xref: /freebsd/sys/dev/sym/sym_hipd.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 
65 #include <sys/param.h>
66 
67 /*
68  *  Driver configuration options.
69  */
70 #include "opt_sym.h"
71 #include <dev/sym/sym_conf.h>
72 
73 
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/endian.h>
77 #include <sys/kernel.h>
78 #include <sys/lock.h>
79 #include <sys/mutex.h>
80 #include <sys/module.h>
81 #include <sys/bus.h>
82 
83 #include <sys/proc.h>
84 
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 
88 #include <machine/bus.h>
89 #include <machine/resource.h>
90 #include <sys/rman.h>
91 
92 #include <cam/cam.h>
93 #include <cam/cam_ccb.h>
94 #include <cam/cam_sim.h>
95 #include <cam/cam_xpt_sim.h>
96 #include <cam/cam_debug.h>
97 
98 #include <cam/scsi/scsi_all.h>
99 #include <cam/scsi/scsi_message.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_param.h>
103 #include <vm/pmap.h>
104 
105 /* Short and quite clear integer types */
106 typedef int8_t    s8;
107 typedef int16_t   s16;
108 typedef	int32_t   s32;
109 typedef u_int8_t  u8;
110 typedef u_int16_t u16;
111 typedef	u_int32_t u32;
112 
113 /*
114  *  Driver definitions.
115  */
116 #include <dev/sym/sym_defs.h>
117 #include <dev/sym/sym_fw.h>
118 
119 /*
120  *  IA32 architecture does not reorder STORES and prevents
121  *  LOADS from passing STORES. It is called `program order'
122  *  by Intel and allows device drivers to deal with memory
123  *  ordering by only ensuring that the code is not reordered
124  *  by the compiler when ordering is required.
125  *  Other architectures implement a weaker ordering that
126  *  requires memory barriers (and also IO barriers when they
127  *  make sense) to be used.
128  */
129 
130 #if	defined	__i386__ || defined __amd64__
131 #define MEMORY_BARRIER()	do { ; } while(0)
132 #elif	defined	__powerpc__
133 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
134 #elif	defined	__ia64__
135 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
136 #elif	defined	__sparc64__
137 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
138 #else
139 #error	"Not supported platform"
140 #endif
141 
142 /*
143  *  A la VMS/CAM-3 queue management.
144  */
145 
146 typedef struct sym_quehead {
147 	struct sym_quehead *flink;	/* Forward  pointer */
148 	struct sym_quehead *blink;	/* Backward pointer */
149 } SYM_QUEHEAD;
150 
151 #define sym_que_init(ptr) do { \
152 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
153 } while (0)
154 
155 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
156 {
157 	return (head->flink == head) ? 0 : head->flink;
158 }
159 
160 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
161 {
162 	return (head->blink == head) ? 0 : head->blink;
163 }
164 
165 static __inline void __sym_que_add(struct sym_quehead * new,
166 	struct sym_quehead * blink,
167 	struct sym_quehead * flink)
168 {
169 	flink->blink	= new;
170 	new->flink	= flink;
171 	new->blink	= blink;
172 	blink->flink	= new;
173 }
174 
175 static __inline void __sym_que_del(struct sym_quehead * blink,
176 	struct sym_quehead * flink)
177 {
178 	flink->blink = blink;
179 	blink->flink = flink;
180 }
181 
182 static __inline int sym_que_empty(struct sym_quehead *head)
183 {
184 	return head->flink == head;
185 }
186 
187 static __inline void sym_que_splice(struct sym_quehead *list,
188 	struct sym_quehead *head)
189 {
190 	struct sym_quehead *first = list->flink;
191 
192 	if (first != list) {
193 		struct sym_quehead *last = list->blink;
194 		struct sym_quehead *at   = head->flink;
195 
196 		first->blink = head;
197 		head->flink  = first;
198 
199 		last->flink = at;
200 		at->blink   = last;
201 	}
202 }
203 
204 #define sym_que_entry(ptr, type, member) \
205 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
206 
207 
208 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
209 
210 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
211 
212 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
213 
214 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
215 {
216 	struct sym_quehead *elem = head->flink;
217 
218 	if (elem != head)
219 		__sym_que_del(head, elem->flink);
220 	else
221 		elem = 0;
222 	return elem;
223 }
224 
225 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
226 
227 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
228 {
229 	struct sym_quehead *elem = head->blink;
230 
231 	if (elem != head)
232 		__sym_que_del(elem->blink, head);
233 	else
234 		elem = 0;
235 	return elem;
236 }
237 
238 /*
239  *  This one may be useful.
240  */
241 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
242 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
243 /*
244  *  FreeBSD does not offer our kind of queue in the CAM CCB.
245  *  So, we have to cast.
246  */
247 #define sym_qptr(p)	((struct sym_quehead *) (p))
248 
249 /*
250  *  Simple bitmap operations.
251  */
252 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
253 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
254 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
255 
256 /*
257  *  Number of tasks per device we want to handle.
258  */
259 #if	SYM_CONF_MAX_TAG_ORDER > 8
260 #error	"more than 256 tags per logical unit not allowed."
261 #endif
262 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
263 
264 /*
265  *  Donnot use more tasks that we can handle.
266  */
267 #ifndef	SYM_CONF_MAX_TAG
268 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
269 #endif
270 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
271 #undef	SYM_CONF_MAX_TAG
272 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
273 #endif
274 
275 /*
276  *    This one means 'NO TAG for this job'
277  */
278 #define NO_TAG	(256)
279 
280 /*
281  *  Number of SCSI targets.
282  */
283 #if	SYM_CONF_MAX_TARGET > 16
284 #error	"more than 16 targets not allowed."
285 #endif
286 
287 /*
288  *  Number of logical units per target.
289  */
290 #if	SYM_CONF_MAX_LUN > 64
291 #error	"more than 64 logical units per target not allowed."
292 #endif
293 
294 /*
295  *    Asynchronous pre-scaler (ns). Shall be 40 for
296  *    the SCSI timings to be compliant.
297  */
298 #define	SYM_CONF_MIN_ASYNC (40)
299 
300 /*
301  *  Number of entries in the START and DONE queues.
302  *
303  *  We limit to 1 PAGE in order to succeed allocation of
304  *  these queues. Each entry is 8 bytes long (2 DWORDS).
305  */
306 #ifdef	SYM_CONF_MAX_START
307 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
308 #else
309 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
310 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
311 #endif
312 
313 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
314 #undef	SYM_CONF_MAX_QUEUE
315 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
316 #undef	SYM_CONF_MAX_START
317 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
318 #endif
319 
320 /*
321  *  For this one, we want a short name :-)
322  */
323 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
324 
325 /*
326  *  Active debugging tags and verbosity.
327  */
328 #define DEBUG_ALLOC	(0x0001)
329 #define DEBUG_PHASE	(0x0002)
330 #define DEBUG_POLL	(0x0004)
331 #define DEBUG_QUEUE	(0x0008)
332 #define DEBUG_RESULT	(0x0010)
333 #define DEBUG_SCATTER	(0x0020)
334 #define DEBUG_SCRIPT	(0x0040)
335 #define DEBUG_TINY	(0x0080)
336 #define DEBUG_TIMING	(0x0100)
337 #define DEBUG_NEGO	(0x0200)
338 #define DEBUG_TAGS	(0x0400)
339 #define DEBUG_POINTER	(0x0800)
340 
341 #if 0
342 static int sym_debug = 0;
343 	#define DEBUG_FLAGS sym_debug
344 #else
345 /*	#define DEBUG_FLAGS (0x0631) */
346 	#define DEBUG_FLAGS (0x0000)
347 
348 #endif
349 #define sym_verbose	(np->verbose)
350 
351 /*
352  *  Insert a delay in micro-seconds and milli-seconds.
353  */
354 static void UDELAY(int us) { DELAY(us); }
355 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
356 
357 /*
358  *  Simple power of two buddy-like allocator.
359  *
360  *  This simple code is not intended to be fast, but to
361  *  provide power of 2 aligned memory allocations.
362  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
363  *  this allocator allows simple and fast address calculations
364  *  from the SCRIPTS code. In addition, cache line alignment
365  *  is guaranteed for power of 2 cache line size.
366  *
367  *  This allocator has been developped for the Linux sym53c8xx
368  *  driver, since this O/S does not provide naturally aligned
369  *  allocations.
370  *  It has the advantage of allowing the driver to use private
371  *  pages of memory that will be useful if we ever need to deal
372  *  with IO MMUs for PCI.
373  */
374 
375 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
376 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
377 #if 0
378 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
379 #endif
380 #define MEMO_WARN	1
381 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
382 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
383 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
384 
385 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
386 #define free_pages(p)		free((p), M_DEVBUF)
387 
388 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
389 
390 typedef struct m_link {		/* Link between free memory chunks */
391 	struct m_link *next;
392 } m_link_s;
393 
394 typedef struct m_vtob {		/* Virtual to Bus address translation */
395 	struct m_vtob	*next;
396 	bus_dmamap_t	dmamap;	/* Map for this chunk */
397 	m_addr_t	vaddr;	/* Virtual address */
398 	m_addr_t	baddr;	/* Bus physical address */
399 } m_vtob_s;
400 /* Hash this stuff a bit to speed up translations */
401 #define VTOB_HASH_SHIFT		5
402 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
403 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
404 #define VTOB_HASH_CODE(m)	\
405 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
406 
407 typedef struct m_pool {		/* Memory pool of a given kind */
408 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
409 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
410 	m_addr_t (*getp)(struct m_pool *);
411 #ifdef	MEMO_FREE_UNUSED
412 	void (*freep)(struct m_pool *, m_addr_t);
413 #endif
414 #define M_GETP()		mp->getp(mp)
415 #define M_FREEP(p)		mp->freep(mp, p)
416 	int nump;
417 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
418 	struct m_pool *next;
419 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
420 } m_pool_s;
421 
422 static void *___sym_malloc(m_pool_s *mp, int size)
423 {
424 	int i = 0;
425 	int s = (1 << MEMO_SHIFT);
426 	int j;
427 	m_addr_t a;
428 	m_link_s *h = mp->h;
429 
430 	if (size > MEMO_CLUSTER_SIZE)
431 		return 0;
432 
433 	while (size > s) {
434 		s <<= 1;
435 		++i;
436 	}
437 
438 	j = i;
439 	while (!h[j].next) {
440 		if (s == MEMO_CLUSTER_SIZE) {
441 			h[j].next = (m_link_s *) M_GETP();
442 			if (h[j].next)
443 				h[j].next->next = 0;
444 			break;
445 		}
446 		++j;
447 		s <<= 1;
448 	}
449 	a = (m_addr_t) h[j].next;
450 	if (a) {
451 		h[j].next = h[j].next->next;
452 		while (j > i) {
453 			j -= 1;
454 			s >>= 1;
455 			h[j].next = (m_link_s *) (a+s);
456 			h[j].next->next = 0;
457 		}
458 	}
459 #ifdef DEBUG
460 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
461 #endif
462 	return (void *) a;
463 }
464 
465 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
466 {
467 	int i = 0;
468 	int s = (1 << MEMO_SHIFT);
469 	m_link_s *q;
470 	m_addr_t a, b;
471 	m_link_s *h = mp->h;
472 
473 #ifdef DEBUG
474 	printf("___sym_mfree(%p, %d)\n", ptr, size);
475 #endif
476 
477 	if (size > MEMO_CLUSTER_SIZE)
478 		return;
479 
480 	while (size > s) {
481 		s <<= 1;
482 		++i;
483 	}
484 
485 	a = (m_addr_t) ptr;
486 
487 	while (1) {
488 #ifdef MEMO_FREE_UNUSED
489 		if (s == MEMO_CLUSTER_SIZE) {
490 			M_FREEP(a);
491 			break;
492 		}
493 #endif
494 		b = a ^ s;
495 		q = &h[i];
496 		while (q->next && q->next != (m_link_s *) b) {
497 			q = q->next;
498 		}
499 		if (!q->next) {
500 			((m_link_s *) a)->next = h[i].next;
501 			h[i].next = (m_link_s *) a;
502 			break;
503 		}
504 		q->next = q->next->next;
505 		a = a & b;
506 		s <<= 1;
507 		++i;
508 	}
509 }
510 
511 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
512 {
513 	void *p;
514 
515 	p = ___sym_malloc(mp, size);
516 
517 	if (DEBUG_FLAGS & DEBUG_ALLOC)
518 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
519 
520 	if (p)
521 		bzero(p, size);
522 	else if (uflags & MEMO_WARN)
523 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
524 
525 	return p;
526 }
527 
528 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
529 
530 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
531 {
532 	if (DEBUG_FLAGS & DEBUG_ALLOC)
533 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
534 
535 	___sym_mfree(mp, ptr, size);
536 
537 }
538 
539 /*
540  * Default memory pool we donnot need to involve in DMA.
541  */
542 /*
543  * With the `bus dma abstraction', we use a separate pool for
544  * memory we donnot need to involve in DMA.
545  */
546 static m_addr_t ___mp0_getp(m_pool_s *mp)
547 {
548 	m_addr_t m = (m_addr_t) get_pages();
549 	if (m)
550 		++mp->nump;
551 	return m;
552 }
553 
554 #ifdef	MEMO_FREE_UNUSED
555 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
556 {
557 	free_pages(m);
558 	--mp->nump;
559 }
560 #endif
561 
562 #ifdef	MEMO_FREE_UNUSED
563 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
564 #else
565 static m_pool_s mp0 = {0, 0, ___mp0_getp};
566 #endif
567 
568 
569 /*
570  * Actual memory allocation routine for non-DMAed memory.
571  */
572 static void *sym_calloc(int size, char *name)
573 {
574 	void *m;
575 	/* Lock */
576 	m = __sym_calloc(&mp0, size, name);
577 	/* Unlock */
578 	return m;
579 }
580 
581 /*
582  * Actual memory allocation routine for non-DMAed memory.
583  */
584 static void sym_mfree(void *ptr, int size, char *name)
585 {
586 	/* Lock */
587 	__sym_mfree(&mp0, ptr, size, name);
588 	/* Unlock */
589 }
590 
591 /*
592  * DMAable pools.
593  */
594 /*
595  * With `bus dma abstraction', we use a separate pool per parent
596  * BUS handle. A reverse table (hashed) is maintained for virtual
597  * to BUS address translation.
598  */
599 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
600 {
601 	bus_addr_t *baddr;
602 	baddr = (bus_addr_t *)arg;
603 	*baddr = segs->ds_addr;
604 }
605 
606 static m_addr_t ___dma_getp(m_pool_s *mp)
607 {
608 	m_vtob_s *vbp;
609 	void *vaddr = 0;
610 	bus_addr_t baddr = 0;
611 
612 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
613 	if (!vbp)
614 		goto out_err;
615 
616 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
617 			      BUS_DMA_NOWAIT, &vbp->dmamap))
618 		goto out_err;
619 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
620 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
621 	if (baddr) {
622 		int hc = VTOB_HASH_CODE(vaddr);
623 		vbp->vaddr = (m_addr_t) vaddr;
624 		vbp->baddr = (m_addr_t) baddr;
625 		vbp->next = mp->vtob[hc];
626 		mp->vtob[hc] = vbp;
627 		++mp->nump;
628 		return (m_addr_t) vaddr;
629 	}
630 out_err:
631 	if (baddr)
632 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
633 	if (vaddr)
634 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
635 	if (vbp) {
636 		if (vbp->dmamap)
637 			bus_dmamap_destroy(mp->dmat, vbp->dmamap);
638 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
639 	}
640 	return 0;
641 }
642 
643 #ifdef	MEMO_FREE_UNUSED
644 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
645 {
646 	m_vtob_s **vbpp, *vbp;
647 	int hc = VTOB_HASH_CODE(m);
648 
649 	vbpp = &mp->vtob[hc];
650 	while (*vbpp && (*vbpp)->vaddr != m)
651 		vbpp = &(*vbpp)->next;
652 	if (*vbpp) {
653 		vbp = *vbpp;
654 		*vbpp = (*vbpp)->next;
655 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
656 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
657 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
658 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
659 		--mp->nump;
660 	}
661 }
662 #endif
663 
664 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
665 {
666 	m_pool_s *mp;
667 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
668 	return mp;
669 }
670 
671 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
672 {
673 	m_pool_s *mp = 0;
674 
675 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
676 	if (mp) {
677 		mp->dev_dmat = dev_dmat;
678 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
679 			       BUS_SPACE_MAXADDR_32BIT,
680 			       BUS_SPACE_MAXADDR,
681 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
682 			       MEMO_CLUSTER_SIZE, 0,
683 			       busdma_lock_mutex, &Giant, &mp->dmat)) {
684 			mp->getp = ___dma_getp;
685 #ifdef	MEMO_FREE_UNUSED
686 			mp->freep = ___dma_freep;
687 #endif
688 			mp->next = mp0.next;
689 			mp0.next = mp;
690 			return mp;
691 		}
692 	}
693 	if (mp)
694 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
695 	return 0;
696 }
697 
698 #ifdef	MEMO_FREE_UNUSED
699 static void ___del_dma_pool(m_pool_s *p)
700 {
701 	struct m_pool **pp = &mp0.next;
702 
703 	while (*pp && *pp != p)
704 		pp = &(*pp)->next;
705 	if (*pp) {
706 		*pp = (*pp)->next;
707 		bus_dma_tag_destroy(p->dmat);
708 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
709 	}
710 }
711 #endif
712 
713 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
714 {
715 	struct m_pool *mp;
716 	void *m = 0;
717 
718 	/* Lock */
719 	mp = ___get_dma_pool(dev_dmat);
720 	if (!mp)
721 		mp = ___cre_dma_pool(dev_dmat);
722 	if (mp)
723 		m = __sym_calloc(mp, size, name);
724 #ifdef	MEMO_FREE_UNUSED
725 	if (mp && !mp->nump)
726 		___del_dma_pool(mp);
727 #endif
728 	/* Unlock */
729 
730 	return m;
731 }
732 
733 static void
734 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
735 {
736 	struct m_pool *mp;
737 
738 	/* Lock */
739 	mp = ___get_dma_pool(dev_dmat);
740 	if (mp)
741 		__sym_mfree(mp, m, size, name);
742 #ifdef	MEMO_FREE_UNUSED
743 	if (mp && !mp->nump)
744 		___del_dma_pool(mp);
745 #endif
746 	/* Unlock */
747 }
748 
749 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
750 {
751 	m_pool_s *mp;
752 	int hc = VTOB_HASH_CODE(m);
753 	m_vtob_s *vp = 0;
754 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
755 
756 	/* Lock */
757 	mp = ___get_dma_pool(dev_dmat);
758 	if (mp) {
759 		vp = mp->vtob[hc];
760 		while (vp && (m_addr_t) vp->vaddr != a)
761 			vp = vp->next;
762 	}
763 	/* Unlock */
764 	if (!vp)
765 		panic("sym: VTOBUS FAILED!\n");
766 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
767 }
768 
769 
770 /*
771  * Verbs for DMAable memory handling.
772  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
773  * being discarded.
774  */
775 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
776 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
777 #define _sym_mfree_dma(np, p, s, n)	\
778 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
779 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
780 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
781 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
782 #define vtobus(p)			_vtobus(np, p)
783 
784 
785 /*
786  *  Print a buffer in hexadecimal format.
787  */
788 static void sym_printb_hex (u_char *p, int n)
789 {
790 	while (n-- > 0)
791 		printf (" %x", *p++);
792 }
793 
794 /*
795  *  Same with a label at beginning and .\n at end.
796  */
797 static void sym_printl_hex (char *label, u_char *p, int n)
798 {
799 	printf ("%s", label);
800 	sym_printb_hex (p, n);
801 	printf (".\n");
802 }
803 
804 /*
805  *  Return a string for SCSI BUS mode.
806  */
807 static char *sym_scsi_bus_mode(int mode)
808 {
809 	switch(mode) {
810 	case SMODE_HVD:	return "HVD";
811 	case SMODE_SE:	return "SE";
812 	case SMODE_LVD: return "LVD";
813 	}
814 	return "??";
815 }
816 
817 /*
818  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
819  */
820 #ifdef SYM_CONF_NVRAM_SUPPORT
821 static u_char Tekram_sync[16] =
822 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
823 #endif
824 
825 /*
826  *  Union of supported NVRAM formats.
827  */
828 struct sym_nvram {
829 	int type;
830 #define	SYM_SYMBIOS_NVRAM	(1)
831 #define	SYM_TEKRAM_NVRAM	(2)
832 #ifdef	SYM_CONF_NVRAM_SUPPORT
833 	union {
834 		Symbios_nvram Symbios;
835 		Tekram_nvram Tekram;
836 	} data;
837 #endif
838 };
839 
840 /*
841  *  This one is hopefully useless, but actually useful. :-)
842  */
843 #ifndef assert
844 #define	assert(expression) { \
845 	if (!(expression)) { \
846 		(void)panic( \
847 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
848 			#expression, \
849 			__FILE__, __LINE__); \
850 	} \
851 }
852 #endif
853 
854 /*
855  *  Some provision for a possible big endian mode supported by
856  *  Symbios chips (never seen, by the way).
857  *  For now, this stuff does not deserve any comments. :)
858  */
859 
860 #define sym_offb(o)	(o)
861 #define sym_offw(o)	(o)
862 
863 /*
864  *  Some provision for support for BIG ENDIAN CPU.
865  */
866 
867 #define cpu_to_scr(dw)	htole32(dw)
868 #define scr_to_cpu(dw)	le32toh(dw)
869 
870 /*
871  *  Access to the chip IO registers and on-chip RAM.
872  *  We use the `bus space' interface under FreeBSD-4 and
873  *  later kernel versions.
874  */
875 
876 
877 #if defined(SYM_CONF_IOMAPPED)
878 
879 #define INB_OFF(o)	bus_space_read_1(np->io_tag, np->io_bsh, o)
880 #define INW_OFF(o)	bus_space_read_2(np->io_tag, np->io_bsh, o)
881 #define INL_OFF(o)	bus_space_read_4(np->io_tag, np->io_bsh, o)
882 
883 #define OUTB_OFF(o, v)	bus_space_write_1(np->io_tag, np->io_bsh, o, (v))
884 #define OUTW_OFF(o, v)	bus_space_write_2(np->io_tag, np->io_bsh, o, (v))
885 #define OUTL_OFF(o, v)	bus_space_write_4(np->io_tag, np->io_bsh, o, (v))
886 
887 #else	/* Memory mapped IO */
888 
889 #define INB_OFF(o)	bus_space_read_1(np->mmio_tag, np->mmio_bsh, o)
890 #define INW_OFF(o)	bus_space_read_2(np->mmio_tag, np->mmio_bsh, o)
891 #define INL_OFF(o)	bus_space_read_4(np->mmio_tag, np->mmio_bsh, o)
892 
893 #define OUTB_OFF(o, v)	bus_space_write_1(np->mmio_tag, np->mmio_bsh, o, (v))
894 #define OUTW_OFF(o, v)	bus_space_write_2(np->mmio_tag, np->mmio_bsh, o, (v))
895 #define OUTL_OFF(o, v)	bus_space_write_4(np->mmio_tag, np->mmio_bsh, o, (v))
896 
897 #endif	/* SYM_CONF_IOMAPPED */
898 
899 #define OUTRAM_OFF(o, a, l)	\
900 	bus_space_write_region_1(np->ram_tag, np->ram_bsh, o, (a), (l))
901 
902 
903 /*
904  *  Common definitions for both bus space and legacy IO methods.
905  */
906 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
907 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
908 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
909 
910 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
911 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
912 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
913 
914 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
915 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
916 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
917 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
918 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
919 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
920 
921 /*
922  *  We normally want the chip to have a consistent view
923  *  of driver internal data structures when we restart it.
924  *  Thus these macros.
925  */
926 #define OUTL_DSP(v)				\
927 	do {					\
928 		MEMORY_BARRIER();		\
929 		OUTL (nc_dsp, (v));		\
930 	} while (0)
931 
932 #define OUTONB_STD()				\
933 	do {					\
934 		MEMORY_BARRIER();		\
935 		OUTONB (nc_dcntl, (STD|NOCOM));	\
936 	} while (0)
937 
938 /*
939  *  Command control block states.
940  */
941 #define HS_IDLE		(0)
942 #define HS_BUSY		(1)
943 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
944 #define HS_DISCONNECT	(3)	/* Disconnected by target */
945 #define HS_WAIT		(4)	/* waiting for resource	  */
946 
947 #define HS_DONEMASK	(0x80)
948 #define HS_COMPLETE	(4|HS_DONEMASK)
949 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
950 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
951 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
952 
953 /*
954  *  Software Interrupt Codes
955  */
956 #define	SIR_BAD_SCSI_STATUS	(1)
957 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
958 #define	SIR_MSG_RECEIVED	(3)
959 #define	SIR_MSG_WEIRD		(4)
960 #define	SIR_NEGO_FAILED		(5)
961 #define	SIR_NEGO_PROTO		(6)
962 #define	SIR_SCRIPT_STOPPED	(7)
963 #define	SIR_REJECT_TO_SEND	(8)
964 #define	SIR_SWIDE_OVERRUN	(9)
965 #define	SIR_SODL_UNDERRUN	(10)
966 #define	SIR_RESEL_NO_MSG_IN	(11)
967 #define	SIR_RESEL_NO_IDENTIFY	(12)
968 #define	SIR_RESEL_BAD_LUN	(13)
969 #define	SIR_TARGET_SELECTED	(14)
970 #define	SIR_RESEL_BAD_I_T_L	(15)
971 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
972 #define	SIR_ABORT_SENT		(17)
973 #define	SIR_RESEL_ABORTED	(18)
974 #define	SIR_MSG_OUT_DONE	(19)
975 #define	SIR_COMPLETE_ERROR	(20)
976 #define	SIR_DATA_OVERRUN	(21)
977 #define	SIR_BAD_PHASE		(22)
978 #define	SIR_MAX			(22)
979 
980 /*
981  *  Extended error bit codes.
982  *  xerr_status field of struct sym_ccb.
983  */
984 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
985 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
986 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
987 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
988 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
989 
990 /*
991  *  Negotiation status.
992  *  nego_status field of struct sym_ccb.
993  */
994 #define NS_SYNC		(1)
995 #define NS_WIDE		(2)
996 #define NS_PPR		(3)
997 
998 /*
999  *  A CCB hashed table is used to retrieve CCB address
1000  *  from DSA value.
1001  */
1002 #define CCB_HASH_SHIFT		8
1003 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1004 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1005 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1006 
1007 /*
1008  *  Device flags.
1009  */
1010 #define SYM_DISC_ENABLED	(1)
1011 #define SYM_TAGS_ENABLED	(1<<1)
1012 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1013 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1014 
1015 /*
1016  *  Host adapter miscellaneous flags.
1017  */
1018 #define SYM_AVOID_BUS_RESET	(1)
1019 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1020 
1021 /*
1022  *  Device quirks.
1023  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1024  *  saving the DATA POINTER then reselects and terminates the IO.
1025  *  On reselection, the automatic RESTORE DATA POINTER makes the
1026  *  CURRENT DATA POINTER not point at the end of the IO.
1027  *  This behaviour just breaks our calculation of the residual.
1028  *  For now, we just force an AUTO SAVE on disconnection and will
1029  *  fix that in a further driver version.
1030  */
1031 #define SYM_QUIRK_AUTOSAVE 1
1032 
1033 /*
1034  *  Misc.
1035  */
1036 #define SYM_SNOOP_TIMEOUT (10000000)
1037 #define SYM_PCI_IO	PCIR_BAR(0)
1038 #define SYM_PCI_MMIO	PCIR_BAR(1)
1039 #define SYM_PCI_RAM	PCIR_BAR(2)
1040 #define SYM_PCI_RAM64	PCIR_BAR(3)
1041 
1042 /*
1043  *  Back-pointer from the CAM CCB to our data structures.
1044  */
1045 #define sym_hcb_ptr	spriv_ptr0
1046 /* #define sym_ccb_ptr	spriv_ptr1 */
1047 
1048 /*
1049  *  We mostly have to deal with pointers.
1050  *  Thus these typedef's.
1051  */
1052 typedef struct sym_tcb *tcb_p;
1053 typedef struct sym_lcb *lcb_p;
1054 typedef struct sym_ccb *ccb_p;
1055 typedef struct sym_hcb *hcb_p;
1056 
1057 /*
1058  *  Gather negotiable parameters value
1059  */
1060 struct sym_trans {
1061 	u8 scsi_version;
1062 	u8 spi_version;
1063 	u8 period;
1064 	u8 offset;
1065 	u8 width;
1066 	u8 options;	/* PPR options */
1067 };
1068 
1069 struct sym_tinfo {
1070 	struct sym_trans current;
1071 	struct sym_trans goal;
1072 	struct sym_trans user;
1073 };
1074 
1075 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1076 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1077 
1078 /*
1079  *  Global TCB HEADER.
1080  *
1081  *  Due to lack of indirect addressing on earlier NCR chips,
1082  *  this substructure is copied from the TCB to a global
1083  *  address after selection.
1084  *  For SYMBIOS chips that support LOAD/STORE this copy is
1085  *  not needed and thus not performed.
1086  */
1087 struct sym_tcbh {
1088 	/*
1089 	 *  Scripts bus addresses of LUN table accessed from scripts.
1090 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1091 	 *  and we we want to speed-up the general case and not waste
1092 	 *  resources.
1093 	 */
1094 	u32	luntbl_sa;	/* bus address of this table	*/
1095 	u32	lun0_sa;	/* bus address of LCB #0	*/
1096 	/*
1097 	 *  Actual SYNC/WIDE IO registers value for this target.
1098 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1099 	 *  so have alignment constraints.
1100 	 */
1101 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1102 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1103 /*2*/	u_char	filler1;
1104 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1105 };
1106 
1107 /*
1108  *  Target Control Block
1109  */
1110 struct sym_tcb {
1111 	/*
1112 	 *  TCB header.
1113 	 *  Assumed at offset 0.
1114 	 */
1115 /*0*/	struct sym_tcbh head;
1116 
1117 	/*
1118 	 *  LUN table used by the SCRIPTS processor.
1119 	 *  An array of bus addresses is used on reselection.
1120 	 */
1121 	u32	*luntbl;	/* LCBs bus address table	*/
1122 
1123 	/*
1124 	 *  LUN table used by the C code.
1125 	 */
1126 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1127 #if SYM_CONF_MAX_LUN > 1
1128 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1129 #endif
1130 
1131 	/*
1132 	 *  Bitmap that tells about LUNs that succeeded at least
1133 	 *  1 IO and therefore assumed to be a real device.
1134 	 *  Avoid useless allocation of the LCB structure.
1135 	 */
1136 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1137 
1138 	/*
1139 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1140 	 *  allocated (not discovered or LCB allocation failed).
1141 	 */
1142 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1143 
1144 	/*
1145 	 *  Transfer capabilities (SIP)
1146 	 */
1147 	struct sym_tinfo tinfo;
1148 
1149 	/*
1150 	 * Keep track of the CCB used for the negotiation in order
1151 	 * to ensure that only 1 negotiation is queued at a time.
1152 	 */
1153 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1154 
1155 	/*
1156 	 *  Set when we want to reset the device.
1157 	 */
1158 	u_char	to_reset;
1159 
1160 	/*
1161 	 *  Other user settable limits and options.
1162 	 *  These limits are read from the NVRAM if present.
1163 	 */
1164 	u_char	usrflags;
1165 	u_short	usrtags;
1166 };
1167 
1168 /*
1169  *  Global LCB HEADER.
1170  *
1171  *  Due to lack of indirect addressing on earlier NCR chips,
1172  *  this substructure is copied from the LCB to a global
1173  *  address after selection.
1174  *  For SYMBIOS chips that support LOAD/STORE this copy is
1175  *  not needed and thus not performed.
1176  */
1177 struct sym_lcbh {
1178 	/*
1179 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1180 	 *  For not probed logical units, this address points to
1181 	 *  SCRIPTS that deal with bad LU handling (must be at
1182 	 *  offset zero of the LCB for that reason).
1183 	 */
1184 /*0*/	u32	resel_sa;
1185 
1186 	/*
1187 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1188 	 *  to the unique ITL nexus allowed to be disconnected.
1189 	 */
1190 	u32	itl_task_sa;
1191 
1192 	/*
1193 	 *  Task table bus address (read from SCRIPTS).
1194 	 */
1195 	u32	itlq_tbl_sa;
1196 };
1197 
1198 /*
1199  *  Logical Unit Control Block
1200  */
1201 struct sym_lcb {
1202 	/*
1203 	 *  TCB header.
1204 	 *  Assumed at offset 0.
1205 	 */
1206 /*0*/	struct sym_lcbh head;
1207 
1208 	/*
1209 	 *  Task table read from SCRIPTS that contains pointers to
1210 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1211 	 *  inside the header.
1212 	 */
1213 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1214 
1215 	/*
1216 	 *  Busy CCBs management.
1217 	 */
1218 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1219 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1220 
1221 	/*
1222 	 *  Circular tag allocation buffer.
1223 	 */
1224 	u_short	ia_tag;		/* Tag allocation index		*/
1225 	u_short	if_tag;		/* Tag release index		*/
1226 	u_char	*cb_tags;	/* Circular tags buffer		*/
1227 
1228 	/*
1229 	 *  Set when we want to clear all tasks.
1230 	 */
1231 	u_char to_clear;
1232 
1233 	/*
1234 	 *  Capabilities.
1235 	 */
1236 	u_char	user_flags;
1237 	u_char	current_flags;
1238 };
1239 
1240 /*
1241  *  Action from SCRIPTS on a task.
1242  *  Is part of the CCB, but is also used separately to plug
1243  *  error handling action to perform from SCRIPTS.
1244  */
1245 struct sym_actscr {
1246 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1247 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1248 };
1249 
1250 /*
1251  *  Phase mismatch context.
1252  *
1253  *  It is part of the CCB and is used as parameters for the
1254  *  DATA pointer. We need two contexts to handle correctly the
1255  *  SAVED DATA POINTER.
1256  */
1257 struct sym_pmc {
1258 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1259 	u32	ret;		/* SCRIPT return address	*/
1260 };
1261 
1262 /*
1263  *  LUN control block lookup.
1264  *  We use a direct pointer for LUN #0, and a table of
1265  *  pointers which is only allocated for devices that support
1266  *  LUN(s) > 0.
1267  */
1268 #if SYM_CONF_MAX_LUN <= 1
1269 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1270 #else
1271 #define sym_lp(np, tp, lun) \
1272 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1273 #endif
1274 
1275 /*
1276  *  Status are used by the host and the script processor.
1277  *
1278  *  The last four bytes (status[4]) are copied to the
1279  *  scratchb register (declared as scr0..scr3) just after the
1280  *  select/reselect, and copied back just after disconnecting.
1281  *  Inside the script the XX_REG are used.
1282  */
1283 
1284 /*
1285  *  Last four bytes (script)
1286  */
1287 #define  QU_REG	scr0
1288 #define  HS_REG	scr1
1289 #define  HS_PRT	nc_scr1
1290 #define  SS_REG	scr2
1291 #define  SS_PRT	nc_scr2
1292 #define  HF_REG	scr3
1293 #define  HF_PRT	nc_scr3
1294 
1295 /*
1296  *  Last four bytes (host)
1297  */
1298 #define  actualquirks  phys.head.status[0]
1299 #define  host_status   phys.head.status[1]
1300 #define  ssss_status   phys.head.status[2]
1301 #define  host_flags    phys.head.status[3]
1302 
1303 /*
1304  *  Host flags
1305  */
1306 #define HF_IN_PM0	1u
1307 #define HF_IN_PM1	(1u<<1)
1308 #define HF_ACT_PM	(1u<<2)
1309 #define HF_DP_SAVED	(1u<<3)
1310 #define HF_SENSE	(1u<<4)
1311 #define HF_EXT_ERR	(1u<<5)
1312 #define HF_DATA_IN	(1u<<6)
1313 #ifdef SYM_CONF_IARB_SUPPORT
1314 #define HF_HINT_IARB	(1u<<7)
1315 #endif
1316 
1317 /*
1318  *  Global CCB HEADER.
1319  *
1320  *  Due to lack of indirect addressing on earlier NCR chips,
1321  *  this substructure is copied from the ccb to a global
1322  *  address after selection (or reselection) and copied back
1323  *  before disconnect.
1324  *  For SYMBIOS chips that support LOAD/STORE this copy is
1325  *  not needed and thus not performed.
1326  */
1327 
1328 struct sym_ccbh {
1329 	/*
1330 	 *  Start and restart SCRIPTS addresses (must be at 0).
1331 	 */
1332 /*0*/	struct sym_actscr go;
1333 
1334 	/*
1335 	 *  SCRIPTS jump address that deal with data pointers.
1336 	 *  'savep' points to the position in the script responsible
1337 	 *  for the actual transfer of data.
1338 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1339 	 */
1340 	u32	savep;		/* Jump address to saved data pointer	*/
1341 	u32	lastp;		/* SCRIPTS address at end of data	*/
1342 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1343 
1344 	/*
1345 	 *  Status fields.
1346 	 */
1347 	u8	status[4];
1348 };
1349 
1350 /*
1351  *  Data Structure Block
1352  *
1353  *  During execution of a ccb by the script processor, the
1354  *  DSA (data structure address) register points to this
1355  *  substructure of the ccb.
1356  */
1357 struct sym_dsb {
1358 	/*
1359 	 *  CCB header.
1360 	 *  Also assumed at offset 0 of the sym_ccb structure.
1361 	 */
1362 /*0*/	struct sym_ccbh head;
1363 
1364 	/*
1365 	 *  Phase mismatch contexts.
1366 	 *  We need two to handle correctly the SAVED DATA POINTER.
1367 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1368 	 *  for address calculation from SCRIPTS.
1369 	 */
1370 	struct sym_pmc pm0;
1371 	struct sym_pmc pm1;
1372 
1373 	/*
1374 	 *  Table data for Script
1375 	 */
1376 	struct sym_tblsel  select;
1377 	struct sym_tblmove smsg;
1378 	struct sym_tblmove smsg_ext;
1379 	struct sym_tblmove cmd;
1380 	struct sym_tblmove sense;
1381 	struct sym_tblmove wresid;
1382 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1383 };
1384 
1385 /*
1386  *  Our Command Control Block
1387  */
1388 struct sym_ccb {
1389 	/*
1390 	 *  This is the data structure which is pointed by the DSA
1391 	 *  register when it is executed by the script processor.
1392 	 *  It must be the first entry.
1393 	 */
1394 	struct sym_dsb phys;
1395 
1396 	/*
1397 	 *  Pointer to CAM ccb and related stuff.
1398 	 */
1399 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1400 	u8	cdb_buf[16];	/* Copy of CDB			*/
1401 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1402 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1403 	int	data_len;	/* Total data length		*/
1404 	int	segments;	/* Number of SG segments	*/
1405 
1406 	/*
1407 	 *  Miscellaneous status'.
1408 	 */
1409 	u_char	nego_status;	/* Negotiation status		*/
1410 	u_char	xerr_status;	/* Extended error flags		*/
1411 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1412 
1413 	/*
1414 	 *  Message areas.
1415 	 *  We prepare a message to be sent after selection.
1416 	 *  We may use a second one if the command is rescheduled
1417 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1418 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1419 	 *  While negotiating sync or wide transfer,
1420 	 *  a SDTR or WDTR message is appended.
1421 	 */
1422 	u_char	scsi_smsg [12];
1423 	u_char	scsi_smsg2[12];
1424 
1425 	/*
1426 	 *  Auto request sense related fields.
1427 	 */
1428 	u_char	sensecmd[6];	/* Request Sense command	*/
1429 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1430 	u_char	sv_xerr_status;	/* Saved extended status	*/
1431 	int	sv_resid;	/* Saved residual		*/
1432 
1433 	/*
1434 	 *  Map for the DMA of user data.
1435 	 */
1436 	void		*arg;	/* Argument for some callback	*/
1437 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1438 	u_char		dmamapped;
1439 #define SYM_DMA_NONE	0
1440 #define SYM_DMA_READ	1
1441 #define SYM_DMA_WRITE	2
1442 	/*
1443 	 *  Other fields.
1444 	 */
1445 	u32	ccb_ba;		/* BUS address of this CCB	*/
1446 	u_short	tag;		/* Tag for this transfer	*/
1447 				/*  NO_TAG means no tag		*/
1448 	u_char	target;
1449 	u_char	lun;
1450 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1451 	SYM_QUEHEAD
1452 		link_ccbq;	/* Link to free/busy CCB queue	*/
1453 	u32	startp;		/* Initial data pointer		*/
1454 	int	ext_sg;		/* Extreme data pointer, used	*/
1455 	int	ext_ofs;	/*  to calculate the residual.	*/
1456 	u_char	to_abort;	/* Want this IO to be aborted	*/
1457 };
1458 
1459 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1460 
1461 /*
1462  *  Host Control Block
1463  */
1464 struct sym_hcb {
1465 	/*
1466 	 *  Global headers.
1467 	 *  Due to poorness of addressing capabilities, earlier
1468 	 *  chips (810, 815, 825) copy part of the data structures
1469 	 *  (CCB, TCB and LCB) in fixed areas.
1470 	 */
1471 #ifdef	SYM_CONF_GENERIC_SUPPORT
1472 	struct sym_ccbh	ccb_head;
1473 	struct sym_tcbh	tcb_head;
1474 	struct sym_lcbh	lcb_head;
1475 #endif
1476 	/*
1477 	 *  Idle task and invalid task actions and
1478 	 *  their bus addresses.
1479 	 */
1480 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1481 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1482 
1483 	/*
1484 	 *  Dummy lun table to protect us against target
1485 	 *  returning bad lun number on reselection.
1486 	 */
1487 	u32	*badluntbl;	/* Table physical address	*/
1488 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1489 
1490 	/*
1491 	 *  Bus address of this host control block.
1492 	 */
1493 	u32	hcb_ba;
1494 
1495 	/*
1496 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1497 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1498 	 *  field.
1499 	 */
1500 	u32	scr_ram_seg;
1501 
1502 	/*
1503 	 *  Chip and controller indentification.
1504 	 */
1505 	device_t device;
1506 	int	unit;
1507 	char	inst_name[8];
1508 
1509 	/*
1510 	 *  Initial value of some IO register bits.
1511 	 *  These values are assumed to have been set by BIOS, and may
1512 	 *  be used to probe adapter implementation differences.
1513 	 */
1514 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1515 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1516 		sv_stest1;
1517 
1518 	/*
1519 	 *  Actual initial value of IO register bits used by the
1520 	 *  driver. They are loaded at initialisation according to
1521 	 *  features that are to be enabled/disabled.
1522 	 */
1523 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1524 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1525 
1526 	/*
1527 	 *  Target data.
1528 	 */
1529 #ifdef __amd64__
1530 	struct sym_tcb	*target;
1531 #else
1532 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1533 #endif
1534 
1535 	/*
1536 	 *  Target control block bus address array used by the SCRIPT
1537 	 *  on reselection.
1538 	 */
1539 	u32		*targtbl;
1540 	u32		targtbl_ba;
1541 
1542 	/*
1543 	 *  CAM SIM information for this instance.
1544 	 */
1545 	struct		cam_sim  *sim;
1546 	struct		cam_path *path;
1547 
1548 	/*
1549 	 *  Allocated hardware resources.
1550 	 */
1551 	struct resource	*irq_res;
1552 	struct resource	*io_res;
1553 	struct resource	*mmio_res;
1554 	struct resource	*ram_res;
1555 	int		ram_id;
1556 	void *intr;
1557 
1558 	/*
1559 	 *  Bus stuff.
1560 	 *
1561 	 *  My understanding of PCI is that all agents must share the
1562 	 *  same addressing range and model.
1563 	 *  But some hardware architecture guys provide complex and
1564 	 *  brain-deaded stuff that makes shit.
1565 	 *  This driver only support PCI compliant implementations and
1566 	 *  deals with part of the BUS stuff complexity only to fit O/S
1567 	 *  requirements.
1568 	 */
1569 	bus_space_handle_t	io_bsh;
1570 	bus_space_tag_t		io_tag;
1571 	bus_space_handle_t	mmio_bsh;
1572 	bus_space_tag_t		mmio_tag;
1573 	bus_space_handle_t	ram_bsh;
1574 	bus_space_tag_t		ram_tag;
1575 
1576 	/*
1577 	 *  DMA stuff.
1578 	 */
1579 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1580 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1581 	/*
1582 	 *  Virtual and physical bus addresses of the chip.
1583 	 */
1584 	vm_offset_t	mmio_va;	/* MMIO kernel virtual address	*/
1585 	vm_offset_t	mmio_pa;	/* MMIO CPU physical address	*/
1586 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1587 	int		mmio_ws;	/* MMIO Window size		*/
1588 
1589 	vm_offset_t	ram_va;		/* RAM kernel virtual address	*/
1590 	vm_offset_t	ram_pa;		/* RAM CPU physical address	*/
1591 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1592 	int		ram_ws;		/* RAM window size		*/
1593 	u32		io_port;	/* IO port address		*/
1594 
1595 	/*
1596 	 *  SCRIPTS virtual and physical bus addresses.
1597 	 *  'script'  is loaded in the on-chip RAM if present.
1598 	 *  'scripth' stays in main memory for all chips except the
1599 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1600 	 */
1601 	u_char		*scripta0;	/* Copies of script and scripth	*/
1602 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1603 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1604 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1605 	vm_offset_t	scriptb0_ba;
1606 	u_short		scripta_sz;	/* Actual size of script A	*/
1607 	u_short		scriptb_sz;	/* Actual size of script B	*/
1608 
1609 	/*
1610 	 *  Bus addresses, setup and patch methods for
1611 	 *  the selected firmware.
1612 	 */
1613 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1614 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1615 	void		(*fw_setup)(hcb_p np, struct sym_fw *fw);
1616 	void		(*fw_patch)(hcb_p np);
1617 	char		*fw_name;
1618 
1619 	/*
1620 	 *  General controller parameters and configuration.
1621 	 */
1622 	u_short	device_id;	/* PCI device id		*/
1623 	u_char	revision_id;	/* PCI device revision id	*/
1624 	u_int	features;	/* Chip features map		*/
1625 	u_char	myaddr;		/* SCSI id of the adapter	*/
1626 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1627 	u_char	maxwide;	/* Maximum transfer width	*/
1628 	u_char	minsync;	/* Min sync period factor (ST)	*/
1629 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1630 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1631 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1632 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1633 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1634 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1635 	u_char	clock_divn;	/* Number of clock divisors	*/
1636 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1637 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1638 	/*
1639 	 *  Start queue management.
1640 	 *  It is filled up by the host processor and accessed by the
1641 	 *  SCRIPTS processor in order to start SCSI commands.
1642 	 */
1643 	volatile		/* Prevent code optimizations	*/
1644 	u32	*squeue;	/* Start queue virtual address	*/
1645 	u32	squeue_ba;	/* Start queue BUS address	*/
1646 	u_short	squeueput;	/* Next free slot of the queue	*/
1647 	u_short	actccbs;	/* Number of allocated CCBs	*/
1648 
1649 	/*
1650 	 *  Command completion queue.
1651 	 *  It is the same size as the start queue to avoid overflow.
1652 	 */
1653 	u_short	dqueueget;	/* Next position to scan	*/
1654 	volatile		/* Prevent code optimizations	*/
1655 	u32	*dqueue;	/* Completion (done) queue	*/
1656 	u32	dqueue_ba;	/* Done queue BUS address	*/
1657 
1658 	/*
1659 	 *  Miscellaneous buffers accessed by the scripts-processor.
1660 	 *  They shall be DWORD aligned, because they may be read or
1661 	 *  written with a script command.
1662 	 */
1663 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1664 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1665 	u32		lastmsg;	/* Last SCSI message sent	*/
1666 	u_char		scratch;	/* Scratch for SCSI receive	*/
1667 
1668 	/*
1669 	 *  Miscellaneous configuration and status parameters.
1670 	 */
1671 	u_char		usrflags;	/* Miscellaneous user flags	*/
1672 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1673 	u_char		verbose;	/* Verbosity for this controller*/
1674 	u32		cache;		/* Used for cache test at init.	*/
1675 
1676 	/*
1677 	 *  CCB lists and queue.
1678 	 */
1679 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1680 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1681 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1682 
1683 	/*
1684 	 *  During error handling and/or recovery,
1685 	 *  active CCBs that are to be completed with
1686 	 *  error or requeued are moved from the busy_ccbq
1687 	 *  to the comp_ccbq prior to completion.
1688 	 */
1689 	SYM_QUEHEAD	comp_ccbq;
1690 
1691 	/*
1692 	 *  CAM CCB pending queue.
1693 	 */
1694 	SYM_QUEHEAD	cam_ccbq;
1695 
1696 	/*
1697 	 *  IMMEDIATE ARBITRATION (IARB) control.
1698 	 *
1699 	 *  We keep track in 'last_cp' of the last CCB that has been
1700 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1701 	 *  this CCB completes. If last_cp is not zero at the moment
1702 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1703 	 *  used by the SCRIPTS as a hint for setting IARB.
1704 	 *  We donnot set more than 'iarb_max' consecutive hints for
1705 	 *  IARB in order to leave devices a chance to reselect.
1706 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1707 	 */
1708 #ifdef SYM_CONF_IARB_SUPPORT
1709 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1710 	u_short		iarb_count;	/* Actual # of these hints	*/
1711 	ccb_p		last_cp;
1712 #endif
1713 
1714 	/*
1715 	 *  Command abort handling.
1716 	 *  We need to synchronize tightly with the SCRIPTS
1717 	 *  processor in order to handle things correctly.
1718 	 */
1719 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1720 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1721 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1722 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1723 };
1724 
1725 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1726 
1727 /*
1728  *  Return the name of the controller.
1729  */
1730 static __inline char *sym_name(hcb_p np)
1731 {
1732 	return np->inst_name;
1733 }
1734 
1735 /*--------------------------------------------------------------------------*/
1736 /*------------------------------ FIRMWARES ---------------------------------*/
1737 /*--------------------------------------------------------------------------*/
1738 
1739 /*
1740  *  This stuff will be moved to a separate source file when
1741  *  the driver will be broken into several source modules.
1742  */
1743 
1744 /*
1745  *  Macros used for all firmwares.
1746  */
1747 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1748 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1749 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1750 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1751 
1752 
1753 #ifdef	SYM_CONF_GENERIC_SUPPORT
1754 /*
1755  *  Allocate firmware #1 script area.
1756  */
1757 #define	SYM_FWA_SCR		sym_fw1a_scr
1758 #define	SYM_FWB_SCR		sym_fw1b_scr
1759 #include <dev/sym/sym_fw1.h>
1760 struct sym_fwa_ofs sym_fw1a_ofs = {
1761 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1762 };
1763 struct sym_fwb_ofs sym_fw1b_ofs = {
1764 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1765 };
1766 #undef	SYM_FWA_SCR
1767 #undef	SYM_FWB_SCR
1768 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1769 
1770 /*
1771  *  Allocate firmware #2 script area.
1772  */
1773 #define	SYM_FWA_SCR		sym_fw2a_scr
1774 #define	SYM_FWB_SCR		sym_fw2b_scr
1775 #include <dev/sym/sym_fw2.h>
1776 struct sym_fwa_ofs sym_fw2a_ofs = {
1777 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1778 };
1779 struct sym_fwb_ofs sym_fw2b_ofs = {
1780 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1781 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1782 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1783 };
1784 #undef	SYM_FWA_SCR
1785 #undef	SYM_FWB_SCR
1786 
1787 #undef	SYM_GEN_A
1788 #undef	SYM_GEN_B
1789 #undef	PADDR_A
1790 #undef	PADDR_B
1791 
1792 #ifdef	SYM_CONF_GENERIC_SUPPORT
1793 /*
1794  *  Patch routine for firmware #1.
1795  */
1796 static void
1797 sym_fw1_patch(hcb_p np)
1798 {
1799 	struct sym_fw1a_scr *scripta0;
1800 	struct sym_fw1b_scr *scriptb0;
1801 
1802 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1803 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1804 
1805 	/*
1806 	 *  Remove LED support if not needed.
1807 	 */
1808 	if (!(np->features & FE_LED0)) {
1809 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1810 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1811 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1812 	}
1813 
1814 #ifdef SYM_CONF_IARB_SUPPORT
1815 	/*
1816 	 *    If user does not want to use IMMEDIATE ARBITRATION
1817 	 *    when we are reselected while attempting to arbitrate,
1818 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1819 	 */
1820 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1821 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1822 #endif
1823 	/*
1824 	 *  Patch some data in SCRIPTS.
1825 	 *  - start and done queue initial bus address.
1826 	 *  - target bus address table bus address.
1827 	 */
1828 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1829 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1830 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1831 }
1832 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1833 
1834 /*
1835  *  Patch routine for firmware #2.
1836  */
1837 static void
1838 sym_fw2_patch(hcb_p np)
1839 {
1840 	struct sym_fw2a_scr *scripta0;
1841 	struct sym_fw2b_scr *scriptb0;
1842 
1843 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1844 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1845 
1846 	/*
1847 	 *  Remove LED support if not needed.
1848 	 */
1849 	if (!(np->features & FE_LED0)) {
1850 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1851 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1852 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1853 	}
1854 
1855 #ifdef SYM_CONF_IARB_SUPPORT
1856 	/*
1857 	 *    If user does not want to use IMMEDIATE ARBITRATION
1858 	 *    when we are reselected while attempting to arbitrate,
1859 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1860 	 */
1861 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1862 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1863 #endif
1864 	/*
1865 	 *  Patch some variable in SCRIPTS.
1866 	 *  - start and done queue initial bus address.
1867 	 *  - target bus address table bus address.
1868 	 */
1869 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1870 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1871 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1872 
1873 	/*
1874 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1875 	 */
1876 	if (!(np->features & FE_C10)) {
1877 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1878 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1879 	}
1880 
1881 	/*
1882 	 *  Remove a couple of work-arounds specific to C1010 if
1883 	 *  they are not desirable. See `sym_fw2.h' for more details.
1884 	 */
1885 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1886 	      np->revision_id < 0x1 &&
1887 	      np->pciclk_khz < 60000)) {
1888 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1889 		scripta0->datao_phase[1] = cpu_to_scr(0);
1890 	}
1891 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1892 	      /* np->revision_id < 0xff */ 1)) {
1893 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1894 		scripta0->sel_done[1] = cpu_to_scr(0);
1895 	}
1896 
1897 	/*
1898 	 *  Patch some other variables in SCRIPTS.
1899 	 *  These ones are loaded by the SCRIPTS processor.
1900 	 */
1901 	scriptb0->pm0_data_addr[0] =
1902 		cpu_to_scr(np->scripta_ba +
1903 			   offsetof(struct sym_fw2a_scr, pm0_data));
1904 	scriptb0->pm1_data_addr[0] =
1905 		cpu_to_scr(np->scripta_ba +
1906 			   offsetof(struct sym_fw2a_scr, pm1_data));
1907 }
1908 
1909 /*
1910  *  Fill the data area in scripts.
1911  *  To be done for all firmwares.
1912  */
1913 static void
1914 sym_fw_fill_data (u32 *in, u32 *out)
1915 {
1916 	int	i;
1917 
1918 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1919 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1920 		*in++  = offsetof (struct sym_dsb, data[i]);
1921 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1922 		*out++ = offsetof (struct sym_dsb, data[i]);
1923 	}
1924 }
1925 
1926 /*
1927  *  Setup useful script bus addresses.
1928  *  To be done for all firmwares.
1929  */
1930 static void
1931 sym_fw_setup_bus_addresses(hcb_p np, struct sym_fw *fw)
1932 {
1933 	u32 *pa;
1934 	u_short *po;
1935 	int i;
1936 
1937 	/*
1938 	 *  Build the bus address table for script A
1939 	 *  from the script A offset table.
1940 	 */
1941 	po = (u_short *) fw->a_ofs;
1942 	pa = (u32 *) &np->fwa_bas;
1943 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1944 		pa[i] = np->scripta_ba + po[i];
1945 
1946 	/*
1947 	 *  Same for script B.
1948 	 */
1949 	po = (u_short *) fw->b_ofs;
1950 	pa = (u32 *) &np->fwb_bas;
1951 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1952 		pa[i] = np->scriptb_ba + po[i];
1953 }
1954 
1955 #ifdef	SYM_CONF_GENERIC_SUPPORT
1956 /*
1957  *  Setup routine for firmware #1.
1958  */
1959 static void
1960 sym_fw1_setup(hcb_p np, struct sym_fw *fw)
1961 {
1962 	struct sym_fw1a_scr *scripta0;
1963 	struct sym_fw1b_scr *scriptb0;
1964 
1965 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1966 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1967 
1968 	/*
1969 	 *  Fill variable parts in scripts.
1970 	 */
1971 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1972 
1973 	/*
1974 	 *  Setup bus addresses used from the C code..
1975 	 */
1976 	sym_fw_setup_bus_addresses(np, fw);
1977 }
1978 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1979 
1980 /*
1981  *  Setup routine for firmware #2.
1982  */
1983 static void
1984 sym_fw2_setup(hcb_p np, struct sym_fw *fw)
1985 {
1986 	struct sym_fw2a_scr *scripta0;
1987 	struct sym_fw2b_scr *scriptb0;
1988 
1989 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1990 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1991 
1992 	/*
1993 	 *  Fill variable parts in scripts.
1994 	 */
1995 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1996 
1997 	/*
1998 	 *  Setup bus addresses used from the C code..
1999 	 */
2000 	sym_fw_setup_bus_addresses(np, fw);
2001 }
2002 
2003 /*
2004  *  Allocate firmware descriptors.
2005  */
2006 #ifdef	SYM_CONF_GENERIC_SUPPORT
2007 static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2008 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2009 static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2010 
2011 /*
2012  *  Find the most appropriate firmware for a chip.
2013  */
2014 static struct sym_fw *
2015 sym_find_firmware(struct sym_pci_chip *chip)
2016 {
2017 	if (chip->features & FE_LDSTR)
2018 		return &sym_fw2;
2019 #ifdef	SYM_CONF_GENERIC_SUPPORT
2020 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2021 		return &sym_fw1;
2022 #endif
2023 	else
2024 		return 0;
2025 }
2026 
2027 /*
2028  *  Bind a script to physical addresses.
2029  */
2030 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2031 {
2032 	u32 opcode, new, old, tmp1, tmp2;
2033 	u32 *end, *cur;
2034 	int relocs;
2035 
2036 	cur = start;
2037 	end = start + len/4;
2038 
2039 	while (cur < end) {
2040 
2041 		opcode = *cur;
2042 
2043 		/*
2044 		 *  If we forget to change the length
2045 		 *  in scripts, a field will be
2046 		 *  padded with 0. This is an illegal
2047 		 *  command.
2048 		 */
2049 		if (opcode == 0) {
2050 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2051 				sym_name(np), (int) (cur-start));
2052 			MDELAY (10000);
2053 			++cur;
2054 			continue;
2055 		};
2056 
2057 		/*
2058 		 *  We use the bogus value 0xf00ff00f ;-)
2059 		 *  to reserve data area in SCRIPTS.
2060 		 */
2061 		if (opcode == SCR_DATA_ZERO) {
2062 			*cur++ = 0;
2063 			continue;
2064 		}
2065 
2066 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2067 			printf ("%d:  <%x>\n", (int) (cur-start),
2068 				(unsigned)opcode);
2069 
2070 		/*
2071 		 *  We don't have to decode ALL commands
2072 		 */
2073 		switch (opcode >> 28) {
2074 		case 0xf:
2075 			/*
2076 			 *  LOAD / STORE DSA relative, don't relocate.
2077 			 */
2078 			relocs = 0;
2079 			break;
2080 		case 0xe:
2081 			/*
2082 			 *  LOAD / STORE absolute.
2083 			 */
2084 			relocs = 1;
2085 			break;
2086 		case 0xc:
2087 			/*
2088 			 *  COPY has TWO arguments.
2089 			 */
2090 			relocs = 2;
2091 			tmp1 = cur[1];
2092 			tmp2 = cur[2];
2093 			if ((tmp1 ^ tmp2) & 3) {
2094 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2095 					sym_name(np), (int) (cur-start));
2096 				MDELAY (10000);
2097 			}
2098 			/*
2099 			 *  If PREFETCH feature not enabled, remove
2100 			 *  the NO FLUSH bit if present.
2101 			 */
2102 			if ((opcode & SCR_NO_FLUSH) &&
2103 			    !(np->features & FE_PFEN)) {
2104 				opcode = (opcode & ~SCR_NO_FLUSH);
2105 			}
2106 			break;
2107 		case 0x0:
2108 			/*
2109 			 *  MOVE/CHMOV (absolute address)
2110 			 */
2111 			if (!(np->features & FE_WIDE))
2112 				opcode = (opcode | OPC_MOVE);
2113 			relocs = 1;
2114 			break;
2115 		case 0x1:
2116 			/*
2117 			 *  MOVE/CHMOV (table indirect)
2118 			 */
2119 			if (!(np->features & FE_WIDE))
2120 				opcode = (opcode | OPC_MOVE);
2121 			relocs = 0;
2122 			break;
2123 		case 0x8:
2124 			/*
2125 			 *  JUMP / CALL
2126 			 *  dont't relocate if relative :-)
2127 			 */
2128 			if (opcode & 0x00800000)
2129 				relocs = 0;
2130 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2131 				relocs = 2;
2132 			else
2133 				relocs = 1;
2134 			break;
2135 		case 0x4:
2136 		case 0x5:
2137 		case 0x6:
2138 		case 0x7:
2139 			relocs = 1;
2140 			break;
2141 		default:
2142 			relocs = 0;
2143 			break;
2144 		};
2145 
2146 		/*
2147 		 *  Scriptify:) the opcode.
2148 		 */
2149 		*cur++ = cpu_to_scr(opcode);
2150 
2151 		/*
2152 		 *  If no relocation, assume 1 argument
2153 		 *  and just scriptize:) it.
2154 		 */
2155 		if (!relocs) {
2156 			*cur = cpu_to_scr(*cur);
2157 			++cur;
2158 			continue;
2159 		}
2160 
2161 		/*
2162 		 *  Otherwise performs all needed relocations.
2163 		 */
2164 		while (relocs--) {
2165 			old = *cur;
2166 
2167 			switch (old & RELOC_MASK) {
2168 			case RELOC_REGISTER:
2169 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2170 				break;
2171 			case RELOC_LABEL_A:
2172 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2173 				break;
2174 			case RELOC_LABEL_B:
2175 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2176 				break;
2177 			case RELOC_SOFTC:
2178 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2179 				break;
2180 			case 0:
2181 				/*
2182 				 *  Don't relocate a 0 address.
2183 				 *  They are mostly used for patched or
2184 				 *  script self-modified areas.
2185 				 */
2186 				if (old == 0) {
2187 					new = old;
2188 					break;
2189 				}
2190 				/* fall through */
2191 			default:
2192 				new = 0;
2193 				panic("sym_fw_bind_script: "
2194 				      "weird relocation %x\n", old);
2195 				break;
2196 			}
2197 
2198 			*cur++ = cpu_to_scr(new);
2199 		}
2200 	};
2201 }
2202 
2203 /*---------------------------------------------------------------------------*/
2204 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2205 /*---------------------------------------------------------------------------*/
2206 
2207 /*
2208  *  Function prototypes.
2209  */
2210 static void sym_save_initial_setting (hcb_p np);
2211 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2212 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2213 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2214 static void sym_chip_reset (hcb_p np);
2215 static void sym_soft_reset (hcb_p np);
2216 static void sym_start_reset (hcb_p np);
2217 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2218 static int  sym_wakeup_done (hcb_p np);
2219 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2220 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2221 static void sym_init (hcb_p np, int reason);
2222 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2223 		        u_char *fakp);
2224 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2225 			 u_char div, u_char fak);
2226 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2227 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2228 			 u_char per, u_char wide, u_char div, u_char fak);
2229 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2230 			 u_char per, u_char wide, u_char div, u_char fak);
2231 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2232 static void sym_intr (void *arg);
2233 static void sym_poll (struct cam_sim *sim);
2234 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2235 static void sym_int_sto (hcb_p np);
2236 static void sym_int_udc (hcb_p np);
2237 static void sym_int_sbmc (hcb_p np);
2238 static void sym_int_par (hcb_p np, u_short sist);
2239 static void sym_int_ma (hcb_p np);
2240 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2241 				    int task);
2242 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2243 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2244 static void sym_sir_task_recovery (hcb_p np, int num);
2245 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2246 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2247 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2248 static int  sym_show_msg (u_char * msg);
2249 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2250 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2251 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2252 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2253 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2254 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2255 static void sym_int_sir (hcb_p np);
2256 static void sym_free_ccb (hcb_p np, ccb_p cp);
2257 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2258 static ccb_p sym_alloc_ccb (hcb_p np);
2259 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2260 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2261 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2262 static int  sym_snooptest (hcb_p np);
2263 static void sym_selectclock(hcb_p np, u_char scntl3);
2264 static void sym_getclock (hcb_p np, int mult);
2265 static int  sym_getpciclock (hcb_p np);
2266 static void sym_complete_ok (hcb_p np, ccb_p cp);
2267 static void sym_complete_error (hcb_p np, ccb_p cp);
2268 static void sym_timeout (void *arg);
2269 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2270 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2271 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2272 static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
2273 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2274 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2275 				      ccb_p cp);
2276 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2277 					bus_dma_segment_t *psegs, int nsegs);
2278 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2279 				    bus_dma_segment_t *psegs, int nsegs);
2280 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2281 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2282 			      struct ccb_trans_settings *cts);
2283 static void sym_update_dflags(hcb_p np, u_char *flags,
2284 			      struct ccb_trans_settings *cts);
2285 
2286 static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2287 static int  sym_pci_probe (device_t dev);
2288 static int  sym_pci_attach (device_t dev);
2289 
2290 static void sym_pci_free (hcb_p np);
2291 static int  sym_cam_attach (hcb_p np);
2292 static void sym_cam_free (hcb_p np);
2293 
2294 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2295 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2296 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2297 
2298 /*
2299  *  Print something which allows to retrieve the controler type,
2300  *  unit, target, lun concerned by a kernel message.
2301  */
2302 static void PRINT_TARGET (hcb_p np, int target)
2303 {
2304 	printf ("%s:%d:", sym_name(np), target);
2305 }
2306 
2307 static void PRINT_LUN(hcb_p np, int target, int lun)
2308 {
2309 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2310 }
2311 
2312 static void PRINT_ADDR (ccb_p cp)
2313 {
2314 	if (cp && cp->cam_ccb)
2315 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2316 }
2317 
2318 /*
2319  *  Take into account this ccb in the freeze count.
2320  */
2321 static void sym_freeze_cam_ccb(union ccb *ccb)
2322 {
2323 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2324 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2325 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2326 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2327 		}
2328 	}
2329 }
2330 
2331 /*
2332  *  Set the status field of a CAM CCB.
2333  */
2334 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2335 {
2336 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2337 	ccb->ccb_h.status |= status;
2338 }
2339 
2340 /*
2341  *  Get the status field of a CAM CCB.
2342  */
2343 static __inline int sym_get_cam_status(union ccb *ccb)
2344 {
2345 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2346 }
2347 
2348 /*
2349  *  Enqueue a CAM CCB.
2350  */
2351 static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
2352 {
2353 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2354 	ccb->ccb_h.status = CAM_REQ_INPROG;
2355 
2356 	ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb,
2357 				       ccb->ccb_h.timeout*hz/1000);
2358 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2359 	ccb->ccb_h.sym_hcb_ptr = np;
2360 
2361 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2362 }
2363 
2364 /*
2365  *  Complete a pending CAM CCB.
2366  */
2367 static void sym_xpt_done(hcb_p np, union ccb *ccb)
2368 {
2369 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2370 		untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch);
2371 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2372 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2373 		ccb->ccb_h.sym_hcb_ptr = 0;
2374 	}
2375 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2376 		sym_freeze_cam_ccb(ccb);
2377 	xpt_done(ccb);
2378 }
2379 
2380 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2381 {
2382 	sym_set_cam_status(ccb, cam_status);
2383 	sym_xpt_done(np, ccb);
2384 }
2385 
2386 /*
2387  *  SYMBIOS chip clock divisor table.
2388  *
2389  *  Divisors are multiplied by 10,000,000 in order to make
2390  *  calculations more simple.
2391  */
2392 #define _5M 5000000
2393 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2394 
2395 /*
2396  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2397  *  128 transfers. All chips support at least 16 transfers
2398  *  bursts. The 825A, 875 and 895 chips support bursts of up
2399  *  to 128 transfers and the 895A and 896 support bursts of up
2400  *  to 64 transfers. All other chips support up to 16
2401  *  transfers bursts.
2402  *
2403  *  For PCI 32 bit data transfers each transfer is a DWORD.
2404  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2405  *
2406  *  We use log base 2 (burst length) as internal code, with
2407  *  value 0 meaning "burst disabled".
2408  */
2409 
2410 /*
2411  *  Burst length from burst code.
2412  */
2413 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2414 
2415 /*
2416  *  Burst code from io register bits.
2417  */
2418 #define burst_code(dmode, ctest4, ctest5) \
2419 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2420 
2421 /*
2422  *  Set initial io register bits from burst code.
2423  */
2424 static __inline void sym_init_burst(hcb_p np, u_char bc)
2425 {
2426 	np->rv_ctest4	&= ~0x80;
2427 	np->rv_dmode	&= ~(0x3 << 6);
2428 	np->rv_ctest5	&= ~0x4;
2429 
2430 	if (!bc) {
2431 		np->rv_ctest4	|= 0x80;
2432 	}
2433 	else {
2434 		--bc;
2435 		np->rv_dmode	|= ((bc & 0x3) << 6);
2436 		np->rv_ctest5	|= (bc & 0x4);
2437 	}
2438 }
2439 
2440 
2441 /*
2442  * Print out the list of targets that have some flag disabled by user.
2443  */
2444 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2445 {
2446 	int cnt;
2447 	int i;
2448 
2449 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2450 		if (i == np->myaddr)
2451 			continue;
2452 		if (np->target[i].usrflags & mask) {
2453 			if (!cnt++)
2454 				printf("%s: %s disabled for targets",
2455 					sym_name(np), msg);
2456 			printf(" %d", i);
2457 		}
2458 	}
2459 	if (cnt)
2460 		printf(".\n");
2461 }
2462 
2463 /*
2464  *  Save initial settings of some IO registers.
2465  *  Assumed to have been set by BIOS.
2466  *  We cannot reset the chip prior to reading the
2467  *  IO registers, since informations will be lost.
2468  *  Since the SCRIPTS processor may be running, this
2469  *  is not safe on paper, but it seems to work quite
2470  *  well. :)
2471  */
2472 static void sym_save_initial_setting (hcb_p np)
2473 {
2474 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2475 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2476 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2477 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2478 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2479 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2480 	np->sv_gpcntl	= INB(nc_gpcntl);
2481 	np->sv_stest1	= INB(nc_stest1);
2482 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2483 	np->sv_stest4	= INB(nc_stest4);
2484 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2485 		np->sv_scntl4	= INB(nc_scntl4);
2486 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2487 	}
2488 	else
2489 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2490 }
2491 
2492 /*
2493  *  Prepare io register values used by sym_init() according
2494  *  to selected and supported features.
2495  */
2496 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2497 {
2498 	u_char	burst_max;
2499 	u32	period;
2500 	int i;
2501 
2502 	/*
2503 	 *  Wide ?
2504 	 */
2505 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2506 
2507 	/*
2508 	 *  Get the frequency of the chip's clock.
2509 	 */
2510 	if	(np->features & FE_QUAD)
2511 		np->multiplier	= 4;
2512 	else if	(np->features & FE_DBLR)
2513 		np->multiplier	= 2;
2514 	else
2515 		np->multiplier	= 1;
2516 
2517 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2518 	np->clock_khz	*= np->multiplier;
2519 
2520 	if (np->clock_khz != 40000)
2521 		sym_getclock(np, np->multiplier);
2522 
2523 	/*
2524 	 * Divisor to be used for async (timer pre-scaler).
2525 	 */
2526 	i = np->clock_divn - 1;
2527 	while (--i >= 0) {
2528 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2529 			++i;
2530 			break;
2531 		}
2532 	}
2533 	np->rv_scntl3 = i+1;
2534 
2535 	/*
2536 	 * The C1010 uses hardwired divisors for async.
2537 	 * So, we just throw away, the async. divisor.:-)
2538 	 */
2539 	if (np->features & FE_C10)
2540 		np->rv_scntl3 = 0;
2541 
2542 	/*
2543 	 * Minimum synchronous period factor supported by the chip.
2544 	 * Btw, 'period' is in tenths of nanoseconds.
2545 	 */
2546 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2547 	if	(period <= 250)		np->minsync = 10;
2548 	else if	(period <= 303)		np->minsync = 11;
2549 	else if	(period <= 500)		np->minsync = 12;
2550 	else				np->minsync = (period + 40 - 1) / 40;
2551 
2552 	/*
2553 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2554 	 */
2555 	if	(np->minsync < 25 &&
2556 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2557 		np->minsync = 25;
2558 	else if	(np->minsync < 12 &&
2559 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2560 		np->minsync = 12;
2561 
2562 	/*
2563 	 * Maximum synchronous period factor supported by the chip.
2564 	 */
2565 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2566 	np->maxsync = period > 2540 ? 254 : period / 10;
2567 
2568 	/*
2569 	 * If chip is a C1010, guess the sync limits in DT mode.
2570 	 */
2571 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2572 		if (np->clock_khz == 160000) {
2573 			np->minsync_dt = 9;
2574 			np->maxsync_dt = 50;
2575 			np->maxoffs_dt = 62;
2576 		}
2577 	}
2578 
2579 	/*
2580 	 *  64 bit addressing  (895A/896/1010) ?
2581 	 */
2582 	if (np->features & FE_DAC)
2583 #ifdef __LP64__
2584 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2585 #else
2586 		np->rv_ccntl1	|= (DDAC);
2587 #endif
2588 
2589 	/*
2590 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2591   	 */
2592 	if (np->features & FE_NOPM)
2593 		np->rv_ccntl0	|= (ENPMJ);
2594 
2595  	/*
2596 	 *  C1010 Errata.
2597 	 *  In dual channel mode, contention occurs if internal cycles
2598 	 *  are used. Disable internal cycles.
2599 	 */
2600 	if (np->device_id == PCI_ID_LSI53C1010 &&
2601 	    np->revision_id < 0x2)
2602 		np->rv_ccntl0	|=  DILS;
2603 
2604 	/*
2605 	 *  Select burst length (dwords)
2606 	 */
2607 	burst_max	= SYM_SETUP_BURST_ORDER;
2608 	if (burst_max == 255)
2609 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2610 				       np->sv_ctest5);
2611 	if (burst_max > 7)
2612 		burst_max = 7;
2613 	if (burst_max > np->maxburst)
2614 		burst_max = np->maxburst;
2615 
2616 	/*
2617 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2618 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2619 	 *  based transactions on LOAD/STORE instructions. So we have
2620 	 *  to prevent these chips from using such PCI transactions in
2621 	 *  this driver. The generic ncr driver that does not use
2622 	 *  LOAD/STORE instructions does not need this work-around.
2623 	 */
2624 	if ((np->device_id == PCI_ID_SYM53C810 &&
2625 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2626 	    (np->device_id == PCI_ID_SYM53C860 &&
2627 	     np->revision_id <= 0x1))
2628 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2629 
2630 	/*
2631 	 *  Select all supported special features.
2632 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2633 	 *  does not help, but burst op fetch (BOF) does.
2634 	 *  Disabling PFEN makes sure BOF will be used.
2635 	 */
2636 	if (np->features & FE_ERL)
2637 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2638 	if (np->features & FE_BOF)
2639 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2640 	if (np->features & FE_ERMP)
2641 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2642 #if 1
2643 	if ((np->features & FE_PFEN) && !np->ram_ba)
2644 #else
2645 	if (np->features & FE_PFEN)
2646 #endif
2647 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2648 	if (np->features & FE_CLSE)
2649 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2650 	if (np->features & FE_WRIE)
2651 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2652 	if (np->features & FE_DFS)
2653 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2654 
2655 	/*
2656 	 *  Select some other
2657 	 */
2658 	if (SYM_SETUP_PCI_PARITY)
2659 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2660 	if (SYM_SETUP_SCSI_PARITY)
2661 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2662 
2663 	/*
2664 	 *  Get parity checking, host ID and verbose mode from NVRAM
2665 	 */
2666 	np->myaddr = 255;
2667 	sym_nvram_setup_host (np, nvram);
2668 
2669 	/*
2670 	 *  Get SCSI addr of host adapter (set by bios?).
2671 	 */
2672 	if (np->myaddr == 255) {
2673 		np->myaddr = INB(nc_scid) & 0x07;
2674 		if (!np->myaddr)
2675 			np->myaddr = SYM_SETUP_HOST_ID;
2676 	}
2677 
2678 	/*
2679 	 *  Prepare initial io register bits for burst length
2680 	 */
2681 	sym_init_burst(np, burst_max);
2682 
2683 	/*
2684 	 *  Set SCSI BUS mode.
2685 	 *  - LVD capable chips (895/895A/896/1010) report the
2686 	 *    current BUS mode through the STEST4 IO register.
2687 	 *  - For previous generation chips (825/825A/875),
2688 	 *    user has to tell us how to check against HVD,
2689 	 *    since a 100% safe algorithm is not possible.
2690 	 */
2691 	np->scsi_mode = SMODE_SE;
2692 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2693 		np->scsi_mode = (np->sv_stest4 & SMODE);
2694 	else if	(np->features & FE_DIFF) {
2695 		if (SYM_SETUP_SCSI_DIFF == 1) {
2696 			if (np->sv_scntl3) {
2697 				if (np->sv_stest2 & 0x20)
2698 					np->scsi_mode = SMODE_HVD;
2699 			}
2700 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2701 				if (!(INB(nc_gpreg) & 0x08))
2702 					np->scsi_mode = SMODE_HVD;
2703 			}
2704 		}
2705 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2706 			np->scsi_mode = SMODE_HVD;
2707 	}
2708 	if (np->scsi_mode == SMODE_HVD)
2709 		np->rv_stest2 |= 0x20;
2710 
2711 	/*
2712 	 *  Set LED support from SCRIPTS.
2713 	 *  Ignore this feature for boards known to use a
2714 	 *  specific GPIO wiring and for the 895A, 896
2715 	 *  and 1010 that drive the LED directly.
2716 	 */
2717 	if ((SYM_SETUP_SCSI_LED ||
2718 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2719 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2720 	       np->device_id == PCI_ID_SYM53C895))) &&
2721 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2722 		np->features |= FE_LED0;
2723 
2724 	/*
2725 	 *  Set irq mode.
2726 	 */
2727 	switch(SYM_SETUP_IRQ_MODE & 3) {
2728 	case 2:
2729 		np->rv_dcntl	|= IRQM;
2730 		break;
2731 	case 1:
2732 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2733 		break;
2734 	default:
2735 		break;
2736 	}
2737 
2738 	/*
2739 	 *  Configure targets according to driver setup.
2740 	 *  If NVRAM present get targets setup from NVRAM.
2741 	 */
2742 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2743 		tcb_p tp = &np->target[i];
2744 
2745 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2746 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2747 		tp->tinfo.user.period = np->minsync;
2748 		tp->tinfo.user.offset = np->maxoffs;
2749 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2750 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2751 		tp->usrtags = SYM_SETUP_MAX_TAG;
2752 
2753 		sym_nvram_setup_target (np, i, nvram);
2754 
2755 		/*
2756 		 *  For now, guess PPR/DT support from the period
2757 		 *  and BUS width.
2758 		 */
2759 		if (np->features & FE_ULTRA3) {
2760 			if (tp->tinfo.user.period <= 9	&&
2761 			    tp->tinfo.user.width == BUS_16_BIT) {
2762 				tp->tinfo.user.options |= PPR_OPT_DT;
2763 				tp->tinfo.user.offset   = np->maxoffs_dt;
2764 				tp->tinfo.user.spi_version = 3;
2765 			}
2766 		}
2767 
2768 		if (!tp->usrtags)
2769 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2770 	}
2771 
2772 	/*
2773 	 *  Let user know about the settings.
2774 	 */
2775 	i = nvram->type;
2776 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2777 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2778 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2779 		np->myaddr,
2780 		(np->features & FE_ULTRA3) ? 80 :
2781 		(np->features & FE_ULTRA2) ? 40 :
2782 		(np->features & FE_ULTRA)  ? 20 : 10,
2783 		sym_scsi_bus_mode(np->scsi_mode),
2784 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2785 	/*
2786 	 *  Tell him more on demand.
2787 	 */
2788 	if (sym_verbose) {
2789 		printf("%s: %s IRQ line driver%s\n",
2790 			sym_name(np),
2791 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2792 			np->ram_ba ? ", using on-chip SRAM" : "");
2793 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2794 		if (np->features & FE_NOPM)
2795 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2796 			       sym_name(np));
2797 	}
2798 	/*
2799 	 *  And still more.
2800 	 */
2801 	if (sym_verbose > 1) {
2802 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2803 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2804 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2805 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2806 
2807 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2808 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2809 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2810 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2811 	}
2812 	/*
2813 	 *  Let user be aware of targets that have some disable flags set.
2814 	 */
2815 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2816 	if (sym_verbose)
2817 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2818 				       "SCAN FOR LUNS");
2819 
2820 	return 0;
2821 }
2822 
2823 /*
2824  *  Prepare the next negotiation message if needed.
2825  *
2826  *  Fill in the part of message buffer that contains the
2827  *  negotiation and the nego_status field of the CCB.
2828  *  Returns the size of the message in bytes.
2829  */
2830 
2831 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2832 {
2833 	tcb_p tp = &np->target[cp->target];
2834 	int msglen = 0;
2835 
2836 	/*
2837 	 *  Early C1010 chips need a work-around for DT
2838 	 *  data transfer to work.
2839 	 */
2840 	if (!(np->features & FE_U3EN))
2841 		tp->tinfo.goal.options = 0;
2842 	/*
2843 	 *  negotiate using PPR ?
2844 	 */
2845 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2846 		nego = NS_PPR;
2847 	/*
2848 	 *  negotiate wide transfers ?
2849 	 */
2850 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2851 		nego = NS_WIDE;
2852 	/*
2853 	 *  negotiate synchronous transfers?
2854 	 */
2855 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2856 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2857 		nego = NS_SYNC;
2858 
2859 	switch (nego) {
2860 	case NS_SYNC:
2861 		msgptr[msglen++] = M_EXTENDED;
2862 		msgptr[msglen++] = 3;
2863 		msgptr[msglen++] = M_X_SYNC_REQ;
2864 		msgptr[msglen++] = tp->tinfo.goal.period;
2865 		msgptr[msglen++] = tp->tinfo.goal.offset;
2866 		break;
2867 	case NS_WIDE:
2868 		msgptr[msglen++] = M_EXTENDED;
2869 		msgptr[msglen++] = 2;
2870 		msgptr[msglen++] = M_X_WIDE_REQ;
2871 		msgptr[msglen++] = tp->tinfo.goal.width;
2872 		break;
2873 	case NS_PPR:
2874 		msgptr[msglen++] = M_EXTENDED;
2875 		msgptr[msglen++] = 6;
2876 		msgptr[msglen++] = M_X_PPR_REQ;
2877 		msgptr[msglen++] = tp->tinfo.goal.period;
2878 		msgptr[msglen++] = 0;
2879 		msgptr[msglen++] = tp->tinfo.goal.offset;
2880 		msgptr[msglen++] = tp->tinfo.goal.width;
2881 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2882 		break;
2883 	};
2884 
2885 	cp->nego_status = nego;
2886 
2887 	if (nego) {
2888 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2889 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2890 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2891 					  nego == NS_WIDE ? "wide msgout" :
2892 					  "ppr msgout", msgptr);
2893 		};
2894 	};
2895 
2896 	return msglen;
2897 }
2898 
2899 /*
2900  *  Insert a job into the start queue.
2901  */
2902 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2903 {
2904 	u_short	qidx;
2905 
2906 #ifdef SYM_CONF_IARB_SUPPORT
2907 	/*
2908 	 *  If the previously queued CCB is not yet done,
2909 	 *  set the IARB hint. The SCRIPTS will go with IARB
2910 	 *  for this job when starting the previous one.
2911 	 *  We leave devices a chance to win arbitration by
2912 	 *  not using more than 'iarb_max' consecutive
2913 	 *  immediate arbitrations.
2914 	 */
2915 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2916 		np->last_cp->host_flags |= HF_HINT_IARB;
2917 		++np->iarb_count;
2918 	}
2919 	else
2920 		np->iarb_count = 0;
2921 	np->last_cp = cp;
2922 #endif
2923 
2924 	/*
2925 	 *  Insert first the idle task and then our job.
2926 	 *  The MB should ensure proper ordering.
2927 	 */
2928 	qidx = np->squeueput + 2;
2929 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2930 
2931 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2932 	MEMORY_BARRIER();
2933 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2934 
2935 	np->squeueput = qidx;
2936 
2937 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2938 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2939 
2940 	/*
2941 	 *  Script processor may be waiting for reselect.
2942 	 *  Wake it up.
2943 	 */
2944 	MEMORY_BARRIER();
2945 	OUTB (nc_istat, SIGP|np->istat_sem);
2946 }
2947 
2948 
2949 /*
2950  *  Soft reset the chip.
2951  *
2952  *  Raising SRST when the chip is running may cause
2953  *  problems on dual function chips (see below).
2954  *  On the other hand, LVD devices need some delay
2955  *  to settle and report actual BUS mode in STEST4.
2956  */
2957 static void sym_chip_reset (hcb_p np)
2958 {
2959 	OUTB (nc_istat, SRST);
2960 	UDELAY (10);
2961 	OUTB (nc_istat, 0);
2962 	UDELAY(2000);	/* For BUS MODE to settle */
2963 }
2964 
2965 /*
2966  *  Soft reset the chip.
2967  *
2968  *  Some 896 and 876 chip revisions may hang-up if we set
2969  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2970  *  are running.
2971  *  So, we need to abort the current operation prior to
2972  *  soft resetting the chip.
2973  */
2974 static void sym_soft_reset (hcb_p np)
2975 {
2976 	u_char istat;
2977 	int i;
2978 
2979 	OUTB (nc_istat, CABRT);
2980 	for (i = 1000000 ; i ; --i) {
2981 		istat = INB (nc_istat);
2982 		if (istat & SIP) {
2983 			INW (nc_sist);
2984 			continue;
2985 		}
2986 		if (istat & DIP) {
2987 			OUTB (nc_istat, 0);
2988 			INB (nc_dstat);
2989 			break;
2990 		}
2991 	}
2992 	if (!i)
2993 		printf("%s: unable to abort current chip operation.\n",
2994 			sym_name(np));
2995 	sym_chip_reset (np);
2996 }
2997 
2998 /*
2999  *  Start reset process.
3000  *
3001  *  The interrupt handler will reinitialize the chip.
3002  */
3003 static void sym_start_reset(hcb_p np)
3004 {
3005 	(void) sym_reset_scsi_bus(np, 1);
3006 }
3007 
3008 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3009 {
3010 	u32 term;
3011 	int retv = 0;
3012 
3013 	sym_soft_reset(np);	/* Soft reset the chip */
3014 	if (enab_int)
3015 		OUTW (nc_sien, RST);
3016 	/*
3017 	 *  Enable Tolerant, reset IRQD if present and
3018 	 *  properly set IRQ mode, prior to resetting the bus.
3019 	 */
3020 	OUTB (nc_stest3, TE);
3021 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3022 	OUTB (nc_scntl1, CRST);
3023 	UDELAY (200);
3024 
3025 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3026 		goto out;
3027 	/*
3028 	 *  Check for no terminators or SCSI bus shorts to ground.
3029 	 *  Read SCSI data bus, data parity bits and control signals.
3030 	 *  We are expecting RESET to be TRUE and other signals to be
3031 	 *  FALSE.
3032 	 */
3033 	term =	INB(nc_sstat0);
3034 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3035 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3036 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3037 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3038 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3039 
3040 	if (!(np->features & FE_WIDE))
3041 		term &= 0x3ffff;
3042 
3043 	if (term != (2<<7)) {
3044 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3045 			sym_name(np));
3046 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3047 			"0x%lx, expecting 0x%lx\n",
3048 			sym_name(np),
3049 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3050 			(u_long)term, (u_long)(2<<7));
3051 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3052 			retv = 1;
3053 	}
3054 out:
3055 	OUTB (nc_scntl1, 0);
3056 	/* MDELAY(100); */
3057 	return retv;
3058 }
3059 
3060 /*
3061  *  The chip may have completed jobs. Look at the DONE QUEUE.
3062  *
3063  *  On architectures that may reorder LOAD/STORE operations,
3064  *  a memory barrier may be needed after the reading of the
3065  *  so-called `flag' and prior to dealing with the data.
3066  */
3067 static int sym_wakeup_done (hcb_p np)
3068 {
3069 	ccb_p cp;
3070 	int i, n;
3071 	u32 dsa;
3072 
3073 	n = 0;
3074 	i = np->dqueueget;
3075 	while (1) {
3076 		dsa = scr_to_cpu(np->dqueue[i]);
3077 		if (!dsa)
3078 			break;
3079 		np->dqueue[i] = 0;
3080 		if ((i = i+2) >= MAX_QUEUE*2)
3081 			i = 0;
3082 
3083 		cp = sym_ccb_from_dsa(np, dsa);
3084 		if (cp) {
3085 			MEMORY_BARRIER();
3086 			sym_complete_ok (np, cp);
3087 			++n;
3088 		}
3089 		else
3090 			printf ("%s: bad DSA (%x) in done queue.\n",
3091 				sym_name(np), (u_int) dsa);
3092 	}
3093 	np->dqueueget = i;
3094 
3095 	return n;
3096 }
3097 
3098 /*
3099  *  Complete all active CCBs with error.
3100  *  Used on CHIP/SCSI RESET.
3101  */
3102 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3103 {
3104 	/*
3105 	 *  Move all active CCBs to the COMP queue
3106 	 *  and flush this queue.
3107 	 */
3108 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3109 	sym_que_init(&np->busy_ccbq);
3110 	sym_flush_comp_queue(np, cam_status);
3111 }
3112 
3113 /*
3114  *  Start chip.
3115  *
3116  *  'reason' means:
3117  *     0: initialisation.
3118  *     1: SCSI BUS RESET delivered or received.
3119  *     2: SCSI BUS MODE changed.
3120  */
3121 static void sym_init (hcb_p np, int reason)
3122 {
3123  	int	i;
3124 	u32	phys;
3125 
3126  	/*
3127 	 *  Reset chip if asked, otherwise just clear fifos.
3128  	 */
3129 	if (reason == 1)
3130 		sym_soft_reset(np);
3131 	else {
3132 		OUTB (nc_stest3, TE|CSF);
3133 		OUTONB (nc_ctest3, CLF);
3134 	}
3135 
3136 	/*
3137 	 *  Clear Start Queue
3138 	 */
3139 	phys = np->squeue_ba;
3140 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3141 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3142 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3143 	}
3144 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3145 
3146 	/*
3147 	 *  Start at first entry.
3148 	 */
3149 	np->squeueput = 0;
3150 
3151 	/*
3152 	 *  Clear Done Queue
3153 	 */
3154 	phys = np->dqueue_ba;
3155 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3156 		np->dqueue[i]   = 0;
3157 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3158 	}
3159 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3160 
3161 	/*
3162 	 *  Start at first entry.
3163 	 */
3164 	np->dqueueget = 0;
3165 
3166 	/*
3167 	 *  Install patches in scripts.
3168 	 *  This also let point to first position the start
3169 	 *  and done queue pointers used from SCRIPTS.
3170 	 */
3171 	np->fw_patch(np);
3172 
3173 	/*
3174 	 *  Wakeup all pending jobs.
3175 	 */
3176 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3177 
3178 	/*
3179 	 *  Init chip.
3180 	 */
3181 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3182 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3183 
3184 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3185 					/*  full arb., ena parity, par->ATN  */
3186 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3187 
3188 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3189 
3190 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3191 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3192 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3193 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3194 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3195 
3196 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3197 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3198 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3199 
3200 	/* Extended Sreq/Sack filtering not supported on the C10 */
3201 	if (np->features & FE_C10)
3202 		OUTB (nc_stest2, np->rv_stest2);
3203 	else
3204 		OUTB (nc_stest2, EXT|np->rv_stest2);
3205 
3206 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3207 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3208 
3209 	/*
3210 	 *  For now, disable AIP generation on C1010-66.
3211 	 */
3212 	if (np->device_id == PCI_ID_LSI53C1010_2)
3213 		OUTB (nc_aipcntl1, DISAIP);
3214 
3215 	/*
3216 	 *  C10101 Errata.
3217 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3218 	 *  STEST1 register to disable SGE. We probably should do
3219 	 *  that from SCRIPTS for each selection/reselection, but
3220 	 *  I just don't want. :)
3221 	 */
3222 	if (np->device_id == PCI_ID_LSI53C1010 &&
3223 	    /* np->revision_id < 0xff */ 1)
3224 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3225 
3226 	/*
3227 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3228 	 *  Disable overlapped arbitration for some dual function devices,
3229 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3230 	 */
3231 	if (np->device_id == PCI_ID_SYM53C875)
3232 		OUTB (nc_ctest0, (1<<5));
3233 	else if (np->device_id == PCI_ID_SYM53C896)
3234 		np->rv_ccntl0 |= DPR;
3235 
3236 	/*
3237 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3238 	 *  and/or hardware phase mismatch, since only such chips
3239 	 *  seem to support those IO registers.
3240 	 */
3241 	if (np->features & (FE_DAC|FE_NOPM)) {
3242 		OUTB (nc_ccntl0, np->rv_ccntl0);
3243 		OUTB (nc_ccntl1, np->rv_ccntl1);
3244 	}
3245 
3246 	/*
3247 	 *  If phase mismatch handled by scripts (895A/896/1010),
3248 	 *  set PM jump addresses.
3249 	 */
3250 	if (np->features & FE_NOPM) {
3251 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3252 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3253 	}
3254 
3255 	/*
3256 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3257 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3258 	 */
3259 	if (np->features & FE_LED0)
3260 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3261 	else if (np->features & FE_LEDC)
3262 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3263 
3264 	/*
3265 	 *      enable ints
3266 	 */
3267 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3268 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3269 
3270 	/*
3271 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3272 	 *  Try to eat the spurious SBMC interrupt that may occur when
3273 	 *  we reset the chip but not the SCSI BUS (at initialization).
3274 	 */
3275 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3276 		OUTONW (nc_sien, SBMC);
3277 		if (reason == 0) {
3278 			MDELAY(100);
3279 			INW (nc_sist);
3280 		}
3281 		np->scsi_mode = INB (nc_stest4) & SMODE;
3282 	}
3283 
3284 	/*
3285 	 *  Fill in target structure.
3286 	 *  Reinitialize usrsync.
3287 	 *  Reinitialize usrwide.
3288 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3289 	 */
3290 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3291 		tcb_p tp = &np->target[i];
3292 
3293 		tp->to_reset  = 0;
3294 		tp->head.sval = 0;
3295 		tp->head.wval = np->rv_scntl3;
3296 		tp->head.uval = 0;
3297 
3298 		tp->tinfo.current.period = 0;
3299 		tp->tinfo.current.offset = 0;
3300 		tp->tinfo.current.width  = BUS_8_BIT;
3301 		tp->tinfo.current.options = 0;
3302 	}
3303 
3304 	/*
3305 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3306 	 *  and start script processor.
3307 	 */
3308 	if (np->ram_ba) {
3309 		if (sym_verbose > 1)
3310 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3311 				sym_name(np));
3312 		if (np->ram_ws == 8192) {
3313 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3314 			OUTL (nc_mmws, np->scr_ram_seg);
3315 			OUTL (nc_mmrs, np->scr_ram_seg);
3316 			OUTL (nc_sfs,  np->scr_ram_seg);
3317 			phys = SCRIPTB_BA (np, start64);
3318 		}
3319 		else
3320 			phys = SCRIPTA_BA (np, init);
3321 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3322 	}
3323 	else
3324 		phys = SCRIPTA_BA (np, init);
3325 
3326 	np->istat_sem = 0;
3327 
3328 	OUTL (nc_dsa, np->hcb_ba);
3329 	OUTL_DSP (phys);
3330 
3331 	/*
3332 	 *  Notify the XPT about the RESET condition.
3333 	 */
3334 	if (reason != 0)
3335 		xpt_async(AC_BUS_RESET, np->path, NULL);
3336 }
3337 
3338 /*
3339  *  Get clock factor and sync divisor for a given
3340  *  synchronous factor period.
3341  */
3342 static int
3343 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3344 {
3345 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3346 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3347 	u32	fak;			/* Sync factor in sxfer		*/
3348 	u32	per;			/* Period in tenths of ns	*/
3349 	u32	kpc;			/* (per * clk)			*/
3350 	int	ret;
3351 
3352 	/*
3353 	 *  Compute the synchronous period in tenths of nano-seconds
3354 	 */
3355 	if (dt && sfac <= 9)	per = 125;
3356 	else if	(sfac <= 10)	per = 250;
3357 	else if	(sfac == 11)	per = 303;
3358 	else if	(sfac == 12)	per = 500;
3359 	else			per = 40 * sfac;
3360 	ret = per;
3361 
3362 	kpc = per * clk;
3363 	if (dt)
3364 		kpc <<= 1;
3365 
3366 	/*
3367 	 *  For earliest C10 revision 0, we cannot use extra
3368 	 *  clocks for the setting of the SCSI clocking.
3369 	 *  Note that this limits the lowest sync data transfer
3370 	 *  to 5 Mega-transfers per second and may result in
3371 	 *  using higher clock divisors.
3372 	 */
3373 #if 1
3374 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3375 		/*
3376 		 *  Look for the lowest clock divisor that allows an
3377 		 *  output speed not faster than the period.
3378 		 */
3379 		while (div > 0) {
3380 			--div;
3381 			if (kpc > (div_10M[div] << 2)) {
3382 				++div;
3383 				break;
3384 			}
3385 		}
3386 		fak = 0;			/* No extra clocks */
3387 		if (div == np->clock_divn) {	/* Are we too fast ? */
3388 			ret = -1;
3389 		}
3390 		*divp = div;
3391 		*fakp = fak;
3392 		return ret;
3393 	}
3394 #endif
3395 
3396 	/*
3397 	 *  Look for the greatest clock divisor that allows an
3398 	 *  input speed faster than the period.
3399 	 */
3400 	while (div-- > 0)
3401 		if (kpc >= (div_10M[div] << 2)) break;
3402 
3403 	/*
3404 	 *  Calculate the lowest clock factor that allows an output
3405 	 *  speed not faster than the period, and the max output speed.
3406 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3407 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3408 	 */
3409 	if (dt) {
3410 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3411 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3412 	}
3413 	else {
3414 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3415 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3416 	}
3417 
3418 	/*
3419 	 *  Check against our hardware limits, or bugs :).
3420 	 */
3421 	if (fak < 0)	{fak = 0; ret = -1;}
3422 	if (fak > 2)	{fak = 2; ret = -1;}
3423 
3424 	/*
3425 	 *  Compute and return sync parameters.
3426 	 */
3427 	*divp = div;
3428 	*fakp = fak;
3429 
3430 	return ret;
3431 }
3432 
3433 /*
3434  *  Tell the SCSI layer about the new transfer parameters.
3435  */
3436 static void
3437 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3438 {
3439 	struct ccb_trans_settings cts;
3440 	struct cam_path *path;
3441 	int sts;
3442 	tcb_p tp = &np->target[target];
3443 
3444 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3445 	                      CAM_LUN_WILDCARD);
3446 	if (sts != CAM_REQ_CMP)
3447 		return;
3448 
3449 	bzero(&cts, sizeof(cts));
3450 
3451 #define	cts__scsi (cts.proto_specific.scsi)
3452 #define	cts__spi  (cts.xport_specific.spi)
3453 
3454 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3455 	cts.protocol  = PROTO_SCSI;
3456 	cts.transport = XPORT_SPI;
3457 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3458 	cts.transport_version = tp->tinfo.current.spi_version;
3459 
3460 	cts__spi.valid = spi_valid;
3461 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3462 		cts__spi.sync_period = tp->tinfo.current.period;
3463 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3464 		cts__spi.sync_offset = tp->tinfo.current.offset;
3465 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3466 		cts__spi.bus_width   = tp->tinfo.current.width;
3467 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3468 		cts__spi.ppr_options = tp->tinfo.current.options;
3469 #undef cts__spi
3470 #undef cts__scsi
3471 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3472 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3473 	xpt_free_path(path);
3474 }
3475 
3476 #define SYM_SPI_VALID_WDTR		\
3477 	CTS_SPI_VALID_BUS_WIDTH |	\
3478 	CTS_SPI_VALID_SYNC_RATE |	\
3479 	CTS_SPI_VALID_SYNC_OFFSET
3480 #define SYM_SPI_VALID_SDTR		\
3481 	CTS_SPI_VALID_SYNC_RATE |	\
3482 	CTS_SPI_VALID_SYNC_OFFSET
3483 #define SYM_SPI_VALID_PPR		\
3484 	CTS_SPI_VALID_PPR_OPTIONS |	\
3485 	CTS_SPI_VALID_BUS_WIDTH |	\
3486 	CTS_SPI_VALID_SYNC_RATE |	\
3487 	CTS_SPI_VALID_SYNC_OFFSET
3488 
3489 /*
3490  *  We received a WDTR.
3491  *  Let everything be aware of the changes.
3492  */
3493 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3494 {
3495 	tcb_p tp = &np->target[cp->target];
3496 
3497 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3498 
3499 	/*
3500 	 *  Tell the SCSI layer about the new transfer parameters.
3501 	 */
3502 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3503 	tp->tinfo.current.offset = 0;
3504 	tp->tinfo.current.period = 0;
3505 	tp->tinfo.current.options = 0;
3506 
3507 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3508 }
3509 
3510 /*
3511  *  We received a SDTR.
3512  *  Let everything be aware of the changes.
3513  */
3514 static void
3515 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3516 {
3517 	tcb_p tp = &np->target[cp->target];
3518 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3519 
3520 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3521 
3522 	/*
3523 	 *  Tell the SCSI layer about the new transfer parameters.
3524 	 */
3525 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3526 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3527 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3528 
3529 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3530 }
3531 
3532 /*
3533  *  We received a PPR.
3534  *  Let everything be aware of the changes.
3535  */
3536 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3537 			 u_char per, u_char wide, u_char div, u_char fak)
3538 {
3539 	tcb_p tp = &np->target[cp->target];
3540 
3541 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3542 
3543 	/*
3544 	 *  Tell the SCSI layer about the new transfer parameters.
3545 	 */
3546 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3547 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3548 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3549 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3550 
3551 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3552 }
3553 
3554 /*
3555  *  Switch trans mode for current job and it's target.
3556  */
3557 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3558 			 u_char per, u_char wide, u_char div, u_char fak)
3559 {
3560 	SYM_QUEHEAD *qp;
3561 	union	ccb *ccb;
3562 	tcb_p tp;
3563 	u_char target = INB (nc_sdid) & 0x0f;
3564 	u_char sval, wval, uval;
3565 
3566 	assert (cp);
3567 	if (!cp) return;
3568 	ccb = cp->cam_ccb;
3569 	assert (ccb);
3570 	if (!ccb) return;
3571 	assert (target == (cp->target & 0xf));
3572 	tp = &np->target[target];
3573 
3574 	sval = tp->head.sval;
3575 	wval = tp->head.wval;
3576 	uval = tp->head.uval;
3577 
3578 #if 0
3579 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3580 		sval, wval, uval, np->rv_scntl3);
3581 #endif
3582 	/*
3583 	 *  Set the offset.
3584 	 */
3585 	if (!(np->features & FE_C10))
3586 		sval = (sval & ~0x1f) | ofs;
3587 	else
3588 		sval = (sval & ~0x3f) | ofs;
3589 
3590 	/*
3591 	 *  Set the sync divisor and extra clock factor.
3592 	 */
3593 	if (ofs != 0) {
3594 		wval = (wval & ~0x70) | ((div+1) << 4);
3595 		if (!(np->features & FE_C10))
3596 			sval = (sval & ~0xe0) | (fak << 5);
3597 		else {
3598 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3599 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3600 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3601 		}
3602 	}
3603 
3604 	/*
3605 	 *  Set the bus width.
3606 	 */
3607 	wval = wval & ~EWS;
3608 	if (wide != 0)
3609 		wval |= EWS;
3610 
3611 	/*
3612 	 *  Set misc. ultra enable bits.
3613 	 */
3614 	if (np->features & FE_C10) {
3615 		uval = uval & ~(U3EN|AIPCKEN);
3616 		if (dt)	{
3617 			assert(np->features & FE_U3EN);
3618 			uval |= U3EN;
3619 		}
3620 	}
3621 	else {
3622 		wval = wval & ~ULTRA;
3623 		if (per <= 12)	wval |= ULTRA;
3624 	}
3625 
3626 	/*
3627 	 *   Stop there if sync parameters are unchanged.
3628 	 */
3629 	if (tp->head.sval == sval &&
3630 	    tp->head.wval == wval &&
3631 	    tp->head.uval == uval)
3632 		return;
3633 	tp->head.sval = sval;
3634 	tp->head.wval = wval;
3635 	tp->head.uval = uval;
3636 
3637 	/*
3638 	 *  Disable extended Sreq/Sack filtering if per < 50.
3639 	 *  Not supported on the C1010.
3640 	 */
3641 	if (per < 50 && !(np->features & FE_C10))
3642 		OUTOFFB (nc_stest2, EXT);
3643 
3644 	/*
3645 	 *  set actual value and sync_status
3646 	 */
3647 	OUTB (nc_sxfer,  tp->head.sval);
3648 	OUTB (nc_scntl3, tp->head.wval);
3649 
3650 	if (np->features & FE_C10) {
3651 		OUTB (nc_scntl4, tp->head.uval);
3652 	}
3653 
3654 	/*
3655 	 *  patch ALL busy ccbs of this target.
3656 	 */
3657 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3658 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3659 		if (cp->target != target)
3660 			continue;
3661 		cp->phys.select.sel_scntl3 = tp->head.wval;
3662 		cp->phys.select.sel_sxfer  = tp->head.sval;
3663 		if (np->features & FE_C10) {
3664 			cp->phys.select.sel_scntl4 = tp->head.uval;
3665 		}
3666 	}
3667 }
3668 
3669 /*
3670  *  log message for real hard errors
3671  *
3672  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3673  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3674  *
3675  *  exception register:
3676  *  	ds:	dstat
3677  *  	si:	sist
3678  *
3679  *  SCSI bus lines:
3680  *  	so:	control lines as driven by chip.
3681  *  	si:	control lines as seen by chip.
3682  *  	sd:	scsi data lines as seen by chip.
3683  *
3684  *  wide/fastmode:
3685  *  	sxfer:	(see the manual)
3686  *  	scntl3:	(see the manual)
3687  *
3688  *  current script command:
3689  *  	dsp:	script address (relative to start of script).
3690  *  	dbc:	first word of script command.
3691  *
3692  *  First 24 register of the chip:
3693  *  	r0..rf
3694  */
3695 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3696 {
3697 	u32	dsp;
3698 	int	script_ofs;
3699 	int	script_size;
3700 	char	*script_name;
3701 	u_char	*script_base;
3702 	int	i;
3703 
3704 	dsp	= INL (nc_dsp);
3705 
3706 	if	(dsp > np->scripta_ba &&
3707 		 dsp <= np->scripta_ba + np->scripta_sz) {
3708 		script_ofs	= dsp - np->scripta_ba;
3709 		script_size	= np->scripta_sz;
3710 		script_base	= (u_char *) np->scripta0;
3711 		script_name	= "scripta";
3712 	}
3713 	else if (np->scriptb_ba < dsp &&
3714 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3715 		script_ofs	= dsp - np->scriptb_ba;
3716 		script_size	= np->scriptb_sz;
3717 		script_base	= (u_char *) np->scriptb0;
3718 		script_name	= "scriptb";
3719 	} else {
3720 		script_ofs	= dsp;
3721 		script_size	= 0;
3722 		script_base	= 0;
3723 		script_name	= "mem";
3724 	}
3725 
3726 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3727 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3728 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3729 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3730 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3731 		(unsigned)INL (nc_dbc));
3732 
3733 	if (((script_ofs & 3) == 0) &&
3734 	    (unsigned)script_ofs < script_size) {
3735 		printf ("%s: script cmd = %08x\n", sym_name(np),
3736 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3737 	}
3738 
3739         printf ("%s: regdump:", sym_name(np));
3740         for (i=0; i<24;i++)
3741             printf (" %02x", (unsigned)INB_OFF(i));
3742         printf (".\n");
3743 
3744 	/*
3745 	 *  PCI BUS error, read the PCI ststus register.
3746 	 */
3747 	if (dstat & (MDPE|BF)) {
3748 		u_short pci_sts;
3749 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3750 		if (pci_sts & 0xf900) {
3751 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3752 			printf("%s: PCI STATUS = 0x%04x\n",
3753 				sym_name(np), pci_sts & 0xf900);
3754 		}
3755 	}
3756 }
3757 
3758 /*
3759  *  chip interrupt handler
3760  *
3761  *  In normal situations, interrupt conditions occur one at
3762  *  a time. But when something bad happens on the SCSI BUS,
3763  *  the chip may raise several interrupt flags before
3764  *  stopping and interrupting the CPU. The additionnal
3765  *  interrupt flags are stacked in some extra registers
3766  *  after the SIP and/or DIP flag has been raised in the
3767  *  ISTAT. After the CPU has read the interrupt condition
3768  *  flag from SIST or DSTAT, the chip unstacks the other
3769  *  interrupt flags and sets the corresponding bits in
3770  *  SIST or DSTAT. Since the chip starts stacking once the
3771  *  SIP or DIP flag is set, there is a small window of time
3772  *  where the stacking does not occur.
3773  *
3774  *  Typically, multiple interrupt conditions may happen in
3775  *  the following situations:
3776  *
3777  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3778  *    When a parity error is detected in input phase
3779  *    and the device switches to msg-in phase inside a
3780  *    block MOV.
3781  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3782  *    When a stupid device does not want to handle the
3783  *    recovery of an SCSI parity error.
3784  *  - Some combinations of STO, PAR, UDC, ...
3785  *    When using non compliant SCSI stuff, when user is
3786  *    doing non compliant hot tampering on the BUS, when
3787  *    something really bad happens to a device, etc ...
3788  *
3789  *  The heuristic suggested by SYMBIOS to handle
3790  *  multiple interrupts is to try unstacking all
3791  *  interrupts conditions and to handle them on some
3792  *  priority based on error severity.
3793  *  This will work when the unstacking has been
3794  *  successful, but we cannot be 100 % sure of that,
3795  *  since the CPU may have been faster to unstack than
3796  *  the chip is able to stack. Hmmm ... But it seems that
3797  *  such a situation is very unlikely to happen.
3798  *
3799  *  If this happen, for example STO caught by the CPU
3800  *  then UDC happenning before the CPU have restarted
3801  *  the SCRIPTS, the driver may wrongly complete the
3802  *  same command on UDC, since the SCRIPTS didn't restart
3803  *  and the DSA still points to the same command.
3804  *  We avoid this situation by setting the DSA to an
3805  *  invalid value when the CCB is completed and before
3806  *  restarting the SCRIPTS.
3807  *
3808  *  Another issue is that we need some section of our
3809  *  recovery procedures to be somehow uninterruptible but
3810  *  the SCRIPTS processor does not provides such a
3811  *  feature. For this reason, we handle recovery preferently
3812  *  from the C code and check against some SCRIPTS critical
3813  *  sections from the C code.
3814  *
3815  *  Hopefully, the interrupt handling of the driver is now
3816  *  able to resist to weird BUS error conditions, but donnot
3817  *  ask me for any guarantee that it will never fail. :-)
3818  *  Use at your own decision and risk.
3819  */
3820 
3821 static void sym_intr1 (hcb_p np)
3822 {
3823 	u_char	istat, istatc;
3824 	u_char	dstat;
3825 	u_short	sist;
3826 
3827 	/*
3828 	 *  interrupt on the fly ?
3829 	 *
3830 	 *  A `dummy read' is needed to ensure that the
3831 	 *  clear of the INTF flag reaches the device
3832 	 *  before the scanning of the DONE queue.
3833 	 */
3834 	istat = INB (nc_istat);
3835 	if (istat & INTF) {
3836 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3837 		istat = INB (nc_istat);		/* DUMMY READ */
3838 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3839 		(void)sym_wakeup_done (np);
3840 	};
3841 
3842 	if (!(istat & (SIP|DIP)))
3843 		return;
3844 
3845 #if 0	/* We should never get this one */
3846 	if (istat & CABRT)
3847 		OUTB (nc_istat, CABRT);
3848 #endif
3849 
3850 	/*
3851 	 *  PAR and MA interrupts may occur at the same time,
3852 	 *  and we need to know of both in order to handle
3853 	 *  this situation properly. We try to unstack SCSI
3854 	 *  interrupts for that reason. BTW, I dislike a LOT
3855 	 *  such a loop inside the interrupt routine.
3856 	 *  Even if DMA interrupt stacking is very unlikely to
3857 	 *  happen, we also try unstacking these ones, since
3858 	 *  this has no performance impact.
3859 	 */
3860 	sist	= 0;
3861 	dstat	= 0;
3862 	istatc	= istat;
3863 	do {
3864 		if (istatc & SIP)
3865 			sist  |= INW (nc_sist);
3866 		if (istatc & DIP)
3867 			dstat |= INB (nc_dstat);
3868 		istatc = INB (nc_istat);
3869 		istat |= istatc;
3870 	} while (istatc & (SIP|DIP));
3871 
3872 	if (DEBUG_FLAGS & DEBUG_TINY)
3873 		printf ("<%d|%x:%x|%x:%x>",
3874 			(int)INB(nc_scr0),
3875 			dstat,sist,
3876 			(unsigned)INL(nc_dsp),
3877 			(unsigned)INL(nc_dbc));
3878 	/*
3879 	 *  On paper, a memory barrier may be needed here.
3880 	 *  And since we are paranoid ... :)
3881 	 */
3882 	MEMORY_BARRIER();
3883 
3884 	/*
3885 	 *  First, interrupts we want to service cleanly.
3886 	 *
3887 	 *  Phase mismatch (MA) is the most frequent interrupt
3888 	 *  for chip earlier than the 896 and so we have to service
3889 	 *  it as quickly as possible.
3890 	 *  A SCSI parity error (PAR) may be combined with a phase
3891 	 *  mismatch condition (MA).
3892 	 *  Programmed interrupts (SIR) are used to call the C code
3893 	 *  from SCRIPTS.
3894 	 *  The single step interrupt (SSI) is not used in this
3895 	 *  driver.
3896 	 */
3897 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3898 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3899 		if	(sist & PAR)	sym_int_par (np, sist);
3900 		else if (sist & MA)	sym_int_ma (np);
3901 		else if (dstat & SIR)	sym_int_sir (np);
3902 		else if (dstat & SSI)	OUTONB_STD ();
3903 		else			goto unknown_int;
3904 		return;
3905 	};
3906 
3907 	/*
3908 	 *  Now, interrupts that donnot happen in normal
3909 	 *  situations and that we may need to recover from.
3910 	 *
3911 	 *  On SCSI RESET (RST), we reset everything.
3912 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3913 	 *  active CCBs with RESET status, prepare all devices
3914 	 *  for negotiating again and restart the SCRIPTS.
3915 	 *  On STO and UDC, we complete the CCB with the corres-
3916 	 *  ponding status and restart the SCRIPTS.
3917 	 */
3918 	if (sist & RST) {
3919 		xpt_print_path(np->path);
3920 		printf("SCSI BUS reset detected.\n");
3921 		sym_init (np, 1);
3922 		return;
3923 	};
3924 
3925 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3926 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3927 
3928 	if (!(sist  & (GEN|HTH|SGE)) &&
3929 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3930 		if	(sist & SBMC)	sym_int_sbmc (np);
3931 		else if (sist & STO)	sym_int_sto (np);
3932 		else if (sist & UDC)	sym_int_udc (np);
3933 		else			goto unknown_int;
3934 		return;
3935 	};
3936 
3937 	/*
3938 	 *  Now, interrupts we are not able to recover cleanly.
3939 	 *
3940 	 *  Log message for hard errors.
3941 	 *  Reset everything.
3942 	 */
3943 
3944 	sym_log_hard_error(np, sist, dstat);
3945 
3946 	if ((sist & (GEN|HTH|SGE)) ||
3947 		(dstat & (MDPE|BF|ABRT|IID))) {
3948 		sym_start_reset(np);
3949 		return;
3950 	};
3951 
3952 unknown_int:
3953 	/*
3954 	 *  We just miss the cause of the interrupt. :(
3955 	 *  Print a message. The timeout will do the real work.
3956 	 */
3957 	printf(	"%s: unknown interrupt(s) ignored, "
3958 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3959 		sym_name(np), istat, dstat, sist);
3960 }
3961 
3962 static void sym_intr(void *arg)
3963 {
3964 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3965 	sym_intr1((hcb_p) arg);
3966 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3967 	return;
3968 }
3969 
3970 static void sym_poll(struct cam_sim *sim)
3971 {
3972 	int s = splcam();
3973 	sym_intr(cam_sim_softc(sim));
3974 	splx(s);
3975 }
3976 
3977 
3978 /*
3979  *  generic recovery from scsi interrupt
3980  *
3981  *  The doc says that when the chip gets an SCSI interrupt,
3982  *  it tries to stop in an orderly fashion, by completing
3983  *  an instruction fetch that had started or by flushing
3984  *  the DMA fifo for a write to memory that was executing.
3985  *  Such a fashion is not enough to know if the instruction
3986  *  that was just before the current DSP value has been
3987  *  executed or not.
3988  *
3989  *  There are some small SCRIPTS sections that deal with
3990  *  the start queue and the done queue that may break any
3991  *  assomption from the C code if we are interrupted
3992  *  inside, so we reset if this happens. Btw, since these
3993  *  SCRIPTS sections are executed while the SCRIPTS hasn't
3994  *  started SCSI operations, it is very unlikely to happen.
3995  *
3996  *  All the driver data structures are supposed to be
3997  *  allocated from the same 4 GB memory window, so there
3998  *  is a 1 to 1 relationship between DSA and driver data
3999  *  structures. Since we are careful :) to invalidate the
4000  *  DSA when we complete a command or when the SCRIPTS
4001  *  pushes a DSA into a queue, we can trust it when it
4002  *  points to a CCB.
4003  */
4004 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4005 {
4006 	u32	dsp	= INL (nc_dsp);
4007 	u32	dsa	= INL (nc_dsa);
4008 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4009 
4010 	/*
4011 	 *  If we haven't been interrupted inside the SCRIPTS
4012 	 *  critical pathes, we can safely restart the SCRIPTS
4013 	 *  and trust the DSA value if it matches a CCB.
4014 	 */
4015 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4016 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4017 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4018 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4019 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4020 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4021 	    (!(dsp > SCRIPTA_BA (np, done) &&
4022 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4023 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4024 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4025 		/*
4026 		 *  If we have a CCB, let the SCRIPTS call us back for
4027 		 *  the handling of the error with SCRATCHA filled with
4028 		 *  STARTPOS. This way, we will be able to freeze the
4029 		 *  device queue and requeue awaiting IOs.
4030 		 */
4031 		if (cp) {
4032 			cp->host_status = hsts;
4033 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4034 		}
4035 		/*
4036 		 *  Otherwise just restart the SCRIPTS.
4037 		 */
4038 		else {
4039 			OUTL (nc_dsa, 0xffffff);
4040 			OUTL_DSP (SCRIPTA_BA (np, start));
4041 		}
4042 	}
4043 	else
4044 		goto reset_all;
4045 
4046 	return;
4047 
4048 reset_all:
4049 	sym_start_reset(np);
4050 }
4051 
4052 /*
4053  *  chip exception handler for selection timeout
4054  */
4055 static void sym_int_sto (hcb_p np)
4056 {
4057 	u32 dsp	= INL (nc_dsp);
4058 
4059 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4060 
4061 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4062 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4063 	else
4064 		sym_start_reset(np);
4065 }
4066 
4067 /*
4068  *  chip exception handler for unexpected disconnect
4069  */
4070 static void sym_int_udc (hcb_p np)
4071 {
4072 	printf ("%s: unexpected disconnect\n", sym_name(np));
4073 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4074 }
4075 
4076 /*
4077  *  chip exception handler for SCSI bus mode change
4078  *
4079  *  spi2-r12 11.2.3 says a transceiver mode change must
4080  *  generate a reset event and a device that detects a reset
4081  *  event shall initiate a hard reset. It says also that a
4082  *  device that detects a mode change shall set data transfer
4083  *  mode to eight bit asynchronous, etc...
4084  *  So, just reinitializing all except chip should be enough.
4085  */
4086 static void sym_int_sbmc (hcb_p np)
4087 {
4088 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4089 
4090 	/*
4091 	 *  Notify user.
4092 	 */
4093 	xpt_print_path(np->path);
4094 	printf("SCSI BUS mode change from %s to %s.\n",
4095 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4096 
4097 	/*
4098 	 *  Should suspend command processing for a few seconds and
4099 	 *  reinitialize all except the chip.
4100 	 */
4101 	sym_init (np, 2);
4102 }
4103 
4104 /*
4105  *  chip exception handler for SCSI parity error.
4106  *
4107  *  When the chip detects a SCSI parity error and is
4108  *  currently executing a (CH)MOV instruction, it does
4109  *  not interrupt immediately, but tries to finish the
4110  *  transfer of the current scatter entry before
4111  *  interrupting. The following situations may occur:
4112  *
4113  *  - The complete scatter entry has been transferred
4114  *    without the device having changed phase.
4115  *    The chip will then interrupt with the DSP pointing
4116  *    to the instruction that follows the MOV.
4117  *
4118  *  - A phase mismatch occurs before the MOV finished
4119  *    and phase errors are to be handled by the C code.
4120  *    The chip will then interrupt with both PAR and MA
4121  *    conditions set.
4122  *
4123  *  - A phase mismatch occurs before the MOV finished and
4124  *    phase errors are to be handled by SCRIPTS.
4125  *    The chip will load the DSP with the phase mismatch
4126  *    JUMP address and interrupt the host processor.
4127  */
4128 static void sym_int_par (hcb_p np, u_short sist)
4129 {
4130 	u_char	hsts	= INB (HS_PRT);
4131 	u32	dsp	= INL (nc_dsp);
4132 	u32	dbc	= INL (nc_dbc);
4133 	u32	dsa	= INL (nc_dsa);
4134 	u_char	sbcl	= INB (nc_sbcl);
4135 	u_char	cmd	= dbc >> 24;
4136 	int phase	= cmd & 7;
4137 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4138 
4139 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4140 		sym_name(np), hsts, dbc, sbcl);
4141 
4142 	/*
4143 	 *  Check that the chip is connected to the SCSI BUS.
4144 	 */
4145 	if (!(INB (nc_scntl1) & ISCON)) {
4146 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4147 		return;
4148 	}
4149 
4150 	/*
4151 	 *  If the nexus is not clearly identified, reset the bus.
4152 	 *  We will try to do better later.
4153 	 */
4154 	if (!cp)
4155 		goto reset_all;
4156 
4157 	/*
4158 	 *  Check instruction was a MOV, direction was INPUT and
4159 	 *  ATN is asserted.
4160 	 */
4161 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4162 		goto reset_all;
4163 
4164 	/*
4165 	 *  Keep track of the parity error.
4166 	 */
4167 	OUTONB (HF_PRT, HF_EXT_ERR);
4168 	cp->xerr_status |= XE_PARITY_ERR;
4169 
4170 	/*
4171 	 *  Prepare the message to send to the device.
4172 	 */
4173 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4174 
4175 	/*
4176 	 *  If the old phase was DATA IN phase, we have to deal with
4177 	 *  the 3 situations described above.
4178 	 *  For other input phases (MSG IN and STATUS), the device
4179 	 *  must resend the whole thing that failed parity checking
4180 	 *  or signal error. So, jumping to dispatcher should be OK.
4181 	 */
4182 	if (phase == 1 || phase == 5) {
4183 		/* Phase mismatch handled by SCRIPTS */
4184 		if (dsp == SCRIPTB_BA (np, pm_handle))
4185 			OUTL_DSP (dsp);
4186 		/* Phase mismatch handled by the C code */
4187 		else if (sist & MA)
4188 			sym_int_ma (np);
4189 		/* No phase mismatch occurred */
4190 		else {
4191 			OUTL (nc_temp, dsp);
4192 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4193 		}
4194 	}
4195 	else
4196 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4197 	return;
4198 
4199 reset_all:
4200 	sym_start_reset(np);
4201 	return;
4202 }
4203 
4204 /*
4205  *  chip exception handler for phase errors.
4206  *
4207  *  We have to construct a new transfer descriptor,
4208  *  to transfer the rest of the current block.
4209  */
4210 static void sym_int_ma (hcb_p np)
4211 {
4212 	u32	dbc;
4213 	u32	rest;
4214 	u32	dsp;
4215 	u32	dsa;
4216 	u32	nxtdsp;
4217 	u32	*vdsp;
4218 	u32	oadr, olen;
4219 	u32	*tblp;
4220         u32	newcmd;
4221 	u_int	delta;
4222 	u_char	cmd;
4223 	u_char	hflags, hflags0;
4224 	struct	sym_pmc *pm;
4225 	ccb_p	cp;
4226 
4227 	dsp	= INL (nc_dsp);
4228 	dbc	= INL (nc_dbc);
4229 	dsa	= INL (nc_dsa);
4230 
4231 	cmd	= dbc >> 24;
4232 	rest	= dbc & 0xffffff;
4233 	delta	= 0;
4234 
4235 	/*
4236 	 *  locate matching cp if any.
4237 	 */
4238 	cp = sym_ccb_from_dsa(np, dsa);
4239 
4240 	/*
4241 	 *  Donnot take into account dma fifo and various buffers in
4242 	 *  INPUT phase since the chip flushes everything before
4243 	 *  raising the MA interrupt for interrupted INPUT phases.
4244 	 *  For DATA IN phase, we will check for the SWIDE later.
4245 	 */
4246 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4247 		u_char ss0, ss2;
4248 
4249 		if (np->features & FE_DFBC)
4250 			delta = INW (nc_dfbc);
4251 		else {
4252 			u32 dfifo;
4253 
4254 			/*
4255 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4256 			 */
4257 			dfifo = INL(nc_dfifo);
4258 
4259 			/*
4260 			 *  Calculate remaining bytes in DMA fifo.
4261 			 *  (CTEST5 = dfifo >> 16)
4262 			 */
4263 			if (dfifo & (DFS << 16))
4264 				delta = ((((dfifo >> 8) & 0x300) |
4265 				          (dfifo & 0xff)) - rest) & 0x3ff;
4266 			else
4267 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4268 		}
4269 
4270 		/*
4271 		 *  The data in the dma fifo has not been transfered to
4272 		 *  the target -> add the amount to the rest
4273 		 *  and clear the data.
4274 		 *  Check the sstat2 register in case of wide transfer.
4275 		 */
4276 		rest += delta;
4277 		ss0  = INB (nc_sstat0);
4278 		if (ss0 & OLF) rest++;
4279 		if (!(np->features & FE_C10))
4280 			if (ss0 & ORF) rest++;
4281 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4282 			ss2 = INB (nc_sstat2);
4283 			if (ss2 & OLF1) rest++;
4284 			if (!(np->features & FE_C10))
4285 				if (ss2 & ORF1) rest++;
4286 		};
4287 
4288 		/*
4289 		 *  Clear fifos.
4290 		 */
4291 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4292 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4293 	}
4294 
4295 	/*
4296 	 *  log the information
4297 	 */
4298 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4299 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4300 			(unsigned) rest, (unsigned) delta);
4301 
4302 	/*
4303 	 *  try to find the interrupted script command,
4304 	 *  and the address at which to continue.
4305 	 */
4306 	vdsp	= 0;
4307 	nxtdsp	= 0;
4308 	if	(dsp >  np->scripta_ba &&
4309 		 dsp <= np->scripta_ba + np->scripta_sz) {
4310 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4311 		nxtdsp = dsp;
4312 	}
4313 	else if	(dsp >  np->scriptb_ba &&
4314 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4315 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4316 		nxtdsp = dsp;
4317 	}
4318 
4319 	/*
4320 	 *  log the information
4321 	 */
4322 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4323 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4324 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4325 	};
4326 
4327 	if (!vdsp) {
4328 		printf ("%s: interrupted SCRIPT address not found.\n",
4329 			sym_name (np));
4330 		goto reset_all;
4331 	}
4332 
4333 	if (!cp) {
4334 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4335 			sym_name (np));
4336 		goto reset_all;
4337 	}
4338 
4339 	/*
4340 	 *  get old startaddress and old length.
4341 	 */
4342 	oadr = scr_to_cpu(vdsp[1]);
4343 
4344 	if (cmd & 0x10) {	/* Table indirect */
4345 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4346 		olen = scr_to_cpu(tblp[0]);
4347 		oadr = scr_to_cpu(tblp[1]);
4348 	} else {
4349 		tblp = (u32 *) 0;
4350 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4351 	};
4352 
4353 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4354 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4355 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4356 			tblp,
4357 			(unsigned) olen,
4358 			(unsigned) oadr);
4359 	};
4360 
4361 	/*
4362 	 *  check cmd against assumed interrupted script command.
4363 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4364 	 *  the phase.
4365 	 */
4366 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4367 		PRINT_ADDR(cp);
4368 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4369 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4370 
4371 		goto reset_all;
4372 	};
4373 
4374 	/*
4375 	 *  if old phase not dataphase, leave here.
4376 	 */
4377 	if (cmd & 2) {
4378 		PRINT_ADDR(cp);
4379 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4380 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4381 			(unsigned)oadr, (unsigned)rest);
4382 		goto unexpected_phase;
4383 	};
4384 
4385 	/*
4386 	 *  Choose the correct PM save area.
4387 	 *
4388 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4389 	 *  this stuff. The equivalent code is implemented in
4390 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4391 	 *  handle PM from the SCRIPTS processor.
4392 	 */
4393 	hflags0 = INB (HF_PRT);
4394 	hflags = hflags0;
4395 
4396 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4397 		if (hflags & HF_IN_PM0)
4398 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4399 		else if	(hflags & HF_IN_PM1)
4400 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4401 
4402 		if (hflags & HF_DP_SAVED)
4403 			hflags ^= HF_ACT_PM;
4404 	}
4405 
4406 	if (!(hflags & HF_ACT_PM)) {
4407 		pm = &cp->phys.pm0;
4408 		newcmd = SCRIPTA_BA (np, pm0_data);
4409 	}
4410 	else {
4411 		pm = &cp->phys.pm1;
4412 		newcmd = SCRIPTA_BA (np, pm1_data);
4413 	}
4414 
4415 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4416 	if (hflags != hflags0)
4417 		OUTB (HF_PRT, hflags);
4418 
4419 	/*
4420 	 *  fillin the phase mismatch context
4421 	 */
4422 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4423 	pm->sg.size = cpu_to_scr(rest);
4424 	pm->ret     = cpu_to_scr(nxtdsp);
4425 
4426 	/*
4427 	 *  If we have a SWIDE,
4428 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4429 	 *  - compute the SCRIPTS address to restart from,
4430 	 *  - move current data pointer context by one byte.
4431 	 */
4432 	nxtdsp = SCRIPTA_BA (np, dispatch);
4433 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4434 	    (INB (nc_scntl2) & WSR)) {
4435 		u32 tmp;
4436 
4437 		/*
4438 		 *  Set up the table indirect for the MOVE
4439 		 *  of the residual byte and adjust the data
4440 		 *  pointer context.
4441 		 */
4442 		tmp = scr_to_cpu(pm->sg.addr);
4443 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4444 		pm->sg.addr = cpu_to_scr(tmp + 1);
4445 		tmp = scr_to_cpu(pm->sg.size);
4446 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4447 		pm->sg.size = cpu_to_scr(tmp - 1);
4448 
4449 		/*
4450 		 *  If only the residual byte is to be moved,
4451 		 *  no PM context is needed.
4452 		 */
4453 		if ((tmp&0xffffff) == 1)
4454 			newcmd = pm->ret;
4455 
4456 		/*
4457 		 *  Prepare the address of SCRIPTS that will
4458 		 *  move the residual byte to memory.
4459 		 */
4460 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4461 	}
4462 
4463 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4464 		PRINT_ADDR(cp);
4465 		printf ("PM %x %x %x / %x %x %x.\n",
4466 			hflags0, hflags, newcmd,
4467 			(unsigned)scr_to_cpu(pm->sg.addr),
4468 			(unsigned)scr_to_cpu(pm->sg.size),
4469 			(unsigned)scr_to_cpu(pm->ret));
4470 	}
4471 
4472 	/*
4473 	 *  Restart the SCRIPTS processor.
4474 	 */
4475 	OUTL (nc_temp, newcmd);
4476 	OUTL_DSP (nxtdsp);
4477 	return;
4478 
4479 	/*
4480 	 *  Unexpected phase changes that occurs when the current phase
4481 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4482 	 *  Such event may only happen when the SCRIPTS is using a
4483 	 *  multibyte SCSI MOVE.
4484 	 *
4485 	 *  Phase change		Some possible cause
4486 	 *
4487 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4488 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4489 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4490 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4491 	 *  			negotiation messages.
4492 	 *
4493 	 *  The code below does not care of the new phase and so
4494 	 *  trusts the target. Why to annoy it ?
4495 	 *  If the interrupted phase is COMMAND phase, we restart at
4496 	 *  dispatcher.
4497 	 *  If a target does not get all the messages after selection,
4498 	 *  the code assumes blindly that the target discards extended
4499 	 *  messages and clears the negotiation status.
4500 	 *  If the target does not want all our response to negotiation,
4501 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4502 	 *  bloat for such a should_not_happen situation).
4503 	 *  In all other situation, we reset the BUS.
4504 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4505 	 */
4506 unexpected_phase:
4507 	dsp -= 8;
4508 	nxtdsp = 0;
4509 
4510 	switch (cmd & 7) {
4511 	case 2:	/* COMMAND phase */
4512 		nxtdsp = SCRIPTA_BA (np, dispatch);
4513 		break;
4514 #if 0
4515 	case 3:	/* STATUS  phase */
4516 		nxtdsp = SCRIPTA_BA (np, dispatch);
4517 		break;
4518 #endif
4519 	case 6:	/* MSG OUT phase */
4520 		/*
4521 		 *  If the device may want to use untagged when we want
4522 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4523 		 *  since we will not be able to handle reselect.
4524 		 *  Otherwise, we just don't care.
4525 		 */
4526 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4527 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4528 				cp->host_status = HS_BUSY;
4529 				np->msgout[0] = M_IDENTIFY | cp->lun;
4530 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4531 			}
4532 			else
4533 				nxtdsp = SCRIPTB_BA (np, ident_break);
4534 		}
4535 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4536 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4537 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4538 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4539 		}
4540 		break;
4541 #if 0
4542 	case 7:	/* MSG IN  phase */
4543 		nxtdsp = SCRIPTA_BA (np, clrack);
4544 		break;
4545 #endif
4546 	}
4547 
4548 	if (nxtdsp) {
4549 		OUTL_DSP (nxtdsp);
4550 		return;
4551 	}
4552 
4553 reset_all:
4554 	sym_start_reset(np);
4555 }
4556 
4557 /*
4558  *  Dequeue from the START queue all CCBs that match
4559  *  a given target/lun/task condition (-1 means all),
4560  *  and move them from the BUSY queue to the COMP queue
4561  *  with CAM_REQUEUE_REQ status condition.
4562  *  This function is used during error handling/recovery.
4563  *  It is called with SCRIPTS not running.
4564  */
4565 static int
4566 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4567 {
4568 	int j;
4569 	ccb_p cp;
4570 
4571 	/*
4572 	 *  Make sure the starting index is within range.
4573 	 */
4574 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4575 
4576 	/*
4577 	 *  Walk until end of START queue and dequeue every job
4578 	 *  that matches the target/lun/task condition.
4579 	 */
4580 	j = i;
4581 	while (i != np->squeueput) {
4582 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4583 		assert(cp);
4584 #ifdef SYM_CONF_IARB_SUPPORT
4585 		/* Forget hints for IARB, they may be no longer relevant */
4586 		cp->host_flags &= ~HF_HINT_IARB;
4587 #endif
4588 		if ((target == -1 || cp->target == target) &&
4589 		    (lun    == -1 || cp->lun    == lun)    &&
4590 		    (task   == -1 || cp->tag    == task)) {
4591 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4592 			sym_remque(&cp->link_ccbq);
4593 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4594 		}
4595 		else {
4596 			if (i != j)
4597 				np->squeue[j] = np->squeue[i];
4598 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4599 		}
4600 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4601 	}
4602 	if (i != j)		/* Copy back the idle task if needed */
4603 		np->squeue[j] = np->squeue[i];
4604 	np->squeueput = j;	/* Update our current start queue pointer */
4605 
4606 	return (i - j) / 2;
4607 }
4608 
4609 /*
4610  *  Complete all CCBs queued to the COMP queue.
4611  *
4612  *  These CCBs are assumed:
4613  *  - Not to be referenced either by devices or
4614  *    SCRIPTS-related queues and datas.
4615  *  - To have to be completed with an error condition
4616  *    or requeued.
4617  *
4618  *  The device queue freeze count is incremented
4619  *  for each CCB that does not prevent this.
4620  *  This function is called when all CCBs involved
4621  *  in error handling/recovery have been reaped.
4622  */
4623 static void
4624 sym_flush_comp_queue(hcb_p np, int cam_status)
4625 {
4626 	SYM_QUEHEAD *qp;
4627 	ccb_p cp;
4628 
4629 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
4630 		union ccb *ccb;
4631 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4632 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4633 		/* Leave quiet CCBs waiting for resources */
4634 		if (cp->host_status == HS_WAIT)
4635 			continue;
4636 		ccb = cp->cam_ccb;
4637 		if (cam_status)
4638 			sym_set_cam_status(ccb, cam_status);
4639 		sym_free_ccb(np, cp);
4640 		sym_freeze_cam_ccb(ccb);
4641 		sym_xpt_done(np, ccb);
4642 	}
4643 }
4644 
4645 /*
4646  *  chip handler for bad SCSI status condition
4647  *
4648  *  In case of bad SCSI status, we unqueue all the tasks
4649  *  currently queued to the controller but not yet started
4650  *  and then restart the SCRIPTS processor immediately.
4651  *
4652  *  QUEUE FULL and BUSY conditions are handled the same way.
4653  *  Basically all the not yet started tasks are requeued in
4654  *  device queue and the queue is frozen until a completion.
4655  *
4656  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4657  *  the CCB of the failed command to prepare a REQUEST SENSE
4658  *  SCSI command and queue it to the controller queue.
4659  *
4660  *  SCRATCHA is assumed to have been loaded with STARTPOS
4661  *  before the SCRIPTS called the C code.
4662  */
4663 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4664 {
4665 	tcb_p tp	= &np->target[cp->target];
4666 	u32		startp;
4667 	u_char		s_status = cp->ssss_status;
4668 	u_char		h_flags  = cp->host_flags;
4669 	int		msglen;
4670 	int		nego;
4671 	int		i;
4672 
4673 	/*
4674 	 *  Compute the index of the next job to start from SCRIPTS.
4675 	 */
4676 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4677 
4678 	/*
4679 	 *  The last CCB queued used for IARB hint may be
4680 	 *  no longer relevant. Forget it.
4681 	 */
4682 #ifdef SYM_CONF_IARB_SUPPORT
4683 	if (np->last_cp)
4684 		np->last_cp = 0;
4685 #endif
4686 
4687 	/*
4688 	 *  Now deal with the SCSI status.
4689 	 */
4690 	switch(s_status) {
4691 	case S_BUSY:
4692 	case S_QUEUE_FULL:
4693 		if (sym_verbose >= 2) {
4694 			PRINT_ADDR(cp);
4695 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4696 		}
4697 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4698 		sym_complete_error (np, cp);
4699 		break;
4700 	case S_TERMINATED:
4701 	case S_CHECK_COND:
4702 		/*
4703 		 *  If we get an SCSI error when requesting sense, give up.
4704 		 */
4705 		if (h_flags & HF_SENSE) {
4706 			sym_complete_error (np, cp);
4707 			break;
4708 		}
4709 
4710 		/*
4711 		 *  Dequeue all queued CCBs for that device not yet started,
4712 		 *  and restart the SCRIPTS processor immediately.
4713 		 */
4714 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4715 		OUTL_DSP (SCRIPTA_BA (np, start));
4716 
4717  		/*
4718 		 *  Save some info of the actual IO.
4719 		 *  Compute the data residual.
4720 		 */
4721 		cp->sv_scsi_status = cp->ssss_status;
4722 		cp->sv_xerr_status = cp->xerr_status;
4723 		cp->sv_resid = sym_compute_residual(np, cp);
4724 
4725 		/*
4726 		 *  Prepare all needed data structures for
4727 		 *  requesting sense data.
4728 		 */
4729 
4730 		/*
4731 		 *  identify message
4732 		 */
4733 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4734 		msglen = 1;
4735 
4736 		/*
4737 		 *  If we are currently using anything different from
4738 		 *  async. 8 bit data transfers with that target,
4739 		 *  start a negotiation, since the device may want
4740 		 *  to report us a UNIT ATTENTION condition due to
4741 		 *  a cause we currently ignore, and we donnot want
4742 		 *  to be stuck with WIDE and/or SYNC data transfer.
4743 		 *
4744 		 *  cp->nego_status is filled by sym_prepare_nego().
4745 		 */
4746 		cp->nego_status = 0;
4747 		nego = 0;
4748 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4749 			nego = NS_PPR;
4750 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4751 			nego = NS_WIDE;
4752 		else if (tp->tinfo.current.offset != 0)
4753 			nego = NS_SYNC;
4754 		if (nego)
4755 			msglen +=
4756 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4757 		/*
4758 		 *  Message table indirect structure.
4759 		 */
4760 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4761 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4762 
4763 		/*
4764 		 *  sense command
4765 		 */
4766 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4767 		cp->phys.cmd.size	= cpu_to_scr(6);
4768 
4769 		/*
4770 		 *  patch requested size into sense command
4771 		 */
4772 		cp->sensecmd[0]		= 0x03;
4773 		cp->sensecmd[1]		= cp->lun << 5;
4774 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4775 			cp->sensecmd[1]	= 0;
4776 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4777 		cp->data_len		= SYM_SNS_BBUF_LEN;
4778 
4779 		/*
4780 		 *  sense data
4781 		 */
4782 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4783 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4784 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4785 
4786 		/*
4787 		 *  requeue the command.
4788 		 */
4789 		startp = SCRIPTB_BA (np, sdata_in);
4790 
4791 		cp->phys.head.savep	= cpu_to_scr(startp);
4792 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4793 		cp->phys.head.lastp	= cpu_to_scr(startp);
4794 		cp->startp	= cpu_to_scr(startp);
4795 
4796 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4797 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4798 		cp->ssss_status = S_ILLEGAL;
4799 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4800 		cp->xerr_status = 0;
4801 		cp->extra_bytes = 0;
4802 
4803 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4804 
4805 		/*
4806 		 *  Requeue the command.
4807 		 */
4808 		sym_put_start_queue(np, cp);
4809 
4810 		/*
4811 		 *  Give back to upper layer everything we have dequeued.
4812 		 */
4813 		sym_flush_comp_queue(np, 0);
4814 		break;
4815 	}
4816 }
4817 
4818 /*
4819  *  After a device has accepted some management message
4820  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4821  *  a device signals a UNIT ATTENTION condition, some
4822  *  tasks are thrown away by the device. We are required
4823  *  to reflect that on our tasks list since the device
4824  *  will never complete these tasks.
4825  *
4826  *  This function move from the BUSY queue to the COMP
4827  *  queue all disconnected CCBs for a given target that
4828  *  match the following criteria:
4829  *  - lun=-1  means any logical UNIT otherwise a given one.
4830  *  - task=-1 means any task, otherwise a given one.
4831  */
4832 static int
4833 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4834 {
4835 	SYM_QUEHEAD qtmp, *qp;
4836 	int i = 0;
4837 	ccb_p cp;
4838 
4839 	/*
4840 	 *  Move the entire BUSY queue to our temporary queue.
4841 	 */
4842 	sym_que_init(&qtmp);
4843 	sym_que_splice(&np->busy_ccbq, &qtmp);
4844 	sym_que_init(&np->busy_ccbq);
4845 
4846 	/*
4847 	 *  Put all CCBs that matches our criteria into
4848 	 *  the COMP queue and put back other ones into
4849 	 *  the BUSY queue.
4850 	 */
4851 	while ((qp = sym_remque_head(&qtmp)) != 0) {
4852 		union ccb *ccb;
4853 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4854 		ccb = cp->cam_ccb;
4855 		if (cp->host_status != HS_DISCONNECT ||
4856 		    cp->target != target	     ||
4857 		    (lun  != -1 && cp->lun != lun)   ||
4858 		    (task != -1 &&
4859 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4860 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4861 			continue;
4862 		}
4863 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4864 
4865 		/* Preserve the software timeout condition */
4866 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4867 			sym_set_cam_status(ccb, cam_status);
4868 		++i;
4869 #if 0
4870 printf("XXXX TASK @%p CLEARED\n", cp);
4871 #endif
4872 	}
4873 	return i;
4874 }
4875 
4876 /*
4877  *  chip handler for TASKS recovery
4878  *
4879  *  We cannot safely abort a command, while the SCRIPTS
4880  *  processor is running, since we just would be in race
4881  *  with it.
4882  *
4883  *  As long as we have tasks to abort, we keep the SEM
4884  *  bit set in the ISTAT. When this bit is set, the
4885  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4886  *  each time it enters the scheduler.
4887  *
4888  *  If we have to reset a target, clear tasks of a unit,
4889  *  or to perform the abort of a disconnected job, we
4890  *  restart the SCRIPTS for selecting the target. Once
4891  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4892  *  If it loses arbitration, the SCRIPTS will interrupt again
4893  *  the next time it will enter its scheduler, and so on ...
4894  *
4895  *  On SIR_TARGET_SELECTED, we scan for the more
4896  *  appropriate thing to do:
4897  *
4898  *  - If nothing, we just sent a M_ABORT message to the
4899  *    target to get rid of the useless SCSI bus ownership.
4900  *    According to the specs, no tasks shall be affected.
4901  *  - If the target is to be reset, we send it a M_RESET
4902  *    message.
4903  *  - If a logical UNIT is to be cleared , we send the
4904  *    IDENTIFY(lun) + M_ABORT.
4905  *  - If an untagged task is to be aborted, we send the
4906  *    IDENTIFY(lun) + M_ABORT.
4907  *  - If a tagged task is to be aborted, we send the
4908  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4909  *
4910  *  Once our 'kiss of death' :) message has been accepted
4911  *  by the target, the SCRIPTS interrupts again
4912  *  (SIR_ABORT_SENT). On this interrupt, we complete
4913  *  all the CCBs that should have been aborted by the
4914  *  target according to our message.
4915  */
4916 static void sym_sir_task_recovery(hcb_p np, int num)
4917 {
4918 	SYM_QUEHEAD *qp;
4919 	ccb_p cp;
4920 	tcb_p tp;
4921 	int target=-1, lun=-1, task;
4922 	int i, k;
4923 
4924 	switch(num) {
4925 	/*
4926 	 *  The SCRIPTS processor stopped before starting
4927 	 *  the next command in order to allow us to perform
4928 	 *  some task recovery.
4929 	 */
4930 	case SIR_SCRIPT_STOPPED:
4931 		/*
4932 		 *  Do we have any target to reset or unit to clear ?
4933 		 */
4934 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4935 			tp = &np->target[i];
4936 			if (tp->to_reset ||
4937 			    (tp->lun0p && tp->lun0p->to_clear)) {
4938 				target = i;
4939 				break;
4940 			}
4941 			if (!tp->lunmp)
4942 				continue;
4943 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4944 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4945 					target	= i;
4946 					break;
4947 				}
4948 			}
4949 			if (target != -1)
4950 				break;
4951 		}
4952 
4953 		/*
4954 		 *  If not, walk the busy queue for any
4955 		 *  disconnected CCB to be aborted.
4956 		 */
4957 		if (target == -1) {
4958 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4959 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4960 				if (cp->host_status != HS_DISCONNECT)
4961 					continue;
4962 				if (cp->to_abort) {
4963 					target = cp->target;
4964 					break;
4965 				}
4966 			}
4967 		}
4968 
4969 		/*
4970 		 *  If some target is to be selected,
4971 		 *  prepare and start the selection.
4972 		 */
4973 		if (target != -1) {
4974 			tp = &np->target[target];
4975 			np->abrt_sel.sel_id	= target;
4976 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4977 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4978 			OUTL(nc_dsa, np->hcb_ba);
4979 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4980 			return;
4981 		}
4982 
4983 		/*
4984 		 *  Now look for a CCB to abort that haven't started yet.
4985 		 *  Btw, the SCRIPTS processor is still stopped, so
4986 		 *  we are not in race.
4987 		 */
4988 		i = 0;
4989 		cp = 0;
4990 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4991 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4992 			if (cp->host_status != HS_BUSY &&
4993 			    cp->host_status != HS_NEGOTIATE)
4994 				continue;
4995 			if (!cp->to_abort)
4996 				continue;
4997 #ifdef SYM_CONF_IARB_SUPPORT
4998 			/*
4999 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5000 			 *    want to cancel the last queued CCB, since the
5001 			 *    SCRIPTS may have anticipated the selection.
5002 			 */
5003 			if (cp == np->last_cp) {
5004 				cp->to_abort = 0;
5005 				continue;
5006 			}
5007 #endif
5008 			i = 1;	/* Means we have found some */
5009 			break;
5010 		}
5011 		if (!i) {
5012 			/*
5013 			 *  We are done, so we donnot need
5014 			 *  to synchronize with the SCRIPTS anylonger.
5015 			 *  Remove the SEM flag from the ISTAT.
5016 			 */
5017 			np->istat_sem = 0;
5018 			OUTB (nc_istat, SIGP);
5019 			break;
5020 		}
5021 		/*
5022 		 *  Compute index of next position in the start
5023 		 *  queue the SCRIPTS intends to start and dequeue
5024 		 *  all CCBs for that device that haven't been started.
5025 		 */
5026 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5027 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5028 
5029 		/*
5030 		 *  Make sure at least our IO to abort has been dequeued.
5031 		 */
5032 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5033 
5034 		/*
5035 		 *  Keep track in cam status of the reason of the abort.
5036 		 */
5037 		if (cp->to_abort == 2)
5038 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5039 		else
5040 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5041 
5042 		/*
5043 		 *  Complete with error everything that we have dequeued.
5044 	 	 */
5045 		sym_flush_comp_queue(np, 0);
5046 		break;
5047 	/*
5048 	 *  The SCRIPTS processor has selected a target
5049 	 *  we may have some manual recovery to perform for.
5050 	 */
5051 	case SIR_TARGET_SELECTED:
5052 		target = (INB (nc_sdid) & 0xf);
5053 		tp = &np->target[target];
5054 
5055 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5056 
5057 		/*
5058 		 *  If the target is to be reset, prepare a
5059 		 *  M_RESET message and clear the to_reset flag
5060 		 *  since we donnot expect this operation to fail.
5061 		 */
5062 		if (tp->to_reset) {
5063 			np->abrt_msg[0] = M_RESET;
5064 			np->abrt_tbl.size = 1;
5065 			tp->to_reset = 0;
5066 			break;
5067 		}
5068 
5069 		/*
5070 		 *  Otherwise, look for some logical unit to be cleared.
5071 		 */
5072 		if (tp->lun0p && tp->lun0p->to_clear)
5073 			lun = 0;
5074 		else if (tp->lunmp) {
5075 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5076 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5077 					lun = k;
5078 					break;
5079 				}
5080 			}
5081 		}
5082 
5083 		/*
5084 		 *  If a logical unit is to be cleared, prepare
5085 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5086 		 */
5087 		if (lun != -1) {
5088 			lcb_p lp = sym_lp(np, tp, lun);
5089 			lp->to_clear = 0; /* We donnot expect to fail here */
5090 			np->abrt_msg[0] = M_IDENTIFY | lun;
5091 			np->abrt_msg[1] = M_ABORT;
5092 			np->abrt_tbl.size = 2;
5093 			break;
5094 		}
5095 
5096 		/*
5097 		 *  Otherwise, look for some disconnected job to
5098 		 *  abort for this target.
5099 		 */
5100 		i = 0;
5101 		cp = 0;
5102 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5103 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5104 			if (cp->host_status != HS_DISCONNECT)
5105 				continue;
5106 			if (cp->target != target)
5107 				continue;
5108 			if (!cp->to_abort)
5109 				continue;
5110 			i = 1;	/* Means we have some */
5111 			break;
5112 		}
5113 
5114 		/*
5115 		 *  If we have none, probably since the device has
5116 		 *  completed the command before we won abitration,
5117 		 *  send a M_ABORT message without IDENTIFY.
5118 		 *  According to the specs, the device must just
5119 		 *  disconnect the BUS and not abort any task.
5120 		 */
5121 		if (!i) {
5122 			np->abrt_msg[0] = M_ABORT;
5123 			np->abrt_tbl.size = 1;
5124 			break;
5125 		}
5126 
5127 		/*
5128 		 *  We have some task to abort.
5129 		 *  Set the IDENTIFY(lun)
5130 		 */
5131 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5132 
5133 		/*
5134 		 *  If we want to abort an untagged command, we
5135 		 *  will send an IDENTIFY + M_ABORT.
5136 		 *  Otherwise (tagged command), we will send
5137 		 *  an IDENTIFY + task attributes + ABORT TAG.
5138 		 */
5139 		if (cp->tag == NO_TAG) {
5140 			np->abrt_msg[1] = M_ABORT;
5141 			np->abrt_tbl.size = 2;
5142 		}
5143 		else {
5144 			np->abrt_msg[1] = cp->scsi_smsg[1];
5145 			np->abrt_msg[2] = cp->scsi_smsg[2];
5146 			np->abrt_msg[3] = M_ABORT_TAG;
5147 			np->abrt_tbl.size = 4;
5148 		}
5149 		/*
5150 		 *  Keep track of software timeout condition, since the
5151 		 *  peripheral driver may not count retries on abort
5152 		 *  conditions not due to timeout.
5153 		 */
5154 		if (cp->to_abort == 2)
5155 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5156 		cp->to_abort = 0; /* We donnot expect to fail here */
5157 		break;
5158 
5159 	/*
5160 	 *  The target has accepted our message and switched
5161 	 *  to BUS FREE phase as we expected.
5162 	 */
5163 	case SIR_ABORT_SENT:
5164 		target = (INB (nc_sdid) & 0xf);
5165 		tp = &np->target[target];
5166 
5167 		/*
5168 		**  If we didn't abort anything, leave here.
5169 		*/
5170 		if (np->abrt_msg[0] == M_ABORT)
5171 			break;
5172 
5173 		/*
5174 		 *  If we sent a M_RESET, then a hardware reset has
5175 		 *  been performed by the target.
5176 		 *  - Reset everything to async 8 bit
5177 		 *  - Tell ourself to negotiate next time :-)
5178 		 *  - Prepare to clear all disconnected CCBs for
5179 		 *    this target from our task list (lun=task=-1)
5180 		 */
5181 		lun = -1;
5182 		task = -1;
5183 		if (np->abrt_msg[0] == M_RESET) {
5184 			tp->head.sval = 0;
5185 			tp->head.wval = np->rv_scntl3;
5186 			tp->head.uval = 0;
5187 			tp->tinfo.current.period = 0;
5188 			tp->tinfo.current.offset = 0;
5189 			tp->tinfo.current.width  = BUS_8_BIT;
5190 			tp->tinfo.current.options = 0;
5191 		}
5192 
5193 		/*
5194 		 *  Otherwise, check for the LUN and TASK(s)
5195 		 *  concerned by the cancelation.
5196 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5197 		 *  or an ABORT message :-)
5198 		 */
5199 		else {
5200 			lun = np->abrt_msg[0] & 0x3f;
5201 			if (np->abrt_msg[1] == M_ABORT_TAG)
5202 				task = np->abrt_msg[2];
5203 		}
5204 
5205 		/*
5206 		 *  Complete all the CCBs the device should have
5207 		 *  aborted due to our 'kiss of death' message.
5208 		 */
5209 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5210 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5211 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5212 		sym_flush_comp_queue(np, 0);
5213 
5214 		/*
5215 		 *  If we sent a BDR, make uper layer aware of that.
5216 		 */
5217 		if (np->abrt_msg[0] == M_RESET)
5218 			xpt_async(AC_SENT_BDR, np->path, NULL);
5219 		break;
5220 	}
5221 
5222 	/*
5223 	 *  Print to the log the message we intend to send.
5224 	 */
5225 	if (num == SIR_TARGET_SELECTED) {
5226 		PRINT_TARGET(np, target);
5227 		sym_printl_hex("control msgout:", np->abrt_msg,
5228 			      np->abrt_tbl.size);
5229 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5230 	}
5231 
5232 	/*
5233 	 *  Let the SCRIPTS processor continue.
5234 	 */
5235 	OUTONB_STD ();
5236 }
5237 
5238 /*
5239  *  Gerard's alchemy:) that deals with with the data
5240  *  pointer for both MDP and the residual calculation.
5241  *
5242  *  I didn't want to bloat the code by more than 200
5243  *  lignes for the handling of both MDP and the residual.
5244  *  This has been achieved by using a data pointer
5245  *  representation consisting in an index in the data
5246  *  array (dp_sg) and a negative offset (dp_ofs) that
5247  *  have the following meaning:
5248  *
5249  *  - dp_sg = SYM_CONF_MAX_SG
5250  *    we are at the end of the data script.
5251  *  - dp_sg < SYM_CONF_MAX_SG
5252  *    dp_sg points to the next entry of the scatter array
5253  *    we want to transfer.
5254  *  - dp_ofs < 0
5255  *    dp_ofs represents the residual of bytes of the
5256  *    previous entry scatter entry we will send first.
5257  *  - dp_ofs = 0
5258  *    no residual to send first.
5259  *
5260  *  The function sym_evaluate_dp() accepts an arbitray
5261  *  offset (basically from the MDP message) and returns
5262  *  the corresponding values of dp_sg and dp_ofs.
5263  */
5264 
5265 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5266 {
5267 	u32	dp_scr;
5268 	int	dp_ofs, dp_sg, dp_sgmin;
5269 	int	tmp;
5270 	struct sym_pmc *pm;
5271 
5272 	/*
5273 	 *  Compute the resulted data pointer in term of a script
5274 	 *  address within some DATA script and a signed byte offset.
5275 	 */
5276 	dp_scr = scr;
5277 	dp_ofs = *ofs;
5278 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5279 		pm = &cp->phys.pm0;
5280 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5281 		pm = &cp->phys.pm1;
5282 	else
5283 		pm = 0;
5284 
5285 	if (pm) {
5286 		dp_scr  = scr_to_cpu(pm->ret);
5287 		dp_ofs -= scr_to_cpu(pm->sg.size);
5288 	}
5289 
5290 	/*
5291 	 *  If we are auto-sensing, then we are done.
5292 	 */
5293 	if (cp->host_flags & HF_SENSE) {
5294 		*ofs = dp_ofs;
5295 		return 0;
5296 	}
5297 
5298 	/*
5299 	 *  Deduce the index of the sg entry.
5300 	 *  Keep track of the index of the first valid entry.
5301 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5302 	 *  end of the data.
5303 	 */
5304 	tmp = scr_to_cpu(cp->phys.head.goalp);
5305 	dp_sg = SYM_CONF_MAX_SG;
5306 	if (dp_scr != tmp)
5307 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5308 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5309 
5310 	/*
5311 	 *  Move to the sg entry the data pointer belongs to.
5312 	 *
5313 	 *  If we are inside the data area, we expect result to be:
5314 	 *
5315 	 *  Either,
5316 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5317 	 *      the data pointer belongs to (or the end of the data)
5318 	 *  Or,
5319 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5320 	 *      the data pointer belongs to + 1.
5321 	 */
5322 	if (dp_ofs < 0) {
5323 		int n;
5324 		while (dp_sg > dp_sgmin) {
5325 			--dp_sg;
5326 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5327 			n = dp_ofs + (tmp & 0xffffff);
5328 			if (n > 0) {
5329 				++dp_sg;
5330 				break;
5331 			}
5332 			dp_ofs = n;
5333 		}
5334 	}
5335 	else if (dp_ofs > 0) {
5336 		while (dp_sg < SYM_CONF_MAX_SG) {
5337 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5338 			dp_ofs -= (tmp & 0xffffff);
5339 			++dp_sg;
5340 			if (dp_ofs <= 0)
5341 				break;
5342 		}
5343 	}
5344 
5345 	/*
5346 	 *  Make sure the data pointer is inside the data area.
5347 	 *  If not, return some error.
5348 	 */
5349 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5350 		goto out_err;
5351 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5352 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5353 		goto out_err;
5354 
5355 	/*
5356 	 *  Save the extreme pointer if needed.
5357 	 */
5358 	if (dp_sg > cp->ext_sg ||
5359             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5360 		cp->ext_sg  = dp_sg;
5361 		cp->ext_ofs = dp_ofs;
5362 	}
5363 
5364 	/*
5365 	 *  Return data.
5366 	 */
5367 	*ofs = dp_ofs;
5368 	return dp_sg;
5369 
5370 out_err:
5371 	return -1;
5372 }
5373 
5374 /*
5375  *  chip handler for MODIFY DATA POINTER MESSAGE
5376  *
5377  *  We also call this function on IGNORE WIDE RESIDUE
5378  *  messages that do not match a SWIDE full condition.
5379  *  Btw, we assume in that situation that such a message
5380  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5381  */
5382 
5383 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5384 {
5385 	int dp_ofs	= ofs;
5386 	u32	dp_scr	= INL (nc_temp);
5387 	u32	dp_ret;
5388 	u32	tmp;
5389 	u_char	hflags;
5390 	int	dp_sg;
5391 	struct	sym_pmc *pm;
5392 
5393 	/*
5394 	 *  Not supported for auto-sense.
5395 	 */
5396 	if (cp->host_flags & HF_SENSE)
5397 		goto out_reject;
5398 
5399 	/*
5400 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5401 	 *  to the resulted data pointer.
5402 	 */
5403 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5404 	if (dp_sg < 0)
5405 		goto out_reject;
5406 
5407 	/*
5408 	 *  And our alchemy:) allows to easily calculate the data
5409 	 *  script address we want to return for the next data phase.
5410 	 */
5411 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5412 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5413 
5414 	/*
5415 	 *  If offset / scatter entry is zero we donnot need
5416 	 *  a context for the new current data pointer.
5417 	 */
5418 	if (dp_ofs == 0) {
5419 		dp_scr = dp_ret;
5420 		goto out_ok;
5421 	}
5422 
5423 	/*
5424 	 *  Get a context for the new current data pointer.
5425 	 */
5426 	hflags = INB (HF_PRT);
5427 
5428 	if (hflags & HF_DP_SAVED)
5429 		hflags ^= HF_ACT_PM;
5430 
5431 	if (!(hflags & HF_ACT_PM)) {
5432 		pm  = &cp->phys.pm0;
5433 		dp_scr = SCRIPTA_BA (np, pm0_data);
5434 	}
5435 	else {
5436 		pm = &cp->phys.pm1;
5437 		dp_scr = SCRIPTA_BA (np, pm1_data);
5438 	}
5439 
5440 	hflags &= ~(HF_DP_SAVED);
5441 
5442 	OUTB (HF_PRT, hflags);
5443 
5444 	/*
5445 	 *  Set up the new current data pointer.
5446 	 *  ofs < 0 there, and for the next data phase, we
5447 	 *  want to transfer part of the data of the sg entry
5448 	 *  corresponding to index dp_sg-1 prior to returning
5449 	 *  to the main data script.
5450 	 */
5451 	pm->ret = cpu_to_scr(dp_ret);
5452 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5453 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5454 	pm->sg.addr = cpu_to_scr(tmp);
5455 	pm->sg.size = cpu_to_scr(-dp_ofs);
5456 
5457 out_ok:
5458 	OUTL (nc_temp, dp_scr);
5459 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5460 	return;
5461 
5462 out_reject:
5463 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5464 }
5465 
5466 
5467 /*
5468  *  chip calculation of the data residual.
5469  *
5470  *  As I used to say, the requirement of data residual
5471  *  in SCSI is broken, useless and cannot be achieved
5472  *  without huge complexity.
5473  *  But most OSes and even the official CAM require it.
5474  *  When stupidity happens to be so widely spread inside
5475  *  a community, it gets hard to convince.
5476  *
5477  *  Anyway, I don't care, since I am not going to use
5478  *  any software that considers this data residual as
5479  *  a relevant information. :)
5480  */
5481 
5482 static int sym_compute_residual(hcb_p np, ccb_p cp)
5483 {
5484 	int dp_sg, dp_sgmin, resid = 0;
5485 	int dp_ofs = 0;
5486 
5487 	/*
5488 	 *  Check for some data lost or just thrown away.
5489 	 *  We are not required to be quite accurate in this
5490 	 *  situation. Btw, if we are odd for output and the
5491 	 *  device claims some more data, it may well happen
5492 	 *  than our residual be zero. :-)
5493 	 */
5494 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5495 		if (cp->xerr_status & XE_EXTRA_DATA)
5496 			resid -= cp->extra_bytes;
5497 		if (cp->xerr_status & XE_SODL_UNRUN)
5498 			++resid;
5499 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5500 			--resid;
5501 	}
5502 
5503 	/*
5504 	 *  If all data has been transferred,
5505 	 *  there is no residual.
5506 	 */
5507 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5508 		return resid;
5509 
5510 	/*
5511 	 *  If no data transfer occurs, or if the data
5512 	 *  pointer is weird, return full residual.
5513 	 */
5514 	if (cp->startp == cp->phys.head.lastp ||
5515 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5516 			    &dp_ofs) < 0) {
5517 		return cp->data_len;
5518 	}
5519 
5520 	/*
5521 	 *  If we were auto-sensing, then we are done.
5522 	 */
5523 	if (cp->host_flags & HF_SENSE) {
5524 		return -dp_ofs;
5525 	}
5526 
5527 	/*
5528 	 *  We are now full comfortable in the computation
5529 	 *  of the data residual (2's complement).
5530 	 */
5531 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5532 	resid = -cp->ext_ofs;
5533 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5534 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5535 		resid += (tmp & 0xffffff);
5536 	}
5537 
5538 	/*
5539 	 *  Hopefully, the result is not too wrong.
5540 	 */
5541 	return resid;
5542 }
5543 
5544 /*
5545  *  Print out the content of a SCSI message.
5546  */
5547 
5548 static int sym_show_msg (u_char * msg)
5549 {
5550 	u_char i;
5551 	printf ("%x",*msg);
5552 	if (*msg==M_EXTENDED) {
5553 		for (i=1;i<8;i++) {
5554 			if (i-1>msg[1]) break;
5555 			printf ("-%x",msg[i]);
5556 		};
5557 		return (i+1);
5558 	} else if ((*msg & 0xf0) == 0x20) {
5559 		printf ("-%x",msg[1]);
5560 		return (2);
5561 	};
5562 	return (1);
5563 }
5564 
5565 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5566 {
5567 	PRINT_ADDR(cp);
5568 	if (label)
5569 		printf ("%s: ", label);
5570 
5571 	(void) sym_show_msg (msg);
5572 	printf (".\n");
5573 }
5574 
5575 /*
5576  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5577  *
5578  *  When we try to negotiate, we append the negotiation message
5579  *  to the identify and (maybe) simple tag message.
5580  *  The host status field is set to HS_NEGOTIATE to mark this
5581  *  situation.
5582  *
5583  *  If the target doesn't answer this message immediately
5584  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5585  *  will be raised eventually.
5586  *  The handler removes the HS_NEGOTIATE status, and sets the
5587  *  negotiated value to the default (async / nowide).
5588  *
5589  *  If we receive a matching answer immediately, we check it
5590  *  for validity, and set the values.
5591  *
5592  *  If we receive a Reject message immediately, we assume the
5593  *  negotiation has failed, and fall back to standard values.
5594  *
5595  *  If we receive a negotiation message while not in HS_NEGOTIATE
5596  *  state, it's a target initiated negotiation. We prepare a
5597  *  (hopefully) valid answer, set our parameters, and send back
5598  *  this answer to the target.
5599  *
5600  *  If the target doesn't fetch the answer (no message out phase),
5601  *  we assume the negotiation has failed, and fall back to default
5602  *  settings (SIR_NEGO_PROTO interrupt).
5603  *
5604  *  When we set the values, we adjust them in all ccbs belonging
5605  *  to this target, in the controller's register, and in the "phys"
5606  *  field of the controller's struct sym_hcb.
5607  */
5608 
5609 /*
5610  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5611  */
5612 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5613 {
5614 	u_char	chg, ofs, per, fak, div;
5615 	int	req = 1;
5616 
5617 	/*
5618 	 *  Synchronous request message received.
5619 	 */
5620 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5621 		sym_print_msg(cp, "sync msgin", np->msgin);
5622 	};
5623 
5624 	/*
5625 	 * request or answer ?
5626 	 */
5627 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5628 		OUTB (HS_PRT, HS_BUSY);
5629 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5630 			goto reject_it;
5631 		req = 0;
5632 	}
5633 
5634 	/*
5635 	 *  get requested values.
5636 	 */
5637 	chg = 0;
5638 	per = np->msgin[3];
5639 	ofs = np->msgin[4];
5640 
5641 	/*
5642 	 *  check values against our limits.
5643 	 */
5644 	if (ofs) {
5645 		if (ofs > np->maxoffs)
5646 			{chg = 1; ofs = np->maxoffs;}
5647 		if (req) {
5648 			if (ofs > tp->tinfo.user.offset)
5649 				{chg = 1; ofs = tp->tinfo.user.offset;}
5650 		}
5651 	}
5652 
5653 	if (ofs) {
5654 		if (per < np->minsync)
5655 			{chg = 1; per = np->minsync;}
5656 		if (req) {
5657 			if (per < tp->tinfo.user.period)
5658 				{chg = 1; per = tp->tinfo.user.period;}
5659 		}
5660 	}
5661 
5662 	div = fak = 0;
5663 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5664 		goto reject_it;
5665 
5666 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5667 		PRINT_ADDR(cp);
5668 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5669 			ofs, per, div, fak, chg);
5670 	}
5671 
5672 	/*
5673 	 *  This was an answer message
5674 	 */
5675 	if (req == 0) {
5676 		if (chg) 	/* Answer wasn't acceptable. */
5677 			goto reject_it;
5678 		sym_setsync (np, cp, ofs, per, div, fak);
5679 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5680 		return;
5681 	}
5682 
5683 	/*
5684 	 *  It was a request. Set value and
5685 	 *  prepare an answer message
5686 	 */
5687 	sym_setsync (np, cp, ofs, per, div, fak);
5688 
5689 	np->msgout[0] = M_EXTENDED;
5690 	np->msgout[1] = 3;
5691 	np->msgout[2] = M_X_SYNC_REQ;
5692 	np->msgout[3] = per;
5693 	np->msgout[4] = ofs;
5694 
5695 	cp->nego_status = NS_SYNC;
5696 
5697 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5698 		sym_print_msg(cp, "sync msgout", np->msgout);
5699 	}
5700 
5701 	np->msgin [0] = M_NOOP;
5702 
5703 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5704 	return;
5705 reject_it:
5706 	sym_setsync (np, cp, 0, 0, 0, 0);
5707 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5708 }
5709 
5710 /*
5711  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5712  */
5713 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5714 {
5715 	u_char	chg, ofs, per, fak, dt, div, wide;
5716 	int	req = 1;
5717 
5718 	/*
5719 	 * Synchronous request message received.
5720 	 */
5721 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5722 		sym_print_msg(cp, "ppr msgin", np->msgin);
5723 	};
5724 
5725 	/*
5726 	 *  get requested values.
5727 	 */
5728 	chg  = 0;
5729 	per  = np->msgin[3];
5730 	ofs  = np->msgin[5];
5731 	wide = np->msgin[6];
5732 	dt   = np->msgin[7] & PPR_OPT_DT;
5733 
5734 	/*
5735 	 * request or answer ?
5736 	 */
5737 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5738 		OUTB (HS_PRT, HS_BUSY);
5739 		if (cp->nego_status && cp->nego_status != NS_PPR)
5740 			goto reject_it;
5741 		req = 0;
5742 	}
5743 
5744 	/*
5745 	 *  check values against our limits.
5746 	 */
5747 	if (wide > np->maxwide)
5748 		{chg = 1; wide = np->maxwide;}
5749 	if (!wide || !(np->features & FE_ULTRA3))
5750 		dt &= ~PPR_OPT_DT;
5751 	if (req) {
5752 		if (wide > tp->tinfo.user.width)
5753 			{chg = 1; wide = tp->tinfo.user.width;}
5754 	}
5755 
5756 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5757 		dt &= ~PPR_OPT_DT;
5758 
5759 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5760 
5761 	if (ofs) {
5762 		if (dt) {
5763 			if (ofs > np->maxoffs_dt)
5764 				{chg = 1; ofs = np->maxoffs_dt;}
5765 		}
5766 		else if (ofs > np->maxoffs)
5767 			{chg = 1; ofs = np->maxoffs;}
5768 		if (req) {
5769 			if (ofs > tp->tinfo.user.offset)
5770 				{chg = 1; ofs = tp->tinfo.user.offset;}
5771 		}
5772 	}
5773 
5774 	if (ofs) {
5775 		if (dt) {
5776 			if (per < np->minsync_dt)
5777 				{chg = 1; per = np->minsync_dt;}
5778 		}
5779 		else if (per < np->minsync)
5780 			{chg = 1; per = np->minsync;}
5781 		if (req) {
5782 			if (per < tp->tinfo.user.period)
5783 				{chg = 1; per = tp->tinfo.user.period;}
5784 		}
5785 	}
5786 
5787 	div = fak = 0;
5788 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5789 		goto reject_it;
5790 
5791 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5792 		PRINT_ADDR(cp);
5793 		printf ("ppr: "
5794 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5795 			dt, ofs, per, wide, div, fak, chg);
5796 	}
5797 
5798 	/*
5799 	 *  It was an answer.
5800 	 */
5801 	if (req == 0) {
5802 		if (chg) 	/* Answer wasn't acceptable */
5803 			goto reject_it;
5804 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5805 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5806 		return;
5807 	}
5808 
5809 	/*
5810 	 *  It was a request. Set value and
5811 	 *  prepare an answer message
5812 	 */
5813 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5814 
5815 	np->msgout[0] = M_EXTENDED;
5816 	np->msgout[1] = 6;
5817 	np->msgout[2] = M_X_PPR_REQ;
5818 	np->msgout[3] = per;
5819 	np->msgout[4] = 0;
5820 	np->msgout[5] = ofs;
5821 	np->msgout[6] = wide;
5822 	np->msgout[7] = dt;
5823 
5824 	cp->nego_status = NS_PPR;
5825 
5826 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5827 		sym_print_msg(cp, "ppr msgout", np->msgout);
5828 	}
5829 
5830 	np->msgin [0] = M_NOOP;
5831 
5832 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5833 	return;
5834 reject_it:
5835 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5836 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5837 	/*
5838 	 *  If it was a device response that should result in
5839 	 *  ST, we may want to try a legacy negotiation later.
5840 	 */
5841 	if (!req && !dt) {
5842 		tp->tinfo.goal.options = 0;
5843 		tp->tinfo.goal.width   = wide;
5844 		tp->tinfo.goal.period  = per;
5845 		tp->tinfo.goal.offset  = ofs;
5846 	}
5847 	return;
5848 }
5849 
5850 /*
5851  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5852  */
5853 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5854 {
5855 	u_char	chg, wide;
5856 	int	req = 1;
5857 
5858 	/*
5859 	 *  Wide request message received.
5860 	 */
5861 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5862 		sym_print_msg(cp, "wide msgin", np->msgin);
5863 	};
5864 
5865 	/*
5866 	 * Is it a request from the device?
5867 	 */
5868 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5869 		OUTB (HS_PRT, HS_BUSY);
5870 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5871 			goto reject_it;
5872 		req = 0;
5873 	}
5874 
5875 	/*
5876 	 *  get requested values.
5877 	 */
5878 	chg  = 0;
5879 	wide = np->msgin[3];
5880 
5881 	/*
5882 	 *  check values against driver limits.
5883 	 */
5884 	if (wide > np->maxwide)
5885 		{chg = 1; wide = np->maxwide;}
5886 	if (req) {
5887 		if (wide > tp->tinfo.user.width)
5888 			{chg = 1; wide = tp->tinfo.user.width;}
5889 	}
5890 
5891 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5892 		PRINT_ADDR(cp);
5893 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5894 	}
5895 
5896 	/*
5897 	 * This was an answer message
5898 	 */
5899 	if (req == 0) {
5900 		if (chg)	/*  Answer wasn't acceptable. */
5901 			goto reject_it;
5902 		sym_setwide (np, cp, wide);
5903 
5904 		/*
5905 		 * Negotiate for SYNC immediately after WIDE response.
5906 		 * This allows to negotiate for both WIDE and SYNC on
5907 		 * a single SCSI command (Suggested by Justin Gibbs).
5908 		 */
5909 		if (tp->tinfo.goal.offset) {
5910 			np->msgout[0] = M_EXTENDED;
5911 			np->msgout[1] = 3;
5912 			np->msgout[2] = M_X_SYNC_REQ;
5913 			np->msgout[3] = tp->tinfo.goal.period;
5914 			np->msgout[4] = tp->tinfo.goal.offset;
5915 
5916 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5917 				sym_print_msg(cp, "sync msgout", np->msgout);
5918 			}
5919 
5920 			cp->nego_status = NS_SYNC;
5921 			OUTB (HS_PRT, HS_NEGOTIATE);
5922 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5923 			return;
5924 		}
5925 
5926 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5927 		return;
5928 	};
5929 
5930 	/*
5931 	 *  It was a request, set value and
5932 	 *  prepare an answer message
5933 	 */
5934 	sym_setwide (np, cp, wide);
5935 
5936 	np->msgout[0] = M_EXTENDED;
5937 	np->msgout[1] = 2;
5938 	np->msgout[2] = M_X_WIDE_REQ;
5939 	np->msgout[3] = wide;
5940 
5941 	np->msgin [0] = M_NOOP;
5942 
5943 	cp->nego_status = NS_WIDE;
5944 
5945 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5946 		sym_print_msg(cp, "wide msgout", np->msgout);
5947 	}
5948 
5949 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5950 	return;
5951 reject_it:
5952 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5953 }
5954 
5955 /*
5956  *  Reset SYNC or WIDE to default settings.
5957  *
5958  *  Called when a negotiation does not succeed either
5959  *  on rejection or on protocol error.
5960  *
5961  *  If it was a PPR that made problems, we may want to
5962  *  try a legacy negotiation later.
5963  */
5964 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5965 {
5966 	/*
5967 	 *  any error in negotiation:
5968 	 *  fall back to default mode.
5969 	 */
5970 	switch (cp->nego_status) {
5971 	case NS_PPR:
5972 #if 0
5973 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5974 #else
5975 		tp->tinfo.goal.options = 0;
5976 		if (tp->tinfo.goal.period < np->minsync)
5977 			tp->tinfo.goal.period = np->minsync;
5978 		if (tp->tinfo.goal.offset > np->maxoffs)
5979 			tp->tinfo.goal.offset = np->maxoffs;
5980 #endif
5981 		break;
5982 	case NS_SYNC:
5983 		sym_setsync (np, cp, 0, 0, 0, 0);
5984 		break;
5985 	case NS_WIDE:
5986 		sym_setwide (np, cp, 0);
5987 		break;
5988 	};
5989 	np->msgin [0] = M_NOOP;
5990 	np->msgout[0] = M_NOOP;
5991 	cp->nego_status = 0;
5992 }
5993 
5994 /*
5995  *  chip handler for MESSAGE REJECT received in response to
5996  *  a WIDE or SYNCHRONOUS negotiation.
5997  */
5998 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5999 {
6000 	sym_nego_default(np, tp, cp);
6001 	OUTB (HS_PRT, HS_BUSY);
6002 }
6003 
6004 /*
6005  *  chip exception handler for programmed interrupts.
6006  */
6007 static void sym_int_sir (hcb_p np)
6008 {
6009 	u_char	num	= INB (nc_dsps);
6010 	u32	dsa	= INL (nc_dsa);
6011 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6012 	u_char	target	= INB (nc_sdid) & 0x0f;
6013 	tcb_p	tp	= &np->target[target];
6014 	int	tmp;
6015 
6016 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6017 
6018 	switch (num) {
6019 	/*
6020 	 *  Command has been completed with error condition
6021 	 *  or has been auto-sensed.
6022 	 */
6023 	case SIR_COMPLETE_ERROR:
6024 		sym_complete_error(np, cp);
6025 		return;
6026 	/*
6027 	 *  The C code is currently trying to recover from something.
6028 	 *  Typically, user want to abort some command.
6029 	 */
6030 	case SIR_SCRIPT_STOPPED:
6031 	case SIR_TARGET_SELECTED:
6032 	case SIR_ABORT_SENT:
6033 		sym_sir_task_recovery(np, num);
6034 		return;
6035 	/*
6036 	 *  The device didn't go to MSG OUT phase after having
6037 	 *  been selected with ATN. We donnot want to handle
6038 	 *  that.
6039 	 */
6040 	case SIR_SEL_ATN_NO_MSG_OUT:
6041 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6042 			sym_name (np), target);
6043 		goto out_stuck;
6044 	/*
6045 	 *  The device didn't switch to MSG IN phase after
6046 	 *  having reseleted the initiator.
6047 	 */
6048 	case SIR_RESEL_NO_MSG_IN:
6049 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6050 			sym_name (np), target);
6051 		goto out_stuck;
6052 	/*
6053 	 *  After reselection, the device sent a message that wasn't
6054 	 *  an IDENTIFY.
6055 	 */
6056 	case SIR_RESEL_NO_IDENTIFY:
6057 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6058 			sym_name (np), target);
6059 		goto out_stuck;
6060 	/*
6061 	 *  The device reselected a LUN we donnot know about.
6062 	 */
6063 	case SIR_RESEL_BAD_LUN:
6064 		np->msgout[0] = M_RESET;
6065 		goto out;
6066 	/*
6067 	 *  The device reselected for an untagged nexus and we
6068 	 *  haven't any.
6069 	 */
6070 	case SIR_RESEL_BAD_I_T_L:
6071 		np->msgout[0] = M_ABORT;
6072 		goto out;
6073 	/*
6074 	 *  The device reselected for a tagged nexus that we donnot
6075 	 *  have.
6076 	 */
6077 	case SIR_RESEL_BAD_I_T_L_Q:
6078 		np->msgout[0] = M_ABORT_TAG;
6079 		goto out;
6080 	/*
6081 	 *  The SCRIPTS let us know that the device has grabbed
6082 	 *  our message and will abort the job.
6083 	 */
6084 	case SIR_RESEL_ABORTED:
6085 		np->lastmsg = np->msgout[0];
6086 		np->msgout[0] = M_NOOP;
6087 		printf ("%s:%d: message %x sent on bad reselection.\n",
6088 			sym_name (np), target, np->lastmsg);
6089 		goto out;
6090 	/*
6091 	 *  The SCRIPTS let us know that a message has been
6092 	 *  successfully sent to the device.
6093 	 */
6094 	case SIR_MSG_OUT_DONE:
6095 		np->lastmsg = np->msgout[0];
6096 		np->msgout[0] = M_NOOP;
6097 		/* Should we really care of that */
6098 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6099 			if (cp) {
6100 				cp->xerr_status &= ~XE_PARITY_ERR;
6101 				if (!cp->xerr_status)
6102 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6103 			}
6104 		}
6105 		goto out;
6106 	/*
6107 	 *  The device didn't send a GOOD SCSI status.
6108 	 *  We may have some work to do prior to allow
6109 	 *  the SCRIPTS processor to continue.
6110 	 */
6111 	case SIR_BAD_SCSI_STATUS:
6112 		if (!cp)
6113 			goto out;
6114 		sym_sir_bad_scsi_status(np, num, cp);
6115 		return;
6116 	/*
6117 	 *  We are asked by the SCRIPTS to prepare a
6118 	 *  REJECT message.
6119 	 */
6120 	case SIR_REJECT_TO_SEND:
6121 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6122 		np->msgout[0] = M_REJECT;
6123 		goto out;
6124 	/*
6125 	 *  We have been ODD at the end of a DATA IN
6126 	 *  transfer and the device didn't send a
6127 	 *  IGNORE WIDE RESIDUE message.
6128 	 *  It is a data overrun condition.
6129 	 */
6130 	case SIR_SWIDE_OVERRUN:
6131 		if (cp) {
6132 			OUTONB (HF_PRT, HF_EXT_ERR);
6133 			cp->xerr_status |= XE_SWIDE_OVRUN;
6134 		}
6135 		goto out;
6136 	/*
6137 	 *  We have been ODD at the end of a DATA OUT
6138 	 *  transfer.
6139 	 *  It is a data underrun condition.
6140 	 */
6141 	case SIR_SODL_UNDERRUN:
6142 		if (cp) {
6143 			OUTONB (HF_PRT, HF_EXT_ERR);
6144 			cp->xerr_status |= XE_SODL_UNRUN;
6145 		}
6146 		goto out;
6147 	/*
6148 	 *  The device wants us to tranfer more data than
6149 	 *  expected or in the wrong direction.
6150 	 *  The number of extra bytes is in scratcha.
6151 	 *  It is a data overrun condition.
6152 	 */
6153 	case SIR_DATA_OVERRUN:
6154 		if (cp) {
6155 			OUTONB (HF_PRT, HF_EXT_ERR);
6156 			cp->xerr_status |= XE_EXTRA_DATA;
6157 			cp->extra_bytes += INL (nc_scratcha);
6158 		}
6159 		goto out;
6160 	/*
6161 	 *  The device switched to an illegal phase (4/5).
6162 	 */
6163 	case SIR_BAD_PHASE:
6164 		if (cp) {
6165 			OUTONB (HF_PRT, HF_EXT_ERR);
6166 			cp->xerr_status |= XE_BAD_PHASE;
6167 		}
6168 		goto out;
6169 	/*
6170 	 *  We received a message.
6171 	 */
6172 	case SIR_MSG_RECEIVED:
6173 		if (!cp)
6174 			goto out_stuck;
6175 		switch (np->msgin [0]) {
6176 		/*
6177 		 *  We received an extended message.
6178 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6179 		 *  and reject all other extended messages.
6180 		 */
6181 		case M_EXTENDED:
6182 			switch (np->msgin [2]) {
6183 			case M_X_MODIFY_DP:
6184 				if (DEBUG_FLAGS & DEBUG_POINTER)
6185 					sym_print_msg(cp,"modify DP",np->msgin);
6186 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6187 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6188 				sym_modify_dp(np, tp, cp, tmp);
6189 				return;
6190 			case M_X_SYNC_REQ:
6191 				sym_sync_nego(np, tp, cp);
6192 				return;
6193 			case M_X_PPR_REQ:
6194 				sym_ppr_nego(np, tp, cp);
6195 				return;
6196 			case M_X_WIDE_REQ:
6197 				sym_wide_nego(np, tp, cp);
6198 				return;
6199 			default:
6200 				goto out_reject;
6201 			}
6202 			break;
6203 		/*
6204 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6205 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6206 		 *  RESIDUE messages that haven't been anticipated by
6207 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6208 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6209 		 */
6210 		case M_IGN_RESIDUE:
6211 			if (DEBUG_FLAGS & DEBUG_POINTER)
6212 				sym_print_msg(cp,"ign wide residue", np->msgin);
6213 			sym_modify_dp(np, tp, cp, -1);
6214 			return;
6215 		case M_REJECT:
6216 			if (INB (HS_PRT) == HS_NEGOTIATE)
6217 				sym_nego_rejected(np, tp, cp);
6218 			else {
6219 				PRINT_ADDR(cp);
6220 				printf ("M_REJECT received (%x:%x).\n",
6221 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6222 			}
6223 			goto out_clrack;
6224 			break;
6225 		default:
6226 			goto out_reject;
6227 		}
6228 		break;
6229 	/*
6230 	 *  We received an unknown message.
6231 	 *  Ignore all MSG IN phases and reject it.
6232 	 */
6233 	case SIR_MSG_WEIRD:
6234 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6235 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6236 		return;
6237 	/*
6238 	 *  Negotiation failed.
6239 	 *  Target does not send us the reply.
6240 	 *  Remove the HS_NEGOTIATE status.
6241 	 */
6242 	case SIR_NEGO_FAILED:
6243 		OUTB (HS_PRT, HS_BUSY);
6244 	/*
6245 	 *  Negotiation failed.
6246 	 *  Target does not want answer message.
6247 	 */
6248 	case SIR_NEGO_PROTO:
6249 		sym_nego_default(np, tp, cp);
6250 		goto out;
6251 	};
6252 
6253 out:
6254 	OUTONB_STD ();
6255 	return;
6256 out_reject:
6257 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6258 	return;
6259 out_clrack:
6260 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6261 	return;
6262 out_stuck:
6263 	return;
6264 }
6265 
6266 /*
6267  *  Acquire a control block
6268  */
6269 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6270 {
6271 	tcb_p tp = &np->target[tn];
6272 	lcb_p lp = sym_lp(np, tp, ln);
6273 	u_short tag = NO_TAG;
6274 	SYM_QUEHEAD *qp;
6275 	ccb_p cp = (ccb_p) 0;
6276 
6277 	/*
6278 	 *  Look for a free CCB
6279 	 */
6280 	if (sym_que_empty(&np->free_ccbq))
6281 		(void) sym_alloc_ccb(np);
6282 	qp = sym_remque_head(&np->free_ccbq);
6283 	if (!qp)
6284 		goto out;
6285 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6286 
6287 	/*
6288 	 *  If the LCB is not yet available and the LUN
6289 	 *  has been probed ok, try to allocate the LCB.
6290 	 */
6291 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6292 		lp = sym_alloc_lcb(np, tn, ln);
6293 		if (!lp)
6294 			goto out_free;
6295 	}
6296 
6297 	/*
6298 	 *  If the LCB is not available here, then the
6299 	 *  logical unit is not yet discovered. For those
6300 	 *  ones only accept 1 SCSI IO per logical unit,
6301 	 *  since we cannot allow disconnections.
6302 	 */
6303 	if (!lp) {
6304 		if (!sym_is_bit(tp->busy0_map, ln))
6305 			sym_set_bit(tp->busy0_map, ln);
6306 		else
6307 			goto out_free;
6308 	} else {
6309 		/*
6310 		 *  If we have been asked for a tagged command.
6311 		 */
6312 		if (tag_order) {
6313 			/*
6314 			 *  Debugging purpose.
6315 			 */
6316 			assert(lp->busy_itl == 0);
6317 			/*
6318 			 *  Allocate resources for tags if not yet.
6319 			 */
6320 			if (!lp->cb_tags) {
6321 				sym_alloc_lcb_tags(np, tn, ln);
6322 				if (!lp->cb_tags)
6323 					goto out_free;
6324 			}
6325 			/*
6326 			 *  Get a tag for this SCSI IO and set up
6327 			 *  the CCB bus address for reselection,
6328 			 *  and count it for this LUN.
6329 			 *  Toggle reselect path to tagged.
6330 			 */
6331 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6332 				tag = lp->cb_tags[lp->ia_tag];
6333 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6334 					lp->ia_tag = 0;
6335 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6336 				++lp->busy_itlq;
6337 				lp->head.resel_sa =
6338 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6339 			}
6340 			else
6341 				goto out_free;
6342 		}
6343 		/*
6344 		 *  This command will not be tagged.
6345 		 *  If we already have either a tagged or untagged
6346 		 *  one, refuse to overlap this untagged one.
6347 		 */
6348 		else {
6349 			/*
6350 			 *  Debugging purpose.
6351 			 */
6352 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6353 			/*
6354 			 *  Count this nexus for this LUN.
6355 			 *  Set up the CCB bus address for reselection.
6356 			 *  Toggle reselect path to untagged.
6357 			 */
6358 			if (++lp->busy_itl == 1) {
6359 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6360 				lp->head.resel_sa =
6361 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6362 			}
6363 			else
6364 				goto out_free;
6365 		}
6366 	}
6367 	/*
6368 	 *  Put the CCB into the busy queue.
6369 	 */
6370 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6371 
6372 	/*
6373 	 *  Remember all informations needed to free this CCB.
6374 	 */
6375 	cp->to_abort = 0;
6376 	cp->tag	   = tag;
6377 	cp->target = tn;
6378 	cp->lun    = ln;
6379 
6380 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6381 		PRINT_LUN(np, tn, ln);
6382 		printf ("ccb @%p using tag %d.\n", cp, tag);
6383 	}
6384 
6385 out:
6386 	return cp;
6387 out_free:
6388 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6389 	return (ccb_p) 0;
6390 }
6391 
6392 /*
6393  *  Release one control block
6394  */
6395 static void sym_free_ccb (hcb_p np, ccb_p cp)
6396 {
6397 	tcb_p tp = &np->target[cp->target];
6398 	lcb_p lp = sym_lp(np, tp, cp->lun);
6399 
6400 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6401 		PRINT_LUN(np, cp->target, cp->lun);
6402 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6403 	}
6404 
6405 	/*
6406 	 *  If LCB available,
6407 	 */
6408 	if (lp) {
6409 		/*
6410 		 *  If tagged, release the tag, set the relect path
6411 		 */
6412 		if (cp->tag != NO_TAG) {
6413 			/*
6414 			 *  Free the tag value.
6415 			 */
6416 			lp->cb_tags[lp->if_tag] = cp->tag;
6417 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6418 				lp->if_tag = 0;
6419 			/*
6420 			 *  Make the reselect path invalid,
6421 			 *  and uncount this CCB.
6422 			 */
6423 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6424 			--lp->busy_itlq;
6425 		} else {	/* Untagged */
6426 			/*
6427 			 *  Make the reselect path invalid,
6428 			 *  and uncount this CCB.
6429 			 */
6430 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6431 			--lp->busy_itl;
6432 		}
6433 		/*
6434 		 *  If no JOB active, make the LUN reselect path invalid.
6435 		 */
6436 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6437 			lp->head.resel_sa =
6438 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6439 	}
6440 	/*
6441 	 *  Otherwise, we only accept 1 IO per LUN.
6442 	 *  Clear the bit that keeps track of this IO.
6443 	 */
6444 	else
6445 		sym_clr_bit(tp->busy0_map, cp->lun);
6446 
6447 	/*
6448 	 *  We donnot queue more than 1 ccb per target
6449 	 *  with negotiation at any time. If this ccb was
6450 	 *  used for negotiation, clear this info in the tcb.
6451 	 */
6452 	if (cp == tp->nego_cp)
6453 		tp->nego_cp = 0;
6454 
6455 #ifdef SYM_CONF_IARB_SUPPORT
6456 	/*
6457 	 *  If we just complete the last queued CCB,
6458 	 *  clear this info that is no longer relevant.
6459 	 */
6460 	if (cp == np->last_cp)
6461 		np->last_cp = 0;
6462 #endif
6463 
6464 	/*
6465 	 *  Unmap user data from DMA map if needed.
6466 	 */
6467 	if (cp->dmamapped) {
6468 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6469 		cp->dmamapped = 0;
6470 	}
6471 
6472 	/*
6473 	 *  Make this CCB available.
6474 	 */
6475 	cp->cam_ccb = 0;
6476 	cp->host_status = HS_IDLE;
6477 	sym_remque(&cp->link_ccbq);
6478 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6479 }
6480 
6481 /*
6482  *  Allocate a CCB from memory and initialize its fixed part.
6483  */
6484 static ccb_p sym_alloc_ccb(hcb_p np)
6485 {
6486 	ccb_p cp = 0;
6487 	int hcode;
6488 
6489 	/*
6490 	 *  Prevent from allocating more CCBs than we can
6491 	 *  queue to the controller.
6492 	 */
6493 	if (np->actccbs >= SYM_CONF_MAX_START)
6494 		return 0;
6495 
6496 	/*
6497 	 *  Allocate memory for this CCB.
6498 	 */
6499 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6500 	if (!cp)
6501 		goto out_free;
6502 
6503 	/*
6504 	 *  Allocate a bounce buffer for sense data.
6505 	 */
6506 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6507 	if (!cp->sns_bbuf)
6508 		goto out_free;
6509 
6510 	/*
6511 	 *  Allocate a map for the DMA of user data.
6512 	 */
6513 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6514 		goto out_free;
6515 	/*
6516 	 *  Count it.
6517 	 */
6518 	np->actccbs++;
6519 
6520 	/*
6521 	 *  Compute the bus address of this ccb.
6522 	 */
6523 	cp->ccb_ba = vtobus(cp);
6524 
6525 	/*
6526 	 *  Insert this ccb into the hashed list.
6527 	 */
6528 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6529 	cp->link_ccbh = np->ccbh[hcode];
6530 	np->ccbh[hcode] = cp;
6531 
6532 	/*
6533 	 *  Initialyze the start and restart actions.
6534 	 */
6535 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6536 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6537 
6538  	/*
6539 	 *  Initilialyze some other fields.
6540 	 */
6541 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6542 
6543 	/*
6544 	 *  Chain into free ccb queue.
6545 	 */
6546 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6547 
6548 	return cp;
6549 out_free:
6550 	if (cp) {
6551 		if (cp->sns_bbuf)
6552 			sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
6553 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
6554 	}
6555 	return 0;
6556 }
6557 
6558 /*
6559  *  Look up a CCB from a DSA value.
6560  */
6561 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6562 {
6563 	int hcode;
6564 	ccb_p cp;
6565 
6566 	hcode = CCB_HASH_CODE(dsa);
6567 	cp = np->ccbh[hcode];
6568 	while (cp) {
6569 		if (cp->ccb_ba == dsa)
6570 			break;
6571 		cp = cp->link_ccbh;
6572 	}
6573 
6574 	return cp;
6575 }
6576 
6577 /*
6578  *  Target control block initialisation.
6579  *  Nothing important to do at the moment.
6580  */
6581 static void sym_init_tcb (hcb_p np, u_char tn)
6582 {
6583 	/*
6584 	 *  Check some alignments required by the chip.
6585 	 */
6586 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6587 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6588 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6589 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6590 }
6591 
6592 /*
6593  *  Lun control block allocation and initialization.
6594  */
6595 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6596 {
6597 	tcb_p tp = &np->target[tn];
6598 	lcb_p lp = sym_lp(np, tp, ln);
6599 
6600 	/*
6601 	 *  Already done, just return.
6602 	 */
6603 	if (lp)
6604 		return lp;
6605 	/*
6606 	 *  Check against some race.
6607 	 */
6608 	assert(!sym_is_bit(tp->busy0_map, ln));
6609 
6610 	/*
6611 	 *  Initialize the target control block if not yet.
6612 	 */
6613 	sym_init_tcb (np, tn);
6614 
6615 	/*
6616 	 *  Allocate the LCB bus address array.
6617 	 *  Compute the bus address of this table.
6618 	 */
6619 	if (ln && !tp->luntbl) {
6620 		int i;
6621 
6622 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6623 		if (!tp->luntbl)
6624 			goto fail;
6625 		for (i = 0 ; i < 64 ; i++)
6626 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6627 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6628 	}
6629 
6630 	/*
6631 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6632 	 */
6633 	if (ln && !tp->lunmp) {
6634 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6635 				   "LUNMP");
6636 		if (!tp->lunmp)
6637 			goto fail;
6638 	}
6639 
6640 	/*
6641 	 *  Allocate the lcb.
6642 	 *  Make it available to the chip.
6643 	 */
6644 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6645 	if (!lp)
6646 		goto fail;
6647 	if (ln) {
6648 		tp->lunmp[ln] = lp;
6649 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6650 	}
6651 	else {
6652 		tp->lun0p = lp;
6653 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6654 	}
6655 
6656 	/*
6657 	 *  Let the itl task point to error handling.
6658 	 */
6659 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6660 
6661 	/*
6662 	 *  Set the reselect pattern to our default. :)
6663 	 */
6664 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6665 
6666 	/*
6667 	 *  Set user capabilities.
6668 	 */
6669 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6670 
6671 fail:
6672 	return lp;
6673 }
6674 
6675 /*
6676  *  Allocate LCB resources for tagged command queuing.
6677  */
6678 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6679 {
6680 	tcb_p tp = &np->target[tn];
6681 	lcb_p lp = sym_lp(np, tp, ln);
6682 	int i;
6683 
6684 	/*
6685 	 *  If LCB not available, try to allocate it.
6686 	 */
6687 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6688 		goto fail;
6689 
6690 	/*
6691 	 *  Allocate the task table and and the tag allocation
6692 	 *  circular buffer. We want both or none.
6693 	 */
6694 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6695 	if (!lp->itlq_tbl)
6696 		goto fail;
6697 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6698 	if (!lp->cb_tags) {
6699 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6700 		lp->itlq_tbl = 0;
6701 		goto fail;
6702 	}
6703 
6704 	/*
6705 	 *  Initialize the task table with invalid entries.
6706 	 */
6707 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6708 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6709 
6710 	/*
6711 	 *  Fill up the tag buffer with tag numbers.
6712 	 */
6713 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6714 		lp->cb_tags[i] = i;
6715 
6716 	/*
6717 	 *  Make the task table available to SCRIPTS,
6718 	 *  And accept tagged commands now.
6719 	 */
6720 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6721 
6722 	return;
6723 fail:
6724 	return;
6725 }
6726 
6727 /*
6728  *  Test the pci bus snoop logic :-(
6729  *
6730  *  Has to be called with interrupts disabled.
6731  */
6732 #ifndef SYM_CONF_IOMAPPED
6733 static int sym_regtest (hcb_p np)
6734 {
6735 	register volatile u32 data;
6736 	/*
6737 	 *  chip registers may NOT be cached.
6738 	 *  write 0xffffffff to a read only register area,
6739 	 *  and try to read it back.
6740 	 */
6741 	data = 0xffffffff;
6742 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6743 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6744 #if 1
6745 	if (data == 0xffffffff) {
6746 #else
6747 	if ((data & 0xe2f0fffd) != 0x02000080) {
6748 #endif
6749 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6750 			(unsigned) data);
6751 		return (0x10);
6752 	};
6753 	return (0);
6754 }
6755 #endif
6756 
6757 static int sym_snooptest (hcb_p np)
6758 {
6759 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6760 	int	i, err=0;
6761 #ifndef SYM_CONF_IOMAPPED
6762 	err |= sym_regtest (np);
6763 	if (err) return (err);
6764 #endif
6765 restart_test:
6766 	/*
6767 	 *  Enable Master Parity Checking as we intend
6768 	 *  to enable it for normal operations.
6769 	 */
6770 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6771 	/*
6772 	 *  init
6773 	 */
6774 	pc  = SCRIPTB0_BA (np, snooptest);
6775 	host_wr = 1;
6776 	sym_wr  = 2;
6777 	/*
6778 	 *  Set memory and register.
6779 	 */
6780 	np->cache = cpu_to_scr(host_wr);
6781 	OUTL (nc_temp, sym_wr);
6782 	/*
6783 	 *  Start script (exchange values)
6784 	 */
6785 	OUTL (nc_dsa, np->hcb_ba);
6786 	OUTL_DSP (pc);
6787 	/*
6788 	 *  Wait 'til done (with timeout)
6789 	 */
6790 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6791 		if (INB(nc_istat) & (INTF|SIP|DIP))
6792 			break;
6793 	if (i>=SYM_SNOOP_TIMEOUT) {
6794 		printf ("CACHE TEST FAILED: timeout.\n");
6795 		return (0x20);
6796 	};
6797 	/*
6798 	 *  Check for fatal DMA errors.
6799 	 */
6800 	dstat = INB (nc_dstat);
6801 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6802 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6803 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6804 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6805 			sym_name(np));
6806 		np->rv_ctest4 &= ~MPEE;
6807 		goto restart_test;
6808 	}
6809 #endif
6810 	if (dstat & (MDPE|BF|IID)) {
6811 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6812 		return (0x80);
6813 	}
6814 	/*
6815 	 *  Save termination position.
6816 	 */
6817 	pc = INL (nc_dsp);
6818 	/*
6819 	 *  Read memory and register.
6820 	 */
6821 	host_rd = scr_to_cpu(np->cache);
6822 	sym_rd  = INL (nc_scratcha);
6823 	sym_bk  = INL (nc_temp);
6824 
6825 	/*
6826 	 *  Check termination position.
6827 	 */
6828 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6829 		printf ("CACHE TEST FAILED: script execution failed.\n");
6830 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6831 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6832 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6833 		return (0x40);
6834 	};
6835 	/*
6836 	 *  Show results.
6837 	 */
6838 	if (host_wr != sym_rd) {
6839 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6840 			(int) host_wr, (int) sym_rd);
6841 		err |= 1;
6842 	};
6843 	if (host_rd != sym_wr) {
6844 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6845 			(int) sym_wr, (int) host_rd);
6846 		err |= 2;
6847 	};
6848 	if (sym_bk != sym_wr) {
6849 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6850 			(int) sym_wr, (int) sym_bk);
6851 		err |= 4;
6852 	};
6853 
6854 	return (err);
6855 }
6856 
6857 /*
6858  *  Determine the chip's clock frequency.
6859  *
6860  *  This is essential for the negotiation of the synchronous
6861  *  transfer rate.
6862  *
6863  *  Note: we have to return the correct value.
6864  *  THERE IS NO SAFE DEFAULT VALUE.
6865  *
6866  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6867  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6868  *  do not have a clock doubler and so are provided with a
6869  *  80 MHz clock. All other fast20 boards incorporate a doubler
6870  *  and so should be delivered with a 40 MHz clock.
6871  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6872  *  clock and provide a clock quadrupler (160 Mhz).
6873  */
6874 
6875 /*
6876  *  Select SCSI clock frequency
6877  */
6878 static void sym_selectclock(hcb_p np, u_char scntl3)
6879 {
6880 	/*
6881 	 *  If multiplier not present or not selected, leave here.
6882 	 */
6883 	if (np->multiplier <= 1) {
6884 		OUTB(nc_scntl3,	scntl3);
6885 		return;
6886 	}
6887 
6888 	if (sym_verbose >= 2)
6889 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6890 
6891 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6892 	/*
6893 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6894 	 *  Otherwise wait 20 micro-seconds.
6895 	 */
6896 	if (np->features & FE_LCKFRQ) {
6897 		int i = 20;
6898 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6899 			UDELAY (20);
6900 		if (!i)
6901 			printf("%s: the chip cannot lock the frequency\n",
6902 				sym_name(np));
6903 	} else
6904 		UDELAY (20);
6905 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6906 	OUTB(nc_scntl3,	scntl3);
6907 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6908 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6909 }
6910 
6911 /*
6912  *  calculate SCSI clock frequency (in KHz)
6913  */
6914 static unsigned getfreq (hcb_p np, int gen)
6915 {
6916 	unsigned int ms = 0;
6917 	unsigned int f;
6918 
6919 	/*
6920 	 * Measure GEN timer delay in order
6921 	 * to calculate SCSI clock frequency
6922 	 *
6923 	 * This code will never execute too
6924 	 * many loop iterations (if DELAY is
6925 	 * reasonably correct). It could get
6926 	 * too low a delay (too high a freq.)
6927 	 * if the CPU is slow executing the
6928 	 * loop for some reason (an NMI, for
6929 	 * example). For this reason we will
6930 	 * if multiple measurements are to be
6931 	 * performed trust the higher delay
6932 	 * (lower frequency returned).
6933 	 */
6934 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6935 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6936 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6937 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6938 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6939 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6940 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6941 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6942 		UDELAY (1000);	/* count ms */
6943 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6944  	/*
6945  	 * set prescaler to divide by whatever 0 means
6946  	 * 0 ought to choose divide by 2, but appears
6947  	 * to set divide by 3.5 mode in my 53c810 ...
6948  	 */
6949  	OUTB (nc_scntl3, 0);
6950 
6951   	/*
6952  	 * adjust for prescaler, and convert into KHz
6953   	 */
6954 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6955 
6956 	if (sym_verbose >= 2)
6957 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6958 			sym_name(np), gen, ms, f);
6959 
6960 	return f;
6961 }
6962 
6963 static unsigned sym_getfreq (hcb_p np)
6964 {
6965 	u_int f1, f2;
6966 	int gen = 11;
6967 
6968 	(void) getfreq (np, gen);	/* throw away first result */
6969 	f1 = getfreq (np, gen);
6970 	f2 = getfreq (np, gen);
6971 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6972 	return f1;
6973 }
6974 
6975 /*
6976  *  Get/probe chip SCSI clock frequency
6977  */
6978 static void sym_getclock (hcb_p np, int mult)
6979 {
6980 	unsigned char scntl3 = np->sv_scntl3;
6981 	unsigned char stest1 = np->sv_stest1;
6982 	unsigned f1;
6983 
6984 	/*
6985 	 *  For the C10 core, assume 40 MHz.
6986 	 */
6987 	if (np->features & FE_C10) {
6988 		np->multiplier = mult;
6989 		np->clock_khz = 40000 * mult;
6990 		return;
6991 	}
6992 
6993 	np->multiplier = 1;
6994 	f1 = 40000;
6995 	/*
6996 	 *  True with 875/895/896/895A with clock multiplier selected
6997 	 */
6998 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6999 		if (sym_verbose >= 2)
7000 			printf ("%s: clock multiplier found\n", sym_name(np));
7001 		np->multiplier = mult;
7002 	}
7003 
7004 	/*
7005 	 *  If multiplier not found or scntl3 not 7,5,3,
7006 	 *  reset chip and get frequency from general purpose timer.
7007 	 *  Otherwise trust scntl3 BIOS setting.
7008 	 */
7009 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7010 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7011 		f1 = sym_getfreq (np);
7012 
7013 		if (sym_verbose)
7014 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7015 
7016 		if	(f1 <	45000)		f1 =  40000;
7017 		else if (f1 <	55000)		f1 =  50000;
7018 		else				f1 =  80000;
7019 
7020 		if (f1 < 80000 && mult > 1) {
7021 			if (sym_verbose >= 2)
7022 				printf ("%s: clock multiplier assumed\n",
7023 					sym_name(np));
7024 			np->multiplier	= mult;
7025 		}
7026 	} else {
7027 		if	((scntl3 & 7) == 3)	f1 =  40000;
7028 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7029 		else 				f1 = 160000;
7030 
7031 		f1 /= np->multiplier;
7032 	}
7033 
7034 	/*
7035 	 *  Compute controller synchronous parameters.
7036 	 */
7037 	f1		*= np->multiplier;
7038 	np->clock_khz	= f1;
7039 }
7040 
7041 /*
7042  *  Get/probe PCI clock frequency
7043  */
7044 static int sym_getpciclock (hcb_p np)
7045 {
7046 	int f = 0;
7047 
7048 	/*
7049 	 *  For the C1010-33, this doesn't work.
7050 	 *  For the C1010-66, this will be tested when I'll have
7051 	 *  such a beast to play with.
7052 	 */
7053 	if (!(np->features & FE_C10)) {
7054 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7055 		f = (int) sym_getfreq (np);
7056 		OUTB (nc_stest1, 0);
7057 	}
7058 	np->pciclk_khz = f;
7059 
7060 	return f;
7061 }
7062 
7063 /*============= DRIVER ACTION/COMPLETION ====================*/
7064 
7065 /*
7066  *  Print something that tells about extended errors.
7067  */
7068 static void sym_print_xerr(ccb_p cp, int x_status)
7069 {
7070 	if (x_status & XE_PARITY_ERR) {
7071 		PRINT_ADDR(cp);
7072 		printf ("unrecovered SCSI parity error.\n");
7073 	}
7074 	if (x_status & XE_EXTRA_DATA) {
7075 		PRINT_ADDR(cp);
7076 		printf ("extraneous data discarded.\n");
7077 	}
7078 	if (x_status & XE_BAD_PHASE) {
7079 		PRINT_ADDR(cp);
7080 		printf ("illegal scsi phase (4/5).\n");
7081 	}
7082 	if (x_status & XE_SODL_UNRUN) {
7083 		PRINT_ADDR(cp);
7084 		printf ("ODD transfer in DATA OUT phase.\n");
7085 	}
7086 	if (x_status & XE_SWIDE_OVRUN) {
7087 		PRINT_ADDR(cp);
7088 		printf ("ODD transfer in DATA IN phase.\n");
7089 	}
7090 }
7091 
7092 /*
7093  *  Choose the more appropriate CAM status if
7094  *  the IO encountered an extended error.
7095  */
7096 static int sym_xerr_cam_status(int cam_status, int x_status)
7097 {
7098 	if (x_status) {
7099 		if	(x_status & XE_PARITY_ERR)
7100 			cam_status = CAM_UNCOR_PARITY;
7101 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7102 			cam_status = CAM_DATA_RUN_ERR;
7103 		else if	(x_status & XE_BAD_PHASE)
7104 			cam_status = CAM_REQ_CMP_ERR;
7105 		else
7106 			cam_status = CAM_REQ_CMP_ERR;
7107 	}
7108 	return cam_status;
7109 }
7110 
7111 /*
7112  *  Complete execution of a SCSI command with extented
7113  *  error, SCSI status error, or having been auto-sensed.
7114  *
7115  *  The SCRIPTS processor is not running there, so we
7116  *  can safely access IO registers and remove JOBs from
7117  *  the START queue.
7118  *  SCRATCHA is assumed to have been loaded with STARTPOS
7119  *  before the SCRIPTS called the C code.
7120  */
7121 static void sym_complete_error (hcb_p np, ccb_p cp)
7122 {
7123 	struct ccb_scsiio *csio;
7124 	u_int cam_status;
7125 	int i;
7126 
7127 	/*
7128 	 *  Paranoid check. :)
7129 	 */
7130 	if (!cp || !cp->cam_ccb)
7131 		return;
7132 
7133 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7134 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7135 			cp->host_status, cp->ssss_status, cp->host_flags,
7136 			cp->target, cp->lun);
7137 		MDELAY(100);
7138 	}
7139 
7140 	/*
7141 	 *  Get CAM command pointer.
7142 	 */
7143 	csio = &cp->cam_ccb->csio;
7144 
7145 	/*
7146 	 *  Check for extended errors.
7147 	 */
7148 	if (cp->xerr_status) {
7149 		if (sym_verbose)
7150 			sym_print_xerr(cp, cp->xerr_status);
7151 		if (cp->host_status == HS_COMPLETE)
7152 			cp->host_status = HS_COMP_ERR;
7153 	}
7154 
7155 	/*
7156 	 *  Calculate the residual.
7157 	 */
7158 	csio->sense_resid = 0;
7159 	csio->resid = sym_compute_residual(np, cp);
7160 
7161 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7162 		csio->resid  = 0;	/* throw them away. :)		   */
7163 		cp->sv_resid = 0;
7164 	}
7165 
7166 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7167 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7168 		csio->sense_resid = csio->resid;	/* Swap residuals */
7169 		csio->resid       = cp->sv_resid;
7170 		cp->sv_resid	  = 0;
7171 		if (sym_verbose && cp->sv_xerr_status)
7172 			sym_print_xerr(cp, cp->sv_xerr_status);
7173 		if (cp->host_status == HS_COMPLETE &&
7174 		    cp->ssss_status == S_GOOD &&
7175 		    cp->xerr_status == 0) {
7176 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7177 							 cp->sv_xerr_status);
7178 			cam_status |= CAM_AUTOSNS_VALID;
7179 			/*
7180 			 *  Bounce back the sense data to user and
7181 			 *  fix the residual.
7182 			 */
7183 			bzero(&csio->sense_data, csio->sense_len);
7184 			bcopy(cp->sns_bbuf, &csio->sense_data,
7185 			      MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7186 			csio->sense_resid += csio->sense_len;
7187 			csio->sense_resid -= SYM_SNS_BBUF_LEN;
7188 #if 0
7189 			/*
7190 			 *  If the device reports a UNIT ATTENTION condition
7191 			 *  due to a RESET condition, we should consider all
7192 			 *  disconnect CCBs for this unit as aborted.
7193 			 */
7194 			if (1) {
7195 				u_char *p;
7196 				p  = (u_char *) csio->sense_data;
7197 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7198 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7199 							cp->target,cp->lun, -1);
7200 			}
7201 #endif
7202 		}
7203 		else
7204 			cam_status = CAM_AUTOSENSE_FAIL;
7205 	}
7206 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7207 		csio->scsi_status = cp->ssss_status;
7208 		cam_status = CAM_SCSI_STATUS_ERROR;
7209 	}
7210 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7211 		cam_status = CAM_SEL_TIMEOUT;
7212 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7213 		cam_status = CAM_UNEXP_BUSFREE;
7214 	else {						/* Extended error */
7215 		if (sym_verbose) {
7216 			PRINT_ADDR(cp);
7217 			printf ("COMMAND FAILED (%x %x %x).\n",
7218 				cp->host_status, cp->ssss_status,
7219 				cp->xerr_status);
7220 		}
7221 		csio->scsi_status = cp->ssss_status;
7222 		/*
7223 		 *  Set the most appropriate value for CAM status.
7224 		 */
7225 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7226 						 cp->xerr_status);
7227 	}
7228 
7229 	/*
7230 	 *  Dequeue all queued CCBs for that device
7231 	 *  not yet started by SCRIPTS.
7232 	 */
7233 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7234 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7235 
7236 	/*
7237 	 *  Restart the SCRIPTS processor.
7238 	 */
7239 	OUTL_DSP (SCRIPTA_BA (np, start));
7240 
7241 	/*
7242 	 *  Synchronize DMA map if needed.
7243 	 */
7244 	if (cp->dmamapped) {
7245 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7246 			(cp->dmamapped == SYM_DMA_READ ?
7247 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7248 	}
7249 	/*
7250 	 *  Add this one to the COMP queue.
7251 	 *  Complete all those commands with either error
7252 	 *  or requeue condition.
7253 	 */
7254 	sym_set_cam_status((union ccb *) csio, cam_status);
7255 	sym_remque(&cp->link_ccbq);
7256 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7257 	sym_flush_comp_queue(np, 0);
7258 }
7259 
7260 /*
7261  *  Complete execution of a successful SCSI command.
7262  *
7263  *  Only successful commands go to the DONE queue,
7264  *  since we need to have the SCRIPTS processor
7265  *  stopped on any error condition.
7266  *  The SCRIPTS processor is running while we are
7267  *  completing successful commands.
7268  */
7269 static void sym_complete_ok (hcb_p np, ccb_p cp)
7270 {
7271 	struct ccb_scsiio *csio;
7272 	tcb_p tp;
7273 	lcb_p lp;
7274 
7275 	/*
7276 	 *  Paranoid check. :)
7277 	 */
7278 	if (!cp || !cp->cam_ccb)
7279 		return;
7280 	assert (cp->host_status == HS_COMPLETE);
7281 
7282 	/*
7283 	 *  Get command, target and lun pointers.
7284 	 */
7285 	csio = &cp->cam_ccb->csio;
7286 	tp = &np->target[cp->target];
7287 	lp = sym_lp(np, tp, cp->lun);
7288 
7289 	/*
7290 	 *  Assume device discovered on first success.
7291 	 */
7292 	if (!lp)
7293 		sym_set_bit(tp->lun_map, cp->lun);
7294 
7295 	/*
7296 	 *  If all data have been transferred, given than no
7297 	 *  extended error did occur, there is no residual.
7298 	 */
7299 	csio->resid = 0;
7300 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7301 		csio->resid = sym_compute_residual(np, cp);
7302 
7303 	/*
7304 	 *  Wrong transfer residuals may be worse than just always
7305 	 *  returning zero. User can disable this feature from
7306 	 *  sym_conf.h. Residual support is enabled by default.
7307 	 */
7308 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7309 		csio->resid  = 0;
7310 
7311 	/*
7312 	 *  Synchronize DMA map if needed.
7313 	 */
7314 	if (cp->dmamapped) {
7315 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7316 			(cp->dmamapped == SYM_DMA_READ ?
7317 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7318 	}
7319 	/*
7320 	 *  Set status and complete the command.
7321 	 */
7322 	csio->scsi_status = cp->ssss_status;
7323 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7324 	sym_free_ccb (np, cp);
7325 	sym_xpt_done(np, (union ccb *) csio);
7326 }
7327 
7328 /*
7329  *  Our timeout handler.
7330  */
7331 static void sym_timeout1(void *arg)
7332 {
7333 	union ccb *ccb = (union ccb *) arg;
7334 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7335 
7336 	/*
7337 	 *  Check that the CAM CCB is still queued.
7338 	 */
7339 	if (!np)
7340 		return;
7341 
7342 	switch(ccb->ccb_h.func_code) {
7343 	case XPT_SCSI_IO:
7344 		(void) sym_abort_scsiio(np, ccb, 1);
7345 		break;
7346 	default:
7347 		break;
7348 	}
7349 }
7350 
7351 static void sym_timeout(void *arg)
7352 {
7353 	int s = splcam();
7354 	sym_timeout1(arg);
7355 	splx(s);
7356 }
7357 
7358 /*
7359  *  Abort an SCSI IO.
7360  */
7361 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7362 {
7363 	ccb_p cp;
7364 	SYM_QUEHEAD *qp;
7365 
7366 	/*
7367 	 *  Look up our CCB control block.
7368 	 */
7369 	cp = 0;
7370 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7371 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7372 		if (cp2->cam_ccb == ccb) {
7373 			cp = cp2;
7374 			break;
7375 		}
7376 	}
7377 	if (!cp || cp->host_status == HS_WAIT)
7378 		return -1;
7379 
7380 	/*
7381 	 *  If a previous abort didn't succeed in time,
7382 	 *  perform a BUS reset.
7383 	 */
7384 	if (cp->to_abort) {
7385 		sym_reset_scsi_bus(np, 1);
7386 		return 0;
7387 	}
7388 
7389 	/*
7390 	 *  Mark the CCB for abort and allow time for.
7391 	 */
7392 	cp->to_abort = timed_out ? 2 : 1;
7393 	ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz);
7394 
7395 	/*
7396 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7397 	 */
7398 	np->istat_sem = SEM;
7399 	OUTB (nc_istat, SIGP|SEM);
7400 	return 0;
7401 }
7402 
7403 /*
7404  *  Reset a SCSI device (all LUNs of a target).
7405  */
7406 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7407 {
7408 	tcb_p tp;
7409 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7410 
7411 	if (ccb_h->target_id   == np->myaddr ||
7412 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7413 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7414 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7415 		return;
7416 	}
7417 
7418 	tp = &np->target[ccb_h->target_id];
7419 
7420 	tp->to_reset = 1;
7421 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7422 
7423 	np->istat_sem = SEM;
7424 	OUTB (nc_istat, SIGP|SEM);
7425 	return;
7426 }
7427 
7428 /*
7429  *  SIM action entry point.
7430  */
7431 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7432 {
7433 	int s = splcam();
7434 	sym_action1(sim, ccb);
7435 	splx(s);
7436 }
7437 
7438 static void sym_action1(struct cam_sim *sim, union ccb *ccb)
7439 {
7440 	hcb_p	np;
7441 	tcb_p	tp;
7442 	lcb_p	lp;
7443 	ccb_p	cp;
7444 	int 	tmp;
7445 	u_char	idmsg, *msgptr;
7446 	u_int   msglen;
7447 	struct	ccb_scsiio *csio;
7448 	struct	ccb_hdr  *ccb_h;
7449 
7450 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7451 
7452 	/*
7453 	 *  Retrieve our controller data structure.
7454 	 */
7455 	np = (hcb_p) cam_sim_softc(sim);
7456 
7457 	/*
7458 	 *  The common case is SCSI IO.
7459 	 *  We deal with other ones elsewhere.
7460 	 */
7461 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7462 		sym_action2(sim, ccb);
7463 		return;
7464 	}
7465 	csio  = &ccb->csio;
7466 	ccb_h = &csio->ccb_h;
7467 
7468 	/*
7469 	 *  Work around races.
7470 	 */
7471 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7472 		xpt_done(ccb);
7473 		return;
7474 	}
7475 
7476 	/*
7477 	 *  Minimal checkings, so that we will not
7478 	 *  go outside our tables.
7479 	 */
7480 	if (ccb_h->target_id   == np->myaddr ||
7481 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7482 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7483 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7484 		return;
7485         }
7486 
7487 	/*
7488 	 *  Retreive the target and lun descriptors.
7489 	 */
7490 	tp = &np->target[ccb_h->target_id];
7491 	lp = sym_lp(np, tp, ccb_h->target_lun);
7492 
7493 	/*
7494 	 *  Complete the 1st INQUIRY command with error
7495 	 *  condition if the device is flagged NOSCAN
7496 	 *  at BOOT in the NVRAM. This may speed up
7497 	 *  the boot and maintain coherency with BIOS
7498 	 *  device numbering. Clearing the flag allows
7499 	 *  user to rescan skipped devices later.
7500 	 *  We also return error for devices not flagged
7501 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7502 	 *  devices behave badly when asked for some non
7503 	 *  zero LUN. Btw, this is an absolute hack.:-)
7504 	 */
7505 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7506 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7507 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7508 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7509 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7510 		     ccb_h->target_lun != 0)) {
7511 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7512 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7513 			return;
7514 		}
7515 	}
7516 
7517 	/*
7518 	 *  Get a control block for this IO.
7519 	 */
7520 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7521 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7522 	if (!cp) {
7523 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7524 		return;
7525 	}
7526 
7527 	/*
7528 	 *  Keep track of the IO in our CCB.
7529 	 */
7530 	cp->cam_ccb = ccb;
7531 
7532 	/*
7533 	 *  Build the IDENTIFY message.
7534 	 */
7535 	idmsg = M_IDENTIFY | cp->lun;
7536 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7537 		idmsg |= 0x40;
7538 
7539 	msgptr = cp->scsi_smsg;
7540 	msglen = 0;
7541 	msgptr[msglen++] = idmsg;
7542 
7543 	/*
7544 	 *  Build the tag message if present.
7545 	 */
7546 	if (cp->tag != NO_TAG) {
7547 		u_char order = csio->tag_action;
7548 
7549 		switch(order) {
7550 		case M_ORDERED_TAG:
7551 			break;
7552 		case M_HEAD_TAG:
7553 			break;
7554 		default:
7555 			order = M_SIMPLE_TAG;
7556 		}
7557 		msgptr[msglen++] = order;
7558 
7559 		/*
7560 		 *  For less than 128 tags, actual tags are numbered
7561 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7562 		 *  with devices that have problems with #TAG 0 or too
7563 		 *  great #TAG numbers. For more tags (up to 256),
7564 		 *  we use directly our tag number.
7565 		 */
7566 #if SYM_CONF_MAX_TASK > (512/4)
7567 		msgptr[msglen++] = cp->tag;
7568 #else
7569 		msgptr[msglen++] = (cp->tag << 1) + 1;
7570 #endif
7571 	}
7572 
7573 	/*
7574 	 *  Build a negotiation message if needed.
7575 	 *  (nego_status is filled by sym_prepare_nego())
7576 	 */
7577 	cp->nego_status = 0;
7578 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7579 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7580 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7581 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7582 		if (!tp->nego_cp && lp)
7583 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7584 	}
7585 
7586 	/*
7587 	 *  Fill in our ccb
7588 	 */
7589 
7590 	/*
7591 	 *  Startqueue
7592 	 */
7593 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7594 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7595 
7596 	/*
7597 	 *  select
7598 	 */
7599 	cp->phys.select.sel_id		= cp->target;
7600 	cp->phys.select.sel_scntl3	= tp->head.wval;
7601 	cp->phys.select.sel_sxfer	= tp->head.sval;
7602 	cp->phys.select.sel_scntl4	= tp->head.uval;
7603 
7604 	/*
7605 	 *  message
7606 	 */
7607 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7608 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7609 
7610 	/*
7611 	 *  command
7612 	 */
7613 	if (sym_setup_cdb(np, csio, cp) < 0) {
7614 		sym_free_ccb(np, cp);
7615 		sym_xpt_done(np, ccb);
7616 		return;
7617 	}
7618 
7619 	/*
7620 	 *  status
7621 	 */
7622 #if	0	/* Provision */
7623 	cp->actualquirks	= tp->quirks;
7624 #endif
7625 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7626 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7627 	cp->ssss_status		= S_ILLEGAL;
7628 	cp->xerr_status		= 0;
7629 	cp->host_flags		= 0;
7630 	cp->extra_bytes		= 0;
7631 
7632 	/*
7633 	 *  extreme data pointer.
7634 	 *  shall be positive, so -1 is lower than lowest.:)
7635 	 */
7636 	cp->ext_sg  = -1;
7637 	cp->ext_ofs = 0;
7638 
7639 	/*
7640 	 *  Build the data descriptor block
7641 	 *  and start the IO.
7642 	 */
7643 	sym_setup_data_and_start(np, csio, cp);
7644 }
7645 
7646 /*
7647  *  Setup buffers and pointers that address the CDB.
7648  *  I bet, physical CDBs will never be used on the planet,
7649  *  since they can be bounced without significant overhead.
7650  */
7651 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7652 {
7653 	struct ccb_hdr *ccb_h;
7654 	u32	cmd_ba;
7655 	int	cmd_len;
7656 
7657 	ccb_h = &csio->ccb_h;
7658 
7659 	/*
7660 	 *  CDB is 16 bytes max.
7661 	 */
7662 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7663 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7664 		return -1;
7665 	}
7666 	cmd_len = csio->cdb_len;
7667 
7668 	if (ccb_h->flags & CAM_CDB_POINTER) {
7669 		/* CDB is a pointer */
7670 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7671 			/* CDB pointer is virtual */
7672 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7673 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7674 		} else {
7675 			/* CDB pointer is physical */
7676 #if 0
7677 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7678 #else
7679 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7680 			return -1;
7681 #endif
7682 		}
7683 	} else {
7684 		/* CDB is in the CAM ccb (buffer) */
7685 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7686 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7687 	}
7688 
7689 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7690 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7691 
7692 	return 0;
7693 }
7694 
7695 /*
7696  *  Set up data pointers used by SCRIPTS.
7697  */
7698 static void __inline
7699 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7700 {
7701 	u32 lastp, goalp;
7702 
7703 	/*
7704 	 *  No segments means no data.
7705 	 */
7706 	if (!cp->segments)
7707 		dir = CAM_DIR_NONE;
7708 
7709 	/*
7710 	 *  Set the data pointer.
7711 	 */
7712 	switch(dir) {
7713 	case CAM_DIR_OUT:
7714 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7715 		lastp = goalp - 8 - (cp->segments * (2*4));
7716 		break;
7717 	case CAM_DIR_IN:
7718 		cp->host_flags |= HF_DATA_IN;
7719 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7720 		lastp = goalp - 8 - (cp->segments * (2*4));
7721 		break;
7722 	case CAM_DIR_NONE:
7723 	default:
7724 		lastp = goalp = SCRIPTB_BA (np, no_data);
7725 		break;
7726 	}
7727 
7728 	cp->phys.head.lastp = cpu_to_scr(lastp);
7729 	cp->phys.head.goalp = cpu_to_scr(goalp);
7730 	cp->phys.head.savep = cpu_to_scr(lastp);
7731 	cp->startp	    = cp->phys.head.savep;
7732 }
7733 
7734 
7735 /*
7736  *  Call back routine for the DMA map service.
7737  *  If bounce buffers are used (why ?), we may sleep and then
7738  *  be called there in another context.
7739  */
7740 static void
7741 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7742 {
7743 	ccb_p	cp;
7744 	hcb_p	np;
7745 	union	ccb *ccb;
7746 	int	s;
7747 
7748 	s = splcam();
7749 
7750 	cp  = (ccb_p) arg;
7751 	ccb = cp->cam_ccb;
7752 	np  = (hcb_p) cp->arg;
7753 
7754 	/*
7755 	 *  Deal with weird races.
7756 	 */
7757 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7758 		goto out_abort;
7759 
7760 	/*
7761 	 *  Deal with weird errors.
7762 	 */
7763 	if (error) {
7764 		cp->dmamapped = 0;
7765 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7766 		goto out_abort;
7767 	}
7768 
7769 	/*
7770 	 *  Build the data descriptor for the chip.
7771 	 */
7772 	if (nsegs) {
7773 		int retv;
7774 		/* 896 rev 1 requires to be careful about boundaries */
7775 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7776 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7777 		else
7778 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7779 		if (retv < 0) {
7780 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7781 			goto out_abort;
7782 		}
7783 	}
7784 
7785 	/*
7786 	 *  Synchronize the DMA map only if we have
7787 	 *  actually mapped the data.
7788 	 */
7789 	if (cp->dmamapped) {
7790 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7791 			(cp->dmamapped == SYM_DMA_READ ?
7792 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7793 	}
7794 
7795 	/*
7796 	 *  Set host status to busy state.
7797 	 *  May have been set back to HS_WAIT to avoid a race.
7798 	 */
7799 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7800 
7801 	/*
7802 	 *  Set data pointers.
7803 	 */
7804 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7805 
7806 	/*
7807 	 *  Enqueue this IO in our pending queue.
7808 	 */
7809 	sym_enqueue_cam_ccb(np, ccb);
7810 
7811 	/*
7812 	 *  When `#ifed 1', the code below makes the driver
7813 	 *  panic on the first attempt to write to a SCSI device.
7814 	 *  It is the first test we want to do after a driver
7815 	 *  change that does not seem obviously safe. :)
7816 	 */
7817 #if 0
7818 	switch (cp->cdb_buf[0]) {
7819 	case 0x0A: case 0x2A: case 0xAA:
7820 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7821 		MDELAY(10000);
7822 		break;
7823 	default:
7824 		break;
7825 	}
7826 #endif
7827 	/*
7828 	 *  Activate this job.
7829 	 */
7830 	sym_put_start_queue(np, cp);
7831 out:
7832 	splx(s);
7833 	return;
7834 out_abort:
7835 	sym_free_ccb(np, cp);
7836 	sym_xpt_done(np, ccb);
7837 	goto out;
7838 }
7839 
7840 /*
7841  *  How complex it gets to deal with the data in CAM.
7842  *  The Bus Dma stuff makes things still more complex.
7843  */
7844 static void
7845 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7846 {
7847 	struct ccb_hdr *ccb_h;
7848 	int dir, retv;
7849 
7850 	ccb_h = &csio->ccb_h;
7851 
7852 	/*
7853 	 *  Now deal with the data.
7854 	 */
7855 	cp->data_len = csio->dxfer_len;
7856 	cp->arg      = np;
7857 
7858 	/*
7859 	 *  No direction means no data.
7860 	 */
7861 	dir = (ccb_h->flags & CAM_DIR_MASK);
7862 	if (dir == CAM_DIR_NONE) {
7863 		sym_execute_ccb(cp, NULL, 0, 0);
7864 		return;
7865 	}
7866 
7867 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
7868 		/* Single buffer */
7869 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7870 			/* Buffer is virtual */
7871 			int s;
7872 
7873 			cp->dmamapped = (dir == CAM_DIR_IN) ?
7874 						SYM_DMA_READ : SYM_DMA_WRITE;
7875 			s = splsoftvm();
7876 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
7877 					       csio->data_ptr, csio->dxfer_len,
7878 					       sym_execute_ccb, cp, 0);
7879 			if (retv == EINPROGRESS) {
7880 				cp->host_status	= HS_WAIT;
7881 				xpt_freeze_simq(np->sim, 1);
7882 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7883 			}
7884 			splx(s);
7885 		} else {
7886 			/* Buffer is physical */
7887 			struct bus_dma_segment seg;
7888 
7889 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
7890 			sym_execute_ccb(cp, &seg, 1, 0);
7891 		}
7892 	} else {
7893 		/* Scatter/gather list */
7894 		struct bus_dma_segment *segs;
7895 
7896 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
7897 			/* The SG list pointer is physical */
7898 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7899 			goto out_abort;
7900 		}
7901 
7902 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7903 			/* SG buffer pointers are virtual */
7904 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7905 			goto out_abort;
7906 		}
7907 
7908 		/* SG buffer pointers are physical */
7909 		segs  = (struct bus_dma_segment *)csio->data_ptr;
7910 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
7911 	}
7912 	return;
7913 out_abort:
7914 	sym_free_ccb(np, cp);
7915 	sym_xpt_done(np, (union ccb *) csio);
7916 }
7917 
7918 /*
7919  *  Move the scatter list to our data block.
7920  */
7921 static int
7922 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7923 			     bus_dma_segment_t *psegs, int nsegs)
7924 {
7925 	struct sym_tblmove *data;
7926 	bus_dma_segment_t *psegs2;
7927 
7928 	if (nsegs > SYM_CONF_MAX_SG)
7929 		return -1;
7930 
7931 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7932 	psegs2 = &psegs[nsegs-1];
7933 	cp->segments = nsegs;
7934 
7935 	while (1) {
7936 		data->addr = cpu_to_scr(psegs2->ds_addr);
7937 		data->size = cpu_to_scr(psegs2->ds_len);
7938 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7939 			printf ("%s scatter: paddr=%lx len=%ld\n",
7940 				sym_name(np), (long) psegs2->ds_addr,
7941 				(long) psegs2->ds_len);
7942 		}
7943 		if (psegs2 != psegs) {
7944 			--data;
7945 			--psegs2;
7946 			continue;
7947 		}
7948 		break;
7949 	}
7950 	return 0;
7951 }
7952 
7953 
7954 /*
7955  *  Scatter a SG list with physical addresses into bus addressable chunks.
7956  *  We need to ensure 16MB boundaries not to be crossed during DMA of
7957  *  each segment, due to some chips being flawed.
7958  */
7959 #define BOUND_MASK ((1UL<<24)-1)
7960 static int
7961 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7962 {
7963 	u_long	ps, pe, pn;
7964 	u_long	k;
7965 	int s, t;
7966 
7967 	s  = SYM_CONF_MAX_SG - 1;
7968 	t  = nsegs - 1;
7969 	ps = psegs[t].ds_addr;
7970 	pe = ps + psegs[t].ds_len;
7971 
7972 	while (s >= 0) {
7973 		pn = (pe - 1) & ~BOUND_MASK;
7974 		if (pn <= ps)
7975 			pn = ps;
7976 		k = pe - pn;
7977 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7978 			printf ("%s scatter: paddr=%lx len=%ld\n",
7979 				sym_name(np), pn, k);
7980 		}
7981 		cp->phys.data[s].addr = cpu_to_scr(pn);
7982 		cp->phys.data[s].size = cpu_to_scr(k);
7983 		--s;
7984 		if (pn == ps) {
7985 			if (--t < 0)
7986 				break;
7987 			ps = psegs[t].ds_addr;
7988 			pe = ps + psegs[t].ds_len;
7989 		}
7990 		else
7991 			pe = pn;
7992 	}
7993 
7994 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7995 
7996 	return t >= 0 ? -1 : 0;
7997 }
7998 #undef BOUND_MASK
7999 
8000 /*
8001  *  SIM action for non performance critical stuff.
8002  */
8003 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8004 {
8005 	hcb_p	np;
8006 	tcb_p	tp;
8007 	lcb_p	lp;
8008 	struct	ccb_hdr  *ccb_h;
8009 
8010 	/*
8011 	 *  Retrieve our controller data structure.
8012 	 */
8013 	np = (hcb_p) cam_sim_softc(sim);
8014 
8015 	ccb_h = &ccb->ccb_h;
8016 
8017 	switch (ccb_h->func_code) {
8018 	case XPT_SET_TRAN_SETTINGS:
8019 	{
8020 		struct ccb_trans_settings *cts;
8021 
8022 		cts  = &ccb->cts;
8023 		tp = &np->target[ccb_h->target_id];
8024 
8025 		/*
8026 		 *  Update SPI transport settings in TARGET control block.
8027 		 *  Update SCSI device settings in LUN control block.
8028 		 */
8029 		lp = sym_lp(np, tp, ccb_h->target_lun);
8030 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8031 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8032 			if (lp)
8033 				sym_update_dflags(np, &lp->current_flags, cts);
8034 		}
8035 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8036 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8037 			if (lp)
8038 				sym_update_dflags(np, &lp->user_flags, cts);
8039 		}
8040 
8041 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8042 		break;
8043 	}
8044 	case XPT_GET_TRAN_SETTINGS:
8045 	{
8046 		struct ccb_trans_settings *cts;
8047 		struct sym_trans *tip;
8048 		u_char dflags;
8049 
8050 		cts = &ccb->cts;
8051 		tp = &np->target[ccb_h->target_id];
8052 		lp = sym_lp(np, tp, ccb_h->target_lun);
8053 
8054 #define	cts__scsi (&cts->proto_specific.scsi)
8055 #define	cts__spi  (&cts->xport_specific.spi)
8056 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8057 			tip = &tp->tinfo.current;
8058 			dflags = lp ? lp->current_flags : 0;
8059 		}
8060 		else {
8061 			tip = &tp->tinfo.user;
8062 			dflags = lp ? lp->user_flags : tp->usrflags;
8063 		}
8064 
8065 		cts->protocol  = PROTO_SCSI;
8066 		cts->transport = XPORT_SPI;
8067 		cts->protocol_version  = tip->scsi_version;
8068 		cts->transport_version = tip->spi_version;
8069 
8070 		cts__spi->sync_period = tip->period;
8071 		cts__spi->sync_offset = tip->offset;
8072 		cts__spi->bus_width   = tip->width;
8073 		cts__spi->ppr_options = tip->options;
8074 
8075 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8076 		                | CTS_SPI_VALID_SYNC_OFFSET
8077 		                | CTS_SPI_VALID_BUS_WIDTH
8078 		                | CTS_SPI_VALID_PPR_OPTIONS;
8079 
8080 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8081 		if (dflags & SYM_DISC_ENABLED)
8082 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8083 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8084 
8085 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8086 		if (dflags & SYM_TAGS_ENABLED)
8087 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8088 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8089 #undef	cts__spi
8090 #undef	cts__scsi
8091 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8092 		break;
8093 	}
8094 	case XPT_CALC_GEOMETRY:
8095 	{
8096 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8097 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8098 		break;
8099 	}
8100 	case XPT_PATH_INQ:
8101 	{
8102 		struct ccb_pathinq *cpi = &ccb->cpi;
8103 		cpi->version_num = 1;
8104 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8105 		if ((np->features & FE_WIDE) != 0)
8106 			cpi->hba_inquiry |= PI_WIDE_16;
8107 		cpi->target_sprt = 0;
8108 		cpi->hba_misc = 0;
8109 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8110 			cpi->hba_misc |= PIM_SCANHILO;
8111 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8112 			cpi->hba_misc |= PIM_NOBUSRESET;
8113 		cpi->hba_eng_cnt = 0;
8114 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8115 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8116 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8117 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8118 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8119 		cpi->bus_id = cam_sim_bus(sim);
8120 		cpi->initiator_id = np->myaddr;
8121 		cpi->base_transfer_speed = 3300;
8122 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8123 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8124 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8125 		cpi->unit_number = cam_sim_unit(sim);
8126 
8127 		cpi->protocol = PROTO_SCSI;
8128 		cpi->protocol_version = SCSI_REV_2;
8129 		cpi->transport = XPORT_SPI;
8130 		cpi->transport_version = 2;
8131 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8132 		if (np->features & FE_ULTRA3) {
8133 			cpi->transport_version = 3;
8134 			cpi->xport_specific.spi.ppr_options =
8135 			    SID_SPI_CLOCK_DT_ST;
8136 		}
8137 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8138 		break;
8139 	}
8140 	case XPT_ABORT:
8141 	{
8142 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8143 		switch(abort_ccb->ccb_h.func_code) {
8144 		case XPT_SCSI_IO:
8145 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8146 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8147 				break;
8148 			}
8149 		default:
8150 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8151 			break;
8152 		}
8153 		break;
8154 	}
8155 	case XPT_RESET_DEV:
8156 	{
8157 		sym_reset_dev(np, ccb);
8158 		break;
8159 	}
8160 	case XPT_RESET_BUS:
8161 	{
8162 		sym_reset_scsi_bus(np, 0);
8163 		if (sym_verbose) {
8164 			xpt_print_path(np->path);
8165 			printf("SCSI BUS reset delivered.\n");
8166 		}
8167 		sym_init (np, 1);
8168 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8169 		break;
8170 	}
8171 	case XPT_ACCEPT_TARGET_IO:
8172 	case XPT_CONT_TARGET_IO:
8173 	case XPT_EN_LUN:
8174 	case XPT_NOTIFY_ACK:
8175 	case XPT_IMMED_NOTIFY:
8176 	case XPT_TERM_IO:
8177 	default:
8178 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8179 		break;
8180 	}
8181 }
8182 
8183 /*
8184  *  Asynchronous notification handler.
8185  */
8186 static void
8187 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8188 {
8189 	hcb_p np;
8190 	struct cam_sim *sim;
8191 	u_int tn;
8192 	tcb_p tp;
8193 	int s;
8194 
8195 	s = splcam();
8196 
8197 	sim = (struct cam_sim *) cb_arg;
8198 	np  = (hcb_p) cam_sim_softc(sim);
8199 
8200 	switch (code) {
8201 	case AC_LOST_DEVICE:
8202 		tn = xpt_path_target_id(path);
8203 		if (tn >= SYM_CONF_MAX_TARGET)
8204 			break;
8205 
8206 		tp = &np->target[tn];
8207 
8208 		tp->to_reset  = 0;
8209 		tp->head.sval = 0;
8210 		tp->head.wval = np->rv_scntl3;
8211 		tp->head.uval = 0;
8212 
8213 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8214 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8215 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8216 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8217 
8218 		break;
8219 	default:
8220 		break;
8221 	}
8222 
8223 	splx(s);
8224 }
8225 
8226 /*
8227  *  Update transfer settings of a target.
8228  */
8229 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8230 			    struct ccb_trans_settings *cts)
8231 {
8232 	/*
8233 	 *  Update the infos.
8234 	 */
8235 #define cts__spi (&cts->xport_specific.spi)
8236 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8237 		tip->width = cts__spi->bus_width;
8238 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8239 		tip->offset = cts__spi->sync_offset;
8240 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8241 		tip->period = cts__spi->sync_period;
8242 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8243 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8244 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8245 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8246 		tip->scsi_version = cts->protocol_version;
8247 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8248 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8249 		tip->spi_version = cts->transport_version;
8250 #undef cts__spi
8251 	/*
8252 	 *  Scale against driver configuration limits.
8253 	 */
8254 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8255 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8256 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8257 
8258 	/*
8259 	 *  Scale against actual controller BUS width.
8260 	 */
8261 	if (tip->width > np->maxwide)
8262 		tip->width  = np->maxwide;
8263 
8264 	/*
8265 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8266 	 */
8267 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8268 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8269 		tip->options &= ~PPR_OPT_DT;
8270 	}
8271 
8272 	/*
8273 	 *  Scale period factor and offset against controller limits.
8274 	 */
8275 	if (tip->options & PPR_OPT_DT) {
8276 		if (tip->period < np->minsync_dt)
8277 			tip->period = np->minsync_dt;
8278 		if (tip->period > np->maxsync_dt)
8279 			tip->period = np->maxsync_dt;
8280 		if (tip->offset > np->maxoffs_dt)
8281 			tip->offset = np->maxoffs_dt;
8282 	}
8283 	else {
8284 		if (tip->period < np->minsync)
8285 			tip->period = np->minsync;
8286 		if (tip->period > np->maxsync)
8287 			tip->period = np->maxsync;
8288 		if (tip->offset > np->maxoffs)
8289 			tip->offset = np->maxoffs;
8290 	}
8291 }
8292 
8293 /*
8294  *  Update flags for a device (logical unit).
8295  */
8296 static void
8297 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8298 {
8299 #define	cts__scsi (&cts->proto_specific.scsi)
8300 #define	cts__spi  (&cts->xport_specific.spi)
8301 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8302 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8303 			*flags |= SYM_DISC_ENABLED;
8304 		else
8305 			*flags &= ~SYM_DISC_ENABLED;
8306 	}
8307 
8308 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8309 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8310 			*flags |= SYM_TAGS_ENABLED;
8311 		else
8312 			*flags &= ~SYM_TAGS_ENABLED;
8313 	}
8314 #undef	cts__spi
8315 #undef	cts__scsi
8316 }
8317 
8318 
8319 /*============= DRIVER INITIALISATION ==================*/
8320 
8321 
8322 static device_method_t sym_pci_methods[] = {
8323 	DEVMETHOD(device_probe,	 sym_pci_probe),
8324 	DEVMETHOD(device_attach, sym_pci_attach),
8325 	{ 0, 0 }
8326 };
8327 
8328 static driver_t sym_pci_driver = {
8329 	"sym",
8330 	sym_pci_methods,
8331 	sizeof(struct sym_hcb)
8332 };
8333 
8334 static devclass_t sym_devclass;
8335 
8336 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8337 MODULE_DEPEND(sym, cam, 1, 1, 1);
8338 MODULE_DEPEND(sym, pci, 1, 1, 1);
8339 
8340 
8341 static struct sym_pci_chip sym_pci_dev_table[] = {
8342  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8343  FE_ERL}
8344  ,
8345 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8346  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8347  FE_BOF}
8348  ,
8349 #else
8350  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8351  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8352  ,
8353 #endif
8354  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8355  FE_BOF|FE_ERL}
8356  ,
8357  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8358  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8359  ,
8360  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8361  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8362  ,
8363  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8364  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8365  ,
8366  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8367  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8368  FE_RAM|FE_DIFF}
8369  ,
8370  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8371  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8372  FE_RAM|FE_DIFF}
8373  ,
8374  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8375  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8376  FE_RAM|FE_DIFF}
8377  ,
8378  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8379  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8380  FE_RAM|FE_DIFF}
8381  ,
8382 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8383  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8384  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8385  FE_RAM|FE_LCKFRQ}
8386  ,
8387 #else
8388  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8389  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8390  FE_RAM|FE_LCKFRQ}
8391  ,
8392 #endif
8393  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8394  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8395  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8396  ,
8397  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8398  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8399  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8400  ,
8401  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8402  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8403  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8404  FE_C10}
8405  ,
8406  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8407  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8408  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8409  FE_C10|FE_U3EN}
8410  ,
8411  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8412  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8413  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8414  FE_C10|FE_U3EN}
8415  ,
8416  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8417  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8418  FE_RAM|FE_IO256|FE_LEDC}
8419 };
8420 
8421 #define sym_pci_num_devs \
8422 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8423 
8424 /*
8425  *  Look up the chip table.
8426  *
8427  *  Return a pointer to the chip entry if found,
8428  *  zero otherwise.
8429  */
8430 static struct sym_pci_chip *
8431 sym_find_pci_chip(device_t dev)
8432 {
8433 	struct	sym_pci_chip *chip;
8434 	int	i;
8435 	u_short	device_id;
8436 	u_char	revision;
8437 
8438 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8439 		return 0;
8440 
8441 	device_id = pci_get_device(dev);
8442 	revision  = pci_get_revid(dev);
8443 
8444 	for (i = 0; i < sym_pci_num_devs; i++) {
8445 		chip = &sym_pci_dev_table[i];
8446 		if (device_id != chip->device_id)
8447 			continue;
8448 		if (revision > chip->revision_id)
8449 			continue;
8450 		return chip;
8451 	}
8452 
8453 	return 0;
8454 }
8455 
8456 /*
8457  *  Tell upper layer if the chip is supported.
8458  */
8459 static int
8460 sym_pci_probe(device_t dev)
8461 {
8462 	struct	sym_pci_chip *chip;
8463 
8464 	chip = sym_find_pci_chip(dev);
8465 	if (chip && sym_find_firmware(chip)) {
8466 		device_set_desc(dev, chip->name);
8467 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8468 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8469 	}
8470 	return ENXIO;
8471 }
8472 
8473 /*
8474  *  Attach a sym53c8xx device.
8475  */
8476 static int
8477 sym_pci_attach(device_t dev)
8478 {
8479 	struct	sym_pci_chip *chip;
8480 	u_short	command;
8481 	u_char	cachelnsz;
8482 	struct	sym_hcb *np = 0;
8483 	struct	sym_nvram nvram;
8484 	struct	sym_fw *fw = 0;
8485 	int 	i;
8486 	bus_dma_tag_t	bus_dmat;
8487 
8488 	bus_dmat = bus_get_dma_tag(dev);
8489 
8490 	/*
8491 	 *  Only probed devices should be attached.
8492 	 *  We just enjoy being paranoid. :)
8493 	 */
8494 	chip = sym_find_pci_chip(dev);
8495 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8496 		return (ENXIO);
8497 
8498 	/*
8499 	 *  Allocate immediately the host control block,
8500 	 *  since we are only expecting to succeed. :)
8501 	 *  We keep track in the HCB of all the resources that
8502 	 *  are to be released on error.
8503 	 */
8504 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8505 	if (np)
8506 		np->bus_dmat = bus_dmat;
8507 	else
8508 		goto attach_failed;
8509 
8510 	/*
8511 	 *  Copy some useful infos to the HCB.
8512 	 */
8513 	np->hcb_ba	 = vtobus(np);
8514 	np->verbose	 = bootverbose;
8515 	np->device	 = dev;
8516 	np->unit	 = device_get_unit(dev);
8517 	np->device_id	 = pci_get_device(dev);
8518 	np->revision_id  = pci_get_revid(dev);
8519 	np->features	 = chip->features;
8520 	np->clock_divn	 = chip->nr_divisor;
8521 	np->maxoffs	 = chip->offset_max;
8522 	np->maxburst	 = chip->burst_max;
8523 	np->scripta_sz	 = fw->a_size;
8524 	np->scriptb_sz	 = fw->b_size;
8525 	np->fw_setup	 = fw->setup;
8526 	np->fw_patch	 = fw->patch;
8527 	np->fw_name	 = fw->name;
8528 
8529 #ifdef __amd64__
8530 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8531 			"TARGET");
8532 	if (!np->target)
8533 		goto attach_failed;
8534 #endif
8535 	/*
8536 	 * Edit its name.
8537 	 */
8538 	snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
8539 
8540 	/*
8541 	 *  Initialyze the CCB free and busy queues.
8542 	 */
8543 	sym_que_init(&np->free_ccbq);
8544 	sym_que_init(&np->busy_ccbq);
8545 	sym_que_init(&np->comp_ccbq);
8546 	sym_que_init(&np->cam_ccbq);
8547 
8548 	/*
8549 	 *  Allocate a tag for the DMA of user data.
8550 	 */
8551 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
8552 				BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
8553 				NULL, NULL,
8554 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
8555 				(1<<24), 0, busdma_lock_mutex, &Giant,
8556 				&np->data_dmat)) {
8557 		device_printf(dev, "failed to create DMA tag.\n");
8558 		goto attach_failed;
8559 	}
8560 	/*
8561 	 *  Read and apply some fix-ups to the PCI COMMAND
8562 	 *  register. We want the chip to be enabled for:
8563 	 *  - BUS mastering
8564 	 *  - PCI parity checking (reporting would also be fine)
8565 	 *  - Write And Invalidate.
8566 	 */
8567 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8568 	command |= PCIM_CMD_BUSMASTEREN;
8569 	command |= PCIM_CMD_PERRESPEN;
8570 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
8571 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8572 
8573 	/*
8574 	 *  Let the device know about the cache line size,
8575 	 *  if it doesn't yet.
8576 	 */
8577 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8578 	if (!cachelnsz) {
8579 		cachelnsz = 8;
8580 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8581 	}
8582 
8583 	/*
8584 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8585 	 */
8586 	if ((command & PCIM_CMD_MEMEN) != 0) {
8587 		int regs_id = SYM_PCI_MMIO;
8588 		np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8589 						      &regs_id, RF_ACTIVE);
8590 	}
8591 	if (!np->mmio_res) {
8592 		device_printf(dev, "failed to allocate MMIO resources\n");
8593 		goto attach_failed;
8594 	}
8595 	np->mmio_bsh = rman_get_bushandle(np->mmio_res);
8596 	np->mmio_tag = rman_get_bustag(np->mmio_res);
8597 	np->mmio_pa  = rman_get_start(np->mmio_res);
8598 	np->mmio_va  = (vm_offset_t) rman_get_virtual(np->mmio_res);
8599 	np->mmio_ba  = np->mmio_pa;
8600 
8601 	/*
8602 	 *  Allocate the IRQ.
8603 	 */
8604 	i = 0;
8605 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8606 					     RF_ACTIVE | RF_SHAREABLE);
8607 	if (!np->irq_res) {
8608 		device_printf(dev, "failed to allocate IRQ resource\n");
8609 		goto attach_failed;
8610 	}
8611 
8612 #ifdef	SYM_CONF_IOMAPPED
8613 	/*
8614 	 *  User want us to use normal IO with PCI.
8615 	 *  Alloc/get/map/retrieve everything that deals with IO.
8616 	 */
8617 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
8618 		int regs_id = SYM_PCI_IO;
8619 		np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
8620 						    &regs_id, RF_ACTIVE);
8621 	}
8622 	if (!np->io_res) {
8623 		device_printf(dev, "failed to allocate IO resources\n");
8624 		goto attach_failed;
8625 	}
8626 	np->io_bsh  = rman_get_bushandle(np->io_res);
8627 	np->io_tag  = rman_get_bustag(np->io_res);
8628 	np->io_port = rman_get_start(np->io_res);
8629 
8630 #endif /* SYM_CONF_IOMAPPED */
8631 
8632 	/*
8633 	 *  If the chip has RAM.
8634 	 *  Alloc/get/map/retrieve the corresponding resources.
8635 	 */
8636 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
8637 	    (command & PCIM_CMD_MEMEN) != 0) {
8638 		int regs_id = SYM_PCI_RAM;
8639 		if (np->features & FE_64BIT)
8640 			regs_id = SYM_PCI_RAM64;
8641 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8642 						     &regs_id, RF_ACTIVE);
8643 		if (!np->ram_res) {
8644 			device_printf(dev,"failed to allocate RAM resources\n");
8645 			goto attach_failed;
8646 		}
8647 		np->ram_id  = regs_id;
8648 		np->ram_bsh = rman_get_bushandle(np->ram_res);
8649 		np->ram_tag = rman_get_bustag(np->ram_res);
8650 		np->ram_pa  = rman_get_start(np->ram_res);
8651 		np->ram_va  = (vm_offset_t) rman_get_virtual(np->ram_res);
8652 		np->ram_ba  = np->ram_pa;
8653 	}
8654 
8655 	/*
8656 	 *  Save setting of some IO registers, so we will
8657 	 *  be able to probe specific implementations.
8658 	 */
8659 	sym_save_initial_setting (np);
8660 
8661 	/*
8662 	 *  Reset the chip now, since it has been reported
8663 	 *  that SCSI clock calibration may not work properly
8664 	 *  if the chip is currently active.
8665 	 */
8666 	sym_chip_reset (np);
8667 
8668 	/*
8669 	 *  Try to read the user set-up.
8670 	 */
8671 	(void) sym_read_nvram(np, &nvram);
8672 
8673 	/*
8674 	 *  Prepare controller and devices settings, according
8675 	 *  to chip features, user set-up and driver set-up.
8676 	 */
8677 	(void) sym_prepare_setting(np, &nvram);
8678 
8679 	/*
8680 	 *  Check the PCI clock frequency.
8681 	 *  Must be performed after prepare_setting since it destroys
8682 	 *  STEST1 that is used to probe for the clock doubler.
8683 	 */
8684 	i = sym_getpciclock(np);
8685 	if (i > 37000)
8686 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8687 
8688 	/*
8689 	 *  Allocate the start queue.
8690 	 */
8691 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8692 	if (!np->squeue)
8693 		goto attach_failed;
8694 	np->squeue_ba = vtobus(np->squeue);
8695 
8696 	/*
8697 	 *  Allocate the done queue.
8698 	 */
8699 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8700 	if (!np->dqueue)
8701 		goto attach_failed;
8702 	np->dqueue_ba = vtobus(np->dqueue);
8703 
8704 	/*
8705 	 *  Allocate the target bus address array.
8706 	 */
8707 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8708 	if (!np->targtbl)
8709 		goto attach_failed;
8710 	np->targtbl_ba = vtobus(np->targtbl);
8711 
8712 	/*
8713 	 *  Allocate SCRIPTS areas.
8714 	 */
8715 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8716 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8717 	if (!np->scripta0 || !np->scriptb0)
8718 		goto attach_failed;
8719 
8720 	/*
8721 	 *  Allocate some CCB. We need at least ONE.
8722 	 */
8723 	if (!sym_alloc_ccb(np))
8724 		goto attach_failed;
8725 
8726 	/*
8727 	 *  Calculate BUS addresses where we are going
8728 	 *  to load the SCRIPTS.
8729 	 */
8730 	np->scripta_ba	= vtobus(np->scripta0);
8731 	np->scriptb_ba	= vtobus(np->scriptb0);
8732 	np->scriptb0_ba	= np->scriptb_ba;
8733 
8734 	if (np->ram_ba) {
8735 		np->scripta_ba	= np->ram_ba;
8736 		if (np->features & FE_RAM8K) {
8737 			np->ram_ws = 8192;
8738 			np->scriptb_ba = np->scripta_ba + 4096;
8739 #ifdef __LP64__
8740 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8741 #endif
8742 		}
8743 		else
8744 			np->ram_ws = 4096;
8745 	}
8746 
8747 	/*
8748 	 *  Copy scripts to controller instance.
8749 	 */
8750 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8751 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8752 
8753 	/*
8754 	 *  Setup variable parts in scripts and compute
8755 	 *  scripts bus addresses used from the C code.
8756 	 */
8757 	np->fw_setup(np, fw);
8758 
8759 	/*
8760 	 *  Bind SCRIPTS with physical addresses usable by the
8761 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8762 	 */
8763 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8764 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8765 
8766 #ifdef SYM_CONF_IARB_SUPPORT
8767 	/*
8768 	 *    If user wants IARB to be set when we win arbitration
8769 	 *    and have other jobs, compute the max number of consecutive
8770 	 *    settings of IARB hints before we leave devices a chance to
8771 	 *    arbitrate for reselection.
8772 	 */
8773 #ifdef	SYM_SETUP_IARB_MAX
8774 	np->iarb_max = SYM_SETUP_IARB_MAX;
8775 #else
8776 	np->iarb_max = 4;
8777 #endif
8778 #endif
8779 
8780 	/*
8781 	 *  Prepare the idle and invalid task actions.
8782 	 */
8783 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8784 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8785 	np->idletask_ba		= vtobus(&np->idletask);
8786 
8787 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8788 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8789 	np->notask_ba		= vtobus(&np->notask);
8790 
8791 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8792 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8793 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8794 
8795 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8796 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8797 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8798 
8799 	/*
8800 	 *  Allocate and prepare the lun JUMP table that is used
8801 	 *  for a target prior the probing of devices (bad lun table).
8802 	 *  A private table will be allocated for the target on the
8803 	 *  first INQUIRY response received.
8804 	 */
8805 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8806 	if (!np->badluntbl)
8807 		goto attach_failed;
8808 
8809 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8810 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8811 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8812 
8813 	/*
8814 	 *  Prepare the bus address array that contains the bus
8815 	 *  address of each target control block.
8816 	 *  For now, assume all logical units are wrong. :)
8817 	 */
8818 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8819 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8820 		np->target[i].head.luntbl_sa =
8821 				cpu_to_scr(vtobus(np->badluntbl));
8822 		np->target[i].head.lun0_sa =
8823 				cpu_to_scr(vtobus(&np->badlun_sa));
8824 	}
8825 
8826 	/*
8827 	 *  Now check the cache handling of the pci chipset.
8828 	 */
8829 	if (sym_snooptest (np)) {
8830 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8831 		goto attach_failed;
8832 	};
8833 
8834 	/*
8835 	 *  Now deal with CAM.
8836 	 *  Hopefully, we will succeed with that one.:)
8837 	 */
8838 	if (!sym_cam_attach(np))
8839 		goto attach_failed;
8840 
8841 	/*
8842 	 *  Sigh! we are done.
8843 	 */
8844 	return 0;
8845 
8846 	/*
8847 	 *  We have failed.
8848 	 *  We will try to free all the resources we have
8849 	 *  allocated, but if we are a boot device, this
8850 	 *  will not help that much.;)
8851 	 */
8852 attach_failed:
8853 	if (np)
8854 		sym_pci_free(np);
8855 	return ENXIO;
8856 }
8857 
8858 /*
8859  *  Free everything that have been allocated for this device.
8860  */
8861 static void sym_pci_free(hcb_p np)
8862 {
8863 	SYM_QUEHEAD *qp;
8864 	ccb_p cp;
8865 	tcb_p tp;
8866 	lcb_p lp;
8867 	int target, lun;
8868 	int s;
8869 
8870 	/*
8871 	 *  First free CAM resources.
8872 	 */
8873 	s = splcam();
8874 	sym_cam_free(np);
8875 	splx(s);
8876 
8877 	/*
8878 	 *  Now every should be quiet for us to
8879 	 *  free other resources.
8880 	 */
8881 	if (np->ram_res)
8882 		bus_release_resource(np->device, SYS_RES_MEMORY,
8883 				     np->ram_id, np->ram_res);
8884 	if (np->mmio_res)
8885 		bus_release_resource(np->device, SYS_RES_MEMORY,
8886 				     SYM_PCI_MMIO, np->mmio_res);
8887 	if (np->io_res)
8888 		bus_release_resource(np->device, SYS_RES_IOPORT,
8889 				     SYM_PCI_IO, np->io_res);
8890 	if (np->irq_res)
8891 		bus_release_resource(np->device, SYS_RES_IRQ,
8892 				     0, np->irq_res);
8893 
8894 	if (np->scriptb0)
8895 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8896 	if (np->scripta0)
8897 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8898 	if (np->squeue)
8899 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8900 	if (np->dqueue)
8901 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8902 
8903 	while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
8904 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8905 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8906 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8907 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8908 	}
8909 
8910 	if (np->badluntbl)
8911 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8912 
8913 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8914 		tp = &np->target[target];
8915 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8916 			lp = sym_lp(np, tp, lun);
8917 			if (!lp)
8918 				continue;
8919 			if (lp->itlq_tbl)
8920 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8921 				       "ITLQ_TBL");
8922 			if (lp->cb_tags)
8923 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8924 				       "CB_TAGS");
8925 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8926 		}
8927 #if SYM_CONF_MAX_LUN > 1
8928 		if (tp->lunmp)
8929 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8930 			       "LUNMP");
8931 #endif
8932 	}
8933 #ifdef __amd64__
8934 	if (np->target)
8935 		sym_mfree_dma(np->target,
8936 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8937 #endif
8938 	if (np->targtbl)
8939 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8940 	if (np->data_dmat)
8941 		bus_dma_tag_destroy(np->data_dmat);
8942 	sym_mfree_dma(np, sizeof(*np), "HCB");
8943 }
8944 
8945 /*
8946  *  Allocate CAM resources and register a bus to CAM.
8947  */
8948 static int sym_cam_attach(hcb_p np)
8949 {
8950 	struct cam_devq *devq = 0;
8951 	struct cam_sim *sim = 0;
8952 	struct cam_path *path = 0;
8953 	struct ccb_setasync csa;
8954 	int err, s;
8955 
8956 	s = splcam();
8957 
8958 	/*
8959 	 *  Establish our interrupt handler.
8960 	 */
8961 	err = bus_setup_intr(np->device, np->irq_res,
8962 			     INTR_TYPE_CAM | INTR_ENTROPY, NULL, sym_intr, np,
8963 			     &np->intr);
8964 	if (err) {
8965 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8966 			      err);
8967 		goto fail;
8968 	}
8969 
8970 	/*
8971 	 *  Create the device queue for our sym SIM.
8972 	 */
8973 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8974 	if (!devq)
8975 		goto fail;
8976 
8977 	/*
8978 	 *  Construct our SIM entry.
8979 	 */
8980 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
8981 			    &Giant, 1, SYM_SETUP_MAX_TAG, devq);
8982 	if (!sim)
8983 		goto fail;
8984 	devq = 0;
8985 
8986 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8987 		goto fail;
8988 	np->sim = sim;
8989 	sim = 0;
8990 
8991 	if (xpt_create_path(&path, 0,
8992 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8993 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8994 		goto fail;
8995 	}
8996 	np->path = path;
8997 
8998 	/*
8999 	 *  Establish our async notification handler.
9000 	 */
9001 	xpt_setup_ccb(&csa.ccb_h, np->path, 5);
9002 	csa.ccb_h.func_code = XPT_SASYNC_CB;
9003 	csa.event_enable    = AC_LOST_DEVICE;
9004 	csa.callback	    = sym_async;
9005 	csa.callback_arg    = np->sim;
9006 	xpt_action((union ccb *)&csa);
9007 
9008 	/*
9009 	 *  Start the chip now, without resetting the BUS, since
9010 	 *  it seems that this must stay under control of CAM.
9011 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9012 	 *  get a spurious SMBC interrupt.
9013 	 */
9014 	sym_init (np, 0);
9015 
9016 	splx(s);
9017 	return 1;
9018 fail:
9019 	if (sim)
9020 		cam_sim_free(sim, FALSE);
9021 	if (devq)
9022 		cam_simq_free(devq);
9023 
9024 	sym_cam_free(np);
9025 
9026 	splx(s);
9027 	return 0;
9028 }
9029 
9030 /*
9031  *  Free everything that deals with CAM.
9032  */
9033 static void sym_cam_free(hcb_p np)
9034 {
9035 	if (np->intr) {
9036 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9037 		np->intr = NULL;
9038 	}
9039 
9040 	if (np->sim) {
9041 		xpt_bus_deregister(cam_sim_path(np->sim));
9042 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
9043 		np->sim = NULL;
9044 	}
9045 	if (np->path) {
9046 		xpt_free_path(np->path);
9047 		np->path = NULL;
9048 	}
9049 }
9050 
9051 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9052 
9053 /*
9054  *  Get host setup from NVRAM.
9055  */
9056 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9057 {
9058 #ifdef SYM_CONF_NVRAM_SUPPORT
9059 	/*
9060 	 *  Get parity checking, host ID, verbose mode
9061 	 *  and miscellaneous host flags from NVRAM.
9062 	 */
9063 	switch(nvram->type) {
9064 	case SYM_SYMBIOS_NVRAM:
9065 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9066 			np->rv_scntl0  &= ~0x0a;
9067 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9068 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9069 			np->verbose += 1;
9070 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9071 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9072 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9073 			np->usrflags |= SYM_AVOID_BUS_RESET;
9074 		break;
9075 	case SYM_TEKRAM_NVRAM:
9076 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9077 		break;
9078 	default:
9079 		break;
9080 	}
9081 #endif
9082 }
9083 
9084 /*
9085  *  Get target setup from NVRAM.
9086  */
9087 #ifdef SYM_CONF_NVRAM_SUPPORT
9088 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9089 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9090 #endif
9091 
9092 static void
9093 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9094 {
9095 #ifdef SYM_CONF_NVRAM_SUPPORT
9096 	switch(nvp->type) {
9097 	case SYM_SYMBIOS_NVRAM:
9098 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9099 		break;
9100 	case SYM_TEKRAM_NVRAM:
9101 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9102 		break;
9103 	default:
9104 		break;
9105 	}
9106 #endif
9107 }
9108 
9109 #ifdef SYM_CONF_NVRAM_SUPPORT
9110 /*
9111  *  Get target set-up from Symbios format NVRAM.
9112  */
9113 static void
9114 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9115 {
9116 	tcb_p tp = &np->target[target];
9117 	Symbios_target *tn = &nvram->target[target];
9118 
9119 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9120 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9121 	tp->usrtags =
9122 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9123 
9124 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9125 		tp->usrflags &= ~SYM_DISC_ENABLED;
9126 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9127 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9128 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9129 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9130 }
9131 
9132 /*
9133  *  Get target set-up from Tekram format NVRAM.
9134  */
9135 static void
9136 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9137 {
9138 	tcb_p tp = &np->target[target];
9139 	struct Tekram_target *tn = &nvram->target[target];
9140 	int i;
9141 
9142 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9143 		i = tn->sync_index & 0xf;
9144 		tp->tinfo.user.period = Tekram_sync[i];
9145 	}
9146 
9147 	tp->tinfo.user.width =
9148 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9149 
9150 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9151 		tp->usrtags = 2 << nvram->max_tags_index;
9152 	}
9153 
9154 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9155 		tp->usrflags |= SYM_DISC_ENABLED;
9156 
9157 	/* If any device does not support parity, we will not use this option */
9158 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9159 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9160 }
9161 
9162 #ifdef	SYM_CONF_DEBUG_NVRAM
9163 /*
9164  *  Dump Symbios format NVRAM for debugging purpose.
9165  */
9166 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9167 {
9168 	int i;
9169 
9170 	/* display Symbios nvram host data */
9171 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9172 		sym_name(np), nvram->host_id & 0x0f,
9173 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9174 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9175 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9176 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9177 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9178 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9179 
9180 	/* display Symbios nvram drive data */
9181 	for (i = 0 ; i < 15 ; i++) {
9182 		struct Symbios_target *tn = &nvram->target[i];
9183 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9184 		sym_name(np), i,
9185 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9186 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9187 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9188 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9189 		tn->bus_width,
9190 		tn->sync_period / 4,
9191 		tn->timeout);
9192 	}
9193 }
9194 
9195 /*
9196  *  Dump TEKRAM format NVRAM for debugging purpose.
9197  */
9198 static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9199 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9200 {
9201 	int i, tags, boot_delay;
9202 	char *rem;
9203 
9204 	/* display Tekram nvram host data */
9205 	tags = 2 << nvram->max_tags_index;
9206 	boot_delay = 0;
9207 	if (nvram->boot_delay_index < 6)
9208 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9209 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9210 	default:
9211 	case 0:	rem = "";			break;
9212 	case 1: rem = " REMOVABLE=boot device";	break;
9213 	case 2: rem = " REMOVABLE=all";		break;
9214 	}
9215 
9216 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9217 		sym_name(np), nvram->host_id & 0x0f,
9218 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9219 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9220 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9221 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9222 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9223 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9224 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9225 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9226 		rem, boot_delay, tags);
9227 
9228 	/* display Tekram nvram drive data */
9229 	for (i = 0; i <= 15; i++) {
9230 		int sync, j;
9231 		struct Tekram_target *tn = &nvram->target[i];
9232 		j = tn->sync_index & 0xf;
9233 		sync = Tekram_sync[j];
9234 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9235 		sym_name(np), i,
9236 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9237 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9238 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9239 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9240 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9241 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9242 		sync);
9243 	}
9244 }
9245 #endif	/* SYM_CONF_DEBUG_NVRAM */
9246 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9247 
9248 
9249 /*
9250  *  Try reading Symbios or Tekram NVRAM
9251  */
9252 #ifdef SYM_CONF_NVRAM_SUPPORT
9253 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9254 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9255 #endif
9256 
9257 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9258 {
9259 #ifdef SYM_CONF_NVRAM_SUPPORT
9260 	/*
9261 	 *  Try to read SYMBIOS nvram.
9262 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9263 	 */
9264 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9265 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9266 		nvp->type = SYM_SYMBIOS_NVRAM;
9267 #ifdef SYM_CONF_DEBUG_NVRAM
9268 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9269 #endif
9270 	}
9271 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9272 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9273 		nvp->type = SYM_TEKRAM_NVRAM;
9274 #ifdef SYM_CONF_DEBUG_NVRAM
9275 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9276 #endif
9277 	}
9278 	else
9279 		nvp->type = 0;
9280 #else
9281 	nvp->type = 0;
9282 #endif
9283 	return nvp->type;
9284 }
9285 
9286 
9287 #ifdef SYM_CONF_NVRAM_SUPPORT
9288 /*
9289  *  24C16 EEPROM reading.
9290  *
9291  *  GPOI0 - data in/data out
9292  *  GPIO1 - clock
9293  *  Symbios NVRAM wiring now also used by Tekram.
9294  */
9295 
9296 #define SET_BIT 0
9297 #define CLR_BIT 1
9298 #define SET_CLK 2
9299 #define CLR_CLK 3
9300 
9301 /*
9302  *  Set/clear data/clock bit in GPIO0
9303  */
9304 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9305 			  int bit_mode)
9306 {
9307 	UDELAY (5);
9308 	switch (bit_mode){
9309 	case SET_BIT:
9310 		*gpreg |= write_bit;
9311 		break;
9312 	case CLR_BIT:
9313 		*gpreg &= 0xfe;
9314 		break;
9315 	case SET_CLK:
9316 		*gpreg |= 0x02;
9317 		break;
9318 	case CLR_CLK:
9319 		*gpreg &= 0xfd;
9320 		break;
9321 
9322 	}
9323 	OUTB (nc_gpreg, *gpreg);
9324 	UDELAY (5);
9325 }
9326 
9327 /*
9328  *  Send START condition to NVRAM to wake it up.
9329  */
9330 static void S24C16_start(hcb_p np, u_char *gpreg)
9331 {
9332 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9333 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9334 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9335 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9336 }
9337 
9338 /*
9339  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9340  */
9341 static void S24C16_stop(hcb_p np, u_char *gpreg)
9342 {
9343 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9344 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9345 }
9346 
9347 /*
9348  *  Read or write a bit to the NVRAM,
9349  *  read if GPIO0 input else write if GPIO0 output
9350  */
9351 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9352 			 u_char *gpreg)
9353 {
9354 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9355 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9356 	if (read_bit)
9357 		*read_bit = INB (nc_gpreg);
9358 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9359 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9360 }
9361 
9362 /*
9363  *  Output an ACK to the NVRAM after reading,
9364  *  change GPIO0 to output and when done back to an input
9365  */
9366 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9367 			    u_char *gpcntl)
9368 {
9369 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9370 	S24C16_do_bit(np, 0, write_bit, gpreg);
9371 	OUTB (nc_gpcntl, *gpcntl);
9372 }
9373 
9374 /*
9375  *  Input an ACK from NVRAM after writing,
9376  *  change GPIO0 to input and when done back to an output
9377  */
9378 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9379 			   u_char *gpcntl)
9380 {
9381 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9382 	S24C16_do_bit(np, read_bit, 1, gpreg);
9383 	OUTB (nc_gpcntl, *gpcntl);
9384 }
9385 
9386 /*
9387  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9388  *  GPIO0 must already be set as an output
9389  */
9390 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9391 			     u_char *gpreg, u_char *gpcntl)
9392 {
9393 	int x;
9394 
9395 	for (x = 0; x < 8; x++)
9396 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9397 
9398 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9399 }
9400 
9401 /*
9402  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9403  *  GPIO0 must already be set as an input
9404  */
9405 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9406 			    u_char *gpreg, u_char *gpcntl)
9407 {
9408 	int x;
9409 	u_char read_bit;
9410 
9411 	*read_data = 0;
9412 	for (x = 0; x < 8; x++) {
9413 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9414 		*read_data |= ((read_bit & 0x01) << (7 - x));
9415 	}
9416 
9417 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9418 }
9419 
9420 /*
9421  *  Read 'len' bytes starting at 'offset'.
9422  */
9423 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9424 {
9425 	u_char	gpcntl, gpreg;
9426 	u_char	old_gpcntl, old_gpreg;
9427 	u_char	ack_data;
9428 	int	retv = 1;
9429 	int	x;
9430 
9431 	/* save current state of GPCNTL and GPREG */
9432 	old_gpreg	= INB (nc_gpreg);
9433 	old_gpcntl	= INB (nc_gpcntl);
9434 	gpcntl		= old_gpcntl & 0x1c;
9435 
9436 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9437 	OUTB (nc_gpreg,  old_gpreg);
9438 	OUTB (nc_gpcntl, gpcntl);
9439 
9440 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9441 	gpreg = old_gpreg;
9442 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9443 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9444 
9445 	/* now set NVRAM inactive with GPIO0/1 both high */
9446 	S24C16_stop(np, &gpreg);
9447 
9448 	/* activate NVRAM */
9449 	S24C16_start(np, &gpreg);
9450 
9451 	/* write device code and random address MSB */
9452 	S24C16_write_byte(np, &ack_data,
9453 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9454 	if (ack_data & 0x01)
9455 		goto out;
9456 
9457 	/* write random address LSB */
9458 	S24C16_write_byte(np, &ack_data,
9459 		offset & 0xff, &gpreg, &gpcntl);
9460 	if (ack_data & 0x01)
9461 		goto out;
9462 
9463 	/* regenerate START state to set up for reading */
9464 	S24C16_start(np, &gpreg);
9465 
9466 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9467 	S24C16_write_byte(np, &ack_data,
9468 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9469 	if (ack_data & 0x01)
9470 		goto out;
9471 
9472 	/* now set up GPIO0 for inputting data */
9473 	gpcntl |= 0x01;
9474 	OUTB (nc_gpcntl, gpcntl);
9475 
9476 	/* input all requested data - only part of total NVRAM */
9477 	for (x = 0; x < len; x++)
9478 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9479 
9480 	/* finally put NVRAM back in inactive mode */
9481 	gpcntl &= 0xfe;
9482 	OUTB (nc_gpcntl, gpcntl);
9483 	S24C16_stop(np, &gpreg);
9484 	retv = 0;
9485 out:
9486 	/* return GPIO0/1 to original states after having accessed NVRAM */
9487 	OUTB (nc_gpcntl, old_gpcntl);
9488 	OUTB (nc_gpreg,  old_gpreg);
9489 
9490 	return retv;
9491 }
9492 
9493 #undef SET_BIT /* 0 */
9494 #undef CLR_BIT /* 1 */
9495 #undef SET_CLK /* 2 */
9496 #undef CLR_CLK /* 3 */
9497 
9498 /*
9499  *  Try reading Symbios NVRAM.
9500  *  Return 0 if OK.
9501  */
9502 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9503 {
9504 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9505 	u_char *data = (u_char *) nvram;
9506 	int len  = sizeof(*nvram);
9507 	u_short	csum;
9508 	int x;
9509 
9510 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9511 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9512 		return 1;
9513 
9514 	/* check valid NVRAM signature, verify byte count and checksum */
9515 	if (nvram->type != 0 ||
9516 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9517 	    nvram->byte_count != len - 12)
9518 		return 1;
9519 
9520 	/* verify checksum */
9521 	for (x = 6, csum = 0; x < len - 6; x++)
9522 		csum += data[x];
9523 	if (csum != nvram->checksum)
9524 		return 1;
9525 
9526 	return 0;
9527 }
9528 
9529 /*
9530  *  93C46 EEPROM reading.
9531  *
9532  *  GPOI0 - data in
9533  *  GPIO1 - data out
9534  *  GPIO2 - clock
9535  *  GPIO4 - chip select
9536  *
9537  *  Used by Tekram.
9538  */
9539 
9540 /*
9541  *  Pulse clock bit in GPIO0
9542  */
9543 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9544 {
9545 	OUTB (nc_gpreg, *gpreg | 0x04);
9546 	UDELAY (2);
9547 	OUTB (nc_gpreg, *gpreg);
9548 }
9549 
9550 /*
9551  *  Read bit from NVRAM
9552  */
9553 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9554 {
9555 	UDELAY (2);
9556 	T93C46_Clk(np, gpreg);
9557 	*read_bit = INB (nc_gpreg);
9558 }
9559 
9560 /*
9561  *  Write bit to GPIO0
9562  */
9563 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9564 {
9565 	if (write_bit & 0x01)
9566 		*gpreg |= 0x02;
9567 	else
9568 		*gpreg &= 0xfd;
9569 
9570 	*gpreg |= 0x10;
9571 
9572 	OUTB (nc_gpreg, *gpreg);
9573 	UDELAY (2);
9574 
9575 	T93C46_Clk(np, gpreg);
9576 }
9577 
9578 /*
9579  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9580  */
9581 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9582 {
9583 	*gpreg &= 0xef;
9584 	OUTB (nc_gpreg, *gpreg);
9585 	UDELAY (2);
9586 
9587 	T93C46_Clk(np, gpreg);
9588 }
9589 
9590 /*
9591  *  Send read command and address to NVRAM
9592  */
9593 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9594 				u_char *read_bit, u_char *gpreg)
9595 {
9596 	int x;
9597 
9598 	/* send 9 bits, start bit (1), command (2), address (6)  */
9599 	for (x = 0; x < 9; x++)
9600 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9601 
9602 	*read_bit = INB (nc_gpreg);
9603 }
9604 
9605 /*
9606  *  READ 2 bytes from the NVRAM
9607  */
9608 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9609 {
9610 	int x;
9611 	u_char read_bit;
9612 
9613 	*nvram_data = 0;
9614 	for (x = 0; x < 16; x++) {
9615 		T93C46_Read_Bit(np, &read_bit, gpreg);
9616 
9617 		if (read_bit & 0x01)
9618 			*nvram_data |=  (0x01 << (15 - x));
9619 		else
9620 			*nvram_data &= ~(0x01 << (15 - x));
9621 	}
9622 }
9623 
9624 /*
9625  *  Read Tekram NvRAM data.
9626  */
9627 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9628 {
9629 	u_char	read_bit;
9630 	int	x;
9631 
9632 	for (x = 0; x < len; x++)  {
9633 
9634 		/* output read command and address */
9635 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9636 		if (read_bit & 0x01)
9637 			return 1; /* Bad */
9638 		T93C46_Read_Word(np, &data[x], gpreg);
9639 		T93C46_Stop(np, gpreg);
9640 	}
9641 
9642 	return 0;
9643 }
9644 
9645 /*
9646  *  Try reading 93C46 Tekram NVRAM.
9647  */
9648 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9649 {
9650 	u_char gpcntl, gpreg;
9651 	u_char old_gpcntl, old_gpreg;
9652 	int retv = 1;
9653 
9654 	/* save current state of GPCNTL and GPREG */
9655 	old_gpreg	= INB (nc_gpreg);
9656 	old_gpcntl	= INB (nc_gpcntl);
9657 
9658 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9659 	   1/2/4 out */
9660 	gpreg = old_gpreg & 0xe9;
9661 	OUTB (nc_gpreg, gpreg);
9662 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9663 	OUTB (nc_gpcntl, gpcntl);
9664 
9665 	/* input all of NVRAM, 64 words */
9666 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9667 				sizeof(*nvram) / sizeof(short), &gpreg);
9668 
9669 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9670 	OUTB (nc_gpcntl, old_gpcntl);
9671 	OUTB (nc_gpreg,  old_gpreg);
9672 
9673 	return retv;
9674 }
9675 
9676 /*
9677  *  Try reading Tekram NVRAM.
9678  *  Return 0 if OK.
9679  */
9680 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9681 {
9682 	u_char *data = (u_char *) nvram;
9683 	int len = sizeof(*nvram);
9684 	u_short	csum;
9685 	int x;
9686 
9687 	switch (np->device_id) {
9688 	case PCI_ID_SYM53C885:
9689 	case PCI_ID_SYM53C895:
9690 	case PCI_ID_SYM53C896:
9691 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9692 					  data, len);
9693 		break;
9694 	case PCI_ID_SYM53C875:
9695 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9696 					  data, len);
9697 		if (!x)
9698 			break;
9699 	default:
9700 		x = sym_read_T93C46_nvram(np, nvram);
9701 		break;
9702 	}
9703 	if (x)
9704 		return 1;
9705 
9706 	/* verify checksum */
9707 	for (x = 0, csum = 0; x < len - 1; x += 2)
9708 		csum += data[x] + (data[x+1] << 8);
9709 	if (csum != 0x1234)
9710 		return 1;
9711 
9712 	return 0;
9713 }
9714 
9715 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9716