xref: /freebsd/sys/dev/sym/sym_hipd.c (revision 3971d07be7da9ff83a3edbb61ecc33c37cde0f2c)
1 /*-
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 
65 #include <sys/param.h>
66 
67 /*
68  *  Driver configuration options.
69  */
70 #include "opt_sym.h"
71 #include <dev/sym/sym_conf.h>
72 
73 
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/endian.h>
77 #include <sys/kernel.h>
78 #include <sys/lock.h>
79 #include <sys/mutex.h>
80 #include <sys/module.h>
81 #include <sys/bus.h>
82 
83 #include <sys/proc.h>
84 
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 
88 #include <machine/bus.h>
89 #include <machine/resource.h>
90 #include <sys/rman.h>
91 
92 #include <cam/cam.h>
93 #include <cam/cam_ccb.h>
94 #include <cam/cam_sim.h>
95 #include <cam/cam_xpt_sim.h>
96 #include <cam/cam_debug.h>
97 
98 #include <cam/scsi/scsi_all.h>
99 #include <cam/scsi/scsi_message.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_param.h>
103 #include <vm/pmap.h>
104 
105 /* Short and quite clear integer types */
106 typedef int8_t    s8;
107 typedef int16_t   s16;
108 typedef	int32_t   s32;
109 typedef u_int8_t  u8;
110 typedef u_int16_t u16;
111 typedef	u_int32_t u32;
112 
113 /*
114  *  Driver definitions.
115  */
116 #include <dev/sym/sym_defs.h>
117 #include <dev/sym/sym_fw.h>
118 
119 /*
120  *  IA32 architecture does not reorder STORES and prevents
121  *  LOADS from passing STORES. It is called `program order'
122  *  by Intel and allows device drivers to deal with memory
123  *  ordering by only ensuring that the code is not reordered
124  *  by the compiler when ordering is required.
125  *  Other architectures implement a weaker ordering that
126  *  requires memory barriers (and also IO barriers when they
127  *  make sense) to be used.
128  */
129 
130 #if	defined	__i386__ || defined __amd64__
131 #define MEMORY_BARRIER()	do { ; } while(0)
132 #elif	defined	__powerpc__
133 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
134 #elif	defined	__ia64__
135 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
136 #elif	defined	__sparc64__
137 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
138 #else
139 #error	"Not supported platform"
140 #endif
141 
142 /*
143  *  A la VMS/CAM-3 queue management.
144  */
145 
146 typedef struct sym_quehead {
147 	struct sym_quehead *flink;	/* Forward  pointer */
148 	struct sym_quehead *blink;	/* Backward pointer */
149 } SYM_QUEHEAD;
150 
151 #define sym_que_init(ptr) do { \
152 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
153 } while (0)
154 
155 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
156 {
157 	return (head->flink == head) ? NULL : head->flink;
158 }
159 
160 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
161 {
162 	return (head->blink == head) ? NULL : head->blink;
163 }
164 
165 static __inline void __sym_que_add(struct sym_quehead * new,
166 	struct sym_quehead * blink,
167 	struct sym_quehead * flink)
168 {
169 	flink->blink	= new;
170 	new->flink	= flink;
171 	new->blink	= blink;
172 	blink->flink	= new;
173 }
174 
175 static __inline void __sym_que_del(struct sym_quehead * blink,
176 	struct sym_quehead * flink)
177 {
178 	flink->blink = blink;
179 	blink->flink = flink;
180 }
181 
182 static __inline int sym_que_empty(struct sym_quehead *head)
183 {
184 	return head->flink == head;
185 }
186 
187 static __inline void sym_que_splice(struct sym_quehead *list,
188 	struct sym_quehead *head)
189 {
190 	struct sym_quehead *first = list->flink;
191 
192 	if (first != list) {
193 		struct sym_quehead *last = list->blink;
194 		struct sym_quehead *at   = head->flink;
195 
196 		first->blink = head;
197 		head->flink  = first;
198 
199 		last->flink = at;
200 		at->blink   = last;
201 	}
202 }
203 
204 #define sym_que_entry(ptr, type, member) \
205 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
206 
207 
208 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
209 
210 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
211 
212 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
213 
214 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
215 {
216 	struct sym_quehead *elem = head->flink;
217 
218 	if (elem != head)
219 		__sym_que_del(head, elem->flink);
220 	else
221 		elem = NULL;
222 	return elem;
223 }
224 
225 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
226 
227 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
228 {
229 	struct sym_quehead *elem = head->blink;
230 
231 	if (elem != head)
232 		__sym_que_del(elem->blink, head);
233 	else
234 		elem = NULL;
235 	return elem;
236 }
237 
238 /*
239  *  This one may be useful.
240  */
241 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
242 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
243 /*
244  *  FreeBSD does not offer our kind of queue in the CAM CCB.
245  *  So, we have to cast.
246  */
247 #define sym_qptr(p)	((struct sym_quehead *) (p))
248 
249 /*
250  *  Simple bitmap operations.
251  */
252 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
253 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
254 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
255 
256 /*
257  *  Number of tasks per device we want to handle.
258  */
259 #if	SYM_CONF_MAX_TAG_ORDER > 8
260 #error	"more than 256 tags per logical unit not allowed."
261 #endif
262 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
263 
264 /*
265  *  Donnot use more tasks that we can handle.
266  */
267 #ifndef	SYM_CONF_MAX_TAG
268 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
269 #endif
270 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
271 #undef	SYM_CONF_MAX_TAG
272 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
273 #endif
274 
275 /*
276  *    This one means 'NO TAG for this job'
277  */
278 #define NO_TAG	(256)
279 
280 /*
281  *  Number of SCSI targets.
282  */
283 #if	SYM_CONF_MAX_TARGET > 16
284 #error	"more than 16 targets not allowed."
285 #endif
286 
287 /*
288  *  Number of logical units per target.
289  */
290 #if	SYM_CONF_MAX_LUN > 64
291 #error	"more than 64 logical units per target not allowed."
292 #endif
293 
294 /*
295  *    Asynchronous pre-scaler (ns). Shall be 40 for
296  *    the SCSI timings to be compliant.
297  */
298 #define	SYM_CONF_MIN_ASYNC (40)
299 
300 /*
301  *  Number of entries in the START and DONE queues.
302  *
303  *  We limit to 1 PAGE in order to succeed allocation of
304  *  these queues. Each entry is 8 bytes long (2 DWORDS).
305  */
306 #ifdef	SYM_CONF_MAX_START
307 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
308 #else
309 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
310 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
311 #endif
312 
313 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
314 #undef	SYM_CONF_MAX_QUEUE
315 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
316 #undef	SYM_CONF_MAX_START
317 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
318 #endif
319 
320 /*
321  *  For this one, we want a short name :-)
322  */
323 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
324 
325 /*
326  *  Active debugging tags and verbosity.
327  */
328 #define DEBUG_ALLOC	(0x0001)
329 #define DEBUG_PHASE	(0x0002)
330 #define DEBUG_POLL	(0x0004)
331 #define DEBUG_QUEUE	(0x0008)
332 #define DEBUG_RESULT	(0x0010)
333 #define DEBUG_SCATTER	(0x0020)
334 #define DEBUG_SCRIPT	(0x0040)
335 #define DEBUG_TINY	(0x0080)
336 #define DEBUG_TIMING	(0x0100)
337 #define DEBUG_NEGO	(0x0200)
338 #define DEBUG_TAGS	(0x0400)
339 #define DEBUG_POINTER	(0x0800)
340 
341 #if 0
342 static int sym_debug = 0;
343 	#define DEBUG_FLAGS sym_debug
344 #else
345 /*	#define DEBUG_FLAGS (0x0631) */
346 	#define DEBUG_FLAGS (0x0000)
347 
348 #endif
349 #define sym_verbose	(np->verbose)
350 
351 /*
352  *  Insert a delay in micro-seconds and milli-seconds.
353  */
354 static void UDELAY(int us) { DELAY(us); }
355 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
356 
357 /*
358  *  Simple power of two buddy-like allocator.
359  *
360  *  This simple code is not intended to be fast, but to
361  *  provide power of 2 aligned memory allocations.
362  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
363  *  this allocator allows simple and fast address calculations
364  *  from the SCRIPTS code. In addition, cache line alignment
365  *  is guaranteed for power of 2 cache line size.
366  *
367  *  This allocator has been developped for the Linux sym53c8xx
368  *  driver, since this O/S does not provide naturally aligned
369  *  allocations.
370  *  It has the advantage of allowing the driver to use private
371  *  pages of memory that will be useful if we ever need to deal
372  *  with IO MMUs for PCI.
373  */
374 
375 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
376 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
377 #if 0
378 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
379 #endif
380 #define MEMO_WARN	1
381 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
382 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
383 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
384 
385 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
386 #define free_pages(p)		free((p), M_DEVBUF)
387 
388 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
389 
390 typedef struct m_link {		/* Link between free memory chunks */
391 	struct m_link *next;
392 } m_link_s;
393 
394 typedef struct m_vtob {		/* Virtual to Bus address translation */
395 	struct m_vtob	*next;
396 	bus_dmamap_t	dmamap;	/* Map for this chunk */
397 	m_addr_t	vaddr;	/* Virtual address */
398 	m_addr_t	baddr;	/* Bus physical address */
399 } m_vtob_s;
400 /* Hash this stuff a bit to speed up translations */
401 #define VTOB_HASH_SHIFT		5
402 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
403 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
404 #define VTOB_HASH_CODE(m)	\
405 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
406 
407 typedef struct m_pool {		/* Memory pool of a given kind */
408 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
409 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
410 	m_addr_t (*getp)(struct m_pool *);
411 #ifdef	MEMO_FREE_UNUSED
412 	void (*freep)(struct m_pool *, m_addr_t);
413 #endif
414 #define M_GETP()		mp->getp(mp)
415 #define M_FREEP(p)		mp->freep(mp, p)
416 	int nump;
417 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
418 	struct m_pool *next;
419 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
420 } m_pool_s;
421 
422 static void *___sym_malloc(m_pool_s *mp, int size)
423 {
424 	int i = 0;
425 	int s = (1 << MEMO_SHIFT);
426 	int j;
427 	m_addr_t a;
428 	m_link_s *h = mp->h;
429 
430 	if (size > MEMO_CLUSTER_SIZE)
431 		return NULL;
432 
433 	while (size > s) {
434 		s <<= 1;
435 		++i;
436 	}
437 
438 	j = i;
439 	while (!h[j].next) {
440 		if (s == MEMO_CLUSTER_SIZE) {
441 			h[j].next = (m_link_s *) M_GETP();
442 			if (h[j].next)
443 				h[j].next->next = NULL;
444 			break;
445 		}
446 		++j;
447 		s <<= 1;
448 	}
449 	a = (m_addr_t) h[j].next;
450 	if (a) {
451 		h[j].next = h[j].next->next;
452 		while (j > i) {
453 			j -= 1;
454 			s >>= 1;
455 			h[j].next = (m_link_s *) (a+s);
456 			h[j].next->next = NULL;
457 		}
458 	}
459 #ifdef DEBUG
460 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
461 #endif
462 	return (void *) a;
463 }
464 
465 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
466 {
467 	int i = 0;
468 	int s = (1 << MEMO_SHIFT);
469 	m_link_s *q;
470 	m_addr_t a, b;
471 	m_link_s *h = mp->h;
472 
473 #ifdef DEBUG
474 	printf("___sym_mfree(%p, %d)\n", ptr, size);
475 #endif
476 
477 	if (size > MEMO_CLUSTER_SIZE)
478 		return;
479 
480 	while (size > s) {
481 		s <<= 1;
482 		++i;
483 	}
484 
485 	a = (m_addr_t) ptr;
486 
487 	while (1) {
488 #ifdef MEMO_FREE_UNUSED
489 		if (s == MEMO_CLUSTER_SIZE) {
490 			M_FREEP(a);
491 			break;
492 		}
493 #endif
494 		b = a ^ s;
495 		q = &h[i];
496 		while (q->next && q->next != (m_link_s *) b) {
497 			q = q->next;
498 		}
499 		if (!q->next) {
500 			((m_link_s *) a)->next = h[i].next;
501 			h[i].next = (m_link_s *) a;
502 			break;
503 		}
504 		q->next = q->next->next;
505 		a = a & b;
506 		s <<= 1;
507 		++i;
508 	}
509 }
510 
511 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
512 {
513 	void *p;
514 
515 	p = ___sym_malloc(mp, size);
516 
517 	if (DEBUG_FLAGS & DEBUG_ALLOC)
518 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
519 
520 	if (p)
521 		bzero(p, size);
522 	else if (uflags & MEMO_WARN)
523 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
524 
525 	return p;
526 }
527 
528 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
529 
530 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
531 {
532 	if (DEBUG_FLAGS & DEBUG_ALLOC)
533 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
534 
535 	___sym_mfree(mp, ptr, size);
536 
537 }
538 
539 /*
540  * Default memory pool we donnot need to involve in DMA.
541  */
542 /*
543  * With the `bus dma abstraction', we use a separate pool for
544  * memory we donnot need to involve in DMA.
545  */
546 static m_addr_t ___mp0_getp(m_pool_s *mp)
547 {
548 	m_addr_t m = (m_addr_t) get_pages();
549 	if (m)
550 		++mp->nump;
551 	return m;
552 }
553 
554 #ifdef	MEMO_FREE_UNUSED
555 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
556 {
557 	free_pages(m);
558 	--mp->nump;
559 }
560 #endif
561 
562 #ifdef	MEMO_FREE_UNUSED
563 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
564 #else
565 static m_pool_s mp0 = {0, 0, ___mp0_getp};
566 #endif
567 
568 
569 /*
570  * Actual memory allocation routine for non-DMAed memory.
571  */
572 static void *sym_calloc(int size, char *name)
573 {
574 	void *m;
575 	/* Lock */
576 	m = __sym_calloc(&mp0, size, name);
577 	/* Unlock */
578 	return m;
579 }
580 
581 /*
582  * Actual memory allocation routine for non-DMAed memory.
583  */
584 static void sym_mfree(void *ptr, int size, char *name)
585 {
586 	/* Lock */
587 	__sym_mfree(&mp0, ptr, size, name);
588 	/* Unlock */
589 }
590 
591 /*
592  * DMAable pools.
593  */
594 /*
595  * With `bus dma abstraction', we use a separate pool per parent
596  * BUS handle. A reverse table (hashed) is maintained for virtual
597  * to BUS address translation.
598  */
599 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
600 {
601 	bus_addr_t *baddr;
602 	baddr = (bus_addr_t *)arg;
603 	*baddr = segs->ds_addr;
604 }
605 
606 static m_addr_t ___dma_getp(m_pool_s *mp)
607 {
608 	m_vtob_s *vbp;
609 	void *vaddr = NULL;
610 	bus_addr_t baddr = 0;
611 
612 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
613 	if (!vbp)
614 		goto out_err;
615 
616 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
617 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
618 		goto out_err;
619 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
620 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
621 	if (baddr) {
622 		int hc = VTOB_HASH_CODE(vaddr);
623 		vbp->vaddr = (m_addr_t) vaddr;
624 		vbp->baddr = (m_addr_t) baddr;
625 		vbp->next = mp->vtob[hc];
626 		mp->vtob[hc] = vbp;
627 		++mp->nump;
628 		return (m_addr_t) vaddr;
629 	}
630 out_err:
631 	if (baddr)
632 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
633 	if (vaddr)
634 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
635 	if (vbp) {
636 		if (vbp->dmamap)
637 			bus_dmamap_destroy(mp->dmat, vbp->dmamap);
638 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
639 	}
640 	return 0;
641 }
642 
643 #ifdef	MEMO_FREE_UNUSED
644 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
645 {
646 	m_vtob_s **vbpp, *vbp;
647 	int hc = VTOB_HASH_CODE(m);
648 
649 	vbpp = &mp->vtob[hc];
650 	while (*vbpp && (*vbpp)->vaddr != m)
651 		vbpp = &(*vbpp)->next;
652 	if (*vbpp) {
653 		vbp = *vbpp;
654 		*vbpp = (*vbpp)->next;
655 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
656 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
657 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
658 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
659 		--mp->nump;
660 	}
661 }
662 #endif
663 
664 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
665 {
666 	m_pool_s *mp;
667 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
668 	return mp;
669 }
670 
671 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
672 {
673 	m_pool_s *mp = NULL;
674 
675 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
676 	if (mp) {
677 		mp->dev_dmat = dev_dmat;
678 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
679 			       BUS_SPACE_MAXADDR_32BIT,
680 			       BUS_SPACE_MAXADDR,
681 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
682 			       MEMO_CLUSTER_SIZE, 0,
683 			       NULL, NULL, &mp->dmat)) {
684 			mp->getp = ___dma_getp;
685 #ifdef	MEMO_FREE_UNUSED
686 			mp->freep = ___dma_freep;
687 #endif
688 			mp->next = mp0.next;
689 			mp0.next = mp;
690 			return mp;
691 		}
692 	}
693 	if (mp)
694 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
695 	return NULL;
696 }
697 
698 #ifdef	MEMO_FREE_UNUSED
699 static void ___del_dma_pool(m_pool_s *p)
700 {
701 	struct m_pool **pp = &mp0.next;
702 
703 	while (*pp && *pp != p)
704 		pp = &(*pp)->next;
705 	if (*pp) {
706 		*pp = (*pp)->next;
707 		bus_dma_tag_destroy(p->dmat);
708 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
709 	}
710 }
711 #endif
712 
713 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
714 {
715 	struct m_pool *mp;
716 	void *m = NULL;
717 
718 	/* Lock */
719 	mp = ___get_dma_pool(dev_dmat);
720 	if (!mp)
721 		mp = ___cre_dma_pool(dev_dmat);
722 	if (mp)
723 		m = __sym_calloc(mp, size, name);
724 #ifdef	MEMO_FREE_UNUSED
725 	if (mp && !mp->nump)
726 		___del_dma_pool(mp);
727 #endif
728 	/* Unlock */
729 
730 	return m;
731 }
732 
733 static void
734 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
735 {
736 	struct m_pool *mp;
737 
738 	/* Lock */
739 	mp = ___get_dma_pool(dev_dmat);
740 	if (mp)
741 		__sym_mfree(mp, m, size, name);
742 #ifdef	MEMO_FREE_UNUSED
743 	if (mp && !mp->nump)
744 		___del_dma_pool(mp);
745 #endif
746 	/* Unlock */
747 }
748 
749 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
750 {
751 	m_pool_s *mp;
752 	int hc = VTOB_HASH_CODE(m);
753 	m_vtob_s *vp = NULL;
754 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
755 
756 	/* Lock */
757 	mp = ___get_dma_pool(dev_dmat);
758 	if (mp) {
759 		vp = mp->vtob[hc];
760 		while (vp && (m_addr_t) vp->vaddr != a)
761 			vp = vp->next;
762 	}
763 	/* Unlock */
764 	if (!vp)
765 		panic("sym: VTOBUS FAILED!\n");
766 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
767 }
768 
769 
770 /*
771  * Verbs for DMAable memory handling.
772  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
773  * being discarded.
774  */
775 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
776 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
777 #define _sym_mfree_dma(np, p, s, n)	\
778 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
779 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
780 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
781 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
782 #define vtobus(p)			_vtobus(np, p)
783 
784 
785 /*
786  *  Print a buffer in hexadecimal format.
787  */
788 static void sym_printb_hex (u_char *p, int n)
789 {
790 	while (n-- > 0)
791 		printf (" %x", *p++);
792 }
793 
794 /*
795  *  Same with a label at beginning and .\n at end.
796  */
797 static void sym_printl_hex (char *label, u_char *p, int n)
798 {
799 	printf ("%s", label);
800 	sym_printb_hex (p, n);
801 	printf (".\n");
802 }
803 
804 /*
805  *  Return a string for SCSI BUS mode.
806  */
807 static char *sym_scsi_bus_mode(int mode)
808 {
809 	switch(mode) {
810 	case SMODE_HVD:	return "HVD";
811 	case SMODE_SE:	return "SE";
812 	case SMODE_LVD: return "LVD";
813 	}
814 	return "??";
815 }
816 
817 /*
818  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
819  */
820 #ifdef SYM_CONF_NVRAM_SUPPORT
821 static u_char Tekram_sync[16] =
822 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
823 #endif
824 
825 /*
826  *  Union of supported NVRAM formats.
827  */
828 struct sym_nvram {
829 	int type;
830 #define	SYM_SYMBIOS_NVRAM	(1)
831 #define	SYM_TEKRAM_NVRAM	(2)
832 #ifdef	SYM_CONF_NVRAM_SUPPORT
833 	union {
834 		Symbios_nvram Symbios;
835 		Tekram_nvram Tekram;
836 	} data;
837 #endif
838 };
839 
840 /*
841  *  This one is hopefully useless, but actually useful. :-)
842  */
843 #ifndef assert
844 #define	assert(expression) { \
845 	if (!(expression)) { \
846 		(void)panic( \
847 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
848 			#expression, \
849 			__FILE__, __LINE__); \
850 	} \
851 }
852 #endif
853 
854 /*
855  *  Some provision for a possible big endian mode supported by
856  *  Symbios chips (never seen, by the way).
857  *  For now, this stuff does not deserve any comments. :)
858  */
859 
860 #define sym_offb(o)	(o)
861 #define sym_offw(o)	(o)
862 
863 /*
864  *  Some provision for support for BIG ENDIAN CPU.
865  */
866 
867 #define cpu_to_scr(dw)	htole32(dw)
868 #define scr_to_cpu(dw)	le32toh(dw)
869 
870 /*
871  *  Access to the chip IO registers and on-chip RAM.
872  *  We use the `bus space' interface under FreeBSD-4 and
873  *  later kernel versions.
874  */
875 
876 
877 #if defined(SYM_CONF_IOMAPPED)
878 
879 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
880 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
881 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
882 
883 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
884 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
885 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
886 
887 #else	/* Memory mapped IO */
888 
889 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
890 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
891 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
892 
893 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
894 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
895 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
896 
897 #endif	/* SYM_CONF_IOMAPPED */
898 
899 #define OUTRAM_OFF(o, a, l)	\
900 	bus_write_region_1(np->ram_res, (o), (a), (l))
901 
902 
903 /*
904  *  Common definitions for both bus space and legacy IO methods.
905  */
906 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
907 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
908 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
909 
910 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
911 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
912 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
913 
914 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
915 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
916 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
917 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
918 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
919 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
920 
921 /*
922  *  We normally want the chip to have a consistent view
923  *  of driver internal data structures when we restart it.
924  *  Thus these macros.
925  */
926 #define OUTL_DSP(v)				\
927 	do {					\
928 		MEMORY_BARRIER();		\
929 		OUTL (nc_dsp, (v));		\
930 	} while (0)
931 
932 #define OUTONB_STD()				\
933 	do {					\
934 		MEMORY_BARRIER();		\
935 		OUTONB (nc_dcntl, (STD|NOCOM));	\
936 	} while (0)
937 
938 /*
939  *  Command control block states.
940  */
941 #define HS_IDLE		(0)
942 #define HS_BUSY		(1)
943 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
944 #define HS_DISCONNECT	(3)	/* Disconnected by target */
945 #define HS_WAIT		(4)	/* waiting for resource	  */
946 
947 #define HS_DONEMASK	(0x80)
948 #define HS_COMPLETE	(4|HS_DONEMASK)
949 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
950 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
951 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
952 
953 /*
954  *  Software Interrupt Codes
955  */
956 #define	SIR_BAD_SCSI_STATUS	(1)
957 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
958 #define	SIR_MSG_RECEIVED	(3)
959 #define	SIR_MSG_WEIRD		(4)
960 #define	SIR_NEGO_FAILED		(5)
961 #define	SIR_NEGO_PROTO		(6)
962 #define	SIR_SCRIPT_STOPPED	(7)
963 #define	SIR_REJECT_TO_SEND	(8)
964 #define	SIR_SWIDE_OVERRUN	(9)
965 #define	SIR_SODL_UNDERRUN	(10)
966 #define	SIR_RESEL_NO_MSG_IN	(11)
967 #define	SIR_RESEL_NO_IDENTIFY	(12)
968 #define	SIR_RESEL_BAD_LUN	(13)
969 #define	SIR_TARGET_SELECTED	(14)
970 #define	SIR_RESEL_BAD_I_T_L	(15)
971 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
972 #define	SIR_ABORT_SENT		(17)
973 #define	SIR_RESEL_ABORTED	(18)
974 #define	SIR_MSG_OUT_DONE	(19)
975 #define	SIR_COMPLETE_ERROR	(20)
976 #define	SIR_DATA_OVERRUN	(21)
977 #define	SIR_BAD_PHASE		(22)
978 #define	SIR_MAX			(22)
979 
980 /*
981  *  Extended error bit codes.
982  *  xerr_status field of struct sym_ccb.
983  */
984 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
985 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
986 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
987 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
988 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
989 
990 /*
991  *  Negotiation status.
992  *  nego_status field of struct sym_ccb.
993  */
994 #define NS_SYNC		(1)
995 #define NS_WIDE		(2)
996 #define NS_PPR		(3)
997 
998 /*
999  *  A CCB hashed table is used to retrieve CCB address
1000  *  from DSA value.
1001  */
1002 #define CCB_HASH_SHIFT		8
1003 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1004 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1005 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1006 
1007 /*
1008  *  Device flags.
1009  */
1010 #define SYM_DISC_ENABLED	(1)
1011 #define SYM_TAGS_ENABLED	(1<<1)
1012 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1013 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1014 
1015 /*
1016  *  Host adapter miscellaneous flags.
1017  */
1018 #define SYM_AVOID_BUS_RESET	(1)
1019 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1020 
1021 /*
1022  *  Device quirks.
1023  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1024  *  saving the DATA POINTER then reselects and terminates the IO.
1025  *  On reselection, the automatic RESTORE DATA POINTER makes the
1026  *  CURRENT DATA POINTER not point at the end of the IO.
1027  *  This behaviour just breaks our calculation of the residual.
1028  *  For now, we just force an AUTO SAVE on disconnection and will
1029  *  fix that in a further driver version.
1030  */
1031 #define SYM_QUIRK_AUTOSAVE 1
1032 
1033 /*
1034  *  Misc.
1035  */
1036 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1037 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1038 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1039 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1040 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1041 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1042 
1043 #define SYM_SNOOP_TIMEOUT (10000000)
1044 #define SYM_PCI_IO	PCIR_BAR(0)
1045 #define SYM_PCI_MMIO	PCIR_BAR(1)
1046 #define SYM_PCI_RAM	PCIR_BAR(2)
1047 #define SYM_PCI_RAM64	PCIR_BAR(3)
1048 
1049 /*
1050  *  Back-pointer from the CAM CCB to our data structures.
1051  */
1052 #define sym_hcb_ptr	spriv_ptr0
1053 /* #define sym_ccb_ptr	spriv_ptr1 */
1054 
1055 /*
1056  *  We mostly have to deal with pointers.
1057  *  Thus these typedef's.
1058  */
1059 typedef struct sym_tcb *tcb_p;
1060 typedef struct sym_lcb *lcb_p;
1061 typedef struct sym_ccb *ccb_p;
1062 typedef struct sym_hcb *hcb_p;
1063 
1064 /*
1065  *  Gather negotiable parameters value
1066  */
1067 struct sym_trans {
1068 	u8 scsi_version;
1069 	u8 spi_version;
1070 	u8 period;
1071 	u8 offset;
1072 	u8 width;
1073 	u8 options;	/* PPR options */
1074 };
1075 
1076 struct sym_tinfo {
1077 	struct sym_trans current;
1078 	struct sym_trans goal;
1079 	struct sym_trans user;
1080 };
1081 
1082 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1083 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1084 
1085 /*
1086  *  Global TCB HEADER.
1087  *
1088  *  Due to lack of indirect addressing on earlier NCR chips,
1089  *  this substructure is copied from the TCB to a global
1090  *  address after selection.
1091  *  For SYMBIOS chips that support LOAD/STORE this copy is
1092  *  not needed and thus not performed.
1093  */
1094 struct sym_tcbh {
1095 	/*
1096 	 *  Scripts bus addresses of LUN table accessed from scripts.
1097 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1098 	 *  and we we want to speed-up the general case and not waste
1099 	 *  resources.
1100 	 */
1101 	u32	luntbl_sa;	/* bus address of this table	*/
1102 	u32	lun0_sa;	/* bus address of LCB #0	*/
1103 	/*
1104 	 *  Actual SYNC/WIDE IO registers value for this target.
1105 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1106 	 *  so have alignment constraints.
1107 	 */
1108 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1109 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1110 /*2*/	u_char	filler1;
1111 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1112 };
1113 
1114 /*
1115  *  Target Control Block
1116  */
1117 struct sym_tcb {
1118 	/*
1119 	 *  TCB header.
1120 	 *  Assumed at offset 0.
1121 	 */
1122 /*0*/	struct sym_tcbh head;
1123 
1124 	/*
1125 	 *  LUN table used by the SCRIPTS processor.
1126 	 *  An array of bus addresses is used on reselection.
1127 	 */
1128 	u32	*luntbl;	/* LCBs bus address table	*/
1129 
1130 	/*
1131 	 *  LUN table used by the C code.
1132 	 */
1133 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1134 #if SYM_CONF_MAX_LUN > 1
1135 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1136 #endif
1137 
1138 	/*
1139 	 *  Bitmap that tells about LUNs that succeeded at least
1140 	 *  1 IO and therefore assumed to be a real device.
1141 	 *  Avoid useless allocation of the LCB structure.
1142 	 */
1143 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1144 
1145 	/*
1146 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1147 	 *  allocated (not discovered or LCB allocation failed).
1148 	 */
1149 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1150 
1151 	/*
1152 	 *  Transfer capabilities (SIP)
1153 	 */
1154 	struct sym_tinfo tinfo;
1155 
1156 	/*
1157 	 * Keep track of the CCB used for the negotiation in order
1158 	 * to ensure that only 1 negotiation is queued at a time.
1159 	 */
1160 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1161 
1162 	/*
1163 	 *  Set when we want to reset the device.
1164 	 */
1165 	u_char	to_reset;
1166 
1167 	/*
1168 	 *  Other user settable limits and options.
1169 	 *  These limits are read from the NVRAM if present.
1170 	 */
1171 	u_char	usrflags;
1172 	u_short	usrtags;
1173 };
1174 
1175 /*
1176  *  Global LCB HEADER.
1177  *
1178  *  Due to lack of indirect addressing on earlier NCR chips,
1179  *  this substructure is copied from the LCB to a global
1180  *  address after selection.
1181  *  For SYMBIOS chips that support LOAD/STORE this copy is
1182  *  not needed and thus not performed.
1183  */
1184 struct sym_lcbh {
1185 	/*
1186 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1187 	 *  For not probed logical units, this address points to
1188 	 *  SCRIPTS that deal with bad LU handling (must be at
1189 	 *  offset zero of the LCB for that reason).
1190 	 */
1191 /*0*/	u32	resel_sa;
1192 
1193 	/*
1194 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1195 	 *  to the unique ITL nexus allowed to be disconnected.
1196 	 */
1197 	u32	itl_task_sa;
1198 
1199 	/*
1200 	 *  Task table bus address (read from SCRIPTS).
1201 	 */
1202 	u32	itlq_tbl_sa;
1203 };
1204 
1205 /*
1206  *  Logical Unit Control Block
1207  */
1208 struct sym_lcb {
1209 	/*
1210 	 *  TCB header.
1211 	 *  Assumed at offset 0.
1212 	 */
1213 /*0*/	struct sym_lcbh head;
1214 
1215 	/*
1216 	 *  Task table read from SCRIPTS that contains pointers to
1217 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1218 	 *  inside the header.
1219 	 */
1220 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1221 
1222 	/*
1223 	 *  Busy CCBs management.
1224 	 */
1225 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1226 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1227 
1228 	/*
1229 	 *  Circular tag allocation buffer.
1230 	 */
1231 	u_short	ia_tag;		/* Tag allocation index		*/
1232 	u_short	if_tag;		/* Tag release index		*/
1233 	u_char	*cb_tags;	/* Circular tags buffer		*/
1234 
1235 	/*
1236 	 *  Set when we want to clear all tasks.
1237 	 */
1238 	u_char to_clear;
1239 
1240 	/*
1241 	 *  Capabilities.
1242 	 */
1243 	u_char	user_flags;
1244 	u_char	current_flags;
1245 };
1246 
1247 /*
1248  *  Action from SCRIPTS on a task.
1249  *  Is part of the CCB, but is also used separately to plug
1250  *  error handling action to perform from SCRIPTS.
1251  */
1252 struct sym_actscr {
1253 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1254 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1255 };
1256 
1257 /*
1258  *  Phase mismatch context.
1259  *
1260  *  It is part of the CCB and is used as parameters for the
1261  *  DATA pointer. We need two contexts to handle correctly the
1262  *  SAVED DATA POINTER.
1263  */
1264 struct sym_pmc {
1265 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1266 	u32	ret;		/* SCRIPT return address	*/
1267 };
1268 
1269 /*
1270  *  LUN control block lookup.
1271  *  We use a direct pointer for LUN #0, and a table of
1272  *  pointers which is only allocated for devices that support
1273  *  LUN(s) > 0.
1274  */
1275 #if SYM_CONF_MAX_LUN <= 1
1276 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1277 #else
1278 #define sym_lp(np, tp, lun) \
1279 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1280 #endif
1281 
1282 /*
1283  *  Status are used by the host and the script processor.
1284  *
1285  *  The last four bytes (status[4]) are copied to the
1286  *  scratchb register (declared as scr0..scr3) just after the
1287  *  select/reselect, and copied back just after disconnecting.
1288  *  Inside the script the XX_REG are used.
1289  */
1290 
1291 /*
1292  *  Last four bytes (script)
1293  */
1294 #define  QU_REG	scr0
1295 #define  HS_REG	scr1
1296 #define  HS_PRT	nc_scr1
1297 #define  SS_REG	scr2
1298 #define  SS_PRT	nc_scr2
1299 #define  HF_REG	scr3
1300 #define  HF_PRT	nc_scr3
1301 
1302 /*
1303  *  Last four bytes (host)
1304  */
1305 #define  actualquirks  phys.head.status[0]
1306 #define  host_status   phys.head.status[1]
1307 #define  ssss_status   phys.head.status[2]
1308 #define  host_flags    phys.head.status[3]
1309 
1310 /*
1311  *  Host flags
1312  */
1313 #define HF_IN_PM0	1u
1314 #define HF_IN_PM1	(1u<<1)
1315 #define HF_ACT_PM	(1u<<2)
1316 #define HF_DP_SAVED	(1u<<3)
1317 #define HF_SENSE	(1u<<4)
1318 #define HF_EXT_ERR	(1u<<5)
1319 #define HF_DATA_IN	(1u<<6)
1320 #ifdef SYM_CONF_IARB_SUPPORT
1321 #define HF_HINT_IARB	(1u<<7)
1322 #endif
1323 
1324 /*
1325  *  Global CCB HEADER.
1326  *
1327  *  Due to lack of indirect addressing on earlier NCR chips,
1328  *  this substructure is copied from the ccb to a global
1329  *  address after selection (or reselection) and copied back
1330  *  before disconnect.
1331  *  For SYMBIOS chips that support LOAD/STORE this copy is
1332  *  not needed and thus not performed.
1333  */
1334 
1335 struct sym_ccbh {
1336 	/*
1337 	 *  Start and restart SCRIPTS addresses (must be at 0).
1338 	 */
1339 /*0*/	struct sym_actscr go;
1340 
1341 	/*
1342 	 *  SCRIPTS jump address that deal with data pointers.
1343 	 *  'savep' points to the position in the script responsible
1344 	 *  for the actual transfer of data.
1345 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1346 	 */
1347 	u32	savep;		/* Jump address to saved data pointer	*/
1348 	u32	lastp;		/* SCRIPTS address at end of data	*/
1349 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1350 
1351 	/*
1352 	 *  Status fields.
1353 	 */
1354 	u8	status[4];
1355 };
1356 
1357 /*
1358  *  Data Structure Block
1359  *
1360  *  During execution of a ccb by the script processor, the
1361  *  DSA (data structure address) register points to this
1362  *  substructure of the ccb.
1363  */
1364 struct sym_dsb {
1365 	/*
1366 	 *  CCB header.
1367 	 *  Also assumed at offset 0 of the sym_ccb structure.
1368 	 */
1369 /*0*/	struct sym_ccbh head;
1370 
1371 	/*
1372 	 *  Phase mismatch contexts.
1373 	 *  We need two to handle correctly the SAVED DATA POINTER.
1374 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1375 	 *  for address calculation from SCRIPTS.
1376 	 */
1377 	struct sym_pmc pm0;
1378 	struct sym_pmc pm1;
1379 
1380 	/*
1381 	 *  Table data for Script
1382 	 */
1383 	struct sym_tblsel  select;
1384 	struct sym_tblmove smsg;
1385 	struct sym_tblmove smsg_ext;
1386 	struct sym_tblmove cmd;
1387 	struct sym_tblmove sense;
1388 	struct sym_tblmove wresid;
1389 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1390 };
1391 
1392 /*
1393  *  Our Command Control Block
1394  */
1395 struct sym_ccb {
1396 	/*
1397 	 *  This is the data structure which is pointed by the DSA
1398 	 *  register when it is executed by the script processor.
1399 	 *  It must be the first entry.
1400 	 */
1401 	struct sym_dsb phys;
1402 
1403 	/*
1404 	 *  Pointer to CAM ccb and related stuff.
1405 	 */
1406 	struct callout ch;	/* callout handle		*/
1407 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1408 	u8	cdb_buf[16];	/* Copy of CDB			*/
1409 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1410 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1411 	int	data_len;	/* Total data length		*/
1412 	int	segments;	/* Number of SG segments	*/
1413 
1414 	/*
1415 	 *  Miscellaneous status'.
1416 	 */
1417 	u_char	nego_status;	/* Negotiation status		*/
1418 	u_char	xerr_status;	/* Extended error flags		*/
1419 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1420 
1421 	/*
1422 	 *  Message areas.
1423 	 *  We prepare a message to be sent after selection.
1424 	 *  We may use a second one if the command is rescheduled
1425 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1426 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1427 	 *  While negotiating sync or wide transfer,
1428 	 *  a SDTR or WDTR message is appended.
1429 	 */
1430 	u_char	scsi_smsg [12];
1431 	u_char	scsi_smsg2[12];
1432 
1433 	/*
1434 	 *  Auto request sense related fields.
1435 	 */
1436 	u_char	sensecmd[6];	/* Request Sense command	*/
1437 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1438 	u_char	sv_xerr_status;	/* Saved extended status	*/
1439 	int	sv_resid;	/* Saved residual		*/
1440 
1441 	/*
1442 	 *  Map for the DMA of user data.
1443 	 */
1444 	void		*arg;	/* Argument for some callback	*/
1445 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1446 	u_char		dmamapped;
1447 #define SYM_DMA_NONE	0
1448 #define SYM_DMA_READ	1
1449 #define SYM_DMA_WRITE	2
1450 	/*
1451 	 *  Other fields.
1452 	 */
1453 	u32	ccb_ba;		/* BUS address of this CCB	*/
1454 	u_short	tag;		/* Tag for this transfer	*/
1455 				/*  NO_TAG means no tag		*/
1456 	u_char	target;
1457 	u_char	lun;
1458 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1459 	SYM_QUEHEAD
1460 		link_ccbq;	/* Link to free/busy CCB queue	*/
1461 	u32	startp;		/* Initial data pointer		*/
1462 	int	ext_sg;		/* Extreme data pointer, used	*/
1463 	int	ext_ofs;	/*  to calculate the residual.	*/
1464 	u_char	to_abort;	/* Want this IO to be aborted	*/
1465 };
1466 
1467 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1468 
1469 /*
1470  *  Host Control Block
1471  */
1472 struct sym_hcb {
1473 	struct mtx	mtx;
1474 
1475 	/*
1476 	 *  Global headers.
1477 	 *  Due to poorness of addressing capabilities, earlier
1478 	 *  chips (810, 815, 825) copy part of the data structures
1479 	 *  (CCB, TCB and LCB) in fixed areas.
1480 	 */
1481 #ifdef	SYM_CONF_GENERIC_SUPPORT
1482 	struct sym_ccbh	ccb_head;
1483 	struct sym_tcbh	tcb_head;
1484 	struct sym_lcbh	lcb_head;
1485 #endif
1486 	/*
1487 	 *  Idle task and invalid task actions and
1488 	 *  their bus addresses.
1489 	 */
1490 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1491 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1492 
1493 	/*
1494 	 *  Dummy lun table to protect us against target
1495 	 *  returning bad lun number on reselection.
1496 	 */
1497 	u32	*badluntbl;	/* Table physical address	*/
1498 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1499 
1500 	/*
1501 	 *  Bus address of this host control block.
1502 	 */
1503 	u32	hcb_ba;
1504 
1505 	/*
1506 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1507 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1508 	 *  field.
1509 	 */
1510 	u32	scr_ram_seg;
1511 
1512 	/*
1513 	 *  Chip and controller indentification.
1514 	 */
1515 	device_t device;
1516 	int	unit;
1517 	char	inst_name[8];
1518 
1519 	/*
1520 	 *  Initial value of some IO register bits.
1521 	 *  These values are assumed to have been set by BIOS, and may
1522 	 *  be used to probe adapter implementation differences.
1523 	 */
1524 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1525 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1526 		sv_stest1;
1527 
1528 	/*
1529 	 *  Actual initial value of IO register bits used by the
1530 	 *  driver. They are loaded at initialisation according to
1531 	 *  features that are to be enabled/disabled.
1532 	 */
1533 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1534 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1535 
1536 	/*
1537 	 *  Target data.
1538 	 */
1539 #ifdef __amd64__
1540 	struct sym_tcb	*target;
1541 #else
1542 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1543 #endif
1544 
1545 	/*
1546 	 *  Target control block bus address array used by the SCRIPT
1547 	 *  on reselection.
1548 	 */
1549 	u32		*targtbl;
1550 	u32		targtbl_ba;
1551 
1552 	/*
1553 	 *  CAM SIM information for this instance.
1554 	 */
1555 	struct		cam_sim  *sim;
1556 	struct		cam_path *path;
1557 
1558 	/*
1559 	 *  Allocated hardware resources.
1560 	 */
1561 	struct resource	*irq_res;
1562 	struct resource	*io_res;
1563 	struct resource	*mmio_res;
1564 	struct resource	*ram_res;
1565 	int		ram_id;
1566 	void *intr;
1567 
1568 	/*
1569 	 *  Bus stuff.
1570 	 *
1571 	 *  My understanding of PCI is that all agents must share the
1572 	 *  same addressing range and model.
1573 	 *  But some hardware architecture guys provide complex and
1574 	 *  brain-deaded stuff that makes shit.
1575 	 *  This driver only support PCI compliant implementations and
1576 	 *  deals with part of the BUS stuff complexity only to fit O/S
1577 	 *  requirements.
1578 	 */
1579 
1580 	/*
1581 	 *  DMA stuff.
1582 	 */
1583 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1584 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1585 	/*
1586 	 *  BUS addresses of the chip
1587 	 */
1588 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1589 	int		mmio_ws;	/* MMIO Window size		*/
1590 
1591 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1592 	int		ram_ws;		/* RAM window size		*/
1593 
1594 	/*
1595 	 *  SCRIPTS virtual and physical bus addresses.
1596 	 *  'script'  is loaded in the on-chip RAM if present.
1597 	 *  'scripth' stays in main memory for all chips except the
1598 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1599 	 */
1600 	u_char		*scripta0;	/* Copies of script and scripth	*/
1601 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1602 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1603 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1604 	vm_offset_t	scriptb0_ba;
1605 	u_short		scripta_sz;	/* Actual size of script A	*/
1606 	u_short		scriptb_sz;	/* Actual size of script B	*/
1607 
1608 	/*
1609 	 *  Bus addresses, setup and patch methods for
1610 	 *  the selected firmware.
1611 	 */
1612 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1613 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1614 	void		(*fw_setup)(hcb_p np, struct sym_fw *fw);
1615 	void		(*fw_patch)(hcb_p np);
1616 	char		*fw_name;
1617 
1618 	/*
1619 	 *  General controller parameters and configuration.
1620 	 */
1621 	u_short	device_id;	/* PCI device id		*/
1622 	u_char	revision_id;	/* PCI device revision id	*/
1623 	u_int	features;	/* Chip features map		*/
1624 	u_char	myaddr;		/* SCSI id of the adapter	*/
1625 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1626 	u_char	maxwide;	/* Maximum transfer width	*/
1627 	u_char	minsync;	/* Min sync period factor (ST)	*/
1628 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1629 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1630 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1631 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1632 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1633 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1634 	u_char	clock_divn;	/* Number of clock divisors	*/
1635 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1636 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1637 	/*
1638 	 *  Start queue management.
1639 	 *  It is filled up by the host processor and accessed by the
1640 	 *  SCRIPTS processor in order to start SCSI commands.
1641 	 */
1642 	volatile		/* Prevent code optimizations	*/
1643 	u32	*squeue;	/* Start queue virtual address	*/
1644 	u32	squeue_ba;	/* Start queue BUS address	*/
1645 	u_short	squeueput;	/* Next free slot of the queue	*/
1646 	u_short	actccbs;	/* Number of allocated CCBs	*/
1647 
1648 	/*
1649 	 *  Command completion queue.
1650 	 *  It is the same size as the start queue to avoid overflow.
1651 	 */
1652 	u_short	dqueueget;	/* Next position to scan	*/
1653 	volatile		/* Prevent code optimizations	*/
1654 	u32	*dqueue;	/* Completion (done) queue	*/
1655 	u32	dqueue_ba;	/* Done queue BUS address	*/
1656 
1657 	/*
1658 	 *  Miscellaneous buffers accessed by the scripts-processor.
1659 	 *  They shall be DWORD aligned, because they may be read or
1660 	 *  written with a script command.
1661 	 */
1662 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1663 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1664 	u32		lastmsg;	/* Last SCSI message sent	*/
1665 	u_char		scratch;	/* Scratch for SCSI receive	*/
1666 
1667 	/*
1668 	 *  Miscellaneous configuration and status parameters.
1669 	 */
1670 	u_char		usrflags;	/* Miscellaneous user flags	*/
1671 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1672 	u_char		verbose;	/* Verbosity for this controller*/
1673 	u32		cache;		/* Used for cache test at init.	*/
1674 
1675 	/*
1676 	 *  CCB lists and queue.
1677 	 */
1678 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1679 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1680 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1681 
1682 	/*
1683 	 *  During error handling and/or recovery,
1684 	 *  active CCBs that are to be completed with
1685 	 *  error or requeued are moved from the busy_ccbq
1686 	 *  to the comp_ccbq prior to completion.
1687 	 */
1688 	SYM_QUEHEAD	comp_ccbq;
1689 
1690 	/*
1691 	 *  CAM CCB pending queue.
1692 	 */
1693 	SYM_QUEHEAD	cam_ccbq;
1694 
1695 	/*
1696 	 *  IMMEDIATE ARBITRATION (IARB) control.
1697 	 *
1698 	 *  We keep track in 'last_cp' of the last CCB that has been
1699 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1700 	 *  this CCB completes. If last_cp is not zero at the moment
1701 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1702 	 *  used by the SCRIPTS as a hint for setting IARB.
1703 	 *  We donnot set more than 'iarb_max' consecutive hints for
1704 	 *  IARB in order to leave devices a chance to reselect.
1705 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1706 	 */
1707 #ifdef SYM_CONF_IARB_SUPPORT
1708 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1709 	u_short		iarb_count;	/* Actual # of these hints	*/
1710 	ccb_p		last_cp;
1711 #endif
1712 
1713 	/*
1714 	 *  Command abort handling.
1715 	 *  We need to synchronize tightly with the SCRIPTS
1716 	 *  processor in order to handle things correctly.
1717 	 */
1718 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1719 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1720 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1721 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1722 };
1723 
1724 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1725 
1726 /*
1727  *  Return the name of the controller.
1728  */
1729 static __inline char *sym_name(hcb_p np)
1730 {
1731 	return np->inst_name;
1732 }
1733 
1734 /*--------------------------------------------------------------------------*/
1735 /*------------------------------ FIRMWARES ---------------------------------*/
1736 /*--------------------------------------------------------------------------*/
1737 
1738 /*
1739  *  This stuff will be moved to a separate source file when
1740  *  the driver will be broken into several source modules.
1741  */
1742 
1743 /*
1744  *  Macros used for all firmwares.
1745  */
1746 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1747 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1748 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1749 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1750 
1751 
1752 #ifdef	SYM_CONF_GENERIC_SUPPORT
1753 /*
1754  *  Allocate firmware #1 script area.
1755  */
1756 #define	SYM_FWA_SCR		sym_fw1a_scr
1757 #define	SYM_FWB_SCR		sym_fw1b_scr
1758 #include <dev/sym/sym_fw1.h>
1759 struct sym_fwa_ofs sym_fw1a_ofs = {
1760 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1761 };
1762 struct sym_fwb_ofs sym_fw1b_ofs = {
1763 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1764 };
1765 #undef	SYM_FWA_SCR
1766 #undef	SYM_FWB_SCR
1767 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1768 
1769 /*
1770  *  Allocate firmware #2 script area.
1771  */
1772 #define	SYM_FWA_SCR		sym_fw2a_scr
1773 #define	SYM_FWB_SCR		sym_fw2b_scr
1774 #include <dev/sym/sym_fw2.h>
1775 struct sym_fwa_ofs sym_fw2a_ofs = {
1776 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1777 };
1778 struct sym_fwb_ofs sym_fw2b_ofs = {
1779 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1780 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1781 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1782 };
1783 #undef	SYM_FWA_SCR
1784 #undef	SYM_FWB_SCR
1785 
1786 #undef	SYM_GEN_A
1787 #undef	SYM_GEN_B
1788 #undef	PADDR_A
1789 #undef	PADDR_B
1790 
1791 #ifdef	SYM_CONF_GENERIC_SUPPORT
1792 /*
1793  *  Patch routine for firmware #1.
1794  */
1795 static void
1796 sym_fw1_patch(hcb_p np)
1797 {
1798 	struct sym_fw1a_scr *scripta0;
1799 	struct sym_fw1b_scr *scriptb0;
1800 
1801 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1802 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1803 
1804 	/*
1805 	 *  Remove LED support if not needed.
1806 	 */
1807 	if (!(np->features & FE_LED0)) {
1808 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1809 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1810 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1811 	}
1812 
1813 #ifdef SYM_CONF_IARB_SUPPORT
1814 	/*
1815 	 *    If user does not want to use IMMEDIATE ARBITRATION
1816 	 *    when we are reselected while attempting to arbitrate,
1817 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1818 	 */
1819 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1820 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1821 #endif
1822 	/*
1823 	 *  Patch some data in SCRIPTS.
1824 	 *  - start and done queue initial bus address.
1825 	 *  - target bus address table bus address.
1826 	 */
1827 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1828 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1829 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1830 }
1831 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1832 
1833 /*
1834  *  Patch routine for firmware #2.
1835  */
1836 static void
1837 sym_fw2_patch(hcb_p np)
1838 {
1839 	struct sym_fw2a_scr *scripta0;
1840 	struct sym_fw2b_scr *scriptb0;
1841 
1842 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1843 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1844 
1845 	/*
1846 	 *  Remove LED support if not needed.
1847 	 */
1848 	if (!(np->features & FE_LED0)) {
1849 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1850 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1851 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1852 	}
1853 
1854 #ifdef SYM_CONF_IARB_SUPPORT
1855 	/*
1856 	 *    If user does not want to use IMMEDIATE ARBITRATION
1857 	 *    when we are reselected while attempting to arbitrate,
1858 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1859 	 */
1860 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1861 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1862 #endif
1863 	/*
1864 	 *  Patch some variable in SCRIPTS.
1865 	 *  - start and done queue initial bus address.
1866 	 *  - target bus address table bus address.
1867 	 */
1868 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1869 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1870 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1871 
1872 	/*
1873 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1874 	 */
1875 	if (!(np->features & FE_C10)) {
1876 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1877 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1878 	}
1879 
1880 	/*
1881 	 *  Remove a couple of work-arounds specific to C1010 if
1882 	 *  they are not desirable. See `sym_fw2.h' for more details.
1883 	 */
1884 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1885 	      np->revision_id < 0x1 &&
1886 	      np->pciclk_khz < 60000)) {
1887 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1888 		scripta0->datao_phase[1] = cpu_to_scr(0);
1889 	}
1890 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1891 	      /* np->revision_id < 0xff */ 1)) {
1892 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1893 		scripta0->sel_done[1] = cpu_to_scr(0);
1894 	}
1895 
1896 	/*
1897 	 *  Patch some other variables in SCRIPTS.
1898 	 *  These ones are loaded by the SCRIPTS processor.
1899 	 */
1900 	scriptb0->pm0_data_addr[0] =
1901 		cpu_to_scr(np->scripta_ba +
1902 			   offsetof(struct sym_fw2a_scr, pm0_data));
1903 	scriptb0->pm1_data_addr[0] =
1904 		cpu_to_scr(np->scripta_ba +
1905 			   offsetof(struct sym_fw2a_scr, pm1_data));
1906 }
1907 
1908 /*
1909  *  Fill the data area in scripts.
1910  *  To be done for all firmwares.
1911  */
1912 static void
1913 sym_fw_fill_data (u32 *in, u32 *out)
1914 {
1915 	int	i;
1916 
1917 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1918 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1919 		*in++  = offsetof (struct sym_dsb, data[i]);
1920 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1921 		*out++ = offsetof (struct sym_dsb, data[i]);
1922 	}
1923 }
1924 
1925 /*
1926  *  Setup useful script bus addresses.
1927  *  To be done for all firmwares.
1928  */
1929 static void
1930 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
1931 {
1932 	u32 *pa;
1933 	u_short *po;
1934 	int i;
1935 
1936 	/*
1937 	 *  Build the bus address table for script A
1938 	 *  from the script A offset table.
1939 	 */
1940 	po = (u_short *) fw->a_ofs;
1941 	pa = (u32 *) &np->fwa_bas;
1942 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1943 		pa[i] = np->scripta_ba + po[i];
1944 
1945 	/*
1946 	 *  Same for script B.
1947 	 */
1948 	po = (u_short *) fw->b_ofs;
1949 	pa = (u32 *) &np->fwb_bas;
1950 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1951 		pa[i] = np->scriptb_ba + po[i];
1952 }
1953 
1954 #ifdef	SYM_CONF_GENERIC_SUPPORT
1955 /*
1956  *  Setup routine for firmware #1.
1957  */
1958 static void
1959 sym_fw1_setup(hcb_p np, struct sym_fw *fw)
1960 {
1961 	struct sym_fw1a_scr *scripta0;
1962 	struct sym_fw1b_scr *scriptb0;
1963 
1964 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1965 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1966 
1967 	/*
1968 	 *  Fill variable parts in scripts.
1969 	 */
1970 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1971 
1972 	/*
1973 	 *  Setup bus addresses used from the C code..
1974 	 */
1975 	sym_fw_setup_bus_addresses(np, fw);
1976 }
1977 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1978 
1979 /*
1980  *  Setup routine for firmware #2.
1981  */
1982 static void
1983 sym_fw2_setup(hcb_p np, struct sym_fw *fw)
1984 {
1985 	struct sym_fw2a_scr *scripta0;
1986 	struct sym_fw2b_scr *scriptb0;
1987 
1988 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1989 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1990 
1991 	/*
1992 	 *  Fill variable parts in scripts.
1993 	 */
1994 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1995 
1996 	/*
1997 	 *  Setup bus addresses used from the C code..
1998 	 */
1999 	sym_fw_setup_bus_addresses(np, fw);
2000 }
2001 
2002 /*
2003  *  Allocate firmware descriptors.
2004  */
2005 #ifdef	SYM_CONF_GENERIC_SUPPORT
2006 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2007 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2008 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2009 
2010 /*
2011  *  Find the most appropriate firmware for a chip.
2012  */
2013 static struct sym_fw *
2014 sym_find_firmware(struct sym_pci_chip *chip)
2015 {
2016 	if (chip->features & FE_LDSTR)
2017 		return &sym_fw2;
2018 #ifdef	SYM_CONF_GENERIC_SUPPORT
2019 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2020 		return &sym_fw1;
2021 #endif
2022 	else
2023 		return NULL;
2024 }
2025 
2026 /*
2027  *  Bind a script to physical addresses.
2028  */
2029 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2030 {
2031 	u32 opcode, new, old, tmp1, tmp2;
2032 	u32 *end, *cur;
2033 	int relocs;
2034 
2035 	cur = start;
2036 	end = start + len/4;
2037 
2038 	while (cur < end) {
2039 
2040 		opcode = *cur;
2041 
2042 		/*
2043 		 *  If we forget to change the length
2044 		 *  in scripts, a field will be
2045 		 *  padded with 0. This is an illegal
2046 		 *  command.
2047 		 */
2048 		if (opcode == 0) {
2049 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2050 				sym_name(np), (int) (cur-start));
2051 			MDELAY (10000);
2052 			++cur;
2053 			continue;
2054 		};
2055 
2056 		/*
2057 		 *  We use the bogus value 0xf00ff00f ;-)
2058 		 *  to reserve data area in SCRIPTS.
2059 		 */
2060 		if (opcode == SCR_DATA_ZERO) {
2061 			*cur++ = 0;
2062 			continue;
2063 		}
2064 
2065 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2066 			printf ("%d:  <%x>\n", (int) (cur-start),
2067 				(unsigned)opcode);
2068 
2069 		/*
2070 		 *  We don't have to decode ALL commands
2071 		 */
2072 		switch (opcode >> 28) {
2073 		case 0xf:
2074 			/*
2075 			 *  LOAD / STORE DSA relative, don't relocate.
2076 			 */
2077 			relocs = 0;
2078 			break;
2079 		case 0xe:
2080 			/*
2081 			 *  LOAD / STORE absolute.
2082 			 */
2083 			relocs = 1;
2084 			break;
2085 		case 0xc:
2086 			/*
2087 			 *  COPY has TWO arguments.
2088 			 */
2089 			relocs = 2;
2090 			tmp1 = cur[1];
2091 			tmp2 = cur[2];
2092 			if ((tmp1 ^ tmp2) & 3) {
2093 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2094 					sym_name(np), (int) (cur-start));
2095 				MDELAY (10000);
2096 			}
2097 			/*
2098 			 *  If PREFETCH feature not enabled, remove
2099 			 *  the NO FLUSH bit if present.
2100 			 */
2101 			if ((opcode & SCR_NO_FLUSH) &&
2102 			    !(np->features & FE_PFEN)) {
2103 				opcode = (opcode & ~SCR_NO_FLUSH);
2104 			}
2105 			break;
2106 		case 0x0:
2107 			/*
2108 			 *  MOVE/CHMOV (absolute address)
2109 			 */
2110 			if (!(np->features & FE_WIDE))
2111 				opcode = (opcode | OPC_MOVE);
2112 			relocs = 1;
2113 			break;
2114 		case 0x1:
2115 			/*
2116 			 *  MOVE/CHMOV (table indirect)
2117 			 */
2118 			if (!(np->features & FE_WIDE))
2119 				opcode = (opcode | OPC_MOVE);
2120 			relocs = 0;
2121 			break;
2122 		case 0x8:
2123 			/*
2124 			 *  JUMP / CALL
2125 			 *  dont't relocate if relative :-)
2126 			 */
2127 			if (opcode & 0x00800000)
2128 				relocs = 0;
2129 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2130 				relocs = 2;
2131 			else
2132 				relocs = 1;
2133 			break;
2134 		case 0x4:
2135 		case 0x5:
2136 		case 0x6:
2137 		case 0x7:
2138 			relocs = 1;
2139 			break;
2140 		default:
2141 			relocs = 0;
2142 			break;
2143 		};
2144 
2145 		/*
2146 		 *  Scriptify:) the opcode.
2147 		 */
2148 		*cur++ = cpu_to_scr(opcode);
2149 
2150 		/*
2151 		 *  If no relocation, assume 1 argument
2152 		 *  and just scriptize:) it.
2153 		 */
2154 		if (!relocs) {
2155 			*cur = cpu_to_scr(*cur);
2156 			++cur;
2157 			continue;
2158 		}
2159 
2160 		/*
2161 		 *  Otherwise performs all needed relocations.
2162 		 */
2163 		while (relocs--) {
2164 			old = *cur;
2165 
2166 			switch (old & RELOC_MASK) {
2167 			case RELOC_REGISTER:
2168 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2169 				break;
2170 			case RELOC_LABEL_A:
2171 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2172 				break;
2173 			case RELOC_LABEL_B:
2174 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2175 				break;
2176 			case RELOC_SOFTC:
2177 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2178 				break;
2179 			case 0:
2180 				/*
2181 				 *  Don't relocate a 0 address.
2182 				 *  They are mostly used for patched or
2183 				 *  script self-modified areas.
2184 				 */
2185 				if (old == 0) {
2186 					new = old;
2187 					break;
2188 				}
2189 				/* fall through */
2190 			default:
2191 				new = 0;
2192 				panic("sym_fw_bind_script: "
2193 				      "weird relocation %x\n", old);
2194 				break;
2195 			}
2196 
2197 			*cur++ = cpu_to_scr(new);
2198 		}
2199 	};
2200 }
2201 
2202 /*---------------------------------------------------------------------------*/
2203 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2204 /*---------------------------------------------------------------------------*/
2205 
2206 /*
2207  *  Function prototypes.
2208  */
2209 static void sym_save_initial_setting (hcb_p np);
2210 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2211 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2212 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2213 static void sym_chip_reset (hcb_p np);
2214 static void sym_soft_reset (hcb_p np);
2215 static void sym_start_reset (hcb_p np);
2216 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2217 static int  sym_wakeup_done (hcb_p np);
2218 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2219 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2220 static void sym_init (hcb_p np, int reason);
2221 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2222 		        u_char *fakp);
2223 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2224 			 u_char div, u_char fak);
2225 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2226 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2227 			 u_char per, u_char wide, u_char div, u_char fak);
2228 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2229 			 u_char per, u_char wide, u_char div, u_char fak);
2230 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2231 static void sym_intr (void *arg);
2232 static void sym_poll (struct cam_sim *sim);
2233 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2234 static void sym_int_sto (hcb_p np);
2235 static void sym_int_udc (hcb_p np);
2236 static void sym_int_sbmc (hcb_p np);
2237 static void sym_int_par (hcb_p np, u_short sist);
2238 static void sym_int_ma (hcb_p np);
2239 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2240 				    int task);
2241 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2242 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2243 static void sym_sir_task_recovery (hcb_p np, int num);
2244 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2245 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2246 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2247 static int  sym_show_msg (u_char * msg);
2248 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2249 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2250 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2251 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2252 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2253 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2254 static void sym_int_sir (hcb_p np);
2255 static void sym_free_ccb (hcb_p np, ccb_p cp);
2256 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2257 static ccb_p sym_alloc_ccb (hcb_p np);
2258 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2259 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2260 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2261 static int  sym_snooptest (hcb_p np);
2262 static void sym_selectclock(hcb_p np, u_char scntl3);
2263 static void sym_getclock (hcb_p np, int mult);
2264 static int  sym_getpciclock (hcb_p np);
2265 static void sym_complete_ok (hcb_p np, ccb_p cp);
2266 static void sym_complete_error (hcb_p np, ccb_p cp);
2267 static void sym_callout (void *arg);
2268 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2269 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2270 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2271 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2272 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2273 				      ccb_p cp);
2274 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2275 					bus_dma_segment_t *psegs, int nsegs);
2276 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2277 				    bus_dma_segment_t *psegs, int nsegs);
2278 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2279 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2280 			      struct ccb_trans_settings *cts);
2281 static void sym_update_dflags(hcb_p np, u_char *flags,
2282 			      struct ccb_trans_settings *cts);
2283 
2284 static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2285 static int  sym_pci_probe (device_t dev);
2286 static int  sym_pci_attach (device_t dev);
2287 
2288 static void sym_pci_free (hcb_p np);
2289 static int  sym_cam_attach (hcb_p np);
2290 static void sym_cam_free (hcb_p np);
2291 
2292 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2293 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2294 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2295 
2296 /*
2297  *  Print something which allows to retrieve the controler type,
2298  *  unit, target, lun concerned by a kernel message.
2299  */
2300 static void PRINT_TARGET (hcb_p np, int target)
2301 {
2302 	printf ("%s:%d:", sym_name(np), target);
2303 }
2304 
2305 static void PRINT_LUN(hcb_p np, int target, int lun)
2306 {
2307 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2308 }
2309 
2310 static void PRINT_ADDR (ccb_p cp)
2311 {
2312 	if (cp && cp->cam_ccb)
2313 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2314 }
2315 
2316 /*
2317  *  Take into account this ccb in the freeze count.
2318  */
2319 static void sym_freeze_cam_ccb(union ccb *ccb)
2320 {
2321 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2322 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2323 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2324 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2325 		}
2326 	}
2327 }
2328 
2329 /*
2330  *  Set the status field of a CAM CCB.
2331  */
2332 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2333 {
2334 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2335 	ccb->ccb_h.status |= status;
2336 }
2337 
2338 /*
2339  *  Get the status field of a CAM CCB.
2340  */
2341 static __inline int sym_get_cam_status(union ccb *ccb)
2342 {
2343 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2344 }
2345 
2346 /*
2347  *  Enqueue a CAM CCB.
2348  */
2349 static void sym_enqueue_cam_ccb(ccb_p cp)
2350 {
2351 	hcb_p np;
2352 	union ccb *ccb;
2353 
2354 	ccb = cp->cam_ccb;
2355 	np = (hcb_p) cp->arg;
2356 
2357 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2358 	ccb->ccb_h.status = CAM_REQ_INPROG;
2359 
2360 	callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout,
2361 			(caddr_t) ccb);
2362 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2363 	ccb->ccb_h.sym_hcb_ptr = np;
2364 
2365 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2366 }
2367 
2368 /*
2369  *  Complete a pending CAM CCB.
2370  */
2371 static void _sym_xpt_done(hcb_p np, union ccb *ccb)
2372 {
2373 	SYM_LOCK_ASSERT(MA_OWNED);
2374 
2375 	KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0,
2376 			("%s: status=CAM_SIM_QUEUED", __func__));
2377 
2378 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2379 		sym_freeze_cam_ccb(ccb);
2380 	xpt_done(ccb);
2381 }
2382 
2383 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2384 {
2385 	SYM_LOCK_ASSERT(MA_OWNED);
2386 
2387 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2388 		callout_stop(&cp->ch);
2389 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2390 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2391 		ccb->ccb_h.sym_hcb_ptr = NULL;
2392 	}
2393 	_sym_xpt_done(np, ccb);
2394 }
2395 
2396 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2397 {
2398 	SYM_LOCK_ASSERT(MA_OWNED);
2399 
2400 	sym_set_cam_status(ccb, cam_status);
2401 	_sym_xpt_done(np, ccb);
2402 }
2403 
2404 /*
2405  *  SYMBIOS chip clock divisor table.
2406  *
2407  *  Divisors are multiplied by 10,000,000 in order to make
2408  *  calculations more simple.
2409  */
2410 #define _5M 5000000
2411 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2412 
2413 /*
2414  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2415  *  128 transfers. All chips support at least 16 transfers
2416  *  bursts. The 825A, 875 and 895 chips support bursts of up
2417  *  to 128 transfers and the 895A and 896 support bursts of up
2418  *  to 64 transfers. All other chips support up to 16
2419  *  transfers bursts.
2420  *
2421  *  For PCI 32 bit data transfers each transfer is a DWORD.
2422  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2423  *
2424  *  We use log base 2 (burst length) as internal code, with
2425  *  value 0 meaning "burst disabled".
2426  */
2427 
2428 /*
2429  *  Burst length from burst code.
2430  */
2431 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2432 
2433 /*
2434  *  Burst code from io register bits.
2435  */
2436 #define burst_code(dmode, ctest4, ctest5) \
2437 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2438 
2439 /*
2440  *  Set initial io register bits from burst code.
2441  */
2442 static __inline void sym_init_burst(hcb_p np, u_char bc)
2443 {
2444 	np->rv_ctest4	&= ~0x80;
2445 	np->rv_dmode	&= ~(0x3 << 6);
2446 	np->rv_ctest5	&= ~0x4;
2447 
2448 	if (!bc) {
2449 		np->rv_ctest4	|= 0x80;
2450 	}
2451 	else {
2452 		--bc;
2453 		np->rv_dmode	|= ((bc & 0x3) << 6);
2454 		np->rv_ctest5	|= (bc & 0x4);
2455 	}
2456 }
2457 
2458 
2459 /*
2460  * Print out the list of targets that have some flag disabled by user.
2461  */
2462 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2463 {
2464 	int cnt;
2465 	int i;
2466 
2467 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2468 		if (i == np->myaddr)
2469 			continue;
2470 		if (np->target[i].usrflags & mask) {
2471 			if (!cnt++)
2472 				printf("%s: %s disabled for targets",
2473 					sym_name(np), msg);
2474 			printf(" %d", i);
2475 		}
2476 	}
2477 	if (cnt)
2478 		printf(".\n");
2479 }
2480 
2481 /*
2482  *  Save initial settings of some IO registers.
2483  *  Assumed to have been set by BIOS.
2484  *  We cannot reset the chip prior to reading the
2485  *  IO registers, since informations will be lost.
2486  *  Since the SCRIPTS processor may be running, this
2487  *  is not safe on paper, but it seems to work quite
2488  *  well. :)
2489  */
2490 static void sym_save_initial_setting (hcb_p np)
2491 {
2492 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2493 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2494 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2495 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2496 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2497 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2498 	np->sv_gpcntl	= INB(nc_gpcntl);
2499 	np->sv_stest1	= INB(nc_stest1);
2500 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2501 	np->sv_stest4	= INB(nc_stest4);
2502 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2503 		np->sv_scntl4	= INB(nc_scntl4);
2504 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2505 	}
2506 	else
2507 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2508 }
2509 
2510 /*
2511  *  Prepare io register values used by sym_init() according
2512  *  to selected and supported features.
2513  */
2514 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2515 {
2516 	u_char	burst_max;
2517 	u32	period;
2518 	int i;
2519 
2520 	/*
2521 	 *  Wide ?
2522 	 */
2523 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2524 
2525 	/*
2526 	 *  Get the frequency of the chip's clock.
2527 	 */
2528 	if	(np->features & FE_QUAD)
2529 		np->multiplier	= 4;
2530 	else if	(np->features & FE_DBLR)
2531 		np->multiplier	= 2;
2532 	else
2533 		np->multiplier	= 1;
2534 
2535 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2536 	np->clock_khz	*= np->multiplier;
2537 
2538 	if (np->clock_khz != 40000)
2539 		sym_getclock(np, np->multiplier);
2540 
2541 	/*
2542 	 * Divisor to be used for async (timer pre-scaler).
2543 	 */
2544 	i = np->clock_divn - 1;
2545 	while (--i >= 0) {
2546 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2547 			++i;
2548 			break;
2549 		}
2550 	}
2551 	np->rv_scntl3 = i+1;
2552 
2553 	/*
2554 	 * The C1010 uses hardwired divisors for async.
2555 	 * So, we just throw away, the async. divisor.:-)
2556 	 */
2557 	if (np->features & FE_C10)
2558 		np->rv_scntl3 = 0;
2559 
2560 	/*
2561 	 * Minimum synchronous period factor supported by the chip.
2562 	 * Btw, 'period' is in tenths of nanoseconds.
2563 	 */
2564 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2565 	if	(period <= 250)		np->minsync = 10;
2566 	else if	(period <= 303)		np->minsync = 11;
2567 	else if	(period <= 500)		np->minsync = 12;
2568 	else				np->minsync = (period + 40 - 1) / 40;
2569 
2570 	/*
2571 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2572 	 */
2573 	if	(np->minsync < 25 &&
2574 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2575 		np->minsync = 25;
2576 	else if	(np->minsync < 12 &&
2577 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2578 		np->minsync = 12;
2579 
2580 	/*
2581 	 * Maximum synchronous period factor supported by the chip.
2582 	 */
2583 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2584 	np->maxsync = period > 2540 ? 254 : period / 10;
2585 
2586 	/*
2587 	 * If chip is a C1010, guess the sync limits in DT mode.
2588 	 */
2589 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2590 		if (np->clock_khz == 160000) {
2591 			np->minsync_dt = 9;
2592 			np->maxsync_dt = 50;
2593 			np->maxoffs_dt = 62;
2594 		}
2595 	}
2596 
2597 	/*
2598 	 *  64 bit addressing  (895A/896/1010) ?
2599 	 */
2600 	if (np->features & FE_DAC)
2601 #ifdef __LP64__
2602 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2603 #else
2604 		np->rv_ccntl1	|= (DDAC);
2605 #endif
2606 
2607 	/*
2608 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2609   	 */
2610 	if (np->features & FE_NOPM)
2611 		np->rv_ccntl0	|= (ENPMJ);
2612 
2613  	/*
2614 	 *  C1010 Errata.
2615 	 *  In dual channel mode, contention occurs if internal cycles
2616 	 *  are used. Disable internal cycles.
2617 	 */
2618 	if (np->device_id == PCI_ID_LSI53C1010 &&
2619 	    np->revision_id < 0x2)
2620 		np->rv_ccntl0	|=  DILS;
2621 
2622 	/*
2623 	 *  Select burst length (dwords)
2624 	 */
2625 	burst_max	= SYM_SETUP_BURST_ORDER;
2626 	if (burst_max == 255)
2627 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2628 				       np->sv_ctest5);
2629 	if (burst_max > 7)
2630 		burst_max = 7;
2631 	if (burst_max > np->maxburst)
2632 		burst_max = np->maxburst;
2633 
2634 	/*
2635 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2636 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2637 	 *  based transactions on LOAD/STORE instructions. So we have
2638 	 *  to prevent these chips from using such PCI transactions in
2639 	 *  this driver. The generic ncr driver that does not use
2640 	 *  LOAD/STORE instructions does not need this work-around.
2641 	 */
2642 	if ((np->device_id == PCI_ID_SYM53C810 &&
2643 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2644 	    (np->device_id == PCI_ID_SYM53C860 &&
2645 	     np->revision_id <= 0x1))
2646 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2647 
2648 	/*
2649 	 *  Select all supported special features.
2650 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2651 	 *  does not help, but burst op fetch (BOF) does.
2652 	 *  Disabling PFEN makes sure BOF will be used.
2653 	 */
2654 	if (np->features & FE_ERL)
2655 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2656 	if (np->features & FE_BOF)
2657 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2658 	if (np->features & FE_ERMP)
2659 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2660 #if 1
2661 	if ((np->features & FE_PFEN) && !np->ram_ba)
2662 #else
2663 	if (np->features & FE_PFEN)
2664 #endif
2665 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2666 	if (np->features & FE_CLSE)
2667 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2668 	if (np->features & FE_WRIE)
2669 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2670 	if (np->features & FE_DFS)
2671 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2672 
2673 	/*
2674 	 *  Select some other
2675 	 */
2676 	if (SYM_SETUP_PCI_PARITY)
2677 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2678 	if (SYM_SETUP_SCSI_PARITY)
2679 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2680 
2681 	/*
2682 	 *  Get parity checking, host ID and verbose mode from NVRAM
2683 	 */
2684 	np->myaddr = 255;
2685 	sym_nvram_setup_host (np, nvram);
2686 
2687 	/*
2688 	 *  Get SCSI addr of host adapter (set by bios?).
2689 	 */
2690 	if (np->myaddr == 255) {
2691 		np->myaddr = INB(nc_scid) & 0x07;
2692 		if (!np->myaddr)
2693 			np->myaddr = SYM_SETUP_HOST_ID;
2694 	}
2695 
2696 	/*
2697 	 *  Prepare initial io register bits for burst length
2698 	 */
2699 	sym_init_burst(np, burst_max);
2700 
2701 	/*
2702 	 *  Set SCSI BUS mode.
2703 	 *  - LVD capable chips (895/895A/896/1010) report the
2704 	 *    current BUS mode through the STEST4 IO register.
2705 	 *  - For previous generation chips (825/825A/875),
2706 	 *    user has to tell us how to check against HVD,
2707 	 *    since a 100% safe algorithm is not possible.
2708 	 */
2709 	np->scsi_mode = SMODE_SE;
2710 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2711 		np->scsi_mode = (np->sv_stest4 & SMODE);
2712 	else if	(np->features & FE_DIFF) {
2713 		if (SYM_SETUP_SCSI_DIFF == 1) {
2714 			if (np->sv_scntl3) {
2715 				if (np->sv_stest2 & 0x20)
2716 					np->scsi_mode = SMODE_HVD;
2717 			}
2718 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2719 				if (!(INB(nc_gpreg) & 0x08))
2720 					np->scsi_mode = SMODE_HVD;
2721 			}
2722 		}
2723 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2724 			np->scsi_mode = SMODE_HVD;
2725 	}
2726 	if (np->scsi_mode == SMODE_HVD)
2727 		np->rv_stest2 |= 0x20;
2728 
2729 	/*
2730 	 *  Set LED support from SCRIPTS.
2731 	 *  Ignore this feature for boards known to use a
2732 	 *  specific GPIO wiring and for the 895A, 896
2733 	 *  and 1010 that drive the LED directly.
2734 	 */
2735 	if ((SYM_SETUP_SCSI_LED ||
2736 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2737 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2738 	       np->device_id == PCI_ID_SYM53C895))) &&
2739 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2740 		np->features |= FE_LED0;
2741 
2742 	/*
2743 	 *  Set irq mode.
2744 	 */
2745 	switch(SYM_SETUP_IRQ_MODE & 3) {
2746 	case 2:
2747 		np->rv_dcntl	|= IRQM;
2748 		break;
2749 	case 1:
2750 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2751 		break;
2752 	default:
2753 		break;
2754 	}
2755 
2756 	/*
2757 	 *  Configure targets according to driver setup.
2758 	 *  If NVRAM present get targets setup from NVRAM.
2759 	 */
2760 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2761 		tcb_p tp = &np->target[i];
2762 
2763 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2764 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2765 		tp->tinfo.user.period = np->minsync;
2766 		tp->tinfo.user.offset = np->maxoffs;
2767 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2768 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2769 		tp->usrtags = SYM_SETUP_MAX_TAG;
2770 
2771 		sym_nvram_setup_target (np, i, nvram);
2772 
2773 		/*
2774 		 *  For now, guess PPR/DT support from the period
2775 		 *  and BUS width.
2776 		 */
2777 		if (np->features & FE_ULTRA3) {
2778 			if (tp->tinfo.user.period <= 9	&&
2779 			    tp->tinfo.user.width == BUS_16_BIT) {
2780 				tp->tinfo.user.options |= PPR_OPT_DT;
2781 				tp->tinfo.user.offset   = np->maxoffs_dt;
2782 				tp->tinfo.user.spi_version = 3;
2783 			}
2784 		}
2785 
2786 		if (!tp->usrtags)
2787 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2788 	}
2789 
2790 	/*
2791 	 *  Let user know about the settings.
2792 	 */
2793 	i = nvram->type;
2794 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2795 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2796 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2797 		np->myaddr,
2798 		(np->features & FE_ULTRA3) ? 80 :
2799 		(np->features & FE_ULTRA2) ? 40 :
2800 		(np->features & FE_ULTRA)  ? 20 : 10,
2801 		sym_scsi_bus_mode(np->scsi_mode),
2802 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2803 	/*
2804 	 *  Tell him more on demand.
2805 	 */
2806 	if (sym_verbose) {
2807 		printf("%s: %s IRQ line driver%s\n",
2808 			sym_name(np),
2809 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2810 			np->ram_ba ? ", using on-chip SRAM" : "");
2811 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2812 		if (np->features & FE_NOPM)
2813 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2814 			       sym_name(np));
2815 	}
2816 	/*
2817 	 *  And still more.
2818 	 */
2819 	if (sym_verbose > 1) {
2820 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2821 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2822 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2823 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2824 
2825 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2826 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2827 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2828 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2829 	}
2830 	/*
2831 	 *  Let user be aware of targets that have some disable flags set.
2832 	 */
2833 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2834 	if (sym_verbose)
2835 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2836 				       "SCAN FOR LUNS");
2837 
2838 	return 0;
2839 }
2840 
2841 /*
2842  *  Prepare the next negotiation message if needed.
2843  *
2844  *  Fill in the part of message buffer that contains the
2845  *  negotiation and the nego_status field of the CCB.
2846  *  Returns the size of the message in bytes.
2847  */
2848 
2849 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2850 {
2851 	tcb_p tp = &np->target[cp->target];
2852 	int msglen = 0;
2853 
2854 	/*
2855 	 *  Early C1010 chips need a work-around for DT
2856 	 *  data transfer to work.
2857 	 */
2858 	if (!(np->features & FE_U3EN))
2859 		tp->tinfo.goal.options = 0;
2860 	/*
2861 	 *  negotiate using PPR ?
2862 	 */
2863 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2864 		nego = NS_PPR;
2865 	/*
2866 	 *  negotiate wide transfers ?
2867 	 */
2868 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2869 		nego = NS_WIDE;
2870 	/*
2871 	 *  negotiate synchronous transfers?
2872 	 */
2873 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2874 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2875 		nego = NS_SYNC;
2876 
2877 	switch (nego) {
2878 	case NS_SYNC:
2879 		msgptr[msglen++] = M_EXTENDED;
2880 		msgptr[msglen++] = 3;
2881 		msgptr[msglen++] = M_X_SYNC_REQ;
2882 		msgptr[msglen++] = tp->tinfo.goal.period;
2883 		msgptr[msglen++] = tp->tinfo.goal.offset;
2884 		break;
2885 	case NS_WIDE:
2886 		msgptr[msglen++] = M_EXTENDED;
2887 		msgptr[msglen++] = 2;
2888 		msgptr[msglen++] = M_X_WIDE_REQ;
2889 		msgptr[msglen++] = tp->tinfo.goal.width;
2890 		break;
2891 	case NS_PPR:
2892 		msgptr[msglen++] = M_EXTENDED;
2893 		msgptr[msglen++] = 6;
2894 		msgptr[msglen++] = M_X_PPR_REQ;
2895 		msgptr[msglen++] = tp->tinfo.goal.period;
2896 		msgptr[msglen++] = 0;
2897 		msgptr[msglen++] = tp->tinfo.goal.offset;
2898 		msgptr[msglen++] = tp->tinfo.goal.width;
2899 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2900 		break;
2901 	};
2902 
2903 	cp->nego_status = nego;
2904 
2905 	if (nego) {
2906 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2907 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2908 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2909 					  nego == NS_WIDE ? "wide msgout" :
2910 					  "ppr msgout", msgptr);
2911 		};
2912 	};
2913 
2914 	return msglen;
2915 }
2916 
2917 /*
2918  *  Insert a job into the start queue.
2919  */
2920 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2921 {
2922 	u_short	qidx;
2923 
2924 #ifdef SYM_CONF_IARB_SUPPORT
2925 	/*
2926 	 *  If the previously queued CCB is not yet done,
2927 	 *  set the IARB hint. The SCRIPTS will go with IARB
2928 	 *  for this job when starting the previous one.
2929 	 *  We leave devices a chance to win arbitration by
2930 	 *  not using more than 'iarb_max' consecutive
2931 	 *  immediate arbitrations.
2932 	 */
2933 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2934 		np->last_cp->host_flags |= HF_HINT_IARB;
2935 		++np->iarb_count;
2936 	}
2937 	else
2938 		np->iarb_count = 0;
2939 	np->last_cp = cp;
2940 #endif
2941 
2942 	/*
2943 	 *  Insert first the idle task and then our job.
2944 	 *  The MB should ensure proper ordering.
2945 	 */
2946 	qidx = np->squeueput + 2;
2947 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2948 
2949 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2950 	MEMORY_BARRIER();
2951 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2952 
2953 	np->squeueput = qidx;
2954 
2955 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2956 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2957 
2958 	/*
2959 	 *  Script processor may be waiting for reselect.
2960 	 *  Wake it up.
2961 	 */
2962 	MEMORY_BARRIER();
2963 	OUTB (nc_istat, SIGP|np->istat_sem);
2964 }
2965 
2966 
2967 /*
2968  *  Soft reset the chip.
2969  *
2970  *  Raising SRST when the chip is running may cause
2971  *  problems on dual function chips (see below).
2972  *  On the other hand, LVD devices need some delay
2973  *  to settle and report actual BUS mode in STEST4.
2974  */
2975 static void sym_chip_reset (hcb_p np)
2976 {
2977 	OUTB (nc_istat, SRST);
2978 	UDELAY (10);
2979 	OUTB (nc_istat, 0);
2980 	UDELAY(2000);	/* For BUS MODE to settle */
2981 }
2982 
2983 /*
2984  *  Soft reset the chip.
2985  *
2986  *  Some 896 and 876 chip revisions may hang-up if we set
2987  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2988  *  are running.
2989  *  So, we need to abort the current operation prior to
2990  *  soft resetting the chip.
2991  */
2992 static void sym_soft_reset (hcb_p np)
2993 {
2994 	u_char istat;
2995 	int i;
2996 
2997 	OUTB (nc_istat, CABRT);
2998 	for (i = 1000000 ; i ; --i) {
2999 		istat = INB (nc_istat);
3000 		if (istat & SIP) {
3001 			INW (nc_sist);
3002 			continue;
3003 		}
3004 		if (istat & DIP) {
3005 			OUTB (nc_istat, 0);
3006 			INB (nc_dstat);
3007 			break;
3008 		}
3009 	}
3010 	if (!i)
3011 		printf("%s: unable to abort current chip operation.\n",
3012 			sym_name(np));
3013 	sym_chip_reset (np);
3014 }
3015 
3016 /*
3017  *  Start reset process.
3018  *
3019  *  The interrupt handler will reinitialize the chip.
3020  */
3021 static void sym_start_reset(hcb_p np)
3022 {
3023 	(void) sym_reset_scsi_bus(np, 1);
3024 }
3025 
3026 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3027 {
3028 	u32 term;
3029 	int retv = 0;
3030 
3031 	sym_soft_reset(np);	/* Soft reset the chip */
3032 	if (enab_int)
3033 		OUTW (nc_sien, RST);
3034 	/*
3035 	 *  Enable Tolerant, reset IRQD if present and
3036 	 *  properly set IRQ mode, prior to resetting the bus.
3037 	 */
3038 	OUTB (nc_stest3, TE);
3039 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3040 	OUTB (nc_scntl1, CRST);
3041 	UDELAY (200);
3042 
3043 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3044 		goto out;
3045 	/*
3046 	 *  Check for no terminators or SCSI bus shorts to ground.
3047 	 *  Read SCSI data bus, data parity bits and control signals.
3048 	 *  We are expecting RESET to be TRUE and other signals to be
3049 	 *  FALSE.
3050 	 */
3051 	term =	INB(nc_sstat0);
3052 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3053 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3054 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3055 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3056 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3057 
3058 	if (!(np->features & FE_WIDE))
3059 		term &= 0x3ffff;
3060 
3061 	if (term != (2<<7)) {
3062 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3063 			sym_name(np));
3064 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3065 			"0x%lx, expecting 0x%lx\n",
3066 			sym_name(np),
3067 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3068 			(u_long)term, (u_long)(2<<7));
3069 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3070 			retv = 1;
3071 	}
3072 out:
3073 	OUTB (nc_scntl1, 0);
3074 	/* MDELAY(100); */
3075 	return retv;
3076 }
3077 
3078 /*
3079  *  The chip may have completed jobs. Look at the DONE QUEUE.
3080  *
3081  *  On architectures that may reorder LOAD/STORE operations,
3082  *  a memory barrier may be needed after the reading of the
3083  *  so-called `flag' and prior to dealing with the data.
3084  */
3085 static int sym_wakeup_done (hcb_p np)
3086 {
3087 	ccb_p cp;
3088 	int i, n;
3089 	u32 dsa;
3090 
3091 	SYM_LOCK_ASSERT(MA_OWNED);
3092 
3093 	n = 0;
3094 	i = np->dqueueget;
3095 	while (1) {
3096 		dsa = scr_to_cpu(np->dqueue[i]);
3097 		if (!dsa)
3098 			break;
3099 		np->dqueue[i] = 0;
3100 		if ((i = i+2) >= MAX_QUEUE*2)
3101 			i = 0;
3102 
3103 		cp = sym_ccb_from_dsa(np, dsa);
3104 		if (cp) {
3105 			MEMORY_BARRIER();
3106 			sym_complete_ok (np, cp);
3107 			++n;
3108 		}
3109 		else
3110 			printf ("%s: bad DSA (%x) in done queue.\n",
3111 				sym_name(np), (u_int) dsa);
3112 	}
3113 	np->dqueueget = i;
3114 
3115 	return n;
3116 }
3117 
3118 /*
3119  *  Complete all active CCBs with error.
3120  *  Used on CHIP/SCSI RESET.
3121  */
3122 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3123 {
3124 	/*
3125 	 *  Move all active CCBs to the COMP queue
3126 	 *  and flush this queue.
3127 	 */
3128 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3129 	sym_que_init(&np->busy_ccbq);
3130 	sym_flush_comp_queue(np, cam_status);
3131 }
3132 
3133 /*
3134  *  Start chip.
3135  *
3136  *  'reason' means:
3137  *     0: initialisation.
3138  *     1: SCSI BUS RESET delivered or received.
3139  *     2: SCSI BUS MODE changed.
3140  */
3141 static void sym_init (hcb_p np, int reason)
3142 {
3143  	int	i;
3144 	u32	phys;
3145 
3146 	SYM_LOCK_ASSERT(MA_OWNED);
3147 
3148  	/*
3149 	 *  Reset chip if asked, otherwise just clear fifos.
3150  	 */
3151 	if (reason == 1)
3152 		sym_soft_reset(np);
3153 	else {
3154 		OUTB (nc_stest3, TE|CSF);
3155 		OUTONB (nc_ctest3, CLF);
3156 	}
3157 
3158 	/*
3159 	 *  Clear Start Queue
3160 	 */
3161 	phys = np->squeue_ba;
3162 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3163 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3164 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3165 	}
3166 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3167 
3168 	/*
3169 	 *  Start at first entry.
3170 	 */
3171 	np->squeueput = 0;
3172 
3173 	/*
3174 	 *  Clear Done Queue
3175 	 */
3176 	phys = np->dqueue_ba;
3177 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3178 		np->dqueue[i]   = 0;
3179 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3180 	}
3181 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3182 
3183 	/*
3184 	 *  Start at first entry.
3185 	 */
3186 	np->dqueueget = 0;
3187 
3188 	/*
3189 	 *  Install patches in scripts.
3190 	 *  This also let point to first position the start
3191 	 *  and done queue pointers used from SCRIPTS.
3192 	 */
3193 	np->fw_patch(np);
3194 
3195 	/*
3196 	 *  Wakeup all pending jobs.
3197 	 */
3198 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3199 
3200 	/*
3201 	 *  Init chip.
3202 	 */
3203 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3204 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3205 
3206 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3207 					/*  full arb., ena parity, par->ATN  */
3208 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3209 
3210 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3211 
3212 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3213 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3214 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3215 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3216 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3217 
3218 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3219 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3220 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3221 
3222 	/* Extended Sreq/Sack filtering not supported on the C10 */
3223 	if (np->features & FE_C10)
3224 		OUTB (nc_stest2, np->rv_stest2);
3225 	else
3226 		OUTB (nc_stest2, EXT|np->rv_stest2);
3227 
3228 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3229 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3230 
3231 	/*
3232 	 *  For now, disable AIP generation on C1010-66.
3233 	 */
3234 	if (np->device_id == PCI_ID_LSI53C1010_2)
3235 		OUTB (nc_aipcntl1, DISAIP);
3236 
3237 	/*
3238 	 *  C10101 Errata.
3239 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3240 	 *  STEST1 register to disable SGE. We probably should do
3241 	 *  that from SCRIPTS for each selection/reselection, but
3242 	 *  I just don't want. :)
3243 	 */
3244 	if (np->device_id == PCI_ID_LSI53C1010 &&
3245 	    /* np->revision_id < 0xff */ 1)
3246 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3247 
3248 	/*
3249 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3250 	 *  Disable overlapped arbitration for some dual function devices,
3251 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3252 	 */
3253 	if (np->device_id == PCI_ID_SYM53C875)
3254 		OUTB (nc_ctest0, (1<<5));
3255 	else if (np->device_id == PCI_ID_SYM53C896)
3256 		np->rv_ccntl0 |= DPR;
3257 
3258 	/*
3259 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3260 	 *  and/or hardware phase mismatch, since only such chips
3261 	 *  seem to support those IO registers.
3262 	 */
3263 	if (np->features & (FE_DAC|FE_NOPM)) {
3264 		OUTB (nc_ccntl0, np->rv_ccntl0);
3265 		OUTB (nc_ccntl1, np->rv_ccntl1);
3266 	}
3267 
3268 	/*
3269 	 *  If phase mismatch handled by scripts (895A/896/1010),
3270 	 *  set PM jump addresses.
3271 	 */
3272 	if (np->features & FE_NOPM) {
3273 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3274 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3275 	}
3276 
3277 	/*
3278 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3279 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3280 	 */
3281 	if (np->features & FE_LED0)
3282 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3283 	else if (np->features & FE_LEDC)
3284 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3285 
3286 	/*
3287 	 *      enable ints
3288 	 */
3289 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3290 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3291 
3292 	/*
3293 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3294 	 *  Try to eat the spurious SBMC interrupt that may occur when
3295 	 *  we reset the chip but not the SCSI BUS (at initialization).
3296 	 */
3297 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3298 		OUTONW (nc_sien, SBMC);
3299 		if (reason == 0) {
3300 			MDELAY(100);
3301 			INW (nc_sist);
3302 		}
3303 		np->scsi_mode = INB (nc_stest4) & SMODE;
3304 	}
3305 
3306 	/*
3307 	 *  Fill in target structure.
3308 	 *  Reinitialize usrsync.
3309 	 *  Reinitialize usrwide.
3310 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3311 	 */
3312 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3313 		tcb_p tp = &np->target[i];
3314 
3315 		tp->to_reset  = 0;
3316 		tp->head.sval = 0;
3317 		tp->head.wval = np->rv_scntl3;
3318 		tp->head.uval = 0;
3319 
3320 		tp->tinfo.current.period = 0;
3321 		tp->tinfo.current.offset = 0;
3322 		tp->tinfo.current.width  = BUS_8_BIT;
3323 		tp->tinfo.current.options = 0;
3324 	}
3325 
3326 	/*
3327 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3328 	 *  and start script processor.
3329 	 */
3330 	if (np->ram_ba) {
3331 		if (sym_verbose > 1)
3332 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3333 				sym_name(np));
3334 		if (np->ram_ws == 8192) {
3335 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3336 			OUTL (nc_mmws, np->scr_ram_seg);
3337 			OUTL (nc_mmrs, np->scr_ram_seg);
3338 			OUTL (nc_sfs,  np->scr_ram_seg);
3339 			phys = SCRIPTB_BA (np, start64);
3340 		}
3341 		else
3342 			phys = SCRIPTA_BA (np, init);
3343 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3344 	}
3345 	else
3346 		phys = SCRIPTA_BA (np, init);
3347 
3348 	np->istat_sem = 0;
3349 
3350 	OUTL (nc_dsa, np->hcb_ba);
3351 	OUTL_DSP (phys);
3352 
3353 	/*
3354 	 *  Notify the XPT about the RESET condition.
3355 	 */
3356 	if (reason != 0)
3357 		xpt_async(AC_BUS_RESET, np->path, NULL);
3358 }
3359 
3360 /*
3361  *  Get clock factor and sync divisor for a given
3362  *  synchronous factor period.
3363  */
3364 static int
3365 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3366 {
3367 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3368 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3369 	u32	fak;			/* Sync factor in sxfer		*/
3370 	u32	per;			/* Period in tenths of ns	*/
3371 	u32	kpc;			/* (per * clk)			*/
3372 	int	ret;
3373 
3374 	/*
3375 	 *  Compute the synchronous period in tenths of nano-seconds
3376 	 */
3377 	if (dt && sfac <= 9)	per = 125;
3378 	else if	(sfac <= 10)	per = 250;
3379 	else if	(sfac == 11)	per = 303;
3380 	else if	(sfac == 12)	per = 500;
3381 	else			per = 40 * sfac;
3382 	ret = per;
3383 
3384 	kpc = per * clk;
3385 	if (dt)
3386 		kpc <<= 1;
3387 
3388 	/*
3389 	 *  For earliest C10 revision 0, we cannot use extra
3390 	 *  clocks for the setting of the SCSI clocking.
3391 	 *  Note that this limits the lowest sync data transfer
3392 	 *  to 5 Mega-transfers per second and may result in
3393 	 *  using higher clock divisors.
3394 	 */
3395 #if 1
3396 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3397 		/*
3398 		 *  Look for the lowest clock divisor that allows an
3399 		 *  output speed not faster than the period.
3400 		 */
3401 		while (div > 0) {
3402 			--div;
3403 			if (kpc > (div_10M[div] << 2)) {
3404 				++div;
3405 				break;
3406 			}
3407 		}
3408 		fak = 0;			/* No extra clocks */
3409 		if (div == np->clock_divn) {	/* Are we too fast ? */
3410 			ret = -1;
3411 		}
3412 		*divp = div;
3413 		*fakp = fak;
3414 		return ret;
3415 	}
3416 #endif
3417 
3418 	/*
3419 	 *  Look for the greatest clock divisor that allows an
3420 	 *  input speed faster than the period.
3421 	 */
3422 	while (div-- > 0)
3423 		if (kpc >= (div_10M[div] << 2)) break;
3424 
3425 	/*
3426 	 *  Calculate the lowest clock factor that allows an output
3427 	 *  speed not faster than the period, and the max output speed.
3428 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3429 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3430 	 */
3431 	if (dt) {
3432 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3433 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3434 	}
3435 	else {
3436 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3437 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3438 	}
3439 
3440 	/*
3441 	 *  Check against our hardware limits, or bugs :).
3442 	 */
3443 	if (fak < 0)	{fak = 0; ret = -1;}
3444 	if (fak > 2)	{fak = 2; ret = -1;}
3445 
3446 	/*
3447 	 *  Compute and return sync parameters.
3448 	 */
3449 	*divp = div;
3450 	*fakp = fak;
3451 
3452 	return ret;
3453 }
3454 
3455 /*
3456  *  Tell the SCSI layer about the new transfer parameters.
3457  */
3458 static void
3459 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3460 {
3461 	struct ccb_trans_settings cts;
3462 	struct cam_path *path;
3463 	int sts;
3464 	tcb_p tp = &np->target[target];
3465 
3466 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3467 	                      CAM_LUN_WILDCARD);
3468 	if (sts != CAM_REQ_CMP)
3469 		return;
3470 
3471 	bzero(&cts, sizeof(cts));
3472 
3473 #define	cts__scsi (cts.proto_specific.scsi)
3474 #define	cts__spi  (cts.xport_specific.spi)
3475 
3476 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3477 	cts.protocol  = PROTO_SCSI;
3478 	cts.transport = XPORT_SPI;
3479 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3480 	cts.transport_version = tp->tinfo.current.spi_version;
3481 
3482 	cts__spi.valid = spi_valid;
3483 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3484 		cts__spi.sync_period = tp->tinfo.current.period;
3485 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3486 		cts__spi.sync_offset = tp->tinfo.current.offset;
3487 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3488 		cts__spi.bus_width   = tp->tinfo.current.width;
3489 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3490 		cts__spi.ppr_options = tp->tinfo.current.options;
3491 #undef cts__spi
3492 #undef cts__scsi
3493 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3494 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3495 	xpt_free_path(path);
3496 }
3497 
3498 #define SYM_SPI_VALID_WDTR		\
3499 	CTS_SPI_VALID_BUS_WIDTH |	\
3500 	CTS_SPI_VALID_SYNC_RATE |	\
3501 	CTS_SPI_VALID_SYNC_OFFSET
3502 #define SYM_SPI_VALID_SDTR		\
3503 	CTS_SPI_VALID_SYNC_RATE |	\
3504 	CTS_SPI_VALID_SYNC_OFFSET
3505 #define SYM_SPI_VALID_PPR		\
3506 	CTS_SPI_VALID_PPR_OPTIONS |	\
3507 	CTS_SPI_VALID_BUS_WIDTH |	\
3508 	CTS_SPI_VALID_SYNC_RATE |	\
3509 	CTS_SPI_VALID_SYNC_OFFSET
3510 
3511 /*
3512  *  We received a WDTR.
3513  *  Let everything be aware of the changes.
3514  */
3515 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3516 {
3517 	tcb_p tp = &np->target[cp->target];
3518 
3519 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3520 
3521 	/*
3522 	 *  Tell the SCSI layer about the new transfer parameters.
3523 	 */
3524 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3525 	tp->tinfo.current.offset = 0;
3526 	tp->tinfo.current.period = 0;
3527 	tp->tinfo.current.options = 0;
3528 
3529 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3530 }
3531 
3532 /*
3533  *  We received a SDTR.
3534  *  Let everything be aware of the changes.
3535  */
3536 static void
3537 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3538 {
3539 	tcb_p tp = &np->target[cp->target];
3540 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3541 
3542 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3543 
3544 	/*
3545 	 *  Tell the SCSI layer about the new transfer parameters.
3546 	 */
3547 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3548 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3549 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3550 
3551 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3552 }
3553 
3554 /*
3555  *  We received a PPR.
3556  *  Let everything be aware of the changes.
3557  */
3558 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3559 			 u_char per, u_char wide, u_char div, u_char fak)
3560 {
3561 	tcb_p tp = &np->target[cp->target];
3562 
3563 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3564 
3565 	/*
3566 	 *  Tell the SCSI layer about the new transfer parameters.
3567 	 */
3568 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3569 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3570 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3571 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3572 
3573 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3574 }
3575 
3576 /*
3577  *  Switch trans mode for current job and it's target.
3578  */
3579 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3580 			 u_char per, u_char wide, u_char div, u_char fak)
3581 {
3582 	SYM_QUEHEAD *qp;
3583 	union	ccb *ccb;
3584 	tcb_p tp;
3585 	u_char target = INB (nc_sdid) & 0x0f;
3586 	u_char sval, wval, uval;
3587 
3588 	assert (cp);
3589 	if (!cp) return;
3590 	ccb = cp->cam_ccb;
3591 	assert (ccb);
3592 	if (!ccb) return;
3593 	assert (target == (cp->target & 0xf));
3594 	tp = &np->target[target];
3595 
3596 	sval = tp->head.sval;
3597 	wval = tp->head.wval;
3598 	uval = tp->head.uval;
3599 
3600 #if 0
3601 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3602 		sval, wval, uval, np->rv_scntl3);
3603 #endif
3604 	/*
3605 	 *  Set the offset.
3606 	 */
3607 	if (!(np->features & FE_C10))
3608 		sval = (sval & ~0x1f) | ofs;
3609 	else
3610 		sval = (sval & ~0x3f) | ofs;
3611 
3612 	/*
3613 	 *  Set the sync divisor and extra clock factor.
3614 	 */
3615 	if (ofs != 0) {
3616 		wval = (wval & ~0x70) | ((div+1) << 4);
3617 		if (!(np->features & FE_C10))
3618 			sval = (sval & ~0xe0) | (fak << 5);
3619 		else {
3620 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3621 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3622 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3623 		}
3624 	}
3625 
3626 	/*
3627 	 *  Set the bus width.
3628 	 */
3629 	wval = wval & ~EWS;
3630 	if (wide != 0)
3631 		wval |= EWS;
3632 
3633 	/*
3634 	 *  Set misc. ultra enable bits.
3635 	 */
3636 	if (np->features & FE_C10) {
3637 		uval = uval & ~(U3EN|AIPCKEN);
3638 		if (dt)	{
3639 			assert(np->features & FE_U3EN);
3640 			uval |= U3EN;
3641 		}
3642 	}
3643 	else {
3644 		wval = wval & ~ULTRA;
3645 		if (per <= 12)	wval |= ULTRA;
3646 	}
3647 
3648 	/*
3649 	 *   Stop there if sync parameters are unchanged.
3650 	 */
3651 	if (tp->head.sval == sval &&
3652 	    tp->head.wval == wval &&
3653 	    tp->head.uval == uval)
3654 		return;
3655 	tp->head.sval = sval;
3656 	tp->head.wval = wval;
3657 	tp->head.uval = uval;
3658 
3659 	/*
3660 	 *  Disable extended Sreq/Sack filtering if per < 50.
3661 	 *  Not supported on the C1010.
3662 	 */
3663 	if (per < 50 && !(np->features & FE_C10))
3664 		OUTOFFB (nc_stest2, EXT);
3665 
3666 	/*
3667 	 *  set actual value and sync_status
3668 	 */
3669 	OUTB (nc_sxfer,  tp->head.sval);
3670 	OUTB (nc_scntl3, tp->head.wval);
3671 
3672 	if (np->features & FE_C10) {
3673 		OUTB (nc_scntl4, tp->head.uval);
3674 	}
3675 
3676 	/*
3677 	 *  patch ALL busy ccbs of this target.
3678 	 */
3679 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3680 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3681 		if (cp->target != target)
3682 			continue;
3683 		cp->phys.select.sel_scntl3 = tp->head.wval;
3684 		cp->phys.select.sel_sxfer  = tp->head.sval;
3685 		if (np->features & FE_C10) {
3686 			cp->phys.select.sel_scntl4 = tp->head.uval;
3687 		}
3688 	}
3689 }
3690 
3691 /*
3692  *  log message for real hard errors
3693  *
3694  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3695  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3696  *
3697  *  exception register:
3698  *  	ds:	dstat
3699  *  	si:	sist
3700  *
3701  *  SCSI bus lines:
3702  *  	so:	control lines as driven by chip.
3703  *  	si:	control lines as seen by chip.
3704  *  	sd:	scsi data lines as seen by chip.
3705  *
3706  *  wide/fastmode:
3707  *  	sxfer:	(see the manual)
3708  *  	scntl3:	(see the manual)
3709  *
3710  *  current script command:
3711  *  	dsp:	script address (relative to start of script).
3712  *  	dbc:	first word of script command.
3713  *
3714  *  First 24 register of the chip:
3715  *  	r0..rf
3716  */
3717 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3718 {
3719 	u32	dsp;
3720 	int	script_ofs;
3721 	int	script_size;
3722 	char	*script_name;
3723 	u_char	*script_base;
3724 	int	i;
3725 
3726 	dsp	= INL (nc_dsp);
3727 
3728 	if	(dsp > np->scripta_ba &&
3729 		 dsp <= np->scripta_ba + np->scripta_sz) {
3730 		script_ofs	= dsp - np->scripta_ba;
3731 		script_size	= np->scripta_sz;
3732 		script_base	= (u_char *) np->scripta0;
3733 		script_name	= "scripta";
3734 	}
3735 	else if (np->scriptb_ba < dsp &&
3736 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3737 		script_ofs	= dsp - np->scriptb_ba;
3738 		script_size	= np->scriptb_sz;
3739 		script_base	= (u_char *) np->scriptb0;
3740 		script_name	= "scriptb";
3741 	} else {
3742 		script_ofs	= dsp;
3743 		script_size	= 0;
3744 		script_base	= 0;
3745 		script_name	= "mem";
3746 	}
3747 
3748 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3749 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3750 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3751 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3752 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3753 		(unsigned)INL (nc_dbc));
3754 
3755 	if (((script_ofs & 3) == 0) &&
3756 	    (unsigned)script_ofs < script_size) {
3757 		printf ("%s: script cmd = %08x\n", sym_name(np),
3758 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3759 	}
3760 
3761         printf ("%s: regdump:", sym_name(np));
3762         for (i=0; i<24;i++)
3763             printf (" %02x", (unsigned)INB_OFF(i));
3764         printf (".\n");
3765 
3766 	/*
3767 	 *  PCI BUS error, read the PCI ststus register.
3768 	 */
3769 	if (dstat & (MDPE|BF)) {
3770 		u_short pci_sts;
3771 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3772 		if (pci_sts & 0xf900) {
3773 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3774 			printf("%s: PCI STATUS = 0x%04x\n",
3775 				sym_name(np), pci_sts & 0xf900);
3776 		}
3777 	}
3778 }
3779 
3780 /*
3781  *  chip interrupt handler
3782  *
3783  *  In normal situations, interrupt conditions occur one at
3784  *  a time. But when something bad happens on the SCSI BUS,
3785  *  the chip may raise several interrupt flags before
3786  *  stopping and interrupting the CPU. The additionnal
3787  *  interrupt flags are stacked in some extra registers
3788  *  after the SIP and/or DIP flag has been raised in the
3789  *  ISTAT. After the CPU has read the interrupt condition
3790  *  flag from SIST or DSTAT, the chip unstacks the other
3791  *  interrupt flags and sets the corresponding bits in
3792  *  SIST or DSTAT. Since the chip starts stacking once the
3793  *  SIP or DIP flag is set, there is a small window of time
3794  *  where the stacking does not occur.
3795  *
3796  *  Typically, multiple interrupt conditions may happen in
3797  *  the following situations:
3798  *
3799  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3800  *    When a parity error is detected in input phase
3801  *    and the device switches to msg-in phase inside a
3802  *    block MOV.
3803  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3804  *    When a stupid device does not want to handle the
3805  *    recovery of an SCSI parity error.
3806  *  - Some combinations of STO, PAR, UDC, ...
3807  *    When using non compliant SCSI stuff, when user is
3808  *    doing non compliant hot tampering on the BUS, when
3809  *    something really bad happens to a device, etc ...
3810  *
3811  *  The heuristic suggested by SYMBIOS to handle
3812  *  multiple interrupts is to try unstacking all
3813  *  interrupts conditions and to handle them on some
3814  *  priority based on error severity.
3815  *  This will work when the unstacking has been
3816  *  successful, but we cannot be 100 % sure of that,
3817  *  since the CPU may have been faster to unstack than
3818  *  the chip is able to stack. Hmmm ... But it seems that
3819  *  such a situation is very unlikely to happen.
3820  *
3821  *  If this happen, for example STO caught by the CPU
3822  *  then UDC happenning before the CPU have restarted
3823  *  the SCRIPTS, the driver may wrongly complete the
3824  *  same command on UDC, since the SCRIPTS didn't restart
3825  *  and the DSA still points to the same command.
3826  *  We avoid this situation by setting the DSA to an
3827  *  invalid value when the CCB is completed and before
3828  *  restarting the SCRIPTS.
3829  *
3830  *  Another issue is that we need some section of our
3831  *  recovery procedures to be somehow uninterruptible but
3832  *  the SCRIPTS processor does not provides such a
3833  *  feature. For this reason, we handle recovery preferently
3834  *  from the C code and check against some SCRIPTS critical
3835  *  sections from the C code.
3836  *
3837  *  Hopefully, the interrupt handling of the driver is now
3838  *  able to resist to weird BUS error conditions, but donnot
3839  *  ask me for any guarantee that it will never fail. :-)
3840  *  Use at your own decision and risk.
3841  */
3842 
3843 static void sym_intr1 (hcb_p np)
3844 {
3845 	u_char	istat, istatc;
3846 	u_char	dstat;
3847 	u_short	sist;
3848 
3849 	SYM_LOCK_ASSERT(MA_OWNED);
3850 
3851 	/*
3852 	 *  interrupt on the fly ?
3853 	 *
3854 	 *  A `dummy read' is needed to ensure that the
3855 	 *  clear of the INTF flag reaches the device
3856 	 *  before the scanning of the DONE queue.
3857 	 */
3858 	istat = INB (nc_istat);
3859 	if (istat & INTF) {
3860 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3861 		istat = INB (nc_istat);		/* DUMMY READ */
3862 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3863 		(void)sym_wakeup_done (np);
3864 	};
3865 
3866 	if (!(istat & (SIP|DIP)))
3867 		return;
3868 
3869 #if 0	/* We should never get this one */
3870 	if (istat & CABRT)
3871 		OUTB (nc_istat, CABRT);
3872 #endif
3873 
3874 	/*
3875 	 *  PAR and MA interrupts may occur at the same time,
3876 	 *  and we need to know of both in order to handle
3877 	 *  this situation properly. We try to unstack SCSI
3878 	 *  interrupts for that reason. BTW, I dislike a LOT
3879 	 *  such a loop inside the interrupt routine.
3880 	 *  Even if DMA interrupt stacking is very unlikely to
3881 	 *  happen, we also try unstacking these ones, since
3882 	 *  this has no performance impact.
3883 	 */
3884 	sist	= 0;
3885 	dstat	= 0;
3886 	istatc	= istat;
3887 	do {
3888 		if (istatc & SIP)
3889 			sist  |= INW (nc_sist);
3890 		if (istatc & DIP)
3891 			dstat |= INB (nc_dstat);
3892 		istatc = INB (nc_istat);
3893 		istat |= istatc;
3894 	} while (istatc & (SIP|DIP));
3895 
3896 	if (DEBUG_FLAGS & DEBUG_TINY)
3897 		printf ("<%d|%x:%x|%x:%x>",
3898 			(int)INB(nc_scr0),
3899 			dstat,sist,
3900 			(unsigned)INL(nc_dsp),
3901 			(unsigned)INL(nc_dbc));
3902 	/*
3903 	 *  On paper, a memory barrier may be needed here.
3904 	 *  And since we are paranoid ... :)
3905 	 */
3906 	MEMORY_BARRIER();
3907 
3908 	/*
3909 	 *  First, interrupts we want to service cleanly.
3910 	 *
3911 	 *  Phase mismatch (MA) is the most frequent interrupt
3912 	 *  for chip earlier than the 896 and so we have to service
3913 	 *  it as quickly as possible.
3914 	 *  A SCSI parity error (PAR) may be combined with a phase
3915 	 *  mismatch condition (MA).
3916 	 *  Programmed interrupts (SIR) are used to call the C code
3917 	 *  from SCRIPTS.
3918 	 *  The single step interrupt (SSI) is not used in this
3919 	 *  driver.
3920 	 */
3921 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3922 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3923 		if	(sist & PAR)	sym_int_par (np, sist);
3924 		else if (sist & MA)	sym_int_ma (np);
3925 		else if (dstat & SIR)	sym_int_sir (np);
3926 		else if (dstat & SSI)	OUTONB_STD ();
3927 		else			goto unknown_int;
3928 		return;
3929 	};
3930 
3931 	/*
3932 	 *  Now, interrupts that donnot happen in normal
3933 	 *  situations and that we may need to recover from.
3934 	 *
3935 	 *  On SCSI RESET (RST), we reset everything.
3936 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3937 	 *  active CCBs with RESET status, prepare all devices
3938 	 *  for negotiating again and restart the SCRIPTS.
3939 	 *  On STO and UDC, we complete the CCB with the corres-
3940 	 *  ponding status and restart the SCRIPTS.
3941 	 */
3942 	if (sist & RST) {
3943 		xpt_print_path(np->path);
3944 		printf("SCSI BUS reset detected.\n");
3945 		sym_init (np, 1);
3946 		return;
3947 	};
3948 
3949 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3950 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3951 
3952 	if (!(sist  & (GEN|HTH|SGE)) &&
3953 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3954 		if	(sist & SBMC)	sym_int_sbmc (np);
3955 		else if (sist & STO)	sym_int_sto (np);
3956 		else if (sist & UDC)	sym_int_udc (np);
3957 		else			goto unknown_int;
3958 		return;
3959 	};
3960 
3961 	/*
3962 	 *  Now, interrupts we are not able to recover cleanly.
3963 	 *
3964 	 *  Log message for hard errors.
3965 	 *  Reset everything.
3966 	 */
3967 
3968 	sym_log_hard_error(np, sist, dstat);
3969 
3970 	if ((sist & (GEN|HTH|SGE)) ||
3971 		(dstat & (MDPE|BF|ABRT|IID))) {
3972 		sym_start_reset(np);
3973 		return;
3974 	};
3975 
3976 unknown_int:
3977 	/*
3978 	 *  We just miss the cause of the interrupt. :(
3979 	 *  Print a message. The timeout will do the real work.
3980 	 */
3981 	printf(	"%s: unknown interrupt(s) ignored, "
3982 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3983 		sym_name(np), istat, dstat, sist);
3984 }
3985 
3986 static void sym_intr(void *arg)
3987 {
3988 	hcb_p np = arg;
3989 
3990 	SYM_LOCK();
3991 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3992 	sym_intr1((hcb_p) arg);
3993 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3994 	SYM_UNLOCK();
3995 }
3996 
3997 static void sym_poll(struct cam_sim *sim)
3998 {
3999 	sym_intr1(cam_sim_softc(sim));
4000 }
4001 
4002 
4003 /*
4004  *  generic recovery from scsi interrupt
4005  *
4006  *  The doc says that when the chip gets an SCSI interrupt,
4007  *  it tries to stop in an orderly fashion, by completing
4008  *  an instruction fetch that had started or by flushing
4009  *  the DMA fifo for a write to memory that was executing.
4010  *  Such a fashion is not enough to know if the instruction
4011  *  that was just before the current DSP value has been
4012  *  executed or not.
4013  *
4014  *  There are some small SCRIPTS sections that deal with
4015  *  the start queue and the done queue that may break any
4016  *  assomption from the C code if we are interrupted
4017  *  inside, so we reset if this happens. Btw, since these
4018  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4019  *  started SCSI operations, it is very unlikely to happen.
4020  *
4021  *  All the driver data structures are supposed to be
4022  *  allocated from the same 4 GB memory window, so there
4023  *  is a 1 to 1 relationship between DSA and driver data
4024  *  structures. Since we are careful :) to invalidate the
4025  *  DSA when we complete a command or when the SCRIPTS
4026  *  pushes a DSA into a queue, we can trust it when it
4027  *  points to a CCB.
4028  */
4029 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4030 {
4031 	u32	dsp	= INL (nc_dsp);
4032 	u32	dsa	= INL (nc_dsa);
4033 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4034 
4035 	/*
4036 	 *  If we haven't been interrupted inside the SCRIPTS
4037 	 *  critical pathes, we can safely restart the SCRIPTS
4038 	 *  and trust the DSA value if it matches a CCB.
4039 	 */
4040 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4041 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4042 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4043 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4044 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4045 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4046 	    (!(dsp > SCRIPTA_BA (np, done) &&
4047 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4048 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4049 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4050 		/*
4051 		 *  If we have a CCB, let the SCRIPTS call us back for
4052 		 *  the handling of the error with SCRATCHA filled with
4053 		 *  STARTPOS. This way, we will be able to freeze the
4054 		 *  device queue and requeue awaiting IOs.
4055 		 */
4056 		if (cp) {
4057 			cp->host_status = hsts;
4058 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4059 		}
4060 		/*
4061 		 *  Otherwise just restart the SCRIPTS.
4062 		 */
4063 		else {
4064 			OUTL (nc_dsa, 0xffffff);
4065 			OUTL_DSP (SCRIPTA_BA (np, start));
4066 		}
4067 	}
4068 	else
4069 		goto reset_all;
4070 
4071 	return;
4072 
4073 reset_all:
4074 	sym_start_reset(np);
4075 }
4076 
4077 /*
4078  *  chip exception handler for selection timeout
4079  */
4080 static void sym_int_sto (hcb_p np)
4081 {
4082 	u32 dsp	= INL (nc_dsp);
4083 
4084 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4085 
4086 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4087 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4088 	else
4089 		sym_start_reset(np);
4090 }
4091 
4092 /*
4093  *  chip exception handler for unexpected disconnect
4094  */
4095 static void sym_int_udc (hcb_p np)
4096 {
4097 	printf ("%s: unexpected disconnect\n", sym_name(np));
4098 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4099 }
4100 
4101 /*
4102  *  chip exception handler for SCSI bus mode change
4103  *
4104  *  spi2-r12 11.2.3 says a transceiver mode change must
4105  *  generate a reset event and a device that detects a reset
4106  *  event shall initiate a hard reset. It says also that a
4107  *  device that detects a mode change shall set data transfer
4108  *  mode to eight bit asynchronous, etc...
4109  *  So, just reinitializing all except chip should be enough.
4110  */
4111 static void sym_int_sbmc (hcb_p np)
4112 {
4113 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4114 
4115 	/*
4116 	 *  Notify user.
4117 	 */
4118 	xpt_print_path(np->path);
4119 	printf("SCSI BUS mode change from %s to %s.\n",
4120 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4121 
4122 	/*
4123 	 *  Should suspend command processing for a few seconds and
4124 	 *  reinitialize all except the chip.
4125 	 */
4126 	sym_init (np, 2);
4127 }
4128 
4129 /*
4130  *  chip exception handler for SCSI parity error.
4131  *
4132  *  When the chip detects a SCSI parity error and is
4133  *  currently executing a (CH)MOV instruction, it does
4134  *  not interrupt immediately, but tries to finish the
4135  *  transfer of the current scatter entry before
4136  *  interrupting. The following situations may occur:
4137  *
4138  *  - The complete scatter entry has been transferred
4139  *    without the device having changed phase.
4140  *    The chip will then interrupt with the DSP pointing
4141  *    to the instruction that follows the MOV.
4142  *
4143  *  - A phase mismatch occurs before the MOV finished
4144  *    and phase errors are to be handled by the C code.
4145  *    The chip will then interrupt with both PAR and MA
4146  *    conditions set.
4147  *
4148  *  - A phase mismatch occurs before the MOV finished and
4149  *    phase errors are to be handled by SCRIPTS.
4150  *    The chip will load the DSP with the phase mismatch
4151  *    JUMP address and interrupt the host processor.
4152  */
4153 static void sym_int_par (hcb_p np, u_short sist)
4154 {
4155 	u_char	hsts	= INB (HS_PRT);
4156 	u32	dsp	= INL (nc_dsp);
4157 	u32	dbc	= INL (nc_dbc);
4158 	u32	dsa	= INL (nc_dsa);
4159 	u_char	sbcl	= INB (nc_sbcl);
4160 	u_char	cmd	= dbc >> 24;
4161 	int phase	= cmd & 7;
4162 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4163 
4164 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4165 		sym_name(np), hsts, dbc, sbcl);
4166 
4167 	/*
4168 	 *  Check that the chip is connected to the SCSI BUS.
4169 	 */
4170 	if (!(INB (nc_scntl1) & ISCON)) {
4171 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4172 		return;
4173 	}
4174 
4175 	/*
4176 	 *  If the nexus is not clearly identified, reset the bus.
4177 	 *  We will try to do better later.
4178 	 */
4179 	if (!cp)
4180 		goto reset_all;
4181 
4182 	/*
4183 	 *  Check instruction was a MOV, direction was INPUT and
4184 	 *  ATN is asserted.
4185 	 */
4186 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4187 		goto reset_all;
4188 
4189 	/*
4190 	 *  Keep track of the parity error.
4191 	 */
4192 	OUTONB (HF_PRT, HF_EXT_ERR);
4193 	cp->xerr_status |= XE_PARITY_ERR;
4194 
4195 	/*
4196 	 *  Prepare the message to send to the device.
4197 	 */
4198 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4199 
4200 	/*
4201 	 *  If the old phase was DATA IN phase, we have to deal with
4202 	 *  the 3 situations described above.
4203 	 *  For other input phases (MSG IN and STATUS), the device
4204 	 *  must resend the whole thing that failed parity checking
4205 	 *  or signal error. So, jumping to dispatcher should be OK.
4206 	 */
4207 	if (phase == 1 || phase == 5) {
4208 		/* Phase mismatch handled by SCRIPTS */
4209 		if (dsp == SCRIPTB_BA (np, pm_handle))
4210 			OUTL_DSP (dsp);
4211 		/* Phase mismatch handled by the C code */
4212 		else if (sist & MA)
4213 			sym_int_ma (np);
4214 		/* No phase mismatch occurred */
4215 		else {
4216 			OUTL (nc_temp, dsp);
4217 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4218 		}
4219 	}
4220 	else
4221 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4222 	return;
4223 
4224 reset_all:
4225 	sym_start_reset(np);
4226 }
4227 
4228 /*
4229  *  chip exception handler for phase errors.
4230  *
4231  *  We have to construct a new transfer descriptor,
4232  *  to transfer the rest of the current block.
4233  */
4234 static void sym_int_ma (hcb_p np)
4235 {
4236 	u32	dbc;
4237 	u32	rest;
4238 	u32	dsp;
4239 	u32	dsa;
4240 	u32	nxtdsp;
4241 	u32	*vdsp;
4242 	u32	oadr, olen;
4243 	u32	*tblp;
4244         u32	newcmd;
4245 	u_int	delta;
4246 	u_char	cmd;
4247 	u_char	hflags, hflags0;
4248 	struct	sym_pmc *pm;
4249 	ccb_p	cp;
4250 
4251 	dsp	= INL (nc_dsp);
4252 	dbc	= INL (nc_dbc);
4253 	dsa	= INL (nc_dsa);
4254 
4255 	cmd	= dbc >> 24;
4256 	rest	= dbc & 0xffffff;
4257 	delta	= 0;
4258 
4259 	/*
4260 	 *  locate matching cp if any.
4261 	 */
4262 	cp = sym_ccb_from_dsa(np, dsa);
4263 
4264 	/*
4265 	 *  Donnot take into account dma fifo and various buffers in
4266 	 *  INPUT phase since the chip flushes everything before
4267 	 *  raising the MA interrupt for interrupted INPUT phases.
4268 	 *  For DATA IN phase, we will check for the SWIDE later.
4269 	 */
4270 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4271 		u_char ss0, ss2;
4272 
4273 		if (np->features & FE_DFBC)
4274 			delta = INW (nc_dfbc);
4275 		else {
4276 			u32 dfifo;
4277 
4278 			/*
4279 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4280 			 */
4281 			dfifo = INL(nc_dfifo);
4282 
4283 			/*
4284 			 *  Calculate remaining bytes in DMA fifo.
4285 			 *  (CTEST5 = dfifo >> 16)
4286 			 */
4287 			if (dfifo & (DFS << 16))
4288 				delta = ((((dfifo >> 8) & 0x300) |
4289 				          (dfifo & 0xff)) - rest) & 0x3ff;
4290 			else
4291 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4292 		}
4293 
4294 		/*
4295 		 *  The data in the dma fifo has not been transfered to
4296 		 *  the target -> add the amount to the rest
4297 		 *  and clear the data.
4298 		 *  Check the sstat2 register in case of wide transfer.
4299 		 */
4300 		rest += delta;
4301 		ss0  = INB (nc_sstat0);
4302 		if (ss0 & OLF) rest++;
4303 		if (!(np->features & FE_C10))
4304 			if (ss0 & ORF) rest++;
4305 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4306 			ss2 = INB (nc_sstat2);
4307 			if (ss2 & OLF1) rest++;
4308 			if (!(np->features & FE_C10))
4309 				if (ss2 & ORF1) rest++;
4310 		};
4311 
4312 		/*
4313 		 *  Clear fifos.
4314 		 */
4315 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4316 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4317 	}
4318 
4319 	/*
4320 	 *  log the information
4321 	 */
4322 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4323 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4324 			(unsigned) rest, (unsigned) delta);
4325 
4326 	/*
4327 	 *  try to find the interrupted script command,
4328 	 *  and the address at which to continue.
4329 	 */
4330 	vdsp	= 0;
4331 	nxtdsp	= 0;
4332 	if	(dsp >  np->scripta_ba &&
4333 		 dsp <= np->scripta_ba + np->scripta_sz) {
4334 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4335 		nxtdsp = dsp;
4336 	}
4337 	else if	(dsp >  np->scriptb_ba &&
4338 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4339 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4340 		nxtdsp = dsp;
4341 	}
4342 
4343 	/*
4344 	 *  log the information
4345 	 */
4346 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4347 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4348 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4349 	};
4350 
4351 	if (!vdsp) {
4352 		printf ("%s: interrupted SCRIPT address not found.\n",
4353 			sym_name (np));
4354 		goto reset_all;
4355 	}
4356 
4357 	if (!cp) {
4358 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4359 			sym_name (np));
4360 		goto reset_all;
4361 	}
4362 
4363 	/*
4364 	 *  get old startaddress and old length.
4365 	 */
4366 	oadr = scr_to_cpu(vdsp[1]);
4367 
4368 	if (cmd & 0x10) {	/* Table indirect */
4369 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4370 		olen = scr_to_cpu(tblp[0]);
4371 		oadr = scr_to_cpu(tblp[1]);
4372 	} else {
4373 		tblp = (u32 *) 0;
4374 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4375 	};
4376 
4377 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4378 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4379 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4380 			tblp,
4381 			(unsigned) olen,
4382 			(unsigned) oadr);
4383 	};
4384 
4385 	/*
4386 	 *  check cmd against assumed interrupted script command.
4387 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4388 	 *  the phase.
4389 	 */
4390 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4391 		PRINT_ADDR(cp);
4392 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4393 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4394 
4395 		goto reset_all;
4396 	};
4397 
4398 	/*
4399 	 *  if old phase not dataphase, leave here.
4400 	 */
4401 	if (cmd & 2) {
4402 		PRINT_ADDR(cp);
4403 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4404 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4405 			(unsigned)oadr, (unsigned)rest);
4406 		goto unexpected_phase;
4407 	};
4408 
4409 	/*
4410 	 *  Choose the correct PM save area.
4411 	 *
4412 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4413 	 *  this stuff. The equivalent code is implemented in
4414 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4415 	 *  handle PM from the SCRIPTS processor.
4416 	 */
4417 	hflags0 = INB (HF_PRT);
4418 	hflags = hflags0;
4419 
4420 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4421 		if (hflags & HF_IN_PM0)
4422 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4423 		else if	(hflags & HF_IN_PM1)
4424 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4425 
4426 		if (hflags & HF_DP_SAVED)
4427 			hflags ^= HF_ACT_PM;
4428 	}
4429 
4430 	if (!(hflags & HF_ACT_PM)) {
4431 		pm = &cp->phys.pm0;
4432 		newcmd = SCRIPTA_BA (np, pm0_data);
4433 	}
4434 	else {
4435 		pm = &cp->phys.pm1;
4436 		newcmd = SCRIPTA_BA (np, pm1_data);
4437 	}
4438 
4439 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4440 	if (hflags != hflags0)
4441 		OUTB (HF_PRT, hflags);
4442 
4443 	/*
4444 	 *  fillin the phase mismatch context
4445 	 */
4446 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4447 	pm->sg.size = cpu_to_scr(rest);
4448 	pm->ret     = cpu_to_scr(nxtdsp);
4449 
4450 	/*
4451 	 *  If we have a SWIDE,
4452 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4453 	 *  - compute the SCRIPTS address to restart from,
4454 	 *  - move current data pointer context by one byte.
4455 	 */
4456 	nxtdsp = SCRIPTA_BA (np, dispatch);
4457 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4458 	    (INB (nc_scntl2) & WSR)) {
4459 		u32 tmp;
4460 
4461 		/*
4462 		 *  Set up the table indirect for the MOVE
4463 		 *  of the residual byte and adjust the data
4464 		 *  pointer context.
4465 		 */
4466 		tmp = scr_to_cpu(pm->sg.addr);
4467 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4468 		pm->sg.addr = cpu_to_scr(tmp + 1);
4469 		tmp = scr_to_cpu(pm->sg.size);
4470 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4471 		pm->sg.size = cpu_to_scr(tmp - 1);
4472 
4473 		/*
4474 		 *  If only the residual byte is to be moved,
4475 		 *  no PM context is needed.
4476 		 */
4477 		if ((tmp&0xffffff) == 1)
4478 			newcmd = pm->ret;
4479 
4480 		/*
4481 		 *  Prepare the address of SCRIPTS that will
4482 		 *  move the residual byte to memory.
4483 		 */
4484 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4485 	}
4486 
4487 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4488 		PRINT_ADDR(cp);
4489 		printf ("PM %x %x %x / %x %x %x.\n",
4490 			hflags0, hflags, newcmd,
4491 			(unsigned)scr_to_cpu(pm->sg.addr),
4492 			(unsigned)scr_to_cpu(pm->sg.size),
4493 			(unsigned)scr_to_cpu(pm->ret));
4494 	}
4495 
4496 	/*
4497 	 *  Restart the SCRIPTS processor.
4498 	 */
4499 	OUTL (nc_temp, newcmd);
4500 	OUTL_DSP (nxtdsp);
4501 	return;
4502 
4503 	/*
4504 	 *  Unexpected phase changes that occurs when the current phase
4505 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4506 	 *  Such event may only happen when the SCRIPTS is using a
4507 	 *  multibyte SCSI MOVE.
4508 	 *
4509 	 *  Phase change		Some possible cause
4510 	 *
4511 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4512 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4513 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4514 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4515 	 *  			negotiation messages.
4516 	 *
4517 	 *  The code below does not care of the new phase and so
4518 	 *  trusts the target. Why to annoy it ?
4519 	 *  If the interrupted phase is COMMAND phase, we restart at
4520 	 *  dispatcher.
4521 	 *  If a target does not get all the messages after selection,
4522 	 *  the code assumes blindly that the target discards extended
4523 	 *  messages and clears the negotiation status.
4524 	 *  If the target does not want all our response to negotiation,
4525 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4526 	 *  bloat for such a should_not_happen situation).
4527 	 *  In all other situation, we reset the BUS.
4528 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4529 	 */
4530 unexpected_phase:
4531 	dsp -= 8;
4532 	nxtdsp = 0;
4533 
4534 	switch (cmd & 7) {
4535 	case 2:	/* COMMAND phase */
4536 		nxtdsp = SCRIPTA_BA (np, dispatch);
4537 		break;
4538 #if 0
4539 	case 3:	/* STATUS  phase */
4540 		nxtdsp = SCRIPTA_BA (np, dispatch);
4541 		break;
4542 #endif
4543 	case 6:	/* MSG OUT phase */
4544 		/*
4545 		 *  If the device may want to use untagged when we want
4546 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4547 		 *  since we will not be able to handle reselect.
4548 		 *  Otherwise, we just don't care.
4549 		 */
4550 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4551 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4552 				cp->host_status = HS_BUSY;
4553 				np->msgout[0] = M_IDENTIFY | cp->lun;
4554 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4555 			}
4556 			else
4557 				nxtdsp = SCRIPTB_BA (np, ident_break);
4558 		}
4559 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4560 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4561 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4562 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4563 		}
4564 		break;
4565 #if 0
4566 	case 7:	/* MSG IN  phase */
4567 		nxtdsp = SCRIPTA_BA (np, clrack);
4568 		break;
4569 #endif
4570 	}
4571 
4572 	if (nxtdsp) {
4573 		OUTL_DSP (nxtdsp);
4574 		return;
4575 	}
4576 
4577 reset_all:
4578 	sym_start_reset(np);
4579 }
4580 
4581 /*
4582  *  Dequeue from the START queue all CCBs that match
4583  *  a given target/lun/task condition (-1 means all),
4584  *  and move them from the BUSY queue to the COMP queue
4585  *  with CAM_REQUEUE_REQ status condition.
4586  *  This function is used during error handling/recovery.
4587  *  It is called with SCRIPTS not running.
4588  */
4589 static int
4590 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4591 {
4592 	int j;
4593 	ccb_p cp;
4594 
4595 	/*
4596 	 *  Make sure the starting index is within range.
4597 	 */
4598 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4599 
4600 	/*
4601 	 *  Walk until end of START queue and dequeue every job
4602 	 *  that matches the target/lun/task condition.
4603 	 */
4604 	j = i;
4605 	while (i != np->squeueput) {
4606 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4607 		assert(cp);
4608 #ifdef SYM_CONF_IARB_SUPPORT
4609 		/* Forget hints for IARB, they may be no longer relevant */
4610 		cp->host_flags &= ~HF_HINT_IARB;
4611 #endif
4612 		if ((target == -1 || cp->target == target) &&
4613 		    (lun    == -1 || cp->lun    == lun)    &&
4614 		    (task   == -1 || cp->tag    == task)) {
4615 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4616 			sym_remque(&cp->link_ccbq);
4617 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4618 		}
4619 		else {
4620 			if (i != j)
4621 				np->squeue[j] = np->squeue[i];
4622 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4623 		}
4624 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4625 	}
4626 	if (i != j)		/* Copy back the idle task if needed */
4627 		np->squeue[j] = np->squeue[i];
4628 	np->squeueput = j;	/* Update our current start queue pointer */
4629 
4630 	return (i - j) / 2;
4631 }
4632 
4633 /*
4634  *  Complete all CCBs queued to the COMP queue.
4635  *
4636  *  These CCBs are assumed:
4637  *  - Not to be referenced either by devices or
4638  *    SCRIPTS-related queues and datas.
4639  *  - To have to be completed with an error condition
4640  *    or requeued.
4641  *
4642  *  The device queue freeze count is incremented
4643  *  for each CCB that does not prevent this.
4644  *  This function is called when all CCBs involved
4645  *  in error handling/recovery have been reaped.
4646  */
4647 static void
4648 sym_flush_comp_queue(hcb_p np, int cam_status)
4649 {
4650 	SYM_QUEHEAD *qp;
4651 	ccb_p cp;
4652 
4653 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
4654 		union ccb *ccb;
4655 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4656 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4657 		/* Leave quiet CCBs waiting for resources */
4658 		if (cp->host_status == HS_WAIT)
4659 			continue;
4660 		ccb = cp->cam_ccb;
4661 		if (cam_status)
4662 			sym_set_cam_status(ccb, cam_status);
4663 		sym_freeze_cam_ccb(ccb);
4664 		sym_xpt_done(np, ccb, cp);
4665 		sym_free_ccb(np, cp);
4666 	}
4667 }
4668 
4669 /*
4670  *  chip handler for bad SCSI status condition
4671  *
4672  *  In case of bad SCSI status, we unqueue all the tasks
4673  *  currently queued to the controller but not yet started
4674  *  and then restart the SCRIPTS processor immediately.
4675  *
4676  *  QUEUE FULL and BUSY conditions are handled the same way.
4677  *  Basically all the not yet started tasks are requeued in
4678  *  device queue and the queue is frozen until a completion.
4679  *
4680  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4681  *  the CCB of the failed command to prepare a REQUEST SENSE
4682  *  SCSI command and queue it to the controller queue.
4683  *
4684  *  SCRATCHA is assumed to have been loaded with STARTPOS
4685  *  before the SCRIPTS called the C code.
4686  */
4687 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4688 {
4689 	tcb_p tp	= &np->target[cp->target];
4690 	u32		startp;
4691 	u_char		s_status = cp->ssss_status;
4692 	u_char		h_flags  = cp->host_flags;
4693 	int		msglen;
4694 	int		nego;
4695 	int		i;
4696 
4697 	SYM_LOCK_ASSERT(MA_OWNED);
4698 
4699 	/*
4700 	 *  Compute the index of the next job to start from SCRIPTS.
4701 	 */
4702 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4703 
4704 	/*
4705 	 *  The last CCB queued used for IARB hint may be
4706 	 *  no longer relevant. Forget it.
4707 	 */
4708 #ifdef SYM_CONF_IARB_SUPPORT
4709 	if (np->last_cp)
4710 		np->last_cp = NULL;
4711 #endif
4712 
4713 	/*
4714 	 *  Now deal with the SCSI status.
4715 	 */
4716 	switch(s_status) {
4717 	case S_BUSY:
4718 	case S_QUEUE_FULL:
4719 		if (sym_verbose >= 2) {
4720 			PRINT_ADDR(cp);
4721 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4722 		}
4723 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4724 		sym_complete_error (np, cp);
4725 		break;
4726 	case S_TERMINATED:
4727 	case S_CHECK_COND:
4728 		/*
4729 		 *  If we get an SCSI error when requesting sense, give up.
4730 		 */
4731 		if (h_flags & HF_SENSE) {
4732 			sym_complete_error (np, cp);
4733 			break;
4734 		}
4735 
4736 		/*
4737 		 *  Dequeue all queued CCBs for that device not yet started,
4738 		 *  and restart the SCRIPTS processor immediately.
4739 		 */
4740 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4741 		OUTL_DSP (SCRIPTA_BA (np, start));
4742 
4743  		/*
4744 		 *  Save some info of the actual IO.
4745 		 *  Compute the data residual.
4746 		 */
4747 		cp->sv_scsi_status = cp->ssss_status;
4748 		cp->sv_xerr_status = cp->xerr_status;
4749 		cp->sv_resid = sym_compute_residual(np, cp);
4750 
4751 		/*
4752 		 *  Prepare all needed data structures for
4753 		 *  requesting sense data.
4754 		 */
4755 
4756 		/*
4757 		 *  identify message
4758 		 */
4759 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4760 		msglen = 1;
4761 
4762 		/*
4763 		 *  If we are currently using anything different from
4764 		 *  async. 8 bit data transfers with that target,
4765 		 *  start a negotiation, since the device may want
4766 		 *  to report us a UNIT ATTENTION condition due to
4767 		 *  a cause we currently ignore, and we donnot want
4768 		 *  to be stuck with WIDE and/or SYNC data transfer.
4769 		 *
4770 		 *  cp->nego_status is filled by sym_prepare_nego().
4771 		 */
4772 		cp->nego_status = 0;
4773 		nego = 0;
4774 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4775 			nego = NS_PPR;
4776 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4777 			nego = NS_WIDE;
4778 		else if (tp->tinfo.current.offset != 0)
4779 			nego = NS_SYNC;
4780 		if (nego)
4781 			msglen +=
4782 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4783 		/*
4784 		 *  Message table indirect structure.
4785 		 */
4786 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4787 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4788 
4789 		/*
4790 		 *  sense command
4791 		 */
4792 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4793 		cp->phys.cmd.size	= cpu_to_scr(6);
4794 
4795 		/*
4796 		 *  patch requested size into sense command
4797 		 */
4798 		cp->sensecmd[0]		= 0x03;
4799 		cp->sensecmd[1]		= cp->lun << 5;
4800 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4801 			cp->sensecmd[1]	= 0;
4802 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4803 		cp->data_len		= SYM_SNS_BBUF_LEN;
4804 
4805 		/*
4806 		 *  sense data
4807 		 */
4808 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4809 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4810 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4811 
4812 		/*
4813 		 *  requeue the command.
4814 		 */
4815 		startp = SCRIPTB_BA (np, sdata_in);
4816 
4817 		cp->phys.head.savep	= cpu_to_scr(startp);
4818 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4819 		cp->phys.head.lastp	= cpu_to_scr(startp);
4820 		cp->startp	= cpu_to_scr(startp);
4821 
4822 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4823 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4824 		cp->ssss_status = S_ILLEGAL;
4825 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4826 		cp->xerr_status = 0;
4827 		cp->extra_bytes = 0;
4828 
4829 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4830 
4831 		/*
4832 		 *  Requeue the command.
4833 		 */
4834 		sym_put_start_queue(np, cp);
4835 
4836 		/*
4837 		 *  Give back to upper layer everything we have dequeued.
4838 		 */
4839 		sym_flush_comp_queue(np, 0);
4840 		break;
4841 	}
4842 }
4843 
4844 /*
4845  *  After a device has accepted some management message
4846  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4847  *  a device signals a UNIT ATTENTION condition, some
4848  *  tasks are thrown away by the device. We are required
4849  *  to reflect that on our tasks list since the device
4850  *  will never complete these tasks.
4851  *
4852  *  This function move from the BUSY queue to the COMP
4853  *  queue all disconnected CCBs for a given target that
4854  *  match the following criteria:
4855  *  - lun=-1  means any logical UNIT otherwise a given one.
4856  *  - task=-1 means any task, otherwise a given one.
4857  */
4858 static int
4859 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4860 {
4861 	SYM_QUEHEAD qtmp, *qp;
4862 	int i = 0;
4863 	ccb_p cp;
4864 
4865 	/*
4866 	 *  Move the entire BUSY queue to our temporary queue.
4867 	 */
4868 	sym_que_init(&qtmp);
4869 	sym_que_splice(&np->busy_ccbq, &qtmp);
4870 	sym_que_init(&np->busy_ccbq);
4871 
4872 	/*
4873 	 *  Put all CCBs that matches our criteria into
4874 	 *  the COMP queue and put back other ones into
4875 	 *  the BUSY queue.
4876 	 */
4877 	while ((qp = sym_remque_head(&qtmp)) != 0) {
4878 		union ccb *ccb;
4879 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4880 		ccb = cp->cam_ccb;
4881 		if (cp->host_status != HS_DISCONNECT ||
4882 		    cp->target != target	     ||
4883 		    (lun  != -1 && cp->lun != lun)   ||
4884 		    (task != -1 &&
4885 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4886 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4887 			continue;
4888 		}
4889 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4890 
4891 		/* Preserve the software timeout condition */
4892 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4893 			sym_set_cam_status(ccb, cam_status);
4894 		++i;
4895 #if 0
4896 printf("XXXX TASK @%p CLEARED\n", cp);
4897 #endif
4898 	}
4899 	return i;
4900 }
4901 
4902 /*
4903  *  chip handler for TASKS recovery
4904  *
4905  *  We cannot safely abort a command, while the SCRIPTS
4906  *  processor is running, since we just would be in race
4907  *  with it.
4908  *
4909  *  As long as we have tasks to abort, we keep the SEM
4910  *  bit set in the ISTAT. When this bit is set, the
4911  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4912  *  each time it enters the scheduler.
4913  *
4914  *  If we have to reset a target, clear tasks of a unit,
4915  *  or to perform the abort of a disconnected job, we
4916  *  restart the SCRIPTS for selecting the target. Once
4917  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4918  *  If it loses arbitration, the SCRIPTS will interrupt again
4919  *  the next time it will enter its scheduler, and so on ...
4920  *
4921  *  On SIR_TARGET_SELECTED, we scan for the more
4922  *  appropriate thing to do:
4923  *
4924  *  - If nothing, we just sent a M_ABORT message to the
4925  *    target to get rid of the useless SCSI bus ownership.
4926  *    According to the specs, no tasks shall be affected.
4927  *  - If the target is to be reset, we send it a M_RESET
4928  *    message.
4929  *  - If a logical UNIT is to be cleared , we send the
4930  *    IDENTIFY(lun) + M_ABORT.
4931  *  - If an untagged task is to be aborted, we send the
4932  *    IDENTIFY(lun) + M_ABORT.
4933  *  - If a tagged task is to be aborted, we send the
4934  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4935  *
4936  *  Once our 'kiss of death' :) message has been accepted
4937  *  by the target, the SCRIPTS interrupts again
4938  *  (SIR_ABORT_SENT). On this interrupt, we complete
4939  *  all the CCBs that should have been aborted by the
4940  *  target according to our message.
4941  */
4942 static void sym_sir_task_recovery(hcb_p np, int num)
4943 {
4944 	SYM_QUEHEAD *qp;
4945 	ccb_p cp;
4946 	tcb_p tp;
4947 	int target=-1, lun=-1, task;
4948 	int i, k;
4949 
4950 	switch(num) {
4951 	/*
4952 	 *  The SCRIPTS processor stopped before starting
4953 	 *  the next command in order to allow us to perform
4954 	 *  some task recovery.
4955 	 */
4956 	case SIR_SCRIPT_STOPPED:
4957 		/*
4958 		 *  Do we have any target to reset or unit to clear ?
4959 		 */
4960 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4961 			tp = &np->target[i];
4962 			if (tp->to_reset ||
4963 			    (tp->lun0p && tp->lun0p->to_clear)) {
4964 				target = i;
4965 				break;
4966 			}
4967 			if (!tp->lunmp)
4968 				continue;
4969 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4970 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4971 					target	= i;
4972 					break;
4973 				}
4974 			}
4975 			if (target != -1)
4976 				break;
4977 		}
4978 
4979 		/*
4980 		 *  If not, walk the busy queue for any
4981 		 *  disconnected CCB to be aborted.
4982 		 */
4983 		if (target == -1) {
4984 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4985 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4986 				if (cp->host_status != HS_DISCONNECT)
4987 					continue;
4988 				if (cp->to_abort) {
4989 					target = cp->target;
4990 					break;
4991 				}
4992 			}
4993 		}
4994 
4995 		/*
4996 		 *  If some target is to be selected,
4997 		 *  prepare and start the selection.
4998 		 */
4999 		if (target != -1) {
5000 			tp = &np->target[target];
5001 			np->abrt_sel.sel_id	= target;
5002 			np->abrt_sel.sel_scntl3 = tp->head.wval;
5003 			np->abrt_sel.sel_sxfer  = tp->head.sval;
5004 			OUTL(nc_dsa, np->hcb_ba);
5005 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
5006 			return;
5007 		}
5008 
5009 		/*
5010 		 *  Now look for a CCB to abort that haven't started yet.
5011 		 *  Btw, the SCRIPTS processor is still stopped, so
5012 		 *  we are not in race.
5013 		 */
5014 		i = 0;
5015 		cp = NULL;
5016 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5017 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5018 			if (cp->host_status != HS_BUSY &&
5019 			    cp->host_status != HS_NEGOTIATE)
5020 				continue;
5021 			if (!cp->to_abort)
5022 				continue;
5023 #ifdef SYM_CONF_IARB_SUPPORT
5024 			/*
5025 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5026 			 *    want to cancel the last queued CCB, since the
5027 			 *    SCRIPTS may have anticipated the selection.
5028 			 */
5029 			if (cp == np->last_cp) {
5030 				cp->to_abort = 0;
5031 				continue;
5032 			}
5033 #endif
5034 			i = 1;	/* Means we have found some */
5035 			break;
5036 		}
5037 		if (!i) {
5038 			/*
5039 			 *  We are done, so we donnot need
5040 			 *  to synchronize with the SCRIPTS anylonger.
5041 			 *  Remove the SEM flag from the ISTAT.
5042 			 */
5043 			np->istat_sem = 0;
5044 			OUTB (nc_istat, SIGP);
5045 			break;
5046 		}
5047 		/*
5048 		 *  Compute index of next position in the start
5049 		 *  queue the SCRIPTS intends to start and dequeue
5050 		 *  all CCBs for that device that haven't been started.
5051 		 */
5052 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5053 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5054 
5055 		/*
5056 		 *  Make sure at least our IO to abort has been dequeued.
5057 		 */
5058 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5059 
5060 		/*
5061 		 *  Keep track in cam status of the reason of the abort.
5062 		 */
5063 		if (cp->to_abort == 2)
5064 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5065 		else
5066 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5067 
5068 		/*
5069 		 *  Complete with error everything that we have dequeued.
5070 	 	 */
5071 		sym_flush_comp_queue(np, 0);
5072 		break;
5073 	/*
5074 	 *  The SCRIPTS processor has selected a target
5075 	 *  we may have some manual recovery to perform for.
5076 	 */
5077 	case SIR_TARGET_SELECTED:
5078 		target = (INB (nc_sdid) & 0xf);
5079 		tp = &np->target[target];
5080 
5081 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5082 
5083 		/*
5084 		 *  If the target is to be reset, prepare a
5085 		 *  M_RESET message and clear the to_reset flag
5086 		 *  since we donnot expect this operation to fail.
5087 		 */
5088 		if (tp->to_reset) {
5089 			np->abrt_msg[0] = M_RESET;
5090 			np->abrt_tbl.size = 1;
5091 			tp->to_reset = 0;
5092 			break;
5093 		}
5094 
5095 		/*
5096 		 *  Otherwise, look for some logical unit to be cleared.
5097 		 */
5098 		if (tp->lun0p && tp->lun0p->to_clear)
5099 			lun = 0;
5100 		else if (tp->lunmp) {
5101 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5102 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5103 					lun = k;
5104 					break;
5105 				}
5106 			}
5107 		}
5108 
5109 		/*
5110 		 *  If a logical unit is to be cleared, prepare
5111 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5112 		 */
5113 		if (lun != -1) {
5114 			lcb_p lp = sym_lp(np, tp, lun);
5115 			lp->to_clear = 0; /* We donnot expect to fail here */
5116 			np->abrt_msg[0] = M_IDENTIFY | lun;
5117 			np->abrt_msg[1] = M_ABORT;
5118 			np->abrt_tbl.size = 2;
5119 			break;
5120 		}
5121 
5122 		/*
5123 		 *  Otherwise, look for some disconnected job to
5124 		 *  abort for this target.
5125 		 */
5126 		i = 0;
5127 		cp = NULL;
5128 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5129 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5130 			if (cp->host_status != HS_DISCONNECT)
5131 				continue;
5132 			if (cp->target != target)
5133 				continue;
5134 			if (!cp->to_abort)
5135 				continue;
5136 			i = 1;	/* Means we have some */
5137 			break;
5138 		}
5139 
5140 		/*
5141 		 *  If we have none, probably since the device has
5142 		 *  completed the command before we won abitration,
5143 		 *  send a M_ABORT message without IDENTIFY.
5144 		 *  According to the specs, the device must just
5145 		 *  disconnect the BUS and not abort any task.
5146 		 */
5147 		if (!i) {
5148 			np->abrt_msg[0] = M_ABORT;
5149 			np->abrt_tbl.size = 1;
5150 			break;
5151 		}
5152 
5153 		/*
5154 		 *  We have some task to abort.
5155 		 *  Set the IDENTIFY(lun)
5156 		 */
5157 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5158 
5159 		/*
5160 		 *  If we want to abort an untagged command, we
5161 		 *  will send an IDENTIFY + M_ABORT.
5162 		 *  Otherwise (tagged command), we will send
5163 		 *  an IDENTIFY + task attributes + ABORT TAG.
5164 		 */
5165 		if (cp->tag == NO_TAG) {
5166 			np->abrt_msg[1] = M_ABORT;
5167 			np->abrt_tbl.size = 2;
5168 		}
5169 		else {
5170 			np->abrt_msg[1] = cp->scsi_smsg[1];
5171 			np->abrt_msg[2] = cp->scsi_smsg[2];
5172 			np->abrt_msg[3] = M_ABORT_TAG;
5173 			np->abrt_tbl.size = 4;
5174 		}
5175 		/*
5176 		 *  Keep track of software timeout condition, since the
5177 		 *  peripheral driver may not count retries on abort
5178 		 *  conditions not due to timeout.
5179 		 */
5180 		if (cp->to_abort == 2)
5181 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5182 		cp->to_abort = 0; /* We donnot expect to fail here */
5183 		break;
5184 
5185 	/*
5186 	 *  The target has accepted our message and switched
5187 	 *  to BUS FREE phase as we expected.
5188 	 */
5189 	case SIR_ABORT_SENT:
5190 		target = (INB (nc_sdid) & 0xf);
5191 		tp = &np->target[target];
5192 
5193 		/*
5194 		**  If we didn't abort anything, leave here.
5195 		*/
5196 		if (np->abrt_msg[0] == M_ABORT)
5197 			break;
5198 
5199 		/*
5200 		 *  If we sent a M_RESET, then a hardware reset has
5201 		 *  been performed by the target.
5202 		 *  - Reset everything to async 8 bit
5203 		 *  - Tell ourself to negotiate next time :-)
5204 		 *  - Prepare to clear all disconnected CCBs for
5205 		 *    this target from our task list (lun=task=-1)
5206 		 */
5207 		lun = -1;
5208 		task = -1;
5209 		if (np->abrt_msg[0] == M_RESET) {
5210 			tp->head.sval = 0;
5211 			tp->head.wval = np->rv_scntl3;
5212 			tp->head.uval = 0;
5213 			tp->tinfo.current.period = 0;
5214 			tp->tinfo.current.offset = 0;
5215 			tp->tinfo.current.width  = BUS_8_BIT;
5216 			tp->tinfo.current.options = 0;
5217 		}
5218 
5219 		/*
5220 		 *  Otherwise, check for the LUN and TASK(s)
5221 		 *  concerned by the cancelation.
5222 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5223 		 *  or an ABORT message :-)
5224 		 */
5225 		else {
5226 			lun = np->abrt_msg[0] & 0x3f;
5227 			if (np->abrt_msg[1] == M_ABORT_TAG)
5228 				task = np->abrt_msg[2];
5229 		}
5230 
5231 		/*
5232 		 *  Complete all the CCBs the device should have
5233 		 *  aborted due to our 'kiss of death' message.
5234 		 */
5235 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5236 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5237 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5238 		sym_flush_comp_queue(np, 0);
5239 
5240 		/*
5241 		 *  If we sent a BDR, make uper layer aware of that.
5242 		 */
5243 		if (np->abrt_msg[0] == M_RESET)
5244 			xpt_async(AC_SENT_BDR, np->path, NULL);
5245 		break;
5246 	}
5247 
5248 	/*
5249 	 *  Print to the log the message we intend to send.
5250 	 */
5251 	if (num == SIR_TARGET_SELECTED) {
5252 		PRINT_TARGET(np, target);
5253 		sym_printl_hex("control msgout:", np->abrt_msg,
5254 			      np->abrt_tbl.size);
5255 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5256 	}
5257 
5258 	/*
5259 	 *  Let the SCRIPTS processor continue.
5260 	 */
5261 	OUTONB_STD ();
5262 }
5263 
5264 /*
5265  *  Gerard's alchemy:) that deals with with the data
5266  *  pointer for both MDP and the residual calculation.
5267  *
5268  *  I didn't want to bloat the code by more than 200
5269  *  lignes for the handling of both MDP and the residual.
5270  *  This has been achieved by using a data pointer
5271  *  representation consisting in an index in the data
5272  *  array (dp_sg) and a negative offset (dp_ofs) that
5273  *  have the following meaning:
5274  *
5275  *  - dp_sg = SYM_CONF_MAX_SG
5276  *    we are at the end of the data script.
5277  *  - dp_sg < SYM_CONF_MAX_SG
5278  *    dp_sg points to the next entry of the scatter array
5279  *    we want to transfer.
5280  *  - dp_ofs < 0
5281  *    dp_ofs represents the residual of bytes of the
5282  *    previous entry scatter entry we will send first.
5283  *  - dp_ofs = 0
5284  *    no residual to send first.
5285  *
5286  *  The function sym_evaluate_dp() accepts an arbitray
5287  *  offset (basically from the MDP message) and returns
5288  *  the corresponding values of dp_sg and dp_ofs.
5289  */
5290 
5291 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5292 {
5293 	u32	dp_scr;
5294 	int	dp_ofs, dp_sg, dp_sgmin;
5295 	int	tmp;
5296 	struct sym_pmc *pm;
5297 
5298 	/*
5299 	 *  Compute the resulted data pointer in term of a script
5300 	 *  address within some DATA script and a signed byte offset.
5301 	 */
5302 	dp_scr = scr;
5303 	dp_ofs = *ofs;
5304 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5305 		pm = &cp->phys.pm0;
5306 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5307 		pm = &cp->phys.pm1;
5308 	else
5309 		pm = NULL;
5310 
5311 	if (pm) {
5312 		dp_scr  = scr_to_cpu(pm->ret);
5313 		dp_ofs -= scr_to_cpu(pm->sg.size);
5314 	}
5315 
5316 	/*
5317 	 *  If we are auto-sensing, then we are done.
5318 	 */
5319 	if (cp->host_flags & HF_SENSE) {
5320 		*ofs = dp_ofs;
5321 		return 0;
5322 	}
5323 
5324 	/*
5325 	 *  Deduce the index of the sg entry.
5326 	 *  Keep track of the index of the first valid entry.
5327 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5328 	 *  end of the data.
5329 	 */
5330 	tmp = scr_to_cpu(cp->phys.head.goalp);
5331 	dp_sg = SYM_CONF_MAX_SG;
5332 	if (dp_scr != tmp)
5333 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5334 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5335 
5336 	/*
5337 	 *  Move to the sg entry the data pointer belongs to.
5338 	 *
5339 	 *  If we are inside the data area, we expect result to be:
5340 	 *
5341 	 *  Either,
5342 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5343 	 *      the data pointer belongs to (or the end of the data)
5344 	 *  Or,
5345 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5346 	 *      the data pointer belongs to + 1.
5347 	 */
5348 	if (dp_ofs < 0) {
5349 		int n;
5350 		while (dp_sg > dp_sgmin) {
5351 			--dp_sg;
5352 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5353 			n = dp_ofs + (tmp & 0xffffff);
5354 			if (n > 0) {
5355 				++dp_sg;
5356 				break;
5357 			}
5358 			dp_ofs = n;
5359 		}
5360 	}
5361 	else if (dp_ofs > 0) {
5362 		while (dp_sg < SYM_CONF_MAX_SG) {
5363 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5364 			dp_ofs -= (tmp & 0xffffff);
5365 			++dp_sg;
5366 			if (dp_ofs <= 0)
5367 				break;
5368 		}
5369 	}
5370 
5371 	/*
5372 	 *  Make sure the data pointer is inside the data area.
5373 	 *  If not, return some error.
5374 	 */
5375 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5376 		goto out_err;
5377 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5378 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5379 		goto out_err;
5380 
5381 	/*
5382 	 *  Save the extreme pointer if needed.
5383 	 */
5384 	if (dp_sg > cp->ext_sg ||
5385             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5386 		cp->ext_sg  = dp_sg;
5387 		cp->ext_ofs = dp_ofs;
5388 	}
5389 
5390 	/*
5391 	 *  Return data.
5392 	 */
5393 	*ofs = dp_ofs;
5394 	return dp_sg;
5395 
5396 out_err:
5397 	return -1;
5398 }
5399 
5400 /*
5401  *  chip handler for MODIFY DATA POINTER MESSAGE
5402  *
5403  *  We also call this function on IGNORE WIDE RESIDUE
5404  *  messages that do not match a SWIDE full condition.
5405  *  Btw, we assume in that situation that such a message
5406  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5407  */
5408 
5409 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5410 {
5411 	int dp_ofs	= ofs;
5412 	u32	dp_scr	= INL (nc_temp);
5413 	u32	dp_ret;
5414 	u32	tmp;
5415 	u_char	hflags;
5416 	int	dp_sg;
5417 	struct	sym_pmc *pm;
5418 
5419 	/*
5420 	 *  Not supported for auto-sense.
5421 	 */
5422 	if (cp->host_flags & HF_SENSE)
5423 		goto out_reject;
5424 
5425 	/*
5426 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5427 	 *  to the resulted data pointer.
5428 	 */
5429 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5430 	if (dp_sg < 0)
5431 		goto out_reject;
5432 
5433 	/*
5434 	 *  And our alchemy:) allows to easily calculate the data
5435 	 *  script address we want to return for the next data phase.
5436 	 */
5437 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5438 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5439 
5440 	/*
5441 	 *  If offset / scatter entry is zero we donnot need
5442 	 *  a context for the new current data pointer.
5443 	 */
5444 	if (dp_ofs == 0) {
5445 		dp_scr = dp_ret;
5446 		goto out_ok;
5447 	}
5448 
5449 	/*
5450 	 *  Get a context for the new current data pointer.
5451 	 */
5452 	hflags = INB (HF_PRT);
5453 
5454 	if (hflags & HF_DP_SAVED)
5455 		hflags ^= HF_ACT_PM;
5456 
5457 	if (!(hflags & HF_ACT_PM)) {
5458 		pm  = &cp->phys.pm0;
5459 		dp_scr = SCRIPTA_BA (np, pm0_data);
5460 	}
5461 	else {
5462 		pm = &cp->phys.pm1;
5463 		dp_scr = SCRIPTA_BA (np, pm1_data);
5464 	}
5465 
5466 	hflags &= ~(HF_DP_SAVED);
5467 
5468 	OUTB (HF_PRT, hflags);
5469 
5470 	/*
5471 	 *  Set up the new current data pointer.
5472 	 *  ofs < 0 there, and for the next data phase, we
5473 	 *  want to transfer part of the data of the sg entry
5474 	 *  corresponding to index dp_sg-1 prior to returning
5475 	 *  to the main data script.
5476 	 */
5477 	pm->ret = cpu_to_scr(dp_ret);
5478 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5479 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5480 	pm->sg.addr = cpu_to_scr(tmp);
5481 	pm->sg.size = cpu_to_scr(-dp_ofs);
5482 
5483 out_ok:
5484 	OUTL (nc_temp, dp_scr);
5485 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5486 	return;
5487 
5488 out_reject:
5489 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5490 }
5491 
5492 
5493 /*
5494  *  chip calculation of the data residual.
5495  *
5496  *  As I used to say, the requirement of data residual
5497  *  in SCSI is broken, useless and cannot be achieved
5498  *  without huge complexity.
5499  *  But most OSes and even the official CAM require it.
5500  *  When stupidity happens to be so widely spread inside
5501  *  a community, it gets hard to convince.
5502  *
5503  *  Anyway, I don't care, since I am not going to use
5504  *  any software that considers this data residual as
5505  *  a relevant information. :)
5506  */
5507 
5508 static int sym_compute_residual(hcb_p np, ccb_p cp)
5509 {
5510 	int dp_sg, dp_sgmin, resid = 0;
5511 	int dp_ofs = 0;
5512 
5513 	/*
5514 	 *  Check for some data lost or just thrown away.
5515 	 *  We are not required to be quite accurate in this
5516 	 *  situation. Btw, if we are odd for output and the
5517 	 *  device claims some more data, it may well happen
5518 	 *  than our residual be zero. :-)
5519 	 */
5520 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5521 		if (cp->xerr_status & XE_EXTRA_DATA)
5522 			resid -= cp->extra_bytes;
5523 		if (cp->xerr_status & XE_SODL_UNRUN)
5524 			++resid;
5525 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5526 			--resid;
5527 	}
5528 
5529 	/*
5530 	 *  If all data has been transferred,
5531 	 *  there is no residual.
5532 	 */
5533 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5534 		return resid;
5535 
5536 	/*
5537 	 *  If no data transfer occurs, or if the data
5538 	 *  pointer is weird, return full residual.
5539 	 */
5540 	if (cp->startp == cp->phys.head.lastp ||
5541 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5542 			    &dp_ofs) < 0) {
5543 		return cp->data_len;
5544 	}
5545 
5546 	/*
5547 	 *  If we were auto-sensing, then we are done.
5548 	 */
5549 	if (cp->host_flags & HF_SENSE) {
5550 		return -dp_ofs;
5551 	}
5552 
5553 	/*
5554 	 *  We are now full comfortable in the computation
5555 	 *  of the data residual (2's complement).
5556 	 */
5557 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5558 	resid = -cp->ext_ofs;
5559 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5560 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5561 		resid += (tmp & 0xffffff);
5562 	}
5563 
5564 	/*
5565 	 *  Hopefully, the result is not too wrong.
5566 	 */
5567 	return resid;
5568 }
5569 
5570 /*
5571  *  Print out the content of a SCSI message.
5572  */
5573 
5574 static int sym_show_msg (u_char * msg)
5575 {
5576 	u_char i;
5577 	printf ("%x",*msg);
5578 	if (*msg==M_EXTENDED) {
5579 		for (i=1;i<8;i++) {
5580 			if (i-1>msg[1]) break;
5581 			printf ("-%x",msg[i]);
5582 		};
5583 		return (i+1);
5584 	} else if ((*msg & 0xf0) == 0x20) {
5585 		printf ("-%x",msg[1]);
5586 		return (2);
5587 	};
5588 	return (1);
5589 }
5590 
5591 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5592 {
5593 	PRINT_ADDR(cp);
5594 	if (label)
5595 		printf ("%s: ", label);
5596 
5597 	(void) sym_show_msg (msg);
5598 	printf (".\n");
5599 }
5600 
5601 /*
5602  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5603  *
5604  *  When we try to negotiate, we append the negotiation message
5605  *  to the identify and (maybe) simple tag message.
5606  *  The host status field is set to HS_NEGOTIATE to mark this
5607  *  situation.
5608  *
5609  *  If the target doesn't answer this message immediately
5610  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5611  *  will be raised eventually.
5612  *  The handler removes the HS_NEGOTIATE status, and sets the
5613  *  negotiated value to the default (async / nowide).
5614  *
5615  *  If we receive a matching answer immediately, we check it
5616  *  for validity, and set the values.
5617  *
5618  *  If we receive a Reject message immediately, we assume the
5619  *  negotiation has failed, and fall back to standard values.
5620  *
5621  *  If we receive a negotiation message while not in HS_NEGOTIATE
5622  *  state, it's a target initiated negotiation. We prepare a
5623  *  (hopefully) valid answer, set our parameters, and send back
5624  *  this answer to the target.
5625  *
5626  *  If the target doesn't fetch the answer (no message out phase),
5627  *  we assume the negotiation has failed, and fall back to default
5628  *  settings (SIR_NEGO_PROTO interrupt).
5629  *
5630  *  When we set the values, we adjust them in all ccbs belonging
5631  *  to this target, in the controller's register, and in the "phys"
5632  *  field of the controller's struct sym_hcb.
5633  */
5634 
5635 /*
5636  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5637  */
5638 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5639 {
5640 	u_char	chg, ofs, per, fak, div;
5641 	int	req = 1;
5642 
5643 	/*
5644 	 *  Synchronous request message received.
5645 	 */
5646 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5647 		sym_print_msg(cp, "sync msgin", np->msgin);
5648 	};
5649 
5650 	/*
5651 	 * request or answer ?
5652 	 */
5653 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5654 		OUTB (HS_PRT, HS_BUSY);
5655 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5656 			goto reject_it;
5657 		req = 0;
5658 	}
5659 
5660 	/*
5661 	 *  get requested values.
5662 	 */
5663 	chg = 0;
5664 	per = np->msgin[3];
5665 	ofs = np->msgin[4];
5666 
5667 	/*
5668 	 *  check values against our limits.
5669 	 */
5670 	if (ofs) {
5671 		if (ofs > np->maxoffs)
5672 			{chg = 1; ofs = np->maxoffs;}
5673 		if (req) {
5674 			if (ofs > tp->tinfo.user.offset)
5675 				{chg = 1; ofs = tp->tinfo.user.offset;}
5676 		}
5677 	}
5678 
5679 	if (ofs) {
5680 		if (per < np->minsync)
5681 			{chg = 1; per = np->minsync;}
5682 		if (req) {
5683 			if (per < tp->tinfo.user.period)
5684 				{chg = 1; per = tp->tinfo.user.period;}
5685 		}
5686 	}
5687 
5688 	div = fak = 0;
5689 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5690 		goto reject_it;
5691 
5692 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5693 		PRINT_ADDR(cp);
5694 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5695 			ofs, per, div, fak, chg);
5696 	}
5697 
5698 	/*
5699 	 *  This was an answer message
5700 	 */
5701 	if (req == 0) {
5702 		if (chg) 	/* Answer wasn't acceptable. */
5703 			goto reject_it;
5704 		sym_setsync (np, cp, ofs, per, div, fak);
5705 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5706 		return;
5707 	}
5708 
5709 	/*
5710 	 *  It was a request. Set value and
5711 	 *  prepare an answer message
5712 	 */
5713 	sym_setsync (np, cp, ofs, per, div, fak);
5714 
5715 	np->msgout[0] = M_EXTENDED;
5716 	np->msgout[1] = 3;
5717 	np->msgout[2] = M_X_SYNC_REQ;
5718 	np->msgout[3] = per;
5719 	np->msgout[4] = ofs;
5720 
5721 	cp->nego_status = NS_SYNC;
5722 
5723 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5724 		sym_print_msg(cp, "sync msgout", np->msgout);
5725 	}
5726 
5727 	np->msgin [0] = M_NOOP;
5728 
5729 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5730 	return;
5731 reject_it:
5732 	sym_setsync (np, cp, 0, 0, 0, 0);
5733 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5734 }
5735 
5736 /*
5737  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5738  */
5739 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5740 {
5741 	u_char	chg, ofs, per, fak, dt, div, wide;
5742 	int	req = 1;
5743 
5744 	/*
5745 	 * Synchronous request message received.
5746 	 */
5747 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5748 		sym_print_msg(cp, "ppr msgin", np->msgin);
5749 	};
5750 
5751 	/*
5752 	 *  get requested values.
5753 	 */
5754 	chg  = 0;
5755 	per  = np->msgin[3];
5756 	ofs  = np->msgin[5];
5757 	wide = np->msgin[6];
5758 	dt   = np->msgin[7] & PPR_OPT_DT;
5759 
5760 	/*
5761 	 * request or answer ?
5762 	 */
5763 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5764 		OUTB (HS_PRT, HS_BUSY);
5765 		if (cp->nego_status && cp->nego_status != NS_PPR)
5766 			goto reject_it;
5767 		req = 0;
5768 	}
5769 
5770 	/*
5771 	 *  check values against our limits.
5772 	 */
5773 	if (wide > np->maxwide)
5774 		{chg = 1; wide = np->maxwide;}
5775 	if (!wide || !(np->features & FE_ULTRA3))
5776 		dt &= ~PPR_OPT_DT;
5777 	if (req) {
5778 		if (wide > tp->tinfo.user.width)
5779 			{chg = 1; wide = tp->tinfo.user.width;}
5780 	}
5781 
5782 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5783 		dt &= ~PPR_OPT_DT;
5784 
5785 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5786 
5787 	if (ofs) {
5788 		if (dt) {
5789 			if (ofs > np->maxoffs_dt)
5790 				{chg = 1; ofs = np->maxoffs_dt;}
5791 		}
5792 		else if (ofs > np->maxoffs)
5793 			{chg = 1; ofs = np->maxoffs;}
5794 		if (req) {
5795 			if (ofs > tp->tinfo.user.offset)
5796 				{chg = 1; ofs = tp->tinfo.user.offset;}
5797 		}
5798 	}
5799 
5800 	if (ofs) {
5801 		if (dt) {
5802 			if (per < np->minsync_dt)
5803 				{chg = 1; per = np->minsync_dt;}
5804 		}
5805 		else if (per < np->minsync)
5806 			{chg = 1; per = np->minsync;}
5807 		if (req) {
5808 			if (per < tp->tinfo.user.period)
5809 				{chg = 1; per = tp->tinfo.user.period;}
5810 		}
5811 	}
5812 
5813 	div = fak = 0;
5814 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5815 		goto reject_it;
5816 
5817 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5818 		PRINT_ADDR(cp);
5819 		printf ("ppr: "
5820 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5821 			dt, ofs, per, wide, div, fak, chg);
5822 	}
5823 
5824 	/*
5825 	 *  It was an answer.
5826 	 */
5827 	if (req == 0) {
5828 		if (chg) 	/* Answer wasn't acceptable */
5829 			goto reject_it;
5830 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5831 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5832 		return;
5833 	}
5834 
5835 	/*
5836 	 *  It was a request. Set value and
5837 	 *  prepare an answer message
5838 	 */
5839 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5840 
5841 	np->msgout[0] = M_EXTENDED;
5842 	np->msgout[1] = 6;
5843 	np->msgout[2] = M_X_PPR_REQ;
5844 	np->msgout[3] = per;
5845 	np->msgout[4] = 0;
5846 	np->msgout[5] = ofs;
5847 	np->msgout[6] = wide;
5848 	np->msgout[7] = dt;
5849 
5850 	cp->nego_status = NS_PPR;
5851 
5852 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5853 		sym_print_msg(cp, "ppr msgout", np->msgout);
5854 	}
5855 
5856 	np->msgin [0] = M_NOOP;
5857 
5858 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5859 	return;
5860 reject_it:
5861 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5862 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5863 	/*
5864 	 *  If it was a device response that should result in
5865 	 *  ST, we may want to try a legacy negotiation later.
5866 	 */
5867 	if (!req && !dt) {
5868 		tp->tinfo.goal.options = 0;
5869 		tp->tinfo.goal.width   = wide;
5870 		tp->tinfo.goal.period  = per;
5871 		tp->tinfo.goal.offset  = ofs;
5872 	}
5873 }
5874 
5875 /*
5876  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5877  */
5878 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5879 {
5880 	u_char	chg, wide;
5881 	int	req = 1;
5882 
5883 	/*
5884 	 *  Wide request message received.
5885 	 */
5886 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5887 		sym_print_msg(cp, "wide msgin", np->msgin);
5888 	};
5889 
5890 	/*
5891 	 * Is it a request from the device?
5892 	 */
5893 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5894 		OUTB (HS_PRT, HS_BUSY);
5895 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5896 			goto reject_it;
5897 		req = 0;
5898 	}
5899 
5900 	/*
5901 	 *  get requested values.
5902 	 */
5903 	chg  = 0;
5904 	wide = np->msgin[3];
5905 
5906 	/*
5907 	 *  check values against driver limits.
5908 	 */
5909 	if (wide > np->maxwide)
5910 		{chg = 1; wide = np->maxwide;}
5911 	if (req) {
5912 		if (wide > tp->tinfo.user.width)
5913 			{chg = 1; wide = tp->tinfo.user.width;}
5914 	}
5915 
5916 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5917 		PRINT_ADDR(cp);
5918 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5919 	}
5920 
5921 	/*
5922 	 * This was an answer message
5923 	 */
5924 	if (req == 0) {
5925 		if (chg)	/*  Answer wasn't acceptable. */
5926 			goto reject_it;
5927 		sym_setwide (np, cp, wide);
5928 
5929 		/*
5930 		 * Negotiate for SYNC immediately after WIDE response.
5931 		 * This allows to negotiate for both WIDE and SYNC on
5932 		 * a single SCSI command (Suggested by Justin Gibbs).
5933 		 */
5934 		if (tp->tinfo.goal.offset) {
5935 			np->msgout[0] = M_EXTENDED;
5936 			np->msgout[1] = 3;
5937 			np->msgout[2] = M_X_SYNC_REQ;
5938 			np->msgout[3] = tp->tinfo.goal.period;
5939 			np->msgout[4] = tp->tinfo.goal.offset;
5940 
5941 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5942 				sym_print_msg(cp, "sync msgout", np->msgout);
5943 			}
5944 
5945 			cp->nego_status = NS_SYNC;
5946 			OUTB (HS_PRT, HS_NEGOTIATE);
5947 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5948 			return;
5949 		}
5950 
5951 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5952 		return;
5953 	};
5954 
5955 	/*
5956 	 *  It was a request, set value and
5957 	 *  prepare an answer message
5958 	 */
5959 	sym_setwide (np, cp, wide);
5960 
5961 	np->msgout[0] = M_EXTENDED;
5962 	np->msgout[1] = 2;
5963 	np->msgout[2] = M_X_WIDE_REQ;
5964 	np->msgout[3] = wide;
5965 
5966 	np->msgin [0] = M_NOOP;
5967 
5968 	cp->nego_status = NS_WIDE;
5969 
5970 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5971 		sym_print_msg(cp, "wide msgout", np->msgout);
5972 	}
5973 
5974 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5975 	return;
5976 reject_it:
5977 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5978 }
5979 
5980 /*
5981  *  Reset SYNC or WIDE to default settings.
5982  *
5983  *  Called when a negotiation does not succeed either
5984  *  on rejection or on protocol error.
5985  *
5986  *  If it was a PPR that made problems, we may want to
5987  *  try a legacy negotiation later.
5988  */
5989 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5990 {
5991 	/*
5992 	 *  any error in negotiation:
5993 	 *  fall back to default mode.
5994 	 */
5995 	switch (cp->nego_status) {
5996 	case NS_PPR:
5997 #if 0
5998 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5999 #else
6000 		tp->tinfo.goal.options = 0;
6001 		if (tp->tinfo.goal.period < np->minsync)
6002 			tp->tinfo.goal.period = np->minsync;
6003 		if (tp->tinfo.goal.offset > np->maxoffs)
6004 			tp->tinfo.goal.offset = np->maxoffs;
6005 #endif
6006 		break;
6007 	case NS_SYNC:
6008 		sym_setsync (np, cp, 0, 0, 0, 0);
6009 		break;
6010 	case NS_WIDE:
6011 		sym_setwide (np, cp, 0);
6012 		break;
6013 	};
6014 	np->msgin [0] = M_NOOP;
6015 	np->msgout[0] = M_NOOP;
6016 	cp->nego_status = 0;
6017 }
6018 
6019 /*
6020  *  chip handler for MESSAGE REJECT received in response to
6021  *  a WIDE or SYNCHRONOUS negotiation.
6022  */
6023 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6024 {
6025 	sym_nego_default(np, tp, cp);
6026 	OUTB (HS_PRT, HS_BUSY);
6027 }
6028 
6029 /*
6030  *  chip exception handler for programmed interrupts.
6031  */
6032 static void sym_int_sir (hcb_p np)
6033 {
6034 	u_char	num	= INB (nc_dsps);
6035 	u32	dsa	= INL (nc_dsa);
6036 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6037 	u_char	target	= INB (nc_sdid) & 0x0f;
6038 	tcb_p	tp	= &np->target[target];
6039 	int	tmp;
6040 
6041 	SYM_LOCK_ASSERT(MA_OWNED);
6042 
6043 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6044 
6045 	switch (num) {
6046 	/*
6047 	 *  Command has been completed with error condition
6048 	 *  or has been auto-sensed.
6049 	 */
6050 	case SIR_COMPLETE_ERROR:
6051 		sym_complete_error(np, cp);
6052 		return;
6053 	/*
6054 	 *  The C code is currently trying to recover from something.
6055 	 *  Typically, user want to abort some command.
6056 	 */
6057 	case SIR_SCRIPT_STOPPED:
6058 	case SIR_TARGET_SELECTED:
6059 	case SIR_ABORT_SENT:
6060 		sym_sir_task_recovery(np, num);
6061 		return;
6062 	/*
6063 	 *  The device didn't go to MSG OUT phase after having
6064 	 *  been selected with ATN. We donnot want to handle
6065 	 *  that.
6066 	 */
6067 	case SIR_SEL_ATN_NO_MSG_OUT:
6068 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6069 			sym_name (np), target);
6070 		goto out_stuck;
6071 	/*
6072 	 *  The device didn't switch to MSG IN phase after
6073 	 *  having reseleted the initiator.
6074 	 */
6075 	case SIR_RESEL_NO_MSG_IN:
6076 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6077 			sym_name (np), target);
6078 		goto out_stuck;
6079 	/*
6080 	 *  After reselection, the device sent a message that wasn't
6081 	 *  an IDENTIFY.
6082 	 */
6083 	case SIR_RESEL_NO_IDENTIFY:
6084 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6085 			sym_name (np), target);
6086 		goto out_stuck;
6087 	/*
6088 	 *  The device reselected a LUN we donnot know about.
6089 	 */
6090 	case SIR_RESEL_BAD_LUN:
6091 		np->msgout[0] = M_RESET;
6092 		goto out;
6093 	/*
6094 	 *  The device reselected for an untagged nexus and we
6095 	 *  haven't any.
6096 	 */
6097 	case SIR_RESEL_BAD_I_T_L:
6098 		np->msgout[0] = M_ABORT;
6099 		goto out;
6100 	/*
6101 	 *  The device reselected for a tagged nexus that we donnot
6102 	 *  have.
6103 	 */
6104 	case SIR_RESEL_BAD_I_T_L_Q:
6105 		np->msgout[0] = M_ABORT_TAG;
6106 		goto out;
6107 	/*
6108 	 *  The SCRIPTS let us know that the device has grabbed
6109 	 *  our message and will abort the job.
6110 	 */
6111 	case SIR_RESEL_ABORTED:
6112 		np->lastmsg = np->msgout[0];
6113 		np->msgout[0] = M_NOOP;
6114 		printf ("%s:%d: message %x sent on bad reselection.\n",
6115 			sym_name (np), target, np->lastmsg);
6116 		goto out;
6117 	/*
6118 	 *  The SCRIPTS let us know that a message has been
6119 	 *  successfully sent to the device.
6120 	 */
6121 	case SIR_MSG_OUT_DONE:
6122 		np->lastmsg = np->msgout[0];
6123 		np->msgout[0] = M_NOOP;
6124 		/* Should we really care of that */
6125 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6126 			if (cp) {
6127 				cp->xerr_status &= ~XE_PARITY_ERR;
6128 				if (!cp->xerr_status)
6129 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6130 			}
6131 		}
6132 		goto out;
6133 	/*
6134 	 *  The device didn't send a GOOD SCSI status.
6135 	 *  We may have some work to do prior to allow
6136 	 *  the SCRIPTS processor to continue.
6137 	 */
6138 	case SIR_BAD_SCSI_STATUS:
6139 		if (!cp)
6140 			goto out;
6141 		sym_sir_bad_scsi_status(np, num, cp);
6142 		return;
6143 	/*
6144 	 *  We are asked by the SCRIPTS to prepare a
6145 	 *  REJECT message.
6146 	 */
6147 	case SIR_REJECT_TO_SEND:
6148 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6149 		np->msgout[0] = M_REJECT;
6150 		goto out;
6151 	/*
6152 	 *  We have been ODD at the end of a DATA IN
6153 	 *  transfer and the device didn't send a
6154 	 *  IGNORE WIDE RESIDUE message.
6155 	 *  It is a data overrun condition.
6156 	 */
6157 	case SIR_SWIDE_OVERRUN:
6158 		if (cp) {
6159 			OUTONB (HF_PRT, HF_EXT_ERR);
6160 			cp->xerr_status |= XE_SWIDE_OVRUN;
6161 		}
6162 		goto out;
6163 	/*
6164 	 *  We have been ODD at the end of a DATA OUT
6165 	 *  transfer.
6166 	 *  It is a data underrun condition.
6167 	 */
6168 	case SIR_SODL_UNDERRUN:
6169 		if (cp) {
6170 			OUTONB (HF_PRT, HF_EXT_ERR);
6171 			cp->xerr_status |= XE_SODL_UNRUN;
6172 		}
6173 		goto out;
6174 	/*
6175 	 *  The device wants us to tranfer more data than
6176 	 *  expected or in the wrong direction.
6177 	 *  The number of extra bytes is in scratcha.
6178 	 *  It is a data overrun condition.
6179 	 */
6180 	case SIR_DATA_OVERRUN:
6181 		if (cp) {
6182 			OUTONB (HF_PRT, HF_EXT_ERR);
6183 			cp->xerr_status |= XE_EXTRA_DATA;
6184 			cp->extra_bytes += INL (nc_scratcha);
6185 		}
6186 		goto out;
6187 	/*
6188 	 *  The device switched to an illegal phase (4/5).
6189 	 */
6190 	case SIR_BAD_PHASE:
6191 		if (cp) {
6192 			OUTONB (HF_PRT, HF_EXT_ERR);
6193 			cp->xerr_status |= XE_BAD_PHASE;
6194 		}
6195 		goto out;
6196 	/*
6197 	 *  We received a message.
6198 	 */
6199 	case SIR_MSG_RECEIVED:
6200 		if (!cp)
6201 			goto out_stuck;
6202 		switch (np->msgin [0]) {
6203 		/*
6204 		 *  We received an extended message.
6205 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6206 		 *  and reject all other extended messages.
6207 		 */
6208 		case M_EXTENDED:
6209 			switch (np->msgin [2]) {
6210 			case M_X_MODIFY_DP:
6211 				if (DEBUG_FLAGS & DEBUG_POINTER)
6212 					sym_print_msg(cp,"modify DP",np->msgin);
6213 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6214 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6215 				sym_modify_dp(np, tp, cp, tmp);
6216 				return;
6217 			case M_X_SYNC_REQ:
6218 				sym_sync_nego(np, tp, cp);
6219 				return;
6220 			case M_X_PPR_REQ:
6221 				sym_ppr_nego(np, tp, cp);
6222 				return;
6223 			case M_X_WIDE_REQ:
6224 				sym_wide_nego(np, tp, cp);
6225 				return;
6226 			default:
6227 				goto out_reject;
6228 			}
6229 			break;
6230 		/*
6231 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6232 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6233 		 *  RESIDUE messages that haven't been anticipated by
6234 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6235 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6236 		 */
6237 		case M_IGN_RESIDUE:
6238 			if (DEBUG_FLAGS & DEBUG_POINTER)
6239 				sym_print_msg(cp,"ign wide residue", np->msgin);
6240 			sym_modify_dp(np, tp, cp, -1);
6241 			return;
6242 		case M_REJECT:
6243 			if (INB (HS_PRT) == HS_NEGOTIATE)
6244 				sym_nego_rejected(np, tp, cp);
6245 			else {
6246 				PRINT_ADDR(cp);
6247 				printf ("M_REJECT received (%x:%x).\n",
6248 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6249 			}
6250 			goto out_clrack;
6251 			break;
6252 		default:
6253 			goto out_reject;
6254 		}
6255 		break;
6256 	/*
6257 	 *  We received an unknown message.
6258 	 *  Ignore all MSG IN phases and reject it.
6259 	 */
6260 	case SIR_MSG_WEIRD:
6261 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6262 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6263 		return;
6264 	/*
6265 	 *  Negotiation failed.
6266 	 *  Target does not send us the reply.
6267 	 *  Remove the HS_NEGOTIATE status.
6268 	 */
6269 	case SIR_NEGO_FAILED:
6270 		OUTB (HS_PRT, HS_BUSY);
6271 	/*
6272 	 *  Negotiation failed.
6273 	 *  Target does not want answer message.
6274 	 */
6275 	case SIR_NEGO_PROTO:
6276 		sym_nego_default(np, tp, cp);
6277 		goto out;
6278 	};
6279 
6280 out:
6281 	OUTONB_STD ();
6282 	return;
6283 out_reject:
6284 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6285 	return;
6286 out_clrack:
6287 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6288 	return;
6289 out_stuck:
6290 	return;
6291 }
6292 
6293 /*
6294  *  Acquire a control block
6295  */
6296 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6297 {
6298 	tcb_p tp = &np->target[tn];
6299 	lcb_p lp = sym_lp(np, tp, ln);
6300 	u_short tag = NO_TAG;
6301 	SYM_QUEHEAD *qp;
6302 	ccb_p cp = (ccb_p) NULL;
6303 
6304 	/*
6305 	 *  Look for a free CCB
6306 	 */
6307 	if (sym_que_empty(&np->free_ccbq))
6308 		goto out;
6309 	qp = sym_remque_head(&np->free_ccbq);
6310 	if (!qp)
6311 		goto out;
6312 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6313 
6314 	/*
6315 	 *  If the LCB is not yet available and the LUN
6316 	 *  has been probed ok, try to allocate the LCB.
6317 	 */
6318 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6319 		lp = sym_alloc_lcb(np, tn, ln);
6320 		if (!lp)
6321 			goto out_free;
6322 	}
6323 
6324 	/*
6325 	 *  If the LCB is not available here, then the
6326 	 *  logical unit is not yet discovered. For those
6327 	 *  ones only accept 1 SCSI IO per logical unit,
6328 	 *  since we cannot allow disconnections.
6329 	 */
6330 	if (!lp) {
6331 		if (!sym_is_bit(tp->busy0_map, ln))
6332 			sym_set_bit(tp->busy0_map, ln);
6333 		else
6334 			goto out_free;
6335 	} else {
6336 		/*
6337 		 *  If we have been asked for a tagged command.
6338 		 */
6339 		if (tag_order) {
6340 			/*
6341 			 *  Debugging purpose.
6342 			 */
6343 			assert(lp->busy_itl == 0);
6344 			/*
6345 			 *  Allocate resources for tags if not yet.
6346 			 */
6347 			if (!lp->cb_tags) {
6348 				sym_alloc_lcb_tags(np, tn, ln);
6349 				if (!lp->cb_tags)
6350 					goto out_free;
6351 			}
6352 			/*
6353 			 *  Get a tag for this SCSI IO and set up
6354 			 *  the CCB bus address for reselection,
6355 			 *  and count it for this LUN.
6356 			 *  Toggle reselect path to tagged.
6357 			 */
6358 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6359 				tag = lp->cb_tags[lp->ia_tag];
6360 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6361 					lp->ia_tag = 0;
6362 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6363 				++lp->busy_itlq;
6364 				lp->head.resel_sa =
6365 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6366 			}
6367 			else
6368 				goto out_free;
6369 		}
6370 		/*
6371 		 *  This command will not be tagged.
6372 		 *  If we already have either a tagged or untagged
6373 		 *  one, refuse to overlap this untagged one.
6374 		 */
6375 		else {
6376 			/*
6377 			 *  Debugging purpose.
6378 			 */
6379 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6380 			/*
6381 			 *  Count this nexus for this LUN.
6382 			 *  Set up the CCB bus address for reselection.
6383 			 *  Toggle reselect path to untagged.
6384 			 */
6385 			if (++lp->busy_itl == 1) {
6386 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6387 				lp->head.resel_sa =
6388 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6389 			}
6390 			else
6391 				goto out_free;
6392 		}
6393 	}
6394 	/*
6395 	 *  Put the CCB into the busy queue.
6396 	 */
6397 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6398 
6399 	/*
6400 	 *  Remember all informations needed to free this CCB.
6401 	 */
6402 	cp->to_abort = 0;
6403 	cp->tag	   = tag;
6404 	cp->target = tn;
6405 	cp->lun    = ln;
6406 
6407 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6408 		PRINT_LUN(np, tn, ln);
6409 		printf ("ccb @%p using tag %d.\n", cp, tag);
6410 	}
6411 
6412 out:
6413 	return cp;
6414 out_free:
6415 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6416 	return NULL;
6417 }
6418 
6419 /*
6420  *  Release one control block
6421  */
6422 static void sym_free_ccb (hcb_p np, ccb_p cp)
6423 {
6424 	tcb_p tp = &np->target[cp->target];
6425 	lcb_p lp = sym_lp(np, tp, cp->lun);
6426 
6427 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6428 		PRINT_LUN(np, cp->target, cp->lun);
6429 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6430 	}
6431 
6432 	/*
6433 	 *  If LCB available,
6434 	 */
6435 	if (lp) {
6436 		/*
6437 		 *  If tagged, release the tag, set the relect path
6438 		 */
6439 		if (cp->tag != NO_TAG) {
6440 			/*
6441 			 *  Free the tag value.
6442 			 */
6443 			lp->cb_tags[lp->if_tag] = cp->tag;
6444 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6445 				lp->if_tag = 0;
6446 			/*
6447 			 *  Make the reselect path invalid,
6448 			 *  and uncount this CCB.
6449 			 */
6450 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6451 			--lp->busy_itlq;
6452 		} else {	/* Untagged */
6453 			/*
6454 			 *  Make the reselect path invalid,
6455 			 *  and uncount this CCB.
6456 			 */
6457 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6458 			--lp->busy_itl;
6459 		}
6460 		/*
6461 		 *  If no JOB active, make the LUN reselect path invalid.
6462 		 */
6463 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6464 			lp->head.resel_sa =
6465 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6466 	}
6467 	/*
6468 	 *  Otherwise, we only accept 1 IO per LUN.
6469 	 *  Clear the bit that keeps track of this IO.
6470 	 */
6471 	else
6472 		sym_clr_bit(tp->busy0_map, cp->lun);
6473 
6474 	/*
6475 	 *  We donnot queue more than 1 ccb per target
6476 	 *  with negotiation at any time. If this ccb was
6477 	 *  used for negotiation, clear this info in the tcb.
6478 	 */
6479 	if (cp == tp->nego_cp)
6480 		tp->nego_cp = NULL;
6481 
6482 #ifdef SYM_CONF_IARB_SUPPORT
6483 	/*
6484 	 *  If we just complete the last queued CCB,
6485 	 *  clear this info that is no longer relevant.
6486 	 */
6487 	if (cp == np->last_cp)
6488 		np->last_cp = NULL;
6489 #endif
6490 
6491 	/*
6492 	 *  Unmap user data from DMA map if needed.
6493 	 */
6494 	if (cp->dmamapped) {
6495 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6496 		cp->dmamapped = 0;
6497 	}
6498 
6499 	/*
6500 	 *  Make this CCB available.
6501 	 */
6502 	cp->cam_ccb = NULL;
6503 	cp->host_status = HS_IDLE;
6504 	sym_remque(&cp->link_ccbq);
6505 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6506 }
6507 
6508 /*
6509  *  Allocate a CCB from memory and initialize its fixed part.
6510  */
6511 static ccb_p sym_alloc_ccb(hcb_p np)
6512 {
6513 	ccb_p cp = NULL;
6514 	int hcode;
6515 
6516 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6517 
6518 	/*
6519 	 *  Prevent from allocating more CCBs than we can
6520 	 *  queue to the controller.
6521 	 */
6522 	if (np->actccbs >= SYM_CONF_MAX_START)
6523 		return NULL;
6524 
6525 	/*
6526 	 *  Allocate memory for this CCB.
6527 	 */
6528 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6529 	if (!cp)
6530 		return NULL;
6531 
6532 	/*
6533 	 *  Allocate a bounce buffer for sense data.
6534 	 */
6535 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6536 	if (!cp->sns_bbuf)
6537 		goto out_free;
6538 
6539 	/*
6540 	 *  Allocate a map for the DMA of user data.
6541 	 */
6542 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6543 		goto out_free;
6544 	/*
6545 	 *  Count it.
6546 	 */
6547 	np->actccbs++;
6548 
6549 	/*
6550 	 * Initialize the callout.
6551 	 */
6552 	callout_init(&cp->ch, 1);
6553 
6554 	/*
6555 	 *  Compute the bus address of this ccb.
6556 	 */
6557 	cp->ccb_ba = vtobus(cp);
6558 
6559 	/*
6560 	 *  Insert this ccb into the hashed list.
6561 	 */
6562 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6563 	cp->link_ccbh = np->ccbh[hcode];
6564 	np->ccbh[hcode] = cp;
6565 
6566 	/*
6567 	 *  Initialize the start and restart actions.
6568 	 */
6569 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6570 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6571 
6572  	/*
6573 	 *  Initilialyze some other fields.
6574 	 */
6575 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6576 
6577 	/*
6578 	 *  Chain into free ccb queue.
6579 	 */
6580 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6581 
6582 	return cp;
6583 out_free:
6584 	if (cp->sns_bbuf)
6585 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6586 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6587 	return NULL;
6588 }
6589 
6590 /*
6591  *  Look up a CCB from a DSA value.
6592  */
6593 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6594 {
6595 	int hcode;
6596 	ccb_p cp;
6597 
6598 	hcode = CCB_HASH_CODE(dsa);
6599 	cp = np->ccbh[hcode];
6600 	while (cp) {
6601 		if (cp->ccb_ba == dsa)
6602 			break;
6603 		cp = cp->link_ccbh;
6604 	}
6605 
6606 	return cp;
6607 }
6608 
6609 /*
6610  *  Target control block initialisation.
6611  *  Nothing important to do at the moment.
6612  */
6613 static void sym_init_tcb (hcb_p np, u_char tn)
6614 {
6615 	/*
6616 	 *  Check some alignments required by the chip.
6617 	 */
6618 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6619 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6620 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6621 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6622 }
6623 
6624 /*
6625  *  Lun control block allocation and initialization.
6626  */
6627 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6628 {
6629 	tcb_p tp = &np->target[tn];
6630 	lcb_p lp = sym_lp(np, tp, ln);
6631 
6632 	/*
6633 	 *  Already done, just return.
6634 	 */
6635 	if (lp)
6636 		return lp;
6637 	/*
6638 	 *  Check against some race.
6639 	 */
6640 	assert(!sym_is_bit(tp->busy0_map, ln));
6641 
6642 	/*
6643 	 *  Initialize the target control block if not yet.
6644 	 */
6645 	sym_init_tcb (np, tn);
6646 
6647 	/*
6648 	 *  Allocate the LCB bus address array.
6649 	 *  Compute the bus address of this table.
6650 	 */
6651 	if (ln && !tp->luntbl) {
6652 		int i;
6653 
6654 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6655 		if (!tp->luntbl)
6656 			goto fail;
6657 		for (i = 0 ; i < 64 ; i++)
6658 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6659 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6660 	}
6661 
6662 	/*
6663 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6664 	 */
6665 	if (ln && !tp->lunmp) {
6666 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6667 				   "LUNMP");
6668 		if (!tp->lunmp)
6669 			goto fail;
6670 	}
6671 
6672 	/*
6673 	 *  Allocate the lcb.
6674 	 *  Make it available to the chip.
6675 	 */
6676 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6677 	if (!lp)
6678 		goto fail;
6679 	if (ln) {
6680 		tp->lunmp[ln] = lp;
6681 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6682 	}
6683 	else {
6684 		tp->lun0p = lp;
6685 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6686 	}
6687 
6688 	/*
6689 	 *  Let the itl task point to error handling.
6690 	 */
6691 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6692 
6693 	/*
6694 	 *  Set the reselect pattern to our default. :)
6695 	 */
6696 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6697 
6698 	/*
6699 	 *  Set user capabilities.
6700 	 */
6701 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6702 
6703 fail:
6704 	return lp;
6705 }
6706 
6707 /*
6708  *  Allocate LCB resources for tagged command queuing.
6709  */
6710 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6711 {
6712 	tcb_p tp = &np->target[tn];
6713 	lcb_p lp = sym_lp(np, tp, ln);
6714 	int i;
6715 
6716 	/*
6717 	 *  If LCB not available, try to allocate it.
6718 	 */
6719 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6720 		return;
6721 
6722 	/*
6723 	 *  Allocate the task table and and the tag allocation
6724 	 *  circular buffer. We want both or none.
6725 	 */
6726 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6727 	if (!lp->itlq_tbl)
6728 		return;
6729 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6730 	if (!lp->cb_tags) {
6731 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6732 		lp->itlq_tbl = 0;
6733 		return;
6734 	}
6735 
6736 	/*
6737 	 *  Initialize the task table with invalid entries.
6738 	 */
6739 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6740 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6741 
6742 	/*
6743 	 *  Fill up the tag buffer with tag numbers.
6744 	 */
6745 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6746 		lp->cb_tags[i] = i;
6747 
6748 	/*
6749 	 *  Make the task table available to SCRIPTS,
6750 	 *  And accept tagged commands now.
6751 	 */
6752 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6753 }
6754 
6755 /*
6756  *  Test the pci bus snoop logic :-(
6757  *
6758  *  Has to be called with interrupts disabled.
6759  */
6760 #ifndef SYM_CONF_IOMAPPED
6761 static int sym_regtest (hcb_p np)
6762 {
6763 	register volatile u32 data;
6764 	/*
6765 	 *  chip registers may NOT be cached.
6766 	 *  write 0xffffffff to a read only register area,
6767 	 *  and try to read it back.
6768 	 */
6769 	data = 0xffffffff;
6770 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6771 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6772 #if 1
6773 	if (data == 0xffffffff) {
6774 #else
6775 	if ((data & 0xe2f0fffd) != 0x02000080) {
6776 #endif
6777 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6778 			(unsigned) data);
6779 		return (0x10);
6780 	};
6781 	return (0);
6782 }
6783 #endif
6784 
6785 static int sym_snooptest (hcb_p np)
6786 {
6787 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6788 	int	i, err=0;
6789 #ifndef SYM_CONF_IOMAPPED
6790 	err |= sym_regtest (np);
6791 	if (err) return (err);
6792 #endif
6793 restart_test:
6794 	/*
6795 	 *  Enable Master Parity Checking as we intend
6796 	 *  to enable it for normal operations.
6797 	 */
6798 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6799 	/*
6800 	 *  init
6801 	 */
6802 	pc  = SCRIPTB0_BA (np, snooptest);
6803 	host_wr = 1;
6804 	sym_wr  = 2;
6805 	/*
6806 	 *  Set memory and register.
6807 	 */
6808 	np->cache = cpu_to_scr(host_wr);
6809 	OUTL (nc_temp, sym_wr);
6810 	/*
6811 	 *  Start script (exchange values)
6812 	 */
6813 	OUTL (nc_dsa, np->hcb_ba);
6814 	OUTL_DSP (pc);
6815 	/*
6816 	 *  Wait 'til done (with timeout)
6817 	 */
6818 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6819 		if (INB(nc_istat) & (INTF|SIP|DIP))
6820 			break;
6821 	if (i>=SYM_SNOOP_TIMEOUT) {
6822 		printf ("CACHE TEST FAILED: timeout.\n");
6823 		return (0x20);
6824 	};
6825 	/*
6826 	 *  Check for fatal DMA errors.
6827 	 */
6828 	dstat = INB (nc_dstat);
6829 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6830 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6831 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6832 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6833 			sym_name(np));
6834 		np->rv_ctest4 &= ~MPEE;
6835 		goto restart_test;
6836 	}
6837 #endif
6838 	if (dstat & (MDPE|BF|IID)) {
6839 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6840 		return (0x80);
6841 	}
6842 	/*
6843 	 *  Save termination position.
6844 	 */
6845 	pc = INL (nc_dsp);
6846 	/*
6847 	 *  Read memory and register.
6848 	 */
6849 	host_rd = scr_to_cpu(np->cache);
6850 	sym_rd  = INL (nc_scratcha);
6851 	sym_bk  = INL (nc_temp);
6852 
6853 	/*
6854 	 *  Check termination position.
6855 	 */
6856 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6857 		printf ("CACHE TEST FAILED: script execution failed.\n");
6858 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6859 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6860 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6861 		return (0x40);
6862 	};
6863 	/*
6864 	 *  Show results.
6865 	 */
6866 	if (host_wr != sym_rd) {
6867 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6868 			(int) host_wr, (int) sym_rd);
6869 		err |= 1;
6870 	};
6871 	if (host_rd != sym_wr) {
6872 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6873 			(int) sym_wr, (int) host_rd);
6874 		err |= 2;
6875 	};
6876 	if (sym_bk != sym_wr) {
6877 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6878 			(int) sym_wr, (int) sym_bk);
6879 		err |= 4;
6880 	};
6881 
6882 	return (err);
6883 }
6884 
6885 /*
6886  *  Determine the chip's clock frequency.
6887  *
6888  *  This is essential for the negotiation of the synchronous
6889  *  transfer rate.
6890  *
6891  *  Note: we have to return the correct value.
6892  *  THERE IS NO SAFE DEFAULT VALUE.
6893  *
6894  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6895  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6896  *  do not have a clock doubler and so are provided with a
6897  *  80 MHz clock. All other fast20 boards incorporate a doubler
6898  *  and so should be delivered with a 40 MHz clock.
6899  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6900  *  clock and provide a clock quadrupler (160 Mhz).
6901  */
6902 
6903 /*
6904  *  Select SCSI clock frequency
6905  */
6906 static void sym_selectclock(hcb_p np, u_char scntl3)
6907 {
6908 	/*
6909 	 *  If multiplier not present or not selected, leave here.
6910 	 */
6911 	if (np->multiplier <= 1) {
6912 		OUTB(nc_scntl3,	scntl3);
6913 		return;
6914 	}
6915 
6916 	if (sym_verbose >= 2)
6917 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6918 
6919 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6920 	/*
6921 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6922 	 *  Otherwise wait 20 micro-seconds.
6923 	 */
6924 	if (np->features & FE_LCKFRQ) {
6925 		int i = 20;
6926 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6927 			UDELAY (20);
6928 		if (!i)
6929 			printf("%s: the chip cannot lock the frequency\n",
6930 				sym_name(np));
6931 	} else
6932 		UDELAY (20);
6933 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6934 	OUTB(nc_scntl3,	scntl3);
6935 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6936 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6937 }
6938 
6939 /*
6940  *  calculate SCSI clock frequency (in KHz)
6941  */
6942 static unsigned getfreq (hcb_p np, int gen)
6943 {
6944 	unsigned int ms = 0;
6945 	unsigned int f;
6946 
6947 	/*
6948 	 * Measure GEN timer delay in order
6949 	 * to calculate SCSI clock frequency
6950 	 *
6951 	 * This code will never execute too
6952 	 * many loop iterations (if DELAY is
6953 	 * reasonably correct). It could get
6954 	 * too low a delay (too high a freq.)
6955 	 * if the CPU is slow executing the
6956 	 * loop for some reason (an NMI, for
6957 	 * example). For this reason we will
6958 	 * if multiple measurements are to be
6959 	 * performed trust the higher delay
6960 	 * (lower frequency returned).
6961 	 */
6962 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6963 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6964 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6965 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6966 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6967 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6968 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6969 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6970 		UDELAY (1000);	/* count ms */
6971 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6972  	/*
6973  	 * set prescaler to divide by whatever 0 means
6974  	 * 0 ought to choose divide by 2, but appears
6975  	 * to set divide by 3.5 mode in my 53c810 ...
6976  	 */
6977  	OUTB (nc_scntl3, 0);
6978 
6979   	/*
6980  	 * adjust for prescaler, and convert into KHz
6981   	 */
6982 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6983 
6984 	if (sym_verbose >= 2)
6985 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6986 			sym_name(np), gen, ms, f);
6987 
6988 	return f;
6989 }
6990 
6991 static unsigned sym_getfreq (hcb_p np)
6992 {
6993 	u_int f1, f2;
6994 	int gen = 11;
6995 
6996 	(void) getfreq (np, gen);	/* throw away first result */
6997 	f1 = getfreq (np, gen);
6998 	f2 = getfreq (np, gen);
6999 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
7000 	return f1;
7001 }
7002 
7003 /*
7004  *  Get/probe chip SCSI clock frequency
7005  */
7006 static void sym_getclock (hcb_p np, int mult)
7007 {
7008 	unsigned char scntl3 = np->sv_scntl3;
7009 	unsigned char stest1 = np->sv_stest1;
7010 	unsigned f1;
7011 
7012 	/*
7013 	 *  For the C10 core, assume 40 MHz.
7014 	 */
7015 	if (np->features & FE_C10) {
7016 		np->multiplier = mult;
7017 		np->clock_khz = 40000 * mult;
7018 		return;
7019 	}
7020 
7021 	np->multiplier = 1;
7022 	f1 = 40000;
7023 	/*
7024 	 *  True with 875/895/896/895A with clock multiplier selected
7025 	 */
7026 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7027 		if (sym_verbose >= 2)
7028 			printf ("%s: clock multiplier found\n", sym_name(np));
7029 		np->multiplier = mult;
7030 	}
7031 
7032 	/*
7033 	 *  If multiplier not found or scntl3 not 7,5,3,
7034 	 *  reset chip and get frequency from general purpose timer.
7035 	 *  Otherwise trust scntl3 BIOS setting.
7036 	 */
7037 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7038 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7039 		f1 = sym_getfreq (np);
7040 
7041 		if (sym_verbose)
7042 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7043 
7044 		if	(f1 <	45000)		f1 =  40000;
7045 		else if (f1 <	55000)		f1 =  50000;
7046 		else				f1 =  80000;
7047 
7048 		if (f1 < 80000 && mult > 1) {
7049 			if (sym_verbose >= 2)
7050 				printf ("%s: clock multiplier assumed\n",
7051 					sym_name(np));
7052 			np->multiplier	= mult;
7053 		}
7054 	} else {
7055 		if	((scntl3 & 7) == 3)	f1 =  40000;
7056 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7057 		else 				f1 = 160000;
7058 
7059 		f1 /= np->multiplier;
7060 	}
7061 
7062 	/*
7063 	 *  Compute controller synchronous parameters.
7064 	 */
7065 	f1		*= np->multiplier;
7066 	np->clock_khz	= f1;
7067 }
7068 
7069 /*
7070  *  Get/probe PCI clock frequency
7071  */
7072 static int sym_getpciclock (hcb_p np)
7073 {
7074 	int f = 0;
7075 
7076 	/*
7077 	 *  For the C1010-33, this doesn't work.
7078 	 *  For the C1010-66, this will be tested when I'll have
7079 	 *  such a beast to play with.
7080 	 */
7081 	if (!(np->features & FE_C10)) {
7082 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7083 		f = (int) sym_getfreq (np);
7084 		OUTB (nc_stest1, 0);
7085 	}
7086 	np->pciclk_khz = f;
7087 
7088 	return f;
7089 }
7090 
7091 /*============= DRIVER ACTION/COMPLETION ====================*/
7092 
7093 /*
7094  *  Print something that tells about extended errors.
7095  */
7096 static void sym_print_xerr(ccb_p cp, int x_status)
7097 {
7098 	if (x_status & XE_PARITY_ERR) {
7099 		PRINT_ADDR(cp);
7100 		printf ("unrecovered SCSI parity error.\n");
7101 	}
7102 	if (x_status & XE_EXTRA_DATA) {
7103 		PRINT_ADDR(cp);
7104 		printf ("extraneous data discarded.\n");
7105 	}
7106 	if (x_status & XE_BAD_PHASE) {
7107 		PRINT_ADDR(cp);
7108 		printf ("illegal scsi phase (4/5).\n");
7109 	}
7110 	if (x_status & XE_SODL_UNRUN) {
7111 		PRINT_ADDR(cp);
7112 		printf ("ODD transfer in DATA OUT phase.\n");
7113 	}
7114 	if (x_status & XE_SWIDE_OVRUN) {
7115 		PRINT_ADDR(cp);
7116 		printf ("ODD transfer in DATA IN phase.\n");
7117 	}
7118 }
7119 
7120 /*
7121  *  Choose the more appropriate CAM status if
7122  *  the IO encountered an extended error.
7123  */
7124 static int sym_xerr_cam_status(int cam_status, int x_status)
7125 {
7126 	if (x_status) {
7127 		if	(x_status & XE_PARITY_ERR)
7128 			cam_status = CAM_UNCOR_PARITY;
7129 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7130 			cam_status = CAM_DATA_RUN_ERR;
7131 		else if	(x_status & XE_BAD_PHASE)
7132 			cam_status = CAM_REQ_CMP_ERR;
7133 		else
7134 			cam_status = CAM_REQ_CMP_ERR;
7135 	}
7136 	return cam_status;
7137 }
7138 
7139 /*
7140  *  Complete execution of a SCSI command with extented
7141  *  error, SCSI status error, or having been auto-sensed.
7142  *
7143  *  The SCRIPTS processor is not running there, so we
7144  *  can safely access IO registers and remove JOBs from
7145  *  the START queue.
7146  *  SCRATCHA is assumed to have been loaded with STARTPOS
7147  *  before the SCRIPTS called the C code.
7148  */
7149 static void sym_complete_error (hcb_p np, ccb_p cp)
7150 {
7151 	struct ccb_scsiio *csio;
7152 	u_int cam_status;
7153 	int i;
7154 
7155 	SYM_LOCK_ASSERT(MA_OWNED);
7156 
7157 	/*
7158 	 *  Paranoid check. :)
7159 	 */
7160 	if (!cp || !cp->cam_ccb)
7161 		return;
7162 
7163 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7164 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7165 			cp->host_status, cp->ssss_status, cp->host_flags,
7166 			cp->target, cp->lun);
7167 		MDELAY(100);
7168 	}
7169 
7170 	/*
7171 	 *  Get CAM command pointer.
7172 	 */
7173 	csio = &cp->cam_ccb->csio;
7174 
7175 	/*
7176 	 *  Check for extended errors.
7177 	 */
7178 	if (cp->xerr_status) {
7179 		if (sym_verbose)
7180 			sym_print_xerr(cp, cp->xerr_status);
7181 		if (cp->host_status == HS_COMPLETE)
7182 			cp->host_status = HS_COMP_ERR;
7183 	}
7184 
7185 	/*
7186 	 *  Calculate the residual.
7187 	 */
7188 	csio->sense_resid = 0;
7189 	csio->resid = sym_compute_residual(np, cp);
7190 
7191 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7192 		csio->resid  = 0;	/* throw them away. :)		   */
7193 		cp->sv_resid = 0;
7194 	}
7195 
7196 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7197 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7198 		csio->sense_resid = csio->resid;	/* Swap residuals */
7199 		csio->resid       = cp->sv_resid;
7200 		cp->sv_resid	  = 0;
7201 		if (sym_verbose && cp->sv_xerr_status)
7202 			sym_print_xerr(cp, cp->sv_xerr_status);
7203 		if (cp->host_status == HS_COMPLETE &&
7204 		    cp->ssss_status == S_GOOD &&
7205 		    cp->xerr_status == 0) {
7206 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7207 							 cp->sv_xerr_status);
7208 			cam_status |= CAM_AUTOSNS_VALID;
7209 			/*
7210 			 *  Bounce back the sense data to user and
7211 			 *  fix the residual.
7212 			 */
7213 			bzero(&csio->sense_data, csio->sense_len);
7214 			bcopy(cp->sns_bbuf, &csio->sense_data,
7215 			      MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7216 			csio->sense_resid += csio->sense_len;
7217 			csio->sense_resid -= SYM_SNS_BBUF_LEN;
7218 #if 0
7219 			/*
7220 			 *  If the device reports a UNIT ATTENTION condition
7221 			 *  due to a RESET condition, we should consider all
7222 			 *  disconnect CCBs for this unit as aborted.
7223 			 */
7224 			if (1) {
7225 				u_char *p;
7226 				p  = (u_char *) csio->sense_data;
7227 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7228 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7229 							cp->target,cp->lun, -1);
7230 			}
7231 #endif
7232 		}
7233 		else
7234 			cam_status = CAM_AUTOSENSE_FAIL;
7235 	}
7236 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7237 		csio->scsi_status = cp->ssss_status;
7238 		cam_status = CAM_SCSI_STATUS_ERROR;
7239 	}
7240 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7241 		cam_status = CAM_SEL_TIMEOUT;
7242 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7243 		cam_status = CAM_UNEXP_BUSFREE;
7244 	else {						/* Extended error */
7245 		if (sym_verbose) {
7246 			PRINT_ADDR(cp);
7247 			printf ("COMMAND FAILED (%x %x %x).\n",
7248 				cp->host_status, cp->ssss_status,
7249 				cp->xerr_status);
7250 		}
7251 		csio->scsi_status = cp->ssss_status;
7252 		/*
7253 		 *  Set the most appropriate value for CAM status.
7254 		 */
7255 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7256 						 cp->xerr_status);
7257 	}
7258 
7259 	/*
7260 	 *  Dequeue all queued CCBs for that device
7261 	 *  not yet started by SCRIPTS.
7262 	 */
7263 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7264 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7265 
7266 	/*
7267 	 *  Restart the SCRIPTS processor.
7268 	 */
7269 	OUTL_DSP (SCRIPTA_BA (np, start));
7270 
7271 	/*
7272 	 *  Synchronize DMA map if needed.
7273 	 */
7274 	if (cp->dmamapped) {
7275 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7276 			(cp->dmamapped == SYM_DMA_READ ?
7277 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7278 	}
7279 	/*
7280 	 *  Add this one to the COMP queue.
7281 	 *  Complete all those commands with either error
7282 	 *  or requeue condition.
7283 	 */
7284 	sym_set_cam_status((union ccb *) csio, cam_status);
7285 	sym_remque(&cp->link_ccbq);
7286 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7287 	sym_flush_comp_queue(np, 0);
7288 }
7289 
7290 /*
7291  *  Complete execution of a successful SCSI command.
7292  *
7293  *  Only successful commands go to the DONE queue,
7294  *  since we need to have the SCRIPTS processor
7295  *  stopped on any error condition.
7296  *  The SCRIPTS processor is running while we are
7297  *  completing successful commands.
7298  */
7299 static void sym_complete_ok (hcb_p np, ccb_p cp)
7300 {
7301 	struct ccb_scsiio *csio;
7302 	tcb_p tp;
7303 	lcb_p lp;
7304 
7305 	SYM_LOCK_ASSERT(MA_OWNED);
7306 
7307 	/*
7308 	 *  Paranoid check. :)
7309 	 */
7310 	if (!cp || !cp->cam_ccb)
7311 		return;
7312 	assert (cp->host_status == HS_COMPLETE);
7313 
7314 	/*
7315 	 *  Get command, target and lun pointers.
7316 	 */
7317 	csio = &cp->cam_ccb->csio;
7318 	tp = &np->target[cp->target];
7319 	lp = sym_lp(np, tp, cp->lun);
7320 
7321 	/*
7322 	 *  Assume device discovered on first success.
7323 	 */
7324 	if (!lp)
7325 		sym_set_bit(tp->lun_map, cp->lun);
7326 
7327 	/*
7328 	 *  If all data have been transferred, given than no
7329 	 *  extended error did occur, there is no residual.
7330 	 */
7331 	csio->resid = 0;
7332 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7333 		csio->resid = sym_compute_residual(np, cp);
7334 
7335 	/*
7336 	 *  Wrong transfer residuals may be worse than just always
7337 	 *  returning zero. User can disable this feature from
7338 	 *  sym_conf.h. Residual support is enabled by default.
7339 	 */
7340 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7341 		csio->resid  = 0;
7342 
7343 	/*
7344 	 *  Synchronize DMA map if needed.
7345 	 */
7346 	if (cp->dmamapped) {
7347 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7348 			(cp->dmamapped == SYM_DMA_READ ?
7349 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7350 	}
7351 	/*
7352 	 *  Set status and complete the command.
7353 	 */
7354 	csio->scsi_status = cp->ssss_status;
7355 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7356 	sym_xpt_done(np, (union ccb *) csio, cp);
7357 	sym_free_ccb(np, cp);
7358 }
7359 
7360 /*
7361  *  Our callout handler
7362  */
7363 static void sym_callout(void *arg)
7364 {
7365 	union ccb *ccb = (union ccb *) arg;
7366 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7367 
7368 	/*
7369 	 *  Check that the CAM CCB is still queued.
7370 	 */
7371 	if (!np)
7372 		return;
7373 
7374 	SYM_LOCK();
7375 
7376 	switch(ccb->ccb_h.func_code) {
7377 	case XPT_SCSI_IO:
7378 		(void) sym_abort_scsiio(np, ccb, 1);
7379 		break;
7380 	default:
7381 		break;
7382 	}
7383 
7384 	SYM_UNLOCK();
7385 }
7386 
7387 /*
7388  *  Abort an SCSI IO.
7389  */
7390 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7391 {
7392 	ccb_p cp;
7393 	SYM_QUEHEAD *qp;
7394 
7395 	SYM_LOCK_ASSERT(MA_OWNED);
7396 
7397 	/*
7398 	 *  Look up our CCB control block.
7399 	 */
7400 	cp = NULL;
7401 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7402 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7403 		if (cp2->cam_ccb == ccb) {
7404 			cp = cp2;
7405 			break;
7406 		}
7407 	}
7408 	if (!cp || cp->host_status == HS_WAIT)
7409 		return -1;
7410 
7411 	/*
7412 	 *  If a previous abort didn't succeed in time,
7413 	 *  perform a BUS reset.
7414 	 */
7415 	if (cp->to_abort) {
7416 		sym_reset_scsi_bus(np, 1);
7417 		return 0;
7418 	}
7419 
7420 	/*
7421 	 *  Mark the CCB for abort and allow time for.
7422 	 */
7423 	cp->to_abort = timed_out ? 2 : 1;
7424 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7425 
7426 	/*
7427 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7428 	 */
7429 	np->istat_sem = SEM;
7430 	OUTB (nc_istat, SIGP|SEM);
7431 	return 0;
7432 }
7433 
7434 /*
7435  *  Reset a SCSI device (all LUNs of a target).
7436  */
7437 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7438 {
7439 	tcb_p tp;
7440 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7441 
7442 	SYM_LOCK_ASSERT(MA_OWNED);
7443 
7444 	if (ccb_h->target_id   == np->myaddr ||
7445 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7446 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7447 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7448 		return;
7449 	}
7450 
7451 	tp = &np->target[ccb_h->target_id];
7452 
7453 	tp->to_reset = 1;
7454 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7455 
7456 	np->istat_sem = SEM;
7457 	OUTB (nc_istat, SIGP|SEM);
7458 }
7459 
7460 /*
7461  *  SIM action entry point.
7462  */
7463 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7464 {
7465 	hcb_p	np;
7466 	tcb_p	tp;
7467 	lcb_p	lp;
7468 	ccb_p	cp;
7469 	int 	tmp;
7470 	u_char	idmsg, *msgptr;
7471 	u_int   msglen;
7472 	struct	ccb_scsiio *csio;
7473 	struct	ccb_hdr  *ccb_h;
7474 
7475 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7476 
7477 	/*
7478 	 *  Retrieve our controller data structure.
7479 	 */
7480 	np = (hcb_p) cam_sim_softc(sim);
7481 
7482 	SYM_LOCK_ASSERT(MA_OWNED);
7483 
7484 	/*
7485 	 *  The common case is SCSI IO.
7486 	 *  We deal with other ones elsewhere.
7487 	 */
7488 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7489 		sym_action2(sim, ccb);
7490 		return;
7491 	}
7492 	csio  = &ccb->csio;
7493 	ccb_h = &csio->ccb_h;
7494 
7495 	/*
7496 	 *  Work around races.
7497 	 */
7498 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7499 		xpt_done(ccb);
7500 		return;
7501 	}
7502 
7503 	/*
7504 	 *  Minimal checkings, so that we will not
7505 	 *  go outside our tables.
7506 	 */
7507 	if (ccb_h->target_id   == np->myaddr ||
7508 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7509 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7510 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7511 		return;
7512         }
7513 
7514 	/*
7515 	 *  Retreive the target and lun descriptors.
7516 	 */
7517 	tp = &np->target[ccb_h->target_id];
7518 	lp = sym_lp(np, tp, ccb_h->target_lun);
7519 
7520 	/*
7521 	 *  Complete the 1st INQUIRY command with error
7522 	 *  condition if the device is flagged NOSCAN
7523 	 *  at BOOT in the NVRAM. This may speed up
7524 	 *  the boot and maintain coherency with BIOS
7525 	 *  device numbering. Clearing the flag allows
7526 	 *  user to rescan skipped devices later.
7527 	 *  We also return error for devices not flagged
7528 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7529 	 *  devices behave badly when asked for some non
7530 	 *  zero LUN. Btw, this is an absolute hack.:-)
7531 	 */
7532 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7533 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7534 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7535 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7536 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7537 		     ccb_h->target_lun != 0)) {
7538 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7539 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7540 			return;
7541 		}
7542 	}
7543 
7544 	/*
7545 	 *  Get a control block for this IO.
7546 	 */
7547 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7548 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7549 	if (!cp) {
7550 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7551 		return;
7552 	}
7553 
7554 	/*
7555 	 *  Keep track of the IO in our CCB.
7556 	 */
7557 	cp->cam_ccb = ccb;
7558 
7559 	/*
7560 	 *  Build the IDENTIFY message.
7561 	 */
7562 	idmsg = M_IDENTIFY | cp->lun;
7563 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7564 		idmsg |= 0x40;
7565 
7566 	msgptr = cp->scsi_smsg;
7567 	msglen = 0;
7568 	msgptr[msglen++] = idmsg;
7569 
7570 	/*
7571 	 *  Build the tag message if present.
7572 	 */
7573 	if (cp->tag != NO_TAG) {
7574 		u_char order = csio->tag_action;
7575 
7576 		switch(order) {
7577 		case M_ORDERED_TAG:
7578 			break;
7579 		case M_HEAD_TAG:
7580 			break;
7581 		default:
7582 			order = M_SIMPLE_TAG;
7583 		}
7584 		msgptr[msglen++] = order;
7585 
7586 		/*
7587 		 *  For less than 128 tags, actual tags are numbered
7588 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7589 		 *  with devices that have problems with #TAG 0 or too
7590 		 *  great #TAG numbers. For more tags (up to 256),
7591 		 *  we use directly our tag number.
7592 		 */
7593 #if SYM_CONF_MAX_TASK > (512/4)
7594 		msgptr[msglen++] = cp->tag;
7595 #else
7596 		msgptr[msglen++] = (cp->tag << 1) + 1;
7597 #endif
7598 	}
7599 
7600 	/*
7601 	 *  Build a negotiation message if needed.
7602 	 *  (nego_status is filled by sym_prepare_nego())
7603 	 */
7604 	cp->nego_status = 0;
7605 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7606 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7607 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7608 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7609 		if (!tp->nego_cp && lp)
7610 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7611 	}
7612 
7613 	/*
7614 	 *  Fill in our ccb
7615 	 */
7616 
7617 	/*
7618 	 *  Startqueue
7619 	 */
7620 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7621 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7622 
7623 	/*
7624 	 *  select
7625 	 */
7626 	cp->phys.select.sel_id		= cp->target;
7627 	cp->phys.select.sel_scntl3	= tp->head.wval;
7628 	cp->phys.select.sel_sxfer	= tp->head.sval;
7629 	cp->phys.select.sel_scntl4	= tp->head.uval;
7630 
7631 	/*
7632 	 *  message
7633 	 */
7634 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7635 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7636 
7637 	/*
7638 	 *  command
7639 	 */
7640 	if (sym_setup_cdb(np, csio, cp) < 0) {
7641 		sym_xpt_done(np, ccb, cp);
7642 		sym_free_ccb(np, cp);
7643 		return;
7644 	}
7645 
7646 	/*
7647 	 *  status
7648 	 */
7649 #if	0	/* Provision */
7650 	cp->actualquirks	= tp->quirks;
7651 #endif
7652 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7653 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7654 	cp->ssss_status		= S_ILLEGAL;
7655 	cp->xerr_status		= 0;
7656 	cp->host_flags		= 0;
7657 	cp->extra_bytes		= 0;
7658 
7659 	/*
7660 	 *  extreme data pointer.
7661 	 *  shall be positive, so -1 is lower than lowest.:)
7662 	 */
7663 	cp->ext_sg  = -1;
7664 	cp->ext_ofs = 0;
7665 
7666 	/*
7667 	 *  Build the data descriptor block
7668 	 *  and start the IO.
7669 	 */
7670 	sym_setup_data_and_start(np, csio, cp);
7671 }
7672 
7673 /*
7674  *  Setup buffers and pointers that address the CDB.
7675  *  I bet, physical CDBs will never be used on the planet,
7676  *  since they can be bounced without significant overhead.
7677  */
7678 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7679 {
7680 	struct ccb_hdr *ccb_h;
7681 	u32	cmd_ba;
7682 	int	cmd_len;
7683 
7684 	SYM_LOCK_ASSERT(MA_OWNED);
7685 
7686 	ccb_h = &csio->ccb_h;
7687 
7688 	/*
7689 	 *  CDB is 16 bytes max.
7690 	 */
7691 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7692 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7693 		return -1;
7694 	}
7695 	cmd_len = csio->cdb_len;
7696 
7697 	if (ccb_h->flags & CAM_CDB_POINTER) {
7698 		/* CDB is a pointer */
7699 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7700 			/* CDB pointer is virtual */
7701 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7702 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7703 		} else {
7704 			/* CDB pointer is physical */
7705 #if 0
7706 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7707 #else
7708 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7709 			return -1;
7710 #endif
7711 		}
7712 	} else {
7713 		/* CDB is in the CAM ccb (buffer) */
7714 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7715 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7716 	}
7717 
7718 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7719 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7720 
7721 	return 0;
7722 }
7723 
7724 /*
7725  *  Set up data pointers used by SCRIPTS.
7726  */
7727 static void __inline
7728 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7729 {
7730 	u32 lastp, goalp;
7731 
7732 	SYM_LOCK_ASSERT(MA_OWNED);
7733 
7734 	/*
7735 	 *  No segments means no data.
7736 	 */
7737 	if (!cp->segments)
7738 		dir = CAM_DIR_NONE;
7739 
7740 	/*
7741 	 *  Set the data pointer.
7742 	 */
7743 	switch(dir) {
7744 	case CAM_DIR_OUT:
7745 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7746 		lastp = goalp - 8 - (cp->segments * (2*4));
7747 		break;
7748 	case CAM_DIR_IN:
7749 		cp->host_flags |= HF_DATA_IN;
7750 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7751 		lastp = goalp - 8 - (cp->segments * (2*4));
7752 		break;
7753 	case CAM_DIR_NONE:
7754 	default:
7755 		lastp = goalp = SCRIPTB_BA (np, no_data);
7756 		break;
7757 	}
7758 
7759 	cp->phys.head.lastp = cpu_to_scr(lastp);
7760 	cp->phys.head.goalp = cpu_to_scr(goalp);
7761 	cp->phys.head.savep = cpu_to_scr(lastp);
7762 	cp->startp	    = cp->phys.head.savep;
7763 }
7764 
7765 
7766 /*
7767  *  Call back routine for the DMA map service.
7768  *  If bounce buffers are used (why ?), we may sleep and then
7769  *  be called there in another context.
7770  */
7771 static void
7772 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7773 {
7774 	ccb_p	cp;
7775 	hcb_p	np;
7776 	union	ccb *ccb;
7777 
7778 	cp  = (ccb_p) arg;
7779 	ccb = cp->cam_ccb;
7780 	np  = (hcb_p) cp->arg;
7781 
7782 	SYM_LOCK_ASSERT(MA_OWNED);
7783 
7784 	/*
7785 	 *  Deal with weird races.
7786 	 */
7787 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7788 		goto out_abort;
7789 
7790 	/*
7791 	 *  Deal with weird errors.
7792 	 */
7793 	if (error) {
7794 		cp->dmamapped = 0;
7795 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7796 		goto out_abort;
7797 	}
7798 
7799 	/*
7800 	 *  Build the data descriptor for the chip.
7801 	 */
7802 	if (nsegs) {
7803 		int retv;
7804 		/* 896 rev 1 requires to be careful about boundaries */
7805 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7806 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7807 		else
7808 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7809 		if (retv < 0) {
7810 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7811 			goto out_abort;
7812 		}
7813 	}
7814 
7815 	/*
7816 	 *  Synchronize the DMA map only if we have
7817 	 *  actually mapped the data.
7818 	 */
7819 	if (cp->dmamapped) {
7820 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7821 			(cp->dmamapped == SYM_DMA_READ ?
7822 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7823 	}
7824 
7825 	/*
7826 	 *  Set host status to busy state.
7827 	 *  May have been set back to HS_WAIT to avoid a race.
7828 	 */
7829 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7830 
7831 	/*
7832 	 *  Set data pointers.
7833 	 */
7834 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7835 
7836 	/*
7837 	 *  Enqueue this IO in our pending queue.
7838 	 */
7839 	sym_enqueue_cam_ccb(cp);
7840 
7841 	/*
7842 	 *  When `#ifed 1', the code below makes the driver
7843 	 *  panic on the first attempt to write to a SCSI device.
7844 	 *  It is the first test we want to do after a driver
7845 	 *  change that does not seem obviously safe. :)
7846 	 */
7847 #if 0
7848 	switch (cp->cdb_buf[0]) {
7849 	case 0x0A: case 0x2A: case 0xAA:
7850 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7851 		MDELAY(10000);
7852 		break;
7853 	default:
7854 		break;
7855 	}
7856 #endif
7857 	/*
7858 	 *  Activate this job.
7859 	 */
7860 	sym_put_start_queue(np, cp);
7861 	return;
7862 out_abort:
7863 	sym_xpt_done(np, ccb, cp);
7864 	sym_free_ccb(np, cp);
7865 }
7866 
7867 /*
7868  *  How complex it gets to deal with the data in CAM.
7869  *  The Bus Dma stuff makes things still more complex.
7870  */
7871 static void
7872 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7873 {
7874 	struct ccb_hdr *ccb_h;
7875 	int dir, retv;
7876 
7877 	SYM_LOCK_ASSERT(MA_OWNED);
7878 
7879 	ccb_h = &csio->ccb_h;
7880 
7881 	/*
7882 	 *  Now deal with the data.
7883 	 */
7884 	cp->data_len = csio->dxfer_len;
7885 	cp->arg      = np;
7886 
7887 	/*
7888 	 *  No direction means no data.
7889 	 */
7890 	dir = (ccb_h->flags & CAM_DIR_MASK);
7891 	if (dir == CAM_DIR_NONE) {
7892 		sym_execute_ccb(cp, NULL, 0, 0);
7893 		return;
7894 	}
7895 
7896 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
7897 		/* Single buffer */
7898 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7899 			/* Buffer is virtual */
7900 			cp->dmamapped = (dir == CAM_DIR_IN) ?
7901 						SYM_DMA_READ : SYM_DMA_WRITE;
7902 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
7903 					       csio->data_ptr, csio->dxfer_len,
7904 					       sym_execute_ccb, cp, 0);
7905 			if (retv == EINPROGRESS) {
7906 				cp->host_status	= HS_WAIT;
7907 				xpt_freeze_simq(np->sim, 1);
7908 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7909 			}
7910 		} else {
7911 			/* Buffer is physical */
7912 			struct bus_dma_segment seg;
7913 
7914 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
7915 			sym_execute_ccb(cp, &seg, 1, 0);
7916 		}
7917 	} else {
7918 		/* Scatter/gather list */
7919 		struct bus_dma_segment *segs;
7920 
7921 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
7922 			/* The SG list pointer is physical */
7923 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7924 			goto out_abort;
7925 		}
7926 
7927 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7928 			/* SG buffer pointers are virtual */
7929 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7930 			goto out_abort;
7931 		}
7932 
7933 		/* SG buffer pointers are physical */
7934 		segs  = (struct bus_dma_segment *)csio->data_ptr;
7935 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
7936 	}
7937 	return;
7938 out_abort:
7939 	sym_xpt_done(np, (union ccb *) csio, cp);
7940 	sym_free_ccb(np, cp);
7941 }
7942 
7943 /*
7944  *  Move the scatter list to our data block.
7945  */
7946 static int
7947 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7948 			     bus_dma_segment_t *psegs, int nsegs)
7949 {
7950 	struct sym_tblmove *data;
7951 	bus_dma_segment_t *psegs2;
7952 
7953 	SYM_LOCK_ASSERT(MA_OWNED);
7954 
7955 	if (nsegs > SYM_CONF_MAX_SG)
7956 		return -1;
7957 
7958 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7959 	psegs2 = &psegs[nsegs-1];
7960 	cp->segments = nsegs;
7961 
7962 	while (1) {
7963 		data->addr = cpu_to_scr(psegs2->ds_addr);
7964 		data->size = cpu_to_scr(psegs2->ds_len);
7965 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7966 			printf ("%s scatter: paddr=%lx len=%ld\n",
7967 				sym_name(np), (long) psegs2->ds_addr,
7968 				(long) psegs2->ds_len);
7969 		}
7970 		if (psegs2 != psegs) {
7971 			--data;
7972 			--psegs2;
7973 			continue;
7974 		}
7975 		break;
7976 	}
7977 	return 0;
7978 }
7979 
7980 
7981 /*
7982  *  Scatter a SG list with physical addresses into bus addressable chunks.
7983  *  We need to ensure 16MB boundaries not to be crossed during DMA of
7984  *  each segment, due to some chips being flawed.
7985  */
7986 #define BOUND_MASK ((1UL<<24)-1)
7987 static int
7988 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7989 {
7990 	u_long	ps, pe, pn;
7991 	u_long	k;
7992 	int s, t;
7993 
7994 	SYM_LOCK_ASSERT(MA_OWNED);
7995 
7996 	s  = SYM_CONF_MAX_SG - 1;
7997 	t  = nsegs - 1;
7998 	ps = psegs[t].ds_addr;
7999 	pe = ps + psegs[t].ds_len;
8000 
8001 	while (s >= 0) {
8002 		pn = (pe - 1) & ~BOUND_MASK;
8003 		if (pn <= ps)
8004 			pn = ps;
8005 		k = pe - pn;
8006 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8007 			printf ("%s scatter: paddr=%lx len=%ld\n",
8008 				sym_name(np), pn, k);
8009 		}
8010 		cp->phys.data[s].addr = cpu_to_scr(pn);
8011 		cp->phys.data[s].size = cpu_to_scr(k);
8012 		--s;
8013 		if (pn == ps) {
8014 			if (--t < 0)
8015 				break;
8016 			ps = psegs[t].ds_addr;
8017 			pe = ps + psegs[t].ds_len;
8018 		}
8019 		else
8020 			pe = pn;
8021 	}
8022 
8023 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8024 
8025 	return t >= 0 ? -1 : 0;
8026 }
8027 #undef BOUND_MASK
8028 
8029 /*
8030  *  SIM action for non performance critical stuff.
8031  */
8032 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8033 {
8034 	hcb_p	np;
8035 	tcb_p	tp;
8036 	lcb_p	lp;
8037 	struct	ccb_hdr  *ccb_h;
8038 
8039 	/*
8040 	 *  Retrieve our controller data structure.
8041 	 */
8042 	np = (hcb_p) cam_sim_softc(sim);
8043 
8044 	SYM_LOCK_ASSERT(MA_OWNED);
8045 
8046 	ccb_h = &ccb->ccb_h;
8047 
8048 	switch (ccb_h->func_code) {
8049 	case XPT_SET_TRAN_SETTINGS:
8050 	{
8051 		struct ccb_trans_settings *cts;
8052 
8053 		cts  = &ccb->cts;
8054 		tp = &np->target[ccb_h->target_id];
8055 
8056 		/*
8057 		 *  Update SPI transport settings in TARGET control block.
8058 		 *  Update SCSI device settings in LUN control block.
8059 		 */
8060 		lp = sym_lp(np, tp, ccb_h->target_lun);
8061 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8062 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8063 			if (lp)
8064 				sym_update_dflags(np, &lp->current_flags, cts);
8065 		}
8066 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8067 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8068 			if (lp)
8069 				sym_update_dflags(np, &lp->user_flags, cts);
8070 		}
8071 
8072 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8073 		break;
8074 	}
8075 	case XPT_GET_TRAN_SETTINGS:
8076 	{
8077 		struct ccb_trans_settings *cts;
8078 		struct sym_trans *tip;
8079 		u_char dflags;
8080 
8081 		cts = &ccb->cts;
8082 		tp = &np->target[ccb_h->target_id];
8083 		lp = sym_lp(np, tp, ccb_h->target_lun);
8084 
8085 #define	cts__scsi (&cts->proto_specific.scsi)
8086 #define	cts__spi  (&cts->xport_specific.spi)
8087 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8088 			tip = &tp->tinfo.current;
8089 			dflags = lp ? lp->current_flags : 0;
8090 		}
8091 		else {
8092 			tip = &tp->tinfo.user;
8093 			dflags = lp ? lp->user_flags : tp->usrflags;
8094 		}
8095 
8096 		cts->protocol  = PROTO_SCSI;
8097 		cts->transport = XPORT_SPI;
8098 		cts->protocol_version  = tip->scsi_version;
8099 		cts->transport_version = tip->spi_version;
8100 
8101 		cts__spi->sync_period = tip->period;
8102 		cts__spi->sync_offset = tip->offset;
8103 		cts__spi->bus_width   = tip->width;
8104 		cts__spi->ppr_options = tip->options;
8105 
8106 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8107 		                | CTS_SPI_VALID_SYNC_OFFSET
8108 		                | CTS_SPI_VALID_BUS_WIDTH
8109 		                | CTS_SPI_VALID_PPR_OPTIONS;
8110 
8111 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8112 		if (dflags & SYM_DISC_ENABLED)
8113 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8114 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8115 
8116 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8117 		if (dflags & SYM_TAGS_ENABLED)
8118 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8119 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8120 #undef	cts__spi
8121 #undef	cts__scsi
8122 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8123 		break;
8124 	}
8125 	case XPT_CALC_GEOMETRY:
8126 	{
8127 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8128 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8129 		break;
8130 	}
8131 	case XPT_PATH_INQ:
8132 	{
8133 		struct ccb_pathinq *cpi = &ccb->cpi;
8134 		cpi->version_num = 1;
8135 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8136 		if ((np->features & FE_WIDE) != 0)
8137 			cpi->hba_inquiry |= PI_WIDE_16;
8138 		cpi->target_sprt = 0;
8139 		cpi->hba_misc = 0;
8140 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8141 			cpi->hba_misc |= PIM_SCANHILO;
8142 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8143 			cpi->hba_misc |= PIM_NOBUSRESET;
8144 		cpi->hba_eng_cnt = 0;
8145 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8146 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8147 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8148 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8149 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8150 		cpi->bus_id = cam_sim_bus(sim);
8151 		cpi->initiator_id = np->myaddr;
8152 		cpi->base_transfer_speed = 3300;
8153 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8154 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8155 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8156 		cpi->unit_number = cam_sim_unit(sim);
8157 
8158 		cpi->protocol = PROTO_SCSI;
8159 		cpi->protocol_version = SCSI_REV_2;
8160 		cpi->transport = XPORT_SPI;
8161 		cpi->transport_version = 2;
8162 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8163 		if (np->features & FE_ULTRA3) {
8164 			cpi->transport_version = 3;
8165 			cpi->xport_specific.spi.ppr_options =
8166 			    SID_SPI_CLOCK_DT_ST;
8167 		}
8168 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8169 		break;
8170 	}
8171 	case XPT_ABORT:
8172 	{
8173 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8174 		switch(abort_ccb->ccb_h.func_code) {
8175 		case XPT_SCSI_IO:
8176 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8177 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8178 				break;
8179 			}
8180 		default:
8181 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8182 			break;
8183 		}
8184 		break;
8185 	}
8186 	case XPT_RESET_DEV:
8187 	{
8188 		sym_reset_dev(np, ccb);
8189 		break;
8190 	}
8191 	case XPT_RESET_BUS:
8192 	{
8193 		sym_reset_scsi_bus(np, 0);
8194 		if (sym_verbose) {
8195 			xpt_print_path(np->path);
8196 			printf("SCSI BUS reset delivered.\n");
8197 		}
8198 		sym_init (np, 1);
8199 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8200 		break;
8201 	}
8202 	case XPT_ACCEPT_TARGET_IO:
8203 	case XPT_CONT_TARGET_IO:
8204 	case XPT_EN_LUN:
8205 	case XPT_NOTIFY_ACK:
8206 	case XPT_IMMED_NOTIFY:
8207 	case XPT_TERM_IO:
8208 	default:
8209 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8210 		break;
8211 	}
8212 }
8213 
8214 /*
8215  *  Asynchronous notification handler.
8216  */
8217 static void
8218 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8219 {
8220 	hcb_p np;
8221 	struct cam_sim *sim;
8222 	u_int tn;
8223 	tcb_p tp;
8224 
8225 	sim = (struct cam_sim *) cb_arg;
8226 	np  = (hcb_p) cam_sim_softc(sim);
8227 
8228 	SYM_LOCK_ASSERT(MA_OWNED);
8229 
8230 	switch (code) {
8231 	case AC_LOST_DEVICE:
8232 		tn = xpt_path_target_id(path);
8233 		if (tn >= SYM_CONF_MAX_TARGET)
8234 			break;
8235 
8236 		tp = &np->target[tn];
8237 
8238 		tp->to_reset  = 0;
8239 		tp->head.sval = 0;
8240 		tp->head.wval = np->rv_scntl3;
8241 		tp->head.uval = 0;
8242 
8243 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8244 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8245 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8246 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8247 
8248 		break;
8249 	default:
8250 		break;
8251 	}
8252 }
8253 
8254 /*
8255  *  Update transfer settings of a target.
8256  */
8257 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8258 			    struct ccb_trans_settings *cts)
8259 {
8260 	SYM_LOCK_ASSERT(MA_OWNED);
8261 
8262 	/*
8263 	 *  Update the infos.
8264 	 */
8265 #define cts__spi (&cts->xport_specific.spi)
8266 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8267 		tip->width = cts__spi->bus_width;
8268 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8269 		tip->offset = cts__spi->sync_offset;
8270 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8271 		tip->period = cts__spi->sync_period;
8272 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8273 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8274 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8275 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8276 		tip->scsi_version = cts->protocol_version;
8277 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8278 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8279 		tip->spi_version = cts->transport_version;
8280 #undef cts__spi
8281 	/*
8282 	 *  Scale against driver configuration limits.
8283 	 */
8284 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8285 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8286 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8287 
8288 	/*
8289 	 *  Scale against actual controller BUS width.
8290 	 */
8291 	if (tip->width > np->maxwide)
8292 		tip->width  = np->maxwide;
8293 
8294 	/*
8295 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8296 	 */
8297 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8298 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8299 		tip->options &= ~PPR_OPT_DT;
8300 	}
8301 
8302 	/*
8303 	 *  Scale period factor and offset against controller limits.
8304 	 */
8305 	if (tip->options & PPR_OPT_DT) {
8306 		if (tip->period < np->minsync_dt)
8307 			tip->period = np->minsync_dt;
8308 		if (tip->period > np->maxsync_dt)
8309 			tip->period = np->maxsync_dt;
8310 		if (tip->offset > np->maxoffs_dt)
8311 			tip->offset = np->maxoffs_dt;
8312 	}
8313 	else {
8314 		if (tip->period < np->minsync)
8315 			tip->period = np->minsync;
8316 		if (tip->period > np->maxsync)
8317 			tip->period = np->maxsync;
8318 		if (tip->offset > np->maxoffs)
8319 			tip->offset = np->maxoffs;
8320 	}
8321 }
8322 
8323 /*
8324  *  Update flags for a device (logical unit).
8325  */
8326 static void
8327 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8328 {
8329 	SYM_LOCK_ASSERT(MA_OWNED);
8330 
8331 #define	cts__scsi (&cts->proto_specific.scsi)
8332 #define	cts__spi  (&cts->xport_specific.spi)
8333 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8334 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8335 			*flags |= SYM_DISC_ENABLED;
8336 		else
8337 			*flags &= ~SYM_DISC_ENABLED;
8338 	}
8339 
8340 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8341 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8342 			*flags |= SYM_TAGS_ENABLED;
8343 		else
8344 			*flags &= ~SYM_TAGS_ENABLED;
8345 	}
8346 #undef	cts__spi
8347 #undef	cts__scsi
8348 }
8349 
8350 
8351 /*============= DRIVER INITIALISATION ==================*/
8352 
8353 
8354 static device_method_t sym_pci_methods[] = {
8355 	DEVMETHOD(device_probe,	 sym_pci_probe),
8356 	DEVMETHOD(device_attach, sym_pci_attach),
8357 	{ 0, 0 }
8358 };
8359 
8360 static driver_t sym_pci_driver = {
8361 	"sym",
8362 	sym_pci_methods,
8363 	1	/* no softc */
8364 };
8365 
8366 static devclass_t sym_devclass;
8367 
8368 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8369 MODULE_DEPEND(sym, cam, 1, 1, 1);
8370 MODULE_DEPEND(sym, pci, 1, 1, 1);
8371 
8372 
8373 static struct sym_pci_chip sym_pci_dev_table[] = {
8374  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8375  FE_ERL}
8376  ,
8377 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8378  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8379  FE_BOF}
8380  ,
8381 #else
8382  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8383  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8384  ,
8385 #endif
8386  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8387  FE_BOF|FE_ERL}
8388  ,
8389  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8390  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8391  ,
8392  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8393  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8394  ,
8395  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8396  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8397  ,
8398  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8399  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8400  FE_RAM|FE_DIFF}
8401  ,
8402  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8403  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8404  FE_RAM|FE_DIFF}
8405  ,
8406  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8407  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8408  FE_RAM|FE_DIFF}
8409  ,
8410  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8411  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8412  FE_RAM|FE_DIFF}
8413  ,
8414 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8415  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8416  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8417  FE_RAM|FE_LCKFRQ}
8418  ,
8419 #else
8420  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8421  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8422  FE_RAM|FE_LCKFRQ}
8423  ,
8424 #endif
8425  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8426  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8427  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8428  ,
8429  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8430  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8431  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8432  ,
8433  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8434  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8435  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8436  FE_C10}
8437  ,
8438  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8439  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8440  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8441  FE_C10|FE_U3EN}
8442  ,
8443  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8444  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8445  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8446  FE_C10|FE_U3EN}
8447  ,
8448  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8449  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8450  FE_RAM|FE_IO256|FE_LEDC}
8451 };
8452 
8453 #define sym_pci_num_devs \
8454 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8455 
8456 /*
8457  *  Look up the chip table.
8458  *
8459  *  Return a pointer to the chip entry if found,
8460  *  zero otherwise.
8461  */
8462 static struct sym_pci_chip *
8463 sym_find_pci_chip(device_t dev)
8464 {
8465 	struct	sym_pci_chip *chip;
8466 	int	i;
8467 	u_short	device_id;
8468 	u_char	revision;
8469 
8470 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8471 		return NULL;
8472 
8473 	device_id = pci_get_device(dev);
8474 	revision  = pci_get_revid(dev);
8475 
8476 	for (i = 0; i < sym_pci_num_devs; i++) {
8477 		chip = &sym_pci_dev_table[i];
8478 		if (device_id != chip->device_id)
8479 			continue;
8480 		if (revision > chip->revision_id)
8481 			continue;
8482 		return chip;
8483 	}
8484 
8485 	return NULL;
8486 }
8487 
8488 /*
8489  *  Tell upper layer if the chip is supported.
8490  */
8491 static int
8492 sym_pci_probe(device_t dev)
8493 {
8494 	struct	sym_pci_chip *chip;
8495 
8496 	chip = sym_find_pci_chip(dev);
8497 	if (chip && sym_find_firmware(chip)) {
8498 		device_set_desc(dev, chip->name);
8499 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8500 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8501 	}
8502 	return ENXIO;
8503 }
8504 
8505 /*
8506  *  Attach a sym53c8xx device.
8507  */
8508 static int
8509 sym_pci_attach(device_t dev)
8510 {
8511 	struct	sym_pci_chip *chip;
8512 	u_short	command;
8513 	u_char	cachelnsz;
8514 	struct	sym_hcb *np = NULL;
8515 	struct	sym_nvram nvram;
8516 	struct	sym_fw *fw = NULL;
8517 	int 	i;
8518 	bus_dma_tag_t	bus_dmat;
8519 
8520 	bus_dmat = bus_get_dma_tag(dev);
8521 
8522 	/*
8523 	 *  Only probed devices should be attached.
8524 	 *  We just enjoy being paranoid. :)
8525 	 */
8526 	chip = sym_find_pci_chip(dev);
8527 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8528 		return (ENXIO);
8529 
8530 	/*
8531 	 *  Allocate immediately the host control block,
8532 	 *  since we are only expecting to succeed. :)
8533 	 *  We keep track in the HCB of all the resources that
8534 	 *  are to be released on error.
8535 	 */
8536 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8537 	if (np)
8538 		np->bus_dmat = bus_dmat;
8539 	else
8540 		return (ENXIO);
8541 
8542 	SYM_LOCK_INIT();
8543 
8544 	/*
8545 	 *  Copy some useful infos to the HCB.
8546 	 */
8547 	np->hcb_ba	 = vtobus(np);
8548 	np->verbose	 = bootverbose;
8549 	np->device	 = dev;
8550 	np->unit	 = device_get_unit(dev);
8551 	np->device_id	 = pci_get_device(dev);
8552 	np->revision_id  = pci_get_revid(dev);
8553 	np->features	 = chip->features;
8554 	np->clock_divn	 = chip->nr_divisor;
8555 	np->maxoffs	 = chip->offset_max;
8556 	np->maxburst	 = chip->burst_max;
8557 	np->scripta_sz	 = fw->a_size;
8558 	np->scriptb_sz	 = fw->b_size;
8559 	np->fw_setup	 = fw->setup;
8560 	np->fw_patch	 = fw->patch;
8561 	np->fw_name	 = fw->name;
8562 
8563 #ifdef __amd64__
8564 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8565 			"TARGET");
8566 	if (!np->target)
8567 		goto attach_failed;
8568 #endif
8569 	/*
8570 	 * Edit its name.
8571 	 */
8572 	snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
8573 
8574 	/*
8575 	 *  Initialize the CCB free and busy queues.
8576 	 */
8577 	sym_que_init(&np->free_ccbq);
8578 	sym_que_init(&np->busy_ccbq);
8579 	sym_que_init(&np->comp_ccbq);
8580 	sym_que_init(&np->cam_ccbq);
8581 
8582 	/*
8583 	 *  Allocate a tag for the DMA of user data.
8584 	 */
8585 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
8586 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
8587 				NULL, NULL,
8588 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
8589 				(1<<24), 0, busdma_lock_mutex, &np->mtx,
8590 				&np->data_dmat)) {
8591 		device_printf(dev, "failed to create DMA tag.\n");
8592 		goto attach_failed;
8593 	}
8594 	/*
8595 	 *  Read and apply some fix-ups to the PCI COMMAND
8596 	 *  register. We want the chip to be enabled for:
8597 	 *  - BUS mastering
8598 	 *  - PCI parity checking (reporting would also be fine)
8599 	 *  - Write And Invalidate.
8600 	 */
8601 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8602 	command |= PCIM_CMD_BUSMASTEREN;
8603 	command |= PCIM_CMD_PERRESPEN;
8604 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
8605 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8606 
8607 	/*
8608 	 *  Let the device know about the cache line size,
8609 	 *  if it doesn't yet.
8610 	 */
8611 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8612 	if (!cachelnsz) {
8613 		cachelnsz = 8;
8614 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8615 	}
8616 
8617 	/*
8618 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8619 	 */
8620 	if ((command & PCIM_CMD_MEMEN) != 0) {
8621 		int regs_id = SYM_PCI_MMIO;
8622 		np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8623 						      &regs_id, RF_ACTIVE);
8624 	}
8625 	if (!np->mmio_res) {
8626 		device_printf(dev, "failed to allocate MMIO resources\n");
8627 		goto attach_failed;
8628 	}
8629 	np->mmio_ba = rman_get_start(np->mmio_res);
8630 
8631 	/*
8632 	 *  Allocate the IRQ.
8633 	 */
8634 	i = 0;
8635 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8636 					     RF_ACTIVE | RF_SHAREABLE);
8637 	if (!np->irq_res) {
8638 		device_printf(dev, "failed to allocate IRQ resource\n");
8639 		goto attach_failed;
8640 	}
8641 
8642 #ifdef	SYM_CONF_IOMAPPED
8643 	/*
8644 	 *  User want us to use normal IO with PCI.
8645 	 *  Alloc/get/map/retrieve everything that deals with IO.
8646 	 */
8647 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
8648 		int regs_id = SYM_PCI_IO;
8649 		np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
8650 						    &regs_id, RF_ACTIVE);
8651 	}
8652 	if (!np->io_res) {
8653 		device_printf(dev, "failed to allocate IO resources\n");
8654 		goto attach_failed;
8655 	}
8656 
8657 #endif /* SYM_CONF_IOMAPPED */
8658 
8659 	/*
8660 	 *  If the chip has RAM.
8661 	 *  Alloc/get/map/retrieve the corresponding resources.
8662 	 */
8663 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
8664 	    (command & PCIM_CMD_MEMEN) != 0) {
8665 		int regs_id = SYM_PCI_RAM;
8666 		if (np->features & FE_64BIT)
8667 			regs_id = SYM_PCI_RAM64;
8668 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8669 						     &regs_id, RF_ACTIVE);
8670 		if (!np->ram_res) {
8671 			device_printf(dev,"failed to allocate RAM resources\n");
8672 			goto attach_failed;
8673 		}
8674 		np->ram_id  = regs_id;
8675 		np->ram_ba = rman_get_start(np->ram_res);
8676 	}
8677 
8678 	/*
8679 	 *  Save setting of some IO registers, so we will
8680 	 *  be able to probe specific implementations.
8681 	 */
8682 	sym_save_initial_setting (np);
8683 
8684 	/*
8685 	 *  Reset the chip now, since it has been reported
8686 	 *  that SCSI clock calibration may not work properly
8687 	 *  if the chip is currently active.
8688 	 */
8689 	sym_chip_reset (np);
8690 
8691 	/*
8692 	 *  Try to read the user set-up.
8693 	 */
8694 	(void) sym_read_nvram(np, &nvram);
8695 
8696 	/*
8697 	 *  Prepare controller and devices settings, according
8698 	 *  to chip features, user set-up and driver set-up.
8699 	 */
8700 	(void) sym_prepare_setting(np, &nvram);
8701 
8702 	/*
8703 	 *  Check the PCI clock frequency.
8704 	 *  Must be performed after prepare_setting since it destroys
8705 	 *  STEST1 that is used to probe for the clock doubler.
8706 	 */
8707 	i = sym_getpciclock(np);
8708 	if (i > 37000)
8709 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8710 
8711 	/*
8712 	 *  Allocate the start queue.
8713 	 */
8714 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8715 	if (!np->squeue)
8716 		goto attach_failed;
8717 	np->squeue_ba = vtobus(np->squeue);
8718 
8719 	/*
8720 	 *  Allocate the done queue.
8721 	 */
8722 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8723 	if (!np->dqueue)
8724 		goto attach_failed;
8725 	np->dqueue_ba = vtobus(np->dqueue);
8726 
8727 	/*
8728 	 *  Allocate the target bus address array.
8729 	 */
8730 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8731 	if (!np->targtbl)
8732 		goto attach_failed;
8733 	np->targtbl_ba = vtobus(np->targtbl);
8734 
8735 	/*
8736 	 *  Allocate SCRIPTS areas.
8737 	 */
8738 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8739 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8740 	if (!np->scripta0 || !np->scriptb0)
8741 		goto attach_failed;
8742 
8743 	/*
8744 	 *  Allocate the CCBs. We need at least ONE.
8745 	 */
8746 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8747 		;
8748 	if (i < 1)
8749 		goto attach_failed;
8750 
8751 	/*
8752 	 *  Calculate BUS addresses where we are going
8753 	 *  to load the SCRIPTS.
8754 	 */
8755 	np->scripta_ba	= vtobus(np->scripta0);
8756 	np->scriptb_ba	= vtobus(np->scriptb0);
8757 	np->scriptb0_ba	= np->scriptb_ba;
8758 
8759 	if (np->ram_ba) {
8760 		np->scripta_ba	= np->ram_ba;
8761 		if (np->features & FE_RAM8K) {
8762 			np->ram_ws = 8192;
8763 			np->scriptb_ba = np->scripta_ba + 4096;
8764 #ifdef __LP64__
8765 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8766 #endif
8767 		}
8768 		else
8769 			np->ram_ws = 4096;
8770 	}
8771 
8772 	/*
8773 	 *  Copy scripts to controller instance.
8774 	 */
8775 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8776 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8777 
8778 	/*
8779 	 *  Setup variable parts in scripts and compute
8780 	 *  scripts bus addresses used from the C code.
8781 	 */
8782 	np->fw_setup(np, fw);
8783 
8784 	/*
8785 	 *  Bind SCRIPTS with physical addresses usable by the
8786 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8787 	 */
8788 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8789 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8790 
8791 #ifdef SYM_CONF_IARB_SUPPORT
8792 	/*
8793 	 *    If user wants IARB to be set when we win arbitration
8794 	 *    and have other jobs, compute the max number of consecutive
8795 	 *    settings of IARB hints before we leave devices a chance to
8796 	 *    arbitrate for reselection.
8797 	 */
8798 #ifdef	SYM_SETUP_IARB_MAX
8799 	np->iarb_max = SYM_SETUP_IARB_MAX;
8800 #else
8801 	np->iarb_max = 4;
8802 #endif
8803 #endif
8804 
8805 	/*
8806 	 *  Prepare the idle and invalid task actions.
8807 	 */
8808 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8809 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8810 	np->idletask_ba		= vtobus(&np->idletask);
8811 
8812 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8813 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8814 	np->notask_ba		= vtobus(&np->notask);
8815 
8816 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8817 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8818 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8819 
8820 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8821 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8822 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8823 
8824 	/*
8825 	 *  Allocate and prepare the lun JUMP table that is used
8826 	 *  for a target prior the probing of devices (bad lun table).
8827 	 *  A private table will be allocated for the target on the
8828 	 *  first INQUIRY response received.
8829 	 */
8830 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8831 	if (!np->badluntbl)
8832 		goto attach_failed;
8833 
8834 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8835 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8836 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8837 
8838 	/*
8839 	 *  Prepare the bus address array that contains the bus
8840 	 *  address of each target control block.
8841 	 *  For now, assume all logical units are wrong. :)
8842 	 */
8843 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8844 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8845 		np->target[i].head.luntbl_sa =
8846 				cpu_to_scr(vtobus(np->badluntbl));
8847 		np->target[i].head.lun0_sa =
8848 				cpu_to_scr(vtobus(&np->badlun_sa));
8849 	}
8850 
8851 	/*
8852 	 *  Now check the cache handling of the pci chipset.
8853 	 */
8854 	if (sym_snooptest (np)) {
8855 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8856 		goto attach_failed;
8857 	};
8858 
8859 	/*
8860 	 *  Now deal with CAM.
8861 	 *  Hopefully, we will succeed with that one.:)
8862 	 */
8863 	if (!sym_cam_attach(np))
8864 		goto attach_failed;
8865 
8866 	/*
8867 	 *  Sigh! we are done.
8868 	 */
8869 	return 0;
8870 
8871 	/*
8872 	 *  We have failed.
8873 	 *  We will try to free all the resources we have
8874 	 *  allocated, but if we are a boot device, this
8875 	 *  will not help that much.;)
8876 	 */
8877 attach_failed:
8878 	if (np)
8879 		sym_pci_free(np);
8880 	return ENXIO;
8881 }
8882 
8883 /*
8884  *  Free everything that have been allocated for this device.
8885  */
8886 static void sym_pci_free(hcb_p np)
8887 {
8888 	SYM_QUEHEAD *qp;
8889 	ccb_p cp;
8890 	tcb_p tp;
8891 	lcb_p lp;
8892 	int target, lun;
8893 
8894 	/*
8895 	 *  First free CAM resources.
8896 	 */
8897 	sym_cam_free(np);
8898 
8899 	/*
8900 	 *  Now every should be quiet for us to
8901 	 *  free other resources.
8902 	 */
8903 	if (np->ram_res)
8904 		bus_release_resource(np->device, SYS_RES_MEMORY,
8905 				     np->ram_id, np->ram_res);
8906 	if (np->mmio_res)
8907 		bus_release_resource(np->device, SYS_RES_MEMORY,
8908 				     SYM_PCI_MMIO, np->mmio_res);
8909 	if (np->io_res)
8910 		bus_release_resource(np->device, SYS_RES_IOPORT,
8911 				     SYM_PCI_IO, np->io_res);
8912 	if (np->irq_res)
8913 		bus_release_resource(np->device, SYS_RES_IRQ,
8914 				     0, np->irq_res);
8915 
8916 	if (np->scriptb0)
8917 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8918 	if (np->scripta0)
8919 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8920 	if (np->squeue)
8921 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8922 	if (np->dqueue)
8923 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8924 
8925 	while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
8926 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8927 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8928 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8929 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8930 	}
8931 
8932 	if (np->badluntbl)
8933 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8934 
8935 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8936 		tp = &np->target[target];
8937 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8938 			lp = sym_lp(np, tp, lun);
8939 			if (!lp)
8940 				continue;
8941 			if (lp->itlq_tbl)
8942 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8943 				       "ITLQ_TBL");
8944 			if (lp->cb_tags)
8945 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8946 				       "CB_TAGS");
8947 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8948 		}
8949 #if SYM_CONF_MAX_LUN > 1
8950 		if (tp->lunmp)
8951 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8952 			       "LUNMP");
8953 #endif
8954 	}
8955 #ifdef __amd64__
8956 	if (np->target)
8957 		sym_mfree_dma(np->target,
8958 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8959 #endif
8960 	if (np->targtbl)
8961 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8962 	if (np->data_dmat)
8963 		bus_dma_tag_destroy(np->data_dmat);
8964 	if (SYM_LOCK_INITIALIZED() != 0)
8965 		SYM_LOCK_DESTROY();
8966 	sym_mfree_dma(np, sizeof(*np), "HCB");
8967 }
8968 
8969 /*
8970  *  Allocate CAM resources and register a bus to CAM.
8971  */
8972 static int sym_cam_attach(hcb_p np)
8973 {
8974 	struct cam_devq *devq = NULL;
8975 	struct cam_sim *sim = NULL;
8976 	struct cam_path *path = NULL;
8977 	struct ccb_setasync csa;
8978 	int err;
8979 
8980 	/*
8981 	 *  Establish our interrupt handler.
8982 	 */
8983 	err = bus_setup_intr(np->device, np->irq_res,
8984 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8985 			NULL, sym_intr, np, &np->intr);
8986 	if (err) {
8987 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8988 			      err);
8989 		goto fail;
8990 	}
8991 
8992 	/*
8993 	 *  Create the device queue for our sym SIM.
8994 	 */
8995 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8996 	if (!devq)
8997 		goto fail;
8998 
8999 	/*
9000 	 *  Construct our SIM entry.
9001 	 */
9002 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
9003 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
9004 	if (!sim)
9005 		goto fail;
9006 
9007 	SYM_LOCK();
9008 
9009 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
9010 		goto fail;
9011 	np->sim = sim;
9012 
9013 	if (xpt_create_path(&path, 0,
9014 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9015 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9016 		goto fail;
9017 	}
9018 	np->path = path;
9019 
9020 	/*
9021 	 *  Establish our async notification handler.
9022 	 */
9023 	xpt_setup_ccb(&csa.ccb_h, np->path, 5);
9024 	csa.ccb_h.func_code = XPT_SASYNC_CB;
9025 	csa.event_enable    = AC_LOST_DEVICE;
9026 	csa.callback	    = sym_async;
9027 	csa.callback_arg    = np->sim;
9028 	xpt_action((union ccb *)&csa);
9029 
9030 	/*
9031 	 *  Start the chip now, without resetting the BUS, since
9032 	 *  it seems that this must stay under control of CAM.
9033 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9034 	 *  get a spurious SMBC interrupt.
9035 	 */
9036 	sym_init (np, 0);
9037 
9038 	SYM_UNLOCK();
9039 	return 1;
9040 fail:
9041 	if (sim)
9042 		cam_sim_free(sim, FALSE);
9043 	if (devq)
9044 		cam_simq_free(devq);
9045 
9046 	SYM_UNLOCK();
9047 
9048 	sym_cam_free(np);
9049 
9050 	return 0;
9051 }
9052 
9053 /*
9054  *  Free everything that deals with CAM.
9055  */
9056 static void sym_cam_free(hcb_p np)
9057 {
9058 	SYM_LOCK_ASSERT(MA_NOTOWNED);
9059 
9060 	if (np->intr) {
9061 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9062 		np->intr = NULL;
9063 	}
9064 
9065 	SYM_LOCK();
9066 
9067 	if (np->sim) {
9068 		xpt_bus_deregister(cam_sim_path(np->sim));
9069 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
9070 		np->sim = NULL;
9071 	}
9072 	if (np->path) {
9073 		xpt_free_path(np->path);
9074 		np->path = NULL;
9075 	}
9076 
9077 	SYM_UNLOCK();
9078 }
9079 
9080 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9081 
9082 /*
9083  *  Get host setup from NVRAM.
9084  */
9085 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9086 {
9087 #ifdef SYM_CONF_NVRAM_SUPPORT
9088 	/*
9089 	 *  Get parity checking, host ID, verbose mode
9090 	 *  and miscellaneous host flags from NVRAM.
9091 	 */
9092 	switch(nvram->type) {
9093 	case SYM_SYMBIOS_NVRAM:
9094 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9095 			np->rv_scntl0  &= ~0x0a;
9096 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9097 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9098 			np->verbose += 1;
9099 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9100 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9101 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9102 			np->usrflags |= SYM_AVOID_BUS_RESET;
9103 		break;
9104 	case SYM_TEKRAM_NVRAM:
9105 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9106 		break;
9107 	default:
9108 		break;
9109 	}
9110 #endif
9111 }
9112 
9113 /*
9114  *  Get target setup from NVRAM.
9115  */
9116 #ifdef SYM_CONF_NVRAM_SUPPORT
9117 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9118 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9119 #endif
9120 
9121 static void
9122 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9123 {
9124 #ifdef SYM_CONF_NVRAM_SUPPORT
9125 	switch(nvp->type) {
9126 	case SYM_SYMBIOS_NVRAM:
9127 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9128 		break;
9129 	case SYM_TEKRAM_NVRAM:
9130 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9131 		break;
9132 	default:
9133 		break;
9134 	}
9135 #endif
9136 }
9137 
9138 #ifdef SYM_CONF_NVRAM_SUPPORT
9139 /*
9140  *  Get target set-up from Symbios format NVRAM.
9141  */
9142 static void
9143 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9144 {
9145 	tcb_p tp = &np->target[target];
9146 	Symbios_target *tn = &nvram->target[target];
9147 
9148 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9149 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9150 	tp->usrtags =
9151 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9152 
9153 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9154 		tp->usrflags &= ~SYM_DISC_ENABLED;
9155 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9156 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9157 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9158 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9159 }
9160 
9161 /*
9162  *  Get target set-up from Tekram format NVRAM.
9163  */
9164 static void
9165 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9166 {
9167 	tcb_p tp = &np->target[target];
9168 	struct Tekram_target *tn = &nvram->target[target];
9169 	int i;
9170 
9171 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9172 		i = tn->sync_index & 0xf;
9173 		tp->tinfo.user.period = Tekram_sync[i];
9174 	}
9175 
9176 	tp->tinfo.user.width =
9177 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9178 
9179 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9180 		tp->usrtags = 2 << nvram->max_tags_index;
9181 	}
9182 
9183 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9184 		tp->usrflags |= SYM_DISC_ENABLED;
9185 
9186 	/* If any device does not support parity, we will not use this option */
9187 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9188 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9189 }
9190 
9191 #ifdef	SYM_CONF_DEBUG_NVRAM
9192 /*
9193  *  Dump Symbios format NVRAM for debugging purpose.
9194  */
9195 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9196 {
9197 	int i;
9198 
9199 	/* display Symbios nvram host data */
9200 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9201 		sym_name(np), nvram->host_id & 0x0f,
9202 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9203 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9204 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9205 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9206 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9207 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9208 
9209 	/* display Symbios nvram drive data */
9210 	for (i = 0 ; i < 15 ; i++) {
9211 		struct Symbios_target *tn = &nvram->target[i];
9212 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9213 		sym_name(np), i,
9214 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9215 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9216 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9217 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9218 		tn->bus_width,
9219 		tn->sync_period / 4,
9220 		tn->timeout);
9221 	}
9222 }
9223 
9224 /*
9225  *  Dump TEKRAM format NVRAM for debugging purpose.
9226  */
9227 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9228 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9229 {
9230 	int i, tags, boot_delay;
9231 	char *rem;
9232 
9233 	/* display Tekram nvram host data */
9234 	tags = 2 << nvram->max_tags_index;
9235 	boot_delay = 0;
9236 	if (nvram->boot_delay_index < 6)
9237 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9238 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9239 	default:
9240 	case 0:	rem = "";			break;
9241 	case 1: rem = " REMOVABLE=boot device";	break;
9242 	case 2: rem = " REMOVABLE=all";		break;
9243 	}
9244 
9245 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9246 		sym_name(np), nvram->host_id & 0x0f,
9247 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9248 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9249 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9250 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9251 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9252 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9253 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9254 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9255 		rem, boot_delay, tags);
9256 
9257 	/* display Tekram nvram drive data */
9258 	for (i = 0; i <= 15; i++) {
9259 		int sync, j;
9260 		struct Tekram_target *tn = &nvram->target[i];
9261 		j = tn->sync_index & 0xf;
9262 		sync = Tekram_sync[j];
9263 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9264 		sym_name(np), i,
9265 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9266 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9267 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9268 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9269 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9270 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9271 		sync);
9272 	}
9273 }
9274 #endif	/* SYM_CONF_DEBUG_NVRAM */
9275 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9276 
9277 
9278 /*
9279  *  Try reading Symbios or Tekram NVRAM
9280  */
9281 #ifdef SYM_CONF_NVRAM_SUPPORT
9282 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9283 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9284 #endif
9285 
9286 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9287 {
9288 #ifdef SYM_CONF_NVRAM_SUPPORT
9289 	/*
9290 	 *  Try to read SYMBIOS nvram.
9291 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9292 	 */
9293 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9294 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9295 		nvp->type = SYM_SYMBIOS_NVRAM;
9296 #ifdef SYM_CONF_DEBUG_NVRAM
9297 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9298 #endif
9299 	}
9300 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9301 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9302 		nvp->type = SYM_TEKRAM_NVRAM;
9303 #ifdef SYM_CONF_DEBUG_NVRAM
9304 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9305 #endif
9306 	}
9307 	else
9308 		nvp->type = 0;
9309 #else
9310 	nvp->type = 0;
9311 #endif
9312 	return nvp->type;
9313 }
9314 
9315 
9316 #ifdef SYM_CONF_NVRAM_SUPPORT
9317 /*
9318  *  24C16 EEPROM reading.
9319  *
9320  *  GPOI0 - data in/data out
9321  *  GPIO1 - clock
9322  *  Symbios NVRAM wiring now also used by Tekram.
9323  */
9324 
9325 #define SET_BIT 0
9326 #define CLR_BIT 1
9327 #define SET_CLK 2
9328 #define CLR_CLK 3
9329 
9330 /*
9331  *  Set/clear data/clock bit in GPIO0
9332  */
9333 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9334 			  int bit_mode)
9335 {
9336 	UDELAY (5);
9337 	switch (bit_mode){
9338 	case SET_BIT:
9339 		*gpreg |= write_bit;
9340 		break;
9341 	case CLR_BIT:
9342 		*gpreg &= 0xfe;
9343 		break;
9344 	case SET_CLK:
9345 		*gpreg |= 0x02;
9346 		break;
9347 	case CLR_CLK:
9348 		*gpreg &= 0xfd;
9349 		break;
9350 
9351 	}
9352 	OUTB (nc_gpreg, *gpreg);
9353 	UDELAY (5);
9354 }
9355 
9356 /*
9357  *  Send START condition to NVRAM to wake it up.
9358  */
9359 static void S24C16_start(hcb_p np, u_char *gpreg)
9360 {
9361 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9362 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9363 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9364 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9365 }
9366 
9367 /*
9368  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9369  */
9370 static void S24C16_stop(hcb_p np, u_char *gpreg)
9371 {
9372 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9373 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9374 }
9375 
9376 /*
9377  *  Read or write a bit to the NVRAM,
9378  *  read if GPIO0 input else write if GPIO0 output
9379  */
9380 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9381 			 u_char *gpreg)
9382 {
9383 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9384 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9385 	if (read_bit)
9386 		*read_bit = INB (nc_gpreg);
9387 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9388 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9389 }
9390 
9391 /*
9392  *  Output an ACK to the NVRAM after reading,
9393  *  change GPIO0 to output and when done back to an input
9394  */
9395 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9396 			    u_char *gpcntl)
9397 {
9398 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9399 	S24C16_do_bit(np, 0, write_bit, gpreg);
9400 	OUTB (nc_gpcntl, *gpcntl);
9401 }
9402 
9403 /*
9404  *  Input an ACK from NVRAM after writing,
9405  *  change GPIO0 to input and when done back to an output
9406  */
9407 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9408 			   u_char *gpcntl)
9409 {
9410 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9411 	S24C16_do_bit(np, read_bit, 1, gpreg);
9412 	OUTB (nc_gpcntl, *gpcntl);
9413 }
9414 
9415 /*
9416  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9417  *  GPIO0 must already be set as an output
9418  */
9419 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9420 			     u_char *gpreg, u_char *gpcntl)
9421 {
9422 	int x;
9423 
9424 	for (x = 0; x < 8; x++)
9425 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9426 
9427 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9428 }
9429 
9430 /*
9431  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9432  *  GPIO0 must already be set as an input
9433  */
9434 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9435 			    u_char *gpreg, u_char *gpcntl)
9436 {
9437 	int x;
9438 	u_char read_bit;
9439 
9440 	*read_data = 0;
9441 	for (x = 0; x < 8; x++) {
9442 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9443 		*read_data |= ((read_bit & 0x01) << (7 - x));
9444 	}
9445 
9446 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9447 }
9448 
9449 /*
9450  *  Read 'len' bytes starting at 'offset'.
9451  */
9452 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9453 {
9454 	u_char	gpcntl, gpreg;
9455 	u_char	old_gpcntl, old_gpreg;
9456 	u_char	ack_data;
9457 	int	retv = 1;
9458 	int	x;
9459 
9460 	/* save current state of GPCNTL and GPREG */
9461 	old_gpreg	= INB (nc_gpreg);
9462 	old_gpcntl	= INB (nc_gpcntl);
9463 	gpcntl		= old_gpcntl & 0x1c;
9464 
9465 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9466 	OUTB (nc_gpreg,  old_gpreg);
9467 	OUTB (nc_gpcntl, gpcntl);
9468 
9469 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9470 	gpreg = old_gpreg;
9471 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9472 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9473 
9474 	/* now set NVRAM inactive with GPIO0/1 both high */
9475 	S24C16_stop(np, &gpreg);
9476 
9477 	/* activate NVRAM */
9478 	S24C16_start(np, &gpreg);
9479 
9480 	/* write device code and random address MSB */
9481 	S24C16_write_byte(np, &ack_data,
9482 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9483 	if (ack_data & 0x01)
9484 		goto out;
9485 
9486 	/* write random address LSB */
9487 	S24C16_write_byte(np, &ack_data,
9488 		offset & 0xff, &gpreg, &gpcntl);
9489 	if (ack_data & 0x01)
9490 		goto out;
9491 
9492 	/* regenerate START state to set up for reading */
9493 	S24C16_start(np, &gpreg);
9494 
9495 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9496 	S24C16_write_byte(np, &ack_data,
9497 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9498 	if (ack_data & 0x01)
9499 		goto out;
9500 
9501 	/* now set up GPIO0 for inputting data */
9502 	gpcntl |= 0x01;
9503 	OUTB (nc_gpcntl, gpcntl);
9504 
9505 	/* input all requested data - only part of total NVRAM */
9506 	for (x = 0; x < len; x++)
9507 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9508 
9509 	/* finally put NVRAM back in inactive mode */
9510 	gpcntl &= 0xfe;
9511 	OUTB (nc_gpcntl, gpcntl);
9512 	S24C16_stop(np, &gpreg);
9513 	retv = 0;
9514 out:
9515 	/* return GPIO0/1 to original states after having accessed NVRAM */
9516 	OUTB (nc_gpcntl, old_gpcntl);
9517 	OUTB (nc_gpreg,  old_gpreg);
9518 
9519 	return retv;
9520 }
9521 
9522 #undef SET_BIT /* 0 */
9523 #undef CLR_BIT /* 1 */
9524 #undef SET_CLK /* 2 */
9525 #undef CLR_CLK /* 3 */
9526 
9527 /*
9528  *  Try reading Symbios NVRAM.
9529  *  Return 0 if OK.
9530  */
9531 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9532 {
9533 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9534 	u_char *data = (u_char *) nvram;
9535 	int len  = sizeof(*nvram);
9536 	u_short	csum;
9537 	int x;
9538 
9539 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9540 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9541 		return 1;
9542 
9543 	/* check valid NVRAM signature, verify byte count and checksum */
9544 	if (nvram->type != 0 ||
9545 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9546 	    nvram->byte_count != len - 12)
9547 		return 1;
9548 
9549 	/* verify checksum */
9550 	for (x = 6, csum = 0; x < len - 6; x++)
9551 		csum += data[x];
9552 	if (csum != nvram->checksum)
9553 		return 1;
9554 
9555 	return 0;
9556 }
9557 
9558 /*
9559  *  93C46 EEPROM reading.
9560  *
9561  *  GPOI0 - data in
9562  *  GPIO1 - data out
9563  *  GPIO2 - clock
9564  *  GPIO4 - chip select
9565  *
9566  *  Used by Tekram.
9567  */
9568 
9569 /*
9570  *  Pulse clock bit in GPIO0
9571  */
9572 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9573 {
9574 	OUTB (nc_gpreg, *gpreg | 0x04);
9575 	UDELAY (2);
9576 	OUTB (nc_gpreg, *gpreg);
9577 }
9578 
9579 /*
9580  *  Read bit from NVRAM
9581  */
9582 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9583 {
9584 	UDELAY (2);
9585 	T93C46_Clk(np, gpreg);
9586 	*read_bit = INB (nc_gpreg);
9587 }
9588 
9589 /*
9590  *  Write bit to GPIO0
9591  */
9592 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9593 {
9594 	if (write_bit & 0x01)
9595 		*gpreg |= 0x02;
9596 	else
9597 		*gpreg &= 0xfd;
9598 
9599 	*gpreg |= 0x10;
9600 
9601 	OUTB (nc_gpreg, *gpreg);
9602 	UDELAY (2);
9603 
9604 	T93C46_Clk(np, gpreg);
9605 }
9606 
9607 /*
9608  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9609  */
9610 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9611 {
9612 	*gpreg &= 0xef;
9613 	OUTB (nc_gpreg, *gpreg);
9614 	UDELAY (2);
9615 
9616 	T93C46_Clk(np, gpreg);
9617 }
9618 
9619 /*
9620  *  Send read command and address to NVRAM
9621  */
9622 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9623 				u_char *read_bit, u_char *gpreg)
9624 {
9625 	int x;
9626 
9627 	/* send 9 bits, start bit (1), command (2), address (6)  */
9628 	for (x = 0; x < 9; x++)
9629 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9630 
9631 	*read_bit = INB (nc_gpreg);
9632 }
9633 
9634 /*
9635  *  READ 2 bytes from the NVRAM
9636  */
9637 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9638 {
9639 	int x;
9640 	u_char read_bit;
9641 
9642 	*nvram_data = 0;
9643 	for (x = 0; x < 16; x++) {
9644 		T93C46_Read_Bit(np, &read_bit, gpreg);
9645 
9646 		if (read_bit & 0x01)
9647 			*nvram_data |=  (0x01 << (15 - x));
9648 		else
9649 			*nvram_data &= ~(0x01 << (15 - x));
9650 	}
9651 }
9652 
9653 /*
9654  *  Read Tekram NvRAM data.
9655  */
9656 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9657 {
9658 	u_char	read_bit;
9659 	int	x;
9660 
9661 	for (x = 0; x < len; x++)  {
9662 
9663 		/* output read command and address */
9664 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9665 		if (read_bit & 0x01)
9666 			return 1; /* Bad */
9667 		T93C46_Read_Word(np, &data[x], gpreg);
9668 		T93C46_Stop(np, gpreg);
9669 	}
9670 
9671 	return 0;
9672 }
9673 
9674 /*
9675  *  Try reading 93C46 Tekram NVRAM.
9676  */
9677 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9678 {
9679 	u_char gpcntl, gpreg;
9680 	u_char old_gpcntl, old_gpreg;
9681 	int retv = 1;
9682 
9683 	/* save current state of GPCNTL and GPREG */
9684 	old_gpreg	= INB (nc_gpreg);
9685 	old_gpcntl	= INB (nc_gpcntl);
9686 
9687 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9688 	   1/2/4 out */
9689 	gpreg = old_gpreg & 0xe9;
9690 	OUTB (nc_gpreg, gpreg);
9691 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9692 	OUTB (nc_gpcntl, gpcntl);
9693 
9694 	/* input all of NVRAM, 64 words */
9695 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9696 				sizeof(*nvram) / sizeof(short), &gpreg);
9697 
9698 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9699 	OUTB (nc_gpcntl, old_gpcntl);
9700 	OUTB (nc_gpreg,  old_gpreg);
9701 
9702 	return retv;
9703 }
9704 
9705 /*
9706  *  Try reading Tekram NVRAM.
9707  *  Return 0 if OK.
9708  */
9709 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9710 {
9711 	u_char *data = (u_char *) nvram;
9712 	int len = sizeof(*nvram);
9713 	u_short	csum;
9714 	int x;
9715 
9716 	switch (np->device_id) {
9717 	case PCI_ID_SYM53C885:
9718 	case PCI_ID_SYM53C895:
9719 	case PCI_ID_SYM53C896:
9720 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9721 					  data, len);
9722 		break;
9723 	case PCI_ID_SYM53C875:
9724 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9725 					  data, len);
9726 		if (!x)
9727 			break;
9728 	default:
9729 		x = sym_read_T93C46_nvram(np, nvram);
9730 		break;
9731 	}
9732 	if (x)
9733 		return 1;
9734 
9735 	/* verify checksum */
9736 	for (x = 0, csum = 0; x < len - 1; x += 2)
9737 		csum += data[x] + (data[x+1] << 8);
9738 	if (csum != 0x1234)
9739 		return 1;
9740 
9741 	return 0;
9742 }
9743 
9744 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9745