1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 74 #include <sys/systm.h> 75 #include <sys/malloc.h> 76 #include <sys/endian.h> 77 #include <sys/kernel.h> 78 #include <sys/lock.h> 79 #include <sys/mutex.h> 80 #include <sys/module.h> 81 #include <sys/bus.h> 82 83 #include <sys/proc.h> 84 85 #include <dev/pci/pcireg.h> 86 #include <dev/pci/pcivar.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/cam_ccb.h> 94 #include <cam/cam_sim.h> 95 #include <cam/cam_xpt_sim.h> 96 #include <cam/cam_debug.h> 97 98 #include <cam/scsi/scsi_all.h> 99 #include <cam/scsi/scsi_message.h> 100 101 #include <vm/vm.h> 102 #include <vm/vm_param.h> 103 #include <vm/pmap.h> 104 105 /* Short and quite clear integer types */ 106 typedef int8_t s8; 107 typedef int16_t s16; 108 typedef int32_t s32; 109 typedef u_int8_t u8; 110 typedef u_int16_t u16; 111 typedef u_int32_t u32; 112 113 /* 114 * Driver definitions. 115 */ 116 #include <dev/sym/sym_defs.h> 117 #include <dev/sym/sym_fw.h> 118 119 /* 120 * IA32 architecture does not reorder STORES and prevents 121 * LOADS from passing STORES. It is called `program order' 122 * by Intel and allows device drivers to deal with memory 123 * ordering by only ensuring that the code is not reordered 124 * by the compiler when ordering is required. 125 * Other architectures implement a weaker ordering that 126 * requires memory barriers (and also IO barriers when they 127 * make sense) to be used. 128 */ 129 130 #if defined __i386__ || defined __amd64__ 131 #define MEMORY_BARRIER() do { ; } while(0) 132 #elif defined __powerpc__ 133 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 134 #elif defined __ia64__ 135 #define MEMORY_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory") 136 #elif defined __sparc64__ 137 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 138 #else 139 #error "Not supported platform" 140 #endif 141 142 /* 143 * A la VMS/CAM-3 queue management. 144 */ 145 146 typedef struct sym_quehead { 147 struct sym_quehead *flink; /* Forward pointer */ 148 struct sym_quehead *blink; /* Backward pointer */ 149 } SYM_QUEHEAD; 150 151 #define sym_que_init(ptr) do { \ 152 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 153 } while (0) 154 155 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) 156 { 157 return (head->flink == head) ? 0 : head->flink; 158 } 159 160 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) 161 { 162 return (head->blink == head) ? 0 : head->blink; 163 } 164 165 static __inline void __sym_que_add(struct sym_quehead * new, 166 struct sym_quehead * blink, 167 struct sym_quehead * flink) 168 { 169 flink->blink = new; 170 new->flink = flink; 171 new->blink = blink; 172 blink->flink = new; 173 } 174 175 static __inline void __sym_que_del(struct sym_quehead * blink, 176 struct sym_quehead * flink) 177 { 178 flink->blink = blink; 179 blink->flink = flink; 180 } 181 182 static __inline int sym_que_empty(struct sym_quehead *head) 183 { 184 return head->flink == head; 185 } 186 187 static __inline void sym_que_splice(struct sym_quehead *list, 188 struct sym_quehead *head) 189 { 190 struct sym_quehead *first = list->flink; 191 192 if (first != list) { 193 struct sym_quehead *last = list->blink; 194 struct sym_quehead *at = head->flink; 195 196 first->blink = head; 197 head->flink = first; 198 199 last->flink = at; 200 at->blink = last; 201 } 202 } 203 204 #define sym_que_entry(ptr, type, member) \ 205 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 206 207 208 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 209 210 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 211 212 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 213 214 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 215 { 216 struct sym_quehead *elem = head->flink; 217 218 if (elem != head) 219 __sym_que_del(head, elem->flink); 220 else 221 elem = 0; 222 return elem; 223 } 224 225 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 226 227 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) 228 { 229 struct sym_quehead *elem = head->blink; 230 231 if (elem != head) 232 __sym_que_del(elem->blink, head); 233 else 234 elem = 0; 235 return elem; 236 } 237 238 /* 239 * This one may be useful. 240 */ 241 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 242 for (qp = (head)->flink; qp != (head); qp = qp->flink) 243 /* 244 * FreeBSD does not offer our kind of queue in the CAM CCB. 245 * So, we have to cast. 246 */ 247 #define sym_qptr(p) ((struct sym_quehead *) (p)) 248 249 /* 250 * Simple bitmap operations. 251 */ 252 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 253 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 254 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 255 256 /* 257 * Number of tasks per device we want to handle. 258 */ 259 #if SYM_CONF_MAX_TAG_ORDER > 8 260 #error "more than 256 tags per logical unit not allowed." 261 #endif 262 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 263 264 /* 265 * Donnot use more tasks that we can handle. 266 */ 267 #ifndef SYM_CONF_MAX_TAG 268 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 269 #endif 270 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 271 #undef SYM_CONF_MAX_TAG 272 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 273 #endif 274 275 /* 276 * This one means 'NO TAG for this job' 277 */ 278 #define NO_TAG (256) 279 280 /* 281 * Number of SCSI targets. 282 */ 283 #if SYM_CONF_MAX_TARGET > 16 284 #error "more than 16 targets not allowed." 285 #endif 286 287 /* 288 * Number of logical units per target. 289 */ 290 #if SYM_CONF_MAX_LUN > 64 291 #error "more than 64 logical units per target not allowed." 292 #endif 293 294 /* 295 * Asynchronous pre-scaler (ns). Shall be 40 for 296 * the SCSI timings to be compliant. 297 */ 298 #define SYM_CONF_MIN_ASYNC (40) 299 300 /* 301 * Number of entries in the START and DONE queues. 302 * 303 * We limit to 1 PAGE in order to succeed allocation of 304 * these queues. Each entry is 8 bytes long (2 DWORDS). 305 */ 306 #ifdef SYM_CONF_MAX_START 307 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 308 #else 309 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 310 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 311 #endif 312 313 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 314 #undef SYM_CONF_MAX_QUEUE 315 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 316 #undef SYM_CONF_MAX_START 317 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 318 #endif 319 320 /* 321 * For this one, we want a short name :-) 322 */ 323 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 324 325 /* 326 * Active debugging tags and verbosity. 327 */ 328 #define DEBUG_ALLOC (0x0001) 329 #define DEBUG_PHASE (0x0002) 330 #define DEBUG_POLL (0x0004) 331 #define DEBUG_QUEUE (0x0008) 332 #define DEBUG_RESULT (0x0010) 333 #define DEBUG_SCATTER (0x0020) 334 #define DEBUG_SCRIPT (0x0040) 335 #define DEBUG_TINY (0x0080) 336 #define DEBUG_TIMING (0x0100) 337 #define DEBUG_NEGO (0x0200) 338 #define DEBUG_TAGS (0x0400) 339 #define DEBUG_POINTER (0x0800) 340 341 #if 0 342 static int sym_debug = 0; 343 #define DEBUG_FLAGS sym_debug 344 #else 345 /* #define DEBUG_FLAGS (0x0631) */ 346 #define DEBUG_FLAGS (0x0000) 347 348 #endif 349 #define sym_verbose (np->verbose) 350 351 /* 352 * Insert a delay in micro-seconds and milli-seconds. 353 */ 354 static void UDELAY(int us) { DELAY(us); } 355 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 356 357 /* 358 * Simple power of two buddy-like allocator. 359 * 360 * This simple code is not intended to be fast, but to 361 * provide power of 2 aligned memory allocations. 362 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 363 * this allocator allows simple and fast address calculations 364 * from the SCRIPTS code. In addition, cache line alignment 365 * is guaranteed for power of 2 cache line size. 366 * 367 * This allocator has been developped for the Linux sym53c8xx 368 * driver, since this O/S does not provide naturally aligned 369 * allocations. 370 * It has the advantage of allowing the driver to use private 371 * pages of memory that will be useful if we ever need to deal 372 * with IO MMUs for PCI. 373 */ 374 375 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 376 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 377 #if 0 378 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 379 #endif 380 #define MEMO_WARN 1 381 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 382 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 383 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 384 385 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 386 #define free_pages(p) free((p), M_DEVBUF) 387 388 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 389 390 typedef struct m_link { /* Link between free memory chunks */ 391 struct m_link *next; 392 } m_link_s; 393 394 typedef struct m_vtob { /* Virtual to Bus address translation */ 395 struct m_vtob *next; 396 bus_dmamap_t dmamap; /* Map for this chunk */ 397 m_addr_t vaddr; /* Virtual address */ 398 m_addr_t baddr; /* Bus physical address */ 399 } m_vtob_s; 400 /* Hash this stuff a bit to speed up translations */ 401 #define VTOB_HASH_SHIFT 5 402 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 403 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 404 #define VTOB_HASH_CODE(m) \ 405 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 406 407 typedef struct m_pool { /* Memory pool of a given kind */ 408 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 409 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 410 m_addr_t (*getp)(struct m_pool *); 411 #ifdef MEMO_FREE_UNUSED 412 void (*freep)(struct m_pool *, m_addr_t); 413 #endif 414 #define M_GETP() mp->getp(mp) 415 #define M_FREEP(p) mp->freep(mp, p) 416 int nump; 417 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 418 struct m_pool *next; 419 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 420 } m_pool_s; 421 422 static void *___sym_malloc(m_pool_s *mp, int size) 423 { 424 int i = 0; 425 int s = (1 << MEMO_SHIFT); 426 int j; 427 m_addr_t a; 428 m_link_s *h = mp->h; 429 430 if (size > MEMO_CLUSTER_SIZE) 431 return 0; 432 433 while (size > s) { 434 s <<= 1; 435 ++i; 436 } 437 438 j = i; 439 while (!h[j].next) { 440 if (s == MEMO_CLUSTER_SIZE) { 441 h[j].next = (m_link_s *) M_GETP(); 442 if (h[j].next) 443 h[j].next->next = 0; 444 break; 445 } 446 ++j; 447 s <<= 1; 448 } 449 a = (m_addr_t) h[j].next; 450 if (a) { 451 h[j].next = h[j].next->next; 452 while (j > i) { 453 j -= 1; 454 s >>= 1; 455 h[j].next = (m_link_s *) (a+s); 456 h[j].next->next = 0; 457 } 458 } 459 #ifdef DEBUG 460 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 461 #endif 462 return (void *) a; 463 } 464 465 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 466 { 467 int i = 0; 468 int s = (1 << MEMO_SHIFT); 469 m_link_s *q; 470 m_addr_t a, b; 471 m_link_s *h = mp->h; 472 473 #ifdef DEBUG 474 printf("___sym_mfree(%p, %d)\n", ptr, size); 475 #endif 476 477 if (size > MEMO_CLUSTER_SIZE) 478 return; 479 480 while (size > s) { 481 s <<= 1; 482 ++i; 483 } 484 485 a = (m_addr_t) ptr; 486 487 while (1) { 488 #ifdef MEMO_FREE_UNUSED 489 if (s == MEMO_CLUSTER_SIZE) { 490 M_FREEP(a); 491 break; 492 } 493 #endif 494 b = a ^ s; 495 q = &h[i]; 496 while (q->next && q->next != (m_link_s *) b) { 497 q = q->next; 498 } 499 if (!q->next) { 500 ((m_link_s *) a)->next = h[i].next; 501 h[i].next = (m_link_s *) a; 502 break; 503 } 504 q->next = q->next->next; 505 a = a & b; 506 s <<= 1; 507 ++i; 508 } 509 } 510 511 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 512 { 513 void *p; 514 515 p = ___sym_malloc(mp, size); 516 517 if (DEBUG_FLAGS & DEBUG_ALLOC) 518 printf ("new %-10s[%4d] @%p.\n", name, size, p); 519 520 if (p) 521 bzero(p, size); 522 else if (uflags & MEMO_WARN) 523 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 524 525 return p; 526 } 527 528 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 529 530 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 531 { 532 if (DEBUG_FLAGS & DEBUG_ALLOC) 533 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 534 535 ___sym_mfree(mp, ptr, size); 536 537 } 538 539 /* 540 * Default memory pool we donnot need to involve in DMA. 541 */ 542 /* 543 * With the `bus dma abstraction', we use a separate pool for 544 * memory we donnot need to involve in DMA. 545 */ 546 static m_addr_t ___mp0_getp(m_pool_s *mp) 547 { 548 m_addr_t m = (m_addr_t) get_pages(); 549 if (m) 550 ++mp->nump; 551 return m; 552 } 553 554 #ifdef MEMO_FREE_UNUSED 555 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 556 { 557 free_pages(m); 558 --mp->nump; 559 } 560 #endif 561 562 #ifdef MEMO_FREE_UNUSED 563 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 564 #else 565 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 566 #endif 567 568 569 /* 570 * Actual memory allocation routine for non-DMAed memory. 571 */ 572 static void *sym_calloc(int size, char *name) 573 { 574 void *m; 575 /* Lock */ 576 m = __sym_calloc(&mp0, size, name); 577 /* Unlock */ 578 return m; 579 } 580 581 /* 582 * Actual memory allocation routine for non-DMAed memory. 583 */ 584 static void sym_mfree(void *ptr, int size, char *name) 585 { 586 /* Lock */ 587 __sym_mfree(&mp0, ptr, size, name); 588 /* Unlock */ 589 } 590 591 /* 592 * DMAable pools. 593 */ 594 /* 595 * With `bus dma abstraction', we use a separate pool per parent 596 * BUS handle. A reverse table (hashed) is maintained for virtual 597 * to BUS address translation. 598 */ 599 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 600 { 601 bus_addr_t *baddr; 602 baddr = (bus_addr_t *)arg; 603 *baddr = segs->ds_addr; 604 } 605 606 static m_addr_t ___dma_getp(m_pool_s *mp) 607 { 608 m_vtob_s *vbp; 609 void *vaddr = 0; 610 bus_addr_t baddr = 0; 611 612 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 613 if (!vbp) 614 goto out_err; 615 616 if (bus_dmamem_alloc(mp->dmat, &vaddr, 617 BUS_DMA_NOWAIT, &vbp->dmamap)) 618 goto out_err; 619 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 620 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 621 if (baddr) { 622 int hc = VTOB_HASH_CODE(vaddr); 623 vbp->vaddr = (m_addr_t) vaddr; 624 vbp->baddr = (m_addr_t) baddr; 625 vbp->next = mp->vtob[hc]; 626 mp->vtob[hc] = vbp; 627 ++mp->nump; 628 return (m_addr_t) vaddr; 629 } 630 out_err: 631 if (baddr) 632 bus_dmamap_unload(mp->dmat, vbp->dmamap); 633 if (vaddr) 634 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 635 if (vbp) { 636 if (vbp->dmamap) 637 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 638 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 639 } 640 return 0; 641 } 642 643 #ifdef MEMO_FREE_UNUSED 644 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 645 { 646 m_vtob_s **vbpp, *vbp; 647 int hc = VTOB_HASH_CODE(m); 648 649 vbpp = &mp->vtob[hc]; 650 while (*vbpp && (*vbpp)->vaddr != m) 651 vbpp = &(*vbpp)->next; 652 if (*vbpp) { 653 vbp = *vbpp; 654 *vbpp = (*vbpp)->next; 655 bus_dmamap_unload(mp->dmat, vbp->dmamap); 656 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 657 bus_dmamap_destroy(mp->dmat, vbp->dmamap); 658 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 659 --mp->nump; 660 } 661 } 662 #endif 663 664 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 665 { 666 m_pool_s *mp; 667 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 668 return mp; 669 } 670 671 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 672 { 673 m_pool_s *mp = 0; 674 675 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 676 if (mp) { 677 mp->dev_dmat = dev_dmat; 678 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 679 BUS_SPACE_MAXADDR_32BIT, 680 BUS_SPACE_MAXADDR, 681 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 682 MEMO_CLUSTER_SIZE, 0, 683 busdma_lock_mutex, &Giant, &mp->dmat)) { 684 mp->getp = ___dma_getp; 685 #ifdef MEMO_FREE_UNUSED 686 mp->freep = ___dma_freep; 687 #endif 688 mp->next = mp0.next; 689 mp0.next = mp; 690 return mp; 691 } 692 } 693 if (mp) 694 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 695 return 0; 696 } 697 698 #ifdef MEMO_FREE_UNUSED 699 static void ___del_dma_pool(m_pool_s *p) 700 { 701 struct m_pool **pp = &mp0.next; 702 703 while (*pp && *pp != p) 704 pp = &(*pp)->next; 705 if (*pp) { 706 *pp = (*pp)->next; 707 bus_dma_tag_destroy(p->dmat); 708 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 709 } 710 } 711 #endif 712 713 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 714 { 715 struct m_pool *mp; 716 void *m = 0; 717 718 /* Lock */ 719 mp = ___get_dma_pool(dev_dmat); 720 if (!mp) 721 mp = ___cre_dma_pool(dev_dmat); 722 if (mp) 723 m = __sym_calloc(mp, size, name); 724 #ifdef MEMO_FREE_UNUSED 725 if (mp && !mp->nump) 726 ___del_dma_pool(mp); 727 #endif 728 /* Unlock */ 729 730 return m; 731 } 732 733 static void 734 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 735 { 736 struct m_pool *mp; 737 738 /* Lock */ 739 mp = ___get_dma_pool(dev_dmat); 740 if (mp) 741 __sym_mfree(mp, m, size, name); 742 #ifdef MEMO_FREE_UNUSED 743 if (mp && !mp->nump) 744 ___del_dma_pool(mp); 745 #endif 746 /* Unlock */ 747 } 748 749 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 750 { 751 m_pool_s *mp; 752 int hc = VTOB_HASH_CODE(m); 753 m_vtob_s *vp = 0; 754 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 755 756 /* Lock */ 757 mp = ___get_dma_pool(dev_dmat); 758 if (mp) { 759 vp = mp->vtob[hc]; 760 while (vp && (m_addr_t) vp->vaddr != a) 761 vp = vp->next; 762 } 763 /* Unlock */ 764 if (!vp) 765 panic("sym: VTOBUS FAILED!\n"); 766 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 767 } 768 769 770 /* 771 * Verbs for DMAable memory handling. 772 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 773 * being discarded. 774 */ 775 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 776 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 777 #define _sym_mfree_dma(np, p, s, n) \ 778 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 779 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 780 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 781 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 782 #define vtobus(p) _vtobus(np, p) 783 784 785 /* 786 * Print a buffer in hexadecimal format. 787 */ 788 static void sym_printb_hex (u_char *p, int n) 789 { 790 while (n-- > 0) 791 printf (" %x", *p++); 792 } 793 794 /* 795 * Same with a label at beginning and .\n at end. 796 */ 797 static void sym_printl_hex (char *label, u_char *p, int n) 798 { 799 printf ("%s", label); 800 sym_printb_hex (p, n); 801 printf (".\n"); 802 } 803 804 /* 805 * Return a string for SCSI BUS mode. 806 */ 807 static char *sym_scsi_bus_mode(int mode) 808 { 809 switch(mode) { 810 case SMODE_HVD: return "HVD"; 811 case SMODE_SE: return "SE"; 812 case SMODE_LVD: return "LVD"; 813 } 814 return "??"; 815 } 816 817 /* 818 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 819 */ 820 #ifdef SYM_CONF_NVRAM_SUPPORT 821 static u_char Tekram_sync[16] = 822 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 823 #endif 824 825 /* 826 * Union of supported NVRAM formats. 827 */ 828 struct sym_nvram { 829 int type; 830 #define SYM_SYMBIOS_NVRAM (1) 831 #define SYM_TEKRAM_NVRAM (2) 832 #ifdef SYM_CONF_NVRAM_SUPPORT 833 union { 834 Symbios_nvram Symbios; 835 Tekram_nvram Tekram; 836 } data; 837 #endif 838 }; 839 840 /* 841 * This one is hopefully useless, but actually useful. :-) 842 */ 843 #ifndef assert 844 #define assert(expression) { \ 845 if (!(expression)) { \ 846 (void)panic( \ 847 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 848 #expression, \ 849 __FILE__, __LINE__); \ 850 } \ 851 } 852 #endif 853 854 /* 855 * Some provision for a possible big endian mode supported by 856 * Symbios chips (never seen, by the way). 857 * For now, this stuff does not deserve any comments. :) 858 */ 859 860 #define sym_offb(o) (o) 861 #define sym_offw(o) (o) 862 863 /* 864 * Some provision for support for BIG ENDIAN CPU. 865 */ 866 867 #define cpu_to_scr(dw) htole32(dw) 868 #define scr_to_cpu(dw) le32toh(dw) 869 870 /* 871 * Access to the chip IO registers and on-chip RAM. 872 * We use the `bus space' interface under FreeBSD-4 and 873 * later kernel versions. 874 */ 875 876 877 #if defined(SYM_CONF_IOMAPPED) 878 879 #define INB_OFF(o) bus_space_read_1(np->io_tag, np->io_bsh, o) 880 #define INW_OFF(o) bus_space_read_2(np->io_tag, np->io_bsh, o) 881 #define INL_OFF(o) bus_space_read_4(np->io_tag, np->io_bsh, o) 882 883 #define OUTB_OFF(o, v) bus_space_write_1(np->io_tag, np->io_bsh, o, (v)) 884 #define OUTW_OFF(o, v) bus_space_write_2(np->io_tag, np->io_bsh, o, (v)) 885 #define OUTL_OFF(o, v) bus_space_write_4(np->io_tag, np->io_bsh, o, (v)) 886 887 #else /* Memory mapped IO */ 888 889 #define INB_OFF(o) bus_space_read_1(np->mmio_tag, np->mmio_bsh, o) 890 #define INW_OFF(o) bus_space_read_2(np->mmio_tag, np->mmio_bsh, o) 891 #define INL_OFF(o) bus_space_read_4(np->mmio_tag, np->mmio_bsh, o) 892 893 #define OUTB_OFF(o, v) bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v)) 894 #define OUTW_OFF(o, v) bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v)) 895 #define OUTL_OFF(o, v) bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v)) 896 897 #endif /* SYM_CONF_IOMAPPED */ 898 899 #define OUTRAM_OFF(o, a, l) \ 900 bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l)) 901 902 903 /* 904 * Common definitions for both bus space and legacy IO methods. 905 */ 906 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 907 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 908 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 909 910 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 911 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 912 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 913 914 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 915 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 916 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 917 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 918 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 919 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 920 921 /* 922 * We normally want the chip to have a consistent view 923 * of driver internal data structures when we restart it. 924 * Thus these macros. 925 */ 926 #define OUTL_DSP(v) \ 927 do { \ 928 MEMORY_BARRIER(); \ 929 OUTL (nc_dsp, (v)); \ 930 } while (0) 931 932 #define OUTONB_STD() \ 933 do { \ 934 MEMORY_BARRIER(); \ 935 OUTONB (nc_dcntl, (STD|NOCOM)); \ 936 } while (0) 937 938 /* 939 * Command control block states. 940 */ 941 #define HS_IDLE (0) 942 #define HS_BUSY (1) 943 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 944 #define HS_DISCONNECT (3) /* Disconnected by target */ 945 #define HS_WAIT (4) /* waiting for resource */ 946 947 #define HS_DONEMASK (0x80) 948 #define HS_COMPLETE (4|HS_DONEMASK) 949 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 950 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 951 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 952 953 /* 954 * Software Interrupt Codes 955 */ 956 #define SIR_BAD_SCSI_STATUS (1) 957 #define SIR_SEL_ATN_NO_MSG_OUT (2) 958 #define SIR_MSG_RECEIVED (3) 959 #define SIR_MSG_WEIRD (4) 960 #define SIR_NEGO_FAILED (5) 961 #define SIR_NEGO_PROTO (6) 962 #define SIR_SCRIPT_STOPPED (7) 963 #define SIR_REJECT_TO_SEND (8) 964 #define SIR_SWIDE_OVERRUN (9) 965 #define SIR_SODL_UNDERRUN (10) 966 #define SIR_RESEL_NO_MSG_IN (11) 967 #define SIR_RESEL_NO_IDENTIFY (12) 968 #define SIR_RESEL_BAD_LUN (13) 969 #define SIR_TARGET_SELECTED (14) 970 #define SIR_RESEL_BAD_I_T_L (15) 971 #define SIR_RESEL_BAD_I_T_L_Q (16) 972 #define SIR_ABORT_SENT (17) 973 #define SIR_RESEL_ABORTED (18) 974 #define SIR_MSG_OUT_DONE (19) 975 #define SIR_COMPLETE_ERROR (20) 976 #define SIR_DATA_OVERRUN (21) 977 #define SIR_BAD_PHASE (22) 978 #define SIR_MAX (22) 979 980 /* 981 * Extended error bit codes. 982 * xerr_status field of struct sym_ccb. 983 */ 984 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 985 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 986 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 987 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 988 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 989 990 /* 991 * Negotiation status. 992 * nego_status field of struct sym_ccb. 993 */ 994 #define NS_SYNC (1) 995 #define NS_WIDE (2) 996 #define NS_PPR (3) 997 998 /* 999 * A CCB hashed table is used to retrieve CCB address 1000 * from DSA value. 1001 */ 1002 #define CCB_HASH_SHIFT 8 1003 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 1004 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 1005 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 1006 1007 /* 1008 * Device flags. 1009 */ 1010 #define SYM_DISC_ENABLED (1) 1011 #define SYM_TAGS_ENABLED (1<<1) 1012 #define SYM_SCAN_BOOT_DISABLED (1<<2) 1013 #define SYM_SCAN_LUNS_DISABLED (1<<3) 1014 1015 /* 1016 * Host adapter miscellaneous flags. 1017 */ 1018 #define SYM_AVOID_BUS_RESET (1) 1019 #define SYM_SCAN_TARGETS_HILO (1<<1) 1020 1021 /* 1022 * Device quirks. 1023 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1024 * saving the DATA POINTER then reselects and terminates the IO. 1025 * On reselection, the automatic RESTORE DATA POINTER makes the 1026 * CURRENT DATA POINTER not point at the end of the IO. 1027 * This behaviour just breaks our calculation of the residual. 1028 * For now, we just force an AUTO SAVE on disconnection and will 1029 * fix that in a further driver version. 1030 */ 1031 #define SYM_QUIRK_AUTOSAVE 1 1032 1033 /* 1034 * Misc. 1035 */ 1036 #define SYM_SNOOP_TIMEOUT (10000000) 1037 #define SYM_PCI_IO PCIR_BAR(0) 1038 #define SYM_PCI_MMIO PCIR_BAR(1) 1039 #define SYM_PCI_RAM PCIR_BAR(2) 1040 #define SYM_PCI_RAM64 PCIR_BAR(3) 1041 1042 /* 1043 * Back-pointer from the CAM CCB to our data structures. 1044 */ 1045 #define sym_hcb_ptr spriv_ptr0 1046 /* #define sym_ccb_ptr spriv_ptr1 */ 1047 1048 /* 1049 * We mostly have to deal with pointers. 1050 * Thus these typedef's. 1051 */ 1052 typedef struct sym_tcb *tcb_p; 1053 typedef struct sym_lcb *lcb_p; 1054 typedef struct sym_ccb *ccb_p; 1055 typedef struct sym_hcb *hcb_p; 1056 1057 /* 1058 * Gather negotiable parameters value 1059 */ 1060 struct sym_trans { 1061 u8 scsi_version; 1062 u8 spi_version; 1063 u8 period; 1064 u8 offset; 1065 u8 width; 1066 u8 options; /* PPR options */ 1067 }; 1068 1069 struct sym_tinfo { 1070 struct sym_trans current; 1071 struct sym_trans goal; 1072 struct sym_trans user; 1073 }; 1074 1075 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1076 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1077 1078 /* 1079 * Global TCB HEADER. 1080 * 1081 * Due to lack of indirect addressing on earlier NCR chips, 1082 * this substructure is copied from the TCB to a global 1083 * address after selection. 1084 * For SYMBIOS chips that support LOAD/STORE this copy is 1085 * not needed and thus not performed. 1086 */ 1087 struct sym_tcbh { 1088 /* 1089 * Scripts bus addresses of LUN table accessed from scripts. 1090 * LUN #0 is a special case, since multi-lun devices are rare, 1091 * and we we want to speed-up the general case and not waste 1092 * resources. 1093 */ 1094 u32 luntbl_sa; /* bus address of this table */ 1095 u32 lun0_sa; /* bus address of LCB #0 */ 1096 /* 1097 * Actual SYNC/WIDE IO registers value for this target. 1098 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1099 * so have alignment constraints. 1100 */ 1101 /*0*/ u_char uval; /* -> SCNTL4 register */ 1102 /*1*/ u_char sval; /* -> SXFER io register */ 1103 /*2*/ u_char filler1; 1104 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1105 }; 1106 1107 /* 1108 * Target Control Block 1109 */ 1110 struct sym_tcb { 1111 /* 1112 * TCB header. 1113 * Assumed at offset 0. 1114 */ 1115 /*0*/ struct sym_tcbh head; 1116 1117 /* 1118 * LUN table used by the SCRIPTS processor. 1119 * An array of bus addresses is used on reselection. 1120 */ 1121 u32 *luntbl; /* LCBs bus address table */ 1122 1123 /* 1124 * LUN table used by the C code. 1125 */ 1126 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1127 #if SYM_CONF_MAX_LUN > 1 1128 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1129 #endif 1130 1131 /* 1132 * Bitmap that tells about LUNs that succeeded at least 1133 * 1 IO and therefore assumed to be a real device. 1134 * Avoid useless allocation of the LCB structure. 1135 */ 1136 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1137 1138 /* 1139 * Bitmap that tells about LUNs that haven't yet an LCB 1140 * allocated (not discovered or LCB allocation failed). 1141 */ 1142 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1143 1144 /* 1145 * Transfer capabilities (SIP) 1146 */ 1147 struct sym_tinfo tinfo; 1148 1149 /* 1150 * Keep track of the CCB used for the negotiation in order 1151 * to ensure that only 1 negotiation is queued at a time. 1152 */ 1153 ccb_p nego_cp; /* CCB used for the nego */ 1154 1155 /* 1156 * Set when we want to reset the device. 1157 */ 1158 u_char to_reset; 1159 1160 /* 1161 * Other user settable limits and options. 1162 * These limits are read from the NVRAM if present. 1163 */ 1164 u_char usrflags; 1165 u_short usrtags; 1166 }; 1167 1168 /* 1169 * Global LCB HEADER. 1170 * 1171 * Due to lack of indirect addressing on earlier NCR chips, 1172 * this substructure is copied from the LCB to a global 1173 * address after selection. 1174 * For SYMBIOS chips that support LOAD/STORE this copy is 1175 * not needed and thus not performed. 1176 */ 1177 struct sym_lcbh { 1178 /* 1179 * SCRIPTS address jumped by SCRIPTS on reselection. 1180 * For not probed logical units, this address points to 1181 * SCRIPTS that deal with bad LU handling (must be at 1182 * offset zero of the LCB for that reason). 1183 */ 1184 /*0*/ u32 resel_sa; 1185 1186 /* 1187 * Task (bus address of a CCB) read from SCRIPTS that points 1188 * to the unique ITL nexus allowed to be disconnected. 1189 */ 1190 u32 itl_task_sa; 1191 1192 /* 1193 * Task table bus address (read from SCRIPTS). 1194 */ 1195 u32 itlq_tbl_sa; 1196 }; 1197 1198 /* 1199 * Logical Unit Control Block 1200 */ 1201 struct sym_lcb { 1202 /* 1203 * TCB header. 1204 * Assumed at offset 0. 1205 */ 1206 /*0*/ struct sym_lcbh head; 1207 1208 /* 1209 * Task table read from SCRIPTS that contains pointers to 1210 * ITLQ nexuses. The bus address read from SCRIPTS is 1211 * inside the header. 1212 */ 1213 u32 *itlq_tbl; /* Kernel virtual address */ 1214 1215 /* 1216 * Busy CCBs management. 1217 */ 1218 u_short busy_itlq; /* Number of busy tagged CCBs */ 1219 u_short busy_itl; /* Number of busy untagged CCBs */ 1220 1221 /* 1222 * Circular tag allocation buffer. 1223 */ 1224 u_short ia_tag; /* Tag allocation index */ 1225 u_short if_tag; /* Tag release index */ 1226 u_char *cb_tags; /* Circular tags buffer */ 1227 1228 /* 1229 * Set when we want to clear all tasks. 1230 */ 1231 u_char to_clear; 1232 1233 /* 1234 * Capabilities. 1235 */ 1236 u_char user_flags; 1237 u_char current_flags; 1238 }; 1239 1240 /* 1241 * Action from SCRIPTS on a task. 1242 * Is part of the CCB, but is also used separately to plug 1243 * error handling action to perform from SCRIPTS. 1244 */ 1245 struct sym_actscr { 1246 u32 start; /* Jumped by SCRIPTS after selection */ 1247 u32 restart; /* Jumped by SCRIPTS on relection */ 1248 }; 1249 1250 /* 1251 * Phase mismatch context. 1252 * 1253 * It is part of the CCB and is used as parameters for the 1254 * DATA pointer. We need two contexts to handle correctly the 1255 * SAVED DATA POINTER. 1256 */ 1257 struct sym_pmc { 1258 struct sym_tblmove sg; /* Updated interrupted SG block */ 1259 u32 ret; /* SCRIPT return address */ 1260 }; 1261 1262 /* 1263 * LUN control block lookup. 1264 * We use a direct pointer for LUN #0, and a table of 1265 * pointers which is only allocated for devices that support 1266 * LUN(s) > 0. 1267 */ 1268 #if SYM_CONF_MAX_LUN <= 1 1269 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 1270 #else 1271 #define sym_lp(np, tp, lun) \ 1272 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1273 #endif 1274 1275 /* 1276 * Status are used by the host and the script processor. 1277 * 1278 * The last four bytes (status[4]) are copied to the 1279 * scratchb register (declared as scr0..scr3) just after the 1280 * select/reselect, and copied back just after disconnecting. 1281 * Inside the script the XX_REG are used. 1282 */ 1283 1284 /* 1285 * Last four bytes (script) 1286 */ 1287 #define QU_REG scr0 1288 #define HS_REG scr1 1289 #define HS_PRT nc_scr1 1290 #define SS_REG scr2 1291 #define SS_PRT nc_scr2 1292 #define HF_REG scr3 1293 #define HF_PRT nc_scr3 1294 1295 /* 1296 * Last four bytes (host) 1297 */ 1298 #define actualquirks phys.head.status[0] 1299 #define host_status phys.head.status[1] 1300 #define ssss_status phys.head.status[2] 1301 #define host_flags phys.head.status[3] 1302 1303 /* 1304 * Host flags 1305 */ 1306 #define HF_IN_PM0 1u 1307 #define HF_IN_PM1 (1u<<1) 1308 #define HF_ACT_PM (1u<<2) 1309 #define HF_DP_SAVED (1u<<3) 1310 #define HF_SENSE (1u<<4) 1311 #define HF_EXT_ERR (1u<<5) 1312 #define HF_DATA_IN (1u<<6) 1313 #ifdef SYM_CONF_IARB_SUPPORT 1314 #define HF_HINT_IARB (1u<<7) 1315 #endif 1316 1317 /* 1318 * Global CCB HEADER. 1319 * 1320 * Due to lack of indirect addressing on earlier NCR chips, 1321 * this substructure is copied from the ccb to a global 1322 * address after selection (or reselection) and copied back 1323 * before disconnect. 1324 * For SYMBIOS chips that support LOAD/STORE this copy is 1325 * not needed and thus not performed. 1326 */ 1327 1328 struct sym_ccbh { 1329 /* 1330 * Start and restart SCRIPTS addresses (must be at 0). 1331 */ 1332 /*0*/ struct sym_actscr go; 1333 1334 /* 1335 * SCRIPTS jump address that deal with data pointers. 1336 * 'savep' points to the position in the script responsible 1337 * for the actual transfer of data. 1338 * It's written on reception of a SAVE_DATA_POINTER message. 1339 */ 1340 u32 savep; /* Jump address to saved data pointer */ 1341 u32 lastp; /* SCRIPTS address at end of data */ 1342 u32 goalp; /* Not accessed for now from SCRIPTS */ 1343 1344 /* 1345 * Status fields. 1346 */ 1347 u8 status[4]; 1348 }; 1349 1350 /* 1351 * Data Structure Block 1352 * 1353 * During execution of a ccb by the script processor, the 1354 * DSA (data structure address) register points to this 1355 * substructure of the ccb. 1356 */ 1357 struct sym_dsb { 1358 /* 1359 * CCB header. 1360 * Also assumed at offset 0 of the sym_ccb structure. 1361 */ 1362 /*0*/ struct sym_ccbh head; 1363 1364 /* 1365 * Phase mismatch contexts. 1366 * We need two to handle correctly the SAVED DATA POINTER. 1367 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1368 * for address calculation from SCRIPTS. 1369 */ 1370 struct sym_pmc pm0; 1371 struct sym_pmc pm1; 1372 1373 /* 1374 * Table data for Script 1375 */ 1376 struct sym_tblsel select; 1377 struct sym_tblmove smsg; 1378 struct sym_tblmove smsg_ext; 1379 struct sym_tblmove cmd; 1380 struct sym_tblmove sense; 1381 struct sym_tblmove wresid; 1382 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1383 }; 1384 1385 /* 1386 * Our Command Control Block 1387 */ 1388 struct sym_ccb { 1389 /* 1390 * This is the data structure which is pointed by the DSA 1391 * register when it is executed by the script processor. 1392 * It must be the first entry. 1393 */ 1394 struct sym_dsb phys; 1395 1396 /* 1397 * Pointer to CAM ccb and related stuff. 1398 */ 1399 union ccb *cam_ccb; /* CAM scsiio ccb */ 1400 u8 cdb_buf[16]; /* Copy of CDB */ 1401 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1402 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1403 int data_len; /* Total data length */ 1404 int segments; /* Number of SG segments */ 1405 1406 /* 1407 * Miscellaneous status'. 1408 */ 1409 u_char nego_status; /* Negotiation status */ 1410 u_char xerr_status; /* Extended error flags */ 1411 u32 extra_bytes; /* Extraneous bytes transferred */ 1412 1413 /* 1414 * Message areas. 1415 * We prepare a message to be sent after selection. 1416 * We may use a second one if the command is rescheduled 1417 * due to CHECK_CONDITION or COMMAND TERMINATED. 1418 * Contents are IDENTIFY and SIMPLE_TAG. 1419 * While negotiating sync or wide transfer, 1420 * a SDTR or WDTR message is appended. 1421 */ 1422 u_char scsi_smsg [12]; 1423 u_char scsi_smsg2[12]; 1424 1425 /* 1426 * Auto request sense related fields. 1427 */ 1428 u_char sensecmd[6]; /* Request Sense command */ 1429 u_char sv_scsi_status; /* Saved SCSI status */ 1430 u_char sv_xerr_status; /* Saved extended status */ 1431 int sv_resid; /* Saved residual */ 1432 1433 /* 1434 * Map for the DMA of user data. 1435 */ 1436 void *arg; /* Argument for some callback */ 1437 bus_dmamap_t dmamap; /* DMA map for user data */ 1438 u_char dmamapped; 1439 #define SYM_DMA_NONE 0 1440 #define SYM_DMA_READ 1 1441 #define SYM_DMA_WRITE 2 1442 /* 1443 * Other fields. 1444 */ 1445 u32 ccb_ba; /* BUS address of this CCB */ 1446 u_short tag; /* Tag for this transfer */ 1447 /* NO_TAG means no tag */ 1448 u_char target; 1449 u_char lun; 1450 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1451 SYM_QUEHEAD 1452 link_ccbq; /* Link to free/busy CCB queue */ 1453 u32 startp; /* Initial data pointer */ 1454 int ext_sg; /* Extreme data pointer, used */ 1455 int ext_ofs; /* to calculate the residual. */ 1456 u_char to_abort; /* Want this IO to be aborted */ 1457 }; 1458 1459 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1460 1461 /* 1462 * Host Control Block 1463 */ 1464 struct sym_hcb { 1465 /* 1466 * Global headers. 1467 * Due to poorness of addressing capabilities, earlier 1468 * chips (810, 815, 825) copy part of the data structures 1469 * (CCB, TCB and LCB) in fixed areas. 1470 */ 1471 #ifdef SYM_CONF_GENERIC_SUPPORT 1472 struct sym_ccbh ccb_head; 1473 struct sym_tcbh tcb_head; 1474 struct sym_lcbh lcb_head; 1475 #endif 1476 /* 1477 * Idle task and invalid task actions and 1478 * their bus addresses. 1479 */ 1480 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1481 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1482 1483 /* 1484 * Dummy lun table to protect us against target 1485 * returning bad lun number on reselection. 1486 */ 1487 u32 *badluntbl; /* Table physical address */ 1488 u32 badlun_sa; /* SCRIPT handler BUS address */ 1489 1490 /* 1491 * Bus address of this host control block. 1492 */ 1493 u32 hcb_ba; 1494 1495 /* 1496 * Bit 32-63 of the on-chip RAM bus address in LE format. 1497 * The START_RAM64 script loads the MMRS and MMWS from this 1498 * field. 1499 */ 1500 u32 scr_ram_seg; 1501 1502 /* 1503 * Chip and controller indentification. 1504 */ 1505 device_t device; 1506 int unit; 1507 char inst_name[8]; 1508 1509 /* 1510 * Initial value of some IO register bits. 1511 * These values are assumed to have been set by BIOS, and may 1512 * be used to probe adapter implementation differences. 1513 */ 1514 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1515 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1516 sv_stest1; 1517 1518 /* 1519 * Actual initial value of IO register bits used by the 1520 * driver. They are loaded at initialisation according to 1521 * features that are to be enabled/disabled. 1522 */ 1523 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1524 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1525 1526 /* 1527 * Target data. 1528 */ 1529 #ifdef __amd64__ 1530 struct sym_tcb *target; 1531 #else 1532 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1533 #endif 1534 1535 /* 1536 * Target control block bus address array used by the SCRIPT 1537 * on reselection. 1538 */ 1539 u32 *targtbl; 1540 u32 targtbl_ba; 1541 1542 /* 1543 * CAM SIM information for this instance. 1544 */ 1545 struct cam_sim *sim; 1546 struct cam_path *path; 1547 1548 /* 1549 * Allocated hardware resources. 1550 */ 1551 struct resource *irq_res; 1552 struct resource *io_res; 1553 struct resource *mmio_res; 1554 struct resource *ram_res; 1555 int ram_id; 1556 void *intr; 1557 1558 /* 1559 * Bus stuff. 1560 * 1561 * My understanding of PCI is that all agents must share the 1562 * same addressing range and model. 1563 * But some hardware architecture guys provide complex and 1564 * brain-deaded stuff that makes shit. 1565 * This driver only support PCI compliant implementations and 1566 * deals with part of the BUS stuff complexity only to fit O/S 1567 * requirements. 1568 */ 1569 bus_space_handle_t io_bsh; 1570 bus_space_tag_t io_tag; 1571 bus_space_handle_t mmio_bsh; 1572 bus_space_tag_t mmio_tag; 1573 bus_space_handle_t ram_bsh; 1574 bus_space_tag_t ram_tag; 1575 1576 /* 1577 * DMA stuff. 1578 */ 1579 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1580 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1581 /* 1582 * Virtual and physical bus addresses of the chip. 1583 */ 1584 vm_offset_t mmio_va; /* MMIO kernel virtual address */ 1585 vm_offset_t mmio_pa; /* MMIO CPU physical address */ 1586 vm_offset_t mmio_ba; /* MMIO BUS address */ 1587 int mmio_ws; /* MMIO Window size */ 1588 1589 vm_offset_t ram_va; /* RAM kernel virtual address */ 1590 vm_offset_t ram_pa; /* RAM CPU physical address */ 1591 vm_offset_t ram_ba; /* RAM BUS address */ 1592 int ram_ws; /* RAM window size */ 1593 u32 io_port; /* IO port address */ 1594 1595 /* 1596 * SCRIPTS virtual and physical bus addresses. 1597 * 'script' is loaded in the on-chip RAM if present. 1598 * 'scripth' stays in main memory for all chips except the 1599 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1600 */ 1601 u_char *scripta0; /* Copies of script and scripth */ 1602 u_char *scriptb0; /* Copies of script and scripth */ 1603 vm_offset_t scripta_ba; /* Actual script and scripth */ 1604 vm_offset_t scriptb_ba; /* bus addresses. */ 1605 vm_offset_t scriptb0_ba; 1606 u_short scripta_sz; /* Actual size of script A */ 1607 u_short scriptb_sz; /* Actual size of script B */ 1608 1609 /* 1610 * Bus addresses, setup and patch methods for 1611 * the selected firmware. 1612 */ 1613 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1614 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1615 void (*fw_setup)(hcb_p np, struct sym_fw *fw); 1616 void (*fw_patch)(hcb_p np); 1617 char *fw_name; 1618 1619 /* 1620 * General controller parameters and configuration. 1621 */ 1622 u_short device_id; /* PCI device id */ 1623 u_char revision_id; /* PCI device revision id */ 1624 u_int features; /* Chip features map */ 1625 u_char myaddr; /* SCSI id of the adapter */ 1626 u_char maxburst; /* log base 2 of dwords burst */ 1627 u_char maxwide; /* Maximum transfer width */ 1628 u_char minsync; /* Min sync period factor (ST) */ 1629 u_char maxsync; /* Max sync period factor (ST) */ 1630 u_char maxoffs; /* Max scsi offset (ST) */ 1631 u_char minsync_dt; /* Min sync period factor (DT) */ 1632 u_char maxsync_dt; /* Max sync period factor (DT) */ 1633 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1634 u_char multiplier; /* Clock multiplier (1,2,4) */ 1635 u_char clock_divn; /* Number of clock divisors */ 1636 u32 clock_khz; /* SCSI clock frequency in KHz */ 1637 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1638 /* 1639 * Start queue management. 1640 * It is filled up by the host processor and accessed by the 1641 * SCRIPTS processor in order to start SCSI commands. 1642 */ 1643 volatile /* Prevent code optimizations */ 1644 u32 *squeue; /* Start queue virtual address */ 1645 u32 squeue_ba; /* Start queue BUS address */ 1646 u_short squeueput; /* Next free slot of the queue */ 1647 u_short actccbs; /* Number of allocated CCBs */ 1648 1649 /* 1650 * Command completion queue. 1651 * It is the same size as the start queue to avoid overflow. 1652 */ 1653 u_short dqueueget; /* Next position to scan */ 1654 volatile /* Prevent code optimizations */ 1655 u32 *dqueue; /* Completion (done) queue */ 1656 u32 dqueue_ba; /* Done queue BUS address */ 1657 1658 /* 1659 * Miscellaneous buffers accessed by the scripts-processor. 1660 * They shall be DWORD aligned, because they may be read or 1661 * written with a script command. 1662 */ 1663 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1664 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1665 u32 lastmsg; /* Last SCSI message sent */ 1666 u_char scratch; /* Scratch for SCSI receive */ 1667 1668 /* 1669 * Miscellaneous configuration and status parameters. 1670 */ 1671 u_char usrflags; /* Miscellaneous user flags */ 1672 u_char scsi_mode; /* Current SCSI BUS mode */ 1673 u_char verbose; /* Verbosity for this controller*/ 1674 u32 cache; /* Used for cache test at init. */ 1675 1676 /* 1677 * CCB lists and queue. 1678 */ 1679 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1680 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1681 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1682 1683 /* 1684 * During error handling and/or recovery, 1685 * active CCBs that are to be completed with 1686 * error or requeued are moved from the busy_ccbq 1687 * to the comp_ccbq prior to completion. 1688 */ 1689 SYM_QUEHEAD comp_ccbq; 1690 1691 /* 1692 * CAM CCB pending queue. 1693 */ 1694 SYM_QUEHEAD cam_ccbq; 1695 1696 /* 1697 * IMMEDIATE ARBITRATION (IARB) control. 1698 * 1699 * We keep track in 'last_cp' of the last CCB that has been 1700 * queued to the SCRIPTS processor and clear 'last_cp' when 1701 * this CCB completes. If last_cp is not zero at the moment 1702 * we queue a new CCB, we set a flag in 'last_cp' that is 1703 * used by the SCRIPTS as a hint for setting IARB. 1704 * We donnot set more than 'iarb_max' consecutive hints for 1705 * IARB in order to leave devices a chance to reselect. 1706 * By the way, any non zero value of 'iarb_max' is unfair. :) 1707 */ 1708 #ifdef SYM_CONF_IARB_SUPPORT 1709 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1710 u_short iarb_count; /* Actual # of these hints */ 1711 ccb_p last_cp; 1712 #endif 1713 1714 /* 1715 * Command abort handling. 1716 * We need to synchronize tightly with the SCRIPTS 1717 * processor in order to handle things correctly. 1718 */ 1719 u_char abrt_msg[4]; /* Message to send buffer */ 1720 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1721 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1722 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1723 }; 1724 1725 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1726 1727 /* 1728 * Return the name of the controller. 1729 */ 1730 static __inline char *sym_name(hcb_p np) 1731 { 1732 return np->inst_name; 1733 } 1734 1735 /*--------------------------------------------------------------------------*/ 1736 /*------------------------------ FIRMWARES ---------------------------------*/ 1737 /*--------------------------------------------------------------------------*/ 1738 1739 /* 1740 * This stuff will be moved to a separate source file when 1741 * the driver will be broken into several source modules. 1742 */ 1743 1744 /* 1745 * Macros used for all firmwares. 1746 */ 1747 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1748 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1749 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1750 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1751 1752 1753 #ifdef SYM_CONF_GENERIC_SUPPORT 1754 /* 1755 * Allocate firmware #1 script area. 1756 */ 1757 #define SYM_FWA_SCR sym_fw1a_scr 1758 #define SYM_FWB_SCR sym_fw1b_scr 1759 #include <dev/sym/sym_fw1.h> 1760 struct sym_fwa_ofs sym_fw1a_ofs = { 1761 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1762 }; 1763 struct sym_fwb_ofs sym_fw1b_ofs = { 1764 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1765 }; 1766 #undef SYM_FWA_SCR 1767 #undef SYM_FWB_SCR 1768 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1769 1770 /* 1771 * Allocate firmware #2 script area. 1772 */ 1773 #define SYM_FWA_SCR sym_fw2a_scr 1774 #define SYM_FWB_SCR sym_fw2b_scr 1775 #include <dev/sym/sym_fw2.h> 1776 struct sym_fwa_ofs sym_fw2a_ofs = { 1777 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1778 }; 1779 struct sym_fwb_ofs sym_fw2b_ofs = { 1780 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1781 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1782 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1783 }; 1784 #undef SYM_FWA_SCR 1785 #undef SYM_FWB_SCR 1786 1787 #undef SYM_GEN_A 1788 #undef SYM_GEN_B 1789 #undef PADDR_A 1790 #undef PADDR_B 1791 1792 #ifdef SYM_CONF_GENERIC_SUPPORT 1793 /* 1794 * Patch routine for firmware #1. 1795 */ 1796 static void 1797 sym_fw1_patch(hcb_p np) 1798 { 1799 struct sym_fw1a_scr *scripta0; 1800 struct sym_fw1b_scr *scriptb0; 1801 1802 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1803 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1804 1805 /* 1806 * Remove LED support if not needed. 1807 */ 1808 if (!(np->features & FE_LED0)) { 1809 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1810 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1811 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1812 } 1813 1814 #ifdef SYM_CONF_IARB_SUPPORT 1815 /* 1816 * If user does not want to use IMMEDIATE ARBITRATION 1817 * when we are reselected while attempting to arbitrate, 1818 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1819 */ 1820 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1821 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1822 #endif 1823 /* 1824 * Patch some data in SCRIPTS. 1825 * - start and done queue initial bus address. 1826 * - target bus address table bus address. 1827 */ 1828 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1829 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1830 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1831 } 1832 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1833 1834 /* 1835 * Patch routine for firmware #2. 1836 */ 1837 static void 1838 sym_fw2_patch(hcb_p np) 1839 { 1840 struct sym_fw2a_scr *scripta0; 1841 struct sym_fw2b_scr *scriptb0; 1842 1843 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1844 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1845 1846 /* 1847 * Remove LED support if not needed. 1848 */ 1849 if (!(np->features & FE_LED0)) { 1850 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1851 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1852 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1853 } 1854 1855 #ifdef SYM_CONF_IARB_SUPPORT 1856 /* 1857 * If user does not want to use IMMEDIATE ARBITRATION 1858 * when we are reselected while attempting to arbitrate, 1859 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1860 */ 1861 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1862 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1863 #endif 1864 /* 1865 * Patch some variable in SCRIPTS. 1866 * - start and done queue initial bus address. 1867 * - target bus address table bus address. 1868 */ 1869 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1870 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1871 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1872 1873 /* 1874 * Remove the load of SCNTL4 on reselection if not a C10. 1875 */ 1876 if (!(np->features & FE_C10)) { 1877 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1878 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1879 } 1880 1881 /* 1882 * Remove a couple of work-arounds specific to C1010 if 1883 * they are not desirable. See `sym_fw2.h' for more details. 1884 */ 1885 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1886 np->revision_id < 0x1 && 1887 np->pciclk_khz < 60000)) { 1888 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1889 scripta0->datao_phase[1] = cpu_to_scr(0); 1890 } 1891 if (!(np->device_id == PCI_ID_LSI53C1010 && 1892 /* np->revision_id < 0xff */ 1)) { 1893 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1894 scripta0->sel_done[1] = cpu_to_scr(0); 1895 } 1896 1897 /* 1898 * Patch some other variables in SCRIPTS. 1899 * These ones are loaded by the SCRIPTS processor. 1900 */ 1901 scriptb0->pm0_data_addr[0] = 1902 cpu_to_scr(np->scripta_ba + 1903 offsetof(struct sym_fw2a_scr, pm0_data)); 1904 scriptb0->pm1_data_addr[0] = 1905 cpu_to_scr(np->scripta_ba + 1906 offsetof(struct sym_fw2a_scr, pm1_data)); 1907 } 1908 1909 /* 1910 * Fill the data area in scripts. 1911 * To be done for all firmwares. 1912 */ 1913 static void 1914 sym_fw_fill_data (u32 *in, u32 *out) 1915 { 1916 int i; 1917 1918 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1919 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1920 *in++ = offsetof (struct sym_dsb, data[i]); 1921 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1922 *out++ = offsetof (struct sym_dsb, data[i]); 1923 } 1924 } 1925 1926 /* 1927 * Setup useful script bus addresses. 1928 * To be done for all firmwares. 1929 */ 1930 static void 1931 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw) 1932 { 1933 u32 *pa; 1934 u_short *po; 1935 int i; 1936 1937 /* 1938 * Build the bus address table for script A 1939 * from the script A offset table. 1940 */ 1941 po = (u_short *) fw->a_ofs; 1942 pa = (u32 *) &np->fwa_bas; 1943 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1944 pa[i] = np->scripta_ba + po[i]; 1945 1946 /* 1947 * Same for script B. 1948 */ 1949 po = (u_short *) fw->b_ofs; 1950 pa = (u32 *) &np->fwb_bas; 1951 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1952 pa[i] = np->scriptb_ba + po[i]; 1953 } 1954 1955 #ifdef SYM_CONF_GENERIC_SUPPORT 1956 /* 1957 * Setup routine for firmware #1. 1958 */ 1959 static void 1960 sym_fw1_setup(hcb_p np, struct sym_fw *fw) 1961 { 1962 struct sym_fw1a_scr *scripta0; 1963 struct sym_fw1b_scr *scriptb0; 1964 1965 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1966 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1967 1968 /* 1969 * Fill variable parts in scripts. 1970 */ 1971 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1972 1973 /* 1974 * Setup bus addresses used from the C code.. 1975 */ 1976 sym_fw_setup_bus_addresses(np, fw); 1977 } 1978 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1979 1980 /* 1981 * Setup routine for firmware #2. 1982 */ 1983 static void 1984 sym_fw2_setup(hcb_p np, struct sym_fw *fw) 1985 { 1986 struct sym_fw2a_scr *scripta0; 1987 struct sym_fw2b_scr *scriptb0; 1988 1989 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1990 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1991 1992 /* 1993 * Fill variable parts in scripts. 1994 */ 1995 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1996 1997 /* 1998 * Setup bus addresses used from the C code.. 1999 */ 2000 sym_fw_setup_bus_addresses(np, fw); 2001 } 2002 2003 /* 2004 * Allocate firmware descriptors. 2005 */ 2006 #ifdef SYM_CONF_GENERIC_SUPPORT 2007 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 2008 #endif /* SYM_CONF_GENERIC_SUPPORT */ 2009 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 2010 2011 /* 2012 * Find the most appropriate firmware for a chip. 2013 */ 2014 static struct sym_fw * 2015 sym_find_firmware(struct sym_pci_chip *chip) 2016 { 2017 if (chip->features & FE_LDSTR) 2018 return &sym_fw2; 2019 #ifdef SYM_CONF_GENERIC_SUPPORT 2020 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 2021 return &sym_fw1; 2022 #endif 2023 else 2024 return 0; 2025 } 2026 2027 /* 2028 * Bind a script to physical addresses. 2029 */ 2030 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2031 { 2032 u32 opcode, new, old, tmp1, tmp2; 2033 u32 *end, *cur; 2034 int relocs; 2035 2036 cur = start; 2037 end = start + len/4; 2038 2039 while (cur < end) { 2040 2041 opcode = *cur; 2042 2043 /* 2044 * If we forget to change the length 2045 * in scripts, a field will be 2046 * padded with 0. This is an illegal 2047 * command. 2048 */ 2049 if (opcode == 0) { 2050 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2051 sym_name(np), (int) (cur-start)); 2052 MDELAY (10000); 2053 ++cur; 2054 continue; 2055 }; 2056 2057 /* 2058 * We use the bogus value 0xf00ff00f ;-) 2059 * to reserve data area in SCRIPTS. 2060 */ 2061 if (opcode == SCR_DATA_ZERO) { 2062 *cur++ = 0; 2063 continue; 2064 } 2065 2066 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2067 printf ("%d: <%x>\n", (int) (cur-start), 2068 (unsigned)opcode); 2069 2070 /* 2071 * We don't have to decode ALL commands 2072 */ 2073 switch (opcode >> 28) { 2074 case 0xf: 2075 /* 2076 * LOAD / STORE DSA relative, don't relocate. 2077 */ 2078 relocs = 0; 2079 break; 2080 case 0xe: 2081 /* 2082 * LOAD / STORE absolute. 2083 */ 2084 relocs = 1; 2085 break; 2086 case 0xc: 2087 /* 2088 * COPY has TWO arguments. 2089 */ 2090 relocs = 2; 2091 tmp1 = cur[1]; 2092 tmp2 = cur[2]; 2093 if ((tmp1 ^ tmp2) & 3) { 2094 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2095 sym_name(np), (int) (cur-start)); 2096 MDELAY (10000); 2097 } 2098 /* 2099 * If PREFETCH feature not enabled, remove 2100 * the NO FLUSH bit if present. 2101 */ 2102 if ((opcode & SCR_NO_FLUSH) && 2103 !(np->features & FE_PFEN)) { 2104 opcode = (opcode & ~SCR_NO_FLUSH); 2105 } 2106 break; 2107 case 0x0: 2108 /* 2109 * MOVE/CHMOV (absolute address) 2110 */ 2111 if (!(np->features & FE_WIDE)) 2112 opcode = (opcode | OPC_MOVE); 2113 relocs = 1; 2114 break; 2115 case 0x1: 2116 /* 2117 * MOVE/CHMOV (table indirect) 2118 */ 2119 if (!(np->features & FE_WIDE)) 2120 opcode = (opcode | OPC_MOVE); 2121 relocs = 0; 2122 break; 2123 case 0x8: 2124 /* 2125 * JUMP / CALL 2126 * dont't relocate if relative :-) 2127 */ 2128 if (opcode & 0x00800000) 2129 relocs = 0; 2130 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2131 relocs = 2; 2132 else 2133 relocs = 1; 2134 break; 2135 case 0x4: 2136 case 0x5: 2137 case 0x6: 2138 case 0x7: 2139 relocs = 1; 2140 break; 2141 default: 2142 relocs = 0; 2143 break; 2144 }; 2145 2146 /* 2147 * Scriptify:) the opcode. 2148 */ 2149 *cur++ = cpu_to_scr(opcode); 2150 2151 /* 2152 * If no relocation, assume 1 argument 2153 * and just scriptize:) it. 2154 */ 2155 if (!relocs) { 2156 *cur = cpu_to_scr(*cur); 2157 ++cur; 2158 continue; 2159 } 2160 2161 /* 2162 * Otherwise performs all needed relocations. 2163 */ 2164 while (relocs--) { 2165 old = *cur; 2166 2167 switch (old & RELOC_MASK) { 2168 case RELOC_REGISTER: 2169 new = (old & ~RELOC_MASK) + np->mmio_ba; 2170 break; 2171 case RELOC_LABEL_A: 2172 new = (old & ~RELOC_MASK) + np->scripta_ba; 2173 break; 2174 case RELOC_LABEL_B: 2175 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2176 break; 2177 case RELOC_SOFTC: 2178 new = (old & ~RELOC_MASK) + np->hcb_ba; 2179 break; 2180 case 0: 2181 /* 2182 * Don't relocate a 0 address. 2183 * They are mostly used for patched or 2184 * script self-modified areas. 2185 */ 2186 if (old == 0) { 2187 new = old; 2188 break; 2189 } 2190 /* fall through */ 2191 default: 2192 new = 0; 2193 panic("sym_fw_bind_script: " 2194 "weird relocation %x\n", old); 2195 break; 2196 } 2197 2198 *cur++ = cpu_to_scr(new); 2199 } 2200 }; 2201 } 2202 2203 /*---------------------------------------------------------------------------*/ 2204 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2205 /*---------------------------------------------------------------------------*/ 2206 2207 /* 2208 * Function prototypes. 2209 */ 2210 static void sym_save_initial_setting (hcb_p np); 2211 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2212 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2213 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2214 static void sym_chip_reset (hcb_p np); 2215 static void sym_soft_reset (hcb_p np); 2216 static void sym_start_reset (hcb_p np); 2217 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2218 static int sym_wakeup_done (hcb_p np); 2219 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2220 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2221 static void sym_init (hcb_p np, int reason); 2222 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2223 u_char *fakp); 2224 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2225 u_char div, u_char fak); 2226 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2227 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2228 u_char per, u_char wide, u_char div, u_char fak); 2229 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2230 u_char per, u_char wide, u_char div, u_char fak); 2231 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2232 static void sym_intr (void *arg); 2233 static void sym_poll (struct cam_sim *sim); 2234 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2235 static void sym_int_sto (hcb_p np); 2236 static void sym_int_udc (hcb_p np); 2237 static void sym_int_sbmc (hcb_p np); 2238 static void sym_int_par (hcb_p np, u_short sist); 2239 static void sym_int_ma (hcb_p np); 2240 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2241 int task); 2242 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); 2243 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2244 static void sym_sir_task_recovery (hcb_p np, int num); 2245 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2246 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); 2247 static int sym_compute_residual (hcb_p np, ccb_p cp); 2248 static int sym_show_msg (u_char * msg); 2249 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2250 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2251 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2252 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2253 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2254 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2255 static void sym_int_sir (hcb_p np); 2256 static void sym_free_ccb (hcb_p np, ccb_p cp); 2257 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2258 static ccb_p sym_alloc_ccb (hcb_p np); 2259 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2260 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2261 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2262 static int sym_snooptest (hcb_p np); 2263 static void sym_selectclock(hcb_p np, u_char scntl3); 2264 static void sym_getclock (hcb_p np, int mult); 2265 static int sym_getpciclock (hcb_p np); 2266 static void sym_complete_ok (hcb_p np, ccb_p cp); 2267 static void sym_complete_error (hcb_p np, ccb_p cp); 2268 static void sym_timeout (void *arg); 2269 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2270 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2271 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2272 static void sym_action1 (struct cam_sim *sim, union ccb *ccb); 2273 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2274 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2275 ccb_p cp); 2276 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2277 bus_dma_segment_t *psegs, int nsegs); 2278 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2279 bus_dma_segment_t *psegs, int nsegs); 2280 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2281 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, 2282 struct ccb_trans_settings *cts); 2283 static void sym_update_dflags(hcb_p np, u_char *flags, 2284 struct ccb_trans_settings *cts); 2285 2286 static struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2287 static int sym_pci_probe (device_t dev); 2288 static int sym_pci_attach (device_t dev); 2289 2290 static void sym_pci_free (hcb_p np); 2291 static int sym_cam_attach (hcb_p np); 2292 static void sym_cam_free (hcb_p np); 2293 2294 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2295 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2296 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2297 2298 /* 2299 * Print something which allows to retrieve the controler type, 2300 * unit, target, lun concerned by a kernel message. 2301 */ 2302 static void PRINT_TARGET (hcb_p np, int target) 2303 { 2304 printf ("%s:%d:", sym_name(np), target); 2305 } 2306 2307 static void PRINT_LUN(hcb_p np, int target, int lun) 2308 { 2309 printf ("%s:%d:%d:", sym_name(np), target, lun); 2310 } 2311 2312 static void PRINT_ADDR (ccb_p cp) 2313 { 2314 if (cp && cp->cam_ccb) 2315 xpt_print_path(cp->cam_ccb->ccb_h.path); 2316 } 2317 2318 /* 2319 * Take into account this ccb in the freeze count. 2320 */ 2321 static void sym_freeze_cam_ccb(union ccb *ccb) 2322 { 2323 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2324 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2325 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2326 xpt_freeze_devq(ccb->ccb_h.path, 1); 2327 } 2328 } 2329 } 2330 2331 /* 2332 * Set the status field of a CAM CCB. 2333 */ 2334 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2335 { 2336 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2337 ccb->ccb_h.status |= status; 2338 } 2339 2340 /* 2341 * Get the status field of a CAM CCB. 2342 */ 2343 static __inline int sym_get_cam_status(union ccb *ccb) 2344 { 2345 return ccb->ccb_h.status & CAM_STATUS_MASK; 2346 } 2347 2348 /* 2349 * Enqueue a CAM CCB. 2350 */ 2351 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) 2352 { 2353 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2354 ccb->ccb_h.status = CAM_REQ_INPROG; 2355 2356 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 2357 ccb->ccb_h.timeout*hz/1000); 2358 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2359 ccb->ccb_h.sym_hcb_ptr = np; 2360 2361 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2362 } 2363 2364 /* 2365 * Complete a pending CAM CCB. 2366 */ 2367 static void sym_xpt_done(hcb_p np, union ccb *ccb) 2368 { 2369 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2370 untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch); 2371 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2372 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2373 ccb->ccb_h.sym_hcb_ptr = 0; 2374 } 2375 if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) 2376 sym_freeze_cam_ccb(ccb); 2377 xpt_done(ccb); 2378 } 2379 2380 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2381 { 2382 sym_set_cam_status(ccb, cam_status); 2383 sym_xpt_done(np, ccb); 2384 } 2385 2386 /* 2387 * SYMBIOS chip clock divisor table. 2388 * 2389 * Divisors are multiplied by 10,000,000 in order to make 2390 * calculations more simple. 2391 */ 2392 #define _5M 5000000 2393 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2394 2395 /* 2396 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2397 * 128 transfers. All chips support at least 16 transfers 2398 * bursts. The 825A, 875 and 895 chips support bursts of up 2399 * to 128 transfers and the 895A and 896 support bursts of up 2400 * to 64 transfers. All other chips support up to 16 2401 * transfers bursts. 2402 * 2403 * For PCI 32 bit data transfers each transfer is a DWORD. 2404 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2405 * 2406 * We use log base 2 (burst length) as internal code, with 2407 * value 0 meaning "burst disabled". 2408 */ 2409 2410 /* 2411 * Burst length from burst code. 2412 */ 2413 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2414 2415 /* 2416 * Burst code from io register bits. 2417 */ 2418 #define burst_code(dmode, ctest4, ctest5) \ 2419 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2420 2421 /* 2422 * Set initial io register bits from burst code. 2423 */ 2424 static __inline void sym_init_burst(hcb_p np, u_char bc) 2425 { 2426 np->rv_ctest4 &= ~0x80; 2427 np->rv_dmode &= ~(0x3 << 6); 2428 np->rv_ctest5 &= ~0x4; 2429 2430 if (!bc) { 2431 np->rv_ctest4 |= 0x80; 2432 } 2433 else { 2434 --bc; 2435 np->rv_dmode |= ((bc & 0x3) << 6); 2436 np->rv_ctest5 |= (bc & 0x4); 2437 } 2438 } 2439 2440 2441 /* 2442 * Print out the list of targets that have some flag disabled by user. 2443 */ 2444 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2445 { 2446 int cnt; 2447 int i; 2448 2449 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2450 if (i == np->myaddr) 2451 continue; 2452 if (np->target[i].usrflags & mask) { 2453 if (!cnt++) 2454 printf("%s: %s disabled for targets", 2455 sym_name(np), msg); 2456 printf(" %d", i); 2457 } 2458 } 2459 if (cnt) 2460 printf(".\n"); 2461 } 2462 2463 /* 2464 * Save initial settings of some IO registers. 2465 * Assumed to have been set by BIOS. 2466 * We cannot reset the chip prior to reading the 2467 * IO registers, since informations will be lost. 2468 * Since the SCRIPTS processor may be running, this 2469 * is not safe on paper, but it seems to work quite 2470 * well. :) 2471 */ 2472 static void sym_save_initial_setting (hcb_p np) 2473 { 2474 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2475 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2476 np->sv_dmode = INB(nc_dmode) & 0xce; 2477 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2478 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2479 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2480 np->sv_gpcntl = INB(nc_gpcntl); 2481 np->sv_stest1 = INB(nc_stest1); 2482 np->sv_stest2 = INB(nc_stest2) & 0x20; 2483 np->sv_stest4 = INB(nc_stest4); 2484 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2485 np->sv_scntl4 = INB(nc_scntl4); 2486 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2487 } 2488 else 2489 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2490 } 2491 2492 /* 2493 * Prepare io register values used by sym_init() according 2494 * to selected and supported features. 2495 */ 2496 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2497 { 2498 u_char burst_max; 2499 u32 period; 2500 int i; 2501 2502 /* 2503 * Wide ? 2504 */ 2505 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2506 2507 /* 2508 * Get the frequency of the chip's clock. 2509 */ 2510 if (np->features & FE_QUAD) 2511 np->multiplier = 4; 2512 else if (np->features & FE_DBLR) 2513 np->multiplier = 2; 2514 else 2515 np->multiplier = 1; 2516 2517 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2518 np->clock_khz *= np->multiplier; 2519 2520 if (np->clock_khz != 40000) 2521 sym_getclock(np, np->multiplier); 2522 2523 /* 2524 * Divisor to be used for async (timer pre-scaler). 2525 */ 2526 i = np->clock_divn - 1; 2527 while (--i >= 0) { 2528 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2529 ++i; 2530 break; 2531 } 2532 } 2533 np->rv_scntl3 = i+1; 2534 2535 /* 2536 * The C1010 uses hardwired divisors for async. 2537 * So, we just throw away, the async. divisor.:-) 2538 */ 2539 if (np->features & FE_C10) 2540 np->rv_scntl3 = 0; 2541 2542 /* 2543 * Minimum synchronous period factor supported by the chip. 2544 * Btw, 'period' is in tenths of nanoseconds. 2545 */ 2546 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 2547 if (period <= 250) np->minsync = 10; 2548 else if (period <= 303) np->minsync = 11; 2549 else if (period <= 500) np->minsync = 12; 2550 else np->minsync = (period + 40 - 1) / 40; 2551 2552 /* 2553 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2554 */ 2555 if (np->minsync < 25 && 2556 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2557 np->minsync = 25; 2558 else if (np->minsync < 12 && 2559 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2560 np->minsync = 12; 2561 2562 /* 2563 * Maximum synchronous period factor supported by the chip. 2564 */ 2565 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2566 np->maxsync = period > 2540 ? 254 : period / 10; 2567 2568 /* 2569 * If chip is a C1010, guess the sync limits in DT mode. 2570 */ 2571 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2572 if (np->clock_khz == 160000) { 2573 np->minsync_dt = 9; 2574 np->maxsync_dt = 50; 2575 np->maxoffs_dt = 62; 2576 } 2577 } 2578 2579 /* 2580 * 64 bit addressing (895A/896/1010) ? 2581 */ 2582 if (np->features & FE_DAC) 2583 #ifdef __LP64__ 2584 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2585 #else 2586 np->rv_ccntl1 |= (DDAC); 2587 #endif 2588 2589 /* 2590 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2591 */ 2592 if (np->features & FE_NOPM) 2593 np->rv_ccntl0 |= (ENPMJ); 2594 2595 /* 2596 * C1010 Errata. 2597 * In dual channel mode, contention occurs if internal cycles 2598 * are used. Disable internal cycles. 2599 */ 2600 if (np->device_id == PCI_ID_LSI53C1010 && 2601 np->revision_id < 0x2) 2602 np->rv_ccntl0 |= DILS; 2603 2604 /* 2605 * Select burst length (dwords) 2606 */ 2607 burst_max = SYM_SETUP_BURST_ORDER; 2608 if (burst_max == 255) 2609 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2610 np->sv_ctest5); 2611 if (burst_max > 7) 2612 burst_max = 7; 2613 if (burst_max > np->maxburst) 2614 burst_max = np->maxburst; 2615 2616 /* 2617 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2618 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2619 * based transactions on LOAD/STORE instructions. So we have 2620 * to prevent these chips from using such PCI transactions in 2621 * this driver. The generic ncr driver that does not use 2622 * LOAD/STORE instructions does not need this work-around. 2623 */ 2624 if ((np->device_id == PCI_ID_SYM53C810 && 2625 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2626 (np->device_id == PCI_ID_SYM53C860 && 2627 np->revision_id <= 0x1)) 2628 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2629 2630 /* 2631 * Select all supported special features. 2632 * If we are using on-board RAM for scripts, prefetch (PFEN) 2633 * does not help, but burst op fetch (BOF) does. 2634 * Disabling PFEN makes sure BOF will be used. 2635 */ 2636 if (np->features & FE_ERL) 2637 np->rv_dmode |= ERL; /* Enable Read Line */ 2638 if (np->features & FE_BOF) 2639 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2640 if (np->features & FE_ERMP) 2641 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2642 #if 1 2643 if ((np->features & FE_PFEN) && !np->ram_ba) 2644 #else 2645 if (np->features & FE_PFEN) 2646 #endif 2647 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2648 if (np->features & FE_CLSE) 2649 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2650 if (np->features & FE_WRIE) 2651 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2652 if (np->features & FE_DFS) 2653 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2654 2655 /* 2656 * Select some other 2657 */ 2658 if (SYM_SETUP_PCI_PARITY) 2659 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2660 if (SYM_SETUP_SCSI_PARITY) 2661 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2662 2663 /* 2664 * Get parity checking, host ID and verbose mode from NVRAM 2665 */ 2666 np->myaddr = 255; 2667 sym_nvram_setup_host (np, nvram); 2668 2669 /* 2670 * Get SCSI addr of host adapter (set by bios?). 2671 */ 2672 if (np->myaddr == 255) { 2673 np->myaddr = INB(nc_scid) & 0x07; 2674 if (!np->myaddr) 2675 np->myaddr = SYM_SETUP_HOST_ID; 2676 } 2677 2678 /* 2679 * Prepare initial io register bits for burst length 2680 */ 2681 sym_init_burst(np, burst_max); 2682 2683 /* 2684 * Set SCSI BUS mode. 2685 * - LVD capable chips (895/895A/896/1010) report the 2686 * current BUS mode through the STEST4 IO register. 2687 * - For previous generation chips (825/825A/875), 2688 * user has to tell us how to check against HVD, 2689 * since a 100% safe algorithm is not possible. 2690 */ 2691 np->scsi_mode = SMODE_SE; 2692 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2693 np->scsi_mode = (np->sv_stest4 & SMODE); 2694 else if (np->features & FE_DIFF) { 2695 if (SYM_SETUP_SCSI_DIFF == 1) { 2696 if (np->sv_scntl3) { 2697 if (np->sv_stest2 & 0x20) 2698 np->scsi_mode = SMODE_HVD; 2699 } 2700 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2701 if (!(INB(nc_gpreg) & 0x08)) 2702 np->scsi_mode = SMODE_HVD; 2703 } 2704 } 2705 else if (SYM_SETUP_SCSI_DIFF == 2) 2706 np->scsi_mode = SMODE_HVD; 2707 } 2708 if (np->scsi_mode == SMODE_HVD) 2709 np->rv_stest2 |= 0x20; 2710 2711 /* 2712 * Set LED support from SCRIPTS. 2713 * Ignore this feature for boards known to use a 2714 * specific GPIO wiring and for the 895A, 896 2715 * and 1010 that drive the LED directly. 2716 */ 2717 if ((SYM_SETUP_SCSI_LED || 2718 (nvram->type == SYM_SYMBIOS_NVRAM || 2719 (nvram->type == SYM_TEKRAM_NVRAM && 2720 np->device_id == PCI_ID_SYM53C895))) && 2721 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2722 np->features |= FE_LED0; 2723 2724 /* 2725 * Set irq mode. 2726 */ 2727 switch(SYM_SETUP_IRQ_MODE & 3) { 2728 case 2: 2729 np->rv_dcntl |= IRQM; 2730 break; 2731 case 1: 2732 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2733 break; 2734 default: 2735 break; 2736 } 2737 2738 /* 2739 * Configure targets according to driver setup. 2740 * If NVRAM present get targets setup from NVRAM. 2741 */ 2742 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2743 tcb_p tp = &np->target[i]; 2744 2745 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2746 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2747 tp->tinfo.user.period = np->minsync; 2748 tp->tinfo.user.offset = np->maxoffs; 2749 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2750 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2751 tp->usrtags = SYM_SETUP_MAX_TAG; 2752 2753 sym_nvram_setup_target (np, i, nvram); 2754 2755 /* 2756 * For now, guess PPR/DT support from the period 2757 * and BUS width. 2758 */ 2759 if (np->features & FE_ULTRA3) { 2760 if (tp->tinfo.user.period <= 9 && 2761 tp->tinfo.user.width == BUS_16_BIT) { 2762 tp->tinfo.user.options |= PPR_OPT_DT; 2763 tp->tinfo.user.offset = np->maxoffs_dt; 2764 tp->tinfo.user.spi_version = 3; 2765 } 2766 } 2767 2768 if (!tp->usrtags) 2769 tp->usrflags &= ~SYM_TAGS_ENABLED; 2770 } 2771 2772 /* 2773 * Let user know about the settings. 2774 */ 2775 i = nvram->type; 2776 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2777 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2778 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2779 np->myaddr, 2780 (np->features & FE_ULTRA3) ? 80 : 2781 (np->features & FE_ULTRA2) ? 40 : 2782 (np->features & FE_ULTRA) ? 20 : 10, 2783 sym_scsi_bus_mode(np->scsi_mode), 2784 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2785 /* 2786 * Tell him more on demand. 2787 */ 2788 if (sym_verbose) { 2789 printf("%s: %s IRQ line driver%s\n", 2790 sym_name(np), 2791 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2792 np->ram_ba ? ", using on-chip SRAM" : ""); 2793 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2794 if (np->features & FE_NOPM) 2795 printf("%s: handling phase mismatch from SCRIPTS.\n", 2796 sym_name(np)); 2797 } 2798 /* 2799 * And still more. 2800 */ 2801 if (sym_verbose > 1) { 2802 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2803 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2804 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2805 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2806 2807 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2808 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2809 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2810 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2811 } 2812 /* 2813 * Let user be aware of targets that have some disable flags set. 2814 */ 2815 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2816 if (sym_verbose) 2817 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2818 "SCAN FOR LUNS"); 2819 2820 return 0; 2821 } 2822 2823 /* 2824 * Prepare the next negotiation message if needed. 2825 * 2826 * Fill in the part of message buffer that contains the 2827 * negotiation and the nego_status field of the CCB. 2828 * Returns the size of the message in bytes. 2829 */ 2830 2831 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2832 { 2833 tcb_p tp = &np->target[cp->target]; 2834 int msglen = 0; 2835 2836 /* 2837 * Early C1010 chips need a work-around for DT 2838 * data transfer to work. 2839 */ 2840 if (!(np->features & FE_U3EN)) 2841 tp->tinfo.goal.options = 0; 2842 /* 2843 * negotiate using PPR ? 2844 */ 2845 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2846 nego = NS_PPR; 2847 /* 2848 * negotiate wide transfers ? 2849 */ 2850 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2851 nego = NS_WIDE; 2852 /* 2853 * negotiate synchronous transfers? 2854 */ 2855 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2856 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2857 nego = NS_SYNC; 2858 2859 switch (nego) { 2860 case NS_SYNC: 2861 msgptr[msglen++] = M_EXTENDED; 2862 msgptr[msglen++] = 3; 2863 msgptr[msglen++] = M_X_SYNC_REQ; 2864 msgptr[msglen++] = tp->tinfo.goal.period; 2865 msgptr[msglen++] = tp->tinfo.goal.offset; 2866 break; 2867 case NS_WIDE: 2868 msgptr[msglen++] = M_EXTENDED; 2869 msgptr[msglen++] = 2; 2870 msgptr[msglen++] = M_X_WIDE_REQ; 2871 msgptr[msglen++] = tp->tinfo.goal.width; 2872 break; 2873 case NS_PPR: 2874 msgptr[msglen++] = M_EXTENDED; 2875 msgptr[msglen++] = 6; 2876 msgptr[msglen++] = M_X_PPR_REQ; 2877 msgptr[msglen++] = tp->tinfo.goal.period; 2878 msgptr[msglen++] = 0; 2879 msgptr[msglen++] = tp->tinfo.goal.offset; 2880 msgptr[msglen++] = tp->tinfo.goal.width; 2881 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2882 break; 2883 }; 2884 2885 cp->nego_status = nego; 2886 2887 if (nego) { 2888 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2889 if (DEBUG_FLAGS & DEBUG_NEGO) { 2890 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2891 nego == NS_WIDE ? "wide msgout" : 2892 "ppr msgout", msgptr); 2893 }; 2894 }; 2895 2896 return msglen; 2897 } 2898 2899 /* 2900 * Insert a job into the start queue. 2901 */ 2902 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2903 { 2904 u_short qidx; 2905 2906 #ifdef SYM_CONF_IARB_SUPPORT 2907 /* 2908 * If the previously queued CCB is not yet done, 2909 * set the IARB hint. The SCRIPTS will go with IARB 2910 * for this job when starting the previous one. 2911 * We leave devices a chance to win arbitration by 2912 * not using more than 'iarb_max' consecutive 2913 * immediate arbitrations. 2914 */ 2915 if (np->last_cp && np->iarb_count < np->iarb_max) { 2916 np->last_cp->host_flags |= HF_HINT_IARB; 2917 ++np->iarb_count; 2918 } 2919 else 2920 np->iarb_count = 0; 2921 np->last_cp = cp; 2922 #endif 2923 2924 /* 2925 * Insert first the idle task and then our job. 2926 * The MB should ensure proper ordering. 2927 */ 2928 qidx = np->squeueput + 2; 2929 if (qidx >= MAX_QUEUE*2) qidx = 0; 2930 2931 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2932 MEMORY_BARRIER(); 2933 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2934 2935 np->squeueput = qidx; 2936 2937 if (DEBUG_FLAGS & DEBUG_QUEUE) 2938 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2939 2940 /* 2941 * Script processor may be waiting for reselect. 2942 * Wake it up. 2943 */ 2944 MEMORY_BARRIER(); 2945 OUTB (nc_istat, SIGP|np->istat_sem); 2946 } 2947 2948 2949 /* 2950 * Soft reset the chip. 2951 * 2952 * Raising SRST when the chip is running may cause 2953 * problems on dual function chips (see below). 2954 * On the other hand, LVD devices need some delay 2955 * to settle and report actual BUS mode in STEST4. 2956 */ 2957 static void sym_chip_reset (hcb_p np) 2958 { 2959 OUTB (nc_istat, SRST); 2960 UDELAY (10); 2961 OUTB (nc_istat, 0); 2962 UDELAY(2000); /* For BUS MODE to settle */ 2963 } 2964 2965 /* 2966 * Soft reset the chip. 2967 * 2968 * Some 896 and 876 chip revisions may hang-up if we set 2969 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2970 * are running. 2971 * So, we need to abort the current operation prior to 2972 * soft resetting the chip. 2973 */ 2974 static void sym_soft_reset (hcb_p np) 2975 { 2976 u_char istat; 2977 int i; 2978 2979 OUTB (nc_istat, CABRT); 2980 for (i = 1000000 ; i ; --i) { 2981 istat = INB (nc_istat); 2982 if (istat & SIP) { 2983 INW (nc_sist); 2984 continue; 2985 } 2986 if (istat & DIP) { 2987 OUTB (nc_istat, 0); 2988 INB (nc_dstat); 2989 break; 2990 } 2991 } 2992 if (!i) 2993 printf("%s: unable to abort current chip operation.\n", 2994 sym_name(np)); 2995 sym_chip_reset (np); 2996 } 2997 2998 /* 2999 * Start reset process. 3000 * 3001 * The interrupt handler will reinitialize the chip. 3002 */ 3003 static void sym_start_reset(hcb_p np) 3004 { 3005 (void) sym_reset_scsi_bus(np, 1); 3006 } 3007 3008 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 3009 { 3010 u32 term; 3011 int retv = 0; 3012 3013 sym_soft_reset(np); /* Soft reset the chip */ 3014 if (enab_int) 3015 OUTW (nc_sien, RST); 3016 /* 3017 * Enable Tolerant, reset IRQD if present and 3018 * properly set IRQ mode, prior to resetting the bus. 3019 */ 3020 OUTB (nc_stest3, TE); 3021 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3022 OUTB (nc_scntl1, CRST); 3023 UDELAY (200); 3024 3025 if (!SYM_SETUP_SCSI_BUS_CHECK) 3026 goto out; 3027 /* 3028 * Check for no terminators or SCSI bus shorts to ground. 3029 * Read SCSI data bus, data parity bits and control signals. 3030 * We are expecting RESET to be TRUE and other signals to be 3031 * FALSE. 3032 */ 3033 term = INB(nc_sstat0); 3034 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3035 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3036 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3037 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3038 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3039 3040 if (!(np->features & FE_WIDE)) 3041 term &= 0x3ffff; 3042 3043 if (term != (2<<7)) { 3044 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3045 sym_name(np)); 3046 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3047 "0x%lx, expecting 0x%lx\n", 3048 sym_name(np), 3049 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3050 (u_long)term, (u_long)(2<<7)); 3051 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3052 retv = 1; 3053 } 3054 out: 3055 OUTB (nc_scntl1, 0); 3056 /* MDELAY(100); */ 3057 return retv; 3058 } 3059 3060 /* 3061 * The chip may have completed jobs. Look at the DONE QUEUE. 3062 * 3063 * On architectures that may reorder LOAD/STORE operations, 3064 * a memory barrier may be needed after the reading of the 3065 * so-called `flag' and prior to dealing with the data. 3066 */ 3067 static int sym_wakeup_done (hcb_p np) 3068 { 3069 ccb_p cp; 3070 int i, n; 3071 u32 dsa; 3072 3073 n = 0; 3074 i = np->dqueueget; 3075 while (1) { 3076 dsa = scr_to_cpu(np->dqueue[i]); 3077 if (!dsa) 3078 break; 3079 np->dqueue[i] = 0; 3080 if ((i = i+2) >= MAX_QUEUE*2) 3081 i = 0; 3082 3083 cp = sym_ccb_from_dsa(np, dsa); 3084 if (cp) { 3085 MEMORY_BARRIER(); 3086 sym_complete_ok (np, cp); 3087 ++n; 3088 } 3089 else 3090 printf ("%s: bad DSA (%x) in done queue.\n", 3091 sym_name(np), (u_int) dsa); 3092 } 3093 np->dqueueget = i; 3094 3095 return n; 3096 } 3097 3098 /* 3099 * Complete all active CCBs with error. 3100 * Used on CHIP/SCSI RESET. 3101 */ 3102 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3103 { 3104 /* 3105 * Move all active CCBs to the COMP queue 3106 * and flush this queue. 3107 */ 3108 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3109 sym_que_init(&np->busy_ccbq); 3110 sym_flush_comp_queue(np, cam_status); 3111 } 3112 3113 /* 3114 * Start chip. 3115 * 3116 * 'reason' means: 3117 * 0: initialisation. 3118 * 1: SCSI BUS RESET delivered or received. 3119 * 2: SCSI BUS MODE changed. 3120 */ 3121 static void sym_init (hcb_p np, int reason) 3122 { 3123 int i; 3124 u32 phys; 3125 3126 /* 3127 * Reset chip if asked, otherwise just clear fifos. 3128 */ 3129 if (reason == 1) 3130 sym_soft_reset(np); 3131 else { 3132 OUTB (nc_stest3, TE|CSF); 3133 OUTONB (nc_ctest3, CLF); 3134 } 3135 3136 /* 3137 * Clear Start Queue 3138 */ 3139 phys = np->squeue_ba; 3140 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3141 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3142 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3143 } 3144 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3145 3146 /* 3147 * Start at first entry. 3148 */ 3149 np->squeueput = 0; 3150 3151 /* 3152 * Clear Done Queue 3153 */ 3154 phys = np->dqueue_ba; 3155 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3156 np->dqueue[i] = 0; 3157 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3158 } 3159 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3160 3161 /* 3162 * Start at first entry. 3163 */ 3164 np->dqueueget = 0; 3165 3166 /* 3167 * Install patches in scripts. 3168 * This also let point to first position the start 3169 * and done queue pointers used from SCRIPTS. 3170 */ 3171 np->fw_patch(np); 3172 3173 /* 3174 * Wakeup all pending jobs. 3175 */ 3176 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3177 3178 /* 3179 * Init chip. 3180 */ 3181 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3182 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3183 3184 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3185 /* full arb., ena parity, par->ATN */ 3186 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3187 3188 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3189 3190 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3191 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3192 OUTB (nc_istat , SIGP ); /* Signal Process */ 3193 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3194 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3195 3196 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3197 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3198 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3199 3200 /* Extended Sreq/Sack filtering not supported on the C10 */ 3201 if (np->features & FE_C10) 3202 OUTB (nc_stest2, np->rv_stest2); 3203 else 3204 OUTB (nc_stest2, EXT|np->rv_stest2); 3205 3206 OUTB (nc_stest3, TE); /* TolerANT enable */ 3207 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3208 3209 /* 3210 * For now, disable AIP generation on C1010-66. 3211 */ 3212 if (np->device_id == PCI_ID_LSI53C1010_2) 3213 OUTB (nc_aipcntl1, DISAIP); 3214 3215 /* 3216 * C10101 Errata. 3217 * Errant SGE's when in narrow. Write bits 4 & 5 of 3218 * STEST1 register to disable SGE. We probably should do 3219 * that from SCRIPTS for each selection/reselection, but 3220 * I just don't want. :) 3221 */ 3222 if (np->device_id == PCI_ID_LSI53C1010 && 3223 /* np->revision_id < 0xff */ 1) 3224 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3225 3226 /* 3227 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3228 * Disable overlapped arbitration for some dual function devices, 3229 * regardless revision id (kind of post-chip-design feature. ;-)) 3230 */ 3231 if (np->device_id == PCI_ID_SYM53C875) 3232 OUTB (nc_ctest0, (1<<5)); 3233 else if (np->device_id == PCI_ID_SYM53C896) 3234 np->rv_ccntl0 |= DPR; 3235 3236 /* 3237 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3238 * and/or hardware phase mismatch, since only such chips 3239 * seem to support those IO registers. 3240 */ 3241 if (np->features & (FE_DAC|FE_NOPM)) { 3242 OUTB (nc_ccntl0, np->rv_ccntl0); 3243 OUTB (nc_ccntl1, np->rv_ccntl1); 3244 } 3245 3246 /* 3247 * If phase mismatch handled by scripts (895A/896/1010), 3248 * set PM jump addresses. 3249 */ 3250 if (np->features & FE_NOPM) { 3251 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3252 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3253 } 3254 3255 /* 3256 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3257 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3258 */ 3259 if (np->features & FE_LED0) 3260 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3261 else if (np->features & FE_LEDC) 3262 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3263 3264 /* 3265 * enable ints 3266 */ 3267 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3268 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3269 3270 /* 3271 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3272 * Try to eat the spurious SBMC interrupt that may occur when 3273 * we reset the chip but not the SCSI BUS (at initialization). 3274 */ 3275 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3276 OUTONW (nc_sien, SBMC); 3277 if (reason == 0) { 3278 MDELAY(100); 3279 INW (nc_sist); 3280 } 3281 np->scsi_mode = INB (nc_stest4) & SMODE; 3282 } 3283 3284 /* 3285 * Fill in target structure. 3286 * Reinitialize usrsync. 3287 * Reinitialize usrwide. 3288 * Prepare sync negotiation according to actual SCSI bus mode. 3289 */ 3290 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3291 tcb_p tp = &np->target[i]; 3292 3293 tp->to_reset = 0; 3294 tp->head.sval = 0; 3295 tp->head.wval = np->rv_scntl3; 3296 tp->head.uval = 0; 3297 3298 tp->tinfo.current.period = 0; 3299 tp->tinfo.current.offset = 0; 3300 tp->tinfo.current.width = BUS_8_BIT; 3301 tp->tinfo.current.options = 0; 3302 } 3303 3304 /* 3305 * Download SCSI SCRIPTS to on-chip RAM if present, 3306 * and start script processor. 3307 */ 3308 if (np->ram_ba) { 3309 if (sym_verbose > 1) 3310 printf ("%s: Downloading SCSI SCRIPTS.\n", 3311 sym_name(np)); 3312 if (np->ram_ws == 8192) { 3313 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3314 OUTL (nc_mmws, np->scr_ram_seg); 3315 OUTL (nc_mmrs, np->scr_ram_seg); 3316 OUTL (nc_sfs, np->scr_ram_seg); 3317 phys = SCRIPTB_BA (np, start64); 3318 } 3319 else 3320 phys = SCRIPTA_BA (np, init); 3321 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3322 } 3323 else 3324 phys = SCRIPTA_BA (np, init); 3325 3326 np->istat_sem = 0; 3327 3328 OUTL (nc_dsa, np->hcb_ba); 3329 OUTL_DSP (phys); 3330 3331 /* 3332 * Notify the XPT about the RESET condition. 3333 */ 3334 if (reason != 0) 3335 xpt_async(AC_BUS_RESET, np->path, NULL); 3336 } 3337 3338 /* 3339 * Get clock factor and sync divisor for a given 3340 * synchronous factor period. 3341 */ 3342 static int 3343 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3344 { 3345 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3346 int div = np->clock_divn; /* Number of divisors supported */ 3347 u32 fak; /* Sync factor in sxfer */ 3348 u32 per; /* Period in tenths of ns */ 3349 u32 kpc; /* (per * clk) */ 3350 int ret; 3351 3352 /* 3353 * Compute the synchronous period in tenths of nano-seconds 3354 */ 3355 if (dt && sfac <= 9) per = 125; 3356 else if (sfac <= 10) per = 250; 3357 else if (sfac == 11) per = 303; 3358 else if (sfac == 12) per = 500; 3359 else per = 40 * sfac; 3360 ret = per; 3361 3362 kpc = per * clk; 3363 if (dt) 3364 kpc <<= 1; 3365 3366 /* 3367 * For earliest C10 revision 0, we cannot use extra 3368 * clocks for the setting of the SCSI clocking. 3369 * Note that this limits the lowest sync data transfer 3370 * to 5 Mega-transfers per second and may result in 3371 * using higher clock divisors. 3372 */ 3373 #if 1 3374 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3375 /* 3376 * Look for the lowest clock divisor that allows an 3377 * output speed not faster than the period. 3378 */ 3379 while (div > 0) { 3380 --div; 3381 if (kpc > (div_10M[div] << 2)) { 3382 ++div; 3383 break; 3384 } 3385 } 3386 fak = 0; /* No extra clocks */ 3387 if (div == np->clock_divn) { /* Are we too fast ? */ 3388 ret = -1; 3389 } 3390 *divp = div; 3391 *fakp = fak; 3392 return ret; 3393 } 3394 #endif 3395 3396 /* 3397 * Look for the greatest clock divisor that allows an 3398 * input speed faster than the period. 3399 */ 3400 while (div-- > 0) 3401 if (kpc >= (div_10M[div] << 2)) break; 3402 3403 /* 3404 * Calculate the lowest clock factor that allows an output 3405 * speed not faster than the period, and the max output speed. 3406 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3407 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3408 */ 3409 if (dt) { 3410 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3411 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3412 } 3413 else { 3414 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3415 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3416 } 3417 3418 /* 3419 * Check against our hardware limits, or bugs :). 3420 */ 3421 if (fak < 0) {fak = 0; ret = -1;} 3422 if (fak > 2) {fak = 2; ret = -1;} 3423 3424 /* 3425 * Compute and return sync parameters. 3426 */ 3427 *divp = div; 3428 *fakp = fak; 3429 3430 return ret; 3431 } 3432 3433 /* 3434 * Tell the SCSI layer about the new transfer parameters. 3435 */ 3436 static void 3437 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3438 { 3439 struct ccb_trans_settings cts; 3440 struct cam_path *path; 3441 int sts; 3442 tcb_p tp = &np->target[target]; 3443 3444 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3445 CAM_LUN_WILDCARD); 3446 if (sts != CAM_REQ_CMP) 3447 return; 3448 3449 bzero(&cts, sizeof(cts)); 3450 3451 #define cts__scsi (cts.proto_specific.scsi) 3452 #define cts__spi (cts.xport_specific.spi) 3453 3454 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3455 cts.protocol = PROTO_SCSI; 3456 cts.transport = XPORT_SPI; 3457 cts.protocol_version = tp->tinfo.current.scsi_version; 3458 cts.transport_version = tp->tinfo.current.spi_version; 3459 3460 cts__spi.valid = spi_valid; 3461 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3462 cts__spi.sync_period = tp->tinfo.current.period; 3463 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3464 cts__spi.sync_offset = tp->tinfo.current.offset; 3465 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3466 cts__spi.bus_width = tp->tinfo.current.width; 3467 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3468 cts__spi.ppr_options = tp->tinfo.current.options; 3469 #undef cts__spi 3470 #undef cts__scsi 3471 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3472 xpt_async(AC_TRANSFER_NEG, path, &cts); 3473 xpt_free_path(path); 3474 } 3475 3476 #define SYM_SPI_VALID_WDTR \ 3477 CTS_SPI_VALID_BUS_WIDTH | \ 3478 CTS_SPI_VALID_SYNC_RATE | \ 3479 CTS_SPI_VALID_SYNC_OFFSET 3480 #define SYM_SPI_VALID_SDTR \ 3481 CTS_SPI_VALID_SYNC_RATE | \ 3482 CTS_SPI_VALID_SYNC_OFFSET 3483 #define SYM_SPI_VALID_PPR \ 3484 CTS_SPI_VALID_PPR_OPTIONS | \ 3485 CTS_SPI_VALID_BUS_WIDTH | \ 3486 CTS_SPI_VALID_SYNC_RATE | \ 3487 CTS_SPI_VALID_SYNC_OFFSET 3488 3489 /* 3490 * We received a WDTR. 3491 * Let everything be aware of the changes. 3492 */ 3493 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3494 { 3495 tcb_p tp = &np->target[cp->target]; 3496 3497 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3498 3499 /* 3500 * Tell the SCSI layer about the new transfer parameters. 3501 */ 3502 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3503 tp->tinfo.current.offset = 0; 3504 tp->tinfo.current.period = 0; 3505 tp->tinfo.current.options = 0; 3506 3507 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3508 } 3509 3510 /* 3511 * We received a SDTR. 3512 * Let everything be aware of the changes. 3513 */ 3514 static void 3515 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3516 { 3517 tcb_p tp = &np->target[cp->target]; 3518 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3519 3520 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3521 3522 /* 3523 * Tell the SCSI layer about the new transfer parameters. 3524 */ 3525 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3526 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3527 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3528 3529 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3530 } 3531 3532 /* 3533 * We received a PPR. 3534 * Let everything be aware of the changes. 3535 */ 3536 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3537 u_char per, u_char wide, u_char div, u_char fak) 3538 { 3539 tcb_p tp = &np->target[cp->target]; 3540 3541 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3542 3543 /* 3544 * Tell the SCSI layer about the new transfer parameters. 3545 */ 3546 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3547 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3548 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3549 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3550 3551 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3552 } 3553 3554 /* 3555 * Switch trans mode for current job and it's target. 3556 */ 3557 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3558 u_char per, u_char wide, u_char div, u_char fak) 3559 { 3560 SYM_QUEHEAD *qp; 3561 union ccb *ccb; 3562 tcb_p tp; 3563 u_char target = INB (nc_sdid) & 0x0f; 3564 u_char sval, wval, uval; 3565 3566 assert (cp); 3567 if (!cp) return; 3568 ccb = cp->cam_ccb; 3569 assert (ccb); 3570 if (!ccb) return; 3571 assert (target == (cp->target & 0xf)); 3572 tp = &np->target[target]; 3573 3574 sval = tp->head.sval; 3575 wval = tp->head.wval; 3576 uval = tp->head.uval; 3577 3578 #if 0 3579 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3580 sval, wval, uval, np->rv_scntl3); 3581 #endif 3582 /* 3583 * Set the offset. 3584 */ 3585 if (!(np->features & FE_C10)) 3586 sval = (sval & ~0x1f) | ofs; 3587 else 3588 sval = (sval & ~0x3f) | ofs; 3589 3590 /* 3591 * Set the sync divisor and extra clock factor. 3592 */ 3593 if (ofs != 0) { 3594 wval = (wval & ~0x70) | ((div+1) << 4); 3595 if (!(np->features & FE_C10)) 3596 sval = (sval & ~0xe0) | (fak << 5); 3597 else { 3598 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3599 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3600 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3601 } 3602 } 3603 3604 /* 3605 * Set the bus width. 3606 */ 3607 wval = wval & ~EWS; 3608 if (wide != 0) 3609 wval |= EWS; 3610 3611 /* 3612 * Set misc. ultra enable bits. 3613 */ 3614 if (np->features & FE_C10) { 3615 uval = uval & ~(U3EN|AIPCKEN); 3616 if (dt) { 3617 assert(np->features & FE_U3EN); 3618 uval |= U3EN; 3619 } 3620 } 3621 else { 3622 wval = wval & ~ULTRA; 3623 if (per <= 12) wval |= ULTRA; 3624 } 3625 3626 /* 3627 * Stop there if sync parameters are unchanged. 3628 */ 3629 if (tp->head.sval == sval && 3630 tp->head.wval == wval && 3631 tp->head.uval == uval) 3632 return; 3633 tp->head.sval = sval; 3634 tp->head.wval = wval; 3635 tp->head.uval = uval; 3636 3637 /* 3638 * Disable extended Sreq/Sack filtering if per < 50. 3639 * Not supported on the C1010. 3640 */ 3641 if (per < 50 && !(np->features & FE_C10)) 3642 OUTOFFB (nc_stest2, EXT); 3643 3644 /* 3645 * set actual value and sync_status 3646 */ 3647 OUTB (nc_sxfer, tp->head.sval); 3648 OUTB (nc_scntl3, tp->head.wval); 3649 3650 if (np->features & FE_C10) { 3651 OUTB (nc_scntl4, tp->head.uval); 3652 } 3653 3654 /* 3655 * patch ALL busy ccbs of this target. 3656 */ 3657 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3658 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3659 if (cp->target != target) 3660 continue; 3661 cp->phys.select.sel_scntl3 = tp->head.wval; 3662 cp->phys.select.sel_sxfer = tp->head.sval; 3663 if (np->features & FE_C10) { 3664 cp->phys.select.sel_scntl4 = tp->head.uval; 3665 } 3666 } 3667 } 3668 3669 /* 3670 * log message for real hard errors 3671 * 3672 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3673 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3674 * 3675 * exception register: 3676 * ds: dstat 3677 * si: sist 3678 * 3679 * SCSI bus lines: 3680 * so: control lines as driven by chip. 3681 * si: control lines as seen by chip. 3682 * sd: scsi data lines as seen by chip. 3683 * 3684 * wide/fastmode: 3685 * sxfer: (see the manual) 3686 * scntl3: (see the manual) 3687 * 3688 * current script command: 3689 * dsp: script address (relative to start of script). 3690 * dbc: first word of script command. 3691 * 3692 * First 24 register of the chip: 3693 * r0..rf 3694 */ 3695 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3696 { 3697 u32 dsp; 3698 int script_ofs; 3699 int script_size; 3700 char *script_name; 3701 u_char *script_base; 3702 int i; 3703 3704 dsp = INL (nc_dsp); 3705 3706 if (dsp > np->scripta_ba && 3707 dsp <= np->scripta_ba + np->scripta_sz) { 3708 script_ofs = dsp - np->scripta_ba; 3709 script_size = np->scripta_sz; 3710 script_base = (u_char *) np->scripta0; 3711 script_name = "scripta"; 3712 } 3713 else if (np->scriptb_ba < dsp && 3714 dsp <= np->scriptb_ba + np->scriptb_sz) { 3715 script_ofs = dsp - np->scriptb_ba; 3716 script_size = np->scriptb_sz; 3717 script_base = (u_char *) np->scriptb0; 3718 script_name = "scriptb"; 3719 } else { 3720 script_ofs = dsp; 3721 script_size = 0; 3722 script_base = 0; 3723 script_name = "mem"; 3724 } 3725 3726 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3727 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3728 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3729 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3730 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3731 (unsigned)INL (nc_dbc)); 3732 3733 if (((script_ofs & 3) == 0) && 3734 (unsigned)script_ofs < script_size) { 3735 printf ("%s: script cmd = %08x\n", sym_name(np), 3736 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3737 } 3738 3739 printf ("%s: regdump:", sym_name(np)); 3740 for (i=0; i<24;i++) 3741 printf (" %02x", (unsigned)INB_OFF(i)); 3742 printf (".\n"); 3743 3744 /* 3745 * PCI BUS error, read the PCI ststus register. 3746 */ 3747 if (dstat & (MDPE|BF)) { 3748 u_short pci_sts; 3749 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3750 if (pci_sts & 0xf900) { 3751 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3752 printf("%s: PCI STATUS = 0x%04x\n", 3753 sym_name(np), pci_sts & 0xf900); 3754 } 3755 } 3756 } 3757 3758 /* 3759 * chip interrupt handler 3760 * 3761 * In normal situations, interrupt conditions occur one at 3762 * a time. But when something bad happens on the SCSI BUS, 3763 * the chip may raise several interrupt flags before 3764 * stopping and interrupting the CPU. The additionnal 3765 * interrupt flags are stacked in some extra registers 3766 * after the SIP and/or DIP flag has been raised in the 3767 * ISTAT. After the CPU has read the interrupt condition 3768 * flag from SIST or DSTAT, the chip unstacks the other 3769 * interrupt flags and sets the corresponding bits in 3770 * SIST or DSTAT. Since the chip starts stacking once the 3771 * SIP or DIP flag is set, there is a small window of time 3772 * where the stacking does not occur. 3773 * 3774 * Typically, multiple interrupt conditions may happen in 3775 * the following situations: 3776 * 3777 * - SCSI parity error + Phase mismatch (PAR|MA) 3778 * When a parity error is detected in input phase 3779 * and the device switches to msg-in phase inside a 3780 * block MOV. 3781 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3782 * When a stupid device does not want to handle the 3783 * recovery of an SCSI parity error. 3784 * - Some combinations of STO, PAR, UDC, ... 3785 * When using non compliant SCSI stuff, when user is 3786 * doing non compliant hot tampering on the BUS, when 3787 * something really bad happens to a device, etc ... 3788 * 3789 * The heuristic suggested by SYMBIOS to handle 3790 * multiple interrupts is to try unstacking all 3791 * interrupts conditions and to handle them on some 3792 * priority based on error severity. 3793 * This will work when the unstacking has been 3794 * successful, but we cannot be 100 % sure of that, 3795 * since the CPU may have been faster to unstack than 3796 * the chip is able to stack. Hmmm ... But it seems that 3797 * such a situation is very unlikely to happen. 3798 * 3799 * If this happen, for example STO caught by the CPU 3800 * then UDC happenning before the CPU have restarted 3801 * the SCRIPTS, the driver may wrongly complete the 3802 * same command on UDC, since the SCRIPTS didn't restart 3803 * and the DSA still points to the same command. 3804 * We avoid this situation by setting the DSA to an 3805 * invalid value when the CCB is completed and before 3806 * restarting the SCRIPTS. 3807 * 3808 * Another issue is that we need some section of our 3809 * recovery procedures to be somehow uninterruptible but 3810 * the SCRIPTS processor does not provides such a 3811 * feature. For this reason, we handle recovery preferently 3812 * from the C code and check against some SCRIPTS critical 3813 * sections from the C code. 3814 * 3815 * Hopefully, the interrupt handling of the driver is now 3816 * able to resist to weird BUS error conditions, but donnot 3817 * ask me for any guarantee that it will never fail. :-) 3818 * Use at your own decision and risk. 3819 */ 3820 3821 static void sym_intr1 (hcb_p np) 3822 { 3823 u_char istat, istatc; 3824 u_char dstat; 3825 u_short sist; 3826 3827 /* 3828 * interrupt on the fly ? 3829 * 3830 * A `dummy read' is needed to ensure that the 3831 * clear of the INTF flag reaches the device 3832 * before the scanning of the DONE queue. 3833 */ 3834 istat = INB (nc_istat); 3835 if (istat & INTF) { 3836 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3837 istat = INB (nc_istat); /* DUMMY READ */ 3838 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3839 (void)sym_wakeup_done (np); 3840 }; 3841 3842 if (!(istat & (SIP|DIP))) 3843 return; 3844 3845 #if 0 /* We should never get this one */ 3846 if (istat & CABRT) 3847 OUTB (nc_istat, CABRT); 3848 #endif 3849 3850 /* 3851 * PAR and MA interrupts may occur at the same time, 3852 * and we need to know of both in order to handle 3853 * this situation properly. We try to unstack SCSI 3854 * interrupts for that reason. BTW, I dislike a LOT 3855 * such a loop inside the interrupt routine. 3856 * Even if DMA interrupt stacking is very unlikely to 3857 * happen, we also try unstacking these ones, since 3858 * this has no performance impact. 3859 */ 3860 sist = 0; 3861 dstat = 0; 3862 istatc = istat; 3863 do { 3864 if (istatc & SIP) 3865 sist |= INW (nc_sist); 3866 if (istatc & DIP) 3867 dstat |= INB (nc_dstat); 3868 istatc = INB (nc_istat); 3869 istat |= istatc; 3870 } while (istatc & (SIP|DIP)); 3871 3872 if (DEBUG_FLAGS & DEBUG_TINY) 3873 printf ("<%d|%x:%x|%x:%x>", 3874 (int)INB(nc_scr0), 3875 dstat,sist, 3876 (unsigned)INL(nc_dsp), 3877 (unsigned)INL(nc_dbc)); 3878 /* 3879 * On paper, a memory barrier may be needed here. 3880 * And since we are paranoid ... :) 3881 */ 3882 MEMORY_BARRIER(); 3883 3884 /* 3885 * First, interrupts we want to service cleanly. 3886 * 3887 * Phase mismatch (MA) is the most frequent interrupt 3888 * for chip earlier than the 896 and so we have to service 3889 * it as quickly as possible. 3890 * A SCSI parity error (PAR) may be combined with a phase 3891 * mismatch condition (MA). 3892 * Programmed interrupts (SIR) are used to call the C code 3893 * from SCRIPTS. 3894 * The single step interrupt (SSI) is not used in this 3895 * driver. 3896 */ 3897 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3898 !(dstat & (MDPE|BF|ABRT|IID))) { 3899 if (sist & PAR) sym_int_par (np, sist); 3900 else if (sist & MA) sym_int_ma (np); 3901 else if (dstat & SIR) sym_int_sir (np); 3902 else if (dstat & SSI) OUTONB_STD (); 3903 else goto unknown_int; 3904 return; 3905 }; 3906 3907 /* 3908 * Now, interrupts that donnot happen in normal 3909 * situations and that we may need to recover from. 3910 * 3911 * On SCSI RESET (RST), we reset everything. 3912 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3913 * active CCBs with RESET status, prepare all devices 3914 * for negotiating again and restart the SCRIPTS. 3915 * On STO and UDC, we complete the CCB with the corres- 3916 * ponding status and restart the SCRIPTS. 3917 */ 3918 if (sist & RST) { 3919 xpt_print_path(np->path); 3920 printf("SCSI BUS reset detected.\n"); 3921 sym_init (np, 1); 3922 return; 3923 }; 3924 3925 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3926 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3927 3928 if (!(sist & (GEN|HTH|SGE)) && 3929 !(dstat & (MDPE|BF|ABRT|IID))) { 3930 if (sist & SBMC) sym_int_sbmc (np); 3931 else if (sist & STO) sym_int_sto (np); 3932 else if (sist & UDC) sym_int_udc (np); 3933 else goto unknown_int; 3934 return; 3935 }; 3936 3937 /* 3938 * Now, interrupts we are not able to recover cleanly. 3939 * 3940 * Log message for hard errors. 3941 * Reset everything. 3942 */ 3943 3944 sym_log_hard_error(np, sist, dstat); 3945 3946 if ((sist & (GEN|HTH|SGE)) || 3947 (dstat & (MDPE|BF|ABRT|IID))) { 3948 sym_start_reset(np); 3949 return; 3950 }; 3951 3952 unknown_int: 3953 /* 3954 * We just miss the cause of the interrupt. :( 3955 * Print a message. The timeout will do the real work. 3956 */ 3957 printf( "%s: unknown interrupt(s) ignored, " 3958 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3959 sym_name(np), istat, dstat, sist); 3960 } 3961 3962 static void sym_intr(void *arg) 3963 { 3964 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3965 sym_intr1((hcb_p) arg); 3966 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3967 return; 3968 } 3969 3970 static void sym_poll(struct cam_sim *sim) 3971 { 3972 int s = splcam(); 3973 sym_intr(cam_sim_softc(sim)); 3974 splx(s); 3975 } 3976 3977 3978 /* 3979 * generic recovery from scsi interrupt 3980 * 3981 * The doc says that when the chip gets an SCSI interrupt, 3982 * it tries to stop in an orderly fashion, by completing 3983 * an instruction fetch that had started or by flushing 3984 * the DMA fifo for a write to memory that was executing. 3985 * Such a fashion is not enough to know if the instruction 3986 * that was just before the current DSP value has been 3987 * executed or not. 3988 * 3989 * There are some small SCRIPTS sections that deal with 3990 * the start queue and the done queue that may break any 3991 * assomption from the C code if we are interrupted 3992 * inside, so we reset if this happens. Btw, since these 3993 * SCRIPTS sections are executed while the SCRIPTS hasn't 3994 * started SCSI operations, it is very unlikely to happen. 3995 * 3996 * All the driver data structures are supposed to be 3997 * allocated from the same 4 GB memory window, so there 3998 * is a 1 to 1 relationship between DSA and driver data 3999 * structures. Since we are careful :) to invalidate the 4000 * DSA when we complete a command or when the SCRIPTS 4001 * pushes a DSA into a queue, we can trust it when it 4002 * points to a CCB. 4003 */ 4004 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 4005 { 4006 u32 dsp = INL (nc_dsp); 4007 u32 dsa = INL (nc_dsa); 4008 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4009 4010 /* 4011 * If we haven't been interrupted inside the SCRIPTS 4012 * critical pathes, we can safely restart the SCRIPTS 4013 * and trust the DSA value if it matches a CCB. 4014 */ 4015 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4016 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4017 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4018 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4019 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4020 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4021 (!(dsp > SCRIPTA_BA (np, done) && 4022 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4023 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4024 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4025 /* 4026 * If we have a CCB, let the SCRIPTS call us back for 4027 * the handling of the error with SCRATCHA filled with 4028 * STARTPOS. This way, we will be able to freeze the 4029 * device queue and requeue awaiting IOs. 4030 */ 4031 if (cp) { 4032 cp->host_status = hsts; 4033 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4034 } 4035 /* 4036 * Otherwise just restart the SCRIPTS. 4037 */ 4038 else { 4039 OUTL (nc_dsa, 0xffffff); 4040 OUTL_DSP (SCRIPTA_BA (np, start)); 4041 } 4042 } 4043 else 4044 goto reset_all; 4045 4046 return; 4047 4048 reset_all: 4049 sym_start_reset(np); 4050 } 4051 4052 /* 4053 * chip exception handler for selection timeout 4054 */ 4055 static void sym_int_sto (hcb_p np) 4056 { 4057 u32 dsp = INL (nc_dsp); 4058 4059 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4060 4061 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4062 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4063 else 4064 sym_start_reset(np); 4065 } 4066 4067 /* 4068 * chip exception handler for unexpected disconnect 4069 */ 4070 static void sym_int_udc (hcb_p np) 4071 { 4072 printf ("%s: unexpected disconnect\n", sym_name(np)); 4073 sym_recover_scsi_int(np, HS_UNEXPECTED); 4074 } 4075 4076 /* 4077 * chip exception handler for SCSI bus mode change 4078 * 4079 * spi2-r12 11.2.3 says a transceiver mode change must 4080 * generate a reset event and a device that detects a reset 4081 * event shall initiate a hard reset. It says also that a 4082 * device that detects a mode change shall set data transfer 4083 * mode to eight bit asynchronous, etc... 4084 * So, just reinitializing all except chip should be enough. 4085 */ 4086 static void sym_int_sbmc (hcb_p np) 4087 { 4088 u_char scsi_mode = INB (nc_stest4) & SMODE; 4089 4090 /* 4091 * Notify user. 4092 */ 4093 xpt_print_path(np->path); 4094 printf("SCSI BUS mode change from %s to %s.\n", 4095 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4096 4097 /* 4098 * Should suspend command processing for a few seconds and 4099 * reinitialize all except the chip. 4100 */ 4101 sym_init (np, 2); 4102 } 4103 4104 /* 4105 * chip exception handler for SCSI parity error. 4106 * 4107 * When the chip detects a SCSI parity error and is 4108 * currently executing a (CH)MOV instruction, it does 4109 * not interrupt immediately, but tries to finish the 4110 * transfer of the current scatter entry before 4111 * interrupting. The following situations may occur: 4112 * 4113 * - The complete scatter entry has been transferred 4114 * without the device having changed phase. 4115 * The chip will then interrupt with the DSP pointing 4116 * to the instruction that follows the MOV. 4117 * 4118 * - A phase mismatch occurs before the MOV finished 4119 * and phase errors are to be handled by the C code. 4120 * The chip will then interrupt with both PAR and MA 4121 * conditions set. 4122 * 4123 * - A phase mismatch occurs before the MOV finished and 4124 * phase errors are to be handled by SCRIPTS. 4125 * The chip will load the DSP with the phase mismatch 4126 * JUMP address and interrupt the host processor. 4127 */ 4128 static void sym_int_par (hcb_p np, u_short sist) 4129 { 4130 u_char hsts = INB (HS_PRT); 4131 u32 dsp = INL (nc_dsp); 4132 u32 dbc = INL (nc_dbc); 4133 u32 dsa = INL (nc_dsa); 4134 u_char sbcl = INB (nc_sbcl); 4135 u_char cmd = dbc >> 24; 4136 int phase = cmd & 7; 4137 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4138 4139 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4140 sym_name(np), hsts, dbc, sbcl); 4141 4142 /* 4143 * Check that the chip is connected to the SCSI BUS. 4144 */ 4145 if (!(INB (nc_scntl1) & ISCON)) { 4146 sym_recover_scsi_int(np, HS_UNEXPECTED); 4147 return; 4148 } 4149 4150 /* 4151 * If the nexus is not clearly identified, reset the bus. 4152 * We will try to do better later. 4153 */ 4154 if (!cp) 4155 goto reset_all; 4156 4157 /* 4158 * Check instruction was a MOV, direction was INPUT and 4159 * ATN is asserted. 4160 */ 4161 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4162 goto reset_all; 4163 4164 /* 4165 * Keep track of the parity error. 4166 */ 4167 OUTONB (HF_PRT, HF_EXT_ERR); 4168 cp->xerr_status |= XE_PARITY_ERR; 4169 4170 /* 4171 * Prepare the message to send to the device. 4172 */ 4173 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4174 4175 /* 4176 * If the old phase was DATA IN phase, we have to deal with 4177 * the 3 situations described above. 4178 * For other input phases (MSG IN and STATUS), the device 4179 * must resend the whole thing that failed parity checking 4180 * or signal error. So, jumping to dispatcher should be OK. 4181 */ 4182 if (phase == 1 || phase == 5) { 4183 /* Phase mismatch handled by SCRIPTS */ 4184 if (dsp == SCRIPTB_BA (np, pm_handle)) 4185 OUTL_DSP (dsp); 4186 /* Phase mismatch handled by the C code */ 4187 else if (sist & MA) 4188 sym_int_ma (np); 4189 /* No phase mismatch occurred */ 4190 else { 4191 OUTL (nc_temp, dsp); 4192 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4193 } 4194 } 4195 else 4196 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4197 return; 4198 4199 reset_all: 4200 sym_start_reset(np); 4201 return; 4202 } 4203 4204 /* 4205 * chip exception handler for phase errors. 4206 * 4207 * We have to construct a new transfer descriptor, 4208 * to transfer the rest of the current block. 4209 */ 4210 static void sym_int_ma (hcb_p np) 4211 { 4212 u32 dbc; 4213 u32 rest; 4214 u32 dsp; 4215 u32 dsa; 4216 u32 nxtdsp; 4217 u32 *vdsp; 4218 u32 oadr, olen; 4219 u32 *tblp; 4220 u32 newcmd; 4221 u_int delta; 4222 u_char cmd; 4223 u_char hflags, hflags0; 4224 struct sym_pmc *pm; 4225 ccb_p cp; 4226 4227 dsp = INL (nc_dsp); 4228 dbc = INL (nc_dbc); 4229 dsa = INL (nc_dsa); 4230 4231 cmd = dbc >> 24; 4232 rest = dbc & 0xffffff; 4233 delta = 0; 4234 4235 /* 4236 * locate matching cp if any. 4237 */ 4238 cp = sym_ccb_from_dsa(np, dsa); 4239 4240 /* 4241 * Donnot take into account dma fifo and various buffers in 4242 * INPUT phase since the chip flushes everything before 4243 * raising the MA interrupt for interrupted INPUT phases. 4244 * For DATA IN phase, we will check for the SWIDE later. 4245 */ 4246 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4247 u_char ss0, ss2; 4248 4249 if (np->features & FE_DFBC) 4250 delta = INW (nc_dfbc); 4251 else { 4252 u32 dfifo; 4253 4254 /* 4255 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4256 */ 4257 dfifo = INL(nc_dfifo); 4258 4259 /* 4260 * Calculate remaining bytes in DMA fifo. 4261 * (CTEST5 = dfifo >> 16) 4262 */ 4263 if (dfifo & (DFS << 16)) 4264 delta = ((((dfifo >> 8) & 0x300) | 4265 (dfifo & 0xff)) - rest) & 0x3ff; 4266 else 4267 delta = ((dfifo & 0xff) - rest) & 0x7f; 4268 } 4269 4270 /* 4271 * The data in the dma fifo has not been transfered to 4272 * the target -> add the amount to the rest 4273 * and clear the data. 4274 * Check the sstat2 register in case of wide transfer. 4275 */ 4276 rest += delta; 4277 ss0 = INB (nc_sstat0); 4278 if (ss0 & OLF) rest++; 4279 if (!(np->features & FE_C10)) 4280 if (ss0 & ORF) rest++; 4281 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4282 ss2 = INB (nc_sstat2); 4283 if (ss2 & OLF1) rest++; 4284 if (!(np->features & FE_C10)) 4285 if (ss2 & ORF1) rest++; 4286 }; 4287 4288 /* 4289 * Clear fifos. 4290 */ 4291 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4292 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4293 } 4294 4295 /* 4296 * log the information 4297 */ 4298 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4299 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4300 (unsigned) rest, (unsigned) delta); 4301 4302 /* 4303 * try to find the interrupted script command, 4304 * and the address at which to continue. 4305 */ 4306 vdsp = 0; 4307 nxtdsp = 0; 4308 if (dsp > np->scripta_ba && 4309 dsp <= np->scripta_ba + np->scripta_sz) { 4310 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4311 nxtdsp = dsp; 4312 } 4313 else if (dsp > np->scriptb_ba && 4314 dsp <= np->scriptb_ba + np->scriptb_sz) { 4315 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4316 nxtdsp = dsp; 4317 } 4318 4319 /* 4320 * log the information 4321 */ 4322 if (DEBUG_FLAGS & DEBUG_PHASE) { 4323 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4324 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4325 }; 4326 4327 if (!vdsp) { 4328 printf ("%s: interrupted SCRIPT address not found.\n", 4329 sym_name (np)); 4330 goto reset_all; 4331 } 4332 4333 if (!cp) { 4334 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4335 sym_name (np)); 4336 goto reset_all; 4337 } 4338 4339 /* 4340 * get old startaddress and old length. 4341 */ 4342 oadr = scr_to_cpu(vdsp[1]); 4343 4344 if (cmd & 0x10) { /* Table indirect */ 4345 tblp = (u32 *) ((char*) &cp->phys + oadr); 4346 olen = scr_to_cpu(tblp[0]); 4347 oadr = scr_to_cpu(tblp[1]); 4348 } else { 4349 tblp = (u32 *) 0; 4350 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4351 }; 4352 4353 if (DEBUG_FLAGS & DEBUG_PHASE) { 4354 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4355 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4356 tblp, 4357 (unsigned) olen, 4358 (unsigned) oadr); 4359 }; 4360 4361 /* 4362 * check cmd against assumed interrupted script command. 4363 * If dt data phase, the MOVE instruction hasn't bit 4 of 4364 * the phase. 4365 */ 4366 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4367 PRINT_ADDR(cp); 4368 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4369 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4370 4371 goto reset_all; 4372 }; 4373 4374 /* 4375 * if old phase not dataphase, leave here. 4376 */ 4377 if (cmd & 2) { 4378 PRINT_ADDR(cp); 4379 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4380 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4381 (unsigned)oadr, (unsigned)rest); 4382 goto unexpected_phase; 4383 }; 4384 4385 /* 4386 * Choose the correct PM save area. 4387 * 4388 * Look at the PM_SAVE SCRIPT if you want to understand 4389 * this stuff. The equivalent code is implemented in 4390 * SCRIPTS for the 895A, 896 and 1010 that are able to 4391 * handle PM from the SCRIPTS processor. 4392 */ 4393 hflags0 = INB (HF_PRT); 4394 hflags = hflags0; 4395 4396 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4397 if (hflags & HF_IN_PM0) 4398 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4399 else if (hflags & HF_IN_PM1) 4400 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4401 4402 if (hflags & HF_DP_SAVED) 4403 hflags ^= HF_ACT_PM; 4404 } 4405 4406 if (!(hflags & HF_ACT_PM)) { 4407 pm = &cp->phys.pm0; 4408 newcmd = SCRIPTA_BA (np, pm0_data); 4409 } 4410 else { 4411 pm = &cp->phys.pm1; 4412 newcmd = SCRIPTA_BA (np, pm1_data); 4413 } 4414 4415 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4416 if (hflags != hflags0) 4417 OUTB (HF_PRT, hflags); 4418 4419 /* 4420 * fillin the phase mismatch context 4421 */ 4422 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4423 pm->sg.size = cpu_to_scr(rest); 4424 pm->ret = cpu_to_scr(nxtdsp); 4425 4426 /* 4427 * If we have a SWIDE, 4428 * - prepare the address to write the SWIDE from SCRIPTS, 4429 * - compute the SCRIPTS address to restart from, 4430 * - move current data pointer context by one byte. 4431 */ 4432 nxtdsp = SCRIPTA_BA (np, dispatch); 4433 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4434 (INB (nc_scntl2) & WSR)) { 4435 u32 tmp; 4436 4437 /* 4438 * Set up the table indirect for the MOVE 4439 * of the residual byte and adjust the data 4440 * pointer context. 4441 */ 4442 tmp = scr_to_cpu(pm->sg.addr); 4443 cp->phys.wresid.addr = cpu_to_scr(tmp); 4444 pm->sg.addr = cpu_to_scr(tmp + 1); 4445 tmp = scr_to_cpu(pm->sg.size); 4446 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4447 pm->sg.size = cpu_to_scr(tmp - 1); 4448 4449 /* 4450 * If only the residual byte is to be moved, 4451 * no PM context is needed. 4452 */ 4453 if ((tmp&0xffffff) == 1) 4454 newcmd = pm->ret; 4455 4456 /* 4457 * Prepare the address of SCRIPTS that will 4458 * move the residual byte to memory. 4459 */ 4460 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4461 } 4462 4463 if (DEBUG_FLAGS & DEBUG_PHASE) { 4464 PRINT_ADDR(cp); 4465 printf ("PM %x %x %x / %x %x %x.\n", 4466 hflags0, hflags, newcmd, 4467 (unsigned)scr_to_cpu(pm->sg.addr), 4468 (unsigned)scr_to_cpu(pm->sg.size), 4469 (unsigned)scr_to_cpu(pm->ret)); 4470 } 4471 4472 /* 4473 * Restart the SCRIPTS processor. 4474 */ 4475 OUTL (nc_temp, newcmd); 4476 OUTL_DSP (nxtdsp); 4477 return; 4478 4479 /* 4480 * Unexpected phase changes that occurs when the current phase 4481 * is not a DATA IN or DATA OUT phase are due to error conditions. 4482 * Such event may only happen when the SCRIPTS is using a 4483 * multibyte SCSI MOVE. 4484 * 4485 * Phase change Some possible cause 4486 * 4487 * COMMAND --> MSG IN SCSI parity error detected by target. 4488 * COMMAND --> STATUS Bad command or refused by target. 4489 * MSG OUT --> MSG IN Message rejected by target. 4490 * MSG OUT --> COMMAND Bogus target that discards extended 4491 * negotiation messages. 4492 * 4493 * The code below does not care of the new phase and so 4494 * trusts the target. Why to annoy it ? 4495 * If the interrupted phase is COMMAND phase, we restart at 4496 * dispatcher. 4497 * If a target does not get all the messages after selection, 4498 * the code assumes blindly that the target discards extended 4499 * messages and clears the negotiation status. 4500 * If the target does not want all our response to negotiation, 4501 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4502 * bloat for such a should_not_happen situation). 4503 * In all other situation, we reset the BUS. 4504 * Are these assumptions reasonnable ? (Wait and see ...) 4505 */ 4506 unexpected_phase: 4507 dsp -= 8; 4508 nxtdsp = 0; 4509 4510 switch (cmd & 7) { 4511 case 2: /* COMMAND phase */ 4512 nxtdsp = SCRIPTA_BA (np, dispatch); 4513 break; 4514 #if 0 4515 case 3: /* STATUS phase */ 4516 nxtdsp = SCRIPTA_BA (np, dispatch); 4517 break; 4518 #endif 4519 case 6: /* MSG OUT phase */ 4520 /* 4521 * If the device may want to use untagged when we want 4522 * tagged, we prepare an IDENTIFY without disc. granted, 4523 * since we will not be able to handle reselect. 4524 * Otherwise, we just don't care. 4525 */ 4526 if (dsp == SCRIPTA_BA (np, send_ident)) { 4527 if (cp->tag != NO_TAG && olen - rest <= 3) { 4528 cp->host_status = HS_BUSY; 4529 np->msgout[0] = M_IDENTIFY | cp->lun; 4530 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4531 } 4532 else 4533 nxtdsp = SCRIPTB_BA (np, ident_break); 4534 } 4535 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4536 dsp == SCRIPTB_BA (np, send_sdtr) || 4537 dsp == SCRIPTB_BA (np, send_ppr)) { 4538 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4539 } 4540 break; 4541 #if 0 4542 case 7: /* MSG IN phase */ 4543 nxtdsp = SCRIPTA_BA (np, clrack); 4544 break; 4545 #endif 4546 } 4547 4548 if (nxtdsp) { 4549 OUTL_DSP (nxtdsp); 4550 return; 4551 } 4552 4553 reset_all: 4554 sym_start_reset(np); 4555 } 4556 4557 /* 4558 * Dequeue from the START queue all CCBs that match 4559 * a given target/lun/task condition (-1 means all), 4560 * and move them from the BUSY queue to the COMP queue 4561 * with CAM_REQUEUE_REQ status condition. 4562 * This function is used during error handling/recovery. 4563 * It is called with SCRIPTS not running. 4564 */ 4565 static int 4566 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4567 { 4568 int j; 4569 ccb_p cp; 4570 4571 /* 4572 * Make sure the starting index is within range. 4573 */ 4574 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4575 4576 /* 4577 * Walk until end of START queue and dequeue every job 4578 * that matches the target/lun/task condition. 4579 */ 4580 j = i; 4581 while (i != np->squeueput) { 4582 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4583 assert(cp); 4584 #ifdef SYM_CONF_IARB_SUPPORT 4585 /* Forget hints for IARB, they may be no longer relevant */ 4586 cp->host_flags &= ~HF_HINT_IARB; 4587 #endif 4588 if ((target == -1 || cp->target == target) && 4589 (lun == -1 || cp->lun == lun) && 4590 (task == -1 || cp->tag == task)) { 4591 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4592 sym_remque(&cp->link_ccbq); 4593 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4594 } 4595 else { 4596 if (i != j) 4597 np->squeue[j] = np->squeue[i]; 4598 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4599 } 4600 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4601 } 4602 if (i != j) /* Copy back the idle task if needed */ 4603 np->squeue[j] = np->squeue[i]; 4604 np->squeueput = j; /* Update our current start queue pointer */ 4605 4606 return (i - j) / 2; 4607 } 4608 4609 /* 4610 * Complete all CCBs queued to the COMP queue. 4611 * 4612 * These CCBs are assumed: 4613 * - Not to be referenced either by devices or 4614 * SCRIPTS-related queues and datas. 4615 * - To have to be completed with an error condition 4616 * or requeued. 4617 * 4618 * The device queue freeze count is incremented 4619 * for each CCB that does not prevent this. 4620 * This function is called when all CCBs involved 4621 * in error handling/recovery have been reaped. 4622 */ 4623 static void 4624 sym_flush_comp_queue(hcb_p np, int cam_status) 4625 { 4626 SYM_QUEHEAD *qp; 4627 ccb_p cp; 4628 4629 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { 4630 union ccb *ccb; 4631 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4632 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4633 /* Leave quiet CCBs waiting for resources */ 4634 if (cp->host_status == HS_WAIT) 4635 continue; 4636 ccb = cp->cam_ccb; 4637 if (cam_status) 4638 sym_set_cam_status(ccb, cam_status); 4639 sym_free_ccb(np, cp); 4640 sym_freeze_cam_ccb(ccb); 4641 sym_xpt_done(np, ccb); 4642 } 4643 } 4644 4645 /* 4646 * chip handler for bad SCSI status condition 4647 * 4648 * In case of bad SCSI status, we unqueue all the tasks 4649 * currently queued to the controller but not yet started 4650 * and then restart the SCRIPTS processor immediately. 4651 * 4652 * QUEUE FULL and BUSY conditions are handled the same way. 4653 * Basically all the not yet started tasks are requeued in 4654 * device queue and the queue is frozen until a completion. 4655 * 4656 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4657 * the CCB of the failed command to prepare a REQUEST SENSE 4658 * SCSI command and queue it to the controller queue. 4659 * 4660 * SCRATCHA is assumed to have been loaded with STARTPOS 4661 * before the SCRIPTS called the C code. 4662 */ 4663 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) 4664 { 4665 tcb_p tp = &np->target[cp->target]; 4666 u32 startp; 4667 u_char s_status = cp->ssss_status; 4668 u_char h_flags = cp->host_flags; 4669 int msglen; 4670 int nego; 4671 int i; 4672 4673 /* 4674 * Compute the index of the next job to start from SCRIPTS. 4675 */ 4676 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4677 4678 /* 4679 * The last CCB queued used for IARB hint may be 4680 * no longer relevant. Forget it. 4681 */ 4682 #ifdef SYM_CONF_IARB_SUPPORT 4683 if (np->last_cp) 4684 np->last_cp = 0; 4685 #endif 4686 4687 /* 4688 * Now deal with the SCSI status. 4689 */ 4690 switch(s_status) { 4691 case S_BUSY: 4692 case S_QUEUE_FULL: 4693 if (sym_verbose >= 2) { 4694 PRINT_ADDR(cp); 4695 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4696 } 4697 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4698 sym_complete_error (np, cp); 4699 break; 4700 case S_TERMINATED: 4701 case S_CHECK_COND: 4702 /* 4703 * If we get an SCSI error when requesting sense, give up. 4704 */ 4705 if (h_flags & HF_SENSE) { 4706 sym_complete_error (np, cp); 4707 break; 4708 } 4709 4710 /* 4711 * Dequeue all queued CCBs for that device not yet started, 4712 * and restart the SCRIPTS processor immediately. 4713 */ 4714 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4715 OUTL_DSP (SCRIPTA_BA (np, start)); 4716 4717 /* 4718 * Save some info of the actual IO. 4719 * Compute the data residual. 4720 */ 4721 cp->sv_scsi_status = cp->ssss_status; 4722 cp->sv_xerr_status = cp->xerr_status; 4723 cp->sv_resid = sym_compute_residual(np, cp); 4724 4725 /* 4726 * Prepare all needed data structures for 4727 * requesting sense data. 4728 */ 4729 4730 /* 4731 * identify message 4732 */ 4733 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4734 msglen = 1; 4735 4736 /* 4737 * If we are currently using anything different from 4738 * async. 8 bit data transfers with that target, 4739 * start a negotiation, since the device may want 4740 * to report us a UNIT ATTENTION condition due to 4741 * a cause we currently ignore, and we donnot want 4742 * to be stuck with WIDE and/or SYNC data transfer. 4743 * 4744 * cp->nego_status is filled by sym_prepare_nego(). 4745 */ 4746 cp->nego_status = 0; 4747 nego = 0; 4748 if (tp->tinfo.current.options & PPR_OPT_MASK) 4749 nego = NS_PPR; 4750 else if (tp->tinfo.current.width != BUS_8_BIT) 4751 nego = NS_WIDE; 4752 else if (tp->tinfo.current.offset != 0) 4753 nego = NS_SYNC; 4754 if (nego) 4755 msglen += 4756 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4757 /* 4758 * Message table indirect structure. 4759 */ 4760 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4761 cp->phys.smsg.size = cpu_to_scr(msglen); 4762 4763 /* 4764 * sense command 4765 */ 4766 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4767 cp->phys.cmd.size = cpu_to_scr(6); 4768 4769 /* 4770 * patch requested size into sense command 4771 */ 4772 cp->sensecmd[0] = 0x03; 4773 cp->sensecmd[1] = cp->lun << 5; 4774 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4775 cp->sensecmd[1] = 0; 4776 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4777 cp->data_len = SYM_SNS_BBUF_LEN; 4778 4779 /* 4780 * sense data 4781 */ 4782 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4783 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4784 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4785 4786 /* 4787 * requeue the command. 4788 */ 4789 startp = SCRIPTB_BA (np, sdata_in); 4790 4791 cp->phys.head.savep = cpu_to_scr(startp); 4792 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4793 cp->phys.head.lastp = cpu_to_scr(startp); 4794 cp->startp = cpu_to_scr(startp); 4795 4796 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4797 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4798 cp->ssss_status = S_ILLEGAL; 4799 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4800 cp->xerr_status = 0; 4801 cp->extra_bytes = 0; 4802 4803 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4804 4805 /* 4806 * Requeue the command. 4807 */ 4808 sym_put_start_queue(np, cp); 4809 4810 /* 4811 * Give back to upper layer everything we have dequeued. 4812 */ 4813 sym_flush_comp_queue(np, 0); 4814 break; 4815 } 4816 } 4817 4818 /* 4819 * After a device has accepted some management message 4820 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4821 * a device signals a UNIT ATTENTION condition, some 4822 * tasks are thrown away by the device. We are required 4823 * to reflect that on our tasks list since the device 4824 * will never complete these tasks. 4825 * 4826 * This function move from the BUSY queue to the COMP 4827 * queue all disconnected CCBs for a given target that 4828 * match the following criteria: 4829 * - lun=-1 means any logical UNIT otherwise a given one. 4830 * - task=-1 means any task, otherwise a given one. 4831 */ 4832 static int 4833 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4834 { 4835 SYM_QUEHEAD qtmp, *qp; 4836 int i = 0; 4837 ccb_p cp; 4838 4839 /* 4840 * Move the entire BUSY queue to our temporary queue. 4841 */ 4842 sym_que_init(&qtmp); 4843 sym_que_splice(&np->busy_ccbq, &qtmp); 4844 sym_que_init(&np->busy_ccbq); 4845 4846 /* 4847 * Put all CCBs that matches our criteria into 4848 * the COMP queue and put back other ones into 4849 * the BUSY queue. 4850 */ 4851 while ((qp = sym_remque_head(&qtmp)) != 0) { 4852 union ccb *ccb; 4853 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4854 ccb = cp->cam_ccb; 4855 if (cp->host_status != HS_DISCONNECT || 4856 cp->target != target || 4857 (lun != -1 && cp->lun != lun) || 4858 (task != -1 && 4859 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4860 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4861 continue; 4862 } 4863 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4864 4865 /* Preserve the software timeout condition */ 4866 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4867 sym_set_cam_status(ccb, cam_status); 4868 ++i; 4869 #if 0 4870 printf("XXXX TASK @%p CLEARED\n", cp); 4871 #endif 4872 } 4873 return i; 4874 } 4875 4876 /* 4877 * chip handler for TASKS recovery 4878 * 4879 * We cannot safely abort a command, while the SCRIPTS 4880 * processor is running, since we just would be in race 4881 * with it. 4882 * 4883 * As long as we have tasks to abort, we keep the SEM 4884 * bit set in the ISTAT. When this bit is set, the 4885 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4886 * each time it enters the scheduler. 4887 * 4888 * If we have to reset a target, clear tasks of a unit, 4889 * or to perform the abort of a disconnected job, we 4890 * restart the SCRIPTS for selecting the target. Once 4891 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4892 * If it loses arbitration, the SCRIPTS will interrupt again 4893 * the next time it will enter its scheduler, and so on ... 4894 * 4895 * On SIR_TARGET_SELECTED, we scan for the more 4896 * appropriate thing to do: 4897 * 4898 * - If nothing, we just sent a M_ABORT message to the 4899 * target to get rid of the useless SCSI bus ownership. 4900 * According to the specs, no tasks shall be affected. 4901 * - If the target is to be reset, we send it a M_RESET 4902 * message. 4903 * - If a logical UNIT is to be cleared , we send the 4904 * IDENTIFY(lun) + M_ABORT. 4905 * - If an untagged task is to be aborted, we send the 4906 * IDENTIFY(lun) + M_ABORT. 4907 * - If a tagged task is to be aborted, we send the 4908 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4909 * 4910 * Once our 'kiss of death' :) message has been accepted 4911 * by the target, the SCRIPTS interrupts again 4912 * (SIR_ABORT_SENT). On this interrupt, we complete 4913 * all the CCBs that should have been aborted by the 4914 * target according to our message. 4915 */ 4916 static void sym_sir_task_recovery(hcb_p np, int num) 4917 { 4918 SYM_QUEHEAD *qp; 4919 ccb_p cp; 4920 tcb_p tp; 4921 int target=-1, lun=-1, task; 4922 int i, k; 4923 4924 switch(num) { 4925 /* 4926 * The SCRIPTS processor stopped before starting 4927 * the next command in order to allow us to perform 4928 * some task recovery. 4929 */ 4930 case SIR_SCRIPT_STOPPED: 4931 /* 4932 * Do we have any target to reset or unit to clear ? 4933 */ 4934 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4935 tp = &np->target[i]; 4936 if (tp->to_reset || 4937 (tp->lun0p && tp->lun0p->to_clear)) { 4938 target = i; 4939 break; 4940 } 4941 if (!tp->lunmp) 4942 continue; 4943 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4944 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4945 target = i; 4946 break; 4947 } 4948 } 4949 if (target != -1) 4950 break; 4951 } 4952 4953 /* 4954 * If not, walk the busy queue for any 4955 * disconnected CCB to be aborted. 4956 */ 4957 if (target == -1) { 4958 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4959 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4960 if (cp->host_status != HS_DISCONNECT) 4961 continue; 4962 if (cp->to_abort) { 4963 target = cp->target; 4964 break; 4965 } 4966 } 4967 } 4968 4969 /* 4970 * If some target is to be selected, 4971 * prepare and start the selection. 4972 */ 4973 if (target != -1) { 4974 tp = &np->target[target]; 4975 np->abrt_sel.sel_id = target; 4976 np->abrt_sel.sel_scntl3 = tp->head.wval; 4977 np->abrt_sel.sel_sxfer = tp->head.sval; 4978 OUTL(nc_dsa, np->hcb_ba); 4979 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 4980 return; 4981 } 4982 4983 /* 4984 * Now look for a CCB to abort that haven't started yet. 4985 * Btw, the SCRIPTS processor is still stopped, so 4986 * we are not in race. 4987 */ 4988 i = 0; 4989 cp = 0; 4990 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4991 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4992 if (cp->host_status != HS_BUSY && 4993 cp->host_status != HS_NEGOTIATE) 4994 continue; 4995 if (!cp->to_abort) 4996 continue; 4997 #ifdef SYM_CONF_IARB_SUPPORT 4998 /* 4999 * If we are using IMMEDIATE ARBITRATION, we donnot 5000 * want to cancel the last queued CCB, since the 5001 * SCRIPTS may have anticipated the selection. 5002 */ 5003 if (cp == np->last_cp) { 5004 cp->to_abort = 0; 5005 continue; 5006 } 5007 #endif 5008 i = 1; /* Means we have found some */ 5009 break; 5010 } 5011 if (!i) { 5012 /* 5013 * We are done, so we donnot need 5014 * to synchronize with the SCRIPTS anylonger. 5015 * Remove the SEM flag from the ISTAT. 5016 */ 5017 np->istat_sem = 0; 5018 OUTB (nc_istat, SIGP); 5019 break; 5020 } 5021 /* 5022 * Compute index of next position in the start 5023 * queue the SCRIPTS intends to start and dequeue 5024 * all CCBs for that device that haven't been started. 5025 */ 5026 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5027 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5028 5029 /* 5030 * Make sure at least our IO to abort has been dequeued. 5031 */ 5032 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5033 5034 /* 5035 * Keep track in cam status of the reason of the abort. 5036 */ 5037 if (cp->to_abort == 2) 5038 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5039 else 5040 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5041 5042 /* 5043 * Complete with error everything that we have dequeued. 5044 */ 5045 sym_flush_comp_queue(np, 0); 5046 break; 5047 /* 5048 * The SCRIPTS processor has selected a target 5049 * we may have some manual recovery to perform for. 5050 */ 5051 case SIR_TARGET_SELECTED: 5052 target = (INB (nc_sdid) & 0xf); 5053 tp = &np->target[target]; 5054 5055 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5056 5057 /* 5058 * If the target is to be reset, prepare a 5059 * M_RESET message and clear the to_reset flag 5060 * since we donnot expect this operation to fail. 5061 */ 5062 if (tp->to_reset) { 5063 np->abrt_msg[0] = M_RESET; 5064 np->abrt_tbl.size = 1; 5065 tp->to_reset = 0; 5066 break; 5067 } 5068 5069 /* 5070 * Otherwise, look for some logical unit to be cleared. 5071 */ 5072 if (tp->lun0p && tp->lun0p->to_clear) 5073 lun = 0; 5074 else if (tp->lunmp) { 5075 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5076 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5077 lun = k; 5078 break; 5079 } 5080 } 5081 } 5082 5083 /* 5084 * If a logical unit is to be cleared, prepare 5085 * an IDENTIFY(lun) + ABORT MESSAGE. 5086 */ 5087 if (lun != -1) { 5088 lcb_p lp = sym_lp(np, tp, lun); 5089 lp->to_clear = 0; /* We donnot expect to fail here */ 5090 np->abrt_msg[0] = M_IDENTIFY | lun; 5091 np->abrt_msg[1] = M_ABORT; 5092 np->abrt_tbl.size = 2; 5093 break; 5094 } 5095 5096 /* 5097 * Otherwise, look for some disconnected job to 5098 * abort for this target. 5099 */ 5100 i = 0; 5101 cp = 0; 5102 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5103 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5104 if (cp->host_status != HS_DISCONNECT) 5105 continue; 5106 if (cp->target != target) 5107 continue; 5108 if (!cp->to_abort) 5109 continue; 5110 i = 1; /* Means we have some */ 5111 break; 5112 } 5113 5114 /* 5115 * If we have none, probably since the device has 5116 * completed the command before we won abitration, 5117 * send a M_ABORT message without IDENTIFY. 5118 * According to the specs, the device must just 5119 * disconnect the BUS and not abort any task. 5120 */ 5121 if (!i) { 5122 np->abrt_msg[0] = M_ABORT; 5123 np->abrt_tbl.size = 1; 5124 break; 5125 } 5126 5127 /* 5128 * We have some task to abort. 5129 * Set the IDENTIFY(lun) 5130 */ 5131 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5132 5133 /* 5134 * If we want to abort an untagged command, we 5135 * will send an IDENTIFY + M_ABORT. 5136 * Otherwise (tagged command), we will send 5137 * an IDENTIFY + task attributes + ABORT TAG. 5138 */ 5139 if (cp->tag == NO_TAG) { 5140 np->abrt_msg[1] = M_ABORT; 5141 np->abrt_tbl.size = 2; 5142 } 5143 else { 5144 np->abrt_msg[1] = cp->scsi_smsg[1]; 5145 np->abrt_msg[2] = cp->scsi_smsg[2]; 5146 np->abrt_msg[3] = M_ABORT_TAG; 5147 np->abrt_tbl.size = 4; 5148 } 5149 /* 5150 * Keep track of software timeout condition, since the 5151 * peripheral driver may not count retries on abort 5152 * conditions not due to timeout. 5153 */ 5154 if (cp->to_abort == 2) 5155 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5156 cp->to_abort = 0; /* We donnot expect to fail here */ 5157 break; 5158 5159 /* 5160 * The target has accepted our message and switched 5161 * to BUS FREE phase as we expected. 5162 */ 5163 case SIR_ABORT_SENT: 5164 target = (INB (nc_sdid) & 0xf); 5165 tp = &np->target[target]; 5166 5167 /* 5168 ** If we didn't abort anything, leave here. 5169 */ 5170 if (np->abrt_msg[0] == M_ABORT) 5171 break; 5172 5173 /* 5174 * If we sent a M_RESET, then a hardware reset has 5175 * been performed by the target. 5176 * - Reset everything to async 8 bit 5177 * - Tell ourself to negotiate next time :-) 5178 * - Prepare to clear all disconnected CCBs for 5179 * this target from our task list (lun=task=-1) 5180 */ 5181 lun = -1; 5182 task = -1; 5183 if (np->abrt_msg[0] == M_RESET) { 5184 tp->head.sval = 0; 5185 tp->head.wval = np->rv_scntl3; 5186 tp->head.uval = 0; 5187 tp->tinfo.current.period = 0; 5188 tp->tinfo.current.offset = 0; 5189 tp->tinfo.current.width = BUS_8_BIT; 5190 tp->tinfo.current.options = 0; 5191 } 5192 5193 /* 5194 * Otherwise, check for the LUN and TASK(s) 5195 * concerned by the cancelation. 5196 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5197 * or an ABORT message :-) 5198 */ 5199 else { 5200 lun = np->abrt_msg[0] & 0x3f; 5201 if (np->abrt_msg[1] == M_ABORT_TAG) 5202 task = np->abrt_msg[2]; 5203 } 5204 5205 /* 5206 * Complete all the CCBs the device should have 5207 * aborted due to our 'kiss of death' message. 5208 */ 5209 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5210 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5211 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5212 sym_flush_comp_queue(np, 0); 5213 5214 /* 5215 * If we sent a BDR, make uper layer aware of that. 5216 */ 5217 if (np->abrt_msg[0] == M_RESET) 5218 xpt_async(AC_SENT_BDR, np->path, NULL); 5219 break; 5220 } 5221 5222 /* 5223 * Print to the log the message we intend to send. 5224 */ 5225 if (num == SIR_TARGET_SELECTED) { 5226 PRINT_TARGET(np, target); 5227 sym_printl_hex("control msgout:", np->abrt_msg, 5228 np->abrt_tbl.size); 5229 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5230 } 5231 5232 /* 5233 * Let the SCRIPTS processor continue. 5234 */ 5235 OUTONB_STD (); 5236 } 5237 5238 /* 5239 * Gerard's alchemy:) that deals with with the data 5240 * pointer for both MDP and the residual calculation. 5241 * 5242 * I didn't want to bloat the code by more than 200 5243 * lignes for the handling of both MDP and the residual. 5244 * This has been achieved by using a data pointer 5245 * representation consisting in an index in the data 5246 * array (dp_sg) and a negative offset (dp_ofs) that 5247 * have the following meaning: 5248 * 5249 * - dp_sg = SYM_CONF_MAX_SG 5250 * we are at the end of the data script. 5251 * - dp_sg < SYM_CONF_MAX_SG 5252 * dp_sg points to the next entry of the scatter array 5253 * we want to transfer. 5254 * - dp_ofs < 0 5255 * dp_ofs represents the residual of bytes of the 5256 * previous entry scatter entry we will send first. 5257 * - dp_ofs = 0 5258 * no residual to send first. 5259 * 5260 * The function sym_evaluate_dp() accepts an arbitray 5261 * offset (basically from the MDP message) and returns 5262 * the corresponding values of dp_sg and dp_ofs. 5263 */ 5264 5265 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5266 { 5267 u32 dp_scr; 5268 int dp_ofs, dp_sg, dp_sgmin; 5269 int tmp; 5270 struct sym_pmc *pm; 5271 5272 /* 5273 * Compute the resulted data pointer in term of a script 5274 * address within some DATA script and a signed byte offset. 5275 */ 5276 dp_scr = scr; 5277 dp_ofs = *ofs; 5278 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5279 pm = &cp->phys.pm0; 5280 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5281 pm = &cp->phys.pm1; 5282 else 5283 pm = 0; 5284 5285 if (pm) { 5286 dp_scr = scr_to_cpu(pm->ret); 5287 dp_ofs -= scr_to_cpu(pm->sg.size); 5288 } 5289 5290 /* 5291 * If we are auto-sensing, then we are done. 5292 */ 5293 if (cp->host_flags & HF_SENSE) { 5294 *ofs = dp_ofs; 5295 return 0; 5296 } 5297 5298 /* 5299 * Deduce the index of the sg entry. 5300 * Keep track of the index of the first valid entry. 5301 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5302 * end of the data. 5303 */ 5304 tmp = scr_to_cpu(cp->phys.head.goalp); 5305 dp_sg = SYM_CONF_MAX_SG; 5306 if (dp_scr != tmp) 5307 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5308 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5309 5310 /* 5311 * Move to the sg entry the data pointer belongs to. 5312 * 5313 * If we are inside the data area, we expect result to be: 5314 * 5315 * Either, 5316 * dp_ofs = 0 and dp_sg is the index of the sg entry 5317 * the data pointer belongs to (or the end of the data) 5318 * Or, 5319 * dp_ofs < 0 and dp_sg is the index of the sg entry 5320 * the data pointer belongs to + 1. 5321 */ 5322 if (dp_ofs < 0) { 5323 int n; 5324 while (dp_sg > dp_sgmin) { 5325 --dp_sg; 5326 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5327 n = dp_ofs + (tmp & 0xffffff); 5328 if (n > 0) { 5329 ++dp_sg; 5330 break; 5331 } 5332 dp_ofs = n; 5333 } 5334 } 5335 else if (dp_ofs > 0) { 5336 while (dp_sg < SYM_CONF_MAX_SG) { 5337 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5338 dp_ofs -= (tmp & 0xffffff); 5339 ++dp_sg; 5340 if (dp_ofs <= 0) 5341 break; 5342 } 5343 } 5344 5345 /* 5346 * Make sure the data pointer is inside the data area. 5347 * If not, return some error. 5348 */ 5349 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5350 goto out_err; 5351 else if (dp_sg > SYM_CONF_MAX_SG || 5352 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5353 goto out_err; 5354 5355 /* 5356 * Save the extreme pointer if needed. 5357 */ 5358 if (dp_sg > cp->ext_sg || 5359 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5360 cp->ext_sg = dp_sg; 5361 cp->ext_ofs = dp_ofs; 5362 } 5363 5364 /* 5365 * Return data. 5366 */ 5367 *ofs = dp_ofs; 5368 return dp_sg; 5369 5370 out_err: 5371 return -1; 5372 } 5373 5374 /* 5375 * chip handler for MODIFY DATA POINTER MESSAGE 5376 * 5377 * We also call this function on IGNORE WIDE RESIDUE 5378 * messages that do not match a SWIDE full condition. 5379 * Btw, we assume in that situation that such a message 5380 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5381 */ 5382 5383 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) 5384 { 5385 int dp_ofs = ofs; 5386 u32 dp_scr = INL (nc_temp); 5387 u32 dp_ret; 5388 u32 tmp; 5389 u_char hflags; 5390 int dp_sg; 5391 struct sym_pmc *pm; 5392 5393 /* 5394 * Not supported for auto-sense. 5395 */ 5396 if (cp->host_flags & HF_SENSE) 5397 goto out_reject; 5398 5399 /* 5400 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5401 * to the resulted data pointer. 5402 */ 5403 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5404 if (dp_sg < 0) 5405 goto out_reject; 5406 5407 /* 5408 * And our alchemy:) allows to easily calculate the data 5409 * script address we want to return for the next data phase. 5410 */ 5411 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5412 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5413 5414 /* 5415 * If offset / scatter entry is zero we donnot need 5416 * a context for the new current data pointer. 5417 */ 5418 if (dp_ofs == 0) { 5419 dp_scr = dp_ret; 5420 goto out_ok; 5421 } 5422 5423 /* 5424 * Get a context for the new current data pointer. 5425 */ 5426 hflags = INB (HF_PRT); 5427 5428 if (hflags & HF_DP_SAVED) 5429 hflags ^= HF_ACT_PM; 5430 5431 if (!(hflags & HF_ACT_PM)) { 5432 pm = &cp->phys.pm0; 5433 dp_scr = SCRIPTA_BA (np, pm0_data); 5434 } 5435 else { 5436 pm = &cp->phys.pm1; 5437 dp_scr = SCRIPTA_BA (np, pm1_data); 5438 } 5439 5440 hflags &= ~(HF_DP_SAVED); 5441 5442 OUTB (HF_PRT, hflags); 5443 5444 /* 5445 * Set up the new current data pointer. 5446 * ofs < 0 there, and for the next data phase, we 5447 * want to transfer part of the data of the sg entry 5448 * corresponding to index dp_sg-1 prior to returning 5449 * to the main data script. 5450 */ 5451 pm->ret = cpu_to_scr(dp_ret); 5452 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5453 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5454 pm->sg.addr = cpu_to_scr(tmp); 5455 pm->sg.size = cpu_to_scr(-dp_ofs); 5456 5457 out_ok: 5458 OUTL (nc_temp, dp_scr); 5459 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5460 return; 5461 5462 out_reject: 5463 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5464 } 5465 5466 5467 /* 5468 * chip calculation of the data residual. 5469 * 5470 * As I used to say, the requirement of data residual 5471 * in SCSI is broken, useless and cannot be achieved 5472 * without huge complexity. 5473 * But most OSes and even the official CAM require it. 5474 * When stupidity happens to be so widely spread inside 5475 * a community, it gets hard to convince. 5476 * 5477 * Anyway, I don't care, since I am not going to use 5478 * any software that considers this data residual as 5479 * a relevant information. :) 5480 */ 5481 5482 static int sym_compute_residual(hcb_p np, ccb_p cp) 5483 { 5484 int dp_sg, dp_sgmin, resid = 0; 5485 int dp_ofs = 0; 5486 5487 /* 5488 * Check for some data lost or just thrown away. 5489 * We are not required to be quite accurate in this 5490 * situation. Btw, if we are odd for output and the 5491 * device claims some more data, it may well happen 5492 * than our residual be zero. :-) 5493 */ 5494 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5495 if (cp->xerr_status & XE_EXTRA_DATA) 5496 resid -= cp->extra_bytes; 5497 if (cp->xerr_status & XE_SODL_UNRUN) 5498 ++resid; 5499 if (cp->xerr_status & XE_SWIDE_OVRUN) 5500 --resid; 5501 } 5502 5503 /* 5504 * If all data has been transferred, 5505 * there is no residual. 5506 */ 5507 if (cp->phys.head.lastp == cp->phys.head.goalp) 5508 return resid; 5509 5510 /* 5511 * If no data transfer occurs, or if the data 5512 * pointer is weird, return full residual. 5513 */ 5514 if (cp->startp == cp->phys.head.lastp || 5515 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5516 &dp_ofs) < 0) { 5517 return cp->data_len; 5518 } 5519 5520 /* 5521 * If we were auto-sensing, then we are done. 5522 */ 5523 if (cp->host_flags & HF_SENSE) { 5524 return -dp_ofs; 5525 } 5526 5527 /* 5528 * We are now full comfortable in the computation 5529 * of the data residual (2's complement). 5530 */ 5531 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5532 resid = -cp->ext_ofs; 5533 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5534 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5535 resid += (tmp & 0xffffff); 5536 } 5537 5538 /* 5539 * Hopefully, the result is not too wrong. 5540 */ 5541 return resid; 5542 } 5543 5544 /* 5545 * Print out the content of a SCSI message. 5546 */ 5547 5548 static int sym_show_msg (u_char * msg) 5549 { 5550 u_char i; 5551 printf ("%x",*msg); 5552 if (*msg==M_EXTENDED) { 5553 for (i=1;i<8;i++) { 5554 if (i-1>msg[1]) break; 5555 printf ("-%x",msg[i]); 5556 }; 5557 return (i+1); 5558 } else if ((*msg & 0xf0) == 0x20) { 5559 printf ("-%x",msg[1]); 5560 return (2); 5561 }; 5562 return (1); 5563 } 5564 5565 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5566 { 5567 PRINT_ADDR(cp); 5568 if (label) 5569 printf ("%s: ", label); 5570 5571 (void) sym_show_msg (msg); 5572 printf (".\n"); 5573 } 5574 5575 /* 5576 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5577 * 5578 * When we try to negotiate, we append the negotiation message 5579 * to the identify and (maybe) simple tag message. 5580 * The host status field is set to HS_NEGOTIATE to mark this 5581 * situation. 5582 * 5583 * If the target doesn't answer this message immediately 5584 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5585 * will be raised eventually. 5586 * The handler removes the HS_NEGOTIATE status, and sets the 5587 * negotiated value to the default (async / nowide). 5588 * 5589 * If we receive a matching answer immediately, we check it 5590 * for validity, and set the values. 5591 * 5592 * If we receive a Reject message immediately, we assume the 5593 * negotiation has failed, and fall back to standard values. 5594 * 5595 * If we receive a negotiation message while not in HS_NEGOTIATE 5596 * state, it's a target initiated negotiation. We prepare a 5597 * (hopefully) valid answer, set our parameters, and send back 5598 * this answer to the target. 5599 * 5600 * If the target doesn't fetch the answer (no message out phase), 5601 * we assume the negotiation has failed, and fall back to default 5602 * settings (SIR_NEGO_PROTO interrupt). 5603 * 5604 * When we set the values, we adjust them in all ccbs belonging 5605 * to this target, in the controller's register, and in the "phys" 5606 * field of the controller's struct sym_hcb. 5607 */ 5608 5609 /* 5610 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5611 */ 5612 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5613 { 5614 u_char chg, ofs, per, fak, div; 5615 int req = 1; 5616 5617 /* 5618 * Synchronous request message received. 5619 */ 5620 if (DEBUG_FLAGS & DEBUG_NEGO) { 5621 sym_print_msg(cp, "sync msgin", np->msgin); 5622 }; 5623 5624 /* 5625 * request or answer ? 5626 */ 5627 if (INB (HS_PRT) == HS_NEGOTIATE) { 5628 OUTB (HS_PRT, HS_BUSY); 5629 if (cp->nego_status && cp->nego_status != NS_SYNC) 5630 goto reject_it; 5631 req = 0; 5632 } 5633 5634 /* 5635 * get requested values. 5636 */ 5637 chg = 0; 5638 per = np->msgin[3]; 5639 ofs = np->msgin[4]; 5640 5641 /* 5642 * check values against our limits. 5643 */ 5644 if (ofs) { 5645 if (ofs > np->maxoffs) 5646 {chg = 1; ofs = np->maxoffs;} 5647 if (req) { 5648 if (ofs > tp->tinfo.user.offset) 5649 {chg = 1; ofs = tp->tinfo.user.offset;} 5650 } 5651 } 5652 5653 if (ofs) { 5654 if (per < np->minsync) 5655 {chg = 1; per = np->minsync;} 5656 if (req) { 5657 if (per < tp->tinfo.user.period) 5658 {chg = 1; per = tp->tinfo.user.period;} 5659 } 5660 } 5661 5662 div = fak = 0; 5663 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5664 goto reject_it; 5665 5666 if (DEBUG_FLAGS & DEBUG_NEGO) { 5667 PRINT_ADDR(cp); 5668 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5669 ofs, per, div, fak, chg); 5670 } 5671 5672 /* 5673 * This was an answer message 5674 */ 5675 if (req == 0) { 5676 if (chg) /* Answer wasn't acceptable. */ 5677 goto reject_it; 5678 sym_setsync (np, cp, ofs, per, div, fak); 5679 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5680 return; 5681 } 5682 5683 /* 5684 * It was a request. Set value and 5685 * prepare an answer message 5686 */ 5687 sym_setsync (np, cp, ofs, per, div, fak); 5688 5689 np->msgout[0] = M_EXTENDED; 5690 np->msgout[1] = 3; 5691 np->msgout[2] = M_X_SYNC_REQ; 5692 np->msgout[3] = per; 5693 np->msgout[4] = ofs; 5694 5695 cp->nego_status = NS_SYNC; 5696 5697 if (DEBUG_FLAGS & DEBUG_NEGO) { 5698 sym_print_msg(cp, "sync msgout", np->msgout); 5699 } 5700 5701 np->msgin [0] = M_NOOP; 5702 5703 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5704 return; 5705 reject_it: 5706 sym_setsync (np, cp, 0, 0, 0, 0); 5707 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5708 } 5709 5710 /* 5711 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5712 */ 5713 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5714 { 5715 u_char chg, ofs, per, fak, dt, div, wide; 5716 int req = 1; 5717 5718 /* 5719 * Synchronous request message received. 5720 */ 5721 if (DEBUG_FLAGS & DEBUG_NEGO) { 5722 sym_print_msg(cp, "ppr msgin", np->msgin); 5723 }; 5724 5725 /* 5726 * get requested values. 5727 */ 5728 chg = 0; 5729 per = np->msgin[3]; 5730 ofs = np->msgin[5]; 5731 wide = np->msgin[6]; 5732 dt = np->msgin[7] & PPR_OPT_DT; 5733 5734 /* 5735 * request or answer ? 5736 */ 5737 if (INB (HS_PRT) == HS_NEGOTIATE) { 5738 OUTB (HS_PRT, HS_BUSY); 5739 if (cp->nego_status && cp->nego_status != NS_PPR) 5740 goto reject_it; 5741 req = 0; 5742 } 5743 5744 /* 5745 * check values against our limits. 5746 */ 5747 if (wide > np->maxwide) 5748 {chg = 1; wide = np->maxwide;} 5749 if (!wide || !(np->features & FE_ULTRA3)) 5750 dt &= ~PPR_OPT_DT; 5751 if (req) { 5752 if (wide > tp->tinfo.user.width) 5753 {chg = 1; wide = tp->tinfo.user.width;} 5754 } 5755 5756 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5757 dt &= ~PPR_OPT_DT; 5758 5759 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5760 5761 if (ofs) { 5762 if (dt) { 5763 if (ofs > np->maxoffs_dt) 5764 {chg = 1; ofs = np->maxoffs_dt;} 5765 } 5766 else if (ofs > np->maxoffs) 5767 {chg = 1; ofs = np->maxoffs;} 5768 if (req) { 5769 if (ofs > tp->tinfo.user.offset) 5770 {chg = 1; ofs = tp->tinfo.user.offset;} 5771 } 5772 } 5773 5774 if (ofs) { 5775 if (dt) { 5776 if (per < np->minsync_dt) 5777 {chg = 1; per = np->minsync_dt;} 5778 } 5779 else if (per < np->minsync) 5780 {chg = 1; per = np->minsync;} 5781 if (req) { 5782 if (per < tp->tinfo.user.period) 5783 {chg = 1; per = tp->tinfo.user.period;} 5784 } 5785 } 5786 5787 div = fak = 0; 5788 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5789 goto reject_it; 5790 5791 if (DEBUG_FLAGS & DEBUG_NEGO) { 5792 PRINT_ADDR(cp); 5793 printf ("ppr: " 5794 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5795 dt, ofs, per, wide, div, fak, chg); 5796 } 5797 5798 /* 5799 * It was an answer. 5800 */ 5801 if (req == 0) { 5802 if (chg) /* Answer wasn't acceptable */ 5803 goto reject_it; 5804 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5805 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5806 return; 5807 } 5808 5809 /* 5810 * It was a request. Set value and 5811 * prepare an answer message 5812 */ 5813 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5814 5815 np->msgout[0] = M_EXTENDED; 5816 np->msgout[1] = 6; 5817 np->msgout[2] = M_X_PPR_REQ; 5818 np->msgout[3] = per; 5819 np->msgout[4] = 0; 5820 np->msgout[5] = ofs; 5821 np->msgout[6] = wide; 5822 np->msgout[7] = dt; 5823 5824 cp->nego_status = NS_PPR; 5825 5826 if (DEBUG_FLAGS & DEBUG_NEGO) { 5827 sym_print_msg(cp, "ppr msgout", np->msgout); 5828 } 5829 5830 np->msgin [0] = M_NOOP; 5831 5832 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5833 return; 5834 reject_it: 5835 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5836 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5837 /* 5838 * If it was a device response that should result in 5839 * ST, we may want to try a legacy negotiation later. 5840 */ 5841 if (!req && !dt) { 5842 tp->tinfo.goal.options = 0; 5843 tp->tinfo.goal.width = wide; 5844 tp->tinfo.goal.period = per; 5845 tp->tinfo.goal.offset = ofs; 5846 } 5847 return; 5848 } 5849 5850 /* 5851 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5852 */ 5853 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5854 { 5855 u_char chg, wide; 5856 int req = 1; 5857 5858 /* 5859 * Wide request message received. 5860 */ 5861 if (DEBUG_FLAGS & DEBUG_NEGO) { 5862 sym_print_msg(cp, "wide msgin", np->msgin); 5863 }; 5864 5865 /* 5866 * Is it a request from the device? 5867 */ 5868 if (INB (HS_PRT) == HS_NEGOTIATE) { 5869 OUTB (HS_PRT, HS_BUSY); 5870 if (cp->nego_status && cp->nego_status != NS_WIDE) 5871 goto reject_it; 5872 req = 0; 5873 } 5874 5875 /* 5876 * get requested values. 5877 */ 5878 chg = 0; 5879 wide = np->msgin[3]; 5880 5881 /* 5882 * check values against driver limits. 5883 */ 5884 if (wide > np->maxwide) 5885 {chg = 1; wide = np->maxwide;} 5886 if (req) { 5887 if (wide > tp->tinfo.user.width) 5888 {chg = 1; wide = tp->tinfo.user.width;} 5889 } 5890 5891 if (DEBUG_FLAGS & DEBUG_NEGO) { 5892 PRINT_ADDR(cp); 5893 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5894 } 5895 5896 /* 5897 * This was an answer message 5898 */ 5899 if (req == 0) { 5900 if (chg) /* Answer wasn't acceptable. */ 5901 goto reject_it; 5902 sym_setwide (np, cp, wide); 5903 5904 /* 5905 * Negotiate for SYNC immediately after WIDE response. 5906 * This allows to negotiate for both WIDE and SYNC on 5907 * a single SCSI command (Suggested by Justin Gibbs). 5908 */ 5909 if (tp->tinfo.goal.offset) { 5910 np->msgout[0] = M_EXTENDED; 5911 np->msgout[1] = 3; 5912 np->msgout[2] = M_X_SYNC_REQ; 5913 np->msgout[3] = tp->tinfo.goal.period; 5914 np->msgout[4] = tp->tinfo.goal.offset; 5915 5916 if (DEBUG_FLAGS & DEBUG_NEGO) { 5917 sym_print_msg(cp, "sync msgout", np->msgout); 5918 } 5919 5920 cp->nego_status = NS_SYNC; 5921 OUTB (HS_PRT, HS_NEGOTIATE); 5922 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5923 return; 5924 } 5925 5926 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5927 return; 5928 }; 5929 5930 /* 5931 * It was a request, set value and 5932 * prepare an answer message 5933 */ 5934 sym_setwide (np, cp, wide); 5935 5936 np->msgout[0] = M_EXTENDED; 5937 np->msgout[1] = 2; 5938 np->msgout[2] = M_X_WIDE_REQ; 5939 np->msgout[3] = wide; 5940 5941 np->msgin [0] = M_NOOP; 5942 5943 cp->nego_status = NS_WIDE; 5944 5945 if (DEBUG_FLAGS & DEBUG_NEGO) { 5946 sym_print_msg(cp, "wide msgout", np->msgout); 5947 } 5948 5949 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5950 return; 5951 reject_it: 5952 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5953 } 5954 5955 /* 5956 * Reset SYNC or WIDE to default settings. 5957 * 5958 * Called when a negotiation does not succeed either 5959 * on rejection or on protocol error. 5960 * 5961 * If it was a PPR that made problems, we may want to 5962 * try a legacy negotiation later. 5963 */ 5964 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5965 { 5966 /* 5967 * any error in negotiation: 5968 * fall back to default mode. 5969 */ 5970 switch (cp->nego_status) { 5971 case NS_PPR: 5972 #if 0 5973 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5974 #else 5975 tp->tinfo.goal.options = 0; 5976 if (tp->tinfo.goal.period < np->minsync) 5977 tp->tinfo.goal.period = np->minsync; 5978 if (tp->tinfo.goal.offset > np->maxoffs) 5979 tp->tinfo.goal.offset = np->maxoffs; 5980 #endif 5981 break; 5982 case NS_SYNC: 5983 sym_setsync (np, cp, 0, 0, 0, 0); 5984 break; 5985 case NS_WIDE: 5986 sym_setwide (np, cp, 0); 5987 break; 5988 }; 5989 np->msgin [0] = M_NOOP; 5990 np->msgout[0] = M_NOOP; 5991 cp->nego_status = 0; 5992 } 5993 5994 /* 5995 * chip handler for MESSAGE REJECT received in response to 5996 * a WIDE or SYNCHRONOUS negotiation. 5997 */ 5998 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 5999 { 6000 sym_nego_default(np, tp, cp); 6001 OUTB (HS_PRT, HS_BUSY); 6002 } 6003 6004 /* 6005 * chip exception handler for programmed interrupts. 6006 */ 6007 static void sym_int_sir (hcb_p np) 6008 { 6009 u_char num = INB (nc_dsps); 6010 u32 dsa = INL (nc_dsa); 6011 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6012 u_char target = INB (nc_sdid) & 0x0f; 6013 tcb_p tp = &np->target[target]; 6014 int tmp; 6015 6016 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6017 6018 switch (num) { 6019 /* 6020 * Command has been completed with error condition 6021 * or has been auto-sensed. 6022 */ 6023 case SIR_COMPLETE_ERROR: 6024 sym_complete_error(np, cp); 6025 return; 6026 /* 6027 * The C code is currently trying to recover from something. 6028 * Typically, user want to abort some command. 6029 */ 6030 case SIR_SCRIPT_STOPPED: 6031 case SIR_TARGET_SELECTED: 6032 case SIR_ABORT_SENT: 6033 sym_sir_task_recovery(np, num); 6034 return; 6035 /* 6036 * The device didn't go to MSG OUT phase after having 6037 * been selected with ATN. We donnot want to handle 6038 * that. 6039 */ 6040 case SIR_SEL_ATN_NO_MSG_OUT: 6041 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6042 sym_name (np), target); 6043 goto out_stuck; 6044 /* 6045 * The device didn't switch to MSG IN phase after 6046 * having reseleted the initiator. 6047 */ 6048 case SIR_RESEL_NO_MSG_IN: 6049 printf ("%s:%d: No MSG IN phase after reselection.\n", 6050 sym_name (np), target); 6051 goto out_stuck; 6052 /* 6053 * After reselection, the device sent a message that wasn't 6054 * an IDENTIFY. 6055 */ 6056 case SIR_RESEL_NO_IDENTIFY: 6057 printf ("%s:%d: No IDENTIFY after reselection.\n", 6058 sym_name (np), target); 6059 goto out_stuck; 6060 /* 6061 * The device reselected a LUN we donnot know about. 6062 */ 6063 case SIR_RESEL_BAD_LUN: 6064 np->msgout[0] = M_RESET; 6065 goto out; 6066 /* 6067 * The device reselected for an untagged nexus and we 6068 * haven't any. 6069 */ 6070 case SIR_RESEL_BAD_I_T_L: 6071 np->msgout[0] = M_ABORT; 6072 goto out; 6073 /* 6074 * The device reselected for a tagged nexus that we donnot 6075 * have. 6076 */ 6077 case SIR_RESEL_BAD_I_T_L_Q: 6078 np->msgout[0] = M_ABORT_TAG; 6079 goto out; 6080 /* 6081 * The SCRIPTS let us know that the device has grabbed 6082 * our message and will abort the job. 6083 */ 6084 case SIR_RESEL_ABORTED: 6085 np->lastmsg = np->msgout[0]; 6086 np->msgout[0] = M_NOOP; 6087 printf ("%s:%d: message %x sent on bad reselection.\n", 6088 sym_name (np), target, np->lastmsg); 6089 goto out; 6090 /* 6091 * The SCRIPTS let us know that a message has been 6092 * successfully sent to the device. 6093 */ 6094 case SIR_MSG_OUT_DONE: 6095 np->lastmsg = np->msgout[0]; 6096 np->msgout[0] = M_NOOP; 6097 /* Should we really care of that */ 6098 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6099 if (cp) { 6100 cp->xerr_status &= ~XE_PARITY_ERR; 6101 if (!cp->xerr_status) 6102 OUTOFFB (HF_PRT, HF_EXT_ERR); 6103 } 6104 } 6105 goto out; 6106 /* 6107 * The device didn't send a GOOD SCSI status. 6108 * We may have some work to do prior to allow 6109 * the SCRIPTS processor to continue. 6110 */ 6111 case SIR_BAD_SCSI_STATUS: 6112 if (!cp) 6113 goto out; 6114 sym_sir_bad_scsi_status(np, num, cp); 6115 return; 6116 /* 6117 * We are asked by the SCRIPTS to prepare a 6118 * REJECT message. 6119 */ 6120 case SIR_REJECT_TO_SEND: 6121 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6122 np->msgout[0] = M_REJECT; 6123 goto out; 6124 /* 6125 * We have been ODD at the end of a DATA IN 6126 * transfer and the device didn't send a 6127 * IGNORE WIDE RESIDUE message. 6128 * It is a data overrun condition. 6129 */ 6130 case SIR_SWIDE_OVERRUN: 6131 if (cp) { 6132 OUTONB (HF_PRT, HF_EXT_ERR); 6133 cp->xerr_status |= XE_SWIDE_OVRUN; 6134 } 6135 goto out; 6136 /* 6137 * We have been ODD at the end of a DATA OUT 6138 * transfer. 6139 * It is a data underrun condition. 6140 */ 6141 case SIR_SODL_UNDERRUN: 6142 if (cp) { 6143 OUTONB (HF_PRT, HF_EXT_ERR); 6144 cp->xerr_status |= XE_SODL_UNRUN; 6145 } 6146 goto out; 6147 /* 6148 * The device wants us to tranfer more data than 6149 * expected or in the wrong direction. 6150 * The number of extra bytes is in scratcha. 6151 * It is a data overrun condition. 6152 */ 6153 case SIR_DATA_OVERRUN: 6154 if (cp) { 6155 OUTONB (HF_PRT, HF_EXT_ERR); 6156 cp->xerr_status |= XE_EXTRA_DATA; 6157 cp->extra_bytes += INL (nc_scratcha); 6158 } 6159 goto out; 6160 /* 6161 * The device switched to an illegal phase (4/5). 6162 */ 6163 case SIR_BAD_PHASE: 6164 if (cp) { 6165 OUTONB (HF_PRT, HF_EXT_ERR); 6166 cp->xerr_status |= XE_BAD_PHASE; 6167 } 6168 goto out; 6169 /* 6170 * We received a message. 6171 */ 6172 case SIR_MSG_RECEIVED: 6173 if (!cp) 6174 goto out_stuck; 6175 switch (np->msgin [0]) { 6176 /* 6177 * We received an extended message. 6178 * We handle MODIFY DATA POINTER, SDTR, WDTR 6179 * and reject all other extended messages. 6180 */ 6181 case M_EXTENDED: 6182 switch (np->msgin [2]) { 6183 case M_X_MODIFY_DP: 6184 if (DEBUG_FLAGS & DEBUG_POINTER) 6185 sym_print_msg(cp,"modify DP",np->msgin); 6186 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6187 (np->msgin[5]<<8) + (np->msgin[6]); 6188 sym_modify_dp(np, tp, cp, tmp); 6189 return; 6190 case M_X_SYNC_REQ: 6191 sym_sync_nego(np, tp, cp); 6192 return; 6193 case M_X_PPR_REQ: 6194 sym_ppr_nego(np, tp, cp); 6195 return; 6196 case M_X_WIDE_REQ: 6197 sym_wide_nego(np, tp, cp); 6198 return; 6199 default: 6200 goto out_reject; 6201 } 6202 break; 6203 /* 6204 * We received a 1/2 byte message not handled from SCRIPTS. 6205 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6206 * RESIDUE messages that haven't been anticipated by 6207 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6208 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6209 */ 6210 case M_IGN_RESIDUE: 6211 if (DEBUG_FLAGS & DEBUG_POINTER) 6212 sym_print_msg(cp,"ign wide residue", np->msgin); 6213 sym_modify_dp(np, tp, cp, -1); 6214 return; 6215 case M_REJECT: 6216 if (INB (HS_PRT) == HS_NEGOTIATE) 6217 sym_nego_rejected(np, tp, cp); 6218 else { 6219 PRINT_ADDR(cp); 6220 printf ("M_REJECT received (%x:%x).\n", 6221 scr_to_cpu(np->lastmsg), np->msgout[0]); 6222 } 6223 goto out_clrack; 6224 break; 6225 default: 6226 goto out_reject; 6227 } 6228 break; 6229 /* 6230 * We received an unknown message. 6231 * Ignore all MSG IN phases and reject it. 6232 */ 6233 case SIR_MSG_WEIRD: 6234 sym_print_msg(cp, "WEIRD message received", np->msgin); 6235 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6236 return; 6237 /* 6238 * Negotiation failed. 6239 * Target does not send us the reply. 6240 * Remove the HS_NEGOTIATE status. 6241 */ 6242 case SIR_NEGO_FAILED: 6243 OUTB (HS_PRT, HS_BUSY); 6244 /* 6245 * Negotiation failed. 6246 * Target does not want answer message. 6247 */ 6248 case SIR_NEGO_PROTO: 6249 sym_nego_default(np, tp, cp); 6250 goto out; 6251 }; 6252 6253 out: 6254 OUTONB_STD (); 6255 return; 6256 out_reject: 6257 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6258 return; 6259 out_clrack: 6260 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6261 return; 6262 out_stuck: 6263 return; 6264 } 6265 6266 /* 6267 * Acquire a control block 6268 */ 6269 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6270 { 6271 tcb_p tp = &np->target[tn]; 6272 lcb_p lp = sym_lp(np, tp, ln); 6273 u_short tag = NO_TAG; 6274 SYM_QUEHEAD *qp; 6275 ccb_p cp = (ccb_p) 0; 6276 6277 /* 6278 * Look for a free CCB 6279 */ 6280 if (sym_que_empty(&np->free_ccbq)) 6281 (void) sym_alloc_ccb(np); 6282 qp = sym_remque_head(&np->free_ccbq); 6283 if (!qp) 6284 goto out; 6285 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6286 6287 /* 6288 * If the LCB is not yet available and the LUN 6289 * has been probed ok, try to allocate the LCB. 6290 */ 6291 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6292 lp = sym_alloc_lcb(np, tn, ln); 6293 if (!lp) 6294 goto out_free; 6295 } 6296 6297 /* 6298 * If the LCB is not available here, then the 6299 * logical unit is not yet discovered. For those 6300 * ones only accept 1 SCSI IO per logical unit, 6301 * since we cannot allow disconnections. 6302 */ 6303 if (!lp) { 6304 if (!sym_is_bit(tp->busy0_map, ln)) 6305 sym_set_bit(tp->busy0_map, ln); 6306 else 6307 goto out_free; 6308 } else { 6309 /* 6310 * If we have been asked for a tagged command. 6311 */ 6312 if (tag_order) { 6313 /* 6314 * Debugging purpose. 6315 */ 6316 assert(lp->busy_itl == 0); 6317 /* 6318 * Allocate resources for tags if not yet. 6319 */ 6320 if (!lp->cb_tags) { 6321 sym_alloc_lcb_tags(np, tn, ln); 6322 if (!lp->cb_tags) 6323 goto out_free; 6324 } 6325 /* 6326 * Get a tag for this SCSI IO and set up 6327 * the CCB bus address for reselection, 6328 * and count it for this LUN. 6329 * Toggle reselect path to tagged. 6330 */ 6331 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6332 tag = lp->cb_tags[lp->ia_tag]; 6333 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6334 lp->ia_tag = 0; 6335 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6336 ++lp->busy_itlq; 6337 lp->head.resel_sa = 6338 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6339 } 6340 else 6341 goto out_free; 6342 } 6343 /* 6344 * This command will not be tagged. 6345 * If we already have either a tagged or untagged 6346 * one, refuse to overlap this untagged one. 6347 */ 6348 else { 6349 /* 6350 * Debugging purpose. 6351 */ 6352 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6353 /* 6354 * Count this nexus for this LUN. 6355 * Set up the CCB bus address for reselection. 6356 * Toggle reselect path to untagged. 6357 */ 6358 if (++lp->busy_itl == 1) { 6359 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6360 lp->head.resel_sa = 6361 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6362 } 6363 else 6364 goto out_free; 6365 } 6366 } 6367 /* 6368 * Put the CCB into the busy queue. 6369 */ 6370 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6371 6372 /* 6373 * Remember all informations needed to free this CCB. 6374 */ 6375 cp->to_abort = 0; 6376 cp->tag = tag; 6377 cp->target = tn; 6378 cp->lun = ln; 6379 6380 if (DEBUG_FLAGS & DEBUG_TAGS) { 6381 PRINT_LUN(np, tn, ln); 6382 printf ("ccb @%p using tag %d.\n", cp, tag); 6383 } 6384 6385 out: 6386 return cp; 6387 out_free: 6388 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6389 return (ccb_p) 0; 6390 } 6391 6392 /* 6393 * Release one control block 6394 */ 6395 static void sym_free_ccb (hcb_p np, ccb_p cp) 6396 { 6397 tcb_p tp = &np->target[cp->target]; 6398 lcb_p lp = sym_lp(np, tp, cp->lun); 6399 6400 if (DEBUG_FLAGS & DEBUG_TAGS) { 6401 PRINT_LUN(np, cp->target, cp->lun); 6402 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6403 } 6404 6405 /* 6406 * If LCB available, 6407 */ 6408 if (lp) { 6409 /* 6410 * If tagged, release the tag, set the relect path 6411 */ 6412 if (cp->tag != NO_TAG) { 6413 /* 6414 * Free the tag value. 6415 */ 6416 lp->cb_tags[lp->if_tag] = cp->tag; 6417 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6418 lp->if_tag = 0; 6419 /* 6420 * Make the reselect path invalid, 6421 * and uncount this CCB. 6422 */ 6423 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6424 --lp->busy_itlq; 6425 } else { /* Untagged */ 6426 /* 6427 * Make the reselect path invalid, 6428 * and uncount this CCB. 6429 */ 6430 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6431 --lp->busy_itl; 6432 } 6433 /* 6434 * If no JOB active, make the LUN reselect path invalid. 6435 */ 6436 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6437 lp->head.resel_sa = 6438 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6439 } 6440 /* 6441 * Otherwise, we only accept 1 IO per LUN. 6442 * Clear the bit that keeps track of this IO. 6443 */ 6444 else 6445 sym_clr_bit(tp->busy0_map, cp->lun); 6446 6447 /* 6448 * We donnot queue more than 1 ccb per target 6449 * with negotiation at any time. If this ccb was 6450 * used for negotiation, clear this info in the tcb. 6451 */ 6452 if (cp == tp->nego_cp) 6453 tp->nego_cp = 0; 6454 6455 #ifdef SYM_CONF_IARB_SUPPORT 6456 /* 6457 * If we just complete the last queued CCB, 6458 * clear this info that is no longer relevant. 6459 */ 6460 if (cp == np->last_cp) 6461 np->last_cp = 0; 6462 #endif 6463 6464 /* 6465 * Unmap user data from DMA map if needed. 6466 */ 6467 if (cp->dmamapped) { 6468 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6469 cp->dmamapped = 0; 6470 } 6471 6472 /* 6473 * Make this CCB available. 6474 */ 6475 cp->cam_ccb = 0; 6476 cp->host_status = HS_IDLE; 6477 sym_remque(&cp->link_ccbq); 6478 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6479 } 6480 6481 /* 6482 * Allocate a CCB from memory and initialize its fixed part. 6483 */ 6484 static ccb_p sym_alloc_ccb(hcb_p np) 6485 { 6486 ccb_p cp = 0; 6487 int hcode; 6488 6489 /* 6490 * Prevent from allocating more CCBs than we can 6491 * queue to the controller. 6492 */ 6493 if (np->actccbs >= SYM_CONF_MAX_START) 6494 return 0; 6495 6496 /* 6497 * Allocate memory for this CCB. 6498 */ 6499 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6500 if (!cp) 6501 goto out_free; 6502 6503 /* 6504 * Allocate a bounce buffer for sense data. 6505 */ 6506 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6507 if (!cp->sns_bbuf) 6508 goto out_free; 6509 6510 /* 6511 * Allocate a map for the DMA of user data. 6512 */ 6513 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6514 goto out_free; 6515 /* 6516 * Count it. 6517 */ 6518 np->actccbs++; 6519 6520 /* 6521 * Compute the bus address of this ccb. 6522 */ 6523 cp->ccb_ba = vtobus(cp); 6524 6525 /* 6526 * Insert this ccb into the hashed list. 6527 */ 6528 hcode = CCB_HASH_CODE(cp->ccb_ba); 6529 cp->link_ccbh = np->ccbh[hcode]; 6530 np->ccbh[hcode] = cp; 6531 6532 /* 6533 * Initialyze the start and restart actions. 6534 */ 6535 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6536 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6537 6538 /* 6539 * Initilialyze some other fields. 6540 */ 6541 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6542 6543 /* 6544 * Chain into free ccb queue. 6545 */ 6546 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6547 6548 return cp; 6549 out_free: 6550 if (cp) { 6551 if (cp->sns_bbuf) 6552 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF"); 6553 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6554 } 6555 return 0; 6556 } 6557 6558 /* 6559 * Look up a CCB from a DSA value. 6560 */ 6561 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6562 { 6563 int hcode; 6564 ccb_p cp; 6565 6566 hcode = CCB_HASH_CODE(dsa); 6567 cp = np->ccbh[hcode]; 6568 while (cp) { 6569 if (cp->ccb_ba == dsa) 6570 break; 6571 cp = cp->link_ccbh; 6572 } 6573 6574 return cp; 6575 } 6576 6577 /* 6578 * Target control block initialisation. 6579 * Nothing important to do at the moment. 6580 */ 6581 static void sym_init_tcb (hcb_p np, u_char tn) 6582 { 6583 /* 6584 * Check some alignments required by the chip. 6585 */ 6586 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 6587 offsetof(struct sym_tcb, head.sval)) &3) == 0); 6588 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 6589 offsetof(struct sym_tcb, head.wval)) &3) == 0); 6590 } 6591 6592 /* 6593 * Lun control block allocation and initialization. 6594 */ 6595 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6596 { 6597 tcb_p tp = &np->target[tn]; 6598 lcb_p lp = sym_lp(np, tp, ln); 6599 6600 /* 6601 * Already done, just return. 6602 */ 6603 if (lp) 6604 return lp; 6605 /* 6606 * Check against some race. 6607 */ 6608 assert(!sym_is_bit(tp->busy0_map, ln)); 6609 6610 /* 6611 * Initialize the target control block if not yet. 6612 */ 6613 sym_init_tcb (np, tn); 6614 6615 /* 6616 * Allocate the LCB bus address array. 6617 * Compute the bus address of this table. 6618 */ 6619 if (ln && !tp->luntbl) { 6620 int i; 6621 6622 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6623 if (!tp->luntbl) 6624 goto fail; 6625 for (i = 0 ; i < 64 ; i++) 6626 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6627 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6628 } 6629 6630 /* 6631 * Allocate the table of pointers for LUN(s) > 0, if needed. 6632 */ 6633 if (ln && !tp->lunmp) { 6634 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6635 "LUNMP"); 6636 if (!tp->lunmp) 6637 goto fail; 6638 } 6639 6640 /* 6641 * Allocate the lcb. 6642 * Make it available to the chip. 6643 */ 6644 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6645 if (!lp) 6646 goto fail; 6647 if (ln) { 6648 tp->lunmp[ln] = lp; 6649 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6650 } 6651 else { 6652 tp->lun0p = lp; 6653 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6654 } 6655 6656 /* 6657 * Let the itl task point to error handling. 6658 */ 6659 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6660 6661 /* 6662 * Set the reselect pattern to our default. :) 6663 */ 6664 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6665 6666 /* 6667 * Set user capabilities. 6668 */ 6669 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6670 6671 fail: 6672 return lp; 6673 } 6674 6675 /* 6676 * Allocate LCB resources for tagged command queuing. 6677 */ 6678 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6679 { 6680 tcb_p tp = &np->target[tn]; 6681 lcb_p lp = sym_lp(np, tp, ln); 6682 int i; 6683 6684 /* 6685 * If LCB not available, try to allocate it. 6686 */ 6687 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6688 goto fail; 6689 6690 /* 6691 * Allocate the task table and and the tag allocation 6692 * circular buffer. We want both or none. 6693 */ 6694 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6695 if (!lp->itlq_tbl) 6696 goto fail; 6697 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6698 if (!lp->cb_tags) { 6699 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6700 lp->itlq_tbl = 0; 6701 goto fail; 6702 } 6703 6704 /* 6705 * Initialize the task table with invalid entries. 6706 */ 6707 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6708 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6709 6710 /* 6711 * Fill up the tag buffer with tag numbers. 6712 */ 6713 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6714 lp->cb_tags[i] = i; 6715 6716 /* 6717 * Make the task table available to SCRIPTS, 6718 * And accept tagged commands now. 6719 */ 6720 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6721 6722 return; 6723 fail: 6724 return; 6725 } 6726 6727 /* 6728 * Test the pci bus snoop logic :-( 6729 * 6730 * Has to be called with interrupts disabled. 6731 */ 6732 #ifndef SYM_CONF_IOMAPPED 6733 static int sym_regtest (hcb_p np) 6734 { 6735 register volatile u32 data; 6736 /* 6737 * chip registers may NOT be cached. 6738 * write 0xffffffff to a read only register area, 6739 * and try to read it back. 6740 */ 6741 data = 0xffffffff; 6742 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6743 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6744 #if 1 6745 if (data == 0xffffffff) { 6746 #else 6747 if ((data & 0xe2f0fffd) != 0x02000080) { 6748 #endif 6749 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6750 (unsigned) data); 6751 return (0x10); 6752 }; 6753 return (0); 6754 } 6755 #endif 6756 6757 static int sym_snooptest (hcb_p np) 6758 { 6759 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6760 int i, err=0; 6761 #ifndef SYM_CONF_IOMAPPED 6762 err |= sym_regtest (np); 6763 if (err) return (err); 6764 #endif 6765 restart_test: 6766 /* 6767 * Enable Master Parity Checking as we intend 6768 * to enable it for normal operations. 6769 */ 6770 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6771 /* 6772 * init 6773 */ 6774 pc = SCRIPTB0_BA (np, snooptest); 6775 host_wr = 1; 6776 sym_wr = 2; 6777 /* 6778 * Set memory and register. 6779 */ 6780 np->cache = cpu_to_scr(host_wr); 6781 OUTL (nc_temp, sym_wr); 6782 /* 6783 * Start script (exchange values) 6784 */ 6785 OUTL (nc_dsa, np->hcb_ba); 6786 OUTL_DSP (pc); 6787 /* 6788 * Wait 'til done (with timeout) 6789 */ 6790 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6791 if (INB(nc_istat) & (INTF|SIP|DIP)) 6792 break; 6793 if (i>=SYM_SNOOP_TIMEOUT) { 6794 printf ("CACHE TEST FAILED: timeout.\n"); 6795 return (0x20); 6796 }; 6797 /* 6798 * Check for fatal DMA errors. 6799 */ 6800 dstat = INB (nc_dstat); 6801 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6802 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6803 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6804 "DISABLING MASTER DATA PARITY CHECKING.\n", 6805 sym_name(np)); 6806 np->rv_ctest4 &= ~MPEE; 6807 goto restart_test; 6808 } 6809 #endif 6810 if (dstat & (MDPE|BF|IID)) { 6811 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6812 return (0x80); 6813 } 6814 /* 6815 * Save termination position. 6816 */ 6817 pc = INL (nc_dsp); 6818 /* 6819 * Read memory and register. 6820 */ 6821 host_rd = scr_to_cpu(np->cache); 6822 sym_rd = INL (nc_scratcha); 6823 sym_bk = INL (nc_temp); 6824 6825 /* 6826 * Check termination position. 6827 */ 6828 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6829 printf ("CACHE TEST FAILED: script execution failed.\n"); 6830 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6831 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6832 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6833 return (0x40); 6834 }; 6835 /* 6836 * Show results. 6837 */ 6838 if (host_wr != sym_rd) { 6839 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6840 (int) host_wr, (int) sym_rd); 6841 err |= 1; 6842 }; 6843 if (host_rd != sym_wr) { 6844 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6845 (int) sym_wr, (int) host_rd); 6846 err |= 2; 6847 }; 6848 if (sym_bk != sym_wr) { 6849 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6850 (int) sym_wr, (int) sym_bk); 6851 err |= 4; 6852 }; 6853 6854 return (err); 6855 } 6856 6857 /* 6858 * Determine the chip's clock frequency. 6859 * 6860 * This is essential for the negotiation of the synchronous 6861 * transfer rate. 6862 * 6863 * Note: we have to return the correct value. 6864 * THERE IS NO SAFE DEFAULT VALUE. 6865 * 6866 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6867 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6868 * do not have a clock doubler and so are provided with a 6869 * 80 MHz clock. All other fast20 boards incorporate a doubler 6870 * and so should be delivered with a 40 MHz clock. 6871 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6872 * clock and provide a clock quadrupler (160 Mhz). 6873 */ 6874 6875 /* 6876 * Select SCSI clock frequency 6877 */ 6878 static void sym_selectclock(hcb_p np, u_char scntl3) 6879 { 6880 /* 6881 * If multiplier not present or not selected, leave here. 6882 */ 6883 if (np->multiplier <= 1) { 6884 OUTB(nc_scntl3, scntl3); 6885 return; 6886 } 6887 6888 if (sym_verbose >= 2) 6889 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6890 6891 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6892 /* 6893 * Wait for the LCKFRQ bit to be set if supported by the chip. 6894 * Otherwise wait 20 micro-seconds. 6895 */ 6896 if (np->features & FE_LCKFRQ) { 6897 int i = 20; 6898 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6899 UDELAY (20); 6900 if (!i) 6901 printf("%s: the chip cannot lock the frequency\n", 6902 sym_name(np)); 6903 } else 6904 UDELAY (20); 6905 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6906 OUTB(nc_scntl3, scntl3); 6907 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6908 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6909 } 6910 6911 /* 6912 * calculate SCSI clock frequency (in KHz) 6913 */ 6914 static unsigned getfreq (hcb_p np, int gen) 6915 { 6916 unsigned int ms = 0; 6917 unsigned int f; 6918 6919 /* 6920 * Measure GEN timer delay in order 6921 * to calculate SCSI clock frequency 6922 * 6923 * This code will never execute too 6924 * many loop iterations (if DELAY is 6925 * reasonably correct). It could get 6926 * too low a delay (too high a freq.) 6927 * if the CPU is slow executing the 6928 * loop for some reason (an NMI, for 6929 * example). For this reason we will 6930 * if multiple measurements are to be 6931 * performed trust the higher delay 6932 * (lower frequency returned). 6933 */ 6934 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6935 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6936 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6937 (void) INW (nc_sist); /* another one, just to be sure :) */ 6938 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6939 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6940 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6941 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6942 UDELAY (1000); /* count ms */ 6943 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6944 /* 6945 * set prescaler to divide by whatever 0 means 6946 * 0 ought to choose divide by 2, but appears 6947 * to set divide by 3.5 mode in my 53c810 ... 6948 */ 6949 OUTB (nc_scntl3, 0); 6950 6951 /* 6952 * adjust for prescaler, and convert into KHz 6953 */ 6954 f = ms ? ((1 << gen) * 4340) / ms : 0; 6955 6956 if (sym_verbose >= 2) 6957 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6958 sym_name(np), gen, ms, f); 6959 6960 return f; 6961 } 6962 6963 static unsigned sym_getfreq (hcb_p np) 6964 { 6965 u_int f1, f2; 6966 int gen = 11; 6967 6968 (void) getfreq (np, gen); /* throw away first result */ 6969 f1 = getfreq (np, gen); 6970 f2 = getfreq (np, gen); 6971 if (f1 > f2) f1 = f2; /* trust lower result */ 6972 return f1; 6973 } 6974 6975 /* 6976 * Get/probe chip SCSI clock frequency 6977 */ 6978 static void sym_getclock (hcb_p np, int mult) 6979 { 6980 unsigned char scntl3 = np->sv_scntl3; 6981 unsigned char stest1 = np->sv_stest1; 6982 unsigned f1; 6983 6984 /* 6985 * For the C10 core, assume 40 MHz. 6986 */ 6987 if (np->features & FE_C10) { 6988 np->multiplier = mult; 6989 np->clock_khz = 40000 * mult; 6990 return; 6991 } 6992 6993 np->multiplier = 1; 6994 f1 = 40000; 6995 /* 6996 * True with 875/895/896/895A with clock multiplier selected 6997 */ 6998 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 6999 if (sym_verbose >= 2) 7000 printf ("%s: clock multiplier found\n", sym_name(np)); 7001 np->multiplier = mult; 7002 } 7003 7004 /* 7005 * If multiplier not found or scntl3 not 7,5,3, 7006 * reset chip and get frequency from general purpose timer. 7007 * Otherwise trust scntl3 BIOS setting. 7008 */ 7009 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7010 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 7011 f1 = sym_getfreq (np); 7012 7013 if (sym_verbose) 7014 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 7015 7016 if (f1 < 45000) f1 = 40000; 7017 else if (f1 < 55000) f1 = 50000; 7018 else f1 = 80000; 7019 7020 if (f1 < 80000 && mult > 1) { 7021 if (sym_verbose >= 2) 7022 printf ("%s: clock multiplier assumed\n", 7023 sym_name(np)); 7024 np->multiplier = mult; 7025 } 7026 } else { 7027 if ((scntl3 & 7) == 3) f1 = 40000; 7028 else if ((scntl3 & 7) == 5) f1 = 80000; 7029 else f1 = 160000; 7030 7031 f1 /= np->multiplier; 7032 } 7033 7034 /* 7035 * Compute controller synchronous parameters. 7036 */ 7037 f1 *= np->multiplier; 7038 np->clock_khz = f1; 7039 } 7040 7041 /* 7042 * Get/probe PCI clock frequency 7043 */ 7044 static int sym_getpciclock (hcb_p np) 7045 { 7046 int f = 0; 7047 7048 /* 7049 * For the C1010-33, this doesn't work. 7050 * For the C1010-66, this will be tested when I'll have 7051 * such a beast to play with. 7052 */ 7053 if (!(np->features & FE_C10)) { 7054 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7055 f = (int) sym_getfreq (np); 7056 OUTB (nc_stest1, 0); 7057 } 7058 np->pciclk_khz = f; 7059 7060 return f; 7061 } 7062 7063 /*============= DRIVER ACTION/COMPLETION ====================*/ 7064 7065 /* 7066 * Print something that tells about extended errors. 7067 */ 7068 static void sym_print_xerr(ccb_p cp, int x_status) 7069 { 7070 if (x_status & XE_PARITY_ERR) { 7071 PRINT_ADDR(cp); 7072 printf ("unrecovered SCSI parity error.\n"); 7073 } 7074 if (x_status & XE_EXTRA_DATA) { 7075 PRINT_ADDR(cp); 7076 printf ("extraneous data discarded.\n"); 7077 } 7078 if (x_status & XE_BAD_PHASE) { 7079 PRINT_ADDR(cp); 7080 printf ("illegal scsi phase (4/5).\n"); 7081 } 7082 if (x_status & XE_SODL_UNRUN) { 7083 PRINT_ADDR(cp); 7084 printf ("ODD transfer in DATA OUT phase.\n"); 7085 } 7086 if (x_status & XE_SWIDE_OVRUN) { 7087 PRINT_ADDR(cp); 7088 printf ("ODD transfer in DATA IN phase.\n"); 7089 } 7090 } 7091 7092 /* 7093 * Choose the more appropriate CAM status if 7094 * the IO encountered an extended error. 7095 */ 7096 static int sym_xerr_cam_status(int cam_status, int x_status) 7097 { 7098 if (x_status) { 7099 if (x_status & XE_PARITY_ERR) 7100 cam_status = CAM_UNCOR_PARITY; 7101 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7102 cam_status = CAM_DATA_RUN_ERR; 7103 else if (x_status & XE_BAD_PHASE) 7104 cam_status = CAM_REQ_CMP_ERR; 7105 else 7106 cam_status = CAM_REQ_CMP_ERR; 7107 } 7108 return cam_status; 7109 } 7110 7111 /* 7112 * Complete execution of a SCSI command with extented 7113 * error, SCSI status error, or having been auto-sensed. 7114 * 7115 * The SCRIPTS processor is not running there, so we 7116 * can safely access IO registers and remove JOBs from 7117 * the START queue. 7118 * SCRATCHA is assumed to have been loaded with STARTPOS 7119 * before the SCRIPTS called the C code. 7120 */ 7121 static void sym_complete_error (hcb_p np, ccb_p cp) 7122 { 7123 struct ccb_scsiio *csio; 7124 u_int cam_status; 7125 int i; 7126 7127 /* 7128 * Paranoid check. :) 7129 */ 7130 if (!cp || !cp->cam_ccb) 7131 return; 7132 7133 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7134 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7135 cp->host_status, cp->ssss_status, cp->host_flags, 7136 cp->target, cp->lun); 7137 MDELAY(100); 7138 } 7139 7140 /* 7141 * Get CAM command pointer. 7142 */ 7143 csio = &cp->cam_ccb->csio; 7144 7145 /* 7146 * Check for extended errors. 7147 */ 7148 if (cp->xerr_status) { 7149 if (sym_verbose) 7150 sym_print_xerr(cp, cp->xerr_status); 7151 if (cp->host_status == HS_COMPLETE) 7152 cp->host_status = HS_COMP_ERR; 7153 } 7154 7155 /* 7156 * Calculate the residual. 7157 */ 7158 csio->sense_resid = 0; 7159 csio->resid = sym_compute_residual(np, cp); 7160 7161 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7162 csio->resid = 0; /* throw them away. :) */ 7163 cp->sv_resid = 0; 7164 } 7165 7166 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7167 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7168 csio->sense_resid = csio->resid; /* Swap residuals */ 7169 csio->resid = cp->sv_resid; 7170 cp->sv_resid = 0; 7171 if (sym_verbose && cp->sv_xerr_status) 7172 sym_print_xerr(cp, cp->sv_xerr_status); 7173 if (cp->host_status == HS_COMPLETE && 7174 cp->ssss_status == S_GOOD && 7175 cp->xerr_status == 0) { 7176 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7177 cp->sv_xerr_status); 7178 cam_status |= CAM_AUTOSNS_VALID; 7179 /* 7180 * Bounce back the sense data to user and 7181 * fix the residual. 7182 */ 7183 bzero(&csio->sense_data, csio->sense_len); 7184 bcopy(cp->sns_bbuf, &csio->sense_data, 7185 MIN(csio->sense_len, SYM_SNS_BBUF_LEN)); 7186 csio->sense_resid += csio->sense_len; 7187 csio->sense_resid -= SYM_SNS_BBUF_LEN; 7188 #if 0 7189 /* 7190 * If the device reports a UNIT ATTENTION condition 7191 * due to a RESET condition, we should consider all 7192 * disconnect CCBs for this unit as aborted. 7193 */ 7194 if (1) { 7195 u_char *p; 7196 p = (u_char *) csio->sense_data; 7197 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7198 sym_clear_tasks(np, CAM_REQ_ABORTED, 7199 cp->target,cp->lun, -1); 7200 } 7201 #endif 7202 } 7203 else 7204 cam_status = CAM_AUTOSENSE_FAIL; 7205 } 7206 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7207 csio->scsi_status = cp->ssss_status; 7208 cam_status = CAM_SCSI_STATUS_ERROR; 7209 } 7210 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7211 cam_status = CAM_SEL_TIMEOUT; 7212 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7213 cam_status = CAM_UNEXP_BUSFREE; 7214 else { /* Extended error */ 7215 if (sym_verbose) { 7216 PRINT_ADDR(cp); 7217 printf ("COMMAND FAILED (%x %x %x).\n", 7218 cp->host_status, cp->ssss_status, 7219 cp->xerr_status); 7220 } 7221 csio->scsi_status = cp->ssss_status; 7222 /* 7223 * Set the most appropriate value for CAM status. 7224 */ 7225 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7226 cp->xerr_status); 7227 } 7228 7229 /* 7230 * Dequeue all queued CCBs for that device 7231 * not yet started by SCRIPTS. 7232 */ 7233 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7234 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7235 7236 /* 7237 * Restart the SCRIPTS processor. 7238 */ 7239 OUTL_DSP (SCRIPTA_BA (np, start)); 7240 7241 /* 7242 * Synchronize DMA map if needed. 7243 */ 7244 if (cp->dmamapped) { 7245 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7246 (cp->dmamapped == SYM_DMA_READ ? 7247 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7248 } 7249 /* 7250 * Add this one to the COMP queue. 7251 * Complete all those commands with either error 7252 * or requeue condition. 7253 */ 7254 sym_set_cam_status((union ccb *) csio, cam_status); 7255 sym_remque(&cp->link_ccbq); 7256 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7257 sym_flush_comp_queue(np, 0); 7258 } 7259 7260 /* 7261 * Complete execution of a successful SCSI command. 7262 * 7263 * Only successful commands go to the DONE queue, 7264 * since we need to have the SCRIPTS processor 7265 * stopped on any error condition. 7266 * The SCRIPTS processor is running while we are 7267 * completing successful commands. 7268 */ 7269 static void sym_complete_ok (hcb_p np, ccb_p cp) 7270 { 7271 struct ccb_scsiio *csio; 7272 tcb_p tp; 7273 lcb_p lp; 7274 7275 /* 7276 * Paranoid check. :) 7277 */ 7278 if (!cp || !cp->cam_ccb) 7279 return; 7280 assert (cp->host_status == HS_COMPLETE); 7281 7282 /* 7283 * Get command, target and lun pointers. 7284 */ 7285 csio = &cp->cam_ccb->csio; 7286 tp = &np->target[cp->target]; 7287 lp = sym_lp(np, tp, cp->lun); 7288 7289 /* 7290 * Assume device discovered on first success. 7291 */ 7292 if (!lp) 7293 sym_set_bit(tp->lun_map, cp->lun); 7294 7295 /* 7296 * If all data have been transferred, given than no 7297 * extended error did occur, there is no residual. 7298 */ 7299 csio->resid = 0; 7300 if (cp->phys.head.lastp != cp->phys.head.goalp) 7301 csio->resid = sym_compute_residual(np, cp); 7302 7303 /* 7304 * Wrong transfer residuals may be worse than just always 7305 * returning zero. User can disable this feature from 7306 * sym_conf.h. Residual support is enabled by default. 7307 */ 7308 if (!SYM_CONF_RESIDUAL_SUPPORT) 7309 csio->resid = 0; 7310 7311 /* 7312 * Synchronize DMA map if needed. 7313 */ 7314 if (cp->dmamapped) { 7315 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7316 (cp->dmamapped == SYM_DMA_READ ? 7317 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7318 } 7319 /* 7320 * Set status and complete the command. 7321 */ 7322 csio->scsi_status = cp->ssss_status; 7323 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7324 sym_free_ccb (np, cp); 7325 sym_xpt_done(np, (union ccb *) csio); 7326 } 7327 7328 /* 7329 * Our timeout handler. 7330 */ 7331 static void sym_timeout1(void *arg) 7332 { 7333 union ccb *ccb = (union ccb *) arg; 7334 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7335 7336 /* 7337 * Check that the CAM CCB is still queued. 7338 */ 7339 if (!np) 7340 return; 7341 7342 switch(ccb->ccb_h.func_code) { 7343 case XPT_SCSI_IO: 7344 (void) sym_abort_scsiio(np, ccb, 1); 7345 break; 7346 default: 7347 break; 7348 } 7349 } 7350 7351 static void sym_timeout(void *arg) 7352 { 7353 int s = splcam(); 7354 sym_timeout1(arg); 7355 splx(s); 7356 } 7357 7358 /* 7359 * Abort an SCSI IO. 7360 */ 7361 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7362 { 7363 ccb_p cp; 7364 SYM_QUEHEAD *qp; 7365 7366 /* 7367 * Look up our CCB control block. 7368 */ 7369 cp = 0; 7370 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7371 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7372 if (cp2->cam_ccb == ccb) { 7373 cp = cp2; 7374 break; 7375 } 7376 } 7377 if (!cp || cp->host_status == HS_WAIT) 7378 return -1; 7379 7380 /* 7381 * If a previous abort didn't succeed in time, 7382 * perform a BUS reset. 7383 */ 7384 if (cp->to_abort) { 7385 sym_reset_scsi_bus(np, 1); 7386 return 0; 7387 } 7388 7389 /* 7390 * Mark the CCB for abort and allow time for. 7391 */ 7392 cp->to_abort = timed_out ? 2 : 1; 7393 ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz); 7394 7395 /* 7396 * Tell the SCRIPTS processor to stop and synchronize with us. 7397 */ 7398 np->istat_sem = SEM; 7399 OUTB (nc_istat, SIGP|SEM); 7400 return 0; 7401 } 7402 7403 /* 7404 * Reset a SCSI device (all LUNs of a target). 7405 */ 7406 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7407 { 7408 tcb_p tp; 7409 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7410 7411 if (ccb_h->target_id == np->myaddr || 7412 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7413 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7414 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7415 return; 7416 } 7417 7418 tp = &np->target[ccb_h->target_id]; 7419 7420 tp->to_reset = 1; 7421 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7422 7423 np->istat_sem = SEM; 7424 OUTB (nc_istat, SIGP|SEM); 7425 return; 7426 } 7427 7428 /* 7429 * SIM action entry point. 7430 */ 7431 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7432 { 7433 int s = splcam(); 7434 sym_action1(sim, ccb); 7435 splx(s); 7436 } 7437 7438 static void sym_action1(struct cam_sim *sim, union ccb *ccb) 7439 { 7440 hcb_p np; 7441 tcb_p tp; 7442 lcb_p lp; 7443 ccb_p cp; 7444 int tmp; 7445 u_char idmsg, *msgptr; 7446 u_int msglen; 7447 struct ccb_scsiio *csio; 7448 struct ccb_hdr *ccb_h; 7449 7450 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7451 7452 /* 7453 * Retrieve our controller data structure. 7454 */ 7455 np = (hcb_p) cam_sim_softc(sim); 7456 7457 /* 7458 * The common case is SCSI IO. 7459 * We deal with other ones elsewhere. 7460 */ 7461 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7462 sym_action2(sim, ccb); 7463 return; 7464 } 7465 csio = &ccb->csio; 7466 ccb_h = &csio->ccb_h; 7467 7468 /* 7469 * Work around races. 7470 */ 7471 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7472 xpt_done(ccb); 7473 return; 7474 } 7475 7476 /* 7477 * Minimal checkings, so that we will not 7478 * go outside our tables. 7479 */ 7480 if (ccb_h->target_id == np->myaddr || 7481 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7482 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7483 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7484 return; 7485 } 7486 7487 /* 7488 * Retreive the target and lun descriptors. 7489 */ 7490 tp = &np->target[ccb_h->target_id]; 7491 lp = sym_lp(np, tp, ccb_h->target_lun); 7492 7493 /* 7494 * Complete the 1st INQUIRY command with error 7495 * condition if the device is flagged NOSCAN 7496 * at BOOT in the NVRAM. This may speed up 7497 * the boot and maintain coherency with BIOS 7498 * device numbering. Clearing the flag allows 7499 * user to rescan skipped devices later. 7500 * We also return error for devices not flagged 7501 * for SCAN LUNS in the NVRAM since some mono-lun 7502 * devices behave badly when asked for some non 7503 * zero LUN. Btw, this is an absolute hack.:-) 7504 */ 7505 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7506 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7507 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7508 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7509 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7510 ccb_h->target_lun != 0)) { 7511 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7512 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7513 return; 7514 } 7515 } 7516 7517 /* 7518 * Get a control block for this IO. 7519 */ 7520 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7521 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7522 if (!cp) { 7523 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7524 return; 7525 } 7526 7527 /* 7528 * Keep track of the IO in our CCB. 7529 */ 7530 cp->cam_ccb = ccb; 7531 7532 /* 7533 * Build the IDENTIFY message. 7534 */ 7535 idmsg = M_IDENTIFY | cp->lun; 7536 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7537 idmsg |= 0x40; 7538 7539 msgptr = cp->scsi_smsg; 7540 msglen = 0; 7541 msgptr[msglen++] = idmsg; 7542 7543 /* 7544 * Build the tag message if present. 7545 */ 7546 if (cp->tag != NO_TAG) { 7547 u_char order = csio->tag_action; 7548 7549 switch(order) { 7550 case M_ORDERED_TAG: 7551 break; 7552 case M_HEAD_TAG: 7553 break; 7554 default: 7555 order = M_SIMPLE_TAG; 7556 } 7557 msgptr[msglen++] = order; 7558 7559 /* 7560 * For less than 128 tags, actual tags are numbered 7561 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7562 * with devices that have problems with #TAG 0 or too 7563 * great #TAG numbers. For more tags (up to 256), 7564 * we use directly our tag number. 7565 */ 7566 #if SYM_CONF_MAX_TASK > (512/4) 7567 msgptr[msglen++] = cp->tag; 7568 #else 7569 msgptr[msglen++] = (cp->tag << 1) + 1; 7570 #endif 7571 } 7572 7573 /* 7574 * Build a negotiation message if needed. 7575 * (nego_status is filled by sym_prepare_nego()) 7576 */ 7577 cp->nego_status = 0; 7578 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7579 tp->tinfo.current.period != tp->tinfo.goal.period || 7580 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7581 tp->tinfo.current.options != tp->tinfo.goal.options) { 7582 if (!tp->nego_cp && lp) 7583 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7584 } 7585 7586 /* 7587 * Fill in our ccb 7588 */ 7589 7590 /* 7591 * Startqueue 7592 */ 7593 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7594 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7595 7596 /* 7597 * select 7598 */ 7599 cp->phys.select.sel_id = cp->target; 7600 cp->phys.select.sel_scntl3 = tp->head.wval; 7601 cp->phys.select.sel_sxfer = tp->head.sval; 7602 cp->phys.select.sel_scntl4 = tp->head.uval; 7603 7604 /* 7605 * message 7606 */ 7607 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7608 cp->phys.smsg.size = cpu_to_scr(msglen); 7609 7610 /* 7611 * command 7612 */ 7613 if (sym_setup_cdb(np, csio, cp) < 0) { 7614 sym_free_ccb(np, cp); 7615 sym_xpt_done(np, ccb); 7616 return; 7617 } 7618 7619 /* 7620 * status 7621 */ 7622 #if 0 /* Provision */ 7623 cp->actualquirks = tp->quirks; 7624 #endif 7625 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7626 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7627 cp->ssss_status = S_ILLEGAL; 7628 cp->xerr_status = 0; 7629 cp->host_flags = 0; 7630 cp->extra_bytes = 0; 7631 7632 /* 7633 * extreme data pointer. 7634 * shall be positive, so -1 is lower than lowest.:) 7635 */ 7636 cp->ext_sg = -1; 7637 cp->ext_ofs = 0; 7638 7639 /* 7640 * Build the data descriptor block 7641 * and start the IO. 7642 */ 7643 sym_setup_data_and_start(np, csio, cp); 7644 } 7645 7646 /* 7647 * Setup buffers and pointers that address the CDB. 7648 * I bet, physical CDBs will never be used on the planet, 7649 * since they can be bounced without significant overhead. 7650 */ 7651 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7652 { 7653 struct ccb_hdr *ccb_h; 7654 u32 cmd_ba; 7655 int cmd_len; 7656 7657 ccb_h = &csio->ccb_h; 7658 7659 /* 7660 * CDB is 16 bytes max. 7661 */ 7662 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7663 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7664 return -1; 7665 } 7666 cmd_len = csio->cdb_len; 7667 7668 if (ccb_h->flags & CAM_CDB_POINTER) { 7669 /* CDB is a pointer */ 7670 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7671 /* CDB pointer is virtual */ 7672 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7673 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7674 } else { 7675 /* CDB pointer is physical */ 7676 #if 0 7677 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7678 #else 7679 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7680 return -1; 7681 #endif 7682 } 7683 } else { 7684 /* CDB is in the CAM ccb (buffer) */ 7685 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7686 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7687 } 7688 7689 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7690 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7691 7692 return 0; 7693 } 7694 7695 /* 7696 * Set up data pointers used by SCRIPTS. 7697 */ 7698 static void __inline 7699 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7700 { 7701 u32 lastp, goalp; 7702 7703 /* 7704 * No segments means no data. 7705 */ 7706 if (!cp->segments) 7707 dir = CAM_DIR_NONE; 7708 7709 /* 7710 * Set the data pointer. 7711 */ 7712 switch(dir) { 7713 case CAM_DIR_OUT: 7714 goalp = SCRIPTA_BA (np, data_out2) + 8; 7715 lastp = goalp - 8 - (cp->segments * (2*4)); 7716 break; 7717 case CAM_DIR_IN: 7718 cp->host_flags |= HF_DATA_IN; 7719 goalp = SCRIPTA_BA (np, data_in2) + 8; 7720 lastp = goalp - 8 - (cp->segments * (2*4)); 7721 break; 7722 case CAM_DIR_NONE: 7723 default: 7724 lastp = goalp = SCRIPTB_BA (np, no_data); 7725 break; 7726 } 7727 7728 cp->phys.head.lastp = cpu_to_scr(lastp); 7729 cp->phys.head.goalp = cpu_to_scr(goalp); 7730 cp->phys.head.savep = cpu_to_scr(lastp); 7731 cp->startp = cp->phys.head.savep; 7732 } 7733 7734 7735 /* 7736 * Call back routine for the DMA map service. 7737 * If bounce buffers are used (why ?), we may sleep and then 7738 * be called there in another context. 7739 */ 7740 static void 7741 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7742 { 7743 ccb_p cp; 7744 hcb_p np; 7745 union ccb *ccb; 7746 int s; 7747 7748 s = splcam(); 7749 7750 cp = (ccb_p) arg; 7751 ccb = cp->cam_ccb; 7752 np = (hcb_p) cp->arg; 7753 7754 /* 7755 * Deal with weird races. 7756 */ 7757 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7758 goto out_abort; 7759 7760 /* 7761 * Deal with weird errors. 7762 */ 7763 if (error) { 7764 cp->dmamapped = 0; 7765 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7766 goto out_abort; 7767 } 7768 7769 /* 7770 * Build the data descriptor for the chip. 7771 */ 7772 if (nsegs) { 7773 int retv; 7774 /* 896 rev 1 requires to be careful about boundaries */ 7775 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7776 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7777 else 7778 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7779 if (retv < 0) { 7780 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7781 goto out_abort; 7782 } 7783 } 7784 7785 /* 7786 * Synchronize the DMA map only if we have 7787 * actually mapped the data. 7788 */ 7789 if (cp->dmamapped) { 7790 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7791 (cp->dmamapped == SYM_DMA_READ ? 7792 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7793 } 7794 7795 /* 7796 * Set host status to busy state. 7797 * May have been set back to HS_WAIT to avoid a race. 7798 */ 7799 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7800 7801 /* 7802 * Set data pointers. 7803 */ 7804 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7805 7806 /* 7807 * Enqueue this IO in our pending queue. 7808 */ 7809 sym_enqueue_cam_ccb(np, ccb); 7810 7811 /* 7812 * When `#ifed 1', the code below makes the driver 7813 * panic on the first attempt to write to a SCSI device. 7814 * It is the first test we want to do after a driver 7815 * change that does not seem obviously safe. :) 7816 */ 7817 #if 0 7818 switch (cp->cdb_buf[0]) { 7819 case 0x0A: case 0x2A: case 0xAA: 7820 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7821 MDELAY(10000); 7822 break; 7823 default: 7824 break; 7825 } 7826 #endif 7827 /* 7828 * Activate this job. 7829 */ 7830 sym_put_start_queue(np, cp); 7831 out: 7832 splx(s); 7833 return; 7834 out_abort: 7835 sym_free_ccb(np, cp); 7836 sym_xpt_done(np, ccb); 7837 goto out; 7838 } 7839 7840 /* 7841 * How complex it gets to deal with the data in CAM. 7842 * The Bus Dma stuff makes things still more complex. 7843 */ 7844 static void 7845 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7846 { 7847 struct ccb_hdr *ccb_h; 7848 int dir, retv; 7849 7850 ccb_h = &csio->ccb_h; 7851 7852 /* 7853 * Now deal with the data. 7854 */ 7855 cp->data_len = csio->dxfer_len; 7856 cp->arg = np; 7857 7858 /* 7859 * No direction means no data. 7860 */ 7861 dir = (ccb_h->flags & CAM_DIR_MASK); 7862 if (dir == CAM_DIR_NONE) { 7863 sym_execute_ccb(cp, NULL, 0, 0); 7864 return; 7865 } 7866 7867 if (!(ccb_h->flags & CAM_SCATTER_VALID)) { 7868 /* Single buffer */ 7869 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7870 /* Buffer is virtual */ 7871 int s; 7872 7873 cp->dmamapped = (dir == CAM_DIR_IN) ? 7874 SYM_DMA_READ : SYM_DMA_WRITE; 7875 s = splsoftvm(); 7876 retv = bus_dmamap_load(np->data_dmat, cp->dmamap, 7877 csio->data_ptr, csio->dxfer_len, 7878 sym_execute_ccb, cp, 0); 7879 if (retv == EINPROGRESS) { 7880 cp->host_status = HS_WAIT; 7881 xpt_freeze_simq(np->sim, 1); 7882 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7883 } 7884 splx(s); 7885 } else { 7886 /* Buffer is physical */ 7887 struct bus_dma_segment seg; 7888 7889 seg.ds_addr = (bus_addr_t) csio->data_ptr; 7890 sym_execute_ccb(cp, &seg, 1, 0); 7891 } 7892 } else { 7893 /* Scatter/gather list */ 7894 struct bus_dma_segment *segs; 7895 7896 if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { 7897 /* The SG list pointer is physical */ 7898 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7899 goto out_abort; 7900 } 7901 7902 if (!(ccb_h->flags & CAM_DATA_PHYS)) { 7903 /* SG buffer pointers are virtual */ 7904 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7905 goto out_abort; 7906 } 7907 7908 /* SG buffer pointers are physical */ 7909 segs = (struct bus_dma_segment *)csio->data_ptr; 7910 sym_execute_ccb(cp, segs, csio->sglist_cnt, 0); 7911 } 7912 return; 7913 out_abort: 7914 sym_free_ccb(np, cp); 7915 sym_xpt_done(np, (union ccb *) csio); 7916 } 7917 7918 /* 7919 * Move the scatter list to our data block. 7920 */ 7921 static int 7922 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7923 bus_dma_segment_t *psegs, int nsegs) 7924 { 7925 struct sym_tblmove *data; 7926 bus_dma_segment_t *psegs2; 7927 7928 if (nsegs > SYM_CONF_MAX_SG) 7929 return -1; 7930 7931 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7932 psegs2 = &psegs[nsegs-1]; 7933 cp->segments = nsegs; 7934 7935 while (1) { 7936 data->addr = cpu_to_scr(psegs2->ds_addr); 7937 data->size = cpu_to_scr(psegs2->ds_len); 7938 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7939 printf ("%s scatter: paddr=%lx len=%ld\n", 7940 sym_name(np), (long) psegs2->ds_addr, 7941 (long) psegs2->ds_len); 7942 } 7943 if (psegs2 != psegs) { 7944 --data; 7945 --psegs2; 7946 continue; 7947 } 7948 break; 7949 } 7950 return 0; 7951 } 7952 7953 7954 /* 7955 * Scatter a SG list with physical addresses into bus addressable chunks. 7956 * We need to ensure 16MB boundaries not to be crossed during DMA of 7957 * each segment, due to some chips being flawed. 7958 */ 7959 #define BOUND_MASK ((1UL<<24)-1) 7960 static int 7961 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7962 { 7963 u_long ps, pe, pn; 7964 u_long k; 7965 int s, t; 7966 7967 s = SYM_CONF_MAX_SG - 1; 7968 t = nsegs - 1; 7969 ps = psegs[t].ds_addr; 7970 pe = ps + psegs[t].ds_len; 7971 7972 while (s >= 0) { 7973 pn = (pe - 1) & ~BOUND_MASK; 7974 if (pn <= ps) 7975 pn = ps; 7976 k = pe - pn; 7977 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7978 printf ("%s scatter: paddr=%lx len=%ld\n", 7979 sym_name(np), pn, k); 7980 } 7981 cp->phys.data[s].addr = cpu_to_scr(pn); 7982 cp->phys.data[s].size = cpu_to_scr(k); 7983 --s; 7984 if (pn == ps) { 7985 if (--t < 0) 7986 break; 7987 ps = psegs[t].ds_addr; 7988 pe = ps + psegs[t].ds_len; 7989 } 7990 else 7991 pe = pn; 7992 } 7993 7994 cp->segments = SYM_CONF_MAX_SG - 1 - s; 7995 7996 return t >= 0 ? -1 : 0; 7997 } 7998 #undef BOUND_MASK 7999 8000 /* 8001 * SIM action for non performance critical stuff. 8002 */ 8003 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 8004 { 8005 hcb_p np; 8006 tcb_p tp; 8007 lcb_p lp; 8008 struct ccb_hdr *ccb_h; 8009 8010 /* 8011 * Retrieve our controller data structure. 8012 */ 8013 np = (hcb_p) cam_sim_softc(sim); 8014 8015 ccb_h = &ccb->ccb_h; 8016 8017 switch (ccb_h->func_code) { 8018 case XPT_SET_TRAN_SETTINGS: 8019 { 8020 struct ccb_trans_settings *cts; 8021 8022 cts = &ccb->cts; 8023 tp = &np->target[ccb_h->target_id]; 8024 8025 /* 8026 * Update SPI transport settings in TARGET control block. 8027 * Update SCSI device settings in LUN control block. 8028 */ 8029 lp = sym_lp(np, tp, ccb_h->target_lun); 8030 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8031 sym_update_trans(np, tp, &tp->tinfo.goal, cts); 8032 if (lp) 8033 sym_update_dflags(np, &lp->current_flags, cts); 8034 } 8035 if (cts->type == CTS_TYPE_USER_SETTINGS) { 8036 sym_update_trans(np, tp, &tp->tinfo.user, cts); 8037 if (lp) 8038 sym_update_dflags(np, &lp->user_flags, cts); 8039 } 8040 8041 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8042 break; 8043 } 8044 case XPT_GET_TRAN_SETTINGS: 8045 { 8046 struct ccb_trans_settings *cts; 8047 struct sym_trans *tip; 8048 u_char dflags; 8049 8050 cts = &ccb->cts; 8051 tp = &np->target[ccb_h->target_id]; 8052 lp = sym_lp(np, tp, ccb_h->target_lun); 8053 8054 #define cts__scsi (&cts->proto_specific.scsi) 8055 #define cts__spi (&cts->xport_specific.spi) 8056 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 8057 tip = &tp->tinfo.current; 8058 dflags = lp ? lp->current_flags : 0; 8059 } 8060 else { 8061 tip = &tp->tinfo.user; 8062 dflags = lp ? lp->user_flags : tp->usrflags; 8063 } 8064 8065 cts->protocol = PROTO_SCSI; 8066 cts->transport = XPORT_SPI; 8067 cts->protocol_version = tip->scsi_version; 8068 cts->transport_version = tip->spi_version; 8069 8070 cts__spi->sync_period = tip->period; 8071 cts__spi->sync_offset = tip->offset; 8072 cts__spi->bus_width = tip->width; 8073 cts__spi->ppr_options = tip->options; 8074 8075 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8076 | CTS_SPI_VALID_SYNC_OFFSET 8077 | CTS_SPI_VALID_BUS_WIDTH 8078 | CTS_SPI_VALID_PPR_OPTIONS; 8079 8080 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8081 if (dflags & SYM_DISC_ENABLED) 8082 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8083 cts__spi->valid |= CTS_SPI_VALID_DISC; 8084 8085 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8086 if (dflags & SYM_TAGS_ENABLED) 8087 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8088 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8089 #undef cts__spi 8090 #undef cts__scsi 8091 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8092 break; 8093 } 8094 case XPT_CALC_GEOMETRY: 8095 { 8096 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8097 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8098 break; 8099 } 8100 case XPT_PATH_INQ: 8101 { 8102 struct ccb_pathinq *cpi = &ccb->cpi; 8103 cpi->version_num = 1; 8104 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8105 if ((np->features & FE_WIDE) != 0) 8106 cpi->hba_inquiry |= PI_WIDE_16; 8107 cpi->target_sprt = 0; 8108 cpi->hba_misc = 0; 8109 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8110 cpi->hba_misc |= PIM_SCANHILO; 8111 if (np->usrflags & SYM_AVOID_BUS_RESET) 8112 cpi->hba_misc |= PIM_NOBUSRESET; 8113 cpi->hba_eng_cnt = 0; 8114 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8115 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8116 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8117 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8118 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8119 cpi->bus_id = cam_sim_bus(sim); 8120 cpi->initiator_id = np->myaddr; 8121 cpi->base_transfer_speed = 3300; 8122 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8123 strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8124 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8125 cpi->unit_number = cam_sim_unit(sim); 8126 8127 cpi->protocol = PROTO_SCSI; 8128 cpi->protocol_version = SCSI_REV_2; 8129 cpi->transport = XPORT_SPI; 8130 cpi->transport_version = 2; 8131 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8132 if (np->features & FE_ULTRA3) { 8133 cpi->transport_version = 3; 8134 cpi->xport_specific.spi.ppr_options = 8135 SID_SPI_CLOCK_DT_ST; 8136 } 8137 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8138 break; 8139 } 8140 case XPT_ABORT: 8141 { 8142 union ccb *abort_ccb = ccb->cab.abort_ccb; 8143 switch(abort_ccb->ccb_h.func_code) { 8144 case XPT_SCSI_IO: 8145 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8146 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8147 break; 8148 } 8149 default: 8150 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8151 break; 8152 } 8153 break; 8154 } 8155 case XPT_RESET_DEV: 8156 { 8157 sym_reset_dev(np, ccb); 8158 break; 8159 } 8160 case XPT_RESET_BUS: 8161 { 8162 sym_reset_scsi_bus(np, 0); 8163 if (sym_verbose) { 8164 xpt_print_path(np->path); 8165 printf("SCSI BUS reset delivered.\n"); 8166 } 8167 sym_init (np, 1); 8168 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8169 break; 8170 } 8171 case XPT_ACCEPT_TARGET_IO: 8172 case XPT_CONT_TARGET_IO: 8173 case XPT_EN_LUN: 8174 case XPT_NOTIFY_ACK: 8175 case XPT_IMMED_NOTIFY: 8176 case XPT_TERM_IO: 8177 default: 8178 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8179 break; 8180 } 8181 } 8182 8183 /* 8184 * Asynchronous notification handler. 8185 */ 8186 static void 8187 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg) 8188 { 8189 hcb_p np; 8190 struct cam_sim *sim; 8191 u_int tn; 8192 tcb_p tp; 8193 int s; 8194 8195 s = splcam(); 8196 8197 sim = (struct cam_sim *) cb_arg; 8198 np = (hcb_p) cam_sim_softc(sim); 8199 8200 switch (code) { 8201 case AC_LOST_DEVICE: 8202 tn = xpt_path_target_id(path); 8203 if (tn >= SYM_CONF_MAX_TARGET) 8204 break; 8205 8206 tp = &np->target[tn]; 8207 8208 tp->to_reset = 0; 8209 tp->head.sval = 0; 8210 tp->head.wval = np->rv_scntl3; 8211 tp->head.uval = 0; 8212 8213 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8214 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8215 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8216 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8217 8218 break; 8219 default: 8220 break; 8221 } 8222 8223 splx(s); 8224 } 8225 8226 /* 8227 * Update transfer settings of a target. 8228 */ 8229 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, 8230 struct ccb_trans_settings *cts) 8231 { 8232 /* 8233 * Update the infos. 8234 */ 8235 #define cts__spi (&cts->xport_specific.spi) 8236 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8237 tip->width = cts__spi->bus_width; 8238 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8239 tip->offset = cts__spi->sync_offset; 8240 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8241 tip->period = cts__spi->sync_period; 8242 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8243 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8244 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8245 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8246 tip->scsi_version = cts->protocol_version; 8247 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8248 cts->transport_version != XPORT_VERSION_UNKNOWN) 8249 tip->spi_version = cts->transport_version; 8250 #undef cts__spi 8251 /* 8252 * Scale against driver configuration limits. 8253 */ 8254 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8255 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8256 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8257 8258 /* 8259 * Scale against actual controller BUS width. 8260 */ 8261 if (tip->width > np->maxwide) 8262 tip->width = np->maxwide; 8263 8264 /* 8265 * Only accept DT if controller supports and SYNC/WIDE asked. 8266 */ 8267 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8268 !(tip->width == BUS_16_BIT && tip->offset)) { 8269 tip->options &= ~PPR_OPT_DT; 8270 } 8271 8272 /* 8273 * Scale period factor and offset against controller limits. 8274 */ 8275 if (tip->options & PPR_OPT_DT) { 8276 if (tip->period < np->minsync_dt) 8277 tip->period = np->minsync_dt; 8278 if (tip->period > np->maxsync_dt) 8279 tip->period = np->maxsync_dt; 8280 if (tip->offset > np->maxoffs_dt) 8281 tip->offset = np->maxoffs_dt; 8282 } 8283 else { 8284 if (tip->period < np->minsync) 8285 tip->period = np->minsync; 8286 if (tip->period > np->maxsync) 8287 tip->period = np->maxsync; 8288 if (tip->offset > np->maxoffs) 8289 tip->offset = np->maxoffs; 8290 } 8291 } 8292 8293 /* 8294 * Update flags for a device (logical unit). 8295 */ 8296 static void 8297 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8298 { 8299 #define cts__scsi (&cts->proto_specific.scsi) 8300 #define cts__spi (&cts->xport_specific.spi) 8301 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8302 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8303 *flags |= SYM_DISC_ENABLED; 8304 else 8305 *flags &= ~SYM_DISC_ENABLED; 8306 } 8307 8308 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8309 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8310 *flags |= SYM_TAGS_ENABLED; 8311 else 8312 *flags &= ~SYM_TAGS_ENABLED; 8313 } 8314 #undef cts__spi 8315 #undef cts__scsi 8316 } 8317 8318 8319 /*============= DRIVER INITIALISATION ==================*/ 8320 8321 8322 static device_method_t sym_pci_methods[] = { 8323 DEVMETHOD(device_probe, sym_pci_probe), 8324 DEVMETHOD(device_attach, sym_pci_attach), 8325 { 0, 0 } 8326 }; 8327 8328 static driver_t sym_pci_driver = { 8329 "sym", 8330 sym_pci_methods, 8331 sizeof(struct sym_hcb) 8332 }; 8333 8334 static devclass_t sym_devclass; 8335 8336 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); 8337 MODULE_DEPEND(sym, cam, 1, 1, 1); 8338 MODULE_DEPEND(sym, pci, 1, 1, 1); 8339 8340 8341 static struct sym_pci_chip sym_pci_dev_table[] = { 8342 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8343 FE_ERL} 8344 , 8345 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8346 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8347 FE_BOF} 8348 , 8349 #else 8350 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8351 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8352 , 8353 #endif 8354 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8355 FE_BOF|FE_ERL} 8356 , 8357 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8358 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8359 , 8360 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8361 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8362 , 8363 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8364 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8365 , 8366 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8367 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8368 FE_RAM|FE_DIFF} 8369 , 8370 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8371 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8372 FE_RAM|FE_DIFF} 8373 , 8374 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8375 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8376 FE_RAM|FE_DIFF} 8377 , 8378 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8379 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8380 FE_RAM|FE_DIFF} 8381 , 8382 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8383 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8384 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8385 FE_RAM|FE_LCKFRQ} 8386 , 8387 #else 8388 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8389 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8390 FE_RAM|FE_LCKFRQ} 8391 , 8392 #endif 8393 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8394 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8395 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8396 , 8397 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8398 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8399 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8400 , 8401 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8402 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8403 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8404 FE_C10} 8405 , 8406 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8407 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8408 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8409 FE_C10|FE_U3EN} 8410 , 8411 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8412 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8413 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8414 FE_C10|FE_U3EN} 8415 , 8416 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8417 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8418 FE_RAM|FE_IO256|FE_LEDC} 8419 }; 8420 8421 #define sym_pci_num_devs \ 8422 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) 8423 8424 /* 8425 * Look up the chip table. 8426 * 8427 * Return a pointer to the chip entry if found, 8428 * zero otherwise. 8429 */ 8430 static struct sym_pci_chip * 8431 sym_find_pci_chip(device_t dev) 8432 { 8433 struct sym_pci_chip *chip; 8434 int i; 8435 u_short device_id; 8436 u_char revision; 8437 8438 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8439 return 0; 8440 8441 device_id = pci_get_device(dev); 8442 revision = pci_get_revid(dev); 8443 8444 for (i = 0; i < sym_pci_num_devs; i++) { 8445 chip = &sym_pci_dev_table[i]; 8446 if (device_id != chip->device_id) 8447 continue; 8448 if (revision > chip->revision_id) 8449 continue; 8450 return chip; 8451 } 8452 8453 return 0; 8454 } 8455 8456 /* 8457 * Tell upper layer if the chip is supported. 8458 */ 8459 static int 8460 sym_pci_probe(device_t dev) 8461 { 8462 struct sym_pci_chip *chip; 8463 8464 chip = sym_find_pci_chip(dev); 8465 if (chip && sym_find_firmware(chip)) { 8466 device_set_desc(dev, chip->name); 8467 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? 8468 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; 8469 } 8470 return ENXIO; 8471 } 8472 8473 /* 8474 * Attach a sym53c8xx device. 8475 */ 8476 static int 8477 sym_pci_attach(device_t dev) 8478 { 8479 struct sym_pci_chip *chip; 8480 u_short command; 8481 u_char cachelnsz; 8482 struct sym_hcb *np = 0; 8483 struct sym_nvram nvram; 8484 struct sym_fw *fw = 0; 8485 int i; 8486 bus_dma_tag_t bus_dmat; 8487 8488 bus_dmat = bus_get_dma_tag(dev); 8489 8490 /* 8491 * Only probed devices should be attached. 8492 * We just enjoy being paranoid. :) 8493 */ 8494 chip = sym_find_pci_chip(dev); 8495 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8496 return (ENXIO); 8497 8498 /* 8499 * Allocate immediately the host control block, 8500 * since we are only expecting to succeed. :) 8501 * We keep track in the HCB of all the resources that 8502 * are to be released on error. 8503 */ 8504 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8505 if (np) 8506 np->bus_dmat = bus_dmat; 8507 else 8508 goto attach_failed; 8509 8510 /* 8511 * Copy some useful infos to the HCB. 8512 */ 8513 np->hcb_ba = vtobus(np); 8514 np->verbose = bootverbose; 8515 np->device = dev; 8516 np->unit = device_get_unit(dev); 8517 np->device_id = pci_get_device(dev); 8518 np->revision_id = pci_get_revid(dev); 8519 np->features = chip->features; 8520 np->clock_divn = chip->nr_divisor; 8521 np->maxoffs = chip->offset_max; 8522 np->maxburst = chip->burst_max; 8523 np->scripta_sz = fw->a_size; 8524 np->scriptb_sz = fw->b_size; 8525 np->fw_setup = fw->setup; 8526 np->fw_patch = fw->patch; 8527 np->fw_name = fw->name; 8528 8529 #ifdef __amd64__ 8530 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8531 "TARGET"); 8532 if (!np->target) 8533 goto attach_failed; 8534 #endif 8535 /* 8536 * Edit its name. 8537 */ 8538 snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); 8539 8540 /* 8541 * Initialyze the CCB free and busy queues. 8542 */ 8543 sym_que_init(&np->free_ccbq); 8544 sym_que_init(&np->busy_ccbq); 8545 sym_que_init(&np->comp_ccbq); 8546 sym_que_init(&np->cam_ccbq); 8547 8548 /* 8549 * Allocate a tag for the DMA of user data. 8550 */ 8551 if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24), 8552 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 8553 NULL, NULL, 8554 BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG, 8555 (1<<24), 0, busdma_lock_mutex, &Giant, 8556 &np->data_dmat)) { 8557 device_printf(dev, "failed to create DMA tag.\n"); 8558 goto attach_failed; 8559 } 8560 /* 8561 * Read and apply some fix-ups to the PCI COMMAND 8562 * register. We want the chip to be enabled for: 8563 * - BUS mastering 8564 * - PCI parity checking (reporting would also be fine) 8565 * - Write And Invalidate. 8566 */ 8567 command = pci_read_config(dev, PCIR_COMMAND, 2); 8568 command |= PCIM_CMD_BUSMASTEREN; 8569 command |= PCIM_CMD_PERRESPEN; 8570 command |= /* PCIM_CMD_MWIEN */ 0x0010; 8571 pci_write_config(dev, PCIR_COMMAND, command, 2); 8572 8573 /* 8574 * Let the device know about the cache line size, 8575 * if it doesn't yet. 8576 */ 8577 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8578 if (!cachelnsz) { 8579 cachelnsz = 8; 8580 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8581 } 8582 8583 /* 8584 * Alloc/get/map/retrieve everything that deals with MMIO. 8585 */ 8586 if ((command & PCIM_CMD_MEMEN) != 0) { 8587 int regs_id = SYM_PCI_MMIO; 8588 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8589 ®s_id, RF_ACTIVE); 8590 } 8591 if (!np->mmio_res) { 8592 device_printf(dev, "failed to allocate MMIO resources\n"); 8593 goto attach_failed; 8594 } 8595 np->mmio_bsh = rman_get_bushandle(np->mmio_res); 8596 np->mmio_tag = rman_get_bustag(np->mmio_res); 8597 np->mmio_pa = rman_get_start(np->mmio_res); 8598 np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); 8599 np->mmio_ba = np->mmio_pa; 8600 8601 /* 8602 * Allocate the IRQ. 8603 */ 8604 i = 0; 8605 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8606 RF_ACTIVE | RF_SHAREABLE); 8607 if (!np->irq_res) { 8608 device_printf(dev, "failed to allocate IRQ resource\n"); 8609 goto attach_failed; 8610 } 8611 8612 #ifdef SYM_CONF_IOMAPPED 8613 /* 8614 * User want us to use normal IO with PCI. 8615 * Alloc/get/map/retrieve everything that deals with IO. 8616 */ 8617 if ((command & PCI_COMMAND_IO_ENABLE) != 0) { 8618 int regs_id = SYM_PCI_IO; 8619 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, 8620 ®s_id, RF_ACTIVE); 8621 } 8622 if (!np->io_res) { 8623 device_printf(dev, "failed to allocate IO resources\n"); 8624 goto attach_failed; 8625 } 8626 np->io_bsh = rman_get_bushandle(np->io_res); 8627 np->io_tag = rman_get_bustag(np->io_res); 8628 np->io_port = rman_get_start(np->io_res); 8629 8630 #endif /* SYM_CONF_IOMAPPED */ 8631 8632 /* 8633 * If the chip has RAM. 8634 * Alloc/get/map/retrieve the corresponding resources. 8635 */ 8636 if ((np->features & (FE_RAM|FE_RAM8K)) && 8637 (command & PCIM_CMD_MEMEN) != 0) { 8638 int regs_id = SYM_PCI_RAM; 8639 if (np->features & FE_64BIT) 8640 regs_id = SYM_PCI_RAM64; 8641 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8642 ®s_id, RF_ACTIVE); 8643 if (!np->ram_res) { 8644 device_printf(dev,"failed to allocate RAM resources\n"); 8645 goto attach_failed; 8646 } 8647 np->ram_id = regs_id; 8648 np->ram_bsh = rman_get_bushandle(np->ram_res); 8649 np->ram_tag = rman_get_bustag(np->ram_res); 8650 np->ram_pa = rman_get_start(np->ram_res); 8651 np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); 8652 np->ram_ba = np->ram_pa; 8653 } 8654 8655 /* 8656 * Save setting of some IO registers, so we will 8657 * be able to probe specific implementations. 8658 */ 8659 sym_save_initial_setting (np); 8660 8661 /* 8662 * Reset the chip now, since it has been reported 8663 * that SCSI clock calibration may not work properly 8664 * if the chip is currently active. 8665 */ 8666 sym_chip_reset (np); 8667 8668 /* 8669 * Try to read the user set-up. 8670 */ 8671 (void) sym_read_nvram(np, &nvram); 8672 8673 /* 8674 * Prepare controller and devices settings, according 8675 * to chip features, user set-up and driver set-up. 8676 */ 8677 (void) sym_prepare_setting(np, &nvram); 8678 8679 /* 8680 * Check the PCI clock frequency. 8681 * Must be performed after prepare_setting since it destroys 8682 * STEST1 that is used to probe for the clock doubler. 8683 */ 8684 i = sym_getpciclock(np); 8685 if (i > 37000) 8686 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8687 8688 /* 8689 * Allocate the start queue. 8690 */ 8691 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8692 if (!np->squeue) 8693 goto attach_failed; 8694 np->squeue_ba = vtobus(np->squeue); 8695 8696 /* 8697 * Allocate the done queue. 8698 */ 8699 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8700 if (!np->dqueue) 8701 goto attach_failed; 8702 np->dqueue_ba = vtobus(np->dqueue); 8703 8704 /* 8705 * Allocate the target bus address array. 8706 */ 8707 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8708 if (!np->targtbl) 8709 goto attach_failed; 8710 np->targtbl_ba = vtobus(np->targtbl); 8711 8712 /* 8713 * Allocate SCRIPTS areas. 8714 */ 8715 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8716 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8717 if (!np->scripta0 || !np->scriptb0) 8718 goto attach_failed; 8719 8720 /* 8721 * Allocate some CCB. We need at least ONE. 8722 */ 8723 if (!sym_alloc_ccb(np)) 8724 goto attach_failed; 8725 8726 /* 8727 * Calculate BUS addresses where we are going 8728 * to load the SCRIPTS. 8729 */ 8730 np->scripta_ba = vtobus(np->scripta0); 8731 np->scriptb_ba = vtobus(np->scriptb0); 8732 np->scriptb0_ba = np->scriptb_ba; 8733 8734 if (np->ram_ba) { 8735 np->scripta_ba = np->ram_ba; 8736 if (np->features & FE_RAM8K) { 8737 np->ram_ws = 8192; 8738 np->scriptb_ba = np->scripta_ba + 4096; 8739 #ifdef __LP64__ 8740 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8741 #endif 8742 } 8743 else 8744 np->ram_ws = 4096; 8745 } 8746 8747 /* 8748 * Copy scripts to controller instance. 8749 */ 8750 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8751 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8752 8753 /* 8754 * Setup variable parts in scripts and compute 8755 * scripts bus addresses used from the C code. 8756 */ 8757 np->fw_setup(np, fw); 8758 8759 /* 8760 * Bind SCRIPTS with physical addresses usable by the 8761 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8762 */ 8763 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8764 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8765 8766 #ifdef SYM_CONF_IARB_SUPPORT 8767 /* 8768 * If user wants IARB to be set when we win arbitration 8769 * and have other jobs, compute the max number of consecutive 8770 * settings of IARB hints before we leave devices a chance to 8771 * arbitrate for reselection. 8772 */ 8773 #ifdef SYM_SETUP_IARB_MAX 8774 np->iarb_max = SYM_SETUP_IARB_MAX; 8775 #else 8776 np->iarb_max = 4; 8777 #endif 8778 #endif 8779 8780 /* 8781 * Prepare the idle and invalid task actions. 8782 */ 8783 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8784 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8785 np->idletask_ba = vtobus(&np->idletask); 8786 8787 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8788 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8789 np->notask_ba = vtobus(&np->notask); 8790 8791 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8792 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8793 np->bad_itl_ba = vtobus(&np->bad_itl); 8794 8795 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8796 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8797 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8798 8799 /* 8800 * Allocate and prepare the lun JUMP table that is used 8801 * for a target prior the probing of devices (bad lun table). 8802 * A private table will be allocated for the target on the 8803 * first INQUIRY response received. 8804 */ 8805 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8806 if (!np->badluntbl) 8807 goto attach_failed; 8808 8809 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8810 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8811 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8812 8813 /* 8814 * Prepare the bus address array that contains the bus 8815 * address of each target control block. 8816 * For now, assume all logical units are wrong. :) 8817 */ 8818 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8819 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8820 np->target[i].head.luntbl_sa = 8821 cpu_to_scr(vtobus(np->badluntbl)); 8822 np->target[i].head.lun0_sa = 8823 cpu_to_scr(vtobus(&np->badlun_sa)); 8824 } 8825 8826 /* 8827 * Now check the cache handling of the pci chipset. 8828 */ 8829 if (sym_snooptest (np)) { 8830 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8831 goto attach_failed; 8832 }; 8833 8834 /* 8835 * Now deal with CAM. 8836 * Hopefully, we will succeed with that one.:) 8837 */ 8838 if (!sym_cam_attach(np)) 8839 goto attach_failed; 8840 8841 /* 8842 * Sigh! we are done. 8843 */ 8844 return 0; 8845 8846 /* 8847 * We have failed. 8848 * We will try to free all the resources we have 8849 * allocated, but if we are a boot device, this 8850 * will not help that much.;) 8851 */ 8852 attach_failed: 8853 if (np) 8854 sym_pci_free(np); 8855 return ENXIO; 8856 } 8857 8858 /* 8859 * Free everything that have been allocated for this device. 8860 */ 8861 static void sym_pci_free(hcb_p np) 8862 { 8863 SYM_QUEHEAD *qp; 8864 ccb_p cp; 8865 tcb_p tp; 8866 lcb_p lp; 8867 int target, lun; 8868 int s; 8869 8870 /* 8871 * First free CAM resources. 8872 */ 8873 s = splcam(); 8874 sym_cam_free(np); 8875 splx(s); 8876 8877 /* 8878 * Now every should be quiet for us to 8879 * free other resources. 8880 */ 8881 if (np->ram_res) 8882 bus_release_resource(np->device, SYS_RES_MEMORY, 8883 np->ram_id, np->ram_res); 8884 if (np->mmio_res) 8885 bus_release_resource(np->device, SYS_RES_MEMORY, 8886 SYM_PCI_MMIO, np->mmio_res); 8887 if (np->io_res) 8888 bus_release_resource(np->device, SYS_RES_IOPORT, 8889 SYM_PCI_IO, np->io_res); 8890 if (np->irq_res) 8891 bus_release_resource(np->device, SYS_RES_IRQ, 8892 0, np->irq_res); 8893 8894 if (np->scriptb0) 8895 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8896 if (np->scripta0) 8897 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8898 if (np->squeue) 8899 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8900 if (np->dqueue) 8901 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8902 8903 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { 8904 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8905 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8906 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8907 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8908 } 8909 8910 if (np->badluntbl) 8911 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8912 8913 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8914 tp = &np->target[target]; 8915 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8916 lp = sym_lp(np, tp, lun); 8917 if (!lp) 8918 continue; 8919 if (lp->itlq_tbl) 8920 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8921 "ITLQ_TBL"); 8922 if (lp->cb_tags) 8923 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8924 "CB_TAGS"); 8925 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8926 } 8927 #if SYM_CONF_MAX_LUN > 1 8928 if (tp->lunmp) 8929 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8930 "LUNMP"); 8931 #endif 8932 } 8933 #ifdef __amd64__ 8934 if (np->target) 8935 sym_mfree_dma(np->target, 8936 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8937 #endif 8938 if (np->targtbl) 8939 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8940 if (np->data_dmat) 8941 bus_dma_tag_destroy(np->data_dmat); 8942 sym_mfree_dma(np, sizeof(*np), "HCB"); 8943 } 8944 8945 /* 8946 * Allocate CAM resources and register a bus to CAM. 8947 */ 8948 static int sym_cam_attach(hcb_p np) 8949 { 8950 struct cam_devq *devq = 0; 8951 struct cam_sim *sim = 0; 8952 struct cam_path *path = 0; 8953 struct ccb_setasync csa; 8954 int err, s; 8955 8956 s = splcam(); 8957 8958 /* 8959 * Establish our interrupt handler. 8960 */ 8961 err = bus_setup_intr(np->device, np->irq_res, 8962 INTR_TYPE_CAM | INTR_ENTROPY, NULL, sym_intr, np, 8963 &np->intr); 8964 if (err) { 8965 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8966 err); 8967 goto fail; 8968 } 8969 8970 /* 8971 * Create the device queue for our sym SIM. 8972 */ 8973 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8974 if (!devq) 8975 goto fail; 8976 8977 /* 8978 * Construct our SIM entry. 8979 */ 8980 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, 8981 &Giant, 1, SYM_SETUP_MAX_TAG, devq); 8982 if (!sim) 8983 goto fail; 8984 devq = 0; 8985 8986 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 8987 goto fail; 8988 np->sim = sim; 8989 sim = 0; 8990 8991 if (xpt_create_path(&path, 0, 8992 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 8993 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 8994 goto fail; 8995 } 8996 np->path = path; 8997 8998 /* 8999 * Establish our async notification handler. 9000 */ 9001 xpt_setup_ccb(&csa.ccb_h, np->path, 5); 9002 csa.ccb_h.func_code = XPT_SASYNC_CB; 9003 csa.event_enable = AC_LOST_DEVICE; 9004 csa.callback = sym_async; 9005 csa.callback_arg = np->sim; 9006 xpt_action((union ccb *)&csa); 9007 9008 /* 9009 * Start the chip now, without resetting the BUS, since 9010 * it seems that this must stay under control of CAM. 9011 * With LVD/SE capable chips and BUS in SE mode, we may 9012 * get a spurious SMBC interrupt. 9013 */ 9014 sym_init (np, 0); 9015 9016 splx(s); 9017 return 1; 9018 fail: 9019 if (sim) 9020 cam_sim_free(sim, FALSE); 9021 if (devq) 9022 cam_simq_free(devq); 9023 9024 sym_cam_free(np); 9025 9026 splx(s); 9027 return 0; 9028 } 9029 9030 /* 9031 * Free everything that deals with CAM. 9032 */ 9033 static void sym_cam_free(hcb_p np) 9034 { 9035 if (np->intr) { 9036 bus_teardown_intr(np->device, np->irq_res, np->intr); 9037 np->intr = NULL; 9038 } 9039 9040 if (np->sim) { 9041 xpt_bus_deregister(cam_sim_path(np->sim)); 9042 cam_sim_free(np->sim, /*free_devq*/ TRUE); 9043 np->sim = NULL; 9044 } 9045 if (np->path) { 9046 xpt_free_path(np->path); 9047 np->path = NULL; 9048 } 9049 } 9050 9051 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 9052 9053 /* 9054 * Get host setup from NVRAM. 9055 */ 9056 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 9057 { 9058 #ifdef SYM_CONF_NVRAM_SUPPORT 9059 /* 9060 * Get parity checking, host ID, verbose mode 9061 * and miscellaneous host flags from NVRAM. 9062 */ 9063 switch(nvram->type) { 9064 case SYM_SYMBIOS_NVRAM: 9065 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 9066 np->rv_scntl0 &= ~0x0a; 9067 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 9068 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 9069 np->verbose += 1; 9070 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 9071 np->usrflags |= SYM_SCAN_TARGETS_HILO; 9072 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 9073 np->usrflags |= SYM_AVOID_BUS_RESET; 9074 break; 9075 case SYM_TEKRAM_NVRAM: 9076 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 9077 break; 9078 default: 9079 break; 9080 } 9081 #endif 9082 } 9083 9084 /* 9085 * Get target setup from NVRAM. 9086 */ 9087 #ifdef SYM_CONF_NVRAM_SUPPORT 9088 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 9089 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 9090 #endif 9091 9092 static void 9093 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9094 { 9095 #ifdef SYM_CONF_NVRAM_SUPPORT 9096 switch(nvp->type) { 9097 case SYM_SYMBIOS_NVRAM: 9098 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9099 break; 9100 case SYM_TEKRAM_NVRAM: 9101 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9102 break; 9103 default: 9104 break; 9105 } 9106 #endif 9107 } 9108 9109 #ifdef SYM_CONF_NVRAM_SUPPORT 9110 /* 9111 * Get target set-up from Symbios format NVRAM. 9112 */ 9113 static void 9114 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9115 { 9116 tcb_p tp = &np->target[target]; 9117 Symbios_target *tn = &nvram->target[target]; 9118 9119 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9120 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9121 tp->usrtags = 9122 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9123 9124 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9125 tp->usrflags &= ~SYM_DISC_ENABLED; 9126 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9127 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9128 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9129 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9130 } 9131 9132 /* 9133 * Get target set-up from Tekram format NVRAM. 9134 */ 9135 static void 9136 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9137 { 9138 tcb_p tp = &np->target[target]; 9139 struct Tekram_target *tn = &nvram->target[target]; 9140 int i; 9141 9142 if (tn->flags & TEKRAM_SYNC_NEGO) { 9143 i = tn->sync_index & 0xf; 9144 tp->tinfo.user.period = Tekram_sync[i]; 9145 } 9146 9147 tp->tinfo.user.width = 9148 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9149 9150 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9151 tp->usrtags = 2 << nvram->max_tags_index; 9152 } 9153 9154 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9155 tp->usrflags |= SYM_DISC_ENABLED; 9156 9157 /* If any device does not support parity, we will not use this option */ 9158 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9159 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9160 } 9161 9162 #ifdef SYM_CONF_DEBUG_NVRAM 9163 /* 9164 * Dump Symbios format NVRAM for debugging purpose. 9165 */ 9166 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9167 { 9168 int i; 9169 9170 /* display Symbios nvram host data */ 9171 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9172 sym_name(np), nvram->host_id & 0x0f, 9173 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9174 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9175 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9176 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9177 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9178 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9179 9180 /* display Symbios nvram drive data */ 9181 for (i = 0 ; i < 15 ; i++) { 9182 struct Symbios_target *tn = &nvram->target[i]; 9183 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9184 sym_name(np), i, 9185 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9186 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9187 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9188 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9189 tn->bus_width, 9190 tn->sync_period / 4, 9191 tn->timeout); 9192 } 9193 } 9194 9195 /* 9196 * Dump TEKRAM format NVRAM for debugging purpose. 9197 */ 9198 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9199 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9200 { 9201 int i, tags, boot_delay; 9202 char *rem; 9203 9204 /* display Tekram nvram host data */ 9205 tags = 2 << nvram->max_tags_index; 9206 boot_delay = 0; 9207 if (nvram->boot_delay_index < 6) 9208 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9209 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9210 default: 9211 case 0: rem = ""; break; 9212 case 1: rem = " REMOVABLE=boot device"; break; 9213 case 2: rem = " REMOVABLE=all"; break; 9214 } 9215 9216 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9217 sym_name(np), nvram->host_id & 0x0f, 9218 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9219 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9220 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9221 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9222 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9223 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9224 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9225 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9226 rem, boot_delay, tags); 9227 9228 /* display Tekram nvram drive data */ 9229 for (i = 0; i <= 15; i++) { 9230 int sync, j; 9231 struct Tekram_target *tn = &nvram->target[i]; 9232 j = tn->sync_index & 0xf; 9233 sync = Tekram_sync[j]; 9234 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9235 sym_name(np), i, 9236 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9237 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9238 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9239 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9240 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9241 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9242 sync); 9243 } 9244 } 9245 #endif /* SYM_CONF_DEBUG_NVRAM */ 9246 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9247 9248 9249 /* 9250 * Try reading Symbios or Tekram NVRAM 9251 */ 9252 #ifdef SYM_CONF_NVRAM_SUPPORT 9253 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9254 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9255 #endif 9256 9257 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9258 { 9259 #ifdef SYM_CONF_NVRAM_SUPPORT 9260 /* 9261 * Try to read SYMBIOS nvram. 9262 * Try to read TEKRAM nvram if Symbios nvram not found. 9263 */ 9264 if (SYM_SETUP_SYMBIOS_NVRAM && 9265 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9266 nvp->type = SYM_SYMBIOS_NVRAM; 9267 #ifdef SYM_CONF_DEBUG_NVRAM 9268 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9269 #endif 9270 } 9271 else if (SYM_SETUP_TEKRAM_NVRAM && 9272 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9273 nvp->type = SYM_TEKRAM_NVRAM; 9274 #ifdef SYM_CONF_DEBUG_NVRAM 9275 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9276 #endif 9277 } 9278 else 9279 nvp->type = 0; 9280 #else 9281 nvp->type = 0; 9282 #endif 9283 return nvp->type; 9284 } 9285 9286 9287 #ifdef SYM_CONF_NVRAM_SUPPORT 9288 /* 9289 * 24C16 EEPROM reading. 9290 * 9291 * GPOI0 - data in/data out 9292 * GPIO1 - clock 9293 * Symbios NVRAM wiring now also used by Tekram. 9294 */ 9295 9296 #define SET_BIT 0 9297 #define CLR_BIT 1 9298 #define SET_CLK 2 9299 #define CLR_CLK 3 9300 9301 /* 9302 * Set/clear data/clock bit in GPIO0 9303 */ 9304 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9305 int bit_mode) 9306 { 9307 UDELAY (5); 9308 switch (bit_mode){ 9309 case SET_BIT: 9310 *gpreg |= write_bit; 9311 break; 9312 case CLR_BIT: 9313 *gpreg &= 0xfe; 9314 break; 9315 case SET_CLK: 9316 *gpreg |= 0x02; 9317 break; 9318 case CLR_CLK: 9319 *gpreg &= 0xfd; 9320 break; 9321 9322 } 9323 OUTB (nc_gpreg, *gpreg); 9324 UDELAY (5); 9325 } 9326 9327 /* 9328 * Send START condition to NVRAM to wake it up. 9329 */ 9330 static void S24C16_start(hcb_p np, u_char *gpreg) 9331 { 9332 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9333 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9334 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9335 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9336 } 9337 9338 /* 9339 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9340 */ 9341 static void S24C16_stop(hcb_p np, u_char *gpreg) 9342 { 9343 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9344 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9345 } 9346 9347 /* 9348 * Read or write a bit to the NVRAM, 9349 * read if GPIO0 input else write if GPIO0 output 9350 */ 9351 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9352 u_char *gpreg) 9353 { 9354 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9355 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9356 if (read_bit) 9357 *read_bit = INB (nc_gpreg); 9358 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9359 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9360 } 9361 9362 /* 9363 * Output an ACK to the NVRAM after reading, 9364 * change GPIO0 to output and when done back to an input 9365 */ 9366 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9367 u_char *gpcntl) 9368 { 9369 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9370 S24C16_do_bit(np, 0, write_bit, gpreg); 9371 OUTB (nc_gpcntl, *gpcntl); 9372 } 9373 9374 /* 9375 * Input an ACK from NVRAM after writing, 9376 * change GPIO0 to input and when done back to an output 9377 */ 9378 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9379 u_char *gpcntl) 9380 { 9381 OUTB (nc_gpcntl, *gpcntl | 0x01); 9382 S24C16_do_bit(np, read_bit, 1, gpreg); 9383 OUTB (nc_gpcntl, *gpcntl); 9384 } 9385 9386 /* 9387 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9388 * GPIO0 must already be set as an output 9389 */ 9390 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9391 u_char *gpreg, u_char *gpcntl) 9392 { 9393 int x; 9394 9395 for (x = 0; x < 8; x++) 9396 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9397 9398 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9399 } 9400 9401 /* 9402 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9403 * GPIO0 must already be set as an input 9404 */ 9405 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9406 u_char *gpreg, u_char *gpcntl) 9407 { 9408 int x; 9409 u_char read_bit; 9410 9411 *read_data = 0; 9412 for (x = 0; x < 8; x++) { 9413 S24C16_do_bit(np, &read_bit, 1, gpreg); 9414 *read_data |= ((read_bit & 0x01) << (7 - x)); 9415 } 9416 9417 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9418 } 9419 9420 /* 9421 * Read 'len' bytes starting at 'offset'. 9422 */ 9423 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9424 { 9425 u_char gpcntl, gpreg; 9426 u_char old_gpcntl, old_gpreg; 9427 u_char ack_data; 9428 int retv = 1; 9429 int x; 9430 9431 /* save current state of GPCNTL and GPREG */ 9432 old_gpreg = INB (nc_gpreg); 9433 old_gpcntl = INB (nc_gpcntl); 9434 gpcntl = old_gpcntl & 0x1c; 9435 9436 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9437 OUTB (nc_gpreg, old_gpreg); 9438 OUTB (nc_gpcntl, gpcntl); 9439 9440 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9441 gpreg = old_gpreg; 9442 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9443 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9444 9445 /* now set NVRAM inactive with GPIO0/1 both high */ 9446 S24C16_stop(np, &gpreg); 9447 9448 /* activate NVRAM */ 9449 S24C16_start(np, &gpreg); 9450 9451 /* write device code and random address MSB */ 9452 S24C16_write_byte(np, &ack_data, 9453 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9454 if (ack_data & 0x01) 9455 goto out; 9456 9457 /* write random address LSB */ 9458 S24C16_write_byte(np, &ack_data, 9459 offset & 0xff, &gpreg, &gpcntl); 9460 if (ack_data & 0x01) 9461 goto out; 9462 9463 /* regenerate START state to set up for reading */ 9464 S24C16_start(np, &gpreg); 9465 9466 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9467 S24C16_write_byte(np, &ack_data, 9468 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9469 if (ack_data & 0x01) 9470 goto out; 9471 9472 /* now set up GPIO0 for inputting data */ 9473 gpcntl |= 0x01; 9474 OUTB (nc_gpcntl, gpcntl); 9475 9476 /* input all requested data - only part of total NVRAM */ 9477 for (x = 0; x < len; x++) 9478 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9479 9480 /* finally put NVRAM back in inactive mode */ 9481 gpcntl &= 0xfe; 9482 OUTB (nc_gpcntl, gpcntl); 9483 S24C16_stop(np, &gpreg); 9484 retv = 0; 9485 out: 9486 /* return GPIO0/1 to original states after having accessed NVRAM */ 9487 OUTB (nc_gpcntl, old_gpcntl); 9488 OUTB (nc_gpreg, old_gpreg); 9489 9490 return retv; 9491 } 9492 9493 #undef SET_BIT /* 0 */ 9494 #undef CLR_BIT /* 1 */ 9495 #undef SET_CLK /* 2 */ 9496 #undef CLR_CLK /* 3 */ 9497 9498 /* 9499 * Try reading Symbios NVRAM. 9500 * Return 0 if OK. 9501 */ 9502 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9503 { 9504 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9505 u_char *data = (u_char *) nvram; 9506 int len = sizeof(*nvram); 9507 u_short csum; 9508 int x; 9509 9510 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9511 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9512 return 1; 9513 9514 /* check valid NVRAM signature, verify byte count and checksum */ 9515 if (nvram->type != 0 || 9516 bcmp(nvram->trailer, Symbios_trailer, 6) || 9517 nvram->byte_count != len - 12) 9518 return 1; 9519 9520 /* verify checksum */ 9521 for (x = 6, csum = 0; x < len - 6; x++) 9522 csum += data[x]; 9523 if (csum != nvram->checksum) 9524 return 1; 9525 9526 return 0; 9527 } 9528 9529 /* 9530 * 93C46 EEPROM reading. 9531 * 9532 * GPOI0 - data in 9533 * GPIO1 - data out 9534 * GPIO2 - clock 9535 * GPIO4 - chip select 9536 * 9537 * Used by Tekram. 9538 */ 9539 9540 /* 9541 * Pulse clock bit in GPIO0 9542 */ 9543 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9544 { 9545 OUTB (nc_gpreg, *gpreg | 0x04); 9546 UDELAY (2); 9547 OUTB (nc_gpreg, *gpreg); 9548 } 9549 9550 /* 9551 * Read bit from NVRAM 9552 */ 9553 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9554 { 9555 UDELAY (2); 9556 T93C46_Clk(np, gpreg); 9557 *read_bit = INB (nc_gpreg); 9558 } 9559 9560 /* 9561 * Write bit to GPIO0 9562 */ 9563 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9564 { 9565 if (write_bit & 0x01) 9566 *gpreg |= 0x02; 9567 else 9568 *gpreg &= 0xfd; 9569 9570 *gpreg |= 0x10; 9571 9572 OUTB (nc_gpreg, *gpreg); 9573 UDELAY (2); 9574 9575 T93C46_Clk(np, gpreg); 9576 } 9577 9578 /* 9579 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9580 */ 9581 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9582 { 9583 *gpreg &= 0xef; 9584 OUTB (nc_gpreg, *gpreg); 9585 UDELAY (2); 9586 9587 T93C46_Clk(np, gpreg); 9588 } 9589 9590 /* 9591 * Send read command and address to NVRAM 9592 */ 9593 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9594 u_char *read_bit, u_char *gpreg) 9595 { 9596 int x; 9597 9598 /* send 9 bits, start bit (1), command (2), address (6) */ 9599 for (x = 0; x < 9; x++) 9600 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9601 9602 *read_bit = INB (nc_gpreg); 9603 } 9604 9605 /* 9606 * READ 2 bytes from the NVRAM 9607 */ 9608 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9609 { 9610 int x; 9611 u_char read_bit; 9612 9613 *nvram_data = 0; 9614 for (x = 0; x < 16; x++) { 9615 T93C46_Read_Bit(np, &read_bit, gpreg); 9616 9617 if (read_bit & 0x01) 9618 *nvram_data |= (0x01 << (15 - x)); 9619 else 9620 *nvram_data &= ~(0x01 << (15 - x)); 9621 } 9622 } 9623 9624 /* 9625 * Read Tekram NvRAM data. 9626 */ 9627 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9628 { 9629 u_char read_bit; 9630 int x; 9631 9632 for (x = 0; x < len; x++) { 9633 9634 /* output read command and address */ 9635 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9636 if (read_bit & 0x01) 9637 return 1; /* Bad */ 9638 T93C46_Read_Word(np, &data[x], gpreg); 9639 T93C46_Stop(np, gpreg); 9640 } 9641 9642 return 0; 9643 } 9644 9645 /* 9646 * Try reading 93C46 Tekram NVRAM. 9647 */ 9648 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9649 { 9650 u_char gpcntl, gpreg; 9651 u_char old_gpcntl, old_gpreg; 9652 int retv = 1; 9653 9654 /* save current state of GPCNTL and GPREG */ 9655 old_gpreg = INB (nc_gpreg); 9656 old_gpcntl = INB (nc_gpcntl); 9657 9658 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9659 1/2/4 out */ 9660 gpreg = old_gpreg & 0xe9; 9661 OUTB (nc_gpreg, gpreg); 9662 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9663 OUTB (nc_gpcntl, gpcntl); 9664 9665 /* input all of NVRAM, 64 words */ 9666 retv = T93C46_Read_Data(np, (u_short *) nvram, 9667 sizeof(*nvram) / sizeof(short), &gpreg); 9668 9669 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9670 OUTB (nc_gpcntl, old_gpcntl); 9671 OUTB (nc_gpreg, old_gpreg); 9672 9673 return retv; 9674 } 9675 9676 /* 9677 * Try reading Tekram NVRAM. 9678 * Return 0 if OK. 9679 */ 9680 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9681 { 9682 u_char *data = (u_char *) nvram; 9683 int len = sizeof(*nvram); 9684 u_short csum; 9685 int x; 9686 9687 switch (np->device_id) { 9688 case PCI_ID_SYM53C885: 9689 case PCI_ID_SYM53C895: 9690 case PCI_ID_SYM53C896: 9691 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9692 data, len); 9693 break; 9694 case PCI_ID_SYM53C875: 9695 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9696 data, len); 9697 if (!x) 9698 break; 9699 default: 9700 x = sym_read_T93C46_nvram(np, nvram); 9701 break; 9702 } 9703 if (x) 9704 return 1; 9705 9706 /* verify checksum */ 9707 for (x = 0, csum = 0; x < len - 1; x += 2) 9708 csum += data[x] + (data[x+1] << 8); 9709 if (csum != 0x1234) 9710 return 1; 9711 9712 return 0; 9713 } 9714 9715 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9716