1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 #include <sys/systm.h> 74 #include <sys/malloc.h> 75 #include <sys/endian.h> 76 #include <sys/kernel.h> 77 #include <sys/lock.h> 78 #include <sys/mutex.h> 79 #include <sys/module.h> 80 #include <sys/bus.h> 81 82 #include <sys/proc.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <machine/bus.h> 88 #include <machine/resource.h> 89 90 #ifdef __sparc64__ 91 #include <dev/ofw/openfirm.h> 92 #include <machine/ofw_machdep.h> 93 #endif 94 95 #include <sys/rman.h> 96 97 #include <cam/cam.h> 98 #include <cam/cam_ccb.h> 99 #include <cam/cam_sim.h> 100 #include <cam/cam_xpt_sim.h> 101 #include <cam/cam_debug.h> 102 103 #include <cam/scsi/scsi_all.h> 104 #include <cam/scsi/scsi_message.h> 105 106 /* Short and quite clear integer types */ 107 typedef int8_t s8; 108 typedef int16_t s16; 109 typedef int32_t s32; 110 typedef u_int8_t u8; 111 typedef u_int16_t u16; 112 typedef u_int32_t u32; 113 114 /* 115 * Driver definitions. 116 */ 117 #include <dev/sym/sym_defs.h> 118 #include <dev/sym/sym_fw.h> 119 120 /* 121 * IA32 architecture does not reorder STORES and prevents 122 * LOADS from passing STORES. It is called `program order' 123 * by Intel and allows device drivers to deal with memory 124 * ordering by only ensuring that the code is not reordered 125 * by the compiler when ordering is required. 126 * Other architectures implement a weaker ordering that 127 * requires memory barriers (and also IO barriers when they 128 * make sense) to be used. 129 */ 130 #if defined __i386__ || defined __amd64__ 131 #define MEMORY_BARRIER() do { ; } while(0) 132 #elif defined __powerpc__ 133 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 134 #elif defined __ia64__ 135 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 136 #elif defined __sparc64__ 137 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 138 #else 139 #error "Not supported platform" 140 #endif 141 142 /* 143 * A la VMS/CAM-3 queue management. 144 */ 145 typedef struct sym_quehead { 146 struct sym_quehead *flink; /* Forward pointer */ 147 struct sym_quehead *blink; /* Backward pointer */ 148 } SYM_QUEHEAD; 149 150 #define sym_que_init(ptr) do { \ 151 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 152 } while (0) 153 154 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 155 { 156 return (head->flink == head) ? NULL : head->flink; 157 } 158 159 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 160 { 161 return (head->blink == head) ? NULL : head->blink; 162 } 163 164 static __inline void __sym_que_add(struct sym_quehead * new, 165 struct sym_quehead * blink, 166 struct sym_quehead * flink) 167 { 168 flink->blink = new; 169 new->flink = flink; 170 new->blink = blink; 171 blink->flink = new; 172 } 173 174 static __inline void __sym_que_del(struct sym_quehead * blink, 175 struct sym_quehead * flink) 176 { 177 flink->blink = blink; 178 blink->flink = flink; 179 } 180 181 static __inline int sym_que_empty(struct sym_quehead *head) 182 { 183 return head->flink == head; 184 } 185 186 static __inline void sym_que_splice(struct sym_quehead *list, 187 struct sym_quehead *head) 188 { 189 struct sym_quehead *first = list->flink; 190 191 if (first != list) { 192 struct sym_quehead *last = list->blink; 193 struct sym_quehead *at = head->flink; 194 195 first->blink = head; 196 head->flink = first; 197 198 last->flink = at; 199 at->blink = last; 200 } 201 } 202 203 #define sym_que_entry(ptr, type, member) \ 204 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 205 206 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 207 208 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 209 210 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 211 212 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 213 { 214 struct sym_quehead *elem = head->flink; 215 216 if (elem != head) 217 __sym_que_del(head, elem->flink); 218 else 219 elem = NULL; 220 return elem; 221 } 222 223 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 224 225 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 226 { 227 struct sym_quehead *elem = head->blink; 228 229 if (elem != head) 230 __sym_que_del(elem->blink, head); 231 else 232 elem = NULL; 233 return elem; 234 } 235 236 /* 237 * This one may be useful. 238 */ 239 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 240 for (qp = (head)->flink; qp != (head); qp = qp->flink) 241 /* 242 * FreeBSD does not offer our kind of queue in the CAM CCB. 243 * So, we have to cast. 244 */ 245 #define sym_qptr(p) ((struct sym_quehead *) (p)) 246 247 /* 248 * Simple bitmap operations. 249 */ 250 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 251 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 252 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 253 254 /* 255 * Number of tasks per device we want to handle. 256 */ 257 #if SYM_CONF_MAX_TAG_ORDER > 8 258 #error "more than 256 tags per logical unit not allowed." 259 #endif 260 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 261 262 /* 263 * Donnot use more tasks that we can handle. 264 */ 265 #ifndef SYM_CONF_MAX_TAG 266 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 267 #endif 268 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 269 #undef SYM_CONF_MAX_TAG 270 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 271 #endif 272 273 /* 274 * This one means 'NO TAG for this job' 275 */ 276 #define NO_TAG (256) 277 278 /* 279 * Number of SCSI targets. 280 */ 281 #if SYM_CONF_MAX_TARGET > 16 282 #error "more than 16 targets not allowed." 283 #endif 284 285 /* 286 * Number of logical units per target. 287 */ 288 #if SYM_CONF_MAX_LUN > 64 289 #error "more than 64 logical units per target not allowed." 290 #endif 291 292 /* 293 * Asynchronous pre-scaler (ns). Shall be 40 for 294 * the SCSI timings to be compliant. 295 */ 296 #define SYM_CONF_MIN_ASYNC (40) 297 298 /* 299 * Number of entries in the START and DONE queues. 300 * 301 * We limit to 1 PAGE in order to succeed allocation of 302 * these queues. Each entry is 8 bytes long (2 DWORDS). 303 */ 304 #ifdef SYM_CONF_MAX_START 305 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 306 #else 307 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 308 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 309 #endif 310 311 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 312 #undef SYM_CONF_MAX_QUEUE 313 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 314 #undef SYM_CONF_MAX_START 315 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 316 #endif 317 318 /* 319 * For this one, we want a short name :-) 320 */ 321 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 322 323 /* 324 * Active debugging tags and verbosity. 325 */ 326 #define DEBUG_ALLOC (0x0001) 327 #define DEBUG_PHASE (0x0002) 328 #define DEBUG_POLL (0x0004) 329 #define DEBUG_QUEUE (0x0008) 330 #define DEBUG_RESULT (0x0010) 331 #define DEBUG_SCATTER (0x0020) 332 #define DEBUG_SCRIPT (0x0040) 333 #define DEBUG_TINY (0x0080) 334 #define DEBUG_TIMING (0x0100) 335 #define DEBUG_NEGO (0x0200) 336 #define DEBUG_TAGS (0x0400) 337 #define DEBUG_POINTER (0x0800) 338 339 #if 0 340 static int sym_debug = 0; 341 #define DEBUG_FLAGS sym_debug 342 #else 343 /* #define DEBUG_FLAGS (0x0631) */ 344 #define DEBUG_FLAGS (0x0000) 345 346 #endif 347 #define sym_verbose (np->verbose) 348 349 /* 350 * Insert a delay in micro-seconds and milli-seconds. 351 */ 352 static void UDELAY(int us) { DELAY(us); } 353 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 354 355 /* 356 * Simple power of two buddy-like allocator. 357 * 358 * This simple code is not intended to be fast, but to 359 * provide power of 2 aligned memory allocations. 360 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 361 * this allocator allows simple and fast address calculations 362 * from the SCRIPTS code. In addition, cache line alignment 363 * is guaranteed for power of 2 cache line size. 364 * 365 * This allocator has been developed for the Linux sym53c8xx 366 * driver, since this O/S does not provide naturally aligned 367 * allocations. 368 * It has the advantage of allowing the driver to use private 369 * pages of memory that will be useful if we ever need to deal 370 * with IO MMUs for PCI. 371 */ 372 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 373 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 374 #if 0 375 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 376 #endif 377 #define MEMO_WARN 1 378 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 379 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 380 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 381 382 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 383 #define free_pages(p) free((p), M_DEVBUF) 384 385 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 386 387 typedef struct m_link { /* Link between free memory chunks */ 388 struct m_link *next; 389 } m_link_s; 390 391 typedef struct m_vtob { /* Virtual to Bus address translation */ 392 struct m_vtob *next; 393 bus_dmamap_t dmamap; /* Map for this chunk */ 394 m_addr_t vaddr; /* Virtual address */ 395 m_addr_t baddr; /* Bus physical address */ 396 } m_vtob_s; 397 /* Hash this stuff a bit to speed up translations */ 398 #define VTOB_HASH_SHIFT 5 399 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 400 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 401 #define VTOB_HASH_CODE(m) \ 402 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 403 404 typedef struct m_pool { /* Memory pool of a given kind */ 405 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 406 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 407 m_addr_t (*getp)(struct m_pool *); 408 #ifdef MEMO_FREE_UNUSED 409 void (*freep)(struct m_pool *, m_addr_t); 410 #endif 411 #define M_GETP() mp->getp(mp) 412 #define M_FREEP(p) mp->freep(mp, p) 413 int nump; 414 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 415 struct m_pool *next; 416 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 417 } m_pool_s; 418 419 static void *___sym_malloc(m_pool_s *mp, int size) 420 { 421 int i = 0; 422 int s = (1 << MEMO_SHIFT); 423 int j; 424 m_addr_t a; 425 m_link_s *h = mp->h; 426 427 if (size > MEMO_CLUSTER_SIZE) 428 return NULL; 429 430 while (size > s) { 431 s <<= 1; 432 ++i; 433 } 434 435 j = i; 436 while (!h[j].next) { 437 if (s == MEMO_CLUSTER_SIZE) { 438 h[j].next = (m_link_s *) M_GETP(); 439 if (h[j].next) 440 h[j].next->next = NULL; 441 break; 442 } 443 ++j; 444 s <<= 1; 445 } 446 a = (m_addr_t) h[j].next; 447 if (a) { 448 h[j].next = h[j].next->next; 449 while (j > i) { 450 j -= 1; 451 s >>= 1; 452 h[j].next = (m_link_s *) (a+s); 453 h[j].next->next = NULL; 454 } 455 } 456 #ifdef DEBUG 457 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 458 #endif 459 return (void *) a; 460 } 461 462 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 463 { 464 int i = 0; 465 int s = (1 << MEMO_SHIFT); 466 m_link_s *q; 467 m_addr_t a, b; 468 m_link_s *h = mp->h; 469 470 #ifdef DEBUG 471 printf("___sym_mfree(%p, %d)\n", ptr, size); 472 #endif 473 474 if (size > MEMO_CLUSTER_SIZE) 475 return; 476 477 while (size > s) { 478 s <<= 1; 479 ++i; 480 } 481 482 a = (m_addr_t) ptr; 483 484 while (1) { 485 #ifdef MEMO_FREE_UNUSED 486 if (s == MEMO_CLUSTER_SIZE) { 487 M_FREEP(a); 488 break; 489 } 490 #endif 491 b = a ^ s; 492 q = &h[i]; 493 while (q->next && q->next != (m_link_s *) b) { 494 q = q->next; 495 } 496 if (!q->next) { 497 ((m_link_s *) a)->next = h[i].next; 498 h[i].next = (m_link_s *) a; 499 break; 500 } 501 q->next = q->next->next; 502 a = a & b; 503 s <<= 1; 504 ++i; 505 } 506 } 507 508 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 509 { 510 void *p; 511 512 p = ___sym_malloc(mp, size); 513 514 if (DEBUG_FLAGS & DEBUG_ALLOC) 515 printf ("new %-10s[%4d] @%p.\n", name, size, p); 516 517 if (p) 518 bzero(p, size); 519 else if (uflags & MEMO_WARN) 520 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 521 522 return p; 523 } 524 525 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 526 527 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 528 { 529 if (DEBUG_FLAGS & DEBUG_ALLOC) 530 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 531 532 ___sym_mfree(mp, ptr, size); 533 534 } 535 536 /* 537 * Default memory pool we donnot need to involve in DMA. 538 */ 539 /* 540 * With the `bus dma abstraction', we use a separate pool for 541 * memory we donnot need to involve in DMA. 542 */ 543 static m_addr_t ___mp0_getp(m_pool_s *mp) 544 { 545 m_addr_t m = (m_addr_t) get_pages(); 546 if (m) 547 ++mp->nump; 548 return m; 549 } 550 551 #ifdef MEMO_FREE_UNUSED 552 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 553 { 554 free_pages(m); 555 --mp->nump; 556 } 557 #endif 558 559 #ifdef MEMO_FREE_UNUSED 560 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 561 #else 562 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 563 #endif 564 565 /* 566 * Actual memory allocation routine for non-DMAed memory. 567 */ 568 static void *sym_calloc(int size, char *name) 569 { 570 void *m; 571 /* Lock */ 572 m = __sym_calloc(&mp0, size, name); 573 /* Unlock */ 574 return m; 575 } 576 577 /* 578 * Actual memory allocation routine for non-DMAed memory. 579 */ 580 static void sym_mfree(void *ptr, int size, char *name) 581 { 582 /* Lock */ 583 __sym_mfree(&mp0, ptr, size, name); 584 /* Unlock */ 585 } 586 587 /* 588 * DMAable pools. 589 */ 590 /* 591 * With `bus dma abstraction', we use a separate pool per parent 592 * BUS handle. A reverse table (hashed) is maintained for virtual 593 * to BUS address translation. 594 */ 595 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 596 { 597 bus_addr_t *baddr; 598 baddr = (bus_addr_t *)arg; 599 *baddr = segs->ds_addr; 600 } 601 602 static m_addr_t ___dma_getp(m_pool_s *mp) 603 { 604 m_vtob_s *vbp; 605 void *vaddr = NULL; 606 bus_addr_t baddr = 0; 607 608 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 609 if (!vbp) 610 goto out_err; 611 612 if (bus_dmamem_alloc(mp->dmat, &vaddr, 613 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 614 goto out_err; 615 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 616 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 617 if (baddr) { 618 int hc = VTOB_HASH_CODE(vaddr); 619 vbp->vaddr = (m_addr_t) vaddr; 620 vbp->baddr = (m_addr_t) baddr; 621 vbp->next = mp->vtob[hc]; 622 mp->vtob[hc] = vbp; 623 ++mp->nump; 624 return (m_addr_t) vaddr; 625 } 626 out_err: 627 if (baddr) 628 bus_dmamap_unload(mp->dmat, vbp->dmamap); 629 if (vaddr) 630 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 631 if (vbp) { 632 if (vbp->dmamap) 633 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 634 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 635 } 636 return 0; 637 } 638 639 #ifdef MEMO_FREE_UNUSED 640 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 641 { 642 m_vtob_s **vbpp, *vbp; 643 int hc = VTOB_HASH_CODE(m); 644 645 vbpp = &mp->vtob[hc]; 646 while (*vbpp && (*vbpp)->vaddr != m) 647 vbpp = &(*vbpp)->next; 648 if (*vbpp) { 649 vbp = *vbpp; 650 *vbpp = (*vbpp)->next; 651 bus_dmamap_unload(mp->dmat, vbp->dmamap); 652 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 653 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 654 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 655 --mp->nump; 656 } 657 } 658 #endif 659 660 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 661 { 662 m_pool_s *mp; 663 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 664 return mp; 665 } 666 667 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 668 { 669 m_pool_s *mp = NULL; 670 671 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 672 if (mp) { 673 mp->dev_dmat = dev_dmat; 674 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 675 BUS_SPACE_MAXADDR_32BIT, 676 BUS_SPACE_MAXADDR, 677 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 678 MEMO_CLUSTER_SIZE, 0, 679 NULL, NULL, &mp->dmat)) { 680 mp->getp = ___dma_getp; 681 #ifdef MEMO_FREE_UNUSED 682 mp->freep = ___dma_freep; 683 #endif 684 mp->next = mp0.next; 685 mp0.next = mp; 686 return mp; 687 } 688 } 689 if (mp) 690 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 691 return NULL; 692 } 693 694 #ifdef MEMO_FREE_UNUSED 695 static void ___del_dma_pool(m_pool_s *p) 696 { 697 struct m_pool **pp = &mp0.next; 698 699 while (*pp && *pp != p) 700 pp = &(*pp)->next; 701 if (*pp) { 702 *pp = (*pp)->next; 703 bus_dma_tag_destroy(p->dmat); 704 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 705 } 706 } 707 #endif 708 709 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 710 { 711 struct m_pool *mp; 712 void *m = NULL; 713 714 /* Lock */ 715 mp = ___get_dma_pool(dev_dmat); 716 if (!mp) 717 mp = ___cre_dma_pool(dev_dmat); 718 if (mp) 719 m = __sym_calloc(mp, size, name); 720 #ifdef MEMO_FREE_UNUSED 721 if (mp && !mp->nump) 722 ___del_dma_pool(mp); 723 #endif 724 /* Unlock */ 725 726 return m; 727 } 728 729 static void 730 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 731 { 732 struct m_pool *mp; 733 734 /* Lock */ 735 mp = ___get_dma_pool(dev_dmat); 736 if (mp) 737 __sym_mfree(mp, m, size, name); 738 #ifdef MEMO_FREE_UNUSED 739 if (mp && !mp->nump) 740 ___del_dma_pool(mp); 741 #endif 742 /* Unlock */ 743 } 744 745 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 746 { 747 m_pool_s *mp; 748 int hc = VTOB_HASH_CODE(m); 749 m_vtob_s *vp = NULL; 750 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 751 752 /* Lock */ 753 mp = ___get_dma_pool(dev_dmat); 754 if (mp) { 755 vp = mp->vtob[hc]; 756 while (vp && (m_addr_t) vp->vaddr != a) 757 vp = vp->next; 758 } 759 /* Unlock */ 760 if (!vp) 761 panic("sym: VTOBUS FAILED!\n"); 762 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 763 } 764 765 /* 766 * Verbs for DMAable memory handling. 767 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 768 * being discarded. 769 */ 770 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 771 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 772 #define _sym_mfree_dma(np, p, s, n) \ 773 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 774 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 775 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 776 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 777 #define vtobus(p) _vtobus(np, p) 778 779 /* 780 * Print a buffer in hexadecimal format. 781 */ 782 static void sym_printb_hex (u_char *p, int n) 783 { 784 while (n-- > 0) 785 printf (" %x", *p++); 786 } 787 788 /* 789 * Same with a label at beginning and .\n at end. 790 */ 791 static void sym_printl_hex (char *label, u_char *p, int n) 792 { 793 printf ("%s", label); 794 sym_printb_hex (p, n); 795 printf (".\n"); 796 } 797 798 /* 799 * Return a string for SCSI BUS mode. 800 */ 801 static const char *sym_scsi_bus_mode(int mode) 802 { 803 switch(mode) { 804 case SMODE_HVD: return "HVD"; 805 case SMODE_SE: return "SE"; 806 case SMODE_LVD: return "LVD"; 807 } 808 return "??"; 809 } 810 811 /* 812 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 813 */ 814 #ifdef SYM_CONF_NVRAM_SUPPORT 815 static const u_char Tekram_sync[16] = 816 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 817 #endif 818 819 /* 820 * Union of supported NVRAM formats. 821 */ 822 struct sym_nvram { 823 int type; 824 #define SYM_SYMBIOS_NVRAM (1) 825 #define SYM_TEKRAM_NVRAM (2) 826 #ifdef SYM_CONF_NVRAM_SUPPORT 827 union { 828 Symbios_nvram Symbios; 829 Tekram_nvram Tekram; 830 } data; 831 #endif 832 }; 833 834 /* 835 * This one is hopefully useless, but actually useful. :-) 836 */ 837 #ifndef assert 838 #define assert(expression) { \ 839 if (!(expression)) { \ 840 (void)panic( \ 841 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 842 #expression, \ 843 __FILE__, __LINE__); \ 844 } \ 845 } 846 #endif 847 848 /* 849 * Some provision for a possible big endian mode supported by 850 * Symbios chips (never seen, by the way). 851 * For now, this stuff does not deserve any comments. :) 852 */ 853 #define sym_offb(o) (o) 854 #define sym_offw(o) (o) 855 856 /* 857 * Some provision for support for BIG ENDIAN CPU. 858 */ 859 #define cpu_to_scr(dw) htole32(dw) 860 #define scr_to_cpu(dw) le32toh(dw) 861 862 /* 863 * Access to the chip IO registers and on-chip RAM. 864 * We use the `bus space' interface under FreeBSD-4 and 865 * later kernel versions. 866 */ 867 #if defined(SYM_CONF_IOMAPPED) 868 869 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 870 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 871 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 872 873 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 874 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 875 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 876 877 #else /* Memory mapped IO */ 878 879 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 880 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 881 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 882 883 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 884 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 885 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 886 887 #endif /* SYM_CONF_IOMAPPED */ 888 889 #define OUTRAM_OFF(o, a, l) \ 890 bus_write_region_1(np->ram_res, (o), (a), (l)) 891 892 /* 893 * Common definitions for both bus space and legacy IO methods. 894 */ 895 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 896 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 897 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 898 899 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 900 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 901 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 902 903 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 904 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 905 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 906 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 907 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 908 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 909 910 /* 911 * We normally want the chip to have a consistent view 912 * of driver internal data structures when we restart it. 913 * Thus these macros. 914 */ 915 #define OUTL_DSP(v) \ 916 do { \ 917 MEMORY_BARRIER(); \ 918 OUTL (nc_dsp, (v)); \ 919 } while (0) 920 921 #define OUTONB_STD() \ 922 do { \ 923 MEMORY_BARRIER(); \ 924 OUTONB (nc_dcntl, (STD|NOCOM)); \ 925 } while (0) 926 927 /* 928 * Command control block states. 929 */ 930 #define HS_IDLE (0) 931 #define HS_BUSY (1) 932 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 933 #define HS_DISCONNECT (3) /* Disconnected by target */ 934 #define HS_WAIT (4) /* waiting for resource */ 935 936 #define HS_DONEMASK (0x80) 937 #define HS_COMPLETE (4|HS_DONEMASK) 938 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 939 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 940 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 941 942 /* 943 * Software Interrupt Codes 944 */ 945 #define SIR_BAD_SCSI_STATUS (1) 946 #define SIR_SEL_ATN_NO_MSG_OUT (2) 947 #define SIR_MSG_RECEIVED (3) 948 #define SIR_MSG_WEIRD (4) 949 #define SIR_NEGO_FAILED (5) 950 #define SIR_NEGO_PROTO (6) 951 #define SIR_SCRIPT_STOPPED (7) 952 #define SIR_REJECT_TO_SEND (8) 953 #define SIR_SWIDE_OVERRUN (9) 954 #define SIR_SODL_UNDERRUN (10) 955 #define SIR_RESEL_NO_MSG_IN (11) 956 #define SIR_RESEL_NO_IDENTIFY (12) 957 #define SIR_RESEL_BAD_LUN (13) 958 #define SIR_TARGET_SELECTED (14) 959 #define SIR_RESEL_BAD_I_T_L (15) 960 #define SIR_RESEL_BAD_I_T_L_Q (16) 961 #define SIR_ABORT_SENT (17) 962 #define SIR_RESEL_ABORTED (18) 963 #define SIR_MSG_OUT_DONE (19) 964 #define SIR_COMPLETE_ERROR (20) 965 #define SIR_DATA_OVERRUN (21) 966 #define SIR_BAD_PHASE (22) 967 #define SIR_MAX (22) 968 969 /* 970 * Extended error bit codes. 971 * xerr_status field of struct sym_ccb. 972 */ 973 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 974 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 975 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 976 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 977 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 978 979 /* 980 * Negotiation status. 981 * nego_status field of struct sym_ccb. 982 */ 983 #define NS_SYNC (1) 984 #define NS_WIDE (2) 985 #define NS_PPR (3) 986 987 /* 988 * A CCB hashed table is used to retrieve CCB address 989 * from DSA value. 990 */ 991 #define CCB_HASH_SHIFT 8 992 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 993 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 994 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 995 996 /* 997 * Device flags. 998 */ 999 #define SYM_DISC_ENABLED (1) 1000 #define SYM_TAGS_ENABLED (1<<1) 1001 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1002 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1003 1004 /* 1005 * Host adapter miscellaneous flags. 1006 */ 1007 #define SYM_AVOID_BUS_RESET (1) 1008 #define SYM_SCAN_TARGETS_HILO (1<<1) 1009 1010 /* 1011 * Device quirks. 1012 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1013 * saving the DATA POINTER then reselects and terminates the IO. 1014 * On reselection, the automatic RESTORE DATA POINTER makes the 1015 * CURRENT DATA POINTER not point at the end of the IO. 1016 * This behaviour just breaks our calculation of the residual. 1017 * For now, we just force an AUTO SAVE on disconnection and will 1018 * fix that in a further driver version. 1019 */ 1020 #define SYM_QUIRK_AUTOSAVE 1 1021 1022 /* 1023 * Misc. 1024 */ 1025 #define SYM_LOCK() mtx_lock(&np->mtx) 1026 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1027 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1028 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1029 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1030 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1031 1032 #define SYM_SNOOP_TIMEOUT (10000000) 1033 #define SYM_PCI_IO PCIR_BAR(0) 1034 #define SYM_PCI_MMIO PCIR_BAR(1) 1035 #define SYM_PCI_RAM PCIR_BAR(2) 1036 #define SYM_PCI_RAM64 PCIR_BAR(3) 1037 1038 /* 1039 * Back-pointer from the CAM CCB to our data structures. 1040 */ 1041 #define sym_hcb_ptr spriv_ptr0 1042 /* #define sym_ccb_ptr spriv_ptr1 */ 1043 1044 /* 1045 * We mostly have to deal with pointers. 1046 * Thus these typedef's. 1047 */ 1048 typedef struct sym_tcb *tcb_p; 1049 typedef struct sym_lcb *lcb_p; 1050 typedef struct sym_ccb *ccb_p; 1051 typedef struct sym_hcb *hcb_p; 1052 1053 /* 1054 * Gather negotiable parameters value 1055 */ 1056 struct sym_trans { 1057 u8 scsi_version; 1058 u8 spi_version; 1059 u8 period; 1060 u8 offset; 1061 u8 width; 1062 u8 options; /* PPR options */ 1063 }; 1064 1065 struct sym_tinfo { 1066 struct sym_trans current; 1067 struct sym_trans goal; 1068 struct sym_trans user; 1069 }; 1070 1071 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1072 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1073 1074 /* 1075 * Global TCB HEADER. 1076 * 1077 * Due to lack of indirect addressing on earlier NCR chips, 1078 * this substructure is copied from the TCB to a global 1079 * address after selection. 1080 * For SYMBIOS chips that support LOAD/STORE this copy is 1081 * not needed and thus not performed. 1082 */ 1083 struct sym_tcbh { 1084 /* 1085 * Scripts bus addresses of LUN table accessed from scripts. 1086 * LUN #0 is a special case, since multi-lun devices are rare, 1087 * and we we want to speed-up the general case and not waste 1088 * resources. 1089 */ 1090 u32 luntbl_sa; /* bus address of this table */ 1091 u32 lun0_sa; /* bus address of LCB #0 */ 1092 /* 1093 * Actual SYNC/WIDE IO registers value for this target. 1094 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1095 * so have alignment constraints. 1096 */ 1097 /*0*/ u_char uval; /* -> SCNTL4 register */ 1098 /*1*/ u_char sval; /* -> SXFER io register */ 1099 /*2*/ u_char filler1; 1100 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1101 }; 1102 1103 /* 1104 * Target Control Block 1105 */ 1106 struct sym_tcb { 1107 /* 1108 * TCB header. 1109 * Assumed at offset 0. 1110 */ 1111 /*0*/ struct sym_tcbh head; 1112 1113 /* 1114 * LUN table used by the SCRIPTS processor. 1115 * An array of bus addresses is used on reselection. 1116 */ 1117 u32 *luntbl; /* LCBs bus address table */ 1118 1119 /* 1120 * LUN table used by the C code. 1121 */ 1122 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1123 #if SYM_CONF_MAX_LUN > 1 1124 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1125 #endif 1126 1127 /* 1128 * Bitmap that tells about LUNs that succeeded at least 1129 * 1 IO and therefore assumed to be a real device. 1130 * Avoid useless allocation of the LCB structure. 1131 */ 1132 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1133 1134 /* 1135 * Bitmap that tells about LUNs that haven't yet an LCB 1136 * allocated (not discovered or LCB allocation failed). 1137 */ 1138 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1139 1140 /* 1141 * Transfer capabilities (SIP) 1142 */ 1143 struct sym_tinfo tinfo; 1144 1145 /* 1146 * Keep track of the CCB used for the negotiation in order 1147 * to ensure that only 1 negotiation is queued at a time. 1148 */ 1149 ccb_p nego_cp; /* CCB used for the nego */ 1150 1151 /* 1152 * Set when we want to reset the device. 1153 */ 1154 u_char to_reset; 1155 1156 /* 1157 * Other user settable limits and options. 1158 * These limits are read from the NVRAM if present. 1159 */ 1160 u_char usrflags; 1161 u_short usrtags; 1162 }; 1163 1164 /* 1165 * Global LCB HEADER. 1166 * 1167 * Due to lack of indirect addressing on earlier NCR chips, 1168 * this substructure is copied from the LCB to a global 1169 * address after selection. 1170 * For SYMBIOS chips that support LOAD/STORE this copy is 1171 * not needed and thus not performed. 1172 */ 1173 struct sym_lcbh { 1174 /* 1175 * SCRIPTS address jumped by SCRIPTS on reselection. 1176 * For not probed logical units, this address points to 1177 * SCRIPTS that deal with bad LU handling (must be at 1178 * offset zero of the LCB for that reason). 1179 */ 1180 /*0*/ u32 resel_sa; 1181 1182 /* 1183 * Task (bus address of a CCB) read from SCRIPTS that points 1184 * to the unique ITL nexus allowed to be disconnected. 1185 */ 1186 u32 itl_task_sa; 1187 1188 /* 1189 * Task table bus address (read from SCRIPTS). 1190 */ 1191 u32 itlq_tbl_sa; 1192 }; 1193 1194 /* 1195 * Logical Unit Control Block 1196 */ 1197 struct sym_lcb { 1198 /* 1199 * TCB header. 1200 * Assumed at offset 0. 1201 */ 1202 /*0*/ struct sym_lcbh head; 1203 1204 /* 1205 * Task table read from SCRIPTS that contains pointers to 1206 * ITLQ nexuses. The bus address read from SCRIPTS is 1207 * inside the header. 1208 */ 1209 u32 *itlq_tbl; /* Kernel virtual address */ 1210 1211 /* 1212 * Busy CCBs management. 1213 */ 1214 u_short busy_itlq; /* Number of busy tagged CCBs */ 1215 u_short busy_itl; /* Number of busy untagged CCBs */ 1216 1217 /* 1218 * Circular tag allocation buffer. 1219 */ 1220 u_short ia_tag; /* Tag allocation index */ 1221 u_short if_tag; /* Tag release index */ 1222 u_char *cb_tags; /* Circular tags buffer */ 1223 1224 /* 1225 * Set when we want to clear all tasks. 1226 */ 1227 u_char to_clear; 1228 1229 /* 1230 * Capabilities. 1231 */ 1232 u_char user_flags; 1233 u_char current_flags; 1234 }; 1235 1236 /* 1237 * Action from SCRIPTS on a task. 1238 * Is part of the CCB, but is also used separately to plug 1239 * error handling action to perform from SCRIPTS. 1240 */ 1241 struct sym_actscr { 1242 u32 start; /* Jumped by SCRIPTS after selection */ 1243 u32 restart; /* Jumped by SCRIPTS on relection */ 1244 }; 1245 1246 /* 1247 * Phase mismatch context. 1248 * 1249 * It is part of the CCB and is used as parameters for the 1250 * DATA pointer. We need two contexts to handle correctly the 1251 * SAVED DATA POINTER. 1252 */ 1253 struct sym_pmc { 1254 struct sym_tblmove sg; /* Updated interrupted SG block */ 1255 u32 ret; /* SCRIPT return address */ 1256 }; 1257 1258 /* 1259 * LUN control block lookup. 1260 * We use a direct pointer for LUN #0, and a table of 1261 * pointers which is only allocated for devices that support 1262 * LUN(s) > 0. 1263 */ 1264 #if SYM_CONF_MAX_LUN <= 1 1265 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1266 #else 1267 #define sym_lp(np, tp, lun) \ 1268 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1269 #endif 1270 1271 /* 1272 * Status are used by the host and the script processor. 1273 * 1274 * The last four bytes (status[4]) are copied to the 1275 * scratchb register (declared as scr0..scr3) just after the 1276 * select/reselect, and copied back just after disconnecting. 1277 * Inside the script the XX_REG are used. 1278 */ 1279 1280 /* 1281 * Last four bytes (script) 1282 */ 1283 #define QU_REG scr0 1284 #define HS_REG scr1 1285 #define HS_PRT nc_scr1 1286 #define SS_REG scr2 1287 #define SS_PRT nc_scr2 1288 #define HF_REG scr3 1289 #define HF_PRT nc_scr3 1290 1291 /* 1292 * Last four bytes (host) 1293 */ 1294 #define actualquirks phys.head.status[0] 1295 #define host_status phys.head.status[1] 1296 #define ssss_status phys.head.status[2] 1297 #define host_flags phys.head.status[3] 1298 1299 /* 1300 * Host flags 1301 */ 1302 #define HF_IN_PM0 1u 1303 #define HF_IN_PM1 (1u<<1) 1304 #define HF_ACT_PM (1u<<2) 1305 #define HF_DP_SAVED (1u<<3) 1306 #define HF_SENSE (1u<<4) 1307 #define HF_EXT_ERR (1u<<5) 1308 #define HF_DATA_IN (1u<<6) 1309 #ifdef SYM_CONF_IARB_SUPPORT 1310 #define HF_HINT_IARB (1u<<7) 1311 #endif 1312 1313 /* 1314 * Global CCB HEADER. 1315 * 1316 * Due to lack of indirect addressing on earlier NCR chips, 1317 * this substructure is copied from the ccb to a global 1318 * address after selection (or reselection) and copied back 1319 * before disconnect. 1320 * For SYMBIOS chips that support LOAD/STORE this copy is 1321 * not needed and thus not performed. 1322 */ 1323 struct sym_ccbh { 1324 /* 1325 * Start and restart SCRIPTS addresses (must be at 0). 1326 */ 1327 /*0*/ struct sym_actscr go; 1328 1329 /* 1330 * SCRIPTS jump address that deal with data pointers. 1331 * 'savep' points to the position in the script responsible 1332 * for the actual transfer of data. 1333 * It's written on reception of a SAVE_DATA_POINTER message. 1334 */ 1335 u32 savep; /* Jump address to saved data pointer */ 1336 u32 lastp; /* SCRIPTS address at end of data */ 1337 u32 goalp; /* Not accessed for now from SCRIPTS */ 1338 1339 /* 1340 * Status fields. 1341 */ 1342 u8 status[4]; 1343 }; 1344 1345 /* 1346 * Data Structure Block 1347 * 1348 * During execution of a ccb by the script processor, the 1349 * DSA (data structure address) register points to this 1350 * substructure of the ccb. 1351 */ 1352 struct sym_dsb { 1353 /* 1354 * CCB header. 1355 * Also assumed at offset 0 of the sym_ccb structure. 1356 */ 1357 /*0*/ struct sym_ccbh head; 1358 1359 /* 1360 * Phase mismatch contexts. 1361 * We need two to handle correctly the SAVED DATA POINTER. 1362 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1363 * for address calculation from SCRIPTS. 1364 */ 1365 struct sym_pmc pm0; 1366 struct sym_pmc pm1; 1367 1368 /* 1369 * Table data for Script 1370 */ 1371 struct sym_tblsel select; 1372 struct sym_tblmove smsg; 1373 struct sym_tblmove smsg_ext; 1374 struct sym_tblmove cmd; 1375 struct sym_tblmove sense; 1376 struct sym_tblmove wresid; 1377 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1378 }; 1379 1380 /* 1381 * Our Command Control Block 1382 */ 1383 struct sym_ccb { 1384 /* 1385 * This is the data structure which is pointed by the DSA 1386 * register when it is executed by the script processor. 1387 * It must be the first entry. 1388 */ 1389 struct sym_dsb phys; 1390 1391 /* 1392 * Pointer to CAM ccb and related stuff. 1393 */ 1394 struct callout ch; /* callout handle */ 1395 union ccb *cam_ccb; /* CAM scsiio ccb */ 1396 u8 cdb_buf[16]; /* Copy of CDB */ 1397 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1398 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1399 int data_len; /* Total data length */ 1400 int segments; /* Number of SG segments */ 1401 1402 /* 1403 * Miscellaneous status'. 1404 */ 1405 u_char nego_status; /* Negotiation status */ 1406 u_char xerr_status; /* Extended error flags */ 1407 u32 extra_bytes; /* Extraneous bytes transferred */ 1408 1409 /* 1410 * Message areas. 1411 * We prepare a message to be sent after selection. 1412 * We may use a second one if the command is rescheduled 1413 * due to CHECK_CONDITION or COMMAND TERMINATED. 1414 * Contents are IDENTIFY and SIMPLE_TAG. 1415 * While negotiating sync or wide transfer, 1416 * a SDTR or WDTR message is appended. 1417 */ 1418 u_char scsi_smsg [12]; 1419 u_char scsi_smsg2[12]; 1420 1421 /* 1422 * Auto request sense related fields. 1423 */ 1424 u_char sensecmd[6]; /* Request Sense command */ 1425 u_char sv_scsi_status; /* Saved SCSI status */ 1426 u_char sv_xerr_status; /* Saved extended status */ 1427 int sv_resid; /* Saved residual */ 1428 1429 /* 1430 * Map for the DMA of user data. 1431 */ 1432 void *arg; /* Argument for some callback */ 1433 bus_dmamap_t dmamap; /* DMA map for user data */ 1434 u_char dmamapped; 1435 #define SYM_DMA_NONE 0 1436 #define SYM_DMA_READ 1 1437 #define SYM_DMA_WRITE 2 1438 /* 1439 * Other fields. 1440 */ 1441 u32 ccb_ba; /* BUS address of this CCB */ 1442 u_short tag; /* Tag for this transfer */ 1443 /* NO_TAG means no tag */ 1444 u_char target; 1445 u_char lun; 1446 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1447 SYM_QUEHEAD 1448 link_ccbq; /* Link to free/busy CCB queue */ 1449 u32 startp; /* Initial data pointer */ 1450 int ext_sg; /* Extreme data pointer, used */ 1451 int ext_ofs; /* to calculate the residual. */ 1452 u_char to_abort; /* Want this IO to be aborted */ 1453 }; 1454 1455 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1456 1457 /* 1458 * Host Control Block 1459 */ 1460 struct sym_hcb { 1461 struct mtx mtx; 1462 1463 /* 1464 * Global headers. 1465 * Due to poorness of addressing capabilities, earlier 1466 * chips (810, 815, 825) copy part of the data structures 1467 * (CCB, TCB and LCB) in fixed areas. 1468 */ 1469 #ifdef SYM_CONF_GENERIC_SUPPORT 1470 struct sym_ccbh ccb_head; 1471 struct sym_tcbh tcb_head; 1472 struct sym_lcbh lcb_head; 1473 #endif 1474 /* 1475 * Idle task and invalid task actions and 1476 * their bus addresses. 1477 */ 1478 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1479 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1480 1481 /* 1482 * Dummy lun table to protect us against target 1483 * returning bad lun number on reselection. 1484 */ 1485 u32 *badluntbl; /* Table physical address */ 1486 u32 badlun_sa; /* SCRIPT handler BUS address */ 1487 1488 /* 1489 * Bus address of this host control block. 1490 */ 1491 u32 hcb_ba; 1492 1493 /* 1494 * Bit 32-63 of the on-chip RAM bus address in LE format. 1495 * The START_RAM64 script loads the MMRS and MMWS from this 1496 * field. 1497 */ 1498 u32 scr_ram_seg; 1499 1500 /* 1501 * Chip and controller indentification. 1502 */ 1503 device_t device; 1504 1505 /* 1506 * Initial value of some IO register bits. 1507 * These values are assumed to have been set by BIOS, and may 1508 * be used to probe adapter implementation differences. 1509 */ 1510 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1511 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1512 sv_stest1; 1513 1514 /* 1515 * Actual initial value of IO register bits used by the 1516 * driver. They are loaded at initialisation according to 1517 * features that are to be enabled/disabled. 1518 */ 1519 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1520 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1521 1522 /* 1523 * Target data. 1524 */ 1525 #ifdef __amd64__ 1526 struct sym_tcb *target; 1527 #else 1528 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1529 #endif 1530 1531 /* 1532 * Target control block bus address array used by the SCRIPT 1533 * on reselection. 1534 */ 1535 u32 *targtbl; 1536 u32 targtbl_ba; 1537 1538 /* 1539 * CAM SIM information for this instance. 1540 */ 1541 struct cam_sim *sim; 1542 struct cam_path *path; 1543 1544 /* 1545 * Allocated hardware resources. 1546 */ 1547 struct resource *irq_res; 1548 struct resource *io_res; 1549 struct resource *mmio_res; 1550 struct resource *ram_res; 1551 int ram_id; 1552 void *intr; 1553 1554 /* 1555 * Bus stuff. 1556 * 1557 * My understanding of PCI is that all agents must share the 1558 * same addressing range and model. 1559 * But some hardware architecture guys provide complex and 1560 * brain-deaded stuff that makes shit. 1561 * This driver only support PCI compliant implementations and 1562 * deals with part of the BUS stuff complexity only to fit O/S 1563 * requirements. 1564 */ 1565 1566 /* 1567 * DMA stuff. 1568 */ 1569 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1570 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1571 /* 1572 * BUS addresses of the chip 1573 */ 1574 vm_offset_t mmio_ba; /* MMIO BUS address */ 1575 int mmio_ws; /* MMIO Window size */ 1576 1577 vm_offset_t ram_ba; /* RAM BUS address */ 1578 int ram_ws; /* RAM window size */ 1579 1580 /* 1581 * SCRIPTS virtual and physical bus addresses. 1582 * 'script' is loaded in the on-chip RAM if present. 1583 * 'scripth' stays in main memory for all chips except the 1584 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1585 */ 1586 u_char *scripta0; /* Copies of script and scripth */ 1587 u_char *scriptb0; /* Copies of script and scripth */ 1588 vm_offset_t scripta_ba; /* Actual script and scripth */ 1589 vm_offset_t scriptb_ba; /* bus addresses. */ 1590 vm_offset_t scriptb0_ba; 1591 u_short scripta_sz; /* Actual size of script A */ 1592 u_short scriptb_sz; /* Actual size of script B */ 1593 1594 /* 1595 * Bus addresses, setup and patch methods for 1596 * the selected firmware. 1597 */ 1598 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1599 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1600 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1601 void (*fw_patch)(hcb_p np); 1602 const char *fw_name; 1603 1604 /* 1605 * General controller parameters and configuration. 1606 */ 1607 u_short device_id; /* PCI device id */ 1608 u_char revision_id; /* PCI device revision id */ 1609 u_int features; /* Chip features map */ 1610 u_char myaddr; /* SCSI id of the adapter */ 1611 u_char maxburst; /* log base 2 of dwords burst */ 1612 u_char maxsegcnt; /* Max DMA S/G segments */ 1613 u_char maxwide; /* Maximum transfer width */ 1614 u_char minsync; /* Min sync period factor (ST) */ 1615 u_char maxsync; /* Max sync period factor (ST) */ 1616 u_char maxoffs; /* Max scsi offset (ST) */ 1617 u_char minsync_dt; /* Min sync period factor (DT) */ 1618 u_char maxsync_dt; /* Max sync period factor (DT) */ 1619 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1620 u_char multiplier; /* Clock multiplier (1,2,4) */ 1621 u_char clock_divn; /* Number of clock divisors */ 1622 u32 clock_khz; /* SCSI clock frequency in KHz */ 1623 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1624 /* 1625 * Start queue management. 1626 * It is filled up by the host processor and accessed by the 1627 * SCRIPTS processor in order to start SCSI commands. 1628 */ 1629 volatile /* Prevent code optimizations */ 1630 u32 *squeue; /* Start queue virtual address */ 1631 u32 squeue_ba; /* Start queue BUS address */ 1632 u_short squeueput; /* Next free slot of the queue */ 1633 u_short actccbs; /* Number of allocated CCBs */ 1634 1635 /* 1636 * Command completion queue. 1637 * It is the same size as the start queue to avoid overflow. 1638 */ 1639 u_short dqueueget; /* Next position to scan */ 1640 volatile /* Prevent code optimizations */ 1641 u32 *dqueue; /* Completion (done) queue */ 1642 u32 dqueue_ba; /* Done queue BUS address */ 1643 1644 /* 1645 * Miscellaneous buffers accessed by the scripts-processor. 1646 * They shall be DWORD aligned, because they may be read or 1647 * written with a script command. 1648 */ 1649 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1650 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1651 u32 lastmsg; /* Last SCSI message sent */ 1652 u_char scratch; /* Scratch for SCSI receive */ 1653 1654 /* 1655 * Miscellaneous configuration and status parameters. 1656 */ 1657 u_char usrflags; /* Miscellaneous user flags */ 1658 u_char scsi_mode; /* Current SCSI BUS mode */ 1659 u_char verbose; /* Verbosity for this controller*/ 1660 u32 cache; /* Used for cache test at init. */ 1661 1662 /* 1663 * CCB lists and queue. 1664 */ 1665 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1666 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1667 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1668 1669 /* 1670 * During error handling and/or recovery, 1671 * active CCBs that are to be completed with 1672 * error or requeued are moved from the busy_ccbq 1673 * to the comp_ccbq prior to completion. 1674 */ 1675 SYM_QUEHEAD comp_ccbq; 1676 1677 /* 1678 * CAM CCB pending queue. 1679 */ 1680 SYM_QUEHEAD cam_ccbq; 1681 1682 /* 1683 * IMMEDIATE ARBITRATION (IARB) control. 1684 * 1685 * We keep track in 'last_cp' of the last CCB that has been 1686 * queued to the SCRIPTS processor and clear 'last_cp' when 1687 * this CCB completes. If last_cp is not zero at the moment 1688 * we queue a new CCB, we set a flag in 'last_cp' that is 1689 * used by the SCRIPTS as a hint for setting IARB. 1690 * We donnot set more than 'iarb_max' consecutive hints for 1691 * IARB in order to leave devices a chance to reselect. 1692 * By the way, any non zero value of 'iarb_max' is unfair. :) 1693 */ 1694 #ifdef SYM_CONF_IARB_SUPPORT 1695 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1696 u_short iarb_count; /* Actual # of these hints */ 1697 ccb_p last_cp; 1698 #endif 1699 1700 /* 1701 * Command abort handling. 1702 * We need to synchronize tightly with the SCRIPTS 1703 * processor in order to handle things correctly. 1704 */ 1705 u_char abrt_msg[4]; /* Message to send buffer */ 1706 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1707 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1708 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1709 }; 1710 1711 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1712 1713 /* 1714 * Return the name of the controller. 1715 */ 1716 static __inline const char *sym_name(hcb_p np) 1717 { 1718 return device_get_nameunit(np->device); 1719 } 1720 1721 /*--------------------------------------------------------------------------*/ 1722 /*------------------------------ FIRMWARES ---------------------------------*/ 1723 /*--------------------------------------------------------------------------*/ 1724 1725 /* 1726 * This stuff will be moved to a separate source file when 1727 * the driver will be broken into several source modules. 1728 */ 1729 1730 /* 1731 * Macros used for all firmwares. 1732 */ 1733 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1734 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1735 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1736 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1737 1738 #ifdef SYM_CONF_GENERIC_SUPPORT 1739 /* 1740 * Allocate firmware #1 script area. 1741 */ 1742 #define SYM_FWA_SCR sym_fw1a_scr 1743 #define SYM_FWB_SCR sym_fw1b_scr 1744 #include <dev/sym/sym_fw1.h> 1745 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1746 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1747 }; 1748 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1749 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1750 }; 1751 #undef SYM_FWA_SCR 1752 #undef SYM_FWB_SCR 1753 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1754 1755 /* 1756 * Allocate firmware #2 script area. 1757 */ 1758 #define SYM_FWA_SCR sym_fw2a_scr 1759 #define SYM_FWB_SCR sym_fw2b_scr 1760 #include <dev/sym/sym_fw2.h> 1761 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1762 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1763 }; 1764 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1765 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1766 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1767 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1768 }; 1769 #undef SYM_FWA_SCR 1770 #undef SYM_FWB_SCR 1771 1772 #undef SYM_GEN_A 1773 #undef SYM_GEN_B 1774 #undef PADDR_A 1775 #undef PADDR_B 1776 1777 #ifdef SYM_CONF_GENERIC_SUPPORT 1778 /* 1779 * Patch routine for firmware #1. 1780 */ 1781 static void 1782 sym_fw1_patch(hcb_p np) 1783 { 1784 struct sym_fw1a_scr *scripta0; 1785 struct sym_fw1b_scr *scriptb0; 1786 1787 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1788 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1789 1790 /* 1791 * Remove LED support if not needed. 1792 */ 1793 if (!(np->features & FE_LED0)) { 1794 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1795 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1796 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1797 } 1798 1799 #ifdef SYM_CONF_IARB_SUPPORT 1800 /* 1801 * If user does not want to use IMMEDIATE ARBITRATION 1802 * when we are reselected while attempting to arbitrate, 1803 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1804 */ 1805 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1806 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1807 #endif 1808 /* 1809 * Patch some data in SCRIPTS. 1810 * - start and done queue initial bus address. 1811 * - target bus address table bus address. 1812 */ 1813 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1814 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1815 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1816 } 1817 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1818 1819 /* 1820 * Patch routine for firmware #2. 1821 */ 1822 static void 1823 sym_fw2_patch(hcb_p np) 1824 { 1825 struct sym_fw2a_scr *scripta0; 1826 struct sym_fw2b_scr *scriptb0; 1827 1828 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1829 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1830 1831 /* 1832 * Remove LED support if not needed. 1833 */ 1834 if (!(np->features & FE_LED0)) { 1835 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1836 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1837 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1838 } 1839 1840 #ifdef SYM_CONF_IARB_SUPPORT 1841 /* 1842 * If user does not want to use IMMEDIATE ARBITRATION 1843 * when we are reselected while attempting to arbitrate, 1844 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1845 */ 1846 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1847 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1848 #endif 1849 /* 1850 * Patch some variable in SCRIPTS. 1851 * - start and done queue initial bus address. 1852 * - target bus address table bus address. 1853 */ 1854 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1855 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1856 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1857 1858 /* 1859 * Remove the load of SCNTL4 on reselection if not a C10. 1860 */ 1861 if (!(np->features & FE_C10)) { 1862 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1863 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1864 } 1865 1866 /* 1867 * Remove a couple of work-arounds specific to C1010 if 1868 * they are not desirable. See `sym_fw2.h' for more details. 1869 */ 1870 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1871 np->revision_id < 0x1 && 1872 np->pciclk_khz < 60000)) { 1873 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1874 scripta0->datao_phase[1] = cpu_to_scr(0); 1875 } 1876 if (!(np->device_id == PCI_ID_LSI53C1010 && 1877 /* np->revision_id < 0xff */ 1)) { 1878 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1879 scripta0->sel_done[1] = cpu_to_scr(0); 1880 } 1881 1882 /* 1883 * Patch some other variables in SCRIPTS. 1884 * These ones are loaded by the SCRIPTS processor. 1885 */ 1886 scriptb0->pm0_data_addr[0] = 1887 cpu_to_scr(np->scripta_ba + 1888 offsetof(struct sym_fw2a_scr, pm0_data)); 1889 scriptb0->pm1_data_addr[0] = 1890 cpu_to_scr(np->scripta_ba + 1891 offsetof(struct sym_fw2a_scr, pm1_data)); 1892 } 1893 1894 /* 1895 * Fill the data area in scripts. 1896 * To be done for all firmwares. 1897 */ 1898 static void 1899 sym_fw_fill_data (u32 *in, u32 *out) 1900 { 1901 int i; 1902 1903 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1904 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1905 *in++ = offsetof (struct sym_dsb, data[i]); 1906 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1907 *out++ = offsetof (struct sym_dsb, data[i]); 1908 } 1909 } 1910 1911 /* 1912 * Setup useful script bus addresses. 1913 * To be done for all firmwares. 1914 */ 1915 static void 1916 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1917 { 1918 u32 *pa; 1919 const u_short *po; 1920 int i; 1921 1922 /* 1923 * Build the bus address table for script A 1924 * from the script A offset table. 1925 */ 1926 po = (const u_short *) fw->a_ofs; 1927 pa = (u32 *) &np->fwa_bas; 1928 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1929 pa[i] = np->scripta_ba + po[i]; 1930 1931 /* 1932 * Same for script B. 1933 */ 1934 po = (const u_short *) fw->b_ofs; 1935 pa = (u32 *) &np->fwb_bas; 1936 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1937 pa[i] = np->scriptb_ba + po[i]; 1938 } 1939 1940 #ifdef SYM_CONF_GENERIC_SUPPORT 1941 /* 1942 * Setup routine for firmware #1. 1943 */ 1944 static void 1945 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1946 { 1947 struct sym_fw1a_scr *scripta0; 1948 1949 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1950 1951 /* 1952 * Fill variable parts in scripts. 1953 */ 1954 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1955 1956 /* 1957 * Setup bus addresses used from the C code.. 1958 */ 1959 sym_fw_setup_bus_addresses(np, fw); 1960 } 1961 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1962 1963 /* 1964 * Setup routine for firmware #2. 1965 */ 1966 static void 1967 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1968 { 1969 struct sym_fw2a_scr *scripta0; 1970 1971 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1972 1973 /* 1974 * Fill variable parts in scripts. 1975 */ 1976 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1977 1978 /* 1979 * Setup bus addresses used from the C code.. 1980 */ 1981 sym_fw_setup_bus_addresses(np, fw); 1982 } 1983 1984 /* 1985 * Allocate firmware descriptors. 1986 */ 1987 #ifdef SYM_CONF_GENERIC_SUPPORT 1988 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 1989 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1990 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 1991 1992 /* 1993 * Find the most appropriate firmware for a chip. 1994 */ 1995 static const struct sym_fw * 1996 sym_find_firmware(const struct sym_pci_chip *chip) 1997 { 1998 if (chip->features & FE_LDSTR) 1999 return &sym_fw2; 2000 #ifdef SYM_CONF_GENERIC_SUPPORT 2001 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2002 return &sym_fw1; 2003 #endif 2004 else 2005 return NULL; 2006 } 2007 2008 /* 2009 * Bind a script to physical addresses. 2010 */ 2011 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2012 { 2013 u32 opcode, new, old, tmp1, tmp2; 2014 u32 *end, *cur; 2015 int relocs; 2016 2017 cur = start; 2018 end = start + len/4; 2019 2020 while (cur < end) { 2021 2022 opcode = *cur; 2023 2024 /* 2025 * If we forget to change the length 2026 * in scripts, a field will be 2027 * padded with 0. This is an illegal 2028 * command. 2029 */ 2030 if (opcode == 0) { 2031 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2032 sym_name(np), (int) (cur-start)); 2033 MDELAY (10000); 2034 ++cur; 2035 continue; 2036 }; 2037 2038 /* 2039 * We use the bogus value 0xf00ff00f ;-) 2040 * to reserve data area in SCRIPTS. 2041 */ 2042 if (opcode == SCR_DATA_ZERO) { 2043 *cur++ = 0; 2044 continue; 2045 } 2046 2047 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2048 printf ("%d: <%x>\n", (int) (cur-start), 2049 (unsigned)opcode); 2050 2051 /* 2052 * We don't have to decode ALL commands 2053 */ 2054 switch (opcode >> 28) { 2055 case 0xf: 2056 /* 2057 * LOAD / STORE DSA relative, don't relocate. 2058 */ 2059 relocs = 0; 2060 break; 2061 case 0xe: 2062 /* 2063 * LOAD / STORE absolute. 2064 */ 2065 relocs = 1; 2066 break; 2067 case 0xc: 2068 /* 2069 * COPY has TWO arguments. 2070 */ 2071 relocs = 2; 2072 tmp1 = cur[1]; 2073 tmp2 = cur[2]; 2074 if ((tmp1 ^ tmp2) & 3) { 2075 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2076 sym_name(np), (int) (cur-start)); 2077 MDELAY (10000); 2078 } 2079 /* 2080 * If PREFETCH feature not enabled, remove 2081 * the NO FLUSH bit if present. 2082 */ 2083 if ((opcode & SCR_NO_FLUSH) && 2084 !(np->features & FE_PFEN)) { 2085 opcode = (opcode & ~SCR_NO_FLUSH); 2086 } 2087 break; 2088 case 0x0: 2089 /* 2090 * MOVE/CHMOV (absolute address) 2091 */ 2092 if (!(np->features & FE_WIDE)) 2093 opcode = (opcode | OPC_MOVE); 2094 relocs = 1; 2095 break; 2096 case 0x1: 2097 /* 2098 * MOVE/CHMOV (table indirect) 2099 */ 2100 if (!(np->features & FE_WIDE)) 2101 opcode = (opcode | OPC_MOVE); 2102 relocs = 0; 2103 break; 2104 case 0x8: 2105 /* 2106 * JUMP / CALL 2107 * dont't relocate if relative :-) 2108 */ 2109 if (opcode & 0x00800000) 2110 relocs = 0; 2111 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2112 relocs = 2; 2113 else 2114 relocs = 1; 2115 break; 2116 case 0x4: 2117 case 0x5: 2118 case 0x6: 2119 case 0x7: 2120 relocs = 1; 2121 break; 2122 default: 2123 relocs = 0; 2124 break; 2125 }; 2126 2127 /* 2128 * Scriptify:) the opcode. 2129 */ 2130 *cur++ = cpu_to_scr(opcode); 2131 2132 /* 2133 * If no relocation, assume 1 argument 2134 * and just scriptize:) it. 2135 */ 2136 if (!relocs) { 2137 *cur = cpu_to_scr(*cur); 2138 ++cur; 2139 continue; 2140 } 2141 2142 /* 2143 * Otherwise performs all needed relocations. 2144 */ 2145 while (relocs--) { 2146 old = *cur; 2147 2148 switch (old & RELOC_MASK) { 2149 case RELOC_REGISTER: 2150 new = (old & ~RELOC_MASK) + np->mmio_ba; 2151 break; 2152 case RELOC_LABEL_A: 2153 new = (old & ~RELOC_MASK) + np->scripta_ba; 2154 break; 2155 case RELOC_LABEL_B: 2156 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2157 break; 2158 case RELOC_SOFTC: 2159 new = (old & ~RELOC_MASK) + np->hcb_ba; 2160 break; 2161 case 0: 2162 /* 2163 * Don't relocate a 0 address. 2164 * They are mostly used for patched or 2165 * script self-modified areas. 2166 */ 2167 if (old == 0) { 2168 new = old; 2169 break; 2170 } 2171 /* fall through */ 2172 default: 2173 new = 0; 2174 panic("sym_fw_bind_script: " 2175 "weird relocation %x\n", old); 2176 break; 2177 } 2178 2179 *cur++ = cpu_to_scr(new); 2180 } 2181 }; 2182 } 2183 2184 /*---------------------------------------------------------------------------*/ 2185 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2186 /*---------------------------------------------------------------------------*/ 2187 2188 /* 2189 * Function prototypes. 2190 */ 2191 static void sym_save_initial_setting (hcb_p np); 2192 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2193 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2194 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2195 static void sym_chip_reset (hcb_p np); 2196 static void sym_soft_reset (hcb_p np); 2197 static void sym_start_reset (hcb_p np); 2198 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2199 static int sym_wakeup_done (hcb_p np); 2200 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2201 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2202 static void sym_init (hcb_p np, int reason); 2203 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2204 u_char *fakp); 2205 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2206 u_char div, u_char fak); 2207 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2208 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2209 u_char per, u_char wide, u_char div, u_char fak); 2210 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2211 u_char per, u_char wide, u_char div, u_char fak); 2212 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2213 static void sym_intr (void *arg); 2214 static void sym_poll (struct cam_sim *sim); 2215 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2216 static void sym_int_sto (hcb_p np); 2217 static void sym_int_udc (hcb_p np); 2218 static void sym_int_sbmc (hcb_p np); 2219 static void sym_int_par (hcb_p np, u_short sist); 2220 static void sym_int_ma (hcb_p np); 2221 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2222 int task); 2223 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2224 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2225 static void sym_sir_task_recovery (hcb_p np, int num); 2226 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2227 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2228 static int sym_compute_residual (hcb_p np, ccb_p cp); 2229 static int sym_show_msg (u_char * msg); 2230 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2231 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2232 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2233 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2234 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2235 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2236 static void sym_int_sir (hcb_p np); 2237 static void sym_free_ccb (hcb_p np, ccb_p cp); 2238 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2239 static ccb_p sym_alloc_ccb (hcb_p np); 2240 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2241 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2242 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2243 static int sym_snooptest (hcb_p np); 2244 static void sym_selectclock(hcb_p np, u_char scntl3); 2245 static void sym_getclock (hcb_p np, int mult); 2246 static int sym_getpciclock (hcb_p np); 2247 static void sym_complete_ok (hcb_p np, ccb_p cp); 2248 static void sym_complete_error (hcb_p np, ccb_p cp); 2249 static void sym_callout (void *arg); 2250 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2251 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2252 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2253 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2254 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2255 ccb_p cp); 2256 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2257 bus_dma_segment_t *psegs, int nsegs); 2258 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2259 bus_dma_segment_t *psegs, int nsegs); 2260 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2261 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2262 struct ccb_trans_settings *cts); 2263 static void sym_update_dflags(hcb_p np, u_char *flags, 2264 struct ccb_trans_settings *cts); 2265 2266 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2267 static int sym_pci_probe (device_t dev); 2268 static int sym_pci_attach (device_t dev); 2269 2270 static void sym_pci_free (hcb_p np); 2271 static int sym_cam_attach (hcb_p np); 2272 static void sym_cam_free (hcb_p np); 2273 2274 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2275 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2276 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2277 2278 /* 2279 * Print something which allows to retrieve the controller type, 2280 * unit, target, lun concerned by a kernel message. 2281 */ 2282 static void PRINT_TARGET (hcb_p np, int target) 2283 { 2284 printf ("%s:%d:", sym_name(np), target); 2285 } 2286 2287 static void PRINT_LUN(hcb_p np, int target, int lun) 2288 { 2289 printf ("%s:%d:%d:", sym_name(np), target, lun); 2290 } 2291 2292 static void PRINT_ADDR (ccb_p cp) 2293 { 2294 if (cp && cp->cam_ccb) 2295 xpt_print_path(cp->cam_ccb->ccb_h.path); 2296 } 2297 2298 /* 2299 * Take into account this ccb in the freeze count. 2300 */ 2301 static void sym_freeze_cam_ccb(union ccb *ccb) 2302 { 2303 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2304 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2305 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2306 xpt_freeze_devq(ccb->ccb_h.path, 1); 2307 } 2308 } 2309 } 2310 2311 /* 2312 * Set the status field of a CAM CCB. 2313 */ 2314 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2315 { 2316 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2317 ccb->ccb_h.status |= status; 2318 } 2319 2320 /* 2321 * Get the status field of a CAM CCB. 2322 */ 2323 static __inline int sym_get_cam_status(union ccb *ccb) 2324 { 2325 return ccb->ccb_h.status & CAM_STATUS_MASK; 2326 } 2327 2328 /* 2329 * Enqueue a CAM CCB. 2330 */ 2331 static void sym_enqueue_cam_ccb(ccb_p cp) 2332 { 2333 hcb_p np; 2334 union ccb *ccb; 2335 2336 ccb = cp->cam_ccb; 2337 np = (hcb_p) cp->arg; 2338 2339 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2340 ccb->ccb_h.status = CAM_REQ_INPROG; 2341 2342 callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout, 2343 (caddr_t) ccb); 2344 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2345 ccb->ccb_h.sym_hcb_ptr = np; 2346 2347 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2348 } 2349 2350 /* 2351 * Complete a pending CAM CCB. 2352 */ 2353 static void _sym_xpt_done(hcb_p np, union ccb *ccb) 2354 { 2355 SYM_LOCK_ASSERT(MA_OWNED); 2356 2357 KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0, 2358 ("%s: status=CAM_SIM_QUEUED", __func__)); 2359 2360 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2361 sym_freeze_cam_ccb(ccb); 2362 xpt_done(ccb); 2363 } 2364 2365 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2366 { 2367 SYM_LOCK_ASSERT(MA_OWNED); 2368 2369 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2370 callout_stop(&cp->ch); 2371 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2372 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2373 ccb->ccb_h.sym_hcb_ptr = NULL; 2374 } 2375 _sym_xpt_done(np, ccb); 2376 } 2377 2378 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2379 { 2380 SYM_LOCK_ASSERT(MA_OWNED); 2381 2382 sym_set_cam_status(ccb, cam_status); 2383 _sym_xpt_done(np, ccb); 2384 } 2385 2386 /* 2387 * SYMBIOS chip clock divisor table. 2388 * 2389 * Divisors are multiplied by 10,000,000 in order to make 2390 * calculations more simple. 2391 */ 2392 #define _5M 5000000 2393 static const u32 div_10M[] = 2394 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2395 2396 /* 2397 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2398 * 128 transfers. All chips support at least 16 transfers 2399 * bursts. The 825A, 875 and 895 chips support bursts of up 2400 * to 128 transfers and the 895A and 896 support bursts of up 2401 * to 64 transfers. All other chips support up to 16 2402 * transfers bursts. 2403 * 2404 * For PCI 32 bit data transfers each transfer is a DWORD. 2405 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2406 * 2407 * We use log base 2 (burst length) as internal code, with 2408 * value 0 meaning "burst disabled". 2409 */ 2410 2411 /* 2412 * Burst length from burst code. 2413 */ 2414 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2415 2416 /* 2417 * Burst code from io register bits. 2418 */ 2419 #define burst_code(dmode, ctest4, ctest5) \ 2420 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2421 2422 /* 2423 * Set initial io register bits from burst code. 2424 */ 2425 static __inline void sym_init_burst(hcb_p np, u_char bc) 2426 { 2427 np->rv_ctest4 &= ~0x80; 2428 np->rv_dmode &= ~(0x3 << 6); 2429 np->rv_ctest5 &= ~0x4; 2430 2431 if (!bc) { 2432 np->rv_ctest4 |= 0x80; 2433 } 2434 else { 2435 --bc; 2436 np->rv_dmode |= ((bc & 0x3) << 6); 2437 np->rv_ctest5 |= (bc & 0x4); 2438 } 2439 } 2440 2441 /* 2442 * Print out the list of targets that have some flag disabled by user. 2443 */ 2444 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2445 { 2446 int cnt; 2447 int i; 2448 2449 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2450 if (i == np->myaddr) 2451 continue; 2452 if (np->target[i].usrflags & mask) { 2453 if (!cnt++) 2454 printf("%s: %s disabled for targets", 2455 sym_name(np), msg); 2456 printf(" %d", i); 2457 } 2458 } 2459 if (cnt) 2460 printf(".\n"); 2461 } 2462 2463 /* 2464 * Save initial settings of some IO registers. 2465 * Assumed to have been set by BIOS. 2466 * We cannot reset the chip prior to reading the 2467 * IO registers, since informations will be lost. 2468 * Since the SCRIPTS processor may be running, this 2469 * is not safe on paper, but it seems to work quite 2470 * well. :) 2471 */ 2472 static void sym_save_initial_setting (hcb_p np) 2473 { 2474 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2475 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2476 np->sv_dmode = INB(nc_dmode) & 0xce; 2477 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2478 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2479 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2480 np->sv_gpcntl = INB(nc_gpcntl); 2481 np->sv_stest1 = INB(nc_stest1); 2482 np->sv_stest2 = INB(nc_stest2) & 0x20; 2483 np->sv_stest4 = INB(nc_stest4); 2484 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2485 np->sv_scntl4 = INB(nc_scntl4); 2486 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2487 } 2488 else 2489 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2490 } 2491 2492 /* 2493 * Prepare io register values used by sym_init() according 2494 * to selected and supported features. 2495 */ 2496 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2497 { 2498 u_char burst_max; 2499 u32 period; 2500 int i; 2501 2502 /* 2503 * Wide ? 2504 */ 2505 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2506 2507 /* 2508 * Get the frequency of the chip's clock. 2509 */ 2510 if (np->features & FE_QUAD) 2511 np->multiplier = 4; 2512 else if (np->features & FE_DBLR) 2513 np->multiplier = 2; 2514 else 2515 np->multiplier = 1; 2516 2517 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2518 np->clock_khz *= np->multiplier; 2519 2520 if (np->clock_khz != 40000) 2521 sym_getclock(np, np->multiplier); 2522 2523 /* 2524 * Divisor to be used for async (timer pre-scaler). 2525 */ 2526 i = np->clock_divn - 1; 2527 while (--i >= 0) { 2528 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2529 ++i; 2530 break; 2531 } 2532 } 2533 np->rv_scntl3 = i+1; 2534 2535 /* 2536 * The C1010 uses hardwired divisors for async. 2537 * So, we just throw away, the async. divisor.:-) 2538 */ 2539 if (np->features & FE_C10) 2540 np->rv_scntl3 = 0; 2541 2542 /* 2543 * Minimum synchronous period factor supported by the chip. 2544 * Btw, 'period' is in tenths of nanoseconds. 2545 */ 2546 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2547 if (period <= 250) np->minsync = 10; 2548 else if (period <= 303) np->minsync = 11; 2549 else if (period <= 500) np->minsync = 12; 2550 else np->minsync = (period + 40 - 1) / 40; 2551 2552 /* 2553 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2554 */ 2555 if (np->minsync < 25 && 2556 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2557 np->minsync = 25; 2558 else if (np->minsync < 12 && 2559 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2560 np->minsync = 12; 2561 2562 /* 2563 * Maximum synchronous period factor supported by the chip. 2564 */ 2565 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2566 np->maxsync = period > 2540 ? 254 : period / 10; 2567 2568 /* 2569 * If chip is a C1010, guess the sync limits in DT mode. 2570 */ 2571 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2572 if (np->clock_khz == 160000) { 2573 np->minsync_dt = 9; 2574 np->maxsync_dt = 50; 2575 np->maxoffs_dt = 62; 2576 } 2577 } 2578 2579 /* 2580 * 64 bit addressing (895A/896/1010) ? 2581 */ 2582 if (np->features & FE_DAC) 2583 #ifdef __LP64__ 2584 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2585 #else 2586 np->rv_ccntl1 |= (DDAC); 2587 #endif 2588 2589 /* 2590 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2591 */ 2592 if (np->features & FE_NOPM) 2593 np->rv_ccntl0 |= (ENPMJ); 2594 2595 /* 2596 * C1010 Errata. 2597 * In dual channel mode, contention occurs if internal cycles 2598 * are used. Disable internal cycles. 2599 */ 2600 if (np->device_id == PCI_ID_LSI53C1010 && 2601 np->revision_id < 0x2) 2602 np->rv_ccntl0 |= DILS; 2603 2604 /* 2605 * Select burst length (dwords) 2606 */ 2607 burst_max = SYM_SETUP_BURST_ORDER; 2608 if (burst_max == 255) 2609 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2610 np->sv_ctest5); 2611 if (burst_max > 7) 2612 burst_max = 7; 2613 if (burst_max > np->maxburst) 2614 burst_max = np->maxburst; 2615 2616 /* 2617 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2618 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2619 * based transactions on LOAD/STORE instructions. So we have 2620 * to prevent these chips from using such PCI transactions in 2621 * this driver. The generic ncr driver that does not use 2622 * LOAD/STORE instructions does not need this work-around. 2623 */ 2624 if ((np->device_id == PCI_ID_SYM53C810 && 2625 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2626 (np->device_id == PCI_ID_SYM53C860 && 2627 np->revision_id <= 0x1)) 2628 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2629 2630 /* 2631 * Select all supported special features. 2632 * If we are using on-board RAM for scripts, prefetch (PFEN) 2633 * does not help, but burst op fetch (BOF) does. 2634 * Disabling PFEN makes sure BOF will be used. 2635 */ 2636 if (np->features & FE_ERL) 2637 np->rv_dmode |= ERL; /* Enable Read Line */ 2638 if (np->features & FE_BOF) 2639 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2640 if (np->features & FE_ERMP) 2641 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2642 #if 1 2643 if ((np->features & FE_PFEN) && !np->ram_ba) 2644 #else 2645 if (np->features & FE_PFEN) 2646 #endif 2647 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2648 if (np->features & FE_CLSE) 2649 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2650 if (np->features & FE_WRIE) 2651 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2652 if (np->features & FE_DFS) 2653 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2654 2655 /* 2656 * Select some other 2657 */ 2658 if (SYM_SETUP_PCI_PARITY) 2659 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2660 if (SYM_SETUP_SCSI_PARITY) 2661 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2662 2663 /* 2664 * Get parity checking, host ID and verbose mode from NVRAM 2665 */ 2666 np->myaddr = 255; 2667 sym_nvram_setup_host (np, nvram); 2668 #ifdef __sparc64__ 2669 np->myaddr = OF_getscsinitid(np->device); 2670 #endif 2671 2672 /* 2673 * Get SCSI addr of host adapter (set by bios?). 2674 */ 2675 if (np->myaddr == 255) { 2676 np->myaddr = INB(nc_scid) & 0x07; 2677 if (!np->myaddr) 2678 np->myaddr = SYM_SETUP_HOST_ID; 2679 } 2680 2681 /* 2682 * Prepare initial io register bits for burst length 2683 */ 2684 sym_init_burst(np, burst_max); 2685 2686 /* 2687 * Set SCSI BUS mode. 2688 * - LVD capable chips (895/895A/896/1010) report the 2689 * current BUS mode through the STEST4 IO register. 2690 * - For previous generation chips (825/825A/875), 2691 * user has to tell us how to check against HVD, 2692 * since a 100% safe algorithm is not possible. 2693 */ 2694 np->scsi_mode = SMODE_SE; 2695 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2696 np->scsi_mode = (np->sv_stest4 & SMODE); 2697 else if (np->features & FE_DIFF) { 2698 if (SYM_SETUP_SCSI_DIFF == 1) { 2699 if (np->sv_scntl3) { 2700 if (np->sv_stest2 & 0x20) 2701 np->scsi_mode = SMODE_HVD; 2702 } 2703 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2704 if (!(INB(nc_gpreg) & 0x08)) 2705 np->scsi_mode = SMODE_HVD; 2706 } 2707 } 2708 else if (SYM_SETUP_SCSI_DIFF == 2) 2709 np->scsi_mode = SMODE_HVD; 2710 } 2711 if (np->scsi_mode == SMODE_HVD) 2712 np->rv_stest2 |= 0x20; 2713 2714 /* 2715 * Set LED support from SCRIPTS. 2716 * Ignore this feature for boards known to use a 2717 * specific GPIO wiring and for the 895A, 896 2718 * and 1010 that drive the LED directly. 2719 */ 2720 if ((SYM_SETUP_SCSI_LED || 2721 (nvram->type == SYM_SYMBIOS_NVRAM || 2722 (nvram->type == SYM_TEKRAM_NVRAM && 2723 np->device_id == PCI_ID_SYM53C895))) && 2724 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2725 np->features |= FE_LED0; 2726 2727 /* 2728 * Set irq mode. 2729 */ 2730 switch(SYM_SETUP_IRQ_MODE & 3) { 2731 case 2: 2732 np->rv_dcntl |= IRQM; 2733 break; 2734 case 1: 2735 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2736 break; 2737 default: 2738 break; 2739 } 2740 2741 /* 2742 * Configure targets according to driver setup. 2743 * If NVRAM present get targets setup from NVRAM. 2744 */ 2745 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2746 tcb_p tp = &np->target[i]; 2747 2748 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2749 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2750 tp->tinfo.user.period = np->minsync; 2751 if (np->features & FE_ULTRA3) 2752 tp->tinfo.user.period = np->minsync_dt; 2753 tp->tinfo.user.offset = np->maxoffs; 2754 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2755 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2756 tp->usrtags = SYM_SETUP_MAX_TAG; 2757 2758 sym_nvram_setup_target (np, i, nvram); 2759 2760 /* 2761 * For now, guess PPR/DT support from the period 2762 * and BUS width. 2763 */ 2764 if (np->features & FE_ULTRA3) { 2765 if (tp->tinfo.user.period <= 9 && 2766 tp->tinfo.user.width == BUS_16_BIT) { 2767 tp->tinfo.user.options |= PPR_OPT_DT; 2768 tp->tinfo.user.offset = np->maxoffs_dt; 2769 tp->tinfo.user.spi_version = 3; 2770 } 2771 } 2772 2773 if (!tp->usrtags) 2774 tp->usrflags &= ~SYM_TAGS_ENABLED; 2775 } 2776 2777 /* 2778 * Let user know about the settings. 2779 */ 2780 i = nvram->type; 2781 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2782 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2783 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2784 np->myaddr, 2785 (np->features & FE_ULTRA3) ? 80 : 2786 (np->features & FE_ULTRA2) ? 40 : 2787 (np->features & FE_ULTRA) ? 20 : 10, 2788 sym_scsi_bus_mode(np->scsi_mode), 2789 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2790 /* 2791 * Tell him more on demand. 2792 */ 2793 if (sym_verbose) { 2794 printf("%s: %s IRQ line driver%s\n", 2795 sym_name(np), 2796 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2797 np->ram_ba ? ", using on-chip SRAM" : ""); 2798 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2799 if (np->features & FE_NOPM) 2800 printf("%s: handling phase mismatch from SCRIPTS.\n", 2801 sym_name(np)); 2802 } 2803 /* 2804 * And still more. 2805 */ 2806 if (sym_verbose > 1) { 2807 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2808 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2809 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2810 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2811 2812 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2813 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2814 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2815 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2816 } 2817 /* 2818 * Let user be aware of targets that have some disable flags set. 2819 */ 2820 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2821 if (sym_verbose) 2822 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2823 "SCAN FOR LUNS"); 2824 2825 return 0; 2826 } 2827 2828 /* 2829 * Prepare the next negotiation message if needed. 2830 * 2831 * Fill in the part of message buffer that contains the 2832 * negotiation and the nego_status field of the CCB. 2833 * Returns the size of the message in bytes. 2834 */ 2835 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2836 { 2837 tcb_p tp = &np->target[cp->target]; 2838 int msglen = 0; 2839 2840 /* 2841 * Early C1010 chips need a work-around for DT 2842 * data transfer to work. 2843 */ 2844 if (!(np->features & FE_U3EN)) 2845 tp->tinfo.goal.options = 0; 2846 /* 2847 * negotiate using PPR ? 2848 */ 2849 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2850 nego = NS_PPR; 2851 /* 2852 * negotiate wide transfers ? 2853 */ 2854 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2855 nego = NS_WIDE; 2856 /* 2857 * negotiate synchronous transfers? 2858 */ 2859 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2860 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2861 nego = NS_SYNC; 2862 2863 switch (nego) { 2864 case NS_SYNC: 2865 msgptr[msglen++] = M_EXTENDED; 2866 msgptr[msglen++] = 3; 2867 msgptr[msglen++] = M_X_SYNC_REQ; 2868 msgptr[msglen++] = tp->tinfo.goal.period; 2869 msgptr[msglen++] = tp->tinfo.goal.offset; 2870 break; 2871 case NS_WIDE: 2872 msgptr[msglen++] = M_EXTENDED; 2873 msgptr[msglen++] = 2; 2874 msgptr[msglen++] = M_X_WIDE_REQ; 2875 msgptr[msglen++] = tp->tinfo.goal.width; 2876 break; 2877 case NS_PPR: 2878 msgptr[msglen++] = M_EXTENDED; 2879 msgptr[msglen++] = 6; 2880 msgptr[msglen++] = M_X_PPR_REQ; 2881 msgptr[msglen++] = tp->tinfo.goal.period; 2882 msgptr[msglen++] = 0; 2883 msgptr[msglen++] = tp->tinfo.goal.offset; 2884 msgptr[msglen++] = tp->tinfo.goal.width; 2885 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2886 break; 2887 }; 2888 2889 cp->nego_status = nego; 2890 2891 if (nego) { 2892 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2893 if (DEBUG_FLAGS & DEBUG_NEGO) { 2894 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2895 nego == NS_WIDE ? "wide msgout" : 2896 "ppr msgout", msgptr); 2897 }; 2898 }; 2899 2900 return msglen; 2901 } 2902 2903 /* 2904 * Insert a job into the start queue. 2905 */ 2906 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2907 { 2908 u_short qidx; 2909 2910 #ifdef SYM_CONF_IARB_SUPPORT 2911 /* 2912 * If the previously queued CCB is not yet done, 2913 * set the IARB hint. The SCRIPTS will go with IARB 2914 * for this job when starting the previous one. 2915 * We leave devices a chance to win arbitration by 2916 * not using more than 'iarb_max' consecutive 2917 * immediate arbitrations. 2918 */ 2919 if (np->last_cp && np->iarb_count < np->iarb_max) { 2920 np->last_cp->host_flags |= HF_HINT_IARB; 2921 ++np->iarb_count; 2922 } 2923 else 2924 np->iarb_count = 0; 2925 np->last_cp = cp; 2926 #endif 2927 2928 /* 2929 * Insert first the idle task and then our job. 2930 * The MB should ensure proper ordering. 2931 */ 2932 qidx = np->squeueput + 2; 2933 if (qidx >= MAX_QUEUE*2) qidx = 0; 2934 2935 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2936 MEMORY_BARRIER(); 2937 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2938 2939 np->squeueput = qidx; 2940 2941 if (DEBUG_FLAGS & DEBUG_QUEUE) 2942 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2943 2944 /* 2945 * Script processor may be waiting for reselect. 2946 * Wake it up. 2947 */ 2948 MEMORY_BARRIER(); 2949 OUTB (nc_istat, SIGP|np->istat_sem); 2950 } 2951 2952 /* 2953 * Soft reset the chip. 2954 * 2955 * Raising SRST when the chip is running may cause 2956 * problems on dual function chips (see below). 2957 * On the other hand, LVD devices need some delay 2958 * to settle and report actual BUS mode in STEST4. 2959 */ 2960 static void sym_chip_reset (hcb_p np) 2961 { 2962 OUTB (nc_istat, SRST); 2963 UDELAY (10); 2964 OUTB (nc_istat, 0); 2965 UDELAY(2000); /* For BUS MODE to settle */ 2966 } 2967 2968 /* 2969 * Soft reset the chip. 2970 * 2971 * Some 896 and 876 chip revisions may hang-up if we set 2972 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2973 * are running. 2974 * So, we need to abort the current operation prior to 2975 * soft resetting the chip. 2976 */ 2977 static void sym_soft_reset (hcb_p np) 2978 { 2979 u_char istat; 2980 int i; 2981 2982 OUTB (nc_istat, CABRT); 2983 for (i = 1000000 ; i ; --i) { 2984 istat = INB (nc_istat); 2985 if (istat & SIP) { 2986 INW (nc_sist); 2987 continue; 2988 } 2989 if (istat & DIP) { 2990 OUTB (nc_istat, 0); 2991 INB (nc_dstat); 2992 break; 2993 } 2994 } 2995 if (!i) 2996 printf("%s: unable to abort current chip operation.\n", 2997 sym_name(np)); 2998 sym_chip_reset (np); 2999 } 3000 3001 /* 3002 * Start reset process. 3003 * 3004 * The interrupt handler will reinitialize the chip. 3005 */ 3006 static void sym_start_reset(hcb_p np) 3007 { 3008 (void) sym_reset_scsi_bus(np, 1); 3009 } 3010 3011 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3012 { 3013 u32 term; 3014 int retv = 0; 3015 3016 sym_soft_reset(np); /* Soft reset the chip */ 3017 if (enab_int) 3018 OUTW (nc_sien, RST); 3019 /* 3020 * Enable Tolerant, reset IRQD if present and 3021 * properly set IRQ mode, prior to resetting the bus. 3022 */ 3023 OUTB (nc_stest3, TE); 3024 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3025 OUTB (nc_scntl1, CRST); 3026 UDELAY (200); 3027 3028 if (!SYM_SETUP_SCSI_BUS_CHECK) 3029 goto out; 3030 /* 3031 * Check for no terminators or SCSI bus shorts to ground. 3032 * Read SCSI data bus, data parity bits and control signals. 3033 * We are expecting RESET to be TRUE and other signals to be 3034 * FALSE. 3035 */ 3036 term = INB(nc_sstat0); 3037 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3038 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3039 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3040 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3041 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3042 3043 if (!(np->features & FE_WIDE)) 3044 term &= 0x3ffff; 3045 3046 if (term != (2<<7)) { 3047 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3048 sym_name(np)); 3049 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3050 "0x%lx, expecting 0x%lx\n", 3051 sym_name(np), 3052 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3053 (u_long)term, (u_long)(2<<7)); 3054 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3055 retv = 1; 3056 } 3057 out: 3058 OUTB (nc_scntl1, 0); 3059 /* MDELAY(100); */ 3060 return retv; 3061 } 3062 3063 /* 3064 * The chip may have completed jobs. Look at the DONE QUEUE. 3065 * 3066 * On architectures that may reorder LOAD/STORE operations, 3067 * a memory barrier may be needed after the reading of the 3068 * so-called `flag' and prior to dealing with the data. 3069 */ 3070 static int sym_wakeup_done (hcb_p np) 3071 { 3072 ccb_p cp; 3073 int i, n; 3074 u32 dsa; 3075 3076 SYM_LOCK_ASSERT(MA_OWNED); 3077 3078 n = 0; 3079 i = np->dqueueget; 3080 while (1) { 3081 dsa = scr_to_cpu(np->dqueue[i]); 3082 if (!dsa) 3083 break; 3084 np->dqueue[i] = 0; 3085 if ((i = i+2) >= MAX_QUEUE*2) 3086 i = 0; 3087 3088 cp = sym_ccb_from_dsa(np, dsa); 3089 if (cp) { 3090 MEMORY_BARRIER(); 3091 sym_complete_ok (np, cp); 3092 ++n; 3093 } 3094 else 3095 printf ("%s: bad DSA (%x) in done queue.\n", 3096 sym_name(np), (u_int) dsa); 3097 } 3098 np->dqueueget = i; 3099 3100 return n; 3101 } 3102 3103 /* 3104 * Complete all active CCBs with error. 3105 * Used on CHIP/SCSI RESET. 3106 */ 3107 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3108 { 3109 /* 3110 * Move all active CCBs to the COMP queue 3111 * and flush this queue. 3112 */ 3113 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3114 sym_que_init(&np->busy_ccbq); 3115 sym_flush_comp_queue(np, cam_status); 3116 } 3117 3118 /* 3119 * Start chip. 3120 * 3121 * 'reason' means: 3122 * 0: initialisation. 3123 * 1: SCSI BUS RESET delivered or received. 3124 * 2: SCSI BUS MODE changed. 3125 */ 3126 static void sym_init (hcb_p np, int reason) 3127 { 3128 int i; 3129 u32 phys; 3130 3131 SYM_LOCK_ASSERT(MA_OWNED); 3132 3133 /* 3134 * Reset chip if asked, otherwise just clear fifos. 3135 */ 3136 if (reason == 1) 3137 sym_soft_reset(np); 3138 else { 3139 OUTB (nc_stest3, TE|CSF); 3140 OUTONB (nc_ctest3, CLF); 3141 } 3142 3143 /* 3144 * Clear Start Queue 3145 */ 3146 phys = np->squeue_ba; 3147 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3148 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3149 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3150 } 3151 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3152 3153 /* 3154 * Start at first entry. 3155 */ 3156 np->squeueput = 0; 3157 3158 /* 3159 * Clear Done Queue 3160 */ 3161 phys = np->dqueue_ba; 3162 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3163 np->dqueue[i] = 0; 3164 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3165 } 3166 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3167 3168 /* 3169 * Start at first entry. 3170 */ 3171 np->dqueueget = 0; 3172 3173 /* 3174 * Install patches in scripts. 3175 * This also let point to first position the start 3176 * and done queue pointers used from SCRIPTS. 3177 */ 3178 np->fw_patch(np); 3179 3180 /* 3181 * Wakeup all pending jobs. 3182 */ 3183 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3184 3185 /* 3186 * Init chip. 3187 */ 3188 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3189 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3190 3191 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3192 /* full arb., ena parity, par->ATN */ 3193 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3194 3195 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3196 3197 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3198 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3199 OUTB (nc_istat , SIGP ); /* Signal Process */ 3200 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3201 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3202 3203 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3204 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3205 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3206 3207 /* Extended Sreq/Sack filtering not supported on the C10 */ 3208 if (np->features & FE_C10) 3209 OUTB (nc_stest2, np->rv_stest2); 3210 else 3211 OUTB (nc_stest2, EXT|np->rv_stest2); 3212 3213 OUTB (nc_stest3, TE); /* TolerANT enable */ 3214 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3215 3216 /* 3217 * For now, disable AIP generation on C1010-66. 3218 */ 3219 if (np->device_id == PCI_ID_LSI53C1010_2) 3220 OUTB (nc_aipcntl1, DISAIP); 3221 3222 /* 3223 * C10101 Errata. 3224 * Errant SGE's when in narrow. Write bits 4 & 5 of 3225 * STEST1 register to disable SGE. We probably should do 3226 * that from SCRIPTS for each selection/reselection, but 3227 * I just don't want. :) 3228 */ 3229 if (np->device_id == PCI_ID_LSI53C1010 && 3230 /* np->revision_id < 0xff */ 1) 3231 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3232 3233 /* 3234 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3235 * Disable overlapped arbitration for some dual function devices, 3236 * regardless revision id (kind of post-chip-design feature. ;-)) 3237 */ 3238 if (np->device_id == PCI_ID_SYM53C875) 3239 OUTB (nc_ctest0, (1<<5)); 3240 else if (np->device_id == PCI_ID_SYM53C896) 3241 np->rv_ccntl0 |= DPR; 3242 3243 /* 3244 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3245 * and/or hardware phase mismatch, since only such chips 3246 * seem to support those IO registers. 3247 */ 3248 if (np->features & (FE_DAC|FE_NOPM)) { 3249 OUTB (nc_ccntl0, np->rv_ccntl0); 3250 OUTB (nc_ccntl1, np->rv_ccntl1); 3251 } 3252 3253 /* 3254 * If phase mismatch handled by scripts (895A/896/1010), 3255 * set PM jump addresses. 3256 */ 3257 if (np->features & FE_NOPM) { 3258 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3259 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3260 } 3261 3262 /* 3263 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3264 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3265 */ 3266 if (np->features & FE_LED0) 3267 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3268 else if (np->features & FE_LEDC) 3269 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3270 3271 /* 3272 * enable ints 3273 */ 3274 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3275 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3276 3277 /* 3278 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3279 * Try to eat the spurious SBMC interrupt that may occur when 3280 * we reset the chip but not the SCSI BUS (at initialization). 3281 */ 3282 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3283 OUTONW (nc_sien, SBMC); 3284 if (reason == 0) { 3285 MDELAY(100); 3286 INW (nc_sist); 3287 } 3288 np->scsi_mode = INB (nc_stest4) & SMODE; 3289 } 3290 3291 /* 3292 * Fill in target structure. 3293 * Reinitialize usrsync. 3294 * Reinitialize usrwide. 3295 * Prepare sync negotiation according to actual SCSI bus mode. 3296 */ 3297 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3298 tcb_p tp = &np->target[i]; 3299 3300 tp->to_reset = 0; 3301 tp->head.sval = 0; 3302 tp->head.wval = np->rv_scntl3; 3303 tp->head.uval = 0; 3304 3305 tp->tinfo.current.period = 0; 3306 tp->tinfo.current.offset = 0; 3307 tp->tinfo.current.width = BUS_8_BIT; 3308 tp->tinfo.current.options = 0; 3309 } 3310 3311 /* 3312 * Download SCSI SCRIPTS to on-chip RAM if present, 3313 * and start script processor. 3314 */ 3315 if (np->ram_ba) { 3316 if (sym_verbose > 1) 3317 printf ("%s: Downloading SCSI SCRIPTS.\n", 3318 sym_name(np)); 3319 if (np->ram_ws == 8192) { 3320 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3321 OUTL (nc_mmws, np->scr_ram_seg); 3322 OUTL (nc_mmrs, np->scr_ram_seg); 3323 OUTL (nc_sfs, np->scr_ram_seg); 3324 phys = SCRIPTB_BA (np, start64); 3325 } 3326 else 3327 phys = SCRIPTA_BA (np, init); 3328 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3329 } 3330 else 3331 phys = SCRIPTA_BA (np, init); 3332 3333 np->istat_sem = 0; 3334 3335 OUTL (nc_dsa, np->hcb_ba); 3336 OUTL_DSP (phys); 3337 3338 /* 3339 * Notify the XPT about the RESET condition. 3340 */ 3341 if (reason != 0) 3342 xpt_async(AC_BUS_RESET, np->path, NULL); 3343 } 3344 3345 /* 3346 * Get clock factor and sync divisor for a given 3347 * synchronous factor period. 3348 */ 3349 static int 3350 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3351 { 3352 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3353 int div = np->clock_divn; /* Number of divisors supported */ 3354 u32 fak; /* Sync factor in sxfer */ 3355 u32 per; /* Period in tenths of ns */ 3356 u32 kpc; /* (per * clk) */ 3357 int ret; 3358 3359 /* 3360 * Compute the synchronous period in tenths of nano-seconds 3361 */ 3362 if (dt && sfac <= 9) per = 125; 3363 else if (sfac <= 10) per = 250; 3364 else if (sfac == 11) per = 303; 3365 else if (sfac == 12) per = 500; 3366 else per = 40 * sfac; 3367 ret = per; 3368 3369 kpc = per * clk; 3370 if (dt) 3371 kpc <<= 1; 3372 3373 /* 3374 * For earliest C10 revision 0, we cannot use extra 3375 * clocks for the setting of the SCSI clocking. 3376 * Note that this limits the lowest sync data transfer 3377 * to 5 Mega-transfers per second and may result in 3378 * using higher clock divisors. 3379 */ 3380 #if 1 3381 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3382 /* 3383 * Look for the lowest clock divisor that allows an 3384 * output speed not faster than the period. 3385 */ 3386 while (div > 0) { 3387 --div; 3388 if (kpc > (div_10M[div] << 2)) { 3389 ++div; 3390 break; 3391 } 3392 } 3393 fak = 0; /* No extra clocks */ 3394 if (div == np->clock_divn) { /* Are we too fast ? */ 3395 ret = -1; 3396 } 3397 *divp = div; 3398 *fakp = fak; 3399 return ret; 3400 } 3401 #endif 3402 3403 /* 3404 * Look for the greatest clock divisor that allows an 3405 * input speed faster than the period. 3406 */ 3407 while (div-- > 0) 3408 if (kpc >= (div_10M[div] << 2)) break; 3409 3410 /* 3411 * Calculate the lowest clock factor that allows an output 3412 * speed not faster than the period, and the max output speed. 3413 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3414 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3415 */ 3416 if (dt) { 3417 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3418 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3419 } 3420 else { 3421 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3422 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3423 } 3424 3425 /* 3426 * Check against our hardware limits, or bugs :). 3427 */ 3428 if (fak < 0) {fak = 0; ret = -1;} 3429 if (fak > 2) {fak = 2; ret = -1;} 3430 3431 /* 3432 * Compute and return sync parameters. 3433 */ 3434 *divp = div; 3435 *fakp = fak; 3436 3437 return ret; 3438 } 3439 3440 /* 3441 * Tell the SCSI layer about the new transfer parameters. 3442 */ 3443 static void 3444 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3445 { 3446 struct ccb_trans_settings cts; 3447 struct cam_path *path; 3448 int sts; 3449 tcb_p tp = &np->target[target]; 3450 3451 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3452 CAM_LUN_WILDCARD); 3453 if (sts != CAM_REQ_CMP) 3454 return; 3455 3456 bzero(&cts, sizeof(cts)); 3457 3458 #define cts__scsi (cts.proto_specific.scsi) 3459 #define cts__spi (cts.xport_specific.spi) 3460 3461 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3462 cts.protocol = PROTO_SCSI; 3463 cts.transport = XPORT_SPI; 3464 cts.protocol_version = tp->tinfo.current.scsi_version; 3465 cts.transport_version = tp->tinfo.current.spi_version; 3466 3467 cts__spi.valid = spi_valid; 3468 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3469 cts__spi.sync_period = tp->tinfo.current.period; 3470 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3471 cts__spi.sync_offset = tp->tinfo.current.offset; 3472 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3473 cts__spi.bus_width = tp->tinfo.current.width; 3474 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3475 cts__spi.ppr_options = tp->tinfo.current.options; 3476 #undef cts__spi 3477 #undef cts__scsi 3478 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3479 xpt_async(AC_TRANSFER_NEG, path, &cts); 3480 xpt_free_path(path); 3481 } 3482 3483 #define SYM_SPI_VALID_WDTR \ 3484 CTS_SPI_VALID_BUS_WIDTH | \ 3485 CTS_SPI_VALID_SYNC_RATE | \ 3486 CTS_SPI_VALID_SYNC_OFFSET 3487 #define SYM_SPI_VALID_SDTR \ 3488 CTS_SPI_VALID_SYNC_RATE | \ 3489 CTS_SPI_VALID_SYNC_OFFSET 3490 #define SYM_SPI_VALID_PPR \ 3491 CTS_SPI_VALID_PPR_OPTIONS | \ 3492 CTS_SPI_VALID_BUS_WIDTH | \ 3493 CTS_SPI_VALID_SYNC_RATE | \ 3494 CTS_SPI_VALID_SYNC_OFFSET 3495 3496 /* 3497 * We received a WDTR. 3498 * Let everything be aware of the changes. 3499 */ 3500 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3501 { 3502 tcb_p tp = &np->target[cp->target]; 3503 3504 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3505 3506 /* 3507 * Tell the SCSI layer about the new transfer parameters. 3508 */ 3509 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3510 tp->tinfo.current.offset = 0; 3511 tp->tinfo.current.period = 0; 3512 tp->tinfo.current.options = 0; 3513 3514 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3515 } 3516 3517 /* 3518 * We received a SDTR. 3519 * Let everything be aware of the changes. 3520 */ 3521 static void 3522 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3523 { 3524 tcb_p tp = &np->target[cp->target]; 3525 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3526 3527 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3528 3529 /* 3530 * Tell the SCSI layer about the new transfer parameters. 3531 */ 3532 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3533 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3534 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3535 3536 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3537 } 3538 3539 /* 3540 * We received a PPR. 3541 * Let everything be aware of the changes. 3542 */ 3543 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3544 u_char per, u_char wide, u_char div, u_char fak) 3545 { 3546 tcb_p tp = &np->target[cp->target]; 3547 3548 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3549 3550 /* 3551 * Tell the SCSI layer about the new transfer parameters. 3552 */ 3553 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3554 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3555 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3556 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3557 3558 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3559 } 3560 3561 /* 3562 * Switch trans mode for current job and it's target. 3563 */ 3564 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3565 u_char per, u_char wide, u_char div, u_char fak) 3566 { 3567 SYM_QUEHEAD *qp; 3568 union ccb *ccb; 3569 tcb_p tp; 3570 u_char target = INB (nc_sdid) & 0x0f; 3571 u_char sval, wval, uval; 3572 3573 assert (cp); 3574 if (!cp) return; 3575 ccb = cp->cam_ccb; 3576 assert (ccb); 3577 if (!ccb) return; 3578 assert (target == (cp->target & 0xf)); 3579 tp = &np->target[target]; 3580 3581 sval = tp->head.sval; 3582 wval = tp->head.wval; 3583 uval = tp->head.uval; 3584 3585 #if 0 3586 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3587 sval, wval, uval, np->rv_scntl3); 3588 #endif 3589 /* 3590 * Set the offset. 3591 */ 3592 if (!(np->features & FE_C10)) 3593 sval = (sval & ~0x1f) | ofs; 3594 else 3595 sval = (sval & ~0x3f) | ofs; 3596 3597 /* 3598 * Set the sync divisor and extra clock factor. 3599 */ 3600 if (ofs != 0) { 3601 wval = (wval & ~0x70) | ((div+1) << 4); 3602 if (!(np->features & FE_C10)) 3603 sval = (sval & ~0xe0) | (fak << 5); 3604 else { 3605 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3606 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3607 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3608 } 3609 } 3610 3611 /* 3612 * Set the bus width. 3613 */ 3614 wval = wval & ~EWS; 3615 if (wide != 0) 3616 wval |= EWS; 3617 3618 /* 3619 * Set misc. ultra enable bits. 3620 */ 3621 if (np->features & FE_C10) { 3622 uval = uval & ~(U3EN|AIPCKEN); 3623 if (dt) { 3624 assert(np->features & FE_U3EN); 3625 uval |= U3EN; 3626 } 3627 } 3628 else { 3629 wval = wval & ~ULTRA; 3630 if (per <= 12) wval |= ULTRA; 3631 } 3632 3633 /* 3634 * Stop there if sync parameters are unchanged. 3635 */ 3636 if (tp->head.sval == sval && 3637 tp->head.wval == wval && 3638 tp->head.uval == uval) 3639 return; 3640 tp->head.sval = sval; 3641 tp->head.wval = wval; 3642 tp->head.uval = uval; 3643 3644 /* 3645 * Disable extended Sreq/Sack filtering if per < 50. 3646 * Not supported on the C1010. 3647 */ 3648 if (per < 50 && !(np->features & FE_C10)) 3649 OUTOFFB (nc_stest2, EXT); 3650 3651 /* 3652 * set actual value and sync_status 3653 */ 3654 OUTB (nc_sxfer, tp->head.sval); 3655 OUTB (nc_scntl3, tp->head.wval); 3656 3657 if (np->features & FE_C10) { 3658 OUTB (nc_scntl4, tp->head.uval); 3659 } 3660 3661 /* 3662 * patch ALL busy ccbs of this target. 3663 */ 3664 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3665 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3666 if (cp->target != target) 3667 continue; 3668 cp->phys.select.sel_scntl3 = tp->head.wval; 3669 cp->phys.select.sel_sxfer = tp->head.sval; 3670 if (np->features & FE_C10) { 3671 cp->phys.select.sel_scntl4 = tp->head.uval; 3672 } 3673 } 3674 } 3675 3676 /* 3677 * log message for real hard errors 3678 * 3679 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3680 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3681 * 3682 * exception register: 3683 * ds: dstat 3684 * si: sist 3685 * 3686 * SCSI bus lines: 3687 * so: control lines as driven by chip. 3688 * si: control lines as seen by chip. 3689 * sd: scsi data lines as seen by chip. 3690 * 3691 * wide/fastmode: 3692 * sxfer: (see the manual) 3693 * scntl3: (see the manual) 3694 * 3695 * current script command: 3696 * dsp: script address (relative to start of script). 3697 * dbc: first word of script command. 3698 * 3699 * First 24 register of the chip: 3700 * r0..rf 3701 */ 3702 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3703 { 3704 u32 dsp; 3705 int script_ofs; 3706 int script_size; 3707 char *script_name; 3708 u_char *script_base; 3709 int i; 3710 3711 dsp = INL (nc_dsp); 3712 3713 if (dsp > np->scripta_ba && 3714 dsp <= np->scripta_ba + np->scripta_sz) { 3715 script_ofs = dsp - np->scripta_ba; 3716 script_size = np->scripta_sz; 3717 script_base = (u_char *) np->scripta0; 3718 script_name = "scripta"; 3719 } 3720 else if (np->scriptb_ba < dsp && 3721 dsp <= np->scriptb_ba + np->scriptb_sz) { 3722 script_ofs = dsp - np->scriptb_ba; 3723 script_size = np->scriptb_sz; 3724 script_base = (u_char *) np->scriptb0; 3725 script_name = "scriptb"; 3726 } else { 3727 script_ofs = dsp; 3728 script_size = 0; 3729 script_base = 0; 3730 script_name = "mem"; 3731 } 3732 3733 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3734 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3735 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3736 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3737 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3738 (unsigned)INL (nc_dbc)); 3739 3740 if (((script_ofs & 3) == 0) && 3741 (unsigned)script_ofs < script_size) { 3742 printf ("%s: script cmd = %08x\n", sym_name(np), 3743 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3744 } 3745 3746 printf ("%s: regdump:", sym_name(np)); 3747 for (i=0; i<24;i++) 3748 printf (" %02x", (unsigned)INB_OFF(i)); 3749 printf (".\n"); 3750 3751 /* 3752 * PCI BUS error, read the PCI ststus register. 3753 */ 3754 if (dstat & (MDPE|BF)) { 3755 u_short pci_sts; 3756 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3757 if (pci_sts & 0xf900) { 3758 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3759 printf("%s: PCI STATUS = 0x%04x\n", 3760 sym_name(np), pci_sts & 0xf900); 3761 } 3762 } 3763 } 3764 3765 /* 3766 * chip interrupt handler 3767 * 3768 * In normal situations, interrupt conditions occur one at 3769 * a time. But when something bad happens on the SCSI BUS, 3770 * the chip may raise several interrupt flags before 3771 * stopping and interrupting the CPU. The additionnal 3772 * interrupt flags are stacked in some extra registers 3773 * after the SIP and/or DIP flag has been raised in the 3774 * ISTAT. After the CPU has read the interrupt condition 3775 * flag from SIST or DSTAT, the chip unstacks the other 3776 * interrupt flags and sets the corresponding bits in 3777 * SIST or DSTAT. Since the chip starts stacking once the 3778 * SIP or DIP flag is set, there is a small window of time 3779 * where the stacking does not occur. 3780 * 3781 * Typically, multiple interrupt conditions may happen in 3782 * the following situations: 3783 * 3784 * - SCSI parity error + Phase mismatch (PAR|MA) 3785 * When a parity error is detected in input phase 3786 * and the device switches to msg-in phase inside a 3787 * block MOV. 3788 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3789 * When a stupid device does not want to handle the 3790 * recovery of an SCSI parity error. 3791 * - Some combinations of STO, PAR, UDC, ... 3792 * When using non compliant SCSI stuff, when user is 3793 * doing non compliant hot tampering on the BUS, when 3794 * something really bad happens to a device, etc ... 3795 * 3796 * The heuristic suggested by SYMBIOS to handle 3797 * multiple interrupts is to try unstacking all 3798 * interrupts conditions and to handle them on some 3799 * priority based on error severity. 3800 * This will work when the unstacking has been 3801 * successful, but we cannot be 100 % sure of that, 3802 * since the CPU may have been faster to unstack than 3803 * the chip is able to stack. Hmmm ... But it seems that 3804 * such a situation is very unlikely to happen. 3805 * 3806 * If this happen, for example STO caught by the CPU 3807 * then UDC happenning before the CPU have restarted 3808 * the SCRIPTS, the driver may wrongly complete the 3809 * same command on UDC, since the SCRIPTS didn't restart 3810 * and the DSA still points to the same command. 3811 * We avoid this situation by setting the DSA to an 3812 * invalid value when the CCB is completed and before 3813 * restarting the SCRIPTS. 3814 * 3815 * Another issue is that we need some section of our 3816 * recovery procedures to be somehow uninterruptible but 3817 * the SCRIPTS processor does not provides such a 3818 * feature. For this reason, we handle recovery preferently 3819 * from the C code and check against some SCRIPTS critical 3820 * sections from the C code. 3821 * 3822 * Hopefully, the interrupt handling of the driver is now 3823 * able to resist to weird BUS error conditions, but donnot 3824 * ask me for any guarantee that it will never fail. :-) 3825 * Use at your own decision and risk. 3826 */ 3827 static void sym_intr1 (hcb_p np) 3828 { 3829 u_char istat, istatc; 3830 u_char dstat; 3831 u_short sist; 3832 3833 SYM_LOCK_ASSERT(MA_OWNED); 3834 3835 /* 3836 * interrupt on the fly ? 3837 * 3838 * A `dummy read' is needed to ensure that the 3839 * clear of the INTF flag reaches the device 3840 * before the scanning of the DONE queue. 3841 */ 3842 istat = INB (nc_istat); 3843 if (istat & INTF) { 3844 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3845 istat = INB (nc_istat); /* DUMMY READ */ 3846 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3847 (void)sym_wakeup_done (np); 3848 }; 3849 3850 if (!(istat & (SIP|DIP))) 3851 return; 3852 3853 #if 0 /* We should never get this one */ 3854 if (istat & CABRT) 3855 OUTB (nc_istat, CABRT); 3856 #endif 3857 3858 /* 3859 * PAR and MA interrupts may occur at the same time, 3860 * and we need to know of both in order to handle 3861 * this situation properly. We try to unstack SCSI 3862 * interrupts for that reason. BTW, I dislike a LOT 3863 * such a loop inside the interrupt routine. 3864 * Even if DMA interrupt stacking is very unlikely to 3865 * happen, we also try unstacking these ones, since 3866 * this has no performance impact. 3867 */ 3868 sist = 0; 3869 dstat = 0; 3870 istatc = istat; 3871 do { 3872 if (istatc & SIP) 3873 sist |= INW (nc_sist); 3874 if (istatc & DIP) 3875 dstat |= INB (nc_dstat); 3876 istatc = INB (nc_istat); 3877 istat |= istatc; 3878 } while (istatc & (SIP|DIP)); 3879 3880 if (DEBUG_FLAGS & DEBUG_TINY) 3881 printf ("<%d|%x:%x|%x:%x>", 3882 (int)INB(nc_scr0), 3883 dstat,sist, 3884 (unsigned)INL(nc_dsp), 3885 (unsigned)INL(nc_dbc)); 3886 /* 3887 * On paper, a memory barrier may be needed here. 3888 * And since we are paranoid ... :) 3889 */ 3890 MEMORY_BARRIER(); 3891 3892 /* 3893 * First, interrupts we want to service cleanly. 3894 * 3895 * Phase mismatch (MA) is the most frequent interrupt 3896 * for chip earlier than the 896 and so we have to service 3897 * it as quickly as possible. 3898 * A SCSI parity error (PAR) may be combined with a phase 3899 * mismatch condition (MA). 3900 * Programmed interrupts (SIR) are used to call the C code 3901 * from SCRIPTS. 3902 * The single step interrupt (SSI) is not used in this 3903 * driver. 3904 */ 3905 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3906 !(dstat & (MDPE|BF|ABRT|IID))) { 3907 if (sist & PAR) sym_int_par (np, sist); 3908 else if (sist & MA) sym_int_ma (np); 3909 else if (dstat & SIR) sym_int_sir (np); 3910 else if (dstat & SSI) OUTONB_STD (); 3911 else goto unknown_int; 3912 return; 3913 }; 3914 3915 /* 3916 * Now, interrupts that donnot happen in normal 3917 * situations and that we may need to recover from. 3918 * 3919 * On SCSI RESET (RST), we reset everything. 3920 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3921 * active CCBs with RESET status, prepare all devices 3922 * for negotiating again and restart the SCRIPTS. 3923 * On STO and UDC, we complete the CCB with the corres- 3924 * ponding status and restart the SCRIPTS. 3925 */ 3926 if (sist & RST) { 3927 xpt_print_path(np->path); 3928 printf("SCSI BUS reset detected.\n"); 3929 sym_init (np, 1); 3930 return; 3931 }; 3932 3933 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3934 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3935 3936 if (!(sist & (GEN|HTH|SGE)) && 3937 !(dstat & (MDPE|BF|ABRT|IID))) { 3938 if (sist & SBMC) sym_int_sbmc (np); 3939 else if (sist & STO) sym_int_sto (np); 3940 else if (sist & UDC) sym_int_udc (np); 3941 else goto unknown_int; 3942 return; 3943 }; 3944 3945 /* 3946 * Now, interrupts we are not able to recover cleanly. 3947 * 3948 * Log message for hard errors. 3949 * Reset everything. 3950 */ 3951 3952 sym_log_hard_error(np, sist, dstat); 3953 3954 if ((sist & (GEN|HTH|SGE)) || 3955 (dstat & (MDPE|BF|ABRT|IID))) { 3956 sym_start_reset(np); 3957 return; 3958 }; 3959 3960 unknown_int: 3961 /* 3962 * We just miss the cause of the interrupt. :( 3963 * Print a message. The timeout will do the real work. 3964 */ 3965 printf( "%s: unknown interrupt(s) ignored, " 3966 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3967 sym_name(np), istat, dstat, sist); 3968 } 3969 3970 static void sym_intr(void *arg) 3971 { 3972 hcb_p np = arg; 3973 3974 SYM_LOCK(); 3975 3976 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3977 sym_intr1((hcb_p) arg); 3978 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3979 3980 SYM_UNLOCK(); 3981 } 3982 3983 static void sym_poll(struct cam_sim *sim) 3984 { 3985 sym_intr1(cam_sim_softc(sim)); 3986 } 3987 3988 /* 3989 * generic recovery from scsi interrupt 3990 * 3991 * The doc says that when the chip gets an SCSI interrupt, 3992 * it tries to stop in an orderly fashion, by completing 3993 * an instruction fetch that had started or by flushing 3994 * the DMA fifo for a write to memory that was executing. 3995 * Such a fashion is not enough to know if the instruction 3996 * that was just before the current DSP value has been 3997 * executed or not. 3998 * 3999 * There are some small SCRIPTS sections that deal with 4000 * the start queue and the done queue that may break any 4001 * assomption from the C code if we are interrupted 4002 * inside, so we reset if this happens. Btw, since these 4003 * SCRIPTS sections are executed while the SCRIPTS hasn't 4004 * started SCSI operations, it is very unlikely to happen. 4005 * 4006 * All the driver data structures are supposed to be 4007 * allocated from the same 4 GB memory window, so there 4008 * is a 1 to 1 relationship between DSA and driver data 4009 * structures. Since we are careful :) to invalidate the 4010 * DSA when we complete a command or when the SCRIPTS 4011 * pushes a DSA into a queue, we can trust it when it 4012 * points to a CCB. 4013 */ 4014 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4015 { 4016 u32 dsp = INL (nc_dsp); 4017 u32 dsa = INL (nc_dsa); 4018 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4019 4020 /* 4021 * If we haven't been interrupted inside the SCRIPTS 4022 * critical pathes, we can safely restart the SCRIPTS 4023 * and trust the DSA value if it matches a CCB. 4024 */ 4025 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4026 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4027 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4028 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4029 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4030 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4031 (!(dsp > SCRIPTA_BA (np, done) && 4032 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4033 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4034 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4035 /* 4036 * If we have a CCB, let the SCRIPTS call us back for 4037 * the handling of the error with SCRATCHA filled with 4038 * STARTPOS. This way, we will be able to freeze the 4039 * device queue and requeue awaiting IOs. 4040 */ 4041 if (cp) { 4042 cp->host_status = hsts; 4043 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4044 } 4045 /* 4046 * Otherwise just restart the SCRIPTS. 4047 */ 4048 else { 4049 OUTL (nc_dsa, 0xffffff); 4050 OUTL_DSP (SCRIPTA_BA (np, start)); 4051 } 4052 } 4053 else 4054 goto reset_all; 4055 4056 return; 4057 4058 reset_all: 4059 sym_start_reset(np); 4060 } 4061 4062 /* 4063 * chip exception handler for selection timeout 4064 */ 4065 static void sym_int_sto (hcb_p np) 4066 { 4067 u32 dsp = INL (nc_dsp); 4068 4069 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4070 4071 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4072 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4073 else 4074 sym_start_reset(np); 4075 } 4076 4077 /* 4078 * chip exception handler for unexpected disconnect 4079 */ 4080 static void sym_int_udc (hcb_p np) 4081 { 4082 printf ("%s: unexpected disconnect\n", sym_name(np)); 4083 sym_recover_scsi_int(np, HS_UNEXPECTED); 4084 } 4085 4086 /* 4087 * chip exception handler for SCSI bus mode change 4088 * 4089 * spi2-r12 11.2.3 says a transceiver mode change must 4090 * generate a reset event and a device that detects a reset 4091 * event shall initiate a hard reset. It says also that a 4092 * device that detects a mode change shall set data transfer 4093 * mode to eight bit asynchronous, etc... 4094 * So, just reinitializing all except chip should be enough. 4095 */ 4096 static void sym_int_sbmc (hcb_p np) 4097 { 4098 u_char scsi_mode = INB (nc_stest4) & SMODE; 4099 4100 /* 4101 * Notify user. 4102 */ 4103 xpt_print_path(np->path); 4104 printf("SCSI BUS mode change from %s to %s.\n", 4105 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4106 4107 /* 4108 * Should suspend command processing for a few seconds and 4109 * reinitialize all except the chip. 4110 */ 4111 sym_init (np, 2); 4112 } 4113 4114 /* 4115 * chip exception handler for SCSI parity error. 4116 * 4117 * When the chip detects a SCSI parity error and is 4118 * currently executing a (CH)MOV instruction, it does 4119 * not interrupt immediately, but tries to finish the 4120 * transfer of the current scatter entry before 4121 * interrupting. The following situations may occur: 4122 * 4123 * - The complete scatter entry has been transferred 4124 * without the device having changed phase. 4125 * The chip will then interrupt with the DSP pointing 4126 * to the instruction that follows the MOV. 4127 * 4128 * - A phase mismatch occurs before the MOV finished 4129 * and phase errors are to be handled by the C code. 4130 * The chip will then interrupt with both PAR and MA 4131 * conditions set. 4132 * 4133 * - A phase mismatch occurs before the MOV finished and 4134 * phase errors are to be handled by SCRIPTS. 4135 * The chip will load the DSP with the phase mismatch 4136 * JUMP address and interrupt the host processor. 4137 */ 4138 static void sym_int_par (hcb_p np, u_short sist) 4139 { 4140 u_char hsts = INB (HS_PRT); 4141 u32 dsp = INL (nc_dsp); 4142 u32 dbc = INL (nc_dbc); 4143 u32 dsa = INL (nc_dsa); 4144 u_char sbcl = INB (nc_sbcl); 4145 u_char cmd = dbc >> 24; 4146 int phase = cmd & 7; 4147 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4148 4149 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4150 sym_name(np), hsts, dbc, sbcl); 4151 4152 /* 4153 * Check that the chip is connected to the SCSI BUS. 4154 */ 4155 if (!(INB (nc_scntl1) & ISCON)) { 4156 sym_recover_scsi_int(np, HS_UNEXPECTED); 4157 return; 4158 } 4159 4160 /* 4161 * If the nexus is not clearly identified, reset the bus. 4162 * We will try to do better later. 4163 */ 4164 if (!cp) 4165 goto reset_all; 4166 4167 /* 4168 * Check instruction was a MOV, direction was INPUT and 4169 * ATN is asserted. 4170 */ 4171 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4172 goto reset_all; 4173 4174 /* 4175 * Keep track of the parity error. 4176 */ 4177 OUTONB (HF_PRT, HF_EXT_ERR); 4178 cp->xerr_status |= XE_PARITY_ERR; 4179 4180 /* 4181 * Prepare the message to send to the device. 4182 */ 4183 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4184 4185 /* 4186 * If the old phase was DATA IN phase, we have to deal with 4187 * the 3 situations described above. 4188 * For other input phases (MSG IN and STATUS), the device 4189 * must resend the whole thing that failed parity checking 4190 * or signal error. So, jumping to dispatcher should be OK. 4191 */ 4192 if (phase == 1 || phase == 5) { 4193 /* Phase mismatch handled by SCRIPTS */ 4194 if (dsp == SCRIPTB_BA (np, pm_handle)) 4195 OUTL_DSP (dsp); 4196 /* Phase mismatch handled by the C code */ 4197 else if (sist & MA) 4198 sym_int_ma (np); 4199 /* No phase mismatch occurred */ 4200 else { 4201 OUTL (nc_temp, dsp); 4202 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4203 } 4204 } 4205 else 4206 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4207 return; 4208 4209 reset_all: 4210 sym_start_reset(np); 4211 } 4212 4213 /* 4214 * chip exception handler for phase errors. 4215 * 4216 * We have to construct a new transfer descriptor, 4217 * to transfer the rest of the current block. 4218 */ 4219 static void sym_int_ma (hcb_p np) 4220 { 4221 u32 dbc; 4222 u32 rest; 4223 u32 dsp; 4224 u32 dsa; 4225 u32 nxtdsp; 4226 u32 *vdsp; 4227 u32 oadr, olen; 4228 u32 *tblp; 4229 u32 newcmd; 4230 u_int delta; 4231 u_char cmd; 4232 u_char hflags, hflags0; 4233 struct sym_pmc *pm; 4234 ccb_p cp; 4235 4236 dsp = INL (nc_dsp); 4237 dbc = INL (nc_dbc); 4238 dsa = INL (nc_dsa); 4239 4240 cmd = dbc >> 24; 4241 rest = dbc & 0xffffff; 4242 delta = 0; 4243 4244 /* 4245 * locate matching cp if any. 4246 */ 4247 cp = sym_ccb_from_dsa(np, dsa); 4248 4249 /* 4250 * Donnot take into account dma fifo and various buffers in 4251 * INPUT phase since the chip flushes everything before 4252 * raising the MA interrupt for interrupted INPUT phases. 4253 * For DATA IN phase, we will check for the SWIDE later. 4254 */ 4255 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4256 u_char ss0, ss2; 4257 4258 if (np->features & FE_DFBC) 4259 delta = INW (nc_dfbc); 4260 else { 4261 u32 dfifo; 4262 4263 /* 4264 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4265 */ 4266 dfifo = INL(nc_dfifo); 4267 4268 /* 4269 * Calculate remaining bytes in DMA fifo. 4270 * (CTEST5 = dfifo >> 16) 4271 */ 4272 if (dfifo & (DFS << 16)) 4273 delta = ((((dfifo >> 8) & 0x300) | 4274 (dfifo & 0xff)) - rest) & 0x3ff; 4275 else 4276 delta = ((dfifo & 0xff) - rest) & 0x7f; 4277 } 4278 4279 /* 4280 * The data in the dma fifo has not been transferred to 4281 * the target -> add the amount to the rest 4282 * and clear the data. 4283 * Check the sstat2 register in case of wide transfer. 4284 */ 4285 rest += delta; 4286 ss0 = INB (nc_sstat0); 4287 if (ss0 & OLF) rest++; 4288 if (!(np->features & FE_C10)) 4289 if (ss0 & ORF) rest++; 4290 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4291 ss2 = INB (nc_sstat2); 4292 if (ss2 & OLF1) rest++; 4293 if (!(np->features & FE_C10)) 4294 if (ss2 & ORF1) rest++; 4295 }; 4296 4297 /* 4298 * Clear fifos. 4299 */ 4300 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4301 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4302 } 4303 4304 /* 4305 * log the information 4306 */ 4307 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4308 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4309 (unsigned) rest, (unsigned) delta); 4310 4311 /* 4312 * try to find the interrupted script command, 4313 * and the address at which to continue. 4314 */ 4315 vdsp = 0; 4316 nxtdsp = 0; 4317 if (dsp > np->scripta_ba && 4318 dsp <= np->scripta_ba + np->scripta_sz) { 4319 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4320 nxtdsp = dsp; 4321 } 4322 else if (dsp > np->scriptb_ba && 4323 dsp <= np->scriptb_ba + np->scriptb_sz) { 4324 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4325 nxtdsp = dsp; 4326 } 4327 4328 /* 4329 * log the information 4330 */ 4331 if (DEBUG_FLAGS & DEBUG_PHASE) { 4332 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4333 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4334 }; 4335 4336 if (!vdsp) { 4337 printf ("%s: interrupted SCRIPT address not found.\n", 4338 sym_name (np)); 4339 goto reset_all; 4340 } 4341 4342 if (!cp) { 4343 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4344 sym_name (np)); 4345 goto reset_all; 4346 } 4347 4348 /* 4349 * get old startaddress and old length. 4350 */ 4351 oadr = scr_to_cpu(vdsp[1]); 4352 4353 if (cmd & 0x10) { /* Table indirect */ 4354 tblp = (u32 *) ((char*) &cp->phys + oadr); 4355 olen = scr_to_cpu(tblp[0]); 4356 oadr = scr_to_cpu(tblp[1]); 4357 } else { 4358 tblp = (u32 *) 0; 4359 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4360 }; 4361 4362 if (DEBUG_FLAGS & DEBUG_PHASE) { 4363 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4364 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4365 tblp, 4366 (unsigned) olen, 4367 (unsigned) oadr); 4368 }; 4369 4370 /* 4371 * check cmd against assumed interrupted script command. 4372 * If dt data phase, the MOVE instruction hasn't bit 4 of 4373 * the phase. 4374 */ 4375 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4376 PRINT_ADDR(cp); 4377 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4378 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4379 4380 goto reset_all; 4381 }; 4382 4383 /* 4384 * if old phase not dataphase, leave here. 4385 */ 4386 if (cmd & 2) { 4387 PRINT_ADDR(cp); 4388 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4389 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4390 (unsigned)oadr, (unsigned)rest); 4391 goto unexpected_phase; 4392 }; 4393 4394 /* 4395 * Choose the correct PM save area. 4396 * 4397 * Look at the PM_SAVE SCRIPT if you want to understand 4398 * this stuff. The equivalent code is implemented in 4399 * SCRIPTS for the 895A, 896 and 1010 that are able to 4400 * handle PM from the SCRIPTS processor. 4401 */ 4402 hflags0 = INB (HF_PRT); 4403 hflags = hflags0; 4404 4405 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4406 if (hflags & HF_IN_PM0) 4407 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4408 else if (hflags & HF_IN_PM1) 4409 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4410 4411 if (hflags & HF_DP_SAVED) 4412 hflags ^= HF_ACT_PM; 4413 } 4414 4415 if (!(hflags & HF_ACT_PM)) { 4416 pm = &cp->phys.pm0; 4417 newcmd = SCRIPTA_BA (np, pm0_data); 4418 } 4419 else { 4420 pm = &cp->phys.pm1; 4421 newcmd = SCRIPTA_BA (np, pm1_data); 4422 } 4423 4424 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4425 if (hflags != hflags0) 4426 OUTB (HF_PRT, hflags); 4427 4428 /* 4429 * fillin the phase mismatch context 4430 */ 4431 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4432 pm->sg.size = cpu_to_scr(rest); 4433 pm->ret = cpu_to_scr(nxtdsp); 4434 4435 /* 4436 * If we have a SWIDE, 4437 * - prepare the address to write the SWIDE from SCRIPTS, 4438 * - compute the SCRIPTS address to restart from, 4439 * - move current data pointer context by one byte. 4440 */ 4441 nxtdsp = SCRIPTA_BA (np, dispatch); 4442 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4443 (INB (nc_scntl2) & WSR)) { 4444 u32 tmp; 4445 4446 /* 4447 * Set up the table indirect for the MOVE 4448 * of the residual byte and adjust the data 4449 * pointer context. 4450 */ 4451 tmp = scr_to_cpu(pm->sg.addr); 4452 cp->phys.wresid.addr = cpu_to_scr(tmp); 4453 pm->sg.addr = cpu_to_scr(tmp + 1); 4454 tmp = scr_to_cpu(pm->sg.size); 4455 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4456 pm->sg.size = cpu_to_scr(tmp - 1); 4457 4458 /* 4459 * If only the residual byte is to be moved, 4460 * no PM context is needed. 4461 */ 4462 if ((tmp&0xffffff) == 1) 4463 newcmd = pm->ret; 4464 4465 /* 4466 * Prepare the address of SCRIPTS that will 4467 * move the residual byte to memory. 4468 */ 4469 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4470 } 4471 4472 if (DEBUG_FLAGS & DEBUG_PHASE) { 4473 PRINT_ADDR(cp); 4474 printf ("PM %x %x %x / %x %x %x.\n", 4475 hflags0, hflags, newcmd, 4476 (unsigned)scr_to_cpu(pm->sg.addr), 4477 (unsigned)scr_to_cpu(pm->sg.size), 4478 (unsigned)scr_to_cpu(pm->ret)); 4479 } 4480 4481 /* 4482 * Restart the SCRIPTS processor. 4483 */ 4484 OUTL (nc_temp, newcmd); 4485 OUTL_DSP (nxtdsp); 4486 return; 4487 4488 /* 4489 * Unexpected phase changes that occurs when the current phase 4490 * is not a DATA IN or DATA OUT phase are due to error conditions. 4491 * Such event may only happen when the SCRIPTS is using a 4492 * multibyte SCSI MOVE. 4493 * 4494 * Phase change Some possible cause 4495 * 4496 * COMMAND --> MSG IN SCSI parity error detected by target. 4497 * COMMAND --> STATUS Bad command or refused by target. 4498 * MSG OUT --> MSG IN Message rejected by target. 4499 * MSG OUT --> COMMAND Bogus target that discards extended 4500 * negotiation messages. 4501 * 4502 * The code below does not care of the new phase and so 4503 * trusts the target. Why to annoy it ? 4504 * If the interrupted phase is COMMAND phase, we restart at 4505 * dispatcher. 4506 * If a target does not get all the messages after selection, 4507 * the code assumes blindly that the target discards extended 4508 * messages and clears the negotiation status. 4509 * If the target does not want all our response to negotiation, 4510 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4511 * bloat for such a should_not_happen situation). 4512 * In all other situation, we reset the BUS. 4513 * Are these assumptions reasonnable ? (Wait and see ...) 4514 */ 4515 unexpected_phase: 4516 dsp -= 8; 4517 nxtdsp = 0; 4518 4519 switch (cmd & 7) { 4520 case 2: /* COMMAND phase */ 4521 nxtdsp = SCRIPTA_BA (np, dispatch); 4522 break; 4523 #if 0 4524 case 3: /* STATUS phase */ 4525 nxtdsp = SCRIPTA_BA (np, dispatch); 4526 break; 4527 #endif 4528 case 6: /* MSG OUT phase */ 4529 /* 4530 * If the device may want to use untagged when we want 4531 * tagged, we prepare an IDENTIFY without disc. granted, 4532 * since we will not be able to handle reselect. 4533 * Otherwise, we just don't care. 4534 */ 4535 if (dsp == SCRIPTA_BA (np, send_ident)) { 4536 if (cp->tag != NO_TAG && olen - rest <= 3) { 4537 cp->host_status = HS_BUSY; 4538 np->msgout[0] = M_IDENTIFY | cp->lun; 4539 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4540 } 4541 else 4542 nxtdsp = SCRIPTB_BA (np, ident_break); 4543 } 4544 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4545 dsp == SCRIPTB_BA (np, send_sdtr) || 4546 dsp == SCRIPTB_BA (np, send_ppr)) { 4547 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4548 } 4549 break; 4550 #if 0 4551 case 7: /* MSG IN phase */ 4552 nxtdsp = SCRIPTA_BA (np, clrack); 4553 break; 4554 #endif 4555 } 4556 4557 if (nxtdsp) { 4558 OUTL_DSP (nxtdsp); 4559 return; 4560 } 4561 4562 reset_all: 4563 sym_start_reset(np); 4564 } 4565 4566 /* 4567 * Dequeue from the START queue all CCBs that match 4568 * a given target/lun/task condition (-1 means all), 4569 * and move them from the BUSY queue to the COMP queue 4570 * with CAM_REQUEUE_REQ status condition. 4571 * This function is used during error handling/recovery. 4572 * It is called with SCRIPTS not running. 4573 */ 4574 static int 4575 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4576 { 4577 int j; 4578 ccb_p cp; 4579 4580 /* 4581 * Make sure the starting index is within range. 4582 */ 4583 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4584 4585 /* 4586 * Walk until end of START queue and dequeue every job 4587 * that matches the target/lun/task condition. 4588 */ 4589 j = i; 4590 while (i != np->squeueput) { 4591 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4592 assert(cp); 4593 #ifdef SYM_CONF_IARB_SUPPORT 4594 /* Forget hints for IARB, they may be no longer relevant */ 4595 cp->host_flags &= ~HF_HINT_IARB; 4596 #endif 4597 if ((target == -1 || cp->target == target) && 4598 (lun == -1 || cp->lun == lun) && 4599 (task == -1 || cp->tag == task)) { 4600 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4601 sym_remque(&cp->link_ccbq); 4602 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4603 } 4604 else { 4605 if (i != j) 4606 np->squeue[j] = np->squeue[i]; 4607 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4608 } 4609 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4610 } 4611 if (i != j) /* Copy back the idle task if needed */ 4612 np->squeue[j] = np->squeue[i]; 4613 np->squeueput = j; /* Update our current start queue pointer */ 4614 4615 return (i - j) / 2; 4616 } 4617 4618 /* 4619 * Complete all CCBs queued to the COMP queue. 4620 * 4621 * These CCBs are assumed: 4622 * - Not to be referenced either by devices or 4623 * SCRIPTS-related queues and datas. 4624 * - To have to be completed with an error condition 4625 * or requeued. 4626 * 4627 * The device queue freeze count is incremented 4628 * for each CCB that does not prevent this. 4629 * This function is called when all CCBs involved 4630 * in error handling/recovery have been reaped. 4631 */ 4632 static void 4633 sym_flush_comp_queue(hcb_p np, int cam_status) 4634 { 4635 SYM_QUEHEAD *qp; 4636 ccb_p cp; 4637 4638 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4639 union ccb *ccb; 4640 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4641 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4642 /* Leave quiet CCBs waiting for resources */ 4643 if (cp->host_status == HS_WAIT) 4644 continue; 4645 ccb = cp->cam_ccb; 4646 if (cam_status) 4647 sym_set_cam_status(ccb, cam_status); 4648 sym_freeze_cam_ccb(ccb); 4649 sym_xpt_done(np, ccb, cp); 4650 sym_free_ccb(np, cp); 4651 } 4652 } 4653 4654 /* 4655 * chip handler for bad SCSI status condition 4656 * 4657 * In case of bad SCSI status, we unqueue all the tasks 4658 * currently queued to the controller but not yet started 4659 * and then restart the SCRIPTS processor immediately. 4660 * 4661 * QUEUE FULL and BUSY conditions are handled the same way. 4662 * Basically all the not yet started tasks are requeued in 4663 * device queue and the queue is frozen until a completion. 4664 * 4665 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4666 * the CCB of the failed command to prepare a REQUEST SENSE 4667 * SCSI command and queue it to the controller queue. 4668 * 4669 * SCRATCHA is assumed to have been loaded with STARTPOS 4670 * before the SCRIPTS called the C code. 4671 */ 4672 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4673 { 4674 tcb_p tp = &np->target[cp->target]; 4675 u32 startp; 4676 u_char s_status = cp->ssss_status; 4677 u_char h_flags = cp->host_flags; 4678 int msglen; 4679 int nego; 4680 int i; 4681 4682 SYM_LOCK_ASSERT(MA_OWNED); 4683 4684 /* 4685 * Compute the index of the next job to start from SCRIPTS. 4686 */ 4687 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4688 4689 /* 4690 * The last CCB queued used for IARB hint may be 4691 * no longer relevant. Forget it. 4692 */ 4693 #ifdef SYM_CONF_IARB_SUPPORT 4694 if (np->last_cp) 4695 np->last_cp = NULL; 4696 #endif 4697 4698 /* 4699 * Now deal with the SCSI status. 4700 */ 4701 switch(s_status) { 4702 case S_BUSY: 4703 case S_QUEUE_FULL: 4704 if (sym_verbose >= 2) { 4705 PRINT_ADDR(cp); 4706 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4707 } 4708 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4709 sym_complete_error (np, cp); 4710 break; 4711 case S_TERMINATED: 4712 case S_CHECK_COND: 4713 /* 4714 * If we get an SCSI error when requesting sense, give up. 4715 */ 4716 if (h_flags & HF_SENSE) { 4717 sym_complete_error (np, cp); 4718 break; 4719 } 4720 4721 /* 4722 * Dequeue all queued CCBs for that device not yet started, 4723 * and restart the SCRIPTS processor immediately. 4724 */ 4725 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4726 OUTL_DSP (SCRIPTA_BA (np, start)); 4727 4728 /* 4729 * Save some info of the actual IO. 4730 * Compute the data residual. 4731 */ 4732 cp->sv_scsi_status = cp->ssss_status; 4733 cp->sv_xerr_status = cp->xerr_status; 4734 cp->sv_resid = sym_compute_residual(np, cp); 4735 4736 /* 4737 * Prepare all needed data structures for 4738 * requesting sense data. 4739 */ 4740 4741 /* 4742 * identify message 4743 */ 4744 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4745 msglen = 1; 4746 4747 /* 4748 * If we are currently using anything different from 4749 * async. 8 bit data transfers with that target, 4750 * start a negotiation, since the device may want 4751 * to report us a UNIT ATTENTION condition due to 4752 * a cause we currently ignore, and we donnot want 4753 * to be stuck with WIDE and/or SYNC data transfer. 4754 * 4755 * cp->nego_status is filled by sym_prepare_nego(). 4756 */ 4757 cp->nego_status = 0; 4758 nego = 0; 4759 if (tp->tinfo.current.options & PPR_OPT_MASK) 4760 nego = NS_PPR; 4761 else if (tp->tinfo.current.width != BUS_8_BIT) 4762 nego = NS_WIDE; 4763 else if (tp->tinfo.current.offset != 0) 4764 nego = NS_SYNC; 4765 if (nego) 4766 msglen += 4767 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4768 /* 4769 * Message table indirect structure. 4770 */ 4771 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4772 cp->phys.smsg.size = cpu_to_scr(msglen); 4773 4774 /* 4775 * sense command 4776 */ 4777 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4778 cp->phys.cmd.size = cpu_to_scr(6); 4779 4780 /* 4781 * patch requested size into sense command 4782 */ 4783 cp->sensecmd[0] = 0x03; 4784 cp->sensecmd[1] = cp->lun << 5; 4785 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4786 cp->sensecmd[1] = 0; 4787 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4788 cp->data_len = SYM_SNS_BBUF_LEN; 4789 4790 /* 4791 * sense data 4792 */ 4793 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4794 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4795 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4796 4797 /* 4798 * requeue the command. 4799 */ 4800 startp = SCRIPTB_BA (np, sdata_in); 4801 4802 cp->phys.head.savep = cpu_to_scr(startp); 4803 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4804 cp->phys.head.lastp = cpu_to_scr(startp); 4805 cp->startp = cpu_to_scr(startp); 4806 4807 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4808 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4809 cp->ssss_status = S_ILLEGAL; 4810 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4811 cp->xerr_status = 0; 4812 cp->extra_bytes = 0; 4813 4814 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4815 4816 /* 4817 * Requeue the command. 4818 */ 4819 sym_put_start_queue(np, cp); 4820 4821 /* 4822 * Give back to upper layer everything we have dequeued. 4823 */ 4824 sym_flush_comp_queue(np, 0); 4825 break; 4826 } 4827 } 4828 4829 /* 4830 * After a device has accepted some management message 4831 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4832 * a device signals a UNIT ATTENTION condition, some 4833 * tasks are thrown away by the device. We are required 4834 * to reflect that on our tasks list since the device 4835 * will never complete these tasks. 4836 * 4837 * This function move from the BUSY queue to the COMP 4838 * queue all disconnected CCBs for a given target that 4839 * match the following criteria: 4840 * - lun=-1 means any logical UNIT otherwise a given one. 4841 * - task=-1 means any task, otherwise a given one. 4842 */ 4843 static int 4844 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4845 { 4846 SYM_QUEHEAD qtmp, *qp; 4847 int i = 0; 4848 ccb_p cp; 4849 4850 /* 4851 * Move the entire BUSY queue to our temporary queue. 4852 */ 4853 sym_que_init(&qtmp); 4854 sym_que_splice(&np->busy_ccbq, &qtmp); 4855 sym_que_init(&np->busy_ccbq); 4856 4857 /* 4858 * Put all CCBs that matches our criteria into 4859 * the COMP queue and put back other ones into 4860 * the BUSY queue. 4861 */ 4862 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4863 union ccb *ccb; 4864 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4865 ccb = cp->cam_ccb; 4866 if (cp->host_status != HS_DISCONNECT || 4867 cp->target != target || 4868 (lun != -1 && cp->lun != lun) || 4869 (task != -1 && 4870 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4871 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4872 continue; 4873 } 4874 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4875 4876 /* Preserve the software timeout condition */ 4877 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4878 sym_set_cam_status(ccb, cam_status); 4879 ++i; 4880 #if 0 4881 printf("XXXX TASK @%p CLEARED\n", cp); 4882 #endif 4883 } 4884 return i; 4885 } 4886 4887 /* 4888 * chip handler for TASKS recovery 4889 * 4890 * We cannot safely abort a command, while the SCRIPTS 4891 * processor is running, since we just would be in race 4892 * with it. 4893 * 4894 * As long as we have tasks to abort, we keep the SEM 4895 * bit set in the ISTAT. When this bit is set, the 4896 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4897 * each time it enters the scheduler. 4898 * 4899 * If we have to reset a target, clear tasks of a unit, 4900 * or to perform the abort of a disconnected job, we 4901 * restart the SCRIPTS for selecting the target. Once 4902 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4903 * If it loses arbitration, the SCRIPTS will interrupt again 4904 * the next time it will enter its scheduler, and so on ... 4905 * 4906 * On SIR_TARGET_SELECTED, we scan for the more 4907 * appropriate thing to do: 4908 * 4909 * - If nothing, we just sent a M_ABORT message to the 4910 * target to get rid of the useless SCSI bus ownership. 4911 * According to the specs, no tasks shall be affected. 4912 * - If the target is to be reset, we send it a M_RESET 4913 * message. 4914 * - If a logical UNIT is to be cleared , we send the 4915 * IDENTIFY(lun) + M_ABORT. 4916 * - If an untagged task is to be aborted, we send the 4917 * IDENTIFY(lun) + M_ABORT. 4918 * - If a tagged task is to be aborted, we send the 4919 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4920 * 4921 * Once our 'kiss of death' :) message has been accepted 4922 * by the target, the SCRIPTS interrupts again 4923 * (SIR_ABORT_SENT). On this interrupt, we complete 4924 * all the CCBs that should have been aborted by the 4925 * target according to our message. 4926 */ 4927 static void sym_sir_task_recovery(hcb_p np, int num) 4928 { 4929 SYM_QUEHEAD *qp; 4930 ccb_p cp; 4931 tcb_p tp; 4932 int target=-1, lun=-1, task; 4933 int i, k; 4934 4935 switch(num) { 4936 /* 4937 * The SCRIPTS processor stopped before starting 4938 * the next command in order to allow us to perform 4939 * some task recovery. 4940 */ 4941 case SIR_SCRIPT_STOPPED: 4942 /* 4943 * Do we have any target to reset or unit to clear ? 4944 */ 4945 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4946 tp = &np->target[i]; 4947 if (tp->to_reset || 4948 (tp->lun0p && tp->lun0p->to_clear)) { 4949 target = i; 4950 break; 4951 } 4952 if (!tp->lunmp) 4953 continue; 4954 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4955 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4956 target = i; 4957 break; 4958 } 4959 } 4960 if (target != -1) 4961 break; 4962 } 4963 4964 /* 4965 * If not, walk the busy queue for any 4966 * disconnected CCB to be aborted. 4967 */ 4968 if (target == -1) { 4969 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4970 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4971 if (cp->host_status != HS_DISCONNECT) 4972 continue; 4973 if (cp->to_abort) { 4974 target = cp->target; 4975 break; 4976 } 4977 } 4978 } 4979 4980 /* 4981 * If some target is to be selected, 4982 * prepare and start the selection. 4983 */ 4984 if (target != -1) { 4985 tp = &np->target[target]; 4986 np->abrt_sel.sel_id = target; 4987 np->abrt_sel.sel_scntl3 = tp->head.wval; 4988 np->abrt_sel.sel_sxfer = tp->head.sval; 4989 OUTL(nc_dsa, np->hcb_ba); 4990 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 4991 return; 4992 } 4993 4994 /* 4995 * Now look for a CCB to abort that haven't started yet. 4996 * Btw, the SCRIPTS processor is still stopped, so 4997 * we are not in race. 4998 */ 4999 i = 0; 5000 cp = NULL; 5001 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5002 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5003 if (cp->host_status != HS_BUSY && 5004 cp->host_status != HS_NEGOTIATE) 5005 continue; 5006 if (!cp->to_abort) 5007 continue; 5008 #ifdef SYM_CONF_IARB_SUPPORT 5009 /* 5010 * If we are using IMMEDIATE ARBITRATION, we donnot 5011 * want to cancel the last queued CCB, since the 5012 * SCRIPTS may have anticipated the selection. 5013 */ 5014 if (cp == np->last_cp) { 5015 cp->to_abort = 0; 5016 continue; 5017 } 5018 #endif 5019 i = 1; /* Means we have found some */ 5020 break; 5021 } 5022 if (!i) { 5023 /* 5024 * We are done, so we donnot need 5025 * to synchronize with the SCRIPTS anylonger. 5026 * Remove the SEM flag from the ISTAT. 5027 */ 5028 np->istat_sem = 0; 5029 OUTB (nc_istat, SIGP); 5030 break; 5031 } 5032 /* 5033 * Compute index of next position in the start 5034 * queue the SCRIPTS intends to start and dequeue 5035 * all CCBs for that device that haven't been started. 5036 */ 5037 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5038 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5039 5040 /* 5041 * Make sure at least our IO to abort has been dequeued. 5042 */ 5043 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5044 5045 /* 5046 * Keep track in cam status of the reason of the abort. 5047 */ 5048 if (cp->to_abort == 2) 5049 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5050 else 5051 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5052 5053 /* 5054 * Complete with error everything that we have dequeued. 5055 */ 5056 sym_flush_comp_queue(np, 0); 5057 break; 5058 /* 5059 * The SCRIPTS processor has selected a target 5060 * we may have some manual recovery to perform for. 5061 */ 5062 case SIR_TARGET_SELECTED: 5063 target = (INB (nc_sdid) & 0xf); 5064 tp = &np->target[target]; 5065 5066 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5067 5068 /* 5069 * If the target is to be reset, prepare a 5070 * M_RESET message and clear the to_reset flag 5071 * since we donnot expect this operation to fail. 5072 */ 5073 if (tp->to_reset) { 5074 np->abrt_msg[0] = M_RESET; 5075 np->abrt_tbl.size = 1; 5076 tp->to_reset = 0; 5077 break; 5078 } 5079 5080 /* 5081 * Otherwise, look for some logical unit to be cleared. 5082 */ 5083 if (tp->lun0p && tp->lun0p->to_clear) 5084 lun = 0; 5085 else if (tp->lunmp) { 5086 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5087 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5088 lun = k; 5089 break; 5090 } 5091 } 5092 } 5093 5094 /* 5095 * If a logical unit is to be cleared, prepare 5096 * an IDENTIFY(lun) + ABORT MESSAGE. 5097 */ 5098 if (lun != -1) { 5099 lcb_p lp = sym_lp(np, tp, lun); 5100 lp->to_clear = 0; /* We donnot expect to fail here */ 5101 np->abrt_msg[0] = M_IDENTIFY | lun; 5102 np->abrt_msg[1] = M_ABORT; 5103 np->abrt_tbl.size = 2; 5104 break; 5105 } 5106 5107 /* 5108 * Otherwise, look for some disconnected job to 5109 * abort for this target. 5110 */ 5111 i = 0; 5112 cp = NULL; 5113 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5114 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5115 if (cp->host_status != HS_DISCONNECT) 5116 continue; 5117 if (cp->target != target) 5118 continue; 5119 if (!cp->to_abort) 5120 continue; 5121 i = 1; /* Means we have some */ 5122 break; 5123 } 5124 5125 /* 5126 * If we have none, probably since the device has 5127 * completed the command before we won abitration, 5128 * send a M_ABORT message without IDENTIFY. 5129 * According to the specs, the device must just 5130 * disconnect the BUS and not abort any task. 5131 */ 5132 if (!i) { 5133 np->abrt_msg[0] = M_ABORT; 5134 np->abrt_tbl.size = 1; 5135 break; 5136 } 5137 5138 /* 5139 * We have some task to abort. 5140 * Set the IDENTIFY(lun) 5141 */ 5142 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5143 5144 /* 5145 * If we want to abort an untagged command, we 5146 * will send an IDENTIFY + M_ABORT. 5147 * Otherwise (tagged command), we will send 5148 * an IDENTIFY + task attributes + ABORT TAG. 5149 */ 5150 if (cp->tag == NO_TAG) { 5151 np->abrt_msg[1] = M_ABORT; 5152 np->abrt_tbl.size = 2; 5153 } 5154 else { 5155 np->abrt_msg[1] = cp->scsi_smsg[1]; 5156 np->abrt_msg[2] = cp->scsi_smsg[2]; 5157 np->abrt_msg[3] = M_ABORT_TAG; 5158 np->abrt_tbl.size = 4; 5159 } 5160 /* 5161 * Keep track of software timeout condition, since the 5162 * peripheral driver may not count retries on abort 5163 * conditions not due to timeout. 5164 */ 5165 if (cp->to_abort == 2) 5166 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5167 cp->to_abort = 0; /* We donnot expect to fail here */ 5168 break; 5169 5170 /* 5171 * The target has accepted our message and switched 5172 * to BUS FREE phase as we expected. 5173 */ 5174 case SIR_ABORT_SENT: 5175 target = (INB (nc_sdid) & 0xf); 5176 tp = &np->target[target]; 5177 5178 /* 5179 ** If we didn't abort anything, leave here. 5180 */ 5181 if (np->abrt_msg[0] == M_ABORT) 5182 break; 5183 5184 /* 5185 * If we sent a M_RESET, then a hardware reset has 5186 * been performed by the target. 5187 * - Reset everything to async 8 bit 5188 * - Tell ourself to negotiate next time :-) 5189 * - Prepare to clear all disconnected CCBs for 5190 * this target from our task list (lun=task=-1) 5191 */ 5192 lun = -1; 5193 task = -1; 5194 if (np->abrt_msg[0] == M_RESET) { 5195 tp->head.sval = 0; 5196 tp->head.wval = np->rv_scntl3; 5197 tp->head.uval = 0; 5198 tp->tinfo.current.period = 0; 5199 tp->tinfo.current.offset = 0; 5200 tp->tinfo.current.width = BUS_8_BIT; 5201 tp->tinfo.current.options = 0; 5202 } 5203 5204 /* 5205 * Otherwise, check for the LUN and TASK(s) 5206 * concerned by the cancelation. 5207 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5208 * or an ABORT message :-) 5209 */ 5210 else { 5211 lun = np->abrt_msg[0] & 0x3f; 5212 if (np->abrt_msg[1] == M_ABORT_TAG) 5213 task = np->abrt_msg[2]; 5214 } 5215 5216 /* 5217 * Complete all the CCBs the device should have 5218 * aborted due to our 'kiss of death' message. 5219 */ 5220 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5221 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5222 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5223 sym_flush_comp_queue(np, 0); 5224 5225 /* 5226 * If we sent a BDR, make uper layer aware of that. 5227 */ 5228 if (np->abrt_msg[0] == M_RESET) 5229 xpt_async(AC_SENT_BDR, np->path, NULL); 5230 break; 5231 } 5232 5233 /* 5234 * Print to the log the message we intend to send. 5235 */ 5236 if (num == SIR_TARGET_SELECTED) { 5237 PRINT_TARGET(np, target); 5238 sym_printl_hex("control msgout:", np->abrt_msg, 5239 np->abrt_tbl.size); 5240 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5241 } 5242 5243 /* 5244 * Let the SCRIPTS processor continue. 5245 */ 5246 OUTONB_STD (); 5247 } 5248 5249 /* 5250 * Gerard's alchemy:) that deals with with the data 5251 * pointer for both MDP and the residual calculation. 5252 * 5253 * I didn't want to bloat the code by more than 200 5254 * lignes for the handling of both MDP and the residual. 5255 * This has been achieved by using a data pointer 5256 * representation consisting in an index in the data 5257 * array (dp_sg) and a negative offset (dp_ofs) that 5258 * have the following meaning: 5259 * 5260 * - dp_sg = SYM_CONF_MAX_SG 5261 * we are at the end of the data script. 5262 * - dp_sg < SYM_CONF_MAX_SG 5263 * dp_sg points to the next entry of the scatter array 5264 * we want to transfer. 5265 * - dp_ofs < 0 5266 * dp_ofs represents the residual of bytes of the 5267 * previous entry scatter entry we will send first. 5268 * - dp_ofs = 0 5269 * no residual to send first. 5270 * 5271 * The function sym_evaluate_dp() accepts an arbitray 5272 * offset (basically from the MDP message) and returns 5273 * the corresponding values of dp_sg and dp_ofs. 5274 */ 5275 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5276 { 5277 u32 dp_scr; 5278 int dp_ofs, dp_sg, dp_sgmin; 5279 int tmp; 5280 struct sym_pmc *pm; 5281 5282 /* 5283 * Compute the resulted data pointer in term of a script 5284 * address within some DATA script and a signed byte offset. 5285 */ 5286 dp_scr = scr; 5287 dp_ofs = *ofs; 5288 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5289 pm = &cp->phys.pm0; 5290 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5291 pm = &cp->phys.pm1; 5292 else 5293 pm = NULL; 5294 5295 if (pm) { 5296 dp_scr = scr_to_cpu(pm->ret); 5297 dp_ofs -= scr_to_cpu(pm->sg.size); 5298 } 5299 5300 /* 5301 * If we are auto-sensing, then we are done. 5302 */ 5303 if (cp->host_flags & HF_SENSE) { 5304 *ofs = dp_ofs; 5305 return 0; 5306 } 5307 5308 /* 5309 * Deduce the index of the sg entry. 5310 * Keep track of the index of the first valid entry. 5311 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5312 * end of the data. 5313 */ 5314 tmp = scr_to_cpu(cp->phys.head.goalp); 5315 dp_sg = SYM_CONF_MAX_SG; 5316 if (dp_scr != tmp) 5317 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5318 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5319 5320 /* 5321 * Move to the sg entry the data pointer belongs to. 5322 * 5323 * If we are inside the data area, we expect result to be: 5324 * 5325 * Either, 5326 * dp_ofs = 0 and dp_sg is the index of the sg entry 5327 * the data pointer belongs to (or the end of the data) 5328 * Or, 5329 * dp_ofs < 0 and dp_sg is the index of the sg entry 5330 * the data pointer belongs to + 1. 5331 */ 5332 if (dp_ofs < 0) { 5333 int n; 5334 while (dp_sg > dp_sgmin) { 5335 --dp_sg; 5336 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5337 n = dp_ofs + (tmp & 0xffffff); 5338 if (n > 0) { 5339 ++dp_sg; 5340 break; 5341 } 5342 dp_ofs = n; 5343 } 5344 } 5345 else if (dp_ofs > 0) { 5346 while (dp_sg < SYM_CONF_MAX_SG) { 5347 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5348 dp_ofs -= (tmp & 0xffffff); 5349 ++dp_sg; 5350 if (dp_ofs <= 0) 5351 break; 5352 } 5353 } 5354 5355 /* 5356 * Make sure the data pointer is inside the data area. 5357 * If not, return some error. 5358 */ 5359 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5360 goto out_err; 5361 else if (dp_sg > SYM_CONF_MAX_SG || 5362 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5363 goto out_err; 5364 5365 /* 5366 * Save the extreme pointer if needed. 5367 */ 5368 if (dp_sg > cp->ext_sg || 5369 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5370 cp->ext_sg = dp_sg; 5371 cp->ext_ofs = dp_ofs; 5372 } 5373 5374 /* 5375 * Return data. 5376 */ 5377 *ofs = dp_ofs; 5378 return dp_sg; 5379 5380 out_err: 5381 return -1; 5382 } 5383 5384 /* 5385 * chip handler for MODIFY DATA POINTER MESSAGE 5386 * 5387 * We also call this function on IGNORE WIDE RESIDUE 5388 * messages that do not match a SWIDE full condition. 5389 * Btw, we assume in that situation that such a message 5390 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5391 */ 5392 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5393 { 5394 int dp_ofs = ofs; 5395 u32 dp_scr = INL (nc_temp); 5396 u32 dp_ret; 5397 u32 tmp; 5398 u_char hflags; 5399 int dp_sg; 5400 struct sym_pmc *pm; 5401 5402 /* 5403 * Not supported for auto-sense. 5404 */ 5405 if (cp->host_flags & HF_SENSE) 5406 goto out_reject; 5407 5408 /* 5409 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5410 * to the resulted data pointer. 5411 */ 5412 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5413 if (dp_sg < 0) 5414 goto out_reject; 5415 5416 /* 5417 * And our alchemy:) allows to easily calculate the data 5418 * script address we want to return for the next data phase. 5419 */ 5420 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5421 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5422 5423 /* 5424 * If offset / scatter entry is zero we donnot need 5425 * a context for the new current data pointer. 5426 */ 5427 if (dp_ofs == 0) { 5428 dp_scr = dp_ret; 5429 goto out_ok; 5430 } 5431 5432 /* 5433 * Get a context for the new current data pointer. 5434 */ 5435 hflags = INB (HF_PRT); 5436 5437 if (hflags & HF_DP_SAVED) 5438 hflags ^= HF_ACT_PM; 5439 5440 if (!(hflags & HF_ACT_PM)) { 5441 pm = &cp->phys.pm0; 5442 dp_scr = SCRIPTA_BA (np, pm0_data); 5443 } 5444 else { 5445 pm = &cp->phys.pm1; 5446 dp_scr = SCRIPTA_BA (np, pm1_data); 5447 } 5448 5449 hflags &= ~(HF_DP_SAVED); 5450 5451 OUTB (HF_PRT, hflags); 5452 5453 /* 5454 * Set up the new current data pointer. 5455 * ofs < 0 there, and for the next data phase, we 5456 * want to transfer part of the data of the sg entry 5457 * corresponding to index dp_sg-1 prior to returning 5458 * to the main data script. 5459 */ 5460 pm->ret = cpu_to_scr(dp_ret); 5461 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5462 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5463 pm->sg.addr = cpu_to_scr(tmp); 5464 pm->sg.size = cpu_to_scr(-dp_ofs); 5465 5466 out_ok: 5467 OUTL (nc_temp, dp_scr); 5468 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5469 return; 5470 5471 out_reject: 5472 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5473 } 5474 5475 /* 5476 * chip calculation of the data residual. 5477 * 5478 * As I used to say, the requirement of data residual 5479 * in SCSI is broken, useless and cannot be achieved 5480 * without huge complexity. 5481 * But most OSes and even the official CAM require it. 5482 * When stupidity happens to be so widely spread inside 5483 * a community, it gets hard to convince. 5484 * 5485 * Anyway, I don't care, since I am not going to use 5486 * any software that considers this data residual as 5487 * a relevant information. :) 5488 */ 5489 static int sym_compute_residual(hcb_p np, ccb_p cp) 5490 { 5491 int dp_sg, dp_sgmin, resid = 0; 5492 int dp_ofs = 0; 5493 5494 /* 5495 * Check for some data lost or just thrown away. 5496 * We are not required to be quite accurate in this 5497 * situation. Btw, if we are odd for output and the 5498 * device claims some more data, it may well happen 5499 * than our residual be zero. :-) 5500 */ 5501 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5502 if (cp->xerr_status & XE_EXTRA_DATA) 5503 resid -= cp->extra_bytes; 5504 if (cp->xerr_status & XE_SODL_UNRUN) 5505 ++resid; 5506 if (cp->xerr_status & XE_SWIDE_OVRUN) 5507 --resid; 5508 } 5509 5510 /* 5511 * If all data has been transferred, 5512 * there is no residual. 5513 */ 5514 if (cp->phys.head.lastp == cp->phys.head.goalp) 5515 return resid; 5516 5517 /* 5518 * If no data transfer occurs, or if the data 5519 * pointer is weird, return full residual. 5520 */ 5521 if (cp->startp == cp->phys.head.lastp || 5522 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5523 &dp_ofs) < 0) { 5524 return cp->data_len; 5525 } 5526 5527 /* 5528 * If we were auto-sensing, then we are done. 5529 */ 5530 if (cp->host_flags & HF_SENSE) { 5531 return -dp_ofs; 5532 } 5533 5534 /* 5535 * We are now full comfortable in the computation 5536 * of the data residual (2's complement). 5537 */ 5538 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5539 resid = -cp->ext_ofs; 5540 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5541 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5542 resid += (tmp & 0xffffff); 5543 } 5544 5545 /* 5546 * Hopefully, the result is not too wrong. 5547 */ 5548 return resid; 5549 } 5550 5551 /* 5552 * Print out the content of a SCSI message. 5553 */ 5554 static int sym_show_msg (u_char * msg) 5555 { 5556 u_char i; 5557 printf ("%x",*msg); 5558 if (*msg==M_EXTENDED) { 5559 for (i=1;i<8;i++) { 5560 if (i-1>msg[1]) break; 5561 printf ("-%x",msg[i]); 5562 }; 5563 return (i+1); 5564 } else if ((*msg & 0xf0) == 0x20) { 5565 printf ("-%x",msg[1]); 5566 return (2); 5567 }; 5568 return (1); 5569 } 5570 5571 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5572 { 5573 PRINT_ADDR(cp); 5574 if (label) 5575 printf ("%s: ", label); 5576 5577 (void) sym_show_msg (msg); 5578 printf (".\n"); 5579 } 5580 5581 /* 5582 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5583 * 5584 * When we try to negotiate, we append the negotiation message 5585 * to the identify and (maybe) simple tag message. 5586 * The host status field is set to HS_NEGOTIATE to mark this 5587 * situation. 5588 * 5589 * If the target doesn't answer this message immediately 5590 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5591 * will be raised eventually. 5592 * The handler removes the HS_NEGOTIATE status, and sets the 5593 * negotiated value to the default (async / nowide). 5594 * 5595 * If we receive a matching answer immediately, we check it 5596 * for validity, and set the values. 5597 * 5598 * If we receive a Reject message immediately, we assume the 5599 * negotiation has failed, and fall back to standard values. 5600 * 5601 * If we receive a negotiation message while not in HS_NEGOTIATE 5602 * state, it's a target initiated negotiation. We prepare a 5603 * (hopefully) valid answer, set our parameters, and send back 5604 * this answer to the target. 5605 * 5606 * If the target doesn't fetch the answer (no message out phase), 5607 * we assume the negotiation has failed, and fall back to default 5608 * settings (SIR_NEGO_PROTO interrupt). 5609 * 5610 * When we set the values, we adjust them in all ccbs belonging 5611 * to this target, in the controller's register, and in the "phys" 5612 * field of the controller's struct sym_hcb. 5613 */ 5614 5615 /* 5616 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5617 */ 5618 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5619 { 5620 u_char chg, ofs, per, fak, div; 5621 int req = 1; 5622 5623 /* 5624 * Synchronous request message received. 5625 */ 5626 if (DEBUG_FLAGS & DEBUG_NEGO) { 5627 sym_print_msg(cp, "sync msgin", np->msgin); 5628 }; 5629 5630 /* 5631 * request or answer ? 5632 */ 5633 if (INB (HS_PRT) == HS_NEGOTIATE) { 5634 OUTB (HS_PRT, HS_BUSY); 5635 if (cp->nego_status && cp->nego_status != NS_SYNC) 5636 goto reject_it; 5637 req = 0; 5638 } 5639 5640 /* 5641 * get requested values. 5642 */ 5643 chg = 0; 5644 per = np->msgin[3]; 5645 ofs = np->msgin[4]; 5646 5647 /* 5648 * check values against our limits. 5649 */ 5650 if (ofs) { 5651 if (ofs > np->maxoffs) 5652 {chg = 1; ofs = np->maxoffs;} 5653 if (req) { 5654 if (ofs > tp->tinfo.user.offset) 5655 {chg = 1; ofs = tp->tinfo.user.offset;} 5656 } 5657 } 5658 5659 if (ofs) { 5660 if (per < np->minsync) 5661 {chg = 1; per = np->minsync;} 5662 if (req) { 5663 if (per < tp->tinfo.user.period) 5664 {chg = 1; per = tp->tinfo.user.period;} 5665 } 5666 } 5667 5668 div = fak = 0; 5669 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5670 goto reject_it; 5671 5672 if (DEBUG_FLAGS & DEBUG_NEGO) { 5673 PRINT_ADDR(cp); 5674 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5675 ofs, per, div, fak, chg); 5676 } 5677 5678 /* 5679 * This was an answer message 5680 */ 5681 if (req == 0) { 5682 if (chg) /* Answer wasn't acceptable. */ 5683 goto reject_it; 5684 sym_setsync (np, cp, ofs, per, div, fak); 5685 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5686 return; 5687 } 5688 5689 /* 5690 * It was a request. Set value and 5691 * prepare an answer message 5692 */ 5693 sym_setsync (np, cp, ofs, per, div, fak); 5694 5695 np->msgout[0] = M_EXTENDED; 5696 np->msgout[1] = 3; 5697 np->msgout[2] = M_X_SYNC_REQ; 5698 np->msgout[3] = per; 5699 np->msgout[4] = ofs; 5700 5701 cp->nego_status = NS_SYNC; 5702 5703 if (DEBUG_FLAGS & DEBUG_NEGO) { 5704 sym_print_msg(cp, "sync msgout", np->msgout); 5705 } 5706 5707 np->msgin [0] = M_NOOP; 5708 5709 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5710 return; 5711 reject_it: 5712 sym_setsync (np, cp, 0, 0, 0, 0); 5713 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5714 } 5715 5716 /* 5717 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5718 */ 5719 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5720 { 5721 u_char chg, ofs, per, fak, dt, div, wide; 5722 int req = 1; 5723 5724 /* 5725 * Synchronous request message received. 5726 */ 5727 if (DEBUG_FLAGS & DEBUG_NEGO) { 5728 sym_print_msg(cp, "ppr msgin", np->msgin); 5729 }; 5730 5731 /* 5732 * get requested values. 5733 */ 5734 chg = 0; 5735 per = np->msgin[3]; 5736 ofs = np->msgin[5]; 5737 wide = np->msgin[6]; 5738 dt = np->msgin[7] & PPR_OPT_DT; 5739 5740 /* 5741 * request or answer ? 5742 */ 5743 if (INB (HS_PRT) == HS_NEGOTIATE) { 5744 OUTB (HS_PRT, HS_BUSY); 5745 if (cp->nego_status && cp->nego_status != NS_PPR) 5746 goto reject_it; 5747 req = 0; 5748 } 5749 5750 /* 5751 * check values against our limits. 5752 */ 5753 if (wide > np->maxwide) 5754 {chg = 1; wide = np->maxwide;} 5755 if (!wide || !(np->features & FE_ULTRA3)) 5756 dt &= ~PPR_OPT_DT; 5757 if (req) { 5758 if (wide > tp->tinfo.user.width) 5759 {chg = 1; wide = tp->tinfo.user.width;} 5760 } 5761 5762 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5763 dt &= ~PPR_OPT_DT; 5764 5765 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5766 5767 if (ofs) { 5768 if (dt) { 5769 if (ofs > np->maxoffs_dt) 5770 {chg = 1; ofs = np->maxoffs_dt;} 5771 } 5772 else if (ofs > np->maxoffs) 5773 {chg = 1; ofs = np->maxoffs;} 5774 if (req) { 5775 if (ofs > tp->tinfo.user.offset) 5776 {chg = 1; ofs = tp->tinfo.user.offset;} 5777 } 5778 } 5779 5780 if (ofs) { 5781 if (dt) { 5782 if (per < np->minsync_dt) 5783 {chg = 1; per = np->minsync_dt;} 5784 } 5785 else if (per < np->minsync) 5786 {chg = 1; per = np->minsync;} 5787 if (req) { 5788 if (per < tp->tinfo.user.period) 5789 {chg = 1; per = tp->tinfo.user.period;} 5790 } 5791 } 5792 5793 div = fak = 0; 5794 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5795 goto reject_it; 5796 5797 if (DEBUG_FLAGS & DEBUG_NEGO) { 5798 PRINT_ADDR(cp); 5799 printf ("ppr: " 5800 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5801 dt, ofs, per, wide, div, fak, chg); 5802 } 5803 5804 /* 5805 * It was an answer. 5806 */ 5807 if (req == 0) { 5808 if (chg) /* Answer wasn't acceptable */ 5809 goto reject_it; 5810 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5811 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5812 return; 5813 } 5814 5815 /* 5816 * It was a request. Set value and 5817 * prepare an answer message 5818 */ 5819 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5820 5821 np->msgout[0] = M_EXTENDED; 5822 np->msgout[1] = 6; 5823 np->msgout[2] = M_X_PPR_REQ; 5824 np->msgout[3] = per; 5825 np->msgout[4] = 0; 5826 np->msgout[5] = ofs; 5827 np->msgout[6] = wide; 5828 np->msgout[7] = dt; 5829 5830 cp->nego_status = NS_PPR; 5831 5832 if (DEBUG_FLAGS & DEBUG_NEGO) { 5833 sym_print_msg(cp, "ppr msgout", np->msgout); 5834 } 5835 5836 np->msgin [0] = M_NOOP; 5837 5838 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5839 return; 5840 reject_it: 5841 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5842 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5843 /* 5844 * If it was a device response that should result in 5845 * ST, we may want to try a legacy negotiation later. 5846 */ 5847 if (!req && !dt) { 5848 tp->tinfo.goal.options = 0; 5849 tp->tinfo.goal.width = wide; 5850 tp->tinfo.goal.period = per; 5851 tp->tinfo.goal.offset = ofs; 5852 } 5853 } 5854 5855 /* 5856 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5857 */ 5858 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5859 { 5860 u_char chg, wide; 5861 int req = 1; 5862 5863 /* 5864 * Wide request message received. 5865 */ 5866 if (DEBUG_FLAGS & DEBUG_NEGO) { 5867 sym_print_msg(cp, "wide msgin", np->msgin); 5868 }; 5869 5870 /* 5871 * Is it a request from the device? 5872 */ 5873 if (INB (HS_PRT) == HS_NEGOTIATE) { 5874 OUTB (HS_PRT, HS_BUSY); 5875 if (cp->nego_status && cp->nego_status != NS_WIDE) 5876 goto reject_it; 5877 req = 0; 5878 } 5879 5880 /* 5881 * get requested values. 5882 */ 5883 chg = 0; 5884 wide = np->msgin[3]; 5885 5886 /* 5887 * check values against driver limits. 5888 */ 5889 if (wide > np->maxwide) 5890 {chg = 1; wide = np->maxwide;} 5891 if (req) { 5892 if (wide > tp->tinfo.user.width) 5893 {chg = 1; wide = tp->tinfo.user.width;} 5894 } 5895 5896 if (DEBUG_FLAGS & DEBUG_NEGO) { 5897 PRINT_ADDR(cp); 5898 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5899 } 5900 5901 /* 5902 * This was an answer message 5903 */ 5904 if (req == 0) { 5905 if (chg) /* Answer wasn't acceptable. */ 5906 goto reject_it; 5907 sym_setwide (np, cp, wide); 5908 5909 /* 5910 * Negotiate for SYNC immediately after WIDE response. 5911 * This allows to negotiate for both WIDE and SYNC on 5912 * a single SCSI command (Suggested by Justin Gibbs). 5913 */ 5914 if (tp->tinfo.goal.offset) { 5915 np->msgout[0] = M_EXTENDED; 5916 np->msgout[1] = 3; 5917 np->msgout[2] = M_X_SYNC_REQ; 5918 np->msgout[3] = tp->tinfo.goal.period; 5919 np->msgout[4] = tp->tinfo.goal.offset; 5920 5921 if (DEBUG_FLAGS & DEBUG_NEGO) { 5922 sym_print_msg(cp, "sync msgout", np->msgout); 5923 } 5924 5925 cp->nego_status = NS_SYNC; 5926 OUTB (HS_PRT, HS_NEGOTIATE); 5927 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5928 return; 5929 } 5930 5931 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5932 return; 5933 }; 5934 5935 /* 5936 * It was a request, set value and 5937 * prepare an answer message 5938 */ 5939 sym_setwide (np, cp, wide); 5940 5941 np->msgout[0] = M_EXTENDED; 5942 np->msgout[1] = 2; 5943 np->msgout[2] = M_X_WIDE_REQ; 5944 np->msgout[3] = wide; 5945 5946 np->msgin [0] = M_NOOP; 5947 5948 cp->nego_status = NS_WIDE; 5949 5950 if (DEBUG_FLAGS & DEBUG_NEGO) { 5951 sym_print_msg(cp, "wide msgout", np->msgout); 5952 } 5953 5954 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5955 return; 5956 reject_it: 5957 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5958 } 5959 5960 /* 5961 * Reset SYNC or WIDE to default settings. 5962 * 5963 * Called when a negotiation does not succeed either 5964 * on rejection or on protocol error. 5965 * 5966 * If it was a PPR that made problems, we may want to 5967 * try a legacy negotiation later. 5968 */ 5969 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5970 { 5971 /* 5972 * any error in negotiation: 5973 * fall back to default mode. 5974 */ 5975 switch (cp->nego_status) { 5976 case NS_PPR: 5977 #if 0 5978 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5979 #else 5980 tp->tinfo.goal.options = 0; 5981 if (tp->tinfo.goal.period < np->minsync) 5982 tp->tinfo.goal.period = np->minsync; 5983 if (tp->tinfo.goal.offset > np->maxoffs) 5984 tp->tinfo.goal.offset = np->maxoffs; 5985 #endif 5986 break; 5987 case NS_SYNC: 5988 sym_setsync (np, cp, 0, 0, 0, 0); 5989 break; 5990 case NS_WIDE: 5991 sym_setwide (np, cp, 0); 5992 break; 5993 }; 5994 np->msgin [0] = M_NOOP; 5995 np->msgout[0] = M_NOOP; 5996 cp->nego_status = 0; 5997 } 5998 5999 /* 6000 * chip handler for MESSAGE REJECT received in response to 6001 * a WIDE or SYNCHRONOUS negotiation. 6002 */ 6003 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6004 { 6005 sym_nego_default(np, tp, cp); 6006 OUTB (HS_PRT, HS_BUSY); 6007 } 6008 6009 /* 6010 * chip exception handler for programmed interrupts. 6011 */ 6012 static void sym_int_sir (hcb_p np) 6013 { 6014 u_char num = INB (nc_dsps); 6015 u32 dsa = INL (nc_dsa); 6016 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6017 u_char target = INB (nc_sdid) & 0x0f; 6018 tcb_p tp = &np->target[target]; 6019 int tmp; 6020 6021 SYM_LOCK_ASSERT(MA_OWNED); 6022 6023 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6024 6025 switch (num) { 6026 /* 6027 * Command has been completed with error condition 6028 * or has been auto-sensed. 6029 */ 6030 case SIR_COMPLETE_ERROR: 6031 sym_complete_error(np, cp); 6032 return; 6033 /* 6034 * The C code is currently trying to recover from something. 6035 * Typically, user want to abort some command. 6036 */ 6037 case SIR_SCRIPT_STOPPED: 6038 case SIR_TARGET_SELECTED: 6039 case SIR_ABORT_SENT: 6040 sym_sir_task_recovery(np, num); 6041 return; 6042 /* 6043 * The device didn't go to MSG OUT phase after having 6044 * been selected with ATN. We donnot want to handle 6045 * that. 6046 */ 6047 case SIR_SEL_ATN_NO_MSG_OUT: 6048 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6049 sym_name (np), target); 6050 goto out_stuck; 6051 /* 6052 * The device didn't switch to MSG IN phase after 6053 * having reseleted the initiator. 6054 */ 6055 case SIR_RESEL_NO_MSG_IN: 6056 printf ("%s:%d: No MSG IN phase after reselection.\n", 6057 sym_name (np), target); 6058 goto out_stuck; 6059 /* 6060 * After reselection, the device sent a message that wasn't 6061 * an IDENTIFY. 6062 */ 6063 case SIR_RESEL_NO_IDENTIFY: 6064 printf ("%s:%d: No IDENTIFY after reselection.\n", 6065 sym_name (np), target); 6066 goto out_stuck; 6067 /* 6068 * The device reselected a LUN we donnot know about. 6069 */ 6070 case SIR_RESEL_BAD_LUN: 6071 np->msgout[0] = M_RESET; 6072 goto out; 6073 /* 6074 * The device reselected for an untagged nexus and we 6075 * haven't any. 6076 */ 6077 case SIR_RESEL_BAD_I_T_L: 6078 np->msgout[0] = M_ABORT; 6079 goto out; 6080 /* 6081 * The device reselected for a tagged nexus that we donnot 6082 * have. 6083 */ 6084 case SIR_RESEL_BAD_I_T_L_Q: 6085 np->msgout[0] = M_ABORT_TAG; 6086 goto out; 6087 /* 6088 * The SCRIPTS let us know that the device has grabbed 6089 * our message and will abort the job. 6090 */ 6091 case SIR_RESEL_ABORTED: 6092 np->lastmsg = np->msgout[0]; 6093 np->msgout[0] = M_NOOP; 6094 printf ("%s:%d: message %x sent on bad reselection.\n", 6095 sym_name (np), target, np->lastmsg); 6096 goto out; 6097 /* 6098 * The SCRIPTS let us know that a message has been 6099 * successfully sent to the device. 6100 */ 6101 case SIR_MSG_OUT_DONE: 6102 np->lastmsg = np->msgout[0]; 6103 np->msgout[0] = M_NOOP; 6104 /* Should we really care of that */ 6105 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6106 if (cp) { 6107 cp->xerr_status &= ~XE_PARITY_ERR; 6108 if (!cp->xerr_status) 6109 OUTOFFB (HF_PRT, HF_EXT_ERR); 6110 } 6111 } 6112 goto out; 6113 /* 6114 * The device didn't send a GOOD SCSI status. 6115 * We may have some work to do prior to allow 6116 * the SCRIPTS processor to continue. 6117 */ 6118 case SIR_BAD_SCSI_STATUS: 6119 if (!cp) 6120 goto out; 6121 sym_sir_bad_scsi_status(np, num, cp); 6122 return; 6123 /* 6124 * We are asked by the SCRIPTS to prepare a 6125 * REJECT message. 6126 */ 6127 case SIR_REJECT_TO_SEND: 6128 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6129 np->msgout[0] = M_REJECT; 6130 goto out; 6131 /* 6132 * We have been ODD at the end of a DATA IN 6133 * transfer and the device didn't send a 6134 * IGNORE WIDE RESIDUE message. 6135 * It is a data overrun condition. 6136 */ 6137 case SIR_SWIDE_OVERRUN: 6138 if (cp) { 6139 OUTONB (HF_PRT, HF_EXT_ERR); 6140 cp->xerr_status |= XE_SWIDE_OVRUN; 6141 } 6142 goto out; 6143 /* 6144 * We have been ODD at the end of a DATA OUT 6145 * transfer. 6146 * It is a data underrun condition. 6147 */ 6148 case SIR_SODL_UNDERRUN: 6149 if (cp) { 6150 OUTONB (HF_PRT, HF_EXT_ERR); 6151 cp->xerr_status |= XE_SODL_UNRUN; 6152 } 6153 goto out; 6154 /* 6155 * The device wants us to tranfer more data than 6156 * expected or in the wrong direction. 6157 * The number of extra bytes is in scratcha. 6158 * It is a data overrun condition. 6159 */ 6160 case SIR_DATA_OVERRUN: 6161 if (cp) { 6162 OUTONB (HF_PRT, HF_EXT_ERR); 6163 cp->xerr_status |= XE_EXTRA_DATA; 6164 cp->extra_bytes += INL (nc_scratcha); 6165 } 6166 goto out; 6167 /* 6168 * The device switched to an illegal phase (4/5). 6169 */ 6170 case SIR_BAD_PHASE: 6171 if (cp) { 6172 OUTONB (HF_PRT, HF_EXT_ERR); 6173 cp->xerr_status |= XE_BAD_PHASE; 6174 } 6175 goto out; 6176 /* 6177 * We received a message. 6178 */ 6179 case SIR_MSG_RECEIVED: 6180 if (!cp) 6181 goto out_stuck; 6182 switch (np->msgin [0]) { 6183 /* 6184 * We received an extended message. 6185 * We handle MODIFY DATA POINTER, SDTR, WDTR 6186 * and reject all other extended messages. 6187 */ 6188 case M_EXTENDED: 6189 switch (np->msgin [2]) { 6190 case M_X_MODIFY_DP: 6191 if (DEBUG_FLAGS & DEBUG_POINTER) 6192 sym_print_msg(cp,"modify DP",np->msgin); 6193 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6194 (np->msgin[5]<<8) + (np->msgin[6]); 6195 sym_modify_dp(np, tp, cp, tmp); 6196 return; 6197 case M_X_SYNC_REQ: 6198 sym_sync_nego(np, tp, cp); 6199 return; 6200 case M_X_PPR_REQ: 6201 sym_ppr_nego(np, tp, cp); 6202 return; 6203 case M_X_WIDE_REQ: 6204 sym_wide_nego(np, tp, cp); 6205 return; 6206 default: 6207 goto out_reject; 6208 } 6209 break; 6210 /* 6211 * We received a 1/2 byte message not handled from SCRIPTS. 6212 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6213 * RESIDUE messages that haven't been anticipated by 6214 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6215 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6216 */ 6217 case M_IGN_RESIDUE: 6218 if (DEBUG_FLAGS & DEBUG_POINTER) 6219 sym_print_msg(cp,"ign wide residue", np->msgin); 6220 sym_modify_dp(np, tp, cp, -1); 6221 return; 6222 case M_REJECT: 6223 if (INB (HS_PRT) == HS_NEGOTIATE) 6224 sym_nego_rejected(np, tp, cp); 6225 else { 6226 PRINT_ADDR(cp); 6227 printf ("M_REJECT received (%x:%x).\n", 6228 scr_to_cpu(np->lastmsg), np->msgout[0]); 6229 } 6230 goto out_clrack; 6231 break; 6232 default: 6233 goto out_reject; 6234 } 6235 break; 6236 /* 6237 * We received an unknown message. 6238 * Ignore all MSG IN phases and reject it. 6239 */ 6240 case SIR_MSG_WEIRD: 6241 sym_print_msg(cp, "WEIRD message received", np->msgin); 6242 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6243 return; 6244 /* 6245 * Negotiation failed. 6246 * Target does not send us the reply. 6247 * Remove the HS_NEGOTIATE status. 6248 */ 6249 case SIR_NEGO_FAILED: 6250 OUTB (HS_PRT, HS_BUSY); 6251 /* 6252 * Negotiation failed. 6253 * Target does not want answer message. 6254 */ 6255 case SIR_NEGO_PROTO: 6256 sym_nego_default(np, tp, cp); 6257 goto out; 6258 }; 6259 6260 out: 6261 OUTONB_STD (); 6262 return; 6263 out_reject: 6264 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6265 return; 6266 out_clrack: 6267 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6268 return; 6269 out_stuck: 6270 return; 6271 } 6272 6273 /* 6274 * Acquire a control block 6275 */ 6276 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6277 { 6278 tcb_p tp = &np->target[tn]; 6279 lcb_p lp = sym_lp(np, tp, ln); 6280 u_short tag = NO_TAG; 6281 SYM_QUEHEAD *qp; 6282 ccb_p cp = (ccb_p) NULL; 6283 6284 /* 6285 * Look for a free CCB 6286 */ 6287 if (sym_que_empty(&np->free_ccbq)) 6288 goto out; 6289 qp = sym_remque_head(&np->free_ccbq); 6290 if (!qp) 6291 goto out; 6292 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6293 6294 /* 6295 * If the LCB is not yet available and the LUN 6296 * has been probed ok, try to allocate the LCB. 6297 */ 6298 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6299 lp = sym_alloc_lcb(np, tn, ln); 6300 if (!lp) 6301 goto out_free; 6302 } 6303 6304 /* 6305 * If the LCB is not available here, then the 6306 * logical unit is not yet discovered. For those 6307 * ones only accept 1 SCSI IO per logical unit, 6308 * since we cannot allow disconnections. 6309 */ 6310 if (!lp) { 6311 if (!sym_is_bit(tp->busy0_map, ln)) 6312 sym_set_bit(tp->busy0_map, ln); 6313 else 6314 goto out_free; 6315 } else { 6316 /* 6317 * If we have been asked for a tagged command. 6318 */ 6319 if (tag_order) { 6320 /* 6321 * Debugging purpose. 6322 */ 6323 assert(lp->busy_itl == 0); 6324 /* 6325 * Allocate resources for tags if not yet. 6326 */ 6327 if (!lp->cb_tags) { 6328 sym_alloc_lcb_tags(np, tn, ln); 6329 if (!lp->cb_tags) 6330 goto out_free; 6331 } 6332 /* 6333 * Get a tag for this SCSI IO and set up 6334 * the CCB bus address for reselection, 6335 * and count it for this LUN. 6336 * Toggle reselect path to tagged. 6337 */ 6338 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6339 tag = lp->cb_tags[lp->ia_tag]; 6340 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6341 lp->ia_tag = 0; 6342 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6343 ++lp->busy_itlq; 6344 lp->head.resel_sa = 6345 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6346 } 6347 else 6348 goto out_free; 6349 } 6350 /* 6351 * This command will not be tagged. 6352 * If we already have either a tagged or untagged 6353 * one, refuse to overlap this untagged one. 6354 */ 6355 else { 6356 /* 6357 * Debugging purpose. 6358 */ 6359 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6360 /* 6361 * Count this nexus for this LUN. 6362 * Set up the CCB bus address for reselection. 6363 * Toggle reselect path to untagged. 6364 */ 6365 if (++lp->busy_itl == 1) { 6366 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6367 lp->head.resel_sa = 6368 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6369 } 6370 else 6371 goto out_free; 6372 } 6373 } 6374 /* 6375 * Put the CCB into the busy queue. 6376 */ 6377 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6378 6379 /* 6380 * Remember all informations needed to free this CCB. 6381 */ 6382 cp->to_abort = 0; 6383 cp->tag = tag; 6384 cp->target = tn; 6385 cp->lun = ln; 6386 6387 if (DEBUG_FLAGS & DEBUG_TAGS) { 6388 PRINT_LUN(np, tn, ln); 6389 printf ("ccb @%p using tag %d.\n", cp, tag); 6390 } 6391 6392 out: 6393 return cp; 6394 out_free: 6395 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6396 return NULL; 6397 } 6398 6399 /* 6400 * Release one control block 6401 */ 6402 static void sym_free_ccb (hcb_p np, ccb_p cp) 6403 { 6404 tcb_p tp = &np->target[cp->target]; 6405 lcb_p lp = sym_lp(np, tp, cp->lun); 6406 6407 if (DEBUG_FLAGS & DEBUG_TAGS) { 6408 PRINT_LUN(np, cp->target, cp->lun); 6409 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6410 } 6411 6412 /* 6413 * If LCB available, 6414 */ 6415 if (lp) { 6416 /* 6417 * If tagged, release the tag, set the relect path 6418 */ 6419 if (cp->tag != NO_TAG) { 6420 /* 6421 * Free the tag value. 6422 */ 6423 lp->cb_tags[lp->if_tag] = cp->tag; 6424 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6425 lp->if_tag = 0; 6426 /* 6427 * Make the reselect path invalid, 6428 * and uncount this CCB. 6429 */ 6430 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6431 --lp->busy_itlq; 6432 } else { /* Untagged */ 6433 /* 6434 * Make the reselect path invalid, 6435 * and uncount this CCB. 6436 */ 6437 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6438 --lp->busy_itl; 6439 } 6440 /* 6441 * If no JOB active, make the LUN reselect path invalid. 6442 */ 6443 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6444 lp->head.resel_sa = 6445 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6446 } 6447 /* 6448 * Otherwise, we only accept 1 IO per LUN. 6449 * Clear the bit that keeps track of this IO. 6450 */ 6451 else 6452 sym_clr_bit(tp->busy0_map, cp->lun); 6453 6454 /* 6455 * We donnot queue more than 1 ccb per target 6456 * with negotiation at any time. If this ccb was 6457 * used for negotiation, clear this info in the tcb. 6458 */ 6459 if (cp == tp->nego_cp) 6460 tp->nego_cp = NULL; 6461 6462 #ifdef SYM_CONF_IARB_SUPPORT 6463 /* 6464 * If we just complete the last queued CCB, 6465 * clear this info that is no longer relevant. 6466 */ 6467 if (cp == np->last_cp) 6468 np->last_cp = NULL; 6469 #endif 6470 6471 /* 6472 * Unmap user data from DMA map if needed. 6473 */ 6474 if (cp->dmamapped) { 6475 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6476 cp->dmamapped = 0; 6477 } 6478 6479 /* 6480 * Make this CCB available. 6481 */ 6482 cp->cam_ccb = NULL; 6483 cp->host_status = HS_IDLE; 6484 sym_remque(&cp->link_ccbq); 6485 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6486 } 6487 6488 /* 6489 * Allocate a CCB from memory and initialize its fixed part. 6490 */ 6491 static ccb_p sym_alloc_ccb(hcb_p np) 6492 { 6493 ccb_p cp = NULL; 6494 int hcode; 6495 6496 SYM_LOCK_ASSERT(MA_NOTOWNED); 6497 6498 /* 6499 * Prevent from allocating more CCBs than we can 6500 * queue to the controller. 6501 */ 6502 if (np->actccbs >= SYM_CONF_MAX_START) 6503 return NULL; 6504 6505 /* 6506 * Allocate memory for this CCB. 6507 */ 6508 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6509 if (!cp) 6510 return NULL; 6511 6512 /* 6513 * Allocate a bounce buffer for sense data. 6514 */ 6515 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6516 if (!cp->sns_bbuf) 6517 goto out_free; 6518 6519 /* 6520 * Allocate a map for the DMA of user data. 6521 */ 6522 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6523 goto out_free; 6524 /* 6525 * Count it. 6526 */ 6527 np->actccbs++; 6528 6529 /* 6530 * Initialize the callout. 6531 */ 6532 callout_init(&cp->ch, 1); 6533 6534 /* 6535 * Compute the bus address of this ccb. 6536 */ 6537 cp->ccb_ba = vtobus(cp); 6538 6539 /* 6540 * Insert this ccb into the hashed list. 6541 */ 6542 hcode = CCB_HASH_CODE(cp->ccb_ba); 6543 cp->link_ccbh = np->ccbh[hcode]; 6544 np->ccbh[hcode] = cp; 6545 6546 /* 6547 * Initialize the start and restart actions. 6548 */ 6549 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6550 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6551 6552 /* 6553 * Initilialyze some other fields. 6554 */ 6555 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6556 6557 /* 6558 * Chain into free ccb queue. 6559 */ 6560 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6561 6562 return cp; 6563 out_free: 6564 if (cp->sns_bbuf) 6565 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6566 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6567 return NULL; 6568 } 6569 6570 /* 6571 * Look up a CCB from a DSA value. 6572 */ 6573 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6574 { 6575 int hcode; 6576 ccb_p cp; 6577 6578 hcode = CCB_HASH_CODE(dsa); 6579 cp = np->ccbh[hcode]; 6580 while (cp) { 6581 if (cp->ccb_ba == dsa) 6582 break; 6583 cp = cp->link_ccbh; 6584 } 6585 6586 return cp; 6587 } 6588 6589 /* 6590 * Target control block initialisation. 6591 * Nothing important to do at the moment. 6592 */ 6593 static void sym_init_tcb (hcb_p np, u_char tn) 6594 { 6595 /* 6596 * Check some alignments required by the chip. 6597 */ 6598 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6599 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6600 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6601 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6602 } 6603 6604 /* 6605 * Lun control block allocation and initialization. 6606 */ 6607 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6608 { 6609 tcb_p tp = &np->target[tn]; 6610 lcb_p lp = sym_lp(np, tp, ln); 6611 6612 /* 6613 * Already done, just return. 6614 */ 6615 if (lp) 6616 return lp; 6617 /* 6618 * Check against some race. 6619 */ 6620 assert(!sym_is_bit(tp->busy0_map, ln)); 6621 6622 /* 6623 * Initialize the target control block if not yet. 6624 */ 6625 sym_init_tcb (np, tn); 6626 6627 /* 6628 * Allocate the LCB bus address array. 6629 * Compute the bus address of this table. 6630 */ 6631 if (ln && !tp->luntbl) { 6632 int i; 6633 6634 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6635 if (!tp->luntbl) 6636 goto fail; 6637 for (i = 0 ; i < 64 ; i++) 6638 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6639 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6640 } 6641 6642 /* 6643 * Allocate the table of pointers for LUN(s) > 0, if needed. 6644 */ 6645 if (ln && !tp->lunmp) { 6646 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6647 "LUNMP"); 6648 if (!tp->lunmp) 6649 goto fail; 6650 } 6651 6652 /* 6653 * Allocate the lcb. 6654 * Make it available to the chip. 6655 */ 6656 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6657 if (!lp) 6658 goto fail; 6659 if (ln) { 6660 tp->lunmp[ln] = lp; 6661 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6662 } 6663 else { 6664 tp->lun0p = lp; 6665 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6666 } 6667 6668 /* 6669 * Let the itl task point to error handling. 6670 */ 6671 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6672 6673 /* 6674 * Set the reselect pattern to our default. :) 6675 */ 6676 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6677 6678 /* 6679 * Set user capabilities. 6680 */ 6681 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6682 6683 fail: 6684 return lp; 6685 } 6686 6687 /* 6688 * Allocate LCB resources for tagged command queuing. 6689 */ 6690 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6691 { 6692 tcb_p tp = &np->target[tn]; 6693 lcb_p lp = sym_lp(np, tp, ln); 6694 int i; 6695 6696 /* 6697 * If LCB not available, try to allocate it. 6698 */ 6699 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6700 return; 6701 6702 /* 6703 * Allocate the task table and and the tag allocation 6704 * circular buffer. We want both or none. 6705 */ 6706 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6707 if (!lp->itlq_tbl) 6708 return; 6709 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6710 if (!lp->cb_tags) { 6711 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6712 lp->itlq_tbl = 0; 6713 return; 6714 } 6715 6716 /* 6717 * Initialize the task table with invalid entries. 6718 */ 6719 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6720 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6721 6722 /* 6723 * Fill up the tag buffer with tag numbers. 6724 */ 6725 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6726 lp->cb_tags[i] = i; 6727 6728 /* 6729 * Make the task table available to SCRIPTS, 6730 * And accept tagged commands now. 6731 */ 6732 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6733 } 6734 6735 /* 6736 * Test the pci bus snoop logic :-( 6737 * 6738 * Has to be called with interrupts disabled. 6739 */ 6740 #ifndef SYM_CONF_IOMAPPED 6741 static int sym_regtest (hcb_p np) 6742 { 6743 register volatile u32 data; 6744 /* 6745 * chip registers may NOT be cached. 6746 * write 0xffffffff to a read only register area, 6747 * and try to read it back. 6748 */ 6749 data = 0xffffffff; 6750 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6751 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6752 #if 1 6753 if (data == 0xffffffff) { 6754 #else 6755 if ((data & 0xe2f0fffd) != 0x02000080) { 6756 #endif 6757 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6758 (unsigned) data); 6759 return (0x10); 6760 }; 6761 return (0); 6762 } 6763 #endif 6764 6765 static int sym_snooptest (hcb_p np) 6766 { 6767 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6768 int i, err=0; 6769 #ifndef SYM_CONF_IOMAPPED 6770 err |= sym_regtest (np); 6771 if (err) return (err); 6772 #endif 6773 restart_test: 6774 /* 6775 * Enable Master Parity Checking as we intend 6776 * to enable it for normal operations. 6777 */ 6778 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6779 /* 6780 * init 6781 */ 6782 pc = SCRIPTB0_BA (np, snooptest); 6783 host_wr = 1; 6784 sym_wr = 2; 6785 /* 6786 * Set memory and register. 6787 */ 6788 np->cache = cpu_to_scr(host_wr); 6789 OUTL (nc_temp, sym_wr); 6790 /* 6791 * Start script (exchange values) 6792 */ 6793 OUTL (nc_dsa, np->hcb_ba); 6794 OUTL_DSP (pc); 6795 /* 6796 * Wait 'til done (with timeout) 6797 */ 6798 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6799 if (INB(nc_istat) & (INTF|SIP|DIP)) 6800 break; 6801 if (i>=SYM_SNOOP_TIMEOUT) { 6802 printf ("CACHE TEST FAILED: timeout.\n"); 6803 return (0x20); 6804 }; 6805 /* 6806 * Check for fatal DMA errors. 6807 */ 6808 dstat = INB (nc_dstat); 6809 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6810 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6811 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6812 "DISABLING MASTER DATA PARITY CHECKING.\n", 6813 sym_name(np)); 6814 np->rv_ctest4 &= ~MPEE; 6815 goto restart_test; 6816 } 6817 #endif 6818 if (dstat & (MDPE|BF|IID)) { 6819 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6820 return (0x80); 6821 } 6822 /* 6823 * Save termination position. 6824 */ 6825 pc = INL (nc_dsp); 6826 /* 6827 * Read memory and register. 6828 */ 6829 host_rd = scr_to_cpu(np->cache); 6830 sym_rd = INL (nc_scratcha); 6831 sym_bk = INL (nc_temp); 6832 6833 /* 6834 * Check termination position. 6835 */ 6836 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6837 printf ("CACHE TEST FAILED: script execution failed.\n"); 6838 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6839 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6840 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6841 return (0x40); 6842 }; 6843 /* 6844 * Show results. 6845 */ 6846 if (host_wr != sym_rd) { 6847 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6848 (int) host_wr, (int) sym_rd); 6849 err |= 1; 6850 }; 6851 if (host_rd != sym_wr) { 6852 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6853 (int) sym_wr, (int) host_rd); 6854 err |= 2; 6855 }; 6856 if (sym_bk != sym_wr) { 6857 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6858 (int) sym_wr, (int) sym_bk); 6859 err |= 4; 6860 }; 6861 6862 return (err); 6863 } 6864 6865 /* 6866 * Determine the chip's clock frequency. 6867 * 6868 * This is essential for the negotiation of the synchronous 6869 * transfer rate. 6870 * 6871 * Note: we have to return the correct value. 6872 * THERE IS NO SAFE DEFAULT VALUE. 6873 * 6874 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6875 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6876 * do not have a clock doubler and so are provided with a 6877 * 80 MHz clock. All other fast20 boards incorporate a doubler 6878 * and so should be delivered with a 40 MHz clock. 6879 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6880 * clock and provide a clock quadrupler (160 Mhz). 6881 */ 6882 6883 /* 6884 * Select SCSI clock frequency 6885 */ 6886 static void sym_selectclock(hcb_p np, u_char scntl3) 6887 { 6888 /* 6889 * If multiplier not present or not selected, leave here. 6890 */ 6891 if (np->multiplier <= 1) { 6892 OUTB(nc_scntl3, scntl3); 6893 return; 6894 } 6895 6896 if (sym_verbose >= 2) 6897 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6898 6899 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6900 /* 6901 * Wait for the LCKFRQ bit to be set if supported by the chip. 6902 * Otherwise wait 20 micro-seconds. 6903 */ 6904 if (np->features & FE_LCKFRQ) { 6905 int i = 20; 6906 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6907 UDELAY (20); 6908 if (!i) 6909 printf("%s: the chip cannot lock the frequency\n", 6910 sym_name(np)); 6911 } else 6912 UDELAY (20); 6913 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6914 OUTB(nc_scntl3, scntl3); 6915 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6916 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6917 } 6918 6919 /* 6920 * calculate SCSI clock frequency (in KHz) 6921 */ 6922 static unsigned getfreq (hcb_p np, int gen) 6923 { 6924 unsigned int ms = 0; 6925 unsigned int f; 6926 6927 /* 6928 * Measure GEN timer delay in order 6929 * to calculate SCSI clock frequency 6930 * 6931 * This code will never execute too 6932 * many loop iterations (if DELAY is 6933 * reasonably correct). It could get 6934 * too low a delay (too high a freq.) 6935 * if the CPU is slow executing the 6936 * loop for some reason (an NMI, for 6937 * example). For this reason we will 6938 * if multiple measurements are to be 6939 * performed trust the higher delay 6940 * (lower frequency returned). 6941 */ 6942 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6943 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6944 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6945 (void) INW (nc_sist); /* another one, just to be sure :) */ 6946 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6947 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6948 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6949 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6950 UDELAY (1000); /* count ms */ 6951 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6952 /* 6953 * set prescaler to divide by whatever 0 means 6954 * 0 ought to choose divide by 2, but appears 6955 * to set divide by 3.5 mode in my 53c810 ... 6956 */ 6957 OUTB (nc_scntl3, 0); 6958 6959 /* 6960 * adjust for prescaler, and convert into KHz 6961 */ 6962 f = ms ? ((1 << gen) * 4340) / ms : 0; 6963 6964 if (sym_verbose >= 2) 6965 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6966 sym_name(np), gen, ms, f); 6967 6968 return f; 6969 } 6970 6971 static unsigned sym_getfreq (hcb_p np) 6972 { 6973 u_int f1, f2; 6974 int gen = 11; 6975 6976 (void) getfreq (np, gen); /* throw away first result */ 6977 f1 = getfreq (np, gen); 6978 f2 = getfreq (np, gen); 6979 if (f1 > f2) f1 = f2; /* trust lower result */ 6980 return f1; 6981 } 6982 6983 /* 6984 * Get/probe chip SCSI clock frequency 6985 */ 6986 static void sym_getclock (hcb_p np, int mult) 6987 { 6988 unsigned char scntl3 = np->sv_scntl3; 6989 unsigned char stest1 = np->sv_stest1; 6990 unsigned f1; 6991 6992 /* 6993 * For the C10 core, assume 40 MHz. 6994 */ 6995 if (np->features & FE_C10) { 6996 np->multiplier = mult; 6997 np->clock_khz = 40000 * mult; 6998 return; 6999 } 7000 7001 np->multiplier = 1; 7002 f1 = 40000; 7003 /* 7004 * True with 875/895/896/895A with clock multiplier selected 7005 */ 7006 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7007 if (sym_verbose >= 2) 7008 printf ("%s: clock multiplier found\n", sym_name(np)); 7009 np->multiplier = mult; 7010 } 7011 7012 /* 7013 * If multiplier not found or scntl3 not 7,5,3, 7014 * reset chip and get frequency from general purpose timer. 7015 * Otherwise trust scntl3 BIOS setting. 7016 */ 7017 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7018 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7019 f1 = sym_getfreq (np); 7020 7021 if (sym_verbose) 7022 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7023 7024 if (f1 < 45000) f1 = 40000; 7025 else if (f1 < 55000) f1 = 50000; 7026 else f1 = 80000; 7027 7028 if (f1 < 80000 && mult > 1) { 7029 if (sym_verbose >= 2) 7030 printf ("%s: clock multiplier assumed\n", 7031 sym_name(np)); 7032 np->multiplier = mult; 7033 } 7034 } else { 7035 if ((scntl3 & 7) == 3) f1 = 40000; 7036 else if ((scntl3 & 7) == 5) f1 = 80000; 7037 else f1 = 160000; 7038 7039 f1 /= np->multiplier; 7040 } 7041 7042 /* 7043 * Compute controller synchronous parameters. 7044 */ 7045 f1 *= np->multiplier; 7046 np->clock_khz = f1; 7047 } 7048 7049 /* 7050 * Get/probe PCI clock frequency 7051 */ 7052 static int sym_getpciclock (hcb_p np) 7053 { 7054 int f = 0; 7055 7056 /* 7057 * For the C1010-33, this doesn't work. 7058 * For the C1010-66, this will be tested when I'll have 7059 * such a beast to play with. 7060 */ 7061 if (!(np->features & FE_C10)) { 7062 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7063 f = (int) sym_getfreq (np); 7064 OUTB (nc_stest1, 0); 7065 } 7066 np->pciclk_khz = f; 7067 7068 return f; 7069 } 7070 7071 /*============= DRIVER ACTION/COMPLETION ====================*/ 7072 7073 /* 7074 * Print something that tells about extended errors. 7075 */ 7076 static void sym_print_xerr(ccb_p cp, int x_status) 7077 { 7078 if (x_status & XE_PARITY_ERR) { 7079 PRINT_ADDR(cp); 7080 printf ("unrecovered SCSI parity error.\n"); 7081 } 7082 if (x_status & XE_EXTRA_DATA) { 7083 PRINT_ADDR(cp); 7084 printf ("extraneous data discarded.\n"); 7085 } 7086 if (x_status & XE_BAD_PHASE) { 7087 PRINT_ADDR(cp); 7088 printf ("illegal scsi phase (4/5).\n"); 7089 } 7090 if (x_status & XE_SODL_UNRUN) { 7091 PRINT_ADDR(cp); 7092 printf ("ODD transfer in DATA OUT phase.\n"); 7093 } 7094 if (x_status & XE_SWIDE_OVRUN) { 7095 PRINT_ADDR(cp); 7096 printf ("ODD transfer in DATA IN phase.\n"); 7097 } 7098 } 7099 7100 /* 7101 * Choose the more appropriate CAM status if 7102 * the IO encountered an extended error. 7103 */ 7104 static int sym_xerr_cam_status(int cam_status, int x_status) 7105 { 7106 if (x_status) { 7107 if (x_status & XE_PARITY_ERR) 7108 cam_status = CAM_UNCOR_PARITY; 7109 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7110 cam_status = CAM_DATA_RUN_ERR; 7111 else if (x_status & XE_BAD_PHASE) 7112 cam_status = CAM_REQ_CMP_ERR; 7113 else 7114 cam_status = CAM_REQ_CMP_ERR; 7115 } 7116 return cam_status; 7117 } 7118 7119 /* 7120 * Complete execution of a SCSI command with extented 7121 * error, SCSI status error, or having been auto-sensed. 7122 * 7123 * The SCRIPTS processor is not running there, so we 7124 * can safely access IO registers and remove JOBs from 7125 * the START queue. 7126 * SCRATCHA is assumed to have been loaded with STARTPOS 7127 * before the SCRIPTS called the C code. 7128 */ 7129 static void sym_complete_error (hcb_p np, ccb_p cp) 7130 { 7131 struct ccb_scsiio *csio; 7132 u_int cam_status; 7133 int i, sense_returned; 7134 7135 SYM_LOCK_ASSERT(MA_OWNED); 7136 7137 /* 7138 * Paranoid check. :) 7139 */ 7140 if (!cp || !cp->cam_ccb) 7141 return; 7142 7143 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7144 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7145 cp->host_status, cp->ssss_status, cp->host_flags, 7146 cp->target, cp->lun); 7147 MDELAY(100); 7148 } 7149 7150 /* 7151 * Get CAM command pointer. 7152 */ 7153 csio = &cp->cam_ccb->csio; 7154 7155 /* 7156 * Check for extended errors. 7157 */ 7158 if (cp->xerr_status) { 7159 if (sym_verbose) 7160 sym_print_xerr(cp, cp->xerr_status); 7161 if (cp->host_status == HS_COMPLETE) 7162 cp->host_status = HS_COMP_ERR; 7163 } 7164 7165 /* 7166 * Calculate the residual. 7167 */ 7168 csio->sense_resid = 0; 7169 csio->resid = sym_compute_residual(np, cp); 7170 7171 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7172 csio->resid = 0; /* throw them away. :) */ 7173 cp->sv_resid = 0; 7174 } 7175 7176 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7177 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7178 csio->sense_resid = csio->resid; /* Swap residuals */ 7179 csio->resid = cp->sv_resid; 7180 cp->sv_resid = 0; 7181 if (sym_verbose && cp->sv_xerr_status) 7182 sym_print_xerr(cp, cp->sv_xerr_status); 7183 if (cp->host_status == HS_COMPLETE && 7184 cp->ssss_status == S_GOOD && 7185 cp->xerr_status == 0) { 7186 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7187 cp->sv_xerr_status); 7188 cam_status |= CAM_AUTOSNS_VALID; 7189 /* 7190 * Bounce back the sense data to user and 7191 * fix the residual. 7192 */ 7193 bzero(&csio->sense_data, sizeof(csio->sense_data)); 7194 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid; 7195 if (sense_returned < csio->sense_len) 7196 csio->sense_resid = csio->sense_len - 7197 sense_returned; 7198 else 7199 csio->sense_resid = 0; 7200 bcopy(cp->sns_bbuf, &csio->sense_data, 7201 MIN(csio->sense_len, sense_returned)); 7202 #if 0 7203 /* 7204 * If the device reports a UNIT ATTENTION condition 7205 * due to a RESET condition, we should consider all 7206 * disconnect CCBs for this unit as aborted. 7207 */ 7208 if (1) { 7209 u_char *p; 7210 p = (u_char *) csio->sense_data; 7211 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7212 sym_clear_tasks(np, CAM_REQ_ABORTED, 7213 cp->target,cp->lun, -1); 7214 } 7215 #endif 7216 } 7217 else 7218 cam_status = CAM_AUTOSENSE_FAIL; 7219 } 7220 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7221 csio->scsi_status = cp->ssss_status; 7222 cam_status = CAM_SCSI_STATUS_ERROR; 7223 } 7224 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7225 cam_status = CAM_SEL_TIMEOUT; 7226 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7227 cam_status = CAM_UNEXP_BUSFREE; 7228 else { /* Extended error */ 7229 if (sym_verbose) { 7230 PRINT_ADDR(cp); 7231 printf ("COMMAND FAILED (%x %x %x).\n", 7232 cp->host_status, cp->ssss_status, 7233 cp->xerr_status); 7234 } 7235 csio->scsi_status = cp->ssss_status; 7236 /* 7237 * Set the most appropriate value for CAM status. 7238 */ 7239 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7240 cp->xerr_status); 7241 } 7242 7243 /* 7244 * Dequeue all queued CCBs for that device 7245 * not yet started by SCRIPTS. 7246 */ 7247 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7248 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7249 7250 /* 7251 * Restart the SCRIPTS processor. 7252 */ 7253 OUTL_DSP (SCRIPTA_BA (np, start)); 7254 7255 /* 7256 * Synchronize DMA map if needed. 7257 */ 7258 if (cp->dmamapped) { 7259 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7260 (cp->dmamapped == SYM_DMA_READ ? 7261 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7262 } 7263 /* 7264 * Add this one to the COMP queue. 7265 * Complete all those commands with either error 7266 * or requeue condition. 7267 */ 7268 sym_set_cam_status((union ccb *) csio, cam_status); 7269 sym_remque(&cp->link_ccbq); 7270 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7271 sym_flush_comp_queue(np, 0); 7272 } 7273 7274 /* 7275 * Complete execution of a successful SCSI command. 7276 * 7277 * Only successful commands go to the DONE queue, 7278 * since we need to have the SCRIPTS processor 7279 * stopped on any error condition. 7280 * The SCRIPTS processor is running while we are 7281 * completing successful commands. 7282 */ 7283 static void sym_complete_ok (hcb_p np, ccb_p cp) 7284 { 7285 struct ccb_scsiio *csio; 7286 tcb_p tp; 7287 lcb_p lp; 7288 7289 SYM_LOCK_ASSERT(MA_OWNED); 7290 7291 /* 7292 * Paranoid check. :) 7293 */ 7294 if (!cp || !cp->cam_ccb) 7295 return; 7296 assert (cp->host_status == HS_COMPLETE); 7297 7298 /* 7299 * Get command, target and lun pointers. 7300 */ 7301 csio = &cp->cam_ccb->csio; 7302 tp = &np->target[cp->target]; 7303 lp = sym_lp(np, tp, cp->lun); 7304 7305 /* 7306 * Assume device discovered on first success. 7307 */ 7308 if (!lp) 7309 sym_set_bit(tp->lun_map, cp->lun); 7310 7311 /* 7312 * If all data have been transferred, given than no 7313 * extended error did occur, there is no residual. 7314 */ 7315 csio->resid = 0; 7316 if (cp->phys.head.lastp != cp->phys.head.goalp) 7317 csio->resid = sym_compute_residual(np, cp); 7318 7319 /* 7320 * Wrong transfer residuals may be worse than just always 7321 * returning zero. User can disable this feature from 7322 * sym_conf.h. Residual support is enabled by default. 7323 */ 7324 if (!SYM_CONF_RESIDUAL_SUPPORT) 7325 csio->resid = 0; 7326 7327 /* 7328 * Synchronize DMA map if needed. 7329 */ 7330 if (cp->dmamapped) { 7331 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7332 (cp->dmamapped == SYM_DMA_READ ? 7333 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7334 } 7335 /* 7336 * Set status and complete the command. 7337 */ 7338 csio->scsi_status = cp->ssss_status; 7339 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7340 sym_xpt_done(np, (union ccb *) csio, cp); 7341 sym_free_ccb(np, cp); 7342 } 7343 7344 /* 7345 * Our callout handler 7346 */ 7347 static void sym_callout(void *arg) 7348 { 7349 union ccb *ccb = (union ccb *) arg; 7350 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7351 7352 /* 7353 * Check that the CAM CCB is still queued. 7354 */ 7355 if (!np) 7356 return; 7357 7358 SYM_LOCK(); 7359 7360 switch(ccb->ccb_h.func_code) { 7361 case XPT_SCSI_IO: 7362 (void) sym_abort_scsiio(np, ccb, 1); 7363 break; 7364 default: 7365 break; 7366 } 7367 7368 SYM_UNLOCK(); 7369 } 7370 7371 /* 7372 * Abort an SCSI IO. 7373 */ 7374 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7375 { 7376 ccb_p cp; 7377 SYM_QUEHEAD *qp; 7378 7379 SYM_LOCK_ASSERT(MA_OWNED); 7380 7381 /* 7382 * Look up our CCB control block. 7383 */ 7384 cp = NULL; 7385 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7386 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7387 if (cp2->cam_ccb == ccb) { 7388 cp = cp2; 7389 break; 7390 } 7391 } 7392 if (!cp || cp->host_status == HS_WAIT) 7393 return -1; 7394 7395 /* 7396 * If a previous abort didn't succeed in time, 7397 * perform a BUS reset. 7398 */ 7399 if (cp->to_abort) { 7400 sym_reset_scsi_bus(np, 1); 7401 return 0; 7402 } 7403 7404 /* 7405 * Mark the CCB for abort and allow time for. 7406 */ 7407 cp->to_abort = timed_out ? 2 : 1; 7408 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7409 7410 /* 7411 * Tell the SCRIPTS processor to stop and synchronize with us. 7412 */ 7413 np->istat_sem = SEM; 7414 OUTB (nc_istat, SIGP|SEM); 7415 return 0; 7416 } 7417 7418 /* 7419 * Reset a SCSI device (all LUNs of a target). 7420 */ 7421 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7422 { 7423 tcb_p tp; 7424 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7425 7426 SYM_LOCK_ASSERT(MA_OWNED); 7427 7428 if (ccb_h->target_id == np->myaddr || 7429 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7430 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7431 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7432 return; 7433 } 7434 7435 tp = &np->target[ccb_h->target_id]; 7436 7437 tp->to_reset = 1; 7438 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7439 7440 np->istat_sem = SEM; 7441 OUTB (nc_istat, SIGP|SEM); 7442 } 7443 7444 /* 7445 * SIM action entry point. 7446 */ 7447 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7448 { 7449 hcb_p np; 7450 tcb_p tp; 7451 lcb_p lp; 7452 ccb_p cp; 7453 int tmp; 7454 u_char idmsg, *msgptr; 7455 u_int msglen; 7456 struct ccb_scsiio *csio; 7457 struct ccb_hdr *ccb_h; 7458 7459 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7460 7461 /* 7462 * Retrieve our controller data structure. 7463 */ 7464 np = (hcb_p) cam_sim_softc(sim); 7465 7466 SYM_LOCK_ASSERT(MA_OWNED); 7467 7468 /* 7469 * The common case is SCSI IO. 7470 * We deal with other ones elsewhere. 7471 */ 7472 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7473 sym_action2(sim, ccb); 7474 return; 7475 } 7476 csio = &ccb->csio; 7477 ccb_h = &csio->ccb_h; 7478 7479 /* 7480 * Work around races. 7481 */ 7482 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7483 xpt_done(ccb); 7484 return; 7485 } 7486 7487 /* 7488 * Minimal checkings, so that we will not 7489 * go outside our tables. 7490 */ 7491 if (ccb_h->target_id == np->myaddr || 7492 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7493 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7494 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7495 return; 7496 } 7497 7498 /* 7499 * Retrieve the target and lun descriptors. 7500 */ 7501 tp = &np->target[ccb_h->target_id]; 7502 lp = sym_lp(np, tp, ccb_h->target_lun); 7503 7504 /* 7505 * Complete the 1st INQUIRY command with error 7506 * condition if the device is flagged NOSCAN 7507 * at BOOT in the NVRAM. This may speed up 7508 * the boot and maintain coherency with BIOS 7509 * device numbering. Clearing the flag allows 7510 * user to rescan skipped devices later. 7511 * We also return error for devices not flagged 7512 * for SCAN LUNS in the NVRAM since some mono-lun 7513 * devices behave badly when asked for some non 7514 * zero LUN. Btw, this is an absolute hack.:-) 7515 */ 7516 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7517 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7518 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7519 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7520 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7521 ccb_h->target_lun != 0)) { 7522 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7523 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7524 return; 7525 } 7526 } 7527 7528 /* 7529 * Get a control block for this IO. 7530 */ 7531 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7532 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7533 if (!cp) { 7534 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7535 return; 7536 } 7537 7538 /* 7539 * Keep track of the IO in our CCB. 7540 */ 7541 cp->cam_ccb = ccb; 7542 7543 /* 7544 * Build the IDENTIFY message. 7545 */ 7546 idmsg = M_IDENTIFY | cp->lun; 7547 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7548 idmsg |= 0x40; 7549 7550 msgptr = cp->scsi_smsg; 7551 msglen = 0; 7552 msgptr[msglen++] = idmsg; 7553 7554 /* 7555 * Build the tag message if present. 7556 */ 7557 if (cp->tag != NO_TAG) { 7558 u_char order = csio->tag_action; 7559 7560 switch(order) { 7561 case M_ORDERED_TAG: 7562 break; 7563 case M_HEAD_TAG: 7564 break; 7565 default: 7566 order = M_SIMPLE_TAG; 7567 } 7568 msgptr[msglen++] = order; 7569 7570 /* 7571 * For less than 128 tags, actual tags are numbered 7572 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7573 * with devices that have problems with #TAG 0 or too 7574 * great #TAG numbers. For more tags (up to 256), 7575 * we use directly our tag number. 7576 */ 7577 #if SYM_CONF_MAX_TASK > (512/4) 7578 msgptr[msglen++] = cp->tag; 7579 #else 7580 msgptr[msglen++] = (cp->tag << 1) + 1; 7581 #endif 7582 } 7583 7584 /* 7585 * Build a negotiation message if needed. 7586 * (nego_status is filled by sym_prepare_nego()) 7587 */ 7588 cp->nego_status = 0; 7589 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7590 tp->tinfo.current.period != tp->tinfo.goal.period || 7591 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7592 tp->tinfo.current.options != tp->tinfo.goal.options) { 7593 if (!tp->nego_cp && lp) 7594 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7595 } 7596 7597 /* 7598 * Fill in our ccb 7599 */ 7600 7601 /* 7602 * Startqueue 7603 */ 7604 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7605 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7606 7607 /* 7608 * select 7609 */ 7610 cp->phys.select.sel_id = cp->target; 7611 cp->phys.select.sel_scntl3 = tp->head.wval; 7612 cp->phys.select.sel_sxfer = tp->head.sval; 7613 cp->phys.select.sel_scntl4 = tp->head.uval; 7614 7615 /* 7616 * message 7617 */ 7618 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7619 cp->phys.smsg.size = cpu_to_scr(msglen); 7620 7621 /* 7622 * command 7623 */ 7624 if (sym_setup_cdb(np, csio, cp) < 0) { 7625 sym_xpt_done(np, ccb, cp); 7626 sym_free_ccb(np, cp); 7627 return; 7628 } 7629 7630 /* 7631 * status 7632 */ 7633 #if 0 /* Provision */ 7634 cp->actualquirks = tp->quirks; 7635 #endif 7636 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7637 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7638 cp->ssss_status = S_ILLEGAL; 7639 cp->xerr_status = 0; 7640 cp->host_flags = 0; 7641 cp->extra_bytes = 0; 7642 7643 /* 7644 * extreme data pointer. 7645 * shall be positive, so -1 is lower than lowest.:) 7646 */ 7647 cp->ext_sg = -1; 7648 cp->ext_ofs = 0; 7649 7650 /* 7651 * Build the data descriptor block 7652 * and start the IO. 7653 */ 7654 sym_setup_data_and_start(np, csio, cp); 7655 } 7656 7657 /* 7658 * Setup buffers and pointers that address the CDB. 7659 * I bet, physical CDBs will never be used on the planet, 7660 * since they can be bounced without significant overhead. 7661 */ 7662 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7663 { 7664 struct ccb_hdr *ccb_h; 7665 u32 cmd_ba; 7666 int cmd_len; 7667 7668 SYM_LOCK_ASSERT(MA_OWNED); 7669 7670 ccb_h = &csio->ccb_h; 7671 7672 /* 7673 * CDB is 16 bytes max. 7674 */ 7675 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7676 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7677 return -1; 7678 } 7679 cmd_len = csio->cdb_len; 7680 7681 if (ccb_h->flags & CAM_CDB_POINTER) { 7682 /* CDB is a pointer */ 7683 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7684 /* CDB pointer is virtual */ 7685 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7686 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7687 } else { 7688 /* CDB pointer is physical */ 7689 #if 0 7690 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7691 #else 7692 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7693 return -1; 7694 #endif 7695 } 7696 } else { 7697 /* CDB is in the CAM ccb (buffer) */ 7698 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7699 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7700 } 7701 7702 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7703 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7704 7705 return 0; 7706 } 7707 7708 /* 7709 * Set up data pointers used by SCRIPTS. 7710 */ 7711 static void __inline 7712 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7713 { 7714 u32 lastp, goalp; 7715 7716 SYM_LOCK_ASSERT(MA_OWNED); 7717 7718 /* 7719 * No segments means no data. 7720 */ 7721 if (!cp->segments) 7722 dir = CAM_DIR_NONE; 7723 7724 /* 7725 * Set the data pointer. 7726 */ 7727 switch(dir) { 7728 case CAM_DIR_OUT: 7729 goalp = SCRIPTA_BA (np, data_out2) + 8; 7730 lastp = goalp - 8 - (cp->segments * (2*4)); 7731 break; 7732 case CAM_DIR_IN: 7733 cp->host_flags |= HF_DATA_IN; 7734 goalp = SCRIPTA_BA (np, data_in2) + 8; 7735 lastp = goalp - 8 - (cp->segments * (2*4)); 7736 break; 7737 case CAM_DIR_NONE: 7738 default: 7739 lastp = goalp = SCRIPTB_BA (np, no_data); 7740 break; 7741 } 7742 7743 cp->phys.head.lastp = cpu_to_scr(lastp); 7744 cp->phys.head.goalp = cpu_to_scr(goalp); 7745 cp->phys.head.savep = cpu_to_scr(lastp); 7746 cp->startp = cp->phys.head.savep; 7747 } 7748 7749 /* 7750 * Call back routine for the DMA map service. 7751 * If bounce buffers are used (why ?), we may sleep and then 7752 * be called there in another context. 7753 */ 7754 static void 7755 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7756 { 7757 ccb_p cp; 7758 hcb_p np; 7759 union ccb *ccb; 7760 7761 cp = (ccb_p) arg; 7762 ccb = cp->cam_ccb; 7763 np = (hcb_p) cp->arg; 7764 7765 SYM_LOCK_ASSERT(MA_OWNED); 7766 7767 /* 7768 * Deal with weird races. 7769 */ 7770 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7771 goto out_abort; 7772 7773 /* 7774 * Deal with weird errors. 7775 */ 7776 if (error) { 7777 cp->dmamapped = 0; 7778 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7779 goto out_abort; 7780 } 7781 7782 /* 7783 * Build the data descriptor for the chip. 7784 */ 7785 if (nsegs) { 7786 int retv; 7787 /* 896 rev 1 requires to be careful about boundaries */ 7788 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7789 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7790 else 7791 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7792 if (retv < 0) { 7793 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7794 goto out_abort; 7795 } 7796 } 7797 7798 /* 7799 * Synchronize the DMA map only if we have 7800 * actually mapped the data. 7801 */ 7802 if (cp->dmamapped) { 7803 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7804 (cp->dmamapped == SYM_DMA_READ ? 7805 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7806 } 7807 7808 /* 7809 * Set host status to busy state. 7810 * May have been set back to HS_WAIT to avoid a race. 7811 */ 7812 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7813 7814 /* 7815 * Set data pointers. 7816 */ 7817 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7818 7819 /* 7820 * Enqueue this IO in our pending queue. 7821 */ 7822 sym_enqueue_cam_ccb(cp); 7823 7824 /* 7825 * When `#ifed 1', the code below makes the driver 7826 * panic on the first attempt to write to a SCSI device. 7827 * It is the first test we want to do after a driver 7828 * change that does not seem obviously safe. :) 7829 */ 7830 #if 0 7831 switch (cp->cdb_buf[0]) { 7832 case 0x0A: case 0x2A: case 0xAA: 7833 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7834 MDELAY(10000); 7835 break; 7836 default: 7837 break; 7838 } 7839 #endif 7840 /* 7841 * Activate this job. 7842 */ 7843 sym_put_start_queue(np, cp); 7844 return; 7845 out_abort: 7846 sym_xpt_done(np, ccb, cp); 7847 sym_free_ccb(np, cp); 7848 } 7849 7850 /* 7851 * How complex it gets to deal with the data in CAM. 7852 * The Bus Dma stuff makes things still more complex. 7853 */ 7854 static void 7855 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7856 { 7857 struct ccb_hdr *ccb_h; 7858 int dir, retv; 7859 7860 SYM_LOCK_ASSERT(MA_OWNED); 7861 7862 ccb_h = &csio->ccb_h; 7863 7864 /* 7865 * Now deal with the data. 7866 */ 7867 cp->data_len = csio->dxfer_len; 7868 cp->arg = np; 7869 7870 /* 7871 * No direction means no data. 7872 */ 7873 dir = (ccb_h->flags & CAM_DIR_MASK); 7874 if (dir == CAM_DIR_NONE) { 7875 sym_execute_ccb(cp, NULL, 0, 0); 7876 return; 7877 } 7878 7879 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 7880 /* Single buffer */ 7881 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7882 /* Buffer is virtual */ 7883 cp->dmamapped = (dir == CAM_DIR_IN) ? 7884 SYM_DMA_READ : SYM_DMA_WRITE; 7885 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 7886 csio->data_ptr, csio->dxfer_len, 7887 sym_execute_ccb, cp, 0); 7888 if (retv == EINPROGRESS) { 7889 cp->host_status = HS_WAIT; 7890 xpt_freeze_simq(np->sim, 1); 7891 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7892 } 7893 } else { 7894 /* Buffer is physical */ 7895 struct bus_dma_segment seg; 7896 7897 seg.ds_addr = (bus_addr_t) csio->data_ptr; 7898 sym_execute_ccb(cp, &seg, 1, 0); 7899 } 7900 } else { 7901 /* Scatter/gather list */ 7902 struct bus_dma_segment *segs; 7903 7904 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 7905 /* The SG list pointer is physical */ 7906 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7907 goto out_abort; 7908 } 7909 7910 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7911 /* SG buffer pointers are virtual */ 7912 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7913 goto out_abort; 7914 } 7915 7916 /* SG buffer pointers are physical */ 7917 segs = (struct bus_dma_segment *)csio->data_ptr; 7918 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 7919 } 7920 return; 7921 out_abort: 7922 sym_xpt_done(np, (union ccb *) csio, cp); 7923 sym_free_ccb(np, cp); 7924 } 7925 7926 /* 7927 * Move the scatter list to our data block. 7928 */ 7929 static int 7930 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7931 bus_dma_segment_t *psegs, int nsegs) 7932 { 7933 struct sym_tblmove *data; 7934 bus_dma_segment_t *psegs2; 7935 7936 SYM_LOCK_ASSERT(MA_OWNED); 7937 7938 if (nsegs > SYM_CONF_MAX_SG) 7939 return -1; 7940 7941 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7942 psegs2 = &psegs[nsegs-1]; 7943 cp->segments = nsegs; 7944 7945 while (1) { 7946 data->addr = cpu_to_scr(psegs2->ds_addr); 7947 data->size = cpu_to_scr(psegs2->ds_len); 7948 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7949 printf ("%s scatter: paddr=%lx len=%ld\n", 7950 sym_name(np), (long) psegs2->ds_addr, 7951 (long) psegs2->ds_len); 7952 } 7953 if (psegs2 != psegs) { 7954 --data; 7955 --psegs2; 7956 continue; 7957 } 7958 break; 7959 } 7960 return 0; 7961 } 7962 7963 /* 7964 * Scatter a SG list with physical addresses into bus addressable chunks. 7965 */ 7966 static int 7967 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7968 { 7969 u_long ps, pe, pn; 7970 u_long k; 7971 int s, t; 7972 7973 SYM_LOCK_ASSERT(MA_OWNED); 7974 7975 s = SYM_CONF_MAX_SG - 1; 7976 t = nsegs - 1; 7977 ps = psegs[t].ds_addr; 7978 pe = ps + psegs[t].ds_len; 7979 7980 while (s >= 0) { 7981 pn = (pe - 1) & ~(SYM_CONF_DMA_BOUNDARY - 1); 7982 if (pn <= ps) 7983 pn = ps; 7984 k = pe - pn; 7985 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7986 printf ("%s scatter: paddr=%lx len=%ld\n", 7987 sym_name(np), pn, k); 7988 } 7989 cp->phys.data[s].addr = cpu_to_scr(pn); 7990 cp->phys.data[s].size = cpu_to_scr(k); 7991 --s; 7992 if (pn == ps) { 7993 if (--t < 0) 7994 break; 7995 ps = psegs[t].ds_addr; 7996 pe = ps + psegs[t].ds_len; 7997 } 7998 else 7999 pe = pn; 8000 } 8001 8002 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8003 8004 return t >= 0 ? -1 : 0; 8005 } 8006 8007 /* 8008 * SIM action for non performance critical stuff. 8009 */ 8010 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8011 { 8012 union ccb *abort_ccb; 8013 struct ccb_hdr *ccb_h; 8014 struct ccb_pathinq *cpi; 8015 struct ccb_trans_settings *cts; 8016 struct sym_trans *tip; 8017 hcb_p np; 8018 tcb_p tp; 8019 lcb_p lp; 8020 u_char dflags; 8021 8022 /* 8023 * Retrieve our controller data structure. 8024 */ 8025 np = (hcb_p) cam_sim_softc(sim); 8026 8027 SYM_LOCK_ASSERT(MA_OWNED); 8028 8029 ccb_h = &ccb->ccb_h; 8030 8031 switch (ccb_h->func_code) { 8032 case XPT_SET_TRAN_SETTINGS: 8033 cts = &ccb->cts; 8034 tp = &np->target[ccb_h->target_id]; 8035 8036 /* 8037 * Update SPI transport settings in TARGET control block. 8038 * Update SCSI device settings in LUN control block. 8039 */ 8040 lp = sym_lp(np, tp, ccb_h->target_lun); 8041 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8042 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8043 if (lp) 8044 sym_update_dflags(np, &lp->current_flags, cts); 8045 } 8046 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8047 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8048 if (lp) 8049 sym_update_dflags(np, &lp->user_flags, cts); 8050 } 8051 8052 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8053 break; 8054 case XPT_GET_TRAN_SETTINGS: 8055 cts = &ccb->cts; 8056 tp = &np->target[ccb_h->target_id]; 8057 lp = sym_lp(np, tp, ccb_h->target_lun); 8058 8059 #define cts__scsi (&cts->proto_specific.scsi) 8060 #define cts__spi (&cts->xport_specific.spi) 8061 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8062 tip = &tp->tinfo.current; 8063 dflags = lp ? lp->current_flags : 0; 8064 } 8065 else { 8066 tip = &tp->tinfo.user; 8067 dflags = lp ? lp->user_flags : tp->usrflags; 8068 } 8069 8070 cts->protocol = PROTO_SCSI; 8071 cts->transport = XPORT_SPI; 8072 cts->protocol_version = tip->scsi_version; 8073 cts->transport_version = tip->spi_version; 8074 8075 cts__spi->sync_period = tip->period; 8076 cts__spi->sync_offset = tip->offset; 8077 cts__spi->bus_width = tip->width; 8078 cts__spi->ppr_options = tip->options; 8079 8080 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8081 | CTS_SPI_VALID_SYNC_OFFSET 8082 | CTS_SPI_VALID_BUS_WIDTH 8083 | CTS_SPI_VALID_PPR_OPTIONS; 8084 8085 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8086 if (dflags & SYM_DISC_ENABLED) 8087 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8088 cts__spi->valid |= CTS_SPI_VALID_DISC; 8089 8090 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8091 if (dflags & SYM_TAGS_ENABLED) 8092 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8093 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8094 #undef cts__spi 8095 #undef cts__scsi 8096 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8097 break; 8098 case XPT_CALC_GEOMETRY: 8099 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8100 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8101 break; 8102 case XPT_PATH_INQ: 8103 cpi = &ccb->cpi; 8104 cpi->version_num = 1; 8105 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8106 if ((np->features & FE_WIDE) != 0) 8107 cpi->hba_inquiry |= PI_WIDE_16; 8108 cpi->target_sprt = 0; 8109 cpi->hba_misc = 0; 8110 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8111 cpi->hba_misc |= PIM_SCANHILO; 8112 if (np->usrflags & SYM_AVOID_BUS_RESET) 8113 cpi->hba_misc |= PIM_NOBUSRESET; 8114 cpi->hba_eng_cnt = 0; 8115 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8116 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8117 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8118 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8119 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8120 cpi->bus_id = cam_sim_bus(sim); 8121 cpi->initiator_id = np->myaddr; 8122 cpi->base_transfer_speed = 3300; 8123 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8124 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8125 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8126 cpi->unit_number = cam_sim_unit(sim); 8127 8128 cpi->protocol = PROTO_SCSI; 8129 cpi->protocol_version = SCSI_REV_2; 8130 cpi->transport = XPORT_SPI; 8131 cpi->transport_version = 2; 8132 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8133 if (np->features & FE_ULTRA3) { 8134 cpi->transport_version = 3; 8135 cpi->xport_specific.spi.ppr_options = 8136 SID_SPI_CLOCK_DT_ST; 8137 } 8138 cpi->maxio = np->maxsegcnt * SYM_CONF_DMA_BOUNDARY; 8139 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8140 break; 8141 case XPT_ABORT: 8142 abort_ccb = ccb->cab.abort_ccb; 8143 switch(abort_ccb->ccb_h.func_code) { 8144 case XPT_SCSI_IO: 8145 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8146 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8147 break; 8148 } 8149 default: 8150 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8151 break; 8152 } 8153 break; 8154 case XPT_RESET_DEV: 8155 sym_reset_dev(np, ccb); 8156 break; 8157 case XPT_RESET_BUS: 8158 sym_reset_scsi_bus(np, 0); 8159 if (sym_verbose) { 8160 xpt_print_path(np->path); 8161 printf("SCSI BUS reset delivered.\n"); 8162 } 8163 sym_init (np, 1); 8164 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8165 break; 8166 case XPT_ACCEPT_TARGET_IO: 8167 case XPT_CONT_TARGET_IO: 8168 case XPT_EN_LUN: 8169 case XPT_NOTIFY_ACK: 8170 case XPT_IMMED_NOTIFY: 8171 case XPT_TERM_IO: 8172 default: 8173 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8174 break; 8175 } 8176 } 8177 8178 /* 8179 * Asynchronous notification handler. 8180 */ 8181 static void 8182 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8183 { 8184 hcb_p np; 8185 struct cam_sim *sim; 8186 u_int tn; 8187 tcb_p tp; 8188 8189 sim = (struct cam_sim *) cb_arg; 8190 np = (hcb_p) cam_sim_softc(sim); 8191 8192 SYM_LOCK_ASSERT(MA_OWNED); 8193 8194 switch (code) { 8195 case AC_LOST_DEVICE: 8196 tn = xpt_path_target_id(path); 8197 if (tn >= SYM_CONF_MAX_TARGET) 8198 break; 8199 8200 tp = &np->target[tn]; 8201 8202 tp->to_reset = 0; 8203 tp->head.sval = 0; 8204 tp->head.wval = np->rv_scntl3; 8205 tp->head.uval = 0; 8206 8207 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8208 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8209 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8210 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8211 8212 break; 8213 default: 8214 break; 8215 } 8216 } 8217 8218 /* 8219 * Update transfer settings of a target. 8220 */ 8221 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8222 struct ccb_trans_settings *cts) 8223 { 8224 SYM_LOCK_ASSERT(MA_OWNED); 8225 8226 /* 8227 * Update the infos. 8228 */ 8229 #define cts__spi (&cts->xport_specific.spi) 8230 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8231 tip->width = cts__spi->bus_width; 8232 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8233 tip->offset = cts__spi->sync_offset; 8234 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8235 tip->period = cts__spi->sync_period; 8236 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8237 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8238 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8239 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8240 tip->scsi_version = cts->protocol_version; 8241 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8242 cts->transport_version != XPORT_VERSION_UNKNOWN) 8243 tip->spi_version = cts->transport_version; 8244 #undef cts__spi 8245 /* 8246 * Scale against driver configuration limits. 8247 */ 8248 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8249 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8250 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8251 8252 /* 8253 * Scale against actual controller BUS width. 8254 */ 8255 if (tip->width > np->maxwide) 8256 tip->width = np->maxwide; 8257 8258 /* 8259 * Only accept DT if controller supports and SYNC/WIDE asked. 8260 */ 8261 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8262 !(tip->width == BUS_16_BIT && tip->offset)) { 8263 tip->options &= ~PPR_OPT_DT; 8264 } 8265 8266 /* 8267 * Scale period factor and offset against controller limits. 8268 */ 8269 if (tip->options & PPR_OPT_DT) { 8270 if (tip->period < np->minsync_dt) 8271 tip->period = np->minsync_dt; 8272 if (tip->period > np->maxsync_dt) 8273 tip->period = np->maxsync_dt; 8274 if (tip->offset > np->maxoffs_dt) 8275 tip->offset = np->maxoffs_dt; 8276 } 8277 else { 8278 if (tip->period < np->minsync) 8279 tip->period = np->minsync; 8280 if (tip->period > np->maxsync) 8281 tip->period = np->maxsync; 8282 if (tip->offset > np->maxoffs) 8283 tip->offset = np->maxoffs; 8284 } 8285 } 8286 8287 /* 8288 * Update flags for a device (logical unit). 8289 */ 8290 static void 8291 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8292 { 8293 SYM_LOCK_ASSERT(MA_OWNED); 8294 8295 #define cts__scsi (&cts->proto_specific.scsi) 8296 #define cts__spi (&cts->xport_specific.spi) 8297 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8298 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8299 *flags |= SYM_DISC_ENABLED; 8300 else 8301 *flags &= ~SYM_DISC_ENABLED; 8302 } 8303 8304 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8305 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8306 *flags |= SYM_TAGS_ENABLED; 8307 else 8308 *flags &= ~SYM_TAGS_ENABLED; 8309 } 8310 #undef cts__spi 8311 #undef cts__scsi 8312 } 8313 8314 /*============= DRIVER INITIALISATION ==================*/ 8315 8316 static device_method_t sym_pci_methods[] = { 8317 DEVMETHOD(device_probe, sym_pci_probe), 8318 DEVMETHOD(device_attach, sym_pci_attach), 8319 DEVMETHOD_END 8320 }; 8321 8322 static driver_t sym_pci_driver = { 8323 "sym", 8324 sym_pci_methods, 8325 1 /* no softc */ 8326 }; 8327 8328 static devclass_t sym_devclass; 8329 8330 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL); 8331 MODULE_DEPEND(sym, cam, 1, 1, 1); 8332 MODULE_DEPEND(sym, pci, 1, 1, 1); 8333 8334 static const struct sym_pci_chip sym_pci_dev_table[] = { 8335 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8336 FE_ERL} 8337 , 8338 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8339 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8340 FE_BOF} 8341 , 8342 #else 8343 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8344 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8345 , 8346 #endif 8347 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8348 FE_BOF|FE_ERL} 8349 , 8350 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8351 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8352 , 8353 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8354 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8355 , 8356 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8357 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8358 , 8359 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8360 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8361 FE_RAM|FE_DIFF} 8362 , 8363 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8364 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8365 FE_RAM|FE_DIFF} 8366 , 8367 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8368 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8369 FE_RAM|FE_DIFF} 8370 , 8371 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8372 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8373 FE_RAM|FE_DIFF} 8374 , 8375 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8376 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8377 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8378 FE_RAM|FE_LCKFRQ} 8379 , 8380 #else 8381 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8382 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8383 FE_RAM|FE_LCKFRQ} 8384 , 8385 #endif 8386 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8387 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8388 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8389 , 8390 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8391 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8392 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8393 , 8394 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8395 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8396 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8397 FE_C10} 8398 , 8399 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8400 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8401 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8402 FE_C10|FE_U3EN} 8403 , 8404 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8405 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8406 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8407 FE_C10|FE_U3EN} 8408 , 8409 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8410 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8411 FE_RAM|FE_IO256|FE_LEDC} 8412 }; 8413 8414 /* 8415 * Look up the chip table. 8416 * 8417 * Return a pointer to the chip entry if found, 8418 * zero otherwise. 8419 */ 8420 static const struct sym_pci_chip * 8421 sym_find_pci_chip(device_t dev) 8422 { 8423 const struct sym_pci_chip *chip; 8424 int i; 8425 u_short device_id; 8426 u_char revision; 8427 8428 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8429 return NULL; 8430 8431 device_id = pci_get_device(dev); 8432 revision = pci_get_revid(dev); 8433 8434 for (i = 0; i < nitems(sym_pci_dev_table); i++) { 8435 chip = &sym_pci_dev_table[i]; 8436 if (device_id != chip->device_id) 8437 continue; 8438 if (revision > chip->revision_id) 8439 continue; 8440 return chip; 8441 } 8442 8443 return NULL; 8444 } 8445 8446 /* 8447 * Tell upper layer if the chip is supported. 8448 */ 8449 static int 8450 sym_pci_probe(device_t dev) 8451 { 8452 const struct sym_pci_chip *chip; 8453 8454 chip = sym_find_pci_chip(dev); 8455 if (chip && sym_find_firmware(chip)) { 8456 device_set_desc(dev, chip->name); 8457 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? 8458 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; 8459 } 8460 return ENXIO; 8461 } 8462 8463 /* 8464 * Attach a sym53c8xx device. 8465 */ 8466 static int 8467 sym_pci_attach(device_t dev) 8468 { 8469 const struct sym_pci_chip *chip; 8470 u_short command; 8471 u_char cachelnsz; 8472 struct sym_hcb *np = NULL; 8473 struct sym_nvram nvram; 8474 const struct sym_fw *fw = NULL; 8475 int i; 8476 bus_dma_tag_t bus_dmat; 8477 8478 bus_dmat = bus_get_dma_tag(dev); 8479 8480 /* 8481 * Only probed devices should be attached. 8482 * We just enjoy being paranoid. :) 8483 */ 8484 chip = sym_find_pci_chip(dev); 8485 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8486 return (ENXIO); 8487 8488 /* 8489 * Allocate immediately the host control block, 8490 * since we are only expecting to succeed. :) 8491 * We keep track in the HCB of all the resources that 8492 * are to be released on error. 8493 */ 8494 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8495 if (np) 8496 np->bus_dmat = bus_dmat; 8497 else 8498 return (ENXIO); 8499 device_set_softc(dev, np); 8500 8501 SYM_LOCK_INIT(); 8502 8503 /* 8504 * Copy some useful infos to the HCB. 8505 */ 8506 np->hcb_ba = vtobus(np); 8507 np->verbose = bootverbose; 8508 np->device = dev; 8509 np->device_id = pci_get_device(dev); 8510 np->revision_id = pci_get_revid(dev); 8511 np->features = chip->features; 8512 np->clock_divn = chip->nr_divisor; 8513 np->maxoffs = chip->offset_max; 8514 np->maxburst = chip->burst_max; 8515 np->scripta_sz = fw->a_size; 8516 np->scriptb_sz = fw->b_size; 8517 np->fw_setup = fw->setup; 8518 np->fw_patch = fw->patch; 8519 np->fw_name = fw->name; 8520 8521 #ifdef __amd64__ 8522 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8523 "TARGET"); 8524 if (!np->target) 8525 goto attach_failed; 8526 #endif 8527 8528 /* 8529 * Initialize the CCB free and busy queues. 8530 */ 8531 sym_que_init(&np->free_ccbq); 8532 sym_que_init(&np->busy_ccbq); 8533 sym_que_init(&np->comp_ccbq); 8534 sym_que_init(&np->cam_ccbq); 8535 8536 /* 8537 * Allocate a tag for the DMA of user data. 8538 */ 8539 np->maxsegcnt = MIN(SYM_CONF_MAX_SG, 8540 (MAXPHYS / SYM_CONF_DMA_BOUNDARY) + 1); 8541 if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY, 8542 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 8543 BUS_SPACE_MAXSIZE, np->maxsegcnt, SYM_CONF_DMA_BOUNDARY, 8544 BUS_DMA_ALLOCNOW, busdma_lock_mutex, &np->mtx, &np->data_dmat)) { 8545 device_printf(dev, "failed to create DMA tag.\n"); 8546 goto attach_failed; 8547 } 8548 8549 /* 8550 * Read and apply some fix-ups to the PCI COMMAND 8551 * register. We want the chip to be enabled for: 8552 * - BUS mastering 8553 * - PCI parity checking (reporting would also be fine) 8554 * - Write And Invalidate. 8555 */ 8556 command = pci_read_config(dev, PCIR_COMMAND, 2); 8557 command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN | 8558 PCIM_CMD_MWRICEN; 8559 pci_write_config(dev, PCIR_COMMAND, command, 2); 8560 8561 /* 8562 * Let the device know about the cache line size, 8563 * if it doesn't yet. 8564 */ 8565 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8566 if (!cachelnsz) { 8567 cachelnsz = 8; 8568 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8569 } 8570 8571 /* 8572 * Alloc/get/map/retrieve everything that deals with MMIO. 8573 */ 8574 if ((command & PCIM_CMD_MEMEN) != 0) { 8575 int regs_id = SYM_PCI_MMIO; 8576 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8577 ®s_id, RF_ACTIVE); 8578 } 8579 if (!np->mmio_res) { 8580 device_printf(dev, "failed to allocate MMIO resources\n"); 8581 goto attach_failed; 8582 } 8583 np->mmio_ba = rman_get_start(np->mmio_res); 8584 8585 /* 8586 * Allocate the IRQ. 8587 */ 8588 i = 0; 8589 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8590 RF_ACTIVE | RF_SHAREABLE); 8591 if (!np->irq_res) { 8592 device_printf(dev, "failed to allocate IRQ resource\n"); 8593 goto attach_failed; 8594 } 8595 8596 #ifdef SYM_CONF_IOMAPPED 8597 /* 8598 * User want us to use normal IO with PCI. 8599 * Alloc/get/map/retrieve everything that deals with IO. 8600 */ 8601 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 8602 int regs_id = SYM_PCI_IO; 8603 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 8604 ®s_id, RF_ACTIVE); 8605 } 8606 if (!np->io_res) { 8607 device_printf(dev, "failed to allocate IO resources\n"); 8608 goto attach_failed; 8609 } 8610 8611 #endif /* SYM_CONF_IOMAPPED */ 8612 8613 /* 8614 * If the chip has RAM. 8615 * Alloc/get/map/retrieve the corresponding resources. 8616 */ 8617 if ((np->features & (FE_RAM|FE_RAM8K)) && 8618 (command & PCIM_CMD_MEMEN) != 0) { 8619 int regs_id = SYM_PCI_RAM; 8620 if (np->features & FE_64BIT) 8621 regs_id = SYM_PCI_RAM64; 8622 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8623 ®s_id, RF_ACTIVE); 8624 if (!np->ram_res) { 8625 device_printf(dev,"failed to allocate RAM resources\n"); 8626 goto attach_failed; 8627 } 8628 np->ram_id = regs_id; 8629 np->ram_ba = rman_get_start(np->ram_res); 8630 } 8631 8632 /* 8633 * Save setting of some IO registers, so we will 8634 * be able to probe specific implementations. 8635 */ 8636 sym_save_initial_setting (np); 8637 8638 /* 8639 * Reset the chip now, since it has been reported 8640 * that SCSI clock calibration may not work properly 8641 * if the chip is currently active. 8642 */ 8643 sym_chip_reset (np); 8644 8645 /* 8646 * Try to read the user set-up. 8647 */ 8648 (void) sym_read_nvram(np, &nvram); 8649 8650 /* 8651 * Prepare controller and devices settings, according 8652 * to chip features, user set-up and driver set-up. 8653 */ 8654 (void) sym_prepare_setting(np, &nvram); 8655 8656 /* 8657 * Check the PCI clock frequency. 8658 * Must be performed after prepare_setting since it destroys 8659 * STEST1 that is used to probe for the clock doubler. 8660 */ 8661 i = sym_getpciclock(np); 8662 if (i > 37000) 8663 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8664 8665 /* 8666 * Allocate the start queue. 8667 */ 8668 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8669 if (!np->squeue) 8670 goto attach_failed; 8671 np->squeue_ba = vtobus(np->squeue); 8672 8673 /* 8674 * Allocate the done queue. 8675 */ 8676 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8677 if (!np->dqueue) 8678 goto attach_failed; 8679 np->dqueue_ba = vtobus(np->dqueue); 8680 8681 /* 8682 * Allocate the target bus address array. 8683 */ 8684 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8685 if (!np->targtbl) 8686 goto attach_failed; 8687 np->targtbl_ba = vtobus(np->targtbl); 8688 8689 /* 8690 * Allocate SCRIPTS areas. 8691 */ 8692 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8693 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8694 if (!np->scripta0 || !np->scriptb0) 8695 goto attach_failed; 8696 8697 /* 8698 * Allocate the CCBs. We need at least ONE. 8699 */ 8700 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8701 ; 8702 if (i < 1) 8703 goto attach_failed; 8704 8705 /* 8706 * Calculate BUS addresses where we are going 8707 * to load the SCRIPTS. 8708 */ 8709 np->scripta_ba = vtobus(np->scripta0); 8710 np->scriptb_ba = vtobus(np->scriptb0); 8711 np->scriptb0_ba = np->scriptb_ba; 8712 8713 if (np->ram_ba) { 8714 np->scripta_ba = np->ram_ba; 8715 if (np->features & FE_RAM8K) { 8716 np->ram_ws = 8192; 8717 np->scriptb_ba = np->scripta_ba + 4096; 8718 #ifdef __LP64__ 8719 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8720 #endif 8721 } 8722 else 8723 np->ram_ws = 4096; 8724 } 8725 8726 /* 8727 * Copy scripts to controller instance. 8728 */ 8729 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8730 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8731 8732 /* 8733 * Setup variable parts in scripts and compute 8734 * scripts bus addresses used from the C code. 8735 */ 8736 np->fw_setup(np, fw); 8737 8738 /* 8739 * Bind SCRIPTS with physical addresses usable by the 8740 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8741 */ 8742 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8743 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8744 8745 #ifdef SYM_CONF_IARB_SUPPORT 8746 /* 8747 * If user wants IARB to be set when we win arbitration 8748 * and have other jobs, compute the max number of consecutive 8749 * settings of IARB hints before we leave devices a chance to 8750 * arbitrate for reselection. 8751 */ 8752 #ifdef SYM_SETUP_IARB_MAX 8753 np->iarb_max = SYM_SETUP_IARB_MAX; 8754 #else 8755 np->iarb_max = 4; 8756 #endif 8757 #endif 8758 8759 /* 8760 * Prepare the idle and invalid task actions. 8761 */ 8762 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8763 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8764 np->idletask_ba = vtobus(&np->idletask); 8765 8766 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8767 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8768 np->notask_ba = vtobus(&np->notask); 8769 8770 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8771 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8772 np->bad_itl_ba = vtobus(&np->bad_itl); 8773 8774 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8775 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8776 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8777 8778 /* 8779 * Allocate and prepare the lun JUMP table that is used 8780 * for a target prior the probing of devices (bad lun table). 8781 * A private table will be allocated for the target on the 8782 * first INQUIRY response received. 8783 */ 8784 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8785 if (!np->badluntbl) 8786 goto attach_failed; 8787 8788 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8789 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8790 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8791 8792 /* 8793 * Prepare the bus address array that contains the bus 8794 * address of each target control block. 8795 * For now, assume all logical units are wrong. :) 8796 */ 8797 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8798 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8799 np->target[i].head.luntbl_sa = 8800 cpu_to_scr(vtobus(np->badluntbl)); 8801 np->target[i].head.lun0_sa = 8802 cpu_to_scr(vtobus(&np->badlun_sa)); 8803 } 8804 8805 /* 8806 * Now check the cache handling of the pci chipset. 8807 */ 8808 if (sym_snooptest (np)) { 8809 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8810 goto attach_failed; 8811 }; 8812 8813 /* 8814 * Now deal with CAM. 8815 * Hopefully, we will succeed with that one.:) 8816 */ 8817 if (!sym_cam_attach(np)) 8818 goto attach_failed; 8819 8820 /* 8821 * Sigh! we are done. 8822 */ 8823 return 0; 8824 8825 /* 8826 * We have failed. 8827 * We will try to free all the resources we have 8828 * allocated, but if we are a boot device, this 8829 * will not help that much.;) 8830 */ 8831 attach_failed: 8832 if (np) 8833 sym_pci_free(np); 8834 return ENXIO; 8835 } 8836 8837 /* 8838 * Free everything that have been allocated for this device. 8839 */ 8840 static void sym_pci_free(hcb_p np) 8841 { 8842 SYM_QUEHEAD *qp; 8843 ccb_p cp; 8844 tcb_p tp; 8845 lcb_p lp; 8846 int target, lun; 8847 8848 /* 8849 * First free CAM resources. 8850 */ 8851 sym_cam_free(np); 8852 8853 /* 8854 * Now every should be quiet for us to 8855 * free other resources. 8856 */ 8857 if (np->ram_res) 8858 bus_release_resource(np->device, SYS_RES_MEMORY, 8859 np->ram_id, np->ram_res); 8860 if (np->mmio_res) 8861 bus_release_resource(np->device, SYS_RES_MEMORY, 8862 SYM_PCI_MMIO, np->mmio_res); 8863 if (np->io_res) 8864 bus_release_resource(np->device, SYS_RES_IOPORT, 8865 SYM_PCI_IO, np->io_res); 8866 if (np->irq_res) 8867 bus_release_resource(np->device, SYS_RES_IRQ, 8868 0, np->irq_res); 8869 8870 if (np->scriptb0) 8871 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8872 if (np->scripta0) 8873 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8874 if (np->squeue) 8875 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8876 if (np->dqueue) 8877 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8878 8879 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8880 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8881 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8882 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8883 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8884 } 8885 8886 if (np->badluntbl) 8887 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8888 8889 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8890 tp = &np->target[target]; 8891 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8892 lp = sym_lp(np, tp, lun); 8893 if (!lp) 8894 continue; 8895 if (lp->itlq_tbl) 8896 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8897 "ITLQ_TBL"); 8898 if (lp->cb_tags) 8899 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8900 "CB_TAGS"); 8901 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8902 } 8903 #if SYM_CONF_MAX_LUN > 1 8904 if (tp->lunmp) 8905 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8906 "LUNMP"); 8907 #endif 8908 } 8909 #ifdef __amd64__ 8910 if (np->target) 8911 sym_mfree_dma(np->target, 8912 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8913 #endif 8914 if (np->targtbl) 8915 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8916 if (np->data_dmat) 8917 bus_dma_tag_destroy(np->data_dmat); 8918 if (SYM_LOCK_INITIALIZED() != 0) 8919 SYM_LOCK_DESTROY(); 8920 device_set_softc(np->device, NULL); 8921 sym_mfree_dma(np, sizeof(*np), "HCB"); 8922 } 8923 8924 /* 8925 * Allocate CAM resources and register a bus to CAM. 8926 */ 8927 static int sym_cam_attach(hcb_p np) 8928 { 8929 struct cam_devq *devq = NULL; 8930 struct cam_sim *sim = NULL; 8931 struct cam_path *path = NULL; 8932 int err; 8933 8934 /* 8935 * Establish our interrupt handler. 8936 */ 8937 err = bus_setup_intr(np->device, np->irq_res, 8938 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8939 NULL, sym_intr, np, &np->intr); 8940 if (err) { 8941 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8942 err); 8943 goto fail; 8944 } 8945 8946 /* 8947 * Create the device queue for our sym SIM. 8948 */ 8949 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8950 if (!devq) 8951 goto fail; 8952 8953 /* 8954 * Construct our SIM entry. 8955 */ 8956 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 8957 device_get_unit(np->device), 8958 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 8959 if (!sim) 8960 goto fail; 8961 8962 SYM_LOCK(); 8963 8964 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 8965 goto fail; 8966 np->sim = sim; 8967 8968 if (xpt_create_path(&path, 0, 8969 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 8970 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 8971 goto fail; 8972 } 8973 np->path = path; 8974 8975 /* 8976 * Establish our async notification handler. 8977 */ 8978 if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) != 8979 CAM_REQ_CMP) 8980 goto fail; 8981 8982 /* 8983 * Start the chip now, without resetting the BUS, since 8984 * it seems that this must stay under control of CAM. 8985 * With LVD/SE capable chips and BUS in SE mode, we may 8986 * get a spurious SMBC interrupt. 8987 */ 8988 sym_init (np, 0); 8989 8990 SYM_UNLOCK(); 8991 8992 return 1; 8993 fail: 8994 if (sim) 8995 cam_sim_free(sim, FALSE); 8996 if (devq) 8997 cam_simq_free(devq); 8998 8999 SYM_UNLOCK(); 9000 9001 sym_cam_free(np); 9002 9003 return 0; 9004 } 9005 9006 /* 9007 * Free everything that deals with CAM. 9008 */ 9009 static void sym_cam_free(hcb_p np) 9010 { 9011 SYM_LOCK_ASSERT(MA_NOTOWNED); 9012 9013 if (np->intr) { 9014 bus_teardown_intr(np->device, np->irq_res, np->intr); 9015 np->intr = NULL; 9016 } 9017 9018 SYM_LOCK(); 9019 9020 if (np->sim) { 9021 xpt_bus_deregister(cam_sim_path(np->sim)); 9022 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9023 np->sim = NULL; 9024 } 9025 if (np->path) { 9026 xpt_free_path(np->path); 9027 np->path = NULL; 9028 } 9029 9030 SYM_UNLOCK(); 9031 } 9032 9033 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9034 9035 /* 9036 * Get host setup from NVRAM. 9037 */ 9038 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9039 { 9040 #ifdef SYM_CONF_NVRAM_SUPPORT 9041 /* 9042 * Get parity checking, host ID, verbose mode 9043 * and miscellaneous host flags from NVRAM. 9044 */ 9045 switch(nvram->type) { 9046 case SYM_SYMBIOS_NVRAM: 9047 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9048 np->rv_scntl0 &= ~0x0a; 9049 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9050 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9051 np->verbose += 1; 9052 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9053 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9054 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9055 np->usrflags |= SYM_AVOID_BUS_RESET; 9056 break; 9057 case SYM_TEKRAM_NVRAM: 9058 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9059 break; 9060 default: 9061 break; 9062 } 9063 #endif 9064 } 9065 9066 /* 9067 * Get target setup from NVRAM. 9068 */ 9069 #ifdef SYM_CONF_NVRAM_SUPPORT 9070 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9071 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9072 #endif 9073 9074 static void 9075 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9076 { 9077 #ifdef SYM_CONF_NVRAM_SUPPORT 9078 switch(nvp->type) { 9079 case SYM_SYMBIOS_NVRAM: 9080 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9081 break; 9082 case SYM_TEKRAM_NVRAM: 9083 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9084 break; 9085 default: 9086 break; 9087 } 9088 #endif 9089 } 9090 9091 #ifdef SYM_CONF_NVRAM_SUPPORT 9092 /* 9093 * Get target set-up from Symbios format NVRAM. 9094 */ 9095 static void 9096 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9097 { 9098 tcb_p tp = &np->target[target]; 9099 Symbios_target *tn = &nvram->target[target]; 9100 9101 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9102 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9103 tp->usrtags = 9104 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9105 9106 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9107 tp->usrflags &= ~SYM_DISC_ENABLED; 9108 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9109 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9110 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9111 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9112 } 9113 9114 /* 9115 * Get target set-up from Tekram format NVRAM. 9116 */ 9117 static void 9118 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9119 { 9120 tcb_p tp = &np->target[target]; 9121 struct Tekram_target *tn = &nvram->target[target]; 9122 int i; 9123 9124 if (tn->flags & TEKRAM_SYNC_NEGO) { 9125 i = tn->sync_index & 0xf; 9126 tp->tinfo.user.period = Tekram_sync[i]; 9127 } 9128 9129 tp->tinfo.user.width = 9130 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9131 9132 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9133 tp->usrtags = 2 << nvram->max_tags_index; 9134 } 9135 9136 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9137 tp->usrflags |= SYM_DISC_ENABLED; 9138 9139 /* If any device does not support parity, we will not use this option */ 9140 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9141 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9142 } 9143 9144 #ifdef SYM_CONF_DEBUG_NVRAM 9145 /* 9146 * Dump Symbios format NVRAM for debugging purpose. 9147 */ 9148 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9149 { 9150 int i; 9151 9152 /* display Symbios nvram host data */ 9153 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9154 sym_name(np), nvram->host_id & 0x0f, 9155 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9156 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9157 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9158 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9159 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9160 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9161 9162 /* display Symbios nvram drive data */ 9163 for (i = 0 ; i < 15 ; i++) { 9164 struct Symbios_target *tn = &nvram->target[i]; 9165 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9166 sym_name(np), i, 9167 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9168 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9169 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9170 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9171 tn->bus_width, 9172 tn->sync_period / 4, 9173 tn->timeout); 9174 } 9175 } 9176 9177 /* 9178 * Dump TEKRAM format NVRAM for debugging purpose. 9179 */ 9180 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9181 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9182 { 9183 int i, tags, boot_delay; 9184 char *rem; 9185 9186 /* display Tekram nvram host data */ 9187 tags = 2 << nvram->max_tags_index; 9188 boot_delay = 0; 9189 if (nvram->boot_delay_index < 6) 9190 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9191 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9192 default: 9193 case 0: rem = ""; break; 9194 case 1: rem = " REMOVABLE=boot device"; break; 9195 case 2: rem = " REMOVABLE=all"; break; 9196 } 9197 9198 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9199 sym_name(np), nvram->host_id & 0x0f, 9200 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9201 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9202 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9203 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9204 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9205 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9206 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9207 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9208 rem, boot_delay, tags); 9209 9210 /* display Tekram nvram drive data */ 9211 for (i = 0; i <= 15; i++) { 9212 int sync, j; 9213 struct Tekram_target *tn = &nvram->target[i]; 9214 j = tn->sync_index & 0xf; 9215 sync = Tekram_sync[j]; 9216 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9217 sym_name(np), i, 9218 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9219 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9220 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9221 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9222 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9223 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9224 sync); 9225 } 9226 } 9227 #endif /* SYM_CONF_DEBUG_NVRAM */ 9228 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9229 9230 /* 9231 * Try reading Symbios or Tekram NVRAM 9232 */ 9233 #ifdef SYM_CONF_NVRAM_SUPPORT 9234 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9235 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9236 #endif 9237 9238 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9239 { 9240 #ifdef SYM_CONF_NVRAM_SUPPORT 9241 /* 9242 * Try to read SYMBIOS nvram. 9243 * Try to read TEKRAM nvram if Symbios nvram not found. 9244 */ 9245 if (SYM_SETUP_SYMBIOS_NVRAM && 9246 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9247 nvp->type = SYM_SYMBIOS_NVRAM; 9248 #ifdef SYM_CONF_DEBUG_NVRAM 9249 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9250 #endif 9251 } 9252 else if (SYM_SETUP_TEKRAM_NVRAM && 9253 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9254 nvp->type = SYM_TEKRAM_NVRAM; 9255 #ifdef SYM_CONF_DEBUG_NVRAM 9256 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9257 #endif 9258 } 9259 else 9260 nvp->type = 0; 9261 #else 9262 nvp->type = 0; 9263 #endif 9264 return nvp->type; 9265 } 9266 9267 #ifdef SYM_CONF_NVRAM_SUPPORT 9268 /* 9269 * 24C16 EEPROM reading. 9270 * 9271 * GPOI0 - data in/data out 9272 * GPIO1 - clock 9273 * Symbios NVRAM wiring now also used by Tekram. 9274 */ 9275 9276 #define SET_BIT 0 9277 #define CLR_BIT 1 9278 #define SET_CLK 2 9279 #define CLR_CLK 3 9280 9281 /* 9282 * Set/clear data/clock bit in GPIO0 9283 */ 9284 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9285 int bit_mode) 9286 { 9287 UDELAY (5); 9288 switch (bit_mode){ 9289 case SET_BIT: 9290 *gpreg |= write_bit; 9291 break; 9292 case CLR_BIT: 9293 *gpreg &= 0xfe; 9294 break; 9295 case SET_CLK: 9296 *gpreg |= 0x02; 9297 break; 9298 case CLR_CLK: 9299 *gpreg &= 0xfd; 9300 break; 9301 9302 } 9303 OUTB (nc_gpreg, *gpreg); 9304 UDELAY (5); 9305 } 9306 9307 /* 9308 * Send START condition to NVRAM to wake it up. 9309 */ 9310 static void S24C16_start(hcb_p np, u_char *gpreg) 9311 { 9312 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9313 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9314 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9315 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9316 } 9317 9318 /* 9319 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9320 */ 9321 static void S24C16_stop(hcb_p np, u_char *gpreg) 9322 { 9323 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9324 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9325 } 9326 9327 /* 9328 * Read or write a bit to the NVRAM, 9329 * read if GPIO0 input else write if GPIO0 output 9330 */ 9331 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9332 u_char *gpreg) 9333 { 9334 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9335 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9336 if (read_bit) 9337 *read_bit = INB (nc_gpreg); 9338 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9339 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9340 } 9341 9342 /* 9343 * Output an ACK to the NVRAM after reading, 9344 * change GPIO0 to output and when done back to an input 9345 */ 9346 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9347 u_char *gpcntl) 9348 { 9349 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9350 S24C16_do_bit(np, 0, write_bit, gpreg); 9351 OUTB (nc_gpcntl, *gpcntl); 9352 } 9353 9354 /* 9355 * Input an ACK from NVRAM after writing, 9356 * change GPIO0 to input and when done back to an output 9357 */ 9358 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9359 u_char *gpcntl) 9360 { 9361 OUTB (nc_gpcntl, *gpcntl | 0x01); 9362 S24C16_do_bit(np, read_bit, 1, gpreg); 9363 OUTB (nc_gpcntl, *gpcntl); 9364 } 9365 9366 /* 9367 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9368 * GPIO0 must already be set as an output 9369 */ 9370 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9371 u_char *gpreg, u_char *gpcntl) 9372 { 9373 int x; 9374 9375 for (x = 0; x < 8; x++) 9376 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9377 9378 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9379 } 9380 9381 /* 9382 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9383 * GPIO0 must already be set as an input 9384 */ 9385 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9386 u_char *gpreg, u_char *gpcntl) 9387 { 9388 int x; 9389 u_char read_bit; 9390 9391 *read_data = 0; 9392 for (x = 0; x < 8; x++) { 9393 S24C16_do_bit(np, &read_bit, 1, gpreg); 9394 *read_data |= ((read_bit & 0x01) << (7 - x)); 9395 } 9396 9397 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9398 } 9399 9400 /* 9401 * Read 'len' bytes starting at 'offset'. 9402 */ 9403 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9404 { 9405 u_char gpcntl, gpreg; 9406 u_char old_gpcntl, old_gpreg; 9407 u_char ack_data; 9408 int retv = 1; 9409 int x; 9410 9411 /* save current state of GPCNTL and GPREG */ 9412 old_gpreg = INB (nc_gpreg); 9413 old_gpcntl = INB (nc_gpcntl); 9414 gpcntl = old_gpcntl & 0x1c; 9415 9416 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9417 OUTB (nc_gpreg, old_gpreg); 9418 OUTB (nc_gpcntl, gpcntl); 9419 9420 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9421 gpreg = old_gpreg; 9422 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9423 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9424 9425 /* now set NVRAM inactive with GPIO0/1 both high */ 9426 S24C16_stop(np, &gpreg); 9427 9428 /* activate NVRAM */ 9429 S24C16_start(np, &gpreg); 9430 9431 /* write device code and random address MSB */ 9432 S24C16_write_byte(np, &ack_data, 9433 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9434 if (ack_data & 0x01) 9435 goto out; 9436 9437 /* write random address LSB */ 9438 S24C16_write_byte(np, &ack_data, 9439 offset & 0xff, &gpreg, &gpcntl); 9440 if (ack_data & 0x01) 9441 goto out; 9442 9443 /* regenerate START state to set up for reading */ 9444 S24C16_start(np, &gpreg); 9445 9446 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9447 S24C16_write_byte(np, &ack_data, 9448 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9449 if (ack_data & 0x01) 9450 goto out; 9451 9452 /* now set up GPIO0 for inputting data */ 9453 gpcntl |= 0x01; 9454 OUTB (nc_gpcntl, gpcntl); 9455 9456 /* input all requested data - only part of total NVRAM */ 9457 for (x = 0; x < len; x++) 9458 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9459 9460 /* finally put NVRAM back in inactive mode */ 9461 gpcntl &= 0xfe; 9462 OUTB (nc_gpcntl, gpcntl); 9463 S24C16_stop(np, &gpreg); 9464 retv = 0; 9465 out: 9466 /* return GPIO0/1 to original states after having accessed NVRAM */ 9467 OUTB (nc_gpcntl, old_gpcntl); 9468 OUTB (nc_gpreg, old_gpreg); 9469 9470 return retv; 9471 } 9472 9473 #undef SET_BIT /* 0 */ 9474 #undef CLR_BIT /* 1 */ 9475 #undef SET_CLK /* 2 */ 9476 #undef CLR_CLK /* 3 */ 9477 9478 /* 9479 * Try reading Symbios NVRAM. 9480 * Return 0 if OK. 9481 */ 9482 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9483 { 9484 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9485 u_char *data = (u_char *) nvram; 9486 int len = sizeof(*nvram); 9487 u_short csum; 9488 int x; 9489 9490 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9491 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9492 return 1; 9493 9494 /* check valid NVRAM signature, verify byte count and checksum */ 9495 if (nvram->type != 0 || 9496 bcmp(nvram->trailer, Symbios_trailer, 6) || 9497 nvram->byte_count != len - 12) 9498 return 1; 9499 9500 /* verify checksum */ 9501 for (x = 6, csum = 0; x < len - 6; x++) 9502 csum += data[x]; 9503 if (csum != nvram->checksum) 9504 return 1; 9505 9506 return 0; 9507 } 9508 9509 /* 9510 * 93C46 EEPROM reading. 9511 * 9512 * GPOI0 - data in 9513 * GPIO1 - data out 9514 * GPIO2 - clock 9515 * GPIO4 - chip select 9516 * 9517 * Used by Tekram. 9518 */ 9519 9520 /* 9521 * Pulse clock bit in GPIO0 9522 */ 9523 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9524 { 9525 OUTB (nc_gpreg, *gpreg | 0x04); 9526 UDELAY (2); 9527 OUTB (nc_gpreg, *gpreg); 9528 } 9529 9530 /* 9531 * Read bit from NVRAM 9532 */ 9533 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9534 { 9535 UDELAY (2); 9536 T93C46_Clk(np, gpreg); 9537 *read_bit = INB (nc_gpreg); 9538 } 9539 9540 /* 9541 * Write bit to GPIO0 9542 */ 9543 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9544 { 9545 if (write_bit & 0x01) 9546 *gpreg |= 0x02; 9547 else 9548 *gpreg &= 0xfd; 9549 9550 *gpreg |= 0x10; 9551 9552 OUTB (nc_gpreg, *gpreg); 9553 UDELAY (2); 9554 9555 T93C46_Clk(np, gpreg); 9556 } 9557 9558 /* 9559 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9560 */ 9561 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9562 { 9563 *gpreg &= 0xef; 9564 OUTB (nc_gpreg, *gpreg); 9565 UDELAY (2); 9566 9567 T93C46_Clk(np, gpreg); 9568 } 9569 9570 /* 9571 * Send read command and address to NVRAM 9572 */ 9573 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9574 u_char *read_bit, u_char *gpreg) 9575 { 9576 int x; 9577 9578 /* send 9 bits, start bit (1), command (2), address (6) */ 9579 for (x = 0; x < 9; x++) 9580 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9581 9582 *read_bit = INB (nc_gpreg); 9583 } 9584 9585 /* 9586 * READ 2 bytes from the NVRAM 9587 */ 9588 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9589 { 9590 int x; 9591 u_char read_bit; 9592 9593 *nvram_data = 0; 9594 for (x = 0; x < 16; x++) { 9595 T93C46_Read_Bit(np, &read_bit, gpreg); 9596 9597 if (read_bit & 0x01) 9598 *nvram_data |= (0x01 << (15 - x)); 9599 else 9600 *nvram_data &= ~(0x01 << (15 - x)); 9601 } 9602 } 9603 9604 /* 9605 * Read Tekram NvRAM data. 9606 */ 9607 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9608 { 9609 u_char read_bit; 9610 int x; 9611 9612 for (x = 0; x < len; x++) { 9613 9614 /* output read command and address */ 9615 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9616 if (read_bit & 0x01) 9617 return 1; /* Bad */ 9618 T93C46_Read_Word(np, &data[x], gpreg); 9619 T93C46_Stop(np, gpreg); 9620 } 9621 9622 return 0; 9623 } 9624 9625 /* 9626 * Try reading 93C46 Tekram NVRAM. 9627 */ 9628 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9629 { 9630 u_char gpcntl, gpreg; 9631 u_char old_gpcntl, old_gpreg; 9632 int retv = 1; 9633 9634 /* save current state of GPCNTL and GPREG */ 9635 old_gpreg = INB (nc_gpreg); 9636 old_gpcntl = INB (nc_gpcntl); 9637 9638 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9639 1/2/4 out */ 9640 gpreg = old_gpreg & 0xe9; 9641 OUTB (nc_gpreg, gpreg); 9642 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9643 OUTB (nc_gpcntl, gpcntl); 9644 9645 /* input all of NVRAM, 64 words */ 9646 retv = T93C46_Read_Data(np, (u_short *) nvram, 9647 sizeof(*nvram) / sizeof(short), &gpreg); 9648 9649 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9650 OUTB (nc_gpcntl, old_gpcntl); 9651 OUTB (nc_gpreg, old_gpreg); 9652 9653 return retv; 9654 } 9655 9656 /* 9657 * Try reading Tekram NVRAM. 9658 * Return 0 if OK. 9659 */ 9660 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9661 { 9662 u_char *data = (u_char *) nvram; 9663 int len = sizeof(*nvram); 9664 u_short csum; 9665 int x; 9666 9667 switch (np->device_id) { 9668 case PCI_ID_SYM53C885: 9669 case PCI_ID_SYM53C895: 9670 case PCI_ID_SYM53C896: 9671 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9672 data, len); 9673 break; 9674 case PCI_ID_SYM53C875: 9675 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9676 data, len); 9677 if (!x) 9678 break; 9679 default: 9680 x = sym_read_T93C46_nvram(np, nvram); 9681 break; 9682 } 9683 if (x) 9684 return 1; 9685 9686 /* verify checksum */ 9687 for (x = 0, csum = 0; x < len - 1; x += 2) 9688 csum += data[x] + (data[x+1] << 8); 9689 if (csum != 0x1234) 9690 return 1; 9691 9692 return 0; 9693 } 9694 9695 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9696