1 /*- 2 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 3 * PCI-SCSI controllers. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver also supports the following Symbios/LSI PCI-SCSI chips: 8 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, 9 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. 10 * 11 * 12 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. 13 * Copyright (C) 1998-1999 Gerard Roudier 14 * 15 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 16 * a port of the FreeBSD ncr driver to Linux-1.2.13. 17 * 18 * The original ncr driver has been written for 386bsd and FreeBSD by 19 * Wolfgang Stanglmeier <wolf@cologne.de> 20 * Stefan Esser <se@mi.Uni-Koeln.de> 21 * Copyright (C) 1994 Wolfgang Stanglmeier 22 * 23 * The initialisation code, and part of the code that addresses 24 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM 25 * written by Justin T. Gibbs. 26 * 27 * Other major contributions: 28 * 29 * NVRAM detection and reading. 30 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 31 * 32 *----------------------------------------------------------------------------- 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. The name of the author may not be used to endorse or promote products 43 * derived from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #define SYM_DRIVER_NAME "sym-1.6.5-20000902" 62 63 /* #define SYM_DEBUG_GENERIC_SUPPORT */ 64 65 #include <sys/param.h> 66 67 /* 68 * Driver configuration options. 69 */ 70 #include "opt_sym.h" 71 #include <dev/sym/sym_conf.h> 72 73 #include <sys/systm.h> 74 #include <sys/malloc.h> 75 #include <sys/endian.h> 76 #include <sys/kernel.h> 77 #include <sys/lock.h> 78 #include <sys/mutex.h> 79 #include <sys/module.h> 80 #include <sys/bus.h> 81 82 #include <sys/proc.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <machine/bus.h> 88 #include <machine/resource.h> 89 #include <machine/atomic.h> 90 91 #ifdef __sparc64__ 92 #include <dev/ofw/openfirm.h> 93 #include <machine/ofw_machdep.h> 94 #endif 95 96 #include <sys/rman.h> 97 98 #include <cam/cam.h> 99 #include <cam/cam_ccb.h> 100 #include <cam/cam_sim.h> 101 #include <cam/cam_xpt_sim.h> 102 #include <cam/cam_debug.h> 103 104 #include <cam/scsi/scsi_all.h> 105 #include <cam/scsi/scsi_message.h> 106 107 /* Short and quite clear integer types */ 108 typedef int8_t s8; 109 typedef int16_t s16; 110 typedef int32_t s32; 111 typedef u_int8_t u8; 112 typedef u_int16_t u16; 113 typedef u_int32_t u32; 114 115 /* 116 * Driver definitions. 117 */ 118 #include <dev/sym/sym_defs.h> 119 #include <dev/sym/sym_fw.h> 120 121 /* 122 * IA32 architecture does not reorder STORES and prevents 123 * LOADS from passing STORES. It is called `program order' 124 * by Intel and allows device drivers to deal with memory 125 * ordering by only ensuring that the code is not reordered 126 * by the compiler when ordering is required. 127 * Other architectures implement a weaker ordering that 128 * requires memory barriers (and also IO barriers when they 129 * make sense) to be used. 130 */ 131 #if defined __i386__ || defined __amd64__ 132 #define MEMORY_BARRIER() do { ; } while(0) 133 #elif defined __powerpc__ 134 #define MEMORY_BARRIER() __asm__ volatile("eieio; sync" : : : "memory") 135 #elif defined __sparc64__ 136 #define MEMORY_BARRIER() __asm__ volatile("membar #Sync" : : : "memory") 137 #elif defined __arm__ 138 #define MEMORY_BARRIER() dmb() 139 #elif defined __aarch64__ 140 #define MEMORY_BARRIER() dmb(sy) 141 #elif defined __riscv__ 142 #define MEMORY_BARRIER() fence() 143 #else 144 #error "Not supported platform" 145 #endif 146 147 /* 148 * A la VMS/CAM-3 queue management. 149 */ 150 typedef struct sym_quehead { 151 struct sym_quehead *flink; /* Forward pointer */ 152 struct sym_quehead *blink; /* Backward pointer */ 153 } SYM_QUEHEAD; 154 155 #define sym_que_init(ptr) do { \ 156 (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ 157 } while (0) 158 159 static __inline void __sym_que_add(struct sym_quehead * new, 160 struct sym_quehead * blink, 161 struct sym_quehead * flink) 162 { 163 flink->blink = new; 164 new->flink = flink; 165 new->blink = blink; 166 blink->flink = new; 167 } 168 169 static __inline void __sym_que_del(struct sym_quehead * blink, 170 struct sym_quehead * flink) 171 { 172 flink->blink = blink; 173 blink->flink = flink; 174 } 175 176 static __inline int sym_que_empty(struct sym_quehead *head) 177 { 178 return head->flink == head; 179 } 180 181 static __inline void sym_que_splice(struct sym_quehead *list, 182 struct sym_quehead *head) 183 { 184 struct sym_quehead *first = list->flink; 185 186 if (first != list) { 187 struct sym_quehead *last = list->blink; 188 struct sym_quehead *at = head->flink; 189 190 first->blink = head; 191 head->flink = first; 192 193 last->flink = at; 194 at->blink = last; 195 } 196 } 197 198 #define sym_que_entry(ptr, type, member) \ 199 ((type *)((char *)(ptr)-(size_t)(&((type *)0)->member))) 200 201 #define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) 202 203 #define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) 204 205 #define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) 206 207 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) 208 { 209 struct sym_quehead *elem = head->flink; 210 211 if (elem != head) 212 __sym_que_del(head, elem->flink); 213 else 214 elem = NULL; 215 return elem; 216 } 217 218 #define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) 219 220 /* 221 * This one may be useful. 222 */ 223 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \ 224 for (qp = (head)->flink; qp != (head); qp = qp->flink) 225 /* 226 * FreeBSD does not offer our kind of queue in the CAM CCB. 227 * So, we have to cast. 228 */ 229 #define sym_qptr(p) ((struct sym_quehead *) (p)) 230 231 /* 232 * Simple bitmap operations. 233 */ 234 #define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) 235 #define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) 236 #define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) 237 238 /* 239 * Number of tasks per device we want to handle. 240 */ 241 #if SYM_CONF_MAX_TAG_ORDER > 8 242 #error "more than 256 tags per logical unit not allowed." 243 #endif 244 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 245 246 /* 247 * Donnot use more tasks that we can handle. 248 */ 249 #ifndef SYM_CONF_MAX_TAG 250 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 251 #endif 252 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 253 #undef SYM_CONF_MAX_TAG 254 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 255 #endif 256 257 /* 258 * This one means 'NO TAG for this job' 259 */ 260 #define NO_TAG (256) 261 262 /* 263 * Number of SCSI targets. 264 */ 265 #if SYM_CONF_MAX_TARGET > 16 266 #error "more than 16 targets not allowed." 267 #endif 268 269 /* 270 * Number of logical units per target. 271 */ 272 #if SYM_CONF_MAX_LUN > 64 273 #error "more than 64 logical units per target not allowed." 274 #endif 275 276 /* 277 * Asynchronous pre-scaler (ns). Shall be 40 for 278 * the SCSI timings to be compliant. 279 */ 280 #define SYM_CONF_MIN_ASYNC (40) 281 282 /* 283 * Number of entries in the START and DONE queues. 284 * 285 * We limit to 1 PAGE in order to succeed allocation of 286 * these queues. Each entry is 8 bytes long (2 DWORDS). 287 */ 288 #ifdef SYM_CONF_MAX_START 289 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 290 #else 291 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 292 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 293 #endif 294 295 #if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8 296 #undef SYM_CONF_MAX_QUEUE 297 #define SYM_CONF_MAX_QUEUE PAGE_SIZE/8 298 #undef SYM_CONF_MAX_START 299 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 300 #endif 301 302 /* 303 * For this one, we want a short name :-) 304 */ 305 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 306 307 /* 308 * Active debugging tags and verbosity. 309 */ 310 #define DEBUG_ALLOC (0x0001) 311 #define DEBUG_PHASE (0x0002) 312 #define DEBUG_POLL (0x0004) 313 #define DEBUG_QUEUE (0x0008) 314 #define DEBUG_RESULT (0x0010) 315 #define DEBUG_SCATTER (0x0020) 316 #define DEBUG_SCRIPT (0x0040) 317 #define DEBUG_TINY (0x0080) 318 #define DEBUG_TIMING (0x0100) 319 #define DEBUG_NEGO (0x0200) 320 #define DEBUG_TAGS (0x0400) 321 #define DEBUG_POINTER (0x0800) 322 323 #if 0 324 static int sym_debug = 0; 325 #define DEBUG_FLAGS sym_debug 326 #else 327 /* #define DEBUG_FLAGS (0x0631) */ 328 #define DEBUG_FLAGS (0x0000) 329 330 #endif 331 #define sym_verbose (np->verbose) 332 333 /* 334 * Insert a delay in micro-seconds and milli-seconds. 335 */ 336 static void UDELAY(int us) { DELAY(us); } 337 static void MDELAY(int ms) { while (ms--) UDELAY(1000); } 338 339 /* 340 * Simple power of two buddy-like allocator. 341 * 342 * This simple code is not intended to be fast, but to 343 * provide power of 2 aligned memory allocations. 344 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 345 * this allocator allows simple and fast address calculations 346 * from the SCRIPTS code. In addition, cache line alignment 347 * is guaranteed for power of 2 cache line size. 348 * 349 * This allocator has been developed for the Linux sym53c8xx 350 * driver, since this O/S does not provide naturally aligned 351 * allocations. 352 * It has the advantage of allowing the driver to use private 353 * pages of memory that will be useful if we ever need to deal 354 * with IO MMUs for PCI. 355 */ 356 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 357 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 358 #if 0 359 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 360 #endif 361 #define MEMO_WARN 1 362 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 363 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 364 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 365 366 #define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT) 367 #define free_pages(p) free((p), M_DEVBUF) 368 369 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 370 371 typedef struct m_link { /* Link between free memory chunks */ 372 struct m_link *next; 373 } m_link_s; 374 375 typedef struct m_vtob { /* Virtual to Bus address translation */ 376 struct m_vtob *next; 377 bus_dmamap_t dmamap; /* Map for this chunk */ 378 m_addr_t vaddr; /* Virtual address */ 379 m_addr_t baddr; /* Bus physical address */ 380 } m_vtob_s; 381 /* Hash this stuff a bit to speed up translations */ 382 #define VTOB_HASH_SHIFT 5 383 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 384 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 385 #define VTOB_HASH_CODE(m) \ 386 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 387 388 typedef struct m_pool { /* Memory pool of a given kind */ 389 bus_dma_tag_t dev_dmat; /* Identifies the pool */ 390 bus_dma_tag_t dmat; /* Tag for our fixed allocations */ 391 m_addr_t (*getp)(struct m_pool *); 392 #ifdef MEMO_FREE_UNUSED 393 void (*freep)(struct m_pool *, m_addr_t); 394 #endif 395 #define M_GETP() mp->getp(mp) 396 #define M_FREEP(p) mp->freep(mp, p) 397 int nump; 398 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 399 struct m_pool *next; 400 struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1]; 401 } m_pool_s; 402 403 static void *___sym_malloc(m_pool_s *mp, int size) 404 { 405 int i = 0; 406 int s = (1 << MEMO_SHIFT); 407 int j; 408 m_addr_t a; 409 m_link_s *h = mp->h; 410 411 if (size > MEMO_CLUSTER_SIZE) 412 return NULL; 413 414 while (size > s) { 415 s <<= 1; 416 ++i; 417 } 418 419 j = i; 420 while (!h[j].next) { 421 if (s == MEMO_CLUSTER_SIZE) { 422 h[j].next = (m_link_s *) M_GETP(); 423 if (h[j].next) 424 h[j].next->next = NULL; 425 break; 426 } 427 ++j; 428 s <<= 1; 429 } 430 a = (m_addr_t) h[j].next; 431 if (a) { 432 h[j].next = h[j].next->next; 433 while (j > i) { 434 j -= 1; 435 s >>= 1; 436 h[j].next = (m_link_s *) (a+s); 437 h[j].next->next = NULL; 438 } 439 } 440 #ifdef DEBUG 441 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 442 #endif 443 return (void *) a; 444 } 445 446 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size) 447 { 448 int i = 0; 449 int s = (1 << MEMO_SHIFT); 450 m_link_s *q; 451 m_addr_t a, b; 452 m_link_s *h = mp->h; 453 454 #ifdef DEBUG 455 printf("___sym_mfree(%p, %d)\n", ptr, size); 456 #endif 457 458 if (size > MEMO_CLUSTER_SIZE) 459 return; 460 461 while (size > s) { 462 s <<= 1; 463 ++i; 464 } 465 466 a = (m_addr_t) ptr; 467 468 while (1) { 469 #ifdef MEMO_FREE_UNUSED 470 if (s == MEMO_CLUSTER_SIZE) { 471 M_FREEP(a); 472 break; 473 } 474 #endif 475 b = a ^ s; 476 q = &h[i]; 477 while (q->next && q->next != (m_link_s *) b) { 478 q = q->next; 479 } 480 if (!q->next) { 481 ((m_link_s *) a)->next = h[i].next; 482 h[i].next = (m_link_s *) a; 483 break; 484 } 485 q->next = q->next->next; 486 a = a & b; 487 s <<= 1; 488 ++i; 489 } 490 } 491 492 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags) 493 { 494 void *p; 495 496 p = ___sym_malloc(mp, size); 497 498 if (DEBUG_FLAGS & DEBUG_ALLOC) 499 printf ("new %-10s[%4d] @%p.\n", name, size, p); 500 501 if (p) 502 bzero(p, size); 503 else if (uflags & MEMO_WARN) 504 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 505 506 return p; 507 } 508 509 #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN) 510 511 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name) 512 { 513 if (DEBUG_FLAGS & DEBUG_ALLOC) 514 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 515 516 ___sym_mfree(mp, ptr, size); 517 518 } 519 520 /* 521 * Default memory pool we donnot need to involve in DMA. 522 */ 523 /* 524 * With the `bus dma abstraction', we use a separate pool for 525 * memory we donnot need to involve in DMA. 526 */ 527 static m_addr_t ___mp0_getp(m_pool_s *mp) 528 { 529 m_addr_t m = (m_addr_t) get_pages(); 530 if (m) 531 ++mp->nump; 532 return m; 533 } 534 535 #ifdef MEMO_FREE_UNUSED 536 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 537 { 538 free_pages(m); 539 --mp->nump; 540 } 541 #endif 542 543 #ifdef MEMO_FREE_UNUSED 544 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep}; 545 #else 546 static m_pool_s mp0 = {0, 0, ___mp0_getp}; 547 #endif 548 549 /* 550 * Actual memory allocation routine for non-DMAed memory. 551 */ 552 static void *sym_calloc(int size, char *name) 553 { 554 void *m; 555 /* Lock */ 556 m = __sym_calloc(&mp0, size, name); 557 /* Unlock */ 558 return m; 559 } 560 561 /* 562 * Actual memory allocation routine for non-DMAed memory. 563 */ 564 static void sym_mfree(void *ptr, int size, char *name) 565 { 566 /* Lock */ 567 __sym_mfree(&mp0, ptr, size, name); 568 /* Unlock */ 569 } 570 571 /* 572 * DMAable pools. 573 */ 574 /* 575 * With `bus dma abstraction', we use a separate pool per parent 576 * BUS handle. A reverse table (hashed) is maintained for virtual 577 * to BUS address translation. 578 */ 579 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused, 580 int error) 581 { 582 bus_addr_t *baddr; 583 584 KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg)); 585 586 baddr = (bus_addr_t *)arg; 587 if (error) 588 *baddr = 0; 589 else 590 *baddr = segs->ds_addr; 591 } 592 593 static m_addr_t ___dma_getp(m_pool_s *mp) 594 { 595 m_vtob_s *vbp; 596 void *vaddr = NULL; 597 bus_addr_t baddr = 0; 598 599 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 600 if (!vbp) 601 goto out_err; 602 603 if (bus_dmamem_alloc(mp->dmat, &vaddr, 604 BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap)) 605 goto out_err; 606 bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr, 607 MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT); 608 if (baddr) { 609 int hc = VTOB_HASH_CODE(vaddr); 610 vbp->vaddr = (m_addr_t) vaddr; 611 vbp->baddr = (m_addr_t) baddr; 612 vbp->next = mp->vtob[hc]; 613 mp->vtob[hc] = vbp; 614 ++mp->nump; 615 return (m_addr_t) vaddr; 616 } 617 out_err: 618 if (baddr) 619 bus_dmamap_unload(mp->dmat, vbp->dmamap); 620 if (vaddr) 621 bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap); 622 if (vbp) 623 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 624 return 0; 625 } 626 627 #ifdef MEMO_FREE_UNUSED 628 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 629 { 630 m_vtob_s **vbpp, *vbp; 631 int hc = VTOB_HASH_CODE(m); 632 633 vbpp = &mp->vtob[hc]; 634 while (*vbpp && (*vbpp)->vaddr != m) 635 vbpp = &(*vbpp)->next; 636 if (*vbpp) { 637 vbp = *vbpp; 638 *vbpp = (*vbpp)->next; 639 bus_dmamap_unload(mp->dmat, vbp->dmamap); 640 bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap); 641 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 642 --mp->nump; 643 } 644 } 645 #endif 646 647 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat) 648 { 649 m_pool_s *mp; 650 for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next); 651 return mp; 652 } 653 654 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat) 655 { 656 m_pool_s *mp = NULL; 657 658 mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 659 if (mp) { 660 mp->dev_dmat = dev_dmat; 661 if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE, 662 BUS_SPACE_MAXADDR_32BIT, 663 BUS_SPACE_MAXADDR, 664 NULL, NULL, MEMO_CLUSTER_SIZE, 1, 665 MEMO_CLUSTER_SIZE, 0, 666 NULL, NULL, &mp->dmat)) { 667 mp->getp = ___dma_getp; 668 #ifdef MEMO_FREE_UNUSED 669 mp->freep = ___dma_freep; 670 #endif 671 mp->next = mp0.next; 672 mp0.next = mp; 673 return mp; 674 } 675 } 676 if (mp) 677 __sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL"); 678 return NULL; 679 } 680 681 #ifdef MEMO_FREE_UNUSED 682 static void ___del_dma_pool(m_pool_s *p) 683 { 684 struct m_pool **pp = &mp0.next; 685 686 while (*pp && *pp != p) 687 pp = &(*pp)->next; 688 if (*pp) { 689 *pp = (*pp)->next; 690 bus_dma_tag_destroy(p->dmat); 691 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 692 } 693 } 694 #endif 695 696 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name) 697 { 698 struct m_pool *mp; 699 void *m = NULL; 700 701 /* Lock */ 702 mp = ___get_dma_pool(dev_dmat); 703 if (!mp) 704 mp = ___cre_dma_pool(dev_dmat); 705 if (mp) 706 m = __sym_calloc(mp, size, name); 707 #ifdef MEMO_FREE_UNUSED 708 if (mp && !mp->nump) 709 ___del_dma_pool(mp); 710 #endif 711 /* Unlock */ 712 713 return m; 714 } 715 716 static void 717 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name) 718 { 719 struct m_pool *mp; 720 721 /* Lock */ 722 mp = ___get_dma_pool(dev_dmat); 723 if (mp) 724 __sym_mfree(mp, m, size, name); 725 #ifdef MEMO_FREE_UNUSED 726 if (mp && !mp->nump) 727 ___del_dma_pool(mp); 728 #endif 729 /* Unlock */ 730 } 731 732 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m) 733 { 734 m_pool_s *mp; 735 int hc = VTOB_HASH_CODE(m); 736 m_vtob_s *vp = NULL; 737 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 738 739 /* Lock */ 740 mp = ___get_dma_pool(dev_dmat); 741 if (mp) { 742 vp = mp->vtob[hc]; 743 while (vp && (m_addr_t) vp->vaddr != a) 744 vp = vp->next; 745 } 746 /* Unlock */ 747 if (!vp) 748 panic("sym: VTOBUS FAILED!\n"); 749 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 750 } 751 752 /* 753 * Verbs for DMAable memory handling. 754 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 755 * being discarded. 756 */ 757 #define _uvptv_(p) ((void *)((vm_offset_t)(p))) 758 #define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n) 759 #define _sym_mfree_dma(np, p, s, n) \ 760 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n) 761 #define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n) 762 #define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n) 763 #define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p)) 764 #define vtobus(p) _vtobus(np, p) 765 766 /* 767 * Print a buffer in hexadecimal format. 768 */ 769 static void sym_printb_hex (u_char *p, int n) 770 { 771 while (n-- > 0) 772 printf (" %x", *p++); 773 } 774 775 /* 776 * Same with a label at beginning and .\n at end. 777 */ 778 static void sym_printl_hex (char *label, u_char *p, int n) 779 { 780 printf ("%s", label); 781 sym_printb_hex (p, n); 782 printf (".\n"); 783 } 784 785 /* 786 * Return a string for SCSI BUS mode. 787 */ 788 static const char *sym_scsi_bus_mode(int mode) 789 { 790 switch(mode) { 791 case SMODE_HVD: return "HVD"; 792 case SMODE_SE: return "SE"; 793 case SMODE_LVD: return "LVD"; 794 } 795 return "??"; 796 } 797 798 /* 799 * Some poor and bogus sync table that refers to Tekram NVRAM layout. 800 */ 801 #ifdef SYM_CONF_NVRAM_SUPPORT 802 static const u_char Tekram_sync[16] = 803 {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; 804 #endif 805 806 /* 807 * Union of supported NVRAM formats. 808 */ 809 struct sym_nvram { 810 int type; 811 #define SYM_SYMBIOS_NVRAM (1) 812 #define SYM_TEKRAM_NVRAM (2) 813 #ifdef SYM_CONF_NVRAM_SUPPORT 814 union { 815 Symbios_nvram Symbios; 816 Tekram_nvram Tekram; 817 } data; 818 #endif 819 }; 820 821 /* 822 * This one is hopefully useless, but actually useful. :-) 823 */ 824 #ifndef assert 825 #define assert(expression) { \ 826 if (!(expression)) { \ 827 (void)panic( \ 828 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 829 #expression, \ 830 __FILE__, __LINE__); \ 831 } \ 832 } 833 #endif 834 835 /* 836 * Some provision for a possible big endian mode supported by 837 * Symbios chips (never seen, by the way). 838 * For now, this stuff does not deserve any comments. :) 839 */ 840 #define sym_offb(o) (o) 841 #define sym_offw(o) (o) 842 843 /* 844 * Some provision for support for BIG ENDIAN CPU. 845 */ 846 #define cpu_to_scr(dw) htole32(dw) 847 #define scr_to_cpu(dw) le32toh(dw) 848 849 /* 850 * Access to the chip IO registers and on-chip RAM. 851 * We use the `bus space' interface under FreeBSD-4 and 852 * later kernel versions. 853 */ 854 #if defined(SYM_CONF_IOMAPPED) 855 856 #define INB_OFF(o) bus_read_1(np->io_res, (o)) 857 #define INW_OFF(o) bus_read_2(np->io_res, (o)) 858 #define INL_OFF(o) bus_read_4(np->io_res, (o)) 859 860 #define OUTB_OFF(o, v) bus_write_1(np->io_res, (o), (v)) 861 #define OUTW_OFF(o, v) bus_write_2(np->io_res, (o), (v)) 862 #define OUTL_OFF(o, v) bus_write_4(np->io_res, (o), (v)) 863 864 #else /* Memory mapped IO */ 865 866 #define INB_OFF(o) bus_read_1(np->mmio_res, (o)) 867 #define INW_OFF(o) bus_read_2(np->mmio_res, (o)) 868 #define INL_OFF(o) bus_read_4(np->mmio_res, (o)) 869 870 #define OUTB_OFF(o, v) bus_write_1(np->mmio_res, (o), (v)) 871 #define OUTW_OFF(o, v) bus_write_2(np->mmio_res, (o), (v)) 872 #define OUTL_OFF(o, v) bus_write_4(np->mmio_res, (o), (v)) 873 874 #endif /* SYM_CONF_IOMAPPED */ 875 876 #define OUTRAM_OFF(o, a, l) \ 877 bus_write_region_1(np->ram_res, (o), (a), (l)) 878 879 /* 880 * Common definitions for both bus space and legacy IO methods. 881 */ 882 #define INB(r) INB_OFF(offsetof(struct sym_reg,r)) 883 #define INW(r) INW_OFF(offsetof(struct sym_reg,r)) 884 #define INL(r) INL_OFF(offsetof(struct sym_reg,r)) 885 886 #define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) 887 #define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) 888 #define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) 889 890 #define OUTONB(r, m) OUTB(r, INB(r) | (m)) 891 #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) 892 #define OUTONW(r, m) OUTW(r, INW(r) | (m)) 893 #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) 894 #define OUTONL(r, m) OUTL(r, INL(r) | (m)) 895 #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) 896 897 /* 898 * We normally want the chip to have a consistent view 899 * of driver internal data structures when we restart it. 900 * Thus these macros. 901 */ 902 #define OUTL_DSP(v) \ 903 do { \ 904 MEMORY_BARRIER(); \ 905 OUTL (nc_dsp, (v)); \ 906 } while (0) 907 908 #define OUTONB_STD() \ 909 do { \ 910 MEMORY_BARRIER(); \ 911 OUTONB (nc_dcntl, (STD|NOCOM)); \ 912 } while (0) 913 914 /* 915 * Command control block states. 916 */ 917 #define HS_IDLE (0) 918 #define HS_BUSY (1) 919 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 920 #define HS_DISCONNECT (3) /* Disconnected by target */ 921 #define HS_WAIT (4) /* waiting for resource */ 922 923 #define HS_DONEMASK (0x80) 924 #define HS_COMPLETE (4|HS_DONEMASK) 925 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 926 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 927 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 928 929 /* 930 * Software Interrupt Codes 931 */ 932 #define SIR_BAD_SCSI_STATUS (1) 933 #define SIR_SEL_ATN_NO_MSG_OUT (2) 934 #define SIR_MSG_RECEIVED (3) 935 #define SIR_MSG_WEIRD (4) 936 #define SIR_NEGO_FAILED (5) 937 #define SIR_NEGO_PROTO (6) 938 #define SIR_SCRIPT_STOPPED (7) 939 #define SIR_REJECT_TO_SEND (8) 940 #define SIR_SWIDE_OVERRUN (9) 941 #define SIR_SODL_UNDERRUN (10) 942 #define SIR_RESEL_NO_MSG_IN (11) 943 #define SIR_RESEL_NO_IDENTIFY (12) 944 #define SIR_RESEL_BAD_LUN (13) 945 #define SIR_TARGET_SELECTED (14) 946 #define SIR_RESEL_BAD_I_T_L (15) 947 #define SIR_RESEL_BAD_I_T_L_Q (16) 948 #define SIR_ABORT_SENT (17) 949 #define SIR_RESEL_ABORTED (18) 950 #define SIR_MSG_OUT_DONE (19) 951 #define SIR_COMPLETE_ERROR (20) 952 #define SIR_DATA_OVERRUN (21) 953 #define SIR_BAD_PHASE (22) 954 #define SIR_MAX (22) 955 956 /* 957 * Extended error bit codes. 958 * xerr_status field of struct sym_ccb. 959 */ 960 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 961 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 962 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 963 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 964 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 965 966 /* 967 * Negotiation status. 968 * nego_status field of struct sym_ccb. 969 */ 970 #define NS_SYNC (1) 971 #define NS_WIDE (2) 972 #define NS_PPR (3) 973 974 /* 975 * A CCB hashed table is used to retrieve CCB address 976 * from DSA value. 977 */ 978 #define CCB_HASH_SHIFT 8 979 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 980 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 981 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 982 983 /* 984 * Device flags. 985 */ 986 #define SYM_DISC_ENABLED (1) 987 #define SYM_TAGS_ENABLED (1<<1) 988 #define SYM_SCAN_BOOT_DISABLED (1<<2) 989 #define SYM_SCAN_LUNS_DISABLED (1<<3) 990 991 /* 992 * Host adapter miscellaneous flags. 993 */ 994 #define SYM_AVOID_BUS_RESET (1) 995 #define SYM_SCAN_TARGETS_HILO (1<<1) 996 997 /* 998 * Device quirks. 999 * Some devices, for example the CHEETAH 2 LVD, disconnects without 1000 * saving the DATA POINTER then reselects and terminates the IO. 1001 * On reselection, the automatic RESTORE DATA POINTER makes the 1002 * CURRENT DATA POINTER not point at the end of the IO. 1003 * This behaviour just breaks our calculation of the residual. 1004 * For now, we just force an AUTO SAVE on disconnection and will 1005 * fix that in a further driver version. 1006 */ 1007 #define SYM_QUIRK_AUTOSAVE 1 1008 1009 /* 1010 * Misc. 1011 */ 1012 #define SYM_LOCK() mtx_lock(&np->mtx) 1013 #define SYM_LOCK_ASSERT(_what) mtx_assert(&np->mtx, (_what)) 1014 #define SYM_LOCK_DESTROY() mtx_destroy(&np->mtx) 1015 #define SYM_LOCK_INIT() mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF) 1016 #define SYM_LOCK_INITIALIZED() mtx_initialized(&np->mtx) 1017 #define SYM_UNLOCK() mtx_unlock(&np->mtx) 1018 1019 #define SYM_SNOOP_TIMEOUT (10000000) 1020 #define SYM_PCI_IO PCIR_BAR(0) 1021 #define SYM_PCI_MMIO PCIR_BAR(1) 1022 #define SYM_PCI_RAM PCIR_BAR(2) 1023 #define SYM_PCI_RAM64 PCIR_BAR(3) 1024 1025 /* 1026 * Back-pointer from the CAM CCB to our data structures. 1027 */ 1028 #define sym_hcb_ptr spriv_ptr0 1029 /* #define sym_ccb_ptr spriv_ptr1 */ 1030 1031 /* 1032 * We mostly have to deal with pointers. 1033 * Thus these typedef's. 1034 */ 1035 typedef struct sym_tcb *tcb_p; 1036 typedef struct sym_lcb *lcb_p; 1037 typedef struct sym_ccb *ccb_p; 1038 typedef struct sym_hcb *hcb_p; 1039 1040 /* 1041 * Gather negotiable parameters value 1042 */ 1043 struct sym_trans { 1044 u8 scsi_version; 1045 u8 spi_version; 1046 u8 period; 1047 u8 offset; 1048 u8 width; 1049 u8 options; /* PPR options */ 1050 }; 1051 1052 struct sym_tinfo { 1053 struct sym_trans current; 1054 struct sym_trans goal; 1055 struct sym_trans user; 1056 }; 1057 1058 #define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT 1059 #define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT 1060 1061 /* 1062 * Global TCB HEADER. 1063 * 1064 * Due to lack of indirect addressing on earlier NCR chips, 1065 * this substructure is copied from the TCB to a global 1066 * address after selection. 1067 * For SYMBIOS chips that support LOAD/STORE this copy is 1068 * not needed and thus not performed. 1069 */ 1070 struct sym_tcbh { 1071 /* 1072 * Scripts bus addresses of LUN table accessed from scripts. 1073 * LUN #0 is a special case, since multi-lun devices are rare, 1074 * and we we want to speed-up the general case and not waste 1075 * resources. 1076 */ 1077 u32 luntbl_sa; /* bus address of this table */ 1078 u32 lun0_sa; /* bus address of LCB #0 */ 1079 /* 1080 * Actual SYNC/WIDE IO registers value for this target. 1081 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 1082 * so have alignment constraints. 1083 */ 1084 /*0*/ u_char uval; /* -> SCNTL4 register */ 1085 /*1*/ u_char sval; /* -> SXFER io register */ 1086 /*2*/ u_char filler1; 1087 /*3*/ u_char wval; /* -> SCNTL3 io register */ 1088 }; 1089 1090 /* 1091 * Target Control Block 1092 */ 1093 struct sym_tcb { 1094 /* 1095 * TCB header. 1096 * Assumed at offset 0. 1097 */ 1098 /*0*/ struct sym_tcbh head; 1099 1100 /* 1101 * LUN table used by the SCRIPTS processor. 1102 * An array of bus addresses is used on reselection. 1103 */ 1104 u32 *luntbl; /* LCBs bus address table */ 1105 1106 /* 1107 * LUN table used by the C code. 1108 */ 1109 lcb_p lun0p; /* LCB of LUN #0 (usual case) */ 1110 #if SYM_CONF_MAX_LUN > 1 1111 lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ 1112 #endif 1113 1114 /* 1115 * Bitmap that tells about LUNs that succeeded at least 1116 * 1 IO and therefore assumed to be a real device. 1117 * Avoid useless allocation of the LCB structure. 1118 */ 1119 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32]; 1120 1121 /* 1122 * Bitmap that tells about LUNs that haven't yet an LCB 1123 * allocated (not discovered or LCB allocation failed). 1124 */ 1125 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32]; 1126 1127 /* 1128 * Transfer capabilities (SIP) 1129 */ 1130 struct sym_tinfo tinfo; 1131 1132 /* 1133 * Keep track of the CCB used for the negotiation in order 1134 * to ensure that only 1 negotiation is queued at a time. 1135 */ 1136 ccb_p nego_cp; /* CCB used for the nego */ 1137 1138 /* 1139 * Set when we want to reset the device. 1140 */ 1141 u_char to_reset; 1142 1143 /* 1144 * Other user settable limits and options. 1145 * These limits are read from the NVRAM if present. 1146 */ 1147 u_char usrflags; 1148 u_short usrtags; 1149 }; 1150 1151 /* 1152 * Assert some alignments required by the chip. 1153 */ 1154 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^ 1155 offsetof(struct sym_tcb, head.sval)) &3) == 0); 1156 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^ 1157 offsetof(struct sym_tcb, head.wval)) &3) == 0); 1158 1159 /* 1160 * Global LCB HEADER. 1161 * 1162 * Due to lack of indirect addressing on earlier NCR chips, 1163 * this substructure is copied from the LCB to a global 1164 * address after selection. 1165 * For SYMBIOS chips that support LOAD/STORE this copy is 1166 * not needed and thus not performed. 1167 */ 1168 struct sym_lcbh { 1169 /* 1170 * SCRIPTS address jumped by SCRIPTS on reselection. 1171 * For not probed logical units, this address points to 1172 * SCRIPTS that deal with bad LU handling (must be at 1173 * offset zero of the LCB for that reason). 1174 */ 1175 /*0*/ u32 resel_sa; 1176 1177 /* 1178 * Task (bus address of a CCB) read from SCRIPTS that points 1179 * to the unique ITL nexus allowed to be disconnected. 1180 */ 1181 u32 itl_task_sa; 1182 1183 /* 1184 * Task table bus address (read from SCRIPTS). 1185 */ 1186 u32 itlq_tbl_sa; 1187 }; 1188 1189 /* 1190 * Logical Unit Control Block 1191 */ 1192 struct sym_lcb { 1193 /* 1194 * TCB header. 1195 * Assumed at offset 0. 1196 */ 1197 /*0*/ struct sym_lcbh head; 1198 1199 /* 1200 * Task table read from SCRIPTS that contains pointers to 1201 * ITLQ nexuses. The bus address read from SCRIPTS is 1202 * inside the header. 1203 */ 1204 u32 *itlq_tbl; /* Kernel virtual address */ 1205 1206 /* 1207 * Busy CCBs management. 1208 */ 1209 u_short busy_itlq; /* Number of busy tagged CCBs */ 1210 u_short busy_itl; /* Number of busy untagged CCBs */ 1211 1212 /* 1213 * Circular tag allocation buffer. 1214 */ 1215 u_short ia_tag; /* Tag allocation index */ 1216 u_short if_tag; /* Tag release index */ 1217 u_char *cb_tags; /* Circular tags buffer */ 1218 1219 /* 1220 * Set when we want to clear all tasks. 1221 */ 1222 u_char to_clear; 1223 1224 /* 1225 * Capabilities. 1226 */ 1227 u_char user_flags; 1228 u_char current_flags; 1229 }; 1230 1231 /* 1232 * Action from SCRIPTS on a task. 1233 * Is part of the CCB, but is also used separately to plug 1234 * error handling action to perform from SCRIPTS. 1235 */ 1236 struct sym_actscr { 1237 u32 start; /* Jumped by SCRIPTS after selection */ 1238 u32 restart; /* Jumped by SCRIPTS on relection */ 1239 }; 1240 1241 /* 1242 * Phase mismatch context. 1243 * 1244 * It is part of the CCB and is used as parameters for the 1245 * DATA pointer. We need two contexts to handle correctly the 1246 * SAVED DATA POINTER. 1247 */ 1248 struct sym_pmc { 1249 struct sym_tblmove sg; /* Updated interrupted SG block */ 1250 u32 ret; /* SCRIPT return address */ 1251 }; 1252 1253 /* 1254 * LUN control block lookup. 1255 * We use a direct pointer for LUN #0, and a table of 1256 * pointers which is only allocated for devices that support 1257 * LUN(s) > 0. 1258 */ 1259 #if SYM_CONF_MAX_LUN <= 1 1260 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0 1261 #else 1262 #define sym_lp(tp, lun) \ 1263 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 1264 #endif 1265 1266 /* 1267 * Status are used by the host and the script processor. 1268 * 1269 * The last four bytes (status[4]) are copied to the 1270 * scratchb register (declared as scr0..scr3) just after the 1271 * select/reselect, and copied back just after disconnecting. 1272 * Inside the script the XX_REG are used. 1273 */ 1274 1275 /* 1276 * Last four bytes (script) 1277 */ 1278 #define QU_REG scr0 1279 #define HS_REG scr1 1280 #define HS_PRT nc_scr1 1281 #define SS_REG scr2 1282 #define SS_PRT nc_scr2 1283 #define HF_REG scr3 1284 #define HF_PRT nc_scr3 1285 1286 /* 1287 * Last four bytes (host) 1288 */ 1289 #define actualquirks phys.head.status[0] 1290 #define host_status phys.head.status[1] 1291 #define ssss_status phys.head.status[2] 1292 #define host_flags phys.head.status[3] 1293 1294 /* 1295 * Host flags 1296 */ 1297 #define HF_IN_PM0 1u 1298 #define HF_IN_PM1 (1u<<1) 1299 #define HF_ACT_PM (1u<<2) 1300 #define HF_DP_SAVED (1u<<3) 1301 #define HF_SENSE (1u<<4) 1302 #define HF_EXT_ERR (1u<<5) 1303 #define HF_DATA_IN (1u<<6) 1304 #ifdef SYM_CONF_IARB_SUPPORT 1305 #define HF_HINT_IARB (1u<<7) 1306 #endif 1307 1308 /* 1309 * Global CCB HEADER. 1310 * 1311 * Due to lack of indirect addressing on earlier NCR chips, 1312 * this substructure is copied from the ccb to a global 1313 * address after selection (or reselection) and copied back 1314 * before disconnect. 1315 * For SYMBIOS chips that support LOAD/STORE this copy is 1316 * not needed and thus not performed. 1317 */ 1318 struct sym_ccbh { 1319 /* 1320 * Start and restart SCRIPTS addresses (must be at 0). 1321 */ 1322 /*0*/ struct sym_actscr go; 1323 1324 /* 1325 * SCRIPTS jump address that deal with data pointers. 1326 * 'savep' points to the position in the script responsible 1327 * for the actual transfer of data. 1328 * It's written on reception of a SAVE_DATA_POINTER message. 1329 */ 1330 u32 savep; /* Jump address to saved data pointer */ 1331 u32 lastp; /* SCRIPTS address at end of data */ 1332 u32 goalp; /* Not accessed for now from SCRIPTS */ 1333 1334 /* 1335 * Status fields. 1336 */ 1337 u8 status[4]; 1338 }; 1339 1340 /* 1341 * Data Structure Block 1342 * 1343 * During execution of a ccb by the script processor, the 1344 * DSA (data structure address) register points to this 1345 * substructure of the ccb. 1346 */ 1347 struct sym_dsb { 1348 /* 1349 * CCB header. 1350 * Also assumed at offset 0 of the sym_ccb structure. 1351 */ 1352 /*0*/ struct sym_ccbh head; 1353 1354 /* 1355 * Phase mismatch contexts. 1356 * We need two to handle correctly the SAVED DATA POINTER. 1357 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 1358 * for address calculation from SCRIPTS. 1359 */ 1360 struct sym_pmc pm0; 1361 struct sym_pmc pm1; 1362 1363 /* 1364 * Table data for Script 1365 */ 1366 struct sym_tblsel select; 1367 struct sym_tblmove smsg; 1368 struct sym_tblmove smsg_ext; 1369 struct sym_tblmove cmd; 1370 struct sym_tblmove sense; 1371 struct sym_tblmove wresid; 1372 struct sym_tblmove data [SYM_CONF_MAX_SG]; 1373 }; 1374 1375 /* 1376 * Our Command Control Block 1377 */ 1378 struct sym_ccb { 1379 /* 1380 * This is the data structure which is pointed by the DSA 1381 * register when it is executed by the script processor. 1382 * It must be the first entry. 1383 */ 1384 struct sym_dsb phys; 1385 1386 /* 1387 * Pointer to CAM ccb and related stuff. 1388 */ 1389 struct callout ch; /* callout handle */ 1390 union ccb *cam_ccb; /* CAM scsiio ccb */ 1391 u8 cdb_buf[16]; /* Copy of CDB */ 1392 u8 *sns_bbuf; /* Bounce buffer for sense data */ 1393 #define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data) 1394 int data_len; /* Total data length */ 1395 int segments; /* Number of SG segments */ 1396 1397 /* 1398 * Miscellaneous status'. 1399 */ 1400 u_char nego_status; /* Negotiation status */ 1401 u_char xerr_status; /* Extended error flags */ 1402 u32 extra_bytes; /* Extraneous bytes transferred */ 1403 1404 /* 1405 * Message areas. 1406 * We prepare a message to be sent after selection. 1407 * We may use a second one if the command is rescheduled 1408 * due to CHECK_CONDITION or COMMAND TERMINATED. 1409 * Contents are IDENTIFY and SIMPLE_TAG. 1410 * While negotiating sync or wide transfer, 1411 * a SDTR or WDTR message is appended. 1412 */ 1413 u_char scsi_smsg [12]; 1414 u_char scsi_smsg2[12]; 1415 1416 /* 1417 * Auto request sense related fields. 1418 */ 1419 u_char sensecmd[6]; /* Request Sense command */ 1420 u_char sv_scsi_status; /* Saved SCSI status */ 1421 u_char sv_xerr_status; /* Saved extended status */ 1422 int sv_resid; /* Saved residual */ 1423 1424 /* 1425 * Map for the DMA of user data. 1426 */ 1427 void *arg; /* Argument for some callback */ 1428 bus_dmamap_t dmamap; /* DMA map for user data */ 1429 u_char dmamapped; 1430 #define SYM_DMA_NONE 0 1431 #define SYM_DMA_READ 1 1432 #define SYM_DMA_WRITE 2 1433 /* 1434 * Other fields. 1435 */ 1436 u32 ccb_ba; /* BUS address of this CCB */ 1437 u_short tag; /* Tag for this transfer */ 1438 /* NO_TAG means no tag */ 1439 u_char target; 1440 u_char lun; 1441 ccb_p link_ccbh; /* Host adapter CCB hash chain */ 1442 SYM_QUEHEAD 1443 link_ccbq; /* Link to free/busy CCB queue */ 1444 u32 startp; /* Initial data pointer */ 1445 int ext_sg; /* Extreme data pointer, used */ 1446 int ext_ofs; /* to calculate the residual. */ 1447 u_char to_abort; /* Want this IO to be aborted */ 1448 }; 1449 1450 #define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 1451 1452 /* 1453 * Host Control Block 1454 */ 1455 struct sym_hcb { 1456 struct mtx mtx; 1457 1458 /* 1459 * Global headers. 1460 * Due to poorness of addressing capabilities, earlier 1461 * chips (810, 815, 825) copy part of the data structures 1462 * (CCB, TCB and LCB) in fixed areas. 1463 */ 1464 #ifdef SYM_CONF_GENERIC_SUPPORT 1465 struct sym_ccbh ccb_head; 1466 struct sym_tcbh tcb_head; 1467 struct sym_lcbh lcb_head; 1468 #endif 1469 /* 1470 * Idle task and invalid task actions and 1471 * their bus addresses. 1472 */ 1473 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 1474 vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 1475 1476 /* 1477 * Dummy lun table to protect us against target 1478 * returning bad lun number on reselection. 1479 */ 1480 u32 *badluntbl; /* Table physical address */ 1481 u32 badlun_sa; /* SCRIPT handler BUS address */ 1482 1483 /* 1484 * Bus address of this host control block. 1485 */ 1486 u32 hcb_ba; 1487 1488 /* 1489 * Bit 32-63 of the on-chip RAM bus address in LE format. 1490 * The START_RAM64 script loads the MMRS and MMWS from this 1491 * field. 1492 */ 1493 u32 scr_ram_seg; 1494 1495 /* 1496 * Chip and controller indentification. 1497 */ 1498 device_t device; 1499 1500 /* 1501 * Initial value of some IO register bits. 1502 * These values are assumed to have been set by BIOS, and may 1503 * be used to probe adapter implementation differences. 1504 */ 1505 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 1506 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 1507 sv_stest1; 1508 1509 /* 1510 * Actual initial value of IO register bits used by the 1511 * driver. They are loaded at initialisation according to 1512 * features that are to be enabled/disabled. 1513 */ 1514 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 1515 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 1516 1517 /* 1518 * Target data. 1519 */ 1520 #ifdef __amd64__ 1521 struct sym_tcb *target; 1522 #else 1523 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 1524 #endif 1525 1526 /* 1527 * Target control block bus address array used by the SCRIPT 1528 * on reselection. 1529 */ 1530 u32 *targtbl; 1531 u32 targtbl_ba; 1532 1533 /* 1534 * CAM SIM information for this instance. 1535 */ 1536 struct cam_sim *sim; 1537 struct cam_path *path; 1538 1539 /* 1540 * Allocated hardware resources. 1541 */ 1542 struct resource *irq_res; 1543 struct resource *io_res; 1544 struct resource *mmio_res; 1545 struct resource *ram_res; 1546 int ram_id; 1547 void *intr; 1548 1549 /* 1550 * Bus stuff. 1551 * 1552 * My understanding of PCI is that all agents must share the 1553 * same addressing range and model. 1554 * But some hardware architecture guys provide complex and 1555 * brain-deaded stuff that makes shit. 1556 * This driver only support PCI compliant implementations and 1557 * deals with part of the BUS stuff complexity only to fit O/S 1558 * requirements. 1559 */ 1560 1561 /* 1562 * DMA stuff. 1563 */ 1564 bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */ 1565 bus_dma_tag_t data_dmat; /* DMA tag for user data */ 1566 /* 1567 * BUS addresses of the chip 1568 */ 1569 vm_offset_t mmio_ba; /* MMIO BUS address */ 1570 int mmio_ws; /* MMIO Window size */ 1571 1572 vm_offset_t ram_ba; /* RAM BUS address */ 1573 int ram_ws; /* RAM window size */ 1574 1575 /* 1576 * SCRIPTS virtual and physical bus addresses. 1577 * 'script' is loaded in the on-chip RAM if present. 1578 * 'scripth' stays in main memory for all chips except the 1579 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 1580 */ 1581 u_char *scripta0; /* Copies of script and scripth */ 1582 u_char *scriptb0; /* Copies of script and scripth */ 1583 vm_offset_t scripta_ba; /* Actual script and scripth */ 1584 vm_offset_t scriptb_ba; /* bus addresses. */ 1585 vm_offset_t scriptb0_ba; 1586 u_short scripta_sz; /* Actual size of script A */ 1587 u_short scriptb_sz; /* Actual size of script B */ 1588 1589 /* 1590 * Bus addresses, setup and patch methods for 1591 * the selected firmware. 1592 */ 1593 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 1594 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 1595 void (*fw_setup)(hcb_p np, const struct sym_fw *fw); 1596 void (*fw_patch)(hcb_p np); 1597 const char *fw_name; 1598 1599 /* 1600 * General controller parameters and configuration. 1601 */ 1602 u_short device_id; /* PCI device id */ 1603 u_char revision_id; /* PCI device revision id */ 1604 u_int features; /* Chip features map */ 1605 u_char myaddr; /* SCSI id of the adapter */ 1606 u_char maxburst; /* log base 2 of dwords burst */ 1607 u_char maxwide; /* Maximum transfer width */ 1608 u_char minsync; /* Min sync period factor (ST) */ 1609 u_char maxsync; /* Max sync period factor (ST) */ 1610 u_char maxoffs; /* Max scsi offset (ST) */ 1611 u_char minsync_dt; /* Min sync period factor (DT) */ 1612 u_char maxsync_dt; /* Max sync period factor (DT) */ 1613 u_char maxoffs_dt; /* Max scsi offset (DT) */ 1614 u_char multiplier; /* Clock multiplier (1,2,4) */ 1615 u_char clock_divn; /* Number of clock divisors */ 1616 u32 clock_khz; /* SCSI clock frequency in KHz */ 1617 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 1618 /* 1619 * Start queue management. 1620 * It is filled up by the host processor and accessed by the 1621 * SCRIPTS processor in order to start SCSI commands. 1622 */ 1623 volatile /* Prevent code optimizations */ 1624 u32 *squeue; /* Start queue virtual address */ 1625 u32 squeue_ba; /* Start queue BUS address */ 1626 u_short squeueput; /* Next free slot of the queue */ 1627 u_short actccbs; /* Number of allocated CCBs */ 1628 1629 /* 1630 * Command completion queue. 1631 * It is the same size as the start queue to avoid overflow. 1632 */ 1633 u_short dqueueget; /* Next position to scan */ 1634 volatile /* Prevent code optimizations */ 1635 u32 *dqueue; /* Completion (done) queue */ 1636 u32 dqueue_ba; /* Done queue BUS address */ 1637 1638 /* 1639 * Miscellaneous buffers accessed by the scripts-processor. 1640 * They shall be DWORD aligned, because they may be read or 1641 * written with a script command. 1642 */ 1643 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1644 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1645 u32 lastmsg; /* Last SCSI message sent */ 1646 u_char scratch; /* Scratch for SCSI receive */ 1647 1648 /* 1649 * Miscellaneous configuration and status parameters. 1650 */ 1651 u_char usrflags; /* Miscellaneous user flags */ 1652 u_char scsi_mode; /* Current SCSI BUS mode */ 1653 u_char verbose; /* Verbosity for this controller*/ 1654 u32 cache; /* Used for cache test at init. */ 1655 1656 /* 1657 * CCB lists and queue. 1658 */ 1659 ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ 1660 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 1661 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 1662 1663 /* 1664 * During error handling and/or recovery, 1665 * active CCBs that are to be completed with 1666 * error or requeued are moved from the busy_ccbq 1667 * to the comp_ccbq prior to completion. 1668 */ 1669 SYM_QUEHEAD comp_ccbq; 1670 1671 /* 1672 * CAM CCB pending queue. 1673 */ 1674 SYM_QUEHEAD cam_ccbq; 1675 1676 /* 1677 * IMMEDIATE ARBITRATION (IARB) control. 1678 * 1679 * We keep track in 'last_cp' of the last CCB that has been 1680 * queued to the SCRIPTS processor and clear 'last_cp' when 1681 * this CCB completes. If last_cp is not zero at the moment 1682 * we queue a new CCB, we set a flag in 'last_cp' that is 1683 * used by the SCRIPTS as a hint for setting IARB. 1684 * We donnot set more than 'iarb_max' consecutive hints for 1685 * IARB in order to leave devices a chance to reselect. 1686 * By the way, any non zero value of 'iarb_max' is unfair. :) 1687 */ 1688 #ifdef SYM_CONF_IARB_SUPPORT 1689 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1690 u_short iarb_count; /* Actual # of these hints */ 1691 ccb_p last_cp; 1692 #endif 1693 1694 /* 1695 * Command abort handling. 1696 * We need to synchronize tightly with the SCRIPTS 1697 * processor in order to handle things correctly. 1698 */ 1699 u_char abrt_msg[4]; /* Message to send buffer */ 1700 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1701 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1702 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1703 }; 1704 1705 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1706 1707 /* 1708 * Return the name of the controller. 1709 */ 1710 static __inline const char *sym_name(hcb_p np) 1711 { 1712 return device_get_nameunit(np->device); 1713 } 1714 1715 /*--------------------------------------------------------------------------*/ 1716 /*------------------------------ FIRMWARES ---------------------------------*/ 1717 /*--------------------------------------------------------------------------*/ 1718 1719 /* 1720 * This stuff will be moved to a separate source file when 1721 * the driver will be broken into several source modules. 1722 */ 1723 1724 /* 1725 * Macros used for all firmwares. 1726 */ 1727 #define SYM_GEN_A(s, label) ((short) offsetof(s, label)), 1728 #define SYM_GEN_B(s, label) ((short) offsetof(s, label)), 1729 #define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) 1730 #define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) 1731 1732 #ifdef SYM_CONF_GENERIC_SUPPORT 1733 /* 1734 * Allocate firmware #1 script area. 1735 */ 1736 #define SYM_FWA_SCR sym_fw1a_scr 1737 #define SYM_FWB_SCR sym_fw1b_scr 1738 #include <dev/sym/sym_fw1.h> 1739 static const struct sym_fwa_ofs sym_fw1a_ofs = { 1740 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1741 }; 1742 static const struct sym_fwb_ofs sym_fw1b_ofs = { 1743 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1744 }; 1745 #undef SYM_FWA_SCR 1746 #undef SYM_FWB_SCR 1747 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1748 1749 /* 1750 * Allocate firmware #2 script area. 1751 */ 1752 #define SYM_FWA_SCR sym_fw2a_scr 1753 #define SYM_FWB_SCR sym_fw2b_scr 1754 #include <dev/sym/sym_fw2.h> 1755 static const struct sym_fwa_ofs sym_fw2a_ofs = { 1756 SYM_GEN_FW_A(struct SYM_FWA_SCR) 1757 }; 1758 static const struct sym_fwb_ofs sym_fw2b_ofs = { 1759 SYM_GEN_FW_B(struct SYM_FWB_SCR) 1760 SYM_GEN_B(struct SYM_FWB_SCR, start64) 1761 SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) 1762 }; 1763 #undef SYM_FWA_SCR 1764 #undef SYM_FWB_SCR 1765 1766 #undef SYM_GEN_A 1767 #undef SYM_GEN_B 1768 #undef PADDR_A 1769 #undef PADDR_B 1770 1771 #ifdef SYM_CONF_GENERIC_SUPPORT 1772 /* 1773 * Patch routine for firmware #1. 1774 */ 1775 static void 1776 sym_fw1_patch(hcb_p np) 1777 { 1778 struct sym_fw1a_scr *scripta0; 1779 struct sym_fw1b_scr *scriptb0; 1780 1781 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1782 scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; 1783 1784 /* 1785 * Remove LED support if not needed. 1786 */ 1787 if (!(np->features & FE_LED0)) { 1788 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1789 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1790 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1791 } 1792 1793 #ifdef SYM_CONF_IARB_SUPPORT 1794 /* 1795 * If user does not want to use IMMEDIATE ARBITRATION 1796 * when we are reselected while attempting to arbitrate, 1797 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1798 */ 1799 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1800 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1801 #endif 1802 /* 1803 * Patch some data in SCRIPTS. 1804 * - start and done queue initial bus address. 1805 * - target bus address table bus address. 1806 */ 1807 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1808 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1809 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1810 } 1811 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1812 1813 /* 1814 * Patch routine for firmware #2. 1815 */ 1816 static void 1817 sym_fw2_patch(hcb_p np) 1818 { 1819 struct sym_fw2a_scr *scripta0; 1820 struct sym_fw2b_scr *scriptb0; 1821 1822 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1823 scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; 1824 1825 /* 1826 * Remove LED support if not needed. 1827 */ 1828 if (!(np->features & FE_LED0)) { 1829 scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); 1830 scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); 1831 scripta0->start[0] = cpu_to_scr(SCR_NO_OP); 1832 } 1833 1834 #ifdef SYM_CONF_IARB_SUPPORT 1835 /* 1836 * If user does not want to use IMMEDIATE ARBITRATION 1837 * when we are reselected while attempting to arbitrate, 1838 * patch the SCRIPTS accordingly with a SCRIPT NO_OP. 1839 */ 1840 if (!SYM_CONF_SET_IARB_ON_ARB_LOST) 1841 scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); 1842 #endif 1843 /* 1844 * Patch some variable in SCRIPTS. 1845 * - start and done queue initial bus address. 1846 * - target bus address table bus address. 1847 */ 1848 scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); 1849 scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); 1850 scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); 1851 1852 /* 1853 * Remove the load of SCNTL4 on reselection if not a C10. 1854 */ 1855 if (!(np->features & FE_C10)) { 1856 scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); 1857 scripta0->resel_scntl4[1] = cpu_to_scr(0); 1858 } 1859 1860 /* 1861 * Remove a couple of work-arounds specific to C1010 if 1862 * they are not desirable. See `sym_fw2.h' for more details. 1863 */ 1864 if (!(np->device_id == PCI_ID_LSI53C1010_2 && 1865 np->revision_id < 0x1 && 1866 np->pciclk_khz < 60000)) { 1867 scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); 1868 scripta0->datao_phase[1] = cpu_to_scr(0); 1869 } 1870 if (!(np->device_id == PCI_ID_LSI53C1010 && 1871 /* np->revision_id < 0xff */ 1)) { 1872 scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); 1873 scripta0->sel_done[1] = cpu_to_scr(0); 1874 } 1875 1876 /* 1877 * Patch some other variables in SCRIPTS. 1878 * These ones are loaded by the SCRIPTS processor. 1879 */ 1880 scriptb0->pm0_data_addr[0] = 1881 cpu_to_scr(np->scripta_ba + 1882 offsetof(struct sym_fw2a_scr, pm0_data)); 1883 scriptb0->pm1_data_addr[0] = 1884 cpu_to_scr(np->scripta_ba + 1885 offsetof(struct sym_fw2a_scr, pm1_data)); 1886 } 1887 1888 /* 1889 * Fill the data area in scripts. 1890 * To be done for all firmwares. 1891 */ 1892 static void 1893 sym_fw_fill_data (u32 *in, u32 *out) 1894 { 1895 int i; 1896 1897 for (i = 0; i < SYM_CONF_MAX_SG; i++) { 1898 *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; 1899 *in++ = offsetof (struct sym_dsb, data[i]); 1900 *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; 1901 *out++ = offsetof (struct sym_dsb, data[i]); 1902 } 1903 } 1904 1905 /* 1906 * Setup useful script bus addresses. 1907 * To be done for all firmwares. 1908 */ 1909 static void 1910 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw) 1911 { 1912 u32 *pa; 1913 const u_short *po; 1914 int i; 1915 1916 /* 1917 * Build the bus address table for script A 1918 * from the script A offset table. 1919 */ 1920 po = (const u_short *) fw->a_ofs; 1921 pa = (u32 *) &np->fwa_bas; 1922 for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) 1923 pa[i] = np->scripta_ba + po[i]; 1924 1925 /* 1926 * Same for script B. 1927 */ 1928 po = (const u_short *) fw->b_ofs; 1929 pa = (u32 *) &np->fwb_bas; 1930 for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) 1931 pa[i] = np->scriptb_ba + po[i]; 1932 } 1933 1934 #ifdef SYM_CONF_GENERIC_SUPPORT 1935 /* 1936 * Setup routine for firmware #1. 1937 */ 1938 static void 1939 sym_fw1_setup(hcb_p np, const struct sym_fw *fw) 1940 { 1941 struct sym_fw1a_scr *scripta0; 1942 1943 scripta0 = (struct sym_fw1a_scr *) np->scripta0; 1944 1945 /* 1946 * Fill variable parts in scripts. 1947 */ 1948 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1949 1950 /* 1951 * Setup bus addresses used from the C code.. 1952 */ 1953 sym_fw_setup_bus_addresses(np, fw); 1954 } 1955 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1956 1957 /* 1958 * Setup routine for firmware #2. 1959 */ 1960 static void 1961 sym_fw2_setup(hcb_p np, const struct sym_fw *fw) 1962 { 1963 struct sym_fw2a_scr *scripta0; 1964 1965 scripta0 = (struct sym_fw2a_scr *) np->scripta0; 1966 1967 /* 1968 * Fill variable parts in scripts. 1969 */ 1970 sym_fw_fill_data(scripta0->data_in, scripta0->data_out); 1971 1972 /* 1973 * Setup bus addresses used from the C code.. 1974 */ 1975 sym_fw_setup_bus_addresses(np, fw); 1976 } 1977 1978 /* 1979 * Allocate firmware descriptors. 1980 */ 1981 #ifdef SYM_CONF_GENERIC_SUPPORT 1982 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); 1983 #endif /* SYM_CONF_GENERIC_SUPPORT */ 1984 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); 1985 1986 /* 1987 * Find the most appropriate firmware for a chip. 1988 */ 1989 static const struct sym_fw * 1990 sym_find_firmware(const struct sym_pci_chip *chip) 1991 { 1992 if (chip->features & FE_LDSTR) 1993 return &sym_fw2; 1994 #ifdef SYM_CONF_GENERIC_SUPPORT 1995 else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) 1996 return &sym_fw1; 1997 #endif 1998 else 1999 return NULL; 2000 } 2001 2002 /* 2003 * Bind a script to physical addresses. 2004 */ 2005 static void sym_fw_bind_script (hcb_p np, u32 *start, int len) 2006 { 2007 u32 opcode, new, old, tmp1, tmp2; 2008 u32 *end, *cur; 2009 int relocs; 2010 2011 cur = start; 2012 end = start + len/4; 2013 2014 while (cur < end) { 2015 2016 opcode = *cur; 2017 2018 /* 2019 * If we forget to change the length 2020 * in scripts, a field will be 2021 * padded with 0. This is an illegal 2022 * command. 2023 */ 2024 if (opcode == 0) { 2025 printf ("%s: ERROR0 IN SCRIPT at %d.\n", 2026 sym_name(np), (int) (cur-start)); 2027 MDELAY (10000); 2028 ++cur; 2029 continue; 2030 } 2031 2032 /* 2033 * We use the bogus value 0xf00ff00f ;-) 2034 * to reserve data area in SCRIPTS. 2035 */ 2036 if (opcode == SCR_DATA_ZERO) { 2037 *cur++ = 0; 2038 continue; 2039 } 2040 2041 if (DEBUG_FLAGS & DEBUG_SCRIPT) 2042 printf ("%d: <%x>\n", (int) (cur-start), 2043 (unsigned)opcode); 2044 2045 /* 2046 * We don't have to decode ALL commands 2047 */ 2048 switch (opcode >> 28) { 2049 case 0xf: 2050 /* 2051 * LOAD / STORE DSA relative, don't relocate. 2052 */ 2053 relocs = 0; 2054 break; 2055 case 0xe: 2056 /* 2057 * LOAD / STORE absolute. 2058 */ 2059 relocs = 1; 2060 break; 2061 case 0xc: 2062 /* 2063 * COPY has TWO arguments. 2064 */ 2065 relocs = 2; 2066 tmp1 = cur[1]; 2067 tmp2 = cur[2]; 2068 if ((tmp1 ^ tmp2) & 3) { 2069 printf ("%s: ERROR1 IN SCRIPT at %d.\n", 2070 sym_name(np), (int) (cur-start)); 2071 MDELAY (10000); 2072 } 2073 /* 2074 * If PREFETCH feature not enabled, remove 2075 * the NO FLUSH bit if present. 2076 */ 2077 if ((opcode & SCR_NO_FLUSH) && 2078 !(np->features & FE_PFEN)) { 2079 opcode = (opcode & ~SCR_NO_FLUSH); 2080 } 2081 break; 2082 case 0x0: 2083 /* 2084 * MOVE/CHMOV (absolute address) 2085 */ 2086 if (!(np->features & FE_WIDE)) 2087 opcode = (opcode | OPC_MOVE); 2088 relocs = 1; 2089 break; 2090 case 0x1: 2091 /* 2092 * MOVE/CHMOV (table indirect) 2093 */ 2094 if (!(np->features & FE_WIDE)) 2095 opcode = (opcode | OPC_MOVE); 2096 relocs = 0; 2097 break; 2098 case 0x8: 2099 /* 2100 * JUMP / CALL 2101 * dont't relocate if relative :-) 2102 */ 2103 if (opcode & 0x00800000) 2104 relocs = 0; 2105 else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ 2106 relocs = 2; 2107 else 2108 relocs = 1; 2109 break; 2110 case 0x4: 2111 case 0x5: 2112 case 0x6: 2113 case 0x7: 2114 relocs = 1; 2115 break; 2116 default: 2117 relocs = 0; 2118 break; 2119 } 2120 2121 /* 2122 * Scriptify:) the opcode. 2123 */ 2124 *cur++ = cpu_to_scr(opcode); 2125 2126 /* 2127 * If no relocation, assume 1 argument 2128 * and just scriptize:) it. 2129 */ 2130 if (!relocs) { 2131 *cur = cpu_to_scr(*cur); 2132 ++cur; 2133 continue; 2134 } 2135 2136 /* 2137 * Otherwise performs all needed relocations. 2138 */ 2139 while (relocs--) { 2140 old = *cur; 2141 2142 switch (old & RELOC_MASK) { 2143 case RELOC_REGISTER: 2144 new = (old & ~RELOC_MASK) + np->mmio_ba; 2145 break; 2146 case RELOC_LABEL_A: 2147 new = (old & ~RELOC_MASK) + np->scripta_ba; 2148 break; 2149 case RELOC_LABEL_B: 2150 new = (old & ~RELOC_MASK) + np->scriptb_ba; 2151 break; 2152 case RELOC_SOFTC: 2153 new = (old & ~RELOC_MASK) + np->hcb_ba; 2154 break; 2155 case 0: 2156 /* 2157 * Don't relocate a 0 address. 2158 * They are mostly used for patched or 2159 * script self-modified areas. 2160 */ 2161 if (old == 0) { 2162 new = old; 2163 break; 2164 } 2165 /* fall through */ 2166 default: 2167 new = 0; 2168 panic("sym_fw_bind_script: " 2169 "weird relocation %x\n", old); 2170 break; 2171 } 2172 2173 *cur++ = cpu_to_scr(new); 2174 } 2175 } 2176 } 2177 2178 /*---------------------------------------------------------------------------*/ 2179 /*--------------------------- END OF FIRMWARES -----------------------------*/ 2180 /*---------------------------------------------------------------------------*/ 2181 2182 /* 2183 * Function prototypes. 2184 */ 2185 static void sym_save_initial_setting (hcb_p np); 2186 static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); 2187 static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); 2188 static void sym_put_start_queue (hcb_p np, ccb_p cp); 2189 static void sym_chip_reset (hcb_p np); 2190 static void sym_soft_reset (hcb_p np); 2191 static void sym_start_reset (hcb_p np); 2192 static int sym_reset_scsi_bus (hcb_p np, int enab_int); 2193 static int sym_wakeup_done (hcb_p np); 2194 static void sym_flush_busy_queue (hcb_p np, int cam_status); 2195 static void sym_flush_comp_queue (hcb_p np, int cam_status); 2196 static void sym_init (hcb_p np, int reason); 2197 static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, 2198 u_char *fakp); 2199 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, 2200 u_char div, u_char fak); 2201 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); 2202 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2203 u_char per, u_char wide, u_char div, u_char fak); 2204 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 2205 u_char per, u_char wide, u_char div, u_char fak); 2206 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); 2207 static void sym_intr (void *arg); 2208 static void sym_poll (struct cam_sim *sim); 2209 static void sym_recover_scsi_int (hcb_p np, u_char hsts); 2210 static void sym_int_sto (hcb_p np); 2211 static void sym_int_udc (hcb_p np); 2212 static void sym_int_sbmc (hcb_p np); 2213 static void sym_int_par (hcb_p np, u_short sist); 2214 static void sym_int_ma (hcb_p np); 2215 static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, 2216 int task); 2217 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp); 2218 static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); 2219 static void sym_sir_task_recovery (hcb_p np, int num); 2220 static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); 2221 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs); 2222 static int sym_compute_residual (hcb_p np, ccb_p cp); 2223 static int sym_show_msg (u_char * msg); 2224 static void sym_print_msg (ccb_p cp, char *label, u_char *msg); 2225 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); 2226 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); 2227 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); 2228 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); 2229 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); 2230 static void sym_int_sir (hcb_p np); 2231 static void sym_free_ccb (hcb_p np, ccb_p cp); 2232 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); 2233 static ccb_p sym_alloc_ccb (hcb_p np); 2234 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa); 2235 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); 2236 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); 2237 static int sym_snooptest (hcb_p np); 2238 static void sym_selectclock(hcb_p np, u_char scntl3); 2239 static void sym_getclock (hcb_p np, int mult); 2240 static int sym_getpciclock (hcb_p np); 2241 static void sym_complete_ok (hcb_p np, ccb_p cp); 2242 static void sym_complete_error (hcb_p np, ccb_p cp); 2243 static void sym_callout (void *arg); 2244 static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); 2245 static void sym_reset_dev (hcb_p np, union ccb *ccb); 2246 static void sym_action (struct cam_sim *sim, union ccb *ccb); 2247 static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); 2248 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio, 2249 ccb_p cp); 2250 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 2251 bus_dma_segment_t *psegs, int nsegs); 2252 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp, 2253 bus_dma_segment_t *psegs, int nsegs); 2254 static void sym_action2 (struct cam_sim *sim, union ccb *ccb); 2255 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 2256 struct ccb_trans_settings *cts); 2257 static void sym_update_dflags(hcb_p np, u_char *flags, 2258 struct ccb_trans_settings *cts); 2259 2260 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev); 2261 static int sym_pci_probe (device_t dev); 2262 static int sym_pci_attach (device_t dev); 2263 2264 static void sym_pci_free (hcb_p np); 2265 static int sym_cam_attach (hcb_p np); 2266 static void sym_cam_free (hcb_p np); 2267 2268 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); 2269 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); 2270 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); 2271 2272 /* 2273 * Print something which allows to retrieve the controller type, 2274 * unit, target, lun concerned by a kernel message. 2275 */ 2276 static void PRINT_TARGET (hcb_p np, int target) 2277 { 2278 printf ("%s:%d:", sym_name(np), target); 2279 } 2280 2281 static void PRINT_LUN(hcb_p np, int target, int lun) 2282 { 2283 printf ("%s:%d:%d:", sym_name(np), target, lun); 2284 } 2285 2286 static void PRINT_ADDR (ccb_p cp) 2287 { 2288 if (cp && cp->cam_ccb) 2289 xpt_print_path(cp->cam_ccb->ccb_h.path); 2290 } 2291 2292 /* 2293 * Take into account this ccb in the freeze count. 2294 */ 2295 static void sym_freeze_cam_ccb(union ccb *ccb) 2296 { 2297 if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { 2298 if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { 2299 ccb->ccb_h.status |= CAM_DEV_QFRZN; 2300 xpt_freeze_devq(ccb->ccb_h.path, 1); 2301 } 2302 } 2303 } 2304 2305 /* 2306 * Set the status field of a CAM CCB. 2307 */ 2308 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) 2309 { 2310 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 2311 ccb->ccb_h.status |= status; 2312 } 2313 2314 /* 2315 * Get the status field of a CAM CCB. 2316 */ 2317 static __inline int sym_get_cam_status(union ccb *ccb) 2318 { 2319 return ccb->ccb_h.status & CAM_STATUS_MASK; 2320 } 2321 2322 /* 2323 * Enqueue a CAM CCB. 2324 */ 2325 static void sym_enqueue_cam_ccb(ccb_p cp) 2326 { 2327 hcb_p np; 2328 union ccb *ccb; 2329 2330 ccb = cp->cam_ccb; 2331 np = (hcb_p) cp->arg; 2332 2333 assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); 2334 ccb->ccb_h.status = CAM_REQ_INPROG; 2335 2336 callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout, 2337 (caddr_t)ccb, 0); 2338 ccb->ccb_h.status |= CAM_SIM_QUEUED; 2339 ccb->ccb_h.sym_hcb_ptr = np; 2340 2341 sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); 2342 } 2343 2344 /* 2345 * Complete a pending CAM CCB. 2346 */ 2347 2348 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp) 2349 { 2350 2351 SYM_LOCK_ASSERT(MA_OWNED); 2352 2353 if (ccb->ccb_h.status & CAM_SIM_QUEUED) { 2354 callout_stop(&cp->ch); 2355 sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); 2356 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 2357 ccb->ccb_h.sym_hcb_ptr = NULL; 2358 } 2359 xpt_done(ccb); 2360 } 2361 2362 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) 2363 { 2364 2365 SYM_LOCK_ASSERT(MA_OWNED); 2366 2367 sym_set_cam_status(ccb, cam_status); 2368 xpt_done(ccb); 2369 } 2370 2371 /* 2372 * SYMBIOS chip clock divisor table. 2373 * 2374 * Divisors are multiplied by 10,000,000 in order to make 2375 * calculations more simple. 2376 */ 2377 #define _5M 5000000 2378 static const u32 div_10M[] = 2379 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 2380 2381 /* 2382 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 2383 * 128 transfers. All chips support at least 16 transfers 2384 * bursts. The 825A, 875 and 895 chips support bursts of up 2385 * to 128 transfers and the 895A and 896 support bursts of up 2386 * to 64 transfers. All other chips support up to 16 2387 * transfers bursts. 2388 * 2389 * For PCI 32 bit data transfers each transfer is a DWORD. 2390 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 2391 * 2392 * We use log base 2 (burst length) as internal code, with 2393 * value 0 meaning "burst disabled". 2394 */ 2395 2396 /* 2397 * Burst length from burst code. 2398 */ 2399 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 2400 2401 /* 2402 * Burst code from io register bits. 2403 */ 2404 #define burst_code(dmode, ctest4, ctest5) \ 2405 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 2406 2407 /* 2408 * Set initial io register bits from burst code. 2409 */ 2410 static __inline void sym_init_burst(hcb_p np, u_char bc) 2411 { 2412 np->rv_ctest4 &= ~0x80; 2413 np->rv_dmode &= ~(0x3 << 6); 2414 np->rv_ctest5 &= ~0x4; 2415 2416 if (!bc) { 2417 np->rv_ctest4 |= 0x80; 2418 } 2419 else { 2420 --bc; 2421 np->rv_dmode |= ((bc & 0x3) << 6); 2422 np->rv_ctest5 |= (bc & 0x4); 2423 } 2424 } 2425 2426 /* 2427 * Print out the list of targets that have some flag disabled by user. 2428 */ 2429 static void sym_print_targets_flag(hcb_p np, int mask, char *msg) 2430 { 2431 int cnt; 2432 int i; 2433 2434 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2435 if (i == np->myaddr) 2436 continue; 2437 if (np->target[i].usrflags & mask) { 2438 if (!cnt++) 2439 printf("%s: %s disabled for targets", 2440 sym_name(np), msg); 2441 printf(" %d", i); 2442 } 2443 } 2444 if (cnt) 2445 printf(".\n"); 2446 } 2447 2448 /* 2449 * Save initial settings of some IO registers. 2450 * Assumed to have been set by BIOS. 2451 * We cannot reset the chip prior to reading the 2452 * IO registers, since informations will be lost. 2453 * Since the SCRIPTS processor may be running, this 2454 * is not safe on paper, but it seems to work quite 2455 * well. :) 2456 */ 2457 static void sym_save_initial_setting (hcb_p np) 2458 { 2459 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 2460 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 2461 np->sv_dmode = INB(nc_dmode) & 0xce; 2462 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 2463 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 2464 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 2465 np->sv_gpcntl = INB(nc_gpcntl); 2466 np->sv_stest1 = INB(nc_stest1); 2467 np->sv_stest2 = INB(nc_stest2) & 0x20; 2468 np->sv_stest4 = INB(nc_stest4); 2469 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 2470 np->sv_scntl4 = INB(nc_scntl4); 2471 np->sv_ctest5 = INB(nc_ctest5) & 0x04; 2472 } 2473 else 2474 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 2475 } 2476 2477 /* 2478 * Prepare io register values used by sym_init() according 2479 * to selected and supported features. 2480 */ 2481 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) 2482 { 2483 u_char burst_max; 2484 u32 period; 2485 int i; 2486 2487 /* 2488 * Wide ? 2489 */ 2490 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 2491 2492 /* 2493 * Get the frequency of the chip's clock. 2494 */ 2495 if (np->features & FE_QUAD) 2496 np->multiplier = 4; 2497 else if (np->features & FE_DBLR) 2498 np->multiplier = 2; 2499 else 2500 np->multiplier = 1; 2501 2502 np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; 2503 np->clock_khz *= np->multiplier; 2504 2505 if (np->clock_khz != 40000) 2506 sym_getclock(np, np->multiplier); 2507 2508 /* 2509 * Divisor to be used for async (timer pre-scaler). 2510 */ 2511 i = np->clock_divn - 1; 2512 while (--i >= 0) { 2513 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 2514 ++i; 2515 break; 2516 } 2517 } 2518 np->rv_scntl3 = i+1; 2519 2520 /* 2521 * The C1010 uses hardwired divisors for async. 2522 * So, we just throw away, the async. divisor.:-) 2523 */ 2524 if (np->features & FE_C10) 2525 np->rv_scntl3 = 0; 2526 2527 /* 2528 * Minimum synchronous period factor supported by the chip. 2529 * Btw, 'period' is in tenths of nanoseconds. 2530 */ 2531 period = howmany(4 * div_10M[0], np->clock_khz); 2532 if (period <= 250) np->minsync = 10; 2533 else if (period <= 303) np->minsync = 11; 2534 else if (period <= 500) np->minsync = 12; 2535 else np->minsync = howmany(period, 40); 2536 2537 /* 2538 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 2539 */ 2540 if (np->minsync < 25 && 2541 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 2542 np->minsync = 25; 2543 else if (np->minsync < 12 && 2544 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 2545 np->minsync = 12; 2546 2547 /* 2548 * Maximum synchronous period factor supported by the chip. 2549 */ 2550 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 2551 np->maxsync = period > 2540 ? 254 : period / 10; 2552 2553 /* 2554 * If chip is a C1010, guess the sync limits in DT mode. 2555 */ 2556 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 2557 if (np->clock_khz == 160000) { 2558 np->minsync_dt = 9; 2559 np->maxsync_dt = 50; 2560 np->maxoffs_dt = 62; 2561 } 2562 } 2563 2564 /* 2565 * 64 bit addressing (895A/896/1010) ? 2566 */ 2567 if (np->features & FE_DAC) 2568 #ifdef __LP64__ 2569 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 2570 #else 2571 np->rv_ccntl1 |= (DDAC); 2572 #endif 2573 2574 /* 2575 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 2576 */ 2577 if (np->features & FE_NOPM) 2578 np->rv_ccntl0 |= (ENPMJ); 2579 2580 /* 2581 * C1010 Errata. 2582 * In dual channel mode, contention occurs if internal cycles 2583 * are used. Disable internal cycles. 2584 */ 2585 if (np->device_id == PCI_ID_LSI53C1010 && 2586 np->revision_id < 0x2) 2587 np->rv_ccntl0 |= DILS; 2588 2589 /* 2590 * Select burst length (dwords) 2591 */ 2592 burst_max = SYM_SETUP_BURST_ORDER; 2593 if (burst_max == 255) 2594 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 2595 np->sv_ctest5); 2596 if (burst_max > 7) 2597 burst_max = 7; 2598 if (burst_max > np->maxburst) 2599 burst_max = np->maxburst; 2600 2601 /* 2602 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 2603 * This chip and the 860 Rev 1 may wrongly use PCI cache line 2604 * based transactions on LOAD/STORE instructions. So we have 2605 * to prevent these chips from using such PCI transactions in 2606 * this driver. The generic ncr driver that does not use 2607 * LOAD/STORE instructions does not need this work-around. 2608 */ 2609 if ((np->device_id == PCI_ID_SYM53C810 && 2610 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 2611 (np->device_id == PCI_ID_SYM53C860 && 2612 np->revision_id <= 0x1)) 2613 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 2614 2615 /* 2616 * Select all supported special features. 2617 * If we are using on-board RAM for scripts, prefetch (PFEN) 2618 * does not help, but burst op fetch (BOF) does. 2619 * Disabling PFEN makes sure BOF will be used. 2620 */ 2621 if (np->features & FE_ERL) 2622 np->rv_dmode |= ERL; /* Enable Read Line */ 2623 if (np->features & FE_BOF) 2624 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 2625 if (np->features & FE_ERMP) 2626 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 2627 #if 1 2628 if ((np->features & FE_PFEN) && !np->ram_ba) 2629 #else 2630 if (np->features & FE_PFEN) 2631 #endif 2632 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 2633 if (np->features & FE_CLSE) 2634 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 2635 if (np->features & FE_WRIE) 2636 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 2637 if (np->features & FE_DFS) 2638 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 2639 2640 /* 2641 * Select some other 2642 */ 2643 if (SYM_SETUP_PCI_PARITY) 2644 np->rv_ctest4 |= MPEE; /* Master parity checking */ 2645 if (SYM_SETUP_SCSI_PARITY) 2646 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 2647 2648 /* 2649 * Get parity checking, host ID and verbose mode from NVRAM 2650 */ 2651 np->myaddr = 255; 2652 sym_nvram_setup_host (np, nvram); 2653 #ifdef __sparc64__ 2654 np->myaddr = OF_getscsinitid(np->device); 2655 #endif 2656 2657 /* 2658 * Get SCSI addr of host adapter (set by bios?). 2659 */ 2660 if (np->myaddr == 255) { 2661 np->myaddr = INB(nc_scid) & 0x07; 2662 if (!np->myaddr) 2663 np->myaddr = SYM_SETUP_HOST_ID; 2664 } 2665 2666 /* 2667 * Prepare initial io register bits for burst length 2668 */ 2669 sym_init_burst(np, burst_max); 2670 2671 /* 2672 * Set SCSI BUS mode. 2673 * - LVD capable chips (895/895A/896/1010) report the 2674 * current BUS mode through the STEST4 IO register. 2675 * - For previous generation chips (825/825A/875), 2676 * user has to tell us how to check against HVD, 2677 * since a 100% safe algorithm is not possible. 2678 */ 2679 np->scsi_mode = SMODE_SE; 2680 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 2681 np->scsi_mode = (np->sv_stest4 & SMODE); 2682 else if (np->features & FE_DIFF) { 2683 if (SYM_SETUP_SCSI_DIFF == 1) { 2684 if (np->sv_scntl3) { 2685 if (np->sv_stest2 & 0x20) 2686 np->scsi_mode = SMODE_HVD; 2687 } 2688 else if (nvram->type == SYM_SYMBIOS_NVRAM) { 2689 if (!(INB(nc_gpreg) & 0x08)) 2690 np->scsi_mode = SMODE_HVD; 2691 } 2692 } 2693 else if (SYM_SETUP_SCSI_DIFF == 2) 2694 np->scsi_mode = SMODE_HVD; 2695 } 2696 if (np->scsi_mode == SMODE_HVD) 2697 np->rv_stest2 |= 0x20; 2698 2699 /* 2700 * Set LED support from SCRIPTS. 2701 * Ignore this feature for boards known to use a 2702 * specific GPIO wiring and for the 895A, 896 2703 * and 1010 that drive the LED directly. 2704 */ 2705 if ((SYM_SETUP_SCSI_LED || 2706 (nvram->type == SYM_SYMBIOS_NVRAM || 2707 (nvram->type == SYM_TEKRAM_NVRAM && 2708 np->device_id == PCI_ID_SYM53C895))) && 2709 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 2710 np->features |= FE_LED0; 2711 2712 /* 2713 * Set irq mode. 2714 */ 2715 switch(SYM_SETUP_IRQ_MODE & 3) { 2716 case 2: 2717 np->rv_dcntl |= IRQM; 2718 break; 2719 case 1: 2720 np->rv_dcntl |= (np->sv_dcntl & IRQM); 2721 break; 2722 default: 2723 break; 2724 } 2725 2726 /* 2727 * Configure targets according to driver setup. 2728 * If NVRAM present get targets setup from NVRAM. 2729 */ 2730 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 2731 tcb_p tp = &np->target[i]; 2732 2733 tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2; 2734 tp->tinfo.user.spi_version = tp->tinfo.current.spi_version = 2; 2735 tp->tinfo.user.period = np->minsync; 2736 if (np->features & FE_ULTRA3) 2737 tp->tinfo.user.period = np->minsync_dt; 2738 tp->tinfo.user.offset = np->maxoffs; 2739 tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; 2740 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 2741 tp->usrtags = SYM_SETUP_MAX_TAG; 2742 2743 sym_nvram_setup_target (np, i, nvram); 2744 2745 /* 2746 * For now, guess PPR/DT support from the period 2747 * and BUS width. 2748 */ 2749 if (np->features & FE_ULTRA3) { 2750 if (tp->tinfo.user.period <= 9 && 2751 tp->tinfo.user.width == BUS_16_BIT) { 2752 tp->tinfo.user.options |= PPR_OPT_DT; 2753 tp->tinfo.user.offset = np->maxoffs_dt; 2754 tp->tinfo.user.spi_version = 3; 2755 } 2756 } 2757 2758 if (!tp->usrtags) 2759 tp->usrflags &= ~SYM_TAGS_ENABLED; 2760 } 2761 2762 /* 2763 * Let user know about the settings. 2764 */ 2765 i = nvram->type; 2766 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np), 2767 i == SYM_SYMBIOS_NVRAM ? "Symbios" : 2768 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), 2769 np->myaddr, 2770 (np->features & FE_ULTRA3) ? 80 : 2771 (np->features & FE_ULTRA2) ? 40 : 2772 (np->features & FE_ULTRA) ? 20 : 10, 2773 sym_scsi_bus_mode(np->scsi_mode), 2774 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 2775 /* 2776 * Tell him more on demand. 2777 */ 2778 if (sym_verbose) { 2779 printf("%s: %s IRQ line driver%s\n", 2780 sym_name(np), 2781 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 2782 np->ram_ba ? ", using on-chip SRAM" : ""); 2783 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 2784 if (np->features & FE_NOPM) 2785 printf("%s: handling phase mismatch from SCRIPTS.\n", 2786 sym_name(np)); 2787 } 2788 /* 2789 * And still more. 2790 */ 2791 if (sym_verbose > 1) { 2792 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2793 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2794 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 2795 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 2796 2797 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 2798 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 2799 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 2800 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 2801 } 2802 /* 2803 * Let user be aware of targets that have some disable flags set. 2804 */ 2805 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); 2806 if (sym_verbose) 2807 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, 2808 "SCAN FOR LUNS"); 2809 2810 return 0; 2811 } 2812 2813 /* 2814 * Prepare the next negotiation message if needed. 2815 * 2816 * Fill in the part of message buffer that contains the 2817 * negotiation and the nego_status field of the CCB. 2818 * Returns the size of the message in bytes. 2819 */ 2820 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) 2821 { 2822 tcb_p tp = &np->target[cp->target]; 2823 int msglen = 0; 2824 2825 /* 2826 * Early C1010 chips need a work-around for DT 2827 * data transfer to work. 2828 */ 2829 if (!(np->features & FE_U3EN)) 2830 tp->tinfo.goal.options = 0; 2831 /* 2832 * negotiate using PPR ? 2833 */ 2834 if (tp->tinfo.goal.options & PPR_OPT_MASK) 2835 nego = NS_PPR; 2836 /* 2837 * negotiate wide transfers ? 2838 */ 2839 else if (tp->tinfo.current.width != tp->tinfo.goal.width) 2840 nego = NS_WIDE; 2841 /* 2842 * negotiate synchronous transfers? 2843 */ 2844 else if (tp->tinfo.current.period != tp->tinfo.goal.period || 2845 tp->tinfo.current.offset != tp->tinfo.goal.offset) 2846 nego = NS_SYNC; 2847 2848 switch (nego) { 2849 case NS_SYNC: 2850 msgptr[msglen++] = M_EXTENDED; 2851 msgptr[msglen++] = 3; 2852 msgptr[msglen++] = M_X_SYNC_REQ; 2853 msgptr[msglen++] = tp->tinfo.goal.period; 2854 msgptr[msglen++] = tp->tinfo.goal.offset; 2855 break; 2856 case NS_WIDE: 2857 msgptr[msglen++] = M_EXTENDED; 2858 msgptr[msglen++] = 2; 2859 msgptr[msglen++] = M_X_WIDE_REQ; 2860 msgptr[msglen++] = tp->tinfo.goal.width; 2861 break; 2862 case NS_PPR: 2863 msgptr[msglen++] = M_EXTENDED; 2864 msgptr[msglen++] = 6; 2865 msgptr[msglen++] = M_X_PPR_REQ; 2866 msgptr[msglen++] = tp->tinfo.goal.period; 2867 msgptr[msglen++] = 0; 2868 msgptr[msglen++] = tp->tinfo.goal.offset; 2869 msgptr[msglen++] = tp->tinfo.goal.width; 2870 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; 2871 break; 2872 } 2873 2874 cp->nego_status = nego; 2875 2876 if (nego) { 2877 tp->nego_cp = cp; /* Keep track a nego will be performed */ 2878 if (DEBUG_FLAGS & DEBUG_NEGO) { 2879 sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" : 2880 nego == NS_WIDE ? "wide msgout" : 2881 "ppr msgout", msgptr); 2882 } 2883 } 2884 2885 return msglen; 2886 } 2887 2888 /* 2889 * Insert a job into the start queue. 2890 */ 2891 static void sym_put_start_queue(hcb_p np, ccb_p cp) 2892 { 2893 u_short qidx; 2894 2895 #ifdef SYM_CONF_IARB_SUPPORT 2896 /* 2897 * If the previously queued CCB is not yet done, 2898 * set the IARB hint. The SCRIPTS will go with IARB 2899 * for this job when starting the previous one. 2900 * We leave devices a chance to win arbitration by 2901 * not using more than 'iarb_max' consecutive 2902 * immediate arbitrations. 2903 */ 2904 if (np->last_cp && np->iarb_count < np->iarb_max) { 2905 np->last_cp->host_flags |= HF_HINT_IARB; 2906 ++np->iarb_count; 2907 } 2908 else 2909 np->iarb_count = 0; 2910 np->last_cp = cp; 2911 #endif 2912 2913 /* 2914 * Insert first the idle task and then our job. 2915 * The MB should ensure proper ordering. 2916 */ 2917 qidx = np->squeueput + 2; 2918 if (qidx >= MAX_QUEUE*2) qidx = 0; 2919 2920 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 2921 MEMORY_BARRIER(); 2922 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 2923 2924 np->squeueput = qidx; 2925 2926 if (DEBUG_FLAGS & DEBUG_QUEUE) 2927 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 2928 2929 /* 2930 * Script processor may be waiting for reselect. 2931 * Wake it up. 2932 */ 2933 MEMORY_BARRIER(); 2934 OUTB (nc_istat, SIGP|np->istat_sem); 2935 } 2936 2937 /* 2938 * Soft reset the chip. 2939 * 2940 * Raising SRST when the chip is running may cause 2941 * problems on dual function chips (see below). 2942 * On the other hand, LVD devices need some delay 2943 * to settle and report actual BUS mode in STEST4. 2944 */ 2945 static void sym_chip_reset (hcb_p np) 2946 { 2947 OUTB (nc_istat, SRST); 2948 UDELAY (10); 2949 OUTB (nc_istat, 0); 2950 UDELAY(2000); /* For BUS MODE to settle */ 2951 } 2952 2953 /* 2954 * Soft reset the chip. 2955 * 2956 * Some 896 and 876 chip revisions may hang-up if we set 2957 * the SRST (soft reset) bit at the wrong time when SCRIPTS 2958 * are running. 2959 * So, we need to abort the current operation prior to 2960 * soft resetting the chip. 2961 */ 2962 static void sym_soft_reset (hcb_p np) 2963 { 2964 u_char istat; 2965 int i; 2966 2967 OUTB (nc_istat, CABRT); 2968 for (i = 1000000 ; i ; --i) { 2969 istat = INB (nc_istat); 2970 if (istat & SIP) { 2971 INW (nc_sist); 2972 continue; 2973 } 2974 if (istat & DIP) { 2975 OUTB (nc_istat, 0); 2976 INB (nc_dstat); 2977 break; 2978 } 2979 } 2980 if (!i) 2981 printf("%s: unable to abort current chip operation.\n", 2982 sym_name(np)); 2983 sym_chip_reset (np); 2984 } 2985 2986 /* 2987 * Start reset process. 2988 * 2989 * The interrupt handler will reinitialize the chip. 2990 */ 2991 static void sym_start_reset(hcb_p np) 2992 { 2993 (void) sym_reset_scsi_bus(np, 1); 2994 } 2995 2996 static int sym_reset_scsi_bus(hcb_p np, int enab_int) 2997 { 2998 u32 term; 2999 int retv = 0; 3000 3001 sym_soft_reset(np); /* Soft reset the chip */ 3002 if (enab_int) 3003 OUTW (nc_sien, RST); 3004 /* 3005 * Enable Tolerant, reset IRQD if present and 3006 * properly set IRQ mode, prior to resetting the bus. 3007 */ 3008 OUTB (nc_stest3, TE); 3009 OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); 3010 OUTB (nc_scntl1, CRST); 3011 UDELAY (200); 3012 3013 if (!SYM_SETUP_SCSI_BUS_CHECK) 3014 goto out; 3015 /* 3016 * Check for no terminators or SCSI bus shorts to ground. 3017 * Read SCSI data bus, data parity bits and control signals. 3018 * We are expecting RESET to be TRUE and other signals to be 3019 * FALSE. 3020 */ 3021 term = INB(nc_sstat0); 3022 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 3023 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 3024 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 3025 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 3026 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 3027 3028 if (!(np->features & FE_WIDE)) 3029 term &= 0x3ffff; 3030 3031 if (term != (2<<7)) { 3032 printf("%s: suspicious SCSI data while resetting the BUS.\n", 3033 sym_name(np)); 3034 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 3035 "0x%lx, expecting 0x%lx\n", 3036 sym_name(np), 3037 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 3038 (u_long)term, (u_long)(2<<7)); 3039 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 3040 retv = 1; 3041 } 3042 out: 3043 OUTB (nc_scntl1, 0); 3044 /* MDELAY(100); */ 3045 return retv; 3046 } 3047 3048 /* 3049 * The chip may have completed jobs. Look at the DONE QUEUE. 3050 * 3051 * On architectures that may reorder LOAD/STORE operations, 3052 * a memory barrier may be needed after the reading of the 3053 * so-called `flag' and prior to dealing with the data. 3054 */ 3055 static int sym_wakeup_done (hcb_p np) 3056 { 3057 ccb_p cp; 3058 int i, n; 3059 u32 dsa; 3060 3061 SYM_LOCK_ASSERT(MA_OWNED); 3062 3063 n = 0; 3064 i = np->dqueueget; 3065 while (1) { 3066 dsa = scr_to_cpu(np->dqueue[i]); 3067 if (!dsa) 3068 break; 3069 np->dqueue[i] = 0; 3070 if ((i = i+2) >= MAX_QUEUE*2) 3071 i = 0; 3072 3073 cp = sym_ccb_from_dsa(np, dsa); 3074 if (cp) { 3075 MEMORY_BARRIER(); 3076 sym_complete_ok (np, cp); 3077 ++n; 3078 } 3079 else 3080 printf ("%s: bad DSA (%x) in done queue.\n", 3081 sym_name(np), (u_int) dsa); 3082 } 3083 np->dqueueget = i; 3084 3085 return n; 3086 } 3087 3088 /* 3089 * Complete all active CCBs with error. 3090 * Used on CHIP/SCSI RESET. 3091 */ 3092 static void sym_flush_busy_queue (hcb_p np, int cam_status) 3093 { 3094 /* 3095 * Move all active CCBs to the COMP queue 3096 * and flush this queue. 3097 */ 3098 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 3099 sym_que_init(&np->busy_ccbq); 3100 sym_flush_comp_queue(np, cam_status); 3101 } 3102 3103 /* 3104 * Start chip. 3105 * 3106 * 'reason' means: 3107 * 0: initialisation. 3108 * 1: SCSI BUS RESET delivered or received. 3109 * 2: SCSI BUS MODE changed. 3110 */ 3111 static void sym_init (hcb_p np, int reason) 3112 { 3113 int i; 3114 u32 phys; 3115 3116 SYM_LOCK_ASSERT(MA_OWNED); 3117 3118 /* 3119 * Reset chip if asked, otherwise just clear fifos. 3120 */ 3121 if (reason == 1) 3122 sym_soft_reset(np); 3123 else { 3124 OUTB (nc_stest3, TE|CSF); 3125 OUTONB (nc_ctest3, CLF); 3126 } 3127 3128 /* 3129 * Clear Start Queue 3130 */ 3131 phys = np->squeue_ba; 3132 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3133 np->squeue[i] = cpu_to_scr(np->idletask_ba); 3134 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 3135 } 3136 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3137 3138 /* 3139 * Start at first entry. 3140 */ 3141 np->squeueput = 0; 3142 3143 /* 3144 * Clear Done Queue 3145 */ 3146 phys = np->dqueue_ba; 3147 for (i = 0; i < MAX_QUEUE*2; i += 2) { 3148 np->dqueue[i] = 0; 3149 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 3150 } 3151 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 3152 3153 /* 3154 * Start at first entry. 3155 */ 3156 np->dqueueget = 0; 3157 3158 /* 3159 * Install patches in scripts. 3160 * This also let point to first position the start 3161 * and done queue pointers used from SCRIPTS. 3162 */ 3163 np->fw_patch(np); 3164 3165 /* 3166 * Wakeup all pending jobs. 3167 */ 3168 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); 3169 3170 /* 3171 * Init chip. 3172 */ 3173 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ 3174 UDELAY (2000); /* The 895 needs time for the bus mode to settle */ 3175 3176 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 3177 /* full arb., ena parity, par->ATN */ 3178 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 3179 3180 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 3181 3182 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 3183 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 3184 OUTB (nc_istat , SIGP ); /* Signal Process */ 3185 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 3186 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 3187 3188 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 3189 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 3190 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 3191 3192 /* Extended Sreq/Sack filtering not supported on the C10 */ 3193 if (np->features & FE_C10) 3194 OUTB (nc_stest2, np->rv_stest2); 3195 else 3196 OUTB (nc_stest2, EXT|np->rv_stest2); 3197 3198 OUTB (nc_stest3, TE); /* TolerANT enable */ 3199 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 3200 3201 /* 3202 * For now, disable AIP generation on C1010-66. 3203 */ 3204 if (np->device_id == PCI_ID_LSI53C1010_2) 3205 OUTB (nc_aipcntl1, DISAIP); 3206 3207 /* 3208 * C10101 Errata. 3209 * Errant SGE's when in narrow. Write bits 4 & 5 of 3210 * STEST1 register to disable SGE. We probably should do 3211 * that from SCRIPTS for each selection/reselection, but 3212 * I just don't want. :) 3213 */ 3214 if (np->device_id == PCI_ID_LSI53C1010 && 3215 /* np->revision_id < 0xff */ 1) 3216 OUTB (nc_stest1, INB(nc_stest1) | 0x30); 3217 3218 /* 3219 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 3220 * Disable overlapped arbitration for some dual function devices, 3221 * regardless revision id (kind of post-chip-design feature. ;-)) 3222 */ 3223 if (np->device_id == PCI_ID_SYM53C875) 3224 OUTB (nc_ctest0, (1<<5)); 3225 else if (np->device_id == PCI_ID_SYM53C896) 3226 np->rv_ccntl0 |= DPR; 3227 3228 /* 3229 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 3230 * and/or hardware phase mismatch, since only such chips 3231 * seem to support those IO registers. 3232 */ 3233 if (np->features & (FE_DAC|FE_NOPM)) { 3234 OUTB (nc_ccntl0, np->rv_ccntl0); 3235 OUTB (nc_ccntl1, np->rv_ccntl1); 3236 } 3237 3238 /* 3239 * If phase mismatch handled by scripts (895A/896/1010), 3240 * set PM jump addresses. 3241 */ 3242 if (np->features & FE_NOPM) { 3243 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle)); 3244 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle)); 3245 } 3246 3247 /* 3248 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 3249 * Also set GPIO5 and clear GPIO6 if hardware LED control. 3250 */ 3251 if (np->features & FE_LED0) 3252 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); 3253 else if (np->features & FE_LEDC) 3254 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); 3255 3256 /* 3257 * enable ints 3258 */ 3259 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 3260 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); 3261 3262 /* 3263 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 3264 * Try to eat the spurious SBMC interrupt that may occur when 3265 * we reset the chip but not the SCSI BUS (at initialization). 3266 */ 3267 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 3268 OUTONW (nc_sien, SBMC); 3269 if (reason == 0) { 3270 MDELAY(100); 3271 INW (nc_sist); 3272 } 3273 np->scsi_mode = INB (nc_stest4) & SMODE; 3274 } 3275 3276 /* 3277 * Fill in target structure. 3278 * Reinitialize usrsync. 3279 * Reinitialize usrwide. 3280 * Prepare sync negotiation according to actual SCSI bus mode. 3281 */ 3282 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 3283 tcb_p tp = &np->target[i]; 3284 3285 tp->to_reset = 0; 3286 tp->head.sval = 0; 3287 tp->head.wval = np->rv_scntl3; 3288 tp->head.uval = 0; 3289 3290 tp->tinfo.current.period = 0; 3291 tp->tinfo.current.offset = 0; 3292 tp->tinfo.current.width = BUS_8_BIT; 3293 tp->tinfo.current.options = 0; 3294 } 3295 3296 /* 3297 * Download SCSI SCRIPTS to on-chip RAM if present, 3298 * and start script processor. 3299 */ 3300 if (np->ram_ba) { 3301 if (sym_verbose > 1) 3302 printf ("%s: Downloading SCSI SCRIPTS.\n", 3303 sym_name(np)); 3304 if (np->ram_ws == 8192) { 3305 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz); 3306 OUTL (nc_mmws, np->scr_ram_seg); 3307 OUTL (nc_mmrs, np->scr_ram_seg); 3308 OUTL (nc_sfs, np->scr_ram_seg); 3309 phys = SCRIPTB_BA (np, start64); 3310 } 3311 else 3312 phys = SCRIPTA_BA (np, init); 3313 OUTRAM_OFF(0, np->scripta0, np->scripta_sz); 3314 } 3315 else 3316 phys = SCRIPTA_BA (np, init); 3317 3318 np->istat_sem = 0; 3319 3320 OUTL (nc_dsa, np->hcb_ba); 3321 OUTL_DSP (phys); 3322 3323 /* 3324 * Notify the XPT about the RESET condition. 3325 */ 3326 if (reason != 0) 3327 xpt_async(AC_BUS_RESET, np->path, NULL); 3328 } 3329 3330 /* 3331 * Get clock factor and sync divisor for a given 3332 * synchronous factor period. 3333 */ 3334 static int 3335 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 3336 { 3337 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 3338 int div = np->clock_divn; /* Number of divisors supported */ 3339 u32 fak; /* Sync factor in sxfer */ 3340 u32 per; /* Period in tenths of ns */ 3341 u32 kpc; /* (per * clk) */ 3342 int ret; 3343 3344 /* 3345 * Compute the synchronous period in tenths of nano-seconds 3346 */ 3347 if (dt && sfac <= 9) per = 125; 3348 else if (sfac <= 10) per = 250; 3349 else if (sfac == 11) per = 303; 3350 else if (sfac == 12) per = 500; 3351 else per = 40 * sfac; 3352 ret = per; 3353 3354 kpc = per * clk; 3355 if (dt) 3356 kpc <<= 1; 3357 3358 /* 3359 * For earliest C10 revision 0, we cannot use extra 3360 * clocks for the setting of the SCSI clocking. 3361 * Note that this limits the lowest sync data transfer 3362 * to 5 Mega-transfers per second and may result in 3363 * using higher clock divisors. 3364 */ 3365 #if 1 3366 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 3367 /* 3368 * Look for the lowest clock divisor that allows an 3369 * output speed not faster than the period. 3370 */ 3371 while (div > 0) { 3372 --div; 3373 if (kpc > (div_10M[div] << 2)) { 3374 ++div; 3375 break; 3376 } 3377 } 3378 fak = 0; /* No extra clocks */ 3379 if (div == np->clock_divn) { /* Are we too fast ? */ 3380 ret = -1; 3381 } 3382 *divp = div; 3383 *fakp = fak; 3384 return ret; 3385 } 3386 #endif 3387 3388 /* 3389 * Look for the greatest clock divisor that allows an 3390 * input speed faster than the period. 3391 */ 3392 while (div-- > 0) 3393 if (kpc >= (div_10M[div] << 2)) break; 3394 3395 /* 3396 * Calculate the lowest clock factor that allows an output 3397 * speed not faster than the period, and the max output speed. 3398 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 3399 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 3400 */ 3401 if (dt) { 3402 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 3403 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 3404 } 3405 else { 3406 fak = (kpc - 1) / div_10M[div] + 1 - 4; 3407 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 3408 } 3409 3410 /* 3411 * Check against our hardware limits, or bugs :). 3412 */ 3413 if (fak > 2) {fak = 2; ret = -1;} 3414 3415 /* 3416 * Compute and return sync parameters. 3417 */ 3418 *divp = div; 3419 *fakp = fak; 3420 3421 return ret; 3422 } 3423 3424 /* 3425 * Tell the SCSI layer about the new transfer parameters. 3426 */ 3427 static void 3428 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid) 3429 { 3430 struct ccb_trans_settings cts; 3431 struct cam_path *path; 3432 int sts; 3433 tcb_p tp = &np->target[target]; 3434 3435 sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target, 3436 CAM_LUN_WILDCARD); 3437 if (sts != CAM_REQ_CMP) 3438 return; 3439 3440 bzero(&cts, sizeof(cts)); 3441 3442 #define cts__scsi (cts.proto_specific.scsi) 3443 #define cts__spi (cts.xport_specific.spi) 3444 3445 cts.type = CTS_TYPE_CURRENT_SETTINGS; 3446 cts.protocol = PROTO_SCSI; 3447 cts.transport = XPORT_SPI; 3448 cts.protocol_version = tp->tinfo.current.scsi_version; 3449 cts.transport_version = tp->tinfo.current.spi_version; 3450 3451 cts__spi.valid = spi_valid; 3452 if (spi_valid & CTS_SPI_VALID_SYNC_RATE) 3453 cts__spi.sync_period = tp->tinfo.current.period; 3454 if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET) 3455 cts__spi.sync_offset = tp->tinfo.current.offset; 3456 if (spi_valid & CTS_SPI_VALID_BUS_WIDTH) 3457 cts__spi.bus_width = tp->tinfo.current.width; 3458 if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS) 3459 cts__spi.ppr_options = tp->tinfo.current.options; 3460 #undef cts__spi 3461 #undef cts__scsi 3462 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 3463 xpt_async(AC_TRANSFER_NEG, path, &cts); 3464 xpt_free_path(path); 3465 } 3466 3467 #define SYM_SPI_VALID_WDTR \ 3468 CTS_SPI_VALID_BUS_WIDTH | \ 3469 CTS_SPI_VALID_SYNC_RATE | \ 3470 CTS_SPI_VALID_SYNC_OFFSET 3471 #define SYM_SPI_VALID_SDTR \ 3472 CTS_SPI_VALID_SYNC_RATE | \ 3473 CTS_SPI_VALID_SYNC_OFFSET 3474 #define SYM_SPI_VALID_PPR \ 3475 CTS_SPI_VALID_PPR_OPTIONS | \ 3476 CTS_SPI_VALID_BUS_WIDTH | \ 3477 CTS_SPI_VALID_SYNC_RATE | \ 3478 CTS_SPI_VALID_SYNC_OFFSET 3479 3480 /* 3481 * We received a WDTR. 3482 * Let everything be aware of the changes. 3483 */ 3484 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) 3485 { 3486 tcb_p tp = &np->target[cp->target]; 3487 3488 sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); 3489 3490 /* 3491 * Tell the SCSI layer about the new transfer parameters. 3492 */ 3493 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3494 tp->tinfo.current.offset = 0; 3495 tp->tinfo.current.period = 0; 3496 tp->tinfo.current.options = 0; 3497 3498 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR); 3499 } 3500 3501 /* 3502 * We received a SDTR. 3503 * Let everything be aware of the changes. 3504 */ 3505 static void 3506 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) 3507 { 3508 tcb_p tp = &np->target[cp->target]; 3509 u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; 3510 3511 sym_settrans(np, cp, 0, ofs, per, wide, div, fak); 3512 3513 /* 3514 * Tell the SCSI layer about the new transfer parameters. 3515 */ 3516 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3517 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3518 tp->tinfo.goal.options = tp->tinfo.current.options = 0; 3519 3520 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR); 3521 } 3522 3523 /* 3524 * We received a PPR. 3525 * Let everything be aware of the changes. 3526 */ 3527 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3528 u_char per, u_char wide, u_char div, u_char fak) 3529 { 3530 tcb_p tp = &np->target[cp->target]; 3531 3532 sym_settrans(np, cp, dt, ofs, per, wide, div, fak); 3533 3534 /* 3535 * Tell the SCSI layer about the new transfer parameters. 3536 */ 3537 tp->tinfo.goal.width = tp->tinfo.current.width = wide; 3538 tp->tinfo.goal.period = tp->tinfo.current.period = per; 3539 tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; 3540 tp->tinfo.goal.options = tp->tinfo.current.options = dt; 3541 3542 sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR); 3543 } 3544 3545 /* 3546 * Switch trans mode for current job and it's target. 3547 */ 3548 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, 3549 u_char per, u_char wide, u_char div, u_char fak) 3550 { 3551 SYM_QUEHEAD *qp; 3552 union ccb *ccb; 3553 tcb_p tp; 3554 u_char target = INB (nc_sdid) & 0x0f; 3555 u_char sval, wval, uval; 3556 3557 assert (cp); 3558 if (!cp) return; 3559 ccb = cp->cam_ccb; 3560 assert (ccb); 3561 if (!ccb) return; 3562 assert (target == (cp->target & 0xf)); 3563 tp = &np->target[target]; 3564 3565 sval = tp->head.sval; 3566 wval = tp->head.wval; 3567 uval = tp->head.uval; 3568 3569 #if 0 3570 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 3571 sval, wval, uval, np->rv_scntl3); 3572 #endif 3573 /* 3574 * Set the offset. 3575 */ 3576 if (!(np->features & FE_C10)) 3577 sval = (sval & ~0x1f) | ofs; 3578 else 3579 sval = (sval & ~0x3f) | ofs; 3580 3581 /* 3582 * Set the sync divisor and extra clock factor. 3583 */ 3584 if (ofs != 0) { 3585 wval = (wval & ~0x70) | ((div+1) << 4); 3586 if (!(np->features & FE_C10)) 3587 sval = (sval & ~0xe0) | (fak << 5); 3588 else { 3589 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 3590 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 3591 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 3592 } 3593 } 3594 3595 /* 3596 * Set the bus width. 3597 */ 3598 wval = wval & ~EWS; 3599 if (wide != 0) 3600 wval |= EWS; 3601 3602 /* 3603 * Set misc. ultra enable bits. 3604 */ 3605 if (np->features & FE_C10) { 3606 uval = uval & ~(U3EN|AIPCKEN); 3607 if (dt) { 3608 assert(np->features & FE_U3EN); 3609 uval |= U3EN; 3610 } 3611 } 3612 else { 3613 wval = wval & ~ULTRA; 3614 if (per <= 12) wval |= ULTRA; 3615 } 3616 3617 /* 3618 * Stop there if sync parameters are unchanged. 3619 */ 3620 if (tp->head.sval == sval && 3621 tp->head.wval == wval && 3622 tp->head.uval == uval) 3623 return; 3624 tp->head.sval = sval; 3625 tp->head.wval = wval; 3626 tp->head.uval = uval; 3627 3628 /* 3629 * Disable extended Sreq/Sack filtering if per < 50. 3630 * Not supported on the C1010. 3631 */ 3632 if (per < 50 && !(np->features & FE_C10)) 3633 OUTOFFB (nc_stest2, EXT); 3634 3635 /* 3636 * set actual value and sync_status 3637 */ 3638 OUTB (nc_sxfer, tp->head.sval); 3639 OUTB (nc_scntl3, tp->head.wval); 3640 3641 if (np->features & FE_C10) { 3642 OUTB (nc_scntl4, tp->head.uval); 3643 } 3644 3645 /* 3646 * patch ALL busy ccbs of this target. 3647 */ 3648 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3649 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3650 if (cp->target != target) 3651 continue; 3652 cp->phys.select.sel_scntl3 = tp->head.wval; 3653 cp->phys.select.sel_sxfer = tp->head.sval; 3654 if (np->features & FE_C10) { 3655 cp->phys.select.sel_scntl4 = tp->head.uval; 3656 } 3657 } 3658 } 3659 3660 /* 3661 * log message for real hard errors 3662 * 3663 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). 3664 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 3665 * 3666 * exception register: 3667 * ds: dstat 3668 * si: sist 3669 * 3670 * SCSI bus lines: 3671 * so: control lines as driven by chip. 3672 * si: control lines as seen by chip. 3673 * sd: scsi data lines as seen by chip. 3674 * 3675 * wide/fastmode: 3676 * sxfer: (see the manual) 3677 * scntl3: (see the manual) 3678 * 3679 * current script command: 3680 * dsp: script address (relative to start of script). 3681 * dbc: first word of script command. 3682 * 3683 * First 24 register of the chip: 3684 * r0..rf 3685 */ 3686 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) 3687 { 3688 u32 dsp; 3689 int script_ofs; 3690 int script_size; 3691 char *script_name; 3692 u_char *script_base; 3693 int i; 3694 3695 dsp = INL (nc_dsp); 3696 3697 if (dsp > np->scripta_ba && 3698 dsp <= np->scripta_ba + np->scripta_sz) { 3699 script_ofs = dsp - np->scripta_ba; 3700 script_size = np->scripta_sz; 3701 script_base = (u_char *) np->scripta0; 3702 script_name = "scripta"; 3703 } 3704 else if (np->scriptb_ba < dsp && 3705 dsp <= np->scriptb_ba + np->scriptb_sz) { 3706 script_ofs = dsp - np->scriptb_ba; 3707 script_size = np->scriptb_sz; 3708 script_base = (u_char *) np->scriptb0; 3709 script_name = "scriptb"; 3710 } else { 3711 script_ofs = dsp; 3712 script_size = 0; 3713 script_base = NULL; 3714 script_name = "mem"; 3715 } 3716 3717 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 3718 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 3719 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), 3720 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), 3721 (unsigned)INB (nc_scntl3), script_name, script_ofs, 3722 (unsigned)INL (nc_dbc)); 3723 3724 if (((script_ofs & 3) == 0) && 3725 (unsigned)script_ofs < script_size) { 3726 printf ("%s: script cmd = %08x\n", sym_name(np), 3727 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 3728 } 3729 3730 printf ("%s: regdump:", sym_name(np)); 3731 for (i=0; i<24;i++) 3732 printf (" %02x", (unsigned)INB_OFF(i)); 3733 printf (".\n"); 3734 3735 /* 3736 * PCI BUS error, read the PCI ststus register. 3737 */ 3738 if (dstat & (MDPE|BF)) { 3739 u_short pci_sts; 3740 pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); 3741 if (pci_sts & 0xf900) { 3742 pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); 3743 printf("%s: PCI STATUS = 0x%04x\n", 3744 sym_name(np), pci_sts & 0xf900); 3745 } 3746 } 3747 } 3748 3749 /* 3750 * chip interrupt handler 3751 * 3752 * In normal situations, interrupt conditions occur one at 3753 * a time. But when something bad happens on the SCSI BUS, 3754 * the chip may raise several interrupt flags before 3755 * stopping and interrupting the CPU. The additionnal 3756 * interrupt flags are stacked in some extra registers 3757 * after the SIP and/or DIP flag has been raised in the 3758 * ISTAT. After the CPU has read the interrupt condition 3759 * flag from SIST or DSTAT, the chip unstacks the other 3760 * interrupt flags and sets the corresponding bits in 3761 * SIST or DSTAT. Since the chip starts stacking once the 3762 * SIP or DIP flag is set, there is a small window of time 3763 * where the stacking does not occur. 3764 * 3765 * Typically, multiple interrupt conditions may happen in 3766 * the following situations: 3767 * 3768 * - SCSI parity error + Phase mismatch (PAR|MA) 3769 * When a parity error is detected in input phase 3770 * and the device switches to msg-in phase inside a 3771 * block MOV. 3772 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 3773 * When a stupid device does not want to handle the 3774 * recovery of an SCSI parity error. 3775 * - Some combinations of STO, PAR, UDC, ... 3776 * When using non compliant SCSI stuff, when user is 3777 * doing non compliant hot tampering on the BUS, when 3778 * something really bad happens to a device, etc ... 3779 * 3780 * The heuristic suggested by SYMBIOS to handle 3781 * multiple interrupts is to try unstacking all 3782 * interrupts conditions and to handle them on some 3783 * priority based on error severity. 3784 * This will work when the unstacking has been 3785 * successful, but we cannot be 100 % sure of that, 3786 * since the CPU may have been faster to unstack than 3787 * the chip is able to stack. Hmmm ... But it seems that 3788 * such a situation is very unlikely to happen. 3789 * 3790 * If this happen, for example STO caught by the CPU 3791 * then UDC happenning before the CPU have restarted 3792 * the SCRIPTS, the driver may wrongly complete the 3793 * same command on UDC, since the SCRIPTS didn't restart 3794 * and the DSA still points to the same command. 3795 * We avoid this situation by setting the DSA to an 3796 * invalid value when the CCB is completed and before 3797 * restarting the SCRIPTS. 3798 * 3799 * Another issue is that we need some section of our 3800 * recovery procedures to be somehow uninterruptible but 3801 * the SCRIPTS processor does not provides such a 3802 * feature. For this reason, we handle recovery preferently 3803 * from the C code and check against some SCRIPTS critical 3804 * sections from the C code. 3805 * 3806 * Hopefully, the interrupt handling of the driver is now 3807 * able to resist to weird BUS error conditions, but donnot 3808 * ask me for any guarantee that it will never fail. :-) 3809 * Use at your own decision and risk. 3810 */ 3811 static void sym_intr1 (hcb_p np) 3812 { 3813 u_char istat, istatc; 3814 u_char dstat; 3815 u_short sist; 3816 3817 SYM_LOCK_ASSERT(MA_OWNED); 3818 3819 /* 3820 * interrupt on the fly ? 3821 * 3822 * A `dummy read' is needed to ensure that the 3823 * clear of the INTF flag reaches the device 3824 * before the scanning of the DONE queue. 3825 */ 3826 istat = INB (nc_istat); 3827 if (istat & INTF) { 3828 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); 3829 istat = INB (nc_istat); /* DUMMY READ */ 3830 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 3831 (void)sym_wakeup_done (np); 3832 } 3833 3834 if (!(istat & (SIP|DIP))) 3835 return; 3836 3837 #if 0 /* We should never get this one */ 3838 if (istat & CABRT) 3839 OUTB (nc_istat, CABRT); 3840 #endif 3841 3842 /* 3843 * PAR and MA interrupts may occur at the same time, 3844 * and we need to know of both in order to handle 3845 * this situation properly. We try to unstack SCSI 3846 * interrupts for that reason. BTW, I dislike a LOT 3847 * such a loop inside the interrupt routine. 3848 * Even if DMA interrupt stacking is very unlikely to 3849 * happen, we also try unstacking these ones, since 3850 * this has no performance impact. 3851 */ 3852 sist = 0; 3853 dstat = 0; 3854 istatc = istat; 3855 do { 3856 if (istatc & SIP) 3857 sist |= INW (nc_sist); 3858 if (istatc & DIP) 3859 dstat |= INB (nc_dstat); 3860 istatc = INB (nc_istat); 3861 istat |= istatc; 3862 } while (istatc & (SIP|DIP)); 3863 3864 if (DEBUG_FLAGS & DEBUG_TINY) 3865 printf ("<%d|%x:%x|%x:%x>", 3866 (int)INB(nc_scr0), 3867 dstat,sist, 3868 (unsigned)INL(nc_dsp), 3869 (unsigned)INL(nc_dbc)); 3870 /* 3871 * On paper, a memory barrier may be needed here. 3872 * And since we are paranoid ... :) 3873 */ 3874 MEMORY_BARRIER(); 3875 3876 /* 3877 * First, interrupts we want to service cleanly. 3878 * 3879 * Phase mismatch (MA) is the most frequent interrupt 3880 * for chip earlier than the 896 and so we have to service 3881 * it as quickly as possible. 3882 * A SCSI parity error (PAR) may be combined with a phase 3883 * mismatch condition (MA). 3884 * Programmed interrupts (SIR) are used to call the C code 3885 * from SCRIPTS. 3886 * The single step interrupt (SSI) is not used in this 3887 * driver. 3888 */ 3889 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 3890 !(dstat & (MDPE|BF|ABRT|IID))) { 3891 if (sist & PAR) sym_int_par (np, sist); 3892 else if (sist & MA) sym_int_ma (np); 3893 else if (dstat & SIR) sym_int_sir (np); 3894 else if (dstat & SSI) OUTONB_STD (); 3895 else goto unknown_int; 3896 return; 3897 } 3898 3899 /* 3900 * Now, interrupts that donnot happen in normal 3901 * situations and that we may need to recover from. 3902 * 3903 * On SCSI RESET (RST), we reset everything. 3904 * On SCSI BUS MODE CHANGE (SBMC), we complete all 3905 * active CCBs with RESET status, prepare all devices 3906 * for negotiating again and restart the SCRIPTS. 3907 * On STO and UDC, we complete the CCB with the corres- 3908 * ponding status and restart the SCRIPTS. 3909 */ 3910 if (sist & RST) { 3911 xpt_print_path(np->path); 3912 printf("SCSI BUS reset detected.\n"); 3913 sym_init (np, 1); 3914 return; 3915 } 3916 3917 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 3918 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 3919 3920 if (!(sist & (GEN|HTH|SGE)) && 3921 !(dstat & (MDPE|BF|ABRT|IID))) { 3922 if (sist & SBMC) sym_int_sbmc (np); 3923 else if (sist & STO) sym_int_sto (np); 3924 else if (sist & UDC) sym_int_udc (np); 3925 else goto unknown_int; 3926 return; 3927 } 3928 3929 /* 3930 * Now, interrupts we are not able to recover cleanly. 3931 * 3932 * Log message for hard errors. 3933 * Reset everything. 3934 */ 3935 3936 sym_log_hard_error(np, sist, dstat); 3937 3938 if ((sist & (GEN|HTH|SGE)) || 3939 (dstat & (MDPE|BF|ABRT|IID))) { 3940 sym_start_reset(np); 3941 return; 3942 } 3943 3944 unknown_int: 3945 /* 3946 * We just miss the cause of the interrupt. :( 3947 * Print a message. The timeout will do the real work. 3948 */ 3949 printf( "%s: unknown interrupt(s) ignored, " 3950 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 3951 sym_name(np), istat, dstat, sist); 3952 } 3953 3954 static void sym_intr(void *arg) 3955 { 3956 hcb_p np = arg; 3957 3958 SYM_LOCK(); 3959 3960 if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); 3961 sym_intr1((hcb_p) arg); 3962 if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); 3963 3964 SYM_UNLOCK(); 3965 } 3966 3967 static void sym_poll(struct cam_sim *sim) 3968 { 3969 sym_intr1(cam_sim_softc(sim)); 3970 } 3971 3972 /* 3973 * generic recovery from scsi interrupt 3974 * 3975 * The doc says that when the chip gets an SCSI interrupt, 3976 * it tries to stop in an orderly fashion, by completing 3977 * an instruction fetch that had started or by flushing 3978 * the DMA fifo for a write to memory that was executing. 3979 * Such a fashion is not enough to know if the instruction 3980 * that was just before the current DSP value has been 3981 * executed or not. 3982 * 3983 * There are some small SCRIPTS sections that deal with 3984 * the start queue and the done queue that may break any 3985 * assomption from the C code if we are interrupted 3986 * inside, so we reset if this happens. Btw, since these 3987 * SCRIPTS sections are executed while the SCRIPTS hasn't 3988 * started SCSI operations, it is very unlikely to happen. 3989 * 3990 * All the driver data structures are supposed to be 3991 * allocated from the same 4 GB memory window, so there 3992 * is a 1 to 1 relationship between DSA and driver data 3993 * structures. Since we are careful :) to invalidate the 3994 * DSA when we complete a command or when the SCRIPTS 3995 * pushes a DSA into a queue, we can trust it when it 3996 * points to a CCB. 3997 */ 3998 static void sym_recover_scsi_int (hcb_p np, u_char hsts) 3999 { 4000 u32 dsp = INL (nc_dsp); 4001 u32 dsa = INL (nc_dsa); 4002 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4003 4004 /* 4005 * If we haven't been interrupted inside the SCRIPTS 4006 * critical paths, we can safely restart the SCRIPTS 4007 * and trust the DSA value if it matches a CCB. 4008 */ 4009 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) && 4010 dsp < SCRIPTA_BA (np, getjob_end) + 1)) && 4011 (!(dsp > SCRIPTA_BA (np, ungetjob) && 4012 dsp < SCRIPTA_BA (np, reselect) + 1)) && 4013 (!(dsp > SCRIPTB_BA (np, sel_for_abort) && 4014 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) && 4015 (!(dsp > SCRIPTA_BA (np, done) && 4016 dsp < SCRIPTA_BA (np, done_end) + 1))) { 4017 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 4018 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 4019 /* 4020 * If we have a CCB, let the SCRIPTS call us back for 4021 * the handling of the error with SCRATCHA filled with 4022 * STARTPOS. This way, we will be able to freeze the 4023 * device queue and requeue awaiting IOs. 4024 */ 4025 if (cp) { 4026 cp->host_status = hsts; 4027 OUTL_DSP (SCRIPTA_BA (np, complete_error)); 4028 } 4029 /* 4030 * Otherwise just restart the SCRIPTS. 4031 */ 4032 else { 4033 OUTL (nc_dsa, 0xffffff); 4034 OUTL_DSP (SCRIPTA_BA (np, start)); 4035 } 4036 } 4037 else 4038 goto reset_all; 4039 4040 return; 4041 4042 reset_all: 4043 sym_start_reset(np); 4044 } 4045 4046 /* 4047 * chip exception handler for selection timeout 4048 */ 4049 static void sym_int_sto (hcb_p np) 4050 { 4051 u32 dsp = INL (nc_dsp); 4052 4053 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 4054 4055 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8) 4056 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 4057 else 4058 sym_start_reset(np); 4059 } 4060 4061 /* 4062 * chip exception handler for unexpected disconnect 4063 */ 4064 static void sym_int_udc (hcb_p np) 4065 { 4066 printf ("%s: unexpected disconnect\n", sym_name(np)); 4067 sym_recover_scsi_int(np, HS_UNEXPECTED); 4068 } 4069 4070 /* 4071 * chip exception handler for SCSI bus mode change 4072 * 4073 * spi2-r12 11.2.3 says a transceiver mode change must 4074 * generate a reset event and a device that detects a reset 4075 * event shall initiate a hard reset. It says also that a 4076 * device that detects a mode change shall set data transfer 4077 * mode to eight bit asynchronous, etc... 4078 * So, just reinitializing all except chip should be enough. 4079 */ 4080 static void sym_int_sbmc (hcb_p np) 4081 { 4082 u_char scsi_mode = INB (nc_stest4) & SMODE; 4083 4084 /* 4085 * Notify user. 4086 */ 4087 xpt_print_path(np->path); 4088 printf("SCSI BUS mode change from %s to %s.\n", 4089 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 4090 4091 /* 4092 * Should suspend command processing for a few seconds and 4093 * reinitialize all except the chip. 4094 */ 4095 sym_init (np, 2); 4096 } 4097 4098 /* 4099 * chip exception handler for SCSI parity error. 4100 * 4101 * When the chip detects a SCSI parity error and is 4102 * currently executing a (CH)MOV instruction, it does 4103 * not interrupt immediately, but tries to finish the 4104 * transfer of the current scatter entry before 4105 * interrupting. The following situations may occur: 4106 * 4107 * - The complete scatter entry has been transferred 4108 * without the device having changed phase. 4109 * The chip will then interrupt with the DSP pointing 4110 * to the instruction that follows the MOV. 4111 * 4112 * - A phase mismatch occurs before the MOV finished 4113 * and phase errors are to be handled by the C code. 4114 * The chip will then interrupt with both PAR and MA 4115 * conditions set. 4116 * 4117 * - A phase mismatch occurs before the MOV finished and 4118 * phase errors are to be handled by SCRIPTS. 4119 * The chip will load the DSP with the phase mismatch 4120 * JUMP address and interrupt the host processor. 4121 */ 4122 static void sym_int_par (hcb_p np, u_short sist) 4123 { 4124 u_char hsts = INB (HS_PRT); 4125 u32 dsp = INL (nc_dsp); 4126 u32 dbc = INL (nc_dbc); 4127 u32 dsa = INL (nc_dsa); 4128 u_char sbcl = INB (nc_sbcl); 4129 u_char cmd = dbc >> 24; 4130 int phase = cmd & 7; 4131 ccb_p cp = sym_ccb_from_dsa(np, dsa); 4132 4133 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 4134 sym_name(np), hsts, dbc, sbcl); 4135 4136 /* 4137 * Check that the chip is connected to the SCSI BUS. 4138 */ 4139 if (!(INB (nc_scntl1) & ISCON)) { 4140 sym_recover_scsi_int(np, HS_UNEXPECTED); 4141 return; 4142 } 4143 4144 /* 4145 * If the nexus is not clearly identified, reset the bus. 4146 * We will try to do better later. 4147 */ 4148 if (!cp) 4149 goto reset_all; 4150 4151 /* 4152 * Check instruction was a MOV, direction was INPUT and 4153 * ATN is asserted. 4154 */ 4155 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 4156 goto reset_all; 4157 4158 /* 4159 * Keep track of the parity error. 4160 */ 4161 OUTONB (HF_PRT, HF_EXT_ERR); 4162 cp->xerr_status |= XE_PARITY_ERR; 4163 4164 /* 4165 * Prepare the message to send to the device. 4166 */ 4167 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 4168 4169 /* 4170 * If the old phase was DATA IN phase, we have to deal with 4171 * the 3 situations described above. 4172 * For other input phases (MSG IN and STATUS), the device 4173 * must resend the whole thing that failed parity checking 4174 * or signal error. So, jumping to dispatcher should be OK. 4175 */ 4176 if (phase == 1 || phase == 5) { 4177 /* Phase mismatch handled by SCRIPTS */ 4178 if (dsp == SCRIPTB_BA (np, pm_handle)) 4179 OUTL_DSP (dsp); 4180 /* Phase mismatch handled by the C code */ 4181 else if (sist & MA) 4182 sym_int_ma (np); 4183 /* No phase mismatch occurred */ 4184 else { 4185 OUTL (nc_temp, dsp); 4186 OUTL_DSP (SCRIPTA_BA (np, dispatch)); 4187 } 4188 } 4189 else 4190 OUTL_DSP (SCRIPTA_BA (np, clrack)); 4191 return; 4192 4193 reset_all: 4194 sym_start_reset(np); 4195 } 4196 4197 /* 4198 * chip exception handler for phase errors. 4199 * 4200 * We have to construct a new transfer descriptor, 4201 * to transfer the rest of the current block. 4202 */ 4203 static void sym_int_ma (hcb_p np) 4204 { 4205 u32 dbc; 4206 u32 rest; 4207 u32 dsp; 4208 u32 dsa; 4209 u32 nxtdsp; 4210 u32 *vdsp; 4211 u32 oadr, olen; 4212 u32 *tblp; 4213 u32 newcmd; 4214 u_int delta; 4215 u_char cmd; 4216 u_char hflags, hflags0; 4217 struct sym_pmc *pm; 4218 ccb_p cp; 4219 4220 dsp = INL (nc_dsp); 4221 dbc = INL (nc_dbc); 4222 dsa = INL (nc_dsa); 4223 4224 cmd = dbc >> 24; 4225 rest = dbc & 0xffffff; 4226 delta = 0; 4227 4228 /* 4229 * locate matching cp if any. 4230 */ 4231 cp = sym_ccb_from_dsa(np, dsa); 4232 4233 /* 4234 * Donnot take into account dma fifo and various buffers in 4235 * INPUT phase since the chip flushes everything before 4236 * raising the MA interrupt for interrupted INPUT phases. 4237 * For DATA IN phase, we will check for the SWIDE later. 4238 */ 4239 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 4240 u_char ss0, ss2; 4241 4242 if (np->features & FE_DFBC) 4243 delta = INW (nc_dfbc); 4244 else { 4245 u32 dfifo; 4246 4247 /* 4248 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 4249 */ 4250 dfifo = INL(nc_dfifo); 4251 4252 /* 4253 * Calculate remaining bytes in DMA fifo. 4254 * (CTEST5 = dfifo >> 16) 4255 */ 4256 if (dfifo & (DFS << 16)) 4257 delta = ((((dfifo >> 8) & 0x300) | 4258 (dfifo & 0xff)) - rest) & 0x3ff; 4259 else 4260 delta = ((dfifo & 0xff) - rest) & 0x7f; 4261 } 4262 4263 /* 4264 * The data in the dma fifo has not been transferred to 4265 * the target -> add the amount to the rest 4266 * and clear the data. 4267 * Check the sstat2 register in case of wide transfer. 4268 */ 4269 rest += delta; 4270 ss0 = INB (nc_sstat0); 4271 if (ss0 & OLF) rest++; 4272 if (!(np->features & FE_C10)) 4273 if (ss0 & ORF) rest++; 4274 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 4275 ss2 = INB (nc_sstat2); 4276 if (ss2 & OLF1) rest++; 4277 if (!(np->features & FE_C10)) 4278 if (ss2 & ORF1) rest++; 4279 } 4280 4281 /* 4282 * Clear fifos. 4283 */ 4284 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 4285 OUTB (nc_stest3, TE|CSF); /* scsi fifo */ 4286 } 4287 4288 /* 4289 * log the information 4290 */ 4291 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 4292 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, 4293 (unsigned) rest, (unsigned) delta); 4294 4295 /* 4296 * try to find the interrupted script command, 4297 * and the address at which to continue. 4298 */ 4299 vdsp = NULL; 4300 nxtdsp = 0; 4301 if (dsp > np->scripta_ba && 4302 dsp <= np->scripta_ba + np->scripta_sz) { 4303 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 4304 nxtdsp = dsp; 4305 } 4306 else if (dsp > np->scriptb_ba && 4307 dsp <= np->scriptb_ba + np->scriptb_sz) { 4308 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 4309 nxtdsp = dsp; 4310 } 4311 4312 /* 4313 * log the information 4314 */ 4315 if (DEBUG_FLAGS & DEBUG_PHASE) { 4316 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 4317 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 4318 } 4319 4320 if (!vdsp) { 4321 printf ("%s: interrupted SCRIPT address not found.\n", 4322 sym_name (np)); 4323 goto reset_all; 4324 } 4325 4326 if (!cp) { 4327 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 4328 sym_name (np)); 4329 goto reset_all; 4330 } 4331 4332 /* 4333 * get old startaddress and old length. 4334 */ 4335 oadr = scr_to_cpu(vdsp[1]); 4336 4337 if (cmd & 0x10) { /* Table indirect */ 4338 tblp = (u32 *) ((char*) &cp->phys + oadr); 4339 olen = scr_to_cpu(tblp[0]); 4340 oadr = scr_to_cpu(tblp[1]); 4341 } else { 4342 tblp = (u32 *) 0; 4343 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 4344 } 4345 4346 if (DEBUG_FLAGS & DEBUG_PHASE) { 4347 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 4348 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 4349 tblp, 4350 (unsigned) olen, 4351 (unsigned) oadr); 4352 } 4353 4354 /* 4355 * check cmd against assumed interrupted script command. 4356 * If dt data phase, the MOVE instruction hasn't bit 4 of 4357 * the phase. 4358 */ 4359 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 4360 PRINT_ADDR(cp); 4361 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 4362 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); 4363 4364 goto reset_all; 4365 } 4366 4367 /* 4368 * if old phase not dataphase, leave here. 4369 */ 4370 if (cmd & 2) { 4371 PRINT_ADDR(cp); 4372 printf ("phase change %x-%x %d@%08x resid=%d.\n", 4373 cmd&7, INB(nc_sbcl)&7, (unsigned)olen, 4374 (unsigned)oadr, (unsigned)rest); 4375 goto unexpected_phase; 4376 } 4377 4378 /* 4379 * Choose the correct PM save area. 4380 * 4381 * Look at the PM_SAVE SCRIPT if you want to understand 4382 * this stuff. The equivalent code is implemented in 4383 * SCRIPTS for the 895A, 896 and 1010 that are able to 4384 * handle PM from the SCRIPTS processor. 4385 */ 4386 hflags0 = INB (HF_PRT); 4387 hflags = hflags0; 4388 4389 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 4390 if (hflags & HF_IN_PM0) 4391 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 4392 else if (hflags & HF_IN_PM1) 4393 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 4394 4395 if (hflags & HF_DP_SAVED) 4396 hflags ^= HF_ACT_PM; 4397 } 4398 4399 if (!(hflags & HF_ACT_PM)) { 4400 pm = &cp->phys.pm0; 4401 newcmd = SCRIPTA_BA (np, pm0_data); 4402 } 4403 else { 4404 pm = &cp->phys.pm1; 4405 newcmd = SCRIPTA_BA (np, pm1_data); 4406 } 4407 4408 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 4409 if (hflags != hflags0) 4410 OUTB (HF_PRT, hflags); 4411 4412 /* 4413 * fillin the phase mismatch context 4414 */ 4415 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 4416 pm->sg.size = cpu_to_scr(rest); 4417 pm->ret = cpu_to_scr(nxtdsp); 4418 4419 /* 4420 * If we have a SWIDE, 4421 * - prepare the address to write the SWIDE from SCRIPTS, 4422 * - compute the SCRIPTS address to restart from, 4423 * - move current data pointer context by one byte. 4424 */ 4425 nxtdsp = SCRIPTA_BA (np, dispatch); 4426 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 4427 (INB (nc_scntl2) & WSR)) { 4428 u32 tmp; 4429 4430 /* 4431 * Set up the table indirect for the MOVE 4432 * of the residual byte and adjust the data 4433 * pointer context. 4434 */ 4435 tmp = scr_to_cpu(pm->sg.addr); 4436 cp->phys.wresid.addr = cpu_to_scr(tmp); 4437 pm->sg.addr = cpu_to_scr(tmp + 1); 4438 tmp = scr_to_cpu(pm->sg.size); 4439 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 4440 pm->sg.size = cpu_to_scr(tmp - 1); 4441 4442 /* 4443 * If only the residual byte is to be moved, 4444 * no PM context is needed. 4445 */ 4446 if ((tmp&0xffffff) == 1) 4447 newcmd = pm->ret; 4448 4449 /* 4450 * Prepare the address of SCRIPTS that will 4451 * move the residual byte to memory. 4452 */ 4453 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper); 4454 } 4455 4456 if (DEBUG_FLAGS & DEBUG_PHASE) { 4457 PRINT_ADDR(cp); 4458 printf ("PM %x %x %x / %x %x %x.\n", 4459 hflags0, hflags, newcmd, 4460 (unsigned)scr_to_cpu(pm->sg.addr), 4461 (unsigned)scr_to_cpu(pm->sg.size), 4462 (unsigned)scr_to_cpu(pm->ret)); 4463 } 4464 4465 /* 4466 * Restart the SCRIPTS processor. 4467 */ 4468 OUTL (nc_temp, newcmd); 4469 OUTL_DSP (nxtdsp); 4470 return; 4471 4472 /* 4473 * Unexpected phase changes that occurs when the current phase 4474 * is not a DATA IN or DATA OUT phase are due to error conditions. 4475 * Such event may only happen when the SCRIPTS is using a 4476 * multibyte SCSI MOVE. 4477 * 4478 * Phase change Some possible cause 4479 * 4480 * COMMAND --> MSG IN SCSI parity error detected by target. 4481 * COMMAND --> STATUS Bad command or refused by target. 4482 * MSG OUT --> MSG IN Message rejected by target. 4483 * MSG OUT --> COMMAND Bogus target that discards extended 4484 * negotiation messages. 4485 * 4486 * The code below does not care of the new phase and so 4487 * trusts the target. Why to annoy it ? 4488 * If the interrupted phase is COMMAND phase, we restart at 4489 * dispatcher. 4490 * If a target does not get all the messages after selection, 4491 * the code assumes blindly that the target discards extended 4492 * messages and clears the negotiation status. 4493 * If the target does not want all our response to negotiation, 4494 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 4495 * bloat for such a should_not_happen situation). 4496 * In all other situation, we reset the BUS. 4497 * Are these assumptions reasonnable ? (Wait and see ...) 4498 */ 4499 unexpected_phase: 4500 dsp -= 8; 4501 nxtdsp = 0; 4502 4503 switch (cmd & 7) { 4504 case 2: /* COMMAND phase */ 4505 nxtdsp = SCRIPTA_BA (np, dispatch); 4506 break; 4507 #if 0 4508 case 3: /* STATUS phase */ 4509 nxtdsp = SCRIPTA_BA (np, dispatch); 4510 break; 4511 #endif 4512 case 6: /* MSG OUT phase */ 4513 /* 4514 * If the device may want to use untagged when we want 4515 * tagged, we prepare an IDENTIFY without disc. granted, 4516 * since we will not be able to handle reselect. 4517 * Otherwise, we just don't care. 4518 */ 4519 if (dsp == SCRIPTA_BA (np, send_ident)) { 4520 if (cp->tag != NO_TAG && olen - rest <= 3) { 4521 cp->host_status = HS_BUSY; 4522 np->msgout[0] = M_IDENTIFY | cp->lun; 4523 nxtdsp = SCRIPTB_BA (np, ident_break_atn); 4524 } 4525 else 4526 nxtdsp = SCRIPTB_BA (np, ident_break); 4527 } 4528 else if (dsp == SCRIPTB_BA (np, send_wdtr) || 4529 dsp == SCRIPTB_BA (np, send_sdtr) || 4530 dsp == SCRIPTB_BA (np, send_ppr)) { 4531 nxtdsp = SCRIPTB_BA (np, nego_bad_phase); 4532 } 4533 break; 4534 #if 0 4535 case 7: /* MSG IN phase */ 4536 nxtdsp = SCRIPTA_BA (np, clrack); 4537 break; 4538 #endif 4539 } 4540 4541 if (nxtdsp) { 4542 OUTL_DSP (nxtdsp); 4543 return; 4544 } 4545 4546 reset_all: 4547 sym_start_reset(np); 4548 } 4549 4550 /* 4551 * Dequeue from the START queue all CCBs that match 4552 * a given target/lun/task condition (-1 means all), 4553 * and move them from the BUSY queue to the COMP queue 4554 * with CAM_REQUEUE_REQ status condition. 4555 * This function is used during error handling/recovery. 4556 * It is called with SCRIPTS not running. 4557 */ 4558 static int 4559 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) 4560 { 4561 int j; 4562 ccb_p cp; 4563 4564 /* 4565 * Make sure the starting index is within range. 4566 */ 4567 assert((i >= 0) && (i < 2*MAX_QUEUE)); 4568 4569 /* 4570 * Walk until end of START queue and dequeue every job 4571 * that matches the target/lun/task condition. 4572 */ 4573 j = i; 4574 while (i != np->squeueput) { 4575 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 4576 assert(cp); 4577 #ifdef SYM_CONF_IARB_SUPPORT 4578 /* Forget hints for IARB, they may be no longer relevant */ 4579 cp->host_flags &= ~HF_HINT_IARB; 4580 #endif 4581 if ((target == -1 || cp->target == target) && 4582 (lun == -1 || cp->lun == lun) && 4583 (task == -1 || cp->tag == task)) { 4584 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); 4585 sym_remque(&cp->link_ccbq); 4586 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4587 } 4588 else { 4589 if (i != j) 4590 np->squeue[j] = np->squeue[i]; 4591 if ((j += 2) >= MAX_QUEUE*2) j = 0; 4592 } 4593 if ((i += 2) >= MAX_QUEUE*2) i = 0; 4594 } 4595 if (i != j) /* Copy back the idle task if needed */ 4596 np->squeue[j] = np->squeue[i]; 4597 np->squeueput = j; /* Update our current start queue pointer */ 4598 4599 return (i - j) / 2; 4600 } 4601 4602 /* 4603 * Complete all CCBs queued to the COMP queue. 4604 * 4605 * These CCBs are assumed: 4606 * - Not to be referenced either by devices or 4607 * SCRIPTS-related queues and datas. 4608 * - To have to be completed with an error condition 4609 * or requeued. 4610 * 4611 * The device queue freeze count is incremented 4612 * for each CCB that does not prevent this. 4613 * This function is called when all CCBs involved 4614 * in error handling/recovery have been reaped. 4615 */ 4616 static void 4617 sym_flush_comp_queue(hcb_p np, int cam_status) 4618 { 4619 SYM_QUEHEAD *qp; 4620 ccb_p cp; 4621 4622 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 4623 union ccb *ccb; 4624 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4625 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4626 /* Leave quiet CCBs waiting for resources */ 4627 if (cp->host_status == HS_WAIT) 4628 continue; 4629 ccb = cp->cam_ccb; 4630 if (cam_status) 4631 sym_set_cam_status(ccb, cam_status); 4632 sym_freeze_cam_ccb(ccb); 4633 sym_xpt_done(np, ccb, cp); 4634 sym_free_ccb(np, cp); 4635 } 4636 } 4637 4638 /* 4639 * chip handler for bad SCSI status condition 4640 * 4641 * In case of bad SCSI status, we unqueue all the tasks 4642 * currently queued to the controller but not yet started 4643 * and then restart the SCRIPTS processor immediately. 4644 * 4645 * QUEUE FULL and BUSY conditions are handled the same way. 4646 * Basically all the not yet started tasks are requeued in 4647 * device queue and the queue is frozen until a completion. 4648 * 4649 * For CHECK CONDITION and COMMAND TERMINATED status, we use 4650 * the CCB of the failed command to prepare a REQUEST SENSE 4651 * SCSI command and queue it to the controller queue. 4652 * 4653 * SCRATCHA is assumed to have been loaded with STARTPOS 4654 * before the SCRIPTS called the C code. 4655 */ 4656 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp) 4657 { 4658 tcb_p tp = &np->target[cp->target]; 4659 u32 startp; 4660 u_char s_status = cp->ssss_status; 4661 u_char h_flags = cp->host_flags; 4662 int msglen; 4663 int nego; 4664 int i; 4665 4666 SYM_LOCK_ASSERT(MA_OWNED); 4667 4668 /* 4669 * Compute the index of the next job to start from SCRIPTS. 4670 */ 4671 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 4672 4673 /* 4674 * The last CCB queued used for IARB hint may be 4675 * no longer relevant. Forget it. 4676 */ 4677 #ifdef SYM_CONF_IARB_SUPPORT 4678 if (np->last_cp) 4679 np->last_cp = NULL; 4680 #endif 4681 4682 /* 4683 * Now deal with the SCSI status. 4684 */ 4685 switch(s_status) { 4686 case S_BUSY: 4687 case S_QUEUE_FULL: 4688 if (sym_verbose >= 2) { 4689 PRINT_ADDR(cp); 4690 printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 4691 } 4692 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 4693 sym_complete_error (np, cp); 4694 break; 4695 case S_TERMINATED: 4696 case S_CHECK_COND: 4697 /* 4698 * If we get an SCSI error when requesting sense, give up. 4699 */ 4700 if (h_flags & HF_SENSE) { 4701 sym_complete_error (np, cp); 4702 break; 4703 } 4704 4705 /* 4706 * Dequeue all queued CCBs for that device not yet started, 4707 * and restart the SCRIPTS processor immediately. 4708 */ 4709 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 4710 OUTL_DSP (SCRIPTA_BA (np, start)); 4711 4712 /* 4713 * Save some info of the actual IO. 4714 * Compute the data residual. 4715 */ 4716 cp->sv_scsi_status = cp->ssss_status; 4717 cp->sv_xerr_status = cp->xerr_status; 4718 cp->sv_resid = sym_compute_residual(np, cp); 4719 4720 /* 4721 * Prepare all needed data structures for 4722 * requesting sense data. 4723 */ 4724 4725 /* 4726 * identify message 4727 */ 4728 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; 4729 msglen = 1; 4730 4731 /* 4732 * If we are currently using anything different from 4733 * async. 8 bit data transfers with that target, 4734 * start a negotiation, since the device may want 4735 * to report us a UNIT ATTENTION condition due to 4736 * a cause we currently ignore, and we donnot want 4737 * to be stuck with WIDE and/or SYNC data transfer. 4738 * 4739 * cp->nego_status is filled by sym_prepare_nego(). 4740 */ 4741 cp->nego_status = 0; 4742 nego = 0; 4743 if (tp->tinfo.current.options & PPR_OPT_MASK) 4744 nego = NS_PPR; 4745 else if (tp->tinfo.current.width != BUS_8_BIT) 4746 nego = NS_WIDE; 4747 else if (tp->tinfo.current.offset != 0) 4748 nego = NS_SYNC; 4749 if (nego) 4750 msglen += 4751 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); 4752 /* 4753 * Message table indirect structure. 4754 */ 4755 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2)); 4756 cp->phys.smsg.size = cpu_to_scr(msglen); 4757 4758 /* 4759 * sense command 4760 */ 4761 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd)); 4762 cp->phys.cmd.size = cpu_to_scr(6); 4763 4764 /* 4765 * patch requested size into sense command 4766 */ 4767 cp->sensecmd[0] = 0x03; 4768 cp->sensecmd[1] = cp->lun << 5; 4769 if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7) 4770 cp->sensecmd[1] = 0; 4771 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 4772 cp->data_len = SYM_SNS_BBUF_LEN; 4773 4774 /* 4775 * sense data 4776 */ 4777 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN); 4778 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf)); 4779 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 4780 4781 /* 4782 * requeue the command. 4783 */ 4784 startp = SCRIPTB_BA (np, sdata_in); 4785 4786 cp->phys.head.savep = cpu_to_scr(startp); 4787 cp->phys.head.goalp = cpu_to_scr(startp + 16); 4788 cp->phys.head.lastp = cpu_to_scr(startp); 4789 cp->startp = cpu_to_scr(startp); 4790 4791 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 4792 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4793 cp->ssss_status = S_ILLEGAL; 4794 cp->host_flags = (HF_SENSE|HF_DATA_IN); 4795 cp->xerr_status = 0; 4796 cp->extra_bytes = 0; 4797 4798 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 4799 4800 /* 4801 * Requeue the command. 4802 */ 4803 sym_put_start_queue(np, cp); 4804 4805 /* 4806 * Give back to upper layer everything we have dequeued. 4807 */ 4808 sym_flush_comp_queue(np, 0); 4809 break; 4810 } 4811 } 4812 4813 /* 4814 * After a device has accepted some management message 4815 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 4816 * a device signals a UNIT ATTENTION condition, some 4817 * tasks are thrown away by the device. We are required 4818 * to reflect that on our tasks list since the device 4819 * will never complete these tasks. 4820 * 4821 * This function move from the BUSY queue to the COMP 4822 * queue all disconnected CCBs for a given target that 4823 * match the following criteria: 4824 * - lun=-1 means any logical UNIT otherwise a given one. 4825 * - task=-1 means any task, otherwise a given one. 4826 */ 4827 static int 4828 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) 4829 { 4830 SYM_QUEHEAD qtmp, *qp; 4831 int i = 0; 4832 ccb_p cp; 4833 4834 /* 4835 * Move the entire BUSY queue to our temporary queue. 4836 */ 4837 sym_que_init(&qtmp); 4838 sym_que_splice(&np->busy_ccbq, &qtmp); 4839 sym_que_init(&np->busy_ccbq); 4840 4841 /* 4842 * Put all CCBs that matches our criteria into 4843 * the COMP queue and put back other ones into 4844 * the BUSY queue. 4845 */ 4846 while ((qp = sym_remque_head(&qtmp)) != NULL) { 4847 union ccb *ccb; 4848 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4849 ccb = cp->cam_ccb; 4850 if (cp->host_status != HS_DISCONNECT || 4851 cp->target != target || 4852 (lun != -1 && cp->lun != lun) || 4853 (task != -1 && 4854 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 4855 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4856 continue; 4857 } 4858 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 4859 4860 /* Preserve the software timeout condition */ 4861 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) 4862 sym_set_cam_status(ccb, cam_status); 4863 ++i; 4864 #if 0 4865 printf("XXXX TASK @%p CLEARED\n", cp); 4866 #endif 4867 } 4868 return i; 4869 } 4870 4871 /* 4872 * chip handler for TASKS recovery 4873 * 4874 * We cannot safely abort a command, while the SCRIPTS 4875 * processor is running, since we just would be in race 4876 * with it. 4877 * 4878 * As long as we have tasks to abort, we keep the SEM 4879 * bit set in the ISTAT. When this bit is set, the 4880 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 4881 * each time it enters the scheduler. 4882 * 4883 * If we have to reset a target, clear tasks of a unit, 4884 * or to perform the abort of a disconnected job, we 4885 * restart the SCRIPTS for selecting the target. Once 4886 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 4887 * If it loses arbitration, the SCRIPTS will interrupt again 4888 * the next time it will enter its scheduler, and so on ... 4889 * 4890 * On SIR_TARGET_SELECTED, we scan for the more 4891 * appropriate thing to do: 4892 * 4893 * - If nothing, we just sent a M_ABORT message to the 4894 * target to get rid of the useless SCSI bus ownership. 4895 * According to the specs, no tasks shall be affected. 4896 * - If the target is to be reset, we send it a M_RESET 4897 * message. 4898 * - If a logical UNIT is to be cleared , we send the 4899 * IDENTIFY(lun) + M_ABORT. 4900 * - If an untagged task is to be aborted, we send the 4901 * IDENTIFY(lun) + M_ABORT. 4902 * - If a tagged task is to be aborted, we send the 4903 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 4904 * 4905 * Once our 'kiss of death' :) message has been accepted 4906 * by the target, the SCRIPTS interrupts again 4907 * (SIR_ABORT_SENT). On this interrupt, we complete 4908 * all the CCBs that should have been aborted by the 4909 * target according to our message. 4910 */ 4911 static void sym_sir_task_recovery(hcb_p np, int num) 4912 { 4913 SYM_QUEHEAD *qp; 4914 ccb_p cp; 4915 tcb_p tp; 4916 int target=-1, lun=-1, task; 4917 int i, k; 4918 4919 switch(num) { 4920 /* 4921 * The SCRIPTS processor stopped before starting 4922 * the next command in order to allow us to perform 4923 * some task recovery. 4924 */ 4925 case SIR_SCRIPT_STOPPED: 4926 /* 4927 * Do we have any target to reset or unit to clear ? 4928 */ 4929 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 4930 tp = &np->target[i]; 4931 if (tp->to_reset || 4932 (tp->lun0p && tp->lun0p->to_clear)) { 4933 target = i; 4934 break; 4935 } 4936 if (!tp->lunmp) 4937 continue; 4938 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 4939 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 4940 target = i; 4941 break; 4942 } 4943 } 4944 if (target != -1) 4945 break; 4946 } 4947 4948 /* 4949 * If not, walk the busy queue for any 4950 * disconnected CCB to be aborted. 4951 */ 4952 if (target == -1) { 4953 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4954 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 4955 if (cp->host_status != HS_DISCONNECT) 4956 continue; 4957 if (cp->to_abort) { 4958 target = cp->target; 4959 break; 4960 } 4961 } 4962 } 4963 4964 /* 4965 * If some target is to be selected, 4966 * prepare and start the selection. 4967 */ 4968 if (target != -1) { 4969 tp = &np->target[target]; 4970 np->abrt_sel.sel_id = target; 4971 np->abrt_sel.sel_scntl3 = tp->head.wval; 4972 np->abrt_sel.sel_sxfer = tp->head.sval; 4973 OUTL(nc_dsa, np->hcb_ba); 4974 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort)); 4975 return; 4976 } 4977 4978 /* 4979 * Now look for a CCB to abort that haven't started yet. 4980 * Btw, the SCRIPTS processor is still stopped, so 4981 * we are not in race. 4982 */ 4983 i = 0; 4984 cp = NULL; 4985 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 4986 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4987 if (cp->host_status != HS_BUSY && 4988 cp->host_status != HS_NEGOTIATE) 4989 continue; 4990 if (!cp->to_abort) 4991 continue; 4992 #ifdef SYM_CONF_IARB_SUPPORT 4993 /* 4994 * If we are using IMMEDIATE ARBITRATION, we donnot 4995 * want to cancel the last queued CCB, since the 4996 * SCRIPTS may have anticipated the selection. 4997 */ 4998 if (cp == np->last_cp) { 4999 cp->to_abort = 0; 5000 continue; 5001 } 5002 #endif 5003 i = 1; /* Means we have found some */ 5004 break; 5005 } 5006 if (!i) { 5007 /* 5008 * We are done, so we donnot need 5009 * to synchronize with the SCRIPTS anylonger. 5010 * Remove the SEM flag from the ISTAT. 5011 */ 5012 np->istat_sem = 0; 5013 OUTB (nc_istat, SIGP); 5014 break; 5015 } 5016 /* 5017 * Compute index of next position in the start 5018 * queue the SCRIPTS intends to start and dequeue 5019 * all CCBs for that device that haven't been started. 5020 */ 5021 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5022 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 5023 5024 /* 5025 * Make sure at least our IO to abort has been dequeued. 5026 */ 5027 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); 5028 5029 /* 5030 * Keep track in cam status of the reason of the abort. 5031 */ 5032 if (cp->to_abort == 2) 5033 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5034 else 5035 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 5036 5037 /* 5038 * Complete with error everything that we have dequeued. 5039 */ 5040 sym_flush_comp_queue(np, 0); 5041 break; 5042 /* 5043 * The SCRIPTS processor has selected a target 5044 * we may have some manual recovery to perform for. 5045 */ 5046 case SIR_TARGET_SELECTED: 5047 target = (INB (nc_sdid) & 0xf); 5048 tp = &np->target[target]; 5049 5050 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 5051 5052 /* 5053 * If the target is to be reset, prepare a 5054 * M_RESET message and clear the to_reset flag 5055 * since we donnot expect this operation to fail. 5056 */ 5057 if (tp->to_reset) { 5058 np->abrt_msg[0] = M_RESET; 5059 np->abrt_tbl.size = 1; 5060 tp->to_reset = 0; 5061 break; 5062 } 5063 5064 /* 5065 * Otherwise, look for some logical unit to be cleared. 5066 */ 5067 if (tp->lun0p && tp->lun0p->to_clear) 5068 lun = 0; 5069 else if (tp->lunmp) { 5070 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 5071 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 5072 lun = k; 5073 break; 5074 } 5075 } 5076 } 5077 5078 /* 5079 * If a logical unit is to be cleared, prepare 5080 * an IDENTIFY(lun) + ABORT MESSAGE. 5081 */ 5082 if (lun != -1) { 5083 lcb_p lp = sym_lp(tp, lun); 5084 lp->to_clear = 0; /* We donnot expect to fail here */ 5085 np->abrt_msg[0] = M_IDENTIFY | lun; 5086 np->abrt_msg[1] = M_ABORT; 5087 np->abrt_tbl.size = 2; 5088 break; 5089 } 5090 5091 /* 5092 * Otherwise, look for some disconnected job to 5093 * abort for this target. 5094 */ 5095 i = 0; 5096 cp = NULL; 5097 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5098 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5099 if (cp->host_status != HS_DISCONNECT) 5100 continue; 5101 if (cp->target != target) 5102 continue; 5103 if (!cp->to_abort) 5104 continue; 5105 i = 1; /* Means we have some */ 5106 break; 5107 } 5108 5109 /* 5110 * If we have none, probably since the device has 5111 * completed the command before we won abitration, 5112 * send a M_ABORT message without IDENTIFY. 5113 * According to the specs, the device must just 5114 * disconnect the BUS and not abort any task. 5115 */ 5116 if (!i) { 5117 np->abrt_msg[0] = M_ABORT; 5118 np->abrt_tbl.size = 1; 5119 break; 5120 } 5121 5122 /* 5123 * We have some task to abort. 5124 * Set the IDENTIFY(lun) 5125 */ 5126 np->abrt_msg[0] = M_IDENTIFY | cp->lun; 5127 5128 /* 5129 * If we want to abort an untagged command, we 5130 * will send an IDENTIFY + M_ABORT. 5131 * Otherwise (tagged command), we will send 5132 * an IDENTIFY + task attributes + ABORT TAG. 5133 */ 5134 if (cp->tag == NO_TAG) { 5135 np->abrt_msg[1] = M_ABORT; 5136 np->abrt_tbl.size = 2; 5137 } 5138 else { 5139 np->abrt_msg[1] = cp->scsi_smsg[1]; 5140 np->abrt_msg[2] = cp->scsi_smsg[2]; 5141 np->abrt_msg[3] = M_ABORT_TAG; 5142 np->abrt_tbl.size = 4; 5143 } 5144 /* 5145 * Keep track of software timeout condition, since the 5146 * peripheral driver may not count retries on abort 5147 * conditions not due to timeout. 5148 */ 5149 if (cp->to_abort == 2) 5150 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); 5151 cp->to_abort = 0; /* We donnot expect to fail here */ 5152 break; 5153 5154 /* 5155 * The target has accepted our message and switched 5156 * to BUS FREE phase as we expected. 5157 */ 5158 case SIR_ABORT_SENT: 5159 target = (INB (nc_sdid) & 0xf); 5160 tp = &np->target[target]; 5161 5162 /* 5163 ** If we didn't abort anything, leave here. 5164 */ 5165 if (np->abrt_msg[0] == M_ABORT) 5166 break; 5167 5168 /* 5169 * If we sent a M_RESET, then a hardware reset has 5170 * been performed by the target. 5171 * - Reset everything to async 8 bit 5172 * - Tell ourself to negotiate next time :-) 5173 * - Prepare to clear all disconnected CCBs for 5174 * this target from our task list (lun=task=-1) 5175 */ 5176 lun = -1; 5177 task = -1; 5178 if (np->abrt_msg[0] == M_RESET) { 5179 tp->head.sval = 0; 5180 tp->head.wval = np->rv_scntl3; 5181 tp->head.uval = 0; 5182 tp->tinfo.current.period = 0; 5183 tp->tinfo.current.offset = 0; 5184 tp->tinfo.current.width = BUS_8_BIT; 5185 tp->tinfo.current.options = 0; 5186 } 5187 5188 /* 5189 * Otherwise, check for the LUN and TASK(s) 5190 * concerned by the cancellation. 5191 * If it is not ABORT_TAG then it is CLEAR_QUEUE 5192 * or an ABORT message :-) 5193 */ 5194 else { 5195 lun = np->abrt_msg[0] & 0x3f; 5196 if (np->abrt_msg[1] == M_ABORT_TAG) 5197 task = np->abrt_msg[2]; 5198 } 5199 5200 /* 5201 * Complete all the CCBs the device should have 5202 * aborted due to our 'kiss of death' message. 5203 */ 5204 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 5205 (void) sym_dequeue_from_squeue(np, i, target, lun, -1); 5206 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); 5207 sym_flush_comp_queue(np, 0); 5208 5209 /* 5210 * If we sent a BDR, make uper layer aware of that. 5211 */ 5212 if (np->abrt_msg[0] == M_RESET) 5213 xpt_async(AC_SENT_BDR, np->path, NULL); 5214 break; 5215 } 5216 5217 /* 5218 * Print to the log the message we intend to send. 5219 */ 5220 if (num == SIR_TARGET_SELECTED) { 5221 PRINT_TARGET(np, target); 5222 sym_printl_hex("control msgout:", np->abrt_msg, 5223 np->abrt_tbl.size); 5224 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 5225 } 5226 5227 /* 5228 * Let the SCRIPTS processor continue. 5229 */ 5230 OUTONB_STD (); 5231 } 5232 5233 /* 5234 * Gerard's alchemy:) that deals with with the data 5235 * pointer for both MDP and the residual calculation. 5236 * 5237 * I didn't want to bloat the code by more than 200 5238 * lignes for the handling of both MDP and the residual. 5239 * This has been achieved by using a data pointer 5240 * representation consisting in an index in the data 5241 * array (dp_sg) and a negative offset (dp_ofs) that 5242 * have the following meaning: 5243 * 5244 * - dp_sg = SYM_CONF_MAX_SG 5245 * we are at the end of the data script. 5246 * - dp_sg < SYM_CONF_MAX_SG 5247 * dp_sg points to the next entry of the scatter array 5248 * we want to transfer. 5249 * - dp_ofs < 0 5250 * dp_ofs represents the residual of bytes of the 5251 * previous entry scatter entry we will send first. 5252 * - dp_ofs = 0 5253 * no residual to send first. 5254 * 5255 * The function sym_evaluate_dp() accepts an arbitray 5256 * offset (basically from the MDP message) and returns 5257 * the corresponding values of dp_sg and dp_ofs. 5258 */ 5259 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) 5260 { 5261 u32 dp_scr; 5262 int dp_ofs, dp_sg, dp_sgmin; 5263 int tmp; 5264 struct sym_pmc *pm; 5265 5266 /* 5267 * Compute the resulted data pointer in term of a script 5268 * address within some DATA script and a signed byte offset. 5269 */ 5270 dp_scr = scr; 5271 dp_ofs = *ofs; 5272 if (dp_scr == SCRIPTA_BA (np, pm0_data)) 5273 pm = &cp->phys.pm0; 5274 else if (dp_scr == SCRIPTA_BA (np, pm1_data)) 5275 pm = &cp->phys.pm1; 5276 else 5277 pm = NULL; 5278 5279 if (pm) { 5280 dp_scr = scr_to_cpu(pm->ret); 5281 dp_ofs -= scr_to_cpu(pm->sg.size); 5282 } 5283 5284 /* 5285 * If we are auto-sensing, then we are done. 5286 */ 5287 if (cp->host_flags & HF_SENSE) { 5288 *ofs = dp_ofs; 5289 return 0; 5290 } 5291 5292 /* 5293 * Deduce the index of the sg entry. 5294 * Keep track of the index of the first valid entry. 5295 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 5296 * end of the data. 5297 */ 5298 tmp = scr_to_cpu(cp->phys.head.goalp); 5299 dp_sg = SYM_CONF_MAX_SG; 5300 if (dp_scr != tmp) 5301 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 5302 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5303 5304 /* 5305 * Move to the sg entry the data pointer belongs to. 5306 * 5307 * If we are inside the data area, we expect result to be: 5308 * 5309 * Either, 5310 * dp_ofs = 0 and dp_sg is the index of the sg entry 5311 * the data pointer belongs to (or the end of the data) 5312 * Or, 5313 * dp_ofs < 0 and dp_sg is the index of the sg entry 5314 * the data pointer belongs to + 1. 5315 */ 5316 if (dp_ofs < 0) { 5317 int n; 5318 while (dp_sg > dp_sgmin) { 5319 --dp_sg; 5320 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5321 n = dp_ofs + (tmp & 0xffffff); 5322 if (n > 0) { 5323 ++dp_sg; 5324 break; 5325 } 5326 dp_ofs = n; 5327 } 5328 } 5329 else if (dp_ofs > 0) { 5330 while (dp_sg < SYM_CONF_MAX_SG) { 5331 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5332 dp_ofs -= (tmp & 0xffffff); 5333 ++dp_sg; 5334 if (dp_ofs <= 0) 5335 break; 5336 } 5337 } 5338 5339 /* 5340 * Make sure the data pointer is inside the data area. 5341 * If not, return some error. 5342 */ 5343 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 5344 goto out_err; 5345 else if (dp_sg > SYM_CONF_MAX_SG || 5346 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 5347 goto out_err; 5348 5349 /* 5350 * Save the extreme pointer if needed. 5351 */ 5352 if (dp_sg > cp->ext_sg || 5353 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 5354 cp->ext_sg = dp_sg; 5355 cp->ext_ofs = dp_ofs; 5356 } 5357 5358 /* 5359 * Return data. 5360 */ 5361 *ofs = dp_ofs; 5362 return dp_sg; 5363 5364 out_err: 5365 return -1; 5366 } 5367 5368 /* 5369 * chip handler for MODIFY DATA POINTER MESSAGE 5370 * 5371 * We also call this function on IGNORE WIDE RESIDUE 5372 * messages that do not match a SWIDE full condition. 5373 * Btw, we assume in that situation that such a message 5374 * is equivalent to a MODIFY DATA POINTER (offset=-1). 5375 */ 5376 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs) 5377 { 5378 int dp_ofs = ofs; 5379 u32 dp_scr = INL (nc_temp); 5380 u32 dp_ret; 5381 u32 tmp; 5382 u_char hflags; 5383 int dp_sg; 5384 struct sym_pmc *pm; 5385 5386 /* 5387 * Not supported for auto-sense. 5388 */ 5389 if (cp->host_flags & HF_SENSE) 5390 goto out_reject; 5391 5392 /* 5393 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 5394 * to the resulted data pointer. 5395 */ 5396 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 5397 if (dp_sg < 0) 5398 goto out_reject; 5399 5400 /* 5401 * And our alchemy:) allows to easily calculate the data 5402 * script address we want to return for the next data phase. 5403 */ 5404 dp_ret = cpu_to_scr(cp->phys.head.goalp); 5405 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 5406 5407 /* 5408 * If offset / scatter entry is zero we donnot need 5409 * a context for the new current data pointer. 5410 */ 5411 if (dp_ofs == 0) { 5412 dp_scr = dp_ret; 5413 goto out_ok; 5414 } 5415 5416 /* 5417 * Get a context for the new current data pointer. 5418 */ 5419 hflags = INB (HF_PRT); 5420 5421 if (hflags & HF_DP_SAVED) 5422 hflags ^= HF_ACT_PM; 5423 5424 if (!(hflags & HF_ACT_PM)) { 5425 pm = &cp->phys.pm0; 5426 dp_scr = SCRIPTA_BA (np, pm0_data); 5427 } 5428 else { 5429 pm = &cp->phys.pm1; 5430 dp_scr = SCRIPTA_BA (np, pm1_data); 5431 } 5432 5433 hflags &= ~(HF_DP_SAVED); 5434 5435 OUTB (HF_PRT, hflags); 5436 5437 /* 5438 * Set up the new current data pointer. 5439 * ofs < 0 there, and for the next data phase, we 5440 * want to transfer part of the data of the sg entry 5441 * corresponding to index dp_sg-1 prior to returning 5442 * to the main data script. 5443 */ 5444 pm->ret = cpu_to_scr(dp_ret); 5445 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 5446 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 5447 pm->sg.addr = cpu_to_scr(tmp); 5448 pm->sg.size = cpu_to_scr(-dp_ofs); 5449 5450 out_ok: 5451 OUTL (nc_temp, dp_scr); 5452 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5453 return; 5454 5455 out_reject: 5456 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5457 } 5458 5459 /* 5460 * chip calculation of the data residual. 5461 * 5462 * As I used to say, the requirement of data residual 5463 * in SCSI is broken, useless and cannot be achieved 5464 * without huge complexity. 5465 * But most OSes and even the official CAM require it. 5466 * When stupidity happens to be so widely spread inside 5467 * a community, it gets hard to convince. 5468 * 5469 * Anyway, I don't care, since I am not going to use 5470 * any software that considers this data residual as 5471 * a relevant information. :) 5472 */ 5473 static int sym_compute_residual(hcb_p np, ccb_p cp) 5474 { 5475 int dp_sg, dp_sgmin, resid = 0; 5476 int dp_ofs = 0; 5477 5478 /* 5479 * Check for some data lost or just thrown away. 5480 * We are not required to be quite accurate in this 5481 * situation. Btw, if we are odd for output and the 5482 * device claims some more data, it may well happen 5483 * than our residual be zero. :-) 5484 */ 5485 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 5486 if (cp->xerr_status & XE_EXTRA_DATA) 5487 resid -= cp->extra_bytes; 5488 if (cp->xerr_status & XE_SODL_UNRUN) 5489 ++resid; 5490 if (cp->xerr_status & XE_SWIDE_OVRUN) 5491 --resid; 5492 } 5493 5494 /* 5495 * If all data has been transferred, 5496 * there is no residual. 5497 */ 5498 if (cp->phys.head.lastp == cp->phys.head.goalp) 5499 return resid; 5500 5501 /* 5502 * If no data transfer occurs, or if the data 5503 * pointer is weird, return full residual. 5504 */ 5505 if (cp->startp == cp->phys.head.lastp || 5506 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 5507 &dp_ofs) < 0) { 5508 return cp->data_len; 5509 } 5510 5511 /* 5512 * If we were auto-sensing, then we are done. 5513 */ 5514 if (cp->host_flags & HF_SENSE) { 5515 return -dp_ofs; 5516 } 5517 5518 /* 5519 * We are now full comfortable in the computation 5520 * of the data residual (2's complement). 5521 */ 5522 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 5523 resid = -cp->ext_ofs; 5524 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 5525 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 5526 resid += (tmp & 0xffffff); 5527 } 5528 5529 /* 5530 * Hopefully, the result is not too wrong. 5531 */ 5532 return resid; 5533 } 5534 5535 /* 5536 * Print out the content of a SCSI message. 5537 */ 5538 static int sym_show_msg (u_char * msg) 5539 { 5540 u_char i; 5541 printf ("%x",*msg); 5542 if (*msg==M_EXTENDED) { 5543 for (i=1;i<8;i++) { 5544 if (i-1>msg[1]) break; 5545 printf ("-%x",msg[i]); 5546 } 5547 return (i+1); 5548 } else if ((*msg & 0xf0) == 0x20) { 5549 printf ("-%x",msg[1]); 5550 return (2); 5551 } 5552 return (1); 5553 } 5554 5555 static void sym_print_msg (ccb_p cp, char *label, u_char *msg) 5556 { 5557 PRINT_ADDR(cp); 5558 if (label) 5559 printf ("%s: ", label); 5560 5561 (void) sym_show_msg (msg); 5562 printf (".\n"); 5563 } 5564 5565 /* 5566 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 5567 * 5568 * When we try to negotiate, we append the negotiation message 5569 * to the identify and (maybe) simple tag message. 5570 * The host status field is set to HS_NEGOTIATE to mark this 5571 * situation. 5572 * 5573 * If the target doesn't answer this message immediately 5574 * (as required by the standard), the SIR_NEGO_FAILED interrupt 5575 * will be raised eventually. 5576 * The handler removes the HS_NEGOTIATE status, and sets the 5577 * negotiated value to the default (async / nowide). 5578 * 5579 * If we receive a matching answer immediately, we check it 5580 * for validity, and set the values. 5581 * 5582 * If we receive a Reject message immediately, we assume the 5583 * negotiation has failed, and fall back to standard values. 5584 * 5585 * If we receive a negotiation message while not in HS_NEGOTIATE 5586 * state, it's a target initiated negotiation. We prepare a 5587 * (hopefully) valid answer, set our parameters, and send back 5588 * this answer to the target. 5589 * 5590 * If the target doesn't fetch the answer (no message out phase), 5591 * we assume the negotiation has failed, and fall back to default 5592 * settings (SIR_NEGO_PROTO interrupt). 5593 * 5594 * When we set the values, we adjust them in all ccbs belonging 5595 * to this target, in the controller's register, and in the "phys" 5596 * field of the controller's struct sym_hcb. 5597 */ 5598 5599 /* 5600 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 5601 */ 5602 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) 5603 { 5604 u_char chg, ofs, per, fak, div; 5605 int req = 1; 5606 5607 /* 5608 * Synchronous request message received. 5609 */ 5610 if (DEBUG_FLAGS & DEBUG_NEGO) { 5611 sym_print_msg(cp, "sync msgin", np->msgin); 5612 } 5613 5614 /* 5615 * request or answer ? 5616 */ 5617 if (INB (HS_PRT) == HS_NEGOTIATE) { 5618 OUTB (HS_PRT, HS_BUSY); 5619 if (cp->nego_status && cp->nego_status != NS_SYNC) 5620 goto reject_it; 5621 req = 0; 5622 } 5623 5624 /* 5625 * get requested values. 5626 */ 5627 chg = 0; 5628 per = np->msgin[3]; 5629 ofs = np->msgin[4]; 5630 5631 /* 5632 * check values against our limits. 5633 */ 5634 if (ofs) { 5635 if (ofs > np->maxoffs) 5636 {chg = 1; ofs = np->maxoffs;} 5637 if (req) { 5638 if (ofs > tp->tinfo.user.offset) 5639 {chg = 1; ofs = tp->tinfo.user.offset;} 5640 } 5641 } 5642 5643 if (ofs) { 5644 if (per < np->minsync) 5645 {chg = 1; per = np->minsync;} 5646 if (req) { 5647 if (per < tp->tinfo.user.period) 5648 {chg = 1; per = tp->tinfo.user.period;} 5649 } 5650 } 5651 5652 div = fak = 0; 5653 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 5654 goto reject_it; 5655 5656 if (DEBUG_FLAGS & DEBUG_NEGO) { 5657 PRINT_ADDR(cp); 5658 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 5659 ofs, per, div, fak, chg); 5660 } 5661 5662 /* 5663 * This was an answer message 5664 */ 5665 if (req == 0) { 5666 if (chg) /* Answer wasn't acceptable. */ 5667 goto reject_it; 5668 sym_setsync (np, cp, ofs, per, div, fak); 5669 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5670 return; 5671 } 5672 5673 /* 5674 * It was a request. Set value and 5675 * prepare an answer message 5676 */ 5677 sym_setsync (np, cp, ofs, per, div, fak); 5678 5679 np->msgout[0] = M_EXTENDED; 5680 np->msgout[1] = 3; 5681 np->msgout[2] = M_X_SYNC_REQ; 5682 np->msgout[3] = per; 5683 np->msgout[4] = ofs; 5684 5685 cp->nego_status = NS_SYNC; 5686 5687 if (DEBUG_FLAGS & DEBUG_NEGO) { 5688 sym_print_msg(cp, "sync msgout", np->msgout); 5689 } 5690 5691 np->msgin [0] = M_NOOP; 5692 5693 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5694 return; 5695 reject_it: 5696 sym_setsync (np, cp, 0, 0, 0, 0); 5697 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5698 } 5699 5700 /* 5701 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 5702 */ 5703 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) 5704 { 5705 u_char chg, ofs, per, fak, dt, div, wide; 5706 int req = 1; 5707 5708 /* 5709 * Synchronous request message received. 5710 */ 5711 if (DEBUG_FLAGS & DEBUG_NEGO) { 5712 sym_print_msg(cp, "ppr msgin", np->msgin); 5713 } 5714 5715 /* 5716 * get requested values. 5717 */ 5718 chg = 0; 5719 per = np->msgin[3]; 5720 ofs = np->msgin[5]; 5721 wide = np->msgin[6]; 5722 dt = np->msgin[7] & PPR_OPT_DT; 5723 5724 /* 5725 * request or answer ? 5726 */ 5727 if (INB (HS_PRT) == HS_NEGOTIATE) { 5728 OUTB (HS_PRT, HS_BUSY); 5729 if (cp->nego_status && cp->nego_status != NS_PPR) 5730 goto reject_it; 5731 req = 0; 5732 } 5733 5734 /* 5735 * check values against our limits. 5736 */ 5737 if (wide > np->maxwide) 5738 {chg = 1; wide = np->maxwide;} 5739 if (!wide || !(np->features & FE_ULTRA3)) 5740 dt &= ~PPR_OPT_DT; 5741 if (req) { 5742 if (wide > tp->tinfo.user.width) 5743 {chg = 1; wide = tp->tinfo.user.width;} 5744 } 5745 5746 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ 5747 dt &= ~PPR_OPT_DT; 5748 5749 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; 5750 5751 if (ofs) { 5752 if (dt) { 5753 if (ofs > np->maxoffs_dt) 5754 {chg = 1; ofs = np->maxoffs_dt;} 5755 } 5756 else if (ofs > np->maxoffs) 5757 {chg = 1; ofs = np->maxoffs;} 5758 if (req) { 5759 if (ofs > tp->tinfo.user.offset) 5760 {chg = 1; ofs = tp->tinfo.user.offset;} 5761 } 5762 } 5763 5764 if (ofs) { 5765 if (dt) { 5766 if (per < np->minsync_dt) 5767 {chg = 1; per = np->minsync_dt;} 5768 } 5769 else if (per < np->minsync) 5770 {chg = 1; per = np->minsync;} 5771 if (req) { 5772 if (per < tp->tinfo.user.period) 5773 {chg = 1; per = tp->tinfo.user.period;} 5774 } 5775 } 5776 5777 div = fak = 0; 5778 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 5779 goto reject_it; 5780 5781 if (DEBUG_FLAGS & DEBUG_NEGO) { 5782 PRINT_ADDR(cp); 5783 printf ("ppr: " 5784 "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", 5785 dt, ofs, per, wide, div, fak, chg); 5786 } 5787 5788 /* 5789 * It was an answer. 5790 */ 5791 if (req == 0) { 5792 if (chg) /* Answer wasn't acceptable */ 5793 goto reject_it; 5794 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5795 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5796 return; 5797 } 5798 5799 /* 5800 * It was a request. Set value and 5801 * prepare an answer message 5802 */ 5803 sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); 5804 5805 np->msgout[0] = M_EXTENDED; 5806 np->msgout[1] = 6; 5807 np->msgout[2] = M_X_PPR_REQ; 5808 np->msgout[3] = per; 5809 np->msgout[4] = 0; 5810 np->msgout[5] = ofs; 5811 np->msgout[6] = wide; 5812 np->msgout[7] = dt; 5813 5814 cp->nego_status = NS_PPR; 5815 5816 if (DEBUG_FLAGS & DEBUG_NEGO) { 5817 sym_print_msg(cp, "ppr msgout", np->msgout); 5818 } 5819 5820 np->msgin [0] = M_NOOP; 5821 5822 OUTL_DSP (SCRIPTB_BA (np, ppr_resp)); 5823 return; 5824 reject_it: 5825 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5826 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5827 /* 5828 * If it was a device response that should result in 5829 * ST, we may want to try a legacy negotiation later. 5830 */ 5831 if (!req && !dt) { 5832 tp->tinfo.goal.options = 0; 5833 tp->tinfo.goal.width = wide; 5834 tp->tinfo.goal.period = per; 5835 tp->tinfo.goal.offset = ofs; 5836 } 5837 } 5838 5839 /* 5840 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 5841 */ 5842 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) 5843 { 5844 u_char chg, wide; 5845 int req = 1; 5846 5847 /* 5848 * Wide request message received. 5849 */ 5850 if (DEBUG_FLAGS & DEBUG_NEGO) { 5851 sym_print_msg(cp, "wide msgin", np->msgin); 5852 } 5853 5854 /* 5855 * Is it a request from the device? 5856 */ 5857 if (INB (HS_PRT) == HS_NEGOTIATE) { 5858 OUTB (HS_PRT, HS_BUSY); 5859 if (cp->nego_status && cp->nego_status != NS_WIDE) 5860 goto reject_it; 5861 req = 0; 5862 } 5863 5864 /* 5865 * get requested values. 5866 */ 5867 chg = 0; 5868 wide = np->msgin[3]; 5869 5870 /* 5871 * check values against driver limits. 5872 */ 5873 if (wide > np->maxwide) 5874 {chg = 1; wide = np->maxwide;} 5875 if (req) { 5876 if (wide > tp->tinfo.user.width) 5877 {chg = 1; wide = tp->tinfo.user.width;} 5878 } 5879 5880 if (DEBUG_FLAGS & DEBUG_NEGO) { 5881 PRINT_ADDR(cp); 5882 printf ("wdtr: wide=%d chg=%d.\n", wide, chg); 5883 } 5884 5885 /* 5886 * This was an answer message 5887 */ 5888 if (req == 0) { 5889 if (chg) /* Answer wasn't acceptable. */ 5890 goto reject_it; 5891 sym_setwide (np, cp, wide); 5892 5893 /* 5894 * Negotiate for SYNC immediately after WIDE response. 5895 * This allows to negotiate for both WIDE and SYNC on 5896 * a single SCSI command (Suggested by Justin Gibbs). 5897 */ 5898 if (tp->tinfo.goal.offset) { 5899 np->msgout[0] = M_EXTENDED; 5900 np->msgout[1] = 3; 5901 np->msgout[2] = M_X_SYNC_REQ; 5902 np->msgout[3] = tp->tinfo.goal.period; 5903 np->msgout[4] = tp->tinfo.goal.offset; 5904 5905 if (DEBUG_FLAGS & DEBUG_NEGO) { 5906 sym_print_msg(cp, "sync msgout", np->msgout); 5907 } 5908 5909 cp->nego_status = NS_SYNC; 5910 OUTB (HS_PRT, HS_NEGOTIATE); 5911 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp)); 5912 return; 5913 } 5914 5915 OUTL_DSP (SCRIPTA_BA (np, clrack)); 5916 return; 5917 } 5918 5919 /* 5920 * It was a request, set value and 5921 * prepare an answer message 5922 */ 5923 sym_setwide (np, cp, wide); 5924 5925 np->msgout[0] = M_EXTENDED; 5926 np->msgout[1] = 2; 5927 np->msgout[2] = M_X_WIDE_REQ; 5928 np->msgout[3] = wide; 5929 5930 np->msgin [0] = M_NOOP; 5931 5932 cp->nego_status = NS_WIDE; 5933 5934 if (DEBUG_FLAGS & DEBUG_NEGO) { 5935 sym_print_msg(cp, "wide msgout", np->msgout); 5936 } 5937 5938 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp)); 5939 return; 5940 reject_it: 5941 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 5942 } 5943 5944 /* 5945 * Reset SYNC or WIDE to default settings. 5946 * 5947 * Called when a negotiation does not succeed either 5948 * on rejection or on protocol error. 5949 * 5950 * If it was a PPR that made problems, we may want to 5951 * try a legacy negotiation later. 5952 */ 5953 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) 5954 { 5955 /* 5956 * any error in negotiation: 5957 * fall back to default mode. 5958 */ 5959 switch (cp->nego_status) { 5960 case NS_PPR: 5961 #if 0 5962 sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); 5963 #else 5964 tp->tinfo.goal.options = 0; 5965 if (tp->tinfo.goal.period < np->minsync) 5966 tp->tinfo.goal.period = np->minsync; 5967 if (tp->tinfo.goal.offset > np->maxoffs) 5968 tp->tinfo.goal.offset = np->maxoffs; 5969 #endif 5970 break; 5971 case NS_SYNC: 5972 sym_setsync (np, cp, 0, 0, 0, 0); 5973 break; 5974 case NS_WIDE: 5975 sym_setwide (np, cp, 0); 5976 break; 5977 } 5978 np->msgin [0] = M_NOOP; 5979 np->msgout[0] = M_NOOP; 5980 cp->nego_status = 0; 5981 } 5982 5983 /* 5984 * chip handler for MESSAGE REJECT received in response to 5985 * a WIDE or SYNCHRONOUS negotiation. 5986 */ 5987 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) 5988 { 5989 sym_nego_default(np, tp, cp); 5990 OUTB (HS_PRT, HS_BUSY); 5991 } 5992 5993 /* 5994 * chip exception handler for programmed interrupts. 5995 */ 5996 static void sym_int_sir (hcb_p np) 5997 { 5998 u_char num = INB (nc_dsps); 5999 u32 dsa = INL (nc_dsa); 6000 ccb_p cp = sym_ccb_from_dsa(np, dsa); 6001 u_char target = INB (nc_sdid) & 0x0f; 6002 tcb_p tp = &np->target[target]; 6003 int tmp; 6004 6005 SYM_LOCK_ASSERT(MA_OWNED); 6006 6007 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 6008 6009 switch (num) { 6010 /* 6011 * Command has been completed with error condition 6012 * or has been auto-sensed. 6013 */ 6014 case SIR_COMPLETE_ERROR: 6015 sym_complete_error(np, cp); 6016 return; 6017 /* 6018 * The C code is currently trying to recover from something. 6019 * Typically, user want to abort some command. 6020 */ 6021 case SIR_SCRIPT_STOPPED: 6022 case SIR_TARGET_SELECTED: 6023 case SIR_ABORT_SENT: 6024 sym_sir_task_recovery(np, num); 6025 return; 6026 /* 6027 * The device didn't go to MSG OUT phase after having 6028 * been selected with ATN. We donnot want to handle 6029 * that. 6030 */ 6031 case SIR_SEL_ATN_NO_MSG_OUT: 6032 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 6033 sym_name (np), target); 6034 goto out_stuck; 6035 /* 6036 * The device didn't switch to MSG IN phase after 6037 * having reseleted the initiator. 6038 */ 6039 case SIR_RESEL_NO_MSG_IN: 6040 printf ("%s:%d: No MSG IN phase after reselection.\n", 6041 sym_name (np), target); 6042 goto out_stuck; 6043 /* 6044 * After reselection, the device sent a message that wasn't 6045 * an IDENTIFY. 6046 */ 6047 case SIR_RESEL_NO_IDENTIFY: 6048 printf ("%s:%d: No IDENTIFY after reselection.\n", 6049 sym_name (np), target); 6050 goto out_stuck; 6051 /* 6052 * The device reselected a LUN we donnot know about. 6053 */ 6054 case SIR_RESEL_BAD_LUN: 6055 np->msgout[0] = M_RESET; 6056 goto out; 6057 /* 6058 * The device reselected for an untagged nexus and we 6059 * haven't any. 6060 */ 6061 case SIR_RESEL_BAD_I_T_L: 6062 np->msgout[0] = M_ABORT; 6063 goto out; 6064 /* 6065 * The device reselected for a tagged nexus that we donnot 6066 * have. 6067 */ 6068 case SIR_RESEL_BAD_I_T_L_Q: 6069 np->msgout[0] = M_ABORT_TAG; 6070 goto out; 6071 /* 6072 * The SCRIPTS let us know that the device has grabbed 6073 * our message and will abort the job. 6074 */ 6075 case SIR_RESEL_ABORTED: 6076 np->lastmsg = np->msgout[0]; 6077 np->msgout[0] = M_NOOP; 6078 printf ("%s:%d: message %x sent on bad reselection.\n", 6079 sym_name (np), target, np->lastmsg); 6080 goto out; 6081 /* 6082 * The SCRIPTS let us know that a message has been 6083 * successfully sent to the device. 6084 */ 6085 case SIR_MSG_OUT_DONE: 6086 np->lastmsg = np->msgout[0]; 6087 np->msgout[0] = M_NOOP; 6088 /* Should we really care of that */ 6089 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 6090 if (cp) { 6091 cp->xerr_status &= ~XE_PARITY_ERR; 6092 if (!cp->xerr_status) 6093 OUTOFFB (HF_PRT, HF_EXT_ERR); 6094 } 6095 } 6096 goto out; 6097 /* 6098 * The device didn't send a GOOD SCSI status. 6099 * We may have some work to do prior to allow 6100 * the SCRIPTS processor to continue. 6101 */ 6102 case SIR_BAD_SCSI_STATUS: 6103 if (!cp) 6104 goto out; 6105 sym_sir_bad_scsi_status(np, cp); 6106 return; 6107 /* 6108 * We are asked by the SCRIPTS to prepare a 6109 * REJECT message. 6110 */ 6111 case SIR_REJECT_TO_SEND: 6112 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 6113 np->msgout[0] = M_REJECT; 6114 goto out; 6115 /* 6116 * We have been ODD at the end of a DATA IN 6117 * transfer and the device didn't send a 6118 * IGNORE WIDE RESIDUE message. 6119 * It is a data overrun condition. 6120 */ 6121 case SIR_SWIDE_OVERRUN: 6122 if (cp) { 6123 OUTONB (HF_PRT, HF_EXT_ERR); 6124 cp->xerr_status |= XE_SWIDE_OVRUN; 6125 } 6126 goto out; 6127 /* 6128 * We have been ODD at the end of a DATA OUT 6129 * transfer. 6130 * It is a data underrun condition. 6131 */ 6132 case SIR_SODL_UNDERRUN: 6133 if (cp) { 6134 OUTONB (HF_PRT, HF_EXT_ERR); 6135 cp->xerr_status |= XE_SODL_UNRUN; 6136 } 6137 goto out; 6138 /* 6139 * The device wants us to transfer more data than 6140 * expected or in the wrong direction. 6141 * The number of extra bytes is in scratcha. 6142 * It is a data overrun condition. 6143 */ 6144 case SIR_DATA_OVERRUN: 6145 if (cp) { 6146 OUTONB (HF_PRT, HF_EXT_ERR); 6147 cp->xerr_status |= XE_EXTRA_DATA; 6148 cp->extra_bytes += INL (nc_scratcha); 6149 } 6150 goto out; 6151 /* 6152 * The device switched to an illegal phase (4/5). 6153 */ 6154 case SIR_BAD_PHASE: 6155 if (cp) { 6156 OUTONB (HF_PRT, HF_EXT_ERR); 6157 cp->xerr_status |= XE_BAD_PHASE; 6158 } 6159 goto out; 6160 /* 6161 * We received a message. 6162 */ 6163 case SIR_MSG_RECEIVED: 6164 if (!cp) 6165 goto out_stuck; 6166 switch (np->msgin [0]) { 6167 /* 6168 * We received an extended message. 6169 * We handle MODIFY DATA POINTER, SDTR, WDTR 6170 * and reject all other extended messages. 6171 */ 6172 case M_EXTENDED: 6173 switch (np->msgin [2]) { 6174 case M_X_MODIFY_DP: 6175 if (DEBUG_FLAGS & DEBUG_POINTER) 6176 sym_print_msg(cp,"modify DP",np->msgin); 6177 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 6178 (np->msgin[5]<<8) + (np->msgin[6]); 6179 sym_modify_dp(np, cp, tmp); 6180 return; 6181 case M_X_SYNC_REQ: 6182 sym_sync_nego(np, tp, cp); 6183 return; 6184 case M_X_PPR_REQ: 6185 sym_ppr_nego(np, tp, cp); 6186 return; 6187 case M_X_WIDE_REQ: 6188 sym_wide_nego(np, tp, cp); 6189 return; 6190 default: 6191 goto out_reject; 6192 } 6193 break; 6194 /* 6195 * We received a 1/2 byte message not handled from SCRIPTS. 6196 * We are only expecting MESSAGE REJECT and IGNORE WIDE 6197 * RESIDUE messages that haven't been anticipated by 6198 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 6199 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 6200 */ 6201 case M_IGN_RESIDUE: 6202 if (DEBUG_FLAGS & DEBUG_POINTER) 6203 sym_print_msg(cp,"ign wide residue", np->msgin); 6204 sym_modify_dp(np, cp, -1); 6205 return; 6206 case M_REJECT: 6207 if (INB (HS_PRT) == HS_NEGOTIATE) 6208 sym_nego_rejected(np, tp, cp); 6209 else { 6210 PRINT_ADDR(cp); 6211 printf ("M_REJECT received (%x:%x).\n", 6212 scr_to_cpu(np->lastmsg), np->msgout[0]); 6213 } 6214 goto out_clrack; 6215 break; 6216 default: 6217 goto out_reject; 6218 } 6219 break; 6220 /* 6221 * We received an unknown message. 6222 * Ignore all MSG IN phases and reject it. 6223 */ 6224 case SIR_MSG_WEIRD: 6225 sym_print_msg(cp, "WEIRD message received", np->msgin); 6226 OUTL_DSP (SCRIPTB_BA (np, msg_weird)); 6227 return; 6228 /* 6229 * Negotiation failed. 6230 * Target does not send us the reply. 6231 * Remove the HS_NEGOTIATE status. 6232 */ 6233 case SIR_NEGO_FAILED: 6234 OUTB (HS_PRT, HS_BUSY); 6235 /* 6236 * Negotiation failed. 6237 * Target does not want answer message. 6238 */ 6239 case SIR_NEGO_PROTO: 6240 sym_nego_default(np, tp, cp); 6241 goto out; 6242 } 6243 6244 out: 6245 OUTONB_STD (); 6246 return; 6247 out_reject: 6248 OUTL_DSP (SCRIPTB_BA (np, msg_bad)); 6249 return; 6250 out_clrack: 6251 OUTL_DSP (SCRIPTA_BA (np, clrack)); 6252 return; 6253 out_stuck: 6254 return; 6255 } 6256 6257 /* 6258 * Acquire a control block 6259 */ 6260 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) 6261 { 6262 tcb_p tp = &np->target[tn]; 6263 lcb_p lp = sym_lp(tp, ln); 6264 u_short tag = NO_TAG; 6265 SYM_QUEHEAD *qp; 6266 ccb_p cp = (ccb_p) NULL; 6267 6268 /* 6269 * Look for a free CCB 6270 */ 6271 if (sym_que_empty(&np->free_ccbq)) 6272 goto out; 6273 qp = sym_remque_head(&np->free_ccbq); 6274 if (!qp) 6275 goto out; 6276 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 6277 6278 /* 6279 * If the LCB is not yet available and the LUN 6280 * has been probed ok, try to allocate the LCB. 6281 */ 6282 if (!lp && sym_is_bit(tp->lun_map, ln)) { 6283 lp = sym_alloc_lcb(np, tn, ln); 6284 if (!lp) 6285 goto out_free; 6286 } 6287 6288 /* 6289 * If the LCB is not available here, then the 6290 * logical unit is not yet discovered. For those 6291 * ones only accept 1 SCSI IO per logical unit, 6292 * since we cannot allow disconnections. 6293 */ 6294 if (!lp) { 6295 if (!sym_is_bit(tp->busy0_map, ln)) 6296 sym_set_bit(tp->busy0_map, ln); 6297 else 6298 goto out_free; 6299 } else { 6300 /* 6301 * If we have been asked for a tagged command. 6302 */ 6303 if (tag_order) { 6304 /* 6305 * Debugging purpose. 6306 */ 6307 assert(lp->busy_itl == 0); 6308 /* 6309 * Allocate resources for tags if not yet. 6310 */ 6311 if (!lp->cb_tags) { 6312 sym_alloc_lcb_tags(np, tn, ln); 6313 if (!lp->cb_tags) 6314 goto out_free; 6315 } 6316 /* 6317 * Get a tag for this SCSI IO and set up 6318 * the CCB bus address for reselection, 6319 * and count it for this LUN. 6320 * Toggle reselect path to tagged. 6321 */ 6322 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 6323 tag = lp->cb_tags[lp->ia_tag]; 6324 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 6325 lp->ia_tag = 0; 6326 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 6327 ++lp->busy_itlq; 6328 lp->head.resel_sa = 6329 cpu_to_scr(SCRIPTA_BA (np, resel_tag)); 6330 } 6331 else 6332 goto out_free; 6333 } 6334 /* 6335 * This command will not be tagged. 6336 * If we already have either a tagged or untagged 6337 * one, refuse to overlap this untagged one. 6338 */ 6339 else { 6340 /* 6341 * Debugging purpose. 6342 */ 6343 assert(lp->busy_itl == 0 && lp->busy_itlq == 0); 6344 /* 6345 * Count this nexus for this LUN. 6346 * Set up the CCB bus address for reselection. 6347 * Toggle reselect path to untagged. 6348 */ 6349 if (++lp->busy_itl == 1) { 6350 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 6351 lp->head.resel_sa = 6352 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag)); 6353 } 6354 else 6355 goto out_free; 6356 } 6357 } 6358 /* 6359 * Put the CCB into the busy queue. 6360 */ 6361 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 6362 6363 /* 6364 * Remember all informations needed to free this CCB. 6365 */ 6366 cp->to_abort = 0; 6367 cp->tag = tag; 6368 cp->target = tn; 6369 cp->lun = ln; 6370 6371 if (DEBUG_FLAGS & DEBUG_TAGS) { 6372 PRINT_LUN(np, tn, ln); 6373 printf ("ccb @%p using tag %d.\n", cp, tag); 6374 } 6375 6376 out: 6377 return cp; 6378 out_free: 6379 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6380 return NULL; 6381 } 6382 6383 /* 6384 * Release one control block 6385 */ 6386 static void sym_free_ccb(hcb_p np, ccb_p cp) 6387 { 6388 tcb_p tp = &np->target[cp->target]; 6389 lcb_p lp = sym_lp(tp, cp->lun); 6390 6391 if (DEBUG_FLAGS & DEBUG_TAGS) { 6392 PRINT_LUN(np, cp->target, cp->lun); 6393 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); 6394 } 6395 6396 /* 6397 * If LCB available, 6398 */ 6399 if (lp) { 6400 /* 6401 * If tagged, release the tag, set the relect path 6402 */ 6403 if (cp->tag != NO_TAG) { 6404 /* 6405 * Free the tag value. 6406 */ 6407 lp->cb_tags[lp->if_tag] = cp->tag; 6408 if (++lp->if_tag == SYM_CONF_MAX_TASK) 6409 lp->if_tag = 0; 6410 /* 6411 * Make the reselect path invalid, 6412 * and uncount this CCB. 6413 */ 6414 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 6415 --lp->busy_itlq; 6416 } else { /* Untagged */ 6417 /* 6418 * Make the reselect path invalid, 6419 * and uncount this CCB. 6420 */ 6421 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6422 --lp->busy_itl; 6423 } 6424 /* 6425 * If no JOB active, make the LUN reselect path invalid. 6426 */ 6427 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 6428 lp->head.resel_sa = 6429 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6430 } 6431 /* 6432 * Otherwise, we only accept 1 IO per LUN. 6433 * Clear the bit that keeps track of this IO. 6434 */ 6435 else 6436 sym_clr_bit(tp->busy0_map, cp->lun); 6437 6438 /* 6439 * We donnot queue more than 1 ccb per target 6440 * with negotiation at any time. If this ccb was 6441 * used for negotiation, clear this info in the tcb. 6442 */ 6443 if (cp == tp->nego_cp) 6444 tp->nego_cp = NULL; 6445 6446 #ifdef SYM_CONF_IARB_SUPPORT 6447 /* 6448 * If we just complete the last queued CCB, 6449 * clear this info that is no longer relevant. 6450 */ 6451 if (cp == np->last_cp) 6452 np->last_cp = NULL; 6453 #endif 6454 6455 /* 6456 * Unmap user data from DMA map if needed. 6457 */ 6458 if (cp->dmamapped) { 6459 bus_dmamap_unload(np->data_dmat, cp->dmamap); 6460 cp->dmamapped = 0; 6461 } 6462 6463 /* 6464 * Make this CCB available. 6465 */ 6466 cp->cam_ccb = NULL; 6467 cp->host_status = HS_IDLE; 6468 sym_remque(&cp->link_ccbq); 6469 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6470 } 6471 6472 /* 6473 * Allocate a CCB from memory and initialize its fixed part. 6474 */ 6475 static ccb_p sym_alloc_ccb(hcb_p np) 6476 { 6477 ccb_p cp = NULL; 6478 int hcode; 6479 6480 SYM_LOCK_ASSERT(MA_NOTOWNED); 6481 6482 /* 6483 * Prevent from allocating more CCBs than we can 6484 * queue to the controller. 6485 */ 6486 if (np->actccbs >= SYM_CONF_MAX_START) 6487 return NULL; 6488 6489 /* 6490 * Allocate memory for this CCB. 6491 */ 6492 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 6493 if (!cp) 6494 return NULL; 6495 6496 /* 6497 * Allocate a bounce buffer for sense data. 6498 */ 6499 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6500 if (!cp->sns_bbuf) 6501 goto out_free; 6502 6503 /* 6504 * Allocate a map for the DMA of user data. 6505 */ 6506 if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap)) 6507 goto out_free; 6508 /* 6509 * Count it. 6510 */ 6511 np->actccbs++; 6512 6513 /* 6514 * Initialize the callout. 6515 */ 6516 callout_init(&cp->ch, 1); 6517 6518 /* 6519 * Compute the bus address of this ccb. 6520 */ 6521 cp->ccb_ba = vtobus(cp); 6522 6523 /* 6524 * Insert this ccb into the hashed list. 6525 */ 6526 hcode = CCB_HASH_CODE(cp->ccb_ba); 6527 cp->link_ccbh = np->ccbh[hcode]; 6528 np->ccbh[hcode] = cp; 6529 6530 /* 6531 * Initialize the start and restart actions. 6532 */ 6533 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 6534 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 6535 6536 /* 6537 * Initilialyze some other fields. 6538 */ 6539 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 6540 6541 /* 6542 * Chain into free ccb queue. 6543 */ 6544 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 6545 6546 return cp; 6547 out_free: 6548 if (cp->sns_bbuf) 6549 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 6550 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 6551 return NULL; 6552 } 6553 6554 /* 6555 * Look up a CCB from a DSA value. 6556 */ 6557 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa) 6558 { 6559 int hcode; 6560 ccb_p cp; 6561 6562 hcode = CCB_HASH_CODE(dsa); 6563 cp = np->ccbh[hcode]; 6564 while (cp) { 6565 if (cp->ccb_ba == dsa) 6566 break; 6567 cp = cp->link_ccbh; 6568 } 6569 6570 return cp; 6571 } 6572 6573 /* 6574 * Lun control block allocation and initialization. 6575 */ 6576 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) 6577 { 6578 tcb_p tp = &np->target[tn]; 6579 lcb_p lp = sym_lp(tp, ln); 6580 6581 /* 6582 * Already done, just return. 6583 */ 6584 if (lp) 6585 return lp; 6586 /* 6587 * Check against some race. 6588 */ 6589 assert(!sym_is_bit(tp->busy0_map, ln)); 6590 6591 /* 6592 * Allocate the LCB bus address array. 6593 * Compute the bus address of this table. 6594 */ 6595 if (ln && !tp->luntbl) { 6596 int i; 6597 6598 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 6599 if (!tp->luntbl) 6600 goto fail; 6601 for (i = 0 ; i < 64 ; i++) 6602 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 6603 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 6604 } 6605 6606 /* 6607 * Allocate the table of pointers for LUN(s) > 0, if needed. 6608 */ 6609 if (ln && !tp->lunmp) { 6610 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p), 6611 "LUNMP"); 6612 if (!tp->lunmp) 6613 goto fail; 6614 } 6615 6616 /* 6617 * Allocate the lcb. 6618 * Make it available to the chip. 6619 */ 6620 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 6621 if (!lp) 6622 goto fail; 6623 if (ln) { 6624 tp->lunmp[ln] = lp; 6625 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 6626 } 6627 else { 6628 tp->lun0p = lp; 6629 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 6630 } 6631 6632 /* 6633 * Let the itl task point to error handling. 6634 */ 6635 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 6636 6637 /* 6638 * Set the reselect pattern to our default. :) 6639 */ 6640 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 6641 6642 /* 6643 * Set user capabilities. 6644 */ 6645 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 6646 6647 fail: 6648 return lp; 6649 } 6650 6651 /* 6652 * Allocate LCB resources for tagged command queuing. 6653 */ 6654 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) 6655 { 6656 tcb_p tp = &np->target[tn]; 6657 lcb_p lp = sym_lp(tp, ln); 6658 int i; 6659 6660 /* 6661 * If LCB not available, try to allocate it. 6662 */ 6663 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) 6664 return; 6665 6666 /* 6667 * Allocate the task table and and the tag allocation 6668 * circular buffer. We want both or none. 6669 */ 6670 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6671 if (!lp->itlq_tbl) 6672 return; 6673 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS"); 6674 if (!lp->cb_tags) { 6675 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 6676 lp->itlq_tbl = NULL; 6677 return; 6678 } 6679 6680 /* 6681 * Initialize the task table with invalid entries. 6682 */ 6683 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6684 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 6685 6686 /* 6687 * Fill up the tag buffer with tag numbers. 6688 */ 6689 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 6690 lp->cb_tags[i] = i; 6691 6692 /* 6693 * Make the task table available to SCRIPTS, 6694 * And accept tagged commands now. 6695 */ 6696 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 6697 } 6698 6699 /* 6700 * Test the pci bus snoop logic :-( 6701 * 6702 * Has to be called with interrupts disabled. 6703 */ 6704 #ifndef SYM_CONF_IOMAPPED 6705 static int sym_regtest (hcb_p np) 6706 { 6707 register volatile u32 data; 6708 /* 6709 * chip registers may NOT be cached. 6710 * write 0xffffffff to a read only register area, 6711 * and try to read it back. 6712 */ 6713 data = 0xffffffff; 6714 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); 6715 data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); 6716 #if 1 6717 if (data == 0xffffffff) { 6718 #else 6719 if ((data & 0xe2f0fffd) != 0x02000080) { 6720 #endif 6721 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 6722 (unsigned) data); 6723 return (0x10); 6724 } 6725 return (0); 6726 } 6727 #endif 6728 6729 static int sym_snooptest (hcb_p np) 6730 { 6731 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 6732 int i, err=0; 6733 #ifndef SYM_CONF_IOMAPPED 6734 err |= sym_regtest (np); 6735 if (err) return (err); 6736 #endif 6737 restart_test: 6738 /* 6739 * Enable Master Parity Checking as we intend 6740 * to enable it for normal operations. 6741 */ 6742 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE)); 6743 /* 6744 * init 6745 */ 6746 pc = SCRIPTB0_BA (np, snooptest); 6747 host_wr = 1; 6748 sym_wr = 2; 6749 /* 6750 * Set memory and register. 6751 */ 6752 np->cache = cpu_to_scr(host_wr); 6753 OUTL (nc_temp, sym_wr); 6754 /* 6755 * Start script (exchange values) 6756 */ 6757 OUTL (nc_dsa, np->hcb_ba); 6758 OUTL_DSP (pc); 6759 /* 6760 * Wait 'til done (with timeout) 6761 */ 6762 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 6763 if (INB(nc_istat) & (INTF|SIP|DIP)) 6764 break; 6765 if (i>=SYM_SNOOP_TIMEOUT) { 6766 printf ("CACHE TEST FAILED: timeout.\n"); 6767 return (0x20); 6768 } 6769 /* 6770 * Check for fatal DMA errors. 6771 */ 6772 dstat = INB (nc_dstat); 6773 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 6774 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 6775 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 6776 "DISABLING MASTER DATA PARITY CHECKING.\n", 6777 sym_name(np)); 6778 np->rv_ctest4 &= ~MPEE; 6779 goto restart_test; 6780 } 6781 #endif 6782 if (dstat & (MDPE|BF|IID)) { 6783 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 6784 return (0x80); 6785 } 6786 /* 6787 * Save termination position. 6788 */ 6789 pc = INL (nc_dsp); 6790 /* 6791 * Read memory and register. 6792 */ 6793 host_rd = scr_to_cpu(np->cache); 6794 sym_rd = INL (nc_scratcha); 6795 sym_bk = INL (nc_temp); 6796 6797 /* 6798 * Check termination position. 6799 */ 6800 if (pc != SCRIPTB0_BA (np, snoopend)+8) { 6801 printf ("CACHE TEST FAILED: script execution failed.\n"); 6802 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 6803 (u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc, 6804 (u_long) SCRIPTB0_BA (np, snoopend) +8); 6805 return (0x40); 6806 } 6807 /* 6808 * Show results. 6809 */ 6810 if (host_wr != sym_rd) { 6811 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 6812 (int) host_wr, (int) sym_rd); 6813 err |= 1; 6814 } 6815 if (host_rd != sym_wr) { 6816 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 6817 (int) sym_wr, (int) host_rd); 6818 err |= 2; 6819 } 6820 if (sym_bk != sym_wr) { 6821 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 6822 (int) sym_wr, (int) sym_bk); 6823 err |= 4; 6824 } 6825 6826 return (err); 6827 } 6828 6829 /* 6830 * Determine the chip's clock frequency. 6831 * 6832 * This is essential for the negotiation of the synchronous 6833 * transfer rate. 6834 * 6835 * Note: we have to return the correct value. 6836 * THERE IS NO SAFE DEFAULT VALUE. 6837 * 6838 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 6839 * 53C860 and 53C875 rev. 1 support fast20 transfers but 6840 * do not have a clock doubler and so are provided with a 6841 * 80 MHz clock. All other fast20 boards incorporate a doubler 6842 * and so should be delivered with a 40 MHz clock. 6843 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 6844 * clock and provide a clock quadrupler (160 Mhz). 6845 */ 6846 6847 /* 6848 * Select SCSI clock frequency 6849 */ 6850 static void sym_selectclock(hcb_p np, u_char scntl3) 6851 { 6852 /* 6853 * If multiplier not present or not selected, leave here. 6854 */ 6855 if (np->multiplier <= 1) { 6856 OUTB(nc_scntl3, scntl3); 6857 return; 6858 } 6859 6860 if (sym_verbose >= 2) 6861 printf ("%s: enabling clock multiplier\n", sym_name(np)); 6862 6863 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 6864 /* 6865 * Wait for the LCKFRQ bit to be set if supported by the chip. 6866 * Otherwise wait 20 micro-seconds. 6867 */ 6868 if (np->features & FE_LCKFRQ) { 6869 int i = 20; 6870 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 6871 UDELAY (20); 6872 if (!i) 6873 printf("%s: the chip cannot lock the frequency\n", 6874 sym_name(np)); 6875 } else 6876 UDELAY (20); 6877 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 6878 OUTB(nc_scntl3, scntl3); 6879 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 6880 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 6881 } 6882 6883 /* 6884 * calculate SCSI clock frequency (in KHz) 6885 */ 6886 static unsigned getfreq (hcb_p np, int gen) 6887 { 6888 unsigned int ms = 0; 6889 unsigned int f; 6890 6891 /* 6892 * Measure GEN timer delay in order 6893 * to calculate SCSI clock frequency 6894 * 6895 * This code will never execute too 6896 * many loop iterations (if DELAY is 6897 * reasonably correct). It could get 6898 * too low a delay (too high a freq.) 6899 * if the CPU is slow executing the 6900 * loop for some reason (an NMI, for 6901 * example). For this reason we will 6902 * if multiple measurements are to be 6903 * performed trust the higher delay 6904 * (lower frequency returned). 6905 */ 6906 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 6907 (void) INW (nc_sist); /* clear pending scsi interrupt */ 6908 OUTB (nc_dien , 0); /* mask all dma interrupts */ 6909 (void) INW (nc_sist); /* another one, just to be sure :) */ 6910 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 6911 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6912 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 6913 while (!(INW(nc_sist) & GEN) && ms++ < 100000) 6914 UDELAY (1000); /* count ms */ 6915 OUTB (nc_stime1, 0); /* disable general purpose timer */ 6916 /* 6917 * set prescaler to divide by whatever 0 means 6918 * 0 ought to choose divide by 2, but appears 6919 * to set divide by 3.5 mode in my 53c810 ... 6920 */ 6921 OUTB (nc_scntl3, 0); 6922 6923 /* 6924 * adjust for prescaler, and convert into KHz 6925 */ 6926 f = ms ? ((1 << gen) * 4340) / ms : 0; 6927 6928 if (sym_verbose >= 2) 6929 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 6930 sym_name(np), gen, ms, f); 6931 6932 return f; 6933 } 6934 6935 static unsigned sym_getfreq (hcb_p np) 6936 { 6937 u_int f1, f2; 6938 int gen = 11; 6939 6940 (void) getfreq (np, gen); /* throw away first result */ 6941 f1 = getfreq (np, gen); 6942 f2 = getfreq (np, gen); 6943 if (f1 > f2) f1 = f2; /* trust lower result */ 6944 return f1; 6945 } 6946 6947 /* 6948 * Get/probe chip SCSI clock frequency 6949 */ 6950 static void sym_getclock (hcb_p np, int mult) 6951 { 6952 unsigned char scntl3 = np->sv_scntl3; 6953 unsigned char stest1 = np->sv_stest1; 6954 unsigned f1; 6955 6956 /* 6957 * For the C10 core, assume 40 MHz. 6958 */ 6959 if (np->features & FE_C10) { 6960 np->multiplier = mult; 6961 np->clock_khz = 40000 * mult; 6962 return; 6963 } 6964 6965 np->multiplier = 1; 6966 f1 = 40000; 6967 /* 6968 * True with 875/895/896/895A with clock multiplier selected 6969 */ 6970 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 6971 if (sym_verbose >= 2) 6972 printf ("%s: clock multiplier found\n", sym_name(np)); 6973 np->multiplier = mult; 6974 } 6975 6976 /* 6977 * If multiplier not found or scntl3 not 7,5,3, 6978 * reset chip and get frequency from general purpose timer. 6979 * Otherwise trust scntl3 BIOS setting. 6980 */ 6981 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 6982 OUTB (nc_stest1, 0); /* make sure doubler is OFF */ 6983 f1 = sym_getfreq (np); 6984 6985 if (sym_verbose) 6986 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 6987 6988 if (f1 < 45000) f1 = 40000; 6989 else if (f1 < 55000) f1 = 50000; 6990 else f1 = 80000; 6991 6992 if (f1 < 80000 && mult > 1) { 6993 if (sym_verbose >= 2) 6994 printf ("%s: clock multiplier assumed\n", 6995 sym_name(np)); 6996 np->multiplier = mult; 6997 } 6998 } else { 6999 if ((scntl3 & 7) == 3) f1 = 40000; 7000 else if ((scntl3 & 7) == 5) f1 = 80000; 7001 else f1 = 160000; 7002 7003 f1 /= np->multiplier; 7004 } 7005 7006 /* 7007 * Compute controller synchronous parameters. 7008 */ 7009 f1 *= np->multiplier; 7010 np->clock_khz = f1; 7011 } 7012 7013 /* 7014 * Get/probe PCI clock frequency 7015 */ 7016 static int sym_getpciclock (hcb_p np) 7017 { 7018 int f = 0; 7019 7020 /* 7021 * For the C1010-33, this doesn't work. 7022 * For the C1010-66, this will be tested when I'll have 7023 * such a beast to play with. 7024 */ 7025 if (!(np->features & FE_C10)) { 7026 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 7027 f = (int) sym_getfreq (np); 7028 OUTB (nc_stest1, 0); 7029 } 7030 np->pciclk_khz = f; 7031 7032 return f; 7033 } 7034 7035 /*============= DRIVER ACTION/COMPLETION ====================*/ 7036 7037 /* 7038 * Print something that tells about extended errors. 7039 */ 7040 static void sym_print_xerr(ccb_p cp, int x_status) 7041 { 7042 if (x_status & XE_PARITY_ERR) { 7043 PRINT_ADDR(cp); 7044 printf ("unrecovered SCSI parity error.\n"); 7045 } 7046 if (x_status & XE_EXTRA_DATA) { 7047 PRINT_ADDR(cp); 7048 printf ("extraneous data discarded.\n"); 7049 } 7050 if (x_status & XE_BAD_PHASE) { 7051 PRINT_ADDR(cp); 7052 printf ("illegal scsi phase (4/5).\n"); 7053 } 7054 if (x_status & XE_SODL_UNRUN) { 7055 PRINT_ADDR(cp); 7056 printf ("ODD transfer in DATA OUT phase.\n"); 7057 } 7058 if (x_status & XE_SWIDE_OVRUN) { 7059 PRINT_ADDR(cp); 7060 printf ("ODD transfer in DATA IN phase.\n"); 7061 } 7062 } 7063 7064 /* 7065 * Choose the more appropriate CAM status if 7066 * the IO encountered an extended error. 7067 */ 7068 static int sym_xerr_cam_status(int cam_status, int x_status) 7069 { 7070 if (x_status) { 7071 if (x_status & XE_PARITY_ERR) 7072 cam_status = CAM_UNCOR_PARITY; 7073 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 7074 cam_status = CAM_DATA_RUN_ERR; 7075 else if (x_status & XE_BAD_PHASE) 7076 cam_status = CAM_REQ_CMP_ERR; 7077 else 7078 cam_status = CAM_REQ_CMP_ERR; 7079 } 7080 return cam_status; 7081 } 7082 7083 /* 7084 * Complete execution of a SCSI command with extented 7085 * error, SCSI status error, or having been auto-sensed. 7086 * 7087 * The SCRIPTS processor is not running there, so we 7088 * can safely access IO registers and remove JOBs from 7089 * the START queue. 7090 * SCRATCHA is assumed to have been loaded with STARTPOS 7091 * before the SCRIPTS called the C code. 7092 */ 7093 static void sym_complete_error (hcb_p np, ccb_p cp) 7094 { 7095 struct ccb_scsiio *csio; 7096 u_int cam_status; 7097 int i, sense_returned; 7098 7099 SYM_LOCK_ASSERT(MA_OWNED); 7100 7101 /* 7102 * Paranoid check. :) 7103 */ 7104 if (!cp || !cp->cam_ccb) 7105 return; 7106 7107 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 7108 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, 7109 cp->host_status, cp->ssss_status, cp->host_flags, 7110 cp->target, cp->lun); 7111 MDELAY(100); 7112 } 7113 7114 /* 7115 * Get CAM command pointer. 7116 */ 7117 csio = &cp->cam_ccb->csio; 7118 7119 /* 7120 * Check for extended errors. 7121 */ 7122 if (cp->xerr_status) { 7123 if (sym_verbose) 7124 sym_print_xerr(cp, cp->xerr_status); 7125 if (cp->host_status == HS_COMPLETE) 7126 cp->host_status = HS_COMP_ERR; 7127 } 7128 7129 /* 7130 * Calculate the residual. 7131 */ 7132 csio->sense_resid = 0; 7133 csio->resid = sym_compute_residual(np, cp); 7134 7135 if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 7136 csio->resid = 0; /* throw them away. :) */ 7137 cp->sv_resid = 0; 7138 } 7139 7140 if (cp->host_flags & HF_SENSE) { /* Auto sense */ 7141 csio->scsi_status = cp->sv_scsi_status; /* Restore status */ 7142 csio->sense_resid = csio->resid; /* Swap residuals */ 7143 csio->resid = cp->sv_resid; 7144 cp->sv_resid = 0; 7145 if (sym_verbose && cp->sv_xerr_status) 7146 sym_print_xerr(cp, cp->sv_xerr_status); 7147 if (cp->host_status == HS_COMPLETE && 7148 cp->ssss_status == S_GOOD && 7149 cp->xerr_status == 0) { 7150 cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, 7151 cp->sv_xerr_status); 7152 cam_status |= CAM_AUTOSNS_VALID; 7153 /* 7154 * Bounce back the sense data to user and 7155 * fix the residual. 7156 */ 7157 bzero(&csio->sense_data, sizeof(csio->sense_data)); 7158 sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid; 7159 if (sense_returned < csio->sense_len) 7160 csio->sense_resid = csio->sense_len - 7161 sense_returned; 7162 else 7163 csio->sense_resid = 0; 7164 bcopy(cp->sns_bbuf, &csio->sense_data, 7165 MIN(csio->sense_len, sense_returned)); 7166 #if 0 7167 /* 7168 * If the device reports a UNIT ATTENTION condition 7169 * due to a RESET condition, we should consider all 7170 * disconnect CCBs for this unit as aborted. 7171 */ 7172 if (1) { 7173 u_char *p; 7174 p = (u_char *) csio->sense_data; 7175 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 7176 sym_clear_tasks(np, CAM_REQ_ABORTED, 7177 cp->target,cp->lun, -1); 7178 } 7179 #endif 7180 } 7181 else 7182 cam_status = CAM_AUTOSENSE_FAIL; 7183 } 7184 else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ 7185 csio->scsi_status = cp->ssss_status; 7186 cam_status = CAM_SCSI_STATUS_ERROR; 7187 } 7188 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 7189 cam_status = CAM_SEL_TIMEOUT; 7190 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 7191 cam_status = CAM_UNEXP_BUSFREE; 7192 else { /* Extended error */ 7193 if (sym_verbose) { 7194 PRINT_ADDR(cp); 7195 printf ("COMMAND FAILED (%x %x %x).\n", 7196 cp->host_status, cp->ssss_status, 7197 cp->xerr_status); 7198 } 7199 csio->scsi_status = cp->ssss_status; 7200 /* 7201 * Set the most appropriate value for CAM status. 7202 */ 7203 cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, 7204 cp->xerr_status); 7205 } 7206 7207 /* 7208 * Dequeue all queued CCBs for that device 7209 * not yet started by SCRIPTS. 7210 */ 7211 i = (INL (nc_scratcha) - np->squeue_ba) / 4; 7212 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 7213 7214 /* 7215 * Restart the SCRIPTS processor. 7216 */ 7217 OUTL_DSP (SCRIPTA_BA (np, start)); 7218 7219 /* 7220 * Synchronize DMA map if needed. 7221 */ 7222 if (cp->dmamapped) { 7223 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7224 (cp->dmamapped == SYM_DMA_READ ? 7225 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7226 } 7227 /* 7228 * Add this one to the COMP queue. 7229 * Complete all those commands with either error 7230 * or requeue condition. 7231 */ 7232 sym_set_cam_status((union ccb *) csio, cam_status); 7233 sym_remque(&cp->link_ccbq); 7234 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 7235 sym_flush_comp_queue(np, 0); 7236 } 7237 7238 /* 7239 * Complete execution of a successful SCSI command. 7240 * 7241 * Only successful commands go to the DONE queue, 7242 * since we need to have the SCRIPTS processor 7243 * stopped on any error condition. 7244 * The SCRIPTS processor is running while we are 7245 * completing successful commands. 7246 */ 7247 static void sym_complete_ok (hcb_p np, ccb_p cp) 7248 { 7249 struct ccb_scsiio *csio; 7250 tcb_p tp; 7251 lcb_p lp; 7252 7253 SYM_LOCK_ASSERT(MA_OWNED); 7254 7255 /* 7256 * Paranoid check. :) 7257 */ 7258 if (!cp || !cp->cam_ccb) 7259 return; 7260 assert (cp->host_status == HS_COMPLETE); 7261 7262 /* 7263 * Get command, target and lun pointers. 7264 */ 7265 csio = &cp->cam_ccb->csio; 7266 tp = &np->target[cp->target]; 7267 lp = sym_lp(tp, cp->lun); 7268 7269 /* 7270 * Assume device discovered on first success. 7271 */ 7272 if (!lp) 7273 sym_set_bit(tp->lun_map, cp->lun); 7274 7275 /* 7276 * If all data have been transferred, given than no 7277 * extended error did occur, there is no residual. 7278 */ 7279 csio->resid = 0; 7280 if (cp->phys.head.lastp != cp->phys.head.goalp) 7281 csio->resid = sym_compute_residual(np, cp); 7282 7283 /* 7284 * Wrong transfer residuals may be worse than just always 7285 * returning zero. User can disable this feature from 7286 * sym_conf.h. Residual support is enabled by default. 7287 */ 7288 if (!SYM_CONF_RESIDUAL_SUPPORT) 7289 csio->resid = 0; 7290 7291 /* 7292 * Synchronize DMA map if needed. 7293 */ 7294 if (cp->dmamapped) { 7295 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7296 (cp->dmamapped == SYM_DMA_READ ? 7297 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE)); 7298 } 7299 /* 7300 * Set status and complete the command. 7301 */ 7302 csio->scsi_status = cp->ssss_status; 7303 sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); 7304 sym_xpt_done(np, (union ccb *) csio, cp); 7305 sym_free_ccb(np, cp); 7306 } 7307 7308 /* 7309 * Our callout handler 7310 */ 7311 static void sym_callout(void *arg) 7312 { 7313 union ccb *ccb = (union ccb *) arg; 7314 hcb_p np = ccb->ccb_h.sym_hcb_ptr; 7315 7316 /* 7317 * Check that the CAM CCB is still queued. 7318 */ 7319 if (!np) 7320 return; 7321 7322 SYM_LOCK(); 7323 7324 switch(ccb->ccb_h.func_code) { 7325 case XPT_SCSI_IO: 7326 (void) sym_abort_scsiio(np, ccb, 1); 7327 break; 7328 default: 7329 break; 7330 } 7331 7332 SYM_UNLOCK(); 7333 } 7334 7335 /* 7336 * Abort an SCSI IO. 7337 */ 7338 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) 7339 { 7340 ccb_p cp; 7341 SYM_QUEHEAD *qp; 7342 7343 SYM_LOCK_ASSERT(MA_OWNED); 7344 7345 /* 7346 * Look up our CCB control block. 7347 */ 7348 cp = NULL; 7349 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 7350 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 7351 if (cp2->cam_ccb == ccb) { 7352 cp = cp2; 7353 break; 7354 } 7355 } 7356 if (!cp || cp->host_status == HS_WAIT) 7357 return -1; 7358 7359 /* 7360 * If a previous abort didn't succeed in time, 7361 * perform a BUS reset. 7362 */ 7363 if (cp->to_abort) { 7364 sym_reset_scsi_bus(np, 1); 7365 return 0; 7366 } 7367 7368 /* 7369 * Mark the CCB for abort and allow time for. 7370 */ 7371 cp->to_abort = timed_out ? 2 : 1; 7372 callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb); 7373 7374 /* 7375 * Tell the SCRIPTS processor to stop and synchronize with us. 7376 */ 7377 np->istat_sem = SEM; 7378 OUTB (nc_istat, SIGP|SEM); 7379 return 0; 7380 } 7381 7382 /* 7383 * Reset a SCSI device (all LUNs of a target). 7384 */ 7385 static void sym_reset_dev(hcb_p np, union ccb *ccb) 7386 { 7387 tcb_p tp; 7388 struct ccb_hdr *ccb_h = &ccb->ccb_h; 7389 7390 SYM_LOCK_ASSERT(MA_OWNED); 7391 7392 if (ccb_h->target_id == np->myaddr || 7393 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7394 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7395 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7396 return; 7397 } 7398 7399 tp = &np->target[ccb_h->target_id]; 7400 7401 tp->to_reset = 1; 7402 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7403 7404 np->istat_sem = SEM; 7405 OUTB (nc_istat, SIGP|SEM); 7406 } 7407 7408 /* 7409 * SIM action entry point. 7410 */ 7411 static void sym_action(struct cam_sim *sim, union ccb *ccb) 7412 { 7413 hcb_p np; 7414 tcb_p tp; 7415 lcb_p lp; 7416 ccb_p cp; 7417 int tmp; 7418 u_char idmsg, *msgptr; 7419 u_int msglen; 7420 struct ccb_scsiio *csio; 7421 struct ccb_hdr *ccb_h; 7422 7423 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); 7424 7425 /* 7426 * Retrieve our controller data structure. 7427 */ 7428 np = (hcb_p) cam_sim_softc(sim); 7429 7430 SYM_LOCK_ASSERT(MA_OWNED); 7431 7432 /* 7433 * The common case is SCSI IO. 7434 * We deal with other ones elsewhere. 7435 */ 7436 if (ccb->ccb_h.func_code != XPT_SCSI_IO) { 7437 sym_action2(sim, ccb); 7438 return; 7439 } 7440 csio = &ccb->csio; 7441 ccb_h = &csio->ccb_h; 7442 7443 /* 7444 * Work around races. 7445 */ 7446 if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 7447 xpt_done(ccb); 7448 return; 7449 } 7450 7451 /* 7452 * Minimal checkings, so that we will not 7453 * go outside our tables. 7454 */ 7455 if (ccb_h->target_id == np->myaddr || 7456 ccb_h->target_id >= SYM_CONF_MAX_TARGET || 7457 ccb_h->target_lun >= SYM_CONF_MAX_LUN) { 7458 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7459 return; 7460 } 7461 7462 /* 7463 * Retrieve the target and lun descriptors. 7464 */ 7465 tp = &np->target[ccb_h->target_id]; 7466 lp = sym_lp(tp, ccb_h->target_lun); 7467 7468 /* 7469 * Complete the 1st INQUIRY command with error 7470 * condition if the device is flagged NOSCAN 7471 * at BOOT in the NVRAM. This may speed up 7472 * the boot and maintain coherency with BIOS 7473 * device numbering. Clearing the flag allows 7474 * user to rescan skipped devices later. 7475 * We also return error for devices not flagged 7476 * for SCAN LUNS in the NVRAM since some mono-lun 7477 * devices behave badly when asked for some non 7478 * zero LUN. Btw, this is an absolute hack.:-) 7479 */ 7480 if (!(ccb_h->flags & CAM_CDB_PHYS) && 7481 (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? 7482 csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { 7483 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 7484 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && 7485 ccb_h->target_lun != 0)) { 7486 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 7487 sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); 7488 return; 7489 } 7490 } 7491 7492 /* 7493 * Get a control block for this IO. 7494 */ 7495 tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); 7496 cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); 7497 if (!cp) { 7498 sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); 7499 return; 7500 } 7501 7502 /* 7503 * Keep track of the IO in our CCB. 7504 */ 7505 cp->cam_ccb = ccb; 7506 7507 /* 7508 * Build the IDENTIFY message. 7509 */ 7510 idmsg = M_IDENTIFY | cp->lun; 7511 if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) 7512 idmsg |= 0x40; 7513 7514 msgptr = cp->scsi_smsg; 7515 msglen = 0; 7516 msgptr[msglen++] = idmsg; 7517 7518 /* 7519 * Build the tag message if present. 7520 */ 7521 if (cp->tag != NO_TAG) { 7522 u_char order = csio->tag_action; 7523 7524 switch(order) { 7525 case M_ORDERED_TAG: 7526 break; 7527 case M_HEAD_TAG: 7528 break; 7529 default: 7530 order = M_SIMPLE_TAG; 7531 } 7532 msgptr[msglen++] = order; 7533 7534 /* 7535 * For less than 128 tags, actual tags are numbered 7536 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 7537 * with devices that have problems with #TAG 0 or too 7538 * great #TAG numbers. For more tags (up to 256), 7539 * we use directly our tag number. 7540 */ 7541 #if SYM_CONF_MAX_TASK > (512/4) 7542 msgptr[msglen++] = cp->tag; 7543 #else 7544 msgptr[msglen++] = (cp->tag << 1) + 1; 7545 #endif 7546 } 7547 7548 /* 7549 * Build a negotiation message if needed. 7550 * (nego_status is filled by sym_prepare_nego()) 7551 */ 7552 cp->nego_status = 0; 7553 if (tp->tinfo.current.width != tp->tinfo.goal.width || 7554 tp->tinfo.current.period != tp->tinfo.goal.period || 7555 tp->tinfo.current.offset != tp->tinfo.goal.offset || 7556 tp->tinfo.current.options != tp->tinfo.goal.options) { 7557 if (!tp->nego_cp && lp) 7558 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); 7559 } 7560 7561 /* 7562 * Fill in our ccb 7563 */ 7564 7565 /* 7566 * Startqueue 7567 */ 7568 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select)); 7569 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa)); 7570 7571 /* 7572 * select 7573 */ 7574 cp->phys.select.sel_id = cp->target; 7575 cp->phys.select.sel_scntl3 = tp->head.wval; 7576 cp->phys.select.sel_sxfer = tp->head.sval; 7577 cp->phys.select.sel_scntl4 = tp->head.uval; 7578 7579 /* 7580 * message 7581 */ 7582 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg)); 7583 cp->phys.smsg.size = cpu_to_scr(msglen); 7584 7585 /* 7586 * command 7587 */ 7588 if (sym_setup_cdb(np, csio, cp) < 0) { 7589 sym_xpt_done(np, ccb, cp); 7590 sym_free_ccb(np, cp); 7591 return; 7592 } 7593 7594 /* 7595 * status 7596 */ 7597 #if 0 /* Provision */ 7598 cp->actualquirks = tp->quirks; 7599 #endif 7600 cp->actualquirks = SYM_QUIRK_AUTOSAVE; 7601 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7602 cp->ssss_status = S_ILLEGAL; 7603 cp->xerr_status = 0; 7604 cp->host_flags = 0; 7605 cp->extra_bytes = 0; 7606 7607 /* 7608 * extreme data pointer. 7609 * shall be positive, so -1 is lower than lowest.:) 7610 */ 7611 cp->ext_sg = -1; 7612 cp->ext_ofs = 0; 7613 7614 /* 7615 * Build the data descriptor block 7616 * and start the IO. 7617 */ 7618 sym_setup_data_and_start(np, csio, cp); 7619 } 7620 7621 /* 7622 * Setup buffers and pointers that address the CDB. 7623 * I bet, physical CDBs will never be used on the planet, 7624 * since they can be bounced without significant overhead. 7625 */ 7626 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7627 { 7628 struct ccb_hdr *ccb_h; 7629 u32 cmd_ba; 7630 int cmd_len; 7631 7632 SYM_LOCK_ASSERT(MA_OWNED); 7633 7634 ccb_h = &csio->ccb_h; 7635 7636 /* 7637 * CDB is 16 bytes max. 7638 */ 7639 if (csio->cdb_len > sizeof(cp->cdb_buf)) { 7640 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7641 return -1; 7642 } 7643 cmd_len = csio->cdb_len; 7644 7645 if (ccb_h->flags & CAM_CDB_POINTER) { 7646 /* CDB is a pointer */ 7647 if (!(ccb_h->flags & CAM_CDB_PHYS)) { 7648 /* CDB pointer is virtual */ 7649 bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len); 7650 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7651 } else { 7652 /* CDB pointer is physical */ 7653 #if 0 7654 cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; 7655 #else 7656 sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); 7657 return -1; 7658 #endif 7659 } 7660 } else { 7661 /* CDB is in the CAM ccb (buffer) */ 7662 bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len); 7663 cmd_ba = CCB_BA (cp, cdb_buf[0]); 7664 } 7665 7666 cp->phys.cmd.addr = cpu_to_scr(cmd_ba); 7667 cp->phys.cmd.size = cpu_to_scr(cmd_len); 7668 7669 return 0; 7670 } 7671 7672 /* 7673 * Set up data pointers used by SCRIPTS. 7674 */ 7675 static void __inline 7676 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir) 7677 { 7678 u32 lastp, goalp; 7679 7680 SYM_LOCK_ASSERT(MA_OWNED); 7681 7682 /* 7683 * No segments means no data. 7684 */ 7685 if (!cp->segments) 7686 dir = CAM_DIR_NONE; 7687 7688 /* 7689 * Set the data pointer. 7690 */ 7691 switch(dir) { 7692 case CAM_DIR_OUT: 7693 goalp = SCRIPTA_BA (np, data_out2) + 8; 7694 lastp = goalp - 8 - (cp->segments * (2*4)); 7695 break; 7696 case CAM_DIR_IN: 7697 cp->host_flags |= HF_DATA_IN; 7698 goalp = SCRIPTA_BA (np, data_in2) + 8; 7699 lastp = goalp - 8 - (cp->segments * (2*4)); 7700 break; 7701 case CAM_DIR_NONE: 7702 default: 7703 lastp = goalp = SCRIPTB_BA (np, no_data); 7704 break; 7705 } 7706 7707 cp->phys.head.lastp = cpu_to_scr(lastp); 7708 cp->phys.head.goalp = cpu_to_scr(goalp); 7709 cp->phys.head.savep = cpu_to_scr(lastp); 7710 cp->startp = cp->phys.head.savep; 7711 } 7712 7713 /* 7714 * Call back routine for the DMA map service. 7715 * If bounce buffers are used (why ?), we may sleep and then 7716 * be called there in another context. 7717 */ 7718 static void 7719 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error) 7720 { 7721 ccb_p cp; 7722 hcb_p np; 7723 union ccb *ccb; 7724 7725 cp = (ccb_p) arg; 7726 ccb = cp->cam_ccb; 7727 np = (hcb_p) cp->arg; 7728 7729 SYM_LOCK_ASSERT(MA_OWNED); 7730 7731 /* 7732 * Deal with weird races. 7733 */ 7734 if (sym_get_cam_status(ccb) != CAM_REQ_INPROG) 7735 goto out_abort; 7736 7737 /* 7738 * Deal with weird errors. 7739 */ 7740 if (error) { 7741 cp->dmamapped = 0; 7742 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); 7743 goto out_abort; 7744 } 7745 7746 /* 7747 * Build the data descriptor for the chip. 7748 */ 7749 if (nsegs) { 7750 int retv; 7751 /* 896 rev 1 requires to be careful about boundaries */ 7752 if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1) 7753 retv = sym_scatter_sg_physical(np, cp, psegs, nsegs); 7754 else 7755 retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs); 7756 if (retv < 0) { 7757 sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); 7758 goto out_abort; 7759 } 7760 } 7761 7762 /* 7763 * Synchronize the DMA map only if we have 7764 * actually mapped the data. 7765 */ 7766 if (cp->dmamapped) { 7767 bus_dmamap_sync(np->data_dmat, cp->dmamap, 7768 (cp->dmamapped == SYM_DMA_READ ? 7769 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE)); 7770 } 7771 7772 /* 7773 * Set host status to busy state. 7774 * May have been set back to HS_WAIT to avoid a race. 7775 */ 7776 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 7777 7778 /* 7779 * Set data pointers. 7780 */ 7781 sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK)); 7782 7783 /* 7784 * Enqueue this IO in our pending queue. 7785 */ 7786 sym_enqueue_cam_ccb(cp); 7787 7788 /* 7789 * When `#ifed 1', the code below makes the driver 7790 * panic on the first attempt to write to a SCSI device. 7791 * It is the first test we want to do after a driver 7792 * change that does not seem obviously safe. :) 7793 */ 7794 #if 0 7795 switch (cp->cdb_buf[0]) { 7796 case 0x0A: case 0x2A: case 0xAA: 7797 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 7798 MDELAY(10000); 7799 break; 7800 default: 7801 break; 7802 } 7803 #endif 7804 /* 7805 * Activate this job. 7806 */ 7807 sym_put_start_queue(np, cp); 7808 return; 7809 out_abort: 7810 sym_xpt_done(np, ccb, cp); 7811 sym_free_ccb(np, cp); 7812 } 7813 7814 /* 7815 * How complex it gets to deal with the data in CAM. 7816 * The Bus Dma stuff makes things still more complex. 7817 */ 7818 static void 7819 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) 7820 { 7821 struct ccb_hdr *ccb_h; 7822 int dir, retv; 7823 7824 SYM_LOCK_ASSERT(MA_OWNED); 7825 7826 ccb_h = &csio->ccb_h; 7827 7828 /* 7829 * Now deal with the data. 7830 */ 7831 cp->data_len = csio->dxfer_len; 7832 cp->arg = np; 7833 7834 /* 7835 * No direction means no data. 7836 */ 7837 dir = (ccb_h->flags & CAM_DIR_MASK); 7838 if (dir == CAM_DIR_NONE) { 7839 sym_execute_ccb(cp, NULL, 0, 0); 7840 return; 7841 } 7842 7843 cp->dmamapped = (dir == CAM_DIR_IN) ? SYM_DMA_READ : SYM_DMA_WRITE; 7844 retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap, 7845 (union ccb *)csio, sym_execute_ccb, cp, 0); 7846 if (retv == EINPROGRESS) { 7847 cp->host_status = HS_WAIT; 7848 xpt_freeze_simq(np->sim, 1); 7849 csio->ccb_h.status |= CAM_RELEASE_SIMQ; 7850 } 7851 } 7852 7853 /* 7854 * Move the scatter list to our data block. 7855 */ 7856 static int 7857 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp, 7858 bus_dma_segment_t *psegs, int nsegs) 7859 { 7860 struct sym_tblmove *data; 7861 bus_dma_segment_t *psegs2; 7862 7863 SYM_LOCK_ASSERT(MA_OWNED); 7864 7865 if (nsegs > SYM_CONF_MAX_SG) 7866 return -1; 7867 7868 data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 7869 psegs2 = &psegs[nsegs-1]; 7870 cp->segments = nsegs; 7871 7872 while (1) { 7873 data->addr = cpu_to_scr(psegs2->ds_addr); 7874 data->size = cpu_to_scr(psegs2->ds_len); 7875 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7876 printf ("%s scatter: paddr=%lx len=%ld\n", 7877 sym_name(np), (long) psegs2->ds_addr, 7878 (long) psegs2->ds_len); 7879 } 7880 if (psegs2 != psegs) { 7881 --data; 7882 --psegs2; 7883 continue; 7884 } 7885 break; 7886 } 7887 return 0; 7888 } 7889 7890 /* 7891 * Scatter a SG list with physical addresses into bus addressable chunks. 7892 */ 7893 static int 7894 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs) 7895 { 7896 u_long ps, pe, pn; 7897 u_long k; 7898 int s, t; 7899 7900 SYM_LOCK_ASSERT(MA_OWNED); 7901 7902 s = SYM_CONF_MAX_SG - 1; 7903 t = nsegs - 1; 7904 ps = psegs[t].ds_addr; 7905 pe = ps + psegs[t].ds_len; 7906 7907 while (s >= 0) { 7908 pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY); 7909 if (pn <= ps) 7910 pn = ps; 7911 k = pe - pn; 7912 if (DEBUG_FLAGS & DEBUG_SCATTER) { 7913 printf ("%s scatter: paddr=%lx len=%ld\n", 7914 sym_name(np), pn, k); 7915 } 7916 cp->phys.data[s].addr = cpu_to_scr(pn); 7917 cp->phys.data[s].size = cpu_to_scr(k); 7918 --s; 7919 if (pn == ps) { 7920 if (--t < 0) 7921 break; 7922 ps = psegs[t].ds_addr; 7923 pe = ps + psegs[t].ds_len; 7924 } 7925 else 7926 pe = pn; 7927 } 7928 7929 cp->segments = SYM_CONF_MAX_SG - 1 - s; 7930 7931 return t >= 0 ? -1 : 0; 7932 } 7933 7934 /* 7935 * SIM action for non performance critical stuff. 7936 */ 7937 static void sym_action2(struct cam_sim *sim, union ccb *ccb) 7938 { 7939 union ccb *abort_ccb; 7940 struct ccb_hdr *ccb_h; 7941 struct ccb_pathinq *cpi; 7942 struct ccb_trans_settings *cts; 7943 struct sym_trans *tip; 7944 hcb_p np; 7945 tcb_p tp; 7946 lcb_p lp; 7947 u_char dflags; 7948 7949 /* 7950 * Retrieve our controller data structure. 7951 */ 7952 np = (hcb_p) cam_sim_softc(sim); 7953 7954 SYM_LOCK_ASSERT(MA_OWNED); 7955 7956 ccb_h = &ccb->ccb_h; 7957 7958 switch (ccb_h->func_code) { 7959 case XPT_SET_TRAN_SETTINGS: 7960 cts = &ccb->cts; 7961 tp = &np->target[ccb_h->target_id]; 7962 7963 /* 7964 * Update SPI transport settings in TARGET control block. 7965 * Update SCSI device settings in LUN control block. 7966 */ 7967 lp = sym_lp(tp, ccb_h->target_lun); 7968 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7969 sym_update_trans(np, &tp->tinfo.goal, cts); 7970 if (lp) 7971 sym_update_dflags(np, &lp->current_flags, cts); 7972 } 7973 if (cts->type == CTS_TYPE_USER_SETTINGS) { 7974 sym_update_trans(np, &tp->tinfo.user, cts); 7975 if (lp) 7976 sym_update_dflags(np, &lp->user_flags, cts); 7977 } 7978 7979 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 7980 break; 7981 case XPT_GET_TRAN_SETTINGS: 7982 cts = &ccb->cts; 7983 tp = &np->target[ccb_h->target_id]; 7984 lp = sym_lp(tp, ccb_h->target_lun); 7985 7986 #define cts__scsi (&cts->proto_specific.scsi) 7987 #define cts__spi (&cts->xport_specific.spi) 7988 if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { 7989 tip = &tp->tinfo.current; 7990 dflags = lp ? lp->current_flags : 0; 7991 } 7992 else { 7993 tip = &tp->tinfo.user; 7994 dflags = lp ? lp->user_flags : tp->usrflags; 7995 } 7996 7997 cts->protocol = PROTO_SCSI; 7998 cts->transport = XPORT_SPI; 7999 cts->protocol_version = tip->scsi_version; 8000 cts->transport_version = tip->spi_version; 8001 8002 cts__spi->sync_period = tip->period; 8003 cts__spi->sync_offset = tip->offset; 8004 cts__spi->bus_width = tip->width; 8005 cts__spi->ppr_options = tip->options; 8006 8007 cts__spi->valid = CTS_SPI_VALID_SYNC_RATE 8008 | CTS_SPI_VALID_SYNC_OFFSET 8009 | CTS_SPI_VALID_BUS_WIDTH 8010 | CTS_SPI_VALID_PPR_OPTIONS; 8011 8012 cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 8013 if (dflags & SYM_DISC_ENABLED) 8014 cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB; 8015 cts__spi->valid |= CTS_SPI_VALID_DISC; 8016 8017 cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 8018 if (dflags & SYM_TAGS_ENABLED) 8019 cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; 8020 cts__scsi->valid |= CTS_SCSI_VALID_TQ; 8021 #undef cts__spi 8022 #undef cts__scsi 8023 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8024 break; 8025 case XPT_CALC_GEOMETRY: 8026 cam_calc_geometry(&ccb->ccg, /*extended*/1); 8027 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8028 break; 8029 case XPT_PATH_INQ: 8030 cpi = &ccb->cpi; 8031 cpi->version_num = 1; 8032 cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; 8033 if ((np->features & FE_WIDE) != 0) 8034 cpi->hba_inquiry |= PI_WIDE_16; 8035 cpi->target_sprt = 0; 8036 cpi->hba_misc = PIM_UNMAPPED; 8037 if (np->usrflags & SYM_SCAN_TARGETS_HILO) 8038 cpi->hba_misc |= PIM_SCANHILO; 8039 if (np->usrflags & SYM_AVOID_BUS_RESET) 8040 cpi->hba_misc |= PIM_NOBUSRESET; 8041 cpi->hba_eng_cnt = 0; 8042 cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; 8043 /* Semantic problem:)LUN number max = max number of LUNs - 1 */ 8044 cpi->max_lun = SYM_CONF_MAX_LUN-1; 8045 if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN) 8046 cpi->max_lun = SYM_SETUP_MAX_LUN-1; 8047 cpi->bus_id = cam_sim_bus(sim); 8048 cpi->initiator_id = np->myaddr; 8049 cpi->base_transfer_speed = 3300; 8050 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 8051 strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN); 8052 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 8053 cpi->unit_number = cam_sim_unit(sim); 8054 8055 cpi->protocol = PROTO_SCSI; 8056 cpi->protocol_version = SCSI_REV_2; 8057 cpi->transport = XPORT_SPI; 8058 cpi->transport_version = 2; 8059 cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST; 8060 if (np->features & FE_ULTRA3) { 8061 cpi->transport_version = 3; 8062 cpi->xport_specific.spi.ppr_options = 8063 SID_SPI_CLOCK_DT_ST; 8064 } 8065 cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE; 8066 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8067 break; 8068 case XPT_ABORT: 8069 abort_ccb = ccb->cab.abort_ccb; 8070 switch(abort_ccb->ccb_h.func_code) { 8071 case XPT_SCSI_IO: 8072 if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { 8073 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8074 break; 8075 } 8076 default: 8077 sym_xpt_done2(np, ccb, CAM_UA_ABORT); 8078 break; 8079 } 8080 break; 8081 case XPT_RESET_DEV: 8082 sym_reset_dev(np, ccb); 8083 break; 8084 case XPT_RESET_BUS: 8085 sym_reset_scsi_bus(np, 0); 8086 if (sym_verbose) { 8087 xpt_print_path(np->path); 8088 printf("SCSI BUS reset delivered.\n"); 8089 } 8090 sym_init (np, 1); 8091 sym_xpt_done2(np, ccb, CAM_REQ_CMP); 8092 break; 8093 case XPT_TERM_IO: 8094 default: 8095 sym_xpt_done2(np, ccb, CAM_REQ_INVALID); 8096 break; 8097 } 8098 } 8099 8100 /* 8101 * Asynchronous notification handler. 8102 */ 8103 static void 8104 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused) 8105 { 8106 hcb_p np; 8107 struct cam_sim *sim; 8108 u_int tn; 8109 tcb_p tp; 8110 8111 sim = (struct cam_sim *) cb_arg; 8112 np = (hcb_p) cam_sim_softc(sim); 8113 8114 SYM_LOCK_ASSERT(MA_OWNED); 8115 8116 switch (code) { 8117 case AC_LOST_DEVICE: 8118 tn = xpt_path_target_id(path); 8119 if (tn >= SYM_CONF_MAX_TARGET) 8120 break; 8121 8122 tp = &np->target[tn]; 8123 8124 tp->to_reset = 0; 8125 tp->head.sval = 0; 8126 tp->head.wval = np->rv_scntl3; 8127 tp->head.uval = 0; 8128 8129 tp->tinfo.current.period = tp->tinfo.goal.period = 0; 8130 tp->tinfo.current.offset = tp->tinfo.goal.offset = 0; 8131 tp->tinfo.current.width = tp->tinfo.goal.width = BUS_8_BIT; 8132 tp->tinfo.current.options = tp->tinfo.goal.options = 0; 8133 8134 break; 8135 default: 8136 break; 8137 } 8138 } 8139 8140 /* 8141 * Update transfer settings of a target. 8142 */ 8143 static void sym_update_trans(hcb_p np, struct sym_trans *tip, 8144 struct ccb_trans_settings *cts) 8145 { 8146 8147 SYM_LOCK_ASSERT(MA_OWNED); 8148 8149 /* 8150 * Update the infos. 8151 */ 8152 #define cts__spi (&cts->xport_specific.spi) 8153 if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 8154 tip->width = cts__spi->bus_width; 8155 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) 8156 tip->offset = cts__spi->sync_offset; 8157 if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) 8158 tip->period = cts__spi->sync_period; 8159 if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0) 8160 tip->options = (cts__spi->ppr_options & PPR_OPT_DT); 8161 if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED && 8162 cts->protocol_version != PROTO_VERSION_UNKNOWN) 8163 tip->scsi_version = cts->protocol_version; 8164 if (cts->transport_version != XPORT_VERSION_UNSPECIFIED && 8165 cts->transport_version != XPORT_VERSION_UNKNOWN) 8166 tip->spi_version = cts->transport_version; 8167 #undef cts__spi 8168 /* 8169 * Scale against driver configuration limits. 8170 */ 8171 if (tip->width > SYM_SETUP_MAX_WIDE) tip->width = SYM_SETUP_MAX_WIDE; 8172 if (tip->period && tip->offset) { 8173 if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS; 8174 if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC; 8175 } else { 8176 tip->offset = 0; 8177 tip->period = 0; 8178 } 8179 8180 /* 8181 * Scale against actual controller BUS width. 8182 */ 8183 if (tip->width > np->maxwide) 8184 tip->width = np->maxwide; 8185 8186 /* 8187 * Only accept DT if controller supports and SYNC/WIDE asked. 8188 */ 8189 if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) || 8190 !(tip->width == BUS_16_BIT && tip->offset)) { 8191 tip->options &= ~PPR_OPT_DT; 8192 } 8193 8194 /* 8195 * Scale period factor and offset against controller limits. 8196 */ 8197 if (tip->offset && tip->period) { 8198 if (tip->options & PPR_OPT_DT) { 8199 if (tip->period < np->minsync_dt) 8200 tip->period = np->minsync_dt; 8201 if (tip->period > np->maxsync_dt) 8202 tip->period = np->maxsync_dt; 8203 if (tip->offset > np->maxoffs_dt) 8204 tip->offset = np->maxoffs_dt; 8205 } 8206 else { 8207 if (tip->period < np->minsync) 8208 tip->period = np->minsync; 8209 if (tip->period > np->maxsync) 8210 tip->period = np->maxsync; 8211 if (tip->offset > np->maxoffs) 8212 tip->offset = np->maxoffs; 8213 } 8214 } 8215 } 8216 8217 /* 8218 * Update flags for a device (logical unit). 8219 */ 8220 static void 8221 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) 8222 { 8223 8224 SYM_LOCK_ASSERT(MA_OWNED); 8225 8226 #define cts__scsi (&cts->proto_specific.scsi) 8227 #define cts__spi (&cts->xport_specific.spi) 8228 if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) { 8229 if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) 8230 *flags |= SYM_DISC_ENABLED; 8231 else 8232 *flags &= ~SYM_DISC_ENABLED; 8233 } 8234 8235 if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 8236 if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) 8237 *flags |= SYM_TAGS_ENABLED; 8238 else 8239 *flags &= ~SYM_TAGS_ENABLED; 8240 } 8241 #undef cts__spi 8242 #undef cts__scsi 8243 } 8244 8245 /*============= DRIVER INITIALISATION ==================*/ 8246 8247 static device_method_t sym_pci_methods[] = { 8248 DEVMETHOD(device_probe, sym_pci_probe), 8249 DEVMETHOD(device_attach, sym_pci_attach), 8250 DEVMETHOD_END 8251 }; 8252 8253 static driver_t sym_pci_driver = { 8254 "sym", 8255 sym_pci_methods, 8256 1 /* no softc */ 8257 }; 8258 8259 static devclass_t sym_devclass; 8260 8261 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL); 8262 MODULE_DEPEND(sym, cam, 1, 1, 1); 8263 MODULE_DEPEND(sym, pci, 1, 1, 1); 8264 8265 static const struct sym_pci_chip sym_pci_dev_table[] = { 8266 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64, 8267 FE_ERL} 8268 , 8269 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8270 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8271 FE_BOF} 8272 , 8273 #else 8274 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1, 8275 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 8276 , 8277 #endif 8278 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64, 8279 FE_BOF|FE_ERL} 8280 , 8281 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64, 8282 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 8283 , 8284 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2, 8285 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 8286 , 8287 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1, 8288 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 8289 , 8290 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2, 8291 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8292 FE_RAM|FE_DIFF} 8293 , 8294 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2, 8295 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8296 FE_RAM|FE_DIFF} 8297 , 8298 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2, 8299 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8300 FE_RAM|FE_DIFF} 8301 , 8302 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2, 8303 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8304 FE_RAM|FE_DIFF} 8305 , 8306 #ifdef SYM_DEBUG_GENERIC_SUPPORT 8307 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8308 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 8309 FE_RAM|FE_LCKFRQ} 8310 , 8311 #else 8312 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2, 8313 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8314 FE_RAM|FE_LCKFRQ} 8315 , 8316 #endif 8317 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4, 8318 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8319 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8320 , 8321 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4, 8322 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8323 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 8324 , 8325 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8, 8326 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8327 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8328 FE_C10} 8329 , 8330 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8, 8331 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8332 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 8333 FE_C10|FE_U3EN} 8334 , 8335 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8, 8336 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 8337 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 8338 FE_C10|FE_U3EN} 8339 , 8340 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4, 8341 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 8342 FE_RAM|FE_IO256|FE_LEDC} 8343 }; 8344 8345 /* 8346 * Look up the chip table. 8347 * 8348 * Return a pointer to the chip entry if found, 8349 * zero otherwise. 8350 */ 8351 static const struct sym_pci_chip * 8352 sym_find_pci_chip(device_t dev) 8353 { 8354 const struct sym_pci_chip *chip; 8355 int i; 8356 u_short device_id; 8357 u_char revision; 8358 8359 if (pci_get_vendor(dev) != PCI_VENDOR_NCR) 8360 return NULL; 8361 8362 device_id = pci_get_device(dev); 8363 revision = pci_get_revid(dev); 8364 8365 for (i = 0; i < nitems(sym_pci_dev_table); i++) { 8366 chip = &sym_pci_dev_table[i]; 8367 if (device_id != chip->device_id) 8368 continue; 8369 if (revision > chip->revision_id) 8370 continue; 8371 return chip; 8372 } 8373 8374 return NULL; 8375 } 8376 8377 /* 8378 * Tell upper layer if the chip is supported. 8379 */ 8380 static int 8381 sym_pci_probe(device_t dev) 8382 { 8383 const struct sym_pci_chip *chip; 8384 8385 chip = sym_find_pci_chip(dev); 8386 if (chip && sym_find_firmware(chip)) { 8387 device_set_desc(dev, chip->name); 8388 return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? 8389 BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT; 8390 } 8391 return ENXIO; 8392 } 8393 8394 /* 8395 * Attach a sym53c8xx device. 8396 */ 8397 static int 8398 sym_pci_attach(device_t dev) 8399 { 8400 const struct sym_pci_chip *chip; 8401 u_short command; 8402 u_char cachelnsz; 8403 struct sym_hcb *np = NULL; 8404 struct sym_nvram nvram; 8405 const struct sym_fw *fw = NULL; 8406 int i; 8407 bus_dma_tag_t bus_dmat; 8408 8409 bus_dmat = bus_get_dma_tag(dev); 8410 8411 /* 8412 * Only probed devices should be attached. 8413 * We just enjoy being paranoid. :) 8414 */ 8415 chip = sym_find_pci_chip(dev); 8416 if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL) 8417 return (ENXIO); 8418 8419 /* 8420 * Allocate immediately the host control block, 8421 * since we are only expecting to succeed. :) 8422 * We keep track in the HCB of all the resources that 8423 * are to be released on error. 8424 */ 8425 np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB"); 8426 if (np) 8427 np->bus_dmat = bus_dmat; 8428 else 8429 return (ENXIO); 8430 device_set_softc(dev, np); 8431 8432 SYM_LOCK_INIT(); 8433 8434 /* 8435 * Copy some useful infos to the HCB. 8436 */ 8437 np->hcb_ba = vtobus(np); 8438 np->verbose = bootverbose; 8439 np->device = dev; 8440 np->device_id = pci_get_device(dev); 8441 np->revision_id = pci_get_revid(dev); 8442 np->features = chip->features; 8443 np->clock_divn = chip->nr_divisor; 8444 np->maxoffs = chip->offset_max; 8445 np->maxburst = chip->burst_max; 8446 np->scripta_sz = fw->a_size; 8447 np->scriptb_sz = fw->b_size; 8448 np->fw_setup = fw->setup; 8449 np->fw_patch = fw->patch; 8450 np->fw_name = fw->name; 8451 8452 #ifdef __amd64__ 8453 np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)), 8454 "TARGET"); 8455 if (!np->target) 8456 goto attach_failed; 8457 #endif 8458 8459 /* 8460 * Initialize the CCB free and busy queues. 8461 */ 8462 sym_que_init(&np->free_ccbq); 8463 sym_que_init(&np->busy_ccbq); 8464 sym_que_init(&np->comp_ccbq); 8465 sym_que_init(&np->cam_ccbq); 8466 8467 /* 8468 * Allocate a tag for the DMA of user data. 8469 */ 8470 if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY, 8471 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 8472 BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY, 8473 0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) { 8474 device_printf(dev, "failed to create DMA tag.\n"); 8475 goto attach_failed; 8476 } 8477 8478 /* 8479 * Read and apply some fix-ups to the PCI COMMAND 8480 * register. We want the chip to be enabled for: 8481 * - BUS mastering 8482 * - PCI parity checking (reporting would also be fine) 8483 * - Write And Invalidate. 8484 */ 8485 command = pci_read_config(dev, PCIR_COMMAND, 2); 8486 command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN | 8487 PCIM_CMD_MWRICEN; 8488 pci_write_config(dev, PCIR_COMMAND, command, 2); 8489 8490 /* 8491 * Let the device know about the cache line size, 8492 * if it doesn't yet. 8493 */ 8494 cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 8495 if (!cachelnsz) { 8496 cachelnsz = 8; 8497 pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); 8498 } 8499 8500 /* 8501 * Alloc/get/map/retrieve everything that deals with MMIO. 8502 */ 8503 i = SYM_PCI_MMIO; 8504 np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, 8505 RF_ACTIVE); 8506 if (!np->mmio_res) { 8507 device_printf(dev, "failed to allocate MMIO resources\n"); 8508 goto attach_failed; 8509 } 8510 np->mmio_ba = rman_get_start(np->mmio_res); 8511 8512 /* 8513 * Allocate the IRQ. 8514 */ 8515 i = 0; 8516 np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 8517 RF_ACTIVE | RF_SHAREABLE); 8518 if (!np->irq_res) { 8519 device_printf(dev, "failed to allocate IRQ resource\n"); 8520 goto attach_failed; 8521 } 8522 8523 #ifdef SYM_CONF_IOMAPPED 8524 /* 8525 * User want us to use normal IO with PCI. 8526 * Alloc/get/map/retrieve everything that deals with IO. 8527 */ 8528 i = SYM_PCI_IO; 8529 np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE); 8530 if (!np->io_res) { 8531 device_printf(dev, "failed to allocate IO resources\n"); 8532 goto attach_failed; 8533 } 8534 8535 #endif /* SYM_CONF_IOMAPPED */ 8536 8537 /* 8538 * If the chip has RAM. 8539 * Alloc/get/map/retrieve the corresponding resources. 8540 */ 8541 if (np->features & (FE_RAM|FE_RAM8K)) { 8542 int regs_id = SYM_PCI_RAM; 8543 if (np->features & FE_64BIT) 8544 regs_id = SYM_PCI_RAM64; 8545 np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 8546 ®s_id, RF_ACTIVE); 8547 if (!np->ram_res) { 8548 device_printf(dev,"failed to allocate RAM resources\n"); 8549 goto attach_failed; 8550 } 8551 np->ram_id = regs_id; 8552 np->ram_ba = rman_get_start(np->ram_res); 8553 } 8554 8555 /* 8556 * Save setting of some IO registers, so we will 8557 * be able to probe specific implementations. 8558 */ 8559 sym_save_initial_setting (np); 8560 8561 /* 8562 * Reset the chip now, since it has been reported 8563 * that SCSI clock calibration may not work properly 8564 * if the chip is currently active. 8565 */ 8566 sym_chip_reset (np); 8567 8568 /* 8569 * Try to read the user set-up. 8570 */ 8571 (void) sym_read_nvram(np, &nvram); 8572 8573 /* 8574 * Prepare controller and devices settings, according 8575 * to chip features, user set-up and driver set-up. 8576 */ 8577 (void) sym_prepare_setting(np, &nvram); 8578 8579 /* 8580 * Check the PCI clock frequency. 8581 * Must be performed after prepare_setting since it destroys 8582 * STEST1 that is used to probe for the clock doubler. 8583 */ 8584 i = sym_getpciclock(np); 8585 if (i > 37000) 8586 device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); 8587 8588 /* 8589 * Allocate the start queue. 8590 */ 8591 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 8592 if (!np->squeue) 8593 goto attach_failed; 8594 np->squeue_ba = vtobus(np->squeue); 8595 8596 /* 8597 * Allocate the done queue. 8598 */ 8599 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 8600 if (!np->dqueue) 8601 goto attach_failed; 8602 np->dqueue_ba = vtobus(np->dqueue); 8603 8604 /* 8605 * Allocate the target bus address array. 8606 */ 8607 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL"); 8608 if (!np->targtbl) 8609 goto attach_failed; 8610 np->targtbl_ba = vtobus(np->targtbl); 8611 8612 /* 8613 * Allocate SCRIPTS areas. 8614 */ 8615 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 8616 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 8617 if (!np->scripta0 || !np->scriptb0) 8618 goto attach_failed; 8619 8620 /* 8621 * Allocate the CCBs. We need at least ONE. 8622 */ 8623 for (i = 0; sym_alloc_ccb(np) != NULL; i++) 8624 ; 8625 if (i < 1) 8626 goto attach_failed; 8627 8628 /* 8629 * Calculate BUS addresses where we are going 8630 * to load the SCRIPTS. 8631 */ 8632 np->scripta_ba = vtobus(np->scripta0); 8633 np->scriptb_ba = vtobus(np->scriptb0); 8634 np->scriptb0_ba = np->scriptb_ba; 8635 8636 if (np->ram_ba) { 8637 np->scripta_ba = np->ram_ba; 8638 if (np->features & FE_RAM8K) { 8639 np->ram_ws = 8192; 8640 np->scriptb_ba = np->scripta_ba + 4096; 8641 #ifdef __LP64__ 8642 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 8643 #endif 8644 } 8645 else 8646 np->ram_ws = 4096; 8647 } 8648 8649 /* 8650 * Copy scripts to controller instance. 8651 */ 8652 bcopy(fw->a_base, np->scripta0, np->scripta_sz); 8653 bcopy(fw->b_base, np->scriptb0, np->scriptb_sz); 8654 8655 /* 8656 * Setup variable parts in scripts and compute 8657 * scripts bus addresses used from the C code. 8658 */ 8659 np->fw_setup(np, fw); 8660 8661 /* 8662 * Bind SCRIPTS with physical addresses usable by the 8663 * SCRIPTS processor (as seen from the BUS = BUS addresses). 8664 */ 8665 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 8666 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 8667 8668 #ifdef SYM_CONF_IARB_SUPPORT 8669 /* 8670 * If user wants IARB to be set when we win arbitration 8671 * and have other jobs, compute the max number of consecutive 8672 * settings of IARB hints before we leave devices a chance to 8673 * arbitrate for reselection. 8674 */ 8675 #ifdef SYM_SETUP_IARB_MAX 8676 np->iarb_max = SYM_SETUP_IARB_MAX; 8677 #else 8678 np->iarb_max = 4; 8679 #endif 8680 #endif 8681 8682 /* 8683 * Prepare the idle and invalid task actions. 8684 */ 8685 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8686 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8687 np->idletask_ba = vtobus(&np->idletask); 8688 8689 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8690 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8691 np->notask_ba = vtobus(&np->notask); 8692 8693 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8694 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l)); 8695 np->bad_itl_ba = vtobus(&np->bad_itl); 8696 8697 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle)); 8698 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q)); 8699 np->bad_itlq_ba = vtobus(&np->bad_itlq); 8700 8701 /* 8702 * Allocate and prepare the lun JUMP table that is used 8703 * for a target prior the probing of devices (bad lun table). 8704 * A private table will be allocated for the target on the 8705 * first INQUIRY response received. 8706 */ 8707 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 8708 if (!np->badluntbl) 8709 goto attach_failed; 8710 8711 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun)); 8712 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 8713 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 8714 8715 /* 8716 * Prepare the bus address array that contains the bus 8717 * address of each target control block. 8718 * For now, assume all logical units are wrong. :) 8719 */ 8720 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 8721 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 8722 np->target[i].head.luntbl_sa = 8723 cpu_to_scr(vtobus(np->badluntbl)); 8724 np->target[i].head.lun0_sa = 8725 cpu_to_scr(vtobus(&np->badlun_sa)); 8726 } 8727 8728 /* 8729 * Now check the cache handling of the pci chipset. 8730 */ 8731 if (sym_snooptest (np)) { 8732 device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); 8733 goto attach_failed; 8734 } 8735 8736 /* 8737 * Now deal with CAM. 8738 * Hopefully, we will succeed with that one.:) 8739 */ 8740 if (!sym_cam_attach(np)) 8741 goto attach_failed; 8742 8743 /* 8744 * Sigh! we are done. 8745 */ 8746 return 0; 8747 8748 /* 8749 * We have failed. 8750 * We will try to free all the resources we have 8751 * allocated, but if we are a boot device, this 8752 * will not help that much.;) 8753 */ 8754 attach_failed: 8755 if (np) 8756 sym_pci_free(np); 8757 return ENXIO; 8758 } 8759 8760 /* 8761 * Free everything that have been allocated for this device. 8762 */ 8763 static void sym_pci_free(hcb_p np) 8764 { 8765 SYM_QUEHEAD *qp; 8766 ccb_p cp; 8767 tcb_p tp; 8768 lcb_p lp; 8769 int target, lun; 8770 8771 /* 8772 * First free CAM resources. 8773 */ 8774 sym_cam_free(np); 8775 8776 /* 8777 * Now every should be quiet for us to 8778 * free other resources. 8779 */ 8780 if (np->ram_res) 8781 bus_release_resource(np->device, SYS_RES_MEMORY, 8782 np->ram_id, np->ram_res); 8783 if (np->mmio_res) 8784 bus_release_resource(np->device, SYS_RES_MEMORY, 8785 SYM_PCI_MMIO, np->mmio_res); 8786 if (np->io_res) 8787 bus_release_resource(np->device, SYS_RES_IOPORT, 8788 SYM_PCI_IO, np->io_res); 8789 if (np->irq_res) 8790 bus_release_resource(np->device, SYS_RES_IRQ, 8791 0, np->irq_res); 8792 8793 if (np->scriptb0) 8794 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 8795 if (np->scripta0) 8796 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 8797 if (np->squeue) 8798 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 8799 if (np->dqueue) 8800 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 8801 8802 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 8803 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 8804 bus_dmamap_destroy(np->data_dmat, cp->dmamap); 8805 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF"); 8806 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 8807 } 8808 8809 if (np->badluntbl) 8810 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 8811 8812 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 8813 tp = &np->target[target]; 8814 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) { 8815 lp = sym_lp(tp, lun); 8816 if (!lp) 8817 continue; 8818 if (lp->itlq_tbl) 8819 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, 8820 "ITLQ_TBL"); 8821 if (lp->cb_tags) 8822 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK, 8823 "CB_TAGS"); 8824 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 8825 } 8826 #if SYM_CONF_MAX_LUN > 1 8827 if (tp->lunmp) 8828 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p), 8829 "LUNMP"); 8830 #endif 8831 } 8832 #ifdef __amd64__ 8833 if (np->target) 8834 sym_mfree_dma(np->target, 8835 SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET"); 8836 #endif 8837 if (np->targtbl) 8838 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 8839 if (np->data_dmat) 8840 bus_dma_tag_destroy(np->data_dmat); 8841 if (SYM_LOCK_INITIALIZED() != 0) 8842 SYM_LOCK_DESTROY(); 8843 device_set_softc(np->device, NULL); 8844 sym_mfree_dma(np, sizeof(*np), "HCB"); 8845 } 8846 8847 /* 8848 * Allocate CAM resources and register a bus to CAM. 8849 */ 8850 static int sym_cam_attach(hcb_p np) 8851 { 8852 struct cam_devq *devq = NULL; 8853 struct cam_sim *sim = NULL; 8854 struct cam_path *path = NULL; 8855 int err; 8856 8857 /* 8858 * Establish our interrupt handler. 8859 */ 8860 err = bus_setup_intr(np->device, np->irq_res, 8861 INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM, 8862 NULL, sym_intr, np, &np->intr); 8863 if (err) { 8864 device_printf(np->device, "bus_setup_intr() failed: %d\n", 8865 err); 8866 goto fail; 8867 } 8868 8869 /* 8870 * Create the device queue for our sym SIM. 8871 */ 8872 devq = cam_simq_alloc(SYM_CONF_MAX_START); 8873 if (!devq) 8874 goto fail; 8875 8876 /* 8877 * Construct our SIM entry. 8878 */ 8879 sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, 8880 device_get_unit(np->device), 8881 &np->mtx, 1, SYM_SETUP_MAX_TAG, devq); 8882 if (!sim) 8883 goto fail; 8884 8885 SYM_LOCK(); 8886 8887 if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS) 8888 goto fail; 8889 np->sim = sim; 8890 sim = NULL; 8891 8892 if (xpt_create_path(&path, NULL, 8893 cam_sim_path(np->sim), CAM_TARGET_WILDCARD, 8894 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 8895 goto fail; 8896 } 8897 np->path = path; 8898 8899 /* 8900 * Establish our async notification handler. 8901 */ 8902 if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) != 8903 CAM_REQ_CMP) 8904 goto fail; 8905 8906 /* 8907 * Start the chip now, without resetting the BUS, since 8908 * it seems that this must stay under control of CAM. 8909 * With LVD/SE capable chips and BUS in SE mode, we may 8910 * get a spurious SMBC interrupt. 8911 */ 8912 sym_init (np, 0); 8913 8914 SYM_UNLOCK(); 8915 8916 return 1; 8917 fail: 8918 if (sim) 8919 cam_sim_free(sim, FALSE); 8920 if (devq) 8921 cam_simq_free(devq); 8922 8923 SYM_UNLOCK(); 8924 8925 sym_cam_free(np); 8926 8927 return 0; 8928 } 8929 8930 /* 8931 * Free everything that deals with CAM. 8932 */ 8933 static void sym_cam_free(hcb_p np) 8934 { 8935 8936 SYM_LOCK_ASSERT(MA_NOTOWNED); 8937 8938 if (np->intr) { 8939 bus_teardown_intr(np->device, np->irq_res, np->intr); 8940 np->intr = NULL; 8941 } 8942 8943 SYM_LOCK(); 8944 8945 if (np->sim) { 8946 xpt_bus_deregister(cam_sim_path(np->sim)); 8947 cam_sim_free(np->sim, /*free_devq*/ TRUE); 8948 np->sim = NULL; 8949 } 8950 if (np->path) { 8951 xpt_free_path(np->path); 8952 np->path = NULL; 8953 } 8954 8955 SYM_UNLOCK(); 8956 } 8957 8958 /*============ OPTIONNAL NVRAM SUPPORT =================*/ 8959 8960 /* 8961 * Get host setup from NVRAM. 8962 */ 8963 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) 8964 { 8965 #ifdef SYM_CONF_NVRAM_SUPPORT 8966 /* 8967 * Get parity checking, host ID, verbose mode 8968 * and miscellaneous host flags from NVRAM. 8969 */ 8970 switch(nvram->type) { 8971 case SYM_SYMBIOS_NVRAM: 8972 if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) 8973 np->rv_scntl0 &= ~0x0a; 8974 np->myaddr = nvram->data.Symbios.host_id & 0x0f; 8975 if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) 8976 np->verbose += 1; 8977 if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) 8978 np->usrflags |= SYM_SCAN_TARGETS_HILO; 8979 if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) 8980 np->usrflags |= SYM_AVOID_BUS_RESET; 8981 break; 8982 case SYM_TEKRAM_NVRAM: 8983 np->myaddr = nvram->data.Tekram.host_id & 0x0f; 8984 break; 8985 default: 8986 break; 8987 } 8988 #endif 8989 } 8990 8991 /* 8992 * Get target setup from NVRAM. 8993 */ 8994 #ifdef SYM_CONF_NVRAM_SUPPORT 8995 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); 8996 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); 8997 #endif 8998 8999 static void 9000 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) 9001 { 9002 #ifdef SYM_CONF_NVRAM_SUPPORT 9003 switch(nvp->type) { 9004 case SYM_SYMBIOS_NVRAM: 9005 sym_Symbios_setup_target (np, target, &nvp->data.Symbios); 9006 break; 9007 case SYM_TEKRAM_NVRAM: 9008 sym_Tekram_setup_target (np, target, &nvp->data.Tekram); 9009 break; 9010 default: 9011 break; 9012 } 9013 #endif 9014 } 9015 9016 #ifdef SYM_CONF_NVRAM_SUPPORT 9017 /* 9018 * Get target set-up from Symbios format NVRAM. 9019 */ 9020 static void 9021 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) 9022 { 9023 tcb_p tp = &np->target[target]; 9024 Symbios_target *tn = &nvram->target[target]; 9025 9026 tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; 9027 tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; 9028 tp->usrtags = 9029 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0; 9030 9031 if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) 9032 tp->usrflags &= ~SYM_DISC_ENABLED; 9033 if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) 9034 tp->usrflags |= SYM_SCAN_BOOT_DISABLED; 9035 if (!(tn->flags & SYMBIOS_SCAN_LUNS)) 9036 tp->usrflags |= SYM_SCAN_LUNS_DISABLED; 9037 } 9038 9039 /* 9040 * Get target set-up from Tekram format NVRAM. 9041 */ 9042 static void 9043 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) 9044 { 9045 tcb_p tp = &np->target[target]; 9046 struct Tekram_target *tn = &nvram->target[target]; 9047 int i; 9048 9049 if (tn->flags & TEKRAM_SYNC_NEGO) { 9050 i = tn->sync_index & 0xf; 9051 tp->tinfo.user.period = Tekram_sync[i]; 9052 } 9053 9054 tp->tinfo.user.width = 9055 (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; 9056 9057 if (tn->flags & TEKRAM_TAGGED_COMMANDS) { 9058 tp->usrtags = 2 << nvram->max_tags_index; 9059 } 9060 9061 if (tn->flags & TEKRAM_DISCONNECT_ENABLE) 9062 tp->usrflags |= SYM_DISC_ENABLED; 9063 9064 /* If any device does not support parity, we will not use this option */ 9065 if (!(tn->flags & TEKRAM_PARITY_CHECK)) 9066 np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ 9067 } 9068 9069 #ifdef SYM_CONF_DEBUG_NVRAM 9070 /* 9071 * Dump Symbios format NVRAM for debugging purpose. 9072 */ 9073 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) 9074 { 9075 int i; 9076 9077 /* display Symbios nvram host data */ 9078 printf("%s: HOST ID=%d%s%s%s%s%s%s\n", 9079 sym_name(np), nvram->host_id & 0x0f, 9080 (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9081 (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", 9082 (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", 9083 (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", 9084 (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", 9085 (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); 9086 9087 /* display Symbios nvram drive data */ 9088 for (i = 0 ; i < 15 ; i++) { 9089 struct Symbios_target *tn = &nvram->target[i]; 9090 printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", 9091 sym_name(np), i, 9092 (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", 9093 (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", 9094 (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", 9095 (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", 9096 tn->bus_width, 9097 tn->sync_period / 4, 9098 tn->timeout); 9099 } 9100 } 9101 9102 /* 9103 * Dump TEKRAM format NVRAM for debugging purpose. 9104 */ 9105 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; 9106 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) 9107 { 9108 int i, tags, boot_delay; 9109 char *rem; 9110 9111 /* display Tekram nvram host data */ 9112 tags = 2 << nvram->max_tags_index; 9113 boot_delay = 0; 9114 if (nvram->boot_delay_index < 6) 9115 boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; 9116 switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { 9117 default: 9118 case 0: rem = ""; break; 9119 case 1: rem = " REMOVABLE=boot device"; break; 9120 case 2: rem = " REMOVABLE=all"; break; 9121 } 9122 9123 printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", 9124 sym_name(np), nvram->host_id & 0x0f, 9125 (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", 9126 (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", 9127 (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", 9128 (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", 9129 (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", 9130 (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", 9131 (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", 9132 (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", 9133 rem, boot_delay, tags); 9134 9135 /* display Tekram nvram drive data */ 9136 for (i = 0; i <= 15; i++) { 9137 int sync, j; 9138 struct Tekram_target *tn = &nvram->target[i]; 9139 j = tn->sync_index & 0xf; 9140 sync = Tekram_sync[j]; 9141 printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", 9142 sym_name(np), i, 9143 (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", 9144 (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", 9145 (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", 9146 (tn->flags & TEKRAM_START_CMD) ? " START" : "", 9147 (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", 9148 (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", 9149 sync); 9150 } 9151 } 9152 #endif /* SYM_CONF_DEBUG_NVRAM */ 9153 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9154 9155 /* 9156 * Try reading Symbios or Tekram NVRAM 9157 */ 9158 #ifdef SYM_CONF_NVRAM_SUPPORT 9159 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); 9160 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); 9161 #endif 9162 9163 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) 9164 { 9165 #ifdef SYM_CONF_NVRAM_SUPPORT 9166 /* 9167 * Try to read SYMBIOS nvram. 9168 * Try to read TEKRAM nvram if Symbios nvram not found. 9169 */ 9170 if (SYM_SETUP_SYMBIOS_NVRAM && 9171 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) { 9172 nvp->type = SYM_SYMBIOS_NVRAM; 9173 #ifdef SYM_CONF_DEBUG_NVRAM 9174 sym_display_Symbios_nvram(np, &nvp->data.Symbios); 9175 #endif 9176 } 9177 else if (SYM_SETUP_TEKRAM_NVRAM && 9178 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) { 9179 nvp->type = SYM_TEKRAM_NVRAM; 9180 #ifdef SYM_CONF_DEBUG_NVRAM 9181 sym_display_Tekram_nvram(np, &nvp->data.Tekram); 9182 #endif 9183 } 9184 else 9185 nvp->type = 0; 9186 #else 9187 nvp->type = 0; 9188 #endif 9189 return nvp->type; 9190 } 9191 9192 #ifdef SYM_CONF_NVRAM_SUPPORT 9193 /* 9194 * 24C16 EEPROM reading. 9195 * 9196 * GPOI0 - data in/data out 9197 * GPIO1 - clock 9198 * Symbios NVRAM wiring now also used by Tekram. 9199 */ 9200 9201 #define SET_BIT 0 9202 #define CLR_BIT 1 9203 #define SET_CLK 2 9204 #define CLR_CLK 3 9205 9206 /* 9207 * Set/clear data/clock bit in GPIO0 9208 */ 9209 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, 9210 int bit_mode) 9211 { 9212 UDELAY (5); 9213 switch (bit_mode){ 9214 case SET_BIT: 9215 *gpreg |= write_bit; 9216 break; 9217 case CLR_BIT: 9218 *gpreg &= 0xfe; 9219 break; 9220 case SET_CLK: 9221 *gpreg |= 0x02; 9222 break; 9223 case CLR_CLK: 9224 *gpreg &= 0xfd; 9225 break; 9226 9227 } 9228 OUTB (nc_gpreg, *gpreg); 9229 UDELAY (5); 9230 } 9231 9232 /* 9233 * Send START condition to NVRAM to wake it up. 9234 */ 9235 static void S24C16_start(hcb_p np, u_char *gpreg) 9236 { 9237 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9238 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9239 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9240 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9241 } 9242 9243 /* 9244 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! 9245 */ 9246 static void S24C16_stop(hcb_p np, u_char *gpreg) 9247 { 9248 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9249 S24C16_set_bit(np, 1, gpreg, SET_BIT); 9250 } 9251 9252 /* 9253 * Read or write a bit to the NVRAM, 9254 * read if GPIO0 input else write if GPIO0 output 9255 */ 9256 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, 9257 u_char *gpreg) 9258 { 9259 S24C16_set_bit(np, write_bit, gpreg, SET_BIT); 9260 S24C16_set_bit(np, 0, gpreg, SET_CLK); 9261 if (read_bit) 9262 *read_bit = INB (nc_gpreg); 9263 S24C16_set_bit(np, 0, gpreg, CLR_CLK); 9264 S24C16_set_bit(np, 0, gpreg, CLR_BIT); 9265 } 9266 9267 /* 9268 * Output an ACK to the NVRAM after reading, 9269 * change GPIO0 to output and when done back to an input 9270 */ 9271 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, 9272 u_char *gpcntl) 9273 { 9274 OUTB (nc_gpcntl, *gpcntl & 0xfe); 9275 S24C16_do_bit(np, 0, write_bit, gpreg); 9276 OUTB (nc_gpcntl, *gpcntl); 9277 } 9278 9279 /* 9280 * Input an ACK from NVRAM after writing, 9281 * change GPIO0 to input and when done back to an output 9282 */ 9283 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, 9284 u_char *gpcntl) 9285 { 9286 OUTB (nc_gpcntl, *gpcntl | 0x01); 9287 S24C16_do_bit(np, read_bit, 1, gpreg); 9288 OUTB (nc_gpcntl, *gpcntl); 9289 } 9290 9291 /* 9292 * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, 9293 * GPIO0 must already be set as an output 9294 */ 9295 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, 9296 u_char *gpreg, u_char *gpcntl) 9297 { 9298 int x; 9299 9300 for (x = 0; x < 8; x++) 9301 S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); 9302 9303 S24C16_read_ack(np, ack_data, gpreg, gpcntl); 9304 } 9305 9306 /* 9307 * READ a byte from the NVRAM and then send an ACK to say we have got it, 9308 * GPIO0 must already be set as an input 9309 */ 9310 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, 9311 u_char *gpreg, u_char *gpcntl) 9312 { 9313 int x; 9314 u_char read_bit; 9315 9316 *read_data = 0; 9317 for (x = 0; x < 8; x++) { 9318 S24C16_do_bit(np, &read_bit, 1, gpreg); 9319 *read_data |= ((read_bit & 0x01) << (7 - x)); 9320 } 9321 9322 S24C16_write_ack(np, ack_data, gpreg, gpcntl); 9323 } 9324 9325 /* 9326 * Read 'len' bytes starting at 'offset'. 9327 */ 9328 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) 9329 { 9330 u_char gpcntl, gpreg; 9331 u_char old_gpcntl, old_gpreg; 9332 u_char ack_data; 9333 int retv = 1; 9334 int x; 9335 9336 /* save current state of GPCNTL and GPREG */ 9337 old_gpreg = INB (nc_gpreg); 9338 old_gpcntl = INB (nc_gpcntl); 9339 gpcntl = old_gpcntl & 0x1c; 9340 9341 /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ 9342 OUTB (nc_gpreg, old_gpreg); 9343 OUTB (nc_gpcntl, gpcntl); 9344 9345 /* this is to set NVRAM into a known state with GPIO0/1 both low */ 9346 gpreg = old_gpreg; 9347 S24C16_set_bit(np, 0, &gpreg, CLR_CLK); 9348 S24C16_set_bit(np, 0, &gpreg, CLR_BIT); 9349 9350 /* now set NVRAM inactive with GPIO0/1 both high */ 9351 S24C16_stop(np, &gpreg); 9352 9353 /* activate NVRAM */ 9354 S24C16_start(np, &gpreg); 9355 9356 /* write device code and random address MSB */ 9357 S24C16_write_byte(np, &ack_data, 9358 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9359 if (ack_data & 0x01) 9360 goto out; 9361 9362 /* write random address LSB */ 9363 S24C16_write_byte(np, &ack_data, 9364 offset & 0xff, &gpreg, &gpcntl); 9365 if (ack_data & 0x01) 9366 goto out; 9367 9368 /* regenerate START state to set up for reading */ 9369 S24C16_start(np, &gpreg); 9370 9371 /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ 9372 S24C16_write_byte(np, &ack_data, 9373 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); 9374 if (ack_data & 0x01) 9375 goto out; 9376 9377 /* now set up GPIO0 for inputting data */ 9378 gpcntl |= 0x01; 9379 OUTB (nc_gpcntl, gpcntl); 9380 9381 /* input all requested data - only part of total NVRAM */ 9382 for (x = 0; x < len; x++) 9383 S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); 9384 9385 /* finally put NVRAM back in inactive mode */ 9386 gpcntl &= 0xfe; 9387 OUTB (nc_gpcntl, gpcntl); 9388 S24C16_stop(np, &gpreg); 9389 retv = 0; 9390 out: 9391 /* return GPIO0/1 to original states after having accessed NVRAM */ 9392 OUTB (nc_gpcntl, old_gpcntl); 9393 OUTB (nc_gpreg, old_gpreg); 9394 9395 return retv; 9396 } 9397 9398 #undef SET_BIT /* 0 */ 9399 #undef CLR_BIT /* 1 */ 9400 #undef SET_CLK /* 2 */ 9401 #undef CLR_CLK /* 3 */ 9402 9403 /* 9404 * Try reading Symbios NVRAM. 9405 * Return 0 if OK. 9406 */ 9407 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) 9408 { 9409 static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; 9410 u_char *data = (u_char *) nvram; 9411 int len = sizeof(*nvram); 9412 u_short csum; 9413 int x; 9414 9415 /* probe the 24c16 and read the SYMBIOS 24c16 area */ 9416 if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) 9417 return 1; 9418 9419 /* check valid NVRAM signature, verify byte count and checksum */ 9420 if (nvram->type != 0 || 9421 bcmp(nvram->trailer, Symbios_trailer, 6) || 9422 nvram->byte_count != len - 12) 9423 return 1; 9424 9425 /* verify checksum */ 9426 for (x = 6, csum = 0; x < len - 6; x++) 9427 csum += data[x]; 9428 if (csum != nvram->checksum) 9429 return 1; 9430 9431 return 0; 9432 } 9433 9434 /* 9435 * 93C46 EEPROM reading. 9436 * 9437 * GPOI0 - data in 9438 * GPIO1 - data out 9439 * GPIO2 - clock 9440 * GPIO4 - chip select 9441 * 9442 * Used by Tekram. 9443 */ 9444 9445 /* 9446 * Pulse clock bit in GPIO0 9447 */ 9448 static void T93C46_Clk(hcb_p np, u_char *gpreg) 9449 { 9450 OUTB (nc_gpreg, *gpreg | 0x04); 9451 UDELAY (2); 9452 OUTB (nc_gpreg, *gpreg); 9453 } 9454 9455 /* 9456 * Read bit from NVRAM 9457 */ 9458 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) 9459 { 9460 UDELAY (2); 9461 T93C46_Clk(np, gpreg); 9462 *read_bit = INB (nc_gpreg); 9463 } 9464 9465 /* 9466 * Write bit to GPIO0 9467 */ 9468 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) 9469 { 9470 if (write_bit & 0x01) 9471 *gpreg |= 0x02; 9472 else 9473 *gpreg &= 0xfd; 9474 9475 *gpreg |= 0x10; 9476 9477 OUTB (nc_gpreg, *gpreg); 9478 UDELAY (2); 9479 9480 T93C46_Clk(np, gpreg); 9481 } 9482 9483 /* 9484 * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! 9485 */ 9486 static void T93C46_Stop(hcb_p np, u_char *gpreg) 9487 { 9488 *gpreg &= 0xef; 9489 OUTB (nc_gpreg, *gpreg); 9490 UDELAY (2); 9491 9492 T93C46_Clk(np, gpreg); 9493 } 9494 9495 /* 9496 * Send read command and address to NVRAM 9497 */ 9498 static void T93C46_Send_Command(hcb_p np, u_short write_data, 9499 u_char *read_bit, u_char *gpreg) 9500 { 9501 int x; 9502 9503 /* send 9 bits, start bit (1), command (2), address (6) */ 9504 for (x = 0; x < 9; x++) 9505 T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); 9506 9507 *read_bit = INB (nc_gpreg); 9508 } 9509 9510 /* 9511 * READ 2 bytes from the NVRAM 9512 */ 9513 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) 9514 { 9515 int x; 9516 u_char read_bit; 9517 9518 *nvram_data = 0; 9519 for (x = 0; x < 16; x++) { 9520 T93C46_Read_Bit(np, &read_bit, gpreg); 9521 9522 if (read_bit & 0x01) 9523 *nvram_data |= (0x01 << (15 - x)); 9524 else 9525 *nvram_data &= ~(0x01 << (15 - x)); 9526 } 9527 } 9528 9529 /* 9530 * Read Tekram NvRAM data. 9531 */ 9532 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) 9533 { 9534 u_char read_bit; 9535 int x; 9536 9537 for (x = 0; x < len; x++) { 9538 9539 /* output read command and address */ 9540 T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); 9541 if (read_bit & 0x01) 9542 return 1; /* Bad */ 9543 T93C46_Read_Word(np, &data[x], gpreg); 9544 T93C46_Stop(np, gpreg); 9545 } 9546 9547 return 0; 9548 } 9549 9550 /* 9551 * Try reading 93C46 Tekram NVRAM. 9552 */ 9553 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) 9554 { 9555 u_char gpcntl, gpreg; 9556 u_char old_gpcntl, old_gpreg; 9557 int retv = 1; 9558 9559 /* save current state of GPCNTL and GPREG */ 9560 old_gpreg = INB (nc_gpreg); 9561 old_gpcntl = INB (nc_gpcntl); 9562 9563 /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 9564 1/2/4 out */ 9565 gpreg = old_gpreg & 0xe9; 9566 OUTB (nc_gpreg, gpreg); 9567 gpcntl = (old_gpcntl & 0xe9) | 0x09; 9568 OUTB (nc_gpcntl, gpcntl); 9569 9570 /* input all of NVRAM, 64 words */ 9571 retv = T93C46_Read_Data(np, (u_short *) nvram, 9572 sizeof(*nvram) / sizeof(short), &gpreg); 9573 9574 /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ 9575 OUTB (nc_gpcntl, old_gpcntl); 9576 OUTB (nc_gpreg, old_gpreg); 9577 9578 return retv; 9579 } 9580 9581 /* 9582 * Try reading Tekram NVRAM. 9583 * Return 0 if OK. 9584 */ 9585 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) 9586 { 9587 u_char *data = (u_char *) nvram; 9588 int len = sizeof(*nvram); 9589 u_short csum; 9590 int x; 9591 9592 switch (np->device_id) { 9593 case PCI_ID_SYM53C885: 9594 case PCI_ID_SYM53C895: 9595 case PCI_ID_SYM53C896: 9596 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9597 data, len); 9598 break; 9599 case PCI_ID_SYM53C875: 9600 x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, 9601 data, len); 9602 if (!x) 9603 break; 9604 default: 9605 x = sym_read_T93C46_nvram(np, nvram); 9606 break; 9607 } 9608 if (x) 9609 return 1; 9610 9611 /* verify checksum */ 9612 for (x = 0, csum = 0; x < len - 1; x += 2) 9613 csum += data[x] + (data[x+1] << 8); 9614 if (csum != 0x1234) 9615 return 1; 9616 9617 return 0; 9618 } 9619 9620 #endif /* SYM_CONF_NVRAM_SUPPORT */ 9621