 1470 u32 *badluntbl; /* Table physical address */ 1471 u32 badlun_sa; /* SCRIPT handler BUS address */ 1472 1473 /* 1474 * Bus address of this host control block. 1475 */ 1476 u32 hcb_ba; 1477 1478 /* 1479 * Bit 32-63 of the on-chip RAM bus address in LE format. 1480 * The START_RAM64 script loads the MMRS and MMWS from this 1481 * field. 1482 */ 1483 u32 scr_ram_seg; 1484 1485 /* 1486 * Chip and controller indentification. 1487 */ 1488 device_t device; 1489 1490 /* 1491 * Initial value of some IO register bits. 1492 * These values are assumed to have been set by BIOS, and may 1493 * be used to probe adapter implementation differences. 1494 */ 1495 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1496 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1497 sv_stest1; 1498 1499 /* 1500 * Actual initial value of IO register bits used by the 1501 * driver. They are loaded at initialisation according to 1502 * features that are to be enabled/disabled. 1503 */ 1504 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1505 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1506 1507 /* 1508 * Target data. 1509 */ 1510 #ifdef __amd64__ 1511 struct sym_tcb *target; 1512 #else 1513 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1514 #endif 1515 1516 /* 1517 * Target control block bus address array used by the SCRIPT 1518 * on reselection. 1519 */ 1520 u32 *targtbl; 1521 u32 targtbl_ba; 1522 1523 /* 1524 * CAM SIM information for this instance. 1525 */ 1526 struct cam_sim *sim; 1527 struct cam_path *path; 1528 1529 /* 1530 * Allocated hardware resources. 1531 */ 1532 struct resource *irq_res; 1533 struct resource *io_res; 1534 struct resource *mmio_res; 1535 struct resource *ram_res; 1536 int ram_id; 1537 void *intr; 1538 1539 /* 1540 * Bus stuff. 1541 * 1542 * My understanding of PCI is that all agents must share the 1543 * same addressing range and model. 1544 * But some hardware architecture guys provide complex and 1545 * brain-deaded stuff that makes shit. 1546 * This driver only support PCI compliant implementations and 1547 * deals with part of the BUS stuff complexity only to fit O/S 1548 * requirements. 1549 */ 1550 1551 /* 1552 * DMA stuff. 1553 */ 1554 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1555 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1556 /* 1557 * BUS addresses of the chip 1558 */ 1559 vm_offset_t mmio_ba; /* MMIO BUS address */ 1560 int mmio_ws; /* MMIO Window size */ 1561 1562 vm_offset_t ram_ba; /* RAM BUS address */ 1563 int ram_ws; /* RAM window size */ 1564 1565 /* 1566 * SCRIPTS virtual and physical bus addresses. 1567 * 'script' is loaded in the on-chip RAM if present. 1568 * 'scripth' stays in main memory for all chips except the 1569 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1570 */ 1571 u_char *scripta0; /* Copies of script and scripth */ 1572 u_char *scriptb0; /* Copies of script and scripth */ 1573 vm_offset_t scripta_ba; /* Actual script and scripth */ 1574 vm_offset_t scriptb_ba; /* bus addresses. */ 1575 vm_offset_t scriptb0_ba; 1576 u_short scripta_sz; /* Actual size of script A */ 1577 u_short scriptb_sz; /* Actual size of script B */ 1578 1579 /* 1580 * Bus addresses, setup and patch methods for 1581 * the selected firmware. 1582 */ 1583 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1584 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1585 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1586 void (*fw_patch)(hcb_p np); 1587 const char *fw_name; 1588 1589 /* 1590 * General controller parameters and configuration. 1591 */ 1592 u_short device_id; /* PCI device id */ 1593 u_char revision_id; /* PCI device revision id */ 1594 u_int features; /* Chip features map */ 1595 u_char myaddr; /* SCSI id of the adapter */ 1596 u_char maxburst; /* log base 2 of dwords burst */ 1597 u_char maxwide; /* Maximum transfer width */ 1598 u_char minsync; /* Min sync period factor (ST) */ 1599 u_char maxsync; /* Max sync period factor (ST) */ 1600 u_char maxoffs; /* Max scsi offset (ST) */ 1601 u_char minsync_dt; /* Min sync period factor (DT) */ 1602 u_char maxsync_dt; /* Max sync period factor (DT) */ 1603 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1604 u_char multiplier; /* Clock multiplier (1,2,4) */ 1605 u_char clock_divn; /* Number of clock divisors */ 1606 u32 clock_khz; /* SCSI clock frequency in KHz */ 1607 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1608 /* 1609 * Start queue management. 1610 * It is filled up by the host processor and accessed by the 1611 * SCRIPTS processor in order to start SCSI commands. 1612 */ 1613 volatile /* Prevent code optimizations */ 1614 u32 *squeue; /* Start queue virtual address */ 1615 u32 squeue_ba; /* Start queue BUS address */ 1616 u_short squeueput; /* Next free slot of the queue */ 1617 u_short actccbs; /* Number of allocated CCBs */ 1618 1619 /* 1620 * Command completion queue. 1621 * It is the same size as the start queue to avoid overflow. 1622 */ 1623 u_short dqueueget; /* Next position to scan */ 1624 volatile /* Prevent code optimizations */ 1625 u32 *dqueue; /* Completion (done) queue */ 1626 u32 dqueue_ba; /* Done queue BUS address */ 1627 1628 /* 1629 * Miscellaneous buffers accessed by the scripts-processor. 1630 * They shall be DWORD aligned, because they may be read or 1631 * written with a script command. 1632 */ 1633 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1634 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1635 u32 lastmsg; /* Last SCSI message sent */ 1636 u_char scratch; /* Scratch for SCSI receive */ 1637 1638 /* 1639 * Miscellaneous configuration and status parameters. 1640 */ 1641 u_char usrflags; /* Miscellaneous user flags */ 1642 u_char scsi_mode; /* Current SCSI BUS mode */ 1643 u_char verbose; /* Verbosity for this controller*/ 1644 u32 cache; /* Used for cache test at init. */ 1645 1646 /* 1647 * CCB lists and queue. 1648 */ 1649 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1650 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1651 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1652 1653 /* 1654 * During error handling and/or recovery, 1655 * active CCBs that are to be completed with 1656 * error or requeued are moved from the busy_ccbq 1657 * to the comp_ccbq prior to completion. 1658 */ 1659 SYM_QUEHEAD comp_ccbq; 1660 1661 /* 1662 * CAM CCB pending queue. 1663 */ 1664 SYM_QUEHEAD cam_ccbq; 1665 1666 /* 1667 * IMMEDIATE ARBITRATION (IARB) control. 1668 * 1669 * We keep track in 'last_cp' of the last CCB that has been 1670 * queued to the SCRIPTS processor and clear 'last_cp' when 1671 * this CCB completes. If last_cp is not zero at the moment 1672 * we queue a new CCB, we set a flag in 'last_cp' that is 1673 * used by the SCRIPTS as a hint for setting IARB. 1674 * We donnot set more than 'iarb_max' consecutive hints for 1675 * IARB in order to leave devices a chance to reselect. 1676 * By the way, any non zero value of 'iarb_max' is unfair. :) 1677 */ 1678 #ifdef SYM_CONF_IARB_SUPPORT 1679 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1680 u_short iarb_count; /* Actual # of these hints */ 1681 ccb_p last_cp; 1682 #endif 1683 1684 /* 1685 * Command abort handling. 1686 * We need to synchronize tightly with the SCRIPTS 1687 * processor in order to handle things correctly. 1688 */ 1689 u_char abrt_msg[4]; /* Message to send buffer */ 1690 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1691 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1692 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1693 }; 1694 1695 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1696 1697 /* 1698 * Return the name of the controller. 1699 */ 1700 static __inline const char *sym_name(hcb_p np) 1701 { 1702 return device_get_nameunit(np->device); 1703 } 1704 1705 /*--------------------------------------------------------------------------*/ 1706 /*------------------------------ FIRMWARES ---------------------------------*/ 1707 /*--------------------------------------------------------------------------*/ 1708 1709 /* 1710 * This stuff will be moved to a separate source file when 1711 * the driver will be broken into several source modules. 1712 */ 1713 1714 /* 1715 * Macros used for all firmwares. 1716 */ 1717 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1718 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1719 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1720 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1721 1722 #ifdef SYM_CONF_GENERIC_SUPPORT 1723 /* 1724 * Allocate firmware #1 script area. 1725 */ 1726 #define SYM_FWA_SCR sym_fw1a_scr 1727 #define SYM_FWB_SCR sym_fw1b_scr 1728 #include <dev/sym/sym_fw1.h> 1729 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1730 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1731 }; 1732 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1733 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1734 }; 1735 #undef SYM_FWA_SCR 1736 #undef SYM_FWB_SCR 1737 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1738 1739 /* 1740 * Allocate firmware #2 script area. 1741 */ 1742 #define SYM_FWA_SCR sym_fw2a_scr 1743 #define SYM_FWB_SCR sym_fw2b_scr 1744 #include <dev/sym/sym_fw2.h> 1745 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1746 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1747 }; 1748 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1749 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1750 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1751 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1752 }; 1753 #undef SYM_FWA_SCR 1754 #undef SYM_FWB_SCR 1755 1756 #undef SYM_GEN_A 1757 #undef SYM_GEN_B 1758 #undef PADDR_A 1759 #undef PADDR_B 1760 1761 #ifdef SYM_CONF_GENERIC_SUPPORT 1762 /* 1763 * Patch routine for firmware #1. 1764 */ 1765 static void 1766 sym_fw1_patch(hcb_p np) 1767 { 1768 struct sym_fw1a_scr *scripta0; 1769 struct sym_fw1b_scr *scriptb0; 1770 1771 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1772 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1773 1774 /* 1775 * Remove LED support if not needed. 1776 */ 1777 if (!(np->features & FE_LED0)) { 1778 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1779 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1780 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1781 } 1782 1783 #ifdef SYM_CONF_IARB_SUPPORT 1784 /* 1785 * If user does not want to use IMMEDIATE ARBITRATION 1786 * when we are reselected while attempting to arbitrate, 1787 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1788 */ 1789 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1790 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1791 #endif 1792 /* 1793 * Patch some data in SCRIPTS. 1794 * - start and done queue initial bus address. 1795 * - target bus address table bus address. 1796 */ 1797 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1798 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1799 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1800 } 1801 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1802 1803 /* 1804 * Patch routine for firmware #2. 1805 */ 1806 static void 1807 sym_fw2_patch(hcb_p np) 1808 { 1809 struct sym_fw2a_scr *scripta0; 1810 struct sym_fw2b_scr *scriptb0; 1811 1812 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1813 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1814 1815 /* 1816 * Remove LED support if not needed. 1817 */ 1818 if (!(np->features & FE_LED0)) { 1819 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1820 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1821 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1822 } 1823 1824 #ifdef SYM_CONF_IARB_SUPPORT 1825 /* 1826 * If user does not want to use IMMEDIATE ARBITRATION 1827 * when we are reselected while attempting to arbitrate, 1828 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1829 */ 1830 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1831 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1832 #endif 1833 /* 1834 * Patch some variable in SCRIPTS. 1835 * - start and done queue initial bus address. 1836 * - target bus address table bus address. 1837 */ 1838 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1839 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1840 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1841 1842 /* 1843 * Remove the load of SCNTL4 on reselection if not a C10. 1844 */ 1845 if (!(np->features & FE_C10)) { 1846 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1847 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1848 } 1849 1850 /* 1851 * Remove a couple of work-arounds specific to C1010 if 1852 * they are not desirable. See `sym_fw2.h' for more details. 1853 */ 1854 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1855 np->revision_id < 0x1 && 1856 np->pciclk_khz < 60000)) { 1857 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1858 scripta0->datao_phase[1] = cpu_to_scr(0); 1859 } 1860 if (!(np->device_id == PCI_ID_LSI53C1010 && 1861 /* np->revision_id < 0xff */ 1)) { 1862 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1863 scripta0->sel_done[1] = cpu_to_scr(0); 1864 } 1865 1866 /* 1867 * Patch some other variables in SCRIPTS. 1868 * These ones are loaded by the SCRIPTS processor. 1869 */ 1870 scriptb0->pm0_data_addr[0] = 1871 cpu_to_scr(np->scripta_ba + 1872 offsetof(struct sym_fw2a_scr, pm0_data)); 1873 scriptb0->pm1_data_addr[0] = 1874 cpu_to_scr(np->scripta_ba + 1875 offsetof(struct sym_fw2a_scr, pm1_data)); 1876 } 1877 1878 /* 1879 * Fill the data area in scripts. 1880 * To be done for all firmwares. 1881 */ 1882 static void 1883 sym_fw_fill_data (u32 *in, u32 *out) 1884 { 1885 int i; 1886 1887 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1888 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1889 *in++ = offsetof (struct sym_dsb, data[i]); 1890 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1891 *out++ = offsetof (struct sym_dsb, data[i]); 1892 } 1893 } 1894 1895 /* 1896 * Setup useful script bus addresses. 1897 * To be done for all firmwares. 1898 */ 1899 static void 1900 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1901 { 1902 u32 *pa; 1903 const u_short *po; 1904 int i; 1905 1906 /* 1907 * Build the bus address table for script A 1908 * from the script A offset table. 1909 */ 1910 po = (const u_short *) fw->a_ofs; 1911 pa = (u32 *) &np->fwa_bas; 1912 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1913 pa[i] = np->scripta_ba + po[i]; 1914 1915 /* 1916 * Same for script B. 1917 */ 1918 po = (const u_short *) fw->b_ofs; 1919 pa = (u32 *) &np->fwb_bas; 1920 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1921 pa[i] = np->scriptb_ba + po[i]; 1922 } 1923 1924 #ifdef SYM_CONF_GENERIC_SUPPORT 1925 /* 1926 * Setup routine for firmware #1. 1927 */ 1928 static void 1929 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1930 { 1931 struct sym_fw1a_scr *scripta0; 1932 1933 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1934 1935 /* 1936 * Fill variable parts in scripts. 1937 */ 1938 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1939 1940 /* 1941 * Setup bus addresses used from the C code.. 1942 */ 1943 sym_fw_setup_bus_addresses(np, fw); 1944 } 1945 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1946 1947 /* 1948 * Setup routine for firmware #2. 1949 */ 1950 static void 1951 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1952 { 1953 struct sym_fw2a_scr *scripta0; 1954 1955 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1956 1957 /* 1958 * Fill variable parts in scripts. 1959 */ 1960 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1961 1962 /* 1963 * Setup bus addresses used from the C code.. 1964 */ 1965 sym_fw_setup_bus_addresses(np, fw); 1966 } 1967 1968 /* 1969 * Allocate firmware descriptors. 1970 */ 1971 #ifdef SYM_CONF_GENERIC_SUPPORT 1972 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 1973 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1974 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 1975 1976 /* 1977 * Find the most appropriate firmware for a chip. 1978 */ 1979 static const struct sym_fw * 1980 sym_find_firmware(const struct sym_pci_chip *chip) 1981 { 1982 if (chip->features & FE_LDSTR) 1983 return &sym_fw2; 1984 #ifdef SYM_CONF_GENERIC_SUPPORT 1985 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 1986 return &sym_fw1; 1987 #endif 1988 else 1989 return NULL; 1990 } 1991 1992 /* 1993 * Bind a script to physical addresses. 1994 */ 1995 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 1996 { 1997 u32 opcode, new, old, tmp1, tmp2; 1998 u32 *end, *cur; 1999 int relocs; 2000 2001 cur = start; 2002 end = start + len/4; 2003 2004 while (cur < end) { 2005 opcode = *cur; 2006 2007 /* 2008 * If we forget to change the length 2009 * in scripts, a field will be 2010 * padded with 0. This is an illegal 2011 * command. 2012 */ 2013 if (opcode == 0) { 2014 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2015 sym_name(np), (int) (cur-start)); 2016 MDELAY (10000); 2017 ++cur; 2018 continue; 2019 } 2020 2021 /* 2022 * We use the bogus value 0xf00ff00f ;-) 2023 * to reserve data area in SCRIPTS. 2024 */ 2025 if (opcode == SCR_DATA_ZERO) { 2026 *cur++ = 0; 2027 continue; 2028 } 2029 2030 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2031 printf ("%d: <%x>\n", (int) (cur-start), 2032 (unsigned)opcode); 2033 2034 /* 2035 * We don't have to decode ALL commands 2036 */ 2037 switch (opcode >> 28) { 2038 case 0xf: 2039 /* 2040 * LOAD / STORE DSA relative, don't relocate. 2041 */ 2042 relocs = 0; 2043 break; 2044 case 0xe: 2045 /* 2046 * LOAD / STORE absolute. 2047 */ 2048 relocs = 1; 2049 break; 2050 case 0xc: 2051 /* 2052 * COPY has TWO arguments. 2053 */ 2054 relocs = 2; 2055 tmp1 = cur[1]; 2056 tmp2 = cur[2]; 2057 if ((tmp1 ^ tmp2) & 3) { 2058 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2059 sym_name(np), (int) (cur-start)); 2060 MDELAY (10000); 2061 } 2062 /* 2063 * If PREFETCH feature not enabled, remove 2064 * the NO FLUSH bit if present. 2065 */ 2066 if ((opcode & SCR_NO_FLUSH) && 2067 !(np->features & FE_PFEN)) { 2068 opcode = (opcode & ~SCR_NO_FLUSH); 2069 } 2070 break; 2071 case 0x0: 2072 /* 2073 * MOVE/CHMOV (absolute address) 2074 */ 2075 if (!(np->features & FE_WIDE)) 2076 opcode = (opcode | OPC_MOVE); 2077 relocs = 1; 2078 break; 2079 case 0x1: 2080 /* 2081 * MOVE/CHMOV (table indirect) 2082 */ 2083 if (!(np->features & FE_WIDE)) 2084 opcode = (opcode | OPC_MOVE); 2085 relocs = 0; 2086 break; 2087 case 0x8: 2088 /* 2089 * JUMP / CALL 2090 * dont't relocate if relative :-) 2091 */ 2092 if (opcode & 0x00800000) 2093 relocs = 0; 2094 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2095 relocs = 2; 2096 else 2097 relocs = 1; 2098 break; 2099 case 0x4: 2100 case 0x5: 2101 case 0x6: 2102 case 0x7: 2103 relocs = 1; 2104 break; 2105 default: 2106 relocs = 0; 2107 break; 2108 } 2109 2110 /* 2111 * Scriptify:) the opcode. 2112 */ 2113 *cur++ = cpu_to_scr(opcode); 2114 2115 /* 2116 * If no relocation, assume 1 argument 2117 * and just scriptize:) it. 2118 */ 2119 if (!relocs) { 2120 *cur = cpu_to_scr(*cur); 2121 ++cur; 2122 continue; 2123 } 2124 2125 /* 2126 * Otherwise performs all needed relocations. 2127 */ 2128 while (relocs--) { 2129 old = *cur; 2130 2131 switch (old & RELOC_MASK) { 2132 case RELOC_REGISTER: 2133 new = (old & ~RELOC_MASK) + np->mmio_ba; 2134 break; 2135 case RELOC_LABEL_A: 2136 new = (old & ~RELOC_MASK) + np->scripta_ba; 2137 break; 2138 case RELOC_LABEL_B: 2139 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2140 break; 2141 case RELOC_SOFTC: 2142 new = (old & ~RELOC_MASK) + np->hcb_ba; 2143 break; 2144 case 0: 2145 /* 2146 * Don't relocate a 0 address. 2147 * They are mostly used for patched or 2148 * script self-modified areas. 2149 */ 2150 if (old == 0) { 2151 new = old; 2152 break; 2153 } 2154 /* fall through */ 2155 default: 2156 new = 0; 2157 panic("sym_fw_bind_script: " 2158 "weird relocation %x\n", old); 2159 break; 2160 } 2161 2162 *cur++ = cpu_to_scr(new); 2163 } 2164 } 2165 } 2166 2167 /*---------------------------------------------------------------------------*/ 2168 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2169 /*---------------------------------------------------------------------------*/ 2170 2171 /* 2172 * Function prototypes. 2173 */ 2174 static void sym_save_initial_setting (hcb_p np); 2175 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2176 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2177 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2178 static void sym_chip_reset (hcb_p np); 2179 static void sym_soft_reset (hcb_p np); 2180 static void sym_start_reset (hcb_p np); 2181 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2182 static int sym_wakeup_done (hcb_p np); 2183 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2184 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2185 static void sym_init (hcb_p np, int reason); 2186 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2187 u_char *fakp); 2188 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2189 u_char div, u_char fak); 2190 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2191 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2192 u_char per, u_char wide, u_char div, u_char fak); 2193 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2194 u_char per, u_char wide, u_char div, u_char fak); 2195 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2196 static void sym_intr (void *arg); 2197 static void sym_poll (struct cam_sim *sim); 2198 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2199 static void sym_int_sto (hcb_p np); 2200 static void sym_int_udc (hcb_p np); 2201 static void sym_int_sbmc (hcb_p np); 2202 static void sym_int_par (hcb_p np, u_short sist); 2203 static void sym_int_ma (hcb_p np); 2204 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2205 int task); 2206 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp); 2207 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2208 static void sym_sir_task_recovery (hcb_p np, int num); 2209 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2210 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs); 2211 static int sym_compute_residual (hcb_p np, ccb_p cp); 2212 static int sym_show_msg (u_char * msg); 2213 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2214 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2215 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2216 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2217 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2218 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2219 static void sym_int_sir (hcb_p np); 2220 static void sym_free_ccb (hcb_p np, ccb_p cp); 2221 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2222 static ccb_p sym_alloc_ccb (hcb_p np); 2223 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2224 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2225 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2226 static int sym_snooptest (hcb_p np); 2227 static void sym_selectclock(hcb_p np, u_char scntl3); 2228 static void sym_getclock (hcb_p np, int mult); 2229 static int sym_getpciclock (hcb_p np); 2230 static void sym_complete_ok (hcb_p np, ccb_p cp); 2231 static void sym_complete_error (hcb_p np, ccb_p cp); 2232 static void sym_callout (void *arg); 2233 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2234 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2235 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2236 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2237 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2238 ccb_p cp); 2239 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2240 bus_dma_segment_t *psegs, int nsegs); 2241 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2242 bus_dma_segment_t *psegs, int nsegs); 2243 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2244 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 2245 struct ccb_trans_settings *cts); 2246 static void sym_update_dflags(hcb_p np, u_char *flags, 2247 struct ccb_trans_settings *cts); 2248 2249 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2250 static int sym_pci_probe (device_t dev); 2251 static int sym_pci_attach (device_t dev); 2252 2253 static void sym_pci_free (hcb_p np); 2254 static int sym_cam_attach (hcb_p np); 2255 static void sym_cam_free (hcb_p np); 2256 2257 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2258 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2259 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2260 2261 /* 2262 * Print something which allows to retrieve the controller type, 2263 * unit, target, lun concerned by a kernel message. 2264 */ 2265 static void PRINT_TARGET (hcb_p np, int target) 2266 { 2267 printf ("%s:%d:", sym_name(np), target); 2268 } 2269 2270 static void PRINT_LUN(hcb_p np, int target, int lun) 2271 { 2272 printf ("%s:%d:%d:", sym_name(np), target, lun); 2273 } 2274 2275 static void PRINT_ADDR (ccb_p cp) 2276 { 2277 if (cp && cp->cam_ccb) 2278 xpt_print_path(cp->cam_ccb->ccb_h.path); 2279 } 2280 2281 /* 2282 * Take into account this ccb in the freeze count. 2283 */ 2284 static void sym_freeze_cam_ccb(union ccb *ccb) 2285 { 2286 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2287 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2288 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2289 xpt_freeze_devq(ccb->ccb_h.path, 1); 2290 } 2291 } 2292 } 2293 2294 /* 2295 * Set the status field of a CAM CCB. 2296 */ 2297 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2298 { 2299 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2300 ccb->ccb_h.status |= status; 2301 } 2302 2303 /* 2304 * Get the status field of a CAM CCB. 2305 */ 2306 static __inline int sym_get_cam_status(union ccb *ccb) 2307 { 2308 return ccb->ccb_h.status & CAM_STATUS_MASK; 2309 } 2310 2311 /* 2312 * Enqueue a CAM CCB. 2313 */ 2314 static void sym_enqueue_cam_ccb(ccb_p cp) 2315 { 2316 hcb_p np; 2317 union ccb *ccb; 2318 2319 ccb = cp->cam_ccb; 2320 np = (hcb_p) cp->arg; 2321 2322 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2323 ccb->ccb_h.status = CAM_REQ_INPROG; 2324 2325 callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout, 2326 (caddr_t)ccb, 0); 2327 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2328 ccb->ccb_h.sym_hcb_ptr = np; 2329 2330 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2331 } 2332 2333 /* 2334 * Complete a pending CAM CCB. 2335 */ 2336 2337 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2338 { 2339 2340 SYM_LOCK_ASSERT(MA_OWNED); 2341 2342 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2343 callout_stop(&cp->ch); 2344 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2345 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2346 ccb->ccb_h.sym_hcb_ptr = NULL; 2347 } 2348 xpt_done(ccb); 2349 } 2350 2351 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2352 { 2353 2354 SYM_LOCK_ASSERT(MA_OWNED); 2355 2356 sym_set_cam_status(ccb, cam_status); 2357 xpt_done(ccb); 2358 } 2359 2360 /* 2361 * SYMBIOS chip clock divisor table. 2362 * 2363 * Divisors are multiplied by 10,000,000 in order to make 2364 * calculations more simple. 2365 */ 2366 #define _5M 5000000 2367 static const u32 div_10M[] = 2368 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2369 2370 /* 2371 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2372 * 128 transfers. All chips support at least 16 transfers 2373 * bursts. The 825A, 875 and 895 chips support bursts of up 2374 * to 128 transfers and the 895A and 896 support bursts of up 2375 * to 64 transfers. All other chips support up to 16 2376 * transfers bursts. 2377 * 2378 * For PCI 32 bit data transfers each transfer is a DWORD. 2379 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2380 * 2381 * We use log base 2 (burst length) as internal code, with 2382 * value 0 meaning "burst disabled". 2383 */ 2384 2385 /* 2386 * Burst length from burst code. 2387 */ 2388 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2389 2390 /* 2391 * Burst code from io register bits. 2392 */ 2393 #define burst_code(dmode, ctest4, ctest5) \ 2394 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2395 2396 /* 2397 * Set initial io register bits from burst code. 2398 */ 2399 static __inline void sym_init_burst(hcb_p np, u_char bc) 2400 { 2401 np->rv_ctest4 &= ~0x80; 2402 np->rv_dmode &= ~(0x3 << 6); 2403 np->rv_ctest5 &= ~0x4; 2404 2405 if (!bc) { 2406 np->rv_ctest4 |= 0x80; 2407 } 2408 else { 2409 --bc; 2410 np->rv_dmode |= ((bc & 0x3) << 6); 2411 np->rv_ctest5 |= (bc & 0x4); 2412 } 2413 } 2414 2415 /* 2416 * Print out the list of targets that have some flag disabled by user. 2417 */ 2418 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2419 { 2420 int cnt; 2421 int i; 2422 2423 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2424 if (i == np->myaddr) 2425 continue; 2426 if (np->target[i].usrflags & mask) { 2427 if (!cnt++) 2428 printf("%s: %s disabled for targets", 2429 sym_name(np), msg); 2430 printf(" %d", i); 2431 } 2432 } 2433 if (cnt) 2434 printf(".\n"); 2435 } 2436 2437 /* 2438 * Save initial settings of some IO registers. 2439 * Assumed to have been set by BIOS. 2440 * We cannot reset the chip prior to reading the 2441 * IO registers, since informations will be lost. 2442 * Since the SCRIPTS processor may be running, this 2443 * is not safe on paper, but it seems to work quite 2444 * well. :) 2445 */ 2446 static void sym_save_initial_setting (hcb_p np) 2447 { 2448 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2449 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2450 np->sv_dmode = INB(nc_dmode) & 0xce; 2451 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2452 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2453 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2454 np->sv_gpcntl = INB(nc_gpcntl); 2455 np->sv_stest1 = INB(nc_stest1); 2456 np->sv_stest2 = INB(nc_stest2) & 0x20; 2457 np->sv_stest4 = INB(nc_stest4); 2458 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2459 np->sv_scntl4 = INB(nc_scntl4); 2460 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2461 } 2462 else 2463 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2464 } 2465 2466 /* 2467 * Prepare io register values used by sym_init() according 2468 * to selected and supported features. 2469 */ 2470 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2471 { 2472 u_char burst_max; 2473 u32 period; 2474 int i; 2475 2476 /* 2477 * Wide ? 2478 */ 2479 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2480 2481 /* 2482 * Get the frequency of the chip's clock. 2483 */ 2484 if (np->features & FE_QUAD) 2485 np->multiplier = 4; 2486 else if (np->features & FE_DBLR) 2487 np->multiplier = 2; 2488 else 2489 np->multiplier = 1; 2490 2491 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2492 np->clock_khz *= np->multiplier; 2493 2494 if (np->clock_khz != 40000) 2495 sym_getclock(np, np->multiplier); 2496 2497 /* 2498 * Divisor to be used for async (timer pre-scaler). 2499 */ 2500 i = np->clock_divn - 1; 2501 while (--i >= 0) { 2502 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2503 ++i; 2504 break; 2505 } 2506 } 2507 np->rv_scntl3 = i+1; 2508 2509 /* 2510 * The C1010 uses hardwired divisors for async. 2511 * So, we just throw away, the async. divisor.:-) 2512 */ 2513 if (np->features & FE_C10) 2514 np->rv_scntl3 = 0; 2515 2516 /* 2517 * Minimum synchronous period factor supported by the chip. 2518 * Btw, 'period' is in tenths of nanoseconds. 2519 */ 2520 period = howmany(4 * div_10M[0], np->clock_khz); 2521 if (period <= 250) np->minsync = 10; 2522 else if (period <= 303) np->minsync = 11; 2523 else if (period <= 500) np->minsync = 12; 2524 else np->minsync = howmany(period, 40); 2525 2526 /* 2527 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2528 */ 2529 if (np->minsync < 25 && 2530 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2531 np->minsync = 25; 2532 else if (np->minsync < 12 && 2533 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2534 np->minsync = 12; 2535 2536 /* 2537 * Maximum synchronous period factor supported by the chip. 2538 */ 2539 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2540 np->maxsync = period > 2540 ? 254 : period / 10; 2541 2542 /* 2543 * If chip is a C1010, guess the sync limits in DT mode. 2544 */ 2545 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2546 if (np->clock_khz == 160000) { 2547 np->minsync_dt = 9; 2548 np->maxsync_dt = 50; 2549 np->maxoffs_dt = 62; 2550 } 2551 } 2552 2553 /* 2554 * 64 bit addressing (895A/896/1010) ? 2555 */ 2556 if (np->features & FE_DAC) 2557 #ifdef __LP64__ 2558 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2559 #else 2560 np->rv_ccntl1 |= (DDAC); 2561 #endif 2562 2563 /* 2564 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2565 */ 2566 if (np->features & FE_NOPM) 2567 np->rv_ccntl0 |= (ENPMJ); 2568 2569 /* 2570 * C1010 Errata. 2571 * In dual channel mode, contention occurs if internal cycles 2572 * are used. Disable internal cycles. 2573 */ 2574 if (np->device_id == PCI_ID_LSI53C1010 && 2575 np->revision_id < 0x2) 2576 np->rv_ccntl0 |= DILS; 2577 2578 /* 2579 * Select burst length (dwords) 2580 */ 2581 burst_max = SYM_SETUP_BURST_ORDER; 2582 if (burst_max == 255) 2583 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2584 np->sv_ctest5); 2585 if (burst_max > 7) 2586 burst_max = 7; 2587 if (burst_max > np->maxburst) 2588 burst_max = np->maxburst; 2589 2590 /* 2591 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2592 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2593 * based transactions on LOAD/STORE instructions. So we have 2594 * to prevent these chips from using such PCI transactions in 2595 * this driver. The generic ncr driver that does not use 2596 * LOAD/STORE instructions does not need this work-around. 2597 */ 2598 if ((np->device_id == PCI_ID_SYM53C810 && 2599 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2600 (np->device_id == PCI_ID_SYM53C860 && 2601 np->revision_id <= 0x1)) 2602 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2603 2604 /* 2605 * Select all supported special features. 2606 * If we are using on-board RAM for scripts, prefetch (PFEN) 2607 * does not help, but burst op fetch (BOF) does. 2608 * Disabling PFEN makes sure BOF will be used. 2609 */ 2610 if (np->features & FE_ERL) 2611 np->rv_dmode |= ERL; /* Enable Read Line */ 2612 if (np->features & FE_BOF) 2613 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2614 if (np->features & FE_ERMP) 2615 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2616 #if 1 2617 if ((np->features & FE_PFEN) && !np->ram_ba) 2618 #else 2619 if (np->features & FE_PFEN) 2620 #endif 2621 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2622 if (np->features & FE_CLSE) 2623 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2624 if (np->features & FE_WRIE) 2625 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2626 if (np->features & FE_DFS) 2627 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2628 2629 /* 2630 * Select some other 2631 */ 2632 if (SYM_SETUP_PCI_PARITY) 2633 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2634 if (SYM_SETUP_SCSI_PARITY) 2635 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2636 2637 /* 2638 * Get parity checking, host ID and verbose mode from NVRAM 2639 */ 2640 np->myaddr = 255; 2641 sym_nvram_setup_host (np, nvram); 2642 2643 /* 2644 * Get SCSI addr of host adapter (set by bios?). 2645 */ 2646 if (np->myaddr == 255) { 2647 np->myaddr = INB(nc_scid) & 0x07; 2648 if (!np->myaddr) 2649 np->myaddr = SYM_SETUP_HOST_ID; 2650 } 2651 2652 /* 2653 * Prepare initial io register bits for burst length 2654 */ 2655 sym_init_burst(np, burst_max); 2656 2657 /* 2658 * Set SCSI BUS mode. 2659 * - LVD capable chips (895/895A/896/1010) report the 2660 * current BUS mode through the STEST4 IO register. 2661 * - For previous generation chips (825/825A/875), 2662 * user has to tell us how to check against HVD, 2663 * since a 100% safe algorithm is not possible. 2664 */ 2665 np->scsi_mode = SMODE_SE; 2666 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2667 np->scsi_mode = (np->sv_stest4 & SMODE); 2668 else if (np->features & FE_DIFF) { 2669 if (SYM_SETUP_SCSI_DIFF == 1) { 2670 if (np->sv_scntl3) { 2671 if (np->sv_stest2 & 0x20) 2672 np->scsi_mode = SMODE_HVD; 2673 } 2674 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2675 if (!(INB(nc_gpreg) & 0x08)) 2676 np->scsi_mode = SMODE_HVD; 2677 } 2678 } 2679 else if (SYM_SETUP_SCSI_DIFF == 2) 2680 np->scsi_mode = SMODE_HVD; 2681 } 2682 if (np->scsi_mode == SMODE_HVD) 2683 np->rv_stest2 |= 0x20; 2684 2685 /* 2686 * Set LED support from SCRIPTS. 2687 * Ignore this feature for boards known to use a 2688 * specific GPIO wiring and for the 895A, 896 2689 * and 1010 that drive the LED directly. 2690 */ 2691 if ((SYM_SETUP_SCSI_LED || 2692 (nvram->type == SYM_SYMBIOS_NVRAM || 2693 (nvram->type == SYM_TEKRAM_NVRAM && 2694 np->device_id == PCI_ID_SYM53C895))) && 2695 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2696 np->features |= FE_LED0; 2697 2698 /* 2699 * Set irq mode. 2700 */ 2701 switch(SYM_SETUP_IRQ_MODE & 3) { 2702 case 2: 2703 np->rv_dcntl |= IRQM; 2704 break; 2705 case 1: 2706 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2707 break; 2708 default: 2709 break; 2710 } 2711 2712 /* 2713 * Configure targets according to driver setup. 2714 * If NVRAM present get targets setup from NVRAM. 2715 */ 2716 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2717 tcb_p tp = &np->target[i]; 2718 2719 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2720 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2721 tp->tinfo.user.period = np->minsync; 2722 if (np->features & FE_ULTRA3) 2723 tp->tinfo.user.period = np->minsync_dt; 2724 tp->tinfo.user.offset = np->maxoffs; 2725 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2726 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2727 tp->usrtags = SYM_SETUP_MAX_TAG; 2728 2729 sym_nvram_setup_target (np, i, nvram); 2730 2731 /* 2732 * For now, guess PPR/DT support from the period 2733 * and BUS width. 2734 */ 2735 if (np->features & FE_ULTRA3) { 2736 if (tp->tinfo.user.period <= 9 && 2737 tp->tinfo.user.width == BUS_16_BIT) { 2738 tp->tinfo.user.options |= PPR_OPT_DT; 2739 tp->tinfo.user.offset = np->maxoffs_dt; 2740 tp->tinfo.user.spi_version = 3; 2741 } 2742 } 2743 2744 if (!tp->usrtags) 2745 tp->usrflags &= ~SYM_TAGS_ENABLED; 2746 } 2747 2748 /* 2749 * Let user know about the settings. 2750 */ 2751 i = nvram->type; 2752 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2753 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2754 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2755 np->myaddr, 2756 (np->features & FE_ULTRA3) ? 80 : 2757 (np->features & FE_ULTRA2) ? 40 : 2758 (np->features & FE_ULTRA) ? 20 : 10, 2759 sym_scsi_bus_mode(np->scsi_mode), 2760 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2761 /* 2762 * Tell him more on demand. 2763 */ 2764 if (sym_verbose) { 2765 printf("%s: %s IRQ line driver%s\n", 2766 sym_name(np), 2767 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2768 np->ram_ba ? ", using on-chip SRAM" : ""); 2769 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2770 if (np->features & FE_NOPM) 2771 printf("%s: handling phase mismatch from SCRIPTS.\n", 2772 sym_name(np)); 2773 } 2774 /* 2775 * And still more. 2776 */ 2777 if (sym_verbose > 1) { 2778 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2779 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2780 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2781 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2782 2783 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2784 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2785 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2786 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2787 } 2788 /* 2789 * Let user be aware of targets that have some disable flags set. 2790 */ 2791 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2792 if (sym_verbose) 2793 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2794 "SCAN FOR LUNS"); 2795 2796 return 0; 2797 } 2798 2799 /* 2800 * Prepare the next negotiation message if needed. 2801 * 2802 * Fill in the part of message buffer that contains the 2803 * negotiation and the nego_status field of the CCB. 2804 * Returns the size of the message in bytes. 2805 */ 2806 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2807 { 2808 tcb_p tp = &np->target[cp->target]; 2809 int msglen = 0; 2810 2811 /* 2812 * Early C1010 chips need a work-around for DT 2813 * data transfer to work. 2814 */ 2815 if (!(np->features & FE_U3EN)) 2816 tp->tinfo.goal.options = 0; 2817 /* 2818 * negotiate using PPR ? 2819 */ 2820 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2821 nego = NS_PPR; 2822 /* 2823 * negotiate wide transfers ? 2824 */ 2825 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2826 nego = NS_WIDE; 2827 /* 2828 * negotiate synchronous transfers? 2829 */ 2830 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2831 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2832 nego = NS_SYNC; 2833 2834 switch (nego) { 2835 case NS_SYNC: 2836 msgptr[msglen++] = M_EXTENDED; 2837 msgptr[msglen++] = 3; 2838 msgptr[msglen++] = M_X_SYNC_REQ; 2839 msgptr[msglen++] = tp->tinfo.goal.period; 2840 msgptr[msglen++] = tp->tinfo.goal.offset; 2841 break; 2842 case NS_WIDE: 2843 msgptr[msglen++] = M_EXTENDED; 2844 msgptr[msglen++] = 2; 2845 msgptr[msglen++] = M_X_WIDE_REQ; 2846 msgptr[msglen++] = tp->tinfo.goal.width; 2847 break; 2848 case NS_PPR: 2849 msgptr[msglen++] = M_EXTENDED; 2850 msgptr[msglen++] = 6; 2851 msgptr[msglen++] = M_X_PPR_REQ; 2852 msgptr[msglen++] = tp->tinfo.goal.period; 2853 msgptr[msglen++] = 0; 2854 msgptr[msglen++] = tp->tinfo.goal.offset; 2855 msgptr[msglen++] = tp->tinfo.goal.width; 2856 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2857 break; 2858 } 2859 2860 cp->nego_status = nego; 2861 2862 if (nego) { 2863 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2864 if (DEBUG_FLAGS & DEBUG_NEGO) { 2865 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2866 nego == NS_WIDE ? "wide msgout" : 2867 "ppr msgout", msgptr); 2868 } 2869 } 2870 2871 return msglen; 2872 } 2873 2874 /* 2875 * Insert a job into the start queue. 2876 */ 2877 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2878 { 2879 u_short qidx; 2880 2881 #ifdef SYM_CONF_IARB_SUPPORT 2882 /* 2883 * If the previously queued CCB is not yet done, 2884 * set the IARB hint. The SCRIPTS will go with IARB 2885 * for this job when starting the previous one. 2886 * We leave devices a chance to win arbitration by 2887 * not using more than 'iarb_max' consecutive 2888 * immediate arbitrations. 2889 */ 2890 if (np->last_cp && np->iarb_count < np->iarb_max) { 2891 np->last_cp->host_flags |= HF_HINT_IARB; 2892 ++np->iarb_count; 2893 } 2894 else 2895 np->iarb_count = 0; 2896 np->last_cp = cp; 2897 #endif 2898 2899 /* 2900 * Insert first the idle task and then our job. 2901 * The MB should ensure proper ordering. 2902 */ 2903 qidx = np->squeueput + 2; 2904 if (qidx >= MAX_QUEUE*2) qidx = 0; 2905 2906 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2907 MEMORY_BARRIER(); 2908 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2909 2910 np->squeueput = qidx; 2911 2912 if (DEBUG_FLAGS & DEBUG_QUEUE) 2913 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2914 2915 /* 2916 * Script processor may be waiting for reselect. 2917 * Wake it up. 2918 */ 2919 MEMORY_BARRIER(); 2920 OUTB (nc_istat, SIGP|np->istat_sem); 2921 } 2922 2923 /* 2924 * Soft reset the chip. 2925 * 2926 * Raising SRST when the chip is running may cause 2927 * problems on dual function chips (see below). 2928 * On the other hand, LVD devices need some delay 2929 * to settle and report actual BUS mode in STEST4. 2930 */ 2931 static void sym_chip_reset (hcb_p np) 2932 { 2933 OUTB (nc_istat, SRST); 2934 UDELAY (10); 2935 OUTB (nc_istat, 0); 2936 UDELAY(2000); /* For BUS MODE to settle */ 2937 } 2938 2939 /* 2940 * Soft reset the chip. 2941 * 2942 * Some 896 and 876 chip revisions may hang-up if we set 2943 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2944 * are running. 2945 * So, we need to abort the current operation prior to 2946 * soft resetting the chip. 2947 */ 2948 static void sym_soft_reset (hcb_p np) 2949 { 2950 u_char istat; 2951 int i; 2952 2953 OUTB (nc_istat, CABRT); 2954 for (i = 1000000 ; i ; --i) { 2955 istat = INB (nc_istat); 2956 if (istat & SIP) { 2957 INW (nc_sist); 2958 continue; 2959 } 2960 if (istat & DIP) { 2961 OUTB (nc_istat, 0); 2962 INB (nc_dstat); 2963 break; 2964 } 2965 } 2966 if (!i) 2967 printf("%s: unable to abort current chip operation.\n", 2968 sym_name(np)); 2969 sym_chip_reset (np); 2970 } 2971 2972 /* 2973 * Start reset process. 2974 * 2975 * The interrupt handler will reinitialize the chip. 2976 */ 2977 static void sym_start_reset(hcb_p np) 2978 { 2979 (void) sym_reset_scsi_bus(np, 1); 2980 } 2981 2982 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 2983 { 2984 u32 term; 2985 int retv = 0; 2986 2987 sym_soft_reset(np); /* Soft reset the chip */ 2988 if (enab_int) 2989 OUTW (nc_sien, RST); 2990 /* 2991 * Enable Tolerant, reset IRQD if present and 2992 * properly set IRQ mode, prior to resetting the bus. 2993 */ 2994 OUTB (nc_stest3, TE); 2995 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 2996 OUTB (nc_scntl1, CRST); 2997 UDELAY (200); 2998 2999 if (!SYM_SETUP_SCSI_BUS_CHECK) 3000 goto out; 3001 /* 3002 * Check for no terminators or SCSI bus shorts to ground. 3003 * Read SCSI data bus, data parity bits and control signals. 3004 * We are expecting RESET to be TRUE and other signals to be 3005 * FALSE. 3006 */ 3007 term = INB(nc_sstat0); 3008 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3009 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3010 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3011 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3012 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3013 3014 if (!(np->features & FE_WIDE)) 3015 term &= 0x3ffff; 3016 3017 if (term != (2<<7)) { 3018 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3019 sym_name(np)); 3020 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3021 "0x%lx, expecting 0x%lx\n", 3022 sym_name(np), 3023 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3024 (u_long)term, (u_long)(2<<7)); 3025 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3026 retv = 1; 3027 } 3028 out: 3029 OUTB (nc_scntl1, 0); 3030 /* MDELAY(100); */ 3031 return retv; 3032 } 3033 3034 /* 3035 * The chip may have completed jobs. Look at the DONE QUEUE. 3036 * 3037 * On architectures that may reorder LOAD/STORE operations, 3038 * a memory barrier may be needed after the reading of the 3039 * so-called `flag' and prior to dealing with the data. 3040 */ 3041 static int sym_wakeup_done (hcb_p np) 3042 { 3043 ccb_p cp; 3044 int i, n; 3045 u32 dsa; 3046 3047 SYM_LOCK_ASSERT(MA_OWNED); 3048 3049 n = 0; 3050 i = np->dqueueget; 3051 while (1) { 3052 dsa = scr_to_cpu(np->dqueue[i]); 3053 if (!dsa) 3054 break; 3055 np->dqueue[i] = 0; 3056 if ((i = i+2) >= MAX_QUEUE*2) 3057 i = 0; 3058 3059 cp = sym_ccb_from_dsa(np, dsa); 3060 if (cp) { 3061 MEMORY_BARRIER(); 3062 sym_complete_ok (np, cp); 3063 ++n; 3064 } 3065 else 3066 printf ("%s: bad DSA (%x) in done queue.\n", 3067 sym_name(np), (u_int) dsa); 3068 } 3069 np->dqueueget = i; 3070 3071 return n; 3072 } 3073 3074 /* 3075 * Complete all active CCBs with error. 3076 * Used on CHIP/SCSI RESET. 3077 */ 3078 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3079 { 3080 /* 3081 * Move all active CCBs to the COMP queue 3082 * and flush this queue. 3083 */ 3084 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3085 sym_que_init(&np->busy_ccbq); 3086 sym_flush_comp_queue(np, cam_status); 3087 } 3088 3089 /* 3090 * Start chip. 3091 * 3092 * 'reason' means: 3093 * 0: initialisation. 3094 * 1: SCSI BUS RESET delivered or received. 3095 * 2: SCSI BUS MODE changed. 3096 */ 3097 static void sym_init (hcb_p np, int reason) 3098 { 3099 int i; 3100 u32 phys; 3101 3102 SYM_LOCK_ASSERT(MA_OWNED); 3103 3104 /* 3105 * Reset chip if asked, otherwise just clear fifos. 3106 */ 3107 if (reason == 1) 3108 sym_soft_reset(np); 3109 else { 3110 OUTB (nc_stest3, TE|CSF); 3111 OUTONB (nc_ctest3, CLF); 3112 } 3113 3114 /* 3115 * Clear Start Queue 3116 */ 3117 phys = np->squeue_ba; 3118 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3119 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3120 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3121 } 3122 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3123 3124 /* 3125 * Start at first entry. 3126 */ 3127 np->squeueput = 0; 3128 3129 /* 3130 * Clear Done Queue 3131 */ 3132 phys = np->dqueue_ba; 3133 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3134 np->dqueue[i] = 0; 3135 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3136 } 3137 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3138 3139 /* 3140 * Start at first entry. 3141 */ 3142 np->dqueueget = 0; 3143 3144 /* 3145 * Install patches in scripts. 3146 * This also let point to first position the start 3147 * and done queue pointers used from SCRIPTS. 3148 */ 3149 np->fw_patch(np); 3150 3151 /* 3152 * Wakeup all pending jobs. 3153 */ 3154 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3155 3156 /* 3157 * Init chip. 3158 */ 3159 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3160 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3161 3162 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3163 /* full arb., ena parity, par->ATN */ 3164 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3165 3166 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3167 3168 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3169 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3170 OUTB (nc_istat , SIGP ); /* Signal Process */ 3171 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3172 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3173 3174 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3175 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3176 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3177 3178 /* Extended Sreq/Sack filtering not supported on the C10 */ 3179 if (np->features & FE_C10) 3180 OUTB (nc_stest2, np->rv_stest2); 3181 else 3182 OUTB (nc_stest2, EXT|np->rv_stest2); 3183 3184 OUTB (nc_stest3, TE); /* TolerANT enable */ 3185 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3186 3187 /* 3188 * For now, disable AIP generation on C1010-66. 3189 */ 3190 if (np->device_id == PCI_ID_LSI53C1010_2) 3191 OUTB (nc_aipcntl1, DISAIP); 3192 3193 /* 3194 * C10101 Errata. 3195 * Errant SGE's when in narrow. Write bits 4 & 5 of 3196 * STEST1 register to disable SGE. We probably should do 3197 * that from SCRIPTS for each selection/reselection, but 3198 * I just don't want. :) 3199 */ 3200 if (np->device_id == PCI_ID_LSI53C1010 && 3201 /* np->revision_id < 0xff */ 1) 3202 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3203 3204 /* 3205 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3206 * Disable overlapped arbitration for some dual function devices, 3207 * regardless revision id (kind of post-chip-design feature. ;-)) 3208 */ 3209 if (np->device_id == PCI_ID_SYM53C875) 3210 OUTB (nc_ctest0, (1<<5)); 3211 else if (np->device_id == PCI_ID_SYM53C896) 3212 np->rv_ccntl0 |= DPR; 3213 3214 /* 3215 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3216 * and/or hardware phase mismatch, since only such chips 3217 * seem to support those IO registers. 3218 */ 3219 if (np->features & (FE_DAC|FE_NOPM)) { 3220 OUTB (nc_ccntl0, np->rv_ccntl0); 3221 OUTB (nc_ccntl1, np->rv_ccntl1); 3222 } 3223 3224 /* 3225 * If phase mismatch handled by scripts (895A/896/1010), 3226 * set PM jump addresses. 3227 */ 3228 if (np->features & FE_NOPM) { 3229 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3230 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3231 } 3232 3233 /* 3234 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3235 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3236 */ 3237 if (np->features & FE_LED0) 3238 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3239 else if (np->features & FE_LEDC) 3240 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3241 3242 /* 3243 * enable ints 3244 */ 3245 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3246 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3247 3248 /* 3249 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3250 * Try to eat the spurious SBMC interrupt that may occur when 3251 * we reset the chip but not the SCSI BUS (at initialization). 3252 */ 3253 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3254 OUTONW (nc_sien, SBMC); 3255 if (reason == 0) { 3256 MDELAY(100); 3257 INW (nc_sist); 3258 } 3259 np->scsi_mode = INB (nc_stest4) & SMODE; 3260 } 3261 3262 /* 3263 * Fill in target structure. 3264 * Reinitialize usrsync. 3265 * Reinitialize usrwide. 3266 * Prepare sync negotiation according to actual SCSI bus mode. 3267 */ 3268 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3269 tcb_p tp = &np->target[i]; 3270 3271 tp->to_reset = 0; 3272 tp->head.sval = 0; 3273 tp->head.wval = np->rv_scntl3; 3274 tp->head.uval = 0; 3275 3276 tp->tinfo.current.period = 0; 3277 tp->tinfo.current.offset = 0; 3278 tp->tinfo.current.width = BUS_8_BIT; 3279 tp->tinfo.current.options = 0; 3280 } 3281 3282 /* 3283 * Download SCSI SCRIPTS to on-chip RAM if present, 3284 * and start script processor. 3285 */ 3286 if (np->ram_ba) { 3287 if (sym_verbose > 1) 3288 printf ("%s: Downloading SCSI SCRIPTS.\n", 3289 sym_name(np)); 3290 if (np->ram_ws == 8192) { 3291 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3292 OUTL (nc_mmws, np->scr_ram_seg); 3293 OUTL (nc_mmrs, np->scr_ram_seg); 3294 OUTL (nc_sfs, np->scr_ram_seg); 3295 phys = SCRIPTB_BA (np, start64); 3296 } 3297 else 3298 phys = SCRIPTA_BA (np, init); 3299 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3300 } 3301 else 3302 phys = SCRIPTA_BA (np, init); 3303 3304 np->istat_sem = 0; 3305 3306 OUTL (nc_dsa, np->hcb_ba); 3307 OUTL_DSP (phys); 3308 3309 /* 3310 * Notify the XPT about the RESET condition. 3311 */ 3312 if (reason != 0) 3313 xpt_async(AC_BUS_RESET, np->path, NULL); 3314 } 3315 3316 /* 3317 * Get clock factor and sync divisor for a given 3318 * synchronous factor period. 3319 */ 3320 static int 3321 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3322 { 3323 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3324 int div = np->clock_divn; /* Number of divisors supported */ 3325 u32 fak; /* Sync factor in sxfer */ 3326 u32 per; /* Period in tenths of ns */ 3327 u32 kpc; /* (per * clk) */ 3328 int ret; 3329 3330 /* 3331 * Compute the synchronous period in tenths of nano-seconds 3332 */ 3333 if (dt && sfac <= 9) per = 125; 3334 else if (sfac <= 10) per = 250; 3335 else if (sfac == 11) per = 303; 3336 else if (sfac == 12) per = 500; 3337 else per = 40 * sfac; 3338 ret = per; 3339 3340 kpc = per * clk; 3341 if (dt) 3342 kpc <<= 1; 3343 3344 /* 3345 * For earliest C10 revision 0, we cannot use extra 3346 * clocks for the setting of the SCSI clocking. 3347 * Note that this limits the lowest sync data transfer 3348 * to 5 Mega-transfers per second and may result in 3349 * using higher clock divisors. 3350 */ 3351 #if 1 3352 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3353 /* 3354 * Look for the lowest clock divisor that allows an 3355 * output speed not faster than the period. 3356 */ 3357 while (div > 0) { 3358 --div; 3359 if (kpc > (div_10M[div] << 2)) { 3360 ++div; 3361 break; 3362 } 3363 } 3364 fak = 0; /* No extra clocks */ 3365 if (div == np->clock_divn) { /* Are we too fast ? */ 3366 ret = -1; 3367 } 3368 *divp = div; 3369 *fakp = fak; 3370 return ret; 3371 } 3372 #endif 3373 3374 /* 3375 * Look for the greatest clock divisor that allows an 3376 * input speed faster than the period. 3377 */ 3378 while (div-- > 0) 3379 if (kpc >= (div_10M[div] << 2)) break; 3380 3381 /* 3382 * Calculate the lowest clock factor that allows an output 3383 * speed not faster than the period, and the max output speed. 3384 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3385 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3386 */ 3387 if (dt) { 3388 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3389 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3390 } 3391 else { 3392 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3393 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3394 } 3395 3396 /* 3397 * Check against our hardware limits, or bugs :). 3398 */ 3399 if (fak > 2) {fak = 2; ret = -1;} 3400 3401 /* 3402 * Compute and return sync parameters. 3403 */ 3404 *divp = div; 3405 *fakp = fak; 3406 3407 return ret; 3408 } 3409 3410 /* 3411 * Tell the SCSI layer about the new transfer parameters. 3412 */ 3413 static void 3414 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3415 { 3416 struct ccb_trans_settings cts; 3417 struct cam_path *path; 3418 int sts; 3419 tcb_p tp = &np->target[target]; 3420 3421 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3422 CAM_LUN_WILDCARD); 3423 if (sts != CAM_REQ_CMP) 3424 return; 3425 3426 bzero(&cts, sizeof(cts)); 3427 3428 #define cts__scsi (cts.proto_specific.scsi) 3429 #define cts__spi (cts.xport_specific.spi) 3430 3431 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3432 cts.protocol = PROTO_SCSI; 3433 cts.transport = XPORT_SPI; 3434 cts.protocol_version = tp->tinfo.current.scsi_version; 3435 cts.transport_version = tp->tinfo.current.spi_version; 3436 3437 cts__spi.valid = spi_valid; 3438 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3439 cts__spi.sync_period = tp->tinfo.current.period; 3440 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3441 cts__spi.sync_offset = tp->tinfo.current.offset; 3442 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3443 cts__spi.bus_width = tp->tinfo.current.width; 3444 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3445 cts__spi.ppr_options = tp->tinfo.current.options; 3446 #undef cts__spi 3447 #undef cts__scsi 3448 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3449 xpt_async(AC_TRANSFER_NEG, path, &cts); 3450 xpt_free_path(path); 3451 } 3452 3453 #define SYM_SPI_VALID_WDTR \ 3454 CTS_SPI_VALID_BUS_WIDTH | \ 3455 CTS_SPI_VALID_SYNC_RATE | \ 3456 CTS_SPI_VALID_SYNC_OFFSET 3457 #define SYM_SPI_VALID_SDTR \ 3458 CTS_SPI_VALID_SYNC_RATE | \ 3459 CTS_SPI_VALID_SYNC_OFFSET 3460 #define SYM_SPI_VALID_PPR \ 3461 CTS_SPI_VALID_PPR_OPTIONS | \ 3462 CTS_SPI_VALID_BUS_WIDTH | \ 3463 CTS_SPI_VALID_SYNC_RATE | \ 3464 CTS_SPI_VALID_SYNC_OFFSET 3465 3466 /* 3467 * We received a WDTR. 3468 * Let everything be aware of the changes. 3469 */ 3470 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3471 { 3472 tcb_p tp = &np->target[cp->target]; 3473 3474 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3475 3476 /* 3477 * Tell the SCSI layer about the new transfer parameters. 3478 */ 3479 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3480 tp->tinfo.current.offset = 0; 3481 tp->tinfo.current.period = 0; 3482 tp->tinfo.current.options = 0; 3483 3484 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3485 } 3486 3487 /* 3488 * We received a SDTR. 3489 * Let everything be aware of the changes. 3490 */ 3491 static void 3492 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3493 { 3494 tcb_p tp = &np->target[cp->target]; 3495 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3496 3497 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3498 3499 /* 3500 * Tell the SCSI layer about the new transfer parameters. 3501 */ 3502 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3503 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3504 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3505 3506 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3507 } 3508 3509 /* 3510 * We received a PPR. 3511 * Let everything be aware of the changes. 3512 */ 3513 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3514 u_char per, u_char wide, u_char div, u_char fak) 3515 { 3516 tcb_p tp = &np->target[cp->target]; 3517 3518 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3519 3520 /* 3521 * Tell the SCSI layer about the new transfer parameters. 3522 */ 3523 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3524 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3525 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3526 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3527 3528 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3529 } 3530 3531 /* 3532 * Switch trans mode for current job and it's target. 3533 */ 3534 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3535 u_char per, u_char wide, u_char div, u_char fak) 3536 { 3537 SYM_QUEHEAD *qp; 3538 union ccb *ccb; 3539 tcb_p tp; 3540 u_char target = INB (nc_sdid) & 0x0f; 3541 u_char sval, wval, uval; 3542 3543 assert (cp); 3544 if (!cp) return; 3545 ccb = cp->cam_ccb; 3546 assert (ccb); 3547 if (!ccb) return; 3548 assert (target == (cp->target & 0xf)); 3549 tp = &np->target[target]; 3550 3551 sval = tp->head.sval; 3552 wval = tp->head.wval; 3553 uval = tp->head.uval; 3554 3555 #if 0 3556 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3557 sval, wval, uval, np->rv_scntl3); 3558 #endif 3559 /* 3560 * Set the offset. 3561 */ 3562 if (!(np->features & FE_C10)) 3563 sval = (sval & ~0x1f) | ofs; 3564 else 3565 sval = (sval & ~0x3f) | ofs; 3566 3567 /* 3568 * Set the sync divisor and extra clock factor. 3569 */ 3570 if (ofs != 0) { 3571 wval = (wval & ~0x70) | ((div+1) << 4); 3572 if (!(np->features & FE_C10)) 3573 sval = (sval & ~0xe0) | (fak << 5); 3574 else { 3575 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3576 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3577 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3578 } 3579 } 3580 3581 /* 3582 * Set the bus width. 3583 */ 3584 wval = wval & ~EWS; 3585 if (wide != 0) 3586 wval |= EWS; 3587 3588 /* 3589 * Set misc. ultra enable bits. 3590 */ 3591 if (np->features & FE_C10) { 3592 uval = uval & ~(U3EN|AIPCKEN); 3593 if (dt) { 3594 assert(np->features & FE_U3EN); 3595 uval |= U3EN; 3596 } 3597 } 3598 else { 3599 wval = wval & ~ULTRA; 3600 if (per <= 12) wval |= ULTRA; 3601 } 3602 3603 /* 3604 * Stop there if sync parameters are unchanged. 3605 */ 3606 if (tp->head.sval == sval && 3607 tp->head.wval == wval && 3608 tp->head.uval == uval) 3609 return; 3610 tp->head.sval = sval; 3611 tp->head.wval = wval; 3612 tp->head.uval = uval; 3613 3614 /* 3615 * Disable extended Sreq/Sack filtering if per < 50. 3616 * Not supported on the C1010. 3617 */ 3618 if (per < 50 && !(np->features & FE_C10)) 3619 OUTOFFB (nc_stest2, EXT); 3620 3621 /* 3622 * set actual value and sync_status 3623 */ 3624 OUTB (nc_sxfer, tp->head.sval); 3625 OUTB (nc_scntl3, tp->head.wval); 3626 3627 if (np->features & FE_C10) { 3628 OUTB (nc_scntl4, tp->head.uval); 3629 } 3630 3631 /* 3632 * patch ALL busy ccbs of this target. 3633 */ 3634 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3635 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3636 if (cp->target != target) 3637 continue; 3638 cp->phys.select.sel_scntl3 = tp->head.wval; 3639 cp->phys.select.sel_sxfer = tp->head.sval; 3640 if (np->features & FE_C10) { 3641 cp->phys.select.sel_scntl4 = tp->head.uval; 3642 } 3643 } 3644 } 3645 3646 /* 3647 * log message for real hard errors 3648 * 3649 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3650 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3651 * 3652 * exception register: 3653 * ds: dstat 3654 * si: sist 3655 * 3656 * SCSI bus lines: 3657 * so: control lines as driven by chip. 3658 * si: control lines as seen by chip. 3659 * sd: scsi data lines as seen by chip. 3660 * 3661 * wide/fastmode: 3662 * sxfer: (see the manual) 3663 * scntl3: (see the manual) 3664 * 3665 * current script command: 3666 * dsp: script address (relative to start of script). 3667 * dbc: first word of script command. 3668 * 3669 * First 24 register of the chip: 3670 * r0..rf 3671 */ 3672 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3673 { 3674 u32 dsp; 3675 int script_ofs; 3676 int script_size; 3677 char *script_name; 3678 u_char *script_base; 3679 int i; 3680 3681 dsp = INL (nc_dsp); 3682 3683 if (dsp > np->scripta_ba && 3684 dsp <= np->scripta_ba + np->scripta_sz) { 3685 script_ofs = dsp - np->scripta_ba; 3686 script_size = np->scripta_sz; 3687 script_base = (u_char *) np->scripta0; 3688 script_name = "scripta"; 3689 } 3690 else if (np->scriptb_ba < dsp && 3691 dsp <= np->scriptb_ba + np->scriptb_sz) { 3692 script_ofs = dsp - np->scriptb_ba; 3693 script_size = np->scriptb_sz; 3694 script_base = (u_char *) np->scriptb0; 3695 script_name = "scriptb"; 3696 } else { 3697 script_ofs = dsp; 3698 script_size = 0; 3699 script_base = NULL; 3700 script_name = "mem"; 3701 } 3702 3703 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3704 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3705 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3706 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3707 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3708 (unsigned)INL (nc_dbc)); 3709 3710 if (((script_ofs & 3) == 0) && 3711 (unsigned)script_ofs < script_size) { 3712 printf ("%s: script cmd = %08x\n", sym_name(np), 3713 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3714 } 3715 3716 printf ("%s: regdump:", sym_name(np)); 3717 for (i=0; i<24;i++) 3718 printf (" %02x", (unsigned)INB_OFF(i)); 3719 printf (".\n"); 3720 3721 /* 3722 * PCI BUS error, read the PCI ststus register. 3723 */ 3724 if (dstat & (MDPE|BF)) { 3725 u_short pci_sts; 3726 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3727 if (pci_sts & 0xf900) { 3728 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3729 printf("%s: PCI STATUS = 0x%04x\n", 3730 sym_name(np), pci_sts & 0xf900); 3731 } 3732 } 3733 } 3734 3735 /* 3736 * chip interrupt handler 3737 * 3738 * In normal situations, interrupt conditions occur one at 3739 * a time. But when something bad happens on the SCSI BUS, 3740 * the chip may raise several interrupt flags before 3741 * stopping and interrupting the CPU. The additionnal 3742 * interrupt flags are stacked in some extra registers 3743 * after the SIP and/or DIP flag has been raised in the 3744 * ISTAT. After the CPU has read the interrupt condition 3745 * flag from SIST or DSTAT, the chip unstacks the other 3746 * interrupt flags and sets the corresponding bits in 3747 * SIST or DSTAT. Since the chip starts stacking once the 3748 * SIP or DIP flag is set, there is a small window of time 3749 * where the stacking does not occur. 3750 * 3751 * Typically, multiple interrupt conditions may happen in 3752 * the following situations: 3753 * 3754 * - SCSI parity error + Phase mismatch (PAR|MA) 3755 * When a parity error is detected in input phase 3756 * and the device switches to msg-in phase inside a 3757 * block MOV. 3758 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3759 * When a stupid device does not want to handle the 3760 * recovery of an SCSI parity error. 3761 * - Some combinations of STO, PAR, UDC, ... 3762 * When using non compliant SCSI stuff, when user is 3763 * doing non compliant hot tampering on the BUS, when 3764 * something really bad happens to a device, etc ... 3765 * 3766 * The heuristic suggested by SYMBIOS to handle 3767 * multiple interrupts is to try unstacking all 3768 * interrupts conditions and to handle them on some 3769 * priority based on error severity. 3770 * This will work when the unstacking has been 3771 * successful, but we cannot be 100 % sure of that, 3772 * since the CPU may have been faster to unstack than 3773 * the chip is able to stack. Hmmm ... But it seems that 3774 * such a situation is very unlikely to happen. 3775 * 3776 * If this happen, for example STO caught by the CPU 3777 * then UDC happenning before the CPU have restarted 3778 * the SCRIPTS, the driver may wrongly complete the 3779 * same command on UDC, since the SCRIPTS didn't restart 3780 * and the DSA still points to the same command. 3781 * We avoid this situation by setting the DSA to an 3782 * invalid value when the CCB is completed and before 3783 * restarting the SCRIPTS. 3784 * 3785 * Another issue is that we need some section of our 3786 * recovery procedures to be somehow uninterruptible but 3787 * the SCRIPTS processor does not provides such a 3788 * feature. For this reason, we handle recovery preferently 3789 * from the C code and check against some SCRIPTS critical 3790 * sections from the C code. 3791 * 3792 * Hopefully, the interrupt handling of the driver is now 3793 * able to resist to weird BUS error conditions, but donnot 3794 * ask me for any guarantee that it will never fail. :-) 3795 * Use at your own decision and risk. 3796 */ 3797 static void sym_intr1 (hcb_p np) 3798 { 3799 u_char istat, istatc; 3800 u_char dstat; 3801 u_short sist; 3802 3803 SYM_LOCK_ASSERT(MA_OWNED); 3804 3805 /* 3806 * interrupt on the fly ? 3807 * 3808 * A `dummy read' is needed to ensure that the 3809 * clear of the INTF flag reaches the device 3810 * before the scanning of the DONE queue. 3811 */ 3812 istat = INB (nc_istat); 3813 if (istat & INTF) { 3814 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3815 istat = INB (nc_istat); /* DUMMY READ */ 3816 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3817 (void)sym_wakeup_done (np); 3818 } 3819 3820 if (!(istat & (SIP|DIP))) 3821 return; 3822 3823 #if 0 /* We should never get this one */ 3824 if (istat & CABRT) 3825 OUTB (nc_istat, CABRT); 3826 #endif 3827 3828 /* 3829 * PAR and MA interrupts may occur at the same time, 3830 * and we need to know of both in order to handle 3831 * this situation properly. We try to unstack SCSI 3832 * interrupts for that reason. BTW, I dislike a LOT 3833 * such a loop inside the interrupt routine. 3834 * Even if DMA interrupt stacking is very unlikely to 3835 * happen, we also try unstacking these ones, since 3836 * this has no performance impact. 3837 */ 3838 sist = 0; 3839 dstat = 0; 3840 istatc = istat; 3841 do { 3842 if (istatc & SIP) 3843 sist |= INW (nc_sist); 3844 if (istatc & DIP) 3845 dstat |= INB (nc_dstat); 3846 istatc = INB (nc_istat); 3847 istat |= istatc; 3848 } while (istatc & (SIP|DIP)); 3849 3850 if (DEBUG_FLAGS & DEBUG_TINY) 3851 printf ("<%d|%x:%x|%x:%x>", 3852 (int)INB(nc_scr0), 3853 dstat,sist, 3854 (unsigned)INL(nc_dsp), 3855 (unsigned)INL(nc_dbc)); 3856 /* 3857 * On paper, a memory barrier may be needed here. 3858 * And since we are paranoid ... :) 3859 */ 3860 MEMORY_BARRIER(); 3861 3862 /* 3863 * First, interrupts we want to service cleanly. 3864 * 3865 * Phase mismatch (MA) is the most frequent interrupt 3866 * for chip earlier than the 896 and so we have to service 3867 * it as quickly as possible. 3868 * A SCSI parity error (PAR) may be combined with a phase 3869 * mismatch condition (MA). 3870 * Programmed interrupts (SIR) are used to call the C code 3871 * from SCRIPTS. 3872 * The single step interrupt (SSI) is not used in this 3873 * driver. 3874 */ 3875 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3876 !(dstat & (MDPE|BF|ABRT|IID))) { 3877 if (sist & PAR) sym_int_par (np, sist); 3878 else if (sist & MA) sym_int_ma (np); 3879 else if (dstat & SIR) sym_int_sir (np); 3880 else if (dstat & SSI) OUTONB_STD (); 3881 else goto unknown_int; 3882 return; 3883 } 3884 3885 /* 3886 * Now, interrupts that donnot happen in normal 3887 * situations and that we may need to recover from. 3888 * 3889 * On SCSI RESET (RST), we reset everything. 3890 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3891 * active CCBs with RESET status, prepare all devices 3892 * for negotiating again and restart the SCRIPTS. 3893 * On STO and UDC, we complete the CCB with the corres- 3894 * ponding status and restart the SCRIPTS. 3895 */ 3896 if (sist & RST) { 3897 xpt_print_path(np->path); 3898 printf("SCSI BUS reset detected.\n"); 3899 sym_init (np, 1); 3900 return; 3901 } 3902 3903 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3904 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3905 3906 if (!(sist & (GEN|HTH|SGE)) && 3907 !(dstat & (MDPE|BF|ABRT|IID))) { 3908 if (sist & SBMC) sym_int_sbmc (np); 3909 else if (sist & STO) sym_int_sto (np); 3910 else if (sist & UDC) sym_int_udc (np); 3911 else goto unknown_int; 3912 return; 3913 } 3914 3915 /* 3916 * Now, interrupts we are not able to recover cleanly. 3917 * 3918 * Log message for hard errors. 3919 * Reset everything. 3920 */ 3921 3922 sym_log_hard_error(np, sist, dstat); 3923 3924 if ((sist & (GEN|HTH|SGE)) || 3925 (dstat & (MDPE|BF|ABRT|IID))) { 3926 sym_start_reset(np); 3927 return; 3928 } 3929 3930 unknown_int: 3931 /* 3932 * We just miss the cause of the interrupt. :( 3933 * Print a message. The timeout will do the real work. 3934 */ 3935 printf( "%s: unknown interrupt(s) ignored, " 3936 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3937 sym_name(np), istat, dstat, sist); 3938 } 3939 3940 static void sym_intr(void *arg) 3941 { 3942 hcb_p np = arg; 3943 3944 SYM_LOCK(); 3945 3946 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3947 sym_intr1((hcb_p) arg); 3948 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3949 3950 SYM_UNLOCK(); 3951 } 3952 3953 static void sym_poll(struct cam_sim *sim) 3954 { 3955 sym_intr1(cam_sim_softc(sim)); 3956 } 3957 3958 /* 3959 * generic recovery from scsi interrupt 3960 * 3961 * The doc says that when the chip gets an SCSI interrupt, 3962 * it tries to stop in an orderly fashion, by completing 3963 * an instruction fetch that had started or by flushing 3964 * the DMA fifo for a write to memory that was executing. 3965 * Such a fashion is not enough to know if the instruction 3966 * that was just before the current DSP value has been 3967 * executed or not. 3968 * 3969 * There are some small SCRIPTS sections that deal with 3970 * the start queue and the done queue that may break any 3971 * assomption from the C code if we are interrupted 3972 * inside, so we reset if this happens. Btw, since these 3973 * SCRIPTS sections are executed while the SCRIPTS hasn't 3974 * started SCSI operations, it is very unlikely to happen. 3975 * 3976 * All the driver data structures are supposed to be 3977 * allocated from the same 4 GB memory window, so there 3978 * is a 1 to 1 relationship between DSA and driver data 3979 * structures. Since we are careful :) to invalidate the 3980 * DSA when we complete a command or when the SCRIPTS 3981 * pushes a DSA into a queue, we can trust it when it 3982 * points to a CCB. 3983 */ 3984 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 3985 { 3986 u32 dsp = INL (nc_dsp); 3987 u32 dsa = INL (nc_dsa); 3988 ccb_p cp = sym_ccb_from_dsa(np, dsa); 3989 3990 /* 3991 * If we haven't been interrupted inside the SCRIPTS 3992 * critical paths, we can safely restart the SCRIPTS 3993 * and trust the DSA value if it matches a CCB. 3994 */ 3995 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 3996 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 3997 (!(dsp > SCRIPTA_BA (np, ungetjob) && 3998 dsp < SCRIPTA_BA (np, reselect) + 1)) && 3999 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4000 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4001 (!(dsp > SCRIPTA_BA (np, done) && 4002 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4003 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4004 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4005 /* 4006 * If we have a CCB, let the SCRIPTS call us back for 4007 * the handling of the error with SCRATCHA filled with 4008 * STARTPOS. This way, we will be able to freeze the 4009 * device queue and requeue awaiting IOs. 4010 */ 4011 if (cp) { 4012 cp->host_status = hsts; 4013 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4014 } 4015 /* 4016 * Otherwise just restart the SCRIPTS. 4017 */ 4018 else { 4019 OUTL (nc_dsa, 0xffffff); 4020 OUTL_DSP (SCRIPTA_BA (np, start)); 4021 } 4022 } 4023 else 4024 goto reset_all; 4025 4026 return; 4027 4028 reset_all: 4029 sym_start_reset(np); 4030 } 4031 4032 /* 4033 * chip exception handler for selection timeout 4034 */ 4035 static void sym_int_sto (hcb_p np) 4036 { 4037 u32 dsp = INL (nc_dsp); 4038 4039 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4040 4041 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4042 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4043 else 4044 sym_start_reset(np); 4045 } 4046 4047 /* 4048 * chip exception handler for unexpected disconnect 4049 */ 4050 static void sym_int_udc (hcb_p np) 4051 { 4052 printf ("%s: unexpected disconnect\n", sym_name(np)); 4053 sym_recover_scsi_int(np, HS_UNEXPECTED); 4054 } 4055 4056 /* 4057 * chip exception handler for SCSI bus mode change 4058 * 4059 * spi2-r12 11.2.3 says a transceiver mode change must 4060 * generate a reset event and a device that detects a reset 4061 * event shall initiate a hard reset. It says also that a 4062 * device that detects a mode change shall set data transfer 4063 * mode to eight bit asynchronous, etc... 4064 * So, just reinitializing all except chip should be enough. 4065 */ 4066 static void sym_int_sbmc (hcb_p np) 4067 { 4068 u_char scsi_mode = INB (nc_stest4) & SMODE; 4069 4070 /* 4071 * Notify user. 4072 */ 4073 xpt_print_path(np->path); 4074 printf("SCSI BUS mode change from %s to %s.\n", 4075 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4076 4077 /* 4078 * Should suspend command processing for a few seconds and 4079 * reinitialize all except the chip. 4080 */ 4081 sym_init (np, 2); 4082 } 4083 4084 /* 4085 * chip exception handler for SCSI parity error. 4086 * 4087 * When the chip detects a SCSI parity error and is 4088 * currently executing a (CH)MOV instruction, it does 4089 * not interrupt immediately, but tries to finish the 4090 * transfer of the current scatter entry before 4091 * interrupting. The following situations may occur: 4092 * 4093 * - The complete scatter entry has been transferred 4094 * without the device having changed phase. 4095 * The chip will then interrupt with the DSP pointing 4096 * to the instruction that follows the MOV. 4097 * 4098 * - A phase mismatch occurs before the MOV finished 4099 * and phase errors are to be handled by the C code. 4100 * The chip will then interrupt with both PAR and MA 4101 * conditions set. 4102 * 4103 * - A phase mismatch occurs before the MOV finished and 4104 * phase errors are to be handled by SCRIPTS. 4105 * The chip will load the DSP with the phase mismatch 4106 * JUMP address and interrupt the host processor. 4107 */ 4108 static void sym_int_par (hcb_p np, u_short sist) 4109 { 4110 u_char hsts = INB (HS_PRT); 4111 u32 dsp = INL (nc_dsp); 4112 u32 dbc = INL (nc_dbc); 4113 u32 dsa = INL (nc_dsa); 4114 u_char sbcl = INB (nc_sbcl); 4115 u_char cmd = dbc >> 24; 4116 int phase = cmd & 7; 4117 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4118 4119 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4120 sym_name(np), hsts, dbc, sbcl); 4121 4122 /* 4123 * Check that the chip is connected to the SCSI BUS. 4124 */ 4125 if (!(INB (nc_scntl1) & ISCON)) { 4126 sym_recover_scsi_int(np, HS_UNEXPECTED); 4127 return; 4128 } 4129 4130 /* 4131 * If the nexus is not clearly identified, reset the bus. 4132 * We will try to do better later. 4133 */ 4134 if (!cp) 4135 goto reset_all; 4136 4137 /* 4138 * Check instruction was a MOV, direction was INPUT and 4139 * ATN is asserted. 4140 */ 4141 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4142 goto reset_all; 4143 4144 /* 4145 * Keep track of the parity error. 4146 */ 4147 OUTONB (HF_PRT, HF_EXT_ERR); 4148 cp->xerr_status |= XE_PARITY_ERR; 4149 4150 /* 4151 * Prepare the message to send to the device. 4152 */ 4153 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4154 4155 /* 4156 * If the old phase was DATA IN phase, we have to deal with 4157 * the 3 situations described above. 4158 * For other input phases (MSG IN and STATUS), the device 4159 * must resend the whole thing that failed parity checking 4160 * or signal error. So, jumping to dispatcher should be OK. 4161 */ 4162 if (phase == 1 || phase == 5) { 4163 /* Phase mismatch handled by SCRIPTS */ 4164 if (dsp == SCRIPTB_BA (np, pm_handle)) 4165 OUTL_DSP (dsp); 4166 /* Phase mismatch handled by the C code */ 4167 else if (sist & MA) 4168 sym_int_ma (np); 4169 /* No phase mismatch occurred */ 4170 else { 4171 OUTL (nc_temp, dsp); 4172 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4173 } 4174 } 4175 else 4176 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4177 return; 4178 4179 reset_all: 4180 sym_start_reset(np); 4181 } 4182 4183 /* 4184 * chip exception handler for phase errors. 4185 * 4186 * We have to construct a new transfer descriptor, 4187 * to transfer the rest of the current block. 4188 */ 4189 static void sym_int_ma (hcb_p np) 4190 { 4191 u32 dbc; 4192 u32 rest; 4193 u32 dsp; 4194 u32 dsa; 4195 u32 nxtdsp; 4196 u32 *vdsp; 4197 u32 oadr, olen; 4198 u32 *tblp; 4199 u32 newcmd; 4200 u_int delta; 4201 u_char cmd; 4202 u_char hflags, hflags0; 4203 struct sym_pmc *pm; 4204 ccb_p cp; 4205 4206 dsp = INL (nc_dsp); 4207 dbc = INL (nc_dbc); 4208 dsa = INL (nc_dsa); 4209 4210 cmd = dbc >> 24; 4211 rest = dbc & 0xffffff; 4212 delta = 0; 4213 4214 /* 4215 * locate matching cp if any. 4216 */ 4217 cp = sym_ccb_from_dsa(np, dsa); 4218 4219 /* 4220 * Donnot take into account dma fifo and various buffers in 4221 * INPUT phase since the chip flushes everything before 4222 * raising the MA interrupt for interrupted INPUT phases. 4223 * For DATA IN phase, we will check for the SWIDE later. 4224 */ 4225 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4226 u_char ss0, ss2; 4227 4228 if (np->features & FE_DFBC) 4229 delta = INW (nc_dfbc); 4230 else { 4231 u32 dfifo; 4232 4233 /* 4234 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4235 */ 4236 dfifo = INL(nc_dfifo); 4237 4238 /* 4239 * Calculate remaining bytes in DMA fifo. 4240 * (CTEST5 = dfifo >> 16) 4241 */ 4242 if (dfifo & (DFS << 16)) 4243 delta = ((((dfifo >> 8) & 0x300) | 4244 (dfifo & 0xff)) - rest) & 0x3ff; 4245 else 4246 delta = ((dfifo & 0xff) - rest) & 0x7f; 4247 } 4248 4249 /* 4250 * The data in the dma fifo has not been transferred to 4251 * the target -> add the amount to the rest 4252 * and clear the data. 4253 * Check the sstat2 register in case of wide transfer. 4254 */ 4255 rest += delta; 4256 ss0 = INB (nc_sstat0); 4257 if (ss0 & OLF) rest++; 4258 if (!(np->features & FE_C10)) 4259 if (ss0 & ORF) rest++; 4260 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4261 ss2 = INB (nc_sstat2); 4262 if (ss2 & OLF1) rest++; 4263 if (!(np->features & FE_C10)) 4264 if (ss2 & ORF1) rest++; 4265 } 4266 4267 /* 4268 * Clear fifos. 4269 */ 4270 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4271 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4272 } 4273 4274 /* 4275 * log the information 4276 */ 4277 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4278 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4279 (unsigned) rest, (unsigned) delta); 4280 4281 /* 4282 * try to find the interrupted script command, 4283 * and the address at which to continue. 4284 */ 4285 vdsp = NULL; 4286 nxtdsp = 0; 4287 if (dsp > np->scripta_ba && 4288 dsp <= np->scripta_ba + np->scripta_sz) { 4289 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4290 nxtdsp = dsp; 4291 } 4292 else if (dsp > np->scriptb_ba && 4293 dsp <= np->scriptb_ba + np->scriptb_sz) { 4294 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4295 nxtdsp = dsp; 4296 } 4297 4298 /* 4299 * log the information 4300 */ 4301 if (DEBUG_FLAGS & DEBUG_PHASE) { 4302 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4303 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4304 } 4305 4306 if (!vdsp) { 4307 printf ("%s: interrupted SCRIPT address not found.\n", 4308 sym_name (np)); 4309 goto reset_all; 4310 } 4311 4312 if (!cp) { 4313 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4314 sym_name (np)); 4315 goto reset_all; 4316 } 4317 4318 /* 4319 * get old startaddress and old length. 4320 */ 4321 oadr = scr_to_cpu(vdsp[1]); 4322 4323 if (cmd & 0x10) { /* Table indirect */ 4324 tblp = (u32 *) ((char*) &cp->phys + oadr); 4325 olen = scr_to_cpu(tblp[0]); 4326 oadr = scr_to_cpu(tblp[1]); 4327 } else { 4328 tblp = (u32 *) 0; 4329 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4330 } 4331 4332 if (DEBUG_FLAGS & DEBUG_PHASE) { 4333 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4334 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4335 tblp, 4336 (unsigned) olen, 4337 (unsigned) oadr); 4338 } 4339 4340 /* 4341 * check cmd against assumed interrupted script command. 4342 * If dt data phase, the MOVE instruction hasn't bit 4 of 4343 * the phase. 4344 */ 4345 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4346 PRINT_ADDR(cp); 4347 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4348 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4349 4350 goto reset_all; 4351 } 4352 4353 /* 4354 * if old phase not dataphase, leave here. 4355 */ 4356 if (cmd & 2) { 4357 PRINT_ADDR(cp); 4358 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4359 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4360 (unsigned)oadr, (unsigned)rest); 4361 goto unexpected_phase; 4362 } 4363 4364 /* 4365 * Choose the correct PM save area. 4366 * 4367 * Look at the PM_SAVE SCRIPT if you want to understand 4368 * this stuff. The equivalent code is implemented in 4369 * SCRIPTS for the 895A, 896 and 1010 that are able to 4370 * handle PM from the SCRIPTS processor. 4371 */ 4372 hflags0 = INB (HF_PRT); 4373 hflags = hflags0; 4374 4375 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4376 if (hflags & HF_IN_PM0) 4377 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4378 else if (hflags & HF_IN_PM1) 4379 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4380 4381 if (hflags & HF_DP_SAVED) 4382 hflags ^= HF_ACT_PM; 4383 } 4384 4385 if (!(hflags & HF_ACT_PM)) { 4386 pm = &cp->phys.pm0; 4387 newcmd = SCRIPTA_BA (np, pm0_data); 4388 } 4389 else { 4390 pm = &cp->phys.pm1; 4391 newcmd = SCRIPTA_BA (np, pm1_data); 4392 } 4393 4394 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4395 if (hflags != hflags0) 4396 OUTB (HF_PRT, hflags); 4397 4398 /* 4399 * fillin the phase mismatch context 4400 */ 4401 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4402 pm->sg.size = cpu_to_scr(rest); 4403 pm->ret = cpu_to_scr(nxtdsp); 4404 4405 /* 4406 * If we have a SWIDE, 4407 * - prepare the address to write the SWIDE from SCRIPTS, 4408 * - compute the SCRIPTS address to restart from, 4409 * - move current data pointer context by one byte. 4410 */ 4411 nxtdsp = SCRIPTA_BA (np, dispatch); 4412 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4413 (INB (nc_scntl2) & WSR)) { 4414 u32 tmp; 4415 4416 /* 4417 * Set up the table indirect for the MOVE 4418 * of the residual byte and adjust the data 4419 * pointer context. 4420 */ 4421 tmp = scr_to_cpu(pm->sg.addr); 4422 cp->phys.wresid.addr = cpu_to_scr(tmp); 4423 pm->sg.addr = cpu_to_scr(tmp + 1); 4424 tmp = scr_to_cpu(pm->sg.size); 4425 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4426 pm->sg.size = cpu_to_scr(tmp - 1); 4427 4428 /* 4429 * If only the residual byte is to be moved, 4430 * no PM context is needed. 4431 */ 4432 if ((tmp&0xffffff) == 1) 4433 newcmd = pm->ret; 4434 4435 /* 4436 * Prepare the address of SCRIPTS that will 4437 * move the residual byte to memory. 4438 */ 4439 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4440 } 4441 4442 if (DEBUG_FLAGS & DEBUG_PHASE) { 4443 PRINT_ADDR(cp); 4444 printf ("PM %x %x %x / %x %x %x.\n", 4445 hflags0, hflags, newcmd, 4446 (unsigned)scr_to_cpu(pm->sg.addr), 4447 (unsigned)scr_to_cpu(pm->sg.size), 4448 (unsigned)scr_to_cpu(pm->ret)); 4449 } 4450 4451 /* 4452 * Restart the SCRIPTS processor. 4453 */ 4454 OUTL (nc_temp, newcmd); 4455 OUTL_DSP (nxtdsp); 4456 return; 4457 4458 /* 4459 * Unexpected phase changes that occurs when the current phase 4460 * is not a DATA IN or DATA OUT phase are due to error conditions. 4461 * Such event may only happen when the SCRIPTS is using a 4462 * multibyte SCSI MOVE. 4463 * 4464 * Phase change Some possible cause 4465 * 4466 * COMMAND --> MSG IN SCSI parity error detected by target. 4467 * COMMAND --> STATUS Bad command or refused by target. 4468 * MSG OUT --> MSG IN Message rejected by target. 4469 * MSG OUT --> COMMAND Bogus target that discards extended 4470 * negotiation messages. 4471 * 4472 * The code below does not care of the new phase and so 4473 * trusts the target. Why to annoy it ? 4474 * If the interrupted phase is COMMAND phase, we restart at 4475 * dispatcher. 4476 * If a target does not get all the messages after selection, 4477 * the code assumes blindly that the target discards extended 4478 * messages and clears the negotiation status. 4479 * If the target does not want all our response to negotiation, 4480 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4481 * bloat for such a should_not_happen situation). 4482 * In all other situation, we reset the BUS. 4483 * Are these assumptions reasonnable ? (Wait and see ...) 4484 */ 4485 unexpected_phase: 4486 dsp -= 8; 4487 nxtdsp = 0; 4488 4489 switch (cmd & 7) { 4490 case 2: /* COMMAND phase */ 4491 nxtdsp = SCRIPTA_BA (np, dispatch); 4492 break; 4493 #if 0 4494 case 3: /* STATUS phase */ 4495 nxtdsp = SCRIPTA_BA (np, dispatch); 4496 break; 4497 #endif 4498 case 6: /* MSG OUT phase */ 4499 /* 4500 * If the device may want to use untagged when we want 4501 * tagged, we prepare an IDENTIFY without disc. granted, 4502 * since we will not be able to handle reselect. 4503 * Otherwise, we just don't care. 4504 */ 4505 if (dsp == SCRIPTA_BA (np, send_ident)) { 4506 if (cp->tag != NO_TAG && olen - rest <= 3) { 4507 cp->host_status = HS_BUSY; 4508 np->msgout[0] = M_IDENTIFY | cp->lun; 4509 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4510 } 4511 else 4512 nxtdsp = SCRIPTB_BA (np, ident_break); 4513 } 4514 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4515 dsp == SCRIPTB_BA (np, send_sdtr) || 4516 dsp == SCRIPTB_BA (np, send_ppr)) { 4517 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4518 } 4519 break; 4520 #if 0 4521 case 7: /* MSG IN phase */ 4522 nxtdsp = SCRIPTA_BA (np, clrack); 4523 break; 4524 #endif 4525 } 4526 4527 if (nxtdsp) { 4528 OUTL_DSP (nxtdsp); 4529 return; 4530 } 4531 4532 reset_all: 4533 sym_start_reset(np); 4534 } 4535 4536 /* 4537 * Dequeue from the START queue all CCBs that match 4538 * a given target/lun/task condition (-1 means all), 4539 * and move them from the BUSY queue to the COMP queue 4540 * with CAM_REQUEUE_REQ status condition. 4541 * This function is used during error handling/recovery. 4542 * It is called with SCRIPTS not running. 4543 */ 4544 static int 4545 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4546 { 4547 int j; 4548 ccb_p cp; 4549 4550 /* 4551 * Make sure the starting index is within range. 4552 */ 4553 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4554 4555 /* 4556 * Walk until end of START queue and dequeue every job 4557 * that matches the target/lun/task condition. 4558 */ 4559 j = i; 4560 while (i != np->squeueput) { 4561 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4562 assert(cp); 4563 #ifdef SYM_CONF_IARB_SUPPORT 4564 /* Forget hints for IARB, they may be no longer relevant */ 4565 cp->host_flags &= ~HF_HINT_IARB; 4566 #endif 4567 if ((target == -1 || cp->target == target) && 4568 (lun == -1 || cp->lun == lun) && 4569 (task == -1 || cp->tag == task)) { 4570 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4571 sym_remque(&cp->link_ccbq); 4572 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4573 } 4574 else { 4575 if (i != j) 4576 np->squeue[j] = np->squeue[i]; 4577 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4578 } 4579 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4580 } 4581 if (i != j) /* Copy back the idle task if needed */ 4582 np->squeue[j] = np->squeue[i]; 4583 np->squeueput = j; /* Update our current start queue pointer */ 4584 4585 return (i - j) / 2; 4586 } 4587 4588 /* 4589 * Complete all CCBs queued to the COMP queue. 4590 * 4591 * These CCBs are assumed: 4592 * - Not to be referenced either by devices or 4593 * SCRIPTS-related queues and datas. 4594 * - To have to be completed with an error condition 4595 * or requeued. 4596 * 4597 * The device queue freeze count is incremented 4598 * for each CCB that does not prevent this. 4599 * This function is called when all CCBs involved 4600 * in error handling/recovery have been reaped. 4601 */ 4602 static void 4603 sym_flush_comp_queue(hcb_p np, int cam_status) 4604 { 4605 SYM_QUEHEAD *qp; 4606 ccb_p cp; 4607 4608 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4609 union ccb *ccb; 4610 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4611 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4612 /* Leave quiet CCBs waiting for resources */ 4613 if (cp->host_status == HS_WAIT) 4614 continue; 4615 ccb = cp->cam_ccb; 4616 if (cam_status) 4617 sym_set_cam_status(ccb, cam_status); 4618 sym_freeze_cam_ccb(ccb); 4619 sym_xpt_done(np, ccb, cp); 4620 sym_free_ccb(np, cp); 4621 } 4622 } 4623 4624 /* 4625 * chip handler for bad SCSI status condition 4626 * 4627 * In case of bad SCSI status, we unqueue all the tasks 4628 * currently queued to the controller but not yet started 4629 * and then restart the SCRIPTS processor immediately. 4630 * 4631 * QUEUE FULL and BUSY conditions are handled the same way. 4632 * Basically all the not yet started tasks are requeued in 4633 * device queue and the queue is frozen until a completion. 4634 * 4635 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4636 * the CCB of the failed command to prepare a REQUEST SENSE 4637 * SCSI command and queue it to the controller queue. 4638 * 4639 * SCRATCHA is assumed to have been loaded with STARTPOS 4640 * before the SCRIPTS called the C code. 4641 */ 4642 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp) 4643 { 4644 tcb_p tp = &np->target[cp->target]; 4645 u32 startp; 4646 u_char s_status = cp->ssss_status; 4647 u_char h_flags = cp->host_flags; 4648 int msglen; 4649 int nego; 4650 int i; 4651 4652 SYM_LOCK_ASSERT(MA_OWNED); 4653 4654 /* 4655 * Compute the index of the next job to start from SCRIPTS. 4656 */ 4657 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4658 4659 /* 4660 * The last CCB queued used for IARB hint may be 4661 * no longer relevant. Forget it. 4662 */ 4663 #ifdef SYM_CONF_IARB_SUPPORT 4664 if (np->last_cp) 4665 np->last_cp = NULL; 4666 #endif 4667 4668 /* 4669 * Now deal with the SCSI status. 4670 */ 4671 switch(s_status) { 4672 case S_BUSY: 4673 case S_QUEUE_FULL: 4674 if (sym_verbose >= 2) { 4675 PRINT_ADDR(cp); 4676 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4677 } 4678 /* FALLTHROUGH */ 4679 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4680 sym_complete_error (np, cp); 4681 break; 4682 case S_TERMINATED: 4683 case S_CHECK_COND: 4684 /* 4685 * If we get an SCSI error when requesting sense, give up. 4686 */ 4687 if (h_flags & HF_SENSE) { 4688 sym_complete_error (np, cp); 4689 break; 4690 } 4691 4692 /* 4693 * Dequeue all queued CCBs for that device not yet started, 4694 * and restart the SCRIPTS processor immediately. 4695 */ 4696 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4697 OUTL_DSP (SCRIPTA_BA (np, start)); 4698 4699 /* 4700 * Save some info of the actual IO. 4701 * Compute the data residual. 4702 */ 4703 cp->sv_scsi_status = cp->ssss_status; 4704 cp->sv_xerr_status = cp->xerr_status; 4705 cp->sv_resid = sym_compute_residual(np, cp); 4706 4707 /* 4708 * Prepare all needed data structures for 4709 * requesting sense data. 4710 */ 4711 4712 /* 4713 * identify message 4714 */ 4715 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4716 msglen = 1; 4717 4718 /* 4719 * If we are currently using anything different from 4720 * async. 8 bit data transfers with that target, 4721 * start a negotiation, since the device may want 4722 * to report us a UNIT ATTENTION condition due to 4723 * a cause we currently ignore, and we donnot want 4724 * to be stuck with WIDE and/or SYNC data transfer. 4725 * 4726 * cp->nego_status is filled by sym_prepare_nego(). 4727 */ 4728 cp->nego_status = 0; 4729 nego = 0; 4730 if (tp->tinfo.current.options & PPR_OPT_MASK) 4731 nego = NS_PPR; 4732 else if (tp->tinfo.current.width != BUS_8_BIT) 4733 nego = NS_WIDE; 4734 else if (tp->tinfo.current.offset != 0) 4735 nego = NS_SYNC; 4736 if (nego) 4737 msglen += 4738 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4739 /* 4740 * Message table indirect structure. 4741 */ 4742 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4743 cp->phys.smsg.size = cpu_to_scr(msglen); 4744 4745 /* 4746 * sense command 4747 */ 4748 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4749 cp->phys.cmd.size = cpu_to_scr(6); 4750 4751 /* 4752 * patch requested size into sense command 4753 */ 4754 cp->sensecmd[0] = 0x03; 4755 cp->sensecmd[1] = cp->lun << 5; 4756 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4757 cp->sensecmd[1] = 0; 4758 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4759 cp->data_len = SYM_SNS_BBUF_LEN; 4760 4761 /* 4762 * sense data 4763 */ 4764 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4765 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4766 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4767 4768 /* 4769 * requeue the command. 4770 */ 4771 startp = SCRIPTB_BA (np, sdata_in); 4772 4773 cp->phys.head.savep = cpu_to_scr(startp); 4774 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4775 cp->phys.head.lastp = cpu_to_scr(startp); 4776 cp->startp = cpu_to_scr(startp); 4777 4778 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4779 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4780 cp->ssss_status = S_ILLEGAL; 4781 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4782 cp->xerr_status = 0; 4783 cp->extra_bytes = 0; 4784 4785 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4786 4787 /* 4788 * Requeue the command. 4789 */ 4790 sym_put_start_queue(np, cp); 4791 4792 /* 4793 * Give back to upper layer everything we have dequeued. 4794 */ 4795 sym_flush_comp_queue(np, 0); 4796 break; 4797 } 4798 } 4799 4800 /* 4801 * After a device has accepted some management message 4802 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4803 * a device signals a UNIT ATTENTION condition, some 4804 * tasks are thrown away by the device. We are required 4805 * to reflect that on our tasks list since the device 4806 * will never complete these tasks. 4807 * 4808 * This function move from the BUSY queue to the COMP 4809 * queue all disconnected CCBs for a given target that 4810 * match the following criteria: 4811 * - lun=-1 means any logical UNIT otherwise a given one. 4812 * - task=-1 means any task, otherwise a given one. 4813 */ 4814 static int 4815 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4816 { 4817 SYM_QUEHEAD qtmp, *qp; 4818 int i = 0; 4819 ccb_p cp; 4820 4821 /* 4822 * Move the entire BUSY queue to our temporary queue. 4823 */ 4824 sym_que_init(&qtmp); 4825 sym_que_splice(&np->busy_ccbq, &qtmp); 4826 sym_que_init(&np->busy_ccbq); 4827 4828 /* 4829 * Put all CCBs that matches our criteria into 4830 * the COMP queue and put back other ones into 4831 * the BUSY queue. 4832 */ 4833 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4834 union ccb *ccb; 4835 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4836 ccb = cp->cam_ccb; 4837 if (cp->host_status != HS_DISCONNECT || 4838 cp->target != target || 4839 (lun != -1 && cp->lun != lun) || 4840 (task != -1 && 4841 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4842 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4843 continue; 4844 } 4845 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4846 4847 /* Preserve the software timeout condition */ 4848 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4849 sym_set_cam_status(ccb, cam_status); 4850 ++i; 4851 #if 0 4852 printf("XXXX TASK @%p CLEARED\n", cp); 4853 #endif 4854 } 4855 return i; 4856 } 4857 4858 /* 4859 * chip handler for TASKS recovery 4860 * 4861 * We cannot safely abort a command, while the SCRIPTS 4862 * processor is running, since we just would be in race 4863 * with it. 4864 * 4865 * As long as we have tasks to abort, we keep the SEM 4866 * bit set in the ISTAT. When this bit is set, the 4867 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4868 * each time it enters the scheduler. 4869 * 4870 * If we have to reset a target, clear tasks of a unit, 4871 * or to perform the abort of a disconnected job, we 4872 * restart the SCRIPTS for selecting the target. Once 4873 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4874 * If it loses arbitration, the SCRIPTS will interrupt again 4875 * the next time it will enter its scheduler, and so on ... 4876 * 4877 * On SIR_TARGET_SELECTED, we scan for the more 4878 * appropriate thing to do: 4879 * 4880 * - If nothing, we just sent a M_ABORT message to the 4881 * target to get rid of the useless SCSI bus ownership. 4882 * According to the specs, no tasks shall be affected. 4883 * - If the target is to be reset, we send it a M_RESET 4884 * message. 4885 * - If a logical UNIT is to be cleared , we send the 4886 * IDENTIFY(lun) + M_ABORT. 4887 * - If an untagged task is to be aborted, we send the 4888 * IDENTIFY(lun) + M_ABORT. 4889 * - If a tagged task is to be aborted, we send the 4890 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4891 * 4892 * Once our 'kiss of death' :) message has been accepted 4893 * by the target, the SCRIPTS interrupts again 4894 * (SIR_ABORT_SENT). On this interrupt, we complete 4895 * all the CCBs that should have been aborted by the 4896 * target according to our message. 4897 */ 4898 static void sym_sir_task_recovery(hcb_p np, int num) 4899 { 4900 SYM_QUEHEAD *qp; 4901 ccb_p cp; 4902 tcb_p tp; 4903 int target=-1, lun=-1, task; 4904 int i, k; 4905 4906 switch(num) { 4907 /* 4908 * The SCRIPTS processor stopped before starting 4909 * the next command in order to allow us to perform 4910 * some task recovery. 4911 */ 4912 case SIR_SCRIPT_STOPPED: 4913 /* 4914 * Do we have any target to reset or unit to clear ? 4915 */ 4916 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4917 tp = &np->target[i]; 4918 if (tp->to_reset || 4919 (tp->lun0p && tp->lun0p->to_clear)) { 4920 target = i; 4921 break; 4922 } 4923 if (!tp->lunmp) 4924 continue; 4925 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4926 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4927 target = i; 4928 break; 4929 } 4930 } 4931 if (target != -1) 4932 break; 4933 } 4934 4935 /* 4936 * If not, walk the busy queue for any 4937 * disconnected CCB to be aborted. 4938 */ 4939 if (target == -1) { 4940 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4941 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4942 if (cp->host_status != HS_DISCONNECT) 4943 continue; 4944 if (cp->to_abort) { 4945 target = cp->target; 4946 break; 4947 } 4948 } 4949 } 4950 4951 /* 4952 * If some target is to be selected, 4953 * prepare and start the selection. 4954 */ 4955 if (target != -1) { 4956 tp = &np->target[target]; 4957 np->abrt_sel.sel_id = target; 4958 np->abrt_sel.sel_scntl3 = tp->head.wval; 4959 np->abrt_sel.sel_sxfer = tp->head.sval; 4960 OUTL(nc_dsa, np->hcb_ba); 4961 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 4962 return; 4963 } 4964 4965 /* 4966 * Now look for a CCB to abort that haven't started yet. 4967 * Btw, the SCRIPTS processor is still stopped, so 4968 * we are not in race. 4969 */ 4970 i = 0; 4971 cp = NULL; 4972 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4973 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4974 if (cp->host_status != HS_BUSY && 4975 cp->host_status != HS_NEGOTIATE) 4976 continue; 4977 if (!cp->to_abort) 4978 continue; 4979 #ifdef SYM_CONF_IARB_SUPPORT 4980 /* 4981 * If we are using IMMEDIATE ARBITRATION, we donnot 4982 * want to cancel the last queued CCB, since the 4983 * SCRIPTS may have anticipated the selection. 4984 */ 4985 if (cp == np->last_cp) { 4986 cp->to_abort = 0; 4987 continue; 4988 } 4989 #endif 4990 i = 1; /* Means we have found some */ 4991 break; 4992 } 4993 if (!i) { 4994 /* 4995 * We are done, so we donnot need 4996 * to synchronize with the SCRIPTS anylonger. 4997 * Remove the SEM flag from the ISTAT. 4998 */ 4999 np->istat_sem = 0; 5000 OUTB (nc_istat, SIGP); 5001 break; 5002 } 5003 /* 5004 * Compute index of next position in the start 5005 * queue the SCRIPTS intends to start and dequeue 5006 * all CCBs for that device that haven't been started. 5007 */ 5008 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5009 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5010 5011 /* 5012 * Make sure at least our IO to abort has been dequeued. 5013 */ 5014 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5015 5016 /* 5017 * Keep track in cam status of the reason of the abort. 5018 */ 5019 if (cp->to_abort == 2) 5020 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5021 else 5022 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5023 5024 /* 5025 * Complete with error everything that we have dequeued. 5026 */ 5027 sym_flush_comp_queue(np, 0); 5028 break; 5029 /* 5030 * The SCRIPTS processor has selected a target 5031 * we may have some manual recovery to perform for. 5032 */ 5033 case SIR_TARGET_SELECTED: 5034 target = (INB (nc_sdid) & 0xf); 5035 tp = &np->target[target]; 5036 5037 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5038 5039 /* 5040 * If the target is to be reset, prepare a 5041 * M_RESET message and clear the to_reset flag 5042 * since we donnot expect this operation to fail. 5043 */ 5044 if (tp->to_reset) { 5045 np->abrt_msg[0] = M_RESET; 5046 np->abrt_tbl.size = 1; 5047 tp->to_reset = 0; 5048 break; 5049 } 5050 5051 /* 5052 * Otherwise, look for some logical unit to be cleared. 5053 */ 5054 if (tp->lun0p && tp->lun0p->to_clear) 5055 lun = 0; 5056 else if (tp->lunmp) { 5057 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5058 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5059 lun = k; 5060 break; 5061 } 5062 } 5063 } 5064 5065 /* 5066 * If a logical unit is to be cleared, prepare 5067 * an IDENTIFY(lun) + ABORT MESSAGE. 5068 */ 5069 if (lun != -1) { 5070 lcb_p lp = sym_lp(tp, lun); 5071 lp->to_clear = 0; /* We donnot expect to fail here */ 5072 np->abrt_msg[0] = M_IDENTIFY | lun; 5073 np->abrt_msg[1] = M_ABORT; 5074 np->abrt_tbl.size = 2; 5075 break; 5076 } 5077 5078 /* 5079 * Otherwise, look for some disconnected job to 5080 * abort for this target. 5081 */ 5082 i = 0; 5083 cp = NULL; 5084 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5085 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5086 if (cp->host_status != HS_DISCONNECT) 5087 continue; 5088 if (cp->target != target) 5089 continue; 5090 if (!cp->to_abort) 5091 continue; 5092 i = 1; /* Means we have some */ 5093 break; 5094 } 5095 5096 /* 5097 * If we have none, probably since the device has 5098 * completed the command before we won abitration, 5099 * send a M_ABORT message without IDENTIFY. 5100 * According to the specs, the device must just 5101 * disconnect the BUS and not abort any task. 5102 */ 5103 if (!i) { 5104 np->abrt_msg[0] = M_ABORT; 5105 np->abrt_tbl.size = 1; 5106 break; 5107 } 5108 5109 /* 5110 * We have some task to abort. 5111 * Set the IDENTIFY(lun) 5112 */ 5113 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5114 5115 /* 5116 * If we want to abort an untagged command, we 5117 * will send an IDENTIFY + M_ABORT. 5118 * Otherwise (tagged command), we will send 5119 * an IDENTIFY + task attributes + ABORT TAG. 5120 */ 5121 if (cp->tag == NO_TAG) { 5122 np->abrt_msg[1] = M_ABORT; 5123 np->abrt_tbl.size = 2; 5124 } 5125 else { 5126 np->abrt_msg[1] = cp->scsi_smsg[1]; 5127 np->abrt_msg[2] = cp->scsi_smsg[2]; 5128 np->abrt_msg[3] = M_ABORT_TAG; 5129 np->abrt_tbl.size = 4; 5130 } 5131 /* 5132 * Keep track of software timeout condition, since the 5133 * peripheral driver may not count retries on abort 5134 * conditions not due to timeout. 5135 */ 5136 if (cp->to_abort == 2) 5137 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5138 cp->to_abort = 0; /* We donnot expect to fail here */ 5139 break; 5140 5141 /* 5142 * The target has accepted our message and switched 5143 * to BUS FREE phase as we expected. 5144 */ 5145 case SIR_ABORT_SENT: 5146 target = (INB (nc_sdid) & 0xf); 5147 tp = &np->target[target]; 5148 5149 /* 5150 ** If we didn't abort anything, leave here. 5151 */ 5152 if (np->abrt_msg[0] == M_ABORT) 5153 break; 5154 5155 /* 5156 * If we sent a M_RESET, then a hardware reset has 5157 * been performed by the target. 5158 * - Reset everything to async 8 bit 5159 * - Tell ourself to negotiate next time :-) 5160 * - Prepare to clear all disconnected CCBs for 5161 * this target from our task list (lun=task=-1) 5162 */ 5163 lun = -1; 5164 task = -1; 5165 if (np->abrt_msg[0] == M_RESET) { 5166 tp->head.sval = 0; 5167 tp->head.wval = np->rv_scntl3; 5168 tp->head.uval = 0; 5169 tp->tinfo.current.period = 0; 5170 tp->tinfo.current.offset = 0; 5171 tp->tinfo.current.width = BUS_8_BIT; 5172 tp->tinfo.current.options = 0; 5173 } 5174 5175 /* 5176 * Otherwise, check for the LUN and TASK(s) 5177 * concerned by the cancellation. 5178 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5179 * or an ABORT message :-) 5180 */ 5181 else { 5182 lun = np->abrt_msg[0] & 0x3f; 5183 if (np->abrt_msg[1] == M_ABORT_TAG) 5184 task = np->abrt_msg[2]; 5185 } 5186 5187 /* 5188 * Complete all the CCBs the device should have 5189 * aborted due to our 'kiss of death' message. 5190 */ 5191 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5192 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5193 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5194 sym_flush_comp_queue(np, 0); 5195 5196 /* 5197 * If we sent a BDR, make uper layer aware of that. 5198 */ 5199 if (np->abrt_msg[0] == M_RESET) 5200 xpt_async(AC_SENT_BDR, np->path, NULL); 5201 break; 5202 } 5203 5204 /* 5205 * Print to the log the message we intend to send. 5206 */ 5207 if (num == SIR_TARGET_SELECTED) { 5208 PRINT_TARGET(np, target); 5209 sym_printl_hex("control msgout:", np->abrt_msg, 5210 np->abrt_tbl.size); 5211 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5212 } 5213 5214 /* 5215 * Let the SCRIPTS processor continue. 5216 */ 5217 OUTONB_STD (); 5218 } 5219 5220 /* 5221 * Gerard's alchemy:) that deals with with the data 5222 * pointer for both MDP and the residual calculation. 5223 * 5224 * I didn't want to bloat the code by more than 200 5225 * lignes for the handling of both MDP and the residual. 5226 * This has been achieved by using a data pointer 5227 * representation consisting in an index in the data 5228 * array (dp_sg) and a negative offset (dp_ofs) that 5229 * have the following meaning: 5230 * 5231 * - dp_sg = SYM_CONF_MAX_SG 5232 * we are at the end of the data script. 5233 * - dp_sg < SYM_CONF_MAX_SG 5234 * dp_sg points to the next entry of the scatter array 5235 * we want to transfer. 5236 * - dp_ofs < 0 5237 * dp_ofs represents the residual of bytes of the 5238 * previous entry scatter entry we will send first. 5239 * - dp_ofs = 0 5240 * no residual to send first. 5241 * 5242 * The function sym_evaluate_dp() accepts an arbitray 5243 * offset (basically from the MDP message) and returns 5244 * the corresponding values of dp_sg and dp_ofs. 5245 */ 5246 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5247 { 5248 u32 dp_scr; 5249 int dp_ofs, dp_sg, dp_sgmin; 5250 int tmp; 5251 struct sym_pmc *pm; 5252 5253 /* 5254 * Compute the resulted data pointer in term of a script 5255 * address within some DATA script and a signed byte offset. 5256 */ 5257 dp_scr = scr; 5258 dp_ofs = *ofs; 5259 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5260 pm = &cp->phys.pm0; 5261 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5262 pm = &cp->phys.pm1; 5263 else 5264 pm = NULL; 5265 5266 if (pm) { 5267 dp_scr = scr_to_cpu(pm->ret); 5268 dp_ofs -= scr_to_cpu(pm->sg.size); 5269 } 5270 5271 /* 5272 * If we are auto-sensing, then we are done. 5273 */ 5274 if (cp->host_flags & HF_SENSE) { 5275 *ofs = dp_ofs; 5276 return 0; 5277 } 5278 5279 /* 5280 * Deduce the index of the sg entry. 5281 * Keep track of the index of the first valid entry. 5282 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5283 * end of the data. 5284 */ 5285 tmp = scr_to_cpu(cp->phys.head.goalp); 5286 dp_sg = SYM_CONF_MAX_SG; 5287 if (dp_scr != tmp) 5288 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5289 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5290 5291 /* 5292 * Move to the sg entry the data pointer belongs to. 5293 * 5294 * If we are inside the data area, we expect result to be: 5295 * 5296 * Either, 5297 * dp_ofs = 0 and dp_sg is the index of the sg entry 5298 * the data pointer belongs to (or the end of the data) 5299 * Or, 5300 * dp_ofs < 0 and dp_sg is the index of the sg entry 5301 * the data pointer belongs to + 1. 5302 */ 5303 if (dp_ofs < 0) { 5304 int n; 5305 while (dp_sg > dp_sgmin) { 5306 --dp_sg; 5307 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5308 n = dp_ofs + (tmp & 0xffffff); 5309 if (n > 0) { 5310 ++dp_sg; 5311 break; 5312 } 5313 dp_ofs = n; 5314 } 5315 } 5316 else if (dp_ofs > 0) { 5317 while (dp_sg < SYM_CONF_MAX_SG) { 5318 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5319 dp_ofs -= (tmp & 0xffffff); 5320 ++dp_sg; 5321 if (dp_ofs <= 0) 5322 break; 5323 } 5324 } 5325 5326 /* 5327 * Make sure the data pointer is inside the data area. 5328 * If not, return some error. 5329 */ 5330 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5331 goto out_err; 5332 else if (dp_sg > SYM_CONF_MAX_SG || 5333 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5334 goto out_err; 5335 5336 /* 5337 * Save the extreme pointer if needed. 5338 */ 5339 if (dp_sg > cp->ext_sg || 5340 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5341 cp->ext_sg = dp_sg; 5342 cp->ext_ofs = dp_ofs; 5343 } 5344 5345 /* 5346 * Return data. 5347 */ 5348 *ofs = dp_ofs; 5349 return dp_sg; 5350 5351 out_err: 5352 return -1; 5353 } 5354 5355 /* 5356 * chip handler for MODIFY DATA POINTER MESSAGE 5357 * 5358 * We also call this function on IGNORE WIDE RESIDUE 5359 * messages that do not match a SWIDE full condition. 5360 * Btw, we assume in that situation that such a message 5361 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5362 */ 5363 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs) 5364 { 5365 int dp_ofs = ofs; 5366 u32 dp_scr = INL (nc_temp); 5367 u32 dp_ret; 5368 u32 tmp; 5369 u_char hflags; 5370 int dp_sg; 5371 struct sym_pmc *pm; 5372 5373 /* 5374 * Not supported for auto-sense. 5375 */ 5376 if (cp->host_flags & HF_SENSE) 5377 goto out_reject; 5378 5379 /* 5380 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5381 * to the resulted data pointer. 5382 */ 5383 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5384 if (dp_sg < 0) 5385 goto out_reject; 5386 5387 /* 5388 * And our alchemy:) allows to easily calculate the data 5389 * script address we want to return for the next data phase. 5390 */ 5391 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5392 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5393 5394 /* 5395 * If offset / scatter entry is zero we donnot need 5396 * a context for the new current data pointer. 5397 */ 5398 if (dp_ofs == 0) { 5399 dp_scr = dp_ret; 5400 goto out_ok; 5401 } 5402 5403 /* 5404 * Get a context for the new current data pointer. 5405 */ 5406 hflags = INB (HF_PRT); 5407 5408 if (hflags & HF_DP_SAVED) 5409 hflags ^= HF_ACT_PM; 5410 5411 if (!(hflags & HF_ACT_PM)) { 5412 pm = &cp->phys.pm0; 5413 dp_scr = SCRIPTA_BA (np, pm0_data); 5414 } 5415 else { 5416 pm = &cp->phys.pm1; 5417 dp_scr = SCRIPTA_BA (np, pm1_data); 5418 } 5419 5420 hflags &= ~(HF_DP_SAVED); 5421 5422 OUTB (HF_PRT, hflags); 5423 5424 /* 5425 * Set up the new current data pointer. 5426 * ofs < 0 there, and for the next data phase, we 5427 * want to transfer part of the data of the sg entry 5428 * corresponding to index dp_sg-1 prior to returning 5429 * to the main data script. 5430 */ 5431 pm->ret = cpu_to_scr(dp_ret); 5432 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5433 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5434 pm->sg.addr = cpu_to_scr(tmp); 5435 pm->sg.size = cpu_to_scr(-dp_ofs); 5436 5437 out_ok: 5438 OUTL (nc_temp, dp_scr); 5439 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5440 return; 5441 5442 out_reject: 5443 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5444 } 5445 5446 /* 5447 * chip calculation of the data residual. 5448 * 5449 * As I used to say, the requirement of data residual 5450 * in SCSI is broken, useless and cannot be achieved 5451 * without huge complexity. 5452 * But most OSes and even the official CAM require it. 5453 * When stupidity happens to be so widely spread inside 5454 * a community, it gets hard to convince. 5455 * 5456 * Anyway, I don't care, since I am not going to use 5457 * any software that considers this data residual as 5458 * a relevant information. :) 5459 */ 5460 static int sym_compute_residual(hcb_p np, ccb_p cp) 5461 { 5462 int dp_sg, resid = 0; 5463 int dp_ofs = 0; 5464 5465 /* 5466 * Check for some data lost or just thrown away. 5467 * We are not required to be quite accurate in this 5468 * situation. Btw, if we are odd for output and the 5469 * device claims some more data, it may well happen 5470 * than our residual be zero. :-) 5471 */ 5472 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5473 if (cp->xerr_status & XE_EXTRA_DATA) 5474 resid -= cp->extra_bytes; 5475 if (cp->xerr_status & XE_SODL_UNRUN) 5476 ++resid; 5477 if (cp->xerr_status & XE_SWIDE_OVRUN) 5478 --resid; 5479 } 5480 5481 /* 5482 * If all data has been transferred, 5483 * there is no residual. 5484 */ 5485 if (cp->phys.head.lastp == cp->phys.head.goalp) 5486 return resid; 5487 5488 /* 5489 * If no data transfer occurs, or if the data 5490 * pointer is weird, return full residual. 5491 */ 5492 if (cp->startp == cp->phys.head.lastp || 5493 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5494 &dp_ofs) < 0) { 5495 return cp->data_len; 5496 } 5497 5498 /* 5499 * If we were auto-sensing, then we are done. 5500 */ 5501 if (cp->host_flags & HF_SENSE) { 5502 return -dp_ofs; 5503 } 5504 5505 /* 5506 * We are now full comfortable in the computation 5507 * of the data residual (2's complement). 5508 */ 5509 resid = -cp->ext_ofs; 5510 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5511 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5512 resid += (tmp & 0xffffff); 5513 } 5514 5515 /* 5516 * Hopefully, the result is not too wrong. 5517 */ 5518 return resid; 5519 } 5520 5521 /* 5522 * Print out the content of a SCSI message. 5523 */ 5524 static int sym_show_msg (u_char * msg) 5525 { 5526 u_char i; 5527 printf ("%x",*msg); 5528 if (*msg==M_EXTENDED) { 5529 for (i=1;i<8;i++) { 5530 if (i-1>msg[1]) break; 5531 printf ("-%x",msg[i]); 5532 } 5533 return (i+1); 5534 } else if ((*msg & 0xf0) == 0x20) { 5535 printf ("-%x",msg[1]); 5536 return (2); 5537 } 5538 return (1); 5539 } 5540 5541 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5542 { 5543 PRINT_ADDR(cp); 5544 if (label) 5545 printf ("%s: ", label); 5546 5547 (void) sym_show_msg (msg); 5548 printf (".\n"); 5549 } 5550 5551 /* 5552 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5553 * 5554 * When we try to negotiate, we append the negotiation message 5555 * to the identify and (maybe) simple tag message. 5556 * The host status field is set to HS_NEGOTIATE to mark this 5557 * situation. 5558 * 5559 * If the target doesn't answer this message immediately 5560 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5561 * will be raised eventually. 5562 * The handler removes the HS_NEGOTIATE status, and sets the 5563 * negotiated value to the default (async / nowide). 5564 * 5565 * If we receive a matching answer immediately, we check it 5566 * for validity, and set the values. 5567 * 5568 * If we receive a Reject message immediately, we assume the 5569 * negotiation has failed, and fall back to standard values. 5570 * 5571 * If we receive a negotiation message while not in HS_NEGOTIATE 5572 * state, it's a target initiated negotiation. We prepare a 5573 * (hopefully) valid answer, set our parameters, and send back 5574 * this answer to the target. 5575 * 5576 * If the target doesn't fetch the answer (no message out phase), 5577 * we assume the negotiation has failed, and fall back to default 5578 * settings (SIR_NEGO_PROTO interrupt). 5579 * 5580 * When we set the values, we adjust them in all ccbs belonging 5581 * to this target, in the controller's register, and in the "phys" 5582 * field of the controller's struct sym_hcb. 5583 */ 5584 5585 /* 5586 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5587 */ 5588 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5589 { 5590 u_char chg, ofs, per, fak, div; 5591 int req = 1; 5592 5593 /* 5594 * Synchronous request message received. 5595 */ 5596 if (DEBUG_FLAGS & DEBUG_NEGO) { 5597 sym_print_msg(cp, "sync msgin", np->msgin); 5598 } 5599 5600 /* 5601 * request or answer ? 5602 */ 5603 if (INB (HS_PRT) == HS_NEGOTIATE) { 5604 OUTB (HS_PRT, HS_BUSY); 5605 if (cp->nego_status && cp->nego_status != NS_SYNC) 5606 goto reject_it; 5607 req = 0; 5608 } 5609 5610 /* 5611 * get requested values. 5612 */ 5613 chg = 0; 5614 per = np->msgin[3]; 5615 ofs = np->msgin[4]; 5616 5617 /* 5618 * check values against our limits. 5619 */ 5620 if (ofs) { 5621 if (ofs > np->maxoffs) 5622 {chg = 1; ofs = np->maxoffs;} 5623 if (req) { 5624 if (ofs > tp->tinfo.user.offset) 5625 {chg = 1; ofs = tp->tinfo.user.offset;} 5626 } 5627 } 5628 5629 if (ofs) { 5630 if (per < np->minsync) 5631 {chg = 1; per = np->minsync;} 5632 if (req) { 5633 if (per < tp->tinfo.user.period) 5634 {chg = 1; per = tp->tinfo.user.period;} 5635 } 5636 } 5637 5638 div = fak = 0; 5639 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5640 goto reject_it; 5641 5642 if (DEBUG_FLAGS & DEBUG_NEGO) { 5643 PRINT_ADDR(cp); 5644 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5645 ofs, per, div, fak, chg); 5646 } 5647 5648 /* 5649 * This was an answer message 5650 */ 5651 if (req == 0) { 5652 if (chg) /* Answer wasn't acceptable. */ 5653 goto reject_it; 5654 sym_setsync (np, cp, ofs, per, div, fak); 5655 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5656 return; 5657 } 5658 5659 /* 5660 * It was a request. Set value and 5661 * prepare an answer message 5662 */ 5663 sym_setsync (np, cp, ofs, per, div, fak); 5664 5665 np->msgout[0] = M_EXTENDED; 5666 np->msgout[1] = 3; 5667 np->msgout[2] = M_X_SYNC_REQ; 5668 np->msgout[3] = per; 5669 np->msgout[4] = ofs; 5670 5671 cp->nego_status = NS_SYNC; 5672 5673 if (DEBUG_FLAGS & DEBUG_NEGO) { 5674 sym_print_msg(cp, "sync msgout", np->msgout); 5675 } 5676 5677 np->msgin [0] = M_NOOP; 5678 5679 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5680 return; 5681 reject_it: 5682 sym_setsync (np, cp, 0, 0, 0, 0); 5683 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5684 } 5685 5686 /* 5687 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5688 */ 5689 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5690 { 5691 u_char chg, ofs, per, fak, dt, div, wide; 5692 int req = 1; 5693 5694 /* 5695 * Synchronous request message received. 5696 */ 5697 if (DEBUG_FLAGS & DEBUG_NEGO) { 5698 sym_print_msg(cp, "ppr msgin", np->msgin); 5699 } 5700 5701 /* 5702 * get requested values. 5703 */ 5704 chg = 0; 5705 per = np->msgin[3]; 5706 ofs = np->msgin[5]; 5707 wide = np->msgin[6]; 5708 dt = np->msgin[7] & PPR_OPT_DT; 5709 5710 /* 5711 * request or answer ? 5712 */ 5713 if (INB (HS_PRT) == HS_NEGOTIATE) { 5714 OUTB (HS_PRT, HS_BUSY); 5715 if (cp->nego_status && cp->nego_status != NS_PPR) 5716 goto reject_it; 5717 req = 0; 5718 } 5719 5720 /* 5721 * check values against our limits. 5722 */ 5723 if (wide > np->maxwide) 5724 {chg = 1; wide = np->maxwide;} 5725 if (!wide || !(np->features & FE_ULTRA3)) 5726 dt &= ~PPR_OPT_DT; 5727 if (req) { 5728 if (wide > tp->tinfo.user.width) 5729 {chg = 1; wide = tp->tinfo.user.width;} 5730 } 5731 5732 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5733 dt &= ~PPR_OPT_DT; 5734 5735 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5736 5737 if (ofs) { 5738 if (dt) { 5739 if (ofs > np->maxoffs_dt) 5740 {chg = 1; ofs = np->maxoffs_dt;} 5741 } 5742 else if (ofs > np->maxoffs) 5743 {chg = 1; ofs = np->maxoffs;} 5744 if (req) { 5745 if (ofs > tp->tinfo.user.offset) 5746 {chg = 1; ofs = tp->tinfo.user.offset;} 5747 } 5748 } 5749 5750 if (ofs) { 5751 if (dt) { 5752 if (per < np->minsync_dt) 5753 {chg = 1; per = np->minsync_dt;} 5754 } 5755 else if (per < np->minsync) 5756 {chg = 1; per = np->minsync;} 5757 if (req) { 5758 if (per < tp->tinfo.user.period) 5759 {chg = 1; per = tp->tinfo.user.period;} 5760 } 5761 } 5762 5763 div = fak = 0; 5764 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5765 goto reject_it; 5766 5767 if (DEBUG_FLAGS & DEBUG_NEGO) { 5768 PRINT_ADDR(cp); 5769 printf ("ppr: " 5770 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5771 dt, ofs, per, wide, div, fak, chg); 5772 } 5773 5774 /* 5775 * It was an answer. 5776 */ 5777 if (req == 0) { 5778 if (chg) /* Answer wasn't acceptable */ 5779 goto reject_it; 5780 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5781 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5782 return; 5783 } 5784 5785 /* 5786 * It was a request. Set value and 5787 * prepare an answer message 5788 */ 5789 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5790 5791 np->msgout[0] = M_EXTENDED; 5792 np->msgout[1] = 6; 5793 np->msgout[2] = M_X_PPR_REQ; 5794 np->msgout[3] = per; 5795 np->msgout[4] = 0; 5796 np->msgout[5] = ofs; 5797 np->msgout[6] = wide; 5798 np->msgout[7] = dt; 5799 5800 cp->nego_status = NS_PPR; 5801 5802 if (DEBUG_FLAGS & DEBUG_NEGO) { 5803 sym_print_msg(cp, "ppr msgout", np->msgout); 5804 } 5805 5806 np->msgin [0] = M_NOOP; 5807 5808 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5809 return; 5810 reject_it: 5811 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5812 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5813 /* 5814 * If it was a device response that should result in 5815 * ST, we may want to try a legacy negotiation later. 5816 */ 5817 if (!req && !dt) { 5818 tp->tinfo.goal.options = 0; 5819 tp->tinfo.goal.width = wide; 5820 tp->tinfo.goal.period = per; 5821 tp->tinfo.goal.offset = ofs; 5822 } 5823 } 5824 5825 /* 5826 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5827 */ 5828 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5829 { 5830 u_char chg, wide; 5831 int req = 1; 5832 5833 /* 5834 * Wide request message received. 5835 */ 5836 if (DEBUG_FLAGS & DEBUG_NEGO) { 5837 sym_print_msg(cp, "wide msgin", np->msgin); 5838 } 5839 5840 /* 5841 * Is it a request from the device? 5842 */ 5843 if (INB (HS_PRT) == HS_NEGOTIATE) { 5844 OUTB (HS_PRT, HS_BUSY); 5845 if (cp->nego_status && cp->nego_status != NS_WIDE) 5846 goto reject_it; 5847 req = 0; 5848 } 5849 5850 /* 5851 * get requested values. 5852 */ 5853 chg = 0; 5854 wide = np->msgin[3]; 5855 5856 /* 5857 * check values against driver limits. 5858 */ 5859 if (wide > np->maxwide) 5860 {chg = 1; wide = np->maxwide;} 5861 if (req) { 5862 if (wide > tp->tinfo.user.width) 5863 {chg = 1; wide = tp->tinfo.user.width;} 5864 } 5865 5866 if (DEBUG_FLAGS & DEBUG_NEGO) { 5867 PRINT_ADDR(cp); 5868 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5869 } 5870 5871 /* 5872 * This was an answer message 5873 */ 5874 if (req == 0) { 5875 if (chg) /* Answer wasn't acceptable. */ 5876 goto reject_it; 5877 sym_setwide (np, cp, wide); 5878 5879 /* 5880 * Negotiate for SYNC immediately after WIDE response. 5881 * This allows to negotiate for both WIDE and SYNC on 5882 * a single SCSI command (Suggested by Justin Gibbs). 5883 */ 5884 if (tp->tinfo.goal.offset) { 5885 np->msgout[0] = M_EXTENDED; 5886 np->msgout[1] = 3; 5887 np->msgout[2] = M_X_SYNC_REQ; 5888 np->msgout[3] = tp->tinfo.goal.period; 5889 np->msgout[4] = tp->tinfo.goal.offset; 5890 5891 if (DEBUG_FLAGS & DEBUG_NEGO) { 5892 sym_print_msg(cp, "sync msgout", np->msgout); 5893 } 5894 5895 cp->nego_status = NS_SYNC; 5896 OUTB (HS_PRT, HS_NEGOTIATE); 5897 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5898 return; 5899 } 5900 5901 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5902 return; 5903 } 5904 5905 /* 5906 * It was a request, set value and 5907 * prepare an answer message 5908 */ 5909 sym_setwide (np, cp, wide); 5910 5911 np->msgout[0] = M_EXTENDED; 5912 np->msgout[1] = 2; 5913 np->msgout[2] = M_X_WIDE_REQ; 5914 np->msgout[3] = wide; 5915 5916 np->msgin [0] = M_NOOP; 5917 5918 cp->nego_status = NS_WIDE; 5919 5920 if (DEBUG_FLAGS & DEBUG_NEGO) { 5921 sym_print_msg(cp, "wide msgout", np->msgout); 5922 } 5923 5924 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5925 return; 5926 reject_it: 5927 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5928 } 5929 5930 /* 5931 * Reset SYNC or WIDE to default settings. 5932 * 5933 * Called when a negotiation does not succeed either 5934 * on rejection or on protocol error. 5935 * 5936 * If it was a PPR that made problems, we may want to 5937 * try a legacy negotiation later. 5938 */ 5939 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5940 { 5941 /* 5942 * any error in negotiation: 5943 * fall back to default mode. 5944 */ 5945 switch (cp->nego_status) { 5946 case NS_PPR: 5947 #if 0 5948 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5949 #else 5950 tp->tinfo.goal.options = 0; 5951 if (tp->tinfo.goal.period < np->minsync) 5952 tp->tinfo.goal.period = np->minsync; 5953 if (tp->tinfo.goal.offset > np->maxoffs) 5954 tp->tinfo.goal.offset = np->maxoffs; 5955 #endif 5956 break; 5957 case NS_SYNC: 5958 sym_setsync (np, cp, 0, 0, 0, 0); 5959 break; 5960 case NS_WIDE: 5961 sym_setwide (np, cp, 0); 5962 break; 5963 } 5964 np->msgin [0] = M_NOOP; 5965 np->msgout[0] = M_NOOP; 5966 cp->nego_status = 0; 5967 } 5968 5969 /* 5970 * chip handler for MESSAGE REJECT received in response to 5971 * a WIDE or SYNCHRONOUS negotiation. 5972 */ 5973 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 5974 { 5975 sym_nego_default(np, tp, cp); 5976 OUTB (HS_PRT, HS_BUSY); 5977 } 5978 5979 /* 5980 * chip exception handler for programmed interrupts. 5981 */ 5982 static void sym_int_sir (hcb_p np) 5983 { 5984 u_char num = INB (nc_dsps); 5985 u32 dsa = INL (nc_dsa); 5986 ccb_p cp = sym_ccb_from_dsa(np, dsa); 5987 u_char target = INB (nc_sdid) & 0x0f; 5988 tcb_p tp = &np->target[target]; 5989 int tmp; 5990 5991 SYM_LOCK_ASSERT(MA_OWNED); 5992 5993 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 5994 5995 switch (num) { 5996 /* 5997 * Command has been completed with error condition 5998 * or has been auto-sensed. 5999 */ 6000 case SIR_COMPLETE_ERROR: 6001 if (!cp) 6002 goto out; 6003 sym_complete_error(np, cp); 6004 return; 6005 /* 6006 * The C code is currently trying to recover from something. 6007 * Typically, user want to abort some command. 6008 */ 6009 case SIR_SCRIPT_STOPPED: 6010 case SIR_TARGET_SELECTED: 6011 case SIR_ABORT_SENT: 6012 sym_sir_task_recovery(np, num); 6013 return; 6014 /* 6015 * The device didn't go to MSG OUT phase after having 6016 * been selected with ATN. We donnot want to handle 6017 * that. 6018 */ 6019 case SIR_SEL_ATN_NO_MSG_OUT: 6020 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6021 sym_name (np), target); 6022 goto out_stuck; 6023 /* 6024 * The device didn't switch to MSG IN phase after 6025 * having reseleted the initiator. 6026 */ 6027 case SIR_RESEL_NO_MSG_IN: 6028 printf ("%s:%d: No MSG IN phase after reselection.\n", 6029 sym_name (np), target); 6030 goto out_stuck; 6031 /* 6032 * After reselection, the device sent a message that wasn't 6033 * an IDENTIFY. 6034 */ 6035 case SIR_RESEL_NO_IDENTIFY: 6036 printf ("%s:%d: No IDENTIFY after reselection.\n", 6037 sym_name (np), target); 6038 goto out_stuck; 6039 /* 6040 * The device reselected a LUN we donnot know about. 6041 */ 6042 case SIR_RESEL_BAD_LUN: 6043 np->msgout[0] = M_RESET; 6044 goto out; 6045 /* 6046 * The device reselected for an untagged nexus and we 6047 * haven't any. 6048 */ 6049 case SIR_RESEL_BAD_I_T_L: 6050 np->msgout[0] = M_ABORT; 6051 goto out; 6052 /* 6053 * The device reselected for a tagged nexus that we donnot 6054 * have. 6055 */ 6056 case SIR_RESEL_BAD_I_T_L_Q: 6057 np->msgout[0] = M_ABORT_TAG; 6058 goto out; 6059 /* 6060 * The SCRIPTS let us know that the device has grabbed 6061 * our message and will abort the job. 6062 */ 6063 case SIR_RESEL_ABORTED: 6064 np->lastmsg = np->msgout[0]; 6065 np->msgout[0] = M_NOOP; 6066 printf ("%s:%d: message %x sent on bad reselection.\n", 6067 sym_name (np), target, np->lastmsg); 6068 goto out; 6069 /* 6070 * The SCRIPTS let us know that a message has been 6071 * successfully sent to the device. 6072 */ 6073 case SIR_MSG_OUT_DONE: 6074 np->lastmsg = np->msgout[0]; 6075 np->msgout[0] = M_NOOP; 6076 /* Should we really care of that */ 6077 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6078 if (cp) { 6079 cp->xerr_status &= ~XE_PARITY_ERR; 6080 if (!cp->xerr_status) 6081 OUTOFFB (HF_PRT, HF_EXT_ERR); 6082 } 6083 } 6084 goto out; 6085 /* 6086 * The device didn't send a GOOD SCSI status. 6087 * We may have some work to do prior to allow 6088 * the SCRIPTS processor to continue. 6089 */ 6090 case SIR_BAD_SCSI_STATUS: 6091 if (!cp) 6092 goto out; 6093 sym_sir_bad_scsi_status(np, cp); 6094 return; 6095 /* 6096 * We are asked by the SCRIPTS to prepare a 6097 * REJECT message. 6098 */ 6099 case SIR_REJECT_TO_SEND: 6100 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6101 np->msgout[0] = M_REJECT; 6102 goto out; 6103 /* 6104 * We have been ODD at the end of a DATA IN 6105 * transfer and the device didn't send a 6106 * IGNORE WIDE RESIDUE message. 6107 * It is a data overrun condition. 6108 */ 6109 case SIR_SWIDE_OVERRUN: 6110 if (cp) { 6111 OUTONB (HF_PRT, HF_EXT_ERR); 6112 cp->xerr_status |= XE_SWIDE_OVRUN; 6113 } 6114 goto out; 6115 /* 6116 * We have been ODD at the end of a DATA OUT 6117 * transfer. 6118 * It is a data underrun condition. 6119 */ 6120 case SIR_SODL_UNDERRUN: 6121 if (cp) { 6122 OUTONB (HF_PRT, HF_EXT_ERR); 6123 cp->xerr_status |= XE_SODL_UNRUN; 6124 } 6125 goto out; 6126 /* 6127 * The device wants us to transfer more data than 6128 * expected or in the wrong direction. 6129 * The number of extra bytes is in scratcha. 6130 * It is a data overrun condition. 6131 */ 6132 case SIR_DATA_OVERRUN: 6133 if (cp) { 6134 OUTONB (HF_PRT, HF_EXT_ERR); 6135 cp->xerr_status |= XE_EXTRA_DATA; 6136 cp->extra_bytes += INL (nc_scratcha); 6137 } 6138 goto out; 6139 /* 6140 * The device switched to an illegal phase (4/5). 6141 */ 6142 case SIR_BAD_PHASE: 6143 if (cp) { 6144 OUTONB (HF_PRT, HF_EXT_ERR); 6145 cp->xerr_status |= XE_BAD_PHASE; 6146 } 6147 goto out; 6148 /* 6149 * We received a message. 6150 */ 6151 case SIR_MSG_RECEIVED: 6152 if (!cp) 6153 goto out_stuck; 6154 switch (np->msgin [0]) { 6155 /* 6156 * We received an extended message. 6157 * We handle MODIFY DATA POINTER, SDTR, WDTR 6158 * and reject all other extended messages. 6159 */ 6160 case M_EXTENDED: 6161 switch (np->msgin [2]) { 6162 case M_X_MODIFY_DP: 6163 if (DEBUG_FLAGS & DEBUG_POINTER) 6164 sym_print_msg(cp,"modify DP",np->msgin); 6165 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6166 (np->msgin[5]<<8) + (np->msgin[6]); 6167 sym_modify_dp(np, cp, tmp); 6168 return; 6169 case M_X_SYNC_REQ: 6170 sym_sync_nego(np, tp, cp); 6171 return; 6172 case M_X_PPR_REQ: 6173 sym_ppr_nego(np, tp, cp); 6174 return; 6175 case M_X_WIDE_REQ: 6176 sym_wide_nego(np, tp, cp); 6177 return; 6178 default: 6179 goto out_reject; 6180 } 6181 break; 6182 /* 6183 * We received a 1/2 byte message not handled from SCRIPTS. 6184 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6185 * RESIDUE messages that haven't been anticipated by 6186 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6187 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6188 */ 6189 case M_IGN_RESIDUE: 6190 if (DEBUG_FLAGS & DEBUG_POINTER) 6191 sym_print_msg(cp,"ign wide residue", np->msgin); 6192 sym_modify_dp(np, cp, -1); 6193 return; 6194 case M_REJECT: 6195 if (INB (HS_PRT) == HS_NEGOTIATE) 6196 sym_nego_rejected(np, tp, cp); 6197 else { 6198 PRINT_ADDR(cp); 6199 printf ("M_REJECT received (%x:%x).\n", 6200 scr_to_cpu(np->lastmsg), np->msgout[0]); 6201 } 6202 goto out_clrack; 6203 break; 6204 default: 6205 goto out_reject; 6206 } 6207 break; 6208 /* 6209 * We received an unknown message. 6210 * Ignore all MSG IN phases and reject it. 6211 */ 6212 case SIR_MSG_WEIRD: 6213 sym_print_msg(cp, "WEIRD message received", np->msgin); 6214 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6215 return; 6216 /* 6217 * Negotiation failed. 6218 * Target does not send us the reply. 6219 * Remove the HS_NEGOTIATE status. 6220 */ 6221 case SIR_NEGO_FAILED: 6222 OUTB (HS_PRT, HS_BUSY); 6223 /* 6224 * Negotiation failed. 6225 * Target does not want answer message. 6226 */ 6227 case SIR_NEGO_PROTO: 6228 if (!cp) 6229 goto out; 6230 sym_nego_default(np, tp, cp); 6231 goto out; 6232 } 6233 6234 out: 6235 OUTONB_STD (); 6236 return; 6237 out_reject: 6238 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6239 return; 6240 out_clrack: 6241 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6242 return; 6243 out_stuck: 6244 return; 6245 } 6246 6247 /* 6248 * Acquire a control block 6249 */ 6250 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6251 { 6252 tcb_p tp = &np->target[tn]; 6253 lcb_p lp = sym_lp(tp, ln); 6254 u_short tag = NO_TAG; 6255 SYM_QUEHEAD *qp; 6256 ccb_p cp = (ccb_p) NULL; 6257 6258 /* 6259 * Look for a free CCB 6260 */ 6261 if (sym_que_empty(&np->free_ccbq)) 6262 goto out; 6263 qp = sym_remque_head(&np->free_ccbq); 6264 if (!qp) 6265 goto out; 6266 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6267 6268 /* 6269 * If the LCB is not yet available and the LUN 6270 * has been probed ok, try to allocate the LCB. 6271 */ 6272 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6273 lp = sym_alloc_lcb(np, tn, ln); 6274 if (!lp) 6275 goto out_free; 6276 } 6277 6278 /* 6279 * If the LCB is not available here, then the 6280 * logical unit is not yet discovered. For those 6281 * ones only accept 1 SCSI IO per logical unit, 6282 * since we cannot allow disconnections. 6283 */ 6284 if (!lp) { 6285 if (!sym_is_bit(tp->busy0_map, ln)) 6286 sym_set_bit(tp->busy0_map, ln); 6287 else 6288 goto out_free; 6289 } else { 6290 /* 6291 * If we have been asked for a tagged command, refuse 6292 * to overlap with an existing untagged one. 6293 */ 6294 if (tag_order) { 6295 if (lp->busy_itl != 0) 6296 goto out_free; 6297 /* 6298 * Allocate resources for tags if not yet. 6299 */ 6300 if (!lp->cb_tags) { 6301 sym_alloc_lcb_tags(np, tn, ln); 6302 if (!lp->cb_tags) 6303 goto out_free; 6304 } 6305 /* 6306 * Get a tag for this SCSI IO and set up 6307 * the CCB bus address for reselection, 6308 * and count it for this LUN. 6309 * Toggle reselect path to tagged. 6310 */ 6311 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6312 tag = lp->cb_tags[lp->ia_tag]; 6313 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6314 lp->ia_tag = 0; 6315 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6316 ++lp->busy_itlq; 6317 lp->head.resel_sa = 6318 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6319 } 6320 else 6321 goto out_free; 6322 } 6323 /* 6324 * This command will not be tagged. 6325 * If we already have either a tagged or untagged 6326 * one, refuse to overlap this untagged one. 6327 */ 6328 else { 6329 if (lp->busy_itlq != 0 || lp->busy_itl != 0) 6330 goto out_free; 6331 /* 6332 * Count this nexus for this LUN. 6333 * Set up the CCB bus address for reselection. 6334 * Toggle reselect path to untagged. 6335 */ 6336 lp->busy_itl = 1; 6337 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6338 lp->head.resel_sa = 6339 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6340 } 6341 } 6342 /* 6343 * Put the CCB into the busy queue. 6344 */ 6345 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6346 6347 /* 6348 * Remember all informations needed to free this CCB. 6349 */ 6350 cp->to_abort = 0; 6351 cp->tag = tag; 6352 cp->target = tn; 6353 cp->lun = ln; 6354 6355 if (DEBUG_FLAGS & DEBUG_TAGS) { 6356 PRINT_LUN(np, tn, ln); 6357 printf ("ccb @%p using tag %d.\n", cp, tag); 6358 } 6359 6360 out: 6361 return cp; 6362 out_free: 6363 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6364 return NULL; 6365 } 6366 6367 /* 6368 * Release one control block 6369 */ 6370 static void sym_free_ccb(hcb_p np, ccb_p cp) 6371 { 6372 tcb_p tp = &np->target[cp->target]; 6373 lcb_p lp = sym_lp(tp, cp->lun); 6374 6375 if (DEBUG_FLAGS & DEBUG_TAGS) { 6376 PRINT_LUN(np, cp->target, cp->lun); 6377 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6378 } 6379 6380 /* 6381 * If LCB available, 6382 */ 6383 if (lp) { 6384 /* 6385 * If tagged, release the tag, set the reselect path. 6386 */ 6387 if (cp->tag != NO_TAG) { 6388 /* 6389 * Free the tag value. 6390 */ 6391 lp->cb_tags[lp->if_tag] = cp->tag; 6392 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6393 lp->if_tag = 0; 6394 /* 6395 * Make the reselect path invalid, 6396 * and uncount this CCB. 6397 */ 6398 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6399 --lp->busy_itlq; 6400 } else { /* Untagged */ 6401 /* 6402 * Make the reselect path invalid, 6403 * and uncount this CCB. 6404 */ 6405 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6406 lp->busy_itl = 0; 6407 } 6408 /* 6409 * If no JOB active, make the LUN reselect path invalid. 6410 */ 6411 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6412 lp->head.resel_sa = 6413 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6414 } 6415 /* 6416 * Otherwise, we only accept 1 IO per LUN. 6417 * Clear the bit that keeps track of this IO. 6418 */ 6419 else 6420 sym_clr_bit(tp->busy0_map, cp->lun); 6421 6422 /* 6423 * We donnot queue more than 1 ccb per target 6424 * with negotiation at any time. If this ccb was 6425 * used for negotiation, clear this info in the tcb. 6426 */ 6427 if (cp == tp->nego_cp) 6428 tp->nego_cp = NULL; 6429 6430 #ifdef SYM_CONF_IARB_SUPPORT 6431 /* 6432 * If we just complete the last queued CCB, 6433 * clear this info that is no longer relevant. 6434 */ 6435 if (cp == np->last_cp) 6436 np->last_cp = NULL; 6437 #endif 6438 6439 /* 6440 * Unmap user data from DMA map if needed. 6441 */ 6442 if (cp->dmamapped) { 6443 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6444 cp->dmamapped = 0; 6445 } 6446 6447 /* 6448 * Make this CCB available. 6449 */ 6450 cp->cam_ccb = NULL; 6451 cp->host_status = HS_IDLE; 6452 sym_remque(&cp->link_ccbq); 6453 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6454 } 6455 6456 /* 6457 * Allocate a CCB from memory and initialize its fixed part. 6458 */ 6459 static ccb_p sym_alloc_ccb(hcb_p np) 6460 { 6461 ccb_p cp = NULL; 6462 int hcode; 6463 6464 SYM_LOCK_ASSERT(MA_NOTOWNED); 6465 6466 /* 6467 * Prevent from allocating more CCBs than we can 6468 * queue to the controller. 6469 */ 6470 if (np->actccbs >= SYM_CONF_MAX_START) 6471 return NULL; 6472 6473 /* 6474 * Allocate memory for this CCB. 6475 */ 6476 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6477 if (!cp) 6478 return NULL; 6479 6480 /* 6481 * Allocate a bounce buffer for sense data. 6482 */ 6483 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6484 if (!cp->sns_bbuf) 6485 goto out_free; 6486 6487 /* 6488 * Allocate a map for the DMA of user data. 6489 */ 6490 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6491 goto out_free; 6492 /* 6493 * Count it. 6494 */ 6495 np->actccbs++; 6496 6497 /* 6498 * Initialize the callout. 6499 */ 6500 callout_init(&cp->ch, 1); 6501 6502 /* 6503 * Compute the bus address of this ccb. 6504 */ 6505 cp->ccb_ba = vtobus(cp); 6506 6507 /* 6508 * Insert this ccb into the hashed list. 6509 */ 6510 hcode = CCB_HASH_CODE(cp->ccb_ba); 6511 cp->link_ccbh = np->ccbh[hcode]; 6512 np->ccbh[hcode] = cp; 6513 6514 /* 6515 * Initialize the start and restart actions. 6516 */ 6517 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6518 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6519 6520 /* 6521 * Initilialyze some other fields. 6522 */ 6523 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6524 6525 /* 6526 * Chain into free ccb queue. 6527 */ 6528 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6529 6530 return cp; 6531 out_free: 6532 if (cp->sns_bbuf) 6533 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6534 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6535 return NULL; 6536 } 6537 6538 /* 6539 * Look up a CCB from a DSA value. 6540 */ 6541 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6542 { 6543 int hcode; 6544 ccb_p cp; 6545 6546 hcode = CCB_HASH_CODE(dsa); 6547 cp = np->ccbh[hcode]; 6548 while (cp) { 6549 if (cp->ccb_ba == dsa) 6550 break; 6551 cp = cp->link_ccbh; 6552 } 6553 6554 return cp; 6555 } 6556 6557 /* 6558 * Lun control block allocation and initialization. 6559 */ 6560 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6561 { 6562 tcb_p tp = &np->target[tn]; 6563 lcb_p lp = sym_lp(tp, ln); 6564 6565 /* 6566 * Already done, just return. 6567 */ 6568 if (lp) 6569 return lp; 6570 /* 6571 * Check against some race. 6572 */ 6573 assert(!sym_is_bit(tp->busy0_map, ln)); 6574 6575 /* 6576 * Allocate the LCB bus address array. 6577 * Compute the bus address of this table. 6578 */ 6579 if (ln && !tp->luntbl) { 6580 int i; 6581 6582 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6583 if (!tp->luntbl) 6584 goto fail; 6585 for (i = 0 ; i < 64 ; i++) 6586 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6587 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6588 } 6589 6590 /* 6591 * Allocate the table of pointers for LUN(s) > 0, if needed. 6592 */ 6593 if (ln && !tp->lunmp) { 6594 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6595 "LUNMP"); 6596 if (!tp->lunmp) 6597 goto fail; 6598 } 6599 6600 /* 6601 * Allocate the lcb. 6602 * Make it available to the chip. 6603 */ 6604 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6605 if (!lp) 6606 goto fail; 6607 if (ln) { 6608 tp->lunmp[ln] = lp; 6609 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6610 } 6611 else { 6612 tp->lun0p = lp; 6613 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6614 } 6615 6616 /* 6617 * Let the itl task point to error handling. 6618 */ 6619 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6620 6621 /* 6622 * Set the reselect pattern to our default. :) 6623 */ 6624 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6625 6626 /* 6627 * Set user capabilities. 6628 */ 6629 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6630 6631 fail: 6632 return lp; 6633 } 6634 6635 /* 6636 * Allocate LCB resources for tagged command queuing. 6637 */ 6638 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6639 { 6640 tcb_p tp = &np->target[tn]; 6641 lcb_p lp = sym_lp(tp, ln); 6642 int i; 6643 6644 /* 6645 * If LCB not available, try to allocate it. 6646 */ 6647 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6648 return; 6649 6650 /* 6651 * Allocate the task table and and the tag allocation 6652 * circular buffer. We want both or none. 6653 */ 6654 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6655 if (!lp->itlq_tbl) 6656 return; 6657 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6658 if (!lp->cb_tags) { 6659 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6660 lp->itlq_tbl = NULL; 6661 return; 6662 } 6663 6664 /* 6665 * Initialize the task table with invalid entries. 6666 */ 6667 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6668 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6669 6670 /* 6671 * Fill up the tag buffer with tag numbers. 6672 */ 6673 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6674 lp->cb_tags[i] = i; 6675 6676 /* 6677 * Make the task table available to SCRIPTS, 6678 * And accept tagged commands now. 6679 */ 6680 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6681 } 6682 6683 /* 6684 * Test the pci bus snoop logic :-( 6685 * 6686 * Has to be called with interrupts disabled. 6687 */ 6688 #ifndef SYM_CONF_IOMAPPED 6689 static int sym_regtest (hcb_p np) 6690 { 6691 register volatile u32 data; 6692 /* 6693 * chip registers may NOT be cached. 6694 * write 0xffffffff to a read only register area, 6695 * and try to read it back. 6696 */ 6697 data = 0xffffffff; 6698 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6699 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6700 #if 1 6701 if (data == 0xffffffff) { 6702 #else 6703 if ((data & 0xe2f0fffd) != 0x02000080) { 6704 #endif 6705 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6706 (unsigned) data); 6707 return (0x10); 6708 } 6709 return (0); 6710 } 6711 #endif 6712 6713 static int sym_snooptest (hcb_p np) 6714 { 6715 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6716 int i, err=0; 6717 #ifndef SYM_CONF_IOMAPPED 6718 err |= sym_regtest (np); 6719 if (err) return (err); 6720 #endif 6721 restart_test: 6722 /* 6723 * Enable Master Parity Checking as we intend 6724 * to enable it for normal operations. 6725 */ 6726 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6727 /* 6728 * init 6729 */ 6730 pc = SCRIPTB0_BA (np, snooptest); 6731 host_wr = 1; 6732 sym_wr = 2; 6733 /* 6734 * Set memory and register. 6735 */ 6736 np->cache = cpu_to_scr(host_wr); 6737 OUTL (nc_temp, sym_wr); 6738 /* 6739 * Start script (exchange values) 6740 */ 6741 OUTL (nc_dsa, np->hcb_ba); 6742 OUTL_DSP (pc); 6743 /* 6744 * Wait 'til done (with timeout) 6745 */ 6746 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6747 if (INB(nc_istat) & (INTF|SIP|DIP)) 6748 break; 6749 if (i>=SYM_SNOOP_TIMEOUT) { 6750 printf ("CACHE TEST FAILED: timeout.\n"); 6751 return (0x20); 6752 } 6753 /* 6754 * Check for fatal DMA errors. 6755 */ 6756 dstat = INB (nc_dstat); 6757 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6758 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6759 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6760 "DISABLING MASTER DATA PARITY CHECKING.\n", 6761 sym_name(np)); 6762 np->rv_ctest4 &= ~MPEE; 6763 goto restart_test; 6764 } 6765 #endif 6766 if (dstat & (MDPE|BF|IID)) { 6767 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6768 return (0x80); 6769 } 6770 /* 6771 * Save termination position. 6772 */ 6773 pc = INL (nc_dsp); 6774 /* 6775 * Read memory and register. 6776 */ 6777 host_rd = scr_to_cpu(np->cache); 6778 sym_rd = INL (nc_scratcha); 6779 sym_bk = INL (nc_temp); 6780 6781 /* 6782 * Check termination position. 6783 */ 6784 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6785 printf ("CACHE TEST FAILED: script execution failed.\n"); 6786 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6787 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6788 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6789 return (0x40); 6790 } 6791 /* 6792 * Show results. 6793 */ 6794 if (host_wr != sym_rd) { 6795 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6796 (int) host_wr, (int) sym_rd); 6797 err |= 1; 6798 } 6799 if (host_rd != sym_wr) { 6800 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6801 (int) sym_wr, (int) host_rd); 6802 err |= 2; 6803 } 6804 if (sym_bk != sym_wr) { 6805 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6806 (int) sym_wr, (int) sym_bk); 6807 err |= 4; 6808 } 6809 6810 return (err); 6811 } 6812 6813 /* 6814 * Determine the chip's clock frequency. 6815 * 6816 * This is essential for the negotiation of the synchronous 6817 * transfer rate. 6818 * 6819 * Note: we have to return the correct value. 6820 * THERE IS NO SAFE DEFAULT VALUE. 6821 * 6822 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6823 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6824 * do not have a clock doubler and so are provided with a 6825 * 80 MHz clock. All other fast20 boards incorporate a doubler 6826 * and so should be delivered with a 40 MHz clock. 6827 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6828 * clock and provide a clock quadrupler (160 Mhz). 6829 */ 6830 6831 /* 6832 * Select SCSI clock frequency 6833 */ 6834 static void sym_selectclock(hcb_p np, u_char scntl3) 6835 { 6836 /* 6837 * If multiplier not present or not selected, leave here. 6838 */ 6839 if (np->multiplier <= 1) { 6840 OUTB(nc_scntl3, scntl3); 6841 return; 6842 } 6843 6844 if (sym_verbose >= 2) 6845 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6846 6847 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6848 /* 6849 * Wait for the LCKFRQ bit to be set if supported by the chip. 6850 * Otherwise wait 20 micro-seconds. 6851 */ 6852 if (np->features & FE_LCKFRQ) { 6853 int i = 20; 6854 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6855 UDELAY (20); 6856 if (!i) 6857 printf("%s: the chip cannot lock the frequency\n", 6858 sym_name(np)); 6859 } else 6860 UDELAY (20); 6861 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6862 OUTB(nc_scntl3, scntl3); 6863 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6864 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6865 } 6866 6867 /* 6868 * calculate SCSI clock frequency (in KHz) 6869 */ 6870 static unsigned getfreq (hcb_p np, int gen) 6871 { 6872 unsigned int ms = 0; 6873 unsigned int f; 6874 6875 /* 6876 * Measure GEN timer delay in order 6877 * to calculate SCSI clock frequency 6878 * 6879 * This code will never execute too 6880 * many loop iterations (if DELAY is 6881 * reasonably correct). It could get 6882 * too low a delay (too high a freq.) 6883 * if the CPU is slow executing the 6884 * loop for some reason (an NMI, for 6885 * example). For this reason we will 6886 * if multiple measurements are to be 6887 * performed trust the higher delay 6888 * (lower frequency returned). 6889 */ 6890 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6891 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6892 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6893 (void) INW (nc_sist); /* another one, just to be sure :) */ 6894 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6895 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6896 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6897 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6898 UDELAY (1000); /* count ms */ 6899 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6900 /* 6901 * set prescaler to divide by whatever 0 means 6902 * 0 ought to choose divide by 2, but appears 6903 * to set divide by 3.5 mode in my 53c810 ... 6904 */ 6905 OUTB (nc_scntl3, 0); 6906 6907 /* 6908 * adjust for prescaler, and convert into KHz 6909 */ 6910 f = ms ? ((1 << gen) * 4340) / ms : 0; 6911 6912 if (sym_verbose >= 2) 6913 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6914 sym_name(np), gen, ms, f); 6915 6916 return f; 6917 } 6918 6919 static unsigned sym_getfreq (hcb_p np) 6920 { 6921 u_int f1, f2; 6922 int gen = 11; 6923 6924 (void) getfreq (np, gen); /* throw away first result */ 6925 f1 = getfreq (np, gen); 6926 f2 = getfreq (np, gen); 6927 if (f1 > f2) f1 = f2; /* trust lower result */ 6928 return f1; 6929 } 6930 6931 /* 6932 * Get/probe chip SCSI clock frequency 6933 */ 6934 static void sym_getclock (hcb_p np, int mult) 6935 { 6936 unsigned char scntl3 = np->sv_scntl3; 6937 unsigned char stest1 = np->sv_stest1; 6938 unsigned f1; 6939 6940 /* 6941 * For the C10 core, assume 40 MHz. 6942 */ 6943 if (np->features & FE_C10) { 6944 np->multiplier = mult; 6945 np->clock_khz = 40000 * mult; 6946 return; 6947 } 6948 6949 np->multiplier = 1; 6950 f1 = 40000; 6951 /* 6952 * True with 875/895/896/895A with clock multiplier selected 6953 */ 6954 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 6955 if (sym_verbose >= 2) 6956 printf ("%s: clock multiplier found\n", sym_name(np)); 6957 np->multiplier = mult; 6958 } 6959 6960 /* 6961 * If multiplier not found or scntl3 not 7,5,3, 6962 * reset chip and get frequency from general purpose timer. 6963 * Otherwise trust scntl3 BIOS setting. 6964 */ 6965 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 6966 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 6967 f1 = sym_getfreq (np); 6968 6969 if (sym_verbose) 6970 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 6971 6972 if (f1 < 45000) f1 = 40000; 6973 else if (f1 < 55000) f1 = 50000; 6974 else f1 = 80000; 6975 6976 if (f1 < 80000 && mult > 1) { 6977 if (sym_verbose >= 2) 6978 printf ("%s: clock multiplier assumed\n", 6979 sym_name(np)); 6980 np->multiplier = mult; 6981 } 6982 } else { 6983 if ((scntl3 & 7) == 3) f1 = 40000; 6984 else if ((scntl3 & 7) == 5) f1 = 80000; 6985 else f1 = 160000; 6986 6987 f1 /= np->multiplier; 6988 } 6989 6990 /* 6991 * Compute controller synchronous parameters. 6992 */ 6993 f1 *= np->multiplier; 6994 np->clock_khz = f1; 6995 } 6996 6997 /* 6998 * Get/probe PCI clock frequency 6999 */ 7000 static int sym_getpciclock (hcb_p np) 7001 { 7002 int f = 0; 7003 7004 /* 7005 * For the C1010-33, this doesn't work. 7006 * For the C1010-66, this will be tested when I'll have 7007 * such a beast to play with. 7008 */ 7009 if (!(np->features & FE_C10)) { 7010 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7011 f = (int) sym_getfreq (np); 7012 OUTB (nc_stest1, 0); 7013 } 7014 np->pciclk_khz = f; 7015 7016 return f; 7017 } 7018 7019 /*============= DRIVER ACTION/COMPLETION ====================*/ 7020 7021 /* 7022 * Print something that tells about extended errors. 7023 */ 7024 static void sym_print_xerr(ccb_p cp, int x_status) 7025 { 7026 if (x_status & XE_PARITY_ERR) { 7027 PRINT_ADDR(cp); 7028 printf ("unrecovered SCSI parity error.\n"); 7029 } 7030 if (x_status & XE_EXTRA_DATA) { 7031 PRINT_ADDR(cp); 7032 printf ("extraneous data discarded.\n"); 7033 } 7034 if (x_status & XE_BAD_PHASE) { 7035 PRINT_ADDR(cp); 7036 printf ("illegal scsi phase (4/5).\n"); 7037 } 7038 if (x_status & XE_SODL_UNRUN) { 7039 PRINT_ADDR(cp); 7040 printf ("ODD transfer in DATA OUT phase.\n"); 7041 } 7042 if (x_status & XE_SWIDE_OVRUN) { 7043 PRINT_ADDR(cp); 7044 printf ("ODD transfer in DATA IN phase.\n"); 7045 } 7046 } 7047 7048 /* 7049 * Choose the more appropriate CAM status if 7050 * the IO encountered an extended error. 7051 */ 7052 static int sym_xerr_cam_status(int cam_status, int x_status) 7053 { 7054 if (x_status) { 7055 if (x_status & XE_PARITY_ERR) 7056 cam_status = CAM_UNCOR_PARITY; 7057 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7058 cam_status = CAM_DATA_RUN_ERR; 7059 else if (x_status & XE_BAD_PHASE) 7060 cam_status = CAM_REQ_CMP_ERR; 7061 else 7062 cam_status = CAM_REQ_CMP_ERR; 7063 } 7064 return cam_status; 7065 } 7066 7067 /* 7068 * Complete execution of a SCSI command with extented 7069 * error, SCSI status error, or having been auto-sensed. 7070 * 7071 * The SCRIPTS processor is not running there, so we 7072 * can safely access IO registers and remove JOBs from 7073 * the START queue. 7074 * SCRATCHA is assumed to have been loaded with STARTPOS 7075 * before the SCRIPTS called the C code. 7076 */ 7077 static void sym_complete_error (hcb_p np, ccb_p cp) 7078 { 7079 struct ccb_scsiio *csio; 7080 u_int cam_status; 7081 int i, sense_returned; 7082 7083 SYM_LOCK_ASSERT(MA_OWNED); 7084 7085 /* 7086 * Paranoid check. :) 7087 */ 7088 if (!cp || !cp->cam_ccb) 7089 return; 7090 7091 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7092 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7093 cp->host_status, cp->ssss_status, cp->host_flags, 7094 cp->target, cp->lun); 7095 MDELAY(100); 7096 } 7097 7098 /* 7099 * Get CAM command pointer. 7100 */ 7101 csio = &cp->cam_ccb->csio; 7102 7103 /* 7104 * Check for extended errors. 7105 */ 7106 if (cp->xerr_status) { 7107 if (sym_verbose) 7108 sym_print_xerr(cp, cp->xerr_status); 7109 if (cp->host_status == HS_COMPLETE) 7110 cp->host_status = HS_COMP_ERR; 7111 } 7112 7113 /* 7114 * Calculate the residual. 7115 */ 7116 csio->sense_resid = 0; 7117 csio->resid = sym_compute_residual(np, cp); 7118 7119 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7120 csio->resid = 0; /* throw them away. :) */ 7121 cp->sv_resid = 0; 7122 } 7123 7124 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7125 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7126 csio->sense_resid = csio->resid; /* Swap residuals */ 7127 csio->resid = cp->sv_resid; 7128 cp->sv_resid = 0; 7129 if (sym_verbose && cp->sv_xerr_status) 7130 sym_print_xerr(cp, cp->sv_xerr_status); 7131 if (cp->host_status == HS_COMPLETE && 7132 cp->ssss_status == S_GOOD && 7133 cp->xerr_status == 0) { 7134 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7135 cp->sv_xerr_status); 7136 cam_status |= CAM_AUTOSNS_VALID; 7137 /* 7138 * Bounce back the sense data to user and 7139 * fix the residual. 7140 */ 7141 bzero(&csio->sense_data, sizeof(csio->sense_data)); 7142 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid; 7143 if (sense_returned < csio->sense_len) 7144 csio->sense_resid = csio->sense_len - 7145 sense_returned; 7146 else 7147 csio->sense_resid = 0; 7148 bcopy(cp->sns_bbuf, &csio->sense_data, 7149 MIN(csio->sense_len, sense_returned)); 7150 #if 0 7151 /* 7152 * If the device reports a UNIT ATTENTION condition 7153 * due to a RESET condition, we should consider all 7154 * disconnect CCBs for this unit as aborted. 7155 */ 7156 if (1) { 7157 u_char *p; 7158 p = (u_char *) csio->sense_data; 7159 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7160 sym_clear_tasks(np, CAM_REQ_ABORTED, 7161 cp->target,cp->lun, -1); 7162 } 7163 #endif 7164 } 7165 else 7166 cam_status = CAM_AUTOSENSE_FAIL; 7167 } 7168 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7169 csio->scsi_status = cp->ssss_status; 7170 cam_status = CAM_SCSI_STATUS_ERROR; 7171 } 7172 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7173 cam_status = CAM_SEL_TIMEOUT; 7174 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7175 cam_status = CAM_UNEXP_BUSFREE; 7176 else { /* Extended error */ 7177 if (sym_verbose) { 7178 PRINT_ADDR(cp); 7179 printf ("COMMAND FAILED (%x %x %x).\n", 7180 cp->host_status, cp->ssss_status, 7181 cp->xerr_status); 7182 } 7183 csio->scsi_status = cp->ssss_status; 7184 /* 7185 * Set the most appropriate value for CAM status. 7186 */ 7187 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7188 cp->xerr_status); 7189 } 7190 7191 /* 7192 * Dequeue all queued CCBs for that device 7193 * not yet started by SCRIPTS. 7194 */ 7195 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7196 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7197 7198 /* 7199 * Restart the SCRIPTS processor. 7200 */ 7201 OUTL_DSP (SCRIPTA_BA (np, start)); 7202 7203 /* 7204 * Synchronize DMA map if needed. 7205 */ 7206 if (cp->dmamapped) { 7207 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7208 (cp->dmamapped == SYM_DMA_READ ? 7209 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7210 } 7211 /* 7212 * Add this one to the COMP queue. 7213 * Complete all those commands with either error 7214 * or requeue condition. 7215 */ 7216 sym_set_cam_status((union ccb *) csio, cam_status); 7217 sym_remque(&cp->link_ccbq); 7218 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7219 sym_flush_comp_queue(np, 0); 7220 } 7221 7222 /* 7223 * Complete execution of a successful SCSI command. 7224 * 7225 * Only successful commands go to the DONE queue, 7226 * since we need to have the SCRIPTS processor 7227 * stopped on any error condition. 7228 * The SCRIPTS processor is running while we are 7229 * completing successful commands. 7230 */ 7231 static void sym_complete_ok (hcb_p np, ccb_p cp) 7232 { 7233 struct ccb_scsiio *csio; 7234 tcb_p tp; 7235 lcb_p lp; 7236 7237 SYM_LOCK_ASSERT(MA_OWNED); 7238 7239 /* 7240 * Paranoid check. :) 7241 */ 7242 if (!cp || !cp->cam_ccb) 7243 return; 7244 assert (cp->host_status == HS_COMPLETE); 7245 7246 /* 7247 * Get command, target and lun pointers. 7248 */ 7249 csio = &cp->cam_ccb->csio; 7250 tp = &np->target[cp->target]; 7251 lp = sym_lp(tp, cp->lun); 7252 7253 /* 7254 * Assume device discovered on first success. 7255 */ 7256 if (!lp) 7257 sym_set_bit(tp->lun_map, cp->lun); 7258 7259 /* 7260 * If all data have been transferred, given than no 7261 * extended error did occur, there is no residual. 7262 */ 7263 csio->resid = 0; 7264 if (cp->phys.head.lastp != cp->phys.head.goalp) 7265 csio->resid = sym_compute_residual(np, cp); 7266 7267 /* 7268 * Wrong transfer residuals may be worse than just always 7269 * returning zero. User can disable this feature from 7270 * sym_conf.h. Residual support is enabled by default. 7271 */ 7272 if (!SYM_CONF_RESIDUAL_SUPPORT) 7273 csio->resid = 0; 7274 7275 /* 7276 * Synchronize DMA map if needed. 7277 */ 7278 if (cp->dmamapped) { 7279 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7280 (cp->dmamapped == SYM_DMA_READ ? 7281 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7282 } 7283 /* 7284 * Set status and complete the command. 7285 */ 7286 csio->scsi_status = cp->ssss_status; 7287 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7288 sym_xpt_done(np, (union ccb *) csio, cp); 7289 sym_free_ccb(np, cp); 7290 } 7291 7292 /* 7293 * Our callout handler 7294 */ 7295 static void sym_callout(void *arg) 7296 { 7297 union ccb *ccb = (union ccb *) arg; 7298 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7299 7300 /* 7301 * Check that the CAM CCB is still queued. 7302 */ 7303 if (!np) 7304 return; 7305 7306 SYM_LOCK(); 7307 7308 switch(ccb->ccb_h.func_code) { 7309 case XPT_SCSI_IO: 7310 (void) sym_abort_scsiio(np, ccb, 1); 7311 break; 7312 default: 7313 break; 7314 } 7315 7316 SYM_UNLOCK(); 7317 } 7318 7319 /* 7320 * Abort an SCSI IO. 7321 */ 7322 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7323 { 7324 ccb_p cp; 7325 SYM_QUEHEAD *qp; 7326 7327 SYM_LOCK_ASSERT(MA_OWNED); 7328 7329 /* 7330 * Look up our CCB control block. 7331 */ 7332 cp = NULL; 7333 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7334 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7335 if (cp2->cam_ccb == ccb) { 7336 cp = cp2; 7337 break; 7338 } 7339 } 7340 if (!cp || cp->host_status == HS_WAIT) 7341 return -1; 7342 7343 /* 7344 * If a previous abort didn't succeed in time, 7345 * perform a BUS reset. 7346 */ 7347 if (cp->to_abort) { 7348 sym_reset_scsi_bus(np, 1); 7349 return 0; 7350 } 7351 7352 /* 7353 * Mark the CCB for abort and allow time for. 7354 */ 7355 cp->to_abort = timed_out ? 2 : 1; 7356 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7357 7358 /* 7359 * Tell the SCRIPTS processor to stop and synchronize with us. 7360 */ 7361 np->istat_sem = SEM; 7362 OUTB (nc_istat, SIGP|SEM); 7363 return 0; 7364 } 7365 7366 /* 7367 * Reset a SCSI device (all LUNs of a target). 7368 */ 7369 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7370 { 7371 tcb_p tp; 7372 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7373 7374 SYM_LOCK_ASSERT(MA_OWNED); 7375 7376 if (ccb_h->target_id == np->myaddr || 7377 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7378 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7379 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7380 return; 7381 } 7382 7383 tp = &np->target[ccb_h->target_id]; 7384 7385 tp->to_reset = 1; 7386 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7387 7388 np->istat_sem = SEM; 7389 OUTB (nc_istat, SIGP|SEM); 7390 } 7391 7392 /* 7393 * SIM action entry point. 7394 */ 7395 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7396 { 7397 hcb_p np; 7398 tcb_p tp; 7399 lcb_p lp; 7400 ccb_p cp; 7401 int tmp; 7402 u_char idmsg, *msgptr; 7403 u_int msglen; 7404 struct ccb_scsiio *csio; 7405 struct ccb_hdr *ccb_h; 7406 7407 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7408 7409 /* 7410 * Retrieve our controller data structure. 7411 */ 7412 np = (hcb_p) cam_sim_softc(sim); 7413 7414 SYM_LOCK_ASSERT(MA_OWNED); 7415 7416 /* 7417 * The common case is SCSI IO. 7418 * We deal with other ones elsewhere. 7419 */ 7420 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7421 sym_action2(sim, ccb); 7422 return; 7423 } 7424 csio = &ccb->csio; 7425 ccb_h = &csio->ccb_h; 7426 7427 /* 7428 * Work around races. 7429 */ 7430 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7431 xpt_done(ccb); 7432 return; 7433 } 7434 7435 /* 7436 * Minimal checkings, so that we will not 7437 * go outside our tables. 7438 */ 7439 if (ccb_h->target_id == np->myaddr || 7440 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7441 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7442 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7443 return; 7444 } 7445 7446 /* 7447 * Retrieve the target and lun descriptors. 7448 */ 7449 tp = &np->target[ccb_h->target_id]; 7450 lp = sym_lp(tp, ccb_h->target_lun); 7451 7452 /* 7453 * Complete the 1st INQUIRY command with error 7454 * condition if the device is flagged NOSCAN 7455 * at BOOT in the NVRAM. This may speed up 7456 * the boot and maintain coherency with BIOS 7457 * device numbering. Clearing the flag allows 7458 * user to rescan skipped devices later. 7459 * We also return error for devices not flagged 7460 * for SCAN LUNS in the NVRAM since some mono-lun 7461 * devices behave badly when asked for some non 7462 * zero LUN. Btw, this is an absolute hack.:-) 7463 */ 7464 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7465 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7466 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7467 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7468 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7469 ccb_h->target_lun != 0)) { 7470 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7471 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7472 return; 7473 } 7474 } 7475 7476 /* 7477 * Get a control block for this IO. 7478 */ 7479 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7480 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7481 if (!cp) { 7482 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7483 return; 7484 } 7485 7486 /* 7487 * Keep track of the IO in our CCB. 7488 */ 7489 cp->cam_ccb = ccb; 7490 7491 /* 7492 * Build the IDENTIFY message. 7493 */ 7494 idmsg = M_IDENTIFY | cp->lun; 7495 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7496 idmsg |= 0x40; 7497 7498 msgptr = cp->scsi_smsg; 7499 msglen = 0; 7500 msgptr[msglen++] = idmsg; 7501 7502 /* 7503 * Build the tag message if present. 7504 */ 7505 if (cp->tag != NO_TAG) { 7506 u_char order = csio->tag_action; 7507 7508 switch(order) { 7509 case M_ORDERED_TAG: 7510 break; 7511 case M_HEAD_TAG: 7512 break; 7513 default: 7514 order = M_SIMPLE_TAG; 7515 } 7516 msgptr[msglen++] = order; 7517 7518 /* 7519 * For less than 128 tags, actual tags are numbered 7520 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7521 * with devices that have problems with #TAG 0 or too 7522 * great #TAG numbers. For more tags (up to 256), 7523 * we use directly our tag number. 7524 */ 7525 #if SYM_CONF_MAX_TASK > (512/4) 7526 msgptr[msglen++] = cp->tag; 7527 #else 7528 msgptr[msglen++] = (cp->tag << 1) + 1; 7529 #endif 7530 } 7531 7532 /* 7533 * Build a negotiation message if needed. 7534 * (nego_status is filled by sym_prepare_nego()) 7535 */ 7536 cp->nego_status = 0; 7537 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7538 tp->tinfo.current.period != tp->tinfo.goal.period || 7539 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7540 tp->tinfo.current.options != tp->tinfo.goal.options) { 7541 if (!tp->nego_cp && lp) 7542 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7543 } 7544 7545 /* 7546 * Fill in our ccb 7547 */ 7548 7549 /* 7550 * Startqueue 7551 */ 7552 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7553 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7554 7555 /* 7556 * select 7557 */ 7558 cp->phys.select.sel_id = cp->target; 7559 cp->phys.select.sel_scntl3 = tp->head.wval; 7560 cp->phys.select.sel_sxfer = tp->head.sval; 7561 cp->phys.select.sel_scntl4 = tp->head.uval; 7562 7563 /* 7564 * message 7565 */ 7566 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7567 cp->phys.smsg.size = cpu_to_scr(msglen); 7568 7569 /* 7570 * command 7571 */ 7572 if (sym_setup_cdb(np, csio, cp) < 0) { 7573 sym_xpt_done(np, ccb, cp); 7574 sym_free_ccb(np, cp); 7575 return; 7576 } 7577 7578 /* 7579 * status 7580 */ 7581 #if 0 /* Provision */ 7582 cp->actualquirks = tp->quirks; 7583 #endif 7584 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7585 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7586 cp->ssss_status = S_ILLEGAL; 7587 cp->xerr_status = 0; 7588 cp->host_flags = 0; 7589 cp->extra_bytes = 0; 7590 7591 /* 7592 * extreme data pointer. 7593 * shall be positive, so -1 is lower than lowest.:) 7594 */ 7595 cp->ext_sg = -1; 7596 cp->ext_ofs = 0; 7597 7598 /* 7599 * Build the data descriptor block 7600 * and start the IO. 7601 */ 7602 sym_setup_data_and_start(np, csio, cp); 7603 } 7604 7605 /* 7606 * Setup buffers and pointers that address the CDB. 7607 * I bet, physical CDBs will never be used on the planet, 7608 * since they can be bounced without significant overhead. 7609 */ 7610 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7611 { 7612 struct ccb_hdr *ccb_h; 7613 u32 cmd_ba; 7614 int cmd_len; 7615 7616 SYM_LOCK_ASSERT(MA_OWNED); 7617 7618 ccb_h = &csio->ccb_h; 7619 7620 /* 7621 * CDB is 16 bytes max. 7622 */ 7623 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7624 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7625 return -1; 7626 } 7627 cmd_len = csio->cdb_len; 7628 7629 if (ccb_h->flags & CAM_CDB_POINTER) { 7630 /* CDB is a pointer */ 7631 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7632 /* CDB pointer is virtual */ 7633 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7634 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7635 } else { 7636 /* CDB pointer is physical */ 7637 #if 0 7638 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7639 #else 7640 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7641 return -1; 7642 #endif 7643 } 7644 } else { 7645 /* CDB is in the CAM ccb (buffer) */ 7646 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7647 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7648 } 7649 7650 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7651 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7652 7653 return 0; 7654 } 7655 7656 /* 7657 * Set up data pointers used by SCRIPTS. 7658 */ 7659 static void __inline 7660 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7661 { 7662 u32 lastp, goalp; 7663 7664 SYM_LOCK_ASSERT(MA_OWNED); 7665 7666 /* 7667 * No segments means no data. 7668 */ 7669 if (!cp->segments) 7670 dir = CAM_DIR_NONE; 7671 7672 /* 7673 * Set the data pointer. 7674 */ 7675 switch(dir) { 7676 case CAM_DIR_OUT: 7677 goalp = SCRIPTA_BA (np, data_out2) + 8; 7678 lastp = goalp - 8 - (cp->segments * (2*4)); 7679 break; 7680 case CAM_DIR_IN: 7681 cp->host_flags |= HF_DATA_IN; 7682 goalp = SCRIPTA_BA (np, data_in2) + 8; 7683 lastp = goalp - 8 - (cp->segments * (2*4)); 7684 break; 7685 case CAM_DIR_NONE: 7686 default: 7687 lastp = goalp = SCRIPTB_BA (np, no_data); 7688 break; 7689 } 7690 7691 cp->phys.head.lastp = cpu_to_scr(lastp); 7692 cp->phys.head.goalp = cpu_to_scr(goalp); 7693 cp->phys.head.savep = cpu_to_scr(lastp); 7694 cp->startp = cp->phys.head.savep; 7695 } 7696 7697 /* 7698 * Call back routine for the DMA map service. 7699 * If bounce buffers are used (why ?), we may sleep and then 7700 * be called there in another context. 7701 */ 7702 static void 7703 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7704 { 7705 ccb_p cp; 7706 hcb_p np; 7707 union ccb *ccb; 7708 7709 cp = (ccb_p) arg; 7710 ccb = cp->cam_ccb; 7711 np = (hcb_p) cp->arg; 7712 7713 SYM_LOCK_ASSERT(MA_OWNED); 7714 7715 /* 7716 * Deal with weird races. 7717 */ 7718 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7719 goto out_abort; 7720 7721 /* 7722 * Deal with weird errors. 7723 */ 7724 if (error) { 7725 cp->dmamapped = 0; 7726 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7727 goto out_abort; 7728 } 7729 7730 /* 7731 * Build the data descriptor for the chip. 7732 */ 7733 if (nsegs) { 7734 int retv; 7735 /* 896 rev 1 requires to be careful about boundaries */ 7736 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7737 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7738 else 7739 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7740 if (retv < 0) { 7741 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7742 goto out_abort; 7743 } 7744 } 7745 7746 /* 7747 * Synchronize the DMA map only if we have 7748 * actually mapped the data. 7749 */ 7750 if (cp->dmamapped) { 7751 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7752 (cp->dmamapped == SYM_DMA_READ ? 7753 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7754 } 7755 7756 /* 7757 * Set host status to busy state. 7758 * May have been set back to HS_WAIT to avoid a race. 7759 */ 7760 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7761 7762 /* 7763 * Set data pointers. 7764 */ 7765 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7766 7767 /* 7768 * Enqueue this IO in our pending queue. 7769 */ 7770 sym_enqueue_cam_ccb(cp); 7771 7772 /* 7773 * When `#ifed 1', the code below makes the driver 7774 * panic on the first attempt to write to a SCSI device. 7775 * It is the first test we want to do after a driver 7776 * change that does not seem obviously safe. :) 7777 */ 7778 #if 0 7779 switch (cp->cdb_buf[0]) { 7780 case 0x0A: case 0x2A: case 0xAA: 7781 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7782 MDELAY(10000); 7783 break; 7784 default: 7785 break; 7786 } 7787 #endif 7788 /* 7789 * Activate this job. 7790 */ 7791 sym_put_start_queue(np, cp); 7792 return; 7793 out_abort: 7794 sym_xpt_done(np, ccb, cp); 7795 sym_free_ccb(np, cp); 7796 } 7797 7798 /* 7799 * How complex it gets to deal with the data in CAM. 7800 * The Bus Dma stuff makes things still more complex. 7801 */ 7802 static void 7803 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7804 { 7805 struct ccb_hdr *ccb_h; 7806 int dir, retv; 7807 7808 SYM_LOCK_ASSERT(MA_OWNED); 7809 7810 ccb_h = &csio->ccb_h; 7811 7812 /* 7813 * Now deal with the data. 7814 */ 7815 cp->data_len = csio->dxfer_len; 7816 cp->arg = np; 7817 7818 /* 7819 * No direction means no data. 7820 */ 7821 dir = (ccb_h->flags & CAM_DIR_MASK); 7822 if (dir == CAM_DIR_NONE) { 7823 sym_execute_ccb(cp, NULL, 0, 0); 7824 return; 7825 } 7826 7827 cp->dmamapped = (dir == CAM_DIR_IN) ? SYM_DMA_READ : SYM_DMA_WRITE; 7828 retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap, 7829 (union ccb *)csio, sym_execute_ccb, cp, 0); 7830 if (retv == EINPROGRESS) { 7831 cp->host_status = HS_WAIT; 7832 xpt_freeze_simq(np->sim, 1); 7833 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7834 } 7835 } 7836 7837 /* 7838 * Move the scatter list to our data block. 7839 */ 7840 static int 7841 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7842 bus_dma_segment_t *psegs, int nsegs) 7843 { 7844 struct sym_tblmove *data; 7845 bus_dma_segment_t *psegs2; 7846 7847 SYM_LOCK_ASSERT(MA_OWNED); 7848 7849 if (nsegs > SYM_CONF_MAX_SG) 7850 return -1; 7851 7852 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7853 psegs2 = &psegs[nsegs-1]; 7854 cp->segments = nsegs; 7855 7856 while (1) { 7857 data->addr = cpu_to_scr(psegs2->ds_addr); 7858 data->size = cpu_to_scr(psegs2->ds_len); 7859 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7860 printf ("%s scatter: paddr=%lx len=%ld\n", 7861 sym_name(np), (long) psegs2->ds_addr, 7862 (long) psegs2->ds_len); 7863 } 7864 if (psegs2 != psegs) { 7865 --data; 7866 --psegs2; 7867 continue; 7868 } 7869 break; 7870 } 7871 return 0; 7872 } 7873 7874 /* 7875 * Scatter a SG list with physical addresses into bus addressable chunks. 7876 */ 7877 static int 7878 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7879 { 7880 u_long ps, pe, pn; 7881 u_long k; 7882 int s, t; 7883 7884 SYM_LOCK_ASSERT(MA_OWNED); 7885 7886 s = SYM_CONF_MAX_SG - 1; 7887 t = nsegs - 1; 7888 ps = psegs[t].ds_addr; 7889 pe = ps + psegs[t].ds_len; 7890 7891 while (s >= 0) { 7892 pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY); 7893 if (pn <= ps) 7894 pn = ps; 7895 k = pe - pn; 7896 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7897 printf ("%s scatter: paddr=%lx len=%ld\n", 7898 sym_name(np), pn, k); 7899 } 7900 cp->phys.data[s].addr = cpu_to_scr(pn); 7901 cp->phys.data[s].size = cpu_to_scr(k); 7902 --s; 7903 if (pn == ps) { 7904 if (--t < 0) 7905 break; 7906 ps = psegs[t].ds_addr; 7907 pe = ps + psegs[t].ds_len; 7908 } 7909 else 7910 pe = pn; 7911 } 7912 7913 cp->segments = SYM_CONF_MAX_SG - 1 - s; 7914 7915 return t >= 0 ? -1 : 0; 7916 } 7917 7918 /* 7919 * SIM action for non performance critical stuff. 7920 */ 7921 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 7922 { 7923 union ccb *abort_ccb; 7924 struct ccb_hdr *ccb_h; 7925 struct ccb_pathinq *cpi; 7926 struct ccb_trans_settings *cts; 7927 struct sym_trans *tip; 7928 hcb_p np; 7929 tcb_p tp; 7930 lcb_p lp; 7931 u_char dflags; 7932 7933 /* 7934 * Retrieve our controller data structure. 7935 */ 7936 np = (hcb_p) cam_sim_softc(sim); 7937 7938 SYM_LOCK_ASSERT(MA_OWNED); 7939 7940 ccb_h = &ccb->ccb_h; 7941 7942 switch (ccb_h->func_code) { 7943 case XPT_SET_TRAN_SETTINGS: 7944 cts = &ccb->cts; 7945 tp = &np->target[ccb_h->target_id]; 7946 7947 /* 7948 * Update SPI transport settings in TARGET control block. 7949 * Update SCSI device settings in LUN control block. 7950 */ 7951 lp = sym_lp(tp, ccb_h->target_lun); 7952 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7953 sym_update_trans(np, &tp->tinfo.goal, cts); 7954 if (lp) 7955 sym_update_dflags(np, &lp->current_flags, cts); 7956 } 7957 if (cts->type == CTS_TYPE_USER_SETTINGS) { 7958 sym_update_trans(np, &tp->tinfo.user, cts); 7959 if (lp) 7960 sym_update_dflags(np, &lp->user_flags, cts); 7961 } 7962 7963 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7964 break; 7965 case XPT_GET_TRAN_SETTINGS: 7966 cts = &ccb->cts; 7967 tp = &np->target[ccb_h->target_id]; 7968 lp = sym_lp(tp, ccb_h->target_lun); 7969 7970 #define cts__scsi (&cts->proto_specific.scsi) 7971 #define cts__spi (&cts->xport_specific.spi) 7972 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7973 tip = &tp->tinfo.current; 7974 dflags = lp ? lp->current_flags : 0; 7975 } 7976 else { 7977 tip = &tp->tinfo.user; 7978 dflags = lp ? lp->user_flags : tp->usrflags; 7979 } 7980 7981 cts->protocol = PROTO_SCSI; 7982 cts->transport = XPORT_SPI; 7983 cts->protocol_version = tip->scsi_version; 7984 cts->transport_version = tip->spi_version; 7985 7986 cts__spi->sync_period = tip->period; 7987 cts__spi->sync_offset = tip->offset; 7988 cts__spi->bus_width = tip->width; 7989 cts__spi->ppr_options = tip->options; 7990 7991 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 7992 | CTS_SPI_VALID_SYNC_OFFSET 7993 | CTS_SPI_VALID_BUS_WIDTH 7994 | CTS_SPI_VALID_PPR_OPTIONS; 7995 7996 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 7997 if (dflags & SYM_DISC_ENABLED) 7998 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 7999 cts__spi->valid |= CTS_SPI_VALID_DISC; 8000 8001 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8002 if (dflags & SYM_TAGS_ENABLED) 8003 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8004 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8005 #undef cts__spi 8006 #undef cts__scsi 8007 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8008 break; 8009 case XPT_CALC_GEOMETRY: 8010 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8011 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8012 break; 8013 case XPT_PATH_INQ: 8014 cpi = &ccb->cpi; 8015 cpi->version_num = 1; 8016 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8017 if ((np->features & FE_WIDE) != 0) 8018 cpi->hba_inquiry |= PI_WIDE_16; 8019 cpi->target_sprt = 0; 8020 cpi->hba_misc = PIM_UNMAPPED; 8021 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8022 cpi->hba_misc |= PIM_SCANHILO; 8023 if (np->usrflags & SYM_AVOID_BUS_RESET) 8024 cpi->hba_misc |= PIM_NOBUSRESET; 8025 cpi->hba_eng_cnt = 0; 8026 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8027 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8028 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8029 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8030 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8031 cpi->bus_id = cam_sim_bus(sim); 8032 cpi->initiator_id = np->myaddr; 8033 cpi->base_transfer_speed = 3300; 8034 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8035 strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8036 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8037 cpi->unit_number = cam_sim_unit(sim); 8038 8039 cpi->protocol = PROTO_SCSI; 8040 cpi->protocol_version = SCSI_REV_2; 8041 cpi->transport = XPORT_SPI; 8042 cpi->transport_version = 2; 8043 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8044 if (np->features & FE_ULTRA3) { 8045 cpi->transport_version = 3; 8046 cpi->xport_specific.spi.ppr_options = 8047 SID_SPI_CLOCK_DT_ST; 8048 } 8049 cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE; 8050 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8051 break; 8052 case XPT_ABORT: 8053 abort_ccb = ccb->cab.abort_ccb; 8054 switch(abort_ccb->ccb_h.func_code) { 8055 case XPT_SCSI_IO: 8056 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8057 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8058 break; 8059 } 8060 default: 8061 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8062 break; 8063 } 8064 break; 8065 case XPT_RESET_DEV: 8066 sym_reset_dev(np, ccb); 8067 break; 8068 case XPT_RESET_BUS: 8069 sym_reset_scsi_bus(np, 0); 8070 if (sym_verbose) { 8071 xpt_print_path(np->path); 8072 printf("SCSI BUS reset delivered.\n"); 8073 } 8074 sym_init (np, 1); 8075 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8076 break; 8077 case XPT_TERM_IO: 8078 default: 8079 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8080 break; 8081 } 8082 } 8083 8084 /* 8085 * Asynchronous notification handler. 8086 */ 8087 static void 8088 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused) 8089 { 8090 hcb_p np; 8091 struct cam_sim *sim; 8092 u_int tn; 8093 tcb_p tp; 8094 8095 sim = (struct cam_sim *) cb_arg; 8096 np = (hcb_p) cam_sim_softc(sim); 8097 8098 SYM_LOCK_ASSERT(MA_OWNED); 8099 8100 switch (code) { 8101 case AC_LOST_DEVICE: 8102 tn = xpt_path_target_id(path); 8103 if (tn >= SYM_CONF_MAX_TARGET) 8104 break; 8105 8106 tp = &np->target[tn]; 8107 8108 tp->to_reset = 0; 8109 tp->head.sval = 0; 8110 tp->head.wval = np->rv_scntl3; 8111 tp->head.uval = 0; 8112 8113 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8114 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8115 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8116 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8117 8118 break; 8119 default: 8120 break; 8121 } 8122 } 8123 8124 /* 8125 * Update transfer settings of a target. 8126 */ 8127 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 8128 struct ccb_trans_settings *cts) 8129 { 8130 8131 SYM_LOCK_ASSERT(MA_OWNED); 8132 8133 /* 8134 * Update the infos. 8135 */ 8136 #define cts__spi (&cts->xport_specific.spi) 8137 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8138 tip->width = cts__spi->bus_width; 8139 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8140 tip->offset = cts__spi->sync_offset; 8141 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8142 tip->period = cts__spi->sync_period; 8143 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8144 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8145 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8146 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8147 tip->scsi_version = cts->protocol_version; 8148 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8149 cts->transport_version != XPORT_VERSION_UNKNOWN) 8150 tip->spi_version = cts->transport_version; 8151 #undef cts__spi 8152 /* 8153 * Scale against driver configuration limits. 8154 */ 8155 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8156 if (tip->period && tip->offset) { 8157 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8158 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8159 } else { 8160 tip->offset = 0; 8161 tip->period = 0; 8162 } 8163 8164 /* 8165 * Scale against actual controller BUS width. 8166 */ 8167 if (tip->width > np->maxwide) 8168 tip->width = np->maxwide; 8169 8170 /* 8171 * Only accept DT if controller supports and SYNC/WIDE asked. 8172 */ 8173 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8174 !(tip->width == BUS_16_BIT && tip->offset)) { 8175 tip->options &= ~PPR_OPT_DT; 8176 } 8177 8178 /* 8179 * Scale period factor and offset against controller limits. 8180 */ 8181 if (tip->offset && tip->period) { 8182 if (tip->options & PPR_OPT_DT) { 8183 if (tip->period < np->minsync_dt) 8184 tip->period = np->minsync_dt; 8185 if (tip->period > np->maxsync_dt) 8186 tip->period = np->maxsync_dt; 8187 if (tip->offset > np->maxoffs_dt) 8188 tip->offset = np->maxoffs_dt; 8189 } 8190 else { 8191 if (tip->period < np->minsync) 8192 tip->period = np->minsync; 8193 if (tip->period > np->maxsync) 8194 tip->period = np->maxsync; 8195 if (tip->offset > np->maxoffs) 8196 tip->offset = np->maxoffs; 8197 } 8198 } 8199 } 8200 8201 /* 8202 * Update flags for a device (logical unit). 8203 */ 8204 static void 8205 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8206 { 8207 8208 SYM_LOCK_ASSERT(MA_OWNED); 8209 8210 #define cts__scsi (&cts->proto_specific.scsi) 8211 #define cts__spi (&cts->xport_specific.spi) 8212 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8213 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8214 *flags |= SYM_DISC_ENABLED; 8215 else 8216 *flags &= ~SYM_DISC_ENABLED; 8217 } 8218 8219 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8220 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8221 *flags |= SYM_TAGS_ENABLED; 8222 else 8223 *flags &= ~SYM_TAGS_ENABLED; 8224 } 8225 #undef cts__spi 8226 #undef cts__scsi 8227 } 8228 8229 /*============= DRIVER INITIALISATION ==================*/ 8230 8231 static device_method_t sym_pci_methods[] = { 8232 DEVMETHOD(device_probe, sym_pci_probe), 8233 DEVMETHOD(device_attach, sym_pci_attach), 8234 DEVMETHOD_END 8235 }; 8236 8237 static driver_t sym_pci_driver = { 8238 "sym", 8239 sym_pci_methods, 8240 1 /* no softc */ 8241 }; 8242 8243 DRIVER_MODULE(sym, pci, sym_pci_driver, NULL, NULL); 8244 MODULE_DEPEND(sym, cam, 1, 1, 1); 8245 MODULE_DEPEND(sym, pci, 1, 1, 1); 8246 8247 static const struct sym_pci_chip sym_pci_dev_table[] = { 8248 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8249 FE_ERL} 8250 , 8251 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8252 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8253 FE_BOF} 8254 , 8255 #else 8256 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8257 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8258 , 8259 #endif 8260 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8261 FE_BOF|FE_ERL} 8262 , 8263 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8264 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8265 , 8266 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8267 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8268 , 8269 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8270 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8271 , 8272 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8273 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8274 FE_RAM|FE_DIFF} 8275 , 8276 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8277 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8278 FE_RAM|FE_DIFF} 8279 , 8280 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8281 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8282 FE_RAM|FE_DIFF} 8283 , 8284 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8285 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8286 FE_RAM|FE_DIFF} 8287 , 8288 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8289 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8290 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8291 FE_RAM|FE_LCKFRQ} 8292 , 8293 #else 8294 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8295 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8296 FE_RAM|FE_LCKFRQ} 8297 , 8298 #endif 8299 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8300 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8301 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8302 , 8303 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8304 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8305 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8306 , 8307 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8308 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8309 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8310 FE_C10} 8311 , 8312 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8313 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8314 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8315 FE_C10|FE_U3EN} 8316 , 8317 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8318 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8319 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8320 FE_C10|FE_U3EN} 8321 , 8322 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8323 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8324 FE_RAM|FE_IO256|FE_LEDC} 8325 }; 8326 8327 /* 8328 * Look up the chip table. 8329 * 8330 * Return a pointer to the chip entry if found, 8331 * zero otherwise. 8332 */ 8333 static const struct sym_pci_chip * 8334 sym_find_pci_chip(device_t dev) 8335 { 8336 const struct sym_pci_chip *chip; 8337 int i; 8338 u_short device_id; 8339 u_char revision; 8340 8341 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8342 return NULL; 8343 8344 device_id = pci_get_device(dev); 8345 revision = pci_get_revid(dev); 8346 8347 for (i = 0; i < nitems(sym_pci_dev_table); i++) { 8348 chip = &sym_pci_dev_table[i]; 8349 if (device_id != chip->device_id) 8350 continue; 8351 if (revision > chip->revision_id) 8352 continue; 8353 return chip; 8354 } 8355 8356 return NULL; 8357 } 8358 8359 /* 8360 * Tell upper layer if the chip is supported. 8361 */ 8362 static int 8363 sym_pci_probe(device_t dev) 8364 { 8365 const struct sym_pci_chip *chip; 8366 8367 chip = sym_find_pci_chip(dev); 8368 if (chip && sym_find_firmware(chip)) { 8369 device_set_desc(dev, chip->name); 8370 return BUS_PROBE_DEFAULT; 8371 } 8372 return ENXIO; 8373 } 8374 8375 /* 8376 * Attach a sym53c8xx device. 8377 */ 8378 static int 8379 sym_pci_attach(device_t dev) 8380 { 8381 const struct sym_pci_chip *chip; 8382 u_short command; 8383 u_char cachelnsz; 8384 struct sym_hcb *np = NULL; 8385 struct sym_nvram nvram; 8386 const struct sym_fw *fw = NULL; 8387 int i; 8388 bus_dma_tag_t bus_dmat; 8389 8390 bus_dmat = bus_get_dma_tag(dev); 8391 8392 /* 8393 * Only probed devices should be attached. 8394 * We just enjoy being paranoid. :) 8395 */ 8396 chip = sym_find_pci_chip(dev); 8397 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8398 return (ENXIO); 8399 8400 /* 8401 * Allocate immediately the host control block, 8402 * since we are only expecting to succeed. :) 8403 * We keep track in the HCB of all the resources that 8404 * are to be released on error. 8405 */ 8406 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8407 if (np) 8408 np->bus_dmat = bus_dmat; 8409 else 8410 return (ENXIO); 8411 device_set_softc(dev, np); 8412 8413 SYM_LOCK_INIT(); 8414 8415 /* 8416 * Copy some useful infos to the HCB. 8417 */ 8418 np->hcb_ba = vtobus(np); 8419 np->verbose = bootverbose; 8420 np->device = dev; 8421 np->device_id = pci_get_device(dev); 8422 np->revision_id = pci_get_revid(dev); 8423 np->features = chip->features; 8424 np->clock_divn = chip->nr_divisor; 8425 np->maxoffs = chip->offset_max; 8426 np->maxburst = chip->burst_max; 8427 np->scripta_sz = fw->a_size; 8428 np->scriptb_sz = fw->b_size; 8429 np->fw_setup = fw->setup; 8430 np->fw_patch = fw->patch; 8431 np->fw_name = fw->name; 8432 8433 #ifdef __amd64__ 8434 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8435 "TARGET"); 8436 if (!np->target) 8437 goto attach_failed; 8438 #endif 8439 8440 /* 8441 * Initialize the CCB free and busy queues. 8442 */ 8443 sym_que_init(&np->free_ccbq); 8444 sym_que_init(&np->busy_ccbq); 8445 sym_que_init(&np->comp_ccbq); 8446 sym_que_init(&np->cam_ccbq); 8447 8448 /* 8449 * Allocate a tag for the DMA of user data. 8450 */ 8451 if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY, 8452 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 8453 BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY, 8454 0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) { 8455 device_printf(dev, "failed to create DMA tag.\n"); 8456 goto attach_failed; 8457 } 8458 8459 /* 8460 * Read and apply some fix-ups to the PCI COMMAND 8461 * register. We want the chip to be enabled for: 8462 * - BUS mastering 8463 * - PCI parity checking (reporting would also be fine) 8464 * - Write And Invalidate. 8465 */ 8466 command = pci_read_config(dev, PCIR_COMMAND, 2); 8467 command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN | 8468 PCIM_CMD_MWRICEN; 8469 pci_write_config(dev, PCIR_COMMAND, command, 2); 8470 8471 /* 8472 * Let the device know about the cache line size, 8473 * if it doesn't yet. 8474 */ 8475 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8476 if (!cachelnsz) { 8477 cachelnsz = 8; 8478 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8479 } 8480 8481 /* 8482 * Alloc/get/map/retrieve everything that deals with MMIO. 8483 */ 8484 i = SYM_PCI_MMIO; 8485 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, 8486 RF_ACTIVE); 8487 if (!np->mmio_res) { 8488 device_printf(dev, "failed to allocate MMIO resources\n"); 8489 goto attach_failed; 8490 } 8491 np->mmio_ba = rman_get_start(np->mmio_res); 8492 8493 /* 8494 * Allocate the IRQ. 8495 */ 8496 i = 0; 8497 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8498 RF_ACTIVE | RF_SHAREABLE); 8499 if (!np->irq_res) { 8500 device_printf(dev, "failed to allocate IRQ resource\n"); 8501 goto attach_failed; 8502 } 8503 8504 #ifdef SYM_CONF_IOMAPPED 8505 /* 8506 * User want us to use normal IO with PCI. 8507 * Alloc/get/map/retrieve everything that deals with IO. 8508 */ 8509 i = SYM_PCI_IO; 8510 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE); 8511 if (!np->io_res) { 8512 device_printf(dev, "failed to allocate IO resources\n"); 8513 goto attach_failed; 8514 } 8515 8516 #endif /* SYM_CONF_IOMAPPED */ 8517 8518 /* 8519 * If the chip has RAM. 8520 * Alloc/get/map/retrieve the corresponding resources. 8521 */ 8522 if (np->features & (FE_RAM|FE_RAM8K)) { 8523 int regs_id = SYM_PCI_RAM; 8524 if (np->features & FE_64BIT) 8525 regs_id = SYM_PCI_RAM64; 8526 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8527 ®s_id, RF_ACTIVE); 8528 if (!np->ram_res) { 8529 device_printf(dev,"failed to allocate RAM resources\n"); 8530 goto attach_failed; 8531 } 8532 np->ram_id = regs_id; 8533 np->ram_ba = rman_get_start(np->ram_res); 8534 } 8535 8536 /* 8537 * Save setting of some IO registers, so we will 8538 * be able to probe specific implementations. 8539 */ 8540 sym_save_initial_setting (np); 8541 8542 /* 8543 * Reset the chip now, since it has been reported 8544 * that SCSI clock calibration may not work properly 8545 * if the chip is currently active. 8546 */ 8547 sym_chip_reset (np); 8548 8549 /* 8550 * Try to read the user set-up. 8551 */ 8552 (void) sym_read_nvram(np, &nvram); 8553 8554 /* 8555 * Prepare controller and devices settings, according 8556 * to chip features, user set-up and driver set-up. 8557 */ 8558 (void) sym_prepare_setting(np, &nvram); 8559 8560 /* 8561 * Check the PCI clock frequency. 8562 * Must be performed after prepare_setting since it destroys 8563 * STEST1 that is used to probe for the clock doubler. 8564 */ 8565 i = sym_getpciclock(np); 8566 if (i > 37000) 8567 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8568 8569 /* 8570 * Allocate the start queue. 8571 */ 8572 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8573 if (!np->squeue) 8574 goto attach_failed; 8575 np->squeue_ba = vtobus(np->squeue); 8576 8577 /* 8578 * Allocate the done queue. 8579 */ 8580 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8581 if (!np->dqueue) 8582 goto attach_failed; 8583 np->dqueue_ba = vtobus(np->dqueue); 8584 8585 /* 8586 * Allocate the target bus address array. 8587 */ 8588 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8589 if (!np->targtbl) 8590 goto attach_failed; 8591 np->targtbl_ba = vtobus(np->targtbl); 8592 8593 /* 8594 * Allocate SCRIPTS areas. 8595 */ 8596 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8597 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8598 if (!np->scripta0 || !np->scriptb0) 8599 goto attach_failed; 8600 8601 /* 8602 * Allocate the CCBs. We need at least ONE. 8603 */ 8604 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8605 ; 8606 if (i < 1) 8607 goto attach_failed; 8608 8609 /* 8610 * Calculate BUS addresses where we are going 8611 * to load the SCRIPTS. 8612 */ 8613 np->scripta_ba = vtobus(np->scripta0); 8614 np->scriptb_ba = vtobus(np->scriptb0); 8615 np->scriptb0_ba = np->scriptb_ba; 8616 8617 if (np->ram_ba) { 8618 np->scripta_ba = np->ram_ba; 8619 if (np->features & FE_RAM8K) { 8620 np->ram_ws = 8192; 8621 np->scriptb_ba = np->scripta_ba + 4096; 8622 #ifdef __LP64__ 8623 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8624 #endif 8625 } 8626 else 8627 np->ram_ws = 4096; 8628 } 8629 8630 /* 8631 * Copy scripts to controller instance. 8632 */ 8633 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8634 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8635 8636 /* 8637 * Setup variable parts in scripts and compute 8638 * scripts bus addresses used from the C code. 8639 */ 8640 np->fw_setup(np, fw); 8641 8642 /* 8643 * Bind SCRIPTS with physical addresses usable by the 8644 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8645 */ 8646 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8647 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8648 8649 #ifdef SYM_CONF_IARB_SUPPORT 8650 /* 8651 * If user wants IARB to be set when we win arbitration 8652 * and have other jobs, compute the max number of consecutive 8653 * settings of IARB hints before we leave devices a chance to 8654 * arbitrate for reselection. 8655 */ 8656 #ifdef SYM_SETUP_IARB_MAX 8657 np->iarb_max = SYM_SETUP_IARB_MAX; 8658 #else 8659 np->iarb_max = 4; 8660 #endif 8661 #endif 8662 8663 /* 8664 * Prepare the idle and invalid task actions. 8665 */ 8666 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8667 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8668 np->idletask_ba = vtobus(&np->idletask); 8669 8670 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8671 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8672 np->notask_ba = vtobus(&np->notask); 8673 8674 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8675 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8676 np->bad_itl_ba = vtobus(&np->bad_itl); 8677 8678 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8679 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8680 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8681 8682 /* 8683 * Allocate and prepare the lun JUMP table that is used 8684 * for a target prior the probing of devices (bad lun table). 8685 * A private table will be allocated for the target on the 8686 * first INQUIRY response received. 8687 */ 8688 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8689 if (!np->badluntbl) 8690 goto attach_failed; 8691 8692 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8693 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8694 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8695 8696 /* 8697 * Prepare the bus address array that contains the bus 8698 * address of each target control block. 8699 * For now, assume all logical units are wrong. :) 8700 */ 8701 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8702 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8703 np->target[i].head.luntbl_sa = 8704 cpu_to_scr(vtobus(np->badluntbl)); 8705 np->target[i].head.lun0_sa = 8706 cpu_to_scr(vtobus(&np->badlun_sa)); 8707 } 8708 8709 /* 8710 * Now check the cache handling of the pci chipset. 8711 */ 8712 if (sym_snooptest (np)) { 8713 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8714 goto attach_failed; 8715 } 8716 8717 /* 8718 * Now deal with CAM. 8719 * Hopefully, we will succeed with that one.:) 8720 */ 8721 if (!sym_cam_attach(np)) 8722 goto attach_failed; 8723 8724 /* 8725 * Sigh! we are done. 8726 */ 8727 return 0; 8728 8729 /* 8730 * We have failed. 8731 * We will try to free all the resources we have 8732 * allocated, but if we are a boot device, this 8733 * will not help that much.;) 8734 */ 8735 attach_failed: 8736 if (np) 8737 sym_pci_free(np); 8738 return ENXIO; 8739 } 8740 8741 /* 8742 * Free everything that have been allocated for this device. 8743 */ 8744 static void sym_pci_free(hcb_p np) 8745 { 8746 SYM_QUEHEAD *qp; 8747 ccb_p cp; 8748 tcb_p tp; 8749 lcb_p lp; 8750 int target, lun; 8751 8752 /* 8753 * First free CAM resources. 8754 */ 8755 sym_cam_free(np); 8756 8757 /* 8758 * Now every should be quiet for us to 8759 * free other resources. 8760 */ 8761 if (np->ram_res) 8762 bus_release_resource(np->device, SYS_RES_MEMORY, 8763 np->ram_id, np->ram_res); 8764 if (np->mmio_res) 8765 bus_release_resource(np->device, SYS_RES_MEMORY, 8766 SYM_PCI_MMIO, np->mmio_res); 8767 if (np->io_res) 8768 bus_release_resource(np->device, SYS_RES_IOPORT, 8769 SYM_PCI_IO, np->io_res); 8770 if (np->irq_res) 8771 bus_release_resource(np->device, SYS_RES_IRQ, 8772 0, np->irq_res); 8773 8774 if (np->scriptb0) 8775 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8776 if (np->scripta0) 8777 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8778 if (np->squeue) 8779 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8780 if (np->dqueue) 8781 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8782 8783 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8784 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8785 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8786 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8787 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8788 } 8789 8790 if (np->badluntbl) 8791 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8792 8793 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8794 tp = &np->target[target]; 8795 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8796 lp = sym_lp(tp, lun); 8797 if (!lp) 8798 continue; 8799 if (lp->itlq_tbl) 8800 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8801 "ITLQ_TBL"); 8802 if (lp->cb_tags) 8803 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8804 "CB_TAGS"); 8805 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8806 } 8807 #if SYM_CONF_MAX_LUN > 1 8808 if (tp->lunmp) 8809 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8810 "LUNMP"); 8811 #endif 8812 } 8813 #ifdef __amd64__ 8814 if (np->target) 8815 sym_mfree_dma(np->target, 8816 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8817 #endif 8818 if (np->targtbl) 8819 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8820 if (np->data_dmat) 8821 bus_dma_tag_destroy(np->data_dmat); 8822 if (SYM_LOCK_INITIALIZED() != 0) 8823 SYM_LOCK_DESTROY(); 8824 device_set_softc(np->device, NULL); 8825 sym_mfree_dma(np, sizeof(*np), "HCB"); 8826 } 8827 8828 /* 8829 * Allocate CAM resources and register a bus to CAM. 8830 */ 8831 static int sym_cam_attach(hcb_p np) 8832 { 8833 struct cam_devq *devq = NULL; 8834 struct cam_sim *sim = NULL; 8835 struct cam_path *path = NULL; 8836 int err; 8837 8838 /* 8839 * Establish our interrupt handler. 8840 */ 8841 err = bus_setup_intr(np->device, np->irq_res, 8842 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8843 NULL, sym_intr, np, &np->intr); 8844 if (err) { 8845 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8846 err); 8847 goto fail; 8848 } 8849 8850 /* 8851 * Create the device queue for our sym SIM. 8852 */ 8853 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8854 if (!devq) 8855 goto fail; 8856 8857 /* 8858 * Construct our SIM entry. 8859 */ 8860 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 8861 device_get_unit(np->device), 8862 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 8863 if (!sim) 8864 goto fail; 8865 8866 SYM_LOCK(); 8867 8868 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 8869 goto fail; 8870 np->sim = sim; 8871 sim = NULL; 8872 8873 if (xpt_create_path(&path, NULL, 8874 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 8875 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 8876 goto fail; 8877 } 8878 np->path = path; 8879 8880 /* 8881 * Establish our async notification handler. 8882 */ 8883 if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) != 8884 CAM_REQ_CMP) 8885 goto fail; 8886 8887 /* 8888 * Start the chip now, without resetting the BUS, since 8889 * it seems that this must stay under control of CAM. 8890 * With LVD/SE capable chips and BUS in SE mode, we may 8891 * get a spurious SMBC interrupt. 8892 */ 8893 sym_init (np, 0); 8894 8895 SYM_UNLOCK(); 8896 8897 return 1; 8898 fail: 8899 if (sim) 8900 cam_sim_free(sim, FALSE); 8901 if (devq) 8902 cam_simq_free(devq); 8903 8904 SYM_UNLOCK(); 8905 8906 sym_cam_free(np); 8907 8908 return 0; 8909 } 8910 8911 /* 8912 * Free everything that deals with CAM. 8913 */ 8914 static void sym_cam_free(hcb_p np) 8915 { 8916 8917 SYM_LOCK_ASSERT(MA_NOTOWNED); 8918 8919 if (np->intr) { 8920 bus_teardown_intr(np->device, np->irq_res, np->intr); 8921 np->intr = NULL; 8922 } 8923 8924 SYM_LOCK(); 8925 8926 if (np->sim) { 8927 xpt_bus_deregister(cam_sim_path(np->sim)); 8928 cam_sim_free(np->sim, /*free_devq*/ TRUE); 8929 np->sim = NULL; 8930 } 8931 if (np->path) { 8932 xpt_free_path(np->path); 8933 np->path = NULL; 8934 } 8935 8936 SYM_UNLOCK(); 8937 } 8938 8939 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 8940 8941 /* 8942 * Get host setup from NVRAM. 8943 */ 8944 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 8945 { 8946 #ifdef SYM_CONF_NVRAM_SUPPORT 8947 /* 8948 * Get parity checking, host ID, verbose mode 8949 * and miscellaneous host flags from NVRAM. 8950 */ 8951 switch(nvram->type) { 8952 case SYM_SYMBIOS_NVRAM: 8953 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 8954 np->rv_scntl0 &= ~0x0a; 8955 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 8956 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 8957 np->verbose += 1; 8958 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 8959 np->usrflags |= SYM_SCAN_TARGETS_HILO; 8960 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 8961 np->usrflags |= SYM_AVOID_BUS_RESET; 8962 break; 8963 case SYM_TEKRAM_NVRAM: 8964 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 8965 break; 8966 default: 8967 break; 8968 } 8969 #endif 8970 } 8971 8972 /* 8973 * Get target setup from NVRAM. 8974 */ 8975 #ifdef SYM_CONF_NVRAM_SUPPORT 8976 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 8977 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 8978 #endif 8979 8980 static void 8981 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 8982 { 8983 #ifdef SYM_CONF_NVRAM_SUPPORT 8984 switch(nvp->type) { 8985 case SYM_SYMBIOS_NVRAM: 8986 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 8987 break; 8988 case SYM_TEKRAM_NVRAM: 8989 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 8990 break; 8991 default: 8992 break; 8993 } 8994 #endif 8995 } 8996 8997 #ifdef SYM_CONF_NVRAM_SUPPORT 8998 /* 8999 * Get target set-up from Symbios format NVRAM. 9000 */ 9001 static void 9002 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9003 { 9004 tcb_p tp = &np->target[target]; 9005 Symbios_target *tn = &nvram->target[target]; 9006 9007 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9008 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9009 tp->usrtags = 9010 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9011 9012 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9013 tp->usrflags &= ~SYM_DISC_ENABLED; 9014 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9015 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9016 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9017 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9018 } 9019 9020 /* 9021 * Get target set-up from Tekram format NVRAM. 9022 */ 9023 static void 9024 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9025 { 9026 tcb_p tp = &np->target[target]; 9027 struct Tekram_target *tn = &nvram->target[target]; 9028 int i; 9029 9030 if (tn->flags & TEKRAM_SYNC_NEGO) { 9031 i = tn->sync_index & 0xf; 9032 tp->tinfo.user.period = Tekram_sync[i]; 9033 } 9034 9035 tp->tinfo.user.width = 9036 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9037 9038 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9039 tp->usrtags = 2 << nvram->max_tags_index; 9040 } 9041 9042 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9043 tp->usrflags |= SYM_DISC_ENABLED; 9044 9045 /* If any device does not support parity, we will not use this option */ 9046 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9047 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9048 } 9049 9050 #ifdef SYM_CONF_DEBUG_NVRAM 9051 /* 9052 * Dump Symbios format NVRAM for debugging purpose. 9053 */ 9054 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9055 { 9056 int i; 9057 9058 /* display Symbios nvram host data */ 9059 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9060 sym_name(np), nvram->host_id & 0x0f, 9061 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9062 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9063 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9064 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9065 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9066 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9067 9068 /* display Symbios nvram drive data */ 9069 for (i = 0 ; i < 15 ; i++) { 9070 struct Symbios_target *tn = &nvram->target[i]; 9071 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9072 sym_name(np), i, 9073 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9074 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9075 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9076 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9077 tn->bus_width, 9078 tn->sync_period / 4, 9079 tn->timeout); 9080 } 9081 } 9082 9083 /* 9084 * Dump TEKRAM format NVRAM for debugging purpose. 9085 */ 9086 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9087 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9088 { 9089 int i, tags, boot_delay; 9090 char *rem; 9091 9092 /* display Tekram nvram host data */ 9093 tags = 2 << nvram->max_tags_index; 9094 boot_delay = 0; 9095 if (nvram->boot_delay_index < 6) 9096 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9097 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9098 default: 9099 case 0: rem = ""; break; 9100 case 1: rem = " REMOVABLE=boot device"; break; 9101 case 2: rem = " REMOVABLE=all"; break; 9102 } 9103 9104 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9105 sym_name(np), nvram->host_id & 0x0f, 9106 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9107 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9108 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9109 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9110 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9111 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9112 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9113 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9114 rem, boot_delay, tags); 9115 9116 /* display Tekram nvram drive data */ 9117 for (i = 0; i <= 15; i++) { 9118 int sync, j; 9119 struct Tekram_target *tn = &nvram->target[i]; 9120 j = tn->sync_index & 0xf; 9121 sync = Tekram_sync[j]; 9122 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9123 sym_name(np), i, 9124 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9125 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9126 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9127 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9128 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9129 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9130 sync); 9131 } 9132 } 9133 #endif /* SYM_CONF_DEBUG_NVRAM */ 9134 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9135 9136 /* 9137 * Try reading Symbios or Tekram NVRAM 9138 */ 9139 #ifdef SYM_CONF_NVRAM_SUPPORT 9140 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9141 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9142 #endif 9143 9144 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9145 { 9146 #ifdef SYM_CONF_NVRAM_SUPPORT 9147 /* 9148 * Try to read SYMBIOS nvram. 9149 * Try to read TEKRAM nvram if Symbios nvram not found. 9150 */ 9151 if (SYM_SETUP_SYMBIOS_NVRAM && 9152 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9153 nvp->type = SYM_SYMBIOS_NVRAM; 9154 #ifdef SYM_CONF_DEBUG_NVRAM 9155 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9156 #endif 9157 } 9158 else if (SYM_SETUP_TEKRAM_NVRAM && 9159 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9160 nvp->type = SYM_TEKRAM_NVRAM; 9161 #ifdef SYM_CONF_DEBUG_NVRAM 9162 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9163 #endif 9164 } 9165 else 9166 nvp->type = 0; 9167 #else 9168 nvp->type = 0; 9169 #endif 9170 return nvp->type; 9171 } 9172 9173 #ifdef SYM_CONF_NVRAM_SUPPORT 9174 /* 9175 * 24C16 EEPROM reading. 9176 * 9177 * GPOI0 - data in/data out 9178 * GPIO1 - clock 9179 * Symbios NVRAM wiring now also used by Tekram. 9180 */ 9181 9182 #define SET_BIT 0 9183 #define CLR_BIT 1 9184 #define SET_CLK 2 9185 #define CLR_CLK 3 9186 9187 /* 9188 * Set/clear data/clock bit in GPIO0 9189 */ 9190 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9191 int bit_mode) 9192 { 9193 UDELAY (5); 9194 switch (bit_mode){ 9195 case SET_BIT: 9196 *gpreg |= write_bit; 9197 break; 9198 case CLR_BIT: 9199 *gpreg &= 0xfe; 9200 break; 9201 case SET_CLK: 9202 *gpreg |= 0x02; 9203 break; 9204 case CLR_CLK: 9205 *gpreg &= 0xfd; 9206 break; 9207 } 9208 OUTB (nc_gpreg, *gpreg); 9209 UDELAY (5); 9210 } 9211 9212 /* 9213 * Send START condition to NVRAM to wake it up. 9214 */ 9215 static void S24C16_start(hcb_p np, u_char *gpreg) 9216 { 9217 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9218 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9219 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9220 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9221 } 9222 9223 /* 9224 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9225 */ 9226 static void S24C16_stop(hcb_p np, u_char *gpreg) 9227 { 9228 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9229 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9230 } 9231 9232 /* 9233 * Read or write a bit to the NVRAM, 9234 * read if GPIO0 input else write if GPIO0 output 9235 */ 9236 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9237 u_char *gpreg) 9238 { 9239 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9240 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9241 if (read_bit) 9242 *read_bit = INB (nc_gpreg); 9243 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9244 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9245 } 9246 9247 /* 9248 * Output an ACK to the NVRAM after reading, 9249 * change GPIO0 to output and when done back to an input 9250 */ 9251 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9252 u_char *gpcntl) 9253 { 9254 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9255 S24C16_do_bit(np, 0, write_bit, gpreg); 9256 OUTB (nc_gpcntl, *gpcntl); 9257 } 9258 9259 /* 9260 * Input an ACK from NVRAM after writing, 9261 * change GPIO0 to input and when done back to an output 9262 */ 9263 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9264 u_char *gpcntl) 9265 { 9266 OUTB (nc_gpcntl, *gpcntl | 0x01); 9267 S24C16_do_bit(np, read_bit, 1, gpreg); 9268 OUTB (nc_gpcntl, *gpcntl); 9269 } 9270 9271 /* 9272 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9273 * GPIO0 must already be set as an output 9274 */ 9275 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9276 u_char *gpreg, u_char *gpcntl) 9277 { 9278 int x; 9279 9280 for (x = 0; x < 8; x++) 9281 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9282 9283 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9284 } 9285 9286 /* 9287 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9288 * GPIO0 must already be set as an input 9289 */ 9290 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9291 u_char *gpreg, u_char *gpcntl) 9292 { 9293 int x; 9294 u_char read_bit; 9295 9296 *read_data = 0; 9297 for (x = 0; x < 8; x++) { 9298 S24C16_do_bit(np, &read_bit, 1, gpreg); 9299 *read_data |= ((read_bit & 0x01) << (7 - x)); 9300 } 9301 9302 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9303 } 9304 9305 /* 9306 * Read 'len' bytes starting at 'offset'. 9307 */ 9308 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9309 { 9310 u_char gpcntl, gpreg; 9311 u_char old_gpcntl, old_gpreg; 9312 u_char ack_data; 9313 int retv = 1; 9314 int x; 9315 9316 /* save current state of GPCNTL and GPREG */ 9317 old_gpreg = INB (nc_gpreg); 9318 old_gpcntl = INB (nc_gpcntl); 9319 gpcntl = old_gpcntl & 0x1c; 9320 9321 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9322 OUTB (nc_gpreg, old_gpreg); 9323 OUTB (nc_gpcntl, gpcntl); 9324 9325 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9326 gpreg = old_gpreg; 9327 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9328 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9329 9330 /* now set NVRAM inactive with GPIO0/1 both high */ 9331 S24C16_stop(np, &gpreg); 9332 9333 /* activate NVRAM */ 9334 S24C16_start(np, &gpreg); 9335 9336 /* write device code and random address MSB */ 9337 S24C16_write_byte(np, &ack_data, 9338 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9339 if (ack_data & 0x01) 9340 goto out; 9341 9342 /* write random address LSB */ 9343 S24C16_write_byte(np, &ack_data, 9344 offset & 0xff, &gpreg, &gpcntl); 9345 if (ack_data & 0x01) 9346 goto out; 9347 9348 /* regenerate START state to set up for reading */ 9349 S24C16_start(np, &gpreg); 9350 9351 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9352 S24C16_write_byte(np, &ack_data, 9353 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9354 if (ack_data & 0x01) 9355 goto out; 9356 9357 /* now set up GPIO0 for inputting data */ 9358 gpcntl |= 0x01; 9359 OUTB (nc_gpcntl, gpcntl); 9360 9361 /* input all requested data - only part of total NVRAM */ 9362 for (x = 0; x < len; x++) 9363 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9364 9365 /* finally put NVRAM back in inactive mode */ 9366 gpcntl &= 0xfe; 9367 OUTB (nc_gpcntl, gpcntl); 9368 S24C16_stop(np, &gpreg); 9369 retv = 0; 9370 out: 9371 /* return GPIO0/1 to original states after having accessed NVRAM */ 9372 OUTB (nc_gpcntl, old_gpcntl); 9373 OUTB (nc_gpreg, old_gpreg); 9374 9375 return retv; 9376 } 9377 9378 #undef SET_BIT /* 0 */ 9379 #undef CLR_BIT /* 1 */ 9380 #undef SET_CLK /* 2 */ 9381 #undef CLR_CLK /* 3 */ 9382 9383 /* 9384 * Try reading Symbios NVRAM. 9385 * Return 0 if OK. 9386 */ 9387 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9388 { 9389 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9390 u_char *data = (u_char *) nvram; 9391 int len = sizeof(*nvram); 9392 u_short csum; 9393 int x; 9394 9395 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9396 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9397 return 1; 9398 9399 /* check valid NVRAM signature, verify byte count and checksum */ 9400 if (nvram->type != 0 || 9401 bcmp(nvram->trailer, Symbios_trailer, 6) || 9402 nvram->byte_count != len - 12) 9403 return 1; 9404 9405 /* verify checksum */ 9406 for (x = 6, csum = 0; x < len - 6; x++) 9407 csum += data[x]; 9408 if (csum != nvram->checksum) 9409 return 1; 9410 9411 return 0; 9412 } 9413 9414 /* 9415 * 93C46 EEPROM reading. 9416 * 9417 * GPOI0 - data in 9418 * GPIO1 - data out 9419 * GPIO2 - clock 9420 * GPIO4 - chip select 9421 * 9422 * Used by Tekram. 9423 */ 9424 9425 /* 9426 * Pulse clock bit in GPIO0 9427 */ 9428 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9429 { 9430 OUTB (nc_gpreg, *gpreg | 0x04); 9431 UDELAY (2); 9432 OUTB (nc_gpreg, *gpreg); 9433 } 9434 9435 /* 9436 * Read bit from NVRAM 9437 */ 9438 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9439 { 9440 UDELAY (2); 9441 T93C46_Clk(np, gpreg); 9442 *read_bit = INB (nc_gpreg); 9443 } 9444 9445 /* 9446 * Write bit to GPIO0 9447 */ 9448 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9449 { 9450 if (write_bit & 0x01) 9451 *gpreg |= 0x02; 9452 else 9453 *gpreg &= 0xfd; 9454 9455 *gpreg |= 0x10; 9456 9457 OUTB (nc_gpreg, *gpreg); 9458 UDELAY (2); 9459 9460 T93C46_Clk(np, gpreg); 9461 } 9462 9463 /* 9464 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9465 */ 9466 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9467 { 9468 *gpreg &= 0xef; 9469 OUTB (nc_gpreg, *gpreg); 9470 UDELAY (2); 9471 9472 T93C46_Clk(np, gpreg); 9473 } 9474 9475 /* 9476 * Send read command and address to NVRAM 9477 */ 9478 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9479 u_char *read_bit, u_char *gpreg) 9480 { 9481 int x; 9482 9483 /* send 9 bits, start bit (1), command (2), address (6) */ 9484 for (x = 0; x < 9; x++) 9485 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9486 9487 *read_bit = INB (nc_gpreg); 9488 } 9489 9490 /* 9491 * READ 2 bytes from the NVRAM 9492 */ 9493 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9494 { 9495 int x; 9496 u_char read_bit; 9497 9498 *nvram_data = 0; 9499 for (x = 0; x < 16; x++) { 9500 T93C46_Read_Bit(np, &read_bit, gpreg); 9501 9502 if (read_bit & 0x01) 9503 *nvram_data |= (0x01 << (15 - x)); 9504 else 9505 *nvram_data &= ~(0x01 << (15 - x)); 9506 } 9507 } 9508 9509 /* 9510 * Read Tekram NvRAM data. 9511 */ 9512 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9513 { 9514 u_char read_bit; 9515 int x; 9516 9517 for (x = 0; x < len; x++) { 9518 /* output read command and address */ 9519 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9520 if (read_bit & 0x01) 9521 return 1; /* Bad */ 9522 T93C46_Read_Word(np, &data[x], gpreg); 9523 T93C46_Stop(np, gpreg); 9524 } 9525 9526 return 0; 9527 } 9528 9529 /* 9530 * Try reading 93C46 Tekram NVRAM. 9531 */ 9532 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9533 { 9534 u_char gpcntl, gpreg; 9535 u_char old_gpcntl, old_gpreg; 9536 int retv = 1; 9537 9538 /* save current state of GPCNTL and GPREG */ 9539 old_gpreg = INB (nc_gpreg); 9540 old_gpcntl = INB (nc_gpcntl); 9541 9542 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9543 1/2/4 out */ 9544 gpreg = old_gpreg & 0xe9; 9545 OUTB (nc_gpreg, gpreg); 9546 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9547 OUTB (nc_gpcntl, gpcntl); 9548 9549 /* input all of NVRAM, 64 words */ 9550 retv = T93C46_Read_Data(np, (u_short *) nvram, 9551 sizeof(*nvram) / sizeof(short), &gpreg); 9552 9553 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9554 OUTB (nc_gpcntl, old_gpcntl); 9555 OUTB (nc_gpreg, old_gpreg); 9556 9557 return retv; 9558 } 9559 9560 /* 9561 * Try reading Tekram NVRAM. 9562 * Return 0 if OK. 9563 */ 9564 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9565 { 9566 u_char *data = (u_char *) nvram; 9567 int len = sizeof(*nvram); 9568 u_short csum; 9569 int x; 9570 9571 switch (np->device_id) { 9572 case PCI_ID_SYM53C885: 9573 case PCI_ID_SYM53C895: 9574 case PCI_ID_SYM53C896: 9575 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9576 data, len); 9577 break; 9578 case PCI_ID_SYM53C875: 9579 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9580 data, len); 9581 if (!x) 9582 break; 9583 default: 9584 x = sym_read_T93C46_nvram(np, nvram); 9585 break; 9586 } 9587 if (x) 9588 return 1; 9589 9590 /* verify checksum */ 9591 for (x = 0, csum = 0; x < len - 1; x += 2) 9592 csum += data[x] + (data[x+1] << 8); 9593 if (csum != 0x1234) 9594 return 1; 9595 9596 return 0; 9597 } 9598 9599 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9600