1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 5 * PCI-SCSI controllers. 6 * 7 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 8 * 9 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 10 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 11 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 12 * 13 * 14 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 15 * Copyright (C) 1998-1999 Gerard Roudier 16 * 17 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 18 * a port of the FreeBSD ncr driver to Linux-1.2.13. 19 * 20 * The original ncr driver has been written for 386bsd and FreeBSD by 21 * Wolfgang Stanglmeier <wolf@cologne.de> 22 * Stefan Esser <se@mi.Uni-Koeln.de> 23 * Copyright (C) 1994 Wolfgang Stanglmeier 24 * 25 * The initialisation code, and part of the code that addresses 26 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 27 * written by Justin T. Gibbs. 28 * 29 * Other major contributions: 30 * 31 * NVRAM detection and reading. 32 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 33 * 34 *----------------------------------------------------------------------------- 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. The name of the author may not be used to endorse or promote products 45 * derived from this software without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 51 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 64 65 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 66 67 #include <sys/param.h> 68 69 /* 70 * Driver configuration options. 71 */ 72 #include "opt_sym.h" 73 #include <dev/sym/sym_conf.h> 74 75 #include <sys/systm.h> 76 #include <sys/malloc.h> 77 #include <sys/endian.h> 78 #include <sys/kernel.h> 79 #include <sys/lock.h> 80 #include <sys/mutex.h> 81 #include <sys/module.h> 82 #include <sys/bus.h> 83 84 #include <sys/proc.h> 85 86 #include <dev/pci/pcireg.h> 87 #include <dev/pci/pcivar.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <machine/atomic.h> 92 93 #include <sys/rman.h> 94 95 #include <cam/cam.h> 96 #include <cam/cam_ccb.h> 97 #include <cam/cam_sim.h> 98 #include <cam/cam_xpt_sim.h> 99 #include <cam/cam_debug.h> 100 101 #include <cam/scsi/scsi_all.h> 102 #include <cam/scsi/scsi_message.h> 103 104 /* Short and quite clear integer types */ 105 typedef int8_t s8; 106 typedef int16_t s16; 107 typedef int32_t s32; 108 typedef u_int8_t u8; 109 typedef u_int16_t u16; 110 typedef u_int32_t u32; 111 112 /* 113 * Driver definitions. 114 */ 115 #include <dev/sym/sym_defs.h> 116 #include <dev/sym/sym_fw.h> 117 118 /* 119 * IA32 architecture does not reorder STORES and prevents 120 * LOADS from passing STORES. It is called `program order' 121 * by Intel and allows device drivers to deal with memory 122 * ordering by only ensuring that the code is not reordered 123 * by the compiler when ordering is required. 124 * Other architectures implement a weaker ordering that 125 * requires memory barriers (and also IO barriers when they 126 * make sense) to be used. 127 */ 128 #if defined __i386__ || defined __amd64__ 129 #define MEMORY_BARRIER() do { ; } while(0) 130 #elif defined __powerpc__ 131 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 132 #elif defined __arm__ 133 #define MEMORY_BARRIER() dmb() 134 #elif defined __aarch64__ 135 #define MEMORY_BARRIER() dmb(sy) 136 #elif defined __riscv 137 #define MEMORY_BARRIER() fence() 138 #else 139 #error "Not supported platform" 140 #endif 141 142 /* 143 * A la VMS/CAM-3 queue management. 144 */ 145 typedef struct sym_quehead { 146 struct sym_quehead *flink; /* Forward pointer */ 147 struct sym_quehead *blink; /* Backward pointer */ 148 } SYM_QUEHEAD; 149 150 #define sym_que_init(ptr) do { \ 151 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 152 } while (0) 153 154 static __inline void __sym_que_add(struct sym_quehead * new, 155 struct sym_quehead * blink, 156 struct sym_quehead * flink) 157 { 158 flink->blink = new; 159 new->flink = flink; 160 new->blink = blink; 161 blink->flink = new; 162 } 163 164 static __inline void __sym_que_del(struct sym_quehead * blink, 165 struct sym_quehead * flink) 166 { 167 flink->blink = blink; 168 blink->flink = flink; 169 } 170 171 static __inline int sym_que_empty(struct sym_quehead *head) 172 { 173 return head->flink == head; 174 } 175 176 static __inline void sym_que_splice(struct sym_quehead *list, 177 struct sym_quehead *head) 178 { 179 struct sym_quehead *first = list->flink; 180 181 if (first != list) { 182 struct sym_quehead *last = list->blink; 183 struct sym_quehead *at = head->flink; 184 185 first->blink = head; 186 head->flink = first; 187 188 last->flink = at; 189 at->blink = last; 190 } 191 } 192 193 #define sym_que_entry(ptr, type, member) \ 194 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 195 196 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 197 198 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 199 200 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 201 202 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 203 { 204 struct sym_quehead *elem = head->flink; 205 206 if (elem != head) 207 __sym_que_del(head, elem->flink); 208 else 209 elem = NULL; 210 return elem; 211 } 212 213 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 214 215 /* 216 * This one may be useful. 217 */ 218 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 219 for (qp = (head)->flink; qp != (head); qp = qp->flink) 220 /* 221 * FreeBSD does not offer our kind of queue in the CAM CCB. 222 * So, we have to cast. 223 */ 224 #define sym_qptr(p) ((struct sym_quehead *) (p)) 225 226 /* 227 * Simple bitmap operations. 228 */ 229 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 230 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 231 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 232 233 /* 234 * Number of tasks per device we want to handle. 235 */ 236 #if SYM_CONF_MAX_TAG_ORDER > 8 237 #error "more than 256 tags per logical unit not allowed." 238 #endif 239 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 240 241 /* 242 * Donnot use more tasks that we can handle. 243 */ 244 #ifndef SYM_CONF_MAX_TAG 245 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 246 #endif 247 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 248 #undef SYM_CONF_MAX_TAG 249 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 250 #endif 251 252 /* 253 * This one means 'NO TAG for this job' 254 */ 255 #define NO_TAG (256) 256 257 /* 258 * Number of SCSI targets. 259 */ 260 #if SYM_CONF_MAX_TARGET > 16 261 #error "more than 16 targets not allowed." 262 #endif 263 264 /* 265 * Number of logical units per target. 266 */ 267 #if SYM_CONF_MAX_LUN > 64 268 #error "more than 64 logical units per target not allowed." 269 #endif 270 271 /* 272 * Asynchronous pre-scaler (ns). Shall be 40 for 273 * the SCSI timings to be compliant. 274 */ 275 #define SYM_CONF_MIN_ASYNC (40) 276 277 /* 278 * Number of entries in the START and DONE queues. 279 * 280 * We limit to 1 PAGE in order to succeed allocation of 281 * these queues. Each entry is 8 bytes long (2 DWORDS). 282 */ 283 #ifdef SYM_CONF_MAX_START 284 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 285 #else 286 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 287 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 288 #endif 289 290 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 291 #undef SYM_CONF_MAX_QUEUE 292 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 293 #undef SYM_CONF_MAX_START 294 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 295 #endif 296 297 /* 298 * For this one, we want a short name :-) 299 */ 300 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 301 302 /* 303 * Active debugging tags and verbosity. 304 */ 305 #define DEBUG_ALLOC (0x0001) 306 #define DEBUG_PHASE (0x0002) 307 #define DEBUG_POLL (0x0004) 308 #define DEBUG_QUEUE (0x0008) 309 #define DEBUG_RESULT (0x0010) 310 #define DEBUG_SCATTER (0x0020) 311 #define DEBUG_SCRIPT (0x0040) 312 #define DEBUG_TINY (0x0080) 313 #define DEBUG_TIMING (0x0100) 314 #define DEBUG_NEGO (0x0200) 315 #define DEBUG_TAGS (0x0400) 316 #define DEBUG_POINTER (0x0800) 317 318 #if 0 319 static int sym_debug = 0; 320 #define DEBUG_FLAGS sym_debug 321 #else 322 /* #define DEBUG_FLAGS (0x0631) */ 323 #define DEBUG_FLAGS (0x0000) 324 325 #endif 326 #define sym_verbose (np->verbose) 327 328 /* 329 * Insert a delay in micro-seconds and milli-seconds. 330 */ 331 static void UDELAY(int us) { DELAY(us); } 332 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 333 334 /* 335 * Simple power of two buddy-like allocator. 336 * 337 * This simple code is not intended to be fast, but to 338 * provide power of 2 aligned memory allocations. 339 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 340 * this allocator allows simple and fast address calculations 341 * from the SCRIPTS code. In addition, cache line alignment 342 * is guaranteed for power of 2 cache line size. 343 * 344 * This allocator has been developed for the Linux sym53c8xx 345 * driver, since this O/S does not provide naturally aligned 346 * allocations. 347 * It has the advantage of allowing the driver to use private 348 * pages of memory that will be useful if we ever need to deal 349 * with IO MMUs for PCI. 350 */ 351 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 352 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 353 #if 0 354 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 355 #endif 356 #define MEMO_WARN 1 357 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 358 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 359 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 360 361 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 362 #define free_pages(p) free((p), M_DEVBUF) 363 364 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 365 366 typedef struct m_link { /* Link between free memory chunks */ 367 struct m_link *next; 368 } m_link_s; 369 370 typedef struct m_vtob { /* Virtual to Bus address translation */ 371 struct m_vtob *next; 372 bus_dmamap_t dmamap; /* Map for this chunk */ 373 m_addr_t vaddr; /* Virtual address */ 374 m_addr_t baddr; /* Bus physical address */ 375 } m_vtob_s; 376 /* Hash this stuff a bit to speed up translations */ 377 #define VTOB_HASH_SHIFT 5 378 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 379 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 380 #define VTOB_HASH_CODE(m) \ 381 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 382 383 typedef struct m_pool { /* Memory pool of a given kind */ 384 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 385 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 386 m_addr_t (*getp)(struct m_pool *); 387 #ifdef MEMO_FREE_UNUSED 388 void (*freep)(struct m_pool *, m_addr_t); 389 #endif 390 #define M_GETP() mp->getp(mp) 391 #define M_FREEP(p) mp->freep(mp, p) 392 int nump; 393 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 394 struct m_pool *next; 395 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 396 } m_pool_s; 397 398 static void *___sym_malloc(m_pool_s *mp, int size) 399 { 400 int i = 0; 401 int s = (1 << MEMO_SHIFT); 402 int j; 403 m_addr_t a; 404 m_link_s *h = mp->h; 405 406 if (size > MEMO_CLUSTER_SIZE) 407 return NULL; 408 409 while (size > s) { 410 s <<= 1; 411 ++i; 412 } 413 414 j = i; 415 while (!h[j].next) { 416 if (s == MEMO_CLUSTER_SIZE) { 417 h[j].next = (m_link_s *) M_GETP(); 418 if (h[j].next) 419 h[j].next->next = NULL; 420 break; 421 } 422 ++j; 423 s <<= 1; 424 } 425 a = (m_addr_t) h[j].next; 426 if (a) { 427 h[j].next = h[j].next->next; 428 while (j > i) { 429 j -= 1; 430 s >>= 1; 431 h[j].next = (m_link_s *) (a+s); 432 h[j].next->next = NULL; 433 } 434 } 435 #ifdef DEBUG 436 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 437 #endif 438 return (void *) a; 439 } 440 441 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 442 { 443 int i = 0; 444 int s = (1 << MEMO_SHIFT); 445 m_link_s *q; 446 m_addr_t a, b; 447 m_link_s *h = mp->h; 448 449 #ifdef DEBUG 450 printf("___sym_mfree(%p, %d)\n", ptr, size); 451 #endif 452 453 if (size > MEMO_CLUSTER_SIZE) 454 return; 455 456 while (size > s) { 457 s <<= 1; 458 ++i; 459 } 460 461 a = (m_addr_t) ptr; 462 463 while (1) { 464 #ifdef MEMO_FREE_UNUSED 465 if (s == MEMO_CLUSTER_SIZE) { 466 M_FREEP(a); 467 break; 468 } 469 #endif 470 b = a ^ s; 471 q = &h[i]; 472 while (q->next && q->next != (m_link_s *) b) { 473 q = q->next; 474 } 475 if (!q->next) { 476 ((m_link_s *) a)->next = h[i].next; 477 h[i].next = (m_link_s *) a; 478 break; 479 } 480 q->next = q->next->next; 481 a = a & b; 482 s <<= 1; 483 ++i; 484 } 485 } 486 487 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 488 { 489 void *p; 490 491 p = ___sym_malloc(mp, size); 492 493 if (DEBUG_FLAGS & DEBUG_ALLOC) 494 printf ("new %-10s[%4d] @%p.\n", name, size, p); 495 496 if (p) 497 bzero(p, size); 498 else if (uflags & MEMO_WARN) 499 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 500 501 return p; 502 } 503 504 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 505 506 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 507 { 508 if (DEBUG_FLAGS & DEBUG_ALLOC) 509 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 510 511 ___sym_mfree(mp, ptr, size); 512 513 } 514 515 /* 516 * Default memory pool we donnot need to involve in DMA. 517 */ 518 /* 519 * With the `bus dma abstraction', we use a separate pool for 520 * memory we donnot need to involve in DMA. 521 */ 522 static m_addr_t ___mp0_getp(m_pool_s *mp) 523 { 524 m_addr_t m = (m_addr_t) get_pages(); 525 if (m) 526 ++mp->nump; 527 return m; 528 } 529 530 #ifdef MEMO_FREE_UNUSED 531 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 532 { 533 free_pages(m); 534 --mp->nump; 535 } 536 #endif 537 538 #ifdef MEMO_FREE_UNUSED 539 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 540 #else 541 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 542 #endif 543 544 /* 545 * Actual memory allocation routine for non-DMAed memory. 546 */ 547 static void *sym_calloc(int size, char *name) 548 { 549 void *m; 550 /* Lock */ 551 m = __sym_calloc(&mp0, size, name); 552 /* Unlock */ 553 return m; 554 } 555 556 /* 557 * Actual memory allocation routine for non-DMAed memory. 558 */ 559 static void sym_mfree(void *ptr, int size, char *name) 560 { 561 /* Lock */ 562 __sym_mfree(&mp0, ptr, size, name); 563 /* Unlock */ 564 } 565 566 /* 567 * DMAable pools. 568 */ 569 /* 570 * With `bus dma abstraction', we use a separate pool per parent 571 * BUS handle. A reverse table (hashed) is maintained for virtual 572 * to BUS address translation. 573 */ 574 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused, 575 int error) 576 { 577 bus_addr_t *baddr; 578 579 KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg)); 580 581 baddr = (bus_addr_t *)arg; 582 if (error) 583 *baddr = 0; 584 else 585 *baddr = segs->ds_addr; 586 } 587 588 static m_addr_t ___dma_getp(m_pool_s *mp) 589 { 590 m_vtob_s *vbp; 591 void *vaddr = NULL; 592 bus_addr_t baddr = 0; 593 594 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 595 if (!vbp) 596 goto out_err; 597 598 if (bus_dmamem_alloc(mp->dmat, &vaddr, 599 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 600 goto out_err; 601 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 602 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 603 if (baddr) { 604 int hc = VTOB_HASH_CODE(vaddr); 605 vbp->vaddr = (m_addr_t) vaddr; 606 vbp->baddr = (m_addr_t) baddr; 607 vbp->next = mp->vtob[hc]; 608 mp->vtob[hc] = vbp; 609 ++mp->nump; 610 return (m_addr_t) vaddr; 611 } 612 out_err: 613 if (baddr) 614 bus_dmamap_unload(mp->dmat, vbp->dmamap); 615 if (vaddr) 616 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 617 if (vbp) 618 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 619 return 0; 620 } 621 622 #ifdef MEMO_FREE_UNUSED 623 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 624 { 625 m_vtob_s **vbpp, *vbp; 626 int hc = VTOB_HASH_CODE(m); 627 628 vbpp = &mp->vtob[hc]; 629 while (*vbpp && (*vbpp)->vaddr != m) 630 vbpp = &(*vbpp)->next; 631 if (*vbpp) { 632 vbp = *vbpp; 633 *vbpp = (*vbpp)->next; 634 bus_dmamap_unload(mp->dmat, vbp->dmamap); 635 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 636 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 637 --mp->nump; 638 } 639 } 640 #endif 641 642 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 643 { 644 m_pool_s *mp; 645 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 646 return mp; 647 } 648 649 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 650 { 651 m_pool_s *mp = NULL; 652 653 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 654 if (mp) { 655 mp->dev_dmat = dev_dmat; 656 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 657 BUS_SPACE_MAXADDR_32BIT, 658 BUS_SPACE_MAXADDR, 659 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 660 MEMO_CLUSTER_SIZE, 0, 661 NULL, NULL, &mp->dmat)) { 662 mp->getp = ___dma_getp; 663 #ifdef MEMO_FREE_UNUSED 664 mp->freep = ___dma_freep; 665 #endif 666 mp->next = mp0.next; 667 mp0.next = mp; 668 return mp; 669 } 670 } 671 if (mp) 672 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 673 return NULL; 674 } 675 676 #ifdef MEMO_FREE_UNUSED 677 static void ___del_dma_pool(m_pool_s *p) 678 { 679 struct m_pool **pp = &mp0.next; 680 681 while (*pp && *pp != p) 682 pp = &(*pp)->next; 683 if (*pp) { 684 *pp = (*pp)->next; 685 bus_dma_tag_destroy(p->dmat); 686 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 687 } 688 } 689 #endif 690 691 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 692 { 693 struct m_pool *mp; 694 void *m = NULL; 695 696 /* Lock */ 697 mp = ___get_dma_pool(dev_dmat); 698 if (!mp) 699 mp = ___cre_dma_pool(dev_dmat); 700 if (mp) 701 m = __sym_calloc(mp, size, name); 702 #ifdef MEMO_FREE_UNUSED 703 if (mp && !mp->nump) 704 ___del_dma_pool(mp); 705 #endif 706 /* Unlock */ 707 708 return m; 709 } 710 711 static void 712 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 713 { 714 struct m_pool *mp; 715 716 /* Lock */ 717 mp = ___get_dma_pool(dev_dmat); 718 if (mp) 719 __sym_mfree(mp, m, size, name); 720 #ifdef MEMO_FREE_UNUSED 721 if (mp && !mp->nump) 722 ___del_dma_pool(mp); 723 #endif 724 /* Unlock */ 725 } 726 727 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 728 { 729 m_pool_s *mp; 730 int hc = VTOB_HASH_CODE(m); 731 m_vtob_s *vp = NULL; 732 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 733 734 /* Lock */ 735 mp = ___get_dma_pool(dev_dmat); 736 if (mp) { 737 vp = mp->vtob[hc]; 738 while (vp && (m_addr_t) vp->vaddr != a) 739 vp = vp->next; 740 } 741 /* Unlock */ 742 if (!vp) 743 panic("sym: VTOBUS FAILED!\n"); 744 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 745 } 746 747 /* 748 * Verbs for DMAable memory handling. 749 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 750 * being discarded. 751 */ 752 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 753 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 754 #define _sym_mfree_dma(np, p, s, n) \ 755 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 756 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 757 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 758 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 759 #define vtobus(p) _vtobus(np, p) 760 761 /* 762 * Print a buffer in hexadecimal format. 763 */ 764 static void sym_printb_hex (u_char *p, int n) 765 { 766 while (n-- > 0) 767 printf (" %x", *p++); 768 } 769 770 /* 771 * Same with a label at beginning and .\n at end. 772 */ 773 static void sym_printl_hex (char *label, u_char *p, int n) 774 { 775 printf ("%s", label); 776 sym_printb_hex (p, n); 777 printf (".\n"); 778 } 779 780 /* 781 * Return a string for SCSI BUS mode. 782 */ 783 static const char *sym_scsi_bus_mode(int mode) 784 { 785 switch(mode) { 786 case SMODE_HVD: return "HVD"; 787 case SMODE_SE: return "SE"; 788 case SMODE_LVD: return "LVD"; 789 } 790 return "??"; 791 } 792 793 /* 794 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 795 */ 796 #ifdef SYM_CONF_NVRAM_SUPPORT 797 static const u_char Tekram_sync[16] = 798 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 799 #endif 800 801 /* 802 * Union of supported NVRAM formats. 803 */ 804 struct sym_nvram { 805 int type; 806 #define SYM_SYMBIOS_NVRAM (1) 807 #define SYM_TEKRAM_NVRAM (2) 808 #ifdef SYM_CONF_NVRAM_SUPPORT 809 union { 810 Symbios_nvram Symbios; 811 Tekram_nvram Tekram; 812 } data; 813 #endif 814 }; 815 816 /* 817 * This one is hopefully useless, but actually useful. :-) 818 */ 819 #ifndef assert 820 #define assert(expression) { \ 821 if (!(expression)) { \ 822 (void)panic( \ 823 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 824 #expression, \ 825 __FILE__, __LINE__); \ 826 } \ 827 } 828 #endif 829 830 /* 831 * Some provision for a possible big endian mode supported by 832 * Symbios chips (never seen, by the way). 833 * For now, this stuff does not deserve any comments. :) 834 */ 835 #define sym_offb(o) (o) 836 #define sym_offw(o) (o) 837 838 /* 839 * Some provision for support for BIG ENDIAN CPU. 840 */ 841 #define cpu_to_scr(dw) htole32(dw) 842 #define scr_to_cpu(dw) le32toh(dw) 843 844 /* 845 * Access to the chip IO registers and on-chip RAM. 846 * We use the `bus space' interface under FreeBSD-4 and 847 * later kernel versions. 848 */ 849 #if defined(SYM_CONF_IOMAPPED) 850 851 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 852 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 853 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 854 855 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 856 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 857 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 858 859 #else /* Memory mapped IO */ 860 861 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 862 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 863 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 864 865 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 866 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 867 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 868 869 #endif /* SYM_CONF_IOMAPPED */ 870 871 #define OUTRAM_OFF(o, a, l) \ 872 bus_write_region_1(np->ram_res, (o), (a), (l)) 873 874 /* 875 * Common definitions for both bus space and legacy IO methods. 876 */ 877 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 878 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 879 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 880 881 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 882 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 883 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 884 885 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 886 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 887 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 888 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 889 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 890 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 891 892 /* 893 * We normally want the chip to have a consistent view 894 * of driver internal data structures when we restart it. 895 * Thus these macros. 896 */ 897 #define OUTL_DSP(v) \ 898 do { \ 899 MEMORY_BARRIER(); \ 900 OUTL (nc_dsp, (v)); \ 901 } while (0) 902 903 #define OUTONB_STD() \ 904 do { \ 905 MEMORY_BARRIER(); \ 906 OUTONB (nc_dcntl, (STD|NOCOM)); \ 907 } while (0) 908 909 /* 910 * Command control block states. 911 */ 912 #define HS_IDLE (0) 913 #define HS_BUSY (1) 914 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 915 #define HS_DISCONNECT (3) /* Disconnected by target */ 916 #define HS_WAIT (4) /* waiting for resource */ 917 918 #define HS_DONEMASK (0x80) 919 #define HS_COMPLETE (4|HS_DONEMASK) 920 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 921 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 922 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 923 924 /* 925 * Software Interrupt Codes 926 */ 927 #define SIR_BAD_SCSI_STATUS (1) 928 #define SIR_SEL_ATN_NO_MSG_OUT (2) 929 #define SIR_MSG_RECEIVED (3) 930 #define SIR_MSG_WEIRD (4) 931 #define SIR_NEGO_FAILED (5) 932 #define SIR_NEGO_PROTO (6) 933 #define SIR_SCRIPT_STOPPED (7) 934 #define SIR_REJECT_TO_SEND (8) 935 #define SIR_SWIDE_OVERRUN (9) 936 #define SIR_SODL_UNDERRUN (10) 937 #define SIR_RESEL_NO_MSG_IN (11) 938 #define SIR_RESEL_NO_IDENTIFY (12) 939 #define SIR_RESEL_BAD_LUN (13) 940 #define SIR_TARGET_SELECTED (14) 941 #define SIR_RESEL_BAD_I_T_L (15) 942 #define SIR_RESEL_BAD_I_T_L_Q (16) 943 #define SIR_ABORT_SENT (17) 944 #define SIR_RESEL_ABORTED (18) 945 #define SIR_MSG_OUT_DONE (19) 946 #define SIR_COMPLETE_ERROR (20) 947 #define SIR_DATA_OVERRUN (21) 948 #define SIR_BAD_PHASE (22) 949 #define SIR_MAX (22) 950 951 /* 952 * Extended error bit codes. 953 * xerr_status field of struct sym_ccb. 954 */ 955 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 956 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 957 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 958 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 959 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 960 961 /* 962 * Negotiation status. 963 * nego_status field of struct sym_ccb. 964 */ 965 #define NS_SYNC (1) 966 #define NS_WIDE (2) 967 #define NS_PPR (3) 968 969 /* 970 * A CCB hashed table is used to retrieve CCB address 971 * from DSA value. 972 */ 973 #define CCB_HASH_SHIFT 8 974 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 975 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 976 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 977 978 /* 979 * Device flags. 980 */ 981 #define SYM_DISC_ENABLED (1) 982 #define SYM_TAGS_ENABLED (1<<1) 983 #define SYM_SCAN_BOOT_DISABLED (1<<2) 984 #define SYM_SCAN_LUNS_DISABLED (1<<3) 985 986 /* 987 * Host adapter miscellaneous flags. 988 */ 989 #define SYM_AVOID_BUS_RESET (1) 990 #define SYM_SCAN_TARGETS_HILO (1<<1) 991 992 /* 993 * Device quirks. 994 * Some devices, for example the CHEETAH 2 LVD, disconnects without 995 * saving the DATA POINTER then reselects and terminates the IO. 996 * On reselection, the automatic RESTORE DATA POINTER makes the 997 * CURRENT DATA POINTER not point at the end of the IO. 998 * This behaviour just breaks our calculation of the residual. 999 * For now, we just force an AUTO SAVE on disconnection and will 1000 * fix that in a further driver version. 1001 */ 1002 #define SYM_QUIRK_AUTOSAVE 1 1003 1004 /* 1005 * Misc. 1006 */ 1007 #define SYM_LOCK() mtx_lock(&np->mtx) 1008 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1009 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1010 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1011 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1012 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1013 1014 #define SYM_SNOOP_TIMEOUT (10000000) 1015 #define SYM_PCI_IO PCIR_BAR(0) 1016 #define SYM_PCI_MMIO PCIR_BAR(1) 1017 #define SYM_PCI_RAM PCIR_BAR(2) 1018 #define SYM_PCI_RAM64 PCIR_BAR(3) 1019 1020 /* 1021 * Back-pointer from the CAM CCB to our data structures. 1022 */ 1023 #define sym_hcb_ptr spriv_ptr0 1024 /* #define sym_ccb_ptr spriv_ptr1 */ 1025 1026 /* 1027 * We mostly have to deal with pointers. 1028 * Thus these typedef's. 1029 */ 1030 typedef struct sym_tcb *tcb_p; 1031 typedef struct sym_lcb *lcb_p; 1032 typedef struct sym_ccb *ccb_p; 1033 typedef struct sym_hcb *hcb_p; 1034 1035 /* 1036 * Gather negotiable parameters value 1037 */ 1038 struct sym_trans { 1039 u8 scsi_version; 1040 u8 spi_version; 1041 u8 period; 1042 u8 offset; 1043 u8 width; 1044 u8 options; /* PPR options */ 1045 }; 1046 1047 struct sym_tinfo { 1048 struct sym_trans current; 1049 struct sym_trans goal; 1050 struct sym_trans user; 1051 }; 1052 1053 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1054 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1055 1056 /* 1057 * Global TCB HEADER. 1058 * 1059 * Due to lack of indirect addressing on earlier NCR chips, 1060 * this substructure is copied from the TCB to a global 1061 * address after selection. 1062 * For SYMBIOS chips that support LOAD/STORE this copy is 1063 * not needed and thus not performed. 1064 */ 1065 struct sym_tcbh { 1066 /* 1067 * Scripts bus addresses of LUN table accessed from scripts. 1068 * LUN #0 is a special case, since multi-lun devices are rare, 1069 * and we we want to speed-up the general case and not waste 1070 * resources. 1071 */ 1072 u32 luntbl_sa; /* bus address of this table */ 1073 u32 lun0_sa; /* bus address of LCB #0 */ 1074 /* 1075 * Actual SYNC/WIDE IO registers value for this target. 1076 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1077 * so have alignment constraints. 1078 */ 1079 /*0*/ u_char uval; /* -> SCNTL4 register */ 1080 /*1*/ u_char sval; /* -> SXFER io register */ 1081 /*2*/ u_char filler1; 1082 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1083 }; 1084 1085 /* 1086 * Target Control Block 1087 */ 1088 struct sym_tcb { 1089 /* 1090 * TCB header. 1091 * Assumed at offset 0. 1092 */ 1093 /*0*/ struct sym_tcbh head; 1094 1095 /* 1096 * LUN table used by the SCRIPTS processor. 1097 * An array of bus addresses is used on reselection. 1098 */ 1099 u32 *luntbl; /* LCBs bus address table */ 1100 1101 /* 1102 * LUN table used by the C code. 1103 */ 1104 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1105 #if SYM_CONF_MAX_LUN > 1 1106 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1107 #endif 1108 1109 /* 1110 * Bitmap that tells about LUNs that succeeded at least 1111 * 1 IO and therefore assumed to be a real device. 1112 * Avoid useless allocation of the LCB structure. 1113 */ 1114 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1115 1116 /* 1117 * Bitmap that tells about LUNs that haven't yet an LCB 1118 * allocated (not discovered or LCB allocation failed). 1119 */ 1120 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1121 1122 /* 1123 * Transfer capabilities (SIP) 1124 */ 1125 struct sym_tinfo tinfo; 1126 1127 /* 1128 * Keep track of the CCB used for the negotiation in order 1129 * to ensure that only 1 negotiation is queued at a time. 1130 */ 1131 ccb_p nego_cp; /* CCB used for the nego */ 1132 1133 /* 1134 * Set when we want to reset the device. 1135 */ 1136 u_char to_reset; 1137 1138 /* 1139 * Other user settable limits and options. 1140 * These limits are read from the NVRAM if present. 1141 */ 1142 u_char usrflags; 1143 u_short usrtags; 1144 }; 1145 1146 /* 1147 * Assert some alignments required by the chip. 1148 */ 1149 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^ 1150 offsetof(struct sym_tcb, head.sval)) &3) == 0); 1151 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^ 1152 offsetof(struct sym_tcb, head.wval)) &3) == 0); 1153 1154 /* 1155 * Global LCB HEADER. 1156 * 1157 * Due to lack of indirect addressing on earlier NCR chips, 1158 * this substructure is copied from the LCB to a global 1159 * address after selection. 1160 * For SYMBIOS chips that support LOAD/STORE this copy is 1161 * not needed and thus not performed. 1162 */ 1163 struct sym_lcbh { 1164 /* 1165 * SCRIPTS address jumped by SCRIPTS on reselection. 1166 * For not probed logical units, this address points to 1167 * SCRIPTS that deal with bad LU handling (must be at 1168 * offset zero of the LCB for that reason). 1169 */ 1170 /*0*/ u32 resel_sa; 1171 1172 /* 1173 * Task (bus address of a CCB) read from SCRIPTS that points 1174 * to the unique ITL nexus allowed to be disconnected. 1175 */ 1176 u32 itl_task_sa; 1177 1178 /* 1179 * Task table bus address (read from SCRIPTS). 1180 */ 1181 u32 itlq_tbl_sa; 1182 }; 1183 1184 /* 1185 * Logical Unit Control Block 1186 */ 1187 struct sym_lcb { 1188 /* 1189 * TCB header. 1190 * Assumed at offset 0. 1191 */ 1192 /*0*/ struct sym_lcbh head; 1193 1194 /* 1195 * Task table read from SCRIPTS that contains pointers to 1196 * ITLQ nexuses. The bus address read from SCRIPTS is 1197 * inside the header. 1198 */ 1199 u32 *itlq_tbl; /* Kernel virtual address */ 1200 1201 /* 1202 * Busy CCBs management. 1203 */ 1204 u_short busy_itlq; /* Number of busy tagged CCBs */ 1205 u_short busy_itl; /* Number of busy untagged CCBs */ 1206 1207 /* 1208 * Circular tag allocation buffer. 1209 */ 1210 u_short ia_tag; /* Tag allocation index */ 1211 u_short if_tag; /* Tag release index */ 1212 u_char *cb_tags; /* Circular tags buffer */ 1213 1214 /* 1215 * Set when we want to clear all tasks. 1216 */ 1217 u_char to_clear; 1218 1219 /* 1220 * Capabilities. 1221 */ 1222 u_char user_flags; 1223 u_char current_flags; 1224 }; 1225 1226 /* 1227 * Action from SCRIPTS on a task. 1228 * Is part of the CCB, but is also used separately to plug 1229 * error handling action to perform from SCRIPTS. 1230 */ 1231 struct sym_actscr { 1232 u32 start; /* Jumped by SCRIPTS after selection */ 1233 u32 restart; /* Jumped by SCRIPTS on relection */ 1234 }; 1235 1236 /* 1237 * Phase mismatch context. 1238 * 1239 * It is part of the CCB and is used as parameters for the 1240 * DATA pointer. We need two contexts to handle correctly the 1241 * SAVED DATA POINTER. 1242 */ 1243 struct sym_pmc { 1244 struct sym_tblmove sg; /* Updated interrupted SG block */ 1245 u32 ret; /* SCRIPT return address */ 1246 }; 1247 1248 /* 1249 * LUN control block lookup. 1250 * We use a direct pointer for LUN #0, and a table of 1251 * pointers which is only allocated for devices that support 1252 * LUN(s) > 0. 1253 */ 1254 #if SYM_CONF_MAX_LUN <= 1 1255 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0 1256 #else 1257 #define sym_lp(tp, lun) \ 1258 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1259 #endif 1260 1261 /* 1262 * Status are used by the host and the script processor. 1263 * 1264 * The last four bytes (status[4]) are copied to the 1265 * scratchb register (declared as scr0..scr3) just after the 1266 * select/reselect, and copied back just after disconnecting. 1267 * Inside the script the XX_REG are used. 1268 */ 1269 1270 /* 1271 * Last four bytes (script) 1272 */ 1273 #define QU_REG scr0 1274 #define HS_REG scr1 1275 #define HS_PRT nc_scr1 1276 #define SS_REG scr2 1277 #define SS_PRT nc_scr2 1278 #define HF_REG scr3 1279 #define HF_PRT nc_scr3 1280 1281 /* 1282 * Last four bytes (host) 1283 */ 1284 #define actualquirks phys.head.status[0] 1285 #define host_status phys.head.status[1] 1286 #define ssss_status phys.head.status[2] 1287 #define host_flags phys.head.status[3] 1288 1289 /* 1290 * Host flags 1291 */ 1292 #define HF_IN_PM0 1u 1293 #define HF_IN_PM1 (1u<<1) 1294 #define HF_ACT_PM (1u<<2) 1295 #define HF_DP_SAVED (1u<<3) 1296 #define HF_SENSE (1u<<4) 1297 #define HF_EXT_ERR (1u<<5) 1298 #define HF_DATA_IN (1u<<6) 1299 #ifdef SYM_CONF_IARB_SUPPORT 1300 #define HF_HINT_IARB (1u<<7) 1301 #endif 1302 1303 /* 1304 * Global CCB HEADER. 1305 * 1306 * Due to lack of indirect addressing on earlier NCR chips, 1307 * this substructure is copied from the ccb to a global 1308 * address after selection (or reselection) and copied back 1309 * before disconnect. 1310 * For SYMBIOS chips that support LOAD/STORE this copy is 1311 * not needed and thus not performed. 1312 */ 1313 struct sym_ccbh { 1314 /* 1315 * Start and restart SCRIPTS addresses (must be at 0). 1316 */ 1317 /*0*/ struct sym_actscr go; 1318 1319 /* 1320 * SCRIPTS jump address that deal with data pointers. 1321 * 'savep' points to the position in the script responsible 1322 * for the actual transfer of data. 1323 * It's written on reception of a SAVE_DATA_POINTER message. 1324 */ 1325 u32 savep; /* Jump address to saved data pointer */ 1326 u32 lastp; /* SCRIPTS address at end of data */ 1327 u32 goalp; /* Not accessed for now from SCRIPTS */ 1328 1329 /* 1330 * Status fields. 1331 */ 1332 u8 status[4]; 1333 }; 1334 1335 /* 1336 * Data Structure Block 1337 * 1338 * During execution of a ccb by the script processor, the 1339 * DSA (data structure address) register points to this 1340 * substructure of the ccb. 1341 */ 1342 struct sym_dsb { 1343 /* 1344 * CCB header. 1345 * Also assumed at offset 0 of the sym_ccb structure. 1346 */ 1347 /*0*/ struct sym_ccbh head; 1348 1349 /* 1350 * Phase mismatch contexts. 1351 * We need two to handle correctly the SAVED DATA POINTER. 1352 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1353 * for address calculation from SCRIPTS. 1354 */ 1355 struct sym_pmc pm0; 1356 struct sym_pmc pm1; 1357 1358 /* 1359 * Table data for Script 1360 */ 1361 struct sym_tblsel select; 1362 struct sym_tblmove smsg; 1363 struct sym_tblmove smsg_ext; 1364 struct sym_tblmove cmd; 1365 struct sym_tblmove sense; 1366 struct sym_tblmove wresid; 1367 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1368 }; 1369 1370 /* 1371 * Our Command Control Block 1372 */ 1373 struct sym_ccb { 1374 /* 1375 * This is the data structure which is pointed by the DSA 1376 * register when it is executed by the script processor. 1377 * It must be the first entry. 1378 */ 1379 struct sym_dsb phys; 1380 1381 /* 1382 * Pointer to CAM ccb and related stuff. 1383 */ 1384 struct callout ch; /* callout handle */ 1385 union ccb *cam_ccb; /* CAM scsiio ccb */ 1386 u8 cdb_buf[16]; /* Copy of CDB */ 1387 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1388 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1389 int data_len; /* Total data length */ 1390 int segments; /* Number of SG segments */ 1391 1392 /* 1393 * Miscellaneous status'. 1394 */ 1395 u_char nego_status; /* Negotiation status */ 1396 u_char xerr_status; /* Extended error flags */ 1397 u32 extra_bytes; /* Extraneous bytes transferred */ 1398 1399 /* 1400 * Message areas. 1401 * We prepare a message to be sent after selection. 1402 * We may use a second one if the command is rescheduled 1403 * due to CHECK_CONDITION or COMMAND TERMINATED. 1404 * Contents are IDENTIFY and SIMPLE_TAG. 1405 * While negotiating sync or wide transfer, 1406 * a SDTR or WDTR message is appended. 1407 */ 1408 u_char scsi_smsg [12]; 1409 u_char scsi_smsg2[12]; 1410 1411 /* 1412 * Auto request sense related fields. 1413 */ 1414 u_char sensecmd[6]; /* Request Sense command */ 1415 u_char sv_scsi_status; /* Saved SCSI status */ 1416 u_char sv_xerr_status; /* Saved extended status */ 1417 int sv_resid; /* Saved residual */ 1418 1419 /* 1420 * Map for the DMA of user data. 1421 */ 1422 void *arg; /* Argument for some callback */ 1423 bus_dmamap_t dmamap; /* DMA map for user data */ 1424 u_char dmamapped; 1425 #define SYM_DMA_NONE 0 1426 #define SYM_DMA_READ 1 1427 #define SYM_DMA_WRITE 2 1428 /* 1429 * Other fields. 1430 */ 1431 u32 ccb_ba; /* BUS address of this CCB */ 1432 u_short tag; /* Tag for this transfer */ 1433 /* NO_TAG means no tag */ 1434 u_char target; 1435 u_char lun; 1436 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1437 SYM_QUEHEAD 1438 link_ccbq; /* Link to free/busy CCB queue */ 1439 u32 startp; /* Initial data pointer */ 1440 int ext_sg; /* Extreme data pointer, used */ 1441 int ext_ofs; /* to calculate the residual. */ 1442 u_char to_abort; /* Want this IO to be aborted */ 1443 }; 1444 1445 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1446 1447 /* 1448 * Host Control Block 1449 */ 1450 struct sym_hcb { 1451 struct mtx mtx; 1452 1453 /* 1454 * Global headers. 1455 * Due to poorness of addressing capabilities, earlier 1456 * chips (810, 815, 825) copy part of the data structures 1457 * (CCB, TCB and LCB) in fixed areas. 1458 */ 1459 #ifdef SYM_CONF_GENERIC_SUPPORT 1460 struct sym_ccbh ccb_head; 1461 struct sym_tcbh tcb_head; 1462 struct sym_lcbh lcb_head; 1463 #endif 1464 /* 1465 * Idle task and invalid task actions and 1466 * their bus addresses. 1467 */ 1468 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1469 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1470 1471 /* 1472 * Dummy lun table to protect us against target 1473 * returning bad lun number on reselection. 1474 */ 1475 u32 *badluntbl; /* Table physical address */ 1476 u32 badlun_sa; /* SCRIPT handler BUS address */ 1477 1478 /* 1479 * Bus address of this host control block. 1480 */ 1481 u32 hcb_ba; 1482 1483 /* 1484 * Bit 32-63 of the on-chip RAM bus address in LE format. 1485 * The START_RAM64 script loads the MMRS and MMWS from this 1486 * field. 1487 */ 1488 u32 scr_ram_seg; 1489 1490 /* 1491 * Chip and controller indentification. 1492 */ 1493 device_t device; 1494 1495 /* 1496 * Initial value of some IO register bits. 1497 * These values are assumed to have been set by BIOS, and may 1498 * be used to probe adapter implementation differences. 1499 */ 1500 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1501 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1502 sv_stest1; 1503 1504 /* 1505 * Actual initial value of IO register bits used by the 1506 * driver. They are loaded at initialisation according to 1507 * features that are to be enabled/disabled. 1508 */ 1509 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1510 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1511 1512 /* 1513 * Target data. 1514 */ 1515 #ifdef __amd64__ 1516 struct sym_tcb *target; 1517 #else 1518 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1519 #endif 1520 1521 /* 1522 * Target control block bus address array used by the SCRIPT 1523 * on reselection. 1524 */ 1525 u32 *targtbl; 1526 u32 targtbl_ba; 1527 1528 /* 1529 * CAM SIM information for this instance. 1530 */ 1531 struct cam_sim *sim; 1532 struct cam_path *path; 1533 1534 /* 1535 * Allocated hardware resources. 1536 */ 1537 struct resource *irq_res; 1538 struct resource *io_res; 1539 struct resource *mmio_res; 1540 struct resource *ram_res; 1541 int ram_id; 1542 void *intr; 1543 1544 /* 1545 * Bus stuff. 1546 * 1547 * My understanding of PCI is that all agents must share the 1548 * same addressing range and model. 1549 * But some hardware architecture guys provide complex and 1550 * brain-deaded stuff that makes shit. 1551 * This driver only support PCI compliant implementations and 1552 * deals with part of the BUS stuff complexity only to fit O/S 1553 * requirements. 1554 */ 1555 1556 /* 1557 * DMA stuff. 1558 */ 1559 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1560 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1561 /* 1562 * BUS addresses of the chip 1563 */ 1564 vm_offset_t mmio_ba; /* MMIO BUS address */ 1565 int mmio_ws; /* MMIO Window size */ 1566 1567 vm_offset_t ram_ba; /* RAM BUS address */ 1568 int ram_ws; /* RAM window size */ 1569 1570 /* 1571 * SCRIPTS virtual and physical bus addresses. 1572 * 'script' is loaded in the on-chip RAM if present. 1573 * 'scripth' stays in main memory for all chips except the 1574 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1575 */ 1576 u_char *scripta0; /* Copies of script and scripth */ 1577 u_char *scriptb0; /* Copies of script and scripth */ 1578 vm_offset_t scripta_ba; /* Actual script and scripth */ 1579 vm_offset_t scriptb_ba; /* bus addresses. */ 1580 vm_offset_t scriptb0_ba; 1581 u_short scripta_sz; /* Actual size of script A */ 1582 u_short scriptb_sz; /* Actual size of script B */ 1583 1584 /* 1585 * Bus addresses, setup and patch methods for 1586 * the selected firmware. 1587 */ 1588 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1589 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1590 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1591 void (*fw_patch)(hcb_p np); 1592 const char *fw_name; 1593 1594 /* 1595 * General controller parameters and configuration. 1596 */ 1597 u_short device_id; /* PCI device id */ 1598 u_char revision_id; /* PCI device revision id */ 1599 u_int features; /* Chip features map */ 1600 u_char myaddr; /* SCSI id of the adapter */ 1601 u_char maxburst; /* log base 2 of dwords burst */ 1602 u_char maxwide; /* Maximum transfer width */ 1603 u_char minsync; /* Min sync period factor (ST) */ 1604 u_char maxsync; /* Max sync period factor (ST) */ 1605 u_char maxoffs; /* Max scsi offset (ST) */ 1606 u_char minsync_dt; /* Min sync period factor (DT) */ 1607 u_char maxsync_dt; /* Max sync period factor (DT) */ 1608 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1609 u_char multiplier; /* Clock multiplier (1,2,4) */ 1610 u_char clock_divn; /* Number of clock divisors */ 1611 u32 clock_khz; /* SCSI clock frequency in KHz */ 1612 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1613 /* 1614 * Start queue management. 1615 * It is filled up by the host processor and accessed by the 1616 * SCRIPTS processor in order to start SCSI commands. 1617 */ 1618 volatile /* Prevent code optimizations */ 1619 u32 *squeue; /* Start queue virtual address */ 1620 u32 squeue_ba; /* Start queue BUS address */ 1621 u_short squeueput; /* Next free slot of the queue */ 1622 u_short actccbs; /* Number of allocated CCBs */ 1623 1624 /* 1625 * Command completion queue. 1626 * It is the same size as the start queue to avoid overflow. 1627 */ 1628 u_short dqueueget; /* Next position to scan */ 1629 volatile /* Prevent code optimizations */ 1630 u32 *dqueue; /* Completion (done) queue */ 1631 u32 dqueue_ba; /* Done queue BUS address */ 1632 1633 /* 1634 * Miscellaneous buffers accessed by the scripts-processor. 1635 * They shall be DWORD aligned, because they may be read or 1636 * written with a script command. 1637 */ 1638 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1639 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1640 u32 lastmsg; /* Last SCSI message sent */ 1641 u_char scratch; /* Scratch for SCSI receive */ 1642 1643 /* 1644 * Miscellaneous configuration and status parameters. 1645 */ 1646 u_char usrflags; /* Miscellaneous user flags */ 1647 u_char scsi_mode; /* Current SCSI BUS mode */ 1648 u_char verbose; /* Verbosity for this controller*/ 1649 u32 cache; /* Used for cache test at init. */ 1650 1651 /* 1652 * CCB lists and queue. 1653 */ 1654 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1655 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1656 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1657 1658 /* 1659 * During error handling and/or recovery, 1660 * active CCBs that are to be completed with 1661 * error or requeued are moved from the busy_ccbq 1662 * to the comp_ccbq prior to completion. 1663 */ 1664 SYM_QUEHEAD comp_ccbq; 1665 1666 /* 1667 * CAM CCB pending queue. 1668 */ 1669 SYM_QUEHEAD cam_ccbq; 1670 1671 /* 1672 * IMMEDIATE ARBITRATION (IARB) control. 1673 * 1674 * We keep track in 'last_cp' of the last CCB that has been 1675 * queued to the SCRIPTS processor and clear 'last_cp' when 1676 * this CCB completes. If last_cp is not zero at the moment 1677 * we queue a new CCB, we set a flag in 'last_cp' that is 1678 * used by the SCRIPTS as a hint for setting IARB. 1679 * We donnot set more than 'iarb_max' consecutive hints for 1680 * IARB in order to leave devices a chance to reselect. 1681 * By the way, any non zero value of 'iarb_max' is unfair. :) 1682 */ 1683 #ifdef SYM_CONF_IARB_SUPPORT 1684 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1685 u_short iarb_count; /* Actual # of these hints */ 1686 ccb_p last_cp; 1687 #endif 1688 1689 /* 1690 * Command abort handling. 1691 * We need to synchronize tightly with the SCRIPTS 1692 * processor in order to handle things correctly. 1693 */ 1694 u_char abrt_msg[4]; /* Message to send buffer */ 1695 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1696 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1697 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1698 }; 1699 1700 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1701 1702 /* 1703 * Return the name of the controller. 1704 */ 1705 static __inline const char *sym_name(hcb_p np) 1706 { 1707 return device_get_nameunit(np->device); 1708 } 1709 1710 /*--------------------------------------------------------------------------*/ 1711 /*------------------------------ FIRMWARES ---------------------------------*/ 1712 /*--------------------------------------------------------------------------*/ 1713 1714 /* 1715 * This stuff will be moved to a separate source file when 1716 * the driver will be broken into several source modules. 1717 */ 1718 1719 /* 1720 * Macros used for all firmwares. 1721 */ 1722 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1723 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1724 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1725 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1726 1727 #ifdef SYM_CONF_GENERIC_SUPPORT 1728 /* 1729 * Allocate firmware #1 script area. 1730 */ 1731 #define SYM_FWA_SCR sym_fw1a_scr 1732 #define SYM_FWB_SCR sym_fw1b_scr 1733 #include <dev/sym/sym_fw1.h> 1734 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1735 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1736 }; 1737 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1738 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1739 }; 1740 #undef SYM_FWA_SCR 1741 #undef SYM_FWB_SCR 1742 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1743 1744 /* 1745 * Allocate firmware #2 script area. 1746 */ 1747 #define SYM_FWA_SCR sym_fw2a_scr 1748 #define SYM_FWB_SCR sym_fw2b_scr 1749 #include <dev/sym/sym_fw2.h> 1750 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1751 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1752 }; 1753 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1754 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1755 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1756 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1757 }; 1758 #undef SYM_FWA_SCR 1759 #undef SYM_FWB_SCR 1760 1761 #undef SYM_GEN_A 1762 #undef SYM_GEN_B 1763 #undef PADDR_A 1764 #undef PADDR_B 1765 1766 #ifdef SYM_CONF_GENERIC_SUPPORT 1767 /* 1768 * Patch routine for firmware #1. 1769 */ 1770 static void 1771 sym_fw1_patch(hcb_p np) 1772 { 1773 struct sym_fw1a_scr *scripta0; 1774 struct sym_fw1b_scr *scriptb0; 1775 1776 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1777 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1778 1779 /* 1780 * Remove LED support if not needed. 1781 */ 1782 if (!(np->features & FE_LED0)) { 1783 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1784 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1785 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1786 } 1787 1788 #ifdef SYM_CONF_IARB_SUPPORT 1789 /* 1790 * If user does not want to use IMMEDIATE ARBITRATION 1791 * when we are reselected while attempting to arbitrate, 1792 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1793 */ 1794 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1795 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1796 #endif 1797 /* 1798 * Patch some data in SCRIPTS. 1799 * - start and done queue initial bus address. 1800 * - target bus address table bus address. 1801 */ 1802 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1803 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1804 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1805 } 1806 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1807 1808 /* 1809 * Patch routine for firmware #2. 1810 */ 1811 static void 1812 sym_fw2_patch(hcb_p np) 1813 { 1814 struct sym_fw2a_scr *scripta0; 1815 struct sym_fw2b_scr *scriptb0; 1816 1817 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1818 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1819 1820 /* 1821 * Remove LED support if not needed. 1822 */ 1823 if (!(np->features & FE_LED0)) { 1824 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1825 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1826 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1827 } 1828 1829 #ifdef SYM_CONF_IARB_SUPPORT 1830 /* 1831 * If user does not want to use IMMEDIATE ARBITRATION 1832 * when we are reselected while attempting to arbitrate, 1833 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1834 */ 1835 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1836 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1837 #endif 1838 /* 1839 * Patch some variable in SCRIPTS. 1840 * - start and done queue initial bus address. 1841 * - target bus address table bus address. 1842 */ 1843 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1844 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1845 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1846 1847 /* 1848 * Remove the load of SCNTL4 on reselection if not a C10. 1849 */ 1850 if (!(np->features & FE_C10)) { 1851 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1852 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1853 } 1854 1855 /* 1856 * Remove a couple of work-arounds specific to C1010 if 1857 * they are not desirable. See `sym_fw2.h' for more details. 1858 */ 1859 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1860 np->revision_id < 0x1 && 1861 np->pciclk_khz < 60000)) { 1862 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1863 scripta0->datao_phase[1] = cpu_to_scr(0); 1864 } 1865 if (!(np->device_id == PCI_ID_LSI53C1010 && 1866 /* np->revision_id < 0xff */ 1)) { 1867 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1868 scripta0->sel_done[1] = cpu_to_scr(0); 1869 } 1870 1871 /* 1872 * Patch some other variables in SCRIPTS. 1873 * These ones are loaded by the SCRIPTS processor. 1874 */ 1875 scriptb0->pm0_data_addr[0] = 1876 cpu_to_scr(np->scripta_ba + 1877 offsetof(struct sym_fw2a_scr, pm0_data)); 1878 scriptb0->pm1_data_addr[0] = 1879 cpu_to_scr(np->scripta_ba + 1880 offsetof(struct sym_fw2a_scr, pm1_data)); 1881 } 1882 1883 /* 1884 * Fill the data area in scripts. 1885 * To be done for all firmwares. 1886 */ 1887 static void 1888 sym_fw_fill_data (u32 *in, u32 *out) 1889 { 1890 int i; 1891 1892 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1893 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1894 *in++ = offsetof (struct sym_dsb, data[i]); 1895 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1896 *out++ = offsetof (struct sym_dsb, data[i]); 1897 } 1898 } 1899 1900 /* 1901 * Setup useful script bus addresses. 1902 * To be done for all firmwares. 1903 */ 1904 static void 1905 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1906 { 1907 u32 *pa; 1908 const u_short *po; 1909 int i; 1910 1911 /* 1912 * Build the bus address table for script A 1913 * from the script A offset table. 1914 */ 1915 po = (const u_short *) fw->a_ofs; 1916 pa = (u32 *) &np->fwa_bas; 1917 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1918 pa[i] = np->scripta_ba + po[i]; 1919 1920 /* 1921 * Same for script B. 1922 */ 1923 po = (const u_short *) fw->b_ofs; 1924 pa = (u32 *) &np->fwb_bas; 1925 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1926 pa[i] = np->scriptb_ba + po[i]; 1927 } 1928 1929 #ifdef SYM_CONF_GENERIC_SUPPORT 1930 /* 1931 * Setup routine for firmware #1. 1932 */ 1933 static void 1934 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1935 { 1936 struct sym_fw1a_scr *scripta0; 1937 1938 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1939 1940 /* 1941 * Fill variable parts in scripts. 1942 */ 1943 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1944 1945 /* 1946 * Setup bus addresses used from the C code.. 1947 */ 1948 sym_fw_setup_bus_addresses(np, fw); 1949 } 1950 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1951 1952 /* 1953 * Setup routine for firmware #2. 1954 */ 1955 static void 1956 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1957 { 1958 struct sym_fw2a_scr *scripta0; 1959 1960 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1961 1962 /* 1963 * Fill variable parts in scripts. 1964 */ 1965 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1966 1967 /* 1968 * Setup bus addresses used from the C code.. 1969 */ 1970 sym_fw_setup_bus_addresses(np, fw); 1971 } 1972 1973 /* 1974 * Allocate firmware descriptors. 1975 */ 1976 #ifdef SYM_CONF_GENERIC_SUPPORT 1977 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 1978 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1979 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 1980 1981 /* 1982 * Find the most appropriate firmware for a chip. 1983 */ 1984 static const struct sym_fw * 1985 sym_find_firmware(const struct sym_pci_chip *chip) 1986 { 1987 if (chip->features & FE_LDSTR) 1988 return &sym_fw2; 1989 #ifdef SYM_CONF_GENERIC_SUPPORT 1990 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 1991 return &sym_fw1; 1992 #endif 1993 else 1994 return NULL; 1995 } 1996 1997 /* 1998 * Bind a script to physical addresses. 1999 */ 2000 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2001 { 2002 u32 opcode, new, old, tmp1, tmp2; 2003 u32 *end, *cur; 2004 int relocs; 2005 2006 cur = start; 2007 end = start + len/4; 2008 2009 while (cur < end) { 2010 opcode = *cur; 2011 2012 /* 2013 * If we forget to change the length 2014 * in scripts, a field will be 2015 * padded with 0. This is an illegal 2016 * command. 2017 */ 2018 if (opcode == 0) { 2019 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2020 sym_name(np), (int) (cur-start)); 2021 MDELAY (10000); 2022 ++cur; 2023 continue; 2024 } 2025 2026 /* 2027 * We use the bogus value 0xf00ff00f ;-) 2028 * to reserve data area in SCRIPTS. 2029 */ 2030 if (opcode == SCR_DATA_ZERO) { 2031 *cur++ = 0; 2032 continue; 2033 } 2034 2035 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2036 printf ("%d: <%x>\n", (int) (cur-start), 2037 (unsigned)opcode); 2038 2039 /* 2040 * We don't have to decode ALL commands 2041 */ 2042 switch (opcode >> 28) { 2043 case 0xf: 2044 /* 2045 * LOAD / STORE DSA relative, don't relocate. 2046 */ 2047 relocs = 0; 2048 break; 2049 case 0xe: 2050 /* 2051 * LOAD / STORE absolute. 2052 */ 2053 relocs = 1; 2054 break; 2055 case 0xc: 2056 /* 2057 * COPY has TWO arguments. 2058 */ 2059 relocs = 2; 2060 tmp1 = cur[1]; 2061 tmp2 = cur[2]; 2062 if ((tmp1 ^ tmp2) & 3) { 2063 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2064 sym_name(np), (int) (cur-start)); 2065 MDELAY (10000); 2066 } 2067 /* 2068 * If PREFETCH feature not enabled, remove 2069 * the NO FLUSH bit if present. 2070 */ 2071 if ((opcode & SCR_NO_FLUSH) && 2072 !(np->features & FE_PFEN)) { 2073 opcode = (opcode & ~SCR_NO_FLUSH); 2074 } 2075 break; 2076 case 0x0: 2077 /* 2078 * MOVE/CHMOV (absolute address) 2079 */ 2080 if (!(np->features & FE_WIDE)) 2081 opcode = (opcode | OPC_MOVE); 2082 relocs = 1; 2083 break; 2084 case 0x1: 2085 /* 2086 * MOVE/CHMOV (table indirect) 2087 */ 2088 if (!(np->features & FE_WIDE)) 2089 opcode = (opcode | OPC_MOVE); 2090 relocs = 0; 2091 break; 2092 case 0x8: 2093 /* 2094 * JUMP / CALL 2095 * dont't relocate if relative :-) 2096 */ 2097 if (opcode & 0x00800000) 2098 relocs = 0; 2099 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2100 relocs = 2; 2101 else 2102 relocs = 1; 2103 break; 2104 case 0x4: 2105 case 0x5: 2106 case 0x6: 2107 case 0x7: 2108 relocs = 1; 2109 break; 2110 default: 2111 relocs = 0; 2112 break; 2113 } 2114 2115 /* 2116 * Scriptify:) the opcode. 2117 */ 2118 *cur++ = cpu_to_scr(opcode); 2119 2120 /* 2121 * If no relocation, assume 1 argument 2122 * and just scriptize:) it. 2123 */ 2124 if (!relocs) { 2125 *cur = cpu_to_scr(*cur); 2126 ++cur; 2127 continue; 2128 } 2129 2130 /* 2131 * Otherwise performs all needed relocations. 2132 */ 2133 while (relocs--) { 2134 old = *cur; 2135 2136 switch (old & RELOC_MASK) { 2137 case RELOC_REGISTER: 2138 new = (old & ~RELOC_MASK) + np->mmio_ba; 2139 break; 2140 case RELOC_LABEL_A: 2141 new = (old & ~RELOC_MASK) + np->scripta_ba; 2142 break; 2143 case RELOC_LABEL_B: 2144 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2145 break; 2146 case RELOC_SOFTC: 2147 new = (old & ~RELOC_MASK) + np->hcb_ba; 2148 break; 2149 case 0: 2150 /* 2151 * Don't relocate a 0 address. 2152 * They are mostly used for patched or 2153 * script self-modified areas. 2154 */ 2155 if (old == 0) { 2156 new = old; 2157 break; 2158 } 2159 /* fall through */ 2160 default: 2161 new = 0; 2162 panic("sym_fw_bind_script: " 2163 "weird relocation %x\n", old); 2164 break; 2165 } 2166 2167 *cur++ = cpu_to_scr(new); 2168 } 2169 } 2170 } 2171 2172 /*---------------------------------------------------------------------------*/ 2173 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2174 /*---------------------------------------------------------------------------*/ 2175 2176 /* 2177 * Function prototypes. 2178 */ 2179 static void sym_save_initial_setting (hcb_p np); 2180 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2181 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2182 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2183 static void sym_chip_reset (hcb_p np); 2184 static void sym_soft_reset (hcb_p np); 2185 static void sym_start_reset (hcb_p np); 2186 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2187 static int sym_wakeup_done (hcb_p np); 2188 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2189 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2190 static void sym_init (hcb_p np, int reason); 2191 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2192 u_char *fakp); 2193 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2194 u_char div, u_char fak); 2195 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2196 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2197 u_char per, u_char wide, u_char div, u_char fak); 2198 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2199 u_char per, u_char wide, u_char div, u_char fak); 2200 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2201 static void sym_intr (void *arg); 2202 static void sym_poll (struct cam_sim *sim); 2203 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2204 static void sym_int_sto (hcb_p np); 2205 static void sym_int_udc (hcb_p np); 2206 static void sym_int_sbmc (hcb_p np); 2207 static void sym_int_par (hcb_p np, u_short sist); 2208 static void sym_int_ma (hcb_p np); 2209 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2210 int task); 2211 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp); 2212 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2213 static void sym_sir_task_recovery (hcb_p np, int num); 2214 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2215 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs); 2216 static int sym_compute_residual (hcb_p np, ccb_p cp); 2217 static int sym_show_msg (u_char * msg); 2218 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2219 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2220 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2221 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2222 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2223 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2224 static void sym_int_sir (hcb_p np); 2225 static void sym_free_ccb (hcb_p np, ccb_p cp); 2226 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2227 static ccb_p sym_alloc_ccb (hcb_p np); 2228 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2229 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2230 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2231 static int sym_snooptest (hcb_p np); 2232 static void sym_selectclock(hcb_p np, u_char scntl3); 2233 static void sym_getclock (hcb_p np, int mult); 2234 static int sym_getpciclock (hcb_p np); 2235 static void sym_complete_ok (hcb_p np, ccb_p cp); 2236 static void sym_complete_error (hcb_p np, ccb_p cp); 2237 static void sym_callout (void *arg); 2238 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2239 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2240 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2241 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2242 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2243 ccb_p cp); 2244 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2245 bus_dma_segment_t *psegs, int nsegs); 2246 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2247 bus_dma_segment_t *psegs, int nsegs); 2248 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2249 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 2250 struct ccb_trans_settings *cts); 2251 static void sym_update_dflags(hcb_p np, u_char *flags, 2252 struct ccb_trans_settings *cts); 2253 2254 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2255 static int sym_pci_probe (device_t dev); 2256 static int sym_pci_attach (device_t dev); 2257 2258 static void sym_pci_free (hcb_p np); 2259 static int sym_cam_attach (hcb_p np); 2260 static void sym_cam_free (hcb_p np); 2261 2262 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2263 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2264 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2265 2266 /* 2267 * Print something which allows to retrieve the controller type, 2268 * unit, target, lun concerned by a kernel message. 2269 */ 2270 static void PRINT_TARGET (hcb_p np, int target) 2271 { 2272 printf ("%s:%d:", sym_name(np), target); 2273 } 2274 2275 static void PRINT_LUN(hcb_p np, int target, int lun) 2276 { 2277 printf ("%s:%d:%d:", sym_name(np), target, lun); 2278 } 2279 2280 static void PRINT_ADDR (ccb_p cp) 2281 { 2282 if (cp && cp->cam_ccb) 2283 xpt_print_path(cp->cam_ccb->ccb_h.path); 2284 } 2285 2286 /* 2287 * Take into account this ccb in the freeze count. 2288 */ 2289 static void sym_freeze_cam_ccb(union ccb *ccb) 2290 { 2291 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2292 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2293 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2294 xpt_freeze_devq(ccb->ccb_h.path, 1); 2295 } 2296 } 2297 } 2298 2299 /* 2300 * Set the status field of a CAM CCB. 2301 */ 2302 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2303 { 2304 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2305 ccb->ccb_h.status |= status; 2306 } 2307 2308 /* 2309 * Get the status field of a CAM CCB. 2310 */ 2311 static __inline int sym_get_cam_status(union ccb *ccb) 2312 { 2313 return ccb->ccb_h.status & CAM_STATUS_MASK; 2314 } 2315 2316 /* 2317 * Enqueue a CAM CCB. 2318 */ 2319 static void sym_enqueue_cam_ccb(ccb_p cp) 2320 { 2321 hcb_p np; 2322 union ccb *ccb; 2323 2324 ccb = cp->cam_ccb; 2325 np = (hcb_p) cp->arg; 2326 2327 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2328 ccb->ccb_h.status = CAM_REQ_INPROG; 2329 2330 callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout, 2331 (caddr_t)ccb, 0); 2332 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2333 ccb->ccb_h.sym_hcb_ptr = np; 2334 2335 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2336 } 2337 2338 /* 2339 * Complete a pending CAM CCB. 2340 */ 2341 2342 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2343 { 2344 2345 SYM_LOCK_ASSERT(MA_OWNED); 2346 2347 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2348 callout_stop(&cp->ch); 2349 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2350 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2351 ccb->ccb_h.sym_hcb_ptr = NULL; 2352 } 2353 xpt_done(ccb); 2354 } 2355 2356 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2357 { 2358 2359 SYM_LOCK_ASSERT(MA_OWNED); 2360 2361 sym_set_cam_status(ccb, cam_status); 2362 xpt_done(ccb); 2363 } 2364 2365 /* 2366 * SYMBIOS chip clock divisor table. 2367 * 2368 * Divisors are multiplied by 10,000,000 in order to make 2369 * calculations more simple. 2370 */ 2371 #define _5M 5000000 2372 static const u32 div_10M[] = 2373 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2374 2375 /* 2376 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2377 * 128 transfers. All chips support at least 16 transfers 2378 * bursts. The 825A, 875 and 895 chips support bursts of up 2379 * to 128 transfers and the 895A and 896 support bursts of up 2380 * to 64 transfers. All other chips support up to 16 2381 * transfers bursts. 2382 * 2383 * For PCI 32 bit data transfers each transfer is a DWORD. 2384 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2385 * 2386 * We use log base 2 (burst length) as internal code, with 2387 * value 0 meaning "burst disabled". 2388 */ 2389 2390 /* 2391 * Burst length from burst code. 2392 */ 2393 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2394 2395 /* 2396 * Burst code from io register bits. 2397 */ 2398 #define burst_code(dmode, ctest4, ctest5) \ 2399 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2400 2401 /* 2402 * Set initial io register bits from burst code. 2403 */ 2404 static __inline void sym_init_burst(hcb_p np, u_char bc) 2405 { 2406 np->rv_ctest4 &= ~0x80; 2407 np->rv_dmode &= ~(0x3 << 6); 2408 np->rv_ctest5 &= ~0x4; 2409 2410 if (!bc) { 2411 np->rv_ctest4 |= 0x80; 2412 } 2413 else { 2414 --bc; 2415 np->rv_dmode |= ((bc & 0x3) << 6); 2416 np->rv_ctest5 |= (bc & 0x4); 2417 } 2418 } 2419 2420 /* 2421 * Print out the list of targets that have some flag disabled by user. 2422 */ 2423 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2424 { 2425 int cnt; 2426 int i; 2427 2428 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2429 if (i == np->myaddr) 2430 continue; 2431 if (np->target[i].usrflags & mask) { 2432 if (!cnt++) 2433 printf("%s: %s disabled for targets", 2434 sym_name(np), msg); 2435 printf(" %d", i); 2436 } 2437 } 2438 if (cnt) 2439 printf(".\n"); 2440 } 2441 2442 /* 2443 * Save initial settings of some IO registers. 2444 * Assumed to have been set by BIOS. 2445 * We cannot reset the chip prior to reading the 2446 * IO registers, since informations will be lost. 2447 * Since the SCRIPTS processor may be running, this 2448 * is not safe on paper, but it seems to work quite 2449 * well. :) 2450 */ 2451 static void sym_save_initial_setting (hcb_p np) 2452 { 2453 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2454 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2455 np->sv_dmode = INB(nc_dmode) & 0xce; 2456 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2457 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2458 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2459 np->sv_gpcntl = INB(nc_gpcntl); 2460 np->sv_stest1 = INB(nc_stest1); 2461 np->sv_stest2 = INB(nc_stest2) & 0x20; 2462 np->sv_stest4 = INB(nc_stest4); 2463 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2464 np->sv_scntl4 = INB(nc_scntl4); 2465 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2466 } 2467 else 2468 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2469 } 2470 2471 /* 2472 * Prepare io register values used by sym_init() according 2473 * to selected and supported features. 2474 */ 2475 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2476 { 2477 u_char burst_max; 2478 u32 period; 2479 int i; 2480 2481 /* 2482 * Wide ? 2483 */ 2484 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2485 2486 /* 2487 * Get the frequency of the chip's clock. 2488 */ 2489 if (np->features & FE_QUAD) 2490 np->multiplier = 4; 2491 else if (np->features & FE_DBLR) 2492 np->multiplier = 2; 2493 else 2494 np->multiplier = 1; 2495 2496 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2497 np->clock_khz *= np->multiplier; 2498 2499 if (np->clock_khz != 40000) 2500 sym_getclock(np, np->multiplier); 2501 2502 /* 2503 * Divisor to be used for async (timer pre-scaler). 2504 */ 2505 i = np->clock_divn - 1; 2506 while (--i >= 0) { 2507 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2508 ++i; 2509 break; 2510 } 2511 } 2512 np->rv_scntl3 = i+1; 2513 2514 /* 2515 * The C1010 uses hardwired divisors for async. 2516 * So, we just throw away, the async. divisor.:-) 2517 */ 2518 if (np->features & FE_C10) 2519 np->rv_scntl3 = 0; 2520 2521 /* 2522 * Minimum synchronous period factor supported by the chip. 2523 * Btw, 'period' is in tenths of nanoseconds. 2524 */ 2525 period = howmany(4 * div_10M[0], np->clock_khz); 2526 if (period <= 250) np->minsync = 10; 2527 else if (period <= 303) np->minsync = 11; 2528 else if (period <= 500) np->minsync = 12; 2529 else np->minsync = howmany(period, 40); 2530 2531 /* 2532 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2533 */ 2534 if (np->minsync < 25 && 2535 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2536 np->minsync = 25; 2537 else if (np->minsync < 12 && 2538 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2539 np->minsync = 12; 2540 2541 /* 2542 * Maximum synchronous period factor supported by the chip. 2543 */ 2544 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2545 np->maxsync = period > 2540 ? 254 : period / 10; 2546 2547 /* 2548 * If chip is a C1010, guess the sync limits in DT mode. 2549 */ 2550 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2551 if (np->clock_khz == 160000) { 2552 np->minsync_dt = 9; 2553 np->maxsync_dt = 50; 2554 np->maxoffs_dt = 62; 2555 } 2556 } 2557 2558 /* 2559 * 64 bit addressing (895A/896/1010) ? 2560 */ 2561 if (np->features & FE_DAC) 2562 #ifdef __LP64__ 2563 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2564 #else 2565 np->rv_ccntl1 |= (DDAC); 2566 #endif 2567 2568 /* 2569 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2570 */ 2571 if (np->features & FE_NOPM) 2572 np->rv_ccntl0 |= (ENPMJ); 2573 2574 /* 2575 * C1010 Errata. 2576 * In dual channel mode, contention occurs if internal cycles 2577 * are used. Disable internal cycles. 2578 */ 2579 if (np->device_id == PCI_ID_LSI53C1010 && 2580 np->revision_id < 0x2) 2581 np->rv_ccntl0 |= DILS; 2582 2583 /* 2584 * Select burst length (dwords) 2585 */ 2586 burst_max = SYM_SETUP_BURST_ORDER; 2587 if (burst_max == 255) 2588 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2589 np->sv_ctest5); 2590 if (burst_max > 7) 2591 burst_max = 7; 2592 if (burst_max > np->maxburst) 2593 burst_max = np->maxburst; 2594 2595 /* 2596 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2597 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2598 * based transactions on LOAD/STORE instructions. So we have 2599 * to prevent these chips from using such PCI transactions in 2600 * this driver. The generic ncr driver that does not use 2601 * LOAD/STORE instructions does not need this work-around. 2602 */ 2603 if ((np->device_id == PCI_ID_SYM53C810 && 2604 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2605 (np->device_id == PCI_ID_SYM53C860 && 2606 np->revision_id <= 0x1)) 2607 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2608 2609 /* 2610 * Select all supported special features. 2611 * If we are using on-board RAM for scripts, prefetch (PFEN) 2612 * does not help, but burst op fetch (BOF) does. 2613 * Disabling PFEN makes sure BOF will be used. 2614 */ 2615 if (np->features & FE_ERL) 2616 np->rv_dmode |= ERL; /* Enable Read Line */ 2617 if (np->features & FE_BOF) 2618 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2619 if (np->features & FE_ERMP) 2620 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2621 #if 1 2622 if ((np->features & FE_PFEN) && !np->ram_ba) 2623 #else 2624 if (np->features & FE_PFEN) 2625 #endif 2626 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2627 if (np->features & FE_CLSE) 2628 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2629 if (np->features & FE_WRIE) 2630 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2631 if (np->features & FE_DFS) 2632 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2633 2634 /* 2635 * Select some other 2636 */ 2637 if (SYM_SETUP_PCI_PARITY) 2638 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2639 if (SYM_SETUP_SCSI_PARITY) 2640 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2641 2642 /* 2643 * Get parity checking, host ID and verbose mode from NVRAM 2644 */ 2645 np->myaddr = 255; 2646 sym_nvram_setup_host (np, nvram); 2647 2648 /* 2649 * Get SCSI addr of host adapter (set by bios?). 2650 */ 2651 if (np->myaddr == 255) { 2652 np->myaddr = INB(nc_scid) & 0x07; 2653 if (!np->myaddr) 2654 np->myaddr = SYM_SETUP_HOST_ID; 2655 } 2656 2657 /* 2658 * Prepare initial io register bits for burst length 2659 */ 2660 sym_init_burst(np, burst_max); 2661 2662 /* 2663 * Set SCSI BUS mode. 2664 * - LVD capable chips (895/895A/896/1010) report the 2665 * current BUS mode through the STEST4 IO register. 2666 * - For previous generation chips (825/825A/875), 2667 * user has to tell us how to check against HVD, 2668 * since a 100% safe algorithm is not possible. 2669 */ 2670 np->scsi_mode = SMODE_SE; 2671 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2672 np->scsi_mode = (np->sv_stest4 & SMODE); 2673 else if (np->features & FE_DIFF) { 2674 if (SYM_SETUP_SCSI_DIFF == 1) { 2675 if (np->sv_scntl3) { 2676 if (np->sv_stest2 & 0x20) 2677 np->scsi_mode = SMODE_HVD; 2678 } 2679 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2680 if (!(INB(nc_gpreg) & 0x08)) 2681 np->scsi_mode = SMODE_HVD; 2682 } 2683 } 2684 else if (SYM_SETUP_SCSI_DIFF == 2) 2685 np->scsi_mode = SMODE_HVD; 2686 } 2687 if (np->scsi_mode == SMODE_HVD) 2688 np->rv_stest2 |= 0x20; 2689 2690 /* 2691 * Set LED support from SCRIPTS. 2692 * Ignore this feature for boards known to use a 2693 * specific GPIO wiring and for the 895A, 896 2694 * and 1010 that drive the LED directly. 2695 */ 2696 if ((SYM_SETUP_SCSI_LED || 2697 (nvram->type == SYM_SYMBIOS_NVRAM || 2698 (nvram->type == SYM_TEKRAM_NVRAM && 2699 np->device_id == PCI_ID_SYM53C895))) && 2700 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2701 np->features |= FE_LED0; 2702 2703 /* 2704 * Set irq mode. 2705 */ 2706 switch(SYM_SETUP_IRQ_MODE & 3) { 2707 case 2: 2708 np->rv_dcntl |= IRQM; 2709 break; 2710 case 1: 2711 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2712 break; 2713 default: 2714 break; 2715 } 2716 2717 /* 2718 * Configure targets according to driver setup. 2719 * If NVRAM present get targets setup from NVRAM. 2720 */ 2721 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2722 tcb_p tp = &np->target[i]; 2723 2724 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2725 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2726 tp->tinfo.user.period = np->minsync; 2727 if (np->features & FE_ULTRA3) 2728 tp->tinfo.user.period = np->minsync_dt; 2729 tp->tinfo.user.offset = np->maxoffs; 2730 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2731 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2732 tp->usrtags = SYM_SETUP_MAX_TAG; 2733 2734 sym_nvram_setup_target (np, i, nvram); 2735 2736 /* 2737 * For now, guess PPR/DT support from the period 2738 * and BUS width. 2739 */ 2740 if (np->features & FE_ULTRA3) { 2741 if (tp->tinfo.user.period <= 9 && 2742 tp->tinfo.user.width == BUS_16_BIT) { 2743 tp->tinfo.user.options |= PPR_OPT_DT; 2744 tp->tinfo.user.offset = np->maxoffs_dt; 2745 tp->tinfo.user.spi_version = 3; 2746 } 2747 } 2748 2749 if (!tp->usrtags) 2750 tp->usrflags &= ~SYM_TAGS_ENABLED; 2751 } 2752 2753 /* 2754 * Let user know about the settings. 2755 */ 2756 i = nvram->type; 2757 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2758 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2759 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2760 np->myaddr, 2761 (np->features & FE_ULTRA3) ? 80 : 2762 (np->features & FE_ULTRA2) ? 40 : 2763 (np->features & FE_ULTRA) ? 20 : 10, 2764 sym_scsi_bus_mode(np->scsi_mode), 2765 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2766 /* 2767 * Tell him more on demand. 2768 */ 2769 if (sym_verbose) { 2770 printf("%s: %s IRQ line driver%s\n", 2771 sym_name(np), 2772 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2773 np->ram_ba ? ", using on-chip SRAM" : ""); 2774 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2775 if (np->features & FE_NOPM) 2776 printf("%s: handling phase mismatch from SCRIPTS.\n", 2777 sym_name(np)); 2778 } 2779 /* 2780 * And still more. 2781 */ 2782 if (sym_verbose > 1) { 2783 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2784 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2785 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2786 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2787 2788 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2789 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2790 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2791 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2792 } 2793 /* 2794 * Let user be aware of targets that have some disable flags set. 2795 */ 2796 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2797 if (sym_verbose) 2798 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2799 "SCAN FOR LUNS"); 2800 2801 return 0; 2802 } 2803 2804 /* 2805 * Prepare the next negotiation message if needed. 2806 * 2807 * Fill in the part of message buffer that contains the 2808 * negotiation and the nego_status field of the CCB. 2809 * Returns the size of the message in bytes. 2810 */ 2811 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2812 { 2813 tcb_p tp = &np->target[cp->target]; 2814 int msglen = 0; 2815 2816 /* 2817 * Early C1010 chips need a work-around for DT 2818 * data transfer to work. 2819 */ 2820 if (!(np->features & FE_U3EN)) 2821 tp->tinfo.goal.options = 0; 2822 /* 2823 * negotiate using PPR ? 2824 */ 2825 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2826 nego = NS_PPR; 2827 /* 2828 * negotiate wide transfers ? 2829 */ 2830 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2831 nego = NS_WIDE; 2832 /* 2833 * negotiate synchronous transfers? 2834 */ 2835 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2836 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2837 nego = NS_SYNC; 2838 2839 switch (nego) { 2840 case NS_SYNC: 2841 msgptr[msglen++] = M_EXTENDED; 2842 msgptr[msglen++] = 3; 2843 msgptr[msglen++] = M_X_SYNC_REQ; 2844 msgptr[msglen++] = tp->tinfo.goal.period; 2845 msgptr[msglen++] = tp->tinfo.goal.offset; 2846 break; 2847 case NS_WIDE: 2848 msgptr[msglen++] = M_EXTENDED; 2849 msgptr[msglen++] = 2; 2850 msgptr[msglen++] = M_X_WIDE_REQ; 2851 msgptr[msglen++] = tp->tinfo.goal.width; 2852 break; 2853 case NS_PPR: 2854 msgptr[msglen++] = M_EXTENDED; 2855 msgptr[msglen++] = 6; 2856 msgptr[msglen++] = M_X_PPR_REQ; 2857 msgptr[msglen++] = tp->tinfo.goal.period; 2858 msgptr[msglen++] = 0; 2859 msgptr[msglen++] = tp->tinfo.goal.offset; 2860 msgptr[msglen++] = tp->tinfo.goal.width; 2861 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2862 break; 2863 } 2864 2865 cp->nego_status = nego; 2866 2867 if (nego) { 2868 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2869 if (DEBUG_FLAGS & DEBUG_NEGO) { 2870 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2871 nego == NS_WIDE ? "wide msgout" : 2872 "ppr msgout", msgptr); 2873 } 2874 } 2875 2876 return msglen; 2877 } 2878 2879 /* 2880 * Insert a job into the start queue. 2881 */ 2882 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2883 { 2884 u_short qidx; 2885 2886 #ifdef SYM_CONF_IARB_SUPPORT 2887 /* 2888 * If the previously queued CCB is not yet done, 2889 * set the IARB hint. The SCRIPTS will go with IARB 2890 * for this job when starting the previous one. 2891 * We leave devices a chance to win arbitration by 2892 * not using more than 'iarb_max' consecutive 2893 * immediate arbitrations. 2894 */ 2895 if (np->last_cp && np->iarb_count < np->iarb_max) { 2896 np->last_cp->host_flags |= HF_HINT_IARB; 2897 ++np->iarb_count; 2898 } 2899 else 2900 np->iarb_count = 0; 2901 np->last_cp = cp; 2902 #endif 2903 2904 /* 2905 * Insert first the idle task and then our job. 2906 * The MB should ensure proper ordering. 2907 */ 2908 qidx = np->squeueput + 2; 2909 if (qidx >= MAX_QUEUE*2) qidx = 0; 2910 2911 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2912 MEMORY_BARRIER(); 2913 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2914 2915 np->squeueput = qidx; 2916 2917 if (DEBUG_FLAGS & DEBUG_QUEUE) 2918 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2919 2920 /* 2921 * Script processor may be waiting for reselect. 2922 * Wake it up. 2923 */ 2924 MEMORY_BARRIER(); 2925 OUTB (nc_istat, SIGP|np->istat_sem); 2926 } 2927 2928 /* 2929 * Soft reset the chip. 2930 * 2931 * Raising SRST when the chip is running may cause 2932 * problems on dual function chips (see below). 2933 * On the other hand, LVD devices need some delay 2934 * to settle and report actual BUS mode in STEST4. 2935 */ 2936 static void sym_chip_reset (hcb_p np) 2937 { 2938 OUTB (nc_istat, SRST); 2939 UDELAY (10); 2940 OUTB (nc_istat, 0); 2941 UDELAY(2000); /* For BUS MODE to settle */ 2942 } 2943 2944 /* 2945 * Soft reset the chip. 2946 * 2947 * Some 896 and 876 chip revisions may hang-up if we set 2948 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2949 * are running. 2950 * So, we need to abort the current operation prior to 2951 * soft resetting the chip. 2952 */ 2953 static void sym_soft_reset (hcb_p np) 2954 { 2955 u_char istat; 2956 int i; 2957 2958 OUTB (nc_istat, CABRT); 2959 for (i = 1000000 ; i ; --i) { 2960 istat = INB (nc_istat); 2961 if (istat & SIP) { 2962 INW (nc_sist); 2963 continue; 2964 } 2965 if (istat & DIP) { 2966 OUTB (nc_istat, 0); 2967 INB (nc_dstat); 2968 break; 2969 } 2970 } 2971 if (!i) 2972 printf("%s: unable to abort current chip operation.\n", 2973 sym_name(np)); 2974 sym_chip_reset (np); 2975 } 2976 2977 /* 2978 * Start reset process. 2979 * 2980 * The interrupt handler will reinitialize the chip. 2981 */ 2982 static void sym_start_reset(hcb_p np) 2983 { 2984 (void) sym_reset_scsi_bus(np, 1); 2985 } 2986 2987 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 2988 { 2989 u32 term; 2990 int retv = 0; 2991 2992 sym_soft_reset(np); /* Soft reset the chip */ 2993 if (enab_int) 2994 OUTW (nc_sien, RST); 2995 /* 2996 * Enable Tolerant, reset IRQD if present and 2997 * properly set IRQ mode, prior to resetting the bus. 2998 */ 2999 OUTB (nc_stest3, TE); 3000 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3001 OUTB (nc_scntl1, CRST); 3002 UDELAY (200); 3003 3004 if (!SYM_SETUP_SCSI_BUS_CHECK) 3005 goto out; 3006 /* 3007 * Check for no terminators or SCSI bus shorts to ground. 3008 * Read SCSI data bus, data parity bits and control signals. 3009 * We are expecting RESET to be TRUE and other signals to be 3010 * FALSE. 3011 */ 3012 term = INB(nc_sstat0); 3013 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3014 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3015 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3016 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3017 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3018 3019 if (!(np->features & FE_WIDE)) 3020 term &= 0x3ffff; 3021 3022 if (term != (2<<7)) { 3023 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3024 sym_name(np)); 3025 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3026 "0x%lx, expecting 0x%lx\n", 3027 sym_name(np), 3028 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3029 (u_long)term, (u_long)(2<<7)); 3030 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3031 retv = 1; 3032 } 3033 out: 3034 OUTB (nc_scntl1, 0); 3035 /* MDELAY(100); */ 3036 return retv; 3037 } 3038 3039 /* 3040 * The chip may have completed jobs. Look at the DONE QUEUE. 3041 * 3042 * On architectures that may reorder LOAD/STORE operations, 3043 * a memory barrier may be needed after the reading of the 3044 * so-called `flag' and prior to dealing with the data. 3045 */ 3046 static int sym_wakeup_done (hcb_p np) 3047 { 3048 ccb_p cp; 3049 int i, n; 3050 u32 dsa; 3051 3052 SYM_LOCK_ASSERT(MA_OWNED); 3053 3054 n = 0; 3055 i = np->dqueueget; 3056 while (1) { 3057 dsa = scr_to_cpu(np->dqueue[i]); 3058 if (!dsa) 3059 break; 3060 np->dqueue[i] = 0; 3061 if ((i = i+2) >= MAX_QUEUE*2) 3062 i = 0; 3063 3064 cp = sym_ccb_from_dsa(np, dsa); 3065 if (cp) { 3066 MEMORY_BARRIER(); 3067 sym_complete_ok (np, cp); 3068 ++n; 3069 } 3070 else 3071 printf ("%s: bad DSA (%x) in done queue.\n", 3072 sym_name(np), (u_int) dsa); 3073 } 3074 np->dqueueget = i; 3075 3076 return n; 3077 } 3078 3079 /* 3080 * Complete all active CCBs with error. 3081 * Used on CHIP/SCSI RESET. 3082 */ 3083 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3084 { 3085 /* 3086 * Move all active CCBs to the COMP queue 3087 * and flush this queue. 3088 */ 3089 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3090 sym_que_init(&np->busy_ccbq); 3091 sym_flush_comp_queue(np, cam_status); 3092 } 3093 3094 /* 3095 * Start chip. 3096 * 3097 * 'reason' means: 3098 * 0: initialisation. 3099 * 1: SCSI BUS RESET delivered or received. 3100 * 2: SCSI BUS MODE changed. 3101 */ 3102 static void sym_init (hcb_p np, int reason) 3103 { 3104 int i; 3105 u32 phys; 3106 3107 SYM_LOCK_ASSERT(MA_OWNED); 3108 3109 /* 3110 * Reset chip if asked, otherwise just clear fifos. 3111 */ 3112 if (reason == 1) 3113 sym_soft_reset(np); 3114 else { 3115 OUTB (nc_stest3, TE|CSF); 3116 OUTONB (nc_ctest3, CLF); 3117 } 3118 3119 /* 3120 * Clear Start Queue 3121 */ 3122 phys = np->squeue_ba; 3123 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3124 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3125 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3126 } 3127 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3128 3129 /* 3130 * Start at first entry. 3131 */ 3132 np->squeueput = 0; 3133 3134 /* 3135 * Clear Done Queue 3136 */ 3137 phys = np->dqueue_ba; 3138 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3139 np->dqueue[i] = 0; 3140 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3141 } 3142 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3143 3144 /* 3145 * Start at first entry. 3146 */ 3147 np->dqueueget = 0; 3148 3149 /* 3150 * Install patches in scripts. 3151 * This also let point to first position the start 3152 * and done queue pointers used from SCRIPTS. 3153 */ 3154 np->fw_patch(np); 3155 3156 /* 3157 * Wakeup all pending jobs. 3158 */ 3159 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3160 3161 /* 3162 * Init chip. 3163 */ 3164 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3165 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3166 3167 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3168 /* full arb., ena parity, par->ATN */ 3169 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3170 3171 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3172 3173 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3174 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3175 OUTB (nc_istat , SIGP ); /* Signal Process */ 3176 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3177 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3178 3179 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3180 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3181 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3182 3183 /* Extended Sreq/Sack filtering not supported on the C10 */ 3184 if (np->features & FE_C10) 3185 OUTB (nc_stest2, np->rv_stest2); 3186 else 3187 OUTB (nc_stest2, EXT|np->rv_stest2); 3188 3189 OUTB (nc_stest3, TE); /* TolerANT enable */ 3190 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3191 3192 /* 3193 * For now, disable AIP generation on C1010-66. 3194 */ 3195 if (np->device_id == PCI_ID_LSI53C1010_2) 3196 OUTB (nc_aipcntl1, DISAIP); 3197 3198 /* 3199 * C10101 Errata. 3200 * Errant SGE's when in narrow. Write bits 4 & 5 of 3201 * STEST1 register to disable SGE. We probably should do 3202 * that from SCRIPTS for each selection/reselection, but 3203 * I just don't want. :) 3204 */ 3205 if (np->device_id == PCI_ID_LSI53C1010 && 3206 /* np->revision_id < 0xff */ 1) 3207 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3208 3209 /* 3210 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3211 * Disable overlapped arbitration for some dual function devices, 3212 * regardless revision id (kind of post-chip-design feature. ;-)) 3213 */ 3214 if (np->device_id == PCI_ID_SYM53C875) 3215 OUTB (nc_ctest0, (1<<5)); 3216 else if (np->device_id == PCI_ID_SYM53C896) 3217 np->rv_ccntl0 |= DPR; 3218 3219 /* 3220 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3221 * and/or hardware phase mismatch, since only such chips 3222 * seem to support those IO registers. 3223 */ 3224 if (np->features & (FE_DAC|FE_NOPM)) { 3225 OUTB (nc_ccntl0, np->rv_ccntl0); 3226 OUTB (nc_ccntl1, np->rv_ccntl1); 3227 } 3228 3229 /* 3230 * If phase mismatch handled by scripts (895A/896/1010), 3231 * set PM jump addresses. 3232 */ 3233 if (np->features & FE_NOPM) { 3234 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3235 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3236 } 3237 3238 /* 3239 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3240 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3241 */ 3242 if (np->features & FE_LED0) 3243 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3244 else if (np->features & FE_LEDC) 3245 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3246 3247 /* 3248 * enable ints 3249 */ 3250 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3251 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3252 3253 /* 3254 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3255 * Try to eat the spurious SBMC interrupt that may occur when 3256 * we reset the chip but not the SCSI BUS (at initialization). 3257 */ 3258 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3259 OUTONW (nc_sien, SBMC); 3260 if (reason == 0) { 3261 MDELAY(100); 3262 INW (nc_sist); 3263 } 3264 np->scsi_mode = INB (nc_stest4) & SMODE; 3265 } 3266 3267 /* 3268 * Fill in target structure. 3269 * Reinitialize usrsync. 3270 * Reinitialize usrwide. 3271 * Prepare sync negotiation according to actual SCSI bus mode. 3272 */ 3273 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3274 tcb_p tp = &np->target[i]; 3275 3276 tp->to_reset = 0; 3277 tp->head.sval = 0; 3278 tp->head.wval = np->rv_scntl3; 3279 tp->head.uval = 0; 3280 3281 tp->tinfo.current.period = 0; 3282 tp->tinfo.current.offset = 0; 3283 tp->tinfo.current.width = BUS_8_BIT; 3284 tp->tinfo.current.options = 0; 3285 } 3286 3287 /* 3288 * Download SCSI SCRIPTS to on-chip RAM if present, 3289 * and start script processor. 3290 */ 3291 if (np->ram_ba) { 3292 if (sym_verbose > 1) 3293 printf ("%s: Downloading SCSI SCRIPTS.\n", 3294 sym_name(np)); 3295 if (np->ram_ws == 8192) { 3296 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3297 OUTL (nc_mmws, np->scr_ram_seg); 3298 OUTL (nc_mmrs, np->scr_ram_seg); 3299 OUTL (nc_sfs, np->scr_ram_seg); 3300 phys = SCRIPTB_BA (np, start64); 3301 } 3302 else 3303 phys = SCRIPTA_BA (np, init); 3304 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3305 } 3306 else 3307 phys = SCRIPTA_BA (np, init); 3308 3309 np->istat_sem = 0; 3310 3311 OUTL (nc_dsa, np->hcb_ba); 3312 OUTL_DSP (phys); 3313 3314 /* 3315 * Notify the XPT about the RESET condition. 3316 */ 3317 if (reason != 0) 3318 xpt_async(AC_BUS_RESET, np->path, NULL); 3319 } 3320 3321 /* 3322 * Get clock factor and sync divisor for a given 3323 * synchronous factor period. 3324 */ 3325 static int 3326 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3327 { 3328 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3329 int div = np->clock_divn; /* Number of divisors supported */ 3330 u32 fak; /* Sync factor in sxfer */ 3331 u32 per; /* Period in tenths of ns */ 3332 u32 kpc; /* (per * clk) */ 3333 int ret; 3334 3335 /* 3336 * Compute the synchronous period in tenths of nano-seconds 3337 */ 3338 if (dt && sfac <= 9) per = 125; 3339 else if (sfac <= 10) per = 250; 3340 else if (sfac == 11) per = 303; 3341 else if (sfac == 12) per = 500; 3342 else per = 40 * sfac; 3343 ret = per; 3344 3345 kpc = per * clk; 3346 if (dt) 3347 kpc <<= 1; 3348 3349 /* 3350 * For earliest C10 revision 0, we cannot use extra 3351 * clocks for the setting of the SCSI clocking. 3352 * Note that this limits the lowest sync data transfer 3353 * to 5 Mega-transfers per second and may result in 3354 * using higher clock divisors. 3355 */ 3356 #if 1 3357 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3358 /* 3359 * Look for the lowest clock divisor that allows an 3360 * output speed not faster than the period. 3361 */ 3362 while (div > 0) { 3363 --div; 3364 if (kpc > (div_10M[div] << 2)) { 3365 ++div; 3366 break; 3367 } 3368 } 3369 fak = 0; /* No extra clocks */ 3370 if (div == np->clock_divn) { /* Are we too fast ? */ 3371 ret = -1; 3372 } 3373 *divp = div; 3374 *fakp = fak; 3375 return ret; 3376 } 3377 #endif 3378 3379 /* 3380 * Look for the greatest clock divisor that allows an 3381 * input speed faster than the period. 3382 */ 3383 while (div-- > 0) 3384 if (kpc >= (div_10M[div] << 2)) break; 3385 3386 /* 3387 * Calculate the lowest clock factor that allows an output 3388 * speed not faster than the period, and the max output speed. 3389 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3390 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3391 */ 3392 if (dt) { 3393 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3394 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3395 } 3396 else { 3397 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3398 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3399 } 3400 3401 /* 3402 * Check against our hardware limits, or bugs :). 3403 */ 3404 if (fak > 2) {fak = 2; ret = -1;} 3405 3406 /* 3407 * Compute and return sync parameters. 3408 */ 3409 *divp = div; 3410 *fakp = fak; 3411 3412 return ret; 3413 } 3414 3415 /* 3416 * Tell the SCSI layer about the new transfer parameters. 3417 */ 3418 static void 3419 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3420 { 3421 struct ccb_trans_settings cts; 3422 struct cam_path *path; 3423 int sts; 3424 tcb_p tp = &np->target[target]; 3425 3426 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3427 CAM_LUN_WILDCARD); 3428 if (sts != CAM_REQ_CMP) 3429 return; 3430 3431 bzero(&cts, sizeof(cts)); 3432 3433 #define cts__scsi (cts.proto_specific.scsi) 3434 #define cts__spi (cts.xport_specific.spi) 3435 3436 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3437 cts.protocol = PROTO_SCSI; 3438 cts.transport = XPORT_SPI; 3439 cts.protocol_version = tp->tinfo.current.scsi_version; 3440 cts.transport_version = tp->tinfo.current.spi_version; 3441 3442 cts__spi.valid = spi_valid; 3443 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3444 cts__spi.sync_period = tp->tinfo.current.period; 3445 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3446 cts__spi.sync_offset = tp->tinfo.current.offset; 3447 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3448 cts__spi.bus_width = tp->tinfo.current.width; 3449 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3450 cts__spi.ppr_options = tp->tinfo.current.options; 3451 #undef cts__spi 3452 #undef cts__scsi 3453 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3454 xpt_async(AC_TRANSFER_NEG, path, &cts); 3455 xpt_free_path(path); 3456 } 3457 3458 #define SYM_SPI_VALID_WDTR \ 3459 CTS_SPI_VALID_BUS_WIDTH | \ 3460 CTS_SPI_VALID_SYNC_RATE | \ 3461 CTS_SPI_VALID_SYNC_OFFSET 3462 #define SYM_SPI_VALID_SDTR \ 3463 CTS_SPI_VALID_SYNC_RATE | \ 3464 CTS_SPI_VALID_SYNC_OFFSET 3465 #define SYM_SPI_VALID_PPR \ 3466 CTS_SPI_VALID_PPR_OPTIONS | \ 3467 CTS_SPI_VALID_BUS_WIDTH | \ 3468 CTS_SPI_VALID_SYNC_RATE | \ 3469 CTS_SPI_VALID_SYNC_OFFSET 3470 3471 /* 3472 * We received a WDTR. 3473 * Let everything be aware of the changes. 3474 */ 3475 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3476 { 3477 tcb_p tp = &np->target[cp->target]; 3478 3479 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3480 3481 /* 3482 * Tell the SCSI layer about the new transfer parameters. 3483 */ 3484 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3485 tp->tinfo.current.offset = 0; 3486 tp->tinfo.current.period = 0; 3487 tp->tinfo.current.options = 0; 3488 3489 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3490 } 3491 3492 /* 3493 * We received a SDTR. 3494 * Let everything be aware of the changes. 3495 */ 3496 static void 3497 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3498 { 3499 tcb_p tp = &np->target[cp->target]; 3500 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3501 3502 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3503 3504 /* 3505 * Tell the SCSI layer about the new transfer parameters. 3506 */ 3507 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3508 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3509 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3510 3511 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3512 } 3513 3514 /* 3515 * We received a PPR. 3516 * Let everything be aware of the changes. 3517 */ 3518 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3519 u_char per, u_char wide, u_char div, u_char fak) 3520 { 3521 tcb_p tp = &np->target[cp->target]; 3522 3523 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3524 3525 /* 3526 * Tell the SCSI layer about the new transfer parameters. 3527 */ 3528 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3529 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3530 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3531 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3532 3533 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3534 } 3535 3536 /* 3537 * Switch trans mode for current job and it's target. 3538 */ 3539 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3540 u_char per, u_char wide, u_char div, u_char fak) 3541 { 3542 SYM_QUEHEAD *qp; 3543 union ccb *ccb; 3544 tcb_p tp; 3545 u_char target = INB (nc_sdid) & 0x0f; 3546 u_char sval, wval, uval; 3547 3548 assert (cp); 3549 if (!cp) return; 3550 ccb = cp->cam_ccb; 3551 assert (ccb); 3552 if (!ccb) return; 3553 assert (target == (cp->target & 0xf)); 3554 tp = &np->target[target]; 3555 3556 sval = tp->head.sval; 3557 wval = tp->head.wval; 3558 uval = tp->head.uval; 3559 3560 #if 0 3561 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3562 sval, wval, uval, np->rv_scntl3); 3563 #endif 3564 /* 3565 * Set the offset. 3566 */ 3567 if (!(np->features & FE_C10)) 3568 sval = (sval & ~0x1f) | ofs; 3569 else 3570 sval = (sval & ~0x3f) | ofs; 3571 3572 /* 3573 * Set the sync divisor and extra clock factor. 3574 */ 3575 if (ofs != 0) { 3576 wval = (wval & ~0x70) | ((div+1) << 4); 3577 if (!(np->features & FE_C10)) 3578 sval = (sval & ~0xe0) | (fak << 5); 3579 else { 3580 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3581 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3582 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3583 } 3584 } 3585 3586 /* 3587 * Set the bus width. 3588 */ 3589 wval = wval & ~EWS; 3590 if (wide != 0) 3591 wval |= EWS; 3592 3593 /* 3594 * Set misc. ultra enable bits. 3595 */ 3596 if (np->features & FE_C10) { 3597 uval = uval & ~(U3EN|AIPCKEN); 3598 if (dt) { 3599 assert(np->features & FE_U3EN); 3600 uval |= U3EN; 3601 } 3602 } 3603 else { 3604 wval = wval & ~ULTRA; 3605 if (per <= 12) wval |= ULTRA; 3606 } 3607 3608 /* 3609 * Stop there if sync parameters are unchanged. 3610 */ 3611 if (tp->head.sval == sval && 3612 tp->head.wval == wval && 3613 tp->head.uval == uval) 3614 return; 3615 tp->head.sval = sval; 3616 tp->head.wval = wval; 3617 tp->head.uval = uval; 3618 3619 /* 3620 * Disable extended Sreq/Sack filtering if per < 50. 3621 * Not supported on the C1010. 3622 */ 3623 if (per < 50 && !(np->features & FE_C10)) 3624 OUTOFFB (nc_stest2, EXT); 3625 3626 /* 3627 * set actual value and sync_status 3628 */ 3629 OUTB (nc_sxfer, tp->head.sval); 3630 OUTB (nc_scntl3, tp->head.wval); 3631 3632 if (np->features & FE_C10) { 3633 OUTB (nc_scntl4, tp->head.uval); 3634 } 3635 3636 /* 3637 * patch ALL busy ccbs of this target. 3638 */ 3639 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3640 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3641 if (cp->target != target) 3642 continue; 3643 cp->phys.select.sel_scntl3 = tp->head.wval; 3644 cp->phys.select.sel_sxfer = tp->head.sval; 3645 if (np->features & FE_C10) { 3646 cp->phys.select.sel_scntl4 = tp->head.uval; 3647 } 3648 } 3649 } 3650 3651 /* 3652 * log message for real hard errors 3653 * 3654 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3655 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3656 * 3657 * exception register: 3658 * ds: dstat 3659 * si: sist 3660 * 3661 * SCSI bus lines: 3662 * so: control lines as driven by chip. 3663 * si: control lines as seen by chip. 3664 * sd: scsi data lines as seen by chip. 3665 * 3666 * wide/fastmode: 3667 * sxfer: (see the manual) 3668 * scntl3: (see the manual) 3669 * 3670 * current script command: 3671 * dsp: script address (relative to start of script). 3672 * dbc: first word of script command. 3673 * 3674 * First 24 register of the chip: 3675 * r0..rf 3676 */ 3677 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3678 { 3679 u32 dsp; 3680 int script_ofs; 3681 int script_size; 3682 char *script_name; 3683 u_char *script_base; 3684 int i; 3685 3686 dsp = INL (nc_dsp); 3687 3688 if (dsp > np->scripta_ba && 3689 dsp <= np->scripta_ba + np->scripta_sz) { 3690 script_ofs = dsp - np->scripta_ba; 3691 script_size = np->scripta_sz; 3692 script_base = (u_char *) np->scripta0; 3693 script_name = "scripta"; 3694 } 3695 else if (np->scriptb_ba < dsp && 3696 dsp <= np->scriptb_ba + np->scriptb_sz) { 3697 script_ofs = dsp - np->scriptb_ba; 3698 script_size = np->scriptb_sz; 3699 script_base = (u_char *) np->scriptb0; 3700 script_name = "scriptb"; 3701 } else { 3702 script_ofs = dsp; 3703 script_size = 0; 3704 script_base = NULL; 3705 script_name = "mem"; 3706 } 3707 3708 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3709 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3710 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3711 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3712 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3713 (unsigned)INL (nc_dbc)); 3714 3715 if (((script_ofs & 3) == 0) && 3716 (unsigned)script_ofs < script_size) { 3717 printf ("%s: script cmd = %08x\n", sym_name(np), 3718 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3719 } 3720 3721 printf ("%s: regdump:", sym_name(np)); 3722 for (i=0; i<24;i++) 3723 printf (" %02x", (unsigned)INB_OFF(i)); 3724 printf (".\n"); 3725 3726 /* 3727 * PCI BUS error, read the PCI ststus register. 3728 */ 3729 if (dstat & (MDPE|BF)) { 3730 u_short pci_sts; 3731 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3732 if (pci_sts & 0xf900) { 3733 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3734 printf("%s: PCI STATUS = 0x%04x\n", 3735 sym_name(np), pci_sts & 0xf900); 3736 } 3737 } 3738 } 3739 3740 /* 3741 * chip interrupt handler 3742 * 3743 * In normal situations, interrupt conditions occur one at 3744 * a time. But when something bad happens on the SCSI BUS, 3745 * the chip may raise several interrupt flags before 3746 * stopping and interrupting the CPU. The additionnal 3747 * interrupt flags are stacked in some extra registers 3748 * after the SIP and/or DIP flag has been raised in the 3749 * ISTAT. After the CPU has read the interrupt condition 3750 * flag from SIST or DSTAT, the chip unstacks the other 3751 * interrupt flags and sets the corresponding bits in 3752 * SIST or DSTAT. Since the chip starts stacking once the 3753 * SIP or DIP flag is set, there is a small window of time 3754 * where the stacking does not occur. 3755 * 3756 * Typically, multiple interrupt conditions may happen in 3757 * the following situations: 3758 * 3759 * - SCSI parity error + Phase mismatch (PAR|MA) 3760 * When a parity error is detected in input phase 3761 * and the device switches to msg-in phase inside a 3762 * block MOV. 3763 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3764 * When a stupid device does not want to handle the 3765 * recovery of an SCSI parity error. 3766 * - Some combinations of STO, PAR, UDC, ... 3767 * When using non compliant SCSI stuff, when user is 3768 * doing non compliant hot tampering on the BUS, when 3769 * something really bad happens to a device, etc ... 3770 * 3771 * The heuristic suggested by SYMBIOS to handle 3772 * multiple interrupts is to try unstacking all 3773 * interrupts conditions and to handle them on some 3774 * priority based on error severity. 3775 * This will work when the unstacking has been 3776 * successful, but we cannot be 100 % sure of that, 3777 * since the CPU may have been faster to unstack than 3778 * the chip is able to stack. Hmmm ... But it seems that 3779 * such a situation is very unlikely to happen. 3780 * 3781 * If this happen, for example STO caught by the CPU 3782 * then UDC happenning before the CPU have restarted 3783 * the SCRIPTS, the driver may wrongly complete the 3784 * same command on UDC, since the SCRIPTS didn't restart 3785 * and the DSA still points to the same command. 3786 * We avoid this situation by setting the DSA to an 3787 * invalid value when the CCB is completed and before 3788 * restarting the SCRIPTS. 3789 * 3790 * Another issue is that we need some section of our 3791 * recovery procedures to be somehow uninterruptible but 3792 * the SCRIPTS processor does not provides such a 3793 * feature. For this reason, we handle recovery preferently 3794 * from the C code and check against some SCRIPTS critical 3795 * sections from the C code. 3796 * 3797 * Hopefully, the interrupt handling of the driver is now 3798 * able to resist to weird BUS error conditions, but donnot 3799 * ask me for any guarantee that it will never fail. :-) 3800 * Use at your own decision and risk. 3801 */ 3802 static void sym_intr1 (hcb_p np) 3803 { 3804 u_char istat, istatc; 3805 u_char dstat; 3806 u_short sist; 3807 3808 SYM_LOCK_ASSERT(MA_OWNED); 3809 3810 /* 3811 * interrupt on the fly ? 3812 * 3813 * A `dummy read' is needed to ensure that the 3814 * clear of the INTF flag reaches the device 3815 * before the scanning of the DONE queue. 3816 */ 3817 istat = INB (nc_istat); 3818 if (istat & INTF) { 3819 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3820 istat = INB (nc_istat); /* DUMMY READ */ 3821 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3822 (void)sym_wakeup_done (np); 3823 } 3824 3825 if (!(istat & (SIP|DIP))) 3826 return; 3827 3828 #if 0 /* We should never get this one */ 3829 if (istat & CABRT) 3830 OUTB (nc_istat, CABRT); 3831 #endif 3832 3833 /* 3834 * PAR and MA interrupts may occur at the same time, 3835 * and we need to know of both in order to handle 3836 * this situation properly. We try to unstack SCSI 3837 * interrupts for that reason. BTW, I dislike a LOT 3838 * such a loop inside the interrupt routine. 3839 * Even if DMA interrupt stacking is very unlikely to 3840 * happen, we also try unstacking these ones, since 3841 * this has no performance impact. 3842 */ 3843 sist = 0; 3844 dstat = 0; 3845 istatc = istat; 3846 do { 3847 if (istatc & SIP) 3848 sist |= INW (nc_sist); 3849 if (istatc & DIP) 3850 dstat |= INB (nc_dstat); 3851 istatc = INB (nc_istat); 3852 istat |= istatc; 3853 } while (istatc & (SIP|DIP)); 3854 3855 if (DEBUG_FLAGS & DEBUG_TINY) 3856 printf ("<%d|%x:%x|%x:%x>", 3857 (int)INB(nc_scr0), 3858 dstat,sist, 3859 (unsigned)INL(nc_dsp), 3860 (unsigned)INL(nc_dbc)); 3861 /* 3862 * On paper, a memory barrier may be needed here. 3863 * And since we are paranoid ... :) 3864 */ 3865 MEMORY_BARRIER(); 3866 3867 /* 3868 * First, interrupts we want to service cleanly. 3869 * 3870 * Phase mismatch (MA) is the most frequent interrupt 3871 * for chip earlier than the 896 and so we have to service 3872 * it as quickly as possible. 3873 * A SCSI parity error (PAR) may be combined with a phase 3874 * mismatch condition (MA). 3875 * Programmed interrupts (SIR) are used to call the C code 3876 * from SCRIPTS. 3877 * The single step interrupt (SSI) is not used in this 3878 * driver. 3879 */ 3880 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3881 !(dstat & (MDPE|BF|ABRT|IID))) { 3882 if (sist & PAR) sym_int_par (np, sist); 3883 else if (sist & MA) sym_int_ma (np); 3884 else if (dstat & SIR) sym_int_sir (np); 3885 else if (dstat & SSI) OUTONB_STD (); 3886 else goto unknown_int; 3887 return; 3888 } 3889 3890 /* 3891 * Now, interrupts that donnot happen in normal 3892 * situations and that we may need to recover from. 3893 * 3894 * On SCSI RESET (RST), we reset everything. 3895 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3896 * active CCBs with RESET status, prepare all devices 3897 * for negotiating again and restart the SCRIPTS. 3898 * On STO and UDC, we complete the CCB with the corres- 3899 * ponding status and restart the SCRIPTS. 3900 */ 3901 if (sist & RST) { 3902 xpt_print_path(np->path); 3903 printf("SCSI BUS reset detected.\n"); 3904 sym_init (np, 1); 3905 return; 3906 } 3907 3908 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3909 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3910 3911 if (!(sist & (GEN|HTH|SGE)) && 3912 !(dstat & (MDPE|BF|ABRT|IID))) { 3913 if (sist & SBMC) sym_int_sbmc (np); 3914 else if (sist & STO) sym_int_sto (np); 3915 else if (sist & UDC) sym_int_udc (np); 3916 else goto unknown_int; 3917 return; 3918 } 3919 3920 /* 3921 * Now, interrupts we are not able to recover cleanly. 3922 * 3923 * Log message for hard errors. 3924 * Reset everything. 3925 */ 3926 3927 sym_log_hard_error(np, sist, dstat); 3928 3929 if ((sist & (GEN|HTH|SGE)) || 3930 (dstat & (MDPE|BF|ABRT|IID))) { 3931 sym_start_reset(np); 3932 return; 3933 } 3934 3935 unknown_int: 3936 /* 3937 * We just miss the cause of the interrupt. :( 3938 * Print a message. The timeout will do the real work. 3939 */ 3940 printf( "%s: unknown interrupt(s) ignored, " 3941 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3942 sym_name(np), istat, dstat, sist); 3943 } 3944 3945 static void sym_intr(void *arg) 3946 { 3947 hcb_p np = arg; 3948 3949 SYM_LOCK(); 3950 3951 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3952 sym_intr1((hcb_p) arg); 3953 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3954 3955 SYM_UNLOCK(); 3956 } 3957 3958 static void sym_poll(struct cam_sim *sim) 3959 { 3960 sym_intr1(cam_sim_softc(sim)); 3961 } 3962 3963 /* 3964 * generic recovery from scsi interrupt 3965 * 3966 * The doc says that when the chip gets an SCSI interrupt, 3967 * it tries to stop in an orderly fashion, by completing 3968 * an instruction fetch that had started or by flushing 3969 * the DMA fifo for a write to memory that was executing. 3970 * Such a fashion is not enough to know if the instruction 3971 * that was just before the current DSP value has been 3972 * executed or not. 3973 * 3974 * There are some small SCRIPTS sections that deal with 3975 * the start queue and the done queue that may break any 3976 * assomption from the C code if we are interrupted 3977 * inside, so we reset if this happens. Btw, since these 3978 * SCRIPTS sections are executed while the SCRIPTS hasn't 3979 * started SCSI operations, it is very unlikely to happen. 3980 * 3981 * All the driver data structures are supposed to be 3982 * allocated from the same 4 GB memory window, so there 3983 * is a 1 to 1 relationship between DSA and driver data 3984 * structures. Since we are careful :) to invalidate the 3985 * DSA when we complete a command or when the SCRIPTS 3986 * pushes a DSA into a queue, we can trust it when it 3987 * points to a CCB. 3988 */ 3989 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 3990 { 3991 u32 dsp = INL (nc_dsp); 3992 u32 dsa = INL (nc_dsa); 3993 ccb_p cp = sym_ccb_from_dsa(np, dsa); 3994 3995 /* 3996 * If we haven't been interrupted inside the SCRIPTS 3997 * critical paths, we can safely restart the SCRIPTS 3998 * and trust the DSA value if it matches a CCB. 3999 */ 4000 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4001 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4002 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4003 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4004 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4005 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4006 (!(dsp > SCRIPTA_BA (np, done) && 4007 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4008 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4009 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4010 /* 4011 * If we have a CCB, let the SCRIPTS call us back for 4012 * the handling of the error with SCRATCHA filled with 4013 * STARTPOS. This way, we will be able to freeze the 4014 * device queue and requeue awaiting IOs. 4015 */ 4016 if (cp) { 4017 cp->host_status = hsts; 4018 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4019 } 4020 /* 4021 * Otherwise just restart the SCRIPTS. 4022 */ 4023 else { 4024 OUTL (nc_dsa, 0xffffff); 4025 OUTL_DSP (SCRIPTA_BA (np, start)); 4026 } 4027 } 4028 else 4029 goto reset_all; 4030 4031 return; 4032 4033 reset_all: 4034 sym_start_reset(np); 4035 } 4036 4037 /* 4038 * chip exception handler for selection timeout 4039 */ 4040 static void sym_int_sto (hcb_p np) 4041 { 4042 u32 dsp = INL (nc_dsp); 4043 4044 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4045 4046 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4047 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4048 else 4049 sym_start_reset(np); 4050 } 4051 4052 /* 4053 * chip exception handler for unexpected disconnect 4054 */ 4055 static void sym_int_udc (hcb_p np) 4056 { 4057 printf ("%s: unexpected disconnect\n", sym_name(np)); 4058 sym_recover_scsi_int(np, HS_UNEXPECTED); 4059 } 4060 4061 /* 4062 * chip exception handler for SCSI bus mode change 4063 * 4064 * spi2-r12 11.2.3 says a transceiver mode change must 4065 * generate a reset event and a device that detects a reset 4066 * event shall initiate a hard reset. It says also that a 4067 * device that detects a mode change shall set data transfer 4068 * mode to eight bit asynchronous, etc... 4069 * So, just reinitializing all except chip should be enough. 4070 */ 4071 static void sym_int_sbmc (hcb_p np) 4072 { 4073 u_char scsi_mode = INB (nc_stest4) & SMODE; 4074 4075 /* 4076 * Notify user. 4077 */ 4078 xpt_print_path(np->path); 4079 printf("SCSI BUS mode change from %s to %s.\n", 4080 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4081 4082 /* 4083 * Should suspend command processing for a few seconds and 4084 * reinitialize all except the chip. 4085 */ 4086 sym_init (np, 2); 4087 } 4088 4089 /* 4090 * chip exception handler for SCSI parity error. 4091 * 4092 * When the chip detects a SCSI parity error and is 4093 * currently executing a (CH)MOV instruction, it does 4094 * not interrupt immediately, but tries to finish the 4095 * transfer of the current scatter entry before 4096 * interrupting. The following situations may occur: 4097 * 4098 * - The complete scatter entry has been transferred 4099 * without the device having changed phase. 4100 * The chip will then interrupt with the DSP pointing 4101 * to the instruction that follows the MOV. 4102 * 4103 * - A phase mismatch occurs before the MOV finished 4104 * and phase errors are to be handled by the C code. 4105 * The chip will then interrupt with both PAR and MA 4106 * conditions set. 4107 * 4108 * - A phase mismatch occurs before the MOV finished and 4109 * phase errors are to be handled by SCRIPTS. 4110 * The chip will load the DSP with the phase mismatch 4111 * JUMP address and interrupt the host processor. 4112 */ 4113 static void sym_int_par (hcb_p np, u_short sist) 4114 { 4115 u_char hsts = INB (HS_PRT); 4116 u32 dsp = INL (nc_dsp); 4117 u32 dbc = INL (nc_dbc); 4118 u32 dsa = INL (nc_dsa); 4119 u_char sbcl = INB (nc_sbcl); 4120 u_char cmd = dbc >> 24; 4121 int phase = cmd & 7; 4122 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4123 4124 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4125 sym_name(np), hsts, dbc, sbcl); 4126 4127 /* 4128 * Check that the chip is connected to the SCSI BUS. 4129 */ 4130 if (!(INB (nc_scntl1) & ISCON)) { 4131 sym_recover_scsi_int(np, HS_UNEXPECTED); 4132 return; 4133 } 4134 4135 /* 4136 * If the nexus is not clearly identified, reset the bus. 4137 * We will try to do better later. 4138 */ 4139 if (!cp) 4140 goto reset_all; 4141 4142 /* 4143 * Check instruction was a MOV, direction was INPUT and 4144 * ATN is asserted. 4145 */ 4146 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4147 goto reset_all; 4148 4149 /* 4150 * Keep track of the parity error. 4151 */ 4152 OUTONB (HF_PRT, HF_EXT_ERR); 4153 cp->xerr_status |= XE_PARITY_ERR; 4154 4155 /* 4156 * Prepare the message to send to the device. 4157 */ 4158 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4159 4160 /* 4161 * If the old phase was DATA IN phase, we have to deal with 4162 * the 3 situations described above. 4163 * For other input phases (MSG IN and STATUS), the device 4164 * must resend the whole thing that failed parity checking 4165 * or signal error. So, jumping to dispatcher should be OK. 4166 */ 4167 if (phase == 1 || phase == 5) { 4168 /* Phase mismatch handled by SCRIPTS */ 4169 if (dsp == SCRIPTB_BA (np, pm_handle)) 4170 OUTL_DSP (dsp); 4171 /* Phase mismatch handled by the C code */ 4172 else if (sist & MA) 4173 sym_int_ma (np); 4174 /* No phase mismatch occurred */ 4175 else { 4176 OUTL (nc_temp, dsp); 4177 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4178 } 4179 } 4180 else 4181 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4182 return; 4183 4184 reset_all: 4185 sym_start_reset(np); 4186 } 4187 4188 /* 4189 * chip exception handler for phase errors. 4190 * 4191 * We have to construct a new transfer descriptor, 4192 * to transfer the rest of the current block. 4193 */ 4194 static void sym_int_ma (hcb_p np) 4195 { 4196 u32 dbc; 4197 u32 rest; 4198 u32 dsp; 4199 u32 dsa; 4200 u32 nxtdsp; 4201 u32 *vdsp; 4202 u32 oadr, olen; 4203 u32 *tblp; 4204 u32 newcmd; 4205 u_int delta; 4206 u_char cmd; 4207 u_char hflags, hflags0; 4208 struct sym_pmc *pm; 4209 ccb_p cp; 4210 4211 dsp = INL (nc_dsp); 4212 dbc = INL (nc_dbc); 4213 dsa = INL (nc_dsa); 4214 4215 cmd = dbc >> 24; 4216 rest = dbc & 0xffffff; 4217 delta = 0; 4218 4219 /* 4220 * locate matching cp if any. 4221 */ 4222 cp = sym_ccb_from_dsa(np, dsa); 4223 4224 /* 4225 * Donnot take into account dma fifo and various buffers in 4226 * INPUT phase since the chip flushes everything before 4227 * raising the MA interrupt for interrupted INPUT phases. 4228 * For DATA IN phase, we will check for the SWIDE later. 4229 */ 4230 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4231 u_char ss0, ss2; 4232 4233 if (np->features & FE_DFBC) 4234 delta = INW (nc_dfbc); 4235 else { 4236 u32 dfifo; 4237 4238 /* 4239 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4240 */ 4241 dfifo = INL(nc_dfifo); 4242 4243 /* 4244 * Calculate remaining bytes in DMA fifo. 4245 * (CTEST5 = dfifo >> 16) 4246 */ 4247 if (dfifo & (DFS << 16)) 4248 delta = ((((dfifo >> 8) & 0x300) | 4249 (dfifo & 0xff)) - rest) & 0x3ff; 4250 else 4251 delta = ((dfifo & 0xff) - rest) & 0x7f; 4252 } 4253 4254 /* 4255 * The data in the dma fifo has not been transferred to 4256 * the target -> add the amount to the rest 4257 * and clear the data. 4258 * Check the sstat2 register in case of wide transfer. 4259 */ 4260 rest += delta; 4261 ss0 = INB (nc_sstat0); 4262 if (ss0 & OLF) rest++; 4263 if (!(np->features & FE_C10)) 4264 if (ss0 & ORF) rest++; 4265 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4266 ss2 = INB (nc_sstat2); 4267 if (ss2 & OLF1) rest++; 4268 if (!(np->features & FE_C10)) 4269 if (ss2 & ORF1) rest++; 4270 } 4271 4272 /* 4273 * Clear fifos. 4274 */ 4275 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4276 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4277 } 4278 4279 /* 4280 * log the information 4281 */ 4282 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4283 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4284 (unsigned) rest, (unsigned) delta); 4285 4286 /* 4287 * try to find the interrupted script command, 4288 * and the address at which to continue. 4289 */ 4290 vdsp = NULL; 4291 nxtdsp = 0; 4292 if (dsp > np->scripta_ba && 4293 dsp <= np->scripta_ba + np->scripta_sz) { 4294 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4295 nxtdsp = dsp; 4296 } 4297 else if (dsp > np->scriptb_ba && 4298 dsp <= np->scriptb_ba + np->scriptb_sz) { 4299 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4300 nxtdsp = dsp; 4301 } 4302 4303 /* 4304 * log the information 4305 */ 4306 if (DEBUG_FLAGS & DEBUG_PHASE) { 4307 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4308 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4309 } 4310 4311 if (!vdsp) { 4312 printf ("%s: interrupted SCRIPT address not found.\n", 4313 sym_name (np)); 4314 goto reset_all; 4315 } 4316 4317 if (!cp) { 4318 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4319 sym_name (np)); 4320 goto reset_all; 4321 } 4322 4323 /* 4324 * get old startaddress and old length. 4325 */ 4326 oadr = scr_to_cpu(vdsp[1]); 4327 4328 if (cmd & 0x10) { /* Table indirect */ 4329 tblp = (u32 *) ((char*) &cp->phys + oadr); 4330 olen = scr_to_cpu(tblp[0]); 4331 oadr = scr_to_cpu(tblp[1]); 4332 } else { 4333 tblp = (u32 *) 0; 4334 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4335 } 4336 4337 if (DEBUG_FLAGS & DEBUG_PHASE) { 4338 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4339 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4340 tblp, 4341 (unsigned) olen, 4342 (unsigned) oadr); 4343 } 4344 4345 /* 4346 * check cmd against assumed interrupted script command. 4347 * If dt data phase, the MOVE instruction hasn't bit 4 of 4348 * the phase. 4349 */ 4350 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4351 PRINT_ADDR(cp); 4352 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4353 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4354 4355 goto reset_all; 4356 } 4357 4358 /* 4359 * if old phase not dataphase, leave here. 4360 */ 4361 if (cmd & 2) { 4362 PRINT_ADDR(cp); 4363 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4364 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4365 (unsigned)oadr, (unsigned)rest); 4366 goto unexpected_phase; 4367 } 4368 4369 /* 4370 * Choose the correct PM save area. 4371 * 4372 * Look at the PM_SAVE SCRIPT if you want to understand 4373 * this stuff. The equivalent code is implemented in 4374 * SCRIPTS for the 895A, 896 and 1010 that are able to 4375 * handle PM from the SCRIPTS processor. 4376 */ 4377 hflags0 = INB (HF_PRT); 4378 hflags = hflags0; 4379 4380 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4381 if (hflags & HF_IN_PM0) 4382 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4383 else if (hflags & HF_IN_PM1) 4384 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4385 4386 if (hflags & HF_DP_SAVED) 4387 hflags ^= HF_ACT_PM; 4388 } 4389 4390 if (!(hflags & HF_ACT_PM)) { 4391 pm = &cp->phys.pm0; 4392 newcmd = SCRIPTA_BA (np, pm0_data); 4393 } 4394 else { 4395 pm = &cp->phys.pm1; 4396 newcmd = SCRIPTA_BA (np, pm1_data); 4397 } 4398 4399 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4400 if (hflags != hflags0) 4401 OUTB (HF_PRT, hflags); 4402 4403 /* 4404 * fillin the phase mismatch context 4405 */ 4406 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4407 pm->sg.size = cpu_to_scr(rest); 4408 pm->ret = cpu_to_scr(nxtdsp); 4409 4410 /* 4411 * If we have a SWIDE, 4412 * - prepare the address to write the SWIDE from SCRIPTS, 4413 * - compute the SCRIPTS address to restart from, 4414 * - move current data pointer context by one byte. 4415 */ 4416 nxtdsp = SCRIPTA_BA (np, dispatch); 4417 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4418 (INB (nc_scntl2) & WSR)) { 4419 u32 tmp; 4420 4421 /* 4422 * Set up the table indirect for the MOVE 4423 * of the residual byte and adjust the data 4424 * pointer context. 4425 */ 4426 tmp = scr_to_cpu(pm->sg.addr); 4427 cp->phys.wresid.addr = cpu_to_scr(tmp); 4428 pm->sg.addr = cpu_to_scr(tmp + 1); 4429 tmp = scr_to_cpu(pm->sg.size); 4430 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4431 pm->sg.size = cpu_to_scr(tmp - 1); 4432 4433 /* 4434 * If only the residual byte is to be moved, 4435 * no PM context is needed. 4436 */ 4437 if ((tmp&0xffffff) == 1) 4438 newcmd = pm->ret; 4439 4440 /* 4441 * Prepare the address of SCRIPTS that will 4442 * move the residual byte to memory. 4443 */ 4444 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4445 } 4446 4447 if (DEBUG_FLAGS & DEBUG_PHASE) { 4448 PRINT_ADDR(cp); 4449 printf ("PM %x %x %x / %x %x %x.\n", 4450 hflags0, hflags, newcmd, 4451 (unsigned)scr_to_cpu(pm->sg.addr), 4452 (unsigned)scr_to_cpu(pm->sg.size), 4453 (unsigned)scr_to_cpu(pm->ret)); 4454 } 4455 4456 /* 4457 * Restart the SCRIPTS processor. 4458 */ 4459 OUTL (nc_temp, newcmd); 4460 OUTL_DSP (nxtdsp); 4461 return; 4462 4463 /* 4464 * Unexpected phase changes that occurs when the current phase 4465 * is not a DATA IN or DATA OUT phase are due to error conditions. 4466 * Such event may only happen when the SCRIPTS is using a 4467 * multibyte SCSI MOVE. 4468 * 4469 * Phase change Some possible cause 4470 * 4471 * COMMAND --> MSG IN SCSI parity error detected by target. 4472 * COMMAND --> STATUS Bad command or refused by target. 4473 * MSG OUT --> MSG IN Message rejected by target. 4474 * MSG OUT --> COMMAND Bogus target that discards extended 4475 * negotiation messages. 4476 * 4477 * The code below does not care of the new phase and so 4478 * trusts the target. Why to annoy it ? 4479 * If the interrupted phase is COMMAND phase, we restart at 4480 * dispatcher. 4481 * If a target does not get all the messages after selection, 4482 * the code assumes blindly that the target discards extended 4483 * messages and clears the negotiation status. 4484 * If the target does not want all our response to negotiation, 4485 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4486 * bloat for such a should_not_happen situation). 4487 * In all other situation, we reset the BUS. 4488 * Are these assumptions reasonnable ? (Wait and see ...) 4489 */ 4490 unexpected_phase: 4491 dsp -= 8; 4492 nxtdsp = 0; 4493 4494 switch (cmd & 7) { 4495 case 2: /* COMMAND phase */ 4496 nxtdsp = SCRIPTA_BA (np, dispatch); 4497 break; 4498 #if 0 4499 case 3: /* STATUS phase */ 4500 nxtdsp = SCRIPTA_BA (np, dispatch); 4501 break; 4502 #endif 4503 case 6: /* MSG OUT phase */ 4504 /* 4505 * If the device may want to use untagged when we want 4506 * tagged, we prepare an IDENTIFY without disc. granted, 4507 * since we will not be able to handle reselect. 4508 * Otherwise, we just don't care. 4509 */ 4510 if (dsp == SCRIPTA_BA (np, send_ident)) { 4511 if (cp->tag != NO_TAG && olen - rest <= 3) { 4512 cp->host_status = HS_BUSY; 4513 np->msgout[0] = M_IDENTIFY | cp->lun; 4514 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4515 } 4516 else 4517 nxtdsp = SCRIPTB_BA (np, ident_break); 4518 } 4519 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4520 dsp == SCRIPTB_BA (np, send_sdtr) || 4521 dsp == SCRIPTB_BA (np, send_ppr)) { 4522 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4523 } 4524 break; 4525 #if 0 4526 case 7: /* MSG IN phase */ 4527 nxtdsp = SCRIPTA_BA (np, clrack); 4528 break; 4529 #endif 4530 } 4531 4532 if (nxtdsp) { 4533 OUTL_DSP (nxtdsp); 4534 return; 4535 } 4536 4537 reset_all: 4538 sym_start_reset(np); 4539 } 4540 4541 /* 4542 * Dequeue from the START queue all CCBs that match 4543 * a given target/lun/task condition (-1 means all), 4544 * and move them from the BUSY queue to the COMP queue 4545 * with CAM_REQUEUE_REQ status condition. 4546 * This function is used during error handling/recovery. 4547 * It is called with SCRIPTS not running. 4548 */ 4549 static int 4550 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4551 { 4552 int j; 4553 ccb_p cp; 4554 4555 /* 4556 * Make sure the starting index is within range. 4557 */ 4558 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4559 4560 /* 4561 * Walk until end of START queue and dequeue every job 4562 * that matches the target/lun/task condition. 4563 */ 4564 j = i; 4565 while (i != np->squeueput) { 4566 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4567 assert(cp); 4568 #ifdef SYM_CONF_IARB_SUPPORT 4569 /* Forget hints for IARB, they may be no longer relevant */ 4570 cp->host_flags &= ~HF_HINT_IARB; 4571 #endif 4572 if ((target == -1 || cp->target == target) && 4573 (lun == -1 || cp->lun == lun) && 4574 (task == -1 || cp->tag == task)) { 4575 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4576 sym_remque(&cp->link_ccbq); 4577 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4578 } 4579 else { 4580 if (i != j) 4581 np->squeue[j] = np->squeue[i]; 4582 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4583 } 4584 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4585 } 4586 if (i != j) /* Copy back the idle task if needed */ 4587 np->squeue[j] = np->squeue[i]; 4588 np->squeueput = j; /* Update our current start queue pointer */ 4589 4590 return (i - j) / 2; 4591 } 4592 4593 /* 4594 * Complete all CCBs queued to the COMP queue. 4595 * 4596 * These CCBs are assumed: 4597 * - Not to be referenced either by devices or 4598 * SCRIPTS-related queues and datas. 4599 * - To have to be completed with an error condition 4600 * or requeued. 4601 * 4602 * The device queue freeze count is incremented 4603 * for each CCB that does not prevent this. 4604 * This function is called when all CCBs involved 4605 * in error handling/recovery have been reaped. 4606 */ 4607 static void 4608 sym_flush_comp_queue(hcb_p np, int cam_status) 4609 { 4610 SYM_QUEHEAD *qp; 4611 ccb_p cp; 4612 4613 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4614 union ccb *ccb; 4615 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4616 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4617 /* Leave quiet CCBs waiting for resources */ 4618 if (cp->host_status == HS_WAIT) 4619 continue; 4620 ccb = cp->cam_ccb; 4621 if (cam_status) 4622 sym_set_cam_status(ccb, cam_status); 4623 sym_freeze_cam_ccb(ccb); 4624 sym_xpt_done(np, ccb, cp); 4625 sym_free_ccb(np, cp); 4626 } 4627 } 4628 4629 /* 4630 * chip handler for bad SCSI status condition 4631 * 4632 * In case of bad SCSI status, we unqueue all the tasks 4633 * currently queued to the controller but not yet started 4634 * and then restart the SCRIPTS processor immediately. 4635 * 4636 * QUEUE FULL and BUSY conditions are handled the same way. 4637 * Basically all the not yet started tasks are requeued in 4638 * device queue and the queue is frozen until a completion. 4639 * 4640 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4641 * the CCB of the failed command to prepare a REQUEST SENSE 4642 * SCSI command and queue it to the controller queue. 4643 * 4644 * SCRATCHA is assumed to have been loaded with STARTPOS 4645 * before the SCRIPTS called the C code. 4646 */ 4647 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp) 4648 { 4649 tcb_p tp = &np->target[cp->target]; 4650 u32 startp; 4651 u_char s_status = cp->ssss_status; 4652 u_char h_flags = cp->host_flags; 4653 int msglen; 4654 int nego; 4655 int i; 4656 4657 SYM_LOCK_ASSERT(MA_OWNED); 4658 4659 /* 4660 * Compute the index of the next job to start from SCRIPTS. 4661 */ 4662 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4663 4664 /* 4665 * The last CCB queued used for IARB hint may be 4666 * no longer relevant. Forget it. 4667 */ 4668 #ifdef SYM_CONF_IARB_SUPPORT 4669 if (np->last_cp) 4670 np->last_cp = NULL; 4671 #endif 4672 4673 /* 4674 * Now deal with the SCSI status. 4675 */ 4676 switch(s_status) { 4677 case S_BUSY: 4678 case S_QUEUE_FULL: 4679 if (sym_verbose >= 2) { 4680 PRINT_ADDR(cp); 4681 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4682 } 4683 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4684 sym_complete_error (np, cp); 4685 break; 4686 case S_TERMINATED: 4687 case S_CHECK_COND: 4688 /* 4689 * If we get an SCSI error when requesting sense, give up. 4690 */ 4691 if (h_flags & HF_SENSE) { 4692 sym_complete_error (np, cp); 4693 break; 4694 } 4695 4696 /* 4697 * Dequeue all queued CCBs for that device not yet started, 4698 * and restart the SCRIPTS processor immediately. 4699 */ 4700 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4701 OUTL_DSP (SCRIPTA_BA (np, start)); 4702 4703 /* 4704 * Save some info of the actual IO. 4705 * Compute the data residual. 4706 */ 4707 cp->sv_scsi_status = cp->ssss_status; 4708 cp->sv_xerr_status = cp->xerr_status; 4709 cp->sv_resid = sym_compute_residual(np, cp); 4710 4711 /* 4712 * Prepare all needed data structures for 4713 * requesting sense data. 4714 */ 4715 4716 /* 4717 * identify message 4718 */ 4719 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4720 msglen = 1; 4721 4722 /* 4723 * If we are currently using anything different from 4724 * async. 8 bit data transfers with that target, 4725 * start a negotiation, since the device may want 4726 * to report us a UNIT ATTENTION condition due to 4727 * a cause we currently ignore, and we donnot want 4728 * to be stuck with WIDE and/or SYNC data transfer. 4729 * 4730 * cp->nego_status is filled by sym_prepare_nego(). 4731 */ 4732 cp->nego_status = 0; 4733 nego = 0; 4734 if (tp->tinfo.current.options & PPR_OPT_MASK) 4735 nego = NS_PPR; 4736 else if (tp->tinfo.current.width != BUS_8_BIT) 4737 nego = NS_WIDE; 4738 else if (tp->tinfo.current.offset != 0) 4739 nego = NS_SYNC; 4740 if (nego) 4741 msglen += 4742 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4743 /* 4744 * Message table indirect structure. 4745 */ 4746 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4747 cp->phys.smsg.size = cpu_to_scr(msglen); 4748 4749 /* 4750 * sense command 4751 */ 4752 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4753 cp->phys.cmd.size = cpu_to_scr(6); 4754 4755 /* 4756 * patch requested size into sense command 4757 */ 4758 cp->sensecmd[0] = 0x03; 4759 cp->sensecmd[1] = cp->lun << 5; 4760 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4761 cp->sensecmd[1] = 0; 4762 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4763 cp->data_len = SYM_SNS_BBUF_LEN; 4764 4765 /* 4766 * sense data 4767 */ 4768 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4769 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4770 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4771 4772 /* 4773 * requeue the command. 4774 */ 4775 startp = SCRIPTB_BA (np, sdata_in); 4776 4777 cp->phys.head.savep = cpu_to_scr(startp); 4778 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4779 cp->phys.head.lastp = cpu_to_scr(startp); 4780 cp->startp = cpu_to_scr(startp); 4781 4782 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4783 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4784 cp->ssss_status = S_ILLEGAL; 4785 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4786 cp->xerr_status = 0; 4787 cp->extra_bytes = 0; 4788 4789 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4790 4791 /* 4792 * Requeue the command. 4793 */ 4794 sym_put_start_queue(np, cp); 4795 4796 /* 4797 * Give back to upper layer everything we have dequeued. 4798 */ 4799 sym_flush_comp_queue(np, 0); 4800 break; 4801 } 4802 } 4803 4804 /* 4805 * After a device has accepted some management message 4806 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4807 * a device signals a UNIT ATTENTION condition, some 4808 * tasks are thrown away by the device. We are required 4809 * to reflect that on our tasks list since the device 4810 * will never complete these tasks. 4811 * 4812 * This function move from the BUSY queue to the COMP 4813 * queue all disconnected CCBs for a given target that 4814 * match the following criteria: 4815 * - lun=-1 means any logical UNIT otherwise a given one. 4816 * - task=-1 means any task, otherwise a given one. 4817 */ 4818 static int 4819 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4820 { 4821 SYM_QUEHEAD qtmp, *qp; 4822 int i = 0; 4823 ccb_p cp; 4824 4825 /* 4826 * Move the entire BUSY queue to our temporary queue. 4827 */ 4828 sym_que_init(&qtmp); 4829 sym_que_splice(&np->busy_ccbq, &qtmp); 4830 sym_que_init(&np->busy_ccbq); 4831 4832 /* 4833 * Put all CCBs that matches our criteria into 4834 * the COMP queue and put back other ones into 4835 * the BUSY queue. 4836 */ 4837 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4838 union ccb *ccb; 4839 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4840 ccb = cp->cam_ccb; 4841 if (cp->host_status != HS_DISCONNECT || 4842 cp->target != target || 4843 (lun != -1 && cp->lun != lun) || 4844 (task != -1 && 4845 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4846 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4847 continue; 4848 } 4849 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4850 4851 /* Preserve the software timeout condition */ 4852 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4853 sym_set_cam_status(ccb, cam_status); 4854 ++i; 4855 #if 0 4856 printf("XXXX TASK @%p CLEARED\n", cp); 4857 #endif 4858 } 4859 return i; 4860 } 4861 4862 /* 4863 * chip handler for TASKS recovery 4864 * 4865 * We cannot safely abort a command, while the SCRIPTS 4866 * processor is running, since we just would be in race 4867 * with it. 4868 * 4869 * As long as we have tasks to abort, we keep the SEM 4870 * bit set in the ISTAT. When this bit is set, the 4871 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4872 * each time it enters the scheduler. 4873 * 4874 * If we have to reset a target, clear tasks of a unit, 4875 * or to perform the abort of a disconnected job, we 4876 * restart the SCRIPTS for selecting the target. Once 4877 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4878 * If it loses arbitration, the SCRIPTS will interrupt again 4879 * the next time it will enter its scheduler, and so on ... 4880 * 4881 * On SIR_TARGET_SELECTED, we scan for the more 4882 * appropriate thing to do: 4883 * 4884 * - If nothing, we just sent a M_ABORT message to the 4885 * target to get rid of the useless SCSI bus ownership. 4886 * According to the specs, no tasks shall be affected. 4887 * - If the target is to be reset, we send it a M_RESET 4888 * message. 4889 * - If a logical UNIT is to be cleared , we send the 4890 * IDENTIFY(lun) + M_ABORT. 4891 * - If an untagged task is to be aborted, we send the 4892 * IDENTIFY(lun) + M_ABORT. 4893 * - If a tagged task is to be aborted, we send the 4894 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4895 * 4896 * Once our 'kiss of death' :) message has been accepted 4897 * by the target, the SCRIPTS interrupts again 4898 * (SIR_ABORT_SENT). On this interrupt, we complete 4899 * all the CCBs that should have been aborted by the 4900 * target according to our message. 4901 */ 4902 static void sym_sir_task_recovery(hcb_p np, int num) 4903 { 4904 SYM_QUEHEAD *qp; 4905 ccb_p cp; 4906 tcb_p tp; 4907 int target=-1, lun=-1, task; 4908 int i, k; 4909 4910 switch(num) { 4911 /* 4912 * The SCRIPTS processor stopped before starting 4913 * the next command in order to allow us to perform 4914 * some task recovery. 4915 */ 4916 case SIR_SCRIPT_STOPPED: 4917 /* 4918 * Do we have any target to reset or unit to clear ? 4919 */ 4920 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4921 tp = &np->target[i]; 4922 if (tp->to_reset || 4923 (tp->lun0p && tp->lun0p->to_clear)) { 4924 target = i; 4925 break; 4926 } 4927 if (!tp->lunmp) 4928 continue; 4929 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4930 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4931 target = i; 4932 break; 4933 } 4934 } 4935 if (target != -1) 4936 break; 4937 } 4938 4939 /* 4940 * If not, walk the busy queue for any 4941 * disconnected CCB to be aborted. 4942 */ 4943 if (target == -1) { 4944 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4945 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4946 if (cp->host_status != HS_DISCONNECT) 4947 continue; 4948 if (cp->to_abort) { 4949 target = cp->target; 4950 break; 4951 } 4952 } 4953 } 4954 4955 /* 4956 * If some target is to be selected, 4957 * prepare and start the selection. 4958 */ 4959 if (target != -1) { 4960 tp = &np->target[target]; 4961 np->abrt_sel.sel_id = target; 4962 np->abrt_sel.sel_scntl3 = tp->head.wval; 4963 np->abrt_sel.sel_sxfer = tp->head.sval; 4964 OUTL(nc_dsa, np->hcb_ba); 4965 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 4966 return; 4967 } 4968 4969 /* 4970 * Now look for a CCB to abort that haven't started yet. 4971 * Btw, the SCRIPTS processor is still stopped, so 4972 * we are not in race. 4973 */ 4974 i = 0; 4975 cp = NULL; 4976 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4977 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4978 if (cp->host_status != HS_BUSY && 4979 cp->host_status != HS_NEGOTIATE) 4980 continue; 4981 if (!cp->to_abort) 4982 continue; 4983 #ifdef SYM_CONF_IARB_SUPPORT 4984 /* 4985 * If we are using IMMEDIATE ARBITRATION, we donnot 4986 * want to cancel the last queued CCB, since the 4987 * SCRIPTS may have anticipated the selection. 4988 */ 4989 if (cp == np->last_cp) { 4990 cp->to_abort = 0; 4991 continue; 4992 } 4993 #endif 4994 i = 1; /* Means we have found some */ 4995 break; 4996 } 4997 if (!i) { 4998 /* 4999 * We are done, so we donnot need 5000 * to synchronize with the SCRIPTS anylonger. 5001 * Remove the SEM flag from the ISTAT. 5002 */ 5003 np->istat_sem = 0; 5004 OUTB (nc_istat, SIGP); 5005 break; 5006 } 5007 /* 5008 * Compute index of next position in the start 5009 * queue the SCRIPTS intends to start and dequeue 5010 * all CCBs for that device that haven't been started. 5011 */ 5012 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5013 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5014 5015 /* 5016 * Make sure at least our IO to abort has been dequeued. 5017 */ 5018 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5019 5020 /* 5021 * Keep track in cam status of the reason of the abort. 5022 */ 5023 if (cp->to_abort == 2) 5024 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5025 else 5026 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5027 5028 /* 5029 * Complete with error everything that we have dequeued. 5030 */ 5031 sym_flush_comp_queue(np, 0); 5032 break; 5033 /* 5034 * The SCRIPTS processor has selected a target 5035 * we may have some manual recovery to perform for. 5036 */ 5037 case SIR_TARGET_SELECTED: 5038 target = (INB (nc_sdid) & 0xf); 5039 tp = &np->target[target]; 5040 5041 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5042 5043 /* 5044 * If the target is to be reset, prepare a 5045 * M_RESET message and clear the to_reset flag 5046 * since we donnot expect this operation to fail. 5047 */ 5048 if (tp->to_reset) { 5049 np->abrt_msg[0] = M_RESET; 5050 np->abrt_tbl.size = 1; 5051 tp->to_reset = 0; 5052 break; 5053 } 5054 5055 /* 5056 * Otherwise, look for some logical unit to be cleared. 5057 */ 5058 if (tp->lun0p && tp->lun0p->to_clear) 5059 lun = 0; 5060 else if (tp->lunmp) { 5061 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5062 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5063 lun = k; 5064 break; 5065 } 5066 } 5067 } 5068 5069 /* 5070 * If a logical unit is to be cleared, prepare 5071 * an IDENTIFY(lun) + ABORT MESSAGE. 5072 */ 5073 if (lun != -1) { 5074 lcb_p lp = sym_lp(tp, lun); 5075 lp->to_clear = 0; /* We donnot expect to fail here */ 5076 np->abrt_msg[0] = M_IDENTIFY | lun; 5077 np->abrt_msg[1] = M_ABORT; 5078 np->abrt_tbl.size = 2; 5079 break; 5080 } 5081 5082 /* 5083 * Otherwise, look for some disconnected job to 5084 * abort for this target. 5085 */ 5086 i = 0; 5087 cp = NULL; 5088 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5089 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5090 if (cp->host_status != HS_DISCONNECT) 5091 continue; 5092 if (cp->target != target) 5093 continue; 5094 if (!cp->to_abort) 5095 continue; 5096 i = 1; /* Means we have some */ 5097 break; 5098 } 5099 5100 /* 5101 * If we have none, probably since the device has 5102 * completed the command before we won abitration, 5103 * send a M_ABORT message without IDENTIFY. 5104 * According to the specs, the device must just 5105 * disconnect the BUS and not abort any task. 5106 */ 5107 if (!i) { 5108 np->abrt_msg[0] = M_ABORT; 5109 np->abrt_tbl.size = 1; 5110 break; 5111 } 5112 5113 /* 5114 * We have some task to abort. 5115 * Set the IDENTIFY(lun) 5116 */ 5117 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5118 5119 /* 5120 * If we want to abort an untagged command, we 5121 * will send an IDENTIFY + M_ABORT. 5122 * Otherwise (tagged command), we will send 5123 * an IDENTIFY + task attributes + ABORT TAG. 5124 */ 5125 if (cp->tag == NO_TAG) { 5126 np->abrt_msg[1] = M_ABORT; 5127 np->abrt_tbl.size = 2; 5128 } 5129 else { 5130 np->abrt_msg[1] = cp->scsi_smsg[1]; 5131 np->abrt_msg[2] = cp->scsi_smsg[2]; 5132 np->abrt_msg[3] = M_ABORT_TAG; 5133 np->abrt_tbl.size = 4; 5134 } 5135 /* 5136 * Keep track of software timeout condition, since the 5137 * peripheral driver may not count retries on abort 5138 * conditions not due to timeout. 5139 */ 5140 if (cp->to_abort == 2) 5141 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5142 cp->to_abort = 0; /* We donnot expect to fail here */ 5143 break; 5144 5145 /* 5146 * The target has accepted our message and switched 5147 * to BUS FREE phase as we expected. 5148 */ 5149 case SIR_ABORT_SENT: 5150 target = (INB (nc_sdid) & 0xf); 5151 tp = &np->target[target]; 5152 5153 /* 5154 ** If we didn't abort anything, leave here. 5155 */ 5156 if (np->abrt_msg[0] == M_ABORT) 5157 break; 5158 5159 /* 5160 * If we sent a M_RESET, then a hardware reset has 5161 * been performed by the target. 5162 * - Reset everything to async 8 bit 5163 * - Tell ourself to negotiate next time :-) 5164 * - Prepare to clear all disconnected CCBs for 5165 * this target from our task list (lun=task=-1) 5166 */ 5167 lun = -1; 5168 task = -1; 5169 if (np->abrt_msg[0] == M_RESET) { 5170 tp->head.sval = 0; 5171 tp->head.wval = np->rv_scntl3; 5172 tp->head.uval = 0; 5173 tp->tinfo.current.period = 0; 5174 tp->tinfo.current.offset = 0; 5175 tp->tinfo.current.width = BUS_8_BIT; 5176 tp->tinfo.current.options = 0; 5177 } 5178 5179 /* 5180 * Otherwise, check for the LUN and TASK(s) 5181 * concerned by the cancellation. 5182 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5183 * or an ABORT message :-) 5184 */ 5185 else { 5186 lun = np->abrt_msg[0] & 0x3f; 5187 if (np->abrt_msg[1] == M_ABORT_TAG) 5188 task = np->abrt_msg[2]; 5189 } 5190 5191 /* 5192 * Complete all the CCBs the device should have 5193 * aborted due to our 'kiss of death' message. 5194 */ 5195 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5196 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5197 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5198 sym_flush_comp_queue(np, 0); 5199 5200 /* 5201 * If we sent a BDR, make uper layer aware of that. 5202 */ 5203 if (np->abrt_msg[0] == M_RESET) 5204 xpt_async(AC_SENT_BDR, np->path, NULL); 5205 break; 5206 } 5207 5208 /* 5209 * Print to the log the message we intend to send. 5210 */ 5211 if (num == SIR_TARGET_SELECTED) { 5212 PRINT_TARGET(np, target); 5213 sym_printl_hex("control msgout:", np->abrt_msg, 5214 np->abrt_tbl.size); 5215 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5216 } 5217 5218 /* 5219 * Let the SCRIPTS processor continue. 5220 */ 5221 OUTONB_STD (); 5222 } 5223 5224 /* 5225 * Gerard's alchemy:) that deals with with the data 5226 * pointer for both MDP and the residual calculation. 5227 * 5228 * I didn't want to bloat the code by more than 200 5229 * lignes for the handling of both MDP and the residual. 5230 * This has been achieved by using a data pointer 5231 * representation consisting in an index in the data 5232 * array (dp_sg) and a negative offset (dp_ofs) that 5233 * have the following meaning: 5234 * 5235 * - dp_sg = SYM_CONF_MAX_SG 5236 * we are at the end of the data script. 5237 * - dp_sg < SYM_CONF_MAX_SG 5238 * dp_sg points to the next entry of the scatter array 5239 * we want to transfer. 5240 * - dp_ofs < 0 5241 * dp_ofs represents the residual of bytes of the 5242 * previous entry scatter entry we will send first. 5243 * - dp_ofs = 0 5244 * no residual to send first. 5245 * 5246 * The function sym_evaluate_dp() accepts an arbitray 5247 * offset (basically from the MDP message) and returns 5248 * the corresponding values of dp_sg and dp_ofs. 5249 */ 5250 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5251 { 5252 u32 dp_scr; 5253 int dp_ofs, dp_sg, dp_sgmin; 5254 int tmp; 5255 struct sym_pmc *pm; 5256 5257 /* 5258 * Compute the resulted data pointer in term of a script 5259 * address within some DATA script and a signed byte offset. 5260 */ 5261 dp_scr = scr; 5262 dp_ofs = *ofs; 5263 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5264 pm = &cp->phys.pm0; 5265 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5266 pm = &cp->phys.pm1; 5267 else 5268 pm = NULL; 5269 5270 if (pm) { 5271 dp_scr = scr_to_cpu(pm->ret); 5272 dp_ofs -= scr_to_cpu(pm->sg.size); 5273 } 5274 5275 /* 5276 * If we are auto-sensing, then we are done. 5277 */ 5278 if (cp->host_flags & HF_SENSE) { 5279 *ofs = dp_ofs; 5280 return 0; 5281 } 5282 5283 /* 5284 * Deduce the index of the sg entry. 5285 * Keep track of the index of the first valid entry. 5286 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5287 * end of the data. 5288 */ 5289 tmp = scr_to_cpu(cp->phys.head.goalp); 5290 dp_sg = SYM_CONF_MAX_SG; 5291 if (dp_scr != tmp) 5292 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5293 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5294 5295 /* 5296 * Move to the sg entry the data pointer belongs to. 5297 * 5298 * If we are inside the data area, we expect result to be: 5299 * 5300 * Either, 5301 * dp_ofs = 0 and dp_sg is the index of the sg entry 5302 * the data pointer belongs to (or the end of the data) 5303 * Or, 5304 * dp_ofs < 0 and dp_sg is the index of the sg entry 5305 * the data pointer belongs to + 1. 5306 */ 5307 if (dp_ofs < 0) { 5308 int n; 5309 while (dp_sg > dp_sgmin) { 5310 --dp_sg; 5311 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5312 n = dp_ofs + (tmp & 0xffffff); 5313 if (n > 0) { 5314 ++dp_sg; 5315 break; 5316 } 5317 dp_ofs = n; 5318 } 5319 } 5320 else if (dp_ofs > 0) { 5321 while (dp_sg < SYM_CONF_MAX_SG) { 5322 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5323 dp_ofs -= (tmp & 0xffffff); 5324 ++dp_sg; 5325 if (dp_ofs <= 0) 5326 break; 5327 } 5328 } 5329 5330 /* 5331 * Make sure the data pointer is inside the data area. 5332 * If not, return some error. 5333 */ 5334 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5335 goto out_err; 5336 else if (dp_sg > SYM_CONF_MAX_SG || 5337 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5338 goto out_err; 5339 5340 /* 5341 * Save the extreme pointer if needed. 5342 */ 5343 if (dp_sg > cp->ext_sg || 5344 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5345 cp->ext_sg = dp_sg; 5346 cp->ext_ofs = dp_ofs; 5347 } 5348 5349 /* 5350 * Return data. 5351 */ 5352 *ofs = dp_ofs; 5353 return dp_sg; 5354 5355 out_err: 5356 return -1; 5357 } 5358 5359 /* 5360 * chip handler for MODIFY DATA POINTER MESSAGE 5361 * 5362 * We also call this function on IGNORE WIDE RESIDUE 5363 * messages that do not match a SWIDE full condition. 5364 * Btw, we assume in that situation that such a message 5365 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5366 */ 5367 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs) 5368 { 5369 int dp_ofs = ofs; 5370 u32 dp_scr = INL (nc_temp); 5371 u32 dp_ret; 5372 u32 tmp; 5373 u_char hflags; 5374 int dp_sg; 5375 struct sym_pmc *pm; 5376 5377 /* 5378 * Not supported for auto-sense. 5379 */ 5380 if (cp->host_flags & HF_SENSE) 5381 goto out_reject; 5382 5383 /* 5384 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5385 * to the resulted data pointer. 5386 */ 5387 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5388 if (dp_sg < 0) 5389 goto out_reject; 5390 5391 /* 5392 * And our alchemy:) allows to easily calculate the data 5393 * script address we want to return for the next data phase. 5394 */ 5395 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5396 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5397 5398 /* 5399 * If offset / scatter entry is zero we donnot need 5400 * a context for the new current data pointer. 5401 */ 5402 if (dp_ofs == 0) { 5403 dp_scr = dp_ret; 5404 goto out_ok; 5405 } 5406 5407 /* 5408 * Get a context for the new current data pointer. 5409 */ 5410 hflags = INB (HF_PRT); 5411 5412 if (hflags & HF_DP_SAVED) 5413 hflags ^= HF_ACT_PM; 5414 5415 if (!(hflags & HF_ACT_PM)) { 5416 pm = &cp->phys.pm0; 5417 dp_scr = SCRIPTA_BA (np, pm0_data); 5418 } 5419 else { 5420 pm = &cp->phys.pm1; 5421 dp_scr = SCRIPTA_BA (np, pm1_data); 5422 } 5423 5424 hflags &= ~(HF_DP_SAVED); 5425 5426 OUTB (HF_PRT, hflags); 5427 5428 /* 5429 * Set up the new current data pointer. 5430 * ofs < 0 there, and for the next data phase, we 5431 * want to transfer part of the data of the sg entry 5432 * corresponding to index dp_sg-1 prior to returning 5433 * to the main data script. 5434 */ 5435 pm->ret = cpu_to_scr(dp_ret); 5436 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5437 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5438 pm->sg.addr = cpu_to_scr(tmp); 5439 pm->sg.size = cpu_to_scr(-dp_ofs); 5440 5441 out_ok: 5442 OUTL (nc_temp, dp_scr); 5443 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5444 return; 5445 5446 out_reject: 5447 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5448 } 5449 5450 /* 5451 * chip calculation of the data residual. 5452 * 5453 * As I used to say, the requirement of data residual 5454 * in SCSI is broken, useless and cannot be achieved 5455 * without huge complexity. 5456 * But most OSes and even the official CAM require it. 5457 * When stupidity happens to be so widely spread inside 5458 * a community, it gets hard to convince. 5459 * 5460 * Anyway, I don't care, since I am not going to use 5461 * any software that considers this data residual as 5462 * a relevant information. :) 5463 */ 5464 static int sym_compute_residual(hcb_p np, ccb_p cp) 5465 { 5466 int dp_sg, dp_sgmin, resid = 0; 5467 int dp_ofs = 0; 5468 5469 /* 5470 * Check for some data lost or just thrown away. 5471 * We are not required to be quite accurate in this 5472 * situation. Btw, if we are odd for output and the 5473 * device claims some more data, it may well happen 5474 * than our residual be zero. :-) 5475 */ 5476 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5477 if (cp->xerr_status & XE_EXTRA_DATA) 5478 resid -= cp->extra_bytes; 5479 if (cp->xerr_status & XE_SODL_UNRUN) 5480 ++resid; 5481 if (cp->xerr_status & XE_SWIDE_OVRUN) 5482 --resid; 5483 } 5484 5485 /* 5486 * If all data has been transferred, 5487 * there is no residual. 5488 */ 5489 if (cp->phys.head.lastp == cp->phys.head.goalp) 5490 return resid; 5491 5492 /* 5493 * If no data transfer occurs, or if the data 5494 * pointer is weird, return full residual. 5495 */ 5496 if (cp->startp == cp->phys.head.lastp || 5497 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5498 &dp_ofs) < 0) { 5499 return cp->data_len; 5500 } 5501 5502 /* 5503 * If we were auto-sensing, then we are done. 5504 */ 5505 if (cp->host_flags & HF_SENSE) { 5506 return -dp_ofs; 5507 } 5508 5509 /* 5510 * We are now full comfortable in the computation 5511 * of the data residual (2's complement). 5512 */ 5513 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5514 resid = -cp->ext_ofs; 5515 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5516 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5517 resid += (tmp & 0xffffff); 5518 } 5519 5520 /* 5521 * Hopefully, the result is not too wrong. 5522 */ 5523 return resid; 5524 } 5525 5526 /* 5527 * Print out the content of a SCSI message. 5528 */ 5529 static int sym_show_msg (u_char * msg) 5530 { 5531 u_char i; 5532 printf ("%x",*msg); 5533 if (*msg==M_EXTENDED) { 5534 for (i=1;i<8;i++) { 5535 if (i-1>msg[1]) break; 5536 printf ("-%x",msg[i]); 5537 } 5538 return (i+1); 5539 } else if ((*msg & 0xf0) == 0x20) { 5540 printf ("-%x",msg[1]); 5541 return (2); 5542 } 5543 return (1); 5544 } 5545 5546 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5547 { 5548 PRINT_ADDR(cp); 5549 if (label) 5550 printf ("%s: ", label); 5551 5552 (void) sym_show_msg (msg); 5553 printf (".\n"); 5554 } 5555 5556 /* 5557 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5558 * 5559 * When we try to negotiate, we append the negotiation message 5560 * to the identify and (maybe) simple tag message. 5561 * The host status field is set to HS_NEGOTIATE to mark this 5562 * situation. 5563 * 5564 * If the target doesn't answer this message immediately 5565 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5566 * will be raised eventually. 5567 * The handler removes the HS_NEGOTIATE status, and sets the 5568 * negotiated value to the default (async / nowide). 5569 * 5570 * If we receive a matching answer immediately, we check it 5571 * for validity, and set the values. 5572 * 5573 * If we receive a Reject message immediately, we assume the 5574 * negotiation has failed, and fall back to standard values. 5575 * 5576 * If we receive a negotiation message while not in HS_NEGOTIATE 5577 * state, it's a target initiated negotiation. We prepare a 5578 * (hopefully) valid answer, set our parameters, and send back 5579 * this answer to the target. 5580 * 5581 * If the target doesn't fetch the answer (no message out phase), 5582 * we assume the negotiation has failed, and fall back to default 5583 * settings (SIR_NEGO_PROTO interrupt). 5584 * 5585 * When we set the values, we adjust them in all ccbs belonging 5586 * to this target, in the controller's register, and in the "phys" 5587 * field of the controller's struct sym_hcb. 5588 */ 5589 5590 /* 5591 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5592 */ 5593 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5594 { 5595 u_char chg, ofs, per, fak, div; 5596 int req = 1; 5597 5598 /* 5599 * Synchronous request message received. 5600 */ 5601 if (DEBUG_FLAGS & DEBUG_NEGO) { 5602 sym_print_msg(cp, "sync msgin", np->msgin); 5603 } 5604 5605 /* 5606 * request or answer ? 5607 */ 5608 if (INB (HS_PRT) == HS_NEGOTIATE) { 5609 OUTB (HS_PRT, HS_BUSY); 5610 if (cp->nego_status && cp->nego_status != NS_SYNC) 5611 goto reject_it; 5612 req = 0; 5613 } 5614 5615 /* 5616 * get requested values. 5617 */ 5618 chg = 0; 5619 per = np->msgin[3]; 5620 ofs = np->msgin[4]; 5621 5622 /* 5623 * check values against our limits. 5624 */ 5625 if (ofs) { 5626 if (ofs > np->maxoffs) 5627 {chg = 1; ofs = np->maxoffs;} 5628 if (req) { 5629 if (ofs > tp->tinfo.user.offset) 5630 {chg = 1; ofs = tp->tinfo.user.offset;} 5631 } 5632 } 5633 5634 if (ofs) { 5635 if (per < np->minsync) 5636 {chg = 1; per = np->minsync;} 5637 if (req) { 5638 if (per < tp->tinfo.user.period) 5639 {chg = 1; per = tp->tinfo.user.period;} 5640 } 5641 } 5642 5643 div = fak = 0; 5644 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5645 goto reject_it; 5646 5647 if (DEBUG_FLAGS & DEBUG_NEGO) { 5648 PRINT_ADDR(cp); 5649 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5650 ofs, per, div, fak, chg); 5651 } 5652 5653 /* 5654 * This was an answer message 5655 */ 5656 if (req == 0) { 5657 if (chg) /* Answer wasn't acceptable. */ 5658 goto reject_it; 5659 sym_setsync (np, cp, ofs, per, div, fak); 5660 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5661 return; 5662 } 5663 5664 /* 5665 * It was a request. Set value and 5666 * prepare an answer message 5667 */ 5668 sym_setsync (np, cp, ofs, per, div, fak); 5669 5670 np->msgout[0] = M_EXTENDED; 5671 np->msgout[1] = 3; 5672 np->msgout[2] = M_X_SYNC_REQ; 5673 np->msgout[3] = per; 5674 np->msgout[4] = ofs; 5675 5676 cp->nego_status = NS_SYNC; 5677 5678 if (DEBUG_FLAGS & DEBUG_NEGO) { 5679 sym_print_msg(cp, "sync msgout", np->msgout); 5680 } 5681 5682 np->msgin [0] = M_NOOP; 5683 5684 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5685 return; 5686 reject_it: 5687 sym_setsync (np, cp, 0, 0, 0, 0); 5688 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5689 } 5690 5691 /* 5692 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5693 */ 5694 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5695 { 5696 u_char chg, ofs, per, fak, dt, div, wide; 5697 int req = 1; 5698 5699 /* 5700 * Synchronous request message received. 5701 */ 5702 if (DEBUG_FLAGS & DEBUG_NEGO) { 5703 sym_print_msg(cp, "ppr msgin", np->msgin); 5704 } 5705 5706 /* 5707 * get requested values. 5708 */ 5709 chg = 0; 5710 per = np->msgin[3]; 5711 ofs = np->msgin[5]; 5712 wide = np->msgin[6]; 5713 dt = np->msgin[7] & PPR_OPT_DT; 5714 5715 /* 5716 * request or answer ? 5717 */ 5718 if (INB (HS_PRT) == HS_NEGOTIATE) { 5719 OUTB (HS_PRT, HS_BUSY); 5720 if (cp->nego_status && cp->nego_status != NS_PPR) 5721 goto reject_it; 5722 req = 0; 5723 } 5724 5725 /* 5726 * check values against our limits. 5727 */ 5728 if (wide > np->maxwide) 5729 {chg = 1; wide = np->maxwide;} 5730 if (!wide || !(np->features & FE_ULTRA3)) 5731 dt &= ~PPR_OPT_DT; 5732 if (req) { 5733 if (wide > tp->tinfo.user.width) 5734 {chg = 1; wide = tp->tinfo.user.width;} 5735 } 5736 5737 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5738 dt &= ~PPR_OPT_DT; 5739 5740 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5741 5742 if (ofs) { 5743 if (dt) { 5744 if (ofs > np->maxoffs_dt) 5745 {chg = 1; ofs = np->maxoffs_dt;} 5746 } 5747 else if (ofs > np->maxoffs) 5748 {chg = 1; ofs = np->maxoffs;} 5749 if (req) { 5750 if (ofs > tp->tinfo.user.offset) 5751 {chg = 1; ofs = tp->tinfo.user.offset;} 5752 } 5753 } 5754 5755 if (ofs) { 5756 if (dt) { 5757 if (per < np->minsync_dt) 5758 {chg = 1; per = np->minsync_dt;} 5759 } 5760 else if (per < np->minsync) 5761 {chg = 1; per = np->minsync;} 5762 if (req) { 5763 if (per < tp->tinfo.user.period) 5764 {chg = 1; per = tp->tinfo.user.period;} 5765 } 5766 } 5767 5768 div = fak = 0; 5769 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5770 goto reject_it; 5771 5772 if (DEBUG_FLAGS & DEBUG_NEGO) { 5773 PRINT_ADDR(cp); 5774 printf ("ppr: " 5775 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5776 dt, ofs, per, wide, div, fak, chg); 5777 } 5778 5779 /* 5780 * It was an answer. 5781 */ 5782 if (req == 0) { 5783 if (chg) /* Answer wasn't acceptable */ 5784 goto reject_it; 5785 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5786 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5787 return; 5788 } 5789 5790 /* 5791 * It was a request. Set value and 5792 * prepare an answer message 5793 */ 5794 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5795 5796 np->msgout[0] = M_EXTENDED; 5797 np->msgout[1] = 6; 5798 np->msgout[2] = M_X_PPR_REQ; 5799 np->msgout[3] = per; 5800 np->msgout[4] = 0; 5801 np->msgout[5] = ofs; 5802 np->msgout[6] = wide; 5803 np->msgout[7] = dt; 5804 5805 cp->nego_status = NS_PPR; 5806 5807 if (DEBUG_FLAGS & DEBUG_NEGO) { 5808 sym_print_msg(cp, "ppr msgout", np->msgout); 5809 } 5810 5811 np->msgin [0] = M_NOOP; 5812 5813 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5814 return; 5815 reject_it: 5816 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5817 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5818 /* 5819 * If it was a device response that should result in 5820 * ST, we may want to try a legacy negotiation later. 5821 */ 5822 if (!req && !dt) { 5823 tp->tinfo.goal.options = 0; 5824 tp->tinfo.goal.width = wide; 5825 tp->tinfo.goal.period = per; 5826 tp->tinfo.goal.offset = ofs; 5827 } 5828 } 5829 5830 /* 5831 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5832 */ 5833 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5834 { 5835 u_char chg, wide; 5836 int req = 1; 5837 5838 /* 5839 * Wide request message received. 5840 */ 5841 if (DEBUG_FLAGS & DEBUG_NEGO) { 5842 sym_print_msg(cp, "wide msgin", np->msgin); 5843 } 5844 5845 /* 5846 * Is it a request from the device? 5847 */ 5848 if (INB (HS_PRT) == HS_NEGOTIATE) { 5849 OUTB (HS_PRT, HS_BUSY); 5850 if (cp->nego_status && cp->nego_status != NS_WIDE) 5851 goto reject_it; 5852 req = 0; 5853 } 5854 5855 /* 5856 * get requested values. 5857 */ 5858 chg = 0; 5859 wide = np->msgin[3]; 5860 5861 /* 5862 * check values against driver limits. 5863 */ 5864 if (wide > np->maxwide) 5865 {chg = 1; wide = np->maxwide;} 5866 if (req) { 5867 if (wide > tp->tinfo.user.width) 5868 {chg = 1; wide = tp->tinfo.user.width;} 5869 } 5870 5871 if (DEBUG_FLAGS & DEBUG_NEGO) { 5872 PRINT_ADDR(cp); 5873 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5874 } 5875 5876 /* 5877 * This was an answer message 5878 */ 5879 if (req == 0) { 5880 if (chg) /* Answer wasn't acceptable. */ 5881 goto reject_it; 5882 sym_setwide (np, cp, wide); 5883 5884 /* 5885 * Negotiate for SYNC immediately after WIDE response. 5886 * This allows to negotiate for both WIDE and SYNC on 5887 * a single SCSI command (Suggested by Justin Gibbs). 5888 */ 5889 if (tp->tinfo.goal.offset) { 5890 np->msgout[0] = M_EXTENDED; 5891 np->msgout[1] = 3; 5892 np->msgout[2] = M_X_SYNC_REQ; 5893 np->msgout[3] = tp->tinfo.goal.period; 5894 np->msgout[4] = tp->tinfo.goal.offset; 5895 5896 if (DEBUG_FLAGS & DEBUG_NEGO) { 5897 sym_print_msg(cp, "sync msgout", np->msgout); 5898 } 5899 5900 cp->nego_status = NS_SYNC; 5901 OUTB (HS_PRT, HS_NEGOTIATE); 5902 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5903 return; 5904 } 5905 5906 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5907 return; 5908 } 5909 5910 /* 5911 * It was a request, set value and 5912 * prepare an answer message 5913 */ 5914 sym_setwide (np, cp, wide); 5915 5916 np->msgout[0] = M_EXTENDED; 5917 np->msgout[1] = 2; 5918 np->msgout[2] = M_X_WIDE_REQ; 5919 np->msgout[3] = wide; 5920 5921 np->msgin [0] = M_NOOP; 5922 5923 cp->nego_status = NS_WIDE; 5924 5925 if (DEBUG_FLAGS & DEBUG_NEGO) { 5926 sym_print_msg(cp, "wide msgout", np->msgout); 5927 } 5928 5929 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5930 return; 5931 reject_it: 5932 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5933 } 5934 5935 /* 5936 * Reset SYNC or WIDE to default settings. 5937 * 5938 * Called when a negotiation does not succeed either 5939 * on rejection or on protocol error. 5940 * 5941 * If it was a PPR that made problems, we may want to 5942 * try a legacy negotiation later. 5943 */ 5944 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5945 { 5946 /* 5947 * any error in negotiation: 5948 * fall back to default mode. 5949 */ 5950 switch (cp->nego_status) { 5951 case NS_PPR: 5952 #if 0 5953 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5954 #else 5955 tp->tinfo.goal.options = 0; 5956 if (tp->tinfo.goal.period < np->minsync) 5957 tp->tinfo.goal.period = np->minsync; 5958 if (tp->tinfo.goal.offset > np->maxoffs) 5959 tp->tinfo.goal.offset = np->maxoffs; 5960 #endif 5961 break; 5962 case NS_SYNC: 5963 sym_setsync (np, cp, 0, 0, 0, 0); 5964 break; 5965 case NS_WIDE: 5966 sym_setwide (np, cp, 0); 5967 break; 5968 } 5969 np->msgin [0] = M_NOOP; 5970 np->msgout[0] = M_NOOP; 5971 cp->nego_status = 0; 5972 } 5973 5974 /* 5975 * chip handler for MESSAGE REJECT received in response to 5976 * a WIDE or SYNCHRONOUS negotiation. 5977 */ 5978 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 5979 { 5980 sym_nego_default(np, tp, cp); 5981 OUTB (HS_PRT, HS_BUSY); 5982 } 5983 5984 /* 5985 * chip exception handler for programmed interrupts. 5986 */ 5987 static void sym_int_sir (hcb_p np) 5988 { 5989 u_char num = INB (nc_dsps); 5990 u32 dsa = INL (nc_dsa); 5991 ccb_p cp = sym_ccb_from_dsa(np, dsa); 5992 u_char target = INB (nc_sdid) & 0x0f; 5993 tcb_p tp = &np->target[target]; 5994 int tmp; 5995 5996 SYM_LOCK_ASSERT(MA_OWNED); 5997 5998 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 5999 6000 switch (num) { 6001 /* 6002 * Command has been completed with error condition 6003 * or has been auto-sensed. 6004 */ 6005 case SIR_COMPLETE_ERROR: 6006 sym_complete_error(np, cp); 6007 return; 6008 /* 6009 * The C code is currently trying to recover from something. 6010 * Typically, user want to abort some command. 6011 */ 6012 case SIR_SCRIPT_STOPPED: 6013 case SIR_TARGET_SELECTED: 6014 case SIR_ABORT_SENT: 6015 sym_sir_task_recovery(np, num); 6016 return; 6017 /* 6018 * The device didn't go to MSG OUT phase after having 6019 * been selected with ATN. We donnot want to handle 6020 * that. 6021 */ 6022 case SIR_SEL_ATN_NO_MSG_OUT: 6023 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6024 sym_name (np), target); 6025 goto out_stuck; 6026 /* 6027 * The device didn't switch to MSG IN phase after 6028 * having reseleted the initiator. 6029 */ 6030 case SIR_RESEL_NO_MSG_IN: 6031 printf ("%s:%d: No MSG IN phase after reselection.\n", 6032 sym_name (np), target); 6033 goto out_stuck; 6034 /* 6035 * After reselection, the device sent a message that wasn't 6036 * an IDENTIFY. 6037 */ 6038 case SIR_RESEL_NO_IDENTIFY: 6039 printf ("%s:%d: No IDENTIFY after reselection.\n", 6040 sym_name (np), target); 6041 goto out_stuck; 6042 /* 6043 * The device reselected a LUN we donnot know about. 6044 */ 6045 case SIR_RESEL_BAD_LUN: 6046 np->msgout[0] = M_RESET; 6047 goto out; 6048 /* 6049 * The device reselected for an untagged nexus and we 6050 * haven't any. 6051 */ 6052 case SIR_RESEL_BAD_I_T_L: 6053 np->msgout[0] = M_ABORT; 6054 goto out; 6055 /* 6056 * The device reselected for a tagged nexus that we donnot 6057 * have. 6058 */ 6059 case SIR_RESEL_BAD_I_T_L_Q: 6060 np->msgout[0] = M_ABORT_TAG; 6061 goto out; 6062 /* 6063 * The SCRIPTS let us know that the device has grabbed 6064 * our message and will abort the job. 6065 */ 6066 case SIR_RESEL_ABORTED: 6067 np->lastmsg = np->msgout[0]; 6068 np->msgout[0] = M_NOOP; 6069 printf ("%s:%d: message %x sent on bad reselection.\n", 6070 sym_name (np), target, np->lastmsg); 6071 goto out; 6072 /* 6073 * The SCRIPTS let us know that a message has been 6074 * successfully sent to the device. 6075 */ 6076 case SIR_MSG_OUT_DONE: 6077 np->lastmsg = np->msgout[0]; 6078 np->msgout[0] = M_NOOP; 6079 /* Should we really care of that */ 6080 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6081 if (cp) { 6082 cp->xerr_status &= ~XE_PARITY_ERR; 6083 if (!cp->xerr_status) 6084 OUTOFFB (HF_PRT, HF_EXT_ERR); 6085 } 6086 } 6087 goto out; 6088 /* 6089 * The device didn't send a GOOD SCSI status. 6090 * We may have some work to do prior to allow 6091 * the SCRIPTS processor to continue. 6092 */ 6093 case SIR_BAD_SCSI_STATUS: 6094 if (!cp) 6095 goto out; 6096 sym_sir_bad_scsi_status(np, cp); 6097 return; 6098 /* 6099 * We are asked by the SCRIPTS to prepare a 6100 * REJECT message. 6101 */ 6102 case SIR_REJECT_TO_SEND: 6103 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6104 np->msgout[0] = M_REJECT; 6105 goto out; 6106 /* 6107 * We have been ODD at the end of a DATA IN 6108 * transfer and the device didn't send a 6109 * IGNORE WIDE RESIDUE message. 6110 * It is a data overrun condition. 6111 */ 6112 case SIR_SWIDE_OVERRUN: 6113 if (cp) { 6114 OUTONB (HF_PRT, HF_EXT_ERR); 6115 cp->xerr_status |= XE_SWIDE_OVRUN; 6116 } 6117 goto out; 6118 /* 6119 * We have been ODD at the end of a DATA OUT 6120 * transfer. 6121 * It is a data underrun condition. 6122 */ 6123 case SIR_SODL_UNDERRUN: 6124 if (cp) { 6125 OUTONB (HF_PRT, HF_EXT_ERR); 6126 cp->xerr_status |= XE_SODL_UNRUN; 6127 } 6128 goto out; 6129 /* 6130 * The device wants us to transfer more data than 6131 * expected or in the wrong direction. 6132 * The number of extra bytes is in scratcha. 6133 * It is a data overrun condition. 6134 */ 6135 case SIR_DATA_OVERRUN: 6136 if (cp) { 6137 OUTONB (HF_PRT, HF_EXT_ERR); 6138 cp->xerr_status |= XE_EXTRA_DATA; 6139 cp->extra_bytes += INL (nc_scratcha); 6140 } 6141 goto out; 6142 /* 6143 * The device switched to an illegal phase (4/5). 6144 */ 6145 case SIR_BAD_PHASE: 6146 if (cp) { 6147 OUTONB (HF_PRT, HF_EXT_ERR); 6148 cp->xerr_status |= XE_BAD_PHASE; 6149 } 6150 goto out; 6151 /* 6152 * We received a message. 6153 */ 6154 case SIR_MSG_RECEIVED: 6155 if (!cp) 6156 goto out_stuck; 6157 switch (np->msgin [0]) { 6158 /* 6159 * We received an extended message. 6160 * We handle MODIFY DATA POINTER, SDTR, WDTR 6161 * and reject all other extended messages. 6162 */ 6163 case M_EXTENDED: 6164 switch (np->msgin [2]) { 6165 case M_X_MODIFY_DP: 6166 if (DEBUG_FLAGS & DEBUG_POINTER) 6167 sym_print_msg(cp,"modify DP",np->msgin); 6168 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6169 (np->msgin[5]<<8) + (np->msgin[6]); 6170 sym_modify_dp(np, cp, tmp); 6171 return; 6172 case M_X_SYNC_REQ: 6173 sym_sync_nego(np, tp, cp); 6174 return; 6175 case M_X_PPR_REQ: 6176 sym_ppr_nego(np, tp, cp); 6177 return; 6178 case M_X_WIDE_REQ: 6179 sym_wide_nego(np, tp, cp); 6180 return; 6181 default: 6182 goto out_reject; 6183 } 6184 break; 6185 /* 6186 * We received a 1/2 byte message not handled from SCRIPTS. 6187 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6188 * RESIDUE messages that haven't been anticipated by 6189 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6190 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6191 */ 6192 case M_IGN_RESIDUE: 6193 if (DEBUG_FLAGS & DEBUG_POINTER) 6194 sym_print_msg(cp,"ign wide residue", np->msgin); 6195 sym_modify_dp(np, cp, -1); 6196 return; 6197 case M_REJECT: 6198 if (INB (HS_PRT) == HS_NEGOTIATE) 6199 sym_nego_rejected(np, tp, cp); 6200 else { 6201 PRINT_ADDR(cp); 6202 printf ("M_REJECT received (%x:%x).\n", 6203 scr_to_cpu(np->lastmsg), np->msgout[0]); 6204 } 6205 goto out_clrack; 6206 break; 6207 default: 6208 goto out_reject; 6209 } 6210 break; 6211 /* 6212 * We received an unknown message. 6213 * Ignore all MSG IN phases and reject it. 6214 */ 6215 case SIR_MSG_WEIRD: 6216 sym_print_msg(cp, "WEIRD message received", np->msgin); 6217 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6218 return; 6219 /* 6220 * Negotiation failed. 6221 * Target does not send us the reply. 6222 * Remove the HS_NEGOTIATE status. 6223 */ 6224 case SIR_NEGO_FAILED: 6225 OUTB (HS_PRT, HS_BUSY); 6226 /* 6227 * Negotiation failed. 6228 * Target does not want answer message. 6229 */ 6230 case SIR_NEGO_PROTO: 6231 sym_nego_default(np, tp, cp); 6232 goto out; 6233 } 6234 6235 out: 6236 OUTONB_STD (); 6237 return; 6238 out_reject: 6239 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6240 return; 6241 out_clrack: 6242 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6243 return; 6244 out_stuck: 6245 return; 6246 } 6247 6248 /* 6249 * Acquire a control block 6250 */ 6251 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6252 { 6253 tcb_p tp = &np->target[tn]; 6254 lcb_p lp = sym_lp(tp, ln); 6255 u_short tag = NO_TAG; 6256 SYM_QUEHEAD *qp; 6257 ccb_p cp = (ccb_p) NULL; 6258 6259 /* 6260 * Look for a free CCB 6261 */ 6262 if (sym_que_empty(&np->free_ccbq)) 6263 goto out; 6264 qp = sym_remque_head(&np->free_ccbq); 6265 if (!qp) 6266 goto out; 6267 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6268 6269 /* 6270 * If the LCB is not yet available and the LUN 6271 * has been probed ok, try to allocate the LCB. 6272 */ 6273 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6274 lp = sym_alloc_lcb(np, tn, ln); 6275 if (!lp) 6276 goto out_free; 6277 } 6278 6279 /* 6280 * If the LCB is not available here, then the 6281 * logical unit is not yet discovered. For those 6282 * ones only accept 1 SCSI IO per logical unit, 6283 * since we cannot allow disconnections. 6284 */ 6285 if (!lp) { 6286 if (!sym_is_bit(tp->busy0_map, ln)) 6287 sym_set_bit(tp->busy0_map, ln); 6288 else 6289 goto out_free; 6290 } else { 6291 /* 6292 * If we have been asked for a tagged command. 6293 */ 6294 if (tag_order) { 6295 /* 6296 * Debugging purpose. 6297 */ 6298 assert(lp->busy_itl == 0); 6299 /* 6300 * Allocate resources for tags if not yet. 6301 */ 6302 if (!lp->cb_tags) { 6303 sym_alloc_lcb_tags(np, tn, ln); 6304 if (!lp->cb_tags) 6305 goto out_free; 6306 } 6307 /* 6308 * Get a tag for this SCSI IO and set up 6309 * the CCB bus address for reselection, 6310 * and count it for this LUN. 6311 * Toggle reselect path to tagged. 6312 */ 6313 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6314 tag = lp->cb_tags[lp->ia_tag]; 6315 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6316 lp->ia_tag = 0; 6317 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6318 ++lp->busy_itlq; 6319 lp->head.resel_sa = 6320 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6321 } 6322 else 6323 goto out_free; 6324 } 6325 /* 6326 * This command will not be tagged. 6327 * If we already have either a tagged or untagged 6328 * one, refuse to overlap this untagged one. 6329 */ 6330 else { 6331 /* 6332 * Debugging purpose. 6333 */ 6334 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6335 /* 6336 * Count this nexus for this LUN. 6337 * Set up the CCB bus address for reselection. 6338 * Toggle reselect path to untagged. 6339 */ 6340 if (++lp->busy_itl == 1) { 6341 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6342 lp->head.resel_sa = 6343 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6344 } 6345 else 6346 goto out_free; 6347 } 6348 } 6349 /* 6350 * Put the CCB into the busy queue. 6351 */ 6352 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6353 6354 /* 6355 * Remember all informations needed to free this CCB. 6356 */ 6357 cp->to_abort = 0; 6358 cp->tag = tag; 6359 cp->target = tn; 6360 cp->lun = ln; 6361 6362 if (DEBUG_FLAGS & DEBUG_TAGS) { 6363 PRINT_LUN(np, tn, ln); 6364 printf ("ccb @%p using tag %d.\n", cp, tag); 6365 } 6366 6367 out: 6368 return cp; 6369 out_free: 6370 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6371 return NULL; 6372 } 6373 6374 /* 6375 * Release one control block 6376 */ 6377 static void sym_free_ccb(hcb_p np, ccb_p cp) 6378 { 6379 tcb_p tp = &np->target[cp->target]; 6380 lcb_p lp = sym_lp(tp, cp->lun); 6381 6382 if (DEBUG_FLAGS & DEBUG_TAGS) { 6383 PRINT_LUN(np, cp->target, cp->lun); 6384 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6385 } 6386 6387 /* 6388 * If LCB available, 6389 */ 6390 if (lp) { 6391 /* 6392 * If tagged, release the tag, set the relect path 6393 */ 6394 if (cp->tag != NO_TAG) { 6395 /* 6396 * Free the tag value. 6397 */ 6398 lp->cb_tags[lp->if_tag] = cp->tag; 6399 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6400 lp->if_tag = 0; 6401 /* 6402 * Make the reselect path invalid, 6403 * and uncount this CCB. 6404 */ 6405 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6406 --lp->busy_itlq; 6407 } else { /* Untagged */ 6408 /* 6409 * Make the reselect path invalid, 6410 * and uncount this CCB. 6411 */ 6412 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6413 --lp->busy_itl; 6414 } 6415 /* 6416 * If no JOB active, make the LUN reselect path invalid. 6417 */ 6418 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6419 lp->head.resel_sa = 6420 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6421 } 6422 /* 6423 * Otherwise, we only accept 1 IO per LUN. 6424 * Clear the bit that keeps track of this IO. 6425 */ 6426 else 6427 sym_clr_bit(tp->busy0_map, cp->lun); 6428 6429 /* 6430 * We donnot queue more than 1 ccb per target 6431 * with negotiation at any time. If this ccb was 6432 * used for negotiation, clear this info in the tcb. 6433 */ 6434 if (cp == tp->nego_cp) 6435 tp->nego_cp = NULL; 6436 6437 #ifdef SYM_CONF_IARB_SUPPORT 6438 /* 6439 * If we just complete the last queued CCB, 6440 * clear this info that is no longer relevant. 6441 */ 6442 if (cp == np->last_cp) 6443 np->last_cp = NULL; 6444 #endif 6445 6446 /* 6447 * Unmap user data from DMA map if needed. 6448 */ 6449 if (cp->dmamapped) { 6450 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6451 cp->dmamapped = 0; 6452 } 6453 6454 /* 6455 * Make this CCB available. 6456 */ 6457 cp->cam_ccb = NULL; 6458 cp->host_status = HS_IDLE; 6459 sym_remque(&cp->link_ccbq); 6460 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6461 } 6462 6463 /* 6464 * Allocate a CCB from memory and initialize its fixed part. 6465 */ 6466 static ccb_p sym_alloc_ccb(hcb_p np) 6467 { 6468 ccb_p cp = NULL; 6469 int hcode; 6470 6471 SYM_LOCK_ASSERT(MA_NOTOWNED); 6472 6473 /* 6474 * Prevent from allocating more CCBs than we can 6475 * queue to the controller. 6476 */ 6477 if (np->actccbs >= SYM_CONF_MAX_START) 6478 return NULL; 6479 6480 /* 6481 * Allocate memory for this CCB. 6482 */ 6483 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6484 if (!cp) 6485 return NULL; 6486 6487 /* 6488 * Allocate a bounce buffer for sense data. 6489 */ 6490 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6491 if (!cp->sns_bbuf) 6492 goto out_free; 6493 6494 /* 6495 * Allocate a map for the DMA of user data. 6496 */ 6497 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6498 goto out_free; 6499 /* 6500 * Count it. 6501 */ 6502 np->actccbs++; 6503 6504 /* 6505 * Initialize the callout. 6506 */ 6507 callout_init(&cp->ch, 1); 6508 6509 /* 6510 * Compute the bus address of this ccb. 6511 */ 6512 cp->ccb_ba = vtobus(cp); 6513 6514 /* 6515 * Insert this ccb into the hashed list. 6516 */ 6517 hcode = CCB_HASH_CODE(cp->ccb_ba); 6518 cp->link_ccbh = np->ccbh[hcode]; 6519 np->ccbh[hcode] = cp; 6520 6521 /* 6522 * Initialize the start and restart actions. 6523 */ 6524 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6525 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6526 6527 /* 6528 * Initilialyze some other fields. 6529 */ 6530 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6531 6532 /* 6533 * Chain into free ccb queue. 6534 */ 6535 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6536 6537 return cp; 6538 out_free: 6539 if (cp->sns_bbuf) 6540 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6541 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6542 return NULL; 6543 } 6544 6545 /* 6546 * Look up a CCB from a DSA value. 6547 */ 6548 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6549 { 6550 int hcode; 6551 ccb_p cp; 6552 6553 hcode = CCB_HASH_CODE(dsa); 6554 cp = np->ccbh[hcode]; 6555 while (cp) { 6556 if (cp->ccb_ba == dsa) 6557 break; 6558 cp = cp->link_ccbh; 6559 } 6560 6561 return cp; 6562 } 6563 6564 /* 6565 * Lun control block allocation and initialization. 6566 */ 6567 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6568 { 6569 tcb_p tp = &np->target[tn]; 6570 lcb_p lp = sym_lp(tp, ln); 6571 6572 /* 6573 * Already done, just return. 6574 */ 6575 if (lp) 6576 return lp; 6577 /* 6578 * Check against some race. 6579 */ 6580 assert(!sym_is_bit(tp->busy0_map, ln)); 6581 6582 /* 6583 * Allocate the LCB bus address array. 6584 * Compute the bus address of this table. 6585 */ 6586 if (ln && !tp->luntbl) { 6587 int i; 6588 6589 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6590 if (!tp->luntbl) 6591 goto fail; 6592 for (i = 0 ; i < 64 ; i++) 6593 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6594 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6595 } 6596 6597 /* 6598 * Allocate the table of pointers for LUN(s) > 0, if needed. 6599 */ 6600 if (ln && !tp->lunmp) { 6601 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6602 "LUNMP"); 6603 if (!tp->lunmp) 6604 goto fail; 6605 } 6606 6607 /* 6608 * Allocate the lcb. 6609 * Make it available to the chip. 6610 */ 6611 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6612 if (!lp) 6613 goto fail; 6614 if (ln) { 6615 tp->lunmp[ln] = lp; 6616 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6617 } 6618 else { 6619 tp->lun0p = lp; 6620 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6621 } 6622 6623 /* 6624 * Let the itl task point to error handling. 6625 */ 6626 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6627 6628 /* 6629 * Set the reselect pattern to our default. :) 6630 */ 6631 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6632 6633 /* 6634 * Set user capabilities. 6635 */ 6636 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6637 6638 fail: 6639 return lp; 6640 } 6641 6642 /* 6643 * Allocate LCB resources for tagged command queuing. 6644 */ 6645 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6646 { 6647 tcb_p tp = &np->target[tn]; 6648 lcb_p lp = sym_lp(tp, ln); 6649 int i; 6650 6651 /* 6652 * If LCB not available, try to allocate it. 6653 */ 6654 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6655 return; 6656 6657 /* 6658 * Allocate the task table and and the tag allocation 6659 * circular buffer. We want both or none. 6660 */ 6661 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6662 if (!lp->itlq_tbl) 6663 return; 6664 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6665 if (!lp->cb_tags) { 6666 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6667 lp->itlq_tbl = NULL; 6668 return; 6669 } 6670 6671 /* 6672 * Initialize the task table with invalid entries. 6673 */ 6674 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6675 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6676 6677 /* 6678 * Fill up the tag buffer with tag numbers. 6679 */ 6680 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6681 lp->cb_tags[i] = i; 6682 6683 /* 6684 * Make the task table available to SCRIPTS, 6685 * And accept tagged commands now. 6686 */ 6687 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6688 } 6689 6690 /* 6691 * Test the pci bus snoop logic :-( 6692 * 6693 * Has to be called with interrupts disabled. 6694 */ 6695 #ifndef SYM_CONF_IOMAPPED 6696 static int sym_regtest (hcb_p np) 6697 { 6698 register volatile u32 data; 6699 /* 6700 * chip registers may NOT be cached. 6701 * write 0xffffffff to a read only register area, 6702 * and try to read it back. 6703 */ 6704 data = 0xffffffff; 6705 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6706 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6707 #if 1 6708 if (data == 0xffffffff) { 6709 #else 6710 if ((data & 0xe2f0fffd) != 0x02000080) { 6711 #endif 6712 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6713 (unsigned) data); 6714 return (0x10); 6715 } 6716 return (0); 6717 } 6718 #endif 6719 6720 static int sym_snooptest (hcb_p np) 6721 { 6722 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6723 int i, err=0; 6724 #ifndef SYM_CONF_IOMAPPED 6725 err |= sym_regtest (np); 6726 if (err) return (err); 6727 #endif 6728 restart_test: 6729 /* 6730 * Enable Master Parity Checking as we intend 6731 * to enable it for normal operations. 6732 */ 6733 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6734 /* 6735 * init 6736 */ 6737 pc = SCRIPTB0_BA (np, snooptest); 6738 host_wr = 1; 6739 sym_wr = 2; 6740 /* 6741 * Set memory and register. 6742 */ 6743 np->cache = cpu_to_scr(host_wr); 6744 OUTL (nc_temp, sym_wr); 6745 /* 6746 * Start script (exchange values) 6747 */ 6748 OUTL (nc_dsa, np->hcb_ba); 6749 OUTL_DSP (pc); 6750 /* 6751 * Wait 'til done (with timeout) 6752 */ 6753 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6754 if (INB(nc_istat) & (INTF|SIP|DIP)) 6755 break; 6756 if (i>=SYM_SNOOP_TIMEOUT) { 6757 printf ("CACHE TEST FAILED: timeout.\n"); 6758 return (0x20); 6759 } 6760 /* 6761 * Check for fatal DMA errors. 6762 */ 6763 dstat = INB (nc_dstat); 6764 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6765 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6766 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6767 "DISABLING MASTER DATA PARITY CHECKING.\n", 6768 sym_name(np)); 6769 np->rv_ctest4 &= ~MPEE; 6770 goto restart_test; 6771 } 6772 #endif 6773 if (dstat & (MDPE|BF|IID)) { 6774 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6775 return (0x80); 6776 } 6777 /* 6778 * Save termination position. 6779 */ 6780 pc = INL (nc_dsp); 6781 /* 6782 * Read memory and register. 6783 */ 6784 host_rd = scr_to_cpu(np->cache); 6785 sym_rd = INL (nc_scratcha); 6786 sym_bk = INL (nc_temp); 6787 6788 /* 6789 * Check termination position. 6790 */ 6791 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6792 printf ("CACHE TEST FAILED: script execution failed.\n"); 6793 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6794 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6795 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6796 return (0x40); 6797 } 6798 /* 6799 * Show results. 6800 */ 6801 if (host_wr != sym_rd) { 6802 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6803 (int) host_wr, (int) sym_rd); 6804 err |= 1; 6805 } 6806 if (host_rd != sym_wr) { 6807 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6808 (int) sym_wr, (int) host_rd); 6809 err |= 2; 6810 } 6811 if (sym_bk != sym_wr) { 6812 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6813 (int) sym_wr, (int) sym_bk); 6814 err |= 4; 6815 } 6816 6817 return (err); 6818 } 6819 6820 /* 6821 * Determine the chip's clock frequency. 6822 * 6823 * This is essential for the negotiation of the synchronous 6824 * transfer rate. 6825 * 6826 * Note: we have to return the correct value. 6827 * THERE IS NO SAFE DEFAULT VALUE. 6828 * 6829 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6830 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6831 * do not have a clock doubler and so are provided with a 6832 * 80 MHz clock. All other fast20 boards incorporate a doubler 6833 * and so should be delivered with a 40 MHz clock. 6834 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6835 * clock and provide a clock quadrupler (160 Mhz). 6836 */ 6837 6838 /* 6839 * Select SCSI clock frequency 6840 */ 6841 static void sym_selectclock(hcb_p np, u_char scntl3) 6842 { 6843 /* 6844 * If multiplier not present or not selected, leave here. 6845 */ 6846 if (np->multiplier <= 1) { 6847 OUTB(nc_scntl3, scntl3); 6848 return; 6849 } 6850 6851 if (sym_verbose >= 2) 6852 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6853 6854 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6855 /* 6856 * Wait for the LCKFRQ bit to be set if supported by the chip. 6857 * Otherwise wait 20 micro-seconds. 6858 */ 6859 if (np->features & FE_LCKFRQ) { 6860 int i = 20; 6861 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6862 UDELAY (20); 6863 if (!i) 6864 printf("%s: the chip cannot lock the frequency\n", 6865 sym_name(np)); 6866 } else 6867 UDELAY (20); 6868 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6869 OUTB(nc_scntl3, scntl3); 6870 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6871 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6872 } 6873 6874 /* 6875 * calculate SCSI clock frequency (in KHz) 6876 */ 6877 static unsigned getfreq (hcb_p np, int gen) 6878 { 6879 unsigned int ms = 0; 6880 unsigned int f; 6881 6882 /* 6883 * Measure GEN timer delay in order 6884 * to calculate SCSI clock frequency 6885 * 6886 * This code will never execute too 6887 * many loop iterations (if DELAY is 6888 * reasonably correct). It could get 6889 * too low a delay (too high a freq.) 6890 * if the CPU is slow executing the 6891 * loop for some reason (an NMI, for 6892 * example). For this reason we will 6893 * if multiple measurements are to be 6894 * performed trust the higher delay 6895 * (lower frequency returned). 6896 */ 6897 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6898 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6899 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6900 (void) INW (nc_sist); /* another one, just to be sure :) */ 6901 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6902 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6903 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6904 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6905 UDELAY (1000); /* count ms */ 6906 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6907 /* 6908 * set prescaler to divide by whatever 0 means 6909 * 0 ought to choose divide by 2, but appears 6910 * to set divide by 3.5 mode in my 53c810 ... 6911 */ 6912 OUTB (nc_scntl3, 0); 6913 6914 /* 6915 * adjust for prescaler, and convert into KHz 6916 */ 6917 f = ms ? ((1 << gen) * 4340) / ms : 0; 6918 6919 if (sym_verbose >= 2) 6920 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6921 sym_name(np), gen, ms, f); 6922 6923 return f; 6924 } 6925 6926 static unsigned sym_getfreq (hcb_p np) 6927 { 6928 u_int f1, f2; 6929 int gen = 11; 6930 6931 (void) getfreq (np, gen); /* throw away first result */ 6932 f1 = getfreq (np, gen); 6933 f2 = getfreq (np, gen); 6934 if (f1 > f2) f1 = f2; /* trust lower result */ 6935 return f1; 6936 } 6937 6938 /* 6939 * Get/probe chip SCSI clock frequency 6940 */ 6941 static void sym_getclock (hcb_p np, int mult) 6942 { 6943 unsigned char scntl3 = np->sv_scntl3; 6944 unsigned char stest1 = np->sv_stest1; 6945 unsigned f1; 6946 6947 /* 6948 * For the C10 core, assume 40 MHz. 6949 */ 6950 if (np->features & FE_C10) { 6951 np->multiplier = mult; 6952 np->clock_khz = 40000 * mult; 6953 return; 6954 } 6955 6956 np->multiplier = 1; 6957 f1 = 40000; 6958 /* 6959 * True with 875/895/896/895A with clock multiplier selected 6960 */ 6961 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 6962 if (sym_verbose >= 2) 6963 printf ("%s: clock multiplier found\n", sym_name(np)); 6964 np->multiplier = mult; 6965 } 6966 6967 /* 6968 * If multiplier not found or scntl3 not 7,5,3, 6969 * reset chip and get frequency from general purpose timer. 6970 * Otherwise trust scntl3 BIOS setting. 6971 */ 6972 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 6973 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 6974 f1 = sym_getfreq (np); 6975 6976 if (sym_verbose) 6977 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 6978 6979 if (f1 < 45000) f1 = 40000; 6980 else if (f1 < 55000) f1 = 50000; 6981 else f1 = 80000; 6982 6983 if (f1 < 80000 && mult > 1) { 6984 if (sym_verbose >= 2) 6985 printf ("%s: clock multiplier assumed\n", 6986 sym_name(np)); 6987 np->multiplier = mult; 6988 } 6989 } else { 6990 if ((scntl3 & 7) == 3) f1 = 40000; 6991 else if ((scntl3 & 7) == 5) f1 = 80000; 6992 else f1 = 160000; 6993 6994 f1 /= np->multiplier; 6995 } 6996 6997 /* 6998 * Compute controller synchronous parameters. 6999 */ 7000 f1 *= np->multiplier; 7001 np->clock_khz = f1; 7002 } 7003 7004 /* 7005 * Get/probe PCI clock frequency 7006 */ 7007 static int sym_getpciclock (hcb_p np) 7008 { 7009 int f = 0; 7010 7011 /* 7012 * For the C1010-33, this doesn't work. 7013 * For the C1010-66, this will be tested when I'll have 7014 * such a beast to play with. 7015 */ 7016 if (!(np->features & FE_C10)) { 7017 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7018 f = (int) sym_getfreq (np); 7019 OUTB (nc_stest1, 0); 7020 } 7021 np->pciclk_khz = f; 7022 7023 return f; 7024 } 7025 7026 /*============= DRIVER ACTION/COMPLETION ====================*/ 7027 7028 /* 7029 * Print something that tells about extended errors. 7030 */ 7031 static void sym_print_xerr(ccb_p cp, int x_status) 7032 { 7033 if (x_status & XE_PARITY_ERR) { 7034 PRINT_ADDR(cp); 7035 printf ("unrecovered SCSI parity error.\n"); 7036 } 7037 if (x_status & XE_EXTRA_DATA) { 7038 PRINT_ADDR(cp); 7039 printf ("extraneous data discarded.\n"); 7040 } 7041 if (x_status & XE_BAD_PHASE) { 7042 PRINT_ADDR(cp); 7043 printf ("illegal scsi phase (4/5).\n"); 7044 } 7045 if (x_status & XE_SODL_UNRUN) { 7046 PRINT_ADDR(cp); 7047 printf ("ODD transfer in DATA OUT phase.\n"); 7048 } 7049 if (x_status & XE_SWIDE_OVRUN) { 7050 PRINT_ADDR(cp); 7051 printf ("ODD transfer in DATA IN phase.\n"); 7052 } 7053 } 7054 7055 /* 7056 * Choose the more appropriate CAM status if 7057 * the IO encountered an extended error. 7058 */ 7059 static int sym_xerr_cam_status(int cam_status, int x_status) 7060 { 7061 if (x_status) { 7062 if (x_status & XE_PARITY_ERR) 7063 cam_status = CAM_UNCOR_PARITY; 7064 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7065 cam_status = CAM_DATA_RUN_ERR; 7066 else if (x_status & XE_BAD_PHASE) 7067 cam_status = CAM_REQ_CMP_ERR; 7068 else 7069 cam_status = CAM_REQ_CMP_ERR; 7070 } 7071 return cam_status; 7072 } 7073 7074 /* 7075 * Complete execution of a SCSI command with extented 7076 * error, SCSI status error, or having been auto-sensed. 7077 * 7078 * The SCRIPTS processor is not running there, so we 7079 * can safely access IO registers and remove JOBs from 7080 * the START queue. 7081 * SCRATCHA is assumed to have been loaded with STARTPOS 7082 * before the SCRIPTS called the C code. 7083 */ 7084 static void sym_complete_error (hcb_p np, ccb_p cp) 7085 { 7086 struct ccb_scsiio *csio; 7087 u_int cam_status; 7088 int i, sense_returned; 7089 7090 SYM_LOCK_ASSERT(MA_OWNED); 7091 7092 /* 7093 * Paranoid check. :) 7094 */ 7095 if (!cp || !cp->cam_ccb) 7096 return; 7097 7098 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7099 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7100 cp->host_status, cp->ssss_status, cp->host_flags, 7101 cp->target, cp->lun); 7102 MDELAY(100); 7103 } 7104 7105 /* 7106 * Get CAM command pointer. 7107 */ 7108 csio = &cp->cam_ccb->csio; 7109 7110 /* 7111 * Check for extended errors. 7112 */ 7113 if (cp->xerr_status) { 7114 if (sym_verbose) 7115 sym_print_xerr(cp, cp->xerr_status); 7116 if (cp->host_status == HS_COMPLETE) 7117 cp->host_status = HS_COMP_ERR; 7118 } 7119 7120 /* 7121 * Calculate the residual. 7122 */ 7123 csio->sense_resid = 0; 7124 csio->resid = sym_compute_residual(np, cp); 7125 7126 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7127 csio->resid = 0; /* throw them away. :) */ 7128 cp->sv_resid = 0; 7129 } 7130 7131 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7132 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7133 csio->sense_resid = csio->resid; /* Swap residuals */ 7134 csio->resid = cp->sv_resid; 7135 cp->sv_resid = 0; 7136 if (sym_verbose && cp->sv_xerr_status) 7137 sym_print_xerr(cp, cp->sv_xerr_status); 7138 if (cp->host_status == HS_COMPLETE && 7139 cp->ssss_status == S_GOOD && 7140 cp->xerr_status == 0) { 7141 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7142 cp->sv_xerr_status); 7143 cam_status |= CAM_AUTOSNS_VALID; 7144 /* 7145 * Bounce back the sense data to user and 7146 * fix the residual. 7147 */ 7148 bzero(&csio->sense_data, sizeof(csio->sense_data)); 7149 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid; 7150 if (sense_returned < csio->sense_len) 7151 csio->sense_resid = csio->sense_len - 7152 sense_returned; 7153 else 7154 csio->sense_resid = 0; 7155 bcopy(cp->sns_bbuf, &csio->sense_data, 7156 MIN(csio->sense_len, sense_returned)); 7157 #if 0 7158 /* 7159 * If the device reports a UNIT ATTENTION condition 7160 * due to a RESET condition, we should consider all 7161 * disconnect CCBs for this unit as aborted. 7162 */ 7163 if (1) { 7164 u_char *p; 7165 p = (u_char *) csio->sense_data; 7166 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7167 sym_clear_tasks(np, CAM_REQ_ABORTED, 7168 cp->target,cp->lun, -1); 7169 } 7170 #endif 7171 } 7172 else 7173 cam_status = CAM_AUTOSENSE_FAIL; 7174 } 7175 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7176 csio->scsi_status = cp->ssss_status; 7177 cam_status = CAM_SCSI_STATUS_ERROR; 7178 } 7179 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7180 cam_status = CAM_SEL_TIMEOUT; 7181 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7182 cam_status = CAM_UNEXP_BUSFREE; 7183 else { /* Extended error */ 7184 if (sym_verbose) { 7185 PRINT_ADDR(cp); 7186 printf ("COMMAND FAILED (%x %x %x).\n", 7187 cp->host_status, cp->ssss_status, 7188 cp->xerr_status); 7189 } 7190 csio->scsi_status = cp->ssss_status; 7191 /* 7192 * Set the most appropriate value for CAM status. 7193 */ 7194 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7195 cp->xerr_status); 7196 } 7197 7198 /* 7199 * Dequeue all queued CCBs for that device 7200 * not yet started by SCRIPTS. 7201 */ 7202 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7203 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7204 7205 /* 7206 * Restart the SCRIPTS processor. 7207 */ 7208 OUTL_DSP (SCRIPTA_BA (np, start)); 7209 7210 /* 7211 * Synchronize DMA map if needed. 7212 */ 7213 if (cp->dmamapped) { 7214 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7215 (cp->dmamapped == SYM_DMA_READ ? 7216 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7217 } 7218 /* 7219 * Add this one to the COMP queue. 7220 * Complete all those commands with either error 7221 * or requeue condition. 7222 */ 7223 sym_set_cam_status((union ccb *) csio, cam_status); 7224 sym_remque(&cp->link_ccbq); 7225 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7226 sym_flush_comp_queue(np, 0); 7227 } 7228 7229 /* 7230 * Complete execution of a successful SCSI command. 7231 * 7232 * Only successful commands go to the DONE queue, 7233 * since we need to have the SCRIPTS processor 7234 * stopped on any error condition. 7235 * The SCRIPTS processor is running while we are 7236 * completing successful commands. 7237 */ 7238 static void sym_complete_ok (hcb_p np, ccb_p cp) 7239 { 7240 struct ccb_scsiio *csio; 7241 tcb_p tp; 7242 lcb_p lp; 7243 7244 SYM_LOCK_ASSERT(MA_OWNED); 7245 7246 /* 7247 * Paranoid check. :) 7248 */ 7249 if (!cp || !cp->cam_ccb) 7250 return; 7251 assert (cp->host_status == HS_COMPLETE); 7252 7253 /* 7254 * Get command, target and lun pointers. 7255 */ 7256 csio = &cp->cam_ccb->csio; 7257 tp = &np->target[cp->target]; 7258 lp = sym_lp(tp, cp->lun); 7259 7260 /* 7261 * Assume device discovered on first success. 7262 */ 7263 if (!lp) 7264 sym_set_bit(tp->lun_map, cp->lun); 7265 7266 /* 7267 * If all data have been transferred, given than no 7268 * extended error did occur, there is no residual. 7269 */ 7270 csio->resid = 0; 7271 if (cp->phys.head.lastp != cp->phys.head.goalp) 7272 csio->resid = sym_compute_residual(np, cp); 7273 7274 /* 7275 * Wrong transfer residuals may be worse than just always 7276 * returning zero. User can disable this feature from 7277 * sym_conf.h. Residual support is enabled by default. 7278 */ 7279 if (!SYM_CONF_RESIDUAL_SUPPORT) 7280 csio->resid = 0; 7281 7282 /* 7283 * Synchronize DMA map if needed. 7284 */ 7285 if (cp->dmamapped) { 7286 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7287 (cp->dmamapped == SYM_DMA_READ ? 7288 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7289 } 7290 /* 7291 * Set status and complete the command. 7292 */ 7293 csio->scsi_status = cp->ssss_status; 7294 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7295 sym_xpt_done(np, (union ccb *) csio, cp); 7296 sym_free_ccb(np, cp); 7297 } 7298 7299 /* 7300 * Our callout handler 7301 */ 7302 static void sym_callout(void *arg) 7303 { 7304 union ccb *ccb = (union ccb *) arg; 7305 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7306 7307 /* 7308 * Check that the CAM CCB is still queued. 7309 */ 7310 if (!np) 7311 return; 7312 7313 SYM_LOCK(); 7314 7315 switch(ccb->ccb_h.func_code) { 7316 case XPT_SCSI_IO: 7317 (void) sym_abort_scsiio(np, ccb, 1); 7318 break; 7319 default: 7320 break; 7321 } 7322 7323 SYM_UNLOCK(); 7324 } 7325 7326 /* 7327 * Abort an SCSI IO. 7328 */ 7329 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7330 { 7331 ccb_p cp; 7332 SYM_QUEHEAD *qp; 7333 7334 SYM_LOCK_ASSERT(MA_OWNED); 7335 7336 /* 7337 * Look up our CCB control block. 7338 */ 7339 cp = NULL; 7340 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7341 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7342 if (cp2->cam_ccb == ccb) { 7343 cp = cp2; 7344 break; 7345 } 7346 } 7347 if (!cp || cp->host_status == HS_WAIT) 7348 return -1; 7349 7350 /* 7351 * If a previous abort didn't succeed in time, 7352 * perform a BUS reset. 7353 */ 7354 if (cp->to_abort) { 7355 sym_reset_scsi_bus(np, 1); 7356 return 0; 7357 } 7358 7359 /* 7360 * Mark the CCB for abort and allow time for. 7361 */ 7362 cp->to_abort = timed_out ? 2 : 1; 7363 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7364 7365 /* 7366 * Tell the SCRIPTS processor to stop and synchronize with us. 7367 */ 7368 np->istat_sem = SEM; 7369 OUTB (nc_istat, SIGP|SEM); 7370 return 0; 7371 } 7372 7373 /* 7374 * Reset a SCSI device (all LUNs of a target). 7375 */ 7376 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7377 { 7378 tcb_p tp; 7379 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7380 7381 SYM_LOCK_ASSERT(MA_OWNED); 7382 7383 if (ccb_h->target_id == np->myaddr || 7384 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7385 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7386 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7387 return; 7388 } 7389 7390 tp = &np->target[ccb_h->target_id]; 7391 7392 tp->to_reset = 1; 7393 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7394 7395 np->istat_sem = SEM; 7396 OUTB (nc_istat, SIGP|SEM); 7397 } 7398 7399 /* 7400 * SIM action entry point. 7401 */ 7402 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7403 { 7404 hcb_p np; 7405 tcb_p tp; 7406 lcb_p lp; 7407 ccb_p cp; 7408 int tmp; 7409 u_char idmsg, *msgptr; 7410 u_int msglen; 7411 struct ccb_scsiio *csio; 7412 struct ccb_hdr *ccb_h; 7413 7414 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7415 7416 /* 7417 * Retrieve our controller data structure. 7418 */ 7419 np = (hcb_p) cam_sim_softc(sim); 7420 7421 SYM_LOCK_ASSERT(MA_OWNED); 7422 7423 /* 7424 * The common case is SCSI IO. 7425 * We deal with other ones elsewhere. 7426 */ 7427 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7428 sym_action2(sim, ccb); 7429 return; 7430 } 7431 csio = &ccb->csio; 7432 ccb_h = &csio->ccb_h; 7433 7434 /* 7435 * Work around races. 7436 */ 7437 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7438 xpt_done(ccb); 7439 return; 7440 } 7441 7442 /* 7443 * Minimal checkings, so that we will not 7444 * go outside our tables. 7445 */ 7446 if (ccb_h->target_id == np->myaddr || 7447 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7448 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7449 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7450 return; 7451 } 7452 7453 /* 7454 * Retrieve the target and lun descriptors. 7455 */ 7456 tp = &np->target[ccb_h->target_id]; 7457 lp = sym_lp(tp, ccb_h->target_lun); 7458 7459 /* 7460 * Complete the 1st INQUIRY command with error 7461 * condition if the device is flagged NOSCAN 7462 * at BOOT in the NVRAM. This may speed up 7463 * the boot and maintain coherency with BIOS 7464 * device numbering. Clearing the flag allows 7465 * user to rescan skipped devices later. 7466 * We also return error for devices not flagged 7467 * for SCAN LUNS in the NVRAM since some mono-lun 7468 * devices behave badly when asked for some non 7469 * zero LUN. Btw, this is an absolute hack.:-) 7470 */ 7471 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7472 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7473 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7474 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7475 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7476 ccb_h->target_lun != 0)) { 7477 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7478 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7479 return; 7480 } 7481 } 7482 7483 /* 7484 * Get a control block for this IO. 7485 */ 7486 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7487 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7488 if (!cp) { 7489 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7490 return; 7491 } 7492 7493 /* 7494 * Keep track of the IO in our CCB. 7495 */ 7496 cp->cam_ccb = ccb; 7497 7498 /* 7499 * Build the IDENTIFY message. 7500 */ 7501 idmsg = M_IDENTIFY | cp->lun; 7502 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7503 idmsg |= 0x40; 7504 7505 msgptr = cp->scsi_smsg; 7506 msglen = 0; 7507 msgptr[msglen++] = idmsg; 7508 7509 /* 7510 * Build the tag message if present. 7511 */ 7512 if (cp->tag != NO_TAG) { 7513 u_char order = csio->tag_action; 7514 7515 switch(order) { 7516 case M_ORDERED_TAG: 7517 break; 7518 case M_HEAD_TAG: 7519 break; 7520 default: 7521 order = M_SIMPLE_TAG; 7522 } 7523 msgptr[msglen++] = order; 7524 7525 /* 7526 * For less than 128 tags, actual tags are numbered 7527 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7528 * with devices that have problems with #TAG 0 or too 7529 * great #TAG numbers. For more tags (up to 256), 7530 * we use directly our tag number. 7531 */ 7532 #if SYM_CONF_MAX_TASK > (512/4) 7533 msgptr[msglen++] = cp->tag; 7534 #else 7535 msgptr[msglen++] = (cp->tag << 1) + 1; 7536 #endif 7537 } 7538 7539 /* 7540 * Build a negotiation message if needed. 7541 * (nego_status is filled by sym_prepare_nego()) 7542 */ 7543 cp->nego_status = 0; 7544 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7545 tp->tinfo.current.period != tp->tinfo.goal.period || 7546 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7547 tp->tinfo.current.options != tp->tinfo.goal.options) { 7548 if (!tp->nego_cp && lp) 7549 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7550 } 7551 7552 /* 7553 * Fill in our ccb 7554 */ 7555 7556 /* 7557 * Startqueue 7558 */ 7559 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7560 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7561 7562 /* 7563 * select 7564 */ 7565 cp->phys.select.sel_id = cp->target; 7566 cp->phys.select.sel_scntl3 = tp->head.wval; 7567 cp->phys.select.sel_sxfer = tp->head.sval; 7568 cp->phys.select.sel_scntl4 = tp->head.uval; 7569 7570 /* 7571 * message 7572 */ 7573 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7574 cp->phys.smsg.size = cpu_to_scr(msglen); 7575 7576 /* 7577 * command 7578 */ 7579 if (sym_setup_cdb(np, csio, cp) < 0) { 7580 sym_xpt_done(np, ccb, cp); 7581 sym_free_ccb(np, cp); 7582 return; 7583 } 7584 7585 /* 7586 * status 7587 */ 7588 #if 0 /* Provision */ 7589 cp->actualquirks = tp->quirks; 7590 #endif 7591 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7592 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7593 cp->ssss_status = S_ILLEGAL; 7594 cp->xerr_status = 0; 7595 cp->host_flags = 0; 7596 cp->extra_bytes = 0; 7597 7598 /* 7599 * extreme data pointer. 7600 * shall be positive, so -1 is lower than lowest.:) 7601 */ 7602 cp->ext_sg = -1; 7603 cp->ext_ofs = 0; 7604 7605 /* 7606 * Build the data descriptor block 7607 * and start the IO. 7608 */ 7609 sym_setup_data_and_start(np, csio, cp); 7610 } 7611 7612 /* 7613 * Setup buffers and pointers that address the CDB. 7614 * I bet, physical CDBs will never be used on the planet, 7615 * since they can be bounced without significant overhead. 7616 */ 7617 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7618 { 7619 struct ccb_hdr *ccb_h; 7620 u32 cmd_ba; 7621 int cmd_len; 7622 7623 SYM_LOCK_ASSERT(MA_OWNED); 7624 7625 ccb_h = &csio->ccb_h; 7626 7627 /* 7628 * CDB is 16 bytes max. 7629 */ 7630 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7631 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7632 return -1; 7633 } 7634 cmd_len = csio->cdb_len; 7635 7636 if (ccb_h->flags & CAM_CDB_POINTER) { 7637 /* CDB is a pointer */ 7638 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7639 /* CDB pointer is virtual */ 7640 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7641 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7642 } else { 7643 /* CDB pointer is physical */ 7644 #if 0 7645 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7646 #else 7647 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7648 return -1; 7649 #endif 7650 } 7651 } else { 7652 /* CDB is in the CAM ccb (buffer) */ 7653 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7654 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7655 } 7656 7657 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7658 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7659 7660 return 0; 7661 } 7662 7663 /* 7664 * Set up data pointers used by SCRIPTS. 7665 */ 7666 static void __inline 7667 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7668 { 7669 u32 lastp, goalp; 7670 7671 SYM_LOCK_ASSERT(MA_OWNED); 7672 7673 /* 7674 * No segments means no data. 7675 */ 7676 if (!cp->segments) 7677 dir = CAM_DIR_NONE; 7678 7679 /* 7680 * Set the data pointer. 7681 */ 7682 switch(dir) { 7683 case CAM_DIR_OUT: 7684 goalp = SCRIPTA_BA (np, data_out2) + 8; 7685 lastp = goalp - 8 - (cp->segments * (2*4)); 7686 break; 7687 case CAM_DIR_IN: 7688 cp->host_flags |= HF_DATA_IN; 7689 goalp = SCRIPTA_BA (np, data_in2) + 8; 7690 lastp = goalp - 8 - (cp->segments * (2*4)); 7691 break; 7692 case CAM_DIR_NONE: 7693 default: 7694 lastp = goalp = SCRIPTB_BA (np, no_data); 7695 break; 7696 } 7697 7698 cp->phys.head.lastp = cpu_to_scr(lastp); 7699 cp->phys.head.goalp = cpu_to_scr(goalp); 7700 cp->phys.head.savep = cpu_to_scr(lastp); 7701 cp->startp = cp->phys.head.savep; 7702 } 7703 7704 /* 7705 * Call back routine for the DMA map service. 7706 * If bounce buffers are used (why ?), we may sleep and then 7707 * be called there in another context. 7708 */ 7709 static void 7710 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7711 { 7712 ccb_p cp; 7713 hcb_p np; 7714 union ccb *ccb; 7715 7716 cp = (ccb_p) arg; 7717 ccb = cp->cam_ccb; 7718 np = (hcb_p) cp->arg; 7719 7720 SYM_LOCK_ASSERT(MA_OWNED); 7721 7722 /* 7723 * Deal with weird races. 7724 */ 7725 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7726 goto out_abort; 7727 7728 /* 7729 * Deal with weird errors. 7730 */ 7731 if (error) { 7732 cp->dmamapped = 0; 7733 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7734 goto out_abort; 7735 } 7736 7737 /* 7738 * Build the data descriptor for the chip. 7739 */ 7740 if (nsegs) { 7741 int retv; 7742 /* 896 rev 1 requires to be careful about boundaries */ 7743 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7744 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7745 else 7746 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7747 if (retv < 0) { 7748 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7749 goto out_abort; 7750 } 7751 } 7752 7753 /* 7754 * Synchronize the DMA map only if we have 7755 * actually mapped the data. 7756 */ 7757 if (cp->dmamapped) { 7758 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7759 (cp->dmamapped == SYM_DMA_READ ? 7760 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7761 } 7762 7763 /* 7764 * Set host status to busy state. 7765 * May have been set back to HS_WAIT to avoid a race. 7766 */ 7767 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7768 7769 /* 7770 * Set data pointers. 7771 */ 7772 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7773 7774 /* 7775 * Enqueue this IO in our pending queue. 7776 */ 7777 sym_enqueue_cam_ccb(cp); 7778 7779 /* 7780 * When `#ifed 1', the code below makes the driver 7781 * panic on the first attempt to write to a SCSI device. 7782 * It is the first test we want to do after a driver 7783 * change that does not seem obviously safe. :) 7784 */ 7785 #if 0 7786 switch (cp->cdb_buf[0]) { 7787 case 0x0A: case 0x2A: case 0xAA: 7788 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7789 MDELAY(10000); 7790 break; 7791 default: 7792 break; 7793 } 7794 #endif 7795 /* 7796 * Activate this job. 7797 */ 7798 sym_put_start_queue(np, cp); 7799 return; 7800 out_abort: 7801 sym_xpt_done(np, ccb, cp); 7802 sym_free_ccb(np, cp); 7803 } 7804 7805 /* 7806 * How complex it gets to deal with the data in CAM. 7807 * The Bus Dma stuff makes things still more complex. 7808 */ 7809 static void 7810 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7811 { 7812 struct ccb_hdr *ccb_h; 7813 int dir, retv; 7814 7815 SYM_LOCK_ASSERT(MA_OWNED); 7816 7817 ccb_h = &csio->ccb_h; 7818 7819 /* 7820 * Now deal with the data. 7821 */ 7822 cp->data_len = csio->dxfer_len; 7823 cp->arg = np; 7824 7825 /* 7826 * No direction means no data. 7827 */ 7828 dir = (ccb_h->flags & CAM_DIR_MASK); 7829 if (dir == CAM_DIR_NONE) { 7830 sym_execute_ccb(cp, NULL, 0, 0); 7831 return; 7832 } 7833 7834 cp->dmamapped = (dir == CAM_DIR_IN) ? SYM_DMA_READ : SYM_DMA_WRITE; 7835 retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap, 7836 (union ccb *)csio, sym_execute_ccb, cp, 0); 7837 if (retv == EINPROGRESS) { 7838 cp->host_status = HS_WAIT; 7839 xpt_freeze_simq(np->sim, 1); 7840 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7841 } 7842 } 7843 7844 /* 7845 * Move the scatter list to our data block. 7846 */ 7847 static int 7848 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7849 bus_dma_segment_t *psegs, int nsegs) 7850 { 7851 struct sym_tblmove *data; 7852 bus_dma_segment_t *psegs2; 7853 7854 SYM_LOCK_ASSERT(MA_OWNED); 7855 7856 if (nsegs > SYM_CONF_MAX_SG) 7857 return -1; 7858 7859 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7860 psegs2 = &psegs[nsegs-1]; 7861 cp->segments = nsegs; 7862 7863 while (1) { 7864 data->addr = cpu_to_scr(psegs2->ds_addr); 7865 data->size = cpu_to_scr(psegs2->ds_len); 7866 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7867 printf ("%s scatter: paddr=%lx len=%ld\n", 7868 sym_name(np), (long) psegs2->ds_addr, 7869 (long) psegs2->ds_len); 7870 } 7871 if (psegs2 != psegs) { 7872 --data; 7873 --psegs2; 7874 continue; 7875 } 7876 break; 7877 } 7878 return 0; 7879 } 7880 7881 /* 7882 * Scatter a SG list with physical addresses into bus addressable chunks. 7883 */ 7884 static int 7885 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7886 { 7887 u_long ps, pe, pn; 7888 u_long k; 7889 int s, t; 7890 7891 SYM_LOCK_ASSERT(MA_OWNED); 7892 7893 s = SYM_CONF_MAX_SG - 1; 7894 t = nsegs - 1; 7895 ps = psegs[t].ds_addr; 7896 pe = ps + psegs[t].ds_len; 7897 7898 while (s >= 0) { 7899 pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY); 7900 if (pn <= ps) 7901 pn = ps; 7902 k = pe - pn; 7903 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7904 printf ("%s scatter: paddr=%lx len=%ld\n", 7905 sym_name(np), pn, k); 7906 } 7907 cp->phys.data[s].addr = cpu_to_scr(pn); 7908 cp->phys.data[s].size = cpu_to_scr(k); 7909 --s; 7910 if (pn == ps) { 7911 if (--t < 0) 7912 break; 7913 ps = psegs[t].ds_addr; 7914 pe = ps + psegs[t].ds_len; 7915 } 7916 else 7917 pe = pn; 7918 } 7919 7920 cp->segments = SYM_CONF_MAX_SG - 1 - s; 7921 7922 return t >= 0 ? -1 : 0; 7923 } 7924 7925 /* 7926 * SIM action for non performance critical stuff. 7927 */ 7928 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 7929 { 7930 union ccb *abort_ccb; 7931 struct ccb_hdr *ccb_h; 7932 struct ccb_pathinq *cpi; 7933 struct ccb_trans_settings *cts; 7934 struct sym_trans *tip; 7935 hcb_p np; 7936 tcb_p tp; 7937 lcb_p lp; 7938 u_char dflags; 7939 7940 /* 7941 * Retrieve our controller data structure. 7942 */ 7943 np = (hcb_p) cam_sim_softc(sim); 7944 7945 SYM_LOCK_ASSERT(MA_OWNED); 7946 7947 ccb_h = &ccb->ccb_h; 7948 7949 switch (ccb_h->func_code) { 7950 case XPT_SET_TRAN_SETTINGS: 7951 cts = &ccb->cts; 7952 tp = &np->target[ccb_h->target_id]; 7953 7954 /* 7955 * Update SPI transport settings in TARGET control block. 7956 * Update SCSI device settings in LUN control block. 7957 */ 7958 lp = sym_lp(tp, ccb_h->target_lun); 7959 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7960 sym_update_trans(np, &tp->tinfo.goal, cts); 7961 if (lp) 7962 sym_update_dflags(np, &lp->current_flags, cts); 7963 } 7964 if (cts->type == CTS_TYPE_USER_SETTINGS) { 7965 sym_update_trans(np, &tp->tinfo.user, cts); 7966 if (lp) 7967 sym_update_dflags(np, &lp->user_flags, cts); 7968 } 7969 7970 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7971 break; 7972 case XPT_GET_TRAN_SETTINGS: 7973 cts = &ccb->cts; 7974 tp = &np->target[ccb_h->target_id]; 7975 lp = sym_lp(tp, ccb_h->target_lun); 7976 7977 #define cts__scsi (&cts->proto_specific.scsi) 7978 #define cts__spi (&cts->xport_specific.spi) 7979 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7980 tip = &tp->tinfo.current; 7981 dflags = lp ? lp->current_flags : 0; 7982 } 7983 else { 7984 tip = &tp->tinfo.user; 7985 dflags = lp ? lp->user_flags : tp->usrflags; 7986 } 7987 7988 cts->protocol = PROTO_SCSI; 7989 cts->transport = XPORT_SPI; 7990 cts->protocol_version = tip->scsi_version; 7991 cts->transport_version = tip->spi_version; 7992 7993 cts__spi->sync_period = tip->period; 7994 cts__spi->sync_offset = tip->offset; 7995 cts__spi->bus_width = tip->width; 7996 cts__spi->ppr_options = tip->options; 7997 7998 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 7999 | CTS_SPI_VALID_SYNC_OFFSET 8000 | CTS_SPI_VALID_BUS_WIDTH 8001 | CTS_SPI_VALID_PPR_OPTIONS; 8002 8003 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8004 if (dflags & SYM_DISC_ENABLED) 8005 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8006 cts__spi->valid |= CTS_SPI_VALID_DISC; 8007 8008 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8009 if (dflags & SYM_TAGS_ENABLED) 8010 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8011 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8012 #undef cts__spi 8013 #undef cts__scsi 8014 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8015 break; 8016 case XPT_CALC_GEOMETRY: 8017 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8018 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8019 break; 8020 case XPT_PATH_INQ: 8021 cpi = &ccb->cpi; 8022 cpi->version_num = 1; 8023 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8024 if ((np->features & FE_WIDE) != 0) 8025 cpi->hba_inquiry |= PI_WIDE_16; 8026 cpi->target_sprt = 0; 8027 cpi->hba_misc = PIM_UNMAPPED; 8028 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8029 cpi->hba_misc |= PIM_SCANHILO; 8030 if (np->usrflags & SYM_AVOID_BUS_RESET) 8031 cpi->hba_misc |= PIM_NOBUSRESET; 8032 cpi->hba_eng_cnt = 0; 8033 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8034 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8035 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8036 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8037 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8038 cpi->bus_id = cam_sim_bus(sim); 8039 cpi->initiator_id = np->myaddr; 8040 cpi->base_transfer_speed = 3300; 8041 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8042 strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8043 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8044 cpi->unit_number = cam_sim_unit(sim); 8045 8046 cpi->protocol = PROTO_SCSI; 8047 cpi->protocol_version = SCSI_REV_2; 8048 cpi->transport = XPORT_SPI; 8049 cpi->transport_version = 2; 8050 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8051 if (np->features & FE_ULTRA3) { 8052 cpi->transport_version = 3; 8053 cpi->xport_specific.spi.ppr_options = 8054 SID_SPI_CLOCK_DT_ST; 8055 } 8056 cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE; 8057 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8058 break; 8059 case XPT_ABORT: 8060 abort_ccb = ccb->cab.abort_ccb; 8061 switch(abort_ccb->ccb_h.func_code) { 8062 case XPT_SCSI_IO: 8063 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8064 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8065 break; 8066 } 8067 default: 8068 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8069 break; 8070 } 8071 break; 8072 case XPT_RESET_DEV: 8073 sym_reset_dev(np, ccb); 8074 break; 8075 case XPT_RESET_BUS: 8076 sym_reset_scsi_bus(np, 0); 8077 if (sym_verbose) { 8078 xpt_print_path(np->path); 8079 printf("SCSI BUS reset delivered.\n"); 8080 } 8081 sym_init (np, 1); 8082 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8083 break; 8084 case XPT_TERM_IO: 8085 default: 8086 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8087 break; 8088 } 8089 } 8090 8091 /* 8092 * Asynchronous notification handler. 8093 */ 8094 static void 8095 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused) 8096 { 8097 hcb_p np; 8098 struct cam_sim *sim; 8099 u_int tn; 8100 tcb_p tp; 8101 8102 sim = (struct cam_sim *) cb_arg; 8103 np = (hcb_p) cam_sim_softc(sim); 8104 8105 SYM_LOCK_ASSERT(MA_OWNED); 8106 8107 switch (code) { 8108 case AC_LOST_DEVICE: 8109 tn = xpt_path_target_id(path); 8110 if (tn >= SYM_CONF_MAX_TARGET) 8111 break; 8112 8113 tp = &np->target[tn]; 8114 8115 tp->to_reset = 0; 8116 tp->head.sval = 0; 8117 tp->head.wval = np->rv_scntl3; 8118 tp->head.uval = 0; 8119 8120 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8121 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8122 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8123 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8124 8125 break; 8126 default: 8127 break; 8128 } 8129 } 8130 8131 /* 8132 * Update transfer settings of a target. 8133 */ 8134 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 8135 struct ccb_trans_settings *cts) 8136 { 8137 8138 SYM_LOCK_ASSERT(MA_OWNED); 8139 8140 /* 8141 * Update the infos. 8142 */ 8143 #define cts__spi (&cts->xport_specific.spi) 8144 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8145 tip->width = cts__spi->bus_width; 8146 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8147 tip->offset = cts__spi->sync_offset; 8148 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8149 tip->period = cts__spi->sync_period; 8150 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8151 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8152 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8153 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8154 tip->scsi_version = cts->protocol_version; 8155 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8156 cts->transport_version != XPORT_VERSION_UNKNOWN) 8157 tip->spi_version = cts->transport_version; 8158 #undef cts__spi 8159 /* 8160 * Scale against driver configuration limits. 8161 */ 8162 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8163 if (tip->period && tip->offset) { 8164 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8165 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8166 } else { 8167 tip->offset = 0; 8168 tip->period = 0; 8169 } 8170 8171 /* 8172 * Scale against actual controller BUS width. 8173 */ 8174 if (tip->width > np->maxwide) 8175 tip->width = np->maxwide; 8176 8177 /* 8178 * Only accept DT if controller supports and SYNC/WIDE asked. 8179 */ 8180 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8181 !(tip->width == BUS_16_BIT && tip->offset)) { 8182 tip->options &= ~PPR_OPT_DT; 8183 } 8184 8185 /* 8186 * Scale period factor and offset against controller limits. 8187 */ 8188 if (tip->offset && tip->period) { 8189 if (tip->options & PPR_OPT_DT) { 8190 if (tip->period < np->minsync_dt) 8191 tip->period = np->minsync_dt; 8192 if (tip->period > np->maxsync_dt) 8193 tip->period = np->maxsync_dt; 8194 if (tip->offset > np->maxoffs_dt) 8195 tip->offset = np->maxoffs_dt; 8196 } 8197 else { 8198 if (tip->period < np->minsync) 8199 tip->period = np->minsync; 8200 if (tip->period > np->maxsync) 8201 tip->period = np->maxsync; 8202 if (tip->offset > np->maxoffs) 8203 tip->offset = np->maxoffs; 8204 } 8205 } 8206 } 8207 8208 /* 8209 * Update flags for a device (logical unit). 8210 */ 8211 static void 8212 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8213 { 8214 8215 SYM_LOCK_ASSERT(MA_OWNED); 8216 8217 #define cts__scsi (&cts->proto_specific.scsi) 8218 #define cts__spi (&cts->xport_specific.spi) 8219 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8220 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8221 *flags |= SYM_DISC_ENABLED; 8222 else 8223 *flags &= ~SYM_DISC_ENABLED; 8224 } 8225 8226 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8227 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8228 *flags |= SYM_TAGS_ENABLED; 8229 else 8230 *flags &= ~SYM_TAGS_ENABLED; 8231 } 8232 #undef cts__spi 8233 #undef cts__scsi 8234 } 8235 8236 /*============= DRIVER INITIALISATION ==================*/ 8237 8238 static device_method_t sym_pci_methods[] = { 8239 DEVMETHOD(device_probe, sym_pci_probe), 8240 DEVMETHOD(device_attach, sym_pci_attach), 8241 DEVMETHOD_END 8242 }; 8243 8244 static driver_t sym_pci_driver = { 8245 "sym", 8246 sym_pci_methods, 8247 1 /* no softc */ 8248 }; 8249 8250 static devclass_t sym_devclass; 8251 8252 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL); 8253 MODULE_DEPEND(sym, cam, 1, 1, 1); 8254 MODULE_DEPEND(sym, pci, 1, 1, 1); 8255 8256 static const struct sym_pci_chip sym_pci_dev_table[] = { 8257 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8258 FE_ERL} 8259 , 8260 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8261 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8262 FE_BOF} 8263 , 8264 #else 8265 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8266 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8267 , 8268 #endif 8269 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8270 FE_BOF|FE_ERL} 8271 , 8272 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8273 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8274 , 8275 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8276 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8277 , 8278 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8279 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8280 , 8281 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8282 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8283 FE_RAM|FE_DIFF} 8284 , 8285 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8286 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8287 FE_RAM|FE_DIFF} 8288 , 8289 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8290 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8291 FE_RAM|FE_DIFF} 8292 , 8293 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8294 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8295 FE_RAM|FE_DIFF} 8296 , 8297 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8298 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8299 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8300 FE_RAM|FE_LCKFRQ} 8301 , 8302 #else 8303 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8304 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8305 FE_RAM|FE_LCKFRQ} 8306 , 8307 #endif 8308 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8309 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8310 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8311 , 8312 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8313 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8314 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8315 , 8316 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8317 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8318 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8319 FE_C10} 8320 , 8321 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8322 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8323 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8324 FE_C10|FE_U3EN} 8325 , 8326 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8327 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8328 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8329 FE_C10|FE_U3EN} 8330 , 8331 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8332 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8333 FE_RAM|FE_IO256|FE_LEDC} 8334 }; 8335 8336 /* 8337 * Look up the chip table. 8338 * 8339 * Return a pointer to the chip entry if found, 8340 * zero otherwise. 8341 */ 8342 static const struct sym_pci_chip * 8343 sym_find_pci_chip(device_t dev) 8344 { 8345 const struct sym_pci_chip *chip; 8346 int i; 8347 u_short device_id; 8348 u_char revision; 8349 8350 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8351 return NULL; 8352 8353 device_id = pci_get_device(dev); 8354 revision = pci_get_revid(dev); 8355 8356 for (i = 0; i < nitems(sym_pci_dev_table); i++) { 8357 chip = &sym_pci_dev_table[i]; 8358 if (device_id != chip->device_id) 8359 continue; 8360 if (revision > chip->revision_id) 8361 continue; 8362 return chip; 8363 } 8364 8365 return NULL; 8366 } 8367 8368 /* 8369 * Tell upper layer if the chip is supported. 8370 */ 8371 static int 8372 sym_pci_probe(device_t dev) 8373 { 8374 const struct sym_pci_chip *chip; 8375 8376 chip = sym_find_pci_chip(dev); 8377 if (chip && sym_find_firmware(chip)) { 8378 device_set_desc(dev, chip->name); 8379 return BUS_PROBE_DEFAULT; 8380 } 8381 return ENXIO; 8382 } 8383 8384 /* 8385 * Attach a sym53c8xx device. 8386 */ 8387 static int 8388 sym_pci_attach(device_t dev) 8389 { 8390 const struct sym_pci_chip *chip; 8391 u_short command; 8392 u_char cachelnsz; 8393 struct sym_hcb *np = NULL; 8394 struct sym_nvram nvram; 8395 const struct sym_fw *fw = NULL; 8396 int i; 8397 bus_dma_tag_t bus_dmat; 8398 8399 bus_dmat = bus_get_dma_tag(dev); 8400 8401 /* 8402 * Only probed devices should be attached. 8403 * We just enjoy being paranoid. :) 8404 */ 8405 chip = sym_find_pci_chip(dev); 8406 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8407 return (ENXIO); 8408 8409 /* 8410 * Allocate immediately the host control block, 8411 * since we are only expecting to succeed. :) 8412 * We keep track in the HCB of all the resources that 8413 * are to be released on error. 8414 */ 8415 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8416 if (np) 8417 np->bus_dmat = bus_dmat; 8418 else 8419 return (ENXIO); 8420 device_set_softc(dev, np); 8421 8422 SYM_LOCK_INIT(); 8423 8424 /* 8425 * Copy some useful infos to the HCB. 8426 */ 8427 np->hcb_ba = vtobus(np); 8428 np->verbose = bootverbose; 8429 np->device = dev; 8430 np->device_id = pci_get_device(dev); 8431 np->revision_id = pci_get_revid(dev); 8432 np->features = chip->features; 8433 np->clock_divn = chip->nr_divisor; 8434 np->maxoffs = chip->offset_max; 8435 np->maxburst = chip->burst_max; 8436 np->scripta_sz = fw->a_size; 8437 np->scriptb_sz = fw->b_size; 8438 np->fw_setup = fw->setup; 8439 np->fw_patch = fw->patch; 8440 np->fw_name = fw->name; 8441 8442 #ifdef __amd64__ 8443 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8444 "TARGET"); 8445 if (!np->target) 8446 goto attach_failed; 8447 #endif 8448 8449 /* 8450 * Initialize the CCB free and busy queues. 8451 */ 8452 sym_que_init(&np->free_ccbq); 8453 sym_que_init(&np->busy_ccbq); 8454 sym_que_init(&np->comp_ccbq); 8455 sym_que_init(&np->cam_ccbq); 8456 8457 /* 8458 * Allocate a tag for the DMA of user data. 8459 */ 8460 if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY, 8461 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 8462 BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY, 8463 0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) { 8464 device_printf(dev, "failed to create DMA tag.\n"); 8465 goto attach_failed; 8466 } 8467 8468 /* 8469 * Read and apply some fix-ups to the PCI COMMAND 8470 * register. We want the chip to be enabled for: 8471 * - BUS mastering 8472 * - PCI parity checking (reporting would also be fine) 8473 * - Write And Invalidate. 8474 */ 8475 command = pci_read_config(dev, PCIR_COMMAND, 2); 8476 command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN | 8477 PCIM_CMD_MWRICEN; 8478 pci_write_config(dev, PCIR_COMMAND, command, 2); 8479 8480 /* 8481 * Let the device know about the cache line size, 8482 * if it doesn't yet. 8483 */ 8484 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8485 if (!cachelnsz) { 8486 cachelnsz = 8; 8487 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8488 } 8489 8490 /* 8491 * Alloc/get/map/retrieve everything that deals with MMIO. 8492 */ 8493 i = SYM_PCI_MMIO; 8494 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, 8495 RF_ACTIVE); 8496 if (!np->mmio_res) { 8497 device_printf(dev, "failed to allocate MMIO resources\n"); 8498 goto attach_failed; 8499 } 8500 np->mmio_ba = rman_get_start(np->mmio_res); 8501 8502 /* 8503 * Allocate the IRQ. 8504 */ 8505 i = 0; 8506 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8507 RF_ACTIVE | RF_SHAREABLE); 8508 if (!np->irq_res) { 8509 device_printf(dev, "failed to allocate IRQ resource\n"); 8510 goto attach_failed; 8511 } 8512 8513 #ifdef SYM_CONF_IOMAPPED 8514 /* 8515 * User want us to use normal IO with PCI. 8516 * Alloc/get/map/retrieve everything that deals with IO. 8517 */ 8518 i = SYM_PCI_IO; 8519 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE); 8520 if (!np->io_res) { 8521 device_printf(dev, "failed to allocate IO resources\n"); 8522 goto attach_failed; 8523 } 8524 8525 #endif /* SYM_CONF_IOMAPPED */ 8526 8527 /* 8528 * If the chip has RAM. 8529 * Alloc/get/map/retrieve the corresponding resources. 8530 */ 8531 if (np->features & (FE_RAM|FE_RAM8K)) { 8532 int regs_id = SYM_PCI_RAM; 8533 if (np->features & FE_64BIT) 8534 regs_id = SYM_PCI_RAM64; 8535 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8536 ®s_id, RF_ACTIVE); 8537 if (!np->ram_res) { 8538 device_printf(dev,"failed to allocate RAM resources\n"); 8539 goto attach_failed; 8540 } 8541 np->ram_id = regs_id; 8542 np->ram_ba = rman_get_start(np->ram_res); 8543 } 8544 8545 /* 8546 * Save setting of some IO registers, so we will 8547 * be able to probe specific implementations. 8548 */ 8549 sym_save_initial_setting (np); 8550 8551 /* 8552 * Reset the chip now, since it has been reported 8553 * that SCSI clock calibration may not work properly 8554 * if the chip is currently active. 8555 */ 8556 sym_chip_reset (np); 8557 8558 /* 8559 * Try to read the user set-up. 8560 */ 8561 (void) sym_read_nvram(np, &nvram); 8562 8563 /* 8564 * Prepare controller and devices settings, according 8565 * to chip features, user set-up and driver set-up. 8566 */ 8567 (void) sym_prepare_setting(np, &nvram); 8568 8569 /* 8570 * Check the PCI clock frequency. 8571 * Must be performed after prepare_setting since it destroys 8572 * STEST1 that is used to probe for the clock doubler. 8573 */ 8574 i = sym_getpciclock(np); 8575 if (i > 37000) 8576 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8577 8578 /* 8579 * Allocate the start queue. 8580 */ 8581 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8582 if (!np->squeue) 8583 goto attach_failed; 8584 np->squeue_ba = vtobus(np->squeue); 8585 8586 /* 8587 * Allocate the done queue. 8588 */ 8589 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8590 if (!np->dqueue) 8591 goto attach_failed; 8592 np->dqueue_ba = vtobus(np->dqueue); 8593 8594 /* 8595 * Allocate the target bus address array. 8596 */ 8597 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8598 if (!np->targtbl) 8599 goto attach_failed; 8600 np->targtbl_ba = vtobus(np->targtbl); 8601 8602 /* 8603 * Allocate SCRIPTS areas. 8604 */ 8605 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8606 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8607 if (!np->scripta0 || !np->scriptb0) 8608 goto attach_failed; 8609 8610 /* 8611 * Allocate the CCBs. We need at least ONE. 8612 */ 8613 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8614 ; 8615 if (i < 1) 8616 goto attach_failed; 8617 8618 /* 8619 * Calculate BUS addresses where we are going 8620 * to load the SCRIPTS. 8621 */ 8622 np->scripta_ba = vtobus(np->scripta0); 8623 np->scriptb_ba = vtobus(np->scriptb0); 8624 np->scriptb0_ba = np->scriptb_ba; 8625 8626 if (np->ram_ba) { 8627 np->scripta_ba = np->ram_ba; 8628 if (np->features & FE_RAM8K) { 8629 np->ram_ws = 8192; 8630 np->scriptb_ba = np->scripta_ba + 4096; 8631 #ifdef __LP64__ 8632 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8633 #endif 8634 } 8635 else 8636 np->ram_ws = 4096; 8637 } 8638 8639 /* 8640 * Copy scripts to controller instance. 8641 */ 8642 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8643 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8644 8645 /* 8646 * Setup variable parts in scripts and compute 8647 * scripts bus addresses used from the C code. 8648 */ 8649 np->fw_setup(np, fw); 8650 8651 /* 8652 * Bind SCRIPTS with physical addresses usable by the 8653 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8654 */ 8655 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8656 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8657 8658 #ifdef SYM_CONF_IARB_SUPPORT 8659 /* 8660 * If user wants IARB to be set when we win arbitration 8661 * and have other jobs, compute the max number of consecutive 8662 * settings of IARB hints before we leave devices a chance to 8663 * arbitrate for reselection. 8664 */ 8665 #ifdef SYM_SETUP_IARB_MAX 8666 np->iarb_max = SYM_SETUP_IARB_MAX; 8667 #else 8668 np->iarb_max = 4; 8669 #endif 8670 #endif 8671 8672 /* 8673 * Prepare the idle and invalid task actions. 8674 */ 8675 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8676 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8677 np->idletask_ba = vtobus(&np->idletask); 8678 8679 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8680 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8681 np->notask_ba = vtobus(&np->notask); 8682 8683 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8684 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8685 np->bad_itl_ba = vtobus(&np->bad_itl); 8686 8687 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8688 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8689 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8690 8691 /* 8692 * Allocate and prepare the lun JUMP table that is used 8693 * for a target prior the probing of devices (bad lun table). 8694 * A private table will be allocated for the target on the 8695 * first INQUIRY response received. 8696 */ 8697 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8698 if (!np->badluntbl) 8699 goto attach_failed; 8700 8701 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8702 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8703 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8704 8705 /* 8706 * Prepare the bus address array that contains the bus 8707 * address of each target control block. 8708 * For now, assume all logical units are wrong. :) 8709 */ 8710 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8711 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8712 np->target[i].head.luntbl_sa = 8713 cpu_to_scr(vtobus(np->badluntbl)); 8714 np->target[i].head.lun0_sa = 8715 cpu_to_scr(vtobus(&np->badlun_sa)); 8716 } 8717 8718 /* 8719 * Now check the cache handling of the pci chipset. 8720 */ 8721 if (sym_snooptest (np)) { 8722 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8723 goto attach_failed; 8724 } 8725 8726 /* 8727 * Now deal with CAM. 8728 * Hopefully, we will succeed with that one.:) 8729 */ 8730 if (!sym_cam_attach(np)) 8731 goto attach_failed; 8732 8733 /* 8734 * Sigh! we are done. 8735 */ 8736 return 0; 8737 8738 /* 8739 * We have failed. 8740 * We will try to free all the resources we have 8741 * allocated, but if we are a boot device, this 8742 * will not help that much.;) 8743 */ 8744 attach_failed: 8745 if (np) 8746 sym_pci_free(np); 8747 return ENXIO; 8748 } 8749 8750 /* 8751 * Free everything that have been allocated for this device. 8752 */ 8753 static void sym_pci_free(hcb_p np) 8754 { 8755 SYM_QUEHEAD *qp; 8756 ccb_p cp; 8757 tcb_p tp; 8758 lcb_p lp; 8759 int target, lun; 8760 8761 /* 8762 * First free CAM resources. 8763 */ 8764 sym_cam_free(np); 8765 8766 /* 8767 * Now every should be quiet for us to 8768 * free other resources. 8769 */ 8770 if (np->ram_res) 8771 bus_release_resource(np->device, SYS_RES_MEMORY, 8772 np->ram_id, np->ram_res); 8773 if (np->mmio_res) 8774 bus_release_resource(np->device, SYS_RES_MEMORY, 8775 SYM_PCI_MMIO, np->mmio_res); 8776 if (np->io_res) 8777 bus_release_resource(np->device, SYS_RES_IOPORT, 8778 SYM_PCI_IO, np->io_res); 8779 if (np->irq_res) 8780 bus_release_resource(np->device, SYS_RES_IRQ, 8781 0, np->irq_res); 8782 8783 if (np->scriptb0) 8784 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8785 if (np->scripta0) 8786 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8787 if (np->squeue) 8788 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8789 if (np->dqueue) 8790 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8791 8792 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8793 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8794 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8795 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8796 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8797 } 8798 8799 if (np->badluntbl) 8800 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8801 8802 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8803 tp = &np->target[target]; 8804 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8805 lp = sym_lp(tp, lun); 8806 if (!lp) 8807 continue; 8808 if (lp->itlq_tbl) 8809 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8810 "ITLQ_TBL"); 8811 if (lp->cb_tags) 8812 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8813 "CB_TAGS"); 8814 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8815 } 8816 #if SYM_CONF_MAX_LUN > 1 8817 if (tp->lunmp) 8818 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8819 "LUNMP"); 8820 #endif 8821 } 8822 #ifdef __amd64__ 8823 if (np->target) 8824 sym_mfree_dma(np->target, 8825 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8826 #endif 8827 if (np->targtbl) 8828 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8829 if (np->data_dmat) 8830 bus_dma_tag_destroy(np->data_dmat); 8831 if (SYM_LOCK_INITIALIZED() != 0) 8832 SYM_LOCK_DESTROY(); 8833 device_set_softc(np->device, NULL); 8834 sym_mfree_dma(np, sizeof(*np), "HCB"); 8835 } 8836 8837 /* 8838 * Allocate CAM resources and register a bus to CAM. 8839 */ 8840 static int sym_cam_attach(hcb_p np) 8841 { 8842 struct cam_devq *devq = NULL; 8843 struct cam_sim *sim = NULL; 8844 struct cam_path *path = NULL; 8845 int err; 8846 8847 /* 8848 * Establish our interrupt handler. 8849 */ 8850 err = bus_setup_intr(np->device, np->irq_res, 8851 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8852 NULL, sym_intr, np, &np->intr); 8853 if (err) { 8854 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8855 err); 8856 goto fail; 8857 } 8858 8859 /* 8860 * Create the device queue for our sym SIM. 8861 */ 8862 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8863 if (!devq) 8864 goto fail; 8865 8866 /* 8867 * Construct our SIM entry. 8868 */ 8869 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 8870 device_get_unit(np->device), 8871 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 8872 if (!sim) 8873 goto fail; 8874 8875 SYM_LOCK(); 8876 8877 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 8878 goto fail; 8879 np->sim = sim; 8880 sim = NULL; 8881 8882 if (xpt_create_path(&path, NULL, 8883 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 8884 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 8885 goto fail; 8886 } 8887 np->path = path; 8888 8889 /* 8890 * Establish our async notification handler. 8891 */ 8892 if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) != 8893 CAM_REQ_CMP) 8894 goto fail; 8895 8896 /* 8897 * Start the chip now, without resetting the BUS, since 8898 * it seems that this must stay under control of CAM. 8899 * With LVD/SE capable chips and BUS in SE mode, we may 8900 * get a spurious SMBC interrupt. 8901 */ 8902 sym_init (np, 0); 8903 8904 SYM_UNLOCK(); 8905 8906 return 1; 8907 fail: 8908 if (sim) 8909 cam_sim_free(sim, FALSE); 8910 if (devq) 8911 cam_simq_free(devq); 8912 8913 SYM_UNLOCK(); 8914 8915 sym_cam_free(np); 8916 8917 return 0; 8918 } 8919 8920 /* 8921 * Free everything that deals with CAM. 8922 */ 8923 static void sym_cam_free(hcb_p np) 8924 { 8925 8926 SYM_LOCK_ASSERT(MA_NOTOWNED); 8927 8928 if (np->intr) { 8929 bus_teardown_intr(np->device, np->irq_res, np->intr); 8930 np->intr = NULL; 8931 } 8932 8933 SYM_LOCK(); 8934 8935 if (np->sim) { 8936 xpt_bus_deregister(cam_sim_path(np->sim)); 8937 cam_sim_free(np->sim, /*free_devq*/ TRUE); 8938 np->sim = NULL; 8939 } 8940 if (np->path) { 8941 xpt_free_path(np->path); 8942 np->path = NULL; 8943 } 8944 8945 SYM_UNLOCK(); 8946 } 8947 8948 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 8949 8950 /* 8951 * Get host setup from NVRAM. 8952 */ 8953 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 8954 { 8955 #ifdef SYM_CONF_NVRAM_SUPPORT 8956 /* 8957 * Get parity checking, host ID, verbose mode 8958 * and miscellaneous host flags from NVRAM. 8959 */ 8960 switch(nvram->type) { 8961 case SYM_SYMBIOS_NVRAM: 8962 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 8963 np->rv_scntl0 &= ~0x0a; 8964 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 8965 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 8966 np->verbose += 1; 8967 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 8968 np->usrflags |= SYM_SCAN_TARGETS_HILO; 8969 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 8970 np->usrflags |= SYM_AVOID_BUS_RESET; 8971 break; 8972 case SYM_TEKRAM_NVRAM: 8973 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 8974 break; 8975 default: 8976 break; 8977 } 8978 #endif 8979 } 8980 8981 /* 8982 * Get target setup from NVRAM. 8983 */ 8984 #ifdef SYM_CONF_NVRAM_SUPPORT 8985 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 8986 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 8987 #endif 8988 8989 static void 8990 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 8991 { 8992 #ifdef SYM_CONF_NVRAM_SUPPORT 8993 switch(nvp->type) { 8994 case SYM_SYMBIOS_NVRAM: 8995 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 8996 break; 8997 case SYM_TEKRAM_NVRAM: 8998 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 8999 break; 9000 default: 9001 break; 9002 } 9003 #endif 9004 } 9005 9006 #ifdef SYM_CONF_NVRAM_SUPPORT 9007 /* 9008 * Get target set-up from Symbios format NVRAM. 9009 */ 9010 static void 9011 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9012 { 9013 tcb_p tp = &np->target[target]; 9014 Symbios_target *tn = &nvram->target[target]; 9015 9016 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9017 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9018 tp->usrtags = 9019 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9020 9021 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9022 tp->usrflags &= ~SYM_DISC_ENABLED; 9023 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9024 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9025 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9026 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9027 } 9028 9029 /* 9030 * Get target set-up from Tekram format NVRAM. 9031 */ 9032 static void 9033 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9034 { 9035 tcb_p tp = &np->target[target]; 9036 struct Tekram_target *tn = &nvram->target[target]; 9037 int i; 9038 9039 if (tn->flags & TEKRAM_SYNC_NEGO) { 9040 i = tn->sync_index & 0xf; 9041 tp->tinfo.user.period = Tekram_sync[i]; 9042 } 9043 9044 tp->tinfo.user.width = 9045 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9046 9047 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9048 tp->usrtags = 2 << nvram->max_tags_index; 9049 } 9050 9051 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9052 tp->usrflags |= SYM_DISC_ENABLED; 9053 9054 /* If any device does not support parity, we will not use this option */ 9055 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9056 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9057 } 9058 9059 #ifdef SYM_CONF_DEBUG_NVRAM 9060 /* 9061 * Dump Symbios format NVRAM for debugging purpose. 9062 */ 9063 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9064 { 9065 int i; 9066 9067 /* display Symbios nvram host data */ 9068 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9069 sym_name(np), nvram->host_id & 0x0f, 9070 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9071 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9072 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9073 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9074 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9075 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9076 9077 /* display Symbios nvram drive data */ 9078 for (i = 0 ; i < 15 ; i++) { 9079 struct Symbios_target *tn = &nvram->target[i]; 9080 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9081 sym_name(np), i, 9082 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9083 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9084 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9085 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9086 tn->bus_width, 9087 tn->sync_period / 4, 9088 tn->timeout); 9089 } 9090 } 9091 9092 /* 9093 * Dump TEKRAM format NVRAM for debugging purpose. 9094 */ 9095 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9096 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9097 { 9098 int i, tags, boot_delay; 9099 char *rem; 9100 9101 /* display Tekram nvram host data */ 9102 tags = 2 << nvram->max_tags_index; 9103 boot_delay = 0; 9104 if (nvram->boot_delay_index < 6) 9105 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9106 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9107 default: 9108 case 0: rem = ""; break; 9109 case 1: rem = " REMOVABLE=boot device"; break; 9110 case 2: rem = " REMOVABLE=all"; break; 9111 } 9112 9113 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9114 sym_name(np), nvram->host_id & 0x0f, 9115 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9116 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9117 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9118 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9119 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9120 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9121 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9122 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9123 rem, boot_delay, tags); 9124 9125 /* display Tekram nvram drive data */ 9126 for (i = 0; i <= 15; i++) { 9127 int sync, j; 9128 struct Tekram_target *tn = &nvram->target[i]; 9129 j = tn->sync_index & 0xf; 9130 sync = Tekram_sync[j]; 9131 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9132 sym_name(np), i, 9133 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9134 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9135 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9136 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9137 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9138 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9139 sync); 9140 } 9141 } 9142 #endif /* SYM_CONF_DEBUG_NVRAM */ 9143 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9144 9145 /* 9146 * Try reading Symbios or Tekram NVRAM 9147 */ 9148 #ifdef SYM_CONF_NVRAM_SUPPORT 9149 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9150 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9151 #endif 9152 9153 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9154 { 9155 #ifdef SYM_CONF_NVRAM_SUPPORT 9156 /* 9157 * Try to read SYMBIOS nvram. 9158 * Try to read TEKRAM nvram if Symbios nvram not found. 9159 */ 9160 if (SYM_SETUP_SYMBIOS_NVRAM && 9161 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9162 nvp->type = SYM_SYMBIOS_NVRAM; 9163 #ifdef SYM_CONF_DEBUG_NVRAM 9164 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9165 #endif 9166 } 9167 else if (SYM_SETUP_TEKRAM_NVRAM && 9168 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9169 nvp->type = SYM_TEKRAM_NVRAM; 9170 #ifdef SYM_CONF_DEBUG_NVRAM 9171 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9172 #endif 9173 } 9174 else 9175 nvp->type = 0; 9176 #else 9177 nvp->type = 0; 9178 #endif 9179 return nvp->type; 9180 } 9181 9182 #ifdef SYM_CONF_NVRAM_SUPPORT 9183 /* 9184 * 24C16 EEPROM reading. 9185 * 9186 * GPOI0 - data in/data out 9187 * GPIO1 - clock 9188 * Symbios NVRAM wiring now also used by Tekram. 9189 */ 9190 9191 #define SET_BIT 0 9192 #define CLR_BIT 1 9193 #define SET_CLK 2 9194 #define CLR_CLK 3 9195 9196 /* 9197 * Set/clear data/clock bit in GPIO0 9198 */ 9199 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9200 int bit_mode) 9201 { 9202 UDELAY (5); 9203 switch (bit_mode){ 9204 case SET_BIT: 9205 *gpreg |= write_bit; 9206 break; 9207 case CLR_BIT: 9208 *gpreg &= 0xfe; 9209 break; 9210 case SET_CLK: 9211 *gpreg |= 0x02; 9212 break; 9213 case CLR_CLK: 9214 *gpreg &= 0xfd; 9215 break; 9216 } 9217 OUTB (nc_gpreg, *gpreg); 9218 UDELAY (5); 9219 } 9220 9221 /* 9222 * Send START condition to NVRAM to wake it up. 9223 */ 9224 static void S24C16_start(hcb_p np, u_char *gpreg) 9225 { 9226 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9227 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9228 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9229 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9230 } 9231 9232 /* 9233 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9234 */ 9235 static void S24C16_stop(hcb_p np, u_char *gpreg) 9236 { 9237 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9238 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9239 } 9240 9241 /* 9242 * Read or write a bit to the NVRAM, 9243 * read if GPIO0 input else write if GPIO0 output 9244 */ 9245 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9246 u_char *gpreg) 9247 { 9248 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9249 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9250 if (read_bit) 9251 *read_bit = INB (nc_gpreg); 9252 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9253 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9254 } 9255 9256 /* 9257 * Output an ACK to the NVRAM after reading, 9258 * change GPIO0 to output and when done back to an input 9259 */ 9260 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9261 u_char *gpcntl) 9262 { 9263 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9264 S24C16_do_bit(np, 0, write_bit, gpreg); 9265 OUTB (nc_gpcntl, *gpcntl); 9266 } 9267 9268 /* 9269 * Input an ACK from NVRAM after writing, 9270 * change GPIO0 to input and when done back to an output 9271 */ 9272 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9273 u_char *gpcntl) 9274 { 9275 OUTB (nc_gpcntl, *gpcntl | 0x01); 9276 S24C16_do_bit(np, read_bit, 1, gpreg); 9277 OUTB (nc_gpcntl, *gpcntl); 9278 } 9279 9280 /* 9281 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9282 * GPIO0 must already be set as an output 9283 */ 9284 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9285 u_char *gpreg, u_char *gpcntl) 9286 { 9287 int x; 9288 9289 for (x = 0; x < 8; x++) 9290 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9291 9292 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9293 } 9294 9295 /* 9296 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9297 * GPIO0 must already be set as an input 9298 */ 9299 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9300 u_char *gpreg, u_char *gpcntl) 9301 { 9302 int x; 9303 u_char read_bit; 9304 9305 *read_data = 0; 9306 for (x = 0; x < 8; x++) { 9307 S24C16_do_bit(np, &read_bit, 1, gpreg); 9308 *read_data |= ((read_bit & 0x01) << (7 - x)); 9309 } 9310 9311 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9312 } 9313 9314 /* 9315 * Read 'len' bytes starting at 'offset'. 9316 */ 9317 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9318 { 9319 u_char gpcntl, gpreg; 9320 u_char old_gpcntl, old_gpreg; 9321 u_char ack_data; 9322 int retv = 1; 9323 int x; 9324 9325 /* save current state of GPCNTL and GPREG */ 9326 old_gpreg = INB (nc_gpreg); 9327 old_gpcntl = INB (nc_gpcntl); 9328 gpcntl = old_gpcntl & 0x1c; 9329 9330 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9331 OUTB (nc_gpreg, old_gpreg); 9332 OUTB (nc_gpcntl, gpcntl); 9333 9334 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9335 gpreg = old_gpreg; 9336 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9337 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9338 9339 /* now set NVRAM inactive with GPIO0/1 both high */ 9340 S24C16_stop(np, &gpreg); 9341 9342 /* activate NVRAM */ 9343 S24C16_start(np, &gpreg); 9344 9345 /* write device code and random address MSB */ 9346 S24C16_write_byte(np, &ack_data, 9347 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9348 if (ack_data & 0x01) 9349 goto out; 9350 9351 /* write random address LSB */ 9352 S24C16_write_byte(np, &ack_data, 9353 offset & 0xff, &gpreg, &gpcntl); 9354 if (ack_data & 0x01) 9355 goto out; 9356 9357 /* regenerate START state to set up for reading */ 9358 S24C16_start(np, &gpreg); 9359 9360 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9361 S24C16_write_byte(np, &ack_data, 9362 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9363 if (ack_data & 0x01) 9364 goto out; 9365 9366 /* now set up GPIO0 for inputting data */ 9367 gpcntl |= 0x01; 9368 OUTB (nc_gpcntl, gpcntl); 9369 9370 /* input all requested data - only part of total NVRAM */ 9371 for (x = 0; x < len; x++) 9372 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9373 9374 /* finally put NVRAM back in inactive mode */ 9375 gpcntl &= 0xfe; 9376 OUTB (nc_gpcntl, gpcntl); 9377 S24C16_stop(np, &gpreg); 9378 retv = 0; 9379 out: 9380 /* return GPIO0/1 to original states after having accessed NVRAM */ 9381 OUTB (nc_gpcntl, old_gpcntl); 9382 OUTB (nc_gpreg, old_gpreg); 9383 9384 return retv; 9385 } 9386 9387 #undef SET_BIT /* 0 */ 9388 #undef CLR_BIT /* 1 */ 9389 #undef SET_CLK /* 2 */ 9390 #undef CLR_CLK /* 3 */ 9391 9392 /* 9393 * Try reading Symbios NVRAM. 9394 * Return 0 if OK. 9395 */ 9396 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9397 { 9398 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9399 u_char *data = (u_char *) nvram; 9400 int len = sizeof(*nvram); 9401 u_short csum; 9402 int x; 9403 9404 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9405 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9406 return 1; 9407 9408 /* check valid NVRAM signature, verify byte count and checksum */ 9409 if (nvram->type != 0 || 9410 bcmp(nvram->trailer, Symbios_trailer, 6) || 9411 nvram->byte_count != len - 12) 9412 return 1; 9413 9414 /* verify checksum */ 9415 for (x = 6, csum = 0; x < len - 6; x++) 9416 csum += data[x]; 9417 if (csum != nvram->checksum) 9418 return 1; 9419 9420 return 0; 9421 } 9422 9423 /* 9424 * 93C46 EEPROM reading. 9425 * 9426 * GPOI0 - data in 9427 * GPIO1 - data out 9428 * GPIO2 - clock 9429 * GPIO4 - chip select 9430 * 9431 * Used by Tekram. 9432 */ 9433 9434 /* 9435 * Pulse clock bit in GPIO0 9436 */ 9437 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9438 { 9439 OUTB (nc_gpreg, *gpreg | 0x04); 9440 UDELAY (2); 9441 OUTB (nc_gpreg, *gpreg); 9442 } 9443 9444 /* 9445 * Read bit from NVRAM 9446 */ 9447 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9448 { 9449 UDELAY (2); 9450 T93C46_Clk(np, gpreg); 9451 *read_bit = INB (nc_gpreg); 9452 } 9453 9454 /* 9455 * Write bit to GPIO0 9456 */ 9457 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9458 { 9459 if (write_bit & 0x01) 9460 *gpreg |= 0x02; 9461 else 9462 *gpreg &= 0xfd; 9463 9464 *gpreg |= 0x10; 9465 9466 OUTB (nc_gpreg, *gpreg); 9467 UDELAY (2); 9468 9469 T93C46_Clk(np, gpreg); 9470 } 9471 9472 /* 9473 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9474 */ 9475 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9476 { 9477 *gpreg &= 0xef; 9478 OUTB (nc_gpreg, *gpreg); 9479 UDELAY (2); 9480 9481 T93C46_Clk(np, gpreg); 9482 } 9483 9484 /* 9485 * Send read command and address to NVRAM 9486 */ 9487 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9488 u_char *read_bit, u_char *gpreg) 9489 { 9490 int x; 9491 9492 /* send 9 bits, start bit (1), command (2), address (6) */ 9493 for (x = 0; x < 9; x++) 9494 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9495 9496 *read_bit = INB (nc_gpreg); 9497 } 9498 9499 /* 9500 * READ 2 bytes from the NVRAM 9501 */ 9502 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9503 { 9504 int x; 9505 u_char read_bit; 9506 9507 *nvram_data = 0; 9508 for (x = 0; x < 16; x++) { 9509 T93C46_Read_Bit(np, &read_bit, gpreg); 9510 9511 if (read_bit & 0x01) 9512 *nvram_data |= (0x01 << (15 - x)); 9513 else 9514 *nvram_data &= ~(0x01 << (15 - x)); 9515 } 9516 } 9517 9518 /* 9519 * Read Tekram NvRAM data. 9520 */ 9521 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9522 { 9523 u_char read_bit; 9524 int x; 9525 9526 for (x = 0; x < len; x++) { 9527 /* output read command and address */ 9528 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9529 if (read_bit & 0x01) 9530 return 1; /* Bad */ 9531 T93C46_Read_Word(np, &data[x], gpreg); 9532 T93C46_Stop(np, gpreg); 9533 } 9534 9535 return 0; 9536 } 9537 9538 /* 9539 * Try reading 93C46 Tekram NVRAM. 9540 */ 9541 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9542 { 9543 u_char gpcntl, gpreg; 9544 u_char old_gpcntl, old_gpreg; 9545 int retv = 1; 9546 9547 /* save current state of GPCNTL and GPREG */ 9548 old_gpreg = INB (nc_gpreg); 9549 old_gpcntl = INB (nc_gpcntl); 9550 9551 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9552 1/2/4 out */ 9553 gpreg = old_gpreg & 0xe9; 9554 OUTB (nc_gpreg, gpreg); 9555 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9556 OUTB (nc_gpcntl, gpcntl); 9557 9558 /* input all of NVRAM, 64 words */ 9559 retv = T93C46_Read_Data(np, (u_short *) nvram, 9560 sizeof(*nvram) / sizeof(short), &gpreg); 9561 9562 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9563 OUTB (nc_gpcntl, old_gpcntl); 9564 OUTB (nc_gpreg, old_gpreg); 9565 9566 return retv; 9567 } 9568 9569 /* 9570 * Try reading Tekram NVRAM. 9571 * Return 0 if OK. 9572 */ 9573 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9574 { 9575 u_char *data = (u_char *) nvram; 9576 int len = sizeof(*nvram); 9577 u_short csum; 9578 int x; 9579 9580 switch (np->device_id) { 9581 case PCI_ID_SYM53C885: 9582 case PCI_ID_SYM53C895: 9583 case PCI_ID_SYM53C896: 9584 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9585 data, len); 9586 break; 9587 case PCI_ID_SYM53C875: 9588 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9589 data, len); 9590 if (!x) 9591 break; 9592 default: 9593 x = sym_read_T93C46_nvram(np, nvram); 9594 break; 9595 } 9596 if (x) 9597 return 1; 9598 9599 /* verify checksum */ 9600 for (x = 0, csum = 0; x < len - 1; x += 2) 9601 csum += data[x] + (data[x+1] << 8); 9602 if (csum != 0x1234) 9603 return 1; 9604 9605 return 0; 9606 } 9607 9608 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9609