1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 74 #include <sys/systm.h> 75 #include <sys/malloc.h> 76 #include <sys/endian.h> 77 #include <sys/kernel.h> 78 #include <sys/lock.h> 79 #include <sys/mutex.h> 80 #include <sys/module.h> 81 #include <sys/bus.h> 82 83 #include <sys/proc.h> 84 85 #include <dev/pci/pcireg.h> 86 #include <dev/pci/pcivar.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/cam_ccb.h> 94 #include <cam/cam_sim.h> 95 #include <cam/cam_xpt_sim.h> 96 #include <cam/cam_debug.h> 97 98 #include <cam/scsi/scsi_all.h> 99 #include <cam/scsi/scsi_message.h> 100 101 #include <vm/vm.h> 102 #include <vm/vm_param.h> 103 #include <vm/pmap.h> 104 105 /* Short and quite clear integer types */ 106 typedef int8_t s8; 107 typedef int16_t s16; 108 typedef int32_t s32; 109 typedef u_int8_t u8; 110 typedef u_int16_t u16; 111 typedef u_int32_t u32; 112 113 /* 114 * Driver definitions. 115 */ 116 #include <dev/sym/sym_defs.h> 117 #include <dev/sym/sym_fw.h> 118 119 /* 120 * IA32 architecture does not reorder STORES and prevents 121 * LOADS from passing STORES. It is called `program order' 122 * by Intel and allows device drivers to deal with memory 123 * ordering by only ensuring that the code is not reordered 124 * by the compiler when ordering is required. 125 * Other architectures implement a weaker ordering that 126 * requires memory barriers (and also IO barriers when they 127 * make sense) to be used. 128 */ 129 130 #if defined __i386__ || defined __amd64__ 131 #define MEMORY_BARRIER() do { ; } while(0) 132 #elif defined __powerpc__ 133 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 134 #elif defined __ia64__ 135 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 136 #elif defined __sparc64__ 137 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 138 #else 139 #error "Not supported platform" 140 #endif 141 142 /* 143 * A la VMS/CAM-3 queue management. 144 */ 145 146 typedef struct sym_quehead { 147 struct sym_quehead *flink; /* Forward pointer */ 148 struct sym_quehead *blink; /* Backward pointer */ 149 } SYM_QUEHEAD; 150 151 #define sym_que_init(ptr) do { \ 152 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 153 } while (0) 154 155 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 156 { 157 return (head->flink == head) ? NULL : head->flink; 158 } 159 160 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 161 { 162 return (head->blink == head) ? NULL : head->blink; 163 } 164 165 static __inline void __sym_que_add(struct sym_quehead * new, 166 struct sym_quehead * blink, 167 struct sym_quehead * flink) 168 { 169 flink->blink = new; 170 new->flink = flink; 171 new->blink = blink; 172 blink->flink = new; 173 } 174 175 static __inline void __sym_que_del(struct sym_quehead * blink, 176 struct sym_quehead * flink) 177 { 178 flink->blink = blink; 179 blink->flink = flink; 180 } 181 182 static __inline int sym_que_empty(struct sym_quehead *head) 183 { 184 return head->flink == head; 185 } 186 187 static __inline void sym_que_splice(struct sym_quehead *list, 188 struct sym_quehead *head) 189 { 190 struct sym_quehead *first = list->flink; 191 192 if (first != list) { 193 struct sym_quehead *last = list->blink; 194 struct sym_quehead *at = head->flink; 195 196 first->blink = head; 197 head->flink = first; 198 199 last->flink = at; 200 at->blink = last; 201 } 202 } 203 204 #define sym_que_entry(ptr, type, member) \ 205 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 206 207 208 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 209 210 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 211 212 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 213 214 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 215 { 216 struct sym_quehead *elem = head->flink; 217 218 if (elem != head) 219 __sym_que_del(head, elem->flink); 220 else 221 elem = NULL; 222 return elem; 223 } 224 225 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 226 227 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 228 { 229 struct sym_quehead *elem = head->blink; 230 231 if (elem != head) 232 __sym_que_del(elem->blink, head); 233 else 234 elem = NULL; 235 return elem; 236 } 237 238 /* 239 * This one may be useful. 240 */ 241 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 242 for (qp = (head)->flink; qp != (head); qp = qp->flink) 243 /* 244 * FreeBSD does not offer our kind of queue in the CAM CCB. 245 * So, we have to cast. 246 */ 247 #define sym_qptr(p) ((struct sym_quehead *) (p)) 248 249 /* 250 * Simple bitmap operations. 251 */ 252 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 253 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 254 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 255 256 /* 257 * Number of tasks per device we want to handle. 258 */ 259 #if SYM_CONF_MAX_TAG_ORDER > 8 260 #error "more than 256 tags per logical unit not allowed." 261 #endif 262 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 263 264 /* 265 * Donnot use more tasks that we can handle. 266 */ 267 #ifndef SYM_CONF_MAX_TAG 268 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 269 #endif 270 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 271 #undef SYM_CONF_MAX_TAG 272 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 273 #endif 274 275 /* 276 * This one means 'NO TAG for this job' 277 */ 278 #define NO_TAG (256) 279 280 /* 281 * Number of SCSI targets. 282 */ 283 #if SYM_CONF_MAX_TARGET > 16 284 #error "more than 16 targets not allowed." 285 #endif 286 287 /* 288 * Number of logical units per target. 289 */ 290 #if SYM_CONF_MAX_LUN > 64 291 #error "more than 64 logical units per target not allowed." 292 #endif 293 294 /* 295 * Asynchronous pre-scaler (ns). Shall be 40 for 296 * the SCSI timings to be compliant. 297 */ 298 #define SYM_CONF_MIN_ASYNC (40) 299 300 /* 301 * Number of entries in the START and DONE queues. 302 * 303 * We limit to 1 PAGE in order to succeed allocation of 304 * these queues. Each entry is 8 bytes long (2 DWORDS). 305 */ 306 #ifdef SYM_CONF_MAX_START 307 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 308 #else 309 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 310 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 311 #endif 312 313 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 314 #undef SYM_CONF_MAX_QUEUE 315 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 316 #undef SYM_CONF_MAX_START 317 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 318 #endif 319 320 /* 321 * For this one, we want a short name :-) 322 */ 323 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 324 325 /* 326 * Active debugging tags and verbosity. 327 */ 328 #define DEBUG_ALLOC (0x0001) 329 #define DEBUG_PHASE (0x0002) 330 #define DEBUG_POLL (0x0004) 331 #define DEBUG_QUEUE (0x0008) 332 #define DEBUG_RESULT (0x0010) 333 #define DEBUG_SCATTER (0x0020) 334 #define DEBUG_SCRIPT (0x0040) 335 #define DEBUG_TINY (0x0080) 336 #define DEBUG_TIMING (0x0100) 337 #define DEBUG_NEGO (0x0200) 338 #define DEBUG_TAGS (0x0400) 339 #define DEBUG_POINTER (0x0800) 340 341 #if 0 342 static int sym_debug = 0; 343 #define DEBUG_FLAGS sym_debug 344 #else 345 /* #define DEBUG_FLAGS (0x0631) */ 346 #define DEBUG_FLAGS (0x0000) 347 348 #endif 349 #define sym_verbose (np->verbose) 350 351 /* 352 * Insert a delay in micro-seconds and milli-seconds. 353 */ 354 static void UDELAY(int us) { DELAY(us); } 355 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 356 357 /* 358 * Simple power of two buddy-like allocator. 359 * 360 * This simple code is not intended to be fast, but to 361 * provide power of 2 aligned memory allocations. 362 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 363 * this allocator allows simple and fast address calculations 364 * from the SCRIPTS code. In addition, cache line alignment 365 * is guaranteed for power of 2 cache line size. 366 * 367 * This allocator has been developped for the Linux sym53c8xx 368 * driver, since this O/S does not provide naturally aligned 369 * allocations. 370 * It has the advantage of allowing the driver to use private 371 * pages of memory that will be useful if we ever need to deal 372 * with IO MMUs for PCI. 373 */ 374 375 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 376 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 377 #if 0 378 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 379 #endif 380 #define MEMO_WARN 1 381 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 382 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 383 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 384 385 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 386 #define free_pages(p) free((p), M_DEVBUF) 387 388 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 389 390 typedef struct m_link { /* Link between free memory chunks */ 391 struct m_link *next; 392 } m_link_s; 393 394 typedef struct m_vtob { /* Virtual to Bus address translation */ 395 struct m_vtob *next; 396 bus_dmamap_t dmamap; /* Map for this chunk */ 397 m_addr_t vaddr; /* Virtual address */ 398 m_addr_t baddr; /* Bus physical address */ 399 } m_vtob_s; 400 /* Hash this stuff a bit to speed up translations */ 401 #define VTOB_HASH_SHIFT 5 402 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 403 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 404 #define VTOB_HASH_CODE(m) \ 405 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 406 407 typedef struct m_pool { /* Memory pool of a given kind */ 408 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 409 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 410 m_addr_t (*getp)(struct m_pool *); 411 #ifdef MEMO_FREE_UNUSED 412 void (*freep)(struct m_pool *, m_addr_t); 413 #endif 414 #define M_GETP() mp->getp(mp) 415 #define M_FREEP(p) mp->freep(mp, p) 416 int nump; 417 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 418 struct m_pool *next; 419 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 420 } m_pool_s; 421 422 static void *___sym_malloc(m_pool_s *mp, int size) 423 { 424 int i = 0; 425 int s = (1 << MEMO_SHIFT); 426 int j; 427 m_addr_t a; 428 m_link_s *h = mp->h; 429 430 if (size > MEMO_CLUSTER_SIZE) 431 return NULL; 432 433 while (size > s) { 434 s <<= 1; 435 ++i; 436 } 437 438 j = i; 439 while (!h[j].next) { 440 if (s == MEMO_CLUSTER_SIZE) { 441 h[j].next = (m_link_s *) M_GETP(); 442 if (h[j].next) 443 h[j].next->next = NULL; 444 break; 445 } 446 ++j; 447 s <<= 1; 448 } 449 a = (m_addr_t) h[j].next; 450 if (a) { 451 h[j].next = h[j].next->next; 452 while (j > i) { 453 j -= 1; 454 s >>= 1; 455 h[j].next = (m_link_s *) (a+s); 456 h[j].next->next = NULL; 457 } 458 } 459 #ifdef DEBUG 460 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 461 #endif 462 return (void *) a; 463 } 464 465 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 466 { 467 int i = 0; 468 int s = (1 << MEMO_SHIFT); 469 m_link_s *q; 470 m_addr_t a, b; 471 m_link_s *h = mp->h; 472 473 #ifdef DEBUG 474 printf("___sym_mfree(%p, %d)\n", ptr, size); 475 #endif 476 477 if (size > MEMO_CLUSTER_SIZE) 478 return; 479 480 while (size > s) { 481 s <<= 1; 482 ++i; 483 } 484 485 a = (m_addr_t) ptr; 486 487 while (1) { 488 #ifdef MEMO_FREE_UNUSED 489 if (s == MEMO_CLUSTER_SIZE) { 490 M_FREEP(a); 491 break; 492 } 493 #endif 494 b = a ^ s; 495 q = &h[i]; 496 while (q->next && q->next != (m_link_s *) b) { 497 q = q->next; 498 } 499 if (!q->next) { 500 ((m_link_s *) a)->next = h[i].next; 501 h[i].next = (m_link_s *) a; 502 break; 503 } 504 q->next = q->next->next; 505 a = a & b; 506 s <<= 1; 507 ++i; 508 } 509 } 510 511 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 512 { 513 void *p; 514 515 p = ___sym_malloc(mp, size); 516 517 if (DEBUG_FLAGS & DEBUG_ALLOC) 518 printf ("new %-10s[%4d] @%p.\n", name, size, p); 519 520 if (p) 521 bzero(p, size); 522 else if (uflags & MEMO_WARN) 523 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 524 525 return p; 526 } 527 528 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 529 530 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 531 { 532 if (DEBUG_FLAGS & DEBUG_ALLOC) 533 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 534 535 ___sym_mfree(mp, ptr, size); 536 537 } 538 539 /* 540 * Default memory pool we donnot need to involve in DMA. 541 */ 542 /* 543 * With the `bus dma abstraction', we use a separate pool for 544 * memory we donnot need to involve in DMA. 545 */ 546 static m_addr_t ___mp0_getp(m_pool_s *mp) 547 { 548 m_addr_t m = (m_addr_t) get_pages(); 549 if (m) 550 ++mp->nump; 551 return m; 552 } 553 554 #ifdef MEMO_FREE_UNUSED 555 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 556 { 557 free_pages(m); 558 --mp->nump; 559 } 560 #endif 561 562 #ifdef MEMO_FREE_UNUSED 563 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 564 #else 565 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 566 #endif 567 568 569 /* 570 * Actual memory allocation routine for non-DMAed memory. 571 */ 572 static void *sym_calloc(int size, char *name) 573 { 574 void *m; 575 /* Lock */ 576 m = __sym_calloc(&mp0, size, name); 577 /* Unlock */ 578 return m; 579 } 580 581 /* 582 * Actual memory allocation routine for non-DMAed memory. 583 */ 584 static void sym_mfree(void *ptr, int size, char *name) 585 { 586 /* Lock */ 587 __sym_mfree(&mp0, ptr, size, name); 588 /* Unlock */ 589 } 590 591 /* 592 * DMAable pools. 593 */ 594 /* 595 * With `bus dma abstraction', we use a separate pool per parent 596 * BUS handle. A reverse table (hashed) is maintained for virtual 597 * to BUS address translation. 598 */ 599 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 600 { 601 bus_addr_t *baddr; 602 baddr = (bus_addr_t *)arg; 603 *baddr = segs->ds_addr; 604 } 605 606 static m_addr_t ___dma_getp(m_pool_s *mp) 607 { 608 m_vtob_s *vbp; 609 void *vaddr = NULL; 610 bus_addr_t baddr = 0; 611 612 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 613 if (!vbp) 614 goto out_err; 615 616 if (bus_dmamem_alloc(mp->dmat, &vaddr, 617 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 618 goto out_err; 619 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 620 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 621 if (baddr) { 622 int hc = VTOB_HASH_CODE(vaddr); 623 vbp->vaddr = (m_addr_t) vaddr; 624 vbp->baddr = (m_addr_t) baddr; 625 vbp->next = mp->vtob[hc]; 626 mp->vtob[hc] = vbp; 627 ++mp->nump; 628 return (m_addr_t) vaddr; 629 } 630 out_err: 631 if (baddr) 632 bus_dmamap_unload(mp->dmat, vbp->dmamap); 633 if (vaddr) 634 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 635 if (vbp) { 636 if (vbp->dmamap) 637 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 638 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 639 } 640 return 0; 641 } 642 643 #ifdef MEMO_FREE_UNUSED 644 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 645 { 646 m_vtob_s **vbpp, *vbp; 647 int hc = VTOB_HASH_CODE(m); 648 649 vbpp = &mp->vtob[hc]; 650 while (*vbpp && (*vbpp)->vaddr != m) 651 vbpp = &(*vbpp)->next; 652 if (*vbpp) { 653 vbp = *vbpp; 654 *vbpp = (*vbpp)->next; 655 bus_dmamap_unload(mp->dmat, vbp->dmamap); 656 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 657 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 658 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 659 --mp->nump; 660 } 661 } 662 #endif 663 664 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 665 { 666 m_pool_s *mp; 667 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 668 return mp; 669 } 670 671 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 672 { 673 m_pool_s *mp = NULL; 674 675 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 676 if (mp) { 677 mp->dev_dmat = dev_dmat; 678 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 679 BUS_SPACE_MAXADDR_32BIT, 680 BUS_SPACE_MAXADDR, 681 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 682 MEMO_CLUSTER_SIZE, 0, 683 NULL, NULL, &mp->dmat)) { 684 mp->getp = ___dma_getp; 685 #ifdef MEMO_FREE_UNUSED 686 mp->freep = ___dma_freep; 687 #endif 688 mp->next = mp0.next; 689 mp0.next = mp; 690 return mp; 691 } 692 } 693 if (mp) 694 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 695 return NULL; 696 } 697 698 #ifdef MEMO_FREE_UNUSED 699 static void ___del_dma_pool(m_pool_s *p) 700 { 701 struct m_pool **pp = &mp0.next; 702 703 while (*pp && *pp != p) 704 pp = &(*pp)->next; 705 if (*pp) { 706 *pp = (*pp)->next; 707 bus_dma_tag_destroy(p->dmat); 708 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 709 } 710 } 711 #endif 712 713 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 714 { 715 struct m_pool *mp; 716 void *m = NULL; 717 718 /* Lock */ 719 mp = ___get_dma_pool(dev_dmat); 720 if (!mp) 721 mp = ___cre_dma_pool(dev_dmat); 722 if (mp) 723 m = __sym_calloc(mp, size, name); 724 #ifdef MEMO_FREE_UNUSED 725 if (mp && !mp->nump) 726 ___del_dma_pool(mp); 727 #endif 728 /* Unlock */ 729 730 return m; 731 } 732 733 static void 734 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 735 { 736 struct m_pool *mp; 737 738 /* Lock */ 739 mp = ___get_dma_pool(dev_dmat); 740 if (mp) 741 __sym_mfree(mp, m, size, name); 742 #ifdef MEMO_FREE_UNUSED 743 if (mp && !mp->nump) 744 ___del_dma_pool(mp); 745 #endif 746 /* Unlock */ 747 } 748 749 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 750 { 751 m_pool_s *mp; 752 int hc = VTOB_HASH_CODE(m); 753 m_vtob_s *vp = NULL; 754 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 755 756 /* Lock */ 757 mp = ___get_dma_pool(dev_dmat); 758 if (mp) { 759 vp = mp->vtob[hc]; 760 while (vp && (m_addr_t) vp->vaddr != a) 761 vp = vp->next; 762 } 763 /* Unlock */ 764 if (!vp) 765 panic("sym: VTOBUS FAILED!\n"); 766 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 767 } 768 769 770 /* 771 * Verbs for DMAable memory handling. 772 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 773 * being discarded. 774 */ 775 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 776 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 777 #define _sym_mfree_dma(np, p, s, n) \ 778 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 779 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 780 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 781 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 782 #define vtobus(p) _vtobus(np, p) 783 784 785 /* 786 * Print a buffer in hexadecimal format. 787 */ 788 static void sym_printb_hex (u_char *p, int n) 789 { 790 while (n-- > 0) 791 printf (" %x", *p++); 792 } 793 794 /* 795 * Same with a label at beginning and .\n at end. 796 */ 797 static void sym_printl_hex (char *label, u_char *p, int n) 798 { 799 printf ("%s", label); 800 sym_printb_hex (p, n); 801 printf (".\n"); 802 } 803 804 /* 805 * Return a string for SCSI BUS mode. 806 */ 807 static char *sym_scsi_bus_mode(int mode) 808 { 809 switch(mode) { 810 case SMODE_HVD: return "HVD"; 811 case SMODE_SE: return "SE"; 812 case SMODE_LVD: return "LVD"; 813 } 814 return "??"; 815 } 816 817 /* 818 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 819 */ 820 #ifdef SYM_CONF_NVRAM_SUPPORT 821 static u_char Tekram_sync[16] = 822 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 823 #endif 824 825 /* 826 * Union of supported NVRAM formats. 827 */ 828 struct sym_nvram { 829 int type; 830 #define SYM_SYMBIOS_NVRAM (1) 831 #define SYM_TEKRAM_NVRAM (2) 832 #ifdef SYM_CONF_NVRAM_SUPPORT 833 union { 834 Symbios_nvram Symbios; 835 Tekram_nvram Tekram; 836 } data; 837 #endif 838 }; 839 840 /* 841 * This one is hopefully useless, but actually useful. :-) 842 */ 843 #ifndef assert 844 #define assert(expression) { \ 845 if (!(expression)) { \ 846 (void)panic( \ 847 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 848 #expression, \ 849 __FILE__, __LINE__); \ 850 } \ 851 } 852 #endif 853 854 /* 855 * Some provision for a possible big endian mode supported by 856 * Symbios chips (never seen, by the way). 857 * For now, this stuff does not deserve any comments. :) 858 */ 859 860 #define sym_offb(o) (o) 861 #define sym_offw(o) (o) 862 863 /* 864 * Some provision for support for BIG ENDIAN CPU. 865 */ 866 867 #define cpu_to_scr(dw) htole32(dw) 868 #define scr_to_cpu(dw) le32toh(dw) 869 870 /* 871 * Access to the chip IO registers and on-chip RAM. 872 * We use the `bus space' interface under FreeBSD-4 and 873 * later kernel versions. 874 */ 875 876 877 #if defined(SYM_CONF_IOMAPPED) 878 879 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 880 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 881 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 882 883 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 884 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 885 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 886 887 #else /* Memory mapped IO */ 888 889 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 890 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 891 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 892 893 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 894 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 895 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 896 897 #endif /* SYM_CONF_IOMAPPED */ 898 899 #define OUTRAM_OFF(o, a, l) \ 900 bus_write_region_1(np->ram_res, (o), (a), (l)) 901 902 903 /* 904 * Common definitions for both bus space and legacy IO methods. 905 */ 906 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 907 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 908 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 909 910 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 911 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 912 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 913 914 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 915 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 916 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 917 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 918 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 919 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 920 921 /* 922 * We normally want the chip to have a consistent view 923 * of driver internal data structures when we restart it. 924 * Thus these macros. 925 */ 926 #define OUTL_DSP(v) \ 927 do { \ 928 MEMORY_BARRIER(); \ 929 OUTL (nc_dsp, (v)); \ 930 } while (0) 931 932 #define OUTONB_STD() \ 933 do { \ 934 MEMORY_BARRIER(); \ 935 OUTONB (nc_dcntl, (STD|NOCOM)); \ 936 } while (0) 937 938 /* 939 * Command control block states. 940 */ 941 #define HS_IDLE (0) 942 #define HS_BUSY (1) 943 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 944 #define HS_DISCONNECT (3) /* Disconnected by target */ 945 #define HS_WAIT (4) /* waiting for resource */ 946 947 #define HS_DONEMASK (0x80) 948 #define HS_COMPLETE (4|HS_DONEMASK) 949 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 950 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 951 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 952 953 /* 954 * Software Interrupt Codes 955 */ 956 #define SIR_BAD_SCSI_STATUS (1) 957 #define SIR_SEL_ATN_NO_MSG_OUT (2) 958 #define SIR_MSG_RECEIVED (3) 959 #define SIR_MSG_WEIRD (4) 960 #define SIR_NEGO_FAILED (5) 961 #define SIR_NEGO_PROTO (6) 962 #define SIR_SCRIPT_STOPPED (7) 963 #define SIR_REJECT_TO_SEND (8) 964 #define SIR_SWIDE_OVERRUN (9) 965 #define SIR_SODL_UNDERRUN (10) 966 #define SIR_RESEL_NO_MSG_IN (11) 967 #define SIR_RESEL_NO_IDENTIFY (12) 968 #define SIR_RESEL_BAD_LUN (13) 969 #define SIR_TARGET_SELECTED (14) 970 #define SIR_RESEL_BAD_I_T_L (15) 971 #define SIR_RESEL_BAD_I_T_L_Q (16) 972 #define SIR_ABORT_SENT (17) 973 #define SIR_RESEL_ABORTED (18) 974 #define SIR_MSG_OUT_DONE (19) 975 #define SIR_COMPLETE_ERROR (20) 976 #define SIR_DATA_OVERRUN (21) 977 #define SIR_BAD_PHASE (22) 978 #define SIR_MAX (22) 979 980 /* 981 * Extended error bit codes. 982 * xerr_status field of struct sym_ccb. 983 */ 984 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 985 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 986 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 987 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 988 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 989 990 /* 991 * Negotiation status. 992 * nego_status field of struct sym_ccb. 993 */ 994 #define NS_SYNC (1) 995 #define NS_WIDE (2) 996 #define NS_PPR (3) 997 998 /* 999 * A CCB hashed table is used to retrieve CCB address 1000 * from DSA value. 1001 */ 1002 #define CCB_HASH_SHIFT 8 1003 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1004 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1005 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1006 1007 /* 1008 * Device flags. 1009 */ 1010 #define SYM_DISC_ENABLED (1) 1011 #define SYM_TAGS_ENABLED (1<<1) 1012 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1013 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1014 1015 /* 1016 * Host adapter miscellaneous flags. 1017 */ 1018 #define SYM_AVOID_BUS_RESET (1) 1019 #define SYM_SCAN_TARGETS_HILO (1<<1) 1020 1021 /* 1022 * Device quirks. 1023 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1024 * saving the DATA POINTER then reselects and terminates the IO. 1025 * On reselection, the automatic RESTORE DATA POINTER makes the 1026 * CURRENT DATA POINTER not point at the end of the IO. 1027 * This behaviour just breaks our calculation of the residual. 1028 * For now, we just force an AUTO SAVE on disconnection and will 1029 * fix that in a further driver version. 1030 */ 1031 #define SYM_QUIRK_AUTOSAVE 1 1032 1033 /* 1034 * Misc. 1035 */ 1036 #define SYM_LOCK() mtx_lock(&np->mtx) 1037 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1038 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1039 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1040 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1041 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1042 1043 #define SYM_SNOOP_TIMEOUT (10000000) 1044 #define SYM_PCI_IO PCIR_BAR(0) 1045 #define SYM_PCI_MMIO PCIR_BAR(1) 1046 #define SYM_PCI_RAM PCIR_BAR(2) 1047 #define SYM_PCI_RAM64 PCIR_BAR(3) 1048 1049 /* 1050 * Back-pointer from the CAM CCB to our data structures. 1051 */ 1052 #define sym_hcb_ptr spriv_ptr0 1053 /* #define sym_ccb_ptr spriv_ptr1 */ 1054 1055 /* 1056 * We mostly have to deal with pointers. 1057 * Thus these typedef's. 1058 */ 1059 typedef struct sym_tcb *tcb_p; 1060 typedef struct sym_lcb *lcb_p; 1061 typedef struct sym_ccb *ccb_p; 1062 typedef struct sym_hcb *hcb_p; 1063 1064 /* 1065 * Gather negotiable parameters value 1066 */ 1067 struct sym_trans { 1068 u8 scsi_version; 1069 u8 spi_version; 1070 u8 period; 1071 u8 offset; 1072 u8 width; 1073 u8 options; /* PPR options */ 1074 }; 1075 1076 struct sym_tinfo { 1077 struct sym_trans current; 1078 struct sym_trans goal; 1079 struct sym_trans user; 1080 }; 1081 1082 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1083 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1084 1085 /* 1086 * Global TCB HEADER. 1087 * 1088 * Due to lack of indirect addressing on earlier NCR chips, 1089 * this substructure is copied from the TCB to a global 1090 * address after selection. 1091 * For SYMBIOS chips that support LOAD/STORE this copy is 1092 * not needed and thus not performed. 1093 */ 1094 struct sym_tcbh { 1095 /* 1096 * Scripts bus addresses of LUN table accessed from scripts. 1097 * LUN #0 is a special case, since multi-lun devices are rare, 1098 * and we we want to speed-up the general case and not waste 1099 * resources. 1100 */ 1101 u32 luntbl_sa; /* bus address of this table */ 1102 u32 lun0_sa; /* bus address of LCB #0 */ 1103 /* 1104 * Actual SYNC/WIDE IO registers value for this target. 1105 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1106 * so have alignment constraints. 1107 */ 1108 /*0*/ u_char uval; /* -> SCNTL4 register */ 1109 /*1*/ u_char sval; /* -> SXFER io register */ 1110 /*2*/ u_char filler1; 1111 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1112 }; 1113 1114 /* 1115 * Target Control Block 1116 */ 1117 struct sym_tcb { 1118 /* 1119 * TCB header. 1120 * Assumed at offset 0. 1121 */ 1122 /*0*/ struct sym_tcbh head; 1123 1124 /* 1125 * LUN table used by the SCRIPTS processor. 1126 * An array of bus addresses is used on reselection. 1127 */ 1128 u32 *luntbl; /* LCBs bus address table */ 1129 1130 /* 1131 * LUN table used by the C code. 1132 */ 1133 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1134 #if SYM_CONF_MAX_LUN > 1 1135 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1136 #endif 1137 1138 /* 1139 * Bitmap that tells about LUNs that succeeded at least 1140 * 1 IO and therefore assumed to be a real device. 1141 * Avoid useless allocation of the LCB structure. 1142 */ 1143 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1144 1145 /* 1146 * Bitmap that tells about LUNs that haven't yet an LCB 1147 * allocated (not discovered or LCB allocation failed). 1148 */ 1149 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1150 1151 /* 1152 * Transfer capabilities (SIP) 1153 */ 1154 struct sym_tinfo tinfo; 1155 1156 /* 1157 * Keep track of the CCB used for the negotiation in order 1158 * to ensure that only 1 negotiation is queued at a time. 1159 */ 1160 ccb_p nego_cp; /* CCB used for the nego */ 1161 1162 /* 1163 * Set when we want to reset the device. 1164 */ 1165 u_char to_reset; 1166 1167 /* 1168 * Other user settable limits and options. 1169 * These limits are read from the NVRAM if present. 1170 */ 1171 u_char usrflags; 1172 u_short usrtags; 1173 }; 1174 1175 /* 1176 * Global LCB HEADER. 1177 * 1178 * Due to lack of indirect addressing on earlier NCR chips, 1179 * this substructure is copied from the LCB to a global 1180 * address after selection. 1181 * For SYMBIOS chips that support LOAD/STORE this copy is 1182 * not needed and thus not performed. 1183 */ 1184 struct sym_lcbh { 1185 /* 1186 * SCRIPTS address jumped by SCRIPTS on reselection. 1187 * For not probed logical units, this address points to 1188 * SCRIPTS that deal with bad LU handling (must be at 1189 * offset zero of the LCB for that reason). 1190 */ 1191 /*0*/ u32 resel_sa; 1192 1193 /* 1194 * Task (bus address of a CCB) read from SCRIPTS that points 1195 * to the unique ITL nexus allowed to be disconnected. 1196 */ 1197 u32 itl_task_sa; 1198 1199 /* 1200 * Task table bus address (read from SCRIPTS). 1201 */ 1202 u32 itlq_tbl_sa; 1203 }; 1204 1205 /* 1206 * Logical Unit Control Block 1207 */ 1208 struct sym_lcb { 1209 /* 1210 * TCB header. 1211 * Assumed at offset 0. 1212 */ 1213 /*0*/ struct sym_lcbh head; 1214 1215 /* 1216 * Task table read from SCRIPTS that contains pointers to 1217 * ITLQ nexuses. The bus address read from SCRIPTS is 1218 * inside the header. 1219 */ 1220 u32 *itlq_tbl; /* Kernel virtual address */ 1221 1222 /* 1223 * Busy CCBs management. 1224 */ 1225 u_short busy_itlq; /* Number of busy tagged CCBs */ 1226 u_short busy_itl; /* Number of busy untagged CCBs */ 1227 1228 /* 1229 * Circular tag allocation buffer. 1230 */ 1231 u_short ia_tag; /* Tag allocation index */ 1232 u_short if_tag; /* Tag release index */ 1233 u_char *cb_tags; /* Circular tags buffer */ 1234 1235 /* 1236 * Set when we want to clear all tasks. 1237 */ 1238 u_char to_clear; 1239 1240 /* 1241 * Capabilities. 1242 */ 1243 u_char user_flags; 1244 u_char current_flags; 1245 }; 1246 1247 /* 1248 * Action from SCRIPTS on a task. 1249 * Is part of the CCB, but is also used separately to plug 1250 * error handling action to perform from SCRIPTS. 1251 */ 1252 struct sym_actscr { 1253 u32 start; /* Jumped by SCRIPTS after selection */ 1254 u32 restart; /* Jumped by SCRIPTS on relection */ 1255 }; 1256 1257 /* 1258 * Phase mismatch context. 1259 * 1260 * It is part of the CCB and is used as parameters for the 1261 * DATA pointer. We need two contexts to handle correctly the 1262 * SAVED DATA POINTER. 1263 */ 1264 struct sym_pmc { 1265 struct sym_tblmove sg; /* Updated interrupted SG block */ 1266 u32 ret; /* SCRIPT return address */ 1267 }; 1268 1269 /* 1270 * LUN control block lookup. 1271 * We use a direct pointer for LUN #0, and a table of 1272 * pointers which is only allocated for devices that support 1273 * LUN(s) > 0. 1274 */ 1275 #if SYM_CONF_MAX_LUN <= 1 1276 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1277 #else 1278 #define sym_lp(np, tp, lun) \ 1279 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1280 #endif 1281 1282 /* 1283 * Status are used by the host and the script processor. 1284 * 1285 * The last four bytes (status[4]) are copied to the 1286 * scratchb register (declared as scr0..scr3) just after the 1287 * select/reselect, and copied back just after disconnecting. 1288 * Inside the script the XX_REG are used. 1289 */ 1290 1291 /* 1292 * Last four bytes (script) 1293 */ 1294 #define QU_REG scr0 1295 #define HS_REG scr1 1296 #define HS_PRT nc_scr1 1297 #define SS_REG scr2 1298 #define SS_PRT nc_scr2 1299 #define HF_REG scr3 1300 #define HF_PRT nc_scr3 1301 1302 /* 1303 * Last four bytes (host) 1304 */ 1305 #define actualquirks phys.head.status[0] 1306 #define host_status phys.head.status[1] 1307 #define ssss_status phys.head.status[2] 1308 #define host_flags phys.head.status[3] 1309 1310 /* 1311 * Host flags 1312 */ 1313 #define HF_IN_PM0 1u 1314 #define HF_IN_PM1 (1u<<1) 1315 #define HF_ACT_PM (1u<<2) 1316 #define HF_DP_SAVED (1u<<3) 1317 #define HF_SENSE (1u<<4) 1318 #define HF_EXT_ERR (1u<<5) 1319 #define HF_DATA_IN (1u<<6) 1320 #ifdef SYM_CONF_IARB_SUPPORT 1321 #define HF_HINT_IARB (1u<<7) 1322 #endif 1323 1324 /* 1325 * Global CCB HEADER. 1326 * 1327 * Due to lack of indirect addressing on earlier NCR chips, 1328 * this substructure is copied from the ccb to a global 1329 * address after selection (or reselection) and copied back 1330 * before disconnect. 1331 * For SYMBIOS chips that support LOAD/STORE this copy is 1332 * not needed and thus not performed. 1333 */ 1334 1335 struct sym_ccbh { 1336 /* 1337 * Start and restart SCRIPTS addresses (must be at 0). 1338 */ 1339 /*0*/ struct sym_actscr go; 1340 1341 /* 1342 * SCRIPTS jump address that deal with data pointers. 1343 * 'savep' points to the position in the script responsible 1344 * for the actual transfer of data. 1345 * It's written on reception of a SAVE_DATA_POINTER message. 1346 */ 1347 u32 savep; /* Jump address to saved data pointer */ 1348 u32 lastp; /* SCRIPTS address at end of data */ 1349 u32 goalp; /* Not accessed for now from SCRIPTS */ 1350 1351 /* 1352 * Status fields. 1353 */ 1354 u8 status[4]; 1355 }; 1356 1357 /* 1358 * Data Structure Block 1359 * 1360 * During execution of a ccb by the script processor, the 1361 * DSA (data structure address) register points to this 1362 * substructure of the ccb. 1363 */ 1364 struct sym_dsb { 1365 /* 1366 * CCB header. 1367 * Also assumed at offset 0 of the sym_ccb structure. 1368 */ 1369 /*0*/ struct sym_ccbh head; 1370 1371 /* 1372 * Phase mismatch contexts. 1373 * We need two to handle correctly the SAVED DATA POINTER. 1374 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1375 * for address calculation from SCRIPTS. 1376 */ 1377 struct sym_pmc pm0; 1378 struct sym_pmc pm1; 1379 1380 /* 1381 * Table data for Script 1382 */ 1383 struct sym_tblsel select; 1384 struct sym_tblmove smsg; 1385 struct sym_tblmove smsg_ext; 1386 struct sym_tblmove cmd; 1387 struct sym_tblmove sense; 1388 struct sym_tblmove wresid; 1389 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1390 }; 1391 1392 /* 1393 * Our Command Control Block 1394 */ 1395 struct sym_ccb { 1396 /* 1397 * This is the data structure which is pointed by the DSA 1398 * register when it is executed by the script processor. 1399 * It must be the first entry. 1400 */ 1401 struct sym_dsb phys; 1402 1403 /* 1404 * Pointer to CAM ccb and related stuff. 1405 */ 1406 struct callout ch; /* callout handle */ 1407 union ccb *cam_ccb; /* CAM scsiio ccb */ 1408 u8 cdb_buf[16]; /* Copy of CDB */ 1409 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1410 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1411 int data_len; /* Total data length */ 1412 int segments; /* Number of SG segments */ 1413 1414 /* 1415 * Miscellaneous status'. 1416 */ 1417 u_char nego_status; /* Negotiation status */ 1418 u_char xerr_status; /* Extended error flags */ 1419 u32 extra_bytes; /* Extraneous bytes transferred */ 1420 1421 /* 1422 * Message areas. 1423 * We prepare a message to be sent after selection. 1424 * We may use a second one if the command is rescheduled 1425 * due to CHECK_CONDITION or COMMAND TERMINATED. 1426 * Contents are IDENTIFY and SIMPLE_TAG. 1427 * While negotiating sync or wide transfer, 1428 * a SDTR or WDTR message is appended. 1429 */ 1430 u_char scsi_smsg [12]; 1431 u_char scsi_smsg2[12]; 1432 1433 /* 1434 * Auto request sense related fields. 1435 */ 1436 u_char sensecmd[6]; /* Request Sense command */ 1437 u_char sv_scsi_status; /* Saved SCSI status */ 1438 u_char sv_xerr_status; /* Saved extended status */ 1439 int sv_resid; /* Saved residual */ 1440 1441 /* 1442 * Map for the DMA of user data. 1443 */ 1444 void *arg; /* Argument for some callback */ 1445 bus_dmamap_t dmamap; /* DMA map for user data */ 1446 u_char dmamapped; 1447 #define SYM_DMA_NONE 0 1448 #define SYM_DMA_READ 1 1449 #define SYM_DMA_WRITE 2 1450 /* 1451 * Other fields. 1452 */ 1453 u32 ccb_ba; /* BUS address of this CCB */ 1454 u_short tag; /* Tag for this transfer */ 1455 /* NO_TAG means no tag */ 1456 u_char target; 1457 u_char lun; 1458 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1459 SYM_QUEHEAD 1460 link_ccbq; /* Link to free/busy CCB queue */ 1461 u32 startp; /* Initial data pointer */ 1462 int ext_sg; /* Extreme data pointer, used */ 1463 int ext_ofs; /* to calculate the residual. */ 1464 u_char to_abort; /* Want this IO to be aborted */ 1465 }; 1466 1467 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1468 1469 /* 1470 * Host Control Block 1471 */ 1472 struct sym_hcb { 1473 struct mtx mtx; 1474 1475 /* 1476 * Global headers. 1477 * Due to poorness of addressing capabilities, earlier 1478 * chips (810, 815, 825) copy part of the data structures 1479 * (CCB, TCB and LCB) in fixed areas. 1480 */ 1481 #ifdef SYM_CONF_GENERIC_SUPPORT 1482 struct sym_ccbh ccb_head; 1483 struct sym_tcbh tcb_head; 1484 struct sym_lcbh lcb_head; 1485 #endif 1486 /* 1487 * Idle task and invalid task actions and 1488 * their bus addresses. 1489 */ 1490 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1491 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1492 1493 /* 1494 * Dummy lun table to protect us against target 1495 * returning bad lun number on reselection. 1496 */ 1497 u32 *badluntbl; /* Table physical address */ 1498 u32 badlun_sa; /* SCRIPT handler BUS address */ 1499 1500 /* 1501 * Bus address of this host control block. 1502 */ 1503 u32 hcb_ba; 1504 1505 /* 1506 * Bit 32-63 of the on-chip RAM bus address in LE format. 1507 * The START_RAM64 script loads the MMRS and MMWS from this 1508 * field. 1509 */ 1510 u32 scr_ram_seg; 1511 1512 /* 1513 * Chip and controller indentification. 1514 */ 1515 device_t device; 1516 int unit; 1517 char inst_name[8]; 1518 1519 /* 1520 * Initial value of some IO register bits. 1521 * These values are assumed to have been set by BIOS, and may 1522 * be used to probe adapter implementation differences. 1523 */ 1524 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1525 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1526 sv_stest1; 1527 1528 /* 1529 * Actual initial value of IO register bits used by the 1530 * driver. They are loaded at initialisation according to 1531 * features that are to be enabled/disabled. 1532 */ 1533 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1534 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1535 1536 /* 1537 * Target data. 1538 */ 1539 #ifdef __amd64__ 1540 struct sym_tcb *target; 1541 #else 1542 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1543 #endif 1544 1545 /* 1546 * Target control block bus address array used by the SCRIPT 1547 * on reselection. 1548 */ 1549 u32 *targtbl; 1550 u32 targtbl_ba; 1551 1552 /* 1553 * CAM SIM information for this instance. 1554 */ 1555 struct cam_sim *sim; 1556 struct cam_path *path; 1557 1558 /* 1559 * Allocated hardware resources. 1560 */ 1561 struct resource *irq_res; 1562 struct resource *io_res; 1563 struct resource *mmio_res; 1564 struct resource *ram_res; 1565 int ram_id; 1566 void *intr; 1567 1568 /* 1569 * Bus stuff. 1570 * 1571 * My understanding of PCI is that all agents must share the 1572 * same addressing range and model. 1573 * But some hardware architecture guys provide complex and 1574 * brain-deaded stuff that makes shit. 1575 * This driver only support PCI compliant implementations and 1576 * deals with part of the BUS stuff complexity only to fit O/S 1577 * requirements. 1578 */ 1579 1580 /* 1581 * DMA stuff. 1582 */ 1583 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1584 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1585 /* 1586 * BUS addresses of the chip 1587 */ 1588 vm_offset_t mmio_ba; /* MMIO BUS address */ 1589 int mmio_ws; /* MMIO Window size */ 1590 1591 vm_offset_t ram_ba; /* RAM BUS address */ 1592 int ram_ws; /* RAM window size */ 1593 1594 /* 1595 * SCRIPTS virtual and physical bus addresses. 1596 * 'script' is loaded in the on-chip RAM if present. 1597 * 'scripth' stays in main memory for all chips except the 1598 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1599 */ 1600 u_char *scripta0; /* Copies of script and scripth */ 1601 u_char *scriptb0; /* Copies of script and scripth */ 1602 vm_offset_t scripta_ba; /* Actual script and scripth */ 1603 vm_offset_t scriptb_ba; /* bus addresses. */ 1604 vm_offset_t scriptb0_ba; 1605 u_short scripta_sz; /* Actual size of script A */ 1606 u_short scriptb_sz; /* Actual size of script B */ 1607 1608 /* 1609 * Bus addresses, setup and patch methods for 1610 * the selected firmware. 1611 */ 1612 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1613 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1614 void (*fw_setup)(hcb_p np, struct sym_fw *fw); 1615 void (*fw_patch)(hcb_p np); 1616 char *fw_name; 1617 1618 /* 1619 * General controller parameters and configuration. 1620 */ 1621 u_short device_id; /* PCI device id */ 1622 u_char revision_id; /* PCI device revision id */ 1623 u_int features; /* Chip features map */ 1624 u_char myaddr; /* SCSI id of the adapter */ 1625 u_char maxburst; /* log base 2 of dwords burst */ 1626 u_char maxwide; /* Maximum transfer width */ 1627 u_char minsync; /* Min sync period factor (ST) */ 1628 u_char maxsync; /* Max sync period factor (ST) */ 1629 u_char maxoffs; /* Max scsi offset (ST) */ 1630 u_char minsync_dt; /* Min sync period factor (DT) */ 1631 u_char maxsync_dt; /* Max sync period factor (DT) */ 1632 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1633 u_char multiplier; /* Clock multiplier (1,2,4) */ 1634 u_char clock_divn; /* Number of clock divisors */ 1635 u32 clock_khz; /* SCSI clock frequency in KHz */ 1636 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1637 /* 1638 * Start queue management. 1639 * It is filled up by the host processor and accessed by the 1640 * SCRIPTS processor in order to start SCSI commands. 1641 */ 1642 volatile /* Prevent code optimizations */ 1643 u32 *squeue; /* Start queue virtual address */ 1644 u32 squeue_ba; /* Start queue BUS address */ 1645 u_short squeueput; /* Next free slot of the queue */ 1646 u_short actccbs; /* Number of allocated CCBs */ 1647 1648 /* 1649 * Command completion queue. 1650 * It is the same size as the start queue to avoid overflow. 1651 */ 1652 u_short dqueueget; /* Next position to scan */ 1653 volatile /* Prevent code optimizations */ 1654 u32 *dqueue; /* Completion (done) queue */ 1655 u32 dqueue_ba; /* Done queue BUS address */ 1656 1657 /* 1658 * Miscellaneous buffers accessed by the scripts-processor. 1659 * They shall be DWORD aligned, because they may be read or 1660 * written with a script command. 1661 */ 1662 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1663 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1664 u32 lastmsg; /* Last SCSI message sent */ 1665 u_char scratch; /* Scratch for SCSI receive */ 1666 1667 /* 1668 * Miscellaneous configuration and status parameters. 1669 */ 1670 u_char usrflags; /* Miscellaneous user flags */ 1671 u_char scsi_mode; /* Current SCSI BUS mode */ 1672 u_char verbose; /* Verbosity for this controller*/ 1673 u32 cache; /* Used for cache test at init. */ 1674 1675 /* 1676 * CCB lists and queue. 1677 */ 1678 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1679 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1680 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1681 1682 /* 1683 * During error handling and/or recovery, 1684 * active CCBs that are to be completed with 1685 * error or requeued are moved from the busy_ccbq 1686 * to the comp_ccbq prior to completion. 1687 */ 1688 SYM_QUEHEAD comp_ccbq; 1689 1690 /* 1691 * CAM CCB pending queue. 1692 */ 1693 SYM_QUEHEAD cam_ccbq; 1694 1695 /* 1696 * IMMEDIATE ARBITRATION (IARB) control. 1697 * 1698 * We keep track in 'last_cp' of the last CCB that has been 1699 * queued to the SCRIPTS processor and clear 'last_cp' when 1700 * this CCB completes. If last_cp is not zero at the moment 1701 * we queue a new CCB, we set a flag in 'last_cp' that is 1702 * used by the SCRIPTS as a hint for setting IARB. 1703 * We donnot set more than 'iarb_max' consecutive hints for 1704 * IARB in order to leave devices a chance to reselect. 1705 * By the way, any non zero value of 'iarb_max' is unfair. :) 1706 */ 1707 #ifdef SYM_CONF_IARB_SUPPORT 1708 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1709 u_short iarb_count; /* Actual # of these hints */ 1710 ccb_p last_cp; 1711 #endif 1712 1713 /* 1714 * Command abort handling. 1715 * We need to synchronize tightly with the SCRIPTS 1716 * processor in order to handle things correctly. 1717 */ 1718 u_char abrt_msg[4]; /* Message to send buffer */ 1719 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1720 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1721 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1722 }; 1723 1724 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1725 1726 /* 1727 * Return the name of the controller. 1728 */ 1729 static __inline char *sym_name(hcb_p np) 1730 { 1731 return np->inst_name; 1732 } 1733 1734 /*--------------------------------------------------------------------------*/ 1735 /*------------------------------ FIRMWARES ---------------------------------*/ 1736 /*--------------------------------------------------------------------------*/ 1737 1738 /* 1739 * This stuff will be moved to a separate source file when 1740 * the driver will be broken into several source modules. 1741 */ 1742 1743 /* 1744 * Macros used for all firmwares. 1745 */ 1746 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1747 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1748 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1749 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1750 1751 1752 #ifdef SYM_CONF_GENERIC_SUPPORT 1753 /* 1754 * Allocate firmware #1 script area. 1755 */ 1756 #define SYM_FWA_SCR sym_fw1a_scr 1757 #define SYM_FWB_SCR sym_fw1b_scr 1758 #include <dev/sym/sym_fw1.h> 1759 struct sym_fwa_ofs sym_fw1a_ofs = { 1760 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1761 }; 1762 struct sym_fwb_ofs sym_fw1b_ofs = { 1763 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1764 }; 1765 #undef SYM_FWA_SCR 1766 #undef SYM_FWB_SCR 1767 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1768 1769 /* 1770 * Allocate firmware #2 script area. 1771 */ 1772 #define SYM_FWA_SCR sym_fw2a_scr 1773 #define SYM_FWB_SCR sym_fw2b_scr 1774 #include <dev/sym/sym_fw2.h> 1775 struct sym_fwa_ofs sym_fw2a_ofs = { 1776 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1777 }; 1778 struct sym_fwb_ofs sym_fw2b_ofs = { 1779 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1780 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1781 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1782 }; 1783 #undef SYM_FWA_SCR 1784 #undef SYM_FWB_SCR 1785 1786 #undef SYM_GEN_A 1787 #undef SYM_GEN_B 1788 #undef PADDR_A 1789 #undef PADDR_B 1790 1791 #ifdef SYM_CONF_GENERIC_SUPPORT 1792 /* 1793 * Patch routine for firmware #1. 1794 */ 1795 static void 1796 sym_fw1_patch(hcb_p np) 1797 { 1798 struct sym_fw1a_scr *scripta0; 1799 struct sym_fw1b_scr *scriptb0; 1800 1801 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1802 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1803 1804 /* 1805 * Remove LED support if not needed. 1806 */ 1807 if (!(np->features & FE_LED0)) { 1808 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1809 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1810 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1811 } 1812 1813 #ifdef SYM_CONF_IARB_SUPPORT 1814 /* 1815 * If user does not want to use IMMEDIATE ARBITRATION 1816 * when we are reselected while attempting to arbitrate, 1817 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1818 */ 1819 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1820 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1821 #endif 1822 /* 1823 * Patch some data in SCRIPTS. 1824 * - start and done queue initial bus address. 1825 * - target bus address table bus address. 1826 */ 1827 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1828 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1829 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1830 } 1831 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1832 1833 /* 1834 * Patch routine for firmware #2. 1835 */ 1836 static void 1837 sym_fw2_patch(hcb_p np) 1838 { 1839 struct sym_fw2a_scr *scripta0; 1840 struct sym_fw2b_scr *scriptb0; 1841 1842 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1843 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1844 1845 /* 1846 * Remove LED support if not needed. 1847 */ 1848 if (!(np->features & FE_LED0)) { 1849 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1850 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1851 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1852 } 1853 1854 #ifdef SYM_CONF_IARB_SUPPORT 1855 /* 1856 * If user does not want to use IMMEDIATE ARBITRATION 1857 * when we are reselected while attempting to arbitrate, 1858 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1859 */ 1860 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1861 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1862 #endif 1863 /* 1864 * Patch some variable in SCRIPTS. 1865 * - start and done queue initial bus address. 1866 * - target bus address table bus address. 1867 */ 1868 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1869 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1870 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1871 1872 /* 1873 * Remove the load of SCNTL4 on reselection if not a C10. 1874 */ 1875 if (!(np->features & FE_C10)) { 1876 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1877 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1878 } 1879 1880 /* 1881 * Remove a couple of work-arounds specific to C1010 if 1882 * they are not desirable. See `sym_fw2.h' for more details. 1883 */ 1884 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1885 np->revision_id < 0x1 && 1886 np->pciclk_khz < 60000)) { 1887 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1888 scripta0->datao_phase[1] = cpu_to_scr(0); 1889 } 1890 if (!(np->device_id == PCI_ID_LSI53C1010 && 1891 /* np->revision_id < 0xff */ 1)) { 1892 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1893 scripta0->sel_done[1] = cpu_to_scr(0); 1894 } 1895 1896 /* 1897 * Patch some other variables in SCRIPTS. 1898 * These ones are loaded by the SCRIPTS processor. 1899 */ 1900 scriptb0->pm0_data_addr[0] = 1901 cpu_to_scr(np->scripta_ba + 1902 offsetof(struct sym_fw2a_scr, pm0_data)); 1903 scriptb0->pm1_data_addr[0] = 1904 cpu_to_scr(np->scripta_ba + 1905 offsetof(struct sym_fw2a_scr, pm1_data)); 1906 } 1907 1908 /* 1909 * Fill the data area in scripts. 1910 * To be done for all firmwares. 1911 */ 1912 static void 1913 sym_fw_fill_data (u32 *in, u32 *out) 1914 { 1915 int i; 1916 1917 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1918 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1919 *in++ = offsetof (struct sym_dsb, data[i]); 1920 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1921 *out++ = offsetof (struct sym_dsb, data[i]); 1922 } 1923 } 1924 1925 /* 1926 * Setup useful script bus addresses. 1927 * To be done for all firmwares. 1928 */ 1929 static void 1930 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw) 1931 { 1932 u32 *pa; 1933 u_short *po; 1934 int i; 1935 1936 /* 1937 * Build the bus address table for script A 1938 * from the script A offset table. 1939 */ 1940 po = (u_short *) fw->a_ofs; 1941 pa = (u32 *) &np->fwa_bas; 1942 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1943 pa[i] = np->scripta_ba + po[i]; 1944 1945 /* 1946 * Same for script B. 1947 */ 1948 po = (u_short *) fw->b_ofs; 1949 pa = (u32 *) &np->fwb_bas; 1950 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1951 pa[i] = np->scriptb_ba + po[i]; 1952 } 1953 1954 #ifdef SYM_CONF_GENERIC_SUPPORT 1955 /* 1956 * Setup routine for firmware #1. 1957 */ 1958 static void 1959 sym_fw1_setup(hcb_p np, struct sym_fw *fw) 1960 { 1961 struct sym_fw1a_scr *scripta0; 1962 struct sym_fw1b_scr *scriptb0; 1963 1964 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1965 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1966 1967 /* 1968 * Fill variable parts in scripts. 1969 */ 1970 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1971 1972 /* 1973 * Setup bus addresses used from the C code.. 1974 */ 1975 sym_fw_setup_bus_addresses(np, fw); 1976 } 1977 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1978 1979 /* 1980 * Setup routine for firmware #2. 1981 */ 1982 static void 1983 sym_fw2_setup(hcb_p np, struct sym_fw *fw) 1984 { 1985 struct sym_fw2a_scr *scripta0; 1986 struct sym_fw2b_scr *scriptb0; 1987 1988 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1989 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1990 1991 /* 1992 * Fill variable parts in scripts. 1993 */ 1994 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1995 1996 /* 1997 * Setup bus addresses used from the C code.. 1998 */ 1999 sym_fw_setup_bus_addresses(np, fw); 2000 } 2001 2002 /* 2003 * Allocate firmware descriptors. 2004 */ 2005 #ifdef SYM_CONF_GENERIC_SUPPORT 2006 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2007 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2008 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2009 2010 /* 2011 * Find the most appropriate firmware for a chip. 2012 */ 2013 static struct sym_fw * 2014 sym_find_firmware(struct sym_pci_chip *chip) 2015 { 2016 if (chip->features & FE_LDSTR) 2017 return &sym_fw2; 2018 #ifdef SYM_CONF_GENERIC_SUPPORT 2019 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2020 return &sym_fw1; 2021 #endif 2022 else 2023 return NULL; 2024 } 2025 2026 /* 2027 * Bind a script to physical addresses. 2028 */ 2029 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2030 { 2031 u32 opcode, new, old, tmp1, tmp2; 2032 u32 *end, *cur; 2033 int relocs; 2034 2035 cur = start; 2036 end = start + len/4; 2037 2038 while (cur < end) { 2039 2040 opcode = *cur; 2041 2042 /* 2043 * If we forget to change the length 2044 * in scripts, a field will be 2045 * padded with 0. This is an illegal 2046 * command. 2047 */ 2048 if (opcode == 0) { 2049 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2050 sym_name(np), (int) (cur-start)); 2051 MDELAY (10000); 2052 ++cur; 2053 continue; 2054 }; 2055 2056 /* 2057 * We use the bogus value 0xf00ff00f ;-) 2058 * to reserve data area in SCRIPTS. 2059 */ 2060 if (opcode == SCR_DATA_ZERO) { 2061 *cur++ = 0; 2062 continue; 2063 } 2064 2065 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2066 printf ("%d: <%x>\n", (int) (cur-start), 2067 (unsigned)opcode); 2068 2069 /* 2070 * We don't have to decode ALL commands 2071 */ 2072 switch (opcode >> 28) { 2073 case 0xf: 2074 /* 2075 * LOAD / STORE DSA relative, don't relocate. 2076 */ 2077 relocs = 0; 2078 break; 2079 case 0xe: 2080 /* 2081 * LOAD / STORE absolute. 2082 */ 2083 relocs = 1; 2084 break; 2085 case 0xc: 2086 /* 2087 * COPY has TWO arguments. 2088 */ 2089 relocs = 2; 2090 tmp1 = cur[1]; 2091 tmp2 = cur[2]; 2092 if ((tmp1 ^ tmp2) & 3) { 2093 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2094 sym_name(np), (int) (cur-start)); 2095 MDELAY (10000); 2096 } 2097 /* 2098 * If PREFETCH feature not enabled, remove 2099 * the NO FLUSH bit if present. 2100 */ 2101 if ((opcode & SCR_NO_FLUSH) && 2102 !(np->features & FE_PFEN)) { 2103 opcode = (opcode & ~SCR_NO_FLUSH); 2104 } 2105 break; 2106 case 0x0: 2107 /* 2108 * MOVE/CHMOV (absolute address) 2109 */ 2110 if (!(np->features & FE_WIDE)) 2111 opcode = (opcode | OPC_MOVE); 2112 relocs = 1; 2113 break; 2114 case 0x1: 2115 /* 2116 * MOVE/CHMOV (table indirect) 2117 */ 2118 if (!(np->features & FE_WIDE)) 2119 opcode = (opcode | OPC_MOVE); 2120 relocs = 0; 2121 break; 2122 case 0x8: 2123 /* 2124 * JUMP / CALL 2125 * dont't relocate if relative :-) 2126 */ 2127 if (opcode & 0x00800000) 2128 relocs = 0; 2129 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2130 relocs = 2; 2131 else 2132 relocs = 1; 2133 break; 2134 case 0x4: 2135 case 0x5: 2136 case 0x6: 2137 case 0x7: 2138 relocs = 1; 2139 break; 2140 default: 2141 relocs = 0; 2142 break; 2143 }; 2144 2145 /* 2146 * Scriptify:) the opcode. 2147 */ 2148 *cur++ = cpu_to_scr(opcode); 2149 2150 /* 2151 * If no relocation, assume 1 argument 2152 * and just scriptize:) it. 2153 */ 2154 if (!relocs) { 2155 *cur = cpu_to_scr(*cur); 2156 ++cur; 2157 continue; 2158 } 2159 2160 /* 2161 * Otherwise performs all needed relocations. 2162 */ 2163 while (relocs--) { 2164 old = *cur; 2165 2166 switch (old & RELOC_MASK) { 2167 case RELOC_REGISTER: 2168 new = (old & ~RELOC_MASK) + np->mmio_ba; 2169 break; 2170 case RELOC_LABEL_A: 2171 new = (old & ~RELOC_MASK) + np->scripta_ba; 2172 break; 2173 case RELOC_LABEL_B: 2174 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2175 break; 2176 case RELOC_SOFTC: 2177 new = (old & ~RELOC_MASK) + np->hcb_ba; 2178 break; 2179 case 0: 2180 /* 2181 * Don't relocate a 0 address. 2182 * They are mostly used for patched or 2183 * script self-modified areas. 2184 */ 2185 if (old == 0) { 2186 new = old; 2187 break; 2188 } 2189 /* fall through */ 2190 default: 2191 new = 0; 2192 panic("sym_fw_bind_script: " 2193 "weird relocation %x\n", old); 2194 break; 2195 } 2196 2197 *cur++ = cpu_to_scr(new); 2198 } 2199 }; 2200 } 2201 2202 /*---------------------------------------------------------------------------*/ 2203 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2204 /*---------------------------------------------------------------------------*/ 2205 2206 /* 2207 * Function prototypes. 2208 */ 2209 static void sym_save_initial_setting (hcb_p np); 2210 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2211 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2212 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2213 static void sym_chip_reset (hcb_p np); 2214 static void sym_soft_reset (hcb_p np); 2215 static void sym_start_reset (hcb_p np); 2216 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2217 static int sym_wakeup_done (hcb_p np); 2218 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2219 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2220 static void sym_init (hcb_p np, int reason); 2221 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2222 u_char *fakp); 2223 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2224 u_char div, u_char fak); 2225 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2226 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2227 u_char per, u_char wide, u_char div, u_char fak); 2228 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2229 u_char per, u_char wide, u_char div, u_char fak); 2230 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2231 static void sym_intr (void *arg); 2232 static void sym_poll (struct cam_sim *sim); 2233 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2234 static void sym_int_sto (hcb_p np); 2235 static void sym_int_udc (hcb_p np); 2236 static void sym_int_sbmc (hcb_p np); 2237 static void sym_int_par (hcb_p np, u_short sist); 2238 static void sym_int_ma (hcb_p np); 2239 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2240 int task); 2241 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2242 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2243 static void sym_sir_task_recovery (hcb_p np, int num); 2244 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2245 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2246 static int sym_compute_residual (hcb_p np, ccb_p cp); 2247 static int sym_show_msg (u_char * msg); 2248 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2249 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2250 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2251 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2252 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2253 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2254 static void sym_int_sir (hcb_p np); 2255 static void sym_free_ccb (hcb_p np, ccb_p cp); 2256 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2257 static ccb_p sym_alloc_ccb (hcb_p np); 2258 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2259 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2260 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2261 static int sym_snooptest (hcb_p np); 2262 static void sym_selectclock(hcb_p np, u_char scntl3); 2263 static void sym_getclock (hcb_p np, int mult); 2264 static int sym_getpciclock (hcb_p np); 2265 static void sym_complete_ok (hcb_p np, ccb_p cp); 2266 static void sym_complete_error (hcb_p np, ccb_p cp); 2267 static void sym_callout (void *arg); 2268 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2269 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2270 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2271 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2272 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2273 ccb_p cp); 2274 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2275 bus_dma_segment_t *psegs, int nsegs); 2276 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2277 bus_dma_segment_t *psegs, int nsegs); 2278 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2279 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2280 struct ccb_trans_settings *cts); 2281 static void sym_update_dflags(hcb_p np, u_char *flags, 2282 struct ccb_trans_settings *cts); 2283 2284 static struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2285 static int sym_pci_probe (device_t dev); 2286 static int sym_pci_attach (device_t dev); 2287 2288 static void sym_pci_free (hcb_p np); 2289 static int sym_cam_attach (hcb_p np); 2290 static void sym_cam_free (hcb_p np); 2291 2292 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2293 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2294 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2295 2296 /* 2297 * Print something which allows to retrieve the controler type, 2298 * unit, target, lun concerned by a kernel message. 2299 */ 2300 static void PRINT_TARGET (hcb_p np, int target) 2301 { 2302 printf ("%s:%d:", sym_name(np), target); 2303 } 2304 2305 static void PRINT_LUN(hcb_p np, int target, int lun) 2306 { 2307 printf ("%s:%d:%d:", sym_name(np), target, lun); 2308 } 2309 2310 static void PRINT_ADDR (ccb_p cp) 2311 { 2312 if (cp && cp->cam_ccb) 2313 xpt_print_path(cp->cam_ccb->ccb_h.path); 2314 } 2315 2316 /* 2317 * Take into account this ccb in the freeze count. 2318 */ 2319 static void sym_freeze_cam_ccb(union ccb *ccb) 2320 { 2321 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2322 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2323 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2324 xpt_freeze_devq(ccb->ccb_h.path, 1); 2325 } 2326 } 2327 } 2328 2329 /* 2330 * Set the status field of a CAM CCB. 2331 */ 2332 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2333 { 2334 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2335 ccb->ccb_h.status |= status; 2336 } 2337 2338 /* 2339 * Get the status field of a CAM CCB. 2340 */ 2341 static __inline int sym_get_cam_status(union ccb *ccb) 2342 { 2343 return ccb->ccb_h.status & CAM_STATUS_MASK; 2344 } 2345 2346 /* 2347 * Enqueue a CAM CCB. 2348 */ 2349 static void sym_enqueue_cam_ccb(ccb_p cp) 2350 { 2351 hcb_p np; 2352 union ccb *ccb; 2353 2354 ccb = cp->cam_ccb; 2355 np = (hcb_p) cp->arg; 2356 2357 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2358 ccb->ccb_h.status = CAM_REQ_INPROG; 2359 2360 callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout, 2361 (caddr_t) ccb); 2362 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2363 ccb->ccb_h.sym_hcb_ptr = np; 2364 2365 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2366 } 2367 2368 /* 2369 * Complete a pending CAM CCB. 2370 */ 2371 static void _sym_xpt_done(hcb_p np, union ccb *ccb) 2372 { 2373 SYM_LOCK_ASSERT(MA_OWNED); 2374 2375 KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0, 2376 ("%s: status=CAM_SIM_QUEUED", __func__)); 2377 2378 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2379 sym_freeze_cam_ccb(ccb); 2380 xpt_done(ccb); 2381 } 2382 2383 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2384 { 2385 SYM_LOCK_ASSERT(MA_OWNED); 2386 2387 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2388 callout_stop(&cp->ch); 2389 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2390 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2391 ccb->ccb_h.sym_hcb_ptr = NULL; 2392 } 2393 _sym_xpt_done(np, ccb); 2394 } 2395 2396 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2397 { 2398 SYM_LOCK_ASSERT(MA_OWNED); 2399 2400 sym_set_cam_status(ccb, cam_status); 2401 _sym_xpt_done(np, ccb); 2402 } 2403 2404 /* 2405 * SYMBIOS chip clock divisor table. 2406 * 2407 * Divisors are multiplied by 10,000,000 in order to make 2408 * calculations more simple. 2409 */ 2410 #define _5M 5000000 2411 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2412 2413 /* 2414 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2415 * 128 transfers. All chips support at least 16 transfers 2416 * bursts. The 825A, 875 and 895 chips support bursts of up 2417 * to 128 transfers and the 895A and 896 support bursts of up 2418 * to 64 transfers. All other chips support up to 16 2419 * transfers bursts. 2420 * 2421 * For PCI 32 bit data transfers each transfer is a DWORD. 2422 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2423 * 2424 * We use log base 2 (burst length) as internal code, with 2425 * value 0 meaning "burst disabled". 2426 */ 2427 2428 /* 2429 * Burst length from burst code. 2430 */ 2431 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2432 2433 /* 2434 * Burst code from io register bits. 2435 */ 2436 #define burst_code(dmode, ctest4, ctest5) \ 2437 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2438 2439 /* 2440 * Set initial io register bits from burst code. 2441 */ 2442 static __inline void sym_init_burst(hcb_p np, u_char bc) 2443 { 2444 np->rv_ctest4 &= ~0x80; 2445 np->rv_dmode &= ~(0x3 << 6); 2446 np->rv_ctest5 &= ~0x4; 2447 2448 if (!bc) { 2449 np->rv_ctest4 |= 0x80; 2450 } 2451 else { 2452 --bc; 2453 np->rv_dmode |= ((bc & 0x3) << 6); 2454 np->rv_ctest5 |= (bc & 0x4); 2455 } 2456 } 2457 2458 2459 /* 2460 * Print out the list of targets that have some flag disabled by user. 2461 */ 2462 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2463 { 2464 int cnt; 2465 int i; 2466 2467 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2468 if (i == np->myaddr) 2469 continue; 2470 if (np->target[i].usrflags & mask) { 2471 if (!cnt++) 2472 printf("%s: %s disabled for targets", 2473 sym_name(np), msg); 2474 printf(" %d", i); 2475 } 2476 } 2477 if (cnt) 2478 printf(".\n"); 2479 } 2480 2481 /* 2482 * Save initial settings of some IO registers. 2483 * Assumed to have been set by BIOS. 2484 * We cannot reset the chip prior to reading the 2485 * IO registers, since informations will be lost. 2486 * Since the SCRIPTS processor may be running, this 2487 * is not safe on paper, but it seems to work quite 2488 * well. :) 2489 */ 2490 static void sym_save_initial_setting (hcb_p np) 2491 { 2492 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2493 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2494 np->sv_dmode = INB(nc_dmode) & 0xce; 2495 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2496 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2497 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2498 np->sv_gpcntl = INB(nc_gpcntl); 2499 np->sv_stest1 = INB(nc_stest1); 2500 np->sv_stest2 = INB(nc_stest2) & 0x20; 2501 np->sv_stest4 = INB(nc_stest4); 2502 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2503 np->sv_scntl4 = INB(nc_scntl4); 2504 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2505 } 2506 else 2507 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2508 } 2509 2510 /* 2511 * Prepare io register values used by sym_init() according 2512 * to selected and supported features. 2513 */ 2514 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2515 { 2516 u_char burst_max; 2517 u32 period; 2518 int i; 2519 2520 /* 2521 * Wide ? 2522 */ 2523 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2524 2525 /* 2526 * Get the frequency of the chip's clock. 2527 */ 2528 if (np->features & FE_QUAD) 2529 np->multiplier = 4; 2530 else if (np->features & FE_DBLR) 2531 np->multiplier = 2; 2532 else 2533 np->multiplier = 1; 2534 2535 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2536 np->clock_khz *= np->multiplier; 2537 2538 if (np->clock_khz != 40000) 2539 sym_getclock(np, np->multiplier); 2540 2541 /* 2542 * Divisor to be used for async (timer pre-scaler). 2543 */ 2544 i = np->clock_divn - 1; 2545 while (--i >= 0) { 2546 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2547 ++i; 2548 break; 2549 } 2550 } 2551 np->rv_scntl3 = i+1; 2552 2553 /* 2554 * The C1010 uses hardwired divisors for async. 2555 * So, we just throw away, the async. divisor.:-) 2556 */ 2557 if (np->features & FE_C10) 2558 np->rv_scntl3 = 0; 2559 2560 /* 2561 * Minimum synchronous period factor supported by the chip. 2562 * Btw, 'period' is in tenths of nanoseconds. 2563 */ 2564 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2565 if (period <= 250) np->minsync = 10; 2566 else if (period <= 303) np->minsync = 11; 2567 else if (period <= 500) np->minsync = 12; 2568 else np->minsync = (period + 40 - 1) / 40; 2569 2570 /* 2571 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2572 */ 2573 if (np->minsync < 25 && 2574 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2575 np->minsync = 25; 2576 else if (np->minsync < 12 && 2577 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2578 np->minsync = 12; 2579 2580 /* 2581 * Maximum synchronous period factor supported by the chip. 2582 */ 2583 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2584 np->maxsync = period > 2540 ? 254 : period / 10; 2585 2586 /* 2587 * If chip is a C1010, guess the sync limits in DT mode. 2588 */ 2589 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2590 if (np->clock_khz == 160000) { 2591 np->minsync_dt = 9; 2592 np->maxsync_dt = 50; 2593 np->maxoffs_dt = 62; 2594 } 2595 } 2596 2597 /* 2598 * 64 bit addressing (895A/896/1010) ? 2599 */ 2600 if (np->features & FE_DAC) 2601 #ifdef __LP64__ 2602 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2603 #else 2604 np->rv_ccntl1 |= (DDAC); 2605 #endif 2606 2607 /* 2608 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2609 */ 2610 if (np->features & FE_NOPM) 2611 np->rv_ccntl0 |= (ENPMJ); 2612 2613 /* 2614 * C1010 Errata. 2615 * In dual channel mode, contention occurs if internal cycles 2616 * are used. Disable internal cycles. 2617 */ 2618 if (np->device_id == PCI_ID_LSI53C1010 && 2619 np->revision_id < 0x2) 2620 np->rv_ccntl0 |= DILS; 2621 2622 /* 2623 * Select burst length (dwords) 2624 */ 2625 burst_max = SYM_SETUP_BURST_ORDER; 2626 if (burst_max == 255) 2627 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2628 np->sv_ctest5); 2629 if (burst_max > 7) 2630 burst_max = 7; 2631 if (burst_max > np->maxburst) 2632 burst_max = np->maxburst; 2633 2634 /* 2635 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2636 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2637 * based transactions on LOAD/STORE instructions. So we have 2638 * to prevent these chips from using such PCI transactions in 2639 * this driver. The generic ncr driver that does not use 2640 * LOAD/STORE instructions does not need this work-around. 2641 */ 2642 if ((np->device_id == PCI_ID_SYM53C810 && 2643 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2644 (np->device_id == PCI_ID_SYM53C860 && 2645 np->revision_id <= 0x1)) 2646 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2647 2648 /* 2649 * Select all supported special features. 2650 * If we are using on-board RAM for scripts, prefetch (PFEN) 2651 * does not help, but burst op fetch (BOF) does. 2652 * Disabling PFEN makes sure BOF will be used. 2653 */ 2654 if (np->features & FE_ERL) 2655 np->rv_dmode |= ERL; /* Enable Read Line */ 2656 if (np->features & FE_BOF) 2657 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2658 if (np->features & FE_ERMP) 2659 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2660 #if 1 2661 if ((np->features & FE_PFEN) && !np->ram_ba) 2662 #else 2663 if (np->features & FE_PFEN) 2664 #endif 2665 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2666 if (np->features & FE_CLSE) 2667 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2668 if (np->features & FE_WRIE) 2669 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2670 if (np->features & FE_DFS) 2671 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2672 2673 /* 2674 * Select some other 2675 */ 2676 if (SYM_SETUP_PCI_PARITY) 2677 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2678 if (SYM_SETUP_SCSI_PARITY) 2679 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2680 2681 /* 2682 * Get parity checking, host ID and verbose mode from NVRAM 2683 */ 2684 np->myaddr = 255; 2685 sym_nvram_setup_host (np, nvram); 2686 2687 /* 2688 * Get SCSI addr of host adapter (set by bios?). 2689 */ 2690 if (np->myaddr == 255) { 2691 np->myaddr = INB(nc_scid) & 0x07; 2692 if (!np->myaddr) 2693 np->myaddr = SYM_SETUP_HOST_ID; 2694 } 2695 2696 /* 2697 * Prepare initial io register bits for burst length 2698 */ 2699 sym_init_burst(np, burst_max); 2700 2701 /* 2702 * Set SCSI BUS mode. 2703 * - LVD capable chips (895/895A/896/1010) report the 2704 * current BUS mode through the STEST4 IO register. 2705 * - For previous generation chips (825/825A/875), 2706 * user has to tell us how to check against HVD, 2707 * since a 100% safe algorithm is not possible. 2708 */ 2709 np->scsi_mode = SMODE_SE; 2710 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2711 np->scsi_mode = (np->sv_stest4 & SMODE); 2712 else if (np->features & FE_DIFF) { 2713 if (SYM_SETUP_SCSI_DIFF == 1) { 2714 if (np->sv_scntl3) { 2715 if (np->sv_stest2 & 0x20) 2716 np->scsi_mode = SMODE_HVD; 2717 } 2718 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2719 if (!(INB(nc_gpreg) & 0x08)) 2720 np->scsi_mode = SMODE_HVD; 2721 } 2722 } 2723 else if (SYM_SETUP_SCSI_DIFF == 2) 2724 np->scsi_mode = SMODE_HVD; 2725 } 2726 if (np->scsi_mode == SMODE_HVD) 2727 np->rv_stest2 |= 0x20; 2728 2729 /* 2730 * Set LED support from SCRIPTS. 2731 * Ignore this feature for boards known to use a 2732 * specific GPIO wiring and for the 895A, 896 2733 * and 1010 that drive the LED directly. 2734 */ 2735 if ((SYM_SETUP_SCSI_LED || 2736 (nvram->type == SYM_SYMBIOS_NVRAM || 2737 (nvram->type == SYM_TEKRAM_NVRAM && 2738 np->device_id == PCI_ID_SYM53C895))) && 2739 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2740 np->features |= FE_LED0; 2741 2742 /* 2743 * Set irq mode. 2744 */ 2745 switch(SYM_SETUP_IRQ_MODE & 3) { 2746 case 2: 2747 np->rv_dcntl |= IRQM; 2748 break; 2749 case 1: 2750 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2751 break; 2752 default: 2753 break; 2754 } 2755 2756 /* 2757 * Configure targets according to driver setup. 2758 * If NVRAM present get targets setup from NVRAM. 2759 */ 2760 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2761 tcb_p tp = &np->target[i]; 2762 2763 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2764 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2765 tp->tinfo.user.period = np->minsync; 2766 tp->tinfo.user.offset = np->maxoffs; 2767 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2768 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2769 tp->usrtags = SYM_SETUP_MAX_TAG; 2770 2771 sym_nvram_setup_target (np, i, nvram); 2772 2773 /* 2774 * For now, guess PPR/DT support from the period 2775 * and BUS width. 2776 */ 2777 if (np->features & FE_ULTRA3) { 2778 if (tp->tinfo.user.period <= 9 && 2779 tp->tinfo.user.width == BUS_16_BIT) { 2780 tp->tinfo.user.options |= PPR_OPT_DT; 2781 tp->tinfo.user.offset = np->maxoffs_dt; 2782 tp->tinfo.user.spi_version = 3; 2783 } 2784 } 2785 2786 if (!tp->usrtags) 2787 tp->usrflags &= ~SYM_TAGS_ENABLED; 2788 } 2789 2790 /* 2791 * Let user know about the settings. 2792 */ 2793 i = nvram->type; 2794 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2795 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2796 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2797 np->myaddr, 2798 (np->features & FE_ULTRA3) ? 80 : 2799 (np->features & FE_ULTRA2) ? 40 : 2800 (np->features & FE_ULTRA) ? 20 : 10, 2801 sym_scsi_bus_mode(np->scsi_mode), 2802 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2803 /* 2804 * Tell him more on demand. 2805 */ 2806 if (sym_verbose) { 2807 printf("%s: %s IRQ line driver%s\n", 2808 sym_name(np), 2809 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2810 np->ram_ba ? ", using on-chip SRAM" : ""); 2811 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2812 if (np->features & FE_NOPM) 2813 printf("%s: handling phase mismatch from SCRIPTS.\n", 2814 sym_name(np)); 2815 } 2816 /* 2817 * And still more. 2818 */ 2819 if (sym_verbose > 1) { 2820 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2821 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2822 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2823 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2824 2825 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2826 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2827 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2828 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2829 } 2830 /* 2831 * Let user be aware of targets that have some disable flags set. 2832 */ 2833 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2834 if (sym_verbose) 2835 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2836 "SCAN FOR LUNS"); 2837 2838 return 0; 2839 } 2840 2841 /* 2842 * Prepare the next negotiation message if needed. 2843 * 2844 * Fill in the part of message buffer that contains the 2845 * negotiation and the nego_status field of the CCB. 2846 * Returns the size of the message in bytes. 2847 */ 2848 2849 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2850 { 2851 tcb_p tp = &np->target[cp->target]; 2852 int msglen = 0; 2853 2854 /* 2855 * Early C1010 chips need a work-around for DT 2856 * data transfer to work. 2857 */ 2858 if (!(np->features & FE_U3EN)) 2859 tp->tinfo.goal.options = 0; 2860 /* 2861 * negotiate using PPR ? 2862 */ 2863 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2864 nego = NS_PPR; 2865 /* 2866 * negotiate wide transfers ? 2867 */ 2868 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2869 nego = NS_WIDE; 2870 /* 2871 * negotiate synchronous transfers? 2872 */ 2873 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2874 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2875 nego = NS_SYNC; 2876 2877 switch (nego) { 2878 case NS_SYNC: 2879 msgptr[msglen++] = M_EXTENDED; 2880 msgptr[msglen++] = 3; 2881 msgptr[msglen++] = M_X_SYNC_REQ; 2882 msgptr[msglen++] = tp->tinfo.goal.period; 2883 msgptr[msglen++] = tp->tinfo.goal.offset; 2884 break; 2885 case NS_WIDE: 2886 msgptr[msglen++] = M_EXTENDED; 2887 msgptr[msglen++] = 2; 2888 msgptr[msglen++] = M_X_WIDE_REQ; 2889 msgptr[msglen++] = tp->tinfo.goal.width; 2890 break; 2891 case NS_PPR: 2892 msgptr[msglen++] = M_EXTENDED; 2893 msgptr[msglen++] = 6; 2894 msgptr[msglen++] = M_X_PPR_REQ; 2895 msgptr[msglen++] = tp->tinfo.goal.period; 2896 msgptr[msglen++] = 0; 2897 msgptr[msglen++] = tp->tinfo.goal.offset; 2898 msgptr[msglen++] = tp->tinfo.goal.width; 2899 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2900 break; 2901 }; 2902 2903 cp->nego_status = nego; 2904 2905 if (nego) { 2906 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2907 if (DEBUG_FLAGS & DEBUG_NEGO) { 2908 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2909 nego == NS_WIDE ? "wide msgout" : 2910 "ppr msgout", msgptr); 2911 }; 2912 }; 2913 2914 return msglen; 2915 } 2916 2917 /* 2918 * Insert a job into the start queue. 2919 */ 2920 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2921 { 2922 u_short qidx; 2923 2924 #ifdef SYM_CONF_IARB_SUPPORT 2925 /* 2926 * If the previously queued CCB is not yet done, 2927 * set the IARB hint. The SCRIPTS will go with IARB 2928 * for this job when starting the previous one. 2929 * We leave devices a chance to win arbitration by 2930 * not using more than 'iarb_max' consecutive 2931 * immediate arbitrations. 2932 */ 2933 if (np->last_cp && np->iarb_count < np->iarb_max) { 2934 np->last_cp->host_flags |= HF_HINT_IARB; 2935 ++np->iarb_count; 2936 } 2937 else 2938 np->iarb_count = 0; 2939 np->last_cp = cp; 2940 #endif 2941 2942 /* 2943 * Insert first the idle task and then our job. 2944 * The MB should ensure proper ordering. 2945 */ 2946 qidx = np->squeueput + 2; 2947 if (qidx >= MAX_QUEUE*2) qidx = 0; 2948 2949 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2950 MEMORY_BARRIER(); 2951 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2952 2953 np->squeueput = qidx; 2954 2955 if (DEBUG_FLAGS & DEBUG_QUEUE) 2956 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2957 2958 /* 2959 * Script processor may be waiting for reselect. 2960 * Wake it up. 2961 */ 2962 MEMORY_BARRIER(); 2963 OUTB (nc_istat, SIGP|np->istat_sem); 2964 } 2965 2966 2967 /* 2968 * Soft reset the chip. 2969 * 2970 * Raising SRST when the chip is running may cause 2971 * problems on dual function chips (see below). 2972 * On the other hand, LVD devices need some delay 2973 * to settle and report actual BUS mode in STEST4. 2974 */ 2975 static void sym_chip_reset (hcb_p np) 2976 { 2977 OUTB (nc_istat, SRST); 2978 UDELAY (10); 2979 OUTB (nc_istat, 0); 2980 UDELAY(2000); /* For BUS MODE to settle */ 2981 } 2982 2983 /* 2984 * Soft reset the chip. 2985 * 2986 * Some 896 and 876 chip revisions may hang-up if we set 2987 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2988 * are running. 2989 * So, we need to abort the current operation prior to 2990 * soft resetting the chip. 2991 */ 2992 static void sym_soft_reset (hcb_p np) 2993 { 2994 u_char istat; 2995 int i; 2996 2997 OUTB (nc_istat, CABRT); 2998 for (i = 1000000 ; i ; --i) { 2999 istat = INB (nc_istat); 3000 if (istat & SIP) { 3001 INW (nc_sist); 3002 continue; 3003 } 3004 if (istat & DIP) { 3005 OUTB (nc_istat, 0); 3006 INB (nc_dstat); 3007 break; 3008 } 3009 } 3010 if (!i) 3011 printf("%s: unable to abort current chip operation.\n", 3012 sym_name(np)); 3013 sym_chip_reset (np); 3014 } 3015 3016 /* 3017 * Start reset process. 3018 * 3019 * The interrupt handler will reinitialize the chip. 3020 */ 3021 static void sym_start_reset(hcb_p np) 3022 { 3023 (void) sym_reset_scsi_bus(np, 1); 3024 } 3025 3026 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3027 { 3028 u32 term; 3029 int retv = 0; 3030 3031 sym_soft_reset(np); /* Soft reset the chip */ 3032 if (enab_int) 3033 OUTW (nc_sien, RST); 3034 /* 3035 * Enable Tolerant, reset IRQD if present and 3036 * properly set IRQ mode, prior to resetting the bus. 3037 */ 3038 OUTB (nc_stest3, TE); 3039 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3040 OUTB (nc_scntl1, CRST); 3041 UDELAY (200); 3042 3043 if (!SYM_SETUP_SCSI_BUS_CHECK) 3044 goto out; 3045 /* 3046 * Check for no terminators or SCSI bus shorts to ground. 3047 * Read SCSI data bus, data parity bits and control signals. 3048 * We are expecting RESET to be TRUE and other signals to be 3049 * FALSE. 3050 */ 3051 term = INB(nc_sstat0); 3052 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3053 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3054 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3055 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3056 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3057 3058 if (!(np->features & FE_WIDE)) 3059 term &= 0x3ffff; 3060 3061 if (term != (2<<7)) { 3062 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3063 sym_name(np)); 3064 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3065 "0x%lx, expecting 0x%lx\n", 3066 sym_name(np), 3067 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3068 (u_long)term, (u_long)(2<<7)); 3069 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3070 retv = 1; 3071 } 3072 out: 3073 OUTB (nc_scntl1, 0); 3074 /* MDELAY(100); */ 3075 return retv; 3076 } 3077 3078 /* 3079 * The chip may have completed jobs. Look at the DONE QUEUE. 3080 * 3081 * On architectures that may reorder LOAD/STORE operations, 3082 * a memory barrier may be needed after the reading of the 3083 * so-called `flag' and prior to dealing with the data. 3084 */ 3085 static int sym_wakeup_done (hcb_p np) 3086 { 3087 ccb_p cp; 3088 int i, n; 3089 u32 dsa; 3090 3091 SYM_LOCK_ASSERT(MA_OWNED); 3092 3093 n = 0; 3094 i = np->dqueueget; 3095 while (1) { 3096 dsa = scr_to_cpu(np->dqueue[i]); 3097 if (!dsa) 3098 break; 3099 np->dqueue[i] = 0; 3100 if ((i = i+2) >= MAX_QUEUE*2) 3101 i = 0; 3102 3103 cp = sym_ccb_from_dsa(np, dsa); 3104 if (cp) { 3105 MEMORY_BARRIER(); 3106 sym_complete_ok (np, cp); 3107 ++n; 3108 } 3109 else 3110 printf ("%s: bad DSA (%x) in done queue.\n", 3111 sym_name(np), (u_int) dsa); 3112 } 3113 np->dqueueget = i; 3114 3115 return n; 3116 } 3117 3118 /* 3119 * Complete all active CCBs with error. 3120 * Used on CHIP/SCSI RESET. 3121 */ 3122 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3123 { 3124 /* 3125 * Move all active CCBs to the COMP queue 3126 * and flush this queue. 3127 */ 3128 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3129 sym_que_init(&np->busy_ccbq); 3130 sym_flush_comp_queue(np, cam_status); 3131 } 3132 3133 /* 3134 * Start chip. 3135 * 3136 * 'reason' means: 3137 * 0: initialisation. 3138 * 1: SCSI BUS RESET delivered or received. 3139 * 2: SCSI BUS MODE changed. 3140 */ 3141 static void sym_init (hcb_p np, int reason) 3142 { 3143 int i; 3144 u32 phys; 3145 3146 SYM_LOCK_ASSERT(MA_OWNED); 3147 3148 /* 3149 * Reset chip if asked, otherwise just clear fifos. 3150 */ 3151 if (reason == 1) 3152 sym_soft_reset(np); 3153 else { 3154 OUTB (nc_stest3, TE|CSF); 3155 OUTONB (nc_ctest3, CLF); 3156 } 3157 3158 /* 3159 * Clear Start Queue 3160 */ 3161 phys = np->squeue_ba; 3162 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3163 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3164 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3165 } 3166 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3167 3168 /* 3169 * Start at first entry. 3170 */ 3171 np->squeueput = 0; 3172 3173 /* 3174 * Clear Done Queue 3175 */ 3176 phys = np->dqueue_ba; 3177 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3178 np->dqueue[i] = 0; 3179 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3180 } 3181 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3182 3183 /* 3184 * Start at first entry. 3185 */ 3186 np->dqueueget = 0; 3187 3188 /* 3189 * Install patches in scripts. 3190 * This also let point to first position the start 3191 * and done queue pointers used from SCRIPTS. 3192 */ 3193 np->fw_patch(np); 3194 3195 /* 3196 * Wakeup all pending jobs. 3197 */ 3198 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3199 3200 /* 3201 * Init chip. 3202 */ 3203 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3204 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3205 3206 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3207 /* full arb., ena parity, par->ATN */ 3208 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3209 3210 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3211 3212 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3213 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3214 OUTB (nc_istat , SIGP ); /* Signal Process */ 3215 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3216 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3217 3218 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3219 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3220 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3221 3222 /* Extended Sreq/Sack filtering not supported on the C10 */ 3223 if (np->features & FE_C10) 3224 OUTB (nc_stest2, np->rv_stest2); 3225 else 3226 OUTB (nc_stest2, EXT|np->rv_stest2); 3227 3228 OUTB (nc_stest3, TE); /* TolerANT enable */ 3229 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3230 3231 /* 3232 * For now, disable AIP generation on C1010-66. 3233 */ 3234 if (np->device_id == PCI_ID_LSI53C1010_2) 3235 OUTB (nc_aipcntl1, DISAIP); 3236 3237 /* 3238 * C10101 Errata. 3239 * Errant SGE's when in narrow. Write bits 4 & 5 of 3240 * STEST1 register to disable SGE. We probably should do 3241 * that from SCRIPTS for each selection/reselection, but 3242 * I just don't want. :) 3243 */ 3244 if (np->device_id == PCI_ID_LSI53C1010 && 3245 /* np->revision_id < 0xff */ 1) 3246 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3247 3248 /* 3249 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3250 * Disable overlapped arbitration for some dual function devices, 3251 * regardless revision id (kind of post-chip-design feature. ;-)) 3252 */ 3253 if (np->device_id == PCI_ID_SYM53C875) 3254 OUTB (nc_ctest0, (1<<5)); 3255 else if (np->device_id == PCI_ID_SYM53C896) 3256 np->rv_ccntl0 |= DPR; 3257 3258 /* 3259 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3260 * and/or hardware phase mismatch, since only such chips 3261 * seem to support those IO registers. 3262 */ 3263 if (np->features & (FE_DAC|FE_NOPM)) { 3264 OUTB (nc_ccntl0, np->rv_ccntl0); 3265 OUTB (nc_ccntl1, np->rv_ccntl1); 3266 } 3267 3268 /* 3269 * If phase mismatch handled by scripts (895A/896/1010), 3270 * set PM jump addresses. 3271 */ 3272 if (np->features & FE_NOPM) { 3273 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3274 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3275 } 3276 3277 /* 3278 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3279 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3280 */ 3281 if (np->features & FE_LED0) 3282 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3283 else if (np->features & FE_LEDC) 3284 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3285 3286 /* 3287 * enable ints 3288 */ 3289 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3290 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3291 3292 /* 3293 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3294 * Try to eat the spurious SBMC interrupt that may occur when 3295 * we reset the chip but not the SCSI BUS (at initialization). 3296 */ 3297 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3298 OUTONW (nc_sien, SBMC); 3299 if (reason == 0) { 3300 MDELAY(100); 3301 INW (nc_sist); 3302 } 3303 np->scsi_mode = INB (nc_stest4) & SMODE; 3304 } 3305 3306 /* 3307 * Fill in target structure. 3308 * Reinitialize usrsync. 3309 * Reinitialize usrwide. 3310 * Prepare sync negotiation according to actual SCSI bus mode. 3311 */ 3312 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3313 tcb_p tp = &np->target[i]; 3314 3315 tp->to_reset = 0; 3316 tp->head.sval = 0; 3317 tp->head.wval = np->rv_scntl3; 3318 tp->head.uval = 0; 3319 3320 tp->tinfo.current.period = 0; 3321 tp->tinfo.current.offset = 0; 3322 tp->tinfo.current.width = BUS_8_BIT; 3323 tp->tinfo.current.options = 0; 3324 } 3325 3326 /* 3327 * Download SCSI SCRIPTS to on-chip RAM if present, 3328 * and start script processor. 3329 */ 3330 if (np->ram_ba) { 3331 if (sym_verbose > 1) 3332 printf ("%s: Downloading SCSI SCRIPTS.\n", 3333 sym_name(np)); 3334 if (np->ram_ws == 8192) { 3335 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3336 OUTL (nc_mmws, np->scr_ram_seg); 3337 OUTL (nc_mmrs, np->scr_ram_seg); 3338 OUTL (nc_sfs, np->scr_ram_seg); 3339 phys = SCRIPTB_BA (np, start64); 3340 } 3341 else 3342 phys = SCRIPTA_BA (np, init); 3343 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3344 } 3345 else 3346 phys = SCRIPTA_BA (np, init); 3347 3348 np->istat_sem = 0; 3349 3350 OUTL (nc_dsa, np->hcb_ba); 3351 OUTL_DSP (phys); 3352 3353 /* 3354 * Notify the XPT about the RESET condition. 3355 */ 3356 if (reason != 0) 3357 xpt_async(AC_BUS_RESET, np->path, NULL); 3358 } 3359 3360 /* 3361 * Get clock factor and sync divisor for a given 3362 * synchronous factor period. 3363 */ 3364 static int 3365 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3366 { 3367 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3368 int div = np->clock_divn; /* Number of divisors supported */ 3369 u32 fak; /* Sync factor in sxfer */ 3370 u32 per; /* Period in tenths of ns */ 3371 u32 kpc; /* (per * clk) */ 3372 int ret; 3373 3374 /* 3375 * Compute the synchronous period in tenths of nano-seconds 3376 */ 3377 if (dt && sfac <= 9) per = 125; 3378 else if (sfac <= 10) per = 250; 3379 else if (sfac == 11) per = 303; 3380 else if (sfac == 12) per = 500; 3381 else per = 40 * sfac; 3382 ret = per; 3383 3384 kpc = per * clk; 3385 if (dt) 3386 kpc <<= 1; 3387 3388 /* 3389 * For earliest C10 revision 0, we cannot use extra 3390 * clocks for the setting of the SCSI clocking. 3391 * Note that this limits the lowest sync data transfer 3392 * to 5 Mega-transfers per second and may result in 3393 * using higher clock divisors. 3394 */ 3395 #if 1 3396 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3397 /* 3398 * Look for the lowest clock divisor that allows an 3399 * output speed not faster than the period. 3400 */ 3401 while (div > 0) { 3402 --div; 3403 if (kpc > (div_10M[div] << 2)) { 3404 ++div; 3405 break; 3406 } 3407 } 3408 fak = 0; /* No extra clocks */ 3409 if (div == np->clock_divn) { /* Are we too fast ? */ 3410 ret = -1; 3411 } 3412 *divp = div; 3413 *fakp = fak; 3414 return ret; 3415 } 3416 #endif 3417 3418 /* 3419 * Look for the greatest clock divisor that allows an 3420 * input speed faster than the period. 3421 */ 3422 while (div-- > 0) 3423 if (kpc >= (div_10M[div] << 2)) break; 3424 3425 /* 3426 * Calculate the lowest clock factor that allows an output 3427 * speed not faster than the period, and the max output speed. 3428 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3429 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3430 */ 3431 if (dt) { 3432 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3433 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3434 } 3435 else { 3436 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3437 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3438 } 3439 3440 /* 3441 * Check against our hardware limits, or bugs :). 3442 */ 3443 if (fak < 0) {fak = 0; ret = -1;} 3444 if (fak > 2) {fak = 2; ret = -1;} 3445 3446 /* 3447 * Compute and return sync parameters. 3448 */ 3449 *divp = div; 3450 *fakp = fak; 3451 3452 return ret; 3453 } 3454 3455 /* 3456 * Tell the SCSI layer about the new transfer parameters. 3457 */ 3458 static void 3459 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3460 { 3461 struct ccb_trans_settings cts; 3462 struct cam_path *path; 3463 int sts; 3464 tcb_p tp = &np->target[target]; 3465 3466 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3467 CAM_LUN_WILDCARD); 3468 if (sts != CAM_REQ_CMP) 3469 return; 3470 3471 bzero(&cts, sizeof(cts)); 3472 3473 #define cts__scsi (cts.proto_specific.scsi) 3474 #define cts__spi (cts.xport_specific.spi) 3475 3476 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3477 cts.protocol = PROTO_SCSI; 3478 cts.transport = XPORT_SPI; 3479 cts.protocol_version = tp->tinfo.current.scsi_version; 3480 cts.transport_version = tp->tinfo.current.spi_version; 3481 3482 cts__spi.valid = spi_valid; 3483 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3484 cts__spi.sync_period = tp->tinfo.current.period; 3485 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3486 cts__spi.sync_offset = tp->tinfo.current.offset; 3487 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3488 cts__spi.bus_width = tp->tinfo.current.width; 3489 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3490 cts__spi.ppr_options = tp->tinfo.current.options; 3491 #undef cts__spi 3492 #undef cts__scsi 3493 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3494 xpt_async(AC_TRANSFER_NEG, path, &cts); 3495 xpt_free_path(path); 3496 } 3497 3498 #define SYM_SPI_VALID_WDTR \ 3499 CTS_SPI_VALID_BUS_WIDTH | \ 3500 CTS_SPI_VALID_SYNC_RATE | \ 3501 CTS_SPI_VALID_SYNC_OFFSET 3502 #define SYM_SPI_VALID_SDTR \ 3503 CTS_SPI_VALID_SYNC_RATE | \ 3504 CTS_SPI_VALID_SYNC_OFFSET 3505 #define SYM_SPI_VALID_PPR \ 3506 CTS_SPI_VALID_PPR_OPTIONS | \ 3507 CTS_SPI_VALID_BUS_WIDTH | \ 3508 CTS_SPI_VALID_SYNC_RATE | \ 3509 CTS_SPI_VALID_SYNC_OFFSET 3510 3511 /* 3512 * We received a WDTR. 3513 * Let everything be aware of the changes. 3514 */ 3515 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3516 { 3517 tcb_p tp = &np->target[cp->target]; 3518 3519 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3520 3521 /* 3522 * Tell the SCSI layer about the new transfer parameters. 3523 */ 3524 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3525 tp->tinfo.current.offset = 0; 3526 tp->tinfo.current.period = 0; 3527 tp->tinfo.current.options = 0; 3528 3529 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3530 } 3531 3532 /* 3533 * We received a SDTR. 3534 * Let everything be aware of the changes. 3535 */ 3536 static void 3537 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3538 { 3539 tcb_p tp = &np->target[cp->target]; 3540 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3541 3542 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3543 3544 /* 3545 * Tell the SCSI layer about the new transfer parameters. 3546 */ 3547 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3548 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3549 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3550 3551 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3552 } 3553 3554 /* 3555 * We received a PPR. 3556 * Let everything be aware of the changes. 3557 */ 3558 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3559 u_char per, u_char wide, u_char div, u_char fak) 3560 { 3561 tcb_p tp = &np->target[cp->target]; 3562 3563 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3564 3565 /* 3566 * Tell the SCSI layer about the new transfer parameters. 3567 */ 3568 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3569 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3570 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3571 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3572 3573 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3574 } 3575 3576 /* 3577 * Switch trans mode for current job and it's target. 3578 */ 3579 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3580 u_char per, u_char wide, u_char div, u_char fak) 3581 { 3582 SYM_QUEHEAD *qp; 3583 union ccb *ccb; 3584 tcb_p tp; 3585 u_char target = INB (nc_sdid) & 0x0f; 3586 u_char sval, wval, uval; 3587 3588 assert (cp); 3589 if (!cp) return; 3590 ccb = cp->cam_ccb; 3591 assert (ccb); 3592 if (!ccb) return; 3593 assert (target == (cp->target & 0xf)); 3594 tp = &np->target[target]; 3595 3596 sval = tp->head.sval; 3597 wval = tp->head.wval; 3598 uval = tp->head.uval; 3599 3600 #if 0 3601 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3602 sval, wval, uval, np->rv_scntl3); 3603 #endif 3604 /* 3605 * Set the offset. 3606 */ 3607 if (!(np->features & FE_C10)) 3608 sval = (sval & ~0x1f) | ofs; 3609 else 3610 sval = (sval & ~0x3f) | ofs; 3611 3612 /* 3613 * Set the sync divisor and extra clock factor. 3614 */ 3615 if (ofs != 0) { 3616 wval = (wval & ~0x70) | ((div+1) << 4); 3617 if (!(np->features & FE_C10)) 3618 sval = (sval & ~0xe0) | (fak << 5); 3619 else { 3620 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3621 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3622 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3623 } 3624 } 3625 3626 /* 3627 * Set the bus width. 3628 */ 3629 wval = wval & ~EWS; 3630 if (wide != 0) 3631 wval |= EWS; 3632 3633 /* 3634 * Set misc. ultra enable bits. 3635 */ 3636 if (np->features & FE_C10) { 3637 uval = uval & ~(U3EN|AIPCKEN); 3638 if (dt) { 3639 assert(np->features & FE_U3EN); 3640 uval |= U3EN; 3641 } 3642 } 3643 else { 3644 wval = wval & ~ULTRA; 3645 if (per <= 12) wval |= ULTRA; 3646 } 3647 3648 /* 3649 * Stop there if sync parameters are unchanged. 3650 */ 3651 if (tp->head.sval == sval && 3652 tp->head.wval == wval && 3653 tp->head.uval == uval) 3654 return; 3655 tp->head.sval = sval; 3656 tp->head.wval = wval; 3657 tp->head.uval = uval; 3658 3659 /* 3660 * Disable extended Sreq/Sack filtering if per < 50. 3661 * Not supported on the C1010. 3662 */ 3663 if (per < 50 && !(np->features & FE_C10)) 3664 OUTOFFB (nc_stest2, EXT); 3665 3666 /* 3667 * set actual value and sync_status 3668 */ 3669 OUTB (nc_sxfer, tp->head.sval); 3670 OUTB (nc_scntl3, tp->head.wval); 3671 3672 if (np->features & FE_C10) { 3673 OUTB (nc_scntl4, tp->head.uval); 3674 } 3675 3676 /* 3677 * patch ALL busy ccbs of this target. 3678 */ 3679 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3680 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3681 if (cp->target != target) 3682 continue; 3683 cp->phys.select.sel_scntl3 = tp->head.wval; 3684 cp->phys.select.sel_sxfer = tp->head.sval; 3685 if (np->features & FE_C10) { 3686 cp->phys.select.sel_scntl4 = tp->head.uval; 3687 } 3688 } 3689 } 3690 3691 /* 3692 * log message for real hard errors 3693 * 3694 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3695 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3696 * 3697 * exception register: 3698 * ds: dstat 3699 * si: sist 3700 * 3701 * SCSI bus lines: 3702 * so: control lines as driven by chip. 3703 * si: control lines as seen by chip. 3704 * sd: scsi data lines as seen by chip. 3705 * 3706 * wide/fastmode: 3707 * sxfer: (see the manual) 3708 * scntl3: (see the manual) 3709 * 3710 * current script command: 3711 * dsp: script address (relative to start of script). 3712 * dbc: first word of script command. 3713 * 3714 * First 24 register of the chip: 3715 * r0..rf 3716 */ 3717 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3718 { 3719 u32 dsp; 3720 int script_ofs; 3721 int script_size; 3722 char *script_name; 3723 u_char *script_base; 3724 int i; 3725 3726 dsp = INL (nc_dsp); 3727 3728 if (dsp > np->scripta_ba && 3729 dsp <= np->scripta_ba + np->scripta_sz) { 3730 script_ofs = dsp - np->scripta_ba; 3731 script_size = np->scripta_sz; 3732 script_base = (u_char *) np->scripta0; 3733 script_name = "scripta"; 3734 } 3735 else if (np->scriptb_ba < dsp && 3736 dsp <= np->scriptb_ba + np->scriptb_sz) { 3737 script_ofs = dsp - np->scriptb_ba; 3738 script_size = np->scriptb_sz; 3739 script_base = (u_char *) np->scriptb0; 3740 script_name = "scriptb"; 3741 } else { 3742 script_ofs = dsp; 3743 script_size = 0; 3744 script_base = 0; 3745 script_name = "mem"; 3746 } 3747 3748 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3749 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3750 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3751 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3752 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3753 (unsigned)INL (nc_dbc)); 3754 3755 if (((script_ofs & 3) == 0) && 3756 (unsigned)script_ofs < script_size) { 3757 printf ("%s: script cmd = %08x\n", sym_name(np), 3758 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3759 } 3760 3761 printf ("%s: regdump:", sym_name(np)); 3762 for (i=0; i<24;i++) 3763 printf (" %02x", (unsigned)INB_OFF(i)); 3764 printf (".\n"); 3765 3766 /* 3767 * PCI BUS error, read the PCI ststus register. 3768 */ 3769 if (dstat & (MDPE|BF)) { 3770 u_short pci_sts; 3771 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3772 if (pci_sts & 0xf900) { 3773 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3774 printf("%s: PCI STATUS = 0x%04x\n", 3775 sym_name(np), pci_sts & 0xf900); 3776 } 3777 } 3778 } 3779 3780 /* 3781 * chip interrupt handler 3782 * 3783 * In normal situations, interrupt conditions occur one at 3784 * a time. But when something bad happens on the SCSI BUS, 3785 * the chip may raise several interrupt flags before 3786 * stopping and interrupting the CPU. The additionnal 3787 * interrupt flags are stacked in some extra registers 3788 * after the SIP and/or DIP flag has been raised in the 3789 * ISTAT. After the CPU has read the interrupt condition 3790 * flag from SIST or DSTAT, the chip unstacks the other 3791 * interrupt flags and sets the corresponding bits in 3792 * SIST or DSTAT. Since the chip starts stacking once the 3793 * SIP or DIP flag is set, there is a small window of time 3794 * where the stacking does not occur. 3795 * 3796 * Typically, multiple interrupt conditions may happen in 3797 * the following situations: 3798 * 3799 * - SCSI parity error + Phase mismatch (PAR|MA) 3800 * When a parity error is detected in input phase 3801 * and the device switches to msg-in phase inside a 3802 * block MOV. 3803 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3804 * When a stupid device does not want to handle the 3805 * recovery of an SCSI parity error. 3806 * - Some combinations of STO, PAR, UDC, ... 3807 * When using non compliant SCSI stuff, when user is 3808 * doing non compliant hot tampering on the BUS, when 3809 * something really bad happens to a device, etc ... 3810 * 3811 * The heuristic suggested by SYMBIOS to handle 3812 * multiple interrupts is to try unstacking all 3813 * interrupts conditions and to handle them on some 3814 * priority based on error severity. 3815 * This will work when the unstacking has been 3816 * successful, but we cannot be 100 % sure of that, 3817 * since the CPU may have been faster to unstack than 3818 * the chip is able to stack. Hmmm ... But it seems that 3819 * such a situation is very unlikely to happen. 3820 * 3821 * If this happen, for example STO caught by the CPU 3822 * then UDC happenning before the CPU have restarted 3823 * the SCRIPTS, the driver may wrongly complete the 3824 * same command on UDC, since the SCRIPTS didn't restart 3825 * and the DSA still points to the same command. 3826 * We avoid this situation by setting the DSA to an 3827 * invalid value when the CCB is completed and before 3828 * restarting the SCRIPTS. 3829 * 3830 * Another issue is that we need some section of our 3831 * recovery procedures to be somehow uninterruptible but 3832 * the SCRIPTS processor does not provides such a 3833 * feature. For this reason, we handle recovery preferently 3834 * from the C code and check against some SCRIPTS critical 3835 * sections from the C code. 3836 * 3837 * Hopefully, the interrupt handling of the driver is now 3838 * able to resist to weird BUS error conditions, but donnot 3839 * ask me for any guarantee that it will never fail. :-) 3840 * Use at your own decision and risk. 3841 */ 3842 3843 static void sym_intr1 (hcb_p np) 3844 { 3845 u_char istat, istatc; 3846 u_char dstat; 3847 u_short sist; 3848 3849 SYM_LOCK_ASSERT(MA_OWNED); 3850 3851 /* 3852 * interrupt on the fly ? 3853 * 3854 * A `dummy read' is needed to ensure that the 3855 * clear of the INTF flag reaches the device 3856 * before the scanning of the DONE queue. 3857 */ 3858 istat = INB (nc_istat); 3859 if (istat & INTF) { 3860 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3861 istat = INB (nc_istat); /* DUMMY READ */ 3862 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3863 (void)sym_wakeup_done (np); 3864 }; 3865 3866 if (!(istat & (SIP|DIP))) 3867 return; 3868 3869 #if 0 /* We should never get this one */ 3870 if (istat & CABRT) 3871 OUTB (nc_istat, CABRT); 3872 #endif 3873 3874 /* 3875 * PAR and MA interrupts may occur at the same time, 3876 * and we need to know of both in order to handle 3877 * this situation properly. We try to unstack SCSI 3878 * interrupts for that reason. BTW, I dislike a LOT 3879 * such a loop inside the interrupt routine. 3880 * Even if DMA interrupt stacking is very unlikely to 3881 * happen, we also try unstacking these ones, since 3882 * this has no performance impact. 3883 */ 3884 sist = 0; 3885 dstat = 0; 3886 istatc = istat; 3887 do { 3888 if (istatc & SIP) 3889 sist |= INW (nc_sist); 3890 if (istatc & DIP) 3891 dstat |= INB (nc_dstat); 3892 istatc = INB (nc_istat); 3893 istat |= istatc; 3894 } while (istatc & (SIP|DIP)); 3895 3896 if (DEBUG_FLAGS & DEBUG_TINY) 3897 printf ("<%d|%x:%x|%x:%x>", 3898 (int)INB(nc_scr0), 3899 dstat,sist, 3900 (unsigned)INL(nc_dsp), 3901 (unsigned)INL(nc_dbc)); 3902 /* 3903 * On paper, a memory barrier may be needed here. 3904 * And since we are paranoid ... :) 3905 */ 3906 MEMORY_BARRIER(); 3907 3908 /* 3909 * First, interrupts we want to service cleanly. 3910 * 3911 * Phase mismatch (MA) is the most frequent interrupt 3912 * for chip earlier than the 896 and so we have to service 3913 * it as quickly as possible. 3914 * A SCSI parity error (PAR) may be combined with a phase 3915 * mismatch condition (MA). 3916 * Programmed interrupts (SIR) are used to call the C code 3917 * from SCRIPTS. 3918 * The single step interrupt (SSI) is not used in this 3919 * driver. 3920 */ 3921 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3922 !(dstat & (MDPE|BF|ABRT|IID))) { 3923 if (sist & PAR) sym_int_par (np, sist); 3924 else if (sist & MA) sym_int_ma (np); 3925 else if (dstat & SIR) sym_int_sir (np); 3926 else if (dstat & SSI) OUTONB_STD (); 3927 else goto unknown_int; 3928 return; 3929 }; 3930 3931 /* 3932 * Now, interrupts that donnot happen in normal 3933 * situations and that we may need to recover from. 3934 * 3935 * On SCSI RESET (RST), we reset everything. 3936 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3937 * active CCBs with RESET status, prepare all devices 3938 * for negotiating again and restart the SCRIPTS. 3939 * On STO and UDC, we complete the CCB with the corres- 3940 * ponding status and restart the SCRIPTS. 3941 */ 3942 if (sist & RST) { 3943 xpt_print_path(np->path); 3944 printf("SCSI BUS reset detected.\n"); 3945 sym_init (np, 1); 3946 return; 3947 }; 3948 3949 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3950 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3951 3952 if (!(sist & (GEN|HTH|SGE)) && 3953 !(dstat & (MDPE|BF|ABRT|IID))) { 3954 if (sist & SBMC) sym_int_sbmc (np); 3955 else if (sist & STO) sym_int_sto (np); 3956 else if (sist & UDC) sym_int_udc (np); 3957 else goto unknown_int; 3958 return; 3959 }; 3960 3961 /* 3962 * Now, interrupts we are not able to recover cleanly. 3963 * 3964 * Log message for hard errors. 3965 * Reset everything. 3966 */ 3967 3968 sym_log_hard_error(np, sist, dstat); 3969 3970 if ((sist & (GEN|HTH|SGE)) || 3971 (dstat & (MDPE|BF|ABRT|IID))) { 3972 sym_start_reset(np); 3973 return; 3974 }; 3975 3976 unknown_int: 3977 /* 3978 * We just miss the cause of the interrupt. :( 3979 * Print a message. The timeout will do the real work. 3980 */ 3981 printf( "%s: unknown interrupt(s) ignored, " 3982 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3983 sym_name(np), istat, dstat, sist); 3984 } 3985 3986 static void sym_intr(void *arg) 3987 { 3988 hcb_p np = arg; 3989 3990 SYM_LOCK(); 3991 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3992 sym_intr1((hcb_p) arg); 3993 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3994 SYM_UNLOCK(); 3995 } 3996 3997 static void sym_poll(struct cam_sim *sim) 3998 { 3999 sym_intr1(cam_sim_softc(sim)); 4000 } 4001 4002 4003 /* 4004 * generic recovery from scsi interrupt 4005 * 4006 * The doc says that when the chip gets an SCSI interrupt, 4007 * it tries to stop in an orderly fashion, by completing 4008 * an instruction fetch that had started or by flushing 4009 * the DMA fifo for a write to memory that was executing. 4010 * Such a fashion is not enough to know if the instruction 4011 * that was just before the current DSP value has been 4012 * executed or not. 4013 * 4014 * There are some small SCRIPTS sections that deal with 4015 * the start queue and the done queue that may break any 4016 * assomption from the C code if we are interrupted 4017 * inside, so we reset if this happens. Btw, since these 4018 * SCRIPTS sections are executed while the SCRIPTS hasn't 4019 * started SCSI operations, it is very unlikely to happen. 4020 * 4021 * All the driver data structures are supposed to be 4022 * allocated from the same 4 GB memory window, so there 4023 * is a 1 to 1 relationship between DSA and driver data 4024 * structures. Since we are careful :) to invalidate the 4025 * DSA when we complete a command or when the SCRIPTS 4026 * pushes a DSA into a queue, we can trust it when it 4027 * points to a CCB. 4028 */ 4029 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4030 { 4031 u32 dsp = INL (nc_dsp); 4032 u32 dsa = INL (nc_dsa); 4033 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4034 4035 /* 4036 * If we haven't been interrupted inside the SCRIPTS 4037 * critical pathes, we can safely restart the SCRIPTS 4038 * and trust the DSA value if it matches a CCB. 4039 */ 4040 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4041 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4042 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4043 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4044 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4045 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4046 (!(dsp > SCRIPTA_BA (np, done) && 4047 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4048 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4049 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4050 /* 4051 * If we have a CCB, let the SCRIPTS call us back for 4052 * the handling of the error with SCRATCHA filled with 4053 * STARTPOS. This way, we will be able to freeze the 4054 * device queue and requeue awaiting IOs. 4055 */ 4056 if (cp) { 4057 cp->host_status = hsts; 4058 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4059 } 4060 /* 4061 * Otherwise just restart the SCRIPTS. 4062 */ 4063 else { 4064 OUTL (nc_dsa, 0xffffff); 4065 OUTL_DSP (SCRIPTA_BA (np, start)); 4066 } 4067 } 4068 else 4069 goto reset_all; 4070 4071 return; 4072 4073 reset_all: 4074 sym_start_reset(np); 4075 } 4076 4077 /* 4078 * chip exception handler for selection timeout 4079 */ 4080 static void sym_int_sto (hcb_p np) 4081 { 4082 u32 dsp = INL (nc_dsp); 4083 4084 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4085 4086 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4087 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4088 else 4089 sym_start_reset(np); 4090 } 4091 4092 /* 4093 * chip exception handler for unexpected disconnect 4094 */ 4095 static void sym_int_udc (hcb_p np) 4096 { 4097 printf ("%s: unexpected disconnect\n", sym_name(np)); 4098 sym_recover_scsi_int(np, HS_UNEXPECTED); 4099 } 4100 4101 /* 4102 * chip exception handler for SCSI bus mode change 4103 * 4104 * spi2-r12 11.2.3 says a transceiver mode change must 4105 * generate a reset event and a device that detects a reset 4106 * event shall initiate a hard reset. It says also that a 4107 * device that detects a mode change shall set data transfer 4108 * mode to eight bit asynchronous, etc... 4109 * So, just reinitializing all except chip should be enough. 4110 */ 4111 static void sym_int_sbmc (hcb_p np) 4112 { 4113 u_char scsi_mode = INB (nc_stest4) & SMODE; 4114 4115 /* 4116 * Notify user. 4117 */ 4118 xpt_print_path(np->path); 4119 printf("SCSI BUS mode change from %s to %s.\n", 4120 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4121 4122 /* 4123 * Should suspend command processing for a few seconds and 4124 * reinitialize all except the chip. 4125 */ 4126 sym_init (np, 2); 4127 } 4128 4129 /* 4130 * chip exception handler for SCSI parity error. 4131 * 4132 * When the chip detects a SCSI parity error and is 4133 * currently executing a (CH)MOV instruction, it does 4134 * not interrupt immediately, but tries to finish the 4135 * transfer of the current scatter entry before 4136 * interrupting. The following situations may occur: 4137 * 4138 * - The complete scatter entry has been transferred 4139 * without the device having changed phase. 4140 * The chip will then interrupt with the DSP pointing 4141 * to the instruction that follows the MOV. 4142 * 4143 * - A phase mismatch occurs before the MOV finished 4144 * and phase errors are to be handled by the C code. 4145 * The chip will then interrupt with both PAR and MA 4146 * conditions set. 4147 * 4148 * - A phase mismatch occurs before the MOV finished and 4149 * phase errors are to be handled by SCRIPTS. 4150 * The chip will load the DSP with the phase mismatch 4151 * JUMP address and interrupt the host processor. 4152 */ 4153 static void sym_int_par (hcb_p np, u_short sist) 4154 { 4155 u_char hsts = INB (HS_PRT); 4156 u32 dsp = INL (nc_dsp); 4157 u32 dbc = INL (nc_dbc); 4158 u32 dsa = INL (nc_dsa); 4159 u_char sbcl = INB (nc_sbcl); 4160 u_char cmd = dbc >> 24; 4161 int phase = cmd & 7; 4162 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4163 4164 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4165 sym_name(np), hsts, dbc, sbcl); 4166 4167 /* 4168 * Check that the chip is connected to the SCSI BUS. 4169 */ 4170 if (!(INB (nc_scntl1) & ISCON)) { 4171 sym_recover_scsi_int(np, HS_UNEXPECTED); 4172 return; 4173 } 4174 4175 /* 4176 * If the nexus is not clearly identified, reset the bus. 4177 * We will try to do better later. 4178 */ 4179 if (!cp) 4180 goto reset_all; 4181 4182 /* 4183 * Check instruction was a MOV, direction was INPUT and 4184 * ATN is asserted. 4185 */ 4186 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4187 goto reset_all; 4188 4189 /* 4190 * Keep track of the parity error. 4191 */ 4192 OUTONB (HF_PRT, HF_EXT_ERR); 4193 cp->xerr_status |= XE_PARITY_ERR; 4194 4195 /* 4196 * Prepare the message to send to the device. 4197 */ 4198 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4199 4200 /* 4201 * If the old phase was DATA IN phase, we have to deal with 4202 * the 3 situations described above. 4203 * For other input phases (MSG IN and STATUS), the device 4204 * must resend the whole thing that failed parity checking 4205 * or signal error. So, jumping to dispatcher should be OK. 4206 */ 4207 if (phase == 1 || phase == 5) { 4208 /* Phase mismatch handled by SCRIPTS */ 4209 if (dsp == SCRIPTB_BA (np, pm_handle)) 4210 OUTL_DSP (dsp); 4211 /* Phase mismatch handled by the C code */ 4212 else if (sist & MA) 4213 sym_int_ma (np); 4214 /* No phase mismatch occurred */ 4215 else { 4216 OUTL (nc_temp, dsp); 4217 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4218 } 4219 } 4220 else 4221 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4222 return; 4223 4224 reset_all: 4225 sym_start_reset(np); 4226 } 4227 4228 /* 4229 * chip exception handler for phase errors. 4230 * 4231 * We have to construct a new transfer descriptor, 4232 * to transfer the rest of the current block. 4233 */ 4234 static void sym_int_ma (hcb_p np) 4235 { 4236 u32 dbc; 4237 u32 rest; 4238 u32 dsp; 4239 u32 dsa; 4240 u32 nxtdsp; 4241 u32 *vdsp; 4242 u32 oadr, olen; 4243 u32 *tblp; 4244 u32 newcmd; 4245 u_int delta; 4246 u_char cmd; 4247 u_char hflags, hflags0; 4248 struct sym_pmc *pm; 4249 ccb_p cp; 4250 4251 dsp = INL (nc_dsp); 4252 dbc = INL (nc_dbc); 4253 dsa = INL (nc_dsa); 4254 4255 cmd = dbc >> 24; 4256 rest = dbc & 0xffffff; 4257 delta = 0; 4258 4259 /* 4260 * locate matching cp if any. 4261 */ 4262 cp = sym_ccb_from_dsa(np, dsa); 4263 4264 /* 4265 * Donnot take into account dma fifo and various buffers in 4266 * INPUT phase since the chip flushes everything before 4267 * raising the MA interrupt for interrupted INPUT phases. 4268 * For DATA IN phase, we will check for the SWIDE later. 4269 */ 4270 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4271 u_char ss0, ss2; 4272 4273 if (np->features & FE_DFBC) 4274 delta = INW (nc_dfbc); 4275 else { 4276 u32 dfifo; 4277 4278 /* 4279 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4280 */ 4281 dfifo = INL(nc_dfifo); 4282 4283 /* 4284 * Calculate remaining bytes in DMA fifo. 4285 * (CTEST5 = dfifo >> 16) 4286 */ 4287 if (dfifo & (DFS << 16)) 4288 delta = ((((dfifo >> 8) & 0x300) | 4289 (dfifo & 0xff)) - rest) & 0x3ff; 4290 else 4291 delta = ((dfifo & 0xff) - rest) & 0x7f; 4292 } 4293 4294 /* 4295 * The data in the dma fifo has not been transfered to 4296 * the target -> add the amount to the rest 4297 * and clear the data. 4298 * Check the sstat2 register in case of wide transfer. 4299 */ 4300 rest += delta; 4301 ss0 = INB (nc_sstat0); 4302 if (ss0 & OLF) rest++; 4303 if (!(np->features & FE_C10)) 4304 if (ss0 & ORF) rest++; 4305 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4306 ss2 = INB (nc_sstat2); 4307 if (ss2 & OLF1) rest++; 4308 if (!(np->features & FE_C10)) 4309 if (ss2 & ORF1) rest++; 4310 }; 4311 4312 /* 4313 * Clear fifos. 4314 */ 4315 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4316 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4317 } 4318 4319 /* 4320 * log the information 4321 */ 4322 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4323 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4324 (unsigned) rest, (unsigned) delta); 4325 4326 /* 4327 * try to find the interrupted script command, 4328 * and the address at which to continue. 4329 */ 4330 vdsp = 0; 4331 nxtdsp = 0; 4332 if (dsp > np->scripta_ba && 4333 dsp <= np->scripta_ba + np->scripta_sz) { 4334 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4335 nxtdsp = dsp; 4336 } 4337 else if (dsp > np->scriptb_ba && 4338 dsp <= np->scriptb_ba + np->scriptb_sz) { 4339 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4340 nxtdsp = dsp; 4341 } 4342 4343 /* 4344 * log the information 4345 */ 4346 if (DEBUG_FLAGS & DEBUG_PHASE) { 4347 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4348 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4349 }; 4350 4351 if (!vdsp) { 4352 printf ("%s: interrupted SCRIPT address not found.\n", 4353 sym_name (np)); 4354 goto reset_all; 4355 } 4356 4357 if (!cp) { 4358 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4359 sym_name (np)); 4360 goto reset_all; 4361 } 4362 4363 /* 4364 * get old startaddress and old length. 4365 */ 4366 oadr = scr_to_cpu(vdsp[1]); 4367 4368 if (cmd & 0x10) { /* Table indirect */ 4369 tblp = (u32 *) ((char*) &cp->phys + oadr); 4370 olen = scr_to_cpu(tblp[0]); 4371 oadr = scr_to_cpu(tblp[1]); 4372 } else { 4373 tblp = (u32 *) 0; 4374 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4375 }; 4376 4377 if (DEBUG_FLAGS & DEBUG_PHASE) { 4378 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4379 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4380 tblp, 4381 (unsigned) olen, 4382 (unsigned) oadr); 4383 }; 4384 4385 /* 4386 * check cmd against assumed interrupted script command. 4387 * If dt data phase, the MOVE instruction hasn't bit 4 of 4388 * the phase. 4389 */ 4390 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4391 PRINT_ADDR(cp); 4392 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4393 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4394 4395 goto reset_all; 4396 }; 4397 4398 /* 4399 * if old phase not dataphase, leave here. 4400 */ 4401 if (cmd & 2) { 4402 PRINT_ADDR(cp); 4403 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4404 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4405 (unsigned)oadr, (unsigned)rest); 4406 goto unexpected_phase; 4407 }; 4408 4409 /* 4410 * Choose the correct PM save area. 4411 * 4412 * Look at the PM_SAVE SCRIPT if you want to understand 4413 * this stuff. The equivalent code is implemented in 4414 * SCRIPTS for the 895A, 896 and 1010 that are able to 4415 * handle PM from the SCRIPTS processor. 4416 */ 4417 hflags0 = INB (HF_PRT); 4418 hflags = hflags0; 4419 4420 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4421 if (hflags & HF_IN_PM0) 4422 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4423 else if (hflags & HF_IN_PM1) 4424 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4425 4426 if (hflags & HF_DP_SAVED) 4427 hflags ^= HF_ACT_PM; 4428 } 4429 4430 if (!(hflags & HF_ACT_PM)) { 4431 pm = &cp->phys.pm0; 4432 newcmd = SCRIPTA_BA (np, pm0_data); 4433 } 4434 else { 4435 pm = &cp->phys.pm1; 4436 newcmd = SCRIPTA_BA (np, pm1_data); 4437 } 4438 4439 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4440 if (hflags != hflags0) 4441 OUTB (HF_PRT, hflags); 4442 4443 /* 4444 * fillin the phase mismatch context 4445 */ 4446 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4447 pm->sg.size = cpu_to_scr(rest); 4448 pm->ret = cpu_to_scr(nxtdsp); 4449 4450 /* 4451 * If we have a SWIDE, 4452 * - prepare the address to write the SWIDE from SCRIPTS, 4453 * - compute the SCRIPTS address to restart from, 4454 * - move current data pointer context by one byte. 4455 */ 4456 nxtdsp = SCRIPTA_BA (np, dispatch); 4457 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4458 (INB (nc_scntl2) & WSR)) { 4459 u32 tmp; 4460 4461 /* 4462 * Set up the table indirect for the MOVE 4463 * of the residual byte and adjust the data 4464 * pointer context. 4465 */ 4466 tmp = scr_to_cpu(pm->sg.addr); 4467 cp->phys.wresid.addr = cpu_to_scr(tmp); 4468 pm->sg.addr = cpu_to_scr(tmp + 1); 4469 tmp = scr_to_cpu(pm->sg.size); 4470 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4471 pm->sg.size = cpu_to_scr(tmp - 1); 4472 4473 /* 4474 * If only the residual byte is to be moved, 4475 * no PM context is needed. 4476 */ 4477 if ((tmp&0xffffff) == 1) 4478 newcmd = pm->ret; 4479 4480 /* 4481 * Prepare the address of SCRIPTS that will 4482 * move the residual byte to memory. 4483 */ 4484 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4485 } 4486 4487 if (DEBUG_FLAGS & DEBUG_PHASE) { 4488 PRINT_ADDR(cp); 4489 printf ("PM %x %x %x / %x %x %x.\n", 4490 hflags0, hflags, newcmd, 4491 (unsigned)scr_to_cpu(pm->sg.addr), 4492 (unsigned)scr_to_cpu(pm->sg.size), 4493 (unsigned)scr_to_cpu(pm->ret)); 4494 } 4495 4496 /* 4497 * Restart the SCRIPTS processor. 4498 */ 4499 OUTL (nc_temp, newcmd); 4500 OUTL_DSP (nxtdsp); 4501 return; 4502 4503 /* 4504 * Unexpected phase changes that occurs when the current phase 4505 * is not a DATA IN or DATA OUT phase are due to error conditions. 4506 * Such event may only happen when the SCRIPTS is using a 4507 * multibyte SCSI MOVE. 4508 * 4509 * Phase change Some possible cause 4510 * 4511 * COMMAND --> MSG IN SCSI parity error detected by target. 4512 * COMMAND --> STATUS Bad command or refused by target. 4513 * MSG OUT --> MSG IN Message rejected by target. 4514 * MSG OUT --> COMMAND Bogus target that discards extended 4515 * negotiation messages. 4516 * 4517 * The code below does not care of the new phase and so 4518 * trusts the target. Why to annoy it ? 4519 * If the interrupted phase is COMMAND phase, we restart at 4520 * dispatcher. 4521 * If a target does not get all the messages after selection, 4522 * the code assumes blindly that the target discards extended 4523 * messages and clears the negotiation status. 4524 * If the target does not want all our response to negotiation, 4525 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4526 * bloat for such a should_not_happen situation). 4527 * In all other situation, we reset the BUS. 4528 * Are these assumptions reasonnable ? (Wait and see ...) 4529 */ 4530 unexpected_phase: 4531 dsp -= 8; 4532 nxtdsp = 0; 4533 4534 switch (cmd & 7) { 4535 case 2: /* COMMAND phase */ 4536 nxtdsp = SCRIPTA_BA (np, dispatch); 4537 break; 4538 #if 0 4539 case 3: /* STATUS phase */ 4540 nxtdsp = SCRIPTA_BA (np, dispatch); 4541 break; 4542 #endif 4543 case 6: /* MSG OUT phase */ 4544 /* 4545 * If the device may want to use untagged when we want 4546 * tagged, we prepare an IDENTIFY without disc. granted, 4547 * since we will not be able to handle reselect. 4548 * Otherwise, we just don't care. 4549 */ 4550 if (dsp == SCRIPTA_BA (np, send_ident)) { 4551 if (cp->tag != NO_TAG && olen - rest <= 3) { 4552 cp->host_status = HS_BUSY; 4553 np->msgout[0] = M_IDENTIFY | cp->lun; 4554 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4555 } 4556 else 4557 nxtdsp = SCRIPTB_BA (np, ident_break); 4558 } 4559 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4560 dsp == SCRIPTB_BA (np, send_sdtr) || 4561 dsp == SCRIPTB_BA (np, send_ppr)) { 4562 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4563 } 4564 break; 4565 #if 0 4566 case 7: /* MSG IN phase */ 4567 nxtdsp = SCRIPTA_BA (np, clrack); 4568 break; 4569 #endif 4570 } 4571 4572 if (nxtdsp) { 4573 OUTL_DSP (nxtdsp); 4574 return; 4575 } 4576 4577 reset_all: 4578 sym_start_reset(np); 4579 } 4580 4581 /* 4582 * Dequeue from the START queue all CCBs that match 4583 * a given target/lun/task condition (-1 means all), 4584 * and move them from the BUSY queue to the COMP queue 4585 * with CAM_REQUEUE_REQ status condition. 4586 * This function is used during error handling/recovery. 4587 * It is called with SCRIPTS not running. 4588 */ 4589 static int 4590 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4591 { 4592 int j; 4593 ccb_p cp; 4594 4595 /* 4596 * Make sure the starting index is within range. 4597 */ 4598 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4599 4600 /* 4601 * Walk until end of START queue and dequeue every job 4602 * that matches the target/lun/task condition. 4603 */ 4604 j = i; 4605 while (i != np->squeueput) { 4606 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4607 assert(cp); 4608 #ifdef SYM_CONF_IARB_SUPPORT 4609 /* Forget hints for IARB, they may be no longer relevant */ 4610 cp->host_flags &= ~HF_HINT_IARB; 4611 #endif 4612 if ((target == -1 || cp->target == target) && 4613 (lun == -1 || cp->lun == lun) && 4614 (task == -1 || cp->tag == task)) { 4615 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4616 sym_remque(&cp->link_ccbq); 4617 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4618 } 4619 else { 4620 if (i != j) 4621 np->squeue[j] = np->squeue[i]; 4622 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4623 } 4624 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4625 } 4626 if (i != j) /* Copy back the idle task if needed */ 4627 np->squeue[j] = np->squeue[i]; 4628 np->squeueput = j; /* Update our current start queue pointer */ 4629 4630 return (i - j) / 2; 4631 } 4632 4633 /* 4634 * Complete all CCBs queued to the COMP queue. 4635 * 4636 * These CCBs are assumed: 4637 * - Not to be referenced either by devices or 4638 * SCRIPTS-related queues and datas. 4639 * - To have to be completed with an error condition 4640 * or requeued. 4641 * 4642 * The device queue freeze count is incremented 4643 * for each CCB that does not prevent this. 4644 * This function is called when all CCBs involved 4645 * in error handling/recovery have been reaped. 4646 */ 4647 static void 4648 sym_flush_comp_queue(hcb_p np, int cam_status) 4649 { 4650 SYM_QUEHEAD *qp; 4651 ccb_p cp; 4652 4653 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { 4654 union ccb *ccb; 4655 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4656 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4657 /* Leave quiet CCBs waiting for resources */ 4658 if (cp->host_status == HS_WAIT) 4659 continue; 4660 ccb = cp->cam_ccb; 4661 if (cam_status) 4662 sym_set_cam_status(ccb, cam_status); 4663 sym_freeze_cam_ccb(ccb); 4664 sym_xpt_done(np, ccb, cp); 4665 sym_free_ccb(np, cp); 4666 } 4667 } 4668 4669 /* 4670 * chip handler for bad SCSI status condition 4671 * 4672 * In case of bad SCSI status, we unqueue all the tasks 4673 * currently queued to the controller but not yet started 4674 * and then restart the SCRIPTS processor immediately. 4675 * 4676 * QUEUE FULL and BUSY conditions are handled the same way. 4677 * Basically all the not yet started tasks are requeued in 4678 * device queue and the queue is frozen until a completion. 4679 * 4680 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4681 * the CCB of the failed command to prepare a REQUEST SENSE 4682 * SCSI command and queue it to the controller queue. 4683 * 4684 * SCRATCHA is assumed to have been loaded with STARTPOS 4685 * before the SCRIPTS called the C code. 4686 */ 4687 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4688 { 4689 tcb_p tp = &np->target[cp->target]; 4690 u32 startp; 4691 u_char s_status = cp->ssss_status; 4692 u_char h_flags = cp->host_flags; 4693 int msglen; 4694 int nego; 4695 int i; 4696 4697 SYM_LOCK_ASSERT(MA_OWNED); 4698 4699 /* 4700 * Compute the index of the next job to start from SCRIPTS. 4701 */ 4702 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4703 4704 /* 4705 * The last CCB queued used for IARB hint may be 4706 * no longer relevant. Forget it. 4707 */ 4708 #ifdef SYM_CONF_IARB_SUPPORT 4709 if (np->last_cp) 4710 np->last_cp = NULL; 4711 #endif 4712 4713 /* 4714 * Now deal with the SCSI status. 4715 */ 4716 switch(s_status) { 4717 case S_BUSY: 4718 case S_QUEUE_FULL: 4719 if (sym_verbose >= 2) { 4720 PRINT_ADDR(cp); 4721 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4722 } 4723 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4724 sym_complete_error (np, cp); 4725 break; 4726 case S_TERMINATED: 4727 case S_CHECK_COND: 4728 /* 4729 * If we get an SCSI error when requesting sense, give up. 4730 */ 4731 if (h_flags & HF_SENSE) { 4732 sym_complete_error (np, cp); 4733 break; 4734 } 4735 4736 /* 4737 * Dequeue all queued CCBs for that device not yet started, 4738 * and restart the SCRIPTS processor immediately. 4739 */ 4740 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4741 OUTL_DSP (SCRIPTA_BA (np, start)); 4742 4743 /* 4744 * Save some info of the actual IO. 4745 * Compute the data residual. 4746 */ 4747 cp->sv_scsi_status = cp->ssss_status; 4748 cp->sv_xerr_status = cp->xerr_status; 4749 cp->sv_resid = sym_compute_residual(np, cp); 4750 4751 /* 4752 * Prepare all needed data structures for 4753 * requesting sense data. 4754 */ 4755 4756 /* 4757 * identify message 4758 */ 4759 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4760 msglen = 1; 4761 4762 /* 4763 * If we are currently using anything different from 4764 * async. 8 bit data transfers with that target, 4765 * start a negotiation, since the device may want 4766 * to report us a UNIT ATTENTION condition due to 4767 * a cause we currently ignore, and we donnot want 4768 * to be stuck with WIDE and/or SYNC data transfer. 4769 * 4770 * cp->nego_status is filled by sym_prepare_nego(). 4771 */ 4772 cp->nego_status = 0; 4773 nego = 0; 4774 if (tp->tinfo.current.options & PPR_OPT_MASK) 4775 nego = NS_PPR; 4776 else if (tp->tinfo.current.width != BUS_8_BIT) 4777 nego = NS_WIDE; 4778 else if (tp->tinfo.current.offset != 0) 4779 nego = NS_SYNC; 4780 if (nego) 4781 msglen += 4782 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4783 /* 4784 * Message table indirect structure. 4785 */ 4786 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4787 cp->phys.smsg.size = cpu_to_scr(msglen); 4788 4789 /* 4790 * sense command 4791 */ 4792 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4793 cp->phys.cmd.size = cpu_to_scr(6); 4794 4795 /* 4796 * patch requested size into sense command 4797 */ 4798 cp->sensecmd[0] = 0x03; 4799 cp->sensecmd[1] = cp->lun << 5; 4800 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4801 cp->sensecmd[1] = 0; 4802 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4803 cp->data_len = SYM_SNS_BBUF_LEN; 4804 4805 /* 4806 * sense data 4807 */ 4808 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4809 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4810 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4811 4812 /* 4813 * requeue the command. 4814 */ 4815 startp = SCRIPTB_BA (np, sdata_in); 4816 4817 cp->phys.head.savep = cpu_to_scr(startp); 4818 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4819 cp->phys.head.lastp = cpu_to_scr(startp); 4820 cp->startp = cpu_to_scr(startp); 4821 4822 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4823 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4824 cp->ssss_status = S_ILLEGAL; 4825 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4826 cp->xerr_status = 0; 4827 cp->extra_bytes = 0; 4828 4829 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4830 4831 /* 4832 * Requeue the command. 4833 */ 4834 sym_put_start_queue(np, cp); 4835 4836 /* 4837 * Give back to upper layer everything we have dequeued. 4838 */ 4839 sym_flush_comp_queue(np, 0); 4840 break; 4841 } 4842 } 4843 4844 /* 4845 * After a device has accepted some management message 4846 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4847 * a device signals a UNIT ATTENTION condition, some 4848 * tasks are thrown away by the device. We are required 4849 * to reflect that on our tasks list since the device 4850 * will never complete these tasks. 4851 * 4852 * This function move from the BUSY queue to the COMP 4853 * queue all disconnected CCBs for a given target that 4854 * match the following criteria: 4855 * - lun=-1 means any logical UNIT otherwise a given one. 4856 * - task=-1 means any task, otherwise a given one. 4857 */ 4858 static int 4859 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4860 { 4861 SYM_QUEHEAD qtmp, *qp; 4862 int i = 0; 4863 ccb_p cp; 4864 4865 /* 4866 * Move the entire BUSY queue to our temporary queue. 4867 */ 4868 sym_que_init(&qtmp); 4869 sym_que_splice(&np->busy_ccbq, &qtmp); 4870 sym_que_init(&np->busy_ccbq); 4871 4872 /* 4873 * Put all CCBs that matches our criteria into 4874 * the COMP queue and put back other ones into 4875 * the BUSY queue. 4876 */ 4877 while ((qp = sym_remque_head(&qtmp)) != 0) { 4878 union ccb *ccb; 4879 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4880 ccb = cp->cam_ccb; 4881 if (cp->host_status != HS_DISCONNECT || 4882 cp->target != target || 4883 (lun != -1 && cp->lun != lun) || 4884 (task != -1 && 4885 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4886 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4887 continue; 4888 } 4889 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4890 4891 /* Preserve the software timeout condition */ 4892 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4893 sym_set_cam_status(ccb, cam_status); 4894 ++i; 4895 #if 0 4896 printf("XXXX TASK @%p CLEARED\n", cp); 4897 #endif 4898 } 4899 return i; 4900 } 4901 4902 /* 4903 * chip handler for TASKS recovery 4904 * 4905 * We cannot safely abort a command, while the SCRIPTS 4906 * processor is running, since we just would be in race 4907 * with it. 4908 * 4909 * As long as we have tasks to abort, we keep the SEM 4910 * bit set in the ISTAT. When this bit is set, the 4911 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4912 * each time it enters the scheduler. 4913 * 4914 * If we have to reset a target, clear tasks of a unit, 4915 * or to perform the abort of a disconnected job, we 4916 * restart the SCRIPTS for selecting the target. Once 4917 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4918 * If it loses arbitration, the SCRIPTS will interrupt again 4919 * the next time it will enter its scheduler, and so on ... 4920 * 4921 * On SIR_TARGET_SELECTED, we scan for the more 4922 * appropriate thing to do: 4923 * 4924 * - If nothing, we just sent a M_ABORT message to the 4925 * target to get rid of the useless SCSI bus ownership. 4926 * According to the specs, no tasks shall be affected. 4927 * - If the target is to be reset, we send it a M_RESET 4928 * message. 4929 * - If a logical UNIT is to be cleared , we send the 4930 * IDENTIFY(lun) + M_ABORT. 4931 * - If an untagged task is to be aborted, we send the 4932 * IDENTIFY(lun) + M_ABORT. 4933 * - If a tagged task is to be aborted, we send the 4934 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4935 * 4936 * Once our 'kiss of death' :) message has been accepted 4937 * by the target, the SCRIPTS interrupts again 4938 * (SIR_ABORT_SENT). On this interrupt, we complete 4939 * all the CCBs that should have been aborted by the 4940 * target according to our message. 4941 */ 4942 static void sym_sir_task_recovery(hcb_p np, int num) 4943 { 4944 SYM_QUEHEAD *qp; 4945 ccb_p cp; 4946 tcb_p tp; 4947 int target=-1, lun=-1, task; 4948 int i, k; 4949 4950 switch(num) { 4951 /* 4952 * The SCRIPTS processor stopped before starting 4953 * the next command in order to allow us to perform 4954 * some task recovery. 4955 */ 4956 case SIR_SCRIPT_STOPPED: 4957 /* 4958 * Do we have any target to reset or unit to clear ? 4959 */ 4960 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4961 tp = &np->target[i]; 4962 if (tp->to_reset || 4963 (tp->lun0p && tp->lun0p->to_clear)) { 4964 target = i; 4965 break; 4966 } 4967 if (!tp->lunmp) 4968 continue; 4969 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4970 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4971 target = i; 4972 break; 4973 } 4974 } 4975 if (target != -1) 4976 break; 4977 } 4978 4979 /* 4980 * If not, walk the busy queue for any 4981 * disconnected CCB to be aborted. 4982 */ 4983 if (target == -1) { 4984 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4985 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4986 if (cp->host_status != HS_DISCONNECT) 4987 continue; 4988 if (cp->to_abort) { 4989 target = cp->target; 4990 break; 4991 } 4992 } 4993 } 4994 4995 /* 4996 * If some target is to be selected, 4997 * prepare and start the selection. 4998 */ 4999 if (target != -1) { 5000 tp = &np->target[target]; 5001 np->abrt_sel.sel_id = target; 5002 np->abrt_sel.sel_scntl3 = tp->head.wval; 5003 np->abrt_sel.sel_sxfer = tp->head.sval; 5004 OUTL(nc_dsa, np->hcb_ba); 5005 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 5006 return; 5007 } 5008 5009 /* 5010 * Now look for a CCB to abort that haven't started yet. 5011 * Btw, the SCRIPTS processor is still stopped, so 5012 * we are not in race. 5013 */ 5014 i = 0; 5015 cp = NULL; 5016 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5017 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5018 if (cp->host_status != HS_BUSY && 5019 cp->host_status != HS_NEGOTIATE) 5020 continue; 5021 if (!cp->to_abort) 5022 continue; 5023 #ifdef SYM_CONF_IARB_SUPPORT 5024 /* 5025 * If we are using IMMEDIATE ARBITRATION, we donnot 5026 * want to cancel the last queued CCB, since the 5027 * SCRIPTS may have anticipated the selection. 5028 */ 5029 if (cp == np->last_cp) { 5030 cp->to_abort = 0; 5031 continue; 5032 } 5033 #endif 5034 i = 1; /* Means we have found some */ 5035 break; 5036 } 5037 if (!i) { 5038 /* 5039 * We are done, so we donnot need 5040 * to synchronize with the SCRIPTS anylonger. 5041 * Remove the SEM flag from the ISTAT. 5042 */ 5043 np->istat_sem = 0; 5044 OUTB (nc_istat, SIGP); 5045 break; 5046 } 5047 /* 5048 * Compute index of next position in the start 5049 * queue the SCRIPTS intends to start and dequeue 5050 * all CCBs for that device that haven't been started. 5051 */ 5052 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5053 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5054 5055 /* 5056 * Make sure at least our IO to abort has been dequeued. 5057 */ 5058 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5059 5060 /* 5061 * Keep track in cam status of the reason of the abort. 5062 */ 5063 if (cp->to_abort == 2) 5064 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5065 else 5066 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5067 5068 /* 5069 * Complete with error everything that we have dequeued. 5070 */ 5071 sym_flush_comp_queue(np, 0); 5072 break; 5073 /* 5074 * The SCRIPTS processor has selected a target 5075 * we may have some manual recovery to perform for. 5076 */ 5077 case SIR_TARGET_SELECTED: 5078 target = (INB (nc_sdid) & 0xf); 5079 tp = &np->target[target]; 5080 5081 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5082 5083 /* 5084 * If the target is to be reset, prepare a 5085 * M_RESET message and clear the to_reset flag 5086 * since we donnot expect this operation to fail. 5087 */ 5088 if (tp->to_reset) { 5089 np->abrt_msg[0] = M_RESET; 5090 np->abrt_tbl.size = 1; 5091 tp->to_reset = 0; 5092 break; 5093 } 5094 5095 /* 5096 * Otherwise, look for some logical unit to be cleared. 5097 */ 5098 if (tp->lun0p && tp->lun0p->to_clear) 5099 lun = 0; 5100 else if (tp->lunmp) { 5101 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5102 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5103 lun = k; 5104 break; 5105 } 5106 } 5107 } 5108 5109 /* 5110 * If a logical unit is to be cleared, prepare 5111 * an IDENTIFY(lun) + ABORT MESSAGE. 5112 */ 5113 if (lun != -1) { 5114 lcb_p lp = sym_lp(np, tp, lun); 5115 lp->to_clear = 0; /* We donnot expect to fail here */ 5116 np->abrt_msg[0] = M_IDENTIFY | lun; 5117 np->abrt_msg[1] = M_ABORT; 5118 np->abrt_tbl.size = 2; 5119 break; 5120 } 5121 5122 /* 5123 * Otherwise, look for some disconnected job to 5124 * abort for this target. 5125 */ 5126 i = 0; 5127 cp = NULL; 5128 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5129 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5130 if (cp->host_status != HS_DISCONNECT) 5131 continue; 5132 if (cp->target != target) 5133 continue; 5134 if (!cp->to_abort) 5135 continue; 5136 i = 1; /* Means we have some */ 5137 break; 5138 } 5139 5140 /* 5141 * If we have none, probably since the device has 5142 * completed the command before we won abitration, 5143 * send a M_ABORT message without IDENTIFY. 5144 * According to the specs, the device must just 5145 * disconnect the BUS and not abort any task. 5146 */ 5147 if (!i) { 5148 np->abrt_msg[0] = M_ABORT; 5149 np->abrt_tbl.size = 1; 5150 break; 5151 } 5152 5153 /* 5154 * We have some task to abort. 5155 * Set the IDENTIFY(lun) 5156 */ 5157 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5158 5159 /* 5160 * If we want to abort an untagged command, we 5161 * will send an IDENTIFY + M_ABORT. 5162 * Otherwise (tagged command), we will send 5163 * an IDENTIFY + task attributes + ABORT TAG. 5164 */ 5165 if (cp->tag == NO_TAG) { 5166 np->abrt_msg[1] = M_ABORT; 5167 np->abrt_tbl.size = 2; 5168 } 5169 else { 5170 np->abrt_msg[1] = cp->scsi_smsg[1]; 5171 np->abrt_msg[2] = cp->scsi_smsg[2]; 5172 np->abrt_msg[3] = M_ABORT_TAG; 5173 np->abrt_tbl.size = 4; 5174 } 5175 /* 5176 * Keep track of software timeout condition, since the 5177 * peripheral driver may not count retries on abort 5178 * conditions not due to timeout. 5179 */ 5180 if (cp->to_abort == 2) 5181 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5182 cp->to_abort = 0; /* We donnot expect to fail here */ 5183 break; 5184 5185 /* 5186 * The target has accepted our message and switched 5187 * to BUS FREE phase as we expected. 5188 */ 5189 case SIR_ABORT_SENT: 5190 target = (INB (nc_sdid) & 0xf); 5191 tp = &np->target[target]; 5192 5193 /* 5194 ** If we didn't abort anything, leave here. 5195 */ 5196 if (np->abrt_msg[0] == M_ABORT) 5197 break; 5198 5199 /* 5200 * If we sent a M_RESET, then a hardware reset has 5201 * been performed by the target. 5202 * - Reset everything to async 8 bit 5203 * - Tell ourself to negotiate next time :-) 5204 * - Prepare to clear all disconnected CCBs for 5205 * this target from our task list (lun=task=-1) 5206 */ 5207 lun = -1; 5208 task = -1; 5209 if (np->abrt_msg[0] == M_RESET) { 5210 tp->head.sval = 0; 5211 tp->head.wval = np->rv_scntl3; 5212 tp->head.uval = 0; 5213 tp->tinfo.current.period = 0; 5214 tp->tinfo.current.offset = 0; 5215 tp->tinfo.current.width = BUS_8_BIT; 5216 tp->tinfo.current.options = 0; 5217 } 5218 5219 /* 5220 * Otherwise, check for the LUN and TASK(s) 5221 * concerned by the cancelation. 5222 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5223 * or an ABORT message :-) 5224 */ 5225 else { 5226 lun = np->abrt_msg[0] & 0x3f; 5227 if (np->abrt_msg[1] == M_ABORT_TAG) 5228 task = np->abrt_msg[2]; 5229 } 5230 5231 /* 5232 * Complete all the CCBs the device should have 5233 * aborted due to our 'kiss of death' message. 5234 */ 5235 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5236 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5237 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5238 sym_flush_comp_queue(np, 0); 5239 5240 /* 5241 * If we sent a BDR, make uper layer aware of that. 5242 */ 5243 if (np->abrt_msg[0] == M_RESET) 5244 xpt_async(AC_SENT_BDR, np->path, NULL); 5245 break; 5246 } 5247 5248 /* 5249 * Print to the log the message we intend to send. 5250 */ 5251 if (num == SIR_TARGET_SELECTED) { 5252 PRINT_TARGET(np, target); 5253 sym_printl_hex("control msgout:", np->abrt_msg, 5254 np->abrt_tbl.size); 5255 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5256 } 5257 5258 /* 5259 * Let the SCRIPTS processor continue. 5260 */ 5261 OUTONB_STD (); 5262 } 5263 5264 /* 5265 * Gerard's alchemy:) that deals with with the data 5266 * pointer for both MDP and the residual calculation. 5267 * 5268 * I didn't want to bloat the code by more than 200 5269 * lignes for the handling of both MDP and the residual. 5270 * This has been achieved by using a data pointer 5271 * representation consisting in an index in the data 5272 * array (dp_sg) and a negative offset (dp_ofs) that 5273 * have the following meaning: 5274 * 5275 * - dp_sg = SYM_CONF_MAX_SG 5276 * we are at the end of the data script. 5277 * - dp_sg < SYM_CONF_MAX_SG 5278 * dp_sg points to the next entry of the scatter array 5279 * we want to transfer. 5280 * - dp_ofs < 0 5281 * dp_ofs represents the residual of bytes of the 5282 * previous entry scatter entry we will send first. 5283 * - dp_ofs = 0 5284 * no residual to send first. 5285 * 5286 * The function sym_evaluate_dp() accepts an arbitray 5287 * offset (basically from the MDP message) and returns 5288 * the corresponding values of dp_sg and dp_ofs. 5289 */ 5290 5291 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5292 { 5293 u32 dp_scr; 5294 int dp_ofs, dp_sg, dp_sgmin; 5295 int tmp; 5296 struct sym_pmc *pm; 5297 5298 /* 5299 * Compute the resulted data pointer in term of a script 5300 * address within some DATA script and a signed byte offset. 5301 */ 5302 dp_scr = scr; 5303 dp_ofs = *ofs; 5304 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5305 pm = &cp->phys.pm0; 5306 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5307 pm = &cp->phys.pm1; 5308 else 5309 pm = NULL; 5310 5311 if (pm) { 5312 dp_scr = scr_to_cpu(pm->ret); 5313 dp_ofs -= scr_to_cpu(pm->sg.size); 5314 } 5315 5316 /* 5317 * If we are auto-sensing, then we are done. 5318 */ 5319 if (cp->host_flags & HF_SENSE) { 5320 *ofs = dp_ofs; 5321 return 0; 5322 } 5323 5324 /* 5325 * Deduce the index of the sg entry. 5326 * Keep track of the index of the first valid entry. 5327 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5328 * end of the data. 5329 */ 5330 tmp = scr_to_cpu(cp->phys.head.goalp); 5331 dp_sg = SYM_CONF_MAX_SG; 5332 if (dp_scr != tmp) 5333 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5334 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5335 5336 /* 5337 * Move to the sg entry the data pointer belongs to. 5338 * 5339 * If we are inside the data area, we expect result to be: 5340 * 5341 * Either, 5342 * dp_ofs = 0 and dp_sg is the index of the sg entry 5343 * the data pointer belongs to (or the end of the data) 5344 * Or, 5345 * dp_ofs < 0 and dp_sg is the index of the sg entry 5346 * the data pointer belongs to + 1. 5347 */ 5348 if (dp_ofs < 0) { 5349 int n; 5350 while (dp_sg > dp_sgmin) { 5351 --dp_sg; 5352 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5353 n = dp_ofs + (tmp & 0xffffff); 5354 if (n > 0) { 5355 ++dp_sg; 5356 break; 5357 } 5358 dp_ofs = n; 5359 } 5360 } 5361 else if (dp_ofs > 0) { 5362 while (dp_sg < SYM_CONF_MAX_SG) { 5363 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5364 dp_ofs -= (tmp & 0xffffff); 5365 ++dp_sg; 5366 if (dp_ofs <= 0) 5367 break; 5368 } 5369 } 5370 5371 /* 5372 * Make sure the data pointer is inside the data area. 5373 * If not, return some error. 5374 */ 5375 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5376 goto out_err; 5377 else if (dp_sg > SYM_CONF_MAX_SG || 5378 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5379 goto out_err; 5380 5381 /* 5382 * Save the extreme pointer if needed. 5383 */ 5384 if (dp_sg > cp->ext_sg || 5385 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5386 cp->ext_sg = dp_sg; 5387 cp->ext_ofs = dp_ofs; 5388 } 5389 5390 /* 5391 * Return data. 5392 */ 5393 *ofs = dp_ofs; 5394 return dp_sg; 5395 5396 out_err: 5397 return -1; 5398 } 5399 5400 /* 5401 * chip handler for MODIFY DATA POINTER MESSAGE 5402 * 5403 * We also call this function on IGNORE WIDE RESIDUE 5404 * messages that do not match a SWIDE full condition. 5405 * Btw, we assume in that situation that such a message 5406 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5407 */ 5408 5409 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5410 { 5411 int dp_ofs = ofs; 5412 u32 dp_scr = INL (nc_temp); 5413 u32 dp_ret; 5414 u32 tmp; 5415 u_char hflags; 5416 int dp_sg; 5417 struct sym_pmc *pm; 5418 5419 /* 5420 * Not supported for auto-sense. 5421 */ 5422 if (cp->host_flags & HF_SENSE) 5423 goto out_reject; 5424 5425 /* 5426 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5427 * to the resulted data pointer. 5428 */ 5429 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5430 if (dp_sg < 0) 5431 goto out_reject; 5432 5433 /* 5434 * And our alchemy:) allows to easily calculate the data 5435 * script address we want to return for the next data phase. 5436 */ 5437 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5438 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5439 5440 /* 5441 * If offset / scatter entry is zero we donnot need 5442 * a context for the new current data pointer. 5443 */ 5444 if (dp_ofs == 0) { 5445 dp_scr = dp_ret; 5446 goto out_ok; 5447 } 5448 5449 /* 5450 * Get a context for the new current data pointer. 5451 */ 5452 hflags = INB (HF_PRT); 5453 5454 if (hflags & HF_DP_SAVED) 5455 hflags ^= HF_ACT_PM; 5456 5457 if (!(hflags & HF_ACT_PM)) { 5458 pm = &cp->phys.pm0; 5459 dp_scr = SCRIPTA_BA (np, pm0_data); 5460 } 5461 else { 5462 pm = &cp->phys.pm1; 5463 dp_scr = SCRIPTA_BA (np, pm1_data); 5464 } 5465 5466 hflags &= ~(HF_DP_SAVED); 5467 5468 OUTB (HF_PRT, hflags); 5469 5470 /* 5471 * Set up the new current data pointer. 5472 * ofs < 0 there, and for the next data phase, we 5473 * want to transfer part of the data of the sg entry 5474 * corresponding to index dp_sg-1 prior to returning 5475 * to the main data script. 5476 */ 5477 pm->ret = cpu_to_scr(dp_ret); 5478 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5479 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5480 pm->sg.addr = cpu_to_scr(tmp); 5481 pm->sg.size = cpu_to_scr(-dp_ofs); 5482 5483 out_ok: 5484 OUTL (nc_temp, dp_scr); 5485 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5486 return; 5487 5488 out_reject: 5489 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5490 } 5491 5492 5493 /* 5494 * chip calculation of the data residual. 5495 * 5496 * As I used to say, the requirement of data residual 5497 * in SCSI is broken, useless and cannot be achieved 5498 * without huge complexity. 5499 * But most OSes and even the official CAM require it. 5500 * When stupidity happens to be so widely spread inside 5501 * a community, it gets hard to convince. 5502 * 5503 * Anyway, I don't care, since I am not going to use 5504 * any software that considers this data residual as 5505 * a relevant information. :) 5506 */ 5507 5508 static int sym_compute_residual(hcb_p np, ccb_p cp) 5509 { 5510 int dp_sg, dp_sgmin, resid = 0; 5511 int dp_ofs = 0; 5512 5513 /* 5514 * Check for some data lost or just thrown away. 5515 * We are not required to be quite accurate in this 5516 * situation. Btw, if we are odd for output and the 5517 * device claims some more data, it may well happen 5518 * than our residual be zero. :-) 5519 */ 5520 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5521 if (cp->xerr_status & XE_EXTRA_DATA) 5522 resid -= cp->extra_bytes; 5523 if (cp->xerr_status & XE_SODL_UNRUN) 5524 ++resid; 5525 if (cp->xerr_status & XE_SWIDE_OVRUN) 5526 --resid; 5527 } 5528 5529 /* 5530 * If all data has been transferred, 5531 * there is no residual. 5532 */ 5533 if (cp->phys.head.lastp == cp->phys.head.goalp) 5534 return resid; 5535 5536 /* 5537 * If no data transfer occurs, or if the data 5538 * pointer is weird, return full residual. 5539 */ 5540 if (cp->startp == cp->phys.head.lastp || 5541 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5542 &dp_ofs) < 0) { 5543 return cp->data_len; 5544 } 5545 5546 /* 5547 * If we were auto-sensing, then we are done. 5548 */ 5549 if (cp->host_flags & HF_SENSE) { 5550 return -dp_ofs; 5551 } 5552 5553 /* 5554 * We are now full comfortable in the computation 5555 * of the data residual (2's complement). 5556 */ 5557 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5558 resid = -cp->ext_ofs; 5559 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5560 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5561 resid += (tmp & 0xffffff); 5562 } 5563 5564 /* 5565 * Hopefully, the result is not too wrong. 5566 */ 5567 return resid; 5568 } 5569 5570 /* 5571 * Print out the content of a SCSI message. 5572 */ 5573 5574 static int sym_show_msg (u_char * msg) 5575 { 5576 u_char i; 5577 printf ("%x",*msg); 5578 if (*msg==M_EXTENDED) { 5579 for (i=1;i<8;i++) { 5580 if (i-1>msg[1]) break; 5581 printf ("-%x",msg[i]); 5582 }; 5583 return (i+1); 5584 } else if ((*msg & 0xf0) == 0x20) { 5585 printf ("-%x",msg[1]); 5586 return (2); 5587 }; 5588 return (1); 5589 } 5590 5591 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5592 { 5593 PRINT_ADDR(cp); 5594 if (label) 5595 printf ("%s: ", label); 5596 5597 (void) sym_show_msg (msg); 5598 printf (".\n"); 5599 } 5600 5601 /* 5602 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5603 * 5604 * When we try to negotiate, we append the negotiation message 5605 * to the identify and (maybe) simple tag message. 5606 * The host status field is set to HS_NEGOTIATE to mark this 5607 * situation. 5608 * 5609 * If the target doesn't answer this message immediately 5610 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5611 * will be raised eventually. 5612 * The handler removes the HS_NEGOTIATE status, and sets the 5613 * negotiated value to the default (async / nowide). 5614 * 5615 * If we receive a matching answer immediately, we check it 5616 * for validity, and set the values. 5617 * 5618 * If we receive a Reject message immediately, we assume the 5619 * negotiation has failed, and fall back to standard values. 5620 * 5621 * If we receive a negotiation message while not in HS_NEGOTIATE 5622 * state, it's a target initiated negotiation. We prepare a 5623 * (hopefully) valid answer, set our parameters, and send back 5624 * this answer to the target. 5625 * 5626 * If the target doesn't fetch the answer (no message out phase), 5627 * we assume the negotiation has failed, and fall back to default 5628 * settings (SIR_NEGO_PROTO interrupt). 5629 * 5630 * When we set the values, we adjust them in all ccbs belonging 5631 * to this target, in the controller's register, and in the "phys" 5632 * field of the controller's struct sym_hcb. 5633 */ 5634 5635 /* 5636 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5637 */ 5638 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5639 { 5640 u_char chg, ofs, per, fak, div; 5641 int req = 1; 5642 5643 /* 5644 * Synchronous request message received. 5645 */ 5646 if (DEBUG_FLAGS & DEBUG_NEGO) { 5647 sym_print_msg(cp, "sync msgin", np->msgin); 5648 }; 5649 5650 /* 5651 * request or answer ? 5652 */ 5653 if (INB (HS_PRT) == HS_NEGOTIATE) { 5654 OUTB (HS_PRT, HS_BUSY); 5655 if (cp->nego_status && cp->nego_status != NS_SYNC) 5656 goto reject_it; 5657 req = 0; 5658 } 5659 5660 /* 5661 * get requested values. 5662 */ 5663 chg = 0; 5664 per = np->msgin[3]; 5665 ofs = np->msgin[4]; 5666 5667 /* 5668 * check values against our limits. 5669 */ 5670 if (ofs) { 5671 if (ofs > np->maxoffs) 5672 {chg = 1; ofs = np->maxoffs;} 5673 if (req) { 5674 if (ofs > tp->tinfo.user.offset) 5675 {chg = 1; ofs = tp->tinfo.user.offset;} 5676 } 5677 } 5678 5679 if (ofs) { 5680 if (per < np->minsync) 5681 {chg = 1; per = np->minsync;} 5682 if (req) { 5683 if (per < tp->tinfo.user.period) 5684 {chg = 1; per = tp->tinfo.user.period;} 5685 } 5686 } 5687 5688 div = fak = 0; 5689 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5690 goto reject_it; 5691 5692 if (DEBUG_FLAGS & DEBUG_NEGO) { 5693 PRINT_ADDR(cp); 5694 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5695 ofs, per, div, fak, chg); 5696 } 5697 5698 /* 5699 * This was an answer message 5700 */ 5701 if (req == 0) { 5702 if (chg) /* Answer wasn't acceptable. */ 5703 goto reject_it; 5704 sym_setsync (np, cp, ofs, per, div, fak); 5705 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5706 return; 5707 } 5708 5709 /* 5710 * It was a request. Set value and 5711 * prepare an answer message 5712 */ 5713 sym_setsync (np, cp, ofs, per, div, fak); 5714 5715 np->msgout[0] = M_EXTENDED; 5716 np->msgout[1] = 3; 5717 np->msgout[2] = M_X_SYNC_REQ; 5718 np->msgout[3] = per; 5719 np->msgout[4] = ofs; 5720 5721 cp->nego_status = NS_SYNC; 5722 5723 if (DEBUG_FLAGS & DEBUG_NEGO) { 5724 sym_print_msg(cp, "sync msgout", np->msgout); 5725 } 5726 5727 np->msgin [0] = M_NOOP; 5728 5729 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5730 return; 5731 reject_it: 5732 sym_setsync (np, cp, 0, 0, 0, 0); 5733 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5734 } 5735 5736 /* 5737 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5738 */ 5739 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5740 { 5741 u_char chg, ofs, per, fak, dt, div, wide; 5742 int req = 1; 5743 5744 /* 5745 * Synchronous request message received. 5746 */ 5747 if (DEBUG_FLAGS & DEBUG_NEGO) { 5748 sym_print_msg(cp, "ppr msgin", np->msgin); 5749 }; 5750 5751 /* 5752 * get requested values. 5753 */ 5754 chg = 0; 5755 per = np->msgin[3]; 5756 ofs = np->msgin[5]; 5757 wide = np->msgin[6]; 5758 dt = np->msgin[7] & PPR_OPT_DT; 5759 5760 /* 5761 * request or answer ? 5762 */ 5763 if (INB (HS_PRT) == HS_NEGOTIATE) { 5764 OUTB (HS_PRT, HS_BUSY); 5765 if (cp->nego_status && cp->nego_status != NS_PPR) 5766 goto reject_it; 5767 req = 0; 5768 } 5769 5770 /* 5771 * check values against our limits. 5772 */ 5773 if (wide > np->maxwide) 5774 {chg = 1; wide = np->maxwide;} 5775 if (!wide || !(np->features & FE_ULTRA3)) 5776 dt &= ~PPR_OPT_DT; 5777 if (req) { 5778 if (wide > tp->tinfo.user.width) 5779 {chg = 1; wide = tp->tinfo.user.width;} 5780 } 5781 5782 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5783 dt &= ~PPR_OPT_DT; 5784 5785 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5786 5787 if (ofs) { 5788 if (dt) { 5789 if (ofs > np->maxoffs_dt) 5790 {chg = 1; ofs = np->maxoffs_dt;} 5791 } 5792 else if (ofs > np->maxoffs) 5793 {chg = 1; ofs = np->maxoffs;} 5794 if (req) { 5795 if (ofs > tp->tinfo.user.offset) 5796 {chg = 1; ofs = tp->tinfo.user.offset;} 5797 } 5798 } 5799 5800 if (ofs) { 5801 if (dt) { 5802 if (per < np->minsync_dt) 5803 {chg = 1; per = np->minsync_dt;} 5804 } 5805 else if (per < np->minsync) 5806 {chg = 1; per = np->minsync;} 5807 if (req) { 5808 if (per < tp->tinfo.user.period) 5809 {chg = 1; per = tp->tinfo.user.period;} 5810 } 5811 } 5812 5813 div = fak = 0; 5814 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5815 goto reject_it; 5816 5817 if (DEBUG_FLAGS & DEBUG_NEGO) { 5818 PRINT_ADDR(cp); 5819 printf ("ppr: " 5820 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5821 dt, ofs, per, wide, div, fak, chg); 5822 } 5823 5824 /* 5825 * It was an answer. 5826 */ 5827 if (req == 0) { 5828 if (chg) /* Answer wasn't acceptable */ 5829 goto reject_it; 5830 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5831 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5832 return; 5833 } 5834 5835 /* 5836 * It was a request. Set value and 5837 * prepare an answer message 5838 */ 5839 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5840 5841 np->msgout[0] = M_EXTENDED; 5842 np->msgout[1] = 6; 5843 np->msgout[2] = M_X_PPR_REQ; 5844 np->msgout[3] = per; 5845 np->msgout[4] = 0; 5846 np->msgout[5] = ofs; 5847 np->msgout[6] = wide; 5848 np->msgout[7] = dt; 5849 5850 cp->nego_status = NS_PPR; 5851 5852 if (DEBUG_FLAGS & DEBUG_NEGO) { 5853 sym_print_msg(cp, "ppr msgout", np->msgout); 5854 } 5855 5856 np->msgin [0] = M_NOOP; 5857 5858 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5859 return; 5860 reject_it: 5861 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5862 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5863 /* 5864 * If it was a device response that should result in 5865 * ST, we may want to try a legacy negotiation later. 5866 */ 5867 if (!req && !dt) { 5868 tp->tinfo.goal.options = 0; 5869 tp->tinfo.goal.width = wide; 5870 tp->tinfo.goal.period = per; 5871 tp->tinfo.goal.offset = ofs; 5872 } 5873 } 5874 5875 /* 5876 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5877 */ 5878 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5879 { 5880 u_char chg, wide; 5881 int req = 1; 5882 5883 /* 5884 * Wide request message received. 5885 */ 5886 if (DEBUG_FLAGS & DEBUG_NEGO) { 5887 sym_print_msg(cp, "wide msgin", np->msgin); 5888 }; 5889 5890 /* 5891 * Is it a request from the device? 5892 */ 5893 if (INB (HS_PRT) == HS_NEGOTIATE) { 5894 OUTB (HS_PRT, HS_BUSY); 5895 if (cp->nego_status && cp->nego_status != NS_WIDE) 5896 goto reject_it; 5897 req = 0; 5898 } 5899 5900 /* 5901 * get requested values. 5902 */ 5903 chg = 0; 5904 wide = np->msgin[3]; 5905 5906 /* 5907 * check values against driver limits. 5908 */ 5909 if (wide > np->maxwide) 5910 {chg = 1; wide = np->maxwide;} 5911 if (req) { 5912 if (wide > tp->tinfo.user.width) 5913 {chg = 1; wide = tp->tinfo.user.width;} 5914 } 5915 5916 if (DEBUG_FLAGS & DEBUG_NEGO) { 5917 PRINT_ADDR(cp); 5918 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5919 } 5920 5921 /* 5922 * This was an answer message 5923 */ 5924 if (req == 0) { 5925 if (chg) /* Answer wasn't acceptable. */ 5926 goto reject_it; 5927 sym_setwide (np, cp, wide); 5928 5929 /* 5930 * Negotiate for SYNC immediately after WIDE response. 5931 * This allows to negotiate for both WIDE and SYNC on 5932 * a single SCSI command (Suggested by Justin Gibbs). 5933 */ 5934 if (tp->tinfo.goal.offset) { 5935 np->msgout[0] = M_EXTENDED; 5936 np->msgout[1] = 3; 5937 np->msgout[2] = M_X_SYNC_REQ; 5938 np->msgout[3] = tp->tinfo.goal.period; 5939 np->msgout[4] = tp->tinfo.goal.offset; 5940 5941 if (DEBUG_FLAGS & DEBUG_NEGO) { 5942 sym_print_msg(cp, "sync msgout", np->msgout); 5943 } 5944 5945 cp->nego_status = NS_SYNC; 5946 OUTB (HS_PRT, HS_NEGOTIATE); 5947 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5948 return; 5949 } 5950 5951 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5952 return; 5953 }; 5954 5955 /* 5956 * It was a request, set value and 5957 * prepare an answer message 5958 */ 5959 sym_setwide (np, cp, wide); 5960 5961 np->msgout[0] = M_EXTENDED; 5962 np->msgout[1] = 2; 5963 np->msgout[2] = M_X_WIDE_REQ; 5964 np->msgout[3] = wide; 5965 5966 np->msgin [0] = M_NOOP; 5967 5968 cp->nego_status = NS_WIDE; 5969 5970 if (DEBUG_FLAGS & DEBUG_NEGO) { 5971 sym_print_msg(cp, "wide msgout", np->msgout); 5972 } 5973 5974 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5975 return; 5976 reject_it: 5977 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5978 } 5979 5980 /* 5981 * Reset SYNC or WIDE to default settings. 5982 * 5983 * Called when a negotiation does not succeed either 5984 * on rejection or on protocol error. 5985 * 5986 * If it was a PPR that made problems, we may want to 5987 * try a legacy negotiation later. 5988 */ 5989 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5990 { 5991 /* 5992 * any error in negotiation: 5993 * fall back to default mode. 5994 */ 5995 switch (cp->nego_status) { 5996 case NS_PPR: 5997 #if 0 5998 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5999 #else 6000 tp->tinfo.goal.options = 0; 6001 if (tp->tinfo.goal.period < np->minsync) 6002 tp->tinfo.goal.period = np->minsync; 6003 if (tp->tinfo.goal.offset > np->maxoffs) 6004 tp->tinfo.goal.offset = np->maxoffs; 6005 #endif 6006 break; 6007 case NS_SYNC: 6008 sym_setsync (np, cp, 0, 0, 0, 0); 6009 break; 6010 case NS_WIDE: 6011 sym_setwide (np, cp, 0); 6012 break; 6013 }; 6014 np->msgin [0] = M_NOOP; 6015 np->msgout[0] = M_NOOP; 6016 cp->nego_status = 0; 6017 } 6018 6019 /* 6020 * chip handler for MESSAGE REJECT received in response to 6021 * a WIDE or SYNCHRONOUS negotiation. 6022 */ 6023 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6024 { 6025 sym_nego_default(np, tp, cp); 6026 OUTB (HS_PRT, HS_BUSY); 6027 } 6028 6029 /* 6030 * chip exception handler for programmed interrupts. 6031 */ 6032 static void sym_int_sir (hcb_p np) 6033 { 6034 u_char num = INB (nc_dsps); 6035 u32 dsa = INL (nc_dsa); 6036 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6037 u_char target = INB (nc_sdid) & 0x0f; 6038 tcb_p tp = &np->target[target]; 6039 int tmp; 6040 6041 SYM_LOCK_ASSERT(MA_OWNED); 6042 6043 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6044 6045 switch (num) { 6046 /* 6047 * Command has been completed with error condition 6048 * or has been auto-sensed. 6049 */ 6050 case SIR_COMPLETE_ERROR: 6051 sym_complete_error(np, cp); 6052 return; 6053 /* 6054 * The C code is currently trying to recover from something. 6055 * Typically, user want to abort some command. 6056 */ 6057 case SIR_SCRIPT_STOPPED: 6058 case SIR_TARGET_SELECTED: 6059 case SIR_ABORT_SENT: 6060 sym_sir_task_recovery(np, num); 6061 return; 6062 /* 6063 * The device didn't go to MSG OUT phase after having 6064 * been selected with ATN. We donnot want to handle 6065 * that. 6066 */ 6067 case SIR_SEL_ATN_NO_MSG_OUT: 6068 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6069 sym_name (np), target); 6070 goto out_stuck; 6071 /* 6072 * The device didn't switch to MSG IN phase after 6073 * having reseleted the initiator. 6074 */ 6075 case SIR_RESEL_NO_MSG_IN: 6076 printf ("%s:%d: No MSG IN phase after reselection.\n", 6077 sym_name (np), target); 6078 goto out_stuck; 6079 /* 6080 * After reselection, the device sent a message that wasn't 6081 * an IDENTIFY. 6082 */ 6083 case SIR_RESEL_NO_IDENTIFY: 6084 printf ("%s:%d: No IDENTIFY after reselection.\n", 6085 sym_name (np), target); 6086 goto out_stuck; 6087 /* 6088 * The device reselected a LUN we donnot know about. 6089 */ 6090 case SIR_RESEL_BAD_LUN: 6091 np->msgout[0] = M_RESET; 6092 goto out; 6093 /* 6094 * The device reselected for an untagged nexus and we 6095 * haven't any. 6096 */ 6097 case SIR_RESEL_BAD_I_T_L: 6098 np->msgout[0] = M_ABORT; 6099 goto out; 6100 /* 6101 * The device reselected for a tagged nexus that we donnot 6102 * have. 6103 */ 6104 case SIR_RESEL_BAD_I_T_L_Q: 6105 np->msgout[0] = M_ABORT_TAG; 6106 goto out; 6107 /* 6108 * The SCRIPTS let us know that the device has grabbed 6109 * our message and will abort the job. 6110 */ 6111 case SIR_RESEL_ABORTED: 6112 np->lastmsg = np->msgout[0]; 6113 np->msgout[0] = M_NOOP; 6114 printf ("%s:%d: message %x sent on bad reselection.\n", 6115 sym_name (np), target, np->lastmsg); 6116 goto out; 6117 /* 6118 * The SCRIPTS let us know that a message has been 6119 * successfully sent to the device. 6120 */ 6121 case SIR_MSG_OUT_DONE: 6122 np->lastmsg = np->msgout[0]; 6123 np->msgout[0] = M_NOOP; 6124 /* Should we really care of that */ 6125 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6126 if (cp) { 6127 cp->xerr_status &= ~XE_PARITY_ERR; 6128 if (!cp->xerr_status) 6129 OUTOFFB (HF_PRT, HF_EXT_ERR); 6130 } 6131 } 6132 goto out; 6133 /* 6134 * The device didn't send a GOOD SCSI status. 6135 * We may have some work to do prior to allow 6136 * the SCRIPTS processor to continue. 6137 */ 6138 case SIR_BAD_SCSI_STATUS: 6139 if (!cp) 6140 goto out; 6141 sym_sir_bad_scsi_status(np, num, cp); 6142 return; 6143 /* 6144 * We are asked by the SCRIPTS to prepare a 6145 * REJECT message. 6146 */ 6147 case SIR_REJECT_TO_SEND: 6148 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6149 np->msgout[0] = M_REJECT; 6150 goto out; 6151 /* 6152 * We have been ODD at the end of a DATA IN 6153 * transfer and the device didn't send a 6154 * IGNORE WIDE RESIDUE message. 6155 * It is a data overrun condition. 6156 */ 6157 case SIR_SWIDE_OVERRUN: 6158 if (cp) { 6159 OUTONB (HF_PRT, HF_EXT_ERR); 6160 cp->xerr_status |= XE_SWIDE_OVRUN; 6161 } 6162 goto out; 6163 /* 6164 * We have been ODD at the end of a DATA OUT 6165 * transfer. 6166 * It is a data underrun condition. 6167 */ 6168 case SIR_SODL_UNDERRUN: 6169 if (cp) { 6170 OUTONB (HF_PRT, HF_EXT_ERR); 6171 cp->xerr_status |= XE_SODL_UNRUN; 6172 } 6173 goto out; 6174 /* 6175 * The device wants us to tranfer more data than 6176 * expected or in the wrong direction. 6177 * The number of extra bytes is in scratcha. 6178 * It is a data overrun condition. 6179 */ 6180 case SIR_DATA_OVERRUN: 6181 if (cp) { 6182 OUTONB (HF_PRT, HF_EXT_ERR); 6183 cp->xerr_status |= XE_EXTRA_DATA; 6184 cp->extra_bytes += INL (nc_scratcha); 6185 } 6186 goto out; 6187 /* 6188 * The device switched to an illegal phase (4/5). 6189 */ 6190 case SIR_BAD_PHASE: 6191 if (cp) { 6192 OUTONB (HF_PRT, HF_EXT_ERR); 6193 cp->xerr_status |= XE_BAD_PHASE; 6194 } 6195 goto out; 6196 /* 6197 * We received a message. 6198 */ 6199 case SIR_MSG_RECEIVED: 6200 if (!cp) 6201 goto out_stuck; 6202 switch (np->msgin [0]) { 6203 /* 6204 * We received an extended message. 6205 * We handle MODIFY DATA POINTER, SDTR, WDTR 6206 * and reject all other extended messages. 6207 */ 6208 case M_EXTENDED: 6209 switch (np->msgin [2]) { 6210 case M_X_MODIFY_DP: 6211 if (DEBUG_FLAGS & DEBUG_POINTER) 6212 sym_print_msg(cp,"modify DP",np->msgin); 6213 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6214 (np->msgin[5]<<8) + (np->msgin[6]); 6215 sym_modify_dp(np, tp, cp, tmp); 6216 return; 6217 case M_X_SYNC_REQ: 6218 sym_sync_nego(np, tp, cp); 6219 return; 6220 case M_X_PPR_REQ: 6221 sym_ppr_nego(np, tp, cp); 6222 return; 6223 case M_X_WIDE_REQ: 6224 sym_wide_nego(np, tp, cp); 6225 return; 6226 default: 6227 goto out_reject; 6228 } 6229 break; 6230 /* 6231 * We received a 1/2 byte message not handled from SCRIPTS. 6232 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6233 * RESIDUE messages that haven't been anticipated by 6234 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6235 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6236 */ 6237 case M_IGN_RESIDUE: 6238 if (DEBUG_FLAGS & DEBUG_POINTER) 6239 sym_print_msg(cp,"ign wide residue", np->msgin); 6240 sym_modify_dp(np, tp, cp, -1); 6241 return; 6242 case M_REJECT: 6243 if (INB (HS_PRT) == HS_NEGOTIATE) 6244 sym_nego_rejected(np, tp, cp); 6245 else { 6246 PRINT_ADDR(cp); 6247 printf ("M_REJECT received (%x:%x).\n", 6248 scr_to_cpu(np->lastmsg), np->msgout[0]); 6249 } 6250 goto out_clrack; 6251 break; 6252 default: 6253 goto out_reject; 6254 } 6255 break; 6256 /* 6257 * We received an unknown message. 6258 * Ignore all MSG IN phases and reject it. 6259 */ 6260 case SIR_MSG_WEIRD: 6261 sym_print_msg(cp, "WEIRD message received", np->msgin); 6262 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6263 return; 6264 /* 6265 * Negotiation failed. 6266 * Target does not send us the reply. 6267 * Remove the HS_NEGOTIATE status. 6268 */ 6269 case SIR_NEGO_FAILED: 6270 OUTB (HS_PRT, HS_BUSY); 6271 /* 6272 * Negotiation failed. 6273 * Target does not want answer message. 6274 */ 6275 case SIR_NEGO_PROTO: 6276 sym_nego_default(np, tp, cp); 6277 goto out; 6278 }; 6279 6280 out: 6281 OUTONB_STD (); 6282 return; 6283 out_reject: 6284 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6285 return; 6286 out_clrack: 6287 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6288 return; 6289 out_stuck: 6290 return; 6291 } 6292 6293 /* 6294 * Acquire a control block 6295 */ 6296 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6297 { 6298 tcb_p tp = &np->target[tn]; 6299 lcb_p lp = sym_lp(np, tp, ln); 6300 u_short tag = NO_TAG; 6301 SYM_QUEHEAD *qp; 6302 ccb_p cp = (ccb_p) NULL; 6303 6304 /* 6305 * Look for a free CCB 6306 */ 6307 if (sym_que_empty(&np->free_ccbq)) 6308 goto out; 6309 qp = sym_remque_head(&np->free_ccbq); 6310 if (!qp) 6311 goto out; 6312 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6313 6314 /* 6315 * If the LCB is not yet available and the LUN 6316 * has been probed ok, try to allocate the LCB. 6317 */ 6318 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6319 lp = sym_alloc_lcb(np, tn, ln); 6320 if (!lp) 6321 goto out_free; 6322 } 6323 6324 /* 6325 * If the LCB is not available here, then the 6326 * logical unit is not yet discovered. For those 6327 * ones only accept 1 SCSI IO per logical unit, 6328 * since we cannot allow disconnections. 6329 */ 6330 if (!lp) { 6331 if (!sym_is_bit(tp->busy0_map, ln)) 6332 sym_set_bit(tp->busy0_map, ln); 6333 else 6334 goto out_free; 6335 } else { 6336 /* 6337 * If we have been asked for a tagged command. 6338 */ 6339 if (tag_order) { 6340 /* 6341 * Debugging purpose. 6342 */ 6343 assert(lp->busy_itl == 0); 6344 /* 6345 * Allocate resources for tags if not yet. 6346 */ 6347 if (!lp->cb_tags) { 6348 sym_alloc_lcb_tags(np, tn, ln); 6349 if (!lp->cb_tags) 6350 goto out_free; 6351 } 6352 /* 6353 * Get a tag for this SCSI IO and set up 6354 * the CCB bus address for reselection, 6355 * and count it for this LUN. 6356 * Toggle reselect path to tagged. 6357 */ 6358 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6359 tag = lp->cb_tags[lp->ia_tag]; 6360 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6361 lp->ia_tag = 0; 6362 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6363 ++lp->busy_itlq; 6364 lp->head.resel_sa = 6365 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6366 } 6367 else 6368 goto out_free; 6369 } 6370 /* 6371 * This command will not be tagged. 6372 * If we already have either a tagged or untagged 6373 * one, refuse to overlap this untagged one. 6374 */ 6375 else { 6376 /* 6377 * Debugging purpose. 6378 */ 6379 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6380 /* 6381 * Count this nexus for this LUN. 6382 * Set up the CCB bus address for reselection. 6383 * Toggle reselect path to untagged. 6384 */ 6385 if (++lp->busy_itl == 1) { 6386 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6387 lp->head.resel_sa = 6388 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6389 } 6390 else 6391 goto out_free; 6392 } 6393 } 6394 /* 6395 * Put the CCB into the busy queue. 6396 */ 6397 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6398 6399 /* 6400 * Remember all informations needed to free this CCB. 6401 */ 6402 cp->to_abort = 0; 6403 cp->tag = tag; 6404 cp->target = tn; 6405 cp->lun = ln; 6406 6407 if (DEBUG_FLAGS & DEBUG_TAGS) { 6408 PRINT_LUN(np, tn, ln); 6409 printf ("ccb @%p using tag %d.\n", cp, tag); 6410 } 6411 6412 out: 6413 return cp; 6414 out_free: 6415 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6416 return NULL; 6417 } 6418 6419 /* 6420 * Release one control block 6421 */ 6422 static void sym_free_ccb (hcb_p np, ccb_p cp) 6423 { 6424 tcb_p tp = &np->target[cp->target]; 6425 lcb_p lp = sym_lp(np, tp, cp->lun); 6426 6427 if (DEBUG_FLAGS & DEBUG_TAGS) { 6428 PRINT_LUN(np, cp->target, cp->lun); 6429 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6430 } 6431 6432 /* 6433 * If LCB available, 6434 */ 6435 if (lp) { 6436 /* 6437 * If tagged, release the tag, set the relect path 6438 */ 6439 if (cp->tag != NO_TAG) { 6440 /* 6441 * Free the tag value. 6442 */ 6443 lp->cb_tags[lp->if_tag] = cp->tag; 6444 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6445 lp->if_tag = 0; 6446 /* 6447 * Make the reselect path invalid, 6448 * and uncount this CCB. 6449 */ 6450 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6451 --lp->busy_itlq; 6452 } else { /* Untagged */ 6453 /* 6454 * Make the reselect path invalid, 6455 * and uncount this CCB. 6456 */ 6457 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6458 --lp->busy_itl; 6459 } 6460 /* 6461 * If no JOB active, make the LUN reselect path invalid. 6462 */ 6463 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6464 lp->head.resel_sa = 6465 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6466 } 6467 /* 6468 * Otherwise, we only accept 1 IO per LUN. 6469 * Clear the bit that keeps track of this IO. 6470 */ 6471 else 6472 sym_clr_bit(tp->busy0_map, cp->lun); 6473 6474 /* 6475 * We donnot queue more than 1 ccb per target 6476 * with negotiation at any time. If this ccb was 6477 * used for negotiation, clear this info in the tcb. 6478 */ 6479 if (cp == tp->nego_cp) 6480 tp->nego_cp = NULL; 6481 6482 #ifdef SYM_CONF_IARB_SUPPORT 6483 /* 6484 * If we just complete the last queued CCB, 6485 * clear this info that is no longer relevant. 6486 */ 6487 if (cp == np->last_cp) 6488 np->last_cp = NULL; 6489 #endif 6490 6491 /* 6492 * Unmap user data from DMA map if needed. 6493 */ 6494 if (cp->dmamapped) { 6495 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6496 cp->dmamapped = 0; 6497 } 6498 6499 /* 6500 * Make this CCB available. 6501 */ 6502 cp->cam_ccb = NULL; 6503 cp->host_status = HS_IDLE; 6504 sym_remque(&cp->link_ccbq); 6505 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6506 } 6507 6508 /* 6509 * Allocate a CCB from memory and initialize its fixed part. 6510 */ 6511 static ccb_p sym_alloc_ccb(hcb_p np) 6512 { 6513 ccb_p cp = NULL; 6514 int hcode; 6515 6516 SYM_LOCK_ASSERT(MA_NOTOWNED); 6517 6518 /* 6519 * Prevent from allocating more CCBs than we can 6520 * queue to the controller. 6521 */ 6522 if (np->actccbs >= SYM_CONF_MAX_START) 6523 return NULL; 6524 6525 /* 6526 * Allocate memory for this CCB. 6527 */ 6528 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6529 if (!cp) 6530 return NULL; 6531 6532 /* 6533 * Allocate a bounce buffer for sense data. 6534 */ 6535 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6536 if (!cp->sns_bbuf) 6537 goto out_free; 6538 6539 /* 6540 * Allocate a map for the DMA of user data. 6541 */ 6542 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6543 goto out_free; 6544 /* 6545 * Count it. 6546 */ 6547 np->actccbs++; 6548 6549 /* 6550 * Initialize the callout. 6551 */ 6552 callout_init(&cp->ch, 1); 6553 6554 /* 6555 * Compute the bus address of this ccb. 6556 */ 6557 cp->ccb_ba = vtobus(cp); 6558 6559 /* 6560 * Insert this ccb into the hashed list. 6561 */ 6562 hcode = CCB_HASH_CODE(cp->ccb_ba); 6563 cp->link_ccbh = np->ccbh[hcode]; 6564 np->ccbh[hcode] = cp; 6565 6566 /* 6567 * Initialize the start and restart actions. 6568 */ 6569 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6570 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6571 6572 /* 6573 * Initilialyze some other fields. 6574 */ 6575 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6576 6577 /* 6578 * Chain into free ccb queue. 6579 */ 6580 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6581 6582 return cp; 6583 out_free: 6584 if (cp->sns_bbuf) 6585 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6586 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6587 return NULL; 6588 } 6589 6590 /* 6591 * Look up a CCB from a DSA value. 6592 */ 6593 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6594 { 6595 int hcode; 6596 ccb_p cp; 6597 6598 hcode = CCB_HASH_CODE(dsa); 6599 cp = np->ccbh[hcode]; 6600 while (cp) { 6601 if (cp->ccb_ba == dsa) 6602 break; 6603 cp = cp->link_ccbh; 6604 } 6605 6606 return cp; 6607 } 6608 6609 /* 6610 * Target control block initialisation. 6611 * Nothing important to do at the moment. 6612 */ 6613 static void sym_init_tcb (hcb_p np, u_char tn) 6614 { 6615 /* 6616 * Check some alignments required by the chip. 6617 */ 6618 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6619 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6620 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6621 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6622 } 6623 6624 /* 6625 * Lun control block allocation and initialization. 6626 */ 6627 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6628 { 6629 tcb_p tp = &np->target[tn]; 6630 lcb_p lp = sym_lp(np, tp, ln); 6631 6632 /* 6633 * Already done, just return. 6634 */ 6635 if (lp) 6636 return lp; 6637 /* 6638 * Check against some race. 6639 */ 6640 assert(!sym_is_bit(tp->busy0_map, ln)); 6641 6642 /* 6643 * Initialize the target control block if not yet. 6644 */ 6645 sym_init_tcb (np, tn); 6646 6647 /* 6648 * Allocate the LCB bus address array. 6649 * Compute the bus address of this table. 6650 */ 6651 if (ln && !tp->luntbl) { 6652 int i; 6653 6654 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6655 if (!tp->luntbl) 6656 goto fail; 6657 for (i = 0 ; i < 64 ; i++) 6658 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6659 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6660 } 6661 6662 /* 6663 * Allocate the table of pointers for LUN(s) > 0, if needed. 6664 */ 6665 if (ln && !tp->lunmp) { 6666 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6667 "LUNMP"); 6668 if (!tp->lunmp) 6669 goto fail; 6670 } 6671 6672 /* 6673 * Allocate the lcb. 6674 * Make it available to the chip. 6675 */ 6676 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6677 if (!lp) 6678 goto fail; 6679 if (ln) { 6680 tp->lunmp[ln] = lp; 6681 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6682 } 6683 else { 6684 tp->lun0p = lp; 6685 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6686 } 6687 6688 /* 6689 * Let the itl task point to error handling. 6690 */ 6691 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6692 6693 /* 6694 * Set the reselect pattern to our default. :) 6695 */ 6696 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6697 6698 /* 6699 * Set user capabilities. 6700 */ 6701 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6702 6703 fail: 6704 return lp; 6705 } 6706 6707 /* 6708 * Allocate LCB resources for tagged command queuing. 6709 */ 6710 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6711 { 6712 tcb_p tp = &np->target[tn]; 6713 lcb_p lp = sym_lp(np, tp, ln); 6714 int i; 6715 6716 /* 6717 * If LCB not available, try to allocate it. 6718 */ 6719 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6720 return; 6721 6722 /* 6723 * Allocate the task table and and the tag allocation 6724 * circular buffer. We want both or none. 6725 */ 6726 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6727 if (!lp->itlq_tbl) 6728 return; 6729 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6730 if (!lp->cb_tags) { 6731 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6732 lp->itlq_tbl = 0; 6733 return; 6734 } 6735 6736 /* 6737 * Initialize the task table with invalid entries. 6738 */ 6739 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6740 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6741 6742 /* 6743 * Fill up the tag buffer with tag numbers. 6744 */ 6745 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6746 lp->cb_tags[i] = i; 6747 6748 /* 6749 * Make the task table available to SCRIPTS, 6750 * And accept tagged commands now. 6751 */ 6752 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6753 } 6754 6755 /* 6756 * Test the pci bus snoop logic :-( 6757 * 6758 * Has to be called with interrupts disabled. 6759 */ 6760 #ifndef SYM_CONF_IOMAPPED 6761 static int sym_regtest (hcb_p np) 6762 { 6763 register volatile u32 data; 6764 /* 6765 * chip registers may NOT be cached. 6766 * write 0xffffffff to a read only register area, 6767 * and try to read it back. 6768 */ 6769 data = 0xffffffff; 6770 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6771 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6772 #if 1 6773 if (data == 0xffffffff) { 6774 #else 6775 if ((data & 0xe2f0fffd) != 0x02000080) { 6776 #endif 6777 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6778 (unsigned) data); 6779 return (0x10); 6780 }; 6781 return (0); 6782 } 6783 #endif 6784 6785 static int sym_snooptest (hcb_p np) 6786 { 6787 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6788 int i, err=0; 6789 #ifndef SYM_CONF_IOMAPPED 6790 err |= sym_regtest (np); 6791 if (err) return (err); 6792 #endif 6793 restart_test: 6794 /* 6795 * Enable Master Parity Checking as we intend 6796 * to enable it for normal operations. 6797 */ 6798 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6799 /* 6800 * init 6801 */ 6802 pc = SCRIPTB0_BA (np, snooptest); 6803 host_wr = 1; 6804 sym_wr = 2; 6805 /* 6806 * Set memory and register. 6807 */ 6808 np->cache = cpu_to_scr(host_wr); 6809 OUTL (nc_temp, sym_wr); 6810 /* 6811 * Start script (exchange values) 6812 */ 6813 OUTL (nc_dsa, np->hcb_ba); 6814 OUTL_DSP (pc); 6815 /* 6816 * Wait 'til done (with timeout) 6817 */ 6818 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6819 if (INB(nc_istat) & (INTF|SIP|DIP)) 6820 break; 6821 if (i>=SYM_SNOOP_TIMEOUT) { 6822 printf ("CACHE TEST FAILED: timeout.\n"); 6823 return (0x20); 6824 }; 6825 /* 6826 * Check for fatal DMA errors. 6827 */ 6828 dstat = INB (nc_dstat); 6829 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6830 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6831 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6832 "DISABLING MASTER DATA PARITY CHECKING.\n", 6833 sym_name(np)); 6834 np->rv_ctest4 &= ~MPEE; 6835 goto restart_test; 6836 } 6837 #endif 6838 if (dstat & (MDPE|BF|IID)) { 6839 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6840 return (0x80); 6841 } 6842 /* 6843 * Save termination position. 6844 */ 6845 pc = INL (nc_dsp); 6846 /* 6847 * Read memory and register. 6848 */ 6849 host_rd = scr_to_cpu(np->cache); 6850 sym_rd = INL (nc_scratcha); 6851 sym_bk = INL (nc_temp); 6852 6853 /* 6854 * Check termination position. 6855 */ 6856 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6857 printf ("CACHE TEST FAILED: script execution failed.\n"); 6858 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6859 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6860 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6861 return (0x40); 6862 }; 6863 /* 6864 * Show results. 6865 */ 6866 if (host_wr != sym_rd) { 6867 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6868 (int) host_wr, (int) sym_rd); 6869 err |= 1; 6870 }; 6871 if (host_rd != sym_wr) { 6872 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6873 (int) sym_wr, (int) host_rd); 6874 err |= 2; 6875 }; 6876 if (sym_bk != sym_wr) { 6877 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6878 (int) sym_wr, (int) sym_bk); 6879 err |= 4; 6880 }; 6881 6882 return (err); 6883 } 6884 6885 /* 6886 * Determine the chip's clock frequency. 6887 * 6888 * This is essential for the negotiation of the synchronous 6889 * transfer rate. 6890 * 6891 * Note: we have to return the correct value. 6892 * THERE IS NO SAFE DEFAULT VALUE. 6893 * 6894 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6895 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6896 * do not have a clock doubler and so are provided with a 6897 * 80 MHz clock. All other fast20 boards incorporate a doubler 6898 * and so should be delivered with a 40 MHz clock. 6899 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6900 * clock and provide a clock quadrupler (160 Mhz). 6901 */ 6902 6903 /* 6904 * Select SCSI clock frequency 6905 */ 6906 static void sym_selectclock(hcb_p np, u_char scntl3) 6907 { 6908 /* 6909 * If multiplier not present or not selected, leave here. 6910 */ 6911 if (np->multiplier <= 1) { 6912 OUTB(nc_scntl3, scntl3); 6913 return; 6914 } 6915 6916 if (sym_verbose >= 2) 6917 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6918 6919 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6920 /* 6921 * Wait for the LCKFRQ bit to be set if supported by the chip. 6922 * Otherwise wait 20 micro-seconds. 6923 */ 6924 if (np->features & FE_LCKFRQ) { 6925 int i = 20; 6926 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6927 UDELAY (20); 6928 if (!i) 6929 printf("%s: the chip cannot lock the frequency\n", 6930 sym_name(np)); 6931 } else 6932 UDELAY (20); 6933 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6934 OUTB(nc_scntl3, scntl3); 6935 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6936 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6937 } 6938 6939 /* 6940 * calculate SCSI clock frequency (in KHz) 6941 */ 6942 static unsigned getfreq (hcb_p np, int gen) 6943 { 6944 unsigned int ms = 0; 6945 unsigned int f; 6946 6947 /* 6948 * Measure GEN timer delay in order 6949 * to calculate SCSI clock frequency 6950 * 6951 * This code will never execute too 6952 * many loop iterations (if DELAY is 6953 * reasonably correct). It could get 6954 * too low a delay (too high a freq.) 6955 * if the CPU is slow executing the 6956 * loop for some reason (an NMI, for 6957 * example). For this reason we will 6958 * if multiple measurements are to be 6959 * performed trust the higher delay 6960 * (lower frequency returned). 6961 */ 6962 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6963 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6964 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6965 (void) INW (nc_sist); /* another one, just to be sure :) */ 6966 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6967 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6968 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6969 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6970 UDELAY (1000); /* count ms */ 6971 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6972 /* 6973 * set prescaler to divide by whatever 0 means 6974 * 0 ought to choose divide by 2, but appears 6975 * to set divide by 3.5 mode in my 53c810 ... 6976 */ 6977 OUTB (nc_scntl3, 0); 6978 6979 /* 6980 * adjust for prescaler, and convert into KHz 6981 */ 6982 f = ms ? ((1 << gen) * 4340) / ms : 0; 6983 6984 if (sym_verbose >= 2) 6985 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6986 sym_name(np), gen, ms, f); 6987 6988 return f; 6989 } 6990 6991 static unsigned sym_getfreq (hcb_p np) 6992 { 6993 u_int f1, f2; 6994 int gen = 11; 6995 6996 (void) getfreq (np, gen); /* throw away first result */ 6997 f1 = getfreq (np, gen); 6998 f2 = getfreq (np, gen); 6999 if (f1 > f2) f1 = f2; /* trust lower result */ 7000 return f1; 7001 } 7002 7003 /* 7004 * Get/probe chip SCSI clock frequency 7005 */ 7006 static void sym_getclock (hcb_p np, int mult) 7007 { 7008 unsigned char scntl3 = np->sv_scntl3; 7009 unsigned char stest1 = np->sv_stest1; 7010 unsigned f1; 7011 7012 /* 7013 * For the C10 core, assume 40 MHz. 7014 */ 7015 if (np->features & FE_C10) { 7016 np->multiplier = mult; 7017 np->clock_khz = 40000 * mult; 7018 return; 7019 } 7020 7021 np->multiplier = 1; 7022 f1 = 40000; 7023 /* 7024 * True with 875/895/896/895A with clock multiplier selected 7025 */ 7026 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7027 if (sym_verbose >= 2) 7028 printf ("%s: clock multiplier found\n", sym_name(np)); 7029 np->multiplier = mult; 7030 } 7031 7032 /* 7033 * If multiplier not found or scntl3 not 7,5,3, 7034 * reset chip and get frequency from general purpose timer. 7035 * Otherwise trust scntl3 BIOS setting. 7036 */ 7037 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7038 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7039 f1 = sym_getfreq (np); 7040 7041 if (sym_verbose) 7042 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7043 7044 if (f1 < 45000) f1 = 40000; 7045 else if (f1 < 55000) f1 = 50000; 7046 else f1 = 80000; 7047 7048 if (f1 < 80000 && mult > 1) { 7049 if (sym_verbose >= 2) 7050 printf ("%s: clock multiplier assumed\n", 7051 sym_name(np)); 7052 np->multiplier = mult; 7053 } 7054 } else { 7055 if ((scntl3 & 7) == 3) f1 = 40000; 7056 else if ((scntl3 & 7) == 5) f1 = 80000; 7057 else f1 = 160000; 7058 7059 f1 /= np->multiplier; 7060 } 7061 7062 /* 7063 * Compute controller synchronous parameters. 7064 */ 7065 f1 *= np->multiplier; 7066 np->clock_khz = f1; 7067 } 7068 7069 /* 7070 * Get/probe PCI clock frequency 7071 */ 7072 static int sym_getpciclock (hcb_p np) 7073 { 7074 int f = 0; 7075 7076 /* 7077 * For the C1010-33, this doesn't work. 7078 * For the C1010-66, this will be tested when I'll have 7079 * such a beast to play with. 7080 */ 7081 if (!(np->features & FE_C10)) { 7082 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7083 f = (int) sym_getfreq (np); 7084 OUTB (nc_stest1, 0); 7085 } 7086 np->pciclk_khz = f; 7087 7088 return f; 7089 } 7090 7091 /*============= DRIVER ACTION/COMPLETION ====================*/ 7092 7093 /* 7094 * Print something that tells about extended errors. 7095 */ 7096 static void sym_print_xerr(ccb_p cp, int x_status) 7097 { 7098 if (x_status & XE_PARITY_ERR) { 7099 PRINT_ADDR(cp); 7100 printf ("unrecovered SCSI parity error.\n"); 7101 } 7102 if (x_status & XE_EXTRA_DATA) { 7103 PRINT_ADDR(cp); 7104 printf ("extraneous data discarded.\n"); 7105 } 7106 if (x_status & XE_BAD_PHASE) { 7107 PRINT_ADDR(cp); 7108 printf ("illegal scsi phase (4/5).\n"); 7109 } 7110 if (x_status & XE_SODL_UNRUN) { 7111 PRINT_ADDR(cp); 7112 printf ("ODD transfer in DATA OUT phase.\n"); 7113 } 7114 if (x_status & XE_SWIDE_OVRUN) { 7115 PRINT_ADDR(cp); 7116 printf ("ODD transfer in DATA IN phase.\n"); 7117 } 7118 } 7119 7120 /* 7121 * Choose the more appropriate CAM status if 7122 * the IO encountered an extended error. 7123 */ 7124 static int sym_xerr_cam_status(int cam_status, int x_status) 7125 { 7126 if (x_status) { 7127 if (x_status & XE_PARITY_ERR) 7128 cam_status = CAM_UNCOR_PARITY; 7129 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7130 cam_status = CAM_DATA_RUN_ERR; 7131 else if (x_status & XE_BAD_PHASE) 7132 cam_status = CAM_REQ_CMP_ERR; 7133 else 7134 cam_status = CAM_REQ_CMP_ERR; 7135 } 7136 return cam_status; 7137 } 7138 7139 /* 7140 * Complete execution of a SCSI command with extented 7141 * error, SCSI status error, or having been auto-sensed. 7142 * 7143 * The SCRIPTS processor is not running there, so we 7144 * can safely access IO registers and remove JOBs from 7145 * the START queue. 7146 * SCRATCHA is assumed to have been loaded with STARTPOS 7147 * before the SCRIPTS called the C code. 7148 */ 7149 static void sym_complete_error (hcb_p np, ccb_p cp) 7150 { 7151 struct ccb_scsiio *csio; 7152 u_int cam_status; 7153 int i; 7154 7155 SYM_LOCK_ASSERT(MA_OWNED); 7156 7157 /* 7158 * Paranoid check. :) 7159 */ 7160 if (!cp || !cp->cam_ccb) 7161 return; 7162 7163 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7164 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7165 cp->host_status, cp->ssss_status, cp->host_flags, 7166 cp->target, cp->lun); 7167 MDELAY(100); 7168 } 7169 7170 /* 7171 * Get CAM command pointer. 7172 */ 7173 csio = &cp->cam_ccb->csio; 7174 7175 /* 7176 * Check for extended errors. 7177 */ 7178 if (cp->xerr_status) { 7179 if (sym_verbose) 7180 sym_print_xerr(cp, cp->xerr_status); 7181 if (cp->host_status == HS_COMPLETE) 7182 cp->host_status = HS_COMP_ERR; 7183 } 7184 7185 /* 7186 * Calculate the residual. 7187 */ 7188 csio->sense_resid = 0; 7189 csio->resid = sym_compute_residual(np, cp); 7190 7191 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7192 csio->resid = 0; /* throw them away. :) */ 7193 cp->sv_resid = 0; 7194 } 7195 7196 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7197 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7198 csio->sense_resid = csio->resid; /* Swap residuals */ 7199 csio->resid = cp->sv_resid; 7200 cp->sv_resid = 0; 7201 if (sym_verbose && cp->sv_xerr_status) 7202 sym_print_xerr(cp, cp->sv_xerr_status); 7203 if (cp->host_status == HS_COMPLETE && 7204 cp->ssss_status == S_GOOD && 7205 cp->xerr_status == 0) { 7206 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7207 cp->sv_xerr_status); 7208 cam_status |= CAM_AUTOSNS_VALID; 7209 /* 7210 * Bounce back the sense data to user and 7211 * fix the residual. 7212 */ 7213 bzero(&csio->sense_data, csio->sense_len); 7214 bcopy(cp->sns_bbuf, &csio->sense_data, 7215 MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); 7216 csio->sense_resid += csio->sense_len; 7217 csio->sense_resid -= SYM_SNS_BBUF_LEN; 7218 #if 0 7219 /* 7220 * If the device reports a UNIT ATTENTION condition 7221 * due to a RESET condition, we should consider all 7222 * disconnect CCBs for this unit as aborted. 7223 */ 7224 if (1) { 7225 u_char *p; 7226 p = (u_char *) csio->sense_data; 7227 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7228 sym_clear_tasks(np, CAM_REQ_ABORTED, 7229 cp->target,cp->lun, -1); 7230 } 7231 #endif 7232 } 7233 else 7234 cam_status = CAM_AUTOSENSE_FAIL; 7235 } 7236 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7237 csio->scsi_status = cp->ssss_status; 7238 cam_status = CAM_SCSI_STATUS_ERROR; 7239 } 7240 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7241 cam_status = CAM_SEL_TIMEOUT; 7242 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7243 cam_status = CAM_UNEXP_BUSFREE; 7244 else { /* Extended error */ 7245 if (sym_verbose) { 7246 PRINT_ADDR(cp); 7247 printf ("COMMAND FAILED (%x %x %x).\n", 7248 cp->host_status, cp->ssss_status, 7249 cp->xerr_status); 7250 } 7251 csio->scsi_status = cp->ssss_status; 7252 /* 7253 * Set the most appropriate value for CAM status. 7254 */ 7255 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7256 cp->xerr_status); 7257 } 7258 7259 /* 7260 * Dequeue all queued CCBs for that device 7261 * not yet started by SCRIPTS. 7262 */ 7263 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7264 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7265 7266 /* 7267 * Restart the SCRIPTS processor. 7268 */ 7269 OUTL_DSP (SCRIPTA_BA (np, start)); 7270 7271 /* 7272 * Synchronize DMA map if needed. 7273 */ 7274 if (cp->dmamapped) { 7275 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7276 (cp->dmamapped == SYM_DMA_READ ? 7277 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7278 } 7279 /* 7280 * Add this one to the COMP queue. 7281 * Complete all those commands with either error 7282 * or requeue condition. 7283 */ 7284 sym_set_cam_status((union ccb *) csio, cam_status); 7285 sym_remque(&cp->link_ccbq); 7286 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7287 sym_flush_comp_queue(np, 0); 7288 } 7289 7290 /* 7291 * Complete execution of a successful SCSI command. 7292 * 7293 * Only successful commands go to the DONE queue, 7294 * since we need to have the SCRIPTS processor 7295 * stopped on any error condition. 7296 * The SCRIPTS processor is running while we are 7297 * completing successful commands. 7298 */ 7299 static void sym_complete_ok (hcb_p np, ccb_p cp) 7300 { 7301 struct ccb_scsiio *csio; 7302 tcb_p tp; 7303 lcb_p lp; 7304 7305 SYM_LOCK_ASSERT(MA_OWNED); 7306 7307 /* 7308 * Paranoid check. :) 7309 */ 7310 if (!cp || !cp->cam_ccb) 7311 return; 7312 assert (cp->host_status == HS_COMPLETE); 7313 7314 /* 7315 * Get command, target and lun pointers. 7316 */ 7317 csio = &cp->cam_ccb->csio; 7318 tp = &np->target[cp->target]; 7319 lp = sym_lp(np, tp, cp->lun); 7320 7321 /* 7322 * Assume device discovered on first success. 7323 */ 7324 if (!lp) 7325 sym_set_bit(tp->lun_map, cp->lun); 7326 7327 /* 7328 * If all data have been transferred, given than no 7329 * extended error did occur, there is no residual. 7330 */ 7331 csio->resid = 0; 7332 if (cp->phys.head.lastp != cp->phys.head.goalp) 7333 csio->resid = sym_compute_residual(np, cp); 7334 7335 /* 7336 * Wrong transfer residuals may be worse than just always 7337 * returning zero. User can disable this feature from 7338 * sym_conf.h. Residual support is enabled by default. 7339 */ 7340 if (!SYM_CONF_RESIDUAL_SUPPORT) 7341 csio->resid = 0; 7342 7343 /* 7344 * Synchronize DMA map if needed. 7345 */ 7346 if (cp->dmamapped) { 7347 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7348 (cp->dmamapped == SYM_DMA_READ ? 7349 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7350 } 7351 /* 7352 * Set status and complete the command. 7353 */ 7354 csio->scsi_status = cp->ssss_status; 7355 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7356 sym_xpt_done(np, (union ccb *) csio, cp); 7357 sym_free_ccb(np, cp); 7358 } 7359 7360 /* 7361 * Our callout handler 7362 */ 7363 static void sym_callout(void *arg) 7364 { 7365 union ccb *ccb = (union ccb *) arg; 7366 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7367 7368 /* 7369 * Check that the CAM CCB is still queued. 7370 */ 7371 if (!np) 7372 return; 7373 7374 SYM_LOCK(); 7375 7376 switch(ccb->ccb_h.func_code) { 7377 case XPT_SCSI_IO: 7378 (void) sym_abort_scsiio(np, ccb, 1); 7379 break; 7380 default: 7381 break; 7382 } 7383 7384 SYM_UNLOCK(); 7385 } 7386 7387 /* 7388 * Abort an SCSI IO. 7389 */ 7390 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7391 { 7392 ccb_p cp; 7393 SYM_QUEHEAD *qp; 7394 7395 SYM_LOCK_ASSERT(MA_OWNED); 7396 7397 /* 7398 * Look up our CCB control block. 7399 */ 7400 cp = NULL; 7401 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7402 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7403 if (cp2->cam_ccb == ccb) { 7404 cp = cp2; 7405 break; 7406 } 7407 } 7408 if (!cp || cp->host_status == HS_WAIT) 7409 return -1; 7410 7411 /* 7412 * If a previous abort didn't succeed in time, 7413 * perform a BUS reset. 7414 */ 7415 if (cp->to_abort) { 7416 sym_reset_scsi_bus(np, 1); 7417 return 0; 7418 } 7419 7420 /* 7421 * Mark the CCB for abort and allow time for. 7422 */ 7423 cp->to_abort = timed_out ? 2 : 1; 7424 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7425 7426 /* 7427 * Tell the SCRIPTS processor to stop and synchronize with us. 7428 */ 7429 np->istat_sem = SEM; 7430 OUTB (nc_istat, SIGP|SEM); 7431 return 0; 7432 } 7433 7434 /* 7435 * Reset a SCSI device (all LUNs of a target). 7436 */ 7437 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7438 { 7439 tcb_p tp; 7440 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7441 7442 SYM_LOCK_ASSERT(MA_OWNED); 7443 7444 if (ccb_h->target_id == np->myaddr || 7445 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7446 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7447 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7448 return; 7449 } 7450 7451 tp = &np->target[ccb_h->target_id]; 7452 7453 tp->to_reset = 1; 7454 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7455 7456 np->istat_sem = SEM; 7457 OUTB (nc_istat, SIGP|SEM); 7458 } 7459 7460 /* 7461 * SIM action entry point. 7462 */ 7463 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7464 { 7465 hcb_p np; 7466 tcb_p tp; 7467 lcb_p lp; 7468 ccb_p cp; 7469 int tmp; 7470 u_char idmsg, *msgptr; 7471 u_int msglen; 7472 struct ccb_scsiio *csio; 7473 struct ccb_hdr *ccb_h; 7474 7475 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7476 7477 /* 7478 * Retrieve our controller data structure. 7479 */ 7480 np = (hcb_p) cam_sim_softc(sim); 7481 7482 SYM_LOCK_ASSERT(MA_OWNED); 7483 7484 /* 7485 * The common case is SCSI IO. 7486 * We deal with other ones elsewhere. 7487 */ 7488 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7489 sym_action2(sim, ccb); 7490 return; 7491 } 7492 csio = &ccb->csio; 7493 ccb_h = &csio->ccb_h; 7494 7495 /* 7496 * Work around races. 7497 */ 7498 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7499 xpt_done(ccb); 7500 return; 7501 } 7502 7503 /* 7504 * Minimal checkings, so that we will not 7505 * go outside our tables. 7506 */ 7507 if (ccb_h->target_id == np->myaddr || 7508 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7509 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7510 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7511 return; 7512 } 7513 7514 /* 7515 * Retreive the target and lun descriptors. 7516 */ 7517 tp = &np->target[ccb_h->target_id]; 7518 lp = sym_lp(np, tp, ccb_h->target_lun); 7519 7520 /* 7521 * Complete the 1st INQUIRY command with error 7522 * condition if the device is flagged NOSCAN 7523 * at BOOT in the NVRAM. This may speed up 7524 * the boot and maintain coherency with BIOS 7525 * device numbering. Clearing the flag allows 7526 * user to rescan skipped devices later. 7527 * We also return error for devices not flagged 7528 * for SCAN LUNS in the NVRAM since some mono-lun 7529 * devices behave badly when asked for some non 7530 * zero LUN. Btw, this is an absolute hack.:-) 7531 */ 7532 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7533 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7534 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7535 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7536 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7537 ccb_h->target_lun != 0)) { 7538 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7539 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7540 return; 7541 } 7542 } 7543 7544 /* 7545 * Get a control block for this IO. 7546 */ 7547 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7548 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7549 if (!cp) { 7550 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7551 return; 7552 } 7553 7554 /* 7555 * Keep track of the IO in our CCB. 7556 */ 7557 cp->cam_ccb = ccb; 7558 7559 /* 7560 * Build the IDENTIFY message. 7561 */ 7562 idmsg = M_IDENTIFY | cp->lun; 7563 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7564 idmsg |= 0x40; 7565 7566 msgptr = cp->scsi_smsg; 7567 msglen = 0; 7568 msgptr[msglen++] = idmsg; 7569 7570 /* 7571 * Build the tag message if present. 7572 */ 7573 if (cp->tag != NO_TAG) { 7574 u_char order = csio->tag_action; 7575 7576 switch(order) { 7577 case M_ORDERED_TAG: 7578 break; 7579 case M_HEAD_TAG: 7580 break; 7581 default: 7582 order = M_SIMPLE_TAG; 7583 } 7584 msgptr[msglen++] = order; 7585 7586 /* 7587 * For less than 128 tags, actual tags are numbered 7588 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7589 * with devices that have problems with #TAG 0 or too 7590 * great #TAG numbers. For more tags (up to 256), 7591 * we use directly our tag number. 7592 */ 7593 #if SYM_CONF_MAX_TASK > (512/4) 7594 msgptr[msglen++] = cp->tag; 7595 #else 7596 msgptr[msglen++] = (cp->tag << 1) + 1; 7597 #endif 7598 } 7599 7600 /* 7601 * Build a negotiation message if needed. 7602 * (nego_status is filled by sym_prepare_nego()) 7603 */ 7604 cp->nego_status = 0; 7605 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7606 tp->tinfo.current.period != tp->tinfo.goal.period || 7607 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7608 tp->tinfo.current.options != tp->tinfo.goal.options) { 7609 if (!tp->nego_cp && lp) 7610 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7611 } 7612 7613 /* 7614 * Fill in our ccb 7615 */ 7616 7617 /* 7618 * Startqueue 7619 */ 7620 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7621 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7622 7623 /* 7624 * select 7625 */ 7626 cp->phys.select.sel_id = cp->target; 7627 cp->phys.select.sel_scntl3 = tp->head.wval; 7628 cp->phys.select.sel_sxfer = tp->head.sval; 7629 cp->phys.select.sel_scntl4 = tp->head.uval; 7630 7631 /* 7632 * message 7633 */ 7634 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7635 cp->phys.smsg.size = cpu_to_scr(msglen); 7636 7637 /* 7638 * command 7639 */ 7640 if (sym_setup_cdb(np, csio, cp) < 0) { 7641 sym_xpt_done(np, ccb, cp); 7642 sym_free_ccb(np, cp); 7643 return; 7644 } 7645 7646 /* 7647 * status 7648 */ 7649 #if 0 /* Provision */ 7650 cp->actualquirks = tp->quirks; 7651 #endif 7652 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7653 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7654 cp->ssss_status = S_ILLEGAL; 7655 cp->xerr_status = 0; 7656 cp->host_flags = 0; 7657 cp->extra_bytes = 0; 7658 7659 /* 7660 * extreme data pointer. 7661 * shall be positive, so -1 is lower than lowest.:) 7662 */ 7663 cp->ext_sg = -1; 7664 cp->ext_ofs = 0; 7665 7666 /* 7667 * Build the data descriptor block 7668 * and start the IO. 7669 */ 7670 sym_setup_data_and_start(np, csio, cp); 7671 } 7672 7673 /* 7674 * Setup buffers and pointers that address the CDB. 7675 * I bet, physical CDBs will never be used on the planet, 7676 * since they can be bounced without significant overhead. 7677 */ 7678 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7679 { 7680 struct ccb_hdr *ccb_h; 7681 u32 cmd_ba; 7682 int cmd_len; 7683 7684 SYM_LOCK_ASSERT(MA_OWNED); 7685 7686 ccb_h = &csio->ccb_h; 7687 7688 /* 7689 * CDB is 16 bytes max. 7690 */ 7691 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7692 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7693 return -1; 7694 } 7695 cmd_len = csio->cdb_len; 7696 7697 if (ccb_h->flags & CAM_CDB_POINTER) { 7698 /* CDB is a pointer */ 7699 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7700 /* CDB pointer is virtual */ 7701 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7702 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7703 } else { 7704 /* CDB pointer is physical */ 7705 #if 0 7706 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7707 #else 7708 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7709 return -1; 7710 #endif 7711 } 7712 } else { 7713 /* CDB is in the CAM ccb (buffer) */ 7714 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7715 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7716 } 7717 7718 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7719 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7720 7721 return 0; 7722 } 7723 7724 /* 7725 * Set up data pointers used by SCRIPTS. 7726 */ 7727 static void __inline 7728 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7729 { 7730 u32 lastp, goalp; 7731 7732 SYM_LOCK_ASSERT(MA_OWNED); 7733 7734 /* 7735 * No segments means no data. 7736 */ 7737 if (!cp->segments) 7738 dir = CAM_DIR_NONE; 7739 7740 /* 7741 * Set the data pointer. 7742 */ 7743 switch(dir) { 7744 case CAM_DIR_OUT: 7745 goalp = SCRIPTA_BA (np, data_out2) + 8; 7746 lastp = goalp - 8 - (cp->segments * (2*4)); 7747 break; 7748 case CAM_DIR_IN: 7749 cp->host_flags |= HF_DATA_IN; 7750 goalp = SCRIPTA_BA (np, data_in2) + 8; 7751 lastp = goalp - 8 - (cp->segments * (2*4)); 7752 break; 7753 case CAM_DIR_NONE: 7754 default: 7755 lastp = goalp = SCRIPTB_BA (np, no_data); 7756 break; 7757 } 7758 7759 cp->phys.head.lastp = cpu_to_scr(lastp); 7760 cp->phys.head.goalp = cpu_to_scr(goalp); 7761 cp->phys.head.savep = cpu_to_scr(lastp); 7762 cp->startp = cp->phys.head.savep; 7763 } 7764 7765 7766 /* 7767 * Call back routine for the DMA map service. 7768 * If bounce buffers are used (why ?), we may sleep and then 7769 * be called there in another context. 7770 */ 7771 static void 7772 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7773 { 7774 ccb_p cp; 7775 hcb_p np; 7776 union ccb *ccb; 7777 7778 cp = (ccb_p) arg; 7779 ccb = cp->cam_ccb; 7780 np = (hcb_p) cp->arg; 7781 7782 SYM_LOCK_ASSERT(MA_OWNED); 7783 7784 /* 7785 * Deal with weird races. 7786 */ 7787 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7788 goto out_abort; 7789 7790 /* 7791 * Deal with weird errors. 7792 */ 7793 if (error) { 7794 cp->dmamapped = 0; 7795 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7796 goto out_abort; 7797 } 7798 7799 /* 7800 * Build the data descriptor for the chip. 7801 */ 7802 if (nsegs) { 7803 int retv; 7804 /* 896 rev 1 requires to be careful about boundaries */ 7805 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7806 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7807 else 7808 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7809 if (retv < 0) { 7810 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7811 goto out_abort; 7812 } 7813 } 7814 7815 /* 7816 * Synchronize the DMA map only if we have 7817 * actually mapped the data. 7818 */ 7819 if (cp->dmamapped) { 7820 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7821 (cp->dmamapped == SYM_DMA_READ ? 7822 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7823 } 7824 7825 /* 7826 * Set host status to busy state. 7827 * May have been set back to HS_WAIT to avoid a race. 7828 */ 7829 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7830 7831 /* 7832 * Set data pointers. 7833 */ 7834 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7835 7836 /* 7837 * Enqueue this IO in our pending queue. 7838 */ 7839 sym_enqueue_cam_ccb(cp); 7840 7841 /* 7842 * When `#ifed 1', the code below makes the driver 7843 * panic on the first attempt to write to a SCSI device. 7844 * It is the first test we want to do after a driver 7845 * change that does not seem obviously safe. :) 7846 */ 7847 #if 0 7848 switch (cp->cdb_buf[0]) { 7849 case 0x0A: case 0x2A: case 0xAA: 7850 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7851 MDELAY(10000); 7852 break; 7853 default: 7854 break; 7855 } 7856 #endif 7857 /* 7858 * Activate this job. 7859 */ 7860 sym_put_start_queue(np, cp); 7861 return; 7862 out_abort: 7863 sym_xpt_done(np, ccb, cp); 7864 sym_free_ccb(np, cp); 7865 } 7866 7867 /* 7868 * How complex it gets to deal with the data in CAM. 7869 * The Bus Dma stuff makes things still more complex. 7870 */ 7871 static void 7872 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7873 { 7874 struct ccb_hdr *ccb_h; 7875 int dir, retv; 7876 7877 SYM_LOCK_ASSERT(MA_OWNED); 7878 7879 ccb_h = &csio->ccb_h; 7880 7881 /* 7882 * Now deal with the data. 7883 */ 7884 cp->data_len = csio->dxfer_len; 7885 cp->arg = np; 7886 7887 /* 7888 * No direction means no data. 7889 */ 7890 dir = (ccb_h->flags & CAM_DIR_MASK); 7891 if (dir == CAM_DIR_NONE) { 7892 sym_execute_ccb(cp, NULL, 0, 0); 7893 return; 7894 } 7895 7896 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 7897 /* Single buffer */ 7898 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7899 /* Buffer is virtual */ 7900 cp->dmamapped = (dir == CAM_DIR_IN) ? 7901 SYM_DMA_READ : SYM_DMA_WRITE; 7902 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 7903 csio->data_ptr, csio->dxfer_len, 7904 sym_execute_ccb, cp, 0); 7905 if (retv == EINPROGRESS) { 7906 cp->host_status = HS_WAIT; 7907 xpt_freeze_simq(np->sim, 1); 7908 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7909 } 7910 } else { 7911 /* Buffer is physical */ 7912 struct bus_dma_segment seg; 7913 7914 seg.ds_addr = (bus_addr_t) csio->data_ptr; 7915 sym_execute_ccb(cp, &seg, 1, 0); 7916 } 7917 } else { 7918 /* Scatter/gather list */ 7919 struct bus_dma_segment *segs; 7920 7921 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 7922 /* The SG list pointer is physical */ 7923 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7924 goto out_abort; 7925 } 7926 7927 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7928 /* SG buffer pointers are virtual */ 7929 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7930 goto out_abort; 7931 } 7932 7933 /* SG buffer pointers are physical */ 7934 segs = (struct bus_dma_segment *)csio->data_ptr; 7935 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 7936 } 7937 return; 7938 out_abort: 7939 sym_xpt_done(np, (union ccb *) csio, cp); 7940 sym_free_ccb(np, cp); 7941 } 7942 7943 /* 7944 * Move the scatter list to our data block. 7945 */ 7946 static int 7947 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7948 bus_dma_segment_t *psegs, int nsegs) 7949 { 7950 struct sym_tblmove *data; 7951 bus_dma_segment_t *psegs2; 7952 7953 SYM_LOCK_ASSERT(MA_OWNED); 7954 7955 if (nsegs > SYM_CONF_MAX_SG) 7956 return -1; 7957 7958 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7959 psegs2 = &psegs[nsegs-1]; 7960 cp->segments = nsegs; 7961 7962 while (1) { 7963 data->addr = cpu_to_scr(psegs2->ds_addr); 7964 data->size = cpu_to_scr(psegs2->ds_len); 7965 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7966 printf ("%s scatter: paddr=%lx len=%ld\n", 7967 sym_name(np), (long) psegs2->ds_addr, 7968 (long) psegs2->ds_len); 7969 } 7970 if (psegs2 != psegs) { 7971 --data; 7972 --psegs2; 7973 continue; 7974 } 7975 break; 7976 } 7977 return 0; 7978 } 7979 7980 7981 /* 7982 * Scatter a SG list with physical addresses into bus addressable chunks. 7983 * We need to ensure 16MB boundaries not to be crossed during DMA of 7984 * each segment, due to some chips being flawed. 7985 */ 7986 #define BOUND_MASK ((1UL<<24)-1) 7987 static int 7988 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7989 { 7990 u_long ps, pe, pn; 7991 u_long k; 7992 int s, t; 7993 7994 SYM_LOCK_ASSERT(MA_OWNED); 7995 7996 s = SYM_CONF_MAX_SG - 1; 7997 t = nsegs - 1; 7998 ps = psegs[t].ds_addr; 7999 pe = ps + psegs[t].ds_len; 8000 8001 while (s >= 0) { 8002 pn = (pe - 1) & ~BOUND_MASK; 8003 if (pn <= ps) 8004 pn = ps; 8005 k = pe - pn; 8006 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8007 printf ("%s scatter: paddr=%lx len=%ld\n", 8008 sym_name(np), pn, k); 8009 } 8010 cp->phys.data[s].addr = cpu_to_scr(pn); 8011 cp->phys.data[s].size = cpu_to_scr(k); 8012 --s; 8013 if (pn == ps) { 8014 if (--t < 0) 8015 break; 8016 ps = psegs[t].ds_addr; 8017 pe = ps + psegs[t].ds_len; 8018 } 8019 else 8020 pe = pn; 8021 } 8022 8023 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8024 8025 return t >= 0 ? -1 : 0; 8026 } 8027 #undef BOUND_MASK 8028 8029 /* 8030 * SIM action for non performance critical stuff. 8031 */ 8032 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8033 { 8034 hcb_p np; 8035 tcb_p tp; 8036 lcb_p lp; 8037 struct ccb_hdr *ccb_h; 8038 8039 /* 8040 * Retrieve our controller data structure. 8041 */ 8042 np = (hcb_p) cam_sim_softc(sim); 8043 8044 SYM_LOCK_ASSERT(MA_OWNED); 8045 8046 ccb_h = &ccb->ccb_h; 8047 8048 switch (ccb_h->func_code) { 8049 case XPT_SET_TRAN_SETTINGS: 8050 { 8051 struct ccb_trans_settings *cts; 8052 8053 cts = &ccb->cts; 8054 tp = &np->target[ccb_h->target_id]; 8055 8056 /* 8057 * Update SPI transport settings in TARGET control block. 8058 * Update SCSI device settings in LUN control block. 8059 */ 8060 lp = sym_lp(np, tp, ccb_h->target_lun); 8061 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8062 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8063 if (lp) 8064 sym_update_dflags(np, &lp->current_flags, cts); 8065 } 8066 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8067 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8068 if (lp) 8069 sym_update_dflags(np, &lp->user_flags, cts); 8070 } 8071 8072 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8073 break; 8074 } 8075 case XPT_GET_TRAN_SETTINGS: 8076 { 8077 struct ccb_trans_settings *cts; 8078 struct sym_trans *tip; 8079 u_char dflags; 8080 8081 cts = &ccb->cts; 8082 tp = &np->target[ccb_h->target_id]; 8083 lp = sym_lp(np, tp, ccb_h->target_lun); 8084 8085 #define cts__scsi (&cts->proto_specific.scsi) 8086 #define cts__spi (&cts->xport_specific.spi) 8087 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8088 tip = &tp->tinfo.current; 8089 dflags = lp ? lp->current_flags : 0; 8090 } 8091 else { 8092 tip = &tp->tinfo.user; 8093 dflags = lp ? lp->user_flags : tp->usrflags; 8094 } 8095 8096 cts->protocol = PROTO_SCSI; 8097 cts->transport = XPORT_SPI; 8098 cts->protocol_version = tip->scsi_version; 8099 cts->transport_version = tip->spi_version; 8100 8101 cts__spi->sync_period = tip->period; 8102 cts__spi->sync_offset = tip->offset; 8103 cts__spi->bus_width = tip->width; 8104 cts__spi->ppr_options = tip->options; 8105 8106 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8107 | CTS_SPI_VALID_SYNC_OFFSET 8108 | CTS_SPI_VALID_BUS_WIDTH 8109 | CTS_SPI_VALID_PPR_OPTIONS; 8110 8111 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8112 if (dflags & SYM_DISC_ENABLED) 8113 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8114 cts__spi->valid |= CTS_SPI_VALID_DISC; 8115 8116 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8117 if (dflags & SYM_TAGS_ENABLED) 8118 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8119 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8120 #undef cts__spi 8121 #undef cts__scsi 8122 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8123 break; 8124 } 8125 case XPT_CALC_GEOMETRY: 8126 { 8127 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8128 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8129 break; 8130 } 8131 case XPT_PATH_INQ: 8132 { 8133 struct ccb_pathinq *cpi = &ccb->cpi; 8134 cpi->version_num = 1; 8135 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8136 if ((np->features & FE_WIDE) != 0) 8137 cpi->hba_inquiry |= PI_WIDE_16; 8138 cpi->target_sprt = 0; 8139 cpi->hba_misc = 0; 8140 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8141 cpi->hba_misc |= PIM_SCANHILO; 8142 if (np->usrflags & SYM_AVOID_BUS_RESET) 8143 cpi->hba_misc |= PIM_NOBUSRESET; 8144 cpi->hba_eng_cnt = 0; 8145 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8146 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8147 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8148 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8149 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8150 cpi->bus_id = cam_sim_bus(sim); 8151 cpi->initiator_id = np->myaddr; 8152 cpi->base_transfer_speed = 3300; 8153 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8154 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8155 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8156 cpi->unit_number = cam_sim_unit(sim); 8157 8158 cpi->protocol = PROTO_SCSI; 8159 cpi->protocol_version = SCSI_REV_2; 8160 cpi->transport = XPORT_SPI; 8161 cpi->transport_version = 2; 8162 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8163 if (np->features & FE_ULTRA3) { 8164 cpi->transport_version = 3; 8165 cpi->xport_specific.spi.ppr_options = 8166 SID_SPI_CLOCK_DT_ST; 8167 } 8168 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8169 break; 8170 } 8171 case XPT_ABORT: 8172 { 8173 union ccb *abort_ccb = ccb->cab.abort_ccb; 8174 switch(abort_ccb->ccb_h.func_code) { 8175 case XPT_SCSI_IO: 8176 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8177 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8178 break; 8179 } 8180 default: 8181 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8182 break; 8183 } 8184 break; 8185 } 8186 case XPT_RESET_DEV: 8187 { 8188 sym_reset_dev(np, ccb); 8189 break; 8190 } 8191 case XPT_RESET_BUS: 8192 { 8193 sym_reset_scsi_bus(np, 0); 8194 if (sym_verbose) { 8195 xpt_print_path(np->path); 8196 printf("SCSI BUS reset delivered.\n"); 8197 } 8198 sym_init (np, 1); 8199 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8200 break; 8201 } 8202 case XPT_ACCEPT_TARGET_IO: 8203 case XPT_CONT_TARGET_IO: 8204 case XPT_EN_LUN: 8205 case XPT_NOTIFY_ACK: 8206 case XPT_IMMED_NOTIFY: 8207 case XPT_TERM_IO: 8208 default: 8209 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8210 break; 8211 } 8212 } 8213 8214 /* 8215 * Asynchronous notification handler. 8216 */ 8217 static void 8218 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8219 { 8220 hcb_p np; 8221 struct cam_sim *sim; 8222 u_int tn; 8223 tcb_p tp; 8224 8225 sim = (struct cam_sim *) cb_arg; 8226 np = (hcb_p) cam_sim_softc(sim); 8227 8228 SYM_LOCK_ASSERT(MA_OWNED); 8229 8230 switch (code) { 8231 case AC_LOST_DEVICE: 8232 tn = xpt_path_target_id(path); 8233 if (tn >= SYM_CONF_MAX_TARGET) 8234 break; 8235 8236 tp = &np->target[tn]; 8237 8238 tp->to_reset = 0; 8239 tp->head.sval = 0; 8240 tp->head.wval = np->rv_scntl3; 8241 tp->head.uval = 0; 8242 8243 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8244 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8245 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8246 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8247 8248 break; 8249 default: 8250 break; 8251 } 8252 } 8253 8254 /* 8255 * Update transfer settings of a target. 8256 */ 8257 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8258 struct ccb_trans_settings *cts) 8259 { 8260 SYM_LOCK_ASSERT(MA_OWNED); 8261 8262 /* 8263 * Update the infos. 8264 */ 8265 #define cts__spi (&cts->xport_specific.spi) 8266 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8267 tip->width = cts__spi->bus_width; 8268 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8269 tip->offset = cts__spi->sync_offset; 8270 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8271 tip->period = cts__spi->sync_period; 8272 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8273 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8274 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8275 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8276 tip->scsi_version = cts->protocol_version; 8277 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8278 cts->transport_version != XPORT_VERSION_UNKNOWN) 8279 tip->spi_version = cts->transport_version; 8280 #undef cts__spi 8281 /* 8282 * Scale against driver configuration limits. 8283 */ 8284 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8285 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8286 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8287 8288 /* 8289 * Scale against actual controller BUS width. 8290 */ 8291 if (tip->width > np->maxwide) 8292 tip->width = np->maxwide; 8293 8294 /* 8295 * Only accept DT if controller supports and SYNC/WIDE asked. 8296 */ 8297 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8298 !(tip->width == BUS_16_BIT && tip->offset)) { 8299 tip->options &= ~PPR_OPT_DT; 8300 } 8301 8302 /* 8303 * Scale period factor and offset against controller limits. 8304 */ 8305 if (tip->options & PPR_OPT_DT) { 8306 if (tip->period < np->minsync_dt) 8307 tip->period = np->minsync_dt; 8308 if (tip->period > np->maxsync_dt) 8309 tip->period = np->maxsync_dt; 8310 if (tip->offset > np->maxoffs_dt) 8311 tip->offset = np->maxoffs_dt; 8312 } 8313 else { 8314 if (tip->period < np->minsync) 8315 tip->period = np->minsync; 8316 if (tip->period > np->maxsync) 8317 tip->period = np->maxsync; 8318 if (tip->offset > np->maxoffs) 8319 tip->offset = np->maxoffs; 8320 } 8321 } 8322 8323 /* 8324 * Update flags for a device (logical unit). 8325 */ 8326 static void 8327 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8328 { 8329 SYM_LOCK_ASSERT(MA_OWNED); 8330 8331 #define cts__scsi (&cts->proto_specific.scsi) 8332 #define cts__spi (&cts->xport_specific.spi) 8333 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8334 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8335 *flags |= SYM_DISC_ENABLED; 8336 else 8337 *flags &= ~SYM_DISC_ENABLED; 8338 } 8339 8340 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8341 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8342 *flags |= SYM_TAGS_ENABLED; 8343 else 8344 *flags &= ~SYM_TAGS_ENABLED; 8345 } 8346 #undef cts__spi 8347 #undef cts__scsi 8348 } 8349 8350 8351 /*============= DRIVER INITIALISATION ==================*/ 8352 8353 8354 static device_method_t sym_pci_methods[] = { 8355 DEVMETHOD(device_probe, sym_pci_probe), 8356 DEVMETHOD(device_attach, sym_pci_attach), 8357 { 0, 0 } 8358 }; 8359 8360 static driver_t sym_pci_driver = { 8361 "sym", 8362 sym_pci_methods, 8363 1 /* no softc */ 8364 }; 8365 8366 static devclass_t sym_devclass; 8367 8368 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8369 MODULE_DEPEND(sym, cam, 1, 1, 1); 8370 MODULE_DEPEND(sym, pci, 1, 1, 1); 8371 8372 8373 static struct sym_pci_chip sym_pci_dev_table[] = { 8374 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8375 FE_ERL} 8376 , 8377 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8378 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8379 FE_BOF} 8380 , 8381 #else 8382 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8383 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8384 , 8385 #endif 8386 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8387 FE_BOF|FE_ERL} 8388 , 8389 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8390 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8391 , 8392 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8393 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8394 , 8395 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8396 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8397 , 8398 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8399 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8400 FE_RAM|FE_DIFF} 8401 , 8402 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8403 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8404 FE_RAM|FE_DIFF} 8405 , 8406 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8407 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8408 FE_RAM|FE_DIFF} 8409 , 8410 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8411 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8412 FE_RAM|FE_DIFF} 8413 , 8414 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8415 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8416 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8417 FE_RAM|FE_LCKFRQ} 8418 , 8419 #else 8420 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8421 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8422 FE_RAM|FE_LCKFRQ} 8423 , 8424 #endif 8425 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8426 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8427 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8428 , 8429 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8430 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8431 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8432 , 8433 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8434 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8435 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8436 FE_C10} 8437 , 8438 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8439 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8440 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8441 FE_C10|FE_U3EN} 8442 , 8443 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8444 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8445 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8446 FE_C10|FE_U3EN} 8447 , 8448 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8449 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8450 FE_RAM|FE_IO256|FE_LEDC} 8451 }; 8452 8453 #define sym_pci_num_devs \ 8454 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8455 8456 /* 8457 * Look up the chip table. 8458 * 8459 * Return a pointer to the chip entry if found, 8460 * zero otherwise. 8461 */ 8462 static struct sym_pci_chip * 8463 sym_find_pci_chip(device_t dev) 8464 { 8465 struct sym_pci_chip *chip; 8466 int i; 8467 u_short device_id; 8468 u_char revision; 8469 8470 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8471 return NULL; 8472 8473 device_id = pci_get_device(dev); 8474 revision = pci_get_revid(dev); 8475 8476 for (i = 0; i < sym_pci_num_devs; i++) { 8477 chip = &sym_pci_dev_table[i]; 8478 if (device_id != chip->device_id) 8479 continue; 8480 if (revision > chip->revision_id) 8481 continue; 8482 return chip; 8483 } 8484 8485 return NULL; 8486 } 8487 8488 /* 8489 * Tell upper layer if the chip is supported. 8490 */ 8491 static int 8492 sym_pci_probe(device_t dev) 8493 { 8494 struct sym_pci_chip *chip; 8495 8496 chip = sym_find_pci_chip(dev); 8497 if (chip && sym_find_firmware(chip)) { 8498 device_set_desc(dev, chip->name); 8499 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? 8500 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; 8501 } 8502 return ENXIO; 8503 } 8504 8505 /* 8506 * Attach a sym53c8xx device. 8507 */ 8508 static int 8509 sym_pci_attach(device_t dev) 8510 { 8511 struct sym_pci_chip *chip; 8512 u_short command; 8513 u_char cachelnsz; 8514 struct sym_hcb *np = NULL; 8515 struct sym_nvram nvram; 8516 struct sym_fw *fw = NULL; 8517 int i; 8518 bus_dma_tag_t bus_dmat; 8519 8520 bus_dmat = bus_get_dma_tag(dev); 8521 8522 /* 8523 * Only probed devices should be attached. 8524 * We just enjoy being paranoid. :) 8525 */ 8526 chip = sym_find_pci_chip(dev); 8527 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8528 return (ENXIO); 8529 8530 /* 8531 * Allocate immediately the host control block, 8532 * since we are only expecting to succeed. :) 8533 * We keep track in the HCB of all the resources that 8534 * are to be released on error. 8535 */ 8536 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8537 if (np) 8538 np->bus_dmat = bus_dmat; 8539 else 8540 return (ENXIO); 8541 8542 SYM_LOCK_INIT(); 8543 8544 /* 8545 * Copy some useful infos to the HCB. 8546 */ 8547 np->hcb_ba = vtobus(np); 8548 np->verbose = bootverbose; 8549 np->device = dev; 8550 np->unit = device_get_unit(dev); 8551 np->device_id = pci_get_device(dev); 8552 np->revision_id = pci_get_revid(dev); 8553 np->features = chip->features; 8554 np->clock_divn = chip->nr_divisor; 8555 np->maxoffs = chip->offset_max; 8556 np->maxburst = chip->burst_max; 8557 np->scripta_sz = fw->a_size; 8558 np->scriptb_sz = fw->b_size; 8559 np->fw_setup = fw->setup; 8560 np->fw_patch = fw->patch; 8561 np->fw_name = fw->name; 8562 8563 #ifdef __amd64__ 8564 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8565 "TARGET"); 8566 if (!np->target) 8567 goto attach_failed; 8568 #endif 8569 /* 8570 * Edit its name. 8571 */ 8572 snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); 8573 8574 /* 8575 * Initialize the CCB free and busy queues. 8576 */ 8577 sym_que_init(&np->free_ccbq); 8578 sym_que_init(&np->busy_ccbq); 8579 sym_que_init(&np->comp_ccbq); 8580 sym_que_init(&np->cam_ccbq); 8581 8582 /* 8583 * Allocate a tag for the DMA of user data. 8584 */ 8585 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 8586 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 8587 NULL, NULL, 8588 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 8589 (1<<24), 0, busdma_lock_mutex, &np->mtx, 8590 &np->data_dmat)) { 8591 device_printf(dev, "failed to create DMA tag.\n"); 8592 goto attach_failed; 8593 } 8594 /* 8595 * Read and apply some fix-ups to the PCI COMMAND 8596 * register. We want the chip to be enabled for: 8597 * - BUS mastering 8598 * - PCI parity checking (reporting would also be fine) 8599 * - Write And Invalidate. 8600 */ 8601 command = pci_read_config(dev, PCIR_COMMAND, 2); 8602 command |= PCIM_CMD_BUSMASTEREN; 8603 command |= PCIM_CMD_PERRESPEN; 8604 command |= /* PCIM_CMD_MWIEN */ 0x0010; 8605 pci_write_config(dev, PCIR_COMMAND, command, 2); 8606 8607 /* 8608 * Let the device know about the cache line size, 8609 * if it doesn't yet. 8610 */ 8611 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8612 if (!cachelnsz) { 8613 cachelnsz = 8; 8614 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8615 } 8616 8617 /* 8618 * Alloc/get/map/retrieve everything that deals with MMIO. 8619 */ 8620 if ((command & PCIM_CMD_MEMEN) != 0) { 8621 int regs_id = SYM_PCI_MMIO; 8622 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8623 ®s_id, RF_ACTIVE); 8624 } 8625 if (!np->mmio_res) { 8626 device_printf(dev, "failed to allocate MMIO resources\n"); 8627 goto attach_failed; 8628 } 8629 np->mmio_ba = rman_get_start(np->mmio_res); 8630 8631 /* 8632 * Allocate the IRQ. 8633 */ 8634 i = 0; 8635 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8636 RF_ACTIVE | RF_SHAREABLE); 8637 if (!np->irq_res) { 8638 device_printf(dev, "failed to allocate IRQ resource\n"); 8639 goto attach_failed; 8640 } 8641 8642 #ifdef SYM_CONF_IOMAPPED 8643 /* 8644 * User want us to use normal IO with PCI. 8645 * Alloc/get/map/retrieve everything that deals with IO. 8646 */ 8647 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 8648 int regs_id = SYM_PCI_IO; 8649 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 8650 ®s_id, RF_ACTIVE); 8651 } 8652 if (!np->io_res) { 8653 device_printf(dev, "failed to allocate IO resources\n"); 8654 goto attach_failed; 8655 } 8656 8657 #endif /* SYM_CONF_IOMAPPED */ 8658 8659 /* 8660 * If the chip has RAM. 8661 * Alloc/get/map/retrieve the corresponding resources. 8662 */ 8663 if ((np->features & (FE_RAM|FE_RAM8K)) && 8664 (command & PCIM_CMD_MEMEN) != 0) { 8665 int regs_id = SYM_PCI_RAM; 8666 if (np->features & FE_64BIT) 8667 regs_id = SYM_PCI_RAM64; 8668 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8669 ®s_id, RF_ACTIVE); 8670 if (!np->ram_res) { 8671 device_printf(dev,"failed to allocate RAM resources\n"); 8672 goto attach_failed; 8673 } 8674 np->ram_id = regs_id; 8675 np->ram_ba = rman_get_start(np->ram_res); 8676 } 8677 8678 /* 8679 * Save setting of some IO registers, so we will 8680 * be able to probe specific implementations. 8681 */ 8682 sym_save_initial_setting (np); 8683 8684 /* 8685 * Reset the chip now, since it has been reported 8686 * that SCSI clock calibration may not work properly 8687 * if the chip is currently active. 8688 */ 8689 sym_chip_reset (np); 8690 8691 /* 8692 * Try to read the user set-up. 8693 */ 8694 (void) sym_read_nvram(np, &nvram); 8695 8696 /* 8697 * Prepare controller and devices settings, according 8698 * to chip features, user set-up and driver set-up. 8699 */ 8700 (void) sym_prepare_setting(np, &nvram); 8701 8702 /* 8703 * Check the PCI clock frequency. 8704 * Must be performed after prepare_setting since it destroys 8705 * STEST1 that is used to probe for the clock doubler. 8706 */ 8707 i = sym_getpciclock(np); 8708 if (i > 37000) 8709 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8710 8711 /* 8712 * Allocate the start queue. 8713 */ 8714 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8715 if (!np->squeue) 8716 goto attach_failed; 8717 np->squeue_ba = vtobus(np->squeue); 8718 8719 /* 8720 * Allocate the done queue. 8721 */ 8722 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8723 if (!np->dqueue) 8724 goto attach_failed; 8725 np->dqueue_ba = vtobus(np->dqueue); 8726 8727 /* 8728 * Allocate the target bus address array. 8729 */ 8730 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8731 if (!np->targtbl) 8732 goto attach_failed; 8733 np->targtbl_ba = vtobus(np->targtbl); 8734 8735 /* 8736 * Allocate SCRIPTS areas. 8737 */ 8738 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8739 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8740 if (!np->scripta0 || !np->scriptb0) 8741 goto attach_failed; 8742 8743 /* 8744 * Allocate the CCBs. We need at least ONE. 8745 */ 8746 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8747 ; 8748 if (i < 1) 8749 goto attach_failed; 8750 8751 /* 8752 * Calculate BUS addresses where we are going 8753 * to load the SCRIPTS. 8754 */ 8755 np->scripta_ba = vtobus(np->scripta0); 8756 np->scriptb_ba = vtobus(np->scriptb0); 8757 np->scriptb0_ba = np->scriptb_ba; 8758 8759 if (np->ram_ba) { 8760 np->scripta_ba = np->ram_ba; 8761 if (np->features & FE_RAM8K) { 8762 np->ram_ws = 8192; 8763 np->scriptb_ba = np->scripta_ba + 4096; 8764 #ifdef __LP64__ 8765 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8766 #endif 8767 } 8768 else 8769 np->ram_ws = 4096; 8770 } 8771 8772 /* 8773 * Copy scripts to controller instance. 8774 */ 8775 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8776 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8777 8778 /* 8779 * Setup variable parts in scripts and compute 8780 * scripts bus addresses used from the C code. 8781 */ 8782 np->fw_setup(np, fw); 8783 8784 /* 8785 * Bind SCRIPTS with physical addresses usable by the 8786 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8787 */ 8788 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8789 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8790 8791 #ifdef SYM_CONF_IARB_SUPPORT 8792 /* 8793 * If user wants IARB to be set when we win arbitration 8794 * and have other jobs, compute the max number of consecutive 8795 * settings of IARB hints before we leave devices a chance to 8796 * arbitrate for reselection. 8797 */ 8798 #ifdef SYM_SETUP_IARB_MAX 8799 np->iarb_max = SYM_SETUP_IARB_MAX; 8800 #else 8801 np->iarb_max = 4; 8802 #endif 8803 #endif 8804 8805 /* 8806 * Prepare the idle and invalid task actions. 8807 */ 8808 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8809 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8810 np->idletask_ba = vtobus(&np->idletask); 8811 8812 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8813 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8814 np->notask_ba = vtobus(&np->notask); 8815 8816 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8817 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8818 np->bad_itl_ba = vtobus(&np->bad_itl); 8819 8820 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8821 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8822 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8823 8824 /* 8825 * Allocate and prepare the lun JUMP table that is used 8826 * for a target prior the probing of devices (bad lun table). 8827 * A private table will be allocated for the target on the 8828 * first INQUIRY response received. 8829 */ 8830 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8831 if (!np->badluntbl) 8832 goto attach_failed; 8833 8834 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8835 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8836 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8837 8838 /* 8839 * Prepare the bus address array that contains the bus 8840 * address of each target control block. 8841 * For now, assume all logical units are wrong. :) 8842 */ 8843 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8844 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8845 np->target[i].head.luntbl_sa = 8846 cpu_to_scr(vtobus(np->badluntbl)); 8847 np->target[i].head.lun0_sa = 8848 cpu_to_scr(vtobus(&np->badlun_sa)); 8849 } 8850 8851 /* 8852 * Now check the cache handling of the pci chipset. 8853 */ 8854 if (sym_snooptest (np)) { 8855 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8856 goto attach_failed; 8857 }; 8858 8859 /* 8860 * Now deal with CAM. 8861 * Hopefully, we will succeed with that one.:) 8862 */ 8863 if (!sym_cam_attach(np)) 8864 goto attach_failed; 8865 8866 /* 8867 * Sigh! we are done. 8868 */ 8869 return 0; 8870 8871 /* 8872 * We have failed. 8873 * We will try to free all the resources we have 8874 * allocated, but if we are a boot device, this 8875 * will not help that much.;) 8876 */ 8877 attach_failed: 8878 if (np) 8879 sym_pci_free(np); 8880 return ENXIO; 8881 } 8882 8883 /* 8884 * Free everything that have been allocated for this device. 8885 */ 8886 static void sym_pci_free(hcb_p np) 8887 { 8888 SYM_QUEHEAD *qp; 8889 ccb_p cp; 8890 tcb_p tp; 8891 lcb_p lp; 8892 int target, lun; 8893 8894 /* 8895 * First free CAM resources. 8896 */ 8897 sym_cam_free(np); 8898 8899 /* 8900 * Now every should be quiet for us to 8901 * free other resources. 8902 */ 8903 if (np->ram_res) 8904 bus_release_resource(np->device, SYS_RES_MEMORY, 8905 np->ram_id, np->ram_res); 8906 if (np->mmio_res) 8907 bus_release_resource(np->device, SYS_RES_MEMORY, 8908 SYM_PCI_MMIO, np->mmio_res); 8909 if (np->io_res) 8910 bus_release_resource(np->device, SYS_RES_IOPORT, 8911 SYM_PCI_IO, np->io_res); 8912 if (np->irq_res) 8913 bus_release_resource(np->device, SYS_RES_IRQ, 8914 0, np->irq_res); 8915 8916 if (np->scriptb0) 8917 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8918 if (np->scripta0) 8919 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8920 if (np->squeue) 8921 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8922 if (np->dqueue) 8923 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8924 8925 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { 8926 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8927 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8928 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8929 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8930 } 8931 8932 if (np->badluntbl) 8933 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8934 8935 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8936 tp = &np->target[target]; 8937 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8938 lp = sym_lp(np, tp, lun); 8939 if (!lp) 8940 continue; 8941 if (lp->itlq_tbl) 8942 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8943 "ITLQ_TBL"); 8944 if (lp->cb_tags) 8945 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8946 "CB_TAGS"); 8947 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8948 } 8949 #if SYM_CONF_MAX_LUN > 1 8950 if (tp->lunmp) 8951 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8952 "LUNMP"); 8953 #endif 8954 } 8955 #ifdef __amd64__ 8956 if (np->target) 8957 sym_mfree_dma(np->target, 8958 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8959 #endif 8960 if (np->targtbl) 8961 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8962 if (np->data_dmat) 8963 bus_dma_tag_destroy(np->data_dmat); 8964 if (SYM_LOCK_INITIALIZED() != 0) 8965 SYM_LOCK_DESTROY(); 8966 sym_mfree_dma(np, sizeof(*np), "HCB"); 8967 } 8968 8969 /* 8970 * Allocate CAM resources and register a bus to CAM. 8971 */ 8972 static int sym_cam_attach(hcb_p np) 8973 { 8974 struct cam_devq *devq = NULL; 8975 struct cam_sim *sim = NULL; 8976 struct cam_path *path = NULL; 8977 struct ccb_setasync csa; 8978 int err; 8979 8980 /* 8981 * Establish our interrupt handler. 8982 */ 8983 err = bus_setup_intr(np->device, np->irq_res, 8984 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8985 NULL, sym_intr, np, &np->intr); 8986 if (err) { 8987 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8988 err); 8989 goto fail; 8990 } 8991 8992 /* 8993 * Create the device queue for our sym SIM. 8994 */ 8995 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8996 if (!devq) 8997 goto fail; 8998 8999 /* 9000 * Construct our SIM entry. 9001 */ 9002 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, 9003 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 9004 if (!sim) 9005 goto fail; 9006 9007 SYM_LOCK(); 9008 9009 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 9010 goto fail; 9011 np->sim = sim; 9012 9013 if (xpt_create_path(&path, 0, 9014 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 9015 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 9016 goto fail; 9017 } 9018 np->path = path; 9019 9020 /* 9021 * Establish our async notification handler. 9022 */ 9023 xpt_setup_ccb(&csa.ccb_h, np->path, 5); 9024 csa.ccb_h.func_code = XPT_SASYNC_CB; 9025 csa.event_enable = AC_LOST_DEVICE; 9026 csa.callback = sym_async; 9027 csa.callback_arg = np->sim; 9028 xpt_action((union ccb *)&csa); 9029 9030 /* 9031 * Start the chip now, without resetting the BUS, since 9032 * it seems that this must stay under control of CAM. 9033 * With LVD/SE capable chips and BUS in SE mode, we may 9034 * get a spurious SMBC interrupt. 9035 */ 9036 sym_init (np, 0); 9037 9038 SYM_UNLOCK(); 9039 return 1; 9040 fail: 9041 if (sim) 9042 cam_sim_free(sim, FALSE); 9043 if (devq) 9044 cam_simq_free(devq); 9045 9046 SYM_UNLOCK(); 9047 9048 sym_cam_free(np); 9049 9050 return 0; 9051 } 9052 9053 /* 9054 * Free everything that deals with CAM. 9055 */ 9056 static void sym_cam_free(hcb_p np) 9057 { 9058 SYM_LOCK_ASSERT(MA_NOTOWNED); 9059 9060 if (np->intr) { 9061 bus_teardown_intr(np->device, np->irq_res, np->intr); 9062 np->intr = NULL; 9063 } 9064 9065 SYM_LOCK(); 9066 9067 if (np->sim) { 9068 xpt_bus_deregister(cam_sim_path(np->sim)); 9069 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9070 np->sim = NULL; 9071 } 9072 if (np->path) { 9073 xpt_free_path(np->path); 9074 np->path = NULL; 9075 } 9076 9077 SYM_UNLOCK(); 9078 } 9079 9080 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9081 9082 /* 9083 * Get host setup from NVRAM. 9084 */ 9085 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9086 { 9087 #ifdef SYM_CONF_NVRAM_SUPPORT 9088 /* 9089 * Get parity checking, host ID, verbose mode 9090 * and miscellaneous host flags from NVRAM. 9091 */ 9092 switch(nvram->type) { 9093 case SYM_SYMBIOS_NVRAM: 9094 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9095 np->rv_scntl0 &= ~0x0a; 9096 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9097 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9098 np->verbose += 1; 9099 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9100 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9101 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9102 np->usrflags |= SYM_AVOID_BUS_RESET; 9103 break; 9104 case SYM_TEKRAM_NVRAM: 9105 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9106 break; 9107 default: 9108 break; 9109 } 9110 #endif 9111 } 9112 9113 /* 9114 * Get target setup from NVRAM. 9115 */ 9116 #ifdef SYM_CONF_NVRAM_SUPPORT 9117 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9118 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9119 #endif 9120 9121 static void 9122 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9123 { 9124 #ifdef SYM_CONF_NVRAM_SUPPORT 9125 switch(nvp->type) { 9126 case SYM_SYMBIOS_NVRAM: 9127 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9128 break; 9129 case SYM_TEKRAM_NVRAM: 9130 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9131 break; 9132 default: 9133 break; 9134 } 9135 #endif 9136 } 9137 9138 #ifdef SYM_CONF_NVRAM_SUPPORT 9139 /* 9140 * Get target set-up from Symbios format NVRAM. 9141 */ 9142 static void 9143 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9144 { 9145 tcb_p tp = &np->target[target]; 9146 Symbios_target *tn = &nvram->target[target]; 9147 9148 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9149 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9150 tp->usrtags = 9151 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9152 9153 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9154 tp->usrflags &= ~SYM_DISC_ENABLED; 9155 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9156 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9157 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9158 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9159 } 9160 9161 /* 9162 * Get target set-up from Tekram format NVRAM. 9163 */ 9164 static void 9165 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9166 { 9167 tcb_p tp = &np->target[target]; 9168 struct Tekram_target *tn = &nvram->target[target]; 9169 int i; 9170 9171 if (tn->flags & TEKRAM_SYNC_NEGO) { 9172 i = tn->sync_index & 0xf; 9173 tp->tinfo.user.period = Tekram_sync[i]; 9174 } 9175 9176 tp->tinfo.user.width = 9177 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9178 9179 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9180 tp->usrtags = 2 << nvram->max_tags_index; 9181 } 9182 9183 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9184 tp->usrflags |= SYM_DISC_ENABLED; 9185 9186 /* If any device does not support parity, we will not use this option */ 9187 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9188 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9189 } 9190 9191 #ifdef SYM_CONF_DEBUG_NVRAM 9192 /* 9193 * Dump Symbios format NVRAM for debugging purpose. 9194 */ 9195 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9196 { 9197 int i; 9198 9199 /* display Symbios nvram host data */ 9200 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9201 sym_name(np), nvram->host_id & 0x0f, 9202 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9203 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9204 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9205 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9206 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9207 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9208 9209 /* display Symbios nvram drive data */ 9210 for (i = 0 ; i < 15 ; i++) { 9211 struct Symbios_target *tn = &nvram->target[i]; 9212 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9213 sym_name(np), i, 9214 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9215 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9216 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9217 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9218 tn->bus_width, 9219 tn->sync_period / 4, 9220 tn->timeout); 9221 } 9222 } 9223 9224 /* 9225 * Dump TEKRAM format NVRAM for debugging purpose. 9226 */ 9227 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9228 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9229 { 9230 int i, tags, boot_delay; 9231 char *rem; 9232 9233 /* display Tekram nvram host data */ 9234 tags = 2 << nvram->max_tags_index; 9235 boot_delay = 0; 9236 if (nvram->boot_delay_index < 6) 9237 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9238 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9239 default: 9240 case 0: rem = ""; break; 9241 case 1: rem = " REMOVABLE=boot device"; break; 9242 case 2: rem = " REMOVABLE=all"; break; 9243 } 9244 9245 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9246 sym_name(np), nvram->host_id & 0x0f, 9247 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9248 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9249 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9250 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9251 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9252 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9253 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9254 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9255 rem, boot_delay, tags); 9256 9257 /* display Tekram nvram drive data */ 9258 for (i = 0; i <= 15; i++) { 9259 int sync, j; 9260 struct Tekram_target *tn = &nvram->target[i]; 9261 j = tn->sync_index & 0xf; 9262 sync = Tekram_sync[j]; 9263 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9264 sym_name(np), i, 9265 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9266 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9267 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9268 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9269 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9270 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9271 sync); 9272 } 9273 } 9274 #endif /* SYM_CONF_DEBUG_NVRAM */ 9275 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9276 9277 9278 /* 9279 * Try reading Symbios or Tekram NVRAM 9280 */ 9281 #ifdef SYM_CONF_NVRAM_SUPPORT 9282 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9283 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9284 #endif 9285 9286 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9287 { 9288 #ifdef SYM_CONF_NVRAM_SUPPORT 9289 /* 9290 * Try to read SYMBIOS nvram. 9291 * Try to read TEKRAM nvram if Symbios nvram not found. 9292 */ 9293 if (SYM_SETUP_SYMBIOS_NVRAM && 9294 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9295 nvp->type = SYM_SYMBIOS_NVRAM; 9296 #ifdef SYM_CONF_DEBUG_NVRAM 9297 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9298 #endif 9299 } 9300 else if (SYM_SETUP_TEKRAM_NVRAM && 9301 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9302 nvp->type = SYM_TEKRAM_NVRAM; 9303 #ifdef SYM_CONF_DEBUG_NVRAM 9304 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9305 #endif 9306 } 9307 else 9308 nvp->type = 0; 9309 #else 9310 nvp->type = 0; 9311 #endif 9312 return nvp->type; 9313 } 9314 9315 9316 #ifdef SYM_CONF_NVRAM_SUPPORT 9317 /* 9318 * 24C16 EEPROM reading. 9319 * 9320 * GPOI0 - data in/data out 9321 * GPIO1 - clock 9322 * Symbios NVRAM wiring now also used by Tekram. 9323 */ 9324 9325 #define SET_BIT 0 9326 #define CLR_BIT 1 9327 #define SET_CLK 2 9328 #define CLR_CLK 3 9329 9330 /* 9331 * Set/clear data/clock bit in GPIO0 9332 */ 9333 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9334 int bit_mode) 9335 { 9336 UDELAY (5); 9337 switch (bit_mode){ 9338 case SET_BIT: 9339 *gpreg |= write_bit; 9340 break; 9341 case CLR_BIT: 9342 *gpreg &= 0xfe; 9343 break; 9344 case SET_CLK: 9345 *gpreg |= 0x02; 9346 break; 9347 case CLR_CLK: 9348 *gpreg &= 0xfd; 9349 break; 9350 9351 } 9352 OUTB (nc_gpreg, *gpreg); 9353 UDELAY (5); 9354 } 9355 9356 /* 9357 * Send START condition to NVRAM to wake it up. 9358 */ 9359 static void S24C16_start(hcb_p np, u_char *gpreg) 9360 { 9361 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9362 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9363 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9364 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9365 } 9366 9367 /* 9368 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9369 */ 9370 static void S24C16_stop(hcb_p np, u_char *gpreg) 9371 { 9372 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9373 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9374 } 9375 9376 /* 9377 * Read or write a bit to the NVRAM, 9378 * read if GPIO0 input else write if GPIO0 output 9379 */ 9380 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9381 u_char *gpreg) 9382 { 9383 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9384 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9385 if (read_bit) 9386 *read_bit = INB (nc_gpreg); 9387 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9388 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9389 } 9390 9391 /* 9392 * Output an ACK to the NVRAM after reading, 9393 * change GPIO0 to output and when done back to an input 9394 */ 9395 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9396 u_char *gpcntl) 9397 { 9398 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9399 S24C16_do_bit(np, 0, write_bit, gpreg); 9400 OUTB (nc_gpcntl, *gpcntl); 9401 } 9402 9403 /* 9404 * Input an ACK from NVRAM after writing, 9405 * change GPIO0 to input and when done back to an output 9406 */ 9407 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9408 u_char *gpcntl) 9409 { 9410 OUTB (nc_gpcntl, *gpcntl | 0x01); 9411 S24C16_do_bit(np, read_bit, 1, gpreg); 9412 OUTB (nc_gpcntl, *gpcntl); 9413 } 9414 9415 /* 9416 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9417 * GPIO0 must already be set as an output 9418 */ 9419 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9420 u_char *gpreg, u_char *gpcntl) 9421 { 9422 int x; 9423 9424 for (x = 0; x < 8; x++) 9425 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9426 9427 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9428 } 9429 9430 /* 9431 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9432 * GPIO0 must already be set as an input 9433 */ 9434 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9435 u_char *gpreg, u_char *gpcntl) 9436 { 9437 int x; 9438 u_char read_bit; 9439 9440 *read_data = 0; 9441 for (x = 0; x < 8; x++) { 9442 S24C16_do_bit(np, &read_bit, 1, gpreg); 9443 *read_data |= ((read_bit & 0x01) << (7 - x)); 9444 } 9445 9446 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9447 } 9448 9449 /* 9450 * Read 'len' bytes starting at 'offset'. 9451 */ 9452 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9453 { 9454 u_char gpcntl, gpreg; 9455 u_char old_gpcntl, old_gpreg; 9456 u_char ack_data; 9457 int retv = 1; 9458 int x; 9459 9460 /* save current state of GPCNTL and GPREG */ 9461 old_gpreg = INB (nc_gpreg); 9462 old_gpcntl = INB (nc_gpcntl); 9463 gpcntl = old_gpcntl & 0x1c; 9464 9465 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9466 OUTB (nc_gpreg, old_gpreg); 9467 OUTB (nc_gpcntl, gpcntl); 9468 9469 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9470 gpreg = old_gpreg; 9471 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9472 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9473 9474 /* now set NVRAM inactive with GPIO0/1 both high */ 9475 S24C16_stop(np, &gpreg); 9476 9477 /* activate NVRAM */ 9478 S24C16_start(np, &gpreg); 9479 9480 /* write device code and random address MSB */ 9481 S24C16_write_byte(np, &ack_data, 9482 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9483 if (ack_data & 0x01) 9484 goto out; 9485 9486 /* write random address LSB */ 9487 S24C16_write_byte(np, &ack_data, 9488 offset & 0xff, &gpreg, &gpcntl); 9489 if (ack_data & 0x01) 9490 goto out; 9491 9492 /* regenerate START state to set up for reading */ 9493 S24C16_start(np, &gpreg); 9494 9495 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9496 S24C16_write_byte(np, &ack_data, 9497 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9498 if (ack_data & 0x01) 9499 goto out; 9500 9501 /* now set up GPIO0 for inputting data */ 9502 gpcntl |= 0x01; 9503 OUTB (nc_gpcntl, gpcntl); 9504 9505 /* input all requested data - only part of total NVRAM */ 9506 for (x = 0; x < len; x++) 9507 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9508 9509 /* finally put NVRAM back in inactive mode */ 9510 gpcntl &= 0xfe; 9511 OUTB (nc_gpcntl, gpcntl); 9512 S24C16_stop(np, &gpreg); 9513 retv = 0; 9514 out: 9515 /* return GPIO0/1 to original states after having accessed NVRAM */ 9516 OUTB (nc_gpcntl, old_gpcntl); 9517 OUTB (nc_gpreg, old_gpreg); 9518 9519 return retv; 9520 } 9521 9522 #undef SET_BIT /* 0 */ 9523 #undef CLR_BIT /* 1 */ 9524 #undef SET_CLK /* 2 */ 9525 #undef CLR_CLK /* 3 */ 9526 9527 /* 9528 * Try reading Symbios NVRAM. 9529 * Return 0 if OK. 9530 */ 9531 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9532 { 9533 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9534 u_char *data = (u_char *) nvram; 9535 int len = sizeof(*nvram); 9536 u_short csum; 9537 int x; 9538 9539 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9540 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9541 return 1; 9542 9543 /* check valid NVRAM signature, verify byte count and checksum */ 9544 if (nvram->type != 0 || 9545 bcmp(nvram->trailer, Symbios_trailer, 6) || 9546 nvram->byte_count != len - 12) 9547 return 1; 9548 9549 /* verify checksum */ 9550 for (x = 6, csum = 0; x < len - 6; x++) 9551 csum += data[x]; 9552 if (csum != nvram->checksum) 9553 return 1; 9554 9555 return 0; 9556 } 9557 9558 /* 9559 * 93C46 EEPROM reading. 9560 * 9561 * GPOI0 - data in 9562 * GPIO1 - data out 9563 * GPIO2 - clock 9564 * GPIO4 - chip select 9565 * 9566 * Used by Tekram. 9567 */ 9568 9569 /* 9570 * Pulse clock bit in GPIO0 9571 */ 9572 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9573 { 9574 OUTB (nc_gpreg, *gpreg | 0x04); 9575 UDELAY (2); 9576 OUTB (nc_gpreg, *gpreg); 9577 } 9578 9579 /* 9580 * Read bit from NVRAM 9581 */ 9582 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9583 { 9584 UDELAY (2); 9585 T93C46_Clk(np, gpreg); 9586 *read_bit = INB (nc_gpreg); 9587 } 9588 9589 /* 9590 * Write bit to GPIO0 9591 */ 9592 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9593 { 9594 if (write_bit & 0x01) 9595 *gpreg |= 0x02; 9596 else 9597 *gpreg &= 0xfd; 9598 9599 *gpreg |= 0x10; 9600 9601 OUTB (nc_gpreg, *gpreg); 9602 UDELAY (2); 9603 9604 T93C46_Clk(np, gpreg); 9605 } 9606 9607 /* 9608 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9609 */ 9610 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9611 { 9612 *gpreg &= 0xef; 9613 OUTB (nc_gpreg, *gpreg); 9614 UDELAY (2); 9615 9616 T93C46_Clk(np, gpreg); 9617 } 9618 9619 /* 9620 * Send read command and address to NVRAM 9621 */ 9622 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9623 u_char *read_bit, u_char *gpreg) 9624 { 9625 int x; 9626 9627 /* send 9 bits, start bit (1), command (2), address (6) */ 9628 for (x = 0; x < 9; x++) 9629 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9630 9631 *read_bit = INB (nc_gpreg); 9632 } 9633 9634 /* 9635 * READ 2 bytes from the NVRAM 9636 */ 9637 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9638 { 9639 int x; 9640 u_char read_bit; 9641 9642 *nvram_data = 0; 9643 for (x = 0; x < 16; x++) { 9644 T93C46_Read_Bit(np, &read_bit, gpreg); 9645 9646 if (read_bit & 0x01) 9647 *nvram_data |= (0x01 << (15 - x)); 9648 else 9649 *nvram_data &= ~(0x01 << (15 - x)); 9650 } 9651 } 9652 9653 /* 9654 * Read Tekram NvRAM data. 9655 */ 9656 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9657 { 9658 u_char read_bit; 9659 int x; 9660 9661 for (x = 0; x < len; x++) { 9662 9663 /* output read command and address */ 9664 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9665 if (read_bit & 0x01) 9666 return 1; /* Bad */ 9667 T93C46_Read_Word(np, &data[x], gpreg); 9668 T93C46_Stop(np, gpreg); 9669 } 9670 9671 return 0; 9672 } 9673 9674 /* 9675 * Try reading 93C46 Tekram NVRAM. 9676 */ 9677 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9678 { 9679 u_char gpcntl, gpreg; 9680 u_char old_gpcntl, old_gpreg; 9681 int retv = 1; 9682 9683 /* save current state of GPCNTL and GPREG */ 9684 old_gpreg = INB (nc_gpreg); 9685 old_gpcntl = INB (nc_gpcntl); 9686 9687 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9688 1/2/4 out */ 9689 gpreg = old_gpreg & 0xe9; 9690 OUTB (nc_gpreg, gpreg); 9691 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9692 OUTB (nc_gpcntl, gpcntl); 9693 9694 /* input all of NVRAM, 64 words */ 9695 retv = T93C46_Read_Data(np, (u_short *) nvram, 9696 sizeof(*nvram) / sizeof(short), &gpreg); 9697 9698 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9699 OUTB (nc_gpcntl, old_gpcntl); 9700 OUTB (nc_gpreg, old_gpreg); 9701 9702 return retv; 9703 } 9704 9705 /* 9706 * Try reading Tekram NVRAM. 9707 * Return 0 if OK. 9708 */ 9709 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9710 { 9711 u_char *data = (u_char *) nvram; 9712 int len = sizeof(*nvram); 9713 u_short csum; 9714 int x; 9715 9716 switch (np->device_id) { 9717 case PCI_ID_SYM53C885: 9718 case PCI_ID_SYM53C895: 9719 case PCI_ID_SYM53C896: 9720 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9721 data, len); 9722 break; 9723 case PCI_ID_SYM53C875: 9724 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9725 data, len); 9726 if (!x) 9727 break; 9728 default: 9729 x = sym_read_T93C46_nvram(np, nvram); 9730 break; 9731 } 9732 if (x) 9733 return 1; 9734 9735 /* verify checksum */ 9736 for (x = 0, csum = 0; x < len - 1; x += 2) 9737 csum += data[x] + (data[x+1] << 8); 9738 if (csum != 0x1234) 9739 return 1; 9740 9741 return 0; 9742 } 9743 9744 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9745