1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 /* #define CAM_NEW_TRAN_CODE */ 65 66 #include <sys/param.h> 67 68 /* 69 * Driver configuration options. 70 */ 71 #include "opt_sym.h" 72 #include <dev/sym/sym_conf.h> 73 74 75 #include <sys/systm.h> 76 #include <sys/malloc.h> 77 #include <sys/endian.h> 78 #include <sys/kernel.h> 79 #include <sys/lock.h> 80 #include <sys/mutex.h> 81 #include <sys/module.h> 82 #include <sys/bus.h> 83 84 #include <sys/proc.h> 85 86 #include <dev/pci/pcireg.h> 87 #include <dev/pci/pcivar.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <cam/cam.h> 94 #include <cam/cam_ccb.h> 95 #include <cam/cam_sim.h> 96 #include <cam/cam_xpt_sim.h> 97 #include <cam/cam_debug.h> 98 99 #include <cam/scsi/scsi_all.h> 100 #include <cam/scsi/scsi_message.h> 101 102 #include <vm/vm.h> 103 #include <vm/vm_param.h> 104 #include <vm/pmap.h> 105 106 /* Short and quite clear integer types */ 107 typedef int8_t s8; 108 typedef int16_t s16; 109 typedef int32_t s32; 110 typedef u_int8_t u8; 111 typedef u_int16_t u16; 112 typedef u_int32_t u32; 113 114 /* 115 * From 'cam.error_recovery_diffs.20010313.context' patch. 116 */ 117 #ifdef CAM_NEW_TRAN_CODE 118 #define FreeBSD_New_Tran_Settings 119 #endif /* CAM_NEW_TRAN_CODE */ 120 121 /* 122 * Driver definitions. 123 */ 124 #include <dev/sym/sym_defs.h> 125 #include <dev/sym/sym_fw.h> 126 127 /* 128 * IA32 architecture does not reorder STORES and prevents 129 * LOADS from passing STORES. It is called `program order' 130 * by Intel and allows device drivers to deal with memory 131 * ordering by only ensuring that the code is not reordered 132 * by the compiler when ordering is required. 133 * Other architectures implement a weaker ordering that 134 * requires memory barriers (and also IO barriers when they 135 * make sense) to be used. 136 */ 137 138 #if defined __i386__ || defined __amd64__ 139 #define MEMORY_BARRIER() do { ; } while(0) 140 #elif defined __alpha__ 141 #define MEMORY_BARRIER() alpha_mb() 142 #elif defined __powerpc__ 143 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 144 #elif defined __ia64__ 145 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 146 #elif defined __sparc64__ 147 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 148 #else 149 #error "Not supported platform" 150 #endif 151 152 /* 153 * Portable but silly implemented byte order primitives. 154 * We define the primitives we need, since FreeBSD doesn't 155 * seem to have them yet. 156 */ 157 #if BYTE_ORDER == BIG_ENDIAN 158 159 #define __revb16(x) ( (((u16)(x) & (u16)0x00ffU) << 8) | \ 160 (((u16)(x) & (u16)0xff00U) >> 8) ) 161 #define __revb32(x) ( (((u32)(x) & 0x000000ffU) << 24) | \ 162 (((u32)(x) & 0x0000ff00U) << 8) | \ 163 (((u32)(x) & 0x00ff0000U) >> 8) | \ 164 (((u32)(x) & 0xff000000U) >> 24) ) 165 166 #define __htole16(v) __revb16(v) 167 #define __htole32(v) __revb32(v) 168 #define __le16toh(v) __htole16(v) 169 #define __le32toh(v) __htole32(v) 170 171 static __inline u16 _htole16(u16 v) { return __htole16(v); } 172 static __inline u32 _htole32(u32 v) { return __htole32(v); } 173 #define _le16toh _htole16 174 #define _le32toh _htole32 175 176 #else /* LITTLE ENDIAN */ 177 178 #define __htole16(v) (v) 179 #define __htole32(v) (v) 180 #define __le16toh(v) (v) 181 #define __le32toh(v) (v) 182 183 #define _htole16(v) (v) 184 #define _htole32(v) (v) 185 #define _le16toh(v) (v) 186 #define _le32toh(v) (v) 187 188 #endif /* BYTE_ORDER */ 189 190 /* 191 * A la VMS/CAM-3 queue management. 192 */ 193 194 typedef struct sym_quehead { 195 struct sym_quehead *flink; /* Forward pointer */ 196 struct sym_quehead *blink; /* Backward pointer */ 197 } SYM_QUEHEAD; 198 199 #define sym_que_init(ptr) do { \ 200 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 201 } while (0) 202 203 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 204 { 205 return (head->flink == head) ? 0 : head->flink; 206 } 207 208 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 209 { 210 return (head->blink == head) ? 0 : head->blink; 211 } 212 213 static __inline void __sym_que_add(struct sym_quehead * new, 214 struct sym_quehead * blink, 215 struct sym_quehead * flink) 216 { 217 flink->blink = new; 218 new->flink = flink; 219 new->blink = blink; 220 blink->flink = new; 221 } 222 223 static __inline void __sym_que_del(struct sym_quehead * blink, 224 struct sym_quehead * flink) 225 { 226 flink->blink = blink; 227 blink->flink = flink; 228 } 229 230 static __inline int sym_que_empty(struct sym_quehead *head) 231 { 232 return head->flink == head; 233 } 234 235 static __inline void sym_que_splice(struct sym_quehead *list, 236 struct sym_quehead *head) 237 { 238 struct sym_quehead *first = list->flink; 239 240 if (first != list) { 241 struct sym_quehead *last = list->blink; 242 struct sym_quehead *at = head->flink; 243 244 first->blink = head; 245 head->flink = first; 246 247 last->flink = at; 248 at->blink = last; 249 } 250 } 251 252 #define sym_que_entry(ptr, type, member) \ 253 ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member))) 254 255 256 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 257 258 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 259 260 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 261 262 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 263 { 264 struct sym_quehead *elem = head->flink; 265 266 if (elem != head) 267 __sym_que_del(head, elem->flink); 268 else 269 elem = 0; 270 return elem; 271 } 272 273 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 274 275 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 276 { 277 struct sym_quehead *elem = head->blink; 278 279 if (elem != head) 280 __sym_que_del(elem->blink, head); 281 else 282 elem = 0; 283 return elem; 284 } 285 286 /* 287 * This one may be useful. 288 */ 289 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 290 for (qp = (head)->flink; qp != (head); qp = qp->flink) 291 /* 292 * FreeBSD does not offer our kind of queue in the CAM CCB. 293 * So, we have to cast. 294 */ 295 #define sym_qptr(p) ((struct sym_quehead *) (p)) 296 297 /* 298 * Simple bitmap operations. 299 */ 300 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 301 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 302 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 303 304 /* 305 * Number of tasks per device we want to handle. 306 */ 307 #if SYM_CONF_MAX_TAG_ORDER > 8 308 #error "more than 256 tags per logical unit not allowed." 309 #endif 310 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 311 312 /* 313 * Donnot use more tasks that we can handle. 314 */ 315 #ifndef SYM_CONF_MAX_TAG 316 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 317 #endif 318 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 319 #undef SYM_CONF_MAX_TAG 320 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 321 #endif 322 323 /* 324 * This one means 'NO TAG for this job' 325 */ 326 #define NO_TAG (256) 327 328 /* 329 * Number of SCSI targets. 330 */ 331 #if SYM_CONF_MAX_TARGET > 16 332 #error "more than 16 targets not allowed." 333 #endif 334 335 /* 336 * Number of logical units per target. 337 */ 338 #if SYM_CONF_MAX_LUN > 64 339 #error "more than 64 logical units per target not allowed." 340 #endif 341 342 /* 343 * Asynchronous pre-scaler (ns). Shall be 40 for 344 * the SCSI timings to be compliant. 345 */ 346 #define SYM_CONF_MIN_ASYNC (40) 347 348 /* 349 * Number of entries in the START and DONE queues. 350 * 351 * We limit to 1 PAGE in order to succeed allocation of 352 * these queues. Each entry is 8 bytes long (2 DWORDS). 353 */ 354 #ifdef SYM_CONF_MAX_START 355 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 356 #else 357 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 358 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 359 #endif 360 361 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 362 #undef SYM_CONF_MAX_QUEUE 363 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 364 #undef SYM_CONF_MAX_START 365 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 366 #endif 367 368 /* 369 * For this one, we want a short name :-) 370 */ 371 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 372 373 /* 374 * Active debugging tags and verbosity. 375 */ 376 #define DEBUG_ALLOC (0x0001) 377 #define DEBUG_PHASE (0x0002) 378 #define DEBUG_POLL (0x0004) 379 #define DEBUG_QUEUE (0x0008) 380 #define DEBUG_RESULT (0x0010) 381 #define DEBUG_SCATTER (0x0020) 382 #define DEBUG_SCRIPT (0x0040) 383 #define DEBUG_TINY (0x0080) 384 #define DEBUG_TIMING (0x0100) 385 #define DEBUG_NEGO (0x0200) 386 #define DEBUG_TAGS (0x0400) 387 #define DEBUG_POINTER (0x0800) 388 389 #if 0 390 static int sym_debug = 0; 391 #define DEBUG_FLAGS sym_debug 392 #else 393 /* #define DEBUG_FLAGS (0x0631) */ 394 #define DEBUG_FLAGS (0x0000) 395 396 #endif 397 #define sym_verbose (np->verbose) 398 399 /* 400 * Insert a delay in micro-seconds and milli-seconds. 401 */ 402 static void UDELAY(int us) { DELAY(us); } 403 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 404 405 /* 406 * Simple power of two buddy-like allocator. 407 * 408 * This simple code is not intended to be fast, but to 409 * provide power of 2 aligned memory allocations. 410 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 411 * this allocator allows simple and fast address calculations 412 * from the SCRIPTS code. In addition, cache line alignment 413 * is guaranteed for power of 2 cache line size. 414 * 415 * This allocator has been developped for the Linux sym53c8xx 416 * driver, since this O/S does not provide naturally aligned 417 * allocations. 418 * It has the advantage of allowing the driver to use private 419 * pages of memory that will be useful if we ever need to deal 420 * with IO MMUs for PCI. 421 */ 422 423 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 424 #ifndef __amd64__ 425 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 426 #else 427 #define MEMO_PAGE_ORDER 1 /* 2 PAGEs maximum on amd64 */ 428 #endif 429 #if 0 430 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 431 #endif 432 #define MEMO_WARN 1 433 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 434 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 435 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 436 437 #ifndef __amd64__ 438 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 439 #define free_pages(p) free((p), M_DEVBUF) 440 #else 441 #define get_pages() contigmalloc(MEMO_CLUSTER_SIZE, M_DEVBUF, \ 442 0, 0, 1LL << 32, PAGE_SIZE, 1LL << 32) 443 #define free_pages(p) contigfree((p), MEMO_CLUSTER_SIZE, M_DEVBUF) 444 #endif 445 446 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 447 448 typedef struct m_link { /* Link between free memory chunks */ 449 struct m_link *next; 450 } m_link_s; 451 452 typedef struct m_vtob { /* Virtual to Bus address translation */ 453 struct m_vtob *next; 454 bus_dmamap_t dmamap; /* Map for this chunk */ 455 m_addr_t vaddr; /* Virtual address */ 456 m_addr_t baddr; /* Bus physical address */ 457 } m_vtob_s; 458 /* Hash this stuff a bit to speed up translations */ 459 #define VTOB_HASH_SHIFT 5 460 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 461 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 462 #define VTOB_HASH_CODE(m) \ 463 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 464 465 typedef struct m_pool { /* Memory pool of a given kind */ 466 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 467 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 468 m_addr_t (*getp)(struct m_pool *); 469 #ifdef MEMO_FREE_UNUSED 470 void (*freep)(struct m_pool *, m_addr_t); 471 #endif 472 #define M_GETP() mp->getp(mp) 473 #define M_FREEP(p) mp->freep(mp, p) 474 int nump; 475 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 476 struct m_pool *next; 477 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 478 } m_pool_s; 479 480 static void *___sym_malloc(m_pool_s *mp, int size) 481 { 482 int i = 0; 483 int s = (1 << MEMO_SHIFT); 484 int j; 485 m_addr_t a; 486 m_link_s *h = mp->h; 487 488 if (size > MEMO_CLUSTER_SIZE) 489 return 0; 490 491 while (size > s) { 492 s <<= 1; 493 ++i; 494 } 495 496 j = i; 497 while (!h[j].next) { 498 if (s == MEMO_CLUSTER_SIZE) { 499 h[j].next = (m_link_s *) M_GETP(); 500 if (h[j].next) 501 h[j].next->next = 0; 502 break; 503 } 504 ++j; 505 s <<= 1; 506 } 507 a = (m_addr_t) h[j].next; 508 if (a) { 509 h[j].next = h[j].next->next; 510 while (j > i) { 511 j -= 1; 512 s >>= 1; 513 h[j].next = (m_link_s *) (a+s); 514 h[j].next->next = 0; 515 } 516 } 517 #ifdef DEBUG 518 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 519 #endif 520 return (void *) a; 521 } 522 523 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 524 { 525 int i = 0; 526 int s = (1 << MEMO_SHIFT); 527 m_link_s *q; 528 m_addr_t a, b; 529 m_link_s *h = mp->h; 530 531 #ifdef DEBUG 532 printf("___sym_mfree(%p, %d)\n", ptr, size); 533 #endif 534 535 if (size > MEMO_CLUSTER_SIZE) 536 return; 537 538 while (size > s) { 539 s <<= 1; 540 ++i; 541 } 542 543 a = (m_addr_t) ptr; 544 545 while (1) { 546 #ifdef MEMO_FREE_UNUSED 547 if (s == MEMO_CLUSTER_SIZE) { 548 M_FREEP(a); 549 break; 550 } 551 #endif 552 b = a ^ s; 553 q = &h[i]; 554 while (q->next && q->next != (m_link_s *) b) { 555 q = q->next; 556 } 557 if (!q->next) { 558 ((m_link_s *) a)->next = h[i].next; 559 h[i].next = (m_link_s *) a; 560 break; 561 } 562 q->next = q->next->next; 563 a = a & b; 564 s <<= 1; 565 ++i; 566 } 567 } 568 569 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 570 { 571 void *p; 572 573 p = ___sym_malloc(mp, size); 574 575 if (DEBUG_FLAGS & DEBUG_ALLOC) 576 printf ("new %-10s[%4d] @%p.\n", name, size, p); 577 578 if (p) 579 bzero(p, size); 580 else if (uflags & MEMO_WARN) 581 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 582 583 return p; 584 } 585 586 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 587 588 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 589 { 590 if (DEBUG_FLAGS & DEBUG_ALLOC) 591 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 592 593 ___sym_mfree(mp, ptr, size); 594 595 } 596 597 /* 598 * Default memory pool we donnot need to involve in DMA. 599 */ 600 /* 601 * With the `bus dma abstraction', we use a separate pool for 602 * memory we donnot need to involve in DMA. 603 */ 604 static m_addr_t ___mp0_getp(m_pool_s *mp) 605 { 606 m_addr_t m = (m_addr_t) get_pages(); 607 if (m) 608 ++mp->nump; 609 return m; 610 } 611 612 #ifdef MEMO_FREE_UNUSED 613 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 614 { 615 free_pages(m); 616 --mp->nump; 617 } 618 #endif 619 620 #ifdef MEMO_FREE_UNUSED 621 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 622 #else 623 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 624 #endif 625 626 627 /* 628 * Actual memory allocation routine for non-DMAed memory. 629 */ 630 static void *sym_calloc(int size, char *name) 631 { 632 void *m; 633 /* Lock */ 634 m = __sym_calloc(&mp0, size, name); 635 /* Unlock */ 636 return m; 637 } 638 639 /* 640 * Actual memory allocation routine for non-DMAed memory. 641 */ 642 static void sym_mfree(void *ptr, int size, char *name) 643 { 644 /* Lock */ 645 __sym_mfree(&mp0, ptr, size, name); 646 /* Unlock */ 647 } 648 649 /* 650 * DMAable pools. 651 */ 652 /* 653 * With `bus dma abstraction', we use a separate pool per parent 654 * BUS handle. A reverse table (hashed) is maintained for virtual 655 * to BUS address translation. 656 */ 657 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 658 { 659 bus_addr_t *baddr; 660 baddr = (bus_addr_t *)arg; 661 *baddr = segs->ds_addr; 662 } 663 664 static m_addr_t ___dma_getp(m_pool_s *mp) 665 { 666 m_vtob_s *vbp; 667 void *vaddr = 0; 668 bus_addr_t baddr = 0; 669 670 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 671 if (!vbp) 672 goto out_err; 673 674 if (bus_dmamem_alloc(mp->dmat, &vaddr, 675 BUS_DMA_NOWAIT, &vbp->dmamap)) 676 goto out_err; 677 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 678 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0); 679 if (baddr) { 680 int hc = VTOB_HASH_CODE(vaddr); 681 vbp->vaddr = (m_addr_t) vaddr; 682 vbp->baddr = (m_addr_t) baddr; 683 vbp->next = mp->vtob[hc]; 684 mp->vtob[hc] = vbp; 685 ++mp->nump; 686 return (m_addr_t) vaddr; 687 } 688 out_err: 689 if (baddr) 690 bus_dmamap_unload(mp->dmat, vbp->dmamap); 691 if (vaddr) 692 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 693 if (vbp) { 694 if (vbp->dmamap) 695 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 696 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 697 } 698 return 0; 699 } 700 701 #ifdef MEMO_FREE_UNUSED 702 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 703 { 704 m_vtob_s **vbpp, *vbp; 705 int hc = VTOB_HASH_CODE(m); 706 707 vbpp = &mp->vtob[hc]; 708 while (*vbpp && (*vbpp)->vaddr != m) 709 vbpp = &(*vbpp)->next; 710 if (*vbpp) { 711 vbp = *vbpp; 712 *vbpp = (*vbpp)->next; 713 bus_dmamap_unload(mp->dmat, vbp->dmamap); 714 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 715 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 716 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 717 --mp->nump; 718 } 719 } 720 #endif 721 722 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 723 { 724 m_pool_s *mp; 725 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 726 return mp; 727 } 728 729 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 730 { 731 m_pool_s *mp = 0; 732 733 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 734 if (mp) { 735 mp->dev_dmat = dev_dmat; 736 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 737 BUS_SPACE_MAXADDR_32BIT, 738 BUS_SPACE_MAXADDR_32BIT, 739 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 740 MEMO_CLUSTER_SIZE, 0, 741 busdma_lock_mutex, &Giant, &mp->dmat)) { 742 mp->getp = ___dma_getp; 743 #ifdef MEMO_FREE_UNUSED 744 mp->freep = ___dma_freep; 745 #endif 746 mp->next = mp0.next; 747 mp0.next = mp; 748 return mp; 749 } 750 } 751 if (mp) 752 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 753 return 0; 754 } 755 756 #ifdef MEMO_FREE_UNUSED 757 static void ___del_dma_pool(m_pool_s *p) 758 { 759 struct m_pool **pp = &mp0.next; 760 761 while (*pp && *pp != p) 762 pp = &(*pp)->next; 763 if (*pp) { 764 *pp = (*pp)->next; 765 bus_dma_tag_destroy(p->dmat); 766 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 767 } 768 } 769 #endif 770 771 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 772 { 773 struct m_pool *mp; 774 void *m = 0; 775 776 /* Lock */ 777 mp = ___get_dma_pool(dev_dmat); 778 if (!mp) 779 mp = ___cre_dma_pool(dev_dmat); 780 if (mp) 781 m = __sym_calloc(mp, size, name); 782 #ifdef MEMO_FREE_UNUSED 783 if (mp && !mp->nump) 784 ___del_dma_pool(mp); 785 #endif 786 /* Unlock */ 787 788 return m; 789 } 790 791 static void 792 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 793 { 794 struct m_pool *mp; 795 796 /* Lock */ 797 mp = ___get_dma_pool(dev_dmat); 798 if (mp) 799 __sym_mfree(mp, m, size, name); 800 #ifdef MEMO_FREE_UNUSED 801 if (mp && !mp->nump) 802 ___del_dma_pool(mp); 803 #endif 804 /* Unlock */ 805 } 806 807 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 808 { 809 m_pool_s *mp; 810 int hc = VTOB_HASH_CODE(m); 811 m_vtob_s *vp = 0; 812 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 813 814 /* Lock */ 815 mp = ___get_dma_pool(dev_dmat); 816 if (mp) { 817 vp = mp->vtob[hc]; 818 while (vp && (m_addr_t) vp->vaddr != a) 819 vp = vp->next; 820 } 821 /* Unlock */ 822 if (!vp) 823 panic("sym: VTOBUS FAILED!\n"); 824 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 825 } 826 827 828 /* 829 * Verbs for DMAable memory handling. 830 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 831 * being discarded. 832 */ 833 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 834 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 835 #define _sym_mfree_dma(np, p, s, n) \ 836 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 837 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 838 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 839 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 840 #define vtobus(p) _vtobus(np, p) 841 842 843 /* 844 * Print a buffer in hexadecimal format. 845 */ 846 static void sym_printb_hex (u_char *p, int n) 847 { 848 while (n-- > 0) 849 printf (" %x", *p++); 850 } 851 852 /* 853 * Same with a label at beginning and .\n at end. 854 */ 855 static void sym_printl_hex (char *label, u_char *p, int n) 856 { 857 printf ("%s", label); 858 sym_printb_hex (p, n); 859 printf (".\n"); 860 } 861 862 /* 863 * Return a string for SCSI BUS mode. 864 */ 865 static char *sym_scsi_bus_mode(int mode) 866 { 867 switch(mode) { 868 case SMODE_HVD: return "HVD"; 869 case SMODE_SE: return "SE"; 870 case SMODE_LVD: return "LVD"; 871 } 872 return "??"; 873 } 874 875 /* 876 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 877 */ 878 #ifdef SYM_CONF_NVRAM_SUPPORT 879 static u_char Tekram_sync[16] = 880 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 881 #endif 882 883 /* 884 * Union of supported NVRAM formats. 885 */ 886 struct sym_nvram { 887 int type; 888 #define SYM_SYMBIOS_NVRAM (1) 889 #define SYM_TEKRAM_NVRAM (2) 890 #ifdef SYM_CONF_NVRAM_SUPPORT 891 union { 892 Symbios_nvram Symbios; 893 Tekram_nvram Tekram; 894 } data; 895 #endif 896 }; 897 898 /* 899 * This one is hopefully useless, but actually useful. :-) 900 */ 901 #ifndef assert 902 #define assert(expression) { \ 903 if (!(expression)) { \ 904 (void)panic( \ 905 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 906 #expression, \ 907 __FILE__, __LINE__); \ 908 } \ 909 } 910 #endif 911 912 /* 913 * Some provision for a possible big endian mode supported by 914 * Symbios chips (never seen, by the way). 915 * For now, this stuff does not deserve any comments. :) 916 */ 917 918 #define sym_offb(o) (o) 919 #define sym_offw(o) (o) 920 921 /* 922 * Some provision for support for BIG ENDIAN CPU. 923 * Btw, FreeBSD does not seem to be ready yet for big endian. 924 */ 925 926 #if BYTE_ORDER == BIG_ENDIAN 927 #define cpu_to_scr(dw) _htole32(dw) 928 #define scr_to_cpu(dw) _le32toh(dw) 929 #else 930 #define cpu_to_scr(dw) (dw) 931 #define scr_to_cpu(dw) (dw) 932 #endif 933 934 /* 935 * Access to the chip IO registers and on-chip RAM. 936 * We use the `bus space' interface under FreeBSD-4 and 937 * later kernel versions. 938 */ 939 940 941 #if defined(SYM_CONF_IOMAPPED) 942 943 #define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o) 944 #define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o) 945 #define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o) 946 947 #define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v)) 948 #define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v)) 949 #define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v)) 950 951 #else /* Memory mapped IO */ 952 953 #define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o) 954 #define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o) 955 #define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o) 956 957 #define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v)) 958 #define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v)) 959 #define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v)) 960 961 #endif /* SYM_CONF_IOMAPPED */ 962 963 #define OUTRAM_OFF(o, a, l) \ 964 bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l)) 965 966 967 /* 968 * Common definitions for both bus space and legacy IO methods. 969 */ 970 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 971 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 972 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 973 974 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 975 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 976 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 977 978 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 979 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 980 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 981 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 982 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 983 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 984 985 /* 986 * We normally want the chip to have a consistent view 987 * of driver internal data structures when we restart it. 988 * Thus these macros. 989 */ 990 #define OUTL_DSP(v) \ 991 do { \ 992 MEMORY_BARRIER(); \ 993 OUTL (nc_dsp, (v)); \ 994 } while (0) 995 996 #define OUTONB_STD() \ 997 do { \ 998 MEMORY_BARRIER(); \ 999 OUTONB (nc_dcntl, (STD|NOCOM)); \ 1000 } while (0) 1001 1002 /* 1003 * Command control block states. 1004 */ 1005 #define HS_IDLE (0) 1006 #define HS_BUSY (1) 1007 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 1008 #define HS_DISCONNECT (3) /* Disconnected by target */ 1009 #define HS_WAIT (4) /* waiting for resource */ 1010 1011 #define HS_DONEMASK (0x80) 1012 #define HS_COMPLETE (4|HS_DONEMASK) 1013 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 1014 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 1015 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 1016 1017 /* 1018 * Software Interrupt Codes 1019 */ 1020 #define SIR_BAD_SCSI_STATUS (1) 1021 #define SIR_SEL_ATN_NO_MSG_OUT (2) 1022 #define SIR_MSG_RECEIVED (3) 1023 #define SIR_MSG_WEIRD (4) 1024 #define SIR_NEGO_FAILED (5) 1025 #define SIR_NEGO_PROTO (6) 1026 #define SIR_SCRIPT_STOPPED (7) 1027 #define SIR_REJECT_TO_SEND (8) 1028 #define SIR_SWIDE_OVERRUN (9) 1029 #define SIR_SODL_UNDERRUN (10) 1030 #define SIR_RESEL_NO_MSG_IN (11) 1031 #define SIR_RESEL_NO_IDENTIFY (12) 1032 #define SIR_RESEL_BAD_LUN (13) 1033 #define SIR_TARGET_SELECTED (14) 1034 #define SIR_RESEL_BAD_I_T_L (15) 1035 #define SIR_RESEL_BAD_I_T_L_Q (16) 1036 #define SIR_ABORT_SENT (17) 1037 #define SIR_RESEL_ABORTED (18) 1038 #define SIR_MSG_OUT_DONE (19) 1039 #define SIR_COMPLETE_ERROR (20) 1040 #define SIR_DATA_OVERRUN (21) 1041 #define SIR_BAD_PHASE (22) 1042 #define SIR_MAX (22) 1043 1044 /* 1045 * Extended error bit codes. 1046 * xerr_status field of struct sym_ccb. 1047 */ 1048 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 1049 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 1050 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 1051 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 1052 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 1053 1054 /* 1055 * Negotiation status. 1056 * nego_status field of struct sym_ccb. 1057 */ 1058 #define NS_SYNC (1) 1059 #define NS_WIDE (2) 1060 #define NS_PPR (3) 1061 1062 /* 1063 * A CCB hashed table is used to retrieve CCB address 1064 * from DSA value. 1065 */ 1066 #define CCB_HASH_SHIFT 8 1067 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1068 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1069 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1070 1071 /* 1072 * Device flags. 1073 */ 1074 #define SYM_DISC_ENABLED (1) 1075 #define SYM_TAGS_ENABLED (1<<1) 1076 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1077 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1078 1079 /* 1080 * Host adapter miscellaneous flags. 1081 */ 1082 #define SYM_AVOID_BUS_RESET (1) 1083 #define SYM_SCAN_TARGETS_HILO (1<<1) 1084 1085 /* 1086 * Device quirks. 1087 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1088 * saving the DATA POINTER then reselects and terminates the IO. 1089 * On reselection, the automatic RESTORE DATA POINTER makes the 1090 * CURRENT DATA POINTER not point at the end of the IO. 1091 * This behaviour just breaks our calculation of the residual. 1092 * For now, we just force an AUTO SAVE on disconnection and will 1093 * fix that in a further driver version. 1094 */ 1095 #define SYM_QUIRK_AUTOSAVE 1 1096 1097 /* 1098 * Misc. 1099 */ 1100 #define SYM_SNOOP_TIMEOUT (10000000) 1101 #define SYM_PCI_IO PCIR_BAR(0) 1102 #define SYM_PCI_MMIO PCIR_BAR(1) 1103 #define SYM_PCI_RAM PCIR_BAR(2) 1104 #define SYM_PCI_RAM64 PCIR_BAR(3) 1105 1106 /* 1107 * Back-pointer from the CAM CCB to our data structures. 1108 */ 1109 #define sym_hcb_ptr spriv_ptr0 1110 /* #define sym_ccb_ptr spriv_ptr1 */ 1111 1112 /* 1113 * We mostly have to deal with pointers. 1114 * Thus these typedef's. 1115 */ 1116 typedef struct sym_tcb *tcb_p; 1117 typedef struct sym_lcb *lcb_p; 1118 typedef struct sym_ccb *ccb_p; 1119 typedef struct sym_hcb *hcb_p; 1120 1121 /* 1122 * Gather negotiable parameters value 1123 */ 1124 struct sym_trans { 1125 #ifdef FreeBSD_New_Tran_Settings 1126 u8 scsi_version; 1127 u8 spi_version; 1128 #endif 1129 u8 period; 1130 u8 offset; 1131 u8 width; 1132 u8 options; /* PPR options */ 1133 }; 1134 1135 struct sym_tinfo { 1136 struct sym_trans current; 1137 struct sym_trans goal; 1138 struct sym_trans user; 1139 }; 1140 1141 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1142 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1143 1144 /* 1145 * Global TCB HEADER. 1146 * 1147 * Due to lack of indirect addressing on earlier NCR chips, 1148 * this substructure is copied from the TCB to a global 1149 * address after selection. 1150 * For SYMBIOS chips that support LOAD/STORE this copy is 1151 * not needed and thus not performed. 1152 */ 1153 struct sym_tcbh { 1154 /* 1155 * Scripts bus addresses of LUN table accessed from scripts. 1156 * LUN #0 is a special case, since multi-lun devices are rare, 1157 * and we we want to speed-up the general case and not waste 1158 * resources. 1159 */ 1160 u32 luntbl_sa; /* bus address of this table */ 1161 u32 lun0_sa; /* bus address of LCB #0 */ 1162 /* 1163 * Actual SYNC/WIDE IO registers value for this target. 1164 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1165 * so have alignment constraints. 1166 */ 1167 /*0*/ u_char uval; /* -> SCNTL4 register */ 1168 /*1*/ u_char sval; /* -> SXFER io register */ 1169 /*2*/ u_char filler1; 1170 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1171 }; 1172 1173 /* 1174 * Target Control Block 1175 */ 1176 struct sym_tcb { 1177 /* 1178 * TCB header. 1179 * Assumed at offset 0. 1180 */ 1181 /*0*/ struct sym_tcbh head; 1182 1183 /* 1184 * LUN table used by the SCRIPTS processor. 1185 * An array of bus addresses is used on reselection. 1186 */ 1187 u32 *luntbl; /* LCBs bus address table */ 1188 1189 /* 1190 * LUN table used by the C code. 1191 */ 1192 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1193 #if SYM_CONF_MAX_LUN > 1 1194 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1195 #endif 1196 1197 /* 1198 * Bitmap that tells about LUNs that succeeded at least 1199 * 1 IO and therefore assumed to be a real device. 1200 * Avoid useless allocation of the LCB structure. 1201 */ 1202 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1203 1204 /* 1205 * Bitmap that tells about LUNs that haven't yet an LCB 1206 * allocated (not discovered or LCB allocation failed). 1207 */ 1208 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1209 1210 /* 1211 * Transfer capabilities (SIP) 1212 */ 1213 struct sym_tinfo tinfo; 1214 1215 /* 1216 * Keep track of the CCB used for the negotiation in order 1217 * to ensure that only 1 negotiation is queued at a time. 1218 */ 1219 ccb_p nego_cp; /* CCB used for the nego */ 1220 1221 /* 1222 * Set when we want to reset the device. 1223 */ 1224 u_char to_reset; 1225 1226 /* 1227 * Other user settable limits and options. 1228 * These limits are read from the NVRAM if present. 1229 */ 1230 u_char usrflags; 1231 u_short usrtags; 1232 }; 1233 1234 /* 1235 * Global LCB HEADER. 1236 * 1237 * Due to lack of indirect addressing on earlier NCR chips, 1238 * this substructure is copied from the LCB to a global 1239 * address after selection. 1240 * For SYMBIOS chips that support LOAD/STORE this copy is 1241 * not needed and thus not performed. 1242 */ 1243 struct sym_lcbh { 1244 /* 1245 * SCRIPTS address jumped by SCRIPTS on reselection. 1246 * For not probed logical units, this address points to 1247 * SCRIPTS that deal with bad LU handling (must be at 1248 * offset zero of the LCB for that reason). 1249 */ 1250 /*0*/ u32 resel_sa; 1251 1252 /* 1253 * Task (bus address of a CCB) read from SCRIPTS that points 1254 * to the unique ITL nexus allowed to be disconnected. 1255 */ 1256 u32 itl_task_sa; 1257 1258 /* 1259 * Task table bus address (read from SCRIPTS). 1260 */ 1261 u32 itlq_tbl_sa; 1262 }; 1263 1264 /* 1265 * Logical Unit Control Block 1266 */ 1267 struct sym_lcb { 1268 /* 1269 * TCB header. 1270 * Assumed at offset 0. 1271 */ 1272 /*0*/ struct sym_lcbh head; 1273 1274 /* 1275 * Task table read from SCRIPTS that contains pointers to 1276 * ITLQ nexuses. The bus address read from SCRIPTS is 1277 * inside the header. 1278 */ 1279 u32 *itlq_tbl; /* Kernel virtual address */ 1280 1281 /* 1282 * Busy CCBs management. 1283 */ 1284 u_short busy_itlq; /* Number of busy tagged CCBs */ 1285 u_short busy_itl; /* Number of busy untagged CCBs */ 1286 1287 /* 1288 * Circular tag allocation buffer. 1289 */ 1290 u_short ia_tag; /* Tag allocation index */ 1291 u_short if_tag; /* Tag release index */ 1292 u_char *cb_tags; /* Circular tags buffer */ 1293 1294 /* 1295 * Set when we want to clear all tasks. 1296 */ 1297 u_char to_clear; 1298 1299 /* 1300 * Capabilities. 1301 */ 1302 u_char user_flags; 1303 u_char current_flags; 1304 }; 1305 1306 /* 1307 * Action from SCRIPTS on a task. 1308 * Is part of the CCB, but is also used separately to plug 1309 * error handling action to perform from SCRIPTS. 1310 */ 1311 struct sym_actscr { 1312 u32 start; /* Jumped by SCRIPTS after selection */ 1313 u32 restart; /* Jumped by SCRIPTS on relection */ 1314 }; 1315 1316 /* 1317 * Phase mismatch context. 1318 * 1319 * It is part of the CCB and is used as parameters for the 1320 * DATA pointer. We need two contexts to handle correctly the 1321 * SAVED DATA POINTER. 1322 */ 1323 struct sym_pmc { 1324 struct sym_tblmove sg; /* Updated interrupted SG block */ 1325 u32 ret; /* SCRIPT return address */ 1326 }; 1327 1328 /* 1329 * LUN control block lookup. 1330 * We use a direct pointer for LUN #0, and a table of 1331 * pointers which is only allocated for devices that support 1332 * LUN(s) > 0. 1333 */ 1334 #if SYM_CONF_MAX_LUN <= 1 1335 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1336 #else 1337 #define sym_lp(np, tp, lun) \ 1338 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1339 #endif 1340 1341 /* 1342 * Status are used by the host and the script processor. 1343 * 1344 * The last four bytes (status[4]) are copied to the 1345 * scratchb register (declared as scr0..scr3) just after the 1346 * select/reselect, and copied back just after disconnecting. 1347 * Inside the script the XX_REG are used. 1348 */ 1349 1350 /* 1351 * Last four bytes (script) 1352 */ 1353 #define QU_REG scr0 1354 #define HS_REG scr1 1355 #define HS_PRT nc_scr1 1356 #define SS_REG scr2 1357 #define SS_PRT nc_scr2 1358 #define HF_REG scr3 1359 #define HF_PRT nc_scr3 1360 1361 /* 1362 * Last four bytes (host) 1363 */ 1364 #define actualquirks phys.head.status[0] 1365 #define host_status phys.head.status[1] 1366 #define ssss_status phys.head.status[2] 1367 #define host_flags phys.head.status[3] 1368 1369 /* 1370 * Host flags 1371 */ 1372 #define HF_IN_PM0 1u 1373 #define HF_IN_PM1 (1u<<1) 1374 #define HF_ACT_PM (1u<<2) 1375 #define HF_DP_SAVED (1u<<3) 1376 #define HF_SENSE (1u<<4) 1377 #define HF_EXT_ERR (1u<<5) 1378 #define HF_DATA_IN (1u<<6) 1379 #ifdef SYM_CONF_IARB_SUPPORT 1380 #define HF_HINT_IARB (1u<<7) 1381 #endif 1382 1383 /* 1384 * Global CCB HEADER. 1385 * 1386 * Due to lack of indirect addressing on earlier NCR chips, 1387 * this substructure is copied from the ccb to a global 1388 * address after selection (or reselection) and copied back 1389 * before disconnect. 1390 * For SYMBIOS chips that support LOAD/STORE this copy is 1391 * not needed and thus not performed. 1392 */ 1393 1394 struct sym_ccbh { 1395 /* 1396 * Start and restart SCRIPTS addresses (must be at 0). 1397 */ 1398 /*0*/ struct sym_actscr go; 1399 1400 /* 1401 * SCRIPTS jump address that deal with data pointers. 1402 * 'savep' points to the position in the script responsible 1403 * for the actual transfer of data. 1404 * It's written on reception of a SAVE_DATA_POINTER message. 1405 */ 1406 u32 savep; /* Jump address to saved data pointer */ 1407 u32 lastp; /* SCRIPTS address at end of data */ 1408 u32 goalp; /* Not accessed for now from SCRIPTS */ 1409 1410 /* 1411 * Status fields. 1412 */ 1413 u8 status[4]; 1414 }; 1415 1416 /* 1417 * Data Structure Block 1418 * 1419 * During execution of a ccb by the script processor, the 1420 * DSA (data structure address) register points to this 1421 * substructure of the ccb. 1422 */ 1423 struct sym_dsb { 1424 /* 1425 * CCB header. 1426 * Also assumed at offset 0 of the sym_ccb structure. 1427 */ 1428 /*0*/ struct sym_ccbh head; 1429 1430 /* 1431 * Phase mismatch contexts. 1432 * We need two to handle correctly the SAVED DATA POINTER. 1433 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1434 * for address calculation from SCRIPTS. 1435 */ 1436 struct sym_pmc pm0; 1437 struct sym_pmc pm1; 1438 1439 /* 1440 * Table data for Script 1441 */ 1442 struct sym_tblsel select; 1443 struct sym_tblmove smsg; 1444 struct sym_tblmove smsg_ext; 1445 struct sym_tblmove cmd; 1446 struct sym_tblmove sense; 1447 struct sym_tblmove wresid; 1448 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1449 }; 1450 1451 /* 1452 * Our Command Control Block 1453 */ 1454 struct sym_ccb { 1455 /* 1456 * This is the data structure which is pointed by the DSA 1457 * register when it is executed by the script processor. 1458 * It must be the first entry. 1459 */ 1460 struct sym_dsb phys; 1461 1462 /* 1463 * Pointer to CAM ccb and related stuff. 1464 */ 1465 union ccb *cam_ccb; /* CAM scsiio ccb */ 1466 u8 cdb_buf[16]; /* Copy of CDB */ 1467 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1468 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1469 int data_len; /* Total data length */ 1470 int segments; /* Number of SG segments */ 1471 1472 /* 1473 * Miscellaneous status'. 1474 */ 1475 u_char nego_status; /* Negotiation status */ 1476 u_char xerr_status; /* Extended error flags */ 1477 u32 extra_bytes; /* Extraneous bytes transferred */ 1478 1479 /* 1480 * Message areas. 1481 * We prepare a message to be sent after selection. 1482 * We may use a second one if the command is rescheduled 1483 * due to CHECK_CONDITION or COMMAND TERMINATED. 1484 * Contents are IDENTIFY and SIMPLE_TAG. 1485 * While negotiating sync or wide transfer, 1486 * a SDTR or WDTR message is appended. 1487 */ 1488 u_char scsi_smsg [12]; 1489 u_char scsi_smsg2[12]; 1490 1491 /* 1492 * Auto request sense related fields. 1493 */ 1494 u_char sensecmd[6]; /* Request Sense command */ 1495 u_char sv_scsi_status; /* Saved SCSI status */ 1496 u_char sv_xerr_status; /* Saved extended status */ 1497 int sv_resid; /* Saved residual */ 1498 1499 /* 1500 * Map for the DMA of user data. 1501 */ 1502 void *arg; /* Argument for some callback */ 1503 bus_dmamap_t dmamap; /* DMA map for user data */ 1504 u_char dmamapped; 1505 #define SYM_DMA_NONE 0 1506 #define SYM_DMA_READ 1 1507 #define SYM_DMA_WRITE 2 1508 /* 1509 * Other fields. 1510 */ 1511 u32 ccb_ba; /* BUS address of this CCB */ 1512 u_short tag; /* Tag for this transfer */ 1513 /* NO_TAG means no tag */ 1514 u_char target; 1515 u_char lun; 1516 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1517 SYM_QUEHEAD 1518 link_ccbq; /* Link to free/busy CCB queue */ 1519 u32 startp; /* Initial data pointer */ 1520 int ext_sg; /* Extreme data pointer, used */ 1521 int ext_ofs; /* to calculate the residual. */ 1522 u_char to_abort; /* Want this IO to be aborted */ 1523 }; 1524 1525 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1526 1527 /* 1528 * Host Control Block 1529 */ 1530 struct sym_hcb { 1531 /* 1532 * Global headers. 1533 * Due to poorness of addressing capabilities, earlier 1534 * chips (810, 815, 825) copy part of the data structures 1535 * (CCB, TCB and LCB) in fixed areas. 1536 */ 1537 #ifdef SYM_CONF_GENERIC_SUPPORT 1538 struct sym_ccbh ccb_head; 1539 struct sym_tcbh tcb_head; 1540 struct sym_lcbh lcb_head; 1541 #endif 1542 /* 1543 * Idle task and invalid task actions and 1544 * their bus addresses. 1545 */ 1546 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1547 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1548 1549 /* 1550 * Dummy lun table to protect us against target 1551 * returning bad lun number on reselection. 1552 */ 1553 u32 *badluntbl; /* Table physical address */ 1554 u32 badlun_sa; /* SCRIPT handler BUS address */ 1555 1556 /* 1557 * Bus address of this host control block. 1558 */ 1559 u32 hcb_ba; 1560 1561 /* 1562 * Bit 32-63 of the on-chip RAM bus address in LE format. 1563 * The START_RAM64 script loads the MMRS and MMWS from this 1564 * field. 1565 */ 1566 u32 scr_ram_seg; 1567 1568 /* 1569 * Chip and controller indentification. 1570 */ 1571 device_t device; 1572 int unit; 1573 char inst_name[8]; 1574 1575 /* 1576 * Initial value of some IO register bits. 1577 * These values are assumed to have been set by BIOS, and may 1578 * be used to probe adapter implementation differences. 1579 */ 1580 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1581 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1582 sv_stest1; 1583 1584 /* 1585 * Actual initial value of IO register bits used by the 1586 * driver. They are loaded at initialisation according to 1587 * features that are to be enabled/disabled. 1588 */ 1589 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1590 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1591 1592 /* 1593 * Target data. 1594 */ 1595 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1596 1597 /* 1598 * Target control block bus address array used by the SCRIPT 1599 * on reselection. 1600 */ 1601 u32 *targtbl; 1602 u32 targtbl_ba; 1603 1604 /* 1605 * CAM SIM information for this instance. 1606 */ 1607 struct cam_sim *sim; 1608 struct cam_path *path; 1609 1610 /* 1611 * Allocated hardware resources. 1612 */ 1613 struct resource *irq_res; 1614 struct resource *io_res; 1615 struct resource *mmio_res; 1616 struct resource *ram_res; 1617 int ram_id; 1618 void *intr; 1619 1620 /* 1621 * Bus stuff. 1622 * 1623 * My understanding of PCI is that all agents must share the 1624 * same addressing range and model. 1625 * But some hardware architecture guys provide complex and 1626 * brain-deaded stuff that makes shit. 1627 * This driver only support PCI compliant implementations and 1628 * deals with part of the BUS stuff complexity only to fit O/S 1629 * requirements. 1630 */ 1631 bus_space_handle_t io_bsh; 1632 bus_space_tag_t io_tag; 1633 bus_space_handle_t mmio_bsh; 1634 bus_space_tag_t mmio_tag; 1635 bus_space_handle_t ram_bsh; 1636 bus_space_tag_t ram_tag; 1637 1638 /* 1639 * DMA stuff. 1640 */ 1641 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1642 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1643 /* 1644 * Virtual and physical bus addresses of the chip. 1645 */ 1646 vm_offset_t mmio_va; /* MMIO kernel virtual address */ 1647 vm_offset_t mmio_pa; /* MMIO CPU physical address */ 1648 vm_offset_t mmio_ba; /* MMIO BUS address */ 1649 int mmio_ws; /* MMIO Window size */ 1650 1651 vm_offset_t ram_va; /* RAM kernel virtual address */ 1652 vm_offset_t ram_pa; /* RAM CPU physical address */ 1653 vm_offset_t ram_ba; /* RAM BUS address */ 1654 int ram_ws; /* RAM window size */ 1655 u32 io_port; /* IO port address */ 1656 1657 /* 1658 * SCRIPTS virtual and physical bus addresses. 1659 * 'script' is loaded in the on-chip RAM if present. 1660 * 'scripth' stays in main memory for all chips except the 1661 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1662 */ 1663 u_char *scripta0; /* Copies of script and scripth */ 1664 u_char *scriptb0; /* Copies of script and scripth */ 1665 vm_offset_t scripta_ba; /* Actual script and scripth */ 1666 vm_offset_t scriptb_ba; /* bus addresses. */ 1667 vm_offset_t scriptb0_ba; 1668 u_short scripta_sz; /* Actual size of script A */ 1669 u_short scriptb_sz; /* Actual size of script B */ 1670 1671 /* 1672 * Bus addresses, setup and patch methods for 1673 * the selected firmware. 1674 */ 1675 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1676 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1677 void (*fw_setup)(hcb_p np, struct sym_fw *fw); 1678 void (*fw_patch)(hcb_p np); 1679 char *fw_name; 1680 1681 /* 1682 * General controller parameters and configuration. 1683 */ 1684 u_short device_id; /* PCI device id */ 1685 u_char revision_id; /* PCI device revision id */ 1686 u_int features; /* Chip features map */ 1687 u_char myaddr; /* SCSI id of the adapter */ 1688 u_char maxburst; /* log base 2 of dwords burst */ 1689 u_char maxwide; /* Maximum transfer width */ 1690 u_char minsync; /* Min sync period factor (ST) */ 1691 u_char maxsync; /* Max sync period factor (ST) */ 1692 u_char maxoffs; /* Max scsi offset (ST) */ 1693 u_char minsync_dt; /* Min sync period factor (DT) */ 1694 u_char maxsync_dt; /* Max sync period factor (DT) */ 1695 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1696 u_char multiplier; /* Clock multiplier (1,2,4) */ 1697 u_char clock_divn; /* Number of clock divisors */ 1698 u32 clock_khz; /* SCSI clock frequency in KHz */ 1699 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1700 /* 1701 * Start queue management. 1702 * It is filled up by the host processor and accessed by the 1703 * SCRIPTS processor in order to start SCSI commands. 1704 */ 1705 volatile /* Prevent code optimizations */ 1706 u32 *squeue; /* Start queue virtual address */ 1707 u32 squeue_ba; /* Start queue BUS address */ 1708 u_short squeueput; /* Next free slot of the queue */ 1709 u_short actccbs; /* Number of allocated CCBs */ 1710 1711 /* 1712 * Command completion queue. 1713 * It is the same size as the start queue to avoid overflow. 1714 */ 1715 u_short dqueueget; /* Next position to scan */ 1716 volatile /* Prevent code optimizations */ 1717 u32 *dqueue; /* Completion (done) queue */ 1718 u32 dqueue_ba; /* Done queue BUS address */ 1719 1720 /* 1721 * Miscellaneous buffers accessed by the scripts-processor. 1722 * They shall be DWORD aligned, because they may be read or 1723 * written with a script command. 1724 */ 1725 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1726 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1727 u32 lastmsg; /* Last SCSI message sent */ 1728 u_char scratch; /* Scratch for SCSI receive */ 1729 1730 /* 1731 * Miscellaneous configuration and status parameters. 1732 */ 1733 u_char usrflags; /* Miscellaneous user flags */ 1734 u_char scsi_mode; /* Current SCSI BUS mode */ 1735 u_char verbose; /* Verbosity for this controller*/ 1736 u32 cache; /* Used for cache test at init. */ 1737 1738 /* 1739 * CCB lists and queue. 1740 */ 1741 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1742 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1743 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1744 1745 /* 1746 * During error handling and/or recovery, 1747 * active CCBs that are to be completed with 1748 * error or requeued are moved from the busy_ccbq 1749 * to the comp_ccbq prior to completion. 1750 */ 1751 SYM_QUEHEAD comp_ccbq; 1752 1753 /* 1754 * CAM CCB pending queue. 1755 */ 1756 SYM_QUEHEAD cam_ccbq; 1757 1758 /* 1759 * IMMEDIATE ARBITRATION (IARB) control. 1760 * 1761 * We keep track in 'last_cp' of the last CCB that has been 1762 * queued to the SCRIPTS processor and clear 'last_cp' when 1763 * this CCB completes. If last_cp is not zero at the moment 1764 * we queue a new CCB, we set a flag in 'last_cp' that is 1765 * used by the SCRIPTS as a hint for setting IARB. 1766 * We donnot set more than 'iarb_max' consecutive hints for 1767 * IARB in order to leave devices a chance to reselect. 1768 * By the way, any non zero value of 'iarb_max' is unfair. :) 1769 */ 1770 #ifdef SYM_CONF_IARB_SUPPORT 1771 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1772 u_short iarb_count; /* Actual # of these hints */ 1773 ccb_p last_cp; 1774 #endif 1775 1776 /* 1777 * Command abort handling. 1778 * We need to synchronize tightly with the SCRIPTS 1779 * processor in order to handle things correctly. 1780 */ 1781 u_char abrt_msg[4]; /* Message to send buffer */ 1782 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1783 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1784 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1785 }; 1786 1787 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1788 1789 /* 1790 * Return the name of the controller. 1791 */ 1792 static __inline char *sym_name(hcb_p np) 1793 { 1794 return np->inst_name; 1795 } 1796 1797 /*--------------------------------------------------------------------------*/ 1798 /*------------------------------ FIRMWARES ---------------------------------*/ 1799 /*--------------------------------------------------------------------------*/ 1800 1801 /* 1802 * This stuff will be moved to a separate source file when 1803 * the driver will be broken into several source modules. 1804 */ 1805 1806 /* 1807 * Macros used for all firmwares. 1808 */ 1809 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1810 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1811 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1812 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1813 1814 1815 #ifdef SYM_CONF_GENERIC_SUPPORT 1816 /* 1817 * Allocate firmware #1 script area. 1818 */ 1819 #define SYM_FWA_SCR sym_fw1a_scr 1820 #define SYM_FWB_SCR sym_fw1b_scr 1821 #include <dev/sym/sym_fw1.h> 1822 struct sym_fwa_ofs sym_fw1a_ofs = { 1823 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1824 }; 1825 struct sym_fwb_ofs sym_fw1b_ofs = { 1826 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1827 }; 1828 #undef SYM_FWA_SCR 1829 #undef SYM_FWB_SCR 1830 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1831 1832 /* 1833 * Allocate firmware #2 script area. 1834 */ 1835 #define SYM_FWA_SCR sym_fw2a_scr 1836 #define SYM_FWB_SCR sym_fw2b_scr 1837 #include <dev/sym/sym_fw2.h> 1838 struct sym_fwa_ofs sym_fw2a_ofs = { 1839 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1840 }; 1841 struct sym_fwb_ofs sym_fw2b_ofs = { 1842 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1843 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1844 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1845 }; 1846 #undef SYM_FWA_SCR 1847 #undef SYM_FWB_SCR 1848 1849 #undef SYM_GEN_A 1850 #undef SYM_GEN_B 1851 #undef PADDR_A 1852 #undef PADDR_B 1853 1854 #ifdef SYM_CONF_GENERIC_SUPPORT 1855 /* 1856 * Patch routine for firmware #1. 1857 */ 1858 static void 1859 sym_fw1_patch(hcb_p np) 1860 { 1861 struct sym_fw1a_scr *scripta0; 1862 struct sym_fw1b_scr *scriptb0; 1863 1864 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1865 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1866 1867 /* 1868 * Remove LED support if not needed. 1869 */ 1870 if (!(np->features & FE_LED0)) { 1871 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1872 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1873 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1874 } 1875 1876 #ifdef SYM_CONF_IARB_SUPPORT 1877 /* 1878 * If user does not want to use IMMEDIATE ARBITRATION 1879 * when we are reselected while attempting to arbitrate, 1880 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1881 */ 1882 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1883 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1884 #endif 1885 /* 1886 * Patch some data in SCRIPTS. 1887 * - start and done queue initial bus address. 1888 * - target bus address table bus address. 1889 */ 1890 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1891 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1892 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1893 } 1894 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1895 1896 /* 1897 * Patch routine for firmware #2. 1898 */ 1899 static void 1900 sym_fw2_patch(hcb_p np) 1901 { 1902 struct sym_fw2a_scr *scripta0; 1903 struct sym_fw2b_scr *scriptb0; 1904 1905 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1906 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1907 1908 /* 1909 * Remove LED support if not needed. 1910 */ 1911 if (!(np->features & FE_LED0)) { 1912 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1913 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1914 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1915 } 1916 1917 #ifdef SYM_CONF_IARB_SUPPORT 1918 /* 1919 * If user does not want to use IMMEDIATE ARBITRATION 1920 * when we are reselected while attempting to arbitrate, 1921 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1922 */ 1923 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1924 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1925 #endif 1926 /* 1927 * Patch some variable in SCRIPTS. 1928 * - start and done queue initial bus address. 1929 * - target bus address table bus address. 1930 */ 1931 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1932 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1933 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1934 1935 /* 1936 * Remove the load of SCNTL4 on reselection if not a C10. 1937 */ 1938 if (!(np->features & FE_C10)) { 1939 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1940 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1941 } 1942 1943 /* 1944 * Remove a couple of work-arounds specific to C1010 if 1945 * they are not desirable. See `sym_fw2.h' for more details. 1946 */ 1947 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1948 np->revision_id < 0x1 && 1949 np->pciclk_khz < 60000)) { 1950 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1951 scripta0->datao_phase[1] = cpu_to_scr(0); 1952 } 1953 if (!(np->device_id == PCI_ID_LSI53C1010 && 1954 /* np->revision_id < 0xff */ 1)) { 1955 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1956 scripta0->sel_done[1] = cpu_to_scr(0); 1957 } 1958 1959 /* 1960 * Patch some other variables in SCRIPTS. 1961 * These ones are loaded by the SCRIPTS processor. 1962 */ 1963 scriptb0->pm0_data_addr[0] = 1964 cpu_to_scr(np->scripta_ba + 1965 offsetof(struct sym_fw2a_scr, pm0_data)); 1966 scriptb0->pm1_data_addr[0] = 1967 cpu_to_scr(np->scripta_ba + 1968 offsetof(struct sym_fw2a_scr, pm1_data)); 1969 } 1970 1971 /* 1972 * Fill the data area in scripts. 1973 * To be done for all firmwares. 1974 */ 1975 static void 1976 sym_fw_fill_data (u32 *in, u32 *out) 1977 { 1978 int i; 1979 1980 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1981 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1982 *in++ = offsetof (struct sym_dsb, data[i]); 1983 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1984 *out++ = offsetof (struct sym_dsb, data[i]); 1985 } 1986 } 1987 1988 /* 1989 * Setup useful script bus addresses. 1990 * To be done for all firmwares. 1991 */ 1992 static void 1993 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw) 1994 { 1995 u32 *pa; 1996 u_short *po; 1997 int i; 1998 1999 /* 2000 * Build the bus address table for script A 2001 * from the script A offset table. 2002 */ 2003 po = (u_short *) fw->a_ofs; 2004 pa = (u32 *) &np->fwa_bas; 2005 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 2006 pa[i] = np->scripta_ba + po[i]; 2007 2008 /* 2009 * Same for script B. 2010 */ 2011 po = (u_short *) fw->b_ofs; 2012 pa = (u32 *) &np->fwb_bas; 2013 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 2014 pa[i] = np->scriptb_ba + po[i]; 2015 } 2016 2017 #ifdef SYM_CONF_GENERIC_SUPPORT 2018 /* 2019 * Setup routine for firmware #1. 2020 */ 2021 static void 2022 sym_fw1_setup(hcb_p np, struct sym_fw *fw) 2023 { 2024 struct sym_fw1a_scr *scripta0; 2025 struct sym_fw1b_scr *scriptb0; 2026 2027 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 2028 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 2029 2030 /* 2031 * Fill variable parts in scripts. 2032 */ 2033 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2034 2035 /* 2036 * Setup bus addresses used from the C code.. 2037 */ 2038 sym_fw_setup_bus_addresses(np, fw); 2039 } 2040 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2041 2042 /* 2043 * Setup routine for firmware #2. 2044 */ 2045 static void 2046 sym_fw2_setup(hcb_p np, struct sym_fw *fw) 2047 { 2048 struct sym_fw2a_scr *scripta0; 2049 struct sym_fw2b_scr *scriptb0; 2050 2051 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 2052 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 2053 2054 /* 2055 * Fill variable parts in scripts. 2056 */ 2057 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 2058 2059 /* 2060 * Setup bus addresses used from the C code.. 2061 */ 2062 sym_fw_setup_bus_addresses(np, fw); 2063 } 2064 2065 /* 2066 * Allocate firmware descriptors. 2067 */ 2068 #ifdef SYM_CONF_GENERIC_SUPPORT 2069 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2070 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2071 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2072 2073 /* 2074 * Find the most appropriate firmware for a chip. 2075 */ 2076 static struct sym_fw * 2077 sym_find_firmware(struct sym_pci_chip *chip) 2078 { 2079 if (chip->features & FE_LDSTR) 2080 return &sym_fw2; 2081 #ifdef SYM_CONF_GENERIC_SUPPORT 2082 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2083 return &sym_fw1; 2084 #endif 2085 else 2086 return 0; 2087 } 2088 2089 /* 2090 * Bind a script to physical addresses. 2091 */ 2092 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2093 { 2094 u32 opcode, new, old, tmp1, tmp2; 2095 u32 *end, *cur; 2096 int relocs; 2097 2098 cur = start; 2099 end = start + len/4; 2100 2101 while (cur < end) { 2102 2103 opcode = *cur; 2104 2105 /* 2106 * If we forget to change the length 2107 * in scripts, a field will be 2108 * padded with 0. This is an illegal 2109 * command. 2110 */ 2111 if (opcode == 0) { 2112 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2113 sym_name(np), (int) (cur-start)); 2114 MDELAY (10000); 2115 ++cur; 2116 continue; 2117 }; 2118 2119 /* 2120 * We use the bogus value 0xf00ff00f ;-) 2121 * to reserve data area in SCRIPTS. 2122 */ 2123 if (opcode == SCR_DATA_ZERO) { 2124 *cur++ = 0; 2125 continue; 2126 } 2127 2128 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2129 printf ("%d: <%x>\n", (int) (cur-start), 2130 (unsigned)opcode); 2131 2132 /* 2133 * We don't have to decode ALL commands 2134 */ 2135 switch (opcode >> 28) { 2136 case 0xf: 2137 /* 2138 * LOAD / STORE DSA relative, don't relocate. 2139 */ 2140 relocs = 0; 2141 break; 2142 case 0xe: 2143 /* 2144 * LOAD / STORE absolute. 2145 */ 2146 relocs = 1; 2147 break; 2148 case 0xc: 2149 /* 2150 * COPY has TWO arguments. 2151 */ 2152 relocs = 2; 2153 tmp1 = cur[1]; 2154 tmp2 = cur[2]; 2155 if ((tmp1 ^ tmp2) & 3) { 2156 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2157 sym_name(np), (int) (cur-start)); 2158 MDELAY (10000); 2159 } 2160 /* 2161 * If PREFETCH feature not enabled, remove 2162 * the NO FLUSH bit if present. 2163 */ 2164 if ((opcode & SCR_NO_FLUSH) && 2165 !(np->features & FE_PFEN)) { 2166 opcode = (opcode & ~SCR_NO_FLUSH); 2167 } 2168 break; 2169 case 0x0: 2170 /* 2171 * MOVE/CHMOV (absolute address) 2172 */ 2173 if (!(np->features & FE_WIDE)) 2174 opcode = (opcode | OPC_MOVE); 2175 relocs = 1; 2176 break; 2177 case 0x1: 2178 /* 2179 * MOVE/CHMOV (table indirect) 2180 */ 2181 if (!(np->features & FE_WIDE)) 2182 opcode = (opcode | OPC_MOVE); 2183 relocs = 0; 2184 break; 2185 case 0x8: 2186 /* 2187 * JUMP / CALL 2188 * dont't relocate if relative :-) 2189 */ 2190 if (opcode & 0x00800000) 2191 relocs = 0; 2192 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2193 relocs = 2; 2194 else 2195 relocs = 1; 2196 break; 2197 case 0x4: 2198 case 0x5: 2199 case 0x6: 2200 case 0x7: 2201 relocs = 1; 2202 break; 2203 default: 2204 relocs = 0; 2205 break; 2206 }; 2207 2208 /* 2209 * Scriptify:) the opcode. 2210 */ 2211 *cur++ = cpu_to_scr(opcode); 2212 2213 /* 2214 * If no relocation, assume 1 argument 2215 * and just scriptize:) it. 2216 */ 2217 if (!relocs) { 2218 *cur = cpu_to_scr(*cur); 2219 ++cur; 2220 continue; 2221 } 2222 2223 /* 2224 * Otherwise performs all needed relocations. 2225 */ 2226 while (relocs--) { 2227 old = *cur; 2228 2229 switch (old & RELOC_MASK) { 2230 case RELOC_REGISTER: 2231 new = (old & ~RELOC_MASK) + np->mmio_ba; 2232 break; 2233 case RELOC_LABEL_A: 2234 new = (old & ~RELOC_MASK) + np->scripta_ba; 2235 break; 2236 case RELOC_LABEL_B: 2237 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2238 break; 2239 case RELOC_SOFTC: 2240 new = (old & ~RELOC_MASK) + np->hcb_ba; 2241 break; 2242 case 0: 2243 /* 2244 * Don't relocate a 0 address. 2245 * They are mostly used for patched or 2246 * script self-modified areas. 2247 */ 2248 if (old == 0) { 2249 new = old; 2250 break; 2251 } 2252 /* fall through */ 2253 default: 2254 new = 0; 2255 panic("sym_fw_bind_script: " 2256 "weird relocation %x\n", old); 2257 break; 2258 } 2259 2260 *cur++ = cpu_to_scr(new); 2261 } 2262 }; 2263 } 2264 2265 /*--------------------------------------------------------------------------*/ 2266 /*--------------------------- END OF FIRMARES -----------------------------*/ 2267 /*--------------------------------------------------------------------------*/ 2268 2269 /* 2270 * Function prototypes. 2271 */ 2272 static void sym_save_initial_setting (hcb_p np); 2273 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2274 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2275 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2276 static void sym_chip_reset (hcb_p np); 2277 static void sym_soft_reset (hcb_p np); 2278 static void sym_start_reset (hcb_p np); 2279 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2280 static int sym_wakeup_done (hcb_p np); 2281 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2282 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2283 static void sym_init (hcb_p np, int reason); 2284 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2285 u_char *fakp); 2286 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2287 u_char div, u_char fak); 2288 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2289 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2290 u_char per, u_char wide, u_char div, u_char fak); 2291 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2292 u_char per, u_char wide, u_char div, u_char fak); 2293 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2294 static void sym_intr (void *arg); 2295 static void sym_poll (struct cam_sim *sim); 2296 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2297 static void sym_int_sto (hcb_p np); 2298 static void sym_int_udc (hcb_p np); 2299 static void sym_int_sbmc (hcb_p np); 2300 static void sym_int_par (hcb_p np, u_short sist); 2301 static void sym_int_ma (hcb_p np); 2302 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2303 int task); 2304 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2305 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2306 static void sym_sir_task_recovery (hcb_p np, int num); 2307 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2308 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2309 static int sym_compute_residual (hcb_p np, ccb_p cp); 2310 static int sym_show_msg (u_char * msg); 2311 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2312 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2313 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2314 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2315 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2316 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2317 static void sym_int_sir (hcb_p np); 2318 static void sym_free_ccb (hcb_p np, ccb_p cp); 2319 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2320 static ccb_p sym_alloc_ccb (hcb_p np); 2321 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2322 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2323 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2324 static int sym_snooptest (hcb_p np); 2325 static void sym_selectclock(hcb_p np, u_char scntl3); 2326 static void sym_getclock (hcb_p np, int mult); 2327 static int sym_getpciclock (hcb_p np); 2328 static void sym_complete_ok (hcb_p np, ccb_p cp); 2329 static void sym_complete_error (hcb_p np, ccb_p cp); 2330 static void sym_timeout (void *arg); 2331 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2332 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2333 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2334 static void sym_action1 (struct cam_sim *sim, union ccb *ccb); 2335 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2336 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2337 ccb_p cp); 2338 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2339 bus_dma_segment_t *psegs, int nsegs); 2340 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2341 bus_dma_segment_t *psegs, int nsegs); 2342 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2343 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2344 struct ccb_trans_settings *cts); 2345 static void sym_update_dflags(hcb_p np, u_char *flags, 2346 struct ccb_trans_settings *cts); 2347 2348 static struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2349 static int sym_pci_probe (device_t dev); 2350 static int sym_pci_attach (device_t dev); 2351 2352 static void sym_pci_free (hcb_p np); 2353 static int sym_cam_attach (hcb_p np); 2354 static void sym_cam_free (hcb_p np); 2355 2356 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2357 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2358 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2359 2360 /* 2361 * Print something which allows to retrieve the controler type, 2362 * unit, target, lun concerned by a kernel message. 2363 */ 2364 static void PRINT_TARGET (hcb_p np, int target) 2365 { 2366 printf ("%s:%d:", sym_name(np), target); 2367 } 2368 2369 static void PRINT_LUN(hcb_p np, int target, int lun) 2370 { 2371 printf ("%s:%d:%d:", sym_name(np), target, lun); 2372 } 2373 2374 static void PRINT_ADDR (ccb_p cp) 2375 { 2376 if (cp && cp->cam_ccb) 2377 xpt_print_path(cp->cam_ccb->ccb_h.path); 2378 } 2379 2380 /* 2381 * Take into account this ccb in the freeze count. 2382 */ 2383 static void sym_freeze_cam_ccb(union ccb *ccb) 2384 { 2385 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2386 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2387 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2388 xpt_freeze_devq(ccb->ccb_h.path, 1); 2389 } 2390 } 2391 } 2392 2393 /* 2394 * Set the status field of a CAM CCB. 2395 */ 2396 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2397 { 2398 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2399 ccb->ccb_h.status |= status; 2400 } 2401 2402 /* 2403 * Get the status field of a CAM CCB. 2404 */ 2405 static __inline int sym_get_cam_status(union ccb *ccb) 2406 { 2407 return ccb->ccb_h.status & CAM_STATUS_MASK; 2408 } 2409 2410 /* 2411 * Enqueue a CAM CCB. 2412 */ 2413 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) 2414 { 2415 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2416 ccb->ccb_h.status = CAM_REQ_INPROG; 2417 2418 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 2419 ccb->ccb_h.timeout*hz/1000); 2420 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2421 ccb->ccb_h.sym_hcb_ptr = np; 2422 2423 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2424 } 2425 2426 /* 2427 * Complete a pending CAM CCB. 2428 */ 2429 static void sym_xpt_done(hcb_p np, union ccb *ccb) 2430 { 2431 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2432 untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch); 2433 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2434 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2435 ccb->ccb_h.sym_hcb_ptr = 0; 2436 } 2437 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2438 sym_freeze_cam_ccb(ccb); 2439 xpt_done(ccb); 2440 } 2441 2442 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2443 { 2444 sym_set_cam_status(ccb, cam_status); 2445 sym_xpt_done(np, ccb); 2446 } 2447 2448 /* 2449 * SYMBIOS chip clock divisor table. 2450 * 2451 * Divisors are multiplied by 10,000,000 in order to make 2452 * calculations more simple. 2453 */ 2454 #define _5M 5000000 2455 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2456 2457 /* 2458 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2459 * 128 transfers. All chips support at least 16 transfers 2460 * bursts. The 825A, 875 and 895 chips support bursts of up 2461 * to 128 transfers and the 895A and 896 support bursts of up 2462 * to 64 transfers. All other chips support up to 16 2463 * transfers bursts. 2464 * 2465 * For PCI 32 bit data transfers each transfer is a DWORD. 2466 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2467 * 2468 * We use log base 2 (burst length) as internal code, with 2469 * value 0 meaning "burst disabled". 2470 */ 2471 2472 /* 2473 * Burst length from burst code. 2474 */ 2475 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2476 2477 /* 2478 * Burst code from io register bits. 2479 */ 2480 #define burst_code(dmode, ctest4, ctest5) \ 2481 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2482 2483 /* 2484 * Set initial io register bits from burst code. 2485 */ 2486 static __inline void sym_init_burst(hcb_p np, u_char bc) 2487 { 2488 np->rv_ctest4 &= ~0x80; 2489 np->rv_dmode &= ~(0x3 << 6); 2490 np->rv_ctest5 &= ~0x4; 2491 2492 if (!bc) { 2493 np->rv_ctest4 |= 0x80; 2494 } 2495 else { 2496 --bc; 2497 np->rv_dmode |= ((bc & 0x3) << 6); 2498 np->rv_ctest5 |= (bc & 0x4); 2499 } 2500 } 2501 2502 2503 /* 2504 * Print out the list of targets that have some flag disabled by user. 2505 */ 2506 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2507 { 2508 int cnt; 2509 int i; 2510 2511 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2512 if (i == np->myaddr) 2513 continue; 2514 if (np->target[i].usrflags & mask) { 2515 if (!cnt++) 2516 printf("%s: %s disabled for targets", 2517 sym_name(np), msg); 2518 printf(" %d", i); 2519 } 2520 } 2521 if (cnt) 2522 printf(".\n"); 2523 } 2524 2525 /* 2526 * Save initial settings of some IO registers. 2527 * Assumed to have been set by BIOS. 2528 * We cannot reset the chip prior to reading the 2529 * IO registers, since informations will be lost. 2530 * Since the SCRIPTS processor may be running, this 2531 * is not safe on paper, but it seems to work quite 2532 * well. :) 2533 */ 2534 static void sym_save_initial_setting (hcb_p np) 2535 { 2536 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2537 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2538 np->sv_dmode = INB(nc_dmode) & 0xce; 2539 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2540 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2541 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2542 np->sv_gpcntl = INB(nc_gpcntl); 2543 np->sv_stest1 = INB(nc_stest1); 2544 np->sv_stest2 = INB(nc_stest2) & 0x20; 2545 np->sv_stest4 = INB(nc_stest4); 2546 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2547 np->sv_scntl4 = INB(nc_scntl4); 2548 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2549 } 2550 else 2551 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2552 } 2553 2554 /* 2555 * Prepare io register values used by sym_init() according 2556 * to selected and supported features. 2557 */ 2558 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2559 { 2560 u_char burst_max; 2561 u32 period; 2562 int i; 2563 2564 /* 2565 * Wide ? 2566 */ 2567 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2568 2569 /* 2570 * Get the frequency of the chip's clock. 2571 */ 2572 if (np->features & FE_QUAD) 2573 np->multiplier = 4; 2574 else if (np->features & FE_DBLR) 2575 np->multiplier = 2; 2576 else 2577 np->multiplier = 1; 2578 2579 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2580 np->clock_khz *= np->multiplier; 2581 2582 if (np->clock_khz != 40000) 2583 sym_getclock(np, np->multiplier); 2584 2585 /* 2586 * Divisor to be used for async (timer pre-scaler). 2587 */ 2588 i = np->clock_divn - 1; 2589 while (--i >= 0) { 2590 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2591 ++i; 2592 break; 2593 } 2594 } 2595 np->rv_scntl3 = i+1; 2596 2597 /* 2598 * The C1010 uses hardwired divisors for async. 2599 * So, we just throw away, the async. divisor.:-) 2600 */ 2601 if (np->features & FE_C10) 2602 np->rv_scntl3 = 0; 2603 2604 /* 2605 * Minimum synchronous period factor supported by the chip. 2606 * Btw, 'period' is in tenths of nanoseconds. 2607 */ 2608 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2609 if (period <= 250) np->minsync = 10; 2610 else if (period <= 303) np->minsync = 11; 2611 else if (period <= 500) np->minsync = 12; 2612 else np->minsync = (period + 40 - 1) / 40; 2613 2614 /* 2615 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2616 */ 2617 if (np->minsync < 25 && 2618 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2619 np->minsync = 25; 2620 else if (np->minsync < 12 && 2621 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2622 np->minsync = 12; 2623 2624 /* 2625 * Maximum synchronous period factor supported by the chip. 2626 */ 2627 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2628 np->maxsync = period > 2540 ? 254 : period / 10; 2629 2630 /* 2631 * If chip is a C1010, guess the sync limits in DT mode. 2632 */ 2633 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2634 if (np->clock_khz == 160000) { 2635 np->minsync_dt = 9; 2636 np->maxsync_dt = 50; 2637 np->maxoffs_dt = 62; 2638 } 2639 } 2640 2641 /* 2642 * 64 bit addressing (895A/896/1010) ? 2643 */ 2644 if (np->features & FE_DAC) 2645 #if BITS_PER_LONG > 32 2646 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2647 #else 2648 np->rv_ccntl1 |= (DDAC); 2649 #endif 2650 2651 /* 2652 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2653 */ 2654 if (np->features & FE_NOPM) 2655 np->rv_ccntl0 |= (ENPMJ); 2656 2657 /* 2658 * C1010 Errata. 2659 * In dual channel mode, contention occurs if internal cycles 2660 * are used. Disable internal cycles. 2661 */ 2662 if (np->device_id == PCI_ID_LSI53C1010 && 2663 np->revision_id < 0x2) 2664 np->rv_ccntl0 |= DILS; 2665 2666 /* 2667 * Select burst length (dwords) 2668 */ 2669 burst_max = SYM_SETUP_BURST_ORDER; 2670 if (burst_max == 255) 2671 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2672 np->sv_ctest5); 2673 if (burst_max > 7) 2674 burst_max = 7; 2675 if (burst_max > np->maxburst) 2676 burst_max = np->maxburst; 2677 2678 /* 2679 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2680 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2681 * based transactions on LOAD/STORE instructions. So we have 2682 * to prevent these chips from using such PCI transactions in 2683 * this driver. The generic ncr driver that does not use 2684 * LOAD/STORE instructions does not need this work-around. 2685 */ 2686 if ((np->device_id == PCI_ID_SYM53C810 && 2687 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2688 (np->device_id == PCI_ID_SYM53C860 && 2689 np->revision_id <= 0x1)) 2690 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2691 2692 /* 2693 * Select all supported special features. 2694 * If we are using on-board RAM for scripts, prefetch (PFEN) 2695 * does not help, but burst op fetch (BOF) does. 2696 * Disabling PFEN makes sure BOF will be used. 2697 */ 2698 if (np->features & FE_ERL) 2699 np->rv_dmode |= ERL; /* Enable Read Line */ 2700 if (np->features & FE_BOF) 2701 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2702 if (np->features & FE_ERMP) 2703 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2704 #if 1 2705 if ((np->features & FE_PFEN) && !np->ram_ba) 2706 #else 2707 if (np->features & FE_PFEN) 2708 #endif 2709 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2710 if (np->features & FE_CLSE) 2711 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2712 if (np->features & FE_WRIE) 2713 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2714 if (np->features & FE_DFS) 2715 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2716 2717 /* 2718 * Select some other 2719 */ 2720 if (SYM_SETUP_PCI_PARITY) 2721 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2722 if (SYM_SETUP_SCSI_PARITY) 2723 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2724 2725 /* 2726 * Get parity checking, host ID and verbose mode from NVRAM 2727 */ 2728 np->myaddr = 255; 2729 sym_nvram_setup_host (np, nvram); 2730 2731 /* 2732 * Get SCSI addr of host adapter (set by bios?). 2733 */ 2734 if (np->myaddr == 255) { 2735 np->myaddr = INB(nc_scid) & 0x07; 2736 if (!np->myaddr) 2737 np->myaddr = SYM_SETUP_HOST_ID; 2738 } 2739 2740 /* 2741 * Prepare initial io register bits for burst length 2742 */ 2743 sym_init_burst(np, burst_max); 2744 2745 /* 2746 * Set SCSI BUS mode. 2747 * - LVD capable chips (895/895A/896/1010) report the 2748 * current BUS mode through the STEST4 IO register. 2749 * - For previous generation chips (825/825A/875), 2750 * user has to tell us how to check against HVD, 2751 * since a 100% safe algorithm is not possible. 2752 */ 2753 np->scsi_mode = SMODE_SE; 2754 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2755 np->scsi_mode = (np->sv_stest4 & SMODE); 2756 else if (np->features & FE_DIFF) { 2757 if (SYM_SETUP_SCSI_DIFF == 1) { 2758 if (np->sv_scntl3) { 2759 if (np->sv_stest2 & 0x20) 2760 np->scsi_mode = SMODE_HVD; 2761 } 2762 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2763 if (!(INB(nc_gpreg) & 0x08)) 2764 np->scsi_mode = SMODE_HVD; 2765 } 2766 } 2767 else if (SYM_SETUP_SCSI_DIFF == 2) 2768 np->scsi_mode = SMODE_HVD; 2769 } 2770 if (np->scsi_mode == SMODE_HVD) 2771 np->rv_stest2 |= 0x20; 2772 2773 /* 2774 * Set LED support from SCRIPTS. 2775 * Ignore this feature for boards known to use a 2776 * specific GPIO wiring and for the 895A, 896 2777 * and 1010 that drive the LED directly. 2778 */ 2779 if ((SYM_SETUP_SCSI_LED || 2780 (nvram->type == SYM_SYMBIOS_NVRAM || 2781 (nvram->type == SYM_TEKRAM_NVRAM && 2782 np->device_id == PCI_ID_SYM53C895))) && 2783 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2784 np->features |= FE_LED0; 2785 2786 /* 2787 * Set irq mode. 2788 */ 2789 switch(SYM_SETUP_IRQ_MODE & 3) { 2790 case 2: 2791 np->rv_dcntl |= IRQM; 2792 break; 2793 case 1: 2794 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2795 break; 2796 default: 2797 break; 2798 } 2799 2800 /* 2801 * Configure targets according to driver setup. 2802 * If NVRAM present get targets setup from NVRAM. 2803 */ 2804 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2805 tcb_p tp = &np->target[i]; 2806 2807 #ifdef FreeBSD_New_Tran_Settings 2808 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2809 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2810 #endif 2811 tp->tinfo.user.period = np->minsync; 2812 tp->tinfo.user.offset = np->maxoffs; 2813 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2814 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2815 tp->usrtags = SYM_SETUP_MAX_TAG; 2816 2817 sym_nvram_setup_target (np, i, nvram); 2818 2819 /* 2820 * For now, guess PPR/DT support from the period 2821 * and BUS width. 2822 */ 2823 if (np->features & FE_ULTRA3) { 2824 if (tp->tinfo.user.period <= 9 && 2825 tp->tinfo.user.width == BUS_16_BIT) { 2826 tp->tinfo.user.options |= PPR_OPT_DT; 2827 tp->tinfo.user.offset = np->maxoffs_dt; 2828 #ifdef FreeBSD_New_Tran_Settings 2829 tp->tinfo.user.spi_version = 3; 2830 #endif 2831 } 2832 } 2833 2834 if (!tp->usrtags) 2835 tp->usrflags &= ~SYM_TAGS_ENABLED; 2836 } 2837 2838 /* 2839 * Let user know about the settings. 2840 */ 2841 i = nvram->type; 2842 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2843 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2844 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2845 np->myaddr, 2846 (np->features & FE_ULTRA3) ? 80 : 2847 (np->features & FE_ULTRA2) ? 40 : 2848 (np->features & FE_ULTRA) ? 20 : 10, 2849 sym_scsi_bus_mode(np->scsi_mode), 2850 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2851 /* 2852 * Tell him more on demand. 2853 */ 2854 if (sym_verbose) { 2855 printf("%s: %s IRQ line driver%s\n", 2856 sym_name(np), 2857 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2858 np->ram_ba ? ", using on-chip SRAM" : ""); 2859 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2860 if (np->features & FE_NOPM) 2861 printf("%s: handling phase mismatch from SCRIPTS.\n", 2862 sym_name(np)); 2863 } 2864 /* 2865 * And still more. 2866 */ 2867 if (sym_verbose > 1) { 2868 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2869 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2870 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2871 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2872 2873 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2874 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2875 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2876 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2877 } 2878 /* 2879 * Let user be aware of targets that have some disable flags set. 2880 */ 2881 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2882 if (sym_verbose) 2883 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2884 "SCAN FOR LUNS"); 2885 2886 return 0; 2887 } 2888 2889 /* 2890 * Prepare the next negotiation message if needed. 2891 * 2892 * Fill in the part of message buffer that contains the 2893 * negotiation and the nego_status field of the CCB. 2894 * Returns the size of the message in bytes. 2895 */ 2896 2897 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2898 { 2899 tcb_p tp = &np->target[cp->target]; 2900 int msglen = 0; 2901 2902 /* 2903 * Early C1010 chips need a work-around for DT 2904 * data transfer to work. 2905 */ 2906 if (!(np->features & FE_U3EN)) 2907 tp->tinfo.goal.options = 0; 2908 /* 2909 * negotiate using PPR ? 2910 */ 2911 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2912 nego = NS_PPR; 2913 /* 2914 * negotiate wide transfers ? 2915 */ 2916 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2917 nego = NS_WIDE; 2918 /* 2919 * negotiate synchronous transfers? 2920 */ 2921 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2922 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2923 nego = NS_SYNC; 2924 2925 switch (nego) { 2926 case NS_SYNC: 2927 msgptr[msglen++] = M_EXTENDED; 2928 msgptr[msglen++] = 3; 2929 msgptr[msglen++] = M_X_SYNC_REQ; 2930 msgptr[msglen++] = tp->tinfo.goal.period; 2931 msgptr[msglen++] = tp->tinfo.goal.offset; 2932 break; 2933 case NS_WIDE: 2934 msgptr[msglen++] = M_EXTENDED; 2935 msgptr[msglen++] = 2; 2936 msgptr[msglen++] = M_X_WIDE_REQ; 2937 msgptr[msglen++] = tp->tinfo.goal.width; 2938 break; 2939 case NS_PPR: 2940 msgptr[msglen++] = M_EXTENDED; 2941 msgptr[msglen++] = 6; 2942 msgptr[msglen++] = M_X_PPR_REQ; 2943 msgptr[msglen++] = tp->tinfo.goal.period; 2944 msgptr[msglen++] = 0; 2945 msgptr[msglen++] = tp->tinfo.goal.offset; 2946 msgptr[msglen++] = tp->tinfo.goal.width; 2947 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2948 break; 2949 }; 2950 2951 cp->nego_status = nego; 2952 2953 if (nego) { 2954 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2955 if (DEBUG_FLAGS & DEBUG_NEGO) { 2956 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2957 nego == NS_WIDE ? "wide msgout" : 2958 "ppr msgout", msgptr); 2959 }; 2960 }; 2961 2962 return msglen; 2963 } 2964 2965 /* 2966 * Insert a job into the start queue. 2967 */ 2968 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2969 { 2970 u_short qidx; 2971 2972 #ifdef SYM_CONF_IARB_SUPPORT 2973 /* 2974 * If the previously queued CCB is not yet done, 2975 * set the IARB hint. The SCRIPTS will go with IARB 2976 * for this job when starting the previous one. 2977 * We leave devices a chance to win arbitration by 2978 * not using more than 'iarb_max' consecutive 2979 * immediate arbitrations. 2980 */ 2981 if (np->last_cp && np->iarb_count < np->iarb_max) { 2982 np->last_cp->host_flags |= HF_HINT_IARB; 2983 ++np->iarb_count; 2984 } 2985 else 2986 np->iarb_count = 0; 2987 np->last_cp = cp; 2988 #endif 2989 2990 /* 2991 * Insert first the idle task and then our job. 2992 * The MB should ensure proper ordering. 2993 */ 2994 qidx = np->squeueput + 2; 2995 if (qidx >= MAX_QUEUE*2) qidx = 0; 2996 2997 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2998 MEMORY_BARRIER(); 2999 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 3000 3001 np->squeueput = qidx; 3002 3003 if (DEBUG_FLAGS & DEBUG_QUEUE) 3004 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 3005 3006 /* 3007 * Script processor may be waiting for reselect. 3008 * Wake it up. 3009 */ 3010 MEMORY_BARRIER(); 3011 OUTB (nc_istat, SIGP|np->istat_sem); 3012 } 3013 3014 3015 /* 3016 * Soft reset the chip. 3017 * 3018 * Raising SRST when the chip is running may cause 3019 * problems on dual function chips (see below). 3020 * On the other hand, LVD devices need some delay 3021 * to settle and report actual BUS mode in STEST4. 3022 */ 3023 static void sym_chip_reset (hcb_p np) 3024 { 3025 OUTB (nc_istat, SRST); 3026 UDELAY (10); 3027 OUTB (nc_istat, 0); 3028 UDELAY(2000); /* For BUS MODE to settle */ 3029 } 3030 3031 /* 3032 * Soft reset the chip. 3033 * 3034 * Some 896 and 876 chip revisions may hang-up if we set 3035 * the SRST (soft reset) bit at the wrong time when SCRIPTS 3036 * are running. 3037 * So, we need to abort the current operation prior to 3038 * soft resetting the chip. 3039 */ 3040 static void sym_soft_reset (hcb_p np) 3041 { 3042 u_char istat; 3043 int i; 3044 3045 OUTB (nc_istat, CABRT); 3046 for (i = 1000000 ; i ; --i) { 3047 istat = INB (nc_istat); 3048 if (istat & SIP) { 3049 INW (nc_sist); 3050 continue; 3051 } 3052 if (istat & DIP) { 3053 OUTB (nc_istat, 0); 3054 INB (nc_dstat); 3055 break; 3056 } 3057 } 3058 if (!i) 3059 printf("%s: unable to abort current chip operation.\n", 3060 sym_name(np)); 3061 sym_chip_reset (np); 3062 } 3063 3064 /* 3065 * Start reset process. 3066 * 3067 * The interrupt handler will reinitialize the chip. 3068 */ 3069 static void sym_start_reset(hcb_p np) 3070 { 3071 (void) sym_reset_scsi_bus(np, 1); 3072 } 3073 3074 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3075 { 3076 u32 term; 3077 int retv = 0; 3078 3079 sym_soft_reset(np); /* Soft reset the chip */ 3080 if (enab_int) 3081 OUTW (nc_sien, RST); 3082 /* 3083 * Enable Tolerant, reset IRQD if present and 3084 * properly set IRQ mode, prior to resetting the bus. 3085 */ 3086 OUTB (nc_stest3, TE); 3087 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3088 OUTB (nc_scntl1, CRST); 3089 UDELAY (200); 3090 3091 if (!SYM_SETUP_SCSI_BUS_CHECK) 3092 goto out; 3093 /* 3094 * Check for no terminators or SCSI bus shorts to ground. 3095 * Read SCSI data bus, data parity bits and control signals. 3096 * We are expecting RESET to be TRUE and other signals to be 3097 * FALSE. 3098 */ 3099 term = INB(nc_sstat0); 3100 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3101 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3102 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3103 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3104 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3105 3106 if (!(np->features & FE_WIDE)) 3107 term &= 0x3ffff; 3108 3109 if (term != (2<<7)) { 3110 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3111 sym_name(np)); 3112 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3113 "0x%lx, expecting 0x%lx\n", 3114 sym_name(np), 3115 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3116 (u_long)term, (u_long)(2<<7)); 3117 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3118 retv = 1; 3119 } 3120 out: 3121 OUTB (nc_scntl1, 0); 3122 /* MDELAY(100); */ 3123 return retv; 3124 } 3125 3126 /* 3127 * The chip may have completed jobs. Look at the DONE QUEUE. 3128 * 3129 * On architectures that may reorder LOAD/STORE operations, 3130 * a memory barrier may be needed after the reading of the 3131 * so-called `flag' and prior to dealing with the data. 3132 */ 3133 static int sym_wakeup_done (hcb_p np) 3134 { 3135 ccb_p cp; 3136 int i, n; 3137 u32 dsa; 3138 3139 n = 0; 3140 i = np->dqueueget; 3141 while (1) { 3142 dsa = scr_to_cpu(np->dqueue[i]); 3143 if (!dsa) 3144 break; 3145 np->dqueue[i] = 0; 3146 if ((i = i+2) >= MAX_QUEUE*2) 3147 i = 0; 3148 3149 cp = sym_ccb_from_dsa(np, dsa); 3150 if (cp) { 3151 MEMORY_BARRIER(); 3152 sym_complete_ok (np, cp); 3153 ++n; 3154 } 3155 else 3156 printf ("%s: bad DSA (%x) in done queue.\n", 3157 sym_name(np), (u_int) dsa); 3158 } 3159 np->dqueueget = i; 3160 3161 return n; 3162 } 3163 3164 /* 3165 * Complete all active CCBs with error. 3166 * Used on CHIP/SCSI RESET. 3167 */ 3168 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3169 { 3170 /* 3171 * Move all active CCBs to the COMP queue 3172 * and flush this queue. 3173 */ 3174 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3175 sym_que_init(&np->busy_ccbq); 3176 sym_flush_comp_queue(np, cam_status); 3177 } 3178 3179 /* 3180 * Start chip. 3181 * 3182 * 'reason' means: 3183 * 0: initialisation. 3184 * 1: SCSI BUS RESET delivered or received. 3185 * 2: SCSI BUS MODE changed. 3186 */ 3187 static void sym_init (hcb_p np, int reason) 3188 { 3189 int i; 3190 u32 phys; 3191 3192 /* 3193 * Reset chip if asked, otherwise just clear fifos. 3194 */ 3195 if (reason == 1) 3196 sym_soft_reset(np); 3197 else { 3198 OUTB (nc_stest3, TE|CSF); 3199 OUTONB (nc_ctest3, CLF); 3200 } 3201 3202 /* 3203 * Clear Start Queue 3204 */ 3205 phys = np->squeue_ba; 3206 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3207 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3208 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3209 } 3210 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3211 3212 /* 3213 * Start at first entry. 3214 */ 3215 np->squeueput = 0; 3216 3217 /* 3218 * Clear Done Queue 3219 */ 3220 phys = np->dqueue_ba; 3221 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3222 np->dqueue[i] = 0; 3223 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3224 } 3225 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3226 3227 /* 3228 * Start at first entry. 3229 */ 3230 np->dqueueget = 0; 3231 3232 /* 3233 * Install patches in scripts. 3234 * This also let point to first position the start 3235 * and done queue pointers used from SCRIPTS. 3236 */ 3237 np->fw_patch(np); 3238 3239 /* 3240 * Wakeup all pending jobs. 3241 */ 3242 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3243 3244 /* 3245 * Init chip. 3246 */ 3247 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3248 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3249 3250 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3251 /* full arb., ena parity, par->ATN */ 3252 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3253 3254 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3255 3256 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3257 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3258 OUTB (nc_istat , SIGP ); /* Signal Process */ 3259 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3260 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3261 3262 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3263 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3264 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3265 3266 /* Extended Sreq/Sack filtering not supported on the C10 */ 3267 if (np->features & FE_C10) 3268 OUTB (nc_stest2, np->rv_stest2); 3269 else 3270 OUTB (nc_stest2, EXT|np->rv_stest2); 3271 3272 OUTB (nc_stest3, TE); /* TolerANT enable */ 3273 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3274 3275 /* 3276 * For now, disable AIP generation on C1010-66. 3277 */ 3278 if (np->device_id == PCI_ID_LSI53C1010_2) 3279 OUTB (nc_aipcntl1, DISAIP); 3280 3281 /* 3282 * C10101 Errata. 3283 * Errant SGE's when in narrow. Write bits 4 & 5 of 3284 * STEST1 register to disable SGE. We probably should do 3285 * that from SCRIPTS for each selection/reselection, but 3286 * I just don't want. :) 3287 */ 3288 if (np->device_id == PCI_ID_LSI53C1010 && 3289 /* np->revision_id < 0xff */ 1) 3290 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3291 3292 /* 3293 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3294 * Disable overlapped arbitration for some dual function devices, 3295 * regardless revision id (kind of post-chip-design feature. ;-)) 3296 */ 3297 if (np->device_id == PCI_ID_SYM53C875) 3298 OUTB (nc_ctest0, (1<<5)); 3299 else if (np->device_id == PCI_ID_SYM53C896) 3300 np->rv_ccntl0 |= DPR; 3301 3302 /* 3303 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3304 * and/or hardware phase mismatch, since only such chips 3305 * seem to support those IO registers. 3306 */ 3307 if (np->features & (FE_DAC|FE_NOPM)) { 3308 OUTB (nc_ccntl0, np->rv_ccntl0); 3309 OUTB (nc_ccntl1, np->rv_ccntl1); 3310 } 3311 3312 /* 3313 * If phase mismatch handled by scripts (895A/896/1010), 3314 * set PM jump addresses. 3315 */ 3316 if (np->features & FE_NOPM) { 3317 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3318 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3319 } 3320 3321 /* 3322 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3323 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3324 */ 3325 if (np->features & FE_LED0) 3326 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3327 else if (np->features & FE_LEDC) 3328 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3329 3330 /* 3331 * enable ints 3332 */ 3333 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3334 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3335 3336 /* 3337 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3338 * Try to eat the spurious SBMC interrupt that may occur when 3339 * we reset the chip but not the SCSI BUS (at initialization). 3340 */ 3341 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3342 OUTONW (nc_sien, SBMC); 3343 if (reason == 0) { 3344 MDELAY(100); 3345 INW (nc_sist); 3346 } 3347 np->scsi_mode = INB (nc_stest4) & SMODE; 3348 } 3349 3350 /* 3351 * Fill in target structure. 3352 * Reinitialize usrsync. 3353 * Reinitialize usrwide. 3354 * Prepare sync negotiation according to actual SCSI bus mode. 3355 */ 3356 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3357 tcb_p tp = &np->target[i]; 3358 3359 tp->to_reset = 0; 3360 tp->head.sval = 0; 3361 tp->head.wval = np->rv_scntl3; 3362 tp->head.uval = 0; 3363 3364 tp->tinfo.current.period = 0; 3365 tp->tinfo.current.offset = 0; 3366 tp->tinfo.current.width = BUS_8_BIT; 3367 tp->tinfo.current.options = 0; 3368 } 3369 3370 /* 3371 * Download SCSI SCRIPTS to on-chip RAM if present, 3372 * and start script processor. 3373 */ 3374 if (np->ram_ba) { 3375 if (sym_verbose > 1) 3376 printf ("%s: Downloading SCSI SCRIPTS.\n", 3377 sym_name(np)); 3378 if (np->ram_ws == 8192) { 3379 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3380 OUTL (nc_mmws, np->scr_ram_seg); 3381 OUTL (nc_mmrs, np->scr_ram_seg); 3382 OUTL (nc_sfs, np->scr_ram_seg); 3383 phys = SCRIPTB_BA (np, start64); 3384 } 3385 else 3386 phys = SCRIPTA_BA (np, init); 3387 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3388 } 3389 else 3390 phys = SCRIPTA_BA (np, init); 3391 3392 np->istat_sem = 0; 3393 3394 OUTL (nc_dsa, np->hcb_ba); 3395 OUTL_DSP (phys); 3396 3397 /* 3398 * Notify the XPT about the RESET condition. 3399 */ 3400 if (reason != 0) 3401 xpt_async(AC_BUS_RESET, np->path, NULL); 3402 } 3403 3404 /* 3405 * Get clock factor and sync divisor for a given 3406 * synchronous factor period. 3407 */ 3408 static int 3409 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3410 { 3411 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3412 int div = np->clock_divn; /* Number of divisors supported */ 3413 u32 fak; /* Sync factor in sxfer */ 3414 u32 per; /* Period in tenths of ns */ 3415 u32 kpc; /* (per * clk) */ 3416 int ret; 3417 3418 /* 3419 * Compute the synchronous period in tenths of nano-seconds 3420 */ 3421 if (dt && sfac <= 9) per = 125; 3422 else if (sfac <= 10) per = 250; 3423 else if (sfac == 11) per = 303; 3424 else if (sfac == 12) per = 500; 3425 else per = 40 * sfac; 3426 ret = per; 3427 3428 kpc = per * clk; 3429 if (dt) 3430 kpc <<= 1; 3431 3432 /* 3433 * For earliest C10 revision 0, we cannot use extra 3434 * clocks for the setting of the SCSI clocking. 3435 * Note that this limits the lowest sync data transfer 3436 * to 5 Mega-transfers per second and may result in 3437 * using higher clock divisors. 3438 */ 3439 #if 1 3440 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3441 /* 3442 * Look for the lowest clock divisor that allows an 3443 * output speed not faster than the period. 3444 */ 3445 while (div > 0) { 3446 --div; 3447 if (kpc > (div_10M[div] << 2)) { 3448 ++div; 3449 break; 3450 } 3451 } 3452 fak = 0; /* No extra clocks */ 3453 if (div == np->clock_divn) { /* Are we too fast ? */ 3454 ret = -1; 3455 } 3456 *divp = div; 3457 *fakp = fak; 3458 return ret; 3459 } 3460 #endif 3461 3462 /* 3463 * Look for the greatest clock divisor that allows an 3464 * input speed faster than the period. 3465 */ 3466 while (div-- > 0) 3467 if (kpc >= (div_10M[div] << 2)) break; 3468 3469 /* 3470 * Calculate the lowest clock factor that allows an output 3471 * speed not faster than the period, and the max output speed. 3472 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3473 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3474 */ 3475 if (dt) { 3476 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3477 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3478 } 3479 else { 3480 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3481 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3482 } 3483 3484 /* 3485 * Check against our hardware limits, or bugs :). 3486 */ 3487 if (fak < 0) {fak = 0; ret = -1;} 3488 if (fak > 2) {fak = 2; ret = -1;} 3489 3490 /* 3491 * Compute and return sync parameters. 3492 */ 3493 *divp = div; 3494 *fakp = fak; 3495 3496 return ret; 3497 } 3498 3499 /* 3500 * Tell the SCSI layer about the new transfer parameters. 3501 */ 3502 static void 3503 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3504 { 3505 struct ccb_trans_settings cts; 3506 struct cam_path *path; 3507 int sts; 3508 tcb_p tp = &np->target[target]; 3509 3510 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3511 CAM_LUN_WILDCARD); 3512 if (sts != CAM_REQ_CMP) 3513 return; 3514 3515 bzero(&cts, sizeof(cts)); 3516 3517 #ifdef FreeBSD_New_Tran_Settings 3518 #define cts__scsi (cts.proto_specific.scsi) 3519 #define cts__spi (cts.xport_specific.spi) 3520 3521 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3522 cts.protocol = PROTO_SCSI; 3523 cts.transport = XPORT_SPI; 3524 cts.protocol_version = tp->tinfo.current.scsi_version; 3525 cts.transport_version = tp->tinfo.current.spi_version; 3526 3527 cts__spi.valid = spi_valid; 3528 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3529 cts__spi.sync_period = tp->tinfo.current.period; 3530 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3531 cts__spi.sync_offset = tp->tinfo.current.offset; 3532 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3533 cts__spi.bus_width = tp->tinfo.current.width; 3534 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3535 cts__spi.ppr_options = tp->tinfo.current.options; 3536 #undef cts__spi 3537 #undef cts__scsi 3538 #else 3539 cts.valid = spi_valid; 3540 if (spi_valid & CCB_TRANS_SYNC_RATE_VALID) 3541 cts.sync_period = tp->tinfo.current.period; 3542 if (spi_valid & CCB_TRANS_SYNC_OFFSET_VALID) 3543 cts.sync_offset = tp->tinfo.current.offset; 3544 if (spi_valid & CCB_TRANS_BUS_WIDTH_VALID) 3545 cts.bus_width = tp->tinfo.current.width; 3546 #endif 3547 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3548 xpt_async(AC_TRANSFER_NEG, path, &cts); 3549 xpt_free_path(path); 3550 } 3551 3552 #ifdef FreeBSD_New_Tran_Settings 3553 #define SYM_SPI_VALID_WDTR \ 3554 CTS_SPI_VALID_BUS_WIDTH | \ 3555 CTS_SPI_VALID_SYNC_RATE | \ 3556 CTS_SPI_VALID_SYNC_OFFSET 3557 #define SYM_SPI_VALID_SDTR \ 3558 CTS_SPI_VALID_SYNC_RATE | \ 3559 CTS_SPI_VALID_SYNC_OFFSET 3560 #define SYM_SPI_VALID_PPR \ 3561 CTS_SPI_VALID_PPR_OPTIONS | \ 3562 CTS_SPI_VALID_BUS_WIDTH | \ 3563 CTS_SPI_VALID_SYNC_RATE | \ 3564 CTS_SPI_VALID_SYNC_OFFSET 3565 #else 3566 #define SYM_SPI_VALID_WDTR \ 3567 CCB_TRANS_BUS_WIDTH_VALID | \ 3568 CCB_TRANS_SYNC_RATE_VALID | \ 3569 CCB_TRANS_SYNC_OFFSET_VALID 3570 #define SYM_SPI_VALID_SDTR \ 3571 CCB_TRANS_SYNC_RATE_VALID | \ 3572 CCB_TRANS_SYNC_OFFSET_VALID 3573 #define SYM_SPI_VALID_PPR \ 3574 CCB_TRANS_BUS_WIDTH_VALID | \ 3575 CCB_TRANS_SYNC_RATE_VALID | \ 3576 CCB_TRANS_SYNC_OFFSET_VALID 3577 #endif 3578 3579 /* 3580 * We received a WDTR. 3581 * Let everything be aware of the changes. 3582 */ 3583 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3584 { 3585 tcb_p tp = &np->target[cp->target]; 3586 3587 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3588 3589 /* 3590 * Tell the SCSI layer about the new transfer parameters. 3591 */ 3592 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3593 tp->tinfo.current.offset = 0; 3594 tp->tinfo.current.period = 0; 3595 tp->tinfo.current.options = 0; 3596 3597 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3598 } 3599 3600 /* 3601 * We received a SDTR. 3602 * Let everything be aware of the changes. 3603 */ 3604 static void 3605 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3606 { 3607 tcb_p tp = &np->target[cp->target]; 3608 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3609 3610 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3611 3612 /* 3613 * Tell the SCSI layer about the new transfer parameters. 3614 */ 3615 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3616 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3617 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3618 3619 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3620 } 3621 3622 /* 3623 * We received a PPR. 3624 * Let everything be aware of the changes. 3625 */ 3626 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3627 u_char per, u_char wide, u_char div, u_char fak) 3628 { 3629 tcb_p tp = &np->target[cp->target]; 3630 3631 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3632 3633 /* 3634 * Tell the SCSI layer about the new transfer parameters. 3635 */ 3636 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3637 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3638 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3639 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3640 3641 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3642 } 3643 3644 /* 3645 * Switch trans mode for current job and it's target. 3646 */ 3647 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3648 u_char per, u_char wide, u_char div, u_char fak) 3649 { 3650 SYM_QUEHEAD *qp; 3651 union ccb *ccb; 3652 tcb_p tp; 3653 u_char target = INB (nc_sdid) & 0x0f; 3654 u_char sval, wval, uval; 3655 3656 assert (cp); 3657 if (!cp) return; 3658 ccb = cp->cam_ccb; 3659 assert (ccb); 3660 if (!ccb) return; 3661 assert (target == (cp->target & 0xf)); 3662 tp = &np->target[target]; 3663 3664 sval = tp->head.sval; 3665 wval = tp->head.wval; 3666 uval = tp->head.uval; 3667 3668 #if 0 3669 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3670 sval, wval, uval, np->rv_scntl3); 3671 #endif 3672 /* 3673 * Set the offset. 3674 */ 3675 if (!(np->features & FE_C10)) 3676 sval = (sval & ~0x1f) | ofs; 3677 else 3678 sval = (sval & ~0x3f) | ofs; 3679 3680 /* 3681 * Set the sync divisor and extra clock factor. 3682 */ 3683 if (ofs != 0) { 3684 wval = (wval & ~0x70) | ((div+1) << 4); 3685 if (!(np->features & FE_C10)) 3686 sval = (sval & ~0xe0) | (fak << 5); 3687 else { 3688 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3689 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3690 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3691 } 3692 } 3693 3694 /* 3695 * Set the bus width. 3696 */ 3697 wval = wval & ~EWS; 3698 if (wide != 0) 3699 wval |= EWS; 3700 3701 /* 3702 * Set misc. ultra enable bits. 3703 */ 3704 if (np->features & FE_C10) { 3705 uval = uval & ~(U3EN|AIPCKEN); 3706 if (dt) { 3707 assert(np->features & FE_U3EN); 3708 uval |= U3EN; 3709 } 3710 } 3711 else { 3712 wval = wval & ~ULTRA; 3713 if (per <= 12) wval |= ULTRA; 3714 } 3715 3716 /* 3717 * Stop there if sync parameters are unchanged. 3718 */ 3719 if (tp->head.sval == sval && 3720 tp->head.wval == wval && 3721 tp->head.uval == uval) 3722 return; 3723 tp->head.sval = sval; 3724 tp->head.wval = wval; 3725 tp->head.uval = uval; 3726 3727 /* 3728 * Disable extended Sreq/Sack filtering if per < 50. 3729 * Not supported on the C1010. 3730 */ 3731 if (per < 50 && !(np->features & FE_C10)) 3732 OUTOFFB (nc_stest2, EXT); 3733 3734 /* 3735 * set actual value and sync_status 3736 */ 3737 OUTB (nc_sxfer, tp->head.sval); 3738 OUTB (nc_scntl3, tp->head.wval); 3739 3740 if (np->features & FE_C10) { 3741 OUTB (nc_scntl4, tp->head.uval); 3742 } 3743 3744 /* 3745 * patch ALL busy ccbs of this target. 3746 */ 3747 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3748 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3749 if (cp->target != target) 3750 continue; 3751 cp->phys.select.sel_scntl3 = tp->head.wval; 3752 cp->phys.select.sel_sxfer = tp->head.sval; 3753 if (np->features & FE_C10) { 3754 cp->phys.select.sel_scntl4 = tp->head.uval; 3755 } 3756 } 3757 } 3758 3759 /* 3760 * log message for real hard errors 3761 * 3762 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3763 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3764 * 3765 * exception register: 3766 * ds: dstat 3767 * si: sist 3768 * 3769 * SCSI bus lines: 3770 * so: control lines as driven by chip. 3771 * si: control lines as seen by chip. 3772 * sd: scsi data lines as seen by chip. 3773 * 3774 * wide/fastmode: 3775 * sxfer: (see the manual) 3776 * scntl3: (see the manual) 3777 * 3778 * current script command: 3779 * dsp: script address (relative to start of script). 3780 * dbc: first word of script command. 3781 * 3782 * First 24 register of the chip: 3783 * r0..rf 3784 */ 3785 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3786 { 3787 u32 dsp; 3788 int script_ofs; 3789 int script_size; 3790 char *script_name; 3791 u_char *script_base; 3792 int i; 3793 3794 dsp = INL (nc_dsp); 3795 3796 if (dsp > np->scripta_ba && 3797 dsp <= np->scripta_ba + np->scripta_sz) { 3798 script_ofs = dsp - np->scripta_ba; 3799 script_size = np->scripta_sz; 3800 script_base = (u_char *) np->scripta0; 3801 script_name = "scripta"; 3802 } 3803 else if (np->scriptb_ba < dsp && 3804 dsp <= np->scriptb_ba + np->scriptb_sz) { 3805 script_ofs = dsp - np->scriptb_ba; 3806 script_size = np->scriptb_sz; 3807 script_base = (u_char *) np->scriptb0; 3808 script_name = "scriptb"; 3809 } else { 3810 script_ofs = dsp; 3811 script_size = 0; 3812 script_base = 0; 3813 script_name = "mem"; 3814 } 3815 3816 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3817 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3818 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3819 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3820 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3821 (unsigned)INL (nc_dbc)); 3822 3823 if (((script_ofs & 3) == 0) && 3824 (unsigned)script_ofs < script_size) { 3825 printf ("%s: script cmd = %08x\n", sym_name(np), 3826 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3827 } 3828 3829 printf ("%s: regdump:", sym_name(np)); 3830 for (i=0; i<24;i++) 3831 printf (" %02x", (unsigned)INB_OFF(i)); 3832 printf (".\n"); 3833 3834 /* 3835 * PCI BUS error, read the PCI ststus register. 3836 */ 3837 if (dstat & (MDPE|BF)) { 3838 u_short pci_sts; 3839 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3840 if (pci_sts & 0xf900) { 3841 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3842 printf("%s: PCI STATUS = 0x%04x\n", 3843 sym_name(np), pci_sts & 0xf900); 3844 } 3845 } 3846 } 3847 3848 /* 3849 * chip interrupt handler 3850 * 3851 * In normal situations, interrupt conditions occur one at 3852 * a time. But when something bad happens on the SCSI BUS, 3853 * the chip may raise several interrupt flags before 3854 * stopping and interrupting the CPU. The additionnal 3855 * interrupt flags are stacked in some extra registers 3856 * after the SIP and/or DIP flag has been raised in the 3857 * ISTAT. After the CPU has read the interrupt condition 3858 * flag from SIST or DSTAT, the chip unstacks the other 3859 * interrupt flags and sets the corresponding bits in 3860 * SIST or DSTAT. Since the chip starts stacking once the 3861 * SIP or DIP flag is set, there is a small window of time 3862 * where the stacking does not occur. 3863 * 3864 * Typically, multiple interrupt conditions may happen in 3865 * the following situations: 3866 * 3867 * - SCSI parity error + Phase mismatch (PAR|MA) 3868 * When a parity error is detected in input phase 3869 * and the device switches to msg-in phase inside a 3870 * block MOV. 3871 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3872 * When a stupid device does not want to handle the 3873 * recovery of an SCSI parity error. 3874 * - Some combinations of STO, PAR, UDC, ... 3875 * When using non compliant SCSI stuff, when user is 3876 * doing non compliant hot tampering on the BUS, when 3877 * something really bad happens to a device, etc ... 3878 * 3879 * The heuristic suggested by SYMBIOS to handle 3880 * multiple interrupts is to try unstacking all 3881 * interrupts conditions and to handle them on some 3882 * priority based on error severity. 3883 * This will work when the unstacking has been 3884 * successful, but we cannot be 100 % sure of that, 3885 * since the CPU may have been faster to unstack than 3886 * the chip is able to stack. Hmmm ... But it seems that 3887 * such a situation is very unlikely to happen. 3888 * 3889 * If this happen, for example STO caught by the CPU 3890 * then UDC happenning before the CPU have restarted 3891 * the SCRIPTS, the driver may wrongly complete the 3892 * same command on UDC, since the SCRIPTS didn't restart 3893 * and the DSA still points to the same command. 3894 * We avoid this situation by setting the DSA to an 3895 * invalid value when the CCB is completed and before 3896 * restarting the SCRIPTS. 3897 * 3898 * Another issue is that we need some section of our 3899 * recovery procedures to be somehow uninterruptible but 3900 * the SCRIPTS processor does not provides such a 3901 * feature. For this reason, we handle recovery preferently 3902 * from the C code and check against some SCRIPTS critical 3903 * sections from the C code. 3904 * 3905 * Hopefully, the interrupt handling of the driver is now 3906 * able to resist to weird BUS error conditions, but donnot 3907 * ask me for any guarantee that it will never fail. :-) 3908 * Use at your own decision and risk. 3909 */ 3910 3911 static void sym_intr1 (hcb_p np) 3912 { 3913 u_char istat, istatc; 3914 u_char dstat; 3915 u_short sist; 3916 3917 /* 3918 * interrupt on the fly ? 3919 * 3920 * A `dummy read' is needed to ensure that the 3921 * clear of the INTF flag reaches the device 3922 * before the scanning of the DONE queue. 3923 */ 3924 istat = INB (nc_istat); 3925 if (istat & INTF) { 3926 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3927 istat = INB (nc_istat); /* DUMMY READ */ 3928 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3929 (void)sym_wakeup_done (np); 3930 }; 3931 3932 if (!(istat & (SIP|DIP))) 3933 return; 3934 3935 #if 0 /* We should never get this one */ 3936 if (istat & CABRT) 3937 OUTB (nc_istat, CABRT); 3938 #endif 3939 3940 /* 3941 * PAR and MA interrupts may occur at the same time, 3942 * and we need to know of both in order to handle 3943 * this situation properly. We try to unstack SCSI 3944 * interrupts for that reason. BTW, I dislike a LOT 3945 * such a loop inside the interrupt routine. 3946 * Even if DMA interrupt stacking is very unlikely to 3947 * happen, we also try unstacking these ones, since 3948 * this has no performance impact. 3949 */ 3950 sist = 0; 3951 dstat = 0; 3952 istatc = istat; 3953 do { 3954 if (istatc & SIP) 3955 sist |= INW (nc_sist); 3956 if (istatc & DIP) 3957 dstat |= INB (nc_dstat); 3958 istatc = INB (nc_istat); 3959 istat |= istatc; 3960 } while (istatc & (SIP|DIP)); 3961 3962 if (DEBUG_FLAGS & DEBUG_TINY) 3963 printf ("<%d|%x:%x|%x:%x>", 3964 (int)INB(nc_scr0), 3965 dstat,sist, 3966 (unsigned)INL(nc_dsp), 3967 (unsigned)INL(nc_dbc)); 3968 /* 3969 * On paper, a memory barrier may be needed here. 3970 * And since we are paranoid ... :) 3971 */ 3972 MEMORY_BARRIER(); 3973 3974 /* 3975 * First, interrupts we want to service cleanly. 3976 * 3977 * Phase mismatch (MA) is the most frequent interrupt 3978 * for chip earlier than the 896 and so we have to service 3979 * it as quickly as possible. 3980 * A SCSI parity error (PAR) may be combined with a phase 3981 * mismatch condition (MA). 3982 * Programmed interrupts (SIR) are used to call the C code 3983 * from SCRIPTS. 3984 * The single step interrupt (SSI) is not used in this 3985 * driver. 3986 */ 3987 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3988 !(dstat & (MDPE|BF|ABRT|IID))) { 3989 if (sist & PAR) sym_int_par (np, sist); 3990 else if (sist & MA) sym_int_ma (np); 3991 else if (dstat & SIR) sym_int_sir (np); 3992 else if (dstat & SSI) OUTONB_STD (); 3993 else goto unknown_int; 3994 return; 3995 }; 3996 3997 /* 3998 * Now, interrupts that donnot happen in normal 3999 * situations and that we may need to recover from. 4000 * 4001 * On SCSI RESET (RST), we reset everything. 4002 * On SCSI BUS MODE CHANGE (SBMC), we complete all 4003 * active CCBs with RESET status, prepare all devices 4004 * for negotiating again and restart the SCRIPTS. 4005 * On STO and UDC, we complete the CCB with the corres- 4006 * ponding status and restart the SCRIPTS. 4007 */ 4008 if (sist & RST) { 4009 xpt_print_path(np->path); 4010 printf("SCSI BUS reset detected.\n"); 4011 sym_init (np, 1); 4012 return; 4013 }; 4014 4015 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4016 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4017 4018 if (!(sist & (GEN|HTH|SGE)) && 4019 !(dstat & (MDPE|BF|ABRT|IID))) { 4020 if (sist & SBMC) sym_int_sbmc (np); 4021 else if (sist & STO) sym_int_sto (np); 4022 else if (sist & UDC) sym_int_udc (np); 4023 else goto unknown_int; 4024 return; 4025 }; 4026 4027 /* 4028 * Now, interrupts we are not able to recover cleanly. 4029 * 4030 * Log message for hard errors. 4031 * Reset everything. 4032 */ 4033 4034 sym_log_hard_error(np, sist, dstat); 4035 4036 if ((sist & (GEN|HTH|SGE)) || 4037 (dstat & (MDPE|BF|ABRT|IID))) { 4038 sym_start_reset(np); 4039 return; 4040 }; 4041 4042 unknown_int: 4043 /* 4044 * We just miss the cause of the interrupt. :( 4045 * Print a message. The timeout will do the real work. 4046 */ 4047 printf( "%s: unknown interrupt(s) ignored, " 4048 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 4049 sym_name(np), istat, dstat, sist); 4050 } 4051 4052 static void sym_intr(void *arg) 4053 { 4054 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 4055 sym_intr1((hcb_p) arg); 4056 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 4057 return; 4058 } 4059 4060 static void sym_poll(struct cam_sim *sim) 4061 { 4062 int s = splcam(); 4063 sym_intr(cam_sim_softc(sim)); 4064 splx(s); 4065 } 4066 4067 4068 /* 4069 * generic recovery from scsi interrupt 4070 * 4071 * The doc says that when the chip gets an SCSI interrupt, 4072 * it tries to stop in an orderly fashion, by completing 4073 * an instruction fetch that had started or by flushing 4074 * the DMA fifo for a write to memory that was executing. 4075 * Such a fashion is not enough to know if the instruction 4076 * that was just before the current DSP value has been 4077 * executed or not. 4078 * 4079 * There are some small SCRIPTS sections that deal with 4080 * the start queue and the done queue that may break any 4081 * assomption from the C code if we are interrupted 4082 * inside, so we reset if this happens. Btw, since these 4083 * SCRIPTS sections are executed while the SCRIPTS hasn't 4084 * started SCSI operations, it is very unlikely to happen. 4085 * 4086 * All the driver data structures are supposed to be 4087 * allocated from the same 4 GB memory window, so there 4088 * is a 1 to 1 relationship between DSA and driver data 4089 * structures. Since we are careful :) to invalidate the 4090 * DSA when we complete a command or when the SCRIPTS 4091 * pushes a DSA into a queue, we can trust it when it 4092 * points to a CCB. 4093 */ 4094 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4095 { 4096 u32 dsp = INL (nc_dsp); 4097 u32 dsa = INL (nc_dsa); 4098 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4099 4100 /* 4101 * If we haven't been interrupted inside the SCRIPTS 4102 * critical pathes, we can safely restart the SCRIPTS 4103 * and trust the DSA value if it matches a CCB. 4104 */ 4105 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4106 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4107 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4108 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4109 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4110 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4111 (!(dsp > SCRIPTA_BA (np, done) && 4112 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4113 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4114 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4115 /* 4116 * If we have a CCB, let the SCRIPTS call us back for 4117 * the handling of the error with SCRATCHA filled with 4118 * STARTPOS. This way, we will be able to freeze the 4119 * device queue and requeue awaiting IOs. 4120 */ 4121 if (cp) { 4122 cp->host_status = hsts; 4123 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4124 } 4125 /* 4126 * Otherwise just restart the SCRIPTS. 4127 */ 4128 else { 4129 OUTL (nc_dsa, 0xffffff); 4130 OUTL_DSP (SCRIPTA_BA (np, start)); 4131 } 4132 } 4133 else 4134 goto reset_all; 4135 4136 return; 4137 4138 reset_all: 4139 sym_start_reset(np); 4140 } 4141 4142 /* 4143 * chip exception handler for selection timeout 4144 */ 4145 static void sym_int_sto (hcb_p np) 4146 { 4147 u32 dsp = INL (nc_dsp); 4148 4149 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4150 4151 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4152 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4153 else 4154 sym_start_reset(np); 4155 } 4156 4157 /* 4158 * chip exception handler for unexpected disconnect 4159 */ 4160 static void sym_int_udc (hcb_p np) 4161 { 4162 printf ("%s: unexpected disconnect\n", sym_name(np)); 4163 sym_recover_scsi_int(np, HS_UNEXPECTED); 4164 } 4165 4166 /* 4167 * chip exception handler for SCSI bus mode change 4168 * 4169 * spi2-r12 11.2.3 says a transceiver mode change must 4170 * generate a reset event and a device that detects a reset 4171 * event shall initiate a hard reset. It says also that a 4172 * device that detects a mode change shall set data transfer 4173 * mode to eight bit asynchronous, etc... 4174 * So, just reinitializing all except chip should be enough. 4175 */ 4176 static void sym_int_sbmc (hcb_p np) 4177 { 4178 u_char scsi_mode = INB (nc_stest4) & SMODE; 4179 4180 /* 4181 * Notify user. 4182 */ 4183 xpt_print_path(np->path); 4184 printf("SCSI BUS mode change from %s to %s.\n", 4185 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4186 4187 /* 4188 * Should suspend command processing for a few seconds and 4189 * reinitialize all except the chip. 4190 */ 4191 sym_init (np, 2); 4192 } 4193 4194 /* 4195 * chip exception handler for SCSI parity error. 4196 * 4197 * When the chip detects a SCSI parity error and is 4198 * currently executing a (CH)MOV instruction, it does 4199 * not interrupt immediately, but tries to finish the 4200 * transfer of the current scatter entry before 4201 * interrupting. The following situations may occur: 4202 * 4203 * - The complete scatter entry has been transferred 4204 * without the device having changed phase. 4205 * The chip will then interrupt with the DSP pointing 4206 * to the instruction that follows the MOV. 4207 * 4208 * - A phase mismatch occurs before the MOV finished 4209 * and phase errors are to be handled by the C code. 4210 * The chip will then interrupt with both PAR and MA 4211 * conditions set. 4212 * 4213 * - A phase mismatch occurs before the MOV finished and 4214 * phase errors are to be handled by SCRIPTS. 4215 * The chip will load the DSP with the phase mismatch 4216 * JUMP address and interrupt the host processor. 4217 */ 4218 static void sym_int_par (hcb_p np, u_short sist) 4219 { 4220 u_char hsts = INB (HS_PRT); 4221 u32 dsp = INL (nc_dsp); 4222 u32 dbc = INL (nc_dbc); 4223 u32 dsa = INL (nc_dsa); 4224 u_char sbcl = INB (nc_sbcl); 4225 u_char cmd = dbc >> 24; 4226 int phase = cmd & 7; 4227 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4228 4229 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4230 sym_name(np), hsts, dbc, sbcl); 4231 4232 /* 4233 * Check that the chip is connected to the SCSI BUS. 4234 */ 4235 if (!(INB (nc_scntl1) & ISCON)) { 4236 sym_recover_scsi_int(np, HS_UNEXPECTED); 4237 return; 4238 } 4239 4240 /* 4241 * If the nexus is not clearly identified, reset the bus. 4242 * We will try to do better later. 4243 */ 4244 if (!cp) 4245 goto reset_all; 4246 4247 /* 4248 * Check instruction was a MOV, direction was INPUT and 4249 * ATN is asserted. 4250 */ 4251 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4252 goto reset_all; 4253 4254 /* 4255 * Keep track of the parity error. 4256 */ 4257 OUTONB (HF_PRT, HF_EXT_ERR); 4258 cp->xerr_status |= XE_PARITY_ERR; 4259 4260 /* 4261 * Prepare the message to send to the device. 4262 */ 4263 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4264 4265 /* 4266 * If the old phase was DATA IN phase, we have to deal with 4267 * the 3 situations described above. 4268 * For other input phases (MSG IN and STATUS), the device 4269 * must resend the whole thing that failed parity checking 4270 * or signal error. So, jumping to dispatcher should be OK. 4271 */ 4272 if (phase == 1 || phase == 5) { 4273 /* Phase mismatch handled by SCRIPTS */ 4274 if (dsp == SCRIPTB_BA (np, pm_handle)) 4275 OUTL_DSP (dsp); 4276 /* Phase mismatch handled by the C code */ 4277 else if (sist & MA) 4278 sym_int_ma (np); 4279 /* No phase mismatch occurred */ 4280 else { 4281 OUTL (nc_temp, dsp); 4282 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4283 } 4284 } 4285 else 4286 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4287 return; 4288 4289 reset_all: 4290 sym_start_reset(np); 4291 return; 4292 } 4293 4294 /* 4295 * chip exception handler for phase errors. 4296 * 4297 * We have to construct a new transfer descriptor, 4298 * to transfer the rest of the current block. 4299 */ 4300 static void sym_int_ma (hcb_p np) 4301 { 4302 u32 dbc; 4303 u32 rest; 4304 u32 dsp; 4305 u32 dsa; 4306 u32 nxtdsp; 4307 u32 *vdsp; 4308 u32 oadr, olen; 4309 u32 *tblp; 4310 u32 newcmd; 4311 u_int delta; 4312 u_char cmd; 4313 u_char hflags, hflags0; 4314 struct sym_pmc *pm; 4315 ccb_p cp; 4316 4317 dsp = INL (nc_dsp); 4318 dbc = INL (nc_dbc); 4319 dsa = INL (nc_dsa); 4320 4321 cmd = dbc >> 24; 4322 rest = dbc & 0xffffff; 4323 delta = 0; 4324 4325 /* 4326 * locate matching cp if any. 4327 */ 4328 cp = sym_ccb_from_dsa(np, dsa); 4329 4330 /* 4331 * Donnot take into account dma fifo and various buffers in 4332 * INPUT phase since the chip flushes everything before 4333 * raising the MA interrupt for interrupted INPUT phases. 4334 * For DATA IN phase, we will check for the SWIDE later. 4335 */ 4336 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4337 u_char ss0, ss2; 4338 4339 if (np->features & FE_DFBC) 4340 delta = INW (nc_dfbc); 4341 else { 4342 u32 dfifo; 4343 4344 /* 4345 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4346 */ 4347 dfifo = INL(nc_dfifo); 4348 4349 /* 4350 * Calculate remaining bytes in DMA fifo. 4351 * (CTEST5 = dfifo >> 16) 4352 */ 4353 if (dfifo & (DFS << 16)) 4354 delta = ((((dfifo >> 8) & 0x300) | 4355 (dfifo & 0xff)) - rest) & 0x3ff; 4356 else 4357 delta = ((dfifo & 0xff) - rest) & 0x7f; 4358 } 4359 4360 /* 4361 * The data in the dma fifo has not been transfered to 4362 * the target -> add the amount to the rest 4363 * and clear the data. 4364 * Check the sstat2 register in case of wide transfer. 4365 */ 4366 rest += delta; 4367 ss0 = INB (nc_sstat0); 4368 if (ss0 & OLF) rest++; 4369 if (!(np->features & FE_C10)) 4370 if (ss0 & ORF) rest++; 4371 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4372 ss2 = INB (nc_sstat2); 4373 if (ss2 & OLF1) rest++; 4374 if (!(np->features & FE_C10)) 4375 if (ss2 & ORF1) rest++; 4376 }; 4377 4378 /* 4379 * Clear fifos. 4380 */ 4381 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4382 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4383 } 4384 4385 /* 4386 * log the information 4387 */ 4388 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4389 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4390 (unsigned) rest, (unsigned) delta); 4391 4392 /* 4393 * try to find the interrupted script command, 4394 * and the address at which to continue. 4395 */ 4396 vdsp = 0; 4397 nxtdsp = 0; 4398 if (dsp > np->scripta_ba && 4399 dsp <= np->scripta_ba + np->scripta_sz) { 4400 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4401 nxtdsp = dsp; 4402 } 4403 else if (dsp > np->scriptb_ba && 4404 dsp <= np->scriptb_ba + np->scriptb_sz) { 4405 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4406 nxtdsp = dsp; 4407 } 4408 4409 /* 4410 * log the information 4411 */ 4412 if (DEBUG_FLAGS & DEBUG_PHASE) { 4413 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4414 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4415 }; 4416 4417 if (!vdsp) { 4418 printf ("%s: interrupted SCRIPT address not found.\n", 4419 sym_name (np)); 4420 goto reset_all; 4421 } 4422 4423 if (!cp) { 4424 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4425 sym_name (np)); 4426 goto reset_all; 4427 } 4428 4429 /* 4430 * get old startaddress and old length. 4431 */ 4432 oadr = scr_to_cpu(vdsp[1]); 4433 4434 if (cmd & 0x10) { /* Table indirect */ 4435 tblp = (u32 *) ((char*) &cp->phys + oadr); 4436 olen = scr_to_cpu(tblp[0]); 4437 oadr = scr_to_cpu(tblp[1]); 4438 } else { 4439 tblp = (u32 *) 0; 4440 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4441 }; 4442 4443 if (DEBUG_FLAGS & DEBUG_PHASE) { 4444 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4445 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4446 tblp, 4447 (unsigned) olen, 4448 (unsigned) oadr); 4449 }; 4450 4451 /* 4452 * check cmd against assumed interrupted script command. 4453 * If dt data phase, the MOVE instruction hasn't bit 4 of 4454 * the phase. 4455 */ 4456 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4457 PRINT_ADDR(cp); 4458 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4459 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4460 4461 goto reset_all; 4462 }; 4463 4464 /* 4465 * if old phase not dataphase, leave here. 4466 */ 4467 if (cmd & 2) { 4468 PRINT_ADDR(cp); 4469 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4470 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4471 (unsigned)oadr, (unsigned)rest); 4472 goto unexpected_phase; 4473 }; 4474 4475 /* 4476 * Choose the correct PM save area. 4477 * 4478 * Look at the PM_SAVE SCRIPT if you want to understand 4479 * this stuff. The equivalent code is implemented in 4480 * SCRIPTS for the 895A, 896 and 1010 that are able to 4481 * handle PM from the SCRIPTS processor. 4482 */ 4483 hflags0 = INB (HF_PRT); 4484 hflags = hflags0; 4485 4486 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4487 if (hflags & HF_IN_PM0) 4488 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4489 else if (hflags & HF_IN_PM1) 4490 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4491 4492 if (hflags & HF_DP_SAVED) 4493 hflags ^= HF_ACT_PM; 4494 } 4495 4496 if (!(hflags & HF_ACT_PM)) { 4497 pm = &cp->phys.pm0; 4498 newcmd = SCRIPTA_BA (np, pm0_data); 4499 } 4500 else { 4501 pm = &cp->phys.pm1; 4502 newcmd = SCRIPTA_BA (np, pm1_data); 4503 } 4504 4505 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4506 if (hflags != hflags0) 4507 OUTB (HF_PRT, hflags); 4508 4509 /* 4510 * fillin the phase mismatch context 4511 */ 4512 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4513 pm->sg.size = cpu_to_scr(rest); 4514 pm->ret = cpu_to_scr(nxtdsp); 4515 4516 /* 4517 * If we have a SWIDE, 4518 * - prepare the address to write the SWIDE from SCRIPTS, 4519 * - compute the SCRIPTS address to restart from, 4520 * - move current data pointer context by one byte. 4521 */ 4522 nxtdsp = SCRIPTA_BA (np, dispatch); 4523 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4524 (INB (nc_scntl2) & WSR)) { 4525 u32 tmp; 4526 4527 /* 4528 * Set up the table indirect for the MOVE 4529 * of the residual byte and adjust the data 4530 * pointer context. 4531 */ 4532 tmp = scr_to_cpu(pm->sg.addr); 4533 cp->phys.wresid.addr = cpu_to_scr(tmp); 4534 pm->sg.addr = cpu_to_scr(tmp + 1); 4535 tmp = scr_to_cpu(pm->sg.size); 4536 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4537 pm->sg.size = cpu_to_scr(tmp - 1); 4538 4539 /* 4540 * If only the residual byte is to be moved, 4541 * no PM context is needed. 4542 */ 4543 if ((tmp&0xffffff) == 1) 4544 newcmd = pm->ret; 4545 4546 /* 4547 * Prepare the address of SCRIPTS that will 4548 * move the residual byte to memory. 4549 */ 4550 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4551 } 4552 4553 if (DEBUG_FLAGS & DEBUG_PHASE) { 4554 PRINT_ADDR(cp); 4555 printf ("PM %x %x %x / %x %x %x.\n", 4556 hflags0, hflags, newcmd, 4557 (unsigned)scr_to_cpu(pm->sg.addr), 4558 (unsigned)scr_to_cpu(pm->sg.size), 4559 (unsigned)scr_to_cpu(pm->ret)); 4560 } 4561 4562 /* 4563 * Restart the SCRIPTS processor. 4564 */ 4565 OUTL (nc_temp, newcmd); 4566 OUTL_DSP (nxtdsp); 4567 return; 4568 4569 /* 4570 * Unexpected phase changes that occurs when the current phase 4571 * is not a DATA IN or DATA OUT phase are due to error conditions. 4572 * Such event may only happen when the SCRIPTS is using a 4573 * multibyte SCSI MOVE. 4574 * 4575 * Phase change Some possible cause 4576 * 4577 * COMMAND --> MSG IN SCSI parity error detected by target. 4578 * COMMAND --> STATUS Bad command or refused by target. 4579 * MSG OUT --> MSG IN Message rejected by target. 4580 * MSG OUT --> COMMAND Bogus target that discards extended 4581 * negotiation messages. 4582 * 4583 * The code below does not care of the new phase and so 4584 * trusts the target. Why to annoy it ? 4585 * If the interrupted phase is COMMAND phase, we restart at 4586 * dispatcher. 4587 * If a target does not get all the messages after selection, 4588 * the code assumes blindly that the target discards extended 4589 * messages and clears the negotiation status. 4590 * If the target does not want all our response to negotiation, 4591 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4592 * bloat for such a should_not_happen situation). 4593 * In all other situation, we reset the BUS. 4594 * Are these assumptions reasonnable ? (Wait and see ...) 4595 */ 4596 unexpected_phase: 4597 dsp -= 8; 4598 nxtdsp = 0; 4599 4600 switch (cmd & 7) { 4601 case 2: /* COMMAND phase */ 4602 nxtdsp = SCRIPTA_BA (np, dispatch); 4603 break; 4604 #if 0 4605 case 3: /* STATUS phase */ 4606 nxtdsp = SCRIPTA_BA (np, dispatch); 4607 break; 4608 #endif 4609 case 6: /* MSG OUT phase */ 4610 /* 4611 * If the device may want to use untagged when we want 4612 * tagged, we prepare an IDENTIFY without disc. granted, 4613 * since we will not be able to handle reselect. 4614 * Otherwise, we just don't care. 4615 */ 4616 if (dsp == SCRIPTA_BA (np, send_ident)) { 4617 if (cp->tag != NO_TAG && olen - rest <= 3) { 4618 cp->host_status = HS_BUSY; 4619 np->msgout[0] = M_IDENTIFY | cp->lun; 4620 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4621 } 4622 else 4623 nxtdsp = SCRIPTB_BA (np, ident_break); 4624 } 4625 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4626 dsp == SCRIPTB_BA (np, send_sdtr) || 4627 dsp == SCRIPTB_BA (np, send_ppr)) { 4628 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4629 } 4630 break; 4631 #if 0 4632 case 7: /* MSG IN phase */ 4633 nxtdsp = SCRIPTA_BA (np, clrack); 4634 break; 4635 #endif 4636 } 4637 4638 if (nxtdsp) { 4639 OUTL_DSP (nxtdsp); 4640 return; 4641 } 4642 4643 reset_all: 4644 sym_start_reset(np); 4645 } 4646 4647 /* 4648 * Dequeue from the START queue all CCBs that match 4649 * a given target/lun/task condition (-1 means all), 4650 * and move them from the BUSY queue to the COMP queue 4651 * with CAM_REQUEUE_REQ status condition. 4652 * This function is used during error handling/recovery. 4653 * It is called with SCRIPTS not running. 4654 */ 4655 static int 4656 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4657 { 4658 int j; 4659 ccb_p cp; 4660 4661 /* 4662 * Make sure the starting index is within range. 4663 */ 4664 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4665 4666 /* 4667 * Walk until end of START queue and dequeue every job 4668 * that matches the target/lun/task condition. 4669 */ 4670 j = i; 4671 while (i != np->squeueput) { 4672 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4673 assert(cp); 4674 #ifdef SYM_CONF_IARB_SUPPORT 4675 /* Forget hints for IARB, they may be no longer relevant */ 4676 cp->host_flags &= ~HF_HINT_IARB; 4677 #endif 4678 if ((target == -1 || cp->target == target) && 4679 (lun == -1 || cp->lun == lun) && 4680 (task == -1 || cp->tag == task)) { 4681 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4682 sym_remque(&cp->link_ccbq); 4683 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4684 } 4685 else { 4686 if (i != j) 4687 np->squeue[j] = np->squeue[i]; 4688 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4689 } 4690 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4691 } 4692 if (i != j) /* Copy back the idle task if needed */ 4693 np->squeue[j] = np->squeue[i]; 4694 np->squeueput = j; /* Update our current start queue pointer */ 4695 4696 return (i - j) / 2; 4697 } 4698 4699 /* 4700 * Complete all CCBs queued to the COMP queue. 4701 * 4702 * These CCBs are assumed: 4703 * - Not to be referenced either by devices or 4704 * SCRIPTS-related queues and datas. 4705 * - To have to be completed with an error condition 4706 * or requeued. 4707 * 4708 * The device queue freeze count is incremented 4709 * for each CCB that does not prevent this. 4710 * This function is called when all CCBs involved 4711 * in error handling/recovery have been reaped. 4712 */ 4713 static void 4714 sym_flush_comp_queue(hcb_p np, int cam_status) 4715 { 4716 SYM_QUEHEAD *qp; 4717 ccb_p cp; 4718 4719 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { 4720 union ccb *ccb; 4721 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4722 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4723 /* Leave quiet CCBs waiting for resources */ 4724 if (cp->host_status == HS_WAIT) 4725 continue; 4726 ccb = cp->cam_ccb; 4727 if (cam_status) 4728 sym_set_cam_status(ccb, cam_status); 4729 sym_free_ccb(np, cp); 4730 sym_freeze_cam_ccb(ccb); 4731 sym_xpt_done(np, ccb); 4732 } 4733 } 4734 4735 /* 4736 * chip handler for bad SCSI status condition 4737 * 4738 * In case of bad SCSI status, we unqueue all the tasks 4739 * currently queued to the controller but not yet started 4740 * and then restart the SCRIPTS processor immediately. 4741 * 4742 * QUEUE FULL and BUSY conditions are handled the same way. 4743 * Basically all the not yet started tasks are requeued in 4744 * device queue and the queue is frozen until a completion. 4745 * 4746 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4747 * the CCB of the failed command to prepare a REQUEST SENSE 4748 * SCSI command and queue it to the controller queue. 4749 * 4750 * SCRATCHA is assumed to have been loaded with STARTPOS 4751 * before the SCRIPTS called the C code. 4752 */ 4753 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4754 { 4755 tcb_p tp = &np->target[cp->target]; 4756 u32 startp; 4757 u_char s_status = cp->ssss_status; 4758 u_char h_flags = cp->host_flags; 4759 int msglen; 4760 int nego; 4761 int i; 4762 4763 /* 4764 * Compute the index of the next job to start from SCRIPTS. 4765 */ 4766 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4767 4768 /* 4769 * The last CCB queued used for IARB hint may be 4770 * no longer relevant. Forget it. 4771 */ 4772 #ifdef SYM_CONF_IARB_SUPPORT 4773 if (np->last_cp) 4774 np->last_cp = 0; 4775 #endif 4776 4777 /* 4778 * Now deal with the SCSI status. 4779 */ 4780 switch(s_status) { 4781 case S_BUSY: 4782 case S_QUEUE_FULL: 4783 if (sym_verbose >= 2) { 4784 PRINT_ADDR(cp); 4785 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4786 } 4787 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4788 sym_complete_error (np, cp); 4789 break; 4790 case S_TERMINATED: 4791 case S_CHECK_COND: 4792 /* 4793 * If we get an SCSI error when requesting sense, give up. 4794 */ 4795 if (h_flags & HF_SENSE) { 4796 sym_complete_error (np, cp); 4797 break; 4798 } 4799 4800 /* 4801 * Dequeue all queued CCBs for that device not yet started, 4802 * and restart the SCRIPTS processor immediately. 4803 */ 4804 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4805 OUTL_DSP (SCRIPTA_BA (np, start)); 4806 4807 /* 4808 * Save some info of the actual IO. 4809 * Compute the data residual. 4810 */ 4811 cp->sv_scsi_status = cp->ssss_status; 4812 cp->sv_xerr_status = cp->xerr_status; 4813 cp->sv_resid = sym_compute_residual(np, cp); 4814 4815 /* 4816 * Prepare all needed data structures for 4817 * requesting sense data. 4818 */ 4819 4820 /* 4821 * identify message 4822 */ 4823 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4824 msglen = 1; 4825 4826 /* 4827 * If we are currently using anything different from 4828 * async. 8 bit data transfers with that target, 4829 * start a negotiation, since the device may want 4830 * to report us a UNIT ATTENTION condition due to 4831 * a cause we currently ignore, and we donnot want 4832 * to be stuck with WIDE and/or SYNC data transfer. 4833 * 4834 * cp->nego_status is filled by sym_prepare_nego(). 4835 */ 4836 cp->nego_status = 0; 4837 nego = 0; 4838 if (tp->tinfo.current.options & PPR_OPT_MASK) 4839 nego = NS_PPR; 4840 else if (tp->tinfo.current.width != BUS_8_BIT) 4841 nego = NS_WIDE; 4842 else if (tp->tinfo.current.offset != 0) 4843 nego = NS_SYNC; 4844 if (nego) 4845 msglen += 4846 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4847 /* 4848 * Message table indirect structure. 4849 */ 4850 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4851 cp->phys.smsg.size = cpu_to_scr(msglen); 4852 4853 /* 4854 * sense command 4855 */ 4856 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4857 cp->phys.cmd.size = cpu_to_scr(6); 4858 4859 /* 4860 * patch requested size into sense command 4861 */ 4862 cp->sensecmd[0] = 0x03; 4863 cp->sensecmd[1] = cp->lun << 5; 4864 #ifdef FreeBSD_New_Tran_Settings 4865 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4866 cp->sensecmd[1] = 0; 4867 #endif 4868 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4869 cp->data_len = SYM_SNS_BBUF_LEN; 4870 4871 /* 4872 * sense data 4873 */ 4874 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4875 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4876 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4877 4878 /* 4879 * requeue the command. 4880 */ 4881 startp = SCRIPTB_BA (np, sdata_in); 4882 4883 cp->phys.head.savep = cpu_to_scr(startp); 4884 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4885 cp->phys.head.lastp = cpu_to_scr(startp); 4886 cp->startp = cpu_to_scr(startp); 4887 4888 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4889 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4890 cp->ssss_status = S_ILLEGAL; 4891 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4892 cp->xerr_status = 0; 4893 cp->extra_bytes = 0; 4894 4895 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4896 4897 /* 4898 * Requeue the command. 4899 */ 4900 sym_put_start_queue(np, cp); 4901 4902 /* 4903 * Give back to upper layer everything we have dequeued. 4904 */ 4905 sym_flush_comp_queue(np, 0); 4906 break; 4907 } 4908 } 4909 4910 /* 4911 * After a device has accepted some management message 4912 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4913 * a device signals a UNIT ATTENTION condition, some 4914 * tasks are thrown away by the device. We are required 4915 * to reflect that on our tasks list since the device 4916 * will never complete these tasks. 4917 * 4918 * This function move from the BUSY queue to the COMP 4919 * queue all disconnected CCBs for a given target that 4920 * match the following criteria: 4921 * - lun=-1 means any logical UNIT otherwise a given one. 4922 * - task=-1 means any task, otherwise a given one. 4923 */ 4924 static int 4925 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4926 { 4927 SYM_QUEHEAD qtmp, *qp; 4928 int i = 0; 4929 ccb_p cp; 4930 4931 /* 4932 * Move the entire BUSY queue to our temporary queue. 4933 */ 4934 sym_que_init(&qtmp); 4935 sym_que_splice(&np->busy_ccbq, &qtmp); 4936 sym_que_init(&np->busy_ccbq); 4937 4938 /* 4939 * Put all CCBs that matches our criteria into 4940 * the COMP queue and put back other ones into 4941 * the BUSY queue. 4942 */ 4943 while ((qp = sym_remque_head(&qtmp)) != 0) { 4944 union ccb *ccb; 4945 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4946 ccb = cp->cam_ccb; 4947 if (cp->host_status != HS_DISCONNECT || 4948 cp->target != target || 4949 (lun != -1 && cp->lun != lun) || 4950 (task != -1 && 4951 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4952 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4953 continue; 4954 } 4955 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4956 4957 /* Preserve the software timeout condition */ 4958 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4959 sym_set_cam_status(ccb, cam_status); 4960 ++i; 4961 #if 0 4962 printf("XXXX TASK @%p CLEARED\n", cp); 4963 #endif 4964 } 4965 return i; 4966 } 4967 4968 /* 4969 * chip handler for TASKS recovery 4970 * 4971 * We cannot safely abort a command, while the SCRIPTS 4972 * processor is running, since we just would be in race 4973 * with it. 4974 * 4975 * As long as we have tasks to abort, we keep the SEM 4976 * bit set in the ISTAT. When this bit is set, the 4977 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4978 * each time it enters the scheduler. 4979 * 4980 * If we have to reset a target, clear tasks of a unit, 4981 * or to perform the abort of a disconnected job, we 4982 * restart the SCRIPTS for selecting the target. Once 4983 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4984 * If it loses arbitration, the SCRIPTS will interrupt again 4985 * the next time it will enter its scheduler, and so on ... 4986 * 4987 * On SIR_TARGET_SELECTED, we scan for the more 4988 * appropriate thing to do: 4989 * 4990 * - If nothing, we just sent a M_ABORT message to the 4991 * target to get rid of the useless SCSI bus ownership. 4992 * According to the specs, no tasks shall be affected. 4993 * - If the target is to be reset, we send it a M_RESET 4994 * message. 4995 * - If a logical UNIT is to be cleared , we send the 4996 * IDENTIFY(lun) + M_ABORT. 4997 * - If an untagged task is to be aborted, we send the 4998 * IDENTIFY(lun) + M_ABORT. 4999 * - If a tagged task is to be aborted, we send the 5000 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 5001 * 5002 * Once our 'kiss of death' :) message has been accepted 5003 * by the target, the SCRIPTS interrupts again 5004 * (SIR_ABORT_SENT). On this interrupt, we complete 5005 * all the CCBs that should have been aborted by the 5006 * target according to our message. 5007 */ 5008 static void sym_sir_task_recovery(hcb_p np, int num) 5009 { 5010 SYM_QUEHEAD *qp; 5011 ccb_p cp; 5012 tcb_p tp; 5013 int target=-1, lun=-1, task; 5014 int i, k; 5015 5016 switch(num) { 5017 /* 5018 * The SCRIPTS processor stopped before starting 5019 * the next command in order to allow us to perform 5020 * some task recovery. 5021 */ 5022 case SIR_SCRIPT_STOPPED: 5023 /* 5024 * Do we have any target to reset or unit to clear ? 5025 */ 5026 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 5027 tp = &np->target[i]; 5028 if (tp->to_reset || 5029 (tp->lun0p && tp->lun0p->to_clear)) { 5030 target = i; 5031 break; 5032 } 5033 if (!tp->lunmp) 5034 continue; 5035 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5036 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5037 target = i; 5038 break; 5039 } 5040 } 5041 if (target != -1) 5042 break; 5043 } 5044 5045 /* 5046 * If not, walk the busy queue for any 5047 * disconnected CCB to be aborted. 5048 */ 5049 if (target == -1) { 5050 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5051 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 5052 if (cp->host_status != HS_DISCONNECT) 5053 continue; 5054 if (cp->to_abort) { 5055 target = cp->target; 5056 break; 5057 } 5058 } 5059 } 5060 5061 /* 5062 * If some target is to be selected, 5063 * prepare and start the selection. 5064 */ 5065 if (target != -1) { 5066 tp = &np->target[target]; 5067 np->abrt_sel.sel_id = target; 5068 np->abrt_sel.sel_scntl3 = tp->head.wval; 5069 np->abrt_sel.sel_sxfer = tp->head.sval; 5070 OUTL(nc_dsa, np->hcb_ba); 5071 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 5072 return; 5073 } 5074 5075 /* 5076 * Now look for a CCB to abort that haven't started yet. 5077 * Btw, the SCRIPTS processor is still stopped, so 5078 * we are not in race. 5079 */ 5080 i = 0; 5081 cp = 0; 5082 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5083 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5084 if (cp->host_status != HS_BUSY && 5085 cp->host_status != HS_NEGOTIATE) 5086 continue; 5087 if (!cp->to_abort) 5088 continue; 5089 #ifdef SYM_CONF_IARB_SUPPORT 5090 /* 5091 * If we are using IMMEDIATE ARBITRATION, we donnot 5092 * want to cancel the last queued CCB, since the 5093 * SCRIPTS may have anticipated the selection. 5094 */ 5095 if (cp == np->last_cp) { 5096 cp->to_abort = 0; 5097 continue; 5098 } 5099 #endif 5100 i = 1; /* Means we have found some */ 5101 break; 5102 } 5103 if (!i) { 5104 /* 5105 * We are done, so we donnot need 5106 * to synchronize with the SCRIPTS anylonger. 5107 * Remove the SEM flag from the ISTAT. 5108 */ 5109 np->istat_sem = 0; 5110 OUTB (nc_istat, SIGP); 5111 break; 5112 } 5113 /* 5114 * Compute index of next position in the start 5115 * queue the SCRIPTS intends to start and dequeue 5116 * all CCBs for that device that haven't been started. 5117 */ 5118 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5119 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5120 5121 /* 5122 * Make sure at least our IO to abort has been dequeued. 5123 */ 5124 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5125 5126 /* 5127 * Keep track in cam status of the reason of the abort. 5128 */ 5129 if (cp->to_abort == 2) 5130 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5131 else 5132 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5133 5134 /* 5135 * Complete with error everything that we have dequeued. 5136 */ 5137 sym_flush_comp_queue(np, 0); 5138 break; 5139 /* 5140 * The SCRIPTS processor has selected a target 5141 * we may have some manual recovery to perform for. 5142 */ 5143 case SIR_TARGET_SELECTED: 5144 target = (INB (nc_sdid) & 0xf); 5145 tp = &np->target[target]; 5146 5147 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5148 5149 /* 5150 * If the target is to be reset, prepare a 5151 * M_RESET message and clear the to_reset flag 5152 * since we donnot expect this operation to fail. 5153 */ 5154 if (tp->to_reset) { 5155 np->abrt_msg[0] = M_RESET; 5156 np->abrt_tbl.size = 1; 5157 tp->to_reset = 0; 5158 break; 5159 } 5160 5161 /* 5162 * Otherwise, look for some logical unit to be cleared. 5163 */ 5164 if (tp->lun0p && tp->lun0p->to_clear) 5165 lun = 0; 5166 else if (tp->lunmp) { 5167 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5168 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5169 lun = k; 5170 break; 5171 } 5172 } 5173 } 5174 5175 /* 5176 * If a logical unit is to be cleared, prepare 5177 * an IDENTIFY(lun) + ABORT MESSAGE. 5178 */ 5179 if (lun != -1) { 5180 lcb_p lp = sym_lp(np, tp, lun); 5181 lp->to_clear = 0; /* We donnot expect to fail here */ 5182 np->abrt_msg[0] = M_IDENTIFY | lun; 5183 np->abrt_msg[1] = M_ABORT; 5184 np->abrt_tbl.size = 2; 5185 break; 5186 } 5187 5188 /* 5189 * Otherwise, look for some disconnected job to 5190 * abort for this target. 5191 */ 5192 i = 0; 5193 cp = 0; 5194 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5195 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5196 if (cp->host_status != HS_DISCONNECT) 5197 continue; 5198 if (cp->target != target) 5199 continue; 5200 if (!cp->to_abort) 5201 continue; 5202 i = 1; /* Means we have some */ 5203 break; 5204 } 5205 5206 /* 5207 * If we have none, probably since the device has 5208 * completed the command before we won abitration, 5209 * send a M_ABORT message without IDENTIFY. 5210 * According to the specs, the device must just 5211 * disconnect the BUS and not abort any task. 5212 */ 5213 if (!i) { 5214 np->abrt_msg[0] = M_ABORT; 5215 np->abrt_tbl.size = 1; 5216 break; 5217 } 5218 5219 /* 5220 * We have some task to abort. 5221 * Set the IDENTIFY(lun) 5222 */ 5223 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5224 5225 /* 5226 * If we want to abort an untagged command, we 5227 * will send an IDENTIFY + M_ABORT. 5228 * Otherwise (tagged command), we will send 5229 * an IDENTIFY + task attributes + ABORT TAG. 5230 */ 5231 if (cp->tag == NO_TAG) { 5232 np->abrt_msg[1] = M_ABORT; 5233 np->abrt_tbl.size = 2; 5234 } 5235 else { 5236 np->abrt_msg[1] = cp->scsi_smsg[1]; 5237 np->abrt_msg[2] = cp->scsi_smsg[2]; 5238 np->abrt_msg[3] = M_ABORT_TAG; 5239 np->abrt_tbl.size = 4; 5240 } 5241 /* 5242 * Keep track of software timeout condition, since the 5243 * peripheral driver may not count retries on abort 5244 * conditions not due to timeout. 5245 */ 5246 if (cp->to_abort == 2) 5247 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5248 cp->to_abort = 0; /* We donnot expect to fail here */ 5249 break; 5250 5251 /* 5252 * The target has accepted our message and switched 5253 * to BUS FREE phase as we expected. 5254 */ 5255 case SIR_ABORT_SENT: 5256 target = (INB (nc_sdid) & 0xf); 5257 tp = &np->target[target]; 5258 5259 /* 5260 ** If we didn't abort anything, leave here. 5261 */ 5262 if (np->abrt_msg[0] == M_ABORT) 5263 break; 5264 5265 /* 5266 * If we sent a M_RESET, then a hardware reset has 5267 * been performed by the target. 5268 * - Reset everything to async 8 bit 5269 * - Tell ourself to negotiate next time :-) 5270 * - Prepare to clear all disconnected CCBs for 5271 * this target from our task list (lun=task=-1) 5272 */ 5273 lun = -1; 5274 task = -1; 5275 if (np->abrt_msg[0] == M_RESET) { 5276 tp->head.sval = 0; 5277 tp->head.wval = np->rv_scntl3; 5278 tp->head.uval = 0; 5279 tp->tinfo.current.period = 0; 5280 tp->tinfo.current.offset = 0; 5281 tp->tinfo.current.width = BUS_8_BIT; 5282 tp->tinfo.current.options = 0; 5283 } 5284 5285 /* 5286 * Otherwise, check for the LUN and TASK(s) 5287 * concerned by the cancelation. 5288 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5289 * or an ABORT message :-) 5290 */ 5291 else { 5292 lun = np->abrt_msg[0] & 0x3f; 5293 if (np->abrt_msg[1] == M_ABORT_TAG) 5294 task = np->abrt_msg[2]; 5295 } 5296 5297 /* 5298 * Complete all the CCBs the device should have 5299 * aborted due to our 'kiss of death' message. 5300 */ 5301 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5302 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5303 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5304 sym_flush_comp_queue(np, 0); 5305 5306 /* 5307 * If we sent a BDR, make uper layer aware of that. 5308 */ 5309 if (np->abrt_msg[0] == M_RESET) 5310 xpt_async(AC_SENT_BDR, np->path, NULL); 5311 break; 5312 } 5313 5314 /* 5315 * Print to the log the message we intend to send. 5316 */ 5317 if (num == SIR_TARGET_SELECTED) { 5318 PRINT_TARGET(np, target); 5319 sym_printl_hex("control msgout:", np->abrt_msg, 5320 np->abrt_tbl.size); 5321 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5322 } 5323 5324 /* 5325 * Let the SCRIPTS processor continue. 5326 */ 5327 OUTONB_STD (); 5328 } 5329 5330 /* 5331 * Gerard's alchemy:) that deals with with the data 5332 * pointer for both MDP and the residual calculation. 5333 * 5334 * I didn't want to bloat the code by more than 200 5335 * lignes for the handling of both MDP and the residual. 5336 * This has been achieved by using a data pointer 5337 * representation consisting in an index in the data 5338 * array (dp_sg) and a negative offset (dp_ofs) that 5339 * have the following meaning: 5340 * 5341 * - dp_sg = SYM_CONF_MAX_SG 5342 * we are at the end of the data script. 5343 * - dp_sg < SYM_CONF_MAX_SG 5344 * dp_sg points to the next entry of the scatter array 5345 * we want to transfer. 5346 * - dp_ofs < 0 5347 * dp_ofs represents the residual of bytes of the 5348 * previous entry scatter entry we will send first. 5349 * - dp_ofs = 0 5350 * no residual to send first. 5351 * 5352 * The function sym_evaluate_dp() accepts an arbitray 5353 * offset (basically from the MDP message) and returns 5354 * the corresponding values of dp_sg and dp_ofs. 5355 */ 5356 5357 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5358 { 5359 u32 dp_scr; 5360 int dp_ofs, dp_sg, dp_sgmin; 5361 int tmp; 5362 struct sym_pmc *pm; 5363 5364 /* 5365 * Compute the resulted data pointer in term of a script 5366 * address within some DATA script and a signed byte offset. 5367 */ 5368 dp_scr = scr; 5369 dp_ofs = *ofs; 5370 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5371 pm = &cp->phys.pm0; 5372 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5373 pm = &cp->phys.pm1; 5374 else 5375 pm = 0; 5376 5377 if (pm) { 5378 dp_scr = scr_to_cpu(pm->ret); 5379 dp_ofs -= scr_to_cpu(pm->sg.size); 5380 } 5381 5382 /* 5383 * If we are auto-sensing, then we are done. 5384 */ 5385 if (cp->host_flags & HF_SENSE) { 5386 *ofs = dp_ofs; 5387 return 0; 5388 } 5389 5390 /* 5391 * Deduce the index of the sg entry. 5392 * Keep track of the index of the first valid entry. 5393 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5394 * end of the data. 5395 */ 5396 tmp = scr_to_cpu(cp->phys.head.goalp); 5397 dp_sg = SYM_CONF_MAX_SG; 5398 if (dp_scr != tmp) 5399 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5400 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5401 5402 /* 5403 * Move to the sg entry the data pointer belongs to. 5404 * 5405 * If we are inside the data area, we expect result to be: 5406 * 5407 * Either, 5408 * dp_ofs = 0 and dp_sg is the index of the sg entry 5409 * the data pointer belongs to (or the end of the data) 5410 * Or, 5411 * dp_ofs < 0 and dp_sg is the index of the sg entry 5412 * the data pointer belongs to + 1. 5413 */ 5414 if (dp_ofs < 0) { 5415 int n; 5416 while (dp_sg > dp_sgmin) { 5417 --dp_sg; 5418 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5419 n = dp_ofs + (tmp & 0xffffff); 5420 if (n > 0) { 5421 ++dp_sg; 5422 break; 5423 } 5424 dp_ofs = n; 5425 } 5426 } 5427 else if (dp_ofs > 0) { 5428 while (dp_sg < SYM_CONF_MAX_SG) { 5429 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5430 dp_ofs -= (tmp & 0xffffff); 5431 ++dp_sg; 5432 if (dp_ofs <= 0) 5433 break; 5434 } 5435 } 5436 5437 /* 5438 * Make sure the data pointer is inside the data area. 5439 * If not, return some error. 5440 */ 5441 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5442 goto out_err; 5443 else if (dp_sg > SYM_CONF_MAX_SG || 5444 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5445 goto out_err; 5446 5447 /* 5448 * Save the extreme pointer if needed. 5449 */ 5450 if (dp_sg > cp->ext_sg || 5451 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5452 cp->ext_sg = dp_sg; 5453 cp->ext_ofs = dp_ofs; 5454 } 5455 5456 /* 5457 * Return data. 5458 */ 5459 *ofs = dp_ofs; 5460 return dp_sg; 5461 5462 out_err: 5463 return -1; 5464 } 5465 5466 /* 5467 * chip handler for MODIFY DATA POINTER MESSAGE 5468 * 5469 * We also call this function on IGNORE WIDE RESIDUE 5470 * messages that do not match a SWIDE full condition. 5471 * Btw, we assume in that situation that such a message 5472 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5473 */ 5474 5475 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5476 { 5477 int dp_ofs = ofs; 5478 u32 dp_scr = INL (nc_temp); 5479 u32 dp_ret; 5480 u32 tmp; 5481 u_char hflags; 5482 int dp_sg; 5483 struct sym_pmc *pm; 5484 5485 /* 5486 * Not supported for auto-sense. 5487 */ 5488 if (cp->host_flags & HF_SENSE) 5489 goto out_reject; 5490 5491 /* 5492 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5493 * to the resulted data pointer. 5494 */ 5495 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5496 if (dp_sg < 0) 5497 goto out_reject; 5498 5499 /* 5500 * And our alchemy:) allows to easily calculate the data 5501 * script address we want to return for the next data phase. 5502 */ 5503 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5504 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5505 5506 /* 5507 * If offset / scatter entry is zero we donnot need 5508 * a context for the new current data pointer. 5509 */ 5510 if (dp_ofs == 0) { 5511 dp_scr = dp_ret; 5512 goto out_ok; 5513 } 5514 5515 /* 5516 * Get a context for the new current data pointer. 5517 */ 5518 hflags = INB (HF_PRT); 5519 5520 if (hflags & HF_DP_SAVED) 5521 hflags ^= HF_ACT_PM; 5522 5523 if (!(hflags & HF_ACT_PM)) { 5524 pm = &cp->phys.pm0; 5525 dp_scr = SCRIPTA_BA (np, pm0_data); 5526 } 5527 else { 5528 pm = &cp->phys.pm1; 5529 dp_scr = SCRIPTA_BA (np, pm1_data); 5530 } 5531 5532 hflags &= ~(HF_DP_SAVED); 5533 5534 OUTB (HF_PRT, hflags); 5535 5536 /* 5537 * Set up the new current data pointer. 5538 * ofs < 0 there, and for the next data phase, we 5539 * want to transfer part of the data of the sg entry 5540 * corresponding to index dp_sg-1 prior to returning 5541 * to the main data script. 5542 */ 5543 pm->ret = cpu_to_scr(dp_ret); 5544 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5545 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5546 pm->sg.addr = cpu_to_scr(tmp); 5547 pm->sg.size = cpu_to_scr(-dp_ofs); 5548 5549 out_ok: 5550 OUTL (nc_temp, dp_scr); 5551 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5552 return; 5553 5554 out_reject: 5555 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5556 } 5557 5558 5559 /* 5560 * chip calculation of the data residual. 5561 * 5562 * As I used to say, the requirement of data residual 5563 * in SCSI is broken, useless and cannot be achieved 5564 * without huge complexity. 5565 * But most OSes and even the official CAM require it. 5566 * When stupidity happens to be so widely spread inside 5567 * a community, it gets hard to convince. 5568 * 5569 * Anyway, I don't care, since I am not going to use 5570 * any software that considers this data residual as 5571 * a relevant information. :) 5572 */ 5573 5574 static int sym_compute_residual(hcb_p np, ccb_p cp) 5575 { 5576 int dp_sg, dp_sgmin, resid = 0; 5577 int dp_ofs = 0; 5578 5579 /* 5580 * Check for some data lost or just thrown away. 5581 * We are not required to be quite accurate in this 5582 * situation. Btw, if we are odd for output and the 5583 * device claims some more data, it may well happen 5584 * than our residual be zero. :-) 5585 */ 5586 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5587 if (cp->xerr_status & XE_EXTRA_DATA) 5588 resid -= cp->extra_bytes; 5589 if (cp->xerr_status & XE_SODL_UNRUN) 5590 ++resid; 5591 if (cp->xerr_status & XE_SWIDE_OVRUN) 5592 --resid; 5593 } 5594 5595 /* 5596 * If all data has been transferred, 5597 * there is no residual. 5598 */ 5599 if (cp->phys.head.lastp == cp->phys.head.goalp) 5600 return resid; 5601 5602 /* 5603 * If no data transfer occurs, or if the data 5604 * pointer is weird, return full residual. 5605 */ 5606 if (cp->startp == cp->phys.head.lastp || 5607 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5608 &dp_ofs) < 0) { 5609 return cp->data_len; 5610 } 5611 5612 /* 5613 * If we were auto-sensing, then we are done. 5614 */ 5615 if (cp->host_flags & HF_SENSE) { 5616 return -dp_ofs; 5617 } 5618 5619 /* 5620 * We are now full comfortable in the computation 5621 * of the data residual (2's complement). 5622 */ 5623 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5624 resid = -cp->ext_ofs; 5625 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5626 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5627 resid += (tmp & 0xffffff); 5628 } 5629 5630 /* 5631 * Hopefully, the result is not too wrong. 5632 */ 5633 return resid; 5634 } 5635 5636 /* 5637 * Print out the content of a SCSI message. 5638 */ 5639 5640 static int sym_show_msg (u_char * msg) 5641 { 5642 u_char i; 5643 printf ("%x",*msg); 5644 if (*msg==M_EXTENDED) { 5645 for (i=1;i<8;i++) { 5646 if (i-1>msg[1]) break; 5647 printf ("-%x",msg[i]); 5648 }; 5649 return (i+1); 5650 } else if ((*msg & 0xf0) == 0x20) { 5651 printf ("-%x",msg[1]); 5652 return (2); 5653 }; 5654 return (1); 5655 } 5656 5657 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5658 { 5659 PRINT_ADDR(cp); 5660 if (label) 5661 printf ("%s: ", label); 5662 5663 (void) sym_show_msg (msg); 5664 printf (".\n"); 5665 } 5666 5667 /* 5668 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5669 * 5670 * When we try to negotiate, we append the negotiation message 5671 * to the identify and (maybe) simple tag message. 5672 * The host status field is set to HS_NEGOTIATE to mark this 5673 * situation. 5674 * 5675 * If the target doesn't answer this message immediately 5676 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5677 * will be raised eventually. 5678 * The handler removes the HS_NEGOTIATE status, and sets the 5679 * negotiated value to the default (async / nowide). 5680 * 5681 * If we receive a matching answer immediately, we check it 5682 * for validity, and set the values. 5683 * 5684 * If we receive a Reject message immediately, we assume the 5685 * negotiation has failed, and fall back to standard values. 5686 * 5687 * If we receive a negotiation message while not in HS_NEGOTIATE 5688 * state, it's a target initiated negotiation. We prepare a 5689 * (hopefully) valid answer, set our parameters, and send back 5690 * this answer to the target. 5691 * 5692 * If the target doesn't fetch the answer (no message out phase), 5693 * we assume the negotiation has failed, and fall back to default 5694 * settings (SIR_NEGO_PROTO interrupt). 5695 * 5696 * When we set the values, we adjust them in all ccbs belonging 5697 * to this target, in the controller's register, and in the "phys" 5698 * field of the controller's struct sym_hcb. 5699 */ 5700 5701 /* 5702 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5703 */ 5704 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5705 { 5706 u_char chg, ofs, per, fak, div; 5707 int req = 1; 5708 5709 /* 5710 * Synchronous request message received. 5711 */ 5712 if (DEBUG_FLAGS & DEBUG_NEGO) { 5713 sym_print_msg(cp, "sync msgin", np->msgin); 5714 }; 5715 5716 /* 5717 * request or answer ? 5718 */ 5719 if (INB (HS_PRT) == HS_NEGOTIATE) { 5720 OUTB (HS_PRT, HS_BUSY); 5721 if (cp->nego_status && cp->nego_status != NS_SYNC) 5722 goto reject_it; 5723 req = 0; 5724 } 5725 5726 /* 5727 * get requested values. 5728 */ 5729 chg = 0; 5730 per = np->msgin[3]; 5731 ofs = np->msgin[4]; 5732 5733 /* 5734 * check values against our limits. 5735 */ 5736 if (ofs) { 5737 if (ofs > np->maxoffs) 5738 {chg = 1; ofs = np->maxoffs;} 5739 if (req) { 5740 if (ofs > tp->tinfo.user.offset) 5741 {chg = 1; ofs = tp->tinfo.user.offset;} 5742 } 5743 } 5744 5745 if (ofs) { 5746 if (per < np->minsync) 5747 {chg = 1; per = np->minsync;} 5748 if (req) { 5749 if (per < tp->tinfo.user.period) 5750 {chg = 1; per = tp->tinfo.user.period;} 5751 } 5752 } 5753 5754 div = fak = 0; 5755 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5756 goto reject_it; 5757 5758 if (DEBUG_FLAGS & DEBUG_NEGO) { 5759 PRINT_ADDR(cp); 5760 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5761 ofs, per, div, fak, chg); 5762 } 5763 5764 /* 5765 * This was an answer message 5766 */ 5767 if (req == 0) { 5768 if (chg) /* Answer wasn't acceptable. */ 5769 goto reject_it; 5770 sym_setsync (np, cp, ofs, per, div, fak); 5771 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5772 return; 5773 } 5774 5775 /* 5776 * It was a request. Set value and 5777 * prepare an answer message 5778 */ 5779 sym_setsync (np, cp, ofs, per, div, fak); 5780 5781 np->msgout[0] = M_EXTENDED; 5782 np->msgout[1] = 3; 5783 np->msgout[2] = M_X_SYNC_REQ; 5784 np->msgout[3] = per; 5785 np->msgout[4] = ofs; 5786 5787 cp->nego_status = NS_SYNC; 5788 5789 if (DEBUG_FLAGS & DEBUG_NEGO) { 5790 sym_print_msg(cp, "sync msgout", np->msgout); 5791 } 5792 5793 np->msgin [0] = M_NOOP; 5794 5795 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5796 return; 5797 reject_it: 5798 sym_setsync (np, cp, 0, 0, 0, 0); 5799 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5800 } 5801 5802 /* 5803 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5804 */ 5805 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5806 { 5807 u_char chg, ofs, per, fak, dt, div, wide; 5808 int req = 1; 5809 5810 /* 5811 * Synchronous request message received. 5812 */ 5813 if (DEBUG_FLAGS & DEBUG_NEGO) { 5814 sym_print_msg(cp, "ppr msgin", np->msgin); 5815 }; 5816 5817 /* 5818 * get requested values. 5819 */ 5820 chg = 0; 5821 per = np->msgin[3]; 5822 ofs = np->msgin[5]; 5823 wide = np->msgin[6]; 5824 dt = np->msgin[7] & PPR_OPT_DT; 5825 5826 /* 5827 * request or answer ? 5828 */ 5829 if (INB (HS_PRT) == HS_NEGOTIATE) { 5830 OUTB (HS_PRT, HS_BUSY); 5831 if (cp->nego_status && cp->nego_status != NS_PPR) 5832 goto reject_it; 5833 req = 0; 5834 } 5835 5836 /* 5837 * check values against our limits. 5838 */ 5839 if (wide > np->maxwide) 5840 {chg = 1; wide = np->maxwide;} 5841 if (!wide || !(np->features & FE_ULTRA3)) 5842 dt &= ~PPR_OPT_DT; 5843 if (req) { 5844 if (wide > tp->tinfo.user.width) 5845 {chg = 1; wide = tp->tinfo.user.width;} 5846 } 5847 5848 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5849 dt &= ~PPR_OPT_DT; 5850 5851 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5852 5853 if (ofs) { 5854 if (dt) { 5855 if (ofs > np->maxoffs_dt) 5856 {chg = 1; ofs = np->maxoffs_dt;} 5857 } 5858 else if (ofs > np->maxoffs) 5859 {chg = 1; ofs = np->maxoffs;} 5860 if (req) { 5861 if (ofs > tp->tinfo.user.offset) 5862 {chg = 1; ofs = tp->tinfo.user.offset;} 5863 } 5864 } 5865 5866 if (ofs) { 5867 if (dt) { 5868 if (per < np->minsync_dt) 5869 {chg = 1; per = np->minsync_dt;} 5870 } 5871 else if (per < np->minsync) 5872 {chg = 1; per = np->minsync;} 5873 if (req) { 5874 if (per < tp->tinfo.user.period) 5875 {chg = 1; per = tp->tinfo.user.period;} 5876 } 5877 } 5878 5879 div = fak = 0; 5880 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5881 goto reject_it; 5882 5883 if (DEBUG_FLAGS & DEBUG_NEGO) { 5884 PRINT_ADDR(cp); 5885 printf ("ppr: " 5886 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5887 dt, ofs, per, wide, div, fak, chg); 5888 } 5889 5890 /* 5891 * It was an answer. 5892 */ 5893 if (req == 0) { 5894 if (chg) /* Answer wasn't acceptable */ 5895 goto reject_it; 5896 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5897 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5898 return; 5899 } 5900 5901 /* 5902 * It was a request. Set value and 5903 * prepare an answer message 5904 */ 5905 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5906 5907 np->msgout[0] = M_EXTENDED; 5908 np->msgout[1] = 6; 5909 np->msgout[2] = M_X_PPR_REQ; 5910 np->msgout[3] = per; 5911 np->msgout[4] = 0; 5912 np->msgout[5] = ofs; 5913 np->msgout[6] = wide; 5914 np->msgout[7] = dt; 5915 5916 cp->nego_status = NS_PPR; 5917 5918 if (DEBUG_FLAGS & DEBUG_NEGO) { 5919 sym_print_msg(cp, "ppr msgout", np->msgout); 5920 } 5921 5922 np->msgin [0] = M_NOOP; 5923 5924 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5925 return; 5926 reject_it: 5927 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5928 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5929 /* 5930 * If it was a device response that should result in 5931 * ST, we may want to try a legacy negotiation later. 5932 */ 5933 if (!req && !dt) { 5934 tp->tinfo.goal.options = 0; 5935 tp->tinfo.goal.width = wide; 5936 tp->tinfo.goal.period = per; 5937 tp->tinfo.goal.offset = ofs; 5938 } 5939 return; 5940 } 5941 5942 /* 5943 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5944 */ 5945 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5946 { 5947 u_char chg, wide; 5948 int req = 1; 5949 5950 /* 5951 * Wide request message received. 5952 */ 5953 if (DEBUG_FLAGS & DEBUG_NEGO) { 5954 sym_print_msg(cp, "wide msgin", np->msgin); 5955 }; 5956 5957 /* 5958 * Is it a request from the device? 5959 */ 5960 if (INB (HS_PRT) == HS_NEGOTIATE) { 5961 OUTB (HS_PRT, HS_BUSY); 5962 if (cp->nego_status && cp->nego_status != NS_WIDE) 5963 goto reject_it; 5964 req = 0; 5965 } 5966 5967 /* 5968 * get requested values. 5969 */ 5970 chg = 0; 5971 wide = np->msgin[3]; 5972 5973 /* 5974 * check values against driver limits. 5975 */ 5976 if (wide > np->maxwide) 5977 {chg = 1; wide = np->maxwide;} 5978 if (req) { 5979 if (wide > tp->tinfo.user.width) 5980 {chg = 1; wide = tp->tinfo.user.width;} 5981 } 5982 5983 if (DEBUG_FLAGS & DEBUG_NEGO) { 5984 PRINT_ADDR(cp); 5985 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5986 } 5987 5988 /* 5989 * This was an answer message 5990 */ 5991 if (req == 0) { 5992 if (chg) /* Answer wasn't acceptable. */ 5993 goto reject_it; 5994 sym_setwide (np, cp, wide); 5995 5996 /* 5997 * Negotiate for SYNC immediately after WIDE response. 5998 * This allows to negotiate for both WIDE and SYNC on 5999 * a single SCSI command (Suggested by Justin Gibbs). 6000 */ 6001 if (tp->tinfo.goal.offset) { 6002 np->msgout[0] = M_EXTENDED; 6003 np->msgout[1] = 3; 6004 np->msgout[2] = M_X_SYNC_REQ; 6005 np->msgout[3] = tp->tinfo.goal.period; 6006 np->msgout[4] = tp->tinfo.goal.offset; 6007 6008 if (DEBUG_FLAGS & DEBUG_NEGO) { 6009 sym_print_msg(cp, "sync msgout", np->msgout); 6010 } 6011 6012 cp->nego_status = NS_SYNC; 6013 OUTB (HS_PRT, HS_NEGOTIATE); 6014 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 6015 return; 6016 } 6017 6018 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6019 return; 6020 }; 6021 6022 /* 6023 * It was a request, set value and 6024 * prepare an answer message 6025 */ 6026 sym_setwide (np, cp, wide); 6027 6028 np->msgout[0] = M_EXTENDED; 6029 np->msgout[1] = 2; 6030 np->msgout[2] = M_X_WIDE_REQ; 6031 np->msgout[3] = wide; 6032 6033 np->msgin [0] = M_NOOP; 6034 6035 cp->nego_status = NS_WIDE; 6036 6037 if (DEBUG_FLAGS & DEBUG_NEGO) { 6038 sym_print_msg(cp, "wide msgout", np->msgout); 6039 } 6040 6041 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 6042 return; 6043 reject_it: 6044 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6045 } 6046 6047 /* 6048 * Reset SYNC or WIDE to default settings. 6049 * 6050 * Called when a negotiation does not succeed either 6051 * on rejection or on protocol error. 6052 * 6053 * If it was a PPR that made problems, we may want to 6054 * try a legacy negotiation later. 6055 */ 6056 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 6057 { 6058 /* 6059 * any error in negotiation: 6060 * fall back to default mode. 6061 */ 6062 switch (cp->nego_status) { 6063 case NS_PPR: 6064 #if 0 6065 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 6066 #else 6067 tp->tinfo.goal.options = 0; 6068 if (tp->tinfo.goal.period < np->minsync) 6069 tp->tinfo.goal.period = np->minsync; 6070 if (tp->tinfo.goal.offset > np->maxoffs) 6071 tp->tinfo.goal.offset = np->maxoffs; 6072 #endif 6073 break; 6074 case NS_SYNC: 6075 sym_setsync (np, cp, 0, 0, 0, 0); 6076 break; 6077 case NS_WIDE: 6078 sym_setwide (np, cp, 0); 6079 break; 6080 }; 6081 np->msgin [0] = M_NOOP; 6082 np->msgout[0] = M_NOOP; 6083 cp->nego_status = 0; 6084 } 6085 6086 /* 6087 * chip handler for MESSAGE REJECT received in response to 6088 * a WIDE or SYNCHRONOUS negotiation. 6089 */ 6090 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 6091 { 6092 sym_nego_default(np, tp, cp); 6093 OUTB (HS_PRT, HS_BUSY); 6094 } 6095 6096 /* 6097 * chip exception handler for programmed interrupts. 6098 */ 6099 static void sym_int_sir (hcb_p np) 6100 { 6101 u_char num = INB (nc_dsps); 6102 u32 dsa = INL (nc_dsa); 6103 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6104 u_char target = INB (nc_sdid) & 0x0f; 6105 tcb_p tp = &np->target[target]; 6106 int tmp; 6107 6108 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6109 6110 switch (num) { 6111 /* 6112 * Command has been completed with error condition 6113 * or has been auto-sensed. 6114 */ 6115 case SIR_COMPLETE_ERROR: 6116 sym_complete_error(np, cp); 6117 return; 6118 /* 6119 * The C code is currently trying to recover from something. 6120 * Typically, user want to abort some command. 6121 */ 6122 case SIR_SCRIPT_STOPPED: 6123 case SIR_TARGET_SELECTED: 6124 case SIR_ABORT_SENT: 6125 sym_sir_task_recovery(np, num); 6126 return; 6127 /* 6128 * The device didn't go to MSG OUT phase after having 6129 * been selected with ATN. We donnot want to handle 6130 * that. 6131 */ 6132 case SIR_SEL_ATN_NO_MSG_OUT: 6133 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6134 sym_name (np), target); 6135 goto out_stuck; 6136 /* 6137 * The device didn't switch to MSG IN phase after 6138 * having reseleted the initiator. 6139 */ 6140 case SIR_RESEL_NO_MSG_IN: 6141 printf ("%s:%d: No MSG IN phase after reselection.\n", 6142 sym_name (np), target); 6143 goto out_stuck; 6144 /* 6145 * After reselection, the device sent a message that wasn't 6146 * an IDENTIFY. 6147 */ 6148 case SIR_RESEL_NO_IDENTIFY: 6149 printf ("%s:%d: No IDENTIFY after reselection.\n", 6150 sym_name (np), target); 6151 goto out_stuck; 6152 /* 6153 * The device reselected a LUN we donnot know about. 6154 */ 6155 case SIR_RESEL_BAD_LUN: 6156 np->msgout[0] = M_RESET; 6157 goto out; 6158 /* 6159 * The device reselected for an untagged nexus and we 6160 * haven't any. 6161 */ 6162 case SIR_RESEL_BAD_I_T_L: 6163 np->msgout[0] = M_ABORT; 6164 goto out; 6165 /* 6166 * The device reselected for a tagged nexus that we donnot 6167 * have. 6168 */ 6169 case SIR_RESEL_BAD_I_T_L_Q: 6170 np->msgout[0] = M_ABORT_TAG; 6171 goto out; 6172 /* 6173 * The SCRIPTS let us know that the device has grabbed 6174 * our message and will abort the job. 6175 */ 6176 case SIR_RESEL_ABORTED: 6177 np->lastmsg = np->msgout[0]; 6178 np->msgout[0] = M_NOOP; 6179 printf ("%s:%d: message %x sent on bad reselection.\n", 6180 sym_name (np), target, np->lastmsg); 6181 goto out; 6182 /* 6183 * The SCRIPTS let us know that a message has been 6184 * successfully sent to the device. 6185 */ 6186 case SIR_MSG_OUT_DONE: 6187 np->lastmsg = np->msgout[0]; 6188 np->msgout[0] = M_NOOP; 6189 /* Should we really care of that */ 6190 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6191 if (cp) { 6192 cp->xerr_status &= ~XE_PARITY_ERR; 6193 if (!cp->xerr_status) 6194 OUTOFFB (HF_PRT, HF_EXT_ERR); 6195 } 6196 } 6197 goto out; 6198 /* 6199 * The device didn't send a GOOD SCSI status. 6200 * We may have some work to do prior to allow 6201 * the SCRIPTS processor to continue. 6202 */ 6203 case SIR_BAD_SCSI_STATUS: 6204 if (!cp) 6205 goto out; 6206 sym_sir_bad_scsi_status(np, num, cp); 6207 return; 6208 /* 6209 * We are asked by the SCRIPTS to prepare a 6210 * REJECT message. 6211 */ 6212 case SIR_REJECT_TO_SEND: 6213 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6214 np->msgout[0] = M_REJECT; 6215 goto out; 6216 /* 6217 * We have been ODD at the end of a DATA IN 6218 * transfer and the device didn't send a 6219 * IGNORE WIDE RESIDUE message. 6220 * It is a data overrun condition. 6221 */ 6222 case SIR_SWIDE_OVERRUN: 6223 if (cp) { 6224 OUTONB (HF_PRT, HF_EXT_ERR); 6225 cp->xerr_status |= XE_SWIDE_OVRUN; 6226 } 6227 goto out; 6228 /* 6229 * We have been ODD at the end of a DATA OUT 6230 * transfer. 6231 * It is a data underrun condition. 6232 */ 6233 case SIR_SODL_UNDERRUN: 6234 if (cp) { 6235 OUTONB (HF_PRT, HF_EXT_ERR); 6236 cp->xerr_status |= XE_SODL_UNRUN; 6237 } 6238 goto out; 6239 /* 6240 * The device wants us to tranfer more data than 6241 * expected or in the wrong direction. 6242 * The number of extra bytes is in scratcha. 6243 * It is a data overrun condition. 6244 */ 6245 case SIR_DATA_OVERRUN: 6246 if (cp) { 6247 OUTONB (HF_PRT, HF_EXT_ERR); 6248 cp->xerr_status |= XE_EXTRA_DATA; 6249 cp->extra_bytes += INL (nc_scratcha); 6250 } 6251 goto out; 6252 /* 6253 * The device switched to an illegal phase (4/5). 6254 */ 6255 case SIR_BAD_PHASE: 6256 if (cp) { 6257 OUTONB (HF_PRT, HF_EXT_ERR); 6258 cp->xerr_status |= XE_BAD_PHASE; 6259 } 6260 goto out; 6261 /* 6262 * We received a message. 6263 */ 6264 case SIR_MSG_RECEIVED: 6265 if (!cp) 6266 goto out_stuck; 6267 switch (np->msgin [0]) { 6268 /* 6269 * We received an extended message. 6270 * We handle MODIFY DATA POINTER, SDTR, WDTR 6271 * and reject all other extended messages. 6272 */ 6273 case M_EXTENDED: 6274 switch (np->msgin [2]) { 6275 case M_X_MODIFY_DP: 6276 if (DEBUG_FLAGS & DEBUG_POINTER) 6277 sym_print_msg(cp,"modify DP",np->msgin); 6278 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6279 (np->msgin[5]<<8) + (np->msgin[6]); 6280 sym_modify_dp(np, tp, cp, tmp); 6281 return; 6282 case M_X_SYNC_REQ: 6283 sym_sync_nego(np, tp, cp); 6284 return; 6285 case M_X_PPR_REQ: 6286 sym_ppr_nego(np, tp, cp); 6287 return; 6288 case M_X_WIDE_REQ: 6289 sym_wide_nego(np, tp, cp); 6290 return; 6291 default: 6292 goto out_reject; 6293 } 6294 break; 6295 /* 6296 * We received a 1/2 byte message not handled from SCRIPTS. 6297 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6298 * RESIDUE messages that haven't been anticipated by 6299 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6300 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6301 */ 6302 case M_IGN_RESIDUE: 6303 if (DEBUG_FLAGS & DEBUG_POINTER) 6304 sym_print_msg(cp,"ign wide residue", np->msgin); 6305 sym_modify_dp(np, tp, cp, -1); 6306 return; 6307 case M_REJECT: 6308 if (INB (HS_PRT) == HS_NEGOTIATE) 6309 sym_nego_rejected(np, tp, cp); 6310 else { 6311 PRINT_ADDR(cp); 6312 printf ("M_REJECT received (%x:%x).\n", 6313 scr_to_cpu(np->lastmsg), np->msgout[0]); 6314 } 6315 goto out_clrack; 6316 break; 6317 default: 6318 goto out_reject; 6319 } 6320 break; 6321 /* 6322 * We received an unknown message. 6323 * Ignore all MSG IN phases and reject it. 6324 */ 6325 case SIR_MSG_WEIRD: 6326 sym_print_msg(cp, "WEIRD message received", np->msgin); 6327 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6328 return; 6329 /* 6330 * Negotiation failed. 6331 * Target does not send us the reply. 6332 * Remove the HS_NEGOTIATE status. 6333 */ 6334 case SIR_NEGO_FAILED: 6335 OUTB (HS_PRT, HS_BUSY); 6336 /* 6337 * Negotiation failed. 6338 * Target does not want answer message. 6339 */ 6340 case SIR_NEGO_PROTO: 6341 sym_nego_default(np, tp, cp); 6342 goto out; 6343 }; 6344 6345 out: 6346 OUTONB_STD (); 6347 return; 6348 out_reject: 6349 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6350 return; 6351 out_clrack: 6352 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6353 return; 6354 out_stuck: 6355 return; 6356 } 6357 6358 /* 6359 * Acquire a control block 6360 */ 6361 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6362 { 6363 tcb_p tp = &np->target[tn]; 6364 lcb_p lp = sym_lp(np, tp, ln); 6365 u_short tag = NO_TAG; 6366 SYM_QUEHEAD *qp; 6367 ccb_p cp = (ccb_p) 0; 6368 6369 /* 6370 * Look for a free CCB 6371 */ 6372 if (sym_que_empty(&np->free_ccbq)) 6373 (void) sym_alloc_ccb(np); 6374 qp = sym_remque_head(&np->free_ccbq); 6375 if (!qp) 6376 goto out; 6377 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6378 6379 /* 6380 * If the LCB is not yet available and the LUN 6381 * has been probed ok, try to allocate the LCB. 6382 */ 6383 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6384 lp = sym_alloc_lcb(np, tn, ln); 6385 if (!lp) 6386 goto out_free; 6387 } 6388 6389 /* 6390 * If the LCB is not available here, then the 6391 * logical unit is not yet discovered. For those 6392 * ones only accept 1 SCSI IO per logical unit, 6393 * since we cannot allow disconnections. 6394 */ 6395 if (!lp) { 6396 if (!sym_is_bit(tp->busy0_map, ln)) 6397 sym_set_bit(tp->busy0_map, ln); 6398 else 6399 goto out_free; 6400 } else { 6401 /* 6402 * If we have been asked for a tagged command. 6403 */ 6404 if (tag_order) { 6405 /* 6406 * Debugging purpose. 6407 */ 6408 assert(lp->busy_itl == 0); 6409 /* 6410 * Allocate resources for tags if not yet. 6411 */ 6412 if (!lp->cb_tags) { 6413 sym_alloc_lcb_tags(np, tn, ln); 6414 if (!lp->cb_tags) 6415 goto out_free; 6416 } 6417 /* 6418 * Get a tag for this SCSI IO and set up 6419 * the CCB bus address for reselection, 6420 * and count it for this LUN. 6421 * Toggle reselect path to tagged. 6422 */ 6423 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6424 tag = lp->cb_tags[lp->ia_tag]; 6425 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6426 lp->ia_tag = 0; 6427 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6428 ++lp->busy_itlq; 6429 lp->head.resel_sa = 6430 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6431 } 6432 else 6433 goto out_free; 6434 } 6435 /* 6436 * This command will not be tagged. 6437 * If we already have either a tagged or untagged 6438 * one, refuse to overlap this untagged one. 6439 */ 6440 else { 6441 /* 6442 * Debugging purpose. 6443 */ 6444 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6445 /* 6446 * Count this nexus for this LUN. 6447 * Set up the CCB bus address for reselection. 6448 * Toggle reselect path to untagged. 6449 */ 6450 if (++lp->busy_itl == 1) { 6451 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6452 lp->head.resel_sa = 6453 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6454 } 6455 else 6456 goto out_free; 6457 } 6458 } 6459 /* 6460 * Put the CCB into the busy queue. 6461 */ 6462 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6463 6464 /* 6465 * Remember all informations needed to free this CCB. 6466 */ 6467 cp->to_abort = 0; 6468 cp->tag = tag; 6469 cp->target = tn; 6470 cp->lun = ln; 6471 6472 if (DEBUG_FLAGS & DEBUG_TAGS) { 6473 PRINT_LUN(np, tn, ln); 6474 printf ("ccb @%p using tag %d.\n", cp, tag); 6475 } 6476 6477 out: 6478 return cp; 6479 out_free: 6480 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6481 return (ccb_p) 0; 6482 } 6483 6484 /* 6485 * Release one control block 6486 */ 6487 static void sym_free_ccb (hcb_p np, ccb_p cp) 6488 { 6489 tcb_p tp = &np->target[cp->target]; 6490 lcb_p lp = sym_lp(np, tp, cp->lun); 6491 6492 if (DEBUG_FLAGS & DEBUG_TAGS) { 6493 PRINT_LUN(np, cp->target, cp->lun); 6494 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6495 } 6496 6497 /* 6498 * If LCB available, 6499 */ 6500 if (lp) { 6501 /* 6502 * If tagged, release the tag, set the relect path 6503 */ 6504 if (cp->tag != NO_TAG) { 6505 /* 6506 * Free the tag value. 6507 */ 6508 lp->cb_tags[lp->if_tag] = cp->tag; 6509 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6510 lp->if_tag = 0; 6511 /* 6512 * Make the reselect path invalid, 6513 * and uncount this CCB. 6514 */ 6515 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6516 --lp->busy_itlq; 6517 } else { /* Untagged */ 6518 /* 6519 * Make the reselect path invalid, 6520 * and uncount this CCB. 6521 */ 6522 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6523 --lp->busy_itl; 6524 } 6525 /* 6526 * If no JOB active, make the LUN reselect path invalid. 6527 */ 6528 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6529 lp->head.resel_sa = 6530 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6531 } 6532 /* 6533 * Otherwise, we only accept 1 IO per LUN. 6534 * Clear the bit that keeps track of this IO. 6535 */ 6536 else 6537 sym_clr_bit(tp->busy0_map, cp->lun); 6538 6539 /* 6540 * We donnot queue more than 1 ccb per target 6541 * with negotiation at any time. If this ccb was 6542 * used for negotiation, clear this info in the tcb. 6543 */ 6544 if (cp == tp->nego_cp) 6545 tp->nego_cp = 0; 6546 6547 #ifdef SYM_CONF_IARB_SUPPORT 6548 /* 6549 * If we just complete the last queued CCB, 6550 * clear this info that is no longer relevant. 6551 */ 6552 if (cp == np->last_cp) 6553 np->last_cp = 0; 6554 #endif 6555 6556 /* 6557 * Unmap user data from DMA map if needed. 6558 */ 6559 if (cp->dmamapped) { 6560 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6561 cp->dmamapped = 0; 6562 } 6563 6564 /* 6565 * Make this CCB available. 6566 */ 6567 cp->cam_ccb = 0; 6568 cp->host_status = HS_IDLE; 6569 sym_remque(&cp->link_ccbq); 6570 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6571 } 6572 6573 /* 6574 * Allocate a CCB from memory and initialize its fixed part. 6575 */ 6576 static ccb_p sym_alloc_ccb(hcb_p np) 6577 { 6578 ccb_p cp = 0; 6579 int hcode; 6580 6581 /* 6582 * Prevent from allocating more CCBs than we can 6583 * queue to the controller. 6584 */ 6585 if (np->actccbs >= SYM_CONF_MAX_START) 6586 return 0; 6587 6588 /* 6589 * Allocate memory for this CCB. 6590 */ 6591 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6592 if (!cp) 6593 goto out_free; 6594 6595 /* 6596 * Allocate a bounce buffer for sense data. 6597 */ 6598 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6599 if (!cp->sns_bbuf) 6600 goto out_free; 6601 6602 /* 6603 * Allocate a map for the DMA of user data. 6604 */ 6605 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6606 goto out_free; 6607 /* 6608 * Count it. 6609 */ 6610 np->actccbs++; 6611 6612 /* 6613 * Compute the bus address of this ccb. 6614 */ 6615 cp->ccb_ba = vtobus(cp); 6616 6617 /* 6618 * Insert this ccb into the hashed list. 6619 */ 6620 hcode = CCB_HASH_CODE(cp->ccb_ba); 6621 cp->link_ccbh = np->ccbh[hcode]; 6622 np->ccbh[hcode] = cp; 6623 6624 /* 6625 * Initialyze the start and restart actions. 6626 */ 6627 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6628 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6629 6630 /* 6631 * Initilialyze some other fields. 6632 */ 6633 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6634 6635 /* 6636 * Chain into free ccb queue. 6637 */ 6638 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6639 6640 return cp; 6641 out_free: 6642 if (cp) { 6643 if (cp->sns_bbuf) 6644 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF"); 6645 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6646 } 6647 return 0; 6648 } 6649 6650 /* 6651 * Look up a CCB from a DSA value. 6652 */ 6653 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6654 { 6655 int hcode; 6656 ccb_p cp; 6657 6658 hcode = CCB_HASH_CODE(dsa); 6659 cp = np->ccbh[hcode]; 6660 while (cp) { 6661 if (cp->ccb_ba == dsa) 6662 break; 6663 cp = cp->link_ccbh; 6664 } 6665 6666 return cp; 6667 } 6668 6669 /* 6670 * Target control block initialisation. 6671 * Nothing important to do at the moment. 6672 */ 6673 static void sym_init_tcb (hcb_p np, u_char tn) 6674 { 6675 /* 6676 * Check some alignments required by the chip. 6677 */ 6678 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6679 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6680 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6681 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6682 } 6683 6684 /* 6685 * Lun control block allocation and initialization. 6686 */ 6687 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6688 { 6689 tcb_p tp = &np->target[tn]; 6690 lcb_p lp = sym_lp(np, tp, ln); 6691 6692 /* 6693 * Already done, just return. 6694 */ 6695 if (lp) 6696 return lp; 6697 /* 6698 * Check against some race. 6699 */ 6700 assert(!sym_is_bit(tp->busy0_map, ln)); 6701 6702 /* 6703 * Initialize the target control block if not yet. 6704 */ 6705 sym_init_tcb (np, tn); 6706 6707 /* 6708 * Allocate the LCB bus address array. 6709 * Compute the bus address of this table. 6710 */ 6711 if (ln && !tp->luntbl) { 6712 int i; 6713 6714 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6715 if (!tp->luntbl) 6716 goto fail; 6717 for (i = 0 ; i < 64 ; i++) 6718 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6719 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6720 } 6721 6722 /* 6723 * Allocate the table of pointers for LUN(s) > 0, if needed. 6724 */ 6725 if (ln && !tp->lunmp) { 6726 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6727 "LUNMP"); 6728 if (!tp->lunmp) 6729 goto fail; 6730 } 6731 6732 /* 6733 * Allocate the lcb. 6734 * Make it available to the chip. 6735 */ 6736 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6737 if (!lp) 6738 goto fail; 6739 if (ln) { 6740 tp->lunmp[ln] = lp; 6741 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6742 } 6743 else { 6744 tp->lun0p = lp; 6745 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6746 } 6747 6748 /* 6749 * Let the itl task point to error handling. 6750 */ 6751 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6752 6753 /* 6754 * Set the reselect pattern to our default. :) 6755 */ 6756 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6757 6758 /* 6759 * Set user capabilities. 6760 */ 6761 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6762 6763 fail: 6764 return lp; 6765 } 6766 6767 /* 6768 * Allocate LCB resources for tagged command queuing. 6769 */ 6770 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6771 { 6772 tcb_p tp = &np->target[tn]; 6773 lcb_p lp = sym_lp(np, tp, ln); 6774 int i; 6775 6776 /* 6777 * If LCB not available, try to allocate it. 6778 */ 6779 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6780 goto fail; 6781 6782 /* 6783 * Allocate the task table and and the tag allocation 6784 * circular buffer. We want both or none. 6785 */ 6786 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6787 if (!lp->itlq_tbl) 6788 goto fail; 6789 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6790 if (!lp->cb_tags) { 6791 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6792 lp->itlq_tbl = 0; 6793 goto fail; 6794 } 6795 6796 /* 6797 * Initialize the task table with invalid entries. 6798 */ 6799 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6800 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6801 6802 /* 6803 * Fill up the tag buffer with tag numbers. 6804 */ 6805 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6806 lp->cb_tags[i] = i; 6807 6808 /* 6809 * Make the task table available to SCRIPTS, 6810 * And accept tagged commands now. 6811 */ 6812 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6813 6814 return; 6815 fail: 6816 return; 6817 } 6818 6819 /* 6820 * Test the pci bus snoop logic :-( 6821 * 6822 * Has to be called with interrupts disabled. 6823 */ 6824 #ifndef SYM_CONF_IOMAPPED 6825 static int sym_regtest (hcb_p np) 6826 { 6827 register volatile u32 data; 6828 /* 6829 * chip registers may NOT be cached. 6830 * write 0xffffffff to a read only register area, 6831 * and try to read it back. 6832 */ 6833 data = 0xffffffff; 6834 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6835 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6836 #if 1 6837 if (data == 0xffffffff) { 6838 #else 6839 if ((data & 0xe2f0fffd) != 0x02000080) { 6840 #endif 6841 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6842 (unsigned) data); 6843 return (0x10); 6844 }; 6845 return (0); 6846 } 6847 #endif 6848 6849 static int sym_snooptest (hcb_p np) 6850 { 6851 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6852 int i, err=0; 6853 #ifndef SYM_CONF_IOMAPPED 6854 err |= sym_regtest (np); 6855 if (err) return (err); 6856 #endif 6857 restart_test: 6858 /* 6859 * Enable Master Parity Checking as we intend 6860 * to enable it for normal operations. 6861 */ 6862 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6863 /* 6864 * init 6865 */ 6866 pc = SCRIPTB0_BA (np, snooptest); 6867 host_wr = 1; 6868 sym_wr = 2; 6869 /* 6870 * Set memory and register. 6871 */ 6872 np->cache = cpu_to_scr(host_wr); 6873 OUTL (nc_temp, sym_wr); 6874 /* 6875 * Start script (exchange values) 6876 */ 6877 OUTL (nc_dsa, np->hcb_ba); 6878 OUTL_DSP (pc); 6879 /* 6880 * Wait 'til done (with timeout) 6881 */ 6882 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6883 if (INB(nc_istat) & (INTF|SIP|DIP)) 6884 break; 6885 if (i>=SYM_SNOOP_TIMEOUT) { 6886 printf ("CACHE TEST FAILED: timeout.\n"); 6887 return (0x20); 6888 }; 6889 /* 6890 * Check for fatal DMA errors. 6891 */ 6892 dstat = INB (nc_dstat); 6893 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6894 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6895 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6896 "DISABLING MASTER DATA PARITY CHECKING.\n", 6897 sym_name(np)); 6898 np->rv_ctest4 &= ~MPEE; 6899 goto restart_test; 6900 } 6901 #endif 6902 if (dstat & (MDPE|BF|IID)) { 6903 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6904 return (0x80); 6905 } 6906 /* 6907 * Save termination position. 6908 */ 6909 pc = INL (nc_dsp); 6910 /* 6911 * Read memory and register. 6912 */ 6913 host_rd = scr_to_cpu(np->cache); 6914 sym_rd = INL (nc_scratcha); 6915 sym_bk = INL (nc_temp); 6916 6917 /* 6918 * Check termination position. 6919 */ 6920 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6921 printf ("CACHE TEST FAILED: script execution failed.\n"); 6922 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6923 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6924 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6925 return (0x40); 6926 }; 6927 /* 6928 * Show results. 6929 */ 6930 if (host_wr != sym_rd) { 6931 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6932 (int) host_wr, (int) sym_rd); 6933 err |= 1; 6934 }; 6935 if (host_rd != sym_wr) { 6936 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6937 (int) sym_wr, (int) host_rd); 6938 err |= 2; 6939 }; 6940 if (sym_bk != sym_wr) { 6941 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6942 (int) sym_wr, (int) sym_bk); 6943 err |= 4; 6944 }; 6945 6946 return (err); 6947 } 6948 6949 /* 6950 * Determine the chip's clock frequency. 6951 * 6952 * This is essential for the negotiation of the synchronous 6953 * transfer rate. 6954 * 6955 * Note: we have to return the correct value. 6956 * THERE IS NO SAFE DEFAULT VALUE. 6957 * 6958 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6959 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6960 * do not have a clock doubler and so are provided with a 6961 * 80 MHz clock. All other fast20 boards incorporate a doubler 6962 * and so should be delivered with a 40 MHz clock. 6963 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6964 * clock and provide a clock quadrupler (160 Mhz). 6965 */ 6966 6967 /* 6968 * Select SCSI clock frequency 6969 */ 6970 static void sym_selectclock(hcb_p np, u_char scntl3) 6971 { 6972 /* 6973 * If multiplier not present or not selected, leave here. 6974 */ 6975 if (np->multiplier <= 1) { 6976 OUTB(nc_scntl3, scntl3); 6977 return; 6978 } 6979 6980 if (sym_verbose >= 2) 6981 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6982 6983 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6984 /* 6985 * Wait for the LCKFRQ bit to be set if supported by the chip. 6986 * Otherwise wait 20 micro-seconds. 6987 */ 6988 if (np->features & FE_LCKFRQ) { 6989 int i = 20; 6990 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6991 UDELAY (20); 6992 if (!i) 6993 printf("%s: the chip cannot lock the frequency\n", 6994 sym_name(np)); 6995 } else 6996 UDELAY (20); 6997 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6998 OUTB(nc_scntl3, scntl3); 6999 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 7000 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 7001 } 7002 7003 /* 7004 * calculate SCSI clock frequency (in KHz) 7005 */ 7006 static unsigned getfreq (hcb_p np, int gen) 7007 { 7008 unsigned int ms = 0; 7009 unsigned int f; 7010 7011 /* 7012 * Measure GEN timer delay in order 7013 * to calculate SCSI clock frequency 7014 * 7015 * This code will never execute too 7016 * many loop iterations (if DELAY is 7017 * reasonably correct). It could get 7018 * too low a delay (too high a freq.) 7019 * if the CPU is slow executing the 7020 * loop for some reason (an NMI, for 7021 * example). For this reason we will 7022 * if multiple measurements are to be 7023 * performed trust the higher delay 7024 * (lower frequency returned). 7025 */ 7026 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 7027 (void) INW (nc_sist); /* clear pending scsi interrupt */ 7028 OUTB (nc_dien , 0); /* mask all dma interrupts */ 7029 (void) INW (nc_sist); /* another one, just to be sure :) */ 7030 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 7031 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7032 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 7033 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 7034 UDELAY (1000); /* count ms */ 7035 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7036 /* 7037 * set prescaler to divide by whatever 0 means 7038 * 0 ought to choose divide by 2, but appears 7039 * to set divide by 3.5 mode in my 53c810 ... 7040 */ 7041 OUTB (nc_scntl3, 0); 7042 7043 /* 7044 * adjust for prescaler, and convert into KHz 7045 */ 7046 f = ms ? ((1 << gen) * 4340) / ms : 0; 7047 7048 if (sym_verbose >= 2) 7049 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 7050 sym_name(np), gen, ms, f); 7051 7052 return f; 7053 } 7054 7055 static unsigned sym_getfreq (hcb_p np) 7056 { 7057 u_int f1, f2; 7058 int gen = 11; 7059 7060 (void) getfreq (np, gen); /* throw away first result */ 7061 f1 = getfreq (np, gen); 7062 f2 = getfreq (np, gen); 7063 if (f1 > f2) f1 = f2; /* trust lower result */ 7064 return f1; 7065 } 7066 7067 /* 7068 * Get/probe chip SCSI clock frequency 7069 */ 7070 static void sym_getclock (hcb_p np, int mult) 7071 { 7072 unsigned char scntl3 = np->sv_scntl3; 7073 unsigned char stest1 = np->sv_stest1; 7074 unsigned f1; 7075 7076 /* 7077 * For the C10 core, assume 40 MHz. 7078 */ 7079 if (np->features & FE_C10) { 7080 np->multiplier = mult; 7081 np->clock_khz = 40000 * mult; 7082 return; 7083 } 7084 7085 np->multiplier = 1; 7086 f1 = 40000; 7087 /* 7088 * True with 875/895/896/895A with clock multiplier selected 7089 */ 7090 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7091 if (sym_verbose >= 2) 7092 printf ("%s: clock multiplier found\n", sym_name(np)); 7093 np->multiplier = mult; 7094 } 7095 7096 /* 7097 * If multiplier not found or scntl3 not 7,5,3, 7098 * reset chip and get frequency from general purpose timer. 7099 * Otherwise trust scntl3 BIOS setting. 7100 */ 7101 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7102 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7103 f1 = sym_getfreq (np); 7104 7105 if (sym_verbose) 7106 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7107 7108 if (f1 < 45000) f1 = 40000; 7109 else if (f1 < 55000) f1 = 50000; 7110 else f1 = 80000; 7111 7112 if (f1 < 80000 && mult > 1) { 7113 if (sym_verbose >= 2) 7114 printf ("%s: clock multiplier assumed\n", 7115 sym_name(np)); 7116 np->multiplier = mult; 7117 } 7118 } else { 7119 if ((scntl3 & 7) == 3) f1 = 40000; 7120 else if ((scntl3 & 7) == 5) f1 = 80000; 7121 else f1 = 160000; 7122 7123 f1 /= np->multiplier; 7124 } 7125 7126 /* 7127 * Compute controller synchronous parameters. 7128 */ 7129 f1 *= np->multiplier; 7130 np->clock_khz = f1; 7131 } 7132 7133 /* 7134 * Get/probe PCI clock frequency 7135 */ 7136 static int sym_getpciclock (hcb_p np) 7137 { 7138 int f = 0; 7139 7140 /* 7141 * For the C1010-33, this doesn't work. 7142 * For the C1010-66, this will be tested when I'll have 7143 * such a beast to play with. 7144 */ 7145 if (!(np->features & FE_C10)) { 7146 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7147 f = (int) sym_getfreq (np); 7148 OUTB (nc_stest1, 0); 7149 } 7150 np->pciclk_khz = f; 7151 7152 return f; 7153 } 7154 7155 /*============= DRIVER ACTION/COMPLETION ====================*/ 7156 7157 /* 7158 * Print something that tells about extended errors. 7159 */ 7160 static void sym_print_xerr(ccb_p cp, int x_status) 7161 { 7162 if (x_status & XE_PARITY_ERR) { 7163 PRINT_ADDR(cp); 7164 printf ("unrecovered SCSI parity error.\n"); 7165 } 7166 if (x_status & XE_EXTRA_DATA) { 7167 PRINT_ADDR(cp); 7168 printf ("extraneous data discarded.\n"); 7169 } 7170 if (x_status & XE_BAD_PHASE) { 7171 PRINT_ADDR(cp); 7172 printf ("illegal scsi phase (4/5).\n"); 7173 } 7174 if (x_status & XE_SODL_UNRUN) { 7175 PRINT_ADDR(cp); 7176 printf ("ODD transfer in DATA OUT phase.\n"); 7177 } 7178 if (x_status & XE_SWIDE_OVRUN) { 7179 PRINT_ADDR(cp); 7180 printf ("ODD transfer in DATA IN phase.\n"); 7181 } 7182 } 7183 7184 /* 7185 * Choose the more appropriate CAM status if 7186 * the IO encountered an extended error. 7187 */ 7188 static int sym_xerr_cam_status(int cam_status, int x_status) 7189 { 7190 if (x_status) { 7191 if (x_status & XE_PARITY_ERR) 7192 cam_status = CAM_UNCOR_PARITY; 7193 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7194 cam_status = CAM_DATA_RUN_ERR; 7195 else if (x_status & XE_BAD_PHASE) 7196 cam_status = CAM_REQ_CMP_ERR; 7197 else 7198 cam_status = CAM_REQ_CMP_ERR; 7199 } 7200 return cam_status; 7201 } 7202 7203 /* 7204 * Complete execution of a SCSI command with extented 7205 * error, SCSI status error, or having been auto-sensed. 7206 * 7207 * The SCRIPTS processor is not running there, so we 7208 * can safely access IO registers and remove JOBs from 7209 * the START queue. 7210 * SCRATCHA is assumed to have been loaded with STARTPOS 7211 * before the SCRIPTS called the C code. 7212 */ 7213 static void sym_complete_error (hcb_p np, ccb_p cp) 7214 { 7215 struct ccb_scsiio *csio; 7216 u_int cam_status; 7217 int i; 7218 7219 /* 7220 * Paranoid check. :) 7221 */ 7222 if (!cp || !cp->cam_ccb) 7223 return; 7224 7225 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7226 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7227 cp->host_status, cp->ssss_status, cp->host_flags, 7228 cp->target, cp->lun); 7229 MDELAY(100); 7230 } 7231 7232 /* 7233 * Get CAM command pointer. 7234 */ 7235 csio = &cp->cam_ccb->csio; 7236 7237 /* 7238 * Check for extended errors. 7239 */ 7240 if (cp->xerr_status) { 7241 if (sym_verbose) 7242 sym_print_xerr(cp, cp->xerr_status); 7243 if (cp->host_status == HS_COMPLETE) 7244 cp->host_status = HS_COMP_ERR; 7245 } 7246 7247 /* 7248 * Calculate the residual. 7249 */ 7250 csio->sense_resid = 0; 7251 csio->resid = sym_compute_residual(np, cp); 7252 7253 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7254 csio->resid = 0; /* throw them away. :) */ 7255 cp->sv_resid = 0; 7256 } 7257 7258 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7259 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7260 csio->sense_resid = csio->resid; /* Swap residuals */ 7261 csio->resid = cp->sv_resid; 7262 cp->sv_resid = 0; 7263 if (sym_verbose && cp->sv_xerr_status) 7264 sym_print_xerr(cp, cp->sv_xerr_status); 7265 if (cp->host_status == HS_COMPLETE && 7266 cp->ssss_status == S_GOOD && 7267 cp->xerr_status == 0) { 7268 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7269 cp->sv_xerr_status); 7270 cam_status |= CAM_AUTOSNS_VALID; 7271 /* 7272 * Bounce back the sense data to user and 7273 * fix the residual. 7274 */ 7275 bzero(&csio->sense_data, csio->sense_len); 7276 bcopy(cp->sns_bbuf, &csio->sense_data, 7277 MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); 7278 csio->sense_resid += csio->sense_len; 7279 csio->sense_resid -= SYM_SNS_BBUF_LEN; 7280 #if 0 7281 /* 7282 * If the device reports a UNIT ATTENTION condition 7283 * due to a RESET condition, we should consider all 7284 * disconnect CCBs for this unit as aborted. 7285 */ 7286 if (1) { 7287 u_char *p; 7288 p = (u_char *) csio->sense_data; 7289 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7290 sym_clear_tasks(np, CAM_REQ_ABORTED, 7291 cp->target,cp->lun, -1); 7292 } 7293 #endif 7294 } 7295 else 7296 cam_status = CAM_AUTOSENSE_FAIL; 7297 } 7298 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7299 csio->scsi_status = cp->ssss_status; 7300 cam_status = CAM_SCSI_STATUS_ERROR; 7301 } 7302 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7303 cam_status = CAM_SEL_TIMEOUT; 7304 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7305 cam_status = CAM_UNEXP_BUSFREE; 7306 else { /* Extended error */ 7307 if (sym_verbose) { 7308 PRINT_ADDR(cp); 7309 printf ("COMMAND FAILED (%x %x %x).\n", 7310 cp->host_status, cp->ssss_status, 7311 cp->xerr_status); 7312 } 7313 csio->scsi_status = cp->ssss_status; 7314 /* 7315 * Set the most appropriate value for CAM status. 7316 */ 7317 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7318 cp->xerr_status); 7319 } 7320 7321 /* 7322 * Dequeue all queued CCBs for that device 7323 * not yet started by SCRIPTS. 7324 */ 7325 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7326 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7327 7328 /* 7329 * Restart the SCRIPTS processor. 7330 */ 7331 OUTL_DSP (SCRIPTA_BA (np, start)); 7332 7333 /* 7334 * Synchronize DMA map if needed. 7335 */ 7336 if (cp->dmamapped) { 7337 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7338 (cp->dmamapped == SYM_DMA_READ ? 7339 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7340 } 7341 /* 7342 * Add this one to the COMP queue. 7343 * Complete all those commands with either error 7344 * or requeue condition. 7345 */ 7346 sym_set_cam_status((union ccb *) csio, cam_status); 7347 sym_remque(&cp->link_ccbq); 7348 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7349 sym_flush_comp_queue(np, 0); 7350 } 7351 7352 /* 7353 * Complete execution of a successful SCSI command. 7354 * 7355 * Only successful commands go to the DONE queue, 7356 * since we need to have the SCRIPTS processor 7357 * stopped on any error condition. 7358 * The SCRIPTS processor is running while we are 7359 * completing successful commands. 7360 */ 7361 static void sym_complete_ok (hcb_p np, ccb_p cp) 7362 { 7363 struct ccb_scsiio *csio; 7364 tcb_p tp; 7365 lcb_p lp; 7366 7367 /* 7368 * Paranoid check. :) 7369 */ 7370 if (!cp || !cp->cam_ccb) 7371 return; 7372 assert (cp->host_status == HS_COMPLETE); 7373 7374 /* 7375 * Get command, target and lun pointers. 7376 */ 7377 csio = &cp->cam_ccb->csio; 7378 tp = &np->target[cp->target]; 7379 lp = sym_lp(np, tp, cp->lun); 7380 7381 /* 7382 * Assume device discovered on first success. 7383 */ 7384 if (!lp) 7385 sym_set_bit(tp->lun_map, cp->lun); 7386 7387 /* 7388 * If all data have been transferred, given than no 7389 * extended error did occur, there is no residual. 7390 */ 7391 csio->resid = 0; 7392 if (cp->phys.head.lastp != cp->phys.head.goalp) 7393 csio->resid = sym_compute_residual(np, cp); 7394 7395 /* 7396 * Wrong transfer residuals may be worse than just always 7397 * returning zero. User can disable this feature from 7398 * sym_conf.h. Residual support is enabled by default. 7399 */ 7400 if (!SYM_CONF_RESIDUAL_SUPPORT) 7401 csio->resid = 0; 7402 7403 /* 7404 * Synchronize DMA map if needed. 7405 */ 7406 if (cp->dmamapped) { 7407 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7408 (cp->dmamapped == SYM_DMA_READ ? 7409 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7410 } 7411 /* 7412 * Set status and complete the command. 7413 */ 7414 csio->scsi_status = cp->ssss_status; 7415 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7416 sym_free_ccb (np, cp); 7417 sym_xpt_done(np, (union ccb *) csio); 7418 } 7419 7420 /* 7421 * Our timeout handler. 7422 */ 7423 static void sym_timeout1(void *arg) 7424 { 7425 union ccb *ccb = (union ccb *) arg; 7426 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7427 7428 /* 7429 * Check that the CAM CCB is still queued. 7430 */ 7431 if (!np) 7432 return; 7433 7434 switch(ccb->ccb_h.func_code) { 7435 case XPT_SCSI_IO: 7436 (void) sym_abort_scsiio(np, ccb, 1); 7437 break; 7438 default: 7439 break; 7440 } 7441 } 7442 7443 static void sym_timeout(void *arg) 7444 { 7445 int s = splcam(); 7446 sym_timeout1(arg); 7447 splx(s); 7448 } 7449 7450 /* 7451 * Abort an SCSI IO. 7452 */ 7453 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7454 { 7455 ccb_p cp; 7456 SYM_QUEHEAD *qp; 7457 7458 /* 7459 * Look up our CCB control block. 7460 */ 7461 cp = 0; 7462 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7463 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7464 if (cp2->cam_ccb == ccb) { 7465 cp = cp2; 7466 break; 7467 } 7468 } 7469 if (!cp || cp->host_status == HS_WAIT) 7470 return -1; 7471 7472 /* 7473 * If a previous abort didn't succeed in time, 7474 * perform a BUS reset. 7475 */ 7476 if (cp->to_abort) { 7477 sym_reset_scsi_bus(np, 1); 7478 return 0; 7479 } 7480 7481 /* 7482 * Mark the CCB for abort and allow time for. 7483 */ 7484 cp->to_abort = timed_out ? 2 : 1; 7485 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz); 7486 7487 /* 7488 * Tell the SCRIPTS processor to stop and synchronize with us. 7489 */ 7490 np->istat_sem = SEM; 7491 OUTB (nc_istat, SIGP|SEM); 7492 return 0; 7493 } 7494 7495 /* 7496 * Reset a SCSI device (all LUNs of a target). 7497 */ 7498 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7499 { 7500 tcb_p tp; 7501 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7502 7503 if (ccb_h->target_id == np->myaddr || 7504 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7505 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7506 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7507 return; 7508 } 7509 7510 tp = &np->target[ccb_h->target_id]; 7511 7512 tp->to_reset = 1; 7513 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7514 7515 np->istat_sem = SEM; 7516 OUTB (nc_istat, SIGP|SEM); 7517 return; 7518 } 7519 7520 /* 7521 * SIM action entry point. 7522 */ 7523 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7524 { 7525 int s = splcam(); 7526 sym_action1(sim, ccb); 7527 splx(s); 7528 } 7529 7530 static void sym_action1(struct cam_sim *sim, union ccb *ccb) 7531 { 7532 hcb_p np; 7533 tcb_p tp; 7534 lcb_p lp; 7535 ccb_p cp; 7536 int tmp; 7537 u_char idmsg, *msgptr; 7538 u_int msglen; 7539 struct ccb_scsiio *csio; 7540 struct ccb_hdr *ccb_h; 7541 7542 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7543 7544 /* 7545 * Retrieve our controller data structure. 7546 */ 7547 np = (hcb_p) cam_sim_softc(sim); 7548 7549 /* 7550 * The common case is SCSI IO. 7551 * We deal with other ones elsewhere. 7552 */ 7553 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7554 sym_action2(sim, ccb); 7555 return; 7556 } 7557 csio = &ccb->csio; 7558 ccb_h = &csio->ccb_h; 7559 7560 /* 7561 * Work around races. 7562 */ 7563 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7564 xpt_done(ccb); 7565 return; 7566 } 7567 7568 /* 7569 * Minimal checkings, so that we will not 7570 * go outside our tables. 7571 */ 7572 if (ccb_h->target_id == np->myaddr || 7573 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7574 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7575 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7576 return; 7577 } 7578 7579 /* 7580 * Retreive the target and lun descriptors. 7581 */ 7582 tp = &np->target[ccb_h->target_id]; 7583 lp = sym_lp(np, tp, ccb_h->target_lun); 7584 7585 /* 7586 * Complete the 1st INQUIRY command with error 7587 * condition if the device is flagged NOSCAN 7588 * at BOOT in the NVRAM. This may speed up 7589 * the boot and maintain coherency with BIOS 7590 * device numbering. Clearing the flag allows 7591 * user to rescan skipped devices later. 7592 * We also return error for devices not flagged 7593 * for SCAN LUNS in the NVRAM since some mono-lun 7594 * devices behave badly when asked for some non 7595 * zero LUN. Btw, this is an absolute hack.:-) 7596 */ 7597 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7598 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7599 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7600 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7601 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7602 ccb_h->target_lun != 0)) { 7603 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7604 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7605 return; 7606 } 7607 } 7608 7609 /* 7610 * Get a control block for this IO. 7611 */ 7612 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7613 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7614 if (!cp) { 7615 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7616 return; 7617 } 7618 7619 /* 7620 * Keep track of the IO in our CCB. 7621 */ 7622 cp->cam_ccb = ccb; 7623 7624 /* 7625 * Build the IDENTIFY message. 7626 */ 7627 idmsg = M_IDENTIFY | cp->lun; 7628 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7629 idmsg |= 0x40; 7630 7631 msgptr = cp->scsi_smsg; 7632 msglen = 0; 7633 msgptr[msglen++] = idmsg; 7634 7635 /* 7636 * Build the tag message if present. 7637 */ 7638 if (cp->tag != NO_TAG) { 7639 u_char order = csio->tag_action; 7640 7641 switch(order) { 7642 case M_ORDERED_TAG: 7643 break; 7644 case M_HEAD_TAG: 7645 break; 7646 default: 7647 order = M_SIMPLE_TAG; 7648 } 7649 msgptr[msglen++] = order; 7650 7651 /* 7652 * For less than 128 tags, actual tags are numbered 7653 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7654 * with devices that have problems with #TAG 0 or too 7655 * great #TAG numbers. For more tags (up to 256), 7656 * we use directly our tag number. 7657 */ 7658 #if SYM_CONF_MAX_TASK > (512/4) 7659 msgptr[msglen++] = cp->tag; 7660 #else 7661 msgptr[msglen++] = (cp->tag << 1) + 1; 7662 #endif 7663 } 7664 7665 /* 7666 * Build a negotiation message if needed. 7667 * (nego_status is filled by sym_prepare_nego()) 7668 */ 7669 cp->nego_status = 0; 7670 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7671 tp->tinfo.current.period != tp->tinfo.goal.period || 7672 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7673 tp->tinfo.current.options != tp->tinfo.goal.options) { 7674 if (!tp->nego_cp && lp) 7675 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7676 } 7677 7678 /* 7679 * Fill in our ccb 7680 */ 7681 7682 /* 7683 * Startqueue 7684 */ 7685 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7686 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7687 7688 /* 7689 * select 7690 */ 7691 cp->phys.select.sel_id = cp->target; 7692 cp->phys.select.sel_scntl3 = tp->head.wval; 7693 cp->phys.select.sel_sxfer = tp->head.sval; 7694 cp->phys.select.sel_scntl4 = tp->head.uval; 7695 7696 /* 7697 * message 7698 */ 7699 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7700 cp->phys.smsg.size = cpu_to_scr(msglen); 7701 7702 /* 7703 * command 7704 */ 7705 if (sym_setup_cdb(np, csio, cp) < 0) { 7706 sym_free_ccb(np, cp); 7707 sym_xpt_done(np, ccb); 7708 return; 7709 } 7710 7711 /* 7712 * status 7713 */ 7714 #if 0 /* Provision */ 7715 cp->actualquirks = tp->quirks; 7716 #endif 7717 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7718 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7719 cp->ssss_status = S_ILLEGAL; 7720 cp->xerr_status = 0; 7721 cp->host_flags = 0; 7722 cp->extra_bytes = 0; 7723 7724 /* 7725 * extreme data pointer. 7726 * shall be positive, so -1 is lower than lowest.:) 7727 */ 7728 cp->ext_sg = -1; 7729 cp->ext_ofs = 0; 7730 7731 /* 7732 * Build the data descriptor block 7733 * and start the IO. 7734 */ 7735 sym_setup_data_and_start(np, csio, cp); 7736 } 7737 7738 /* 7739 * Setup buffers and pointers that address the CDB. 7740 * I bet, physical CDBs will never be used on the planet, 7741 * since they can be bounced without significant overhead. 7742 */ 7743 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7744 { 7745 struct ccb_hdr *ccb_h; 7746 u32 cmd_ba; 7747 int cmd_len; 7748 7749 ccb_h = &csio->ccb_h; 7750 7751 /* 7752 * CDB is 16 bytes max. 7753 */ 7754 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7755 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7756 return -1; 7757 } 7758 cmd_len = csio->cdb_len; 7759 7760 if (ccb_h->flags & CAM_CDB_POINTER) { 7761 /* CDB is a pointer */ 7762 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7763 /* CDB pointer is virtual */ 7764 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7765 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7766 } else { 7767 /* CDB pointer is physical */ 7768 #if 0 7769 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7770 #else 7771 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7772 return -1; 7773 #endif 7774 } 7775 } else { 7776 /* CDB is in the CAM ccb (buffer) */ 7777 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7778 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7779 } 7780 7781 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7782 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7783 7784 return 0; 7785 } 7786 7787 /* 7788 * Set up data pointers used by SCRIPTS. 7789 */ 7790 static void __inline 7791 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7792 { 7793 u32 lastp, goalp; 7794 7795 /* 7796 * No segments means no data. 7797 */ 7798 if (!cp->segments) 7799 dir = CAM_DIR_NONE; 7800 7801 /* 7802 * Set the data pointer. 7803 */ 7804 switch(dir) { 7805 case CAM_DIR_OUT: 7806 goalp = SCRIPTA_BA (np, data_out2) + 8; 7807 lastp = goalp - 8 - (cp->segments * (2*4)); 7808 break; 7809 case CAM_DIR_IN: 7810 cp->host_flags |= HF_DATA_IN; 7811 goalp = SCRIPTA_BA (np, data_in2) + 8; 7812 lastp = goalp - 8 - (cp->segments * (2*4)); 7813 break; 7814 case CAM_DIR_NONE: 7815 default: 7816 lastp = goalp = SCRIPTB_BA (np, no_data); 7817 break; 7818 } 7819 7820 cp->phys.head.lastp = cpu_to_scr(lastp); 7821 cp->phys.head.goalp = cpu_to_scr(goalp); 7822 cp->phys.head.savep = cpu_to_scr(lastp); 7823 cp->startp = cp->phys.head.savep; 7824 } 7825 7826 7827 /* 7828 * Call back routine for the DMA map service. 7829 * If bounce buffers are used (why ?), we may sleep and then 7830 * be called there in another context. 7831 */ 7832 static void 7833 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7834 { 7835 ccb_p cp; 7836 hcb_p np; 7837 union ccb *ccb; 7838 int s; 7839 7840 s = splcam(); 7841 7842 cp = (ccb_p) arg; 7843 ccb = cp->cam_ccb; 7844 np = (hcb_p) cp->arg; 7845 7846 /* 7847 * Deal with weird races. 7848 */ 7849 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7850 goto out_abort; 7851 7852 /* 7853 * Deal with weird errors. 7854 */ 7855 if (error) { 7856 cp->dmamapped = 0; 7857 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7858 goto out_abort; 7859 } 7860 7861 /* 7862 * Build the data descriptor for the chip. 7863 */ 7864 if (nsegs) { 7865 int retv; 7866 /* 896 rev 1 requires to be careful about boundaries */ 7867 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7868 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7869 else 7870 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7871 if (retv < 0) { 7872 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7873 goto out_abort; 7874 } 7875 } 7876 7877 /* 7878 * Synchronize the DMA map only if we have 7879 * actually mapped the data. 7880 */ 7881 if (cp->dmamapped) { 7882 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7883 (cp->dmamapped == SYM_DMA_READ ? 7884 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7885 } 7886 7887 /* 7888 * Set host status to busy state. 7889 * May have been set back to HS_WAIT to avoid a race. 7890 */ 7891 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7892 7893 /* 7894 * Set data pointers. 7895 */ 7896 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7897 7898 /* 7899 * Enqueue this IO in our pending queue. 7900 */ 7901 sym_enqueue_cam_ccb(np, ccb); 7902 7903 /* 7904 * When `#ifed 1', the code below makes the driver 7905 * panic on the first attempt to write to a SCSI device. 7906 * It is the first test we want to do after a driver 7907 * change that does not seem obviously safe. :) 7908 */ 7909 #if 0 7910 switch (cp->cdb_buf[0]) { 7911 case 0x0A: case 0x2A: case 0xAA: 7912 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7913 MDELAY(10000); 7914 break; 7915 default: 7916 break; 7917 } 7918 #endif 7919 /* 7920 * Activate this job. 7921 */ 7922 sym_put_start_queue(np, cp); 7923 out: 7924 splx(s); 7925 return; 7926 out_abort: 7927 sym_free_ccb(np, cp); 7928 sym_xpt_done(np, ccb); 7929 goto out; 7930 } 7931 7932 /* 7933 * How complex it gets to deal with the data in CAM. 7934 * The Bus Dma stuff makes things still more complex. 7935 */ 7936 static void 7937 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7938 { 7939 struct ccb_hdr *ccb_h; 7940 int dir, retv; 7941 7942 ccb_h = &csio->ccb_h; 7943 7944 /* 7945 * Now deal with the data. 7946 */ 7947 cp->data_len = csio->dxfer_len; 7948 cp->arg = np; 7949 7950 /* 7951 * No direction means no data. 7952 */ 7953 dir = (ccb_h->flags & CAM_DIR_MASK); 7954 if (dir == CAM_DIR_NONE) { 7955 sym_execute_ccb(cp, NULL, 0, 0); 7956 return; 7957 } 7958 7959 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 7960 /* Single buffer */ 7961 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7962 /* Buffer is virtual */ 7963 int s; 7964 7965 cp->dmamapped = (dir == CAM_DIR_IN) ? 7966 SYM_DMA_READ : SYM_DMA_WRITE; 7967 s = splsoftvm(); 7968 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 7969 csio->data_ptr, csio->dxfer_len, 7970 sym_execute_ccb, cp, 0); 7971 if (retv == EINPROGRESS) { 7972 cp->host_status = HS_WAIT; 7973 xpt_freeze_simq(np->sim, 1); 7974 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7975 } 7976 splx(s); 7977 } else { 7978 /* Buffer is physical */ 7979 struct bus_dma_segment seg; 7980 7981 seg.ds_addr = (bus_addr_t) csio->data_ptr; 7982 sym_execute_ccb(cp, &seg, 1, 0); 7983 } 7984 } else { 7985 /* Scatter/gather list */ 7986 struct bus_dma_segment *segs; 7987 7988 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 7989 /* The SG list pointer is physical */ 7990 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7991 goto out_abort; 7992 } 7993 7994 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7995 /* SG buffer pointers are virtual */ 7996 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7997 goto out_abort; 7998 } 7999 8000 /* SG buffer pointers are physical */ 8001 segs = (struct bus_dma_segment *)csio->data_ptr; 8002 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 8003 } 8004 return; 8005 out_abort: 8006 sym_free_ccb(np, cp); 8007 sym_xpt_done(np, (union ccb *) csio); 8008 } 8009 8010 /* 8011 * Move the scatter list to our data block. 8012 */ 8013 static int 8014 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 8015 bus_dma_segment_t *psegs, int nsegs) 8016 { 8017 struct sym_tblmove *data; 8018 bus_dma_segment_t *psegs2; 8019 8020 if (nsegs > SYM_CONF_MAX_SG) 8021 return -1; 8022 8023 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 8024 psegs2 = &psegs[nsegs-1]; 8025 cp->segments = nsegs; 8026 8027 while (1) { 8028 data->addr = cpu_to_scr(psegs2->ds_addr); 8029 data->size = cpu_to_scr(psegs2->ds_len); 8030 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8031 printf ("%s scatter: paddr=%lx len=%ld\n", 8032 sym_name(np), (long) psegs2->ds_addr, 8033 (long) psegs2->ds_len); 8034 } 8035 if (psegs2 != psegs) { 8036 --data; 8037 --psegs2; 8038 continue; 8039 } 8040 break; 8041 } 8042 return 0; 8043 } 8044 8045 8046 /* 8047 * Scatter a SG list with physical addresses into bus addressable chunks. 8048 * We need to ensure 16MB boundaries not to be crossed during DMA of 8049 * each segment, due to some chips being flawed. 8050 */ 8051 #define BOUND_MASK ((1UL<<24)-1) 8052 static int 8053 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 8054 { 8055 u_long ps, pe, pn; 8056 u_long k; 8057 int s, t; 8058 8059 s = SYM_CONF_MAX_SG - 1; 8060 t = nsegs - 1; 8061 ps = psegs[t].ds_addr; 8062 pe = ps + psegs[t].ds_len; 8063 8064 while (s >= 0) { 8065 pn = (pe - 1) & ~BOUND_MASK; 8066 if (pn <= ps) 8067 pn = ps; 8068 k = pe - pn; 8069 if (DEBUG_FLAGS & DEBUG_SCATTER) { 8070 printf ("%s scatter: paddr=%lx len=%ld\n", 8071 sym_name(np), pn, k); 8072 } 8073 cp->phys.data[s].addr = cpu_to_scr(pn); 8074 cp->phys.data[s].size = cpu_to_scr(k); 8075 --s; 8076 if (pn == ps) { 8077 if (--t < 0) 8078 break; 8079 ps = psegs[t].ds_addr; 8080 pe = ps + psegs[t].ds_len; 8081 } 8082 else 8083 pe = pn; 8084 } 8085 8086 cp->segments = SYM_CONF_MAX_SG - 1 - s; 8087 8088 return t >= 0 ? -1 : 0; 8089 } 8090 #undef BOUND_MASK 8091 8092 /* 8093 * SIM action for non performance critical stuff. 8094 */ 8095 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8096 { 8097 hcb_p np; 8098 tcb_p tp; 8099 lcb_p lp; 8100 struct ccb_hdr *ccb_h; 8101 8102 /* 8103 * Retrieve our controller data structure. 8104 */ 8105 np = (hcb_p) cam_sim_softc(sim); 8106 8107 ccb_h = &ccb->ccb_h; 8108 8109 switch (ccb_h->func_code) { 8110 case XPT_SET_TRAN_SETTINGS: 8111 { 8112 struct ccb_trans_settings *cts; 8113 8114 cts = &ccb->cts; 8115 tp = &np->target[ccb_h->target_id]; 8116 8117 /* 8118 * Update SPI transport settings in TARGET control block. 8119 * Update SCSI device settings in LUN control block. 8120 */ 8121 lp = sym_lp(np, tp, ccb_h->target_lun); 8122 #ifdef FreeBSD_New_Tran_Settings 8123 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8124 #else 8125 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8126 #endif 8127 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8128 if (lp) 8129 sym_update_dflags(np, &lp->current_flags, cts); 8130 } 8131 #ifdef FreeBSD_New_Tran_Settings 8132 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8133 #else 8134 if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) { 8135 #endif 8136 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8137 if (lp) 8138 sym_update_dflags(np, &lp->user_flags, cts); 8139 } 8140 8141 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8142 break; 8143 } 8144 case XPT_GET_TRAN_SETTINGS: 8145 { 8146 struct ccb_trans_settings *cts; 8147 struct sym_trans *tip; 8148 u_char dflags; 8149 8150 cts = &ccb->cts; 8151 tp = &np->target[ccb_h->target_id]; 8152 lp = sym_lp(np, tp, ccb_h->target_lun); 8153 8154 #ifdef FreeBSD_New_Tran_Settings 8155 #define cts__scsi (&cts->proto_specific.scsi) 8156 #define cts__spi (&cts->xport_specific.spi) 8157 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8158 tip = &tp->tinfo.current; 8159 dflags = lp ? lp->current_flags : 0; 8160 } 8161 else { 8162 tip = &tp->tinfo.user; 8163 dflags = lp ? lp->user_flags : tp->usrflags; 8164 } 8165 8166 cts->protocol = PROTO_SCSI; 8167 cts->transport = XPORT_SPI; 8168 cts->protocol_version = tip->scsi_version; 8169 cts->transport_version = tip->spi_version; 8170 8171 cts__spi->sync_period = tip->period; 8172 cts__spi->sync_offset = tip->offset; 8173 cts__spi->bus_width = tip->width; 8174 cts__spi->ppr_options = tip->options; 8175 8176 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8177 | CTS_SPI_VALID_SYNC_OFFSET 8178 | CTS_SPI_VALID_BUS_WIDTH 8179 | CTS_SPI_VALID_PPR_OPTIONS; 8180 8181 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8182 if (dflags & SYM_DISC_ENABLED) 8183 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8184 cts__spi->valid |= CTS_SPI_VALID_DISC; 8185 8186 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8187 if (dflags & SYM_TAGS_ENABLED) 8188 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8189 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8190 #undef cts__spi 8191 #undef cts__scsi 8192 #else 8193 if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { 8194 tip = &tp->tinfo.current; 8195 dflags = lp ? lp->current_flags : 0; 8196 } 8197 else { 8198 tip = &tp->tinfo.user; 8199 dflags = lp ? lp->user_flags : tp->usrflags; 8200 } 8201 8202 cts->sync_period = tip->period; 8203 cts->sync_offset = tip->offset; 8204 cts->bus_width = tip->width; 8205 8206 cts->valid = CCB_TRANS_SYNC_RATE_VALID 8207 | CCB_TRANS_SYNC_OFFSET_VALID 8208 | CCB_TRANS_BUS_WIDTH_VALID; 8209 8210 cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); 8211 8212 if (dflags & SYM_DISC_ENABLED) 8213 cts->flags |= CCB_TRANS_DISC_ENB; 8214 8215 if (dflags & SYM_TAGS_ENABLED) 8216 cts->flags |= CCB_TRANS_TAG_ENB; 8217 8218 cts->valid |= CCB_TRANS_DISC_VALID; 8219 cts->valid |= CCB_TRANS_TQ_VALID; 8220 #endif 8221 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8222 break; 8223 } 8224 case XPT_CALC_GEOMETRY: 8225 { 8226 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8227 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8228 break; 8229 } 8230 case XPT_PATH_INQ: 8231 { 8232 struct ccb_pathinq *cpi = &ccb->cpi; 8233 cpi->version_num = 1; 8234 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8235 if ((np->features & FE_WIDE) != 0) 8236 cpi->hba_inquiry |= PI_WIDE_16; 8237 cpi->target_sprt = 0; 8238 cpi->hba_misc = 0; 8239 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8240 cpi->hba_misc |= PIM_SCANHILO; 8241 if (np->usrflags & SYM_AVOID_BUS_RESET) 8242 cpi->hba_misc |= PIM_NOBUSRESET; 8243 cpi->hba_eng_cnt = 0; 8244 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8245 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8246 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8247 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8248 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8249 cpi->bus_id = cam_sim_bus(sim); 8250 cpi->initiator_id = np->myaddr; 8251 cpi->base_transfer_speed = 3300; 8252 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8253 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8254 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8255 cpi->unit_number = cam_sim_unit(sim); 8256 8257 #ifdef FreeBSD_New_Tran_Settings 8258 cpi->protocol = PROTO_SCSI; 8259 cpi->protocol_version = SCSI_REV_2; 8260 cpi->transport = XPORT_SPI; 8261 cpi->transport_version = 2; 8262 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8263 if (np->features & FE_ULTRA3) { 8264 cpi->transport_version = 3; 8265 cpi->xport_specific.spi.ppr_options = 8266 SID_SPI_CLOCK_DT_ST; 8267 } 8268 #endif 8269 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8270 break; 8271 } 8272 case XPT_ABORT: 8273 { 8274 union ccb *abort_ccb = ccb->cab.abort_ccb; 8275 switch(abort_ccb->ccb_h.func_code) { 8276 case XPT_SCSI_IO: 8277 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8278 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8279 break; 8280 } 8281 default: 8282 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8283 break; 8284 } 8285 break; 8286 } 8287 case XPT_RESET_DEV: 8288 { 8289 sym_reset_dev(np, ccb); 8290 break; 8291 } 8292 case XPT_RESET_BUS: 8293 { 8294 sym_reset_scsi_bus(np, 0); 8295 if (sym_verbose) { 8296 xpt_print_path(np->path); 8297 printf("SCSI BUS reset delivered.\n"); 8298 } 8299 sym_init (np, 1); 8300 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8301 break; 8302 } 8303 case XPT_ACCEPT_TARGET_IO: 8304 case XPT_CONT_TARGET_IO: 8305 case XPT_EN_LUN: 8306 case XPT_NOTIFY_ACK: 8307 case XPT_IMMED_NOTIFY: 8308 case XPT_TERM_IO: 8309 default: 8310 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8311 break; 8312 } 8313 } 8314 8315 /* 8316 * Asynchronous notification handler. 8317 */ 8318 static void 8319 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8320 { 8321 hcb_p np; 8322 struct cam_sim *sim; 8323 u_int tn; 8324 tcb_p tp; 8325 int s; 8326 8327 s = splcam(); 8328 8329 sim = (struct cam_sim *) cb_arg; 8330 np = (hcb_p) cam_sim_softc(sim); 8331 8332 switch (code) { 8333 case AC_LOST_DEVICE: 8334 tn = xpt_path_target_id(path); 8335 if (tn >= SYM_CONF_MAX_TARGET) 8336 break; 8337 8338 tp = &np->target[tn]; 8339 8340 tp->to_reset = 0; 8341 tp->head.sval = 0; 8342 tp->head.wval = np->rv_scntl3; 8343 tp->head.uval = 0; 8344 8345 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8346 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8347 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8348 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8349 8350 break; 8351 default: 8352 break; 8353 } 8354 8355 splx(s); 8356 } 8357 8358 /* 8359 * Update transfer settings of a target. 8360 */ 8361 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8362 struct ccb_trans_settings *cts) 8363 { 8364 /* 8365 * Update the infos. 8366 */ 8367 #ifdef FreeBSD_New_Tran_Settings 8368 #define cts__spi (&cts->xport_specific.spi) 8369 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8370 tip->width = cts__spi->bus_width; 8371 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8372 tip->offset = cts__spi->sync_offset; 8373 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8374 tip->period = cts__spi->sync_period; 8375 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8376 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8377 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8378 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8379 tip->scsi_version = cts->protocol_version; 8380 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8381 cts->transport_version != XPORT_VERSION_UNKNOWN) 8382 tip->spi_version = cts->transport_version; 8383 #undef cts__spi 8384 #else 8385 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 8386 tip->width = cts->bus_width; 8387 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) 8388 tip->offset = cts->sync_offset; 8389 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) 8390 tip->period = cts->sync_period; 8391 #endif 8392 /* 8393 * Scale against driver configuration limits. 8394 */ 8395 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8396 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8397 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8398 8399 /* 8400 * Scale against actual controller BUS width. 8401 */ 8402 if (tip->width > np->maxwide) 8403 tip->width = np->maxwide; 8404 8405 #ifdef FreeBSD_New_Tran_Settings 8406 /* 8407 * Only accept DT if controller supports and SYNC/WIDE asked. 8408 */ 8409 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8410 !(tip->width == BUS_16_BIT && tip->offset)) { 8411 tip->options &= ~PPR_OPT_DT; 8412 } 8413 #else 8414 /* 8415 * For now, only assume DT if period <= 9, BUS 16 and offset != 0. 8416 */ 8417 tip->options = 0; 8418 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3) && 8419 tip->period <= 9 && tip->width == BUS_16_BIT && tip->offset) { 8420 tip->options |= PPR_OPT_DT; 8421 } 8422 #endif 8423 8424 /* 8425 * Scale period factor and offset against controller limits. 8426 */ 8427 if (tip->options & PPR_OPT_DT) { 8428 if (tip->period < np->minsync_dt) 8429 tip->period = np->minsync_dt; 8430 if (tip->period > np->maxsync_dt) 8431 tip->period = np->maxsync_dt; 8432 if (tip->offset > np->maxoffs_dt) 8433 tip->offset = np->maxoffs_dt; 8434 } 8435 else { 8436 if (tip->period < np->minsync) 8437 tip->period = np->minsync; 8438 if (tip->period > np->maxsync) 8439 tip->period = np->maxsync; 8440 if (tip->offset > np->maxoffs) 8441 tip->offset = np->maxoffs; 8442 } 8443 } 8444 8445 /* 8446 * Update flags for a device (logical unit). 8447 */ 8448 static void 8449 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8450 { 8451 #ifdef FreeBSD_New_Tran_Settings 8452 #define cts__scsi (&cts->proto_specific.scsi) 8453 #define cts__spi (&cts->xport_specific.spi) 8454 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8455 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8456 *flags |= SYM_DISC_ENABLED; 8457 else 8458 *flags &= ~SYM_DISC_ENABLED; 8459 } 8460 8461 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8462 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8463 *flags |= SYM_TAGS_ENABLED; 8464 else 8465 *flags &= ~SYM_TAGS_ENABLED; 8466 } 8467 #undef cts__spi 8468 #undef cts__scsi 8469 #else 8470 if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { 8471 if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) 8472 *flags |= SYM_DISC_ENABLED; 8473 else 8474 *flags &= ~SYM_DISC_ENABLED; 8475 } 8476 8477 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 8478 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) 8479 *flags |= SYM_TAGS_ENABLED; 8480 else 8481 *flags &= ~SYM_TAGS_ENABLED; 8482 } 8483 #endif 8484 } 8485 8486 8487 /*============= DRIVER INITIALISATION ==================*/ 8488 8489 8490 static device_method_t sym_pci_methods[] = { 8491 DEVMETHOD(device_probe, sym_pci_probe), 8492 DEVMETHOD(device_attach, sym_pci_attach), 8493 { 0, 0 } 8494 }; 8495 8496 static driver_t sym_pci_driver = { 8497 "sym", 8498 sym_pci_methods, 8499 sizeof(struct sym_hcb) 8500 }; 8501 8502 static devclass_t sym_devclass; 8503 8504 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8505 MODULE_DEPEND(sym, cam, 1, 1, 1); 8506 MODULE_DEPEND(sym, pci, 1, 1, 1); 8507 8508 8509 static struct sym_pci_chip sym_pci_dev_table[] = { 8510 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8511 FE_ERL} 8512 , 8513 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8514 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8515 FE_BOF} 8516 , 8517 #else 8518 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8519 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8520 , 8521 #endif 8522 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8523 FE_BOF|FE_ERL} 8524 , 8525 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8526 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8527 , 8528 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8529 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8530 , 8531 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8532 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8533 , 8534 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8535 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8536 FE_RAM|FE_DIFF} 8537 , 8538 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8539 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8540 FE_RAM|FE_DIFF} 8541 , 8542 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8543 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8544 FE_RAM|FE_DIFF} 8545 , 8546 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8547 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8548 FE_RAM|FE_DIFF} 8549 , 8550 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8551 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8552 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8553 FE_RAM|FE_LCKFRQ} 8554 , 8555 #else 8556 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8557 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8558 FE_RAM|FE_LCKFRQ} 8559 , 8560 #endif 8561 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8562 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8563 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8564 , 8565 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8566 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8567 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8568 , 8569 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8570 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8571 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8572 FE_C10} 8573 , 8574 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8575 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8576 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8577 FE_C10|FE_U3EN} 8578 , 8579 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8580 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8581 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8582 FE_C10|FE_U3EN} 8583 , 8584 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8585 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8586 FE_RAM|FE_IO256|FE_LEDC} 8587 }; 8588 8589 #define sym_pci_num_devs \ 8590 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8591 8592 /* 8593 * Look up the chip table. 8594 * 8595 * Return a pointer to the chip entry if found, 8596 * zero otherwise. 8597 */ 8598 static struct sym_pci_chip * 8599 sym_find_pci_chip(device_t dev) 8600 { 8601 struct sym_pci_chip *chip; 8602 int i; 8603 u_short device_id; 8604 u_char revision; 8605 8606 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8607 return 0; 8608 8609 device_id = pci_get_device(dev); 8610 revision = pci_get_revid(dev); 8611 8612 for (i = 0; i < sym_pci_num_devs; i++) { 8613 chip = &sym_pci_dev_table[i]; 8614 if (device_id != chip->device_id) 8615 continue; 8616 if (revision > chip->revision_id) 8617 continue; 8618 return chip; 8619 } 8620 8621 return 0; 8622 } 8623 8624 /* 8625 * Tell upper layer if the chip is supported. 8626 */ 8627 static int 8628 sym_pci_probe(device_t dev) 8629 { 8630 struct sym_pci_chip *chip; 8631 8632 chip = sym_find_pci_chip(dev); 8633 if (chip && sym_find_firmware(chip)) { 8634 device_set_desc(dev, chip->name); 8635 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? 8636 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; 8637 } 8638 return ENXIO; 8639 } 8640 8641 /* 8642 * Attach a sym53c8xx device. 8643 */ 8644 static int 8645 sym_pci_attach(device_t dev) 8646 { 8647 struct sym_pci_chip *chip; 8648 u_short command; 8649 u_char cachelnsz; 8650 struct sym_hcb *np = 0; 8651 struct sym_nvram nvram; 8652 struct sym_fw *fw = 0; 8653 int i; 8654 bus_dma_tag_t bus_dmat; 8655 8656 /* 8657 * I expected to be told about a parent 8658 * DMA tag, but didn't find any. 8659 */ 8660 bus_dmat = NULL; 8661 8662 /* 8663 * Only probed devices should be attached. 8664 * We just enjoy being paranoid. :) 8665 */ 8666 chip = sym_find_pci_chip(dev); 8667 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8668 return (ENXIO); 8669 8670 /* 8671 * Allocate immediately the host control block, 8672 * since we are only expecting to succeed. :) 8673 * We keep track in the HCB of all the resources that 8674 * are to be released on error. 8675 */ 8676 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8677 if (np) 8678 np->bus_dmat = bus_dmat; 8679 else 8680 goto attach_failed; 8681 8682 /* 8683 * Copy some useful infos to the HCB. 8684 */ 8685 np->hcb_ba = vtobus(np); 8686 np->verbose = bootverbose; 8687 np->device = dev; 8688 np->unit = device_get_unit(dev); 8689 np->device_id = pci_get_device(dev); 8690 np->revision_id = pci_get_revid(dev); 8691 np->features = chip->features; 8692 np->clock_divn = chip->nr_divisor; 8693 np->maxoffs = chip->offset_max; 8694 np->maxburst = chip->burst_max; 8695 np->scripta_sz = fw->a_size; 8696 np->scriptb_sz = fw->b_size; 8697 np->fw_setup = fw->setup; 8698 np->fw_patch = fw->patch; 8699 np->fw_name = fw->name; 8700 8701 /* 8702 * Edit its name. 8703 */ 8704 snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); 8705 8706 /* 8707 * Initialyze the CCB free and busy queues. 8708 */ 8709 sym_que_init(&np->free_ccbq); 8710 sym_que_init(&np->busy_ccbq); 8711 sym_que_init(&np->comp_ccbq); 8712 sym_que_init(&np->cam_ccbq); 8713 8714 /* 8715 * Allocate a tag for the DMA of user data. 8716 */ 8717 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 8718 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 8719 NULL, NULL, 8720 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 8721 (1<<24), 0, busdma_lock_mutex, &Giant, 8722 &np->data_dmat)) { 8723 device_printf(dev, "failed to create DMA tag.\n"); 8724 goto attach_failed; 8725 } 8726 /* 8727 * Read and apply some fix-ups to the PCI COMMAND 8728 * register. We want the chip to be enabled for: 8729 * - BUS mastering 8730 * - PCI parity checking (reporting would also be fine) 8731 * - Write And Invalidate. 8732 */ 8733 command = pci_read_config(dev, PCIR_COMMAND, 2); 8734 command |= PCIM_CMD_BUSMASTEREN; 8735 command |= PCIM_CMD_PERRESPEN; 8736 command |= /* PCIM_CMD_MWIEN */ 0x0010; 8737 pci_write_config(dev, PCIR_COMMAND, command, 2); 8738 8739 /* 8740 * Let the device know about the cache line size, 8741 * if it doesn't yet. 8742 */ 8743 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8744 if (!cachelnsz) { 8745 cachelnsz = 8; 8746 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8747 } 8748 8749 /* 8750 * Alloc/get/map/retrieve everything that deals with MMIO. 8751 */ 8752 if ((command & PCIM_CMD_MEMEN) != 0) { 8753 int regs_id = SYM_PCI_MMIO; 8754 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8755 ®s_id, RF_ACTIVE); 8756 } 8757 if (!np->mmio_res) { 8758 device_printf(dev, "failed to allocate MMIO resources\n"); 8759 goto attach_failed; 8760 } 8761 np->mmio_bsh = rman_get_bushandle(np->mmio_res); 8762 np->mmio_tag = rman_get_bustag(np->mmio_res); 8763 np->mmio_pa = rman_get_start(np->mmio_res); 8764 np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); 8765 np->mmio_ba = np->mmio_pa; 8766 8767 /* 8768 * Allocate the IRQ. 8769 */ 8770 i = 0; 8771 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8772 RF_ACTIVE | RF_SHAREABLE); 8773 if (!np->irq_res) { 8774 device_printf(dev, "failed to allocate IRQ resource\n"); 8775 goto attach_failed; 8776 } 8777 8778 #ifdef SYM_CONF_IOMAPPED 8779 /* 8780 * User want us to use normal IO with PCI. 8781 * Alloc/get/map/retrieve everything that deals with IO. 8782 */ 8783 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 8784 int regs_id = SYM_PCI_IO; 8785 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 8786 ®s_id, RF_ACTIVE); 8787 } 8788 if (!np->io_res) { 8789 device_printf(dev, "failed to allocate IO resources\n"); 8790 goto attach_failed; 8791 } 8792 np->io_bsh = rman_get_bushandle(np->io_res); 8793 np->io_tag = rman_get_bustag(np->io_res); 8794 np->io_port = rman_get_start(np->io_res); 8795 8796 #endif /* SYM_CONF_IOMAPPED */ 8797 8798 /* 8799 * If the chip has RAM. 8800 * Alloc/get/map/retrieve the corresponding resources. 8801 */ 8802 if ((np->features & (FE_RAM|FE_RAM8K)) && 8803 (command & PCIM_CMD_MEMEN) != 0) { 8804 int regs_id = SYM_PCI_RAM; 8805 if (np->features & FE_64BIT) 8806 regs_id = SYM_PCI_RAM64; 8807 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8808 ®s_id, RF_ACTIVE); 8809 if (!np->ram_res) { 8810 device_printf(dev,"failed to allocate RAM resources\n"); 8811 goto attach_failed; 8812 } 8813 np->ram_id = regs_id; 8814 np->ram_bsh = rman_get_bushandle(np->ram_res); 8815 np->ram_tag = rman_get_bustag(np->ram_res); 8816 np->ram_pa = rman_get_start(np->ram_res); 8817 np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); 8818 np->ram_ba = np->ram_pa; 8819 } 8820 8821 /* 8822 * Save setting of some IO registers, so we will 8823 * be able to probe specific implementations. 8824 */ 8825 sym_save_initial_setting (np); 8826 8827 /* 8828 * Reset the chip now, since it has been reported 8829 * that SCSI clock calibration may not work properly 8830 * if the chip is currently active. 8831 */ 8832 sym_chip_reset (np); 8833 8834 /* 8835 * Try to read the user set-up. 8836 */ 8837 (void) sym_read_nvram(np, &nvram); 8838 8839 /* 8840 * Prepare controller and devices settings, according 8841 * to chip features, user set-up and driver set-up. 8842 */ 8843 (void) sym_prepare_setting(np, &nvram); 8844 8845 /* 8846 * Check the PCI clock frequency. 8847 * Must be performed after prepare_setting since it destroys 8848 * STEST1 that is used to probe for the clock doubler. 8849 */ 8850 i = sym_getpciclock(np); 8851 if (i > 37000) 8852 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8853 8854 /* 8855 * Allocate the start queue. 8856 */ 8857 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8858 if (!np->squeue) 8859 goto attach_failed; 8860 np->squeue_ba = vtobus(np->squeue); 8861 8862 /* 8863 * Allocate the done queue. 8864 */ 8865 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8866 if (!np->dqueue) 8867 goto attach_failed; 8868 np->dqueue_ba = vtobus(np->dqueue); 8869 8870 /* 8871 * Allocate the target bus address array. 8872 */ 8873 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8874 if (!np->targtbl) 8875 goto attach_failed; 8876 np->targtbl_ba = vtobus(np->targtbl); 8877 8878 /* 8879 * Allocate SCRIPTS areas. 8880 */ 8881 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8882 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8883 if (!np->scripta0 || !np->scriptb0) 8884 goto attach_failed; 8885 8886 /* 8887 * Allocate some CCB. We need at least ONE. 8888 */ 8889 if (!sym_alloc_ccb(np)) 8890 goto attach_failed; 8891 8892 /* 8893 * Calculate BUS addresses where we are going 8894 * to load the SCRIPTS. 8895 */ 8896 np->scripta_ba = vtobus(np->scripta0); 8897 np->scriptb_ba = vtobus(np->scriptb0); 8898 np->scriptb0_ba = np->scriptb_ba; 8899 8900 if (np->ram_ba) { 8901 np->scripta_ba = np->ram_ba; 8902 if (np->features & FE_RAM8K) { 8903 np->ram_ws = 8192; 8904 np->scriptb_ba = np->scripta_ba + 4096; 8905 #if BITS_PER_LONG > 32 8906 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8907 #endif 8908 } 8909 else 8910 np->ram_ws = 4096; 8911 } 8912 8913 /* 8914 * Copy scripts to controller instance. 8915 */ 8916 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8917 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8918 8919 /* 8920 * Setup variable parts in scripts and compute 8921 * scripts bus addresses used from the C code. 8922 */ 8923 np->fw_setup(np, fw); 8924 8925 /* 8926 * Bind SCRIPTS with physical addresses usable by the 8927 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8928 */ 8929 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8930 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8931 8932 #ifdef SYM_CONF_IARB_SUPPORT 8933 /* 8934 * If user wants IARB to be set when we win arbitration 8935 * and have other jobs, compute the max number of consecutive 8936 * settings of IARB hints before we leave devices a chance to 8937 * arbitrate for reselection. 8938 */ 8939 #ifdef SYM_SETUP_IARB_MAX 8940 np->iarb_max = SYM_SETUP_IARB_MAX; 8941 #else 8942 np->iarb_max = 4; 8943 #endif 8944 #endif 8945 8946 /* 8947 * Prepare the idle and invalid task actions. 8948 */ 8949 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8950 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8951 np->idletask_ba = vtobus(&np->idletask); 8952 8953 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8954 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8955 np->notask_ba = vtobus(&np->notask); 8956 8957 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8958 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8959 np->bad_itl_ba = vtobus(&np->bad_itl); 8960 8961 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8962 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8963 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8964 8965 /* 8966 * Allocate and prepare the lun JUMP table that is used 8967 * for a target prior the probing of devices (bad lun table). 8968 * A private table will be allocated for the target on the 8969 * first INQUIRY response received. 8970 */ 8971 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8972 if (!np->badluntbl) 8973 goto attach_failed; 8974 8975 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8976 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8977 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8978 8979 /* 8980 * Prepare the bus address array that contains the bus 8981 * address of each target control block. 8982 * For now, assume all logical units are wrong. :) 8983 */ 8984 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8985 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8986 np->target[i].head.luntbl_sa = 8987 cpu_to_scr(vtobus(np->badluntbl)); 8988 np->target[i].head.lun0_sa = 8989 cpu_to_scr(vtobus(&np->badlun_sa)); 8990 } 8991 8992 /* 8993 * Now check the cache handling of the pci chipset. 8994 */ 8995 if (sym_snooptest (np)) { 8996 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8997 goto attach_failed; 8998 }; 8999 9000 /* 9001 * Now deal with CAM. 9002 * Hopefully, we will succeed with that one.:) 9003 */ 9004 if (!sym_cam_attach(np)) 9005 goto attach_failed; 9006 9007 /* 9008 * Sigh! we are done. 9009 */ 9010 return 0; 9011 9012 /* 9013 * We have failed. 9014 * We will try to free all the resources we have 9015 * allocated, but if we are a boot device, this 9016 * will not help that much.;) 9017 */ 9018 attach_failed: 9019 if (np) 9020 sym_pci_free(np); 9021 return ENXIO; 9022 } 9023 9024 /* 9025 * Free everything that have been allocated for this device. 9026 */ 9027 static void sym_pci_free(hcb_p np) 9028 { 9029 SYM_QUEHEAD *qp; 9030 ccb_p cp; 9031 tcb_p tp; 9032 lcb_p lp; 9033 int target, lun; 9034 int s; 9035 9036 /* 9037 * First free CAM resources. 9038 */ 9039 s = splcam(); 9040 sym_cam_free(np); 9041 splx(s); 9042 9043 /* 9044 * Now every should be quiet for us to 9045 * free other resources. 9046 */ 9047 if (np->ram_res) 9048 bus_release_resource(np->device, SYS_RES_MEMORY, 9049 np->ram_id, np->ram_res); 9050 if (np->mmio_res) 9051 bus_release_resource(np->device, SYS_RES_MEMORY, 9052 SYM_PCI_MMIO, np->mmio_res); 9053 if (np->io_res) 9054 bus_release_resource(np->device, SYS_RES_IOPORT, 9055 SYM_PCI_IO, np->io_res); 9056 if (np->irq_res) 9057 bus_release_resource(np->device, SYS_RES_IRQ, 9058 0, np->irq_res); 9059 9060 if (np->scriptb0) 9061 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 9062 if (np->scripta0) 9063 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 9064 if (np->squeue) 9065 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 9066 if (np->dqueue) 9067 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 9068 9069 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { 9070 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 9071 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 9072 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 9073 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 9074 } 9075 9076 if (np->badluntbl) 9077 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 9078 9079 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 9080 tp = &np->target[target]; 9081 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 9082 lp = sym_lp(np, tp, lun); 9083 if (!lp) 9084 continue; 9085 if (lp->itlq_tbl) 9086 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 9087 "ITLQ_TBL"); 9088 if (lp->cb_tags) 9089 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 9090 "CB_TAGS"); 9091 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 9092 } 9093 #if SYM_CONF_MAX_LUN > 1 9094 if (tp->lunmp) 9095 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 9096 "LUNMP"); 9097 #endif 9098 } 9099 if (np->targtbl) 9100 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 9101 if (np->data_dmat) 9102 bus_dma_tag_destroy(np->data_dmat); 9103 sym_mfree_dma(np, sizeof(*np), "HCB"); 9104 } 9105 9106 /* 9107 * Allocate CAM resources and register a bus to CAM. 9108 */ 9109 static int sym_cam_attach(hcb_p np) 9110 { 9111 struct cam_devq *devq = 0; 9112 struct cam_sim *sim = 0; 9113 struct cam_path *path = 0; 9114 struct ccb_setasync csa; 9115 int err, s; 9116 9117 s = splcam(); 9118 9119 /* 9120 * Establish our interrupt handler. 9121 */ 9122 err = bus_setup_intr(np->device, np->irq_res, 9123 INTR_TYPE_CAM | INTR_ENTROPY, sym_intr, np, 9124 &np->intr); 9125 if (err) { 9126 device_printf(np->device, "bus_setup_intr() failed: %d\n", 9127 err); 9128 goto fail; 9129 } 9130 9131 /* 9132 * Create the device queue for our sym SIM. 9133 */ 9134 devq = cam_simq_alloc(SYM_CONF_MAX_START); 9135 if (!devq) 9136 goto fail; 9137 9138 /* 9139 * Construct our SIM entry. 9140 */ 9141 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, 9142 1, SYM_SETUP_MAX_TAG, devq); 9143 if (!sim) 9144 goto fail; 9145 devq = 0; 9146 9147 if (xpt_bus_register(sim, 0) != CAM_SUCCESS) 9148 goto fail; 9149 np->sim = sim; 9150 sim = 0; 9151 9152 if (xpt_create_path(&path, 0, 9153 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 9154 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 9155 goto fail; 9156 } 9157 np->path = path; 9158 9159 /* 9160 * Establish our async notification handler. 9161 */ 9162 xpt_setup_ccb(&csa.ccb_h, np->path, 5); 9163 csa.ccb_h.func_code = XPT_SASYNC_CB; 9164 csa.event_enable = AC_LOST_DEVICE; 9165 csa.callback = sym_async; 9166 csa.callback_arg = np->sim; 9167 xpt_action((union ccb *)&csa); 9168 9169 /* 9170 * Start the chip now, without resetting the BUS, since 9171 * it seems that this must stay under control of CAM. 9172 * With LVD/SE capable chips and BUS in SE mode, we may 9173 * get a spurious SMBC interrupt. 9174 */ 9175 sym_init (np, 0); 9176 9177 splx(s); 9178 return 1; 9179 fail: 9180 if (sim) 9181 cam_sim_free(sim, FALSE); 9182 if (devq) 9183 cam_simq_free(devq); 9184 9185 sym_cam_free(np); 9186 9187 splx(s); 9188 return 0; 9189 } 9190 9191 /* 9192 * Free everything that deals with CAM. 9193 */ 9194 static void sym_cam_free(hcb_p np) 9195 { 9196 if (np->intr) { 9197 bus_teardown_intr(np->device, np->irq_res, np->intr); 9198 np->intr = NULL; 9199 } 9200 9201 if (np->sim) { 9202 xpt_bus_deregister(cam_sim_path(np->sim)); 9203 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9204 np->sim = NULL; 9205 } 9206 if (np->path) { 9207 xpt_free_path(np->path); 9208 np->path = NULL; 9209 } 9210 } 9211 9212 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9213 9214 /* 9215 * Get host setup from NVRAM. 9216 */ 9217 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9218 { 9219 #ifdef SYM_CONF_NVRAM_SUPPORT 9220 /* 9221 * Get parity checking, host ID, verbose mode 9222 * and miscellaneous host flags from NVRAM. 9223 */ 9224 switch(nvram->type) { 9225 case SYM_SYMBIOS_NVRAM: 9226 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9227 np->rv_scntl0 &= ~0x0a; 9228 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9229 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9230 np->verbose += 1; 9231 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9232 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9233 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9234 np->usrflags |= SYM_AVOID_BUS_RESET; 9235 break; 9236 case SYM_TEKRAM_NVRAM: 9237 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9238 break; 9239 default: 9240 break; 9241 } 9242 #endif 9243 } 9244 9245 /* 9246 * Get target setup from NVRAM. 9247 */ 9248 #ifdef SYM_CONF_NVRAM_SUPPORT 9249 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9250 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9251 #endif 9252 9253 static void 9254 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9255 { 9256 #ifdef SYM_CONF_NVRAM_SUPPORT 9257 switch(nvp->type) { 9258 case SYM_SYMBIOS_NVRAM: 9259 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9260 break; 9261 case SYM_TEKRAM_NVRAM: 9262 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9263 break; 9264 default: 9265 break; 9266 } 9267 #endif 9268 } 9269 9270 #ifdef SYM_CONF_NVRAM_SUPPORT 9271 /* 9272 * Get target set-up from Symbios format NVRAM. 9273 */ 9274 static void 9275 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9276 { 9277 tcb_p tp = &np->target[target]; 9278 Symbios_target *tn = &nvram->target[target]; 9279 9280 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9281 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9282 tp->usrtags = 9283 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9284 9285 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9286 tp->usrflags &= ~SYM_DISC_ENABLED; 9287 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9288 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9289 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9290 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9291 } 9292 9293 /* 9294 * Get target set-up from Tekram format NVRAM. 9295 */ 9296 static void 9297 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9298 { 9299 tcb_p tp = &np->target[target]; 9300 struct Tekram_target *tn = &nvram->target[target]; 9301 int i; 9302 9303 if (tn->flags & TEKRAM_SYNC_NEGO) { 9304 i = tn->sync_index & 0xf; 9305 tp->tinfo.user.period = Tekram_sync[i]; 9306 } 9307 9308 tp->tinfo.user.width = 9309 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9310 9311 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9312 tp->usrtags = 2 << nvram->max_tags_index; 9313 } 9314 9315 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9316 tp->usrflags |= SYM_DISC_ENABLED; 9317 9318 /* If any device does not support parity, we will not use this option */ 9319 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9320 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9321 } 9322 9323 #ifdef SYM_CONF_DEBUG_NVRAM 9324 /* 9325 * Dump Symbios format NVRAM for debugging purpose. 9326 */ 9327 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9328 { 9329 int i; 9330 9331 /* display Symbios nvram host data */ 9332 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9333 sym_name(np), nvram->host_id & 0x0f, 9334 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9335 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9336 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9337 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9338 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9339 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9340 9341 /* display Symbios nvram drive data */ 9342 for (i = 0 ; i < 15 ; i++) { 9343 struct Symbios_target *tn = &nvram->target[i]; 9344 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9345 sym_name(np), i, 9346 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9347 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9348 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9349 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9350 tn->bus_width, 9351 tn->sync_period / 4, 9352 tn->timeout); 9353 } 9354 } 9355 9356 /* 9357 * Dump TEKRAM format NVRAM for debugging purpose. 9358 */ 9359 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9360 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9361 { 9362 int i, tags, boot_delay; 9363 char *rem; 9364 9365 /* display Tekram nvram host data */ 9366 tags = 2 << nvram->max_tags_index; 9367 boot_delay = 0; 9368 if (nvram->boot_delay_index < 6) 9369 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9370 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9371 default: 9372 case 0: rem = ""; break; 9373 case 1: rem = " REMOVABLE=boot device"; break; 9374 case 2: rem = " REMOVABLE=all"; break; 9375 } 9376 9377 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9378 sym_name(np), nvram->host_id & 0x0f, 9379 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9380 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9381 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9382 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9383 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9384 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9385 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9386 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9387 rem, boot_delay, tags); 9388 9389 /* display Tekram nvram drive data */ 9390 for (i = 0; i <= 15; i++) { 9391 int sync, j; 9392 struct Tekram_target *tn = &nvram->target[i]; 9393 j = tn->sync_index & 0xf; 9394 sync = Tekram_sync[j]; 9395 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9396 sym_name(np), i, 9397 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9398 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9399 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9400 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9401 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9402 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9403 sync); 9404 } 9405 } 9406 #endif /* SYM_CONF_DEBUG_NVRAM */ 9407 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9408 9409 9410 /* 9411 * Try reading Symbios or Tekram NVRAM 9412 */ 9413 #ifdef SYM_CONF_NVRAM_SUPPORT 9414 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9415 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9416 #endif 9417 9418 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9419 { 9420 #ifdef SYM_CONF_NVRAM_SUPPORT 9421 /* 9422 * Try to read SYMBIOS nvram. 9423 * Try to read TEKRAM nvram if Symbios nvram not found. 9424 */ 9425 if (SYM_SETUP_SYMBIOS_NVRAM && 9426 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9427 nvp->type = SYM_SYMBIOS_NVRAM; 9428 #ifdef SYM_CONF_DEBUG_NVRAM 9429 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9430 #endif 9431 } 9432 else if (SYM_SETUP_TEKRAM_NVRAM && 9433 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9434 nvp->type = SYM_TEKRAM_NVRAM; 9435 #ifdef SYM_CONF_DEBUG_NVRAM 9436 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9437 #endif 9438 } 9439 else 9440 nvp->type = 0; 9441 #else 9442 nvp->type = 0; 9443 #endif 9444 return nvp->type; 9445 } 9446 9447 9448 #ifdef SYM_CONF_NVRAM_SUPPORT 9449 /* 9450 * 24C16 EEPROM reading. 9451 * 9452 * GPOI0 - data in/data out 9453 * GPIO1 - clock 9454 * Symbios NVRAM wiring now also used by Tekram. 9455 */ 9456 9457 #define SET_BIT 0 9458 #define CLR_BIT 1 9459 #define SET_CLK 2 9460 #define CLR_CLK 3 9461 9462 /* 9463 * Set/clear data/clock bit in GPIO0 9464 */ 9465 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9466 int bit_mode) 9467 { 9468 UDELAY (5); 9469 switch (bit_mode){ 9470 case SET_BIT: 9471 *gpreg |= write_bit; 9472 break; 9473 case CLR_BIT: 9474 *gpreg &= 0xfe; 9475 break; 9476 case SET_CLK: 9477 *gpreg |= 0x02; 9478 break; 9479 case CLR_CLK: 9480 *gpreg &= 0xfd; 9481 break; 9482 9483 } 9484 OUTB (nc_gpreg, *gpreg); 9485 UDELAY (5); 9486 } 9487 9488 /* 9489 * Send START condition to NVRAM to wake it up. 9490 */ 9491 static void S24C16_start(hcb_p np, u_char *gpreg) 9492 { 9493 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9494 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9495 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9496 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9497 } 9498 9499 /* 9500 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9501 */ 9502 static void S24C16_stop(hcb_p np, u_char *gpreg) 9503 { 9504 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9505 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9506 } 9507 9508 /* 9509 * Read or write a bit to the NVRAM, 9510 * read if GPIO0 input else write if GPIO0 output 9511 */ 9512 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9513 u_char *gpreg) 9514 { 9515 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9516 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9517 if (read_bit) 9518 *read_bit = INB (nc_gpreg); 9519 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9520 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9521 } 9522 9523 /* 9524 * Output an ACK to the NVRAM after reading, 9525 * change GPIO0 to output and when done back to an input 9526 */ 9527 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9528 u_char *gpcntl) 9529 { 9530 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9531 S24C16_do_bit(np, 0, write_bit, gpreg); 9532 OUTB (nc_gpcntl, *gpcntl); 9533 } 9534 9535 /* 9536 * Input an ACK from NVRAM after writing, 9537 * change GPIO0 to input and when done back to an output 9538 */ 9539 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9540 u_char *gpcntl) 9541 { 9542 OUTB (nc_gpcntl, *gpcntl | 0x01); 9543 S24C16_do_bit(np, read_bit, 1, gpreg); 9544 OUTB (nc_gpcntl, *gpcntl); 9545 } 9546 9547 /* 9548 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9549 * GPIO0 must already be set as an output 9550 */ 9551 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9552 u_char *gpreg, u_char *gpcntl) 9553 { 9554 int x; 9555 9556 for (x = 0; x < 8; x++) 9557 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9558 9559 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9560 } 9561 9562 /* 9563 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9564 * GPIO0 must already be set as an input 9565 */ 9566 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9567 u_char *gpreg, u_char *gpcntl) 9568 { 9569 int x; 9570 u_char read_bit; 9571 9572 *read_data = 0; 9573 for (x = 0; x < 8; x++) { 9574 S24C16_do_bit(np, &read_bit, 1, gpreg); 9575 *read_data |= ((read_bit & 0x01) << (7 - x)); 9576 } 9577 9578 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9579 } 9580 9581 /* 9582 * Read 'len' bytes starting at 'offset'. 9583 */ 9584 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9585 { 9586 u_char gpcntl, gpreg; 9587 u_char old_gpcntl, old_gpreg; 9588 u_char ack_data; 9589 int retv = 1; 9590 int x; 9591 9592 /* save current state of GPCNTL and GPREG */ 9593 old_gpreg = INB (nc_gpreg); 9594 old_gpcntl = INB (nc_gpcntl); 9595 gpcntl = old_gpcntl & 0x1c; 9596 9597 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9598 OUTB (nc_gpreg, old_gpreg); 9599 OUTB (nc_gpcntl, gpcntl); 9600 9601 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9602 gpreg = old_gpreg; 9603 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9604 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9605 9606 /* now set NVRAM inactive with GPIO0/1 both high */ 9607 S24C16_stop(np, &gpreg); 9608 9609 /* activate NVRAM */ 9610 S24C16_start(np, &gpreg); 9611 9612 /* write device code and random address MSB */ 9613 S24C16_write_byte(np, &ack_data, 9614 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9615 if (ack_data & 0x01) 9616 goto out; 9617 9618 /* write random address LSB */ 9619 S24C16_write_byte(np, &ack_data, 9620 offset & 0xff, &gpreg, &gpcntl); 9621 if (ack_data & 0x01) 9622 goto out; 9623 9624 /* regenerate START state to set up for reading */ 9625 S24C16_start(np, &gpreg); 9626 9627 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9628 S24C16_write_byte(np, &ack_data, 9629 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9630 if (ack_data & 0x01) 9631 goto out; 9632 9633 /* now set up GPIO0 for inputting data */ 9634 gpcntl |= 0x01; 9635 OUTB (nc_gpcntl, gpcntl); 9636 9637 /* input all requested data - only part of total NVRAM */ 9638 for (x = 0; x < len; x++) 9639 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9640 9641 /* finally put NVRAM back in inactive mode */ 9642 gpcntl &= 0xfe; 9643 OUTB (nc_gpcntl, gpcntl); 9644 S24C16_stop(np, &gpreg); 9645 retv = 0; 9646 out: 9647 /* return GPIO0/1 to original states after having accessed NVRAM */ 9648 OUTB (nc_gpcntl, old_gpcntl); 9649 OUTB (nc_gpreg, old_gpreg); 9650 9651 return retv; 9652 } 9653 9654 #undef SET_BIT /* 0 */ 9655 #undef CLR_BIT /* 1 */ 9656 #undef SET_CLK /* 2 */ 9657 #undef CLR_CLK /* 3 */ 9658 9659 /* 9660 * Try reading Symbios NVRAM. 9661 * Return 0 if OK. 9662 */ 9663 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9664 { 9665 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9666 u_char *data = (u_char *) nvram; 9667 int len = sizeof(*nvram); 9668 u_short csum; 9669 int x; 9670 9671 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9672 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9673 return 1; 9674 9675 /* check valid NVRAM signature, verify byte count and checksum */ 9676 if (nvram->type != 0 || 9677 bcmp(nvram->trailer, Symbios_trailer, 6) || 9678 nvram->byte_count != len - 12) 9679 return 1; 9680 9681 /* verify checksum */ 9682 for (x = 6, csum = 0; x < len - 6; x++) 9683 csum += data[x]; 9684 if (csum != nvram->checksum) 9685 return 1; 9686 9687 return 0; 9688 } 9689 9690 /* 9691 * 93C46 EEPROM reading. 9692 * 9693 * GPOI0 - data in 9694 * GPIO1 - data out 9695 * GPIO2 - clock 9696 * GPIO4 - chip select 9697 * 9698 * Used by Tekram. 9699 */ 9700 9701 /* 9702 * Pulse clock bit in GPIO0 9703 */ 9704 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9705 { 9706 OUTB (nc_gpreg, *gpreg | 0x04); 9707 UDELAY (2); 9708 OUTB (nc_gpreg, *gpreg); 9709 } 9710 9711 /* 9712 * Read bit from NVRAM 9713 */ 9714 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9715 { 9716 UDELAY (2); 9717 T93C46_Clk(np, gpreg); 9718 *read_bit = INB (nc_gpreg); 9719 } 9720 9721 /* 9722 * Write bit to GPIO0 9723 */ 9724 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9725 { 9726 if (write_bit & 0x01) 9727 *gpreg |= 0x02; 9728 else 9729 *gpreg &= 0xfd; 9730 9731 *gpreg |= 0x10; 9732 9733 OUTB (nc_gpreg, *gpreg); 9734 UDELAY (2); 9735 9736 T93C46_Clk(np, gpreg); 9737 } 9738 9739 /* 9740 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9741 */ 9742 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9743 { 9744 *gpreg &= 0xef; 9745 OUTB (nc_gpreg, *gpreg); 9746 UDELAY (2); 9747 9748 T93C46_Clk(np, gpreg); 9749 } 9750 9751 /* 9752 * Send read command and address to NVRAM 9753 */ 9754 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9755 u_char *read_bit, u_char *gpreg) 9756 { 9757 int x; 9758 9759 /* send 9 bits, start bit (1), command (2), address (6) */ 9760 for (x = 0; x < 9; x++) 9761 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9762 9763 *read_bit = INB (nc_gpreg); 9764 } 9765 9766 /* 9767 * READ 2 bytes from the NVRAM 9768 */ 9769 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9770 { 9771 int x; 9772 u_char read_bit; 9773 9774 *nvram_data = 0; 9775 for (x = 0; x < 16; x++) { 9776 T93C46_Read_Bit(np, &read_bit, gpreg); 9777 9778 if (read_bit & 0x01) 9779 *nvram_data |= (0x01 << (15 - x)); 9780 else 9781 *nvram_data &= ~(0x01 << (15 - x)); 9782 } 9783 } 9784 9785 /* 9786 * Read Tekram NvRAM data. 9787 */ 9788 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9789 { 9790 u_char read_bit; 9791 int x; 9792 9793 for (x = 0; x < len; x++) { 9794 9795 /* output read command and address */ 9796 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9797 if (read_bit & 0x01) 9798 return 1; /* Bad */ 9799 T93C46_Read_Word(np, &data[x], gpreg); 9800 T93C46_Stop(np, gpreg); 9801 } 9802 9803 return 0; 9804 } 9805 9806 /* 9807 * Try reading 93C46 Tekram NVRAM. 9808 */ 9809 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9810 { 9811 u_char gpcntl, gpreg; 9812 u_char old_gpcntl, old_gpreg; 9813 int retv = 1; 9814 9815 /* save current state of GPCNTL and GPREG */ 9816 old_gpreg = INB (nc_gpreg); 9817 old_gpcntl = INB (nc_gpcntl); 9818 9819 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9820 1/2/4 out */ 9821 gpreg = old_gpreg & 0xe9; 9822 OUTB (nc_gpreg, gpreg); 9823 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9824 OUTB (nc_gpcntl, gpcntl); 9825 9826 /* input all of NVRAM, 64 words */ 9827 retv = T93C46_Read_Data(np, (u_short *) nvram, 9828 sizeof(*nvram) / sizeof(short), &gpreg); 9829 9830 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9831 OUTB (nc_gpcntl, old_gpcntl); 9832 OUTB (nc_gpreg, old_gpreg); 9833 9834 return retv; 9835 } 9836 9837 /* 9838 * Try reading Tekram NVRAM. 9839 * Return 0 if OK. 9840 */ 9841 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9842 { 9843 u_char *data = (u_char *) nvram; 9844 int len = sizeof(*nvram); 9845 u_short csum; 9846 int x; 9847 9848 switch (np->device_id) { 9849 case PCI_ID_SYM53C885: 9850 case PCI_ID_SYM53C895: 9851 case PCI_ID_SYM53C896: 9852 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9853 data, len); 9854 break; 9855 case PCI_ID_SYM53C875: 9856 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9857 data, len); 9858 if (!x) 9859 break; 9860 default: 9861 x = sym_read_T93C46_nvram(np, nvram); 9862 break; 9863 } 9864 if (x) 9865 return 1; 9866 9867 /* verify checksum */ 9868 for (x = 0, csum = 0; x < len - 1; x += 2) 9869 csum += data[x] + (data[x+1] << 8); 9870 if (csum != 0x1234) 9871 return 1; 9872 9873 return 0; 9874 } 9875 9876 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9877