1 /*- 2 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org> 3 * Copyright (c) 1997, 1998, 1999 4 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are 39 * available from http://www.sis.com.tw. 40 * 41 * This driver also supports the NatSemi DP83815. Datasheets are 42 * available from http://www.national.com. 43 * 44 * Written by Bill Paul <wpaul@ee.columbia.edu> 45 * Electrical Engineering Department 46 * Columbia University, New York City 47 */ 48 /* 49 * The SiS 900 is a fairly simple chip. It uses bus master DMA with 50 * simple TX and RX descriptors of 3 longwords in size. The receiver 51 * has a single perfect filter entry for the station address and a 52 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based 53 * transceiver while the 7016 requires an external transceiver chip. 54 * Both chips offer the standard bit-bang MII interface as well as 55 * an enchanced PHY interface which simplifies accessing MII registers. 56 * 57 * The only downside to this chipset is that RX descriptors must be 58 * longword aligned. 59 */ 60 61 #ifdef HAVE_KERNEL_OPTION_HEADERS 62 #include "opt_device_polling.h" 63 #endif 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/bus.h> 68 #include <sys/endian.h> 69 #include <sys/kernel.h> 70 #include <sys/lock.h> 71 #include <sys/malloc.h> 72 #include <sys/mbuf.h> 73 #include <sys/module.h> 74 #include <sys/socket.h> 75 #include <sys/sockio.h> 76 #include <sys/sysctl.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_dl.h> 83 #include <net/if_media.h> 84 #include <net/if_types.h> 85 #include <net/if_vlan_var.h> 86 87 #include <net/bpf.h> 88 89 #include <machine/bus.h> 90 #include <machine/resource.h> 91 #include <sys/rman.h> 92 93 #include <dev/mii/mii.h> 94 #include <dev/mii/mii_bitbang.h> 95 #include <dev/mii/miivar.h> 96 97 #include <dev/pci/pcireg.h> 98 #include <dev/pci/pcivar.h> 99 100 #define SIS_USEIOSPACE 101 102 #include <dev/sis/if_sisreg.h> 103 104 MODULE_DEPEND(sis, pci, 1, 1, 1); 105 MODULE_DEPEND(sis, ether, 1, 1, 1); 106 MODULE_DEPEND(sis, miibus, 1, 1, 1); 107 108 /* "device miibus" required. See GENERIC if you get errors here. */ 109 #include "miibus_if.h" 110 111 #define SIS_LOCK(_sc) mtx_lock(&(_sc)->sis_mtx) 112 #define SIS_UNLOCK(_sc) mtx_unlock(&(_sc)->sis_mtx) 113 #define SIS_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sis_mtx, MA_OWNED) 114 115 /* 116 * register space access macros 117 */ 118 #define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sis_res[0], reg, val) 119 120 #define CSR_READ_4(sc, reg) bus_read_4(sc->sis_res[0], reg) 121 122 #define CSR_READ_2(sc, reg) bus_read_2(sc->sis_res[0], reg) 123 124 #define CSR_BARRIER(sc, reg, length, flags) \ 125 bus_barrier(sc->sis_res[0], reg, length, flags) 126 127 /* 128 * Various supported device vendors/types and their names. 129 */ 130 static const struct sis_type sis_devs[] = { 131 { SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" }, 132 { SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" }, 133 { NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" }, 134 { 0, 0, NULL } 135 }; 136 137 static int sis_detach(device_t); 138 static __inline void sis_discard_rxbuf(struct sis_rxdesc *); 139 static int sis_dma_alloc(struct sis_softc *); 140 static void sis_dma_free(struct sis_softc *); 141 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t, 142 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 143 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int); 144 #ifndef __NO_STRICT_ALIGNMENT 145 static __inline void sis_fixup_rx(struct mbuf *); 146 #endif 147 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *); 148 static int sis_ifmedia_upd(struct ifnet *); 149 static void sis_init(void *); 150 static void sis_initl(struct sis_softc *); 151 static void sis_intr(void *); 152 static int sis_ioctl(struct ifnet *, u_long, caddr_t); 153 static uint32_t sis_mii_bitbang_read(device_t); 154 static void sis_mii_bitbang_write(device_t, uint32_t); 155 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *); 156 static int sis_resume(device_t); 157 static int sis_rxeof(struct sis_softc *); 158 static void sis_rxfilter(struct sis_softc *); 159 static void sis_rxfilter_ns(struct sis_softc *); 160 static void sis_rxfilter_sis(struct sis_softc *); 161 static void sis_start(struct ifnet *); 162 static void sis_startl(struct ifnet *); 163 static void sis_stop(struct sis_softc *); 164 static int sis_suspend(device_t); 165 static void sis_add_sysctls(struct sis_softc *); 166 static void sis_watchdog(struct sis_softc *); 167 static void sis_wol(struct sis_softc *); 168 169 /* 170 * MII bit-bang glue 171 */ 172 static const struct mii_bitbang_ops sis_mii_bitbang_ops = { 173 sis_mii_bitbang_read, 174 sis_mii_bitbang_write, 175 { 176 SIS_MII_DATA, /* MII_BIT_MDO */ 177 SIS_MII_DATA, /* MII_BIT_MDI */ 178 SIS_MII_CLK, /* MII_BIT_MDC */ 179 SIS_MII_DIR, /* MII_BIT_DIR_HOST_PHY */ 180 0, /* MII_BIT_DIR_PHY_HOST */ 181 } 182 }; 183 184 static struct resource_spec sis_res_spec[] = { 185 #ifdef SIS_USEIOSPACE 186 { SYS_RES_IOPORT, SIS_PCI_LOIO, RF_ACTIVE}, 187 #else 188 { SYS_RES_MEMORY, SIS_PCI_LOMEM, RF_ACTIVE}, 189 #endif 190 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE}, 191 { -1, 0 } 192 }; 193 194 #define SIS_SETBIT(sc, reg, x) \ 195 CSR_WRITE_4(sc, reg, \ 196 CSR_READ_4(sc, reg) | (x)) 197 198 #define SIS_CLRBIT(sc, reg, x) \ 199 CSR_WRITE_4(sc, reg, \ 200 CSR_READ_4(sc, reg) & ~(x)) 201 202 #define SIO_SET(x) \ 203 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x) 204 205 #define SIO_CLR(x) \ 206 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x) 207 208 /* 209 * Routine to reverse the bits in a word. Stolen almost 210 * verbatim from /usr/games/fortune. 211 */ 212 static uint16_t 213 sis_reverse(uint16_t n) 214 { 215 n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa); 216 n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc); 217 n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0); 218 n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00); 219 220 return (n); 221 } 222 223 static void 224 sis_delay(struct sis_softc *sc) 225 { 226 int idx; 227 228 for (idx = (300 / 33) + 1; idx > 0; idx--) 229 CSR_READ_4(sc, SIS_CSR); 230 } 231 232 static void 233 sis_eeprom_idle(struct sis_softc *sc) 234 { 235 int i; 236 237 SIO_SET(SIS_EECTL_CSEL); 238 sis_delay(sc); 239 SIO_SET(SIS_EECTL_CLK); 240 sis_delay(sc); 241 242 for (i = 0; i < 25; i++) { 243 SIO_CLR(SIS_EECTL_CLK); 244 sis_delay(sc); 245 SIO_SET(SIS_EECTL_CLK); 246 sis_delay(sc); 247 } 248 249 SIO_CLR(SIS_EECTL_CLK); 250 sis_delay(sc); 251 SIO_CLR(SIS_EECTL_CSEL); 252 sis_delay(sc); 253 CSR_WRITE_4(sc, SIS_EECTL, 0x00000000); 254 } 255 256 /* 257 * Send a read command and address to the EEPROM, check for ACK. 258 */ 259 static void 260 sis_eeprom_putbyte(struct sis_softc *sc, int addr) 261 { 262 int d, i; 263 264 d = addr | SIS_EECMD_READ; 265 266 /* 267 * Feed in each bit and stobe the clock. 268 */ 269 for (i = 0x400; i; i >>= 1) { 270 if (d & i) { 271 SIO_SET(SIS_EECTL_DIN); 272 } else { 273 SIO_CLR(SIS_EECTL_DIN); 274 } 275 sis_delay(sc); 276 SIO_SET(SIS_EECTL_CLK); 277 sis_delay(sc); 278 SIO_CLR(SIS_EECTL_CLK); 279 sis_delay(sc); 280 } 281 } 282 283 /* 284 * Read a word of data stored in the EEPROM at address 'addr.' 285 */ 286 static void 287 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest) 288 { 289 int i; 290 uint16_t word = 0; 291 292 /* Force EEPROM to idle state. */ 293 sis_eeprom_idle(sc); 294 295 /* Enter EEPROM access mode. */ 296 sis_delay(sc); 297 SIO_CLR(SIS_EECTL_CLK); 298 sis_delay(sc); 299 SIO_SET(SIS_EECTL_CSEL); 300 sis_delay(sc); 301 302 /* 303 * Send address of word we want to read. 304 */ 305 sis_eeprom_putbyte(sc, addr); 306 307 /* 308 * Start reading bits from EEPROM. 309 */ 310 for (i = 0x8000; i; i >>= 1) { 311 SIO_SET(SIS_EECTL_CLK); 312 sis_delay(sc); 313 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT) 314 word |= i; 315 sis_delay(sc); 316 SIO_CLR(SIS_EECTL_CLK); 317 sis_delay(sc); 318 } 319 320 /* Turn off EEPROM access mode. */ 321 sis_eeprom_idle(sc); 322 323 *dest = word; 324 } 325 326 /* 327 * Read a sequence of words from the EEPROM. 328 */ 329 static void 330 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap) 331 { 332 int i; 333 uint16_t word = 0, *ptr; 334 335 for (i = 0; i < cnt; i++) { 336 sis_eeprom_getword(sc, off + i, &word); 337 ptr = (uint16_t *)(dest + (i * 2)); 338 if (swap) 339 *ptr = ntohs(word); 340 else 341 *ptr = word; 342 } 343 } 344 345 #if defined(__i386__) || defined(__amd64__) 346 static device_t 347 sis_find_bridge(device_t dev) 348 { 349 devclass_t pci_devclass; 350 device_t *pci_devices; 351 int pci_count = 0; 352 device_t *pci_children; 353 int pci_childcount = 0; 354 device_t *busp, *childp; 355 device_t child = NULL; 356 int i, j; 357 358 if ((pci_devclass = devclass_find("pci")) == NULL) 359 return (NULL); 360 361 devclass_get_devices(pci_devclass, &pci_devices, &pci_count); 362 363 for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) { 364 if (device_get_children(*busp, &pci_children, &pci_childcount)) 365 continue; 366 for (j = 0, childp = pci_children; 367 j < pci_childcount; j++, childp++) { 368 if (pci_get_vendor(*childp) == SIS_VENDORID && 369 pci_get_device(*childp) == 0x0008) { 370 child = *childp; 371 free(pci_children, M_TEMP); 372 goto done; 373 } 374 } 375 free(pci_children, M_TEMP); 376 } 377 378 done: 379 free(pci_devices, M_TEMP); 380 return (child); 381 } 382 383 static void 384 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt) 385 { 386 device_t bridge; 387 uint8_t reg; 388 int i; 389 bus_space_tag_t btag; 390 391 bridge = sis_find_bridge(dev); 392 if (bridge == NULL) 393 return; 394 reg = pci_read_config(bridge, 0x48, 1); 395 pci_write_config(bridge, 0x48, reg|0x40, 1); 396 397 /* XXX */ 398 #if defined(__amd64__) || defined(__i386__) 399 btag = X86_BUS_SPACE_IO; 400 #endif 401 402 for (i = 0; i < cnt; i++) { 403 bus_space_write_1(btag, 0x0, 0x70, i + off); 404 *(dest + i) = bus_space_read_1(btag, 0x0, 0x71); 405 } 406 407 pci_write_config(bridge, 0x48, reg & ~0x40, 1); 408 } 409 410 static void 411 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest) 412 { 413 uint32_t filtsave, csrsave; 414 415 filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL); 416 csrsave = CSR_READ_4(sc, SIS_CSR); 417 418 CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave); 419 CSR_WRITE_4(sc, SIS_CSR, 0); 420 421 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE); 422 423 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); 424 ((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA); 425 CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1); 426 ((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA); 427 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); 428 ((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA); 429 430 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave); 431 CSR_WRITE_4(sc, SIS_CSR, csrsave); 432 } 433 #endif 434 435 /* 436 * Read the MII serial port for the MII bit-bang module. 437 */ 438 static uint32_t 439 sis_mii_bitbang_read(device_t dev) 440 { 441 struct sis_softc *sc; 442 uint32_t val; 443 444 sc = device_get_softc(dev); 445 446 val = CSR_READ_4(sc, SIS_EECTL); 447 CSR_BARRIER(sc, SIS_EECTL, 4, 448 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 449 return (val); 450 } 451 452 /* 453 * Write the MII serial port for the MII bit-bang module. 454 */ 455 static void 456 sis_mii_bitbang_write(device_t dev, uint32_t val) 457 { 458 struct sis_softc *sc; 459 460 sc = device_get_softc(dev); 461 462 CSR_WRITE_4(sc, SIS_EECTL, val); 463 CSR_BARRIER(sc, SIS_EECTL, 4, 464 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 465 } 466 467 static int 468 sis_miibus_readreg(device_t dev, int phy, int reg) 469 { 470 struct sis_softc *sc; 471 472 sc = device_get_softc(dev); 473 474 if (sc->sis_type == SIS_TYPE_83815) { 475 if (phy != 0) 476 return (0); 477 /* 478 * The NatSemi chip can take a while after 479 * a reset to come ready, during which the BMSR 480 * returns a value of 0. This is *never* supposed 481 * to happen: some of the BMSR bits are meant to 482 * be hardwired in the on position, and this can 483 * confuse the miibus code a bit during the probe 484 * and attach phase. So we make an effort to check 485 * for this condition and wait for it to clear. 486 */ 487 if (!CSR_READ_4(sc, NS_BMSR)) 488 DELAY(1000); 489 return CSR_READ_4(sc, NS_BMCR + (reg * 4)); 490 } 491 492 /* 493 * Chipsets < SIS_635 seem not to be able to read/write 494 * through mdio. Use the enhanced PHY access register 495 * again for them. 496 */ 497 if (sc->sis_type == SIS_TYPE_900 && 498 sc->sis_rev < SIS_REV_635) { 499 int i, val = 0; 500 501 if (phy != 0) 502 return (0); 503 504 CSR_WRITE_4(sc, SIS_PHYCTL, 505 (phy << 11) | (reg << 6) | SIS_PHYOP_READ); 506 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); 507 508 for (i = 0; i < SIS_TIMEOUT; i++) { 509 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) 510 break; 511 } 512 513 if (i == SIS_TIMEOUT) { 514 device_printf(sc->sis_dev, 515 "PHY failed to come ready\n"); 516 return (0); 517 } 518 519 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF; 520 521 if (val == 0xFFFF) 522 return (0); 523 524 return (val); 525 } else 526 return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy, 527 reg)); 528 } 529 530 static int 531 sis_miibus_writereg(device_t dev, int phy, int reg, int data) 532 { 533 struct sis_softc *sc; 534 535 sc = device_get_softc(dev); 536 537 if (sc->sis_type == SIS_TYPE_83815) { 538 if (phy != 0) 539 return (0); 540 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data); 541 return (0); 542 } 543 544 /* 545 * Chipsets < SIS_635 seem not to be able to read/write 546 * through mdio. Use the enhanced PHY access register 547 * again for them. 548 */ 549 if (sc->sis_type == SIS_TYPE_900 && 550 sc->sis_rev < SIS_REV_635) { 551 int i; 552 553 if (phy != 0) 554 return (0); 555 556 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) | 557 (reg << 6) | SIS_PHYOP_WRITE); 558 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); 559 560 for (i = 0; i < SIS_TIMEOUT; i++) { 561 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) 562 break; 563 } 564 565 if (i == SIS_TIMEOUT) 566 device_printf(sc->sis_dev, 567 "PHY failed to come ready\n"); 568 } else 569 mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg, 570 data); 571 return (0); 572 } 573 574 static void 575 sis_miibus_statchg(device_t dev) 576 { 577 struct sis_softc *sc; 578 struct mii_data *mii; 579 struct ifnet *ifp; 580 uint32_t reg; 581 582 sc = device_get_softc(dev); 583 SIS_LOCK_ASSERT(sc); 584 585 mii = device_get_softc(sc->sis_miibus); 586 ifp = sc->sis_ifp; 587 if (mii == NULL || ifp == NULL || 588 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 589 return; 590 591 sc->sis_flags &= ~SIS_FLAG_LINK; 592 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 593 (IFM_ACTIVE | IFM_AVALID)) { 594 switch (IFM_SUBTYPE(mii->mii_media_active)) { 595 case IFM_10_T: 596 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10); 597 sc->sis_flags |= SIS_FLAG_LINK; 598 break; 599 case IFM_100_TX: 600 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); 601 sc->sis_flags |= SIS_FLAG_LINK; 602 break; 603 default: 604 break; 605 } 606 } 607 608 if ((sc->sis_flags & SIS_FLAG_LINK) == 0) { 609 /* 610 * Stopping MACs seem to reset SIS_TX_LISTPTR and 611 * SIS_RX_LISTPTR which in turn requires resetting 612 * TX/RX buffers. So just don't do anything for 613 * lost link. 614 */ 615 return; 616 } 617 618 /* Set full/half duplex mode. */ 619 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 620 SIS_SETBIT(sc, SIS_TX_CFG, 621 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); 622 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); 623 } else { 624 SIS_CLRBIT(sc, SIS_TX_CFG, 625 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); 626 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); 627 } 628 629 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { 630 /* 631 * MPII03.D: Half Duplex Excessive Collisions. 632 * Also page 49 in 83816 manual 633 */ 634 SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D); 635 } 636 637 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A && 638 IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 639 /* 640 * Short Cable Receive Errors (MP21.E) 641 */ 642 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); 643 reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff; 644 CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000); 645 DELAY(100); 646 reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff; 647 if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) { 648 device_printf(sc->sis_dev, 649 "Applying short cable fix (reg=%x)\n", reg); 650 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8); 651 SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20); 652 } 653 CSR_WRITE_4(sc, NS_PHY_PAGE, 0); 654 } 655 /* Enable TX/RX MACs. */ 656 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); 657 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE); 658 } 659 660 static uint32_t 661 sis_mchash(struct sis_softc *sc, const uint8_t *addr) 662 { 663 uint32_t crc; 664 665 /* Compute CRC for the address value. */ 666 crc = ether_crc32_be(addr, ETHER_ADDR_LEN); 667 668 /* 669 * return the filter bit position 670 * 671 * The NatSemi chip has a 512-bit filter, which is 672 * different than the SiS, so we special-case it. 673 */ 674 if (sc->sis_type == SIS_TYPE_83815) 675 return (crc >> 23); 676 else if (sc->sis_rev >= SIS_REV_635 || 677 sc->sis_rev == SIS_REV_900B) 678 return (crc >> 24); 679 else 680 return (crc >> 25); 681 } 682 683 static void 684 sis_rxfilter(struct sis_softc *sc) 685 { 686 687 SIS_LOCK_ASSERT(sc); 688 689 if (sc->sis_type == SIS_TYPE_83815) 690 sis_rxfilter_ns(sc); 691 else 692 sis_rxfilter_sis(sc); 693 } 694 695 static void 696 sis_rxfilter_ns(struct sis_softc *sc) 697 { 698 struct ifnet *ifp; 699 struct ifmultiaddr *ifma; 700 uint32_t h, i, filter; 701 int bit, index; 702 703 ifp = sc->sis_ifp; 704 filter = CSR_READ_4(sc, SIS_RXFILT_CTL); 705 if (filter & SIS_RXFILTCTL_ENABLE) { 706 /* 707 * Filter should be disabled to program other bits. 708 */ 709 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE); 710 CSR_READ_4(sc, SIS_RXFILT_CTL); 711 } 712 filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT | 713 NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD | 714 SIS_RXFILTCTL_ALLMULTI); 715 716 if (ifp->if_flags & IFF_BROADCAST) 717 filter |= SIS_RXFILTCTL_BROAD; 718 /* 719 * For the NatSemi chip, we have to explicitly enable the 720 * reception of ARP frames, as well as turn on the 'perfect 721 * match' filter where we store the station address, otherwise 722 * we won't receive unicasts meant for this host. 723 */ 724 filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT; 725 726 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { 727 filter |= SIS_RXFILTCTL_ALLMULTI; 728 if (ifp->if_flags & IFF_PROMISC) 729 filter |= SIS_RXFILTCTL_ALLPHYS; 730 } else { 731 /* 732 * We have to explicitly enable the multicast hash table 733 * on the NatSemi chip if we want to use it, which we do. 734 */ 735 filter |= NS_RXFILTCTL_MCHASH; 736 737 /* first, zot all the existing hash bits */ 738 for (i = 0; i < 32; i++) { 739 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + 740 (i * 2)); 741 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0); 742 } 743 744 if_maddr_rlock(ifp); 745 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 746 if (ifma->ifma_addr->sa_family != AF_LINK) 747 continue; 748 h = sis_mchash(sc, 749 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 750 index = h >> 3; 751 bit = h & 0x1F; 752 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + 753 index); 754 if (bit > 0xF) 755 bit -= 0x10; 756 SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit)); 757 } 758 if_maddr_runlock(ifp); 759 } 760 761 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter); 762 CSR_READ_4(sc, SIS_RXFILT_CTL); 763 } 764 765 static void 766 sis_rxfilter_sis(struct sis_softc *sc) 767 { 768 struct ifnet *ifp; 769 struct ifmultiaddr *ifma; 770 uint32_t filter, h, i, n; 771 uint16_t hashes[16]; 772 773 ifp = sc->sis_ifp; 774 775 /* hash table size */ 776 if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) 777 n = 16; 778 else 779 n = 8; 780 781 filter = CSR_READ_4(sc, SIS_RXFILT_CTL); 782 if (filter & SIS_RXFILTCTL_ENABLE) { 783 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE); 784 CSR_READ_4(sc, SIS_RXFILT_CTL); 785 } 786 filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD | 787 SIS_RXFILTCTL_ALLMULTI); 788 if (ifp->if_flags & IFF_BROADCAST) 789 filter |= SIS_RXFILTCTL_BROAD; 790 791 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { 792 filter |= SIS_RXFILTCTL_ALLMULTI; 793 if (ifp->if_flags & IFF_PROMISC) 794 filter |= SIS_RXFILTCTL_ALLPHYS; 795 for (i = 0; i < n; i++) 796 hashes[i] = ~0; 797 } else { 798 for (i = 0; i < n; i++) 799 hashes[i] = 0; 800 i = 0; 801 if_maddr_rlock(ifp); 802 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 803 if (ifma->ifma_addr->sa_family != AF_LINK) 804 continue; 805 h = sis_mchash(sc, 806 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 807 hashes[h >> 4] |= 1 << (h & 0xf); 808 i++; 809 } 810 if_maddr_runlock(ifp); 811 if (i > n) { 812 filter |= SIS_RXFILTCTL_ALLMULTI; 813 for (i = 0; i < n; i++) 814 hashes[i] = ~0; 815 } 816 } 817 818 for (i = 0; i < n; i++) { 819 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16); 820 CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]); 821 } 822 823 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter); 824 CSR_READ_4(sc, SIS_RXFILT_CTL); 825 } 826 827 static void 828 sis_reset(struct sis_softc *sc) 829 { 830 int i; 831 832 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET); 833 834 for (i = 0; i < SIS_TIMEOUT; i++) { 835 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET)) 836 break; 837 } 838 839 if (i == SIS_TIMEOUT) 840 device_printf(sc->sis_dev, "reset never completed\n"); 841 842 /* Wait a little while for the chip to get its brains in order. */ 843 DELAY(1000); 844 845 /* 846 * If this is a NetSemi chip, make sure to clear 847 * PME mode. 848 */ 849 if (sc->sis_type == SIS_TYPE_83815) { 850 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS); 851 CSR_WRITE_4(sc, NS_CLKRUN, 0); 852 } else { 853 /* Disable WOL functions. */ 854 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0); 855 } 856 } 857 858 /* 859 * Probe for an SiS chip. Check the PCI vendor and device 860 * IDs against our list and return a device name if we find a match. 861 */ 862 static int 863 sis_probe(device_t dev) 864 { 865 const struct sis_type *t; 866 867 t = sis_devs; 868 869 while (t->sis_name != NULL) { 870 if ((pci_get_vendor(dev) == t->sis_vid) && 871 (pci_get_device(dev) == t->sis_did)) { 872 device_set_desc(dev, t->sis_name); 873 return (BUS_PROBE_DEFAULT); 874 } 875 t++; 876 } 877 878 return (ENXIO); 879 } 880 881 /* 882 * Attach the interface. Allocate softc structures, do ifmedia 883 * setup and ethernet/BPF attach. 884 */ 885 static int 886 sis_attach(device_t dev) 887 { 888 u_char eaddr[ETHER_ADDR_LEN]; 889 struct sis_softc *sc; 890 struct ifnet *ifp; 891 int error = 0, pmc, waittime = 0; 892 893 waittime = 0; 894 sc = device_get_softc(dev); 895 896 sc->sis_dev = dev; 897 898 mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 899 MTX_DEF); 900 callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0); 901 902 if (pci_get_device(dev) == SIS_DEVICEID_900) 903 sc->sis_type = SIS_TYPE_900; 904 if (pci_get_device(dev) == SIS_DEVICEID_7016) 905 sc->sis_type = SIS_TYPE_7016; 906 if (pci_get_vendor(dev) == NS_VENDORID) 907 sc->sis_type = SIS_TYPE_83815; 908 909 sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1); 910 /* 911 * Map control/status registers. 912 */ 913 pci_enable_busmaster(dev); 914 915 error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res); 916 if (error) { 917 device_printf(dev, "couldn't allocate resources\n"); 918 goto fail; 919 } 920 921 /* Reset the adapter. */ 922 sis_reset(sc); 923 924 if (sc->sis_type == SIS_TYPE_900 && 925 (sc->sis_rev == SIS_REV_635 || 926 sc->sis_rev == SIS_REV_900B)) { 927 SIO_SET(SIS_CFG_RND_CNT); 928 SIO_SET(SIS_CFG_PERR_DETECT); 929 } 930 931 /* 932 * Get station address from the EEPROM. 933 */ 934 switch (pci_get_vendor(dev)) { 935 case NS_VENDORID: 936 sc->sis_srr = CSR_READ_4(sc, NS_SRR); 937 938 /* We can't update the device description, so spew */ 939 if (sc->sis_srr == NS_SRR_15C) 940 device_printf(dev, "Silicon Revision: DP83815C\n"); 941 else if (sc->sis_srr == NS_SRR_15D) 942 device_printf(dev, "Silicon Revision: DP83815D\n"); 943 else if (sc->sis_srr == NS_SRR_16A) 944 device_printf(dev, "Silicon Revision: DP83816A\n"); 945 else 946 device_printf(dev, "Silicon Revision %x\n", sc->sis_srr); 947 948 /* 949 * Reading the MAC address out of the EEPROM on 950 * the NatSemi chip takes a bit more work than 951 * you'd expect. The address spans 4 16-bit words, 952 * with the first word containing only a single bit. 953 * You have to shift everything over one bit to 954 * get it aligned properly. Also, the bits are 955 * stored backwards (the LSB is really the MSB, 956 * and so on) so you have to reverse them in order 957 * to get the MAC address into the form we want. 958 * Why? Who the hell knows. 959 */ 960 { 961 uint16_t tmp[4]; 962 963 sis_read_eeprom(sc, (caddr_t)&tmp, 964 NS_EE_NODEADDR, 4, 0); 965 966 /* Shift everything over one bit. */ 967 tmp[3] = tmp[3] >> 1; 968 tmp[3] |= tmp[2] << 15; 969 tmp[2] = tmp[2] >> 1; 970 tmp[2] |= tmp[1] << 15; 971 tmp[1] = tmp[1] >> 1; 972 tmp[1] |= tmp[0] << 15; 973 974 /* Now reverse all the bits. */ 975 tmp[3] = sis_reverse(tmp[3]); 976 tmp[2] = sis_reverse(tmp[2]); 977 tmp[1] = sis_reverse(tmp[1]); 978 979 eaddr[0] = (tmp[1] >> 0) & 0xFF; 980 eaddr[1] = (tmp[1] >> 8) & 0xFF; 981 eaddr[2] = (tmp[2] >> 0) & 0xFF; 982 eaddr[3] = (tmp[2] >> 8) & 0xFF; 983 eaddr[4] = (tmp[3] >> 0) & 0xFF; 984 eaddr[5] = (tmp[3] >> 8) & 0xFF; 985 } 986 break; 987 case SIS_VENDORID: 988 default: 989 #if defined(__i386__) || defined(__amd64__) 990 /* 991 * If this is a SiS 630E chipset with an embedded 992 * SiS 900 controller, we have to read the MAC address 993 * from the APC CMOS RAM. Our method for doing this 994 * is very ugly since we have to reach out and grab 995 * ahold of hardware for which we cannot properly 996 * allocate resources. This code is only compiled on 997 * the i386 architecture since the SiS 630E chipset 998 * is for x86 motherboards only. Note that there are 999 * a lot of magic numbers in this hack. These are 1000 * taken from SiS's Linux driver. I'd like to replace 1001 * them with proper symbolic definitions, but that 1002 * requires some datasheets that I don't have access 1003 * to at the moment. 1004 */ 1005 if (sc->sis_rev == SIS_REV_630S || 1006 sc->sis_rev == SIS_REV_630E || 1007 sc->sis_rev == SIS_REV_630EA1) 1008 sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6); 1009 1010 else if (sc->sis_rev == SIS_REV_635 || 1011 sc->sis_rev == SIS_REV_630ET) 1012 sis_read_mac(sc, dev, (caddr_t)&eaddr); 1013 else if (sc->sis_rev == SIS_REV_96x) { 1014 /* Allow to read EEPROM from LAN. It is shared 1015 * between a 1394 controller and the NIC and each 1016 * time we access it, we need to set SIS_EECMD_REQ. 1017 */ 1018 SIO_SET(SIS_EECMD_REQ); 1019 for (waittime = 0; waittime < SIS_TIMEOUT; 1020 waittime++) { 1021 /* Force EEPROM to idle state. */ 1022 sis_eeprom_idle(sc); 1023 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) { 1024 sis_read_eeprom(sc, (caddr_t)&eaddr, 1025 SIS_EE_NODEADDR, 3, 0); 1026 break; 1027 } 1028 DELAY(1); 1029 } 1030 /* 1031 * Set SIS_EECTL_CLK to high, so a other master 1032 * can operate on the i2c bus. 1033 */ 1034 SIO_SET(SIS_EECTL_CLK); 1035 /* Refuse EEPROM access by LAN */ 1036 SIO_SET(SIS_EECMD_DONE); 1037 } else 1038 #endif 1039 sis_read_eeprom(sc, (caddr_t)&eaddr, 1040 SIS_EE_NODEADDR, 3, 0); 1041 break; 1042 } 1043 1044 sis_add_sysctls(sc); 1045 1046 /* Allocate DMA'able memory. */ 1047 if ((error = sis_dma_alloc(sc)) != 0) 1048 goto fail; 1049 1050 ifp = sc->sis_ifp = if_alloc(IFT_ETHER); 1051 if (ifp == NULL) { 1052 device_printf(dev, "can not if_alloc()\n"); 1053 error = ENOSPC; 1054 goto fail; 1055 } 1056 ifp->if_softc = sc; 1057 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1058 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1059 ifp->if_ioctl = sis_ioctl; 1060 ifp->if_start = sis_start; 1061 ifp->if_init = sis_init; 1062 IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1); 1063 ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1; 1064 IFQ_SET_READY(&ifp->if_snd); 1065 1066 if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) { 1067 if (sc->sis_type == SIS_TYPE_83815) 1068 ifp->if_capabilities |= IFCAP_WOL; 1069 else 1070 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 1071 ifp->if_capenable = ifp->if_capabilities; 1072 } 1073 1074 /* 1075 * Do MII setup. 1076 */ 1077 error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd, 1078 sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); 1079 if (error != 0) { 1080 device_printf(dev, "attaching PHYs failed\n"); 1081 goto fail; 1082 } 1083 1084 /* 1085 * Call MI attach routine. 1086 */ 1087 ether_ifattach(ifp, eaddr); 1088 1089 /* 1090 * Tell the upper layer(s) we support long frames. 1091 */ 1092 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 1093 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1094 ifp->if_capenable = ifp->if_capabilities; 1095 #ifdef DEVICE_POLLING 1096 ifp->if_capabilities |= IFCAP_POLLING; 1097 #endif 1098 1099 /* Hook interrupt last to avoid having to lock softc */ 1100 error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE, 1101 NULL, sis_intr, sc, &sc->sis_intrhand); 1102 1103 if (error) { 1104 device_printf(dev, "couldn't set up irq\n"); 1105 ether_ifdetach(ifp); 1106 goto fail; 1107 } 1108 1109 fail: 1110 if (error) 1111 sis_detach(dev); 1112 1113 return (error); 1114 } 1115 1116 /* 1117 * Shutdown hardware and free up resources. This can be called any 1118 * time after the mutex has been initialized. It is called in both 1119 * the error case in attach and the normal detach case so it needs 1120 * to be careful about only freeing resources that have actually been 1121 * allocated. 1122 */ 1123 static int 1124 sis_detach(device_t dev) 1125 { 1126 struct sis_softc *sc; 1127 struct ifnet *ifp; 1128 1129 sc = device_get_softc(dev); 1130 KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized")); 1131 ifp = sc->sis_ifp; 1132 1133 #ifdef DEVICE_POLLING 1134 if (ifp->if_capenable & IFCAP_POLLING) 1135 ether_poll_deregister(ifp); 1136 #endif 1137 1138 /* These should only be active if attach succeeded. */ 1139 if (device_is_attached(dev)) { 1140 SIS_LOCK(sc); 1141 sis_stop(sc); 1142 SIS_UNLOCK(sc); 1143 callout_drain(&sc->sis_stat_ch); 1144 ether_ifdetach(ifp); 1145 } 1146 if (sc->sis_miibus) 1147 device_delete_child(dev, sc->sis_miibus); 1148 bus_generic_detach(dev); 1149 1150 if (sc->sis_intrhand) 1151 bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand); 1152 bus_release_resources(dev, sis_res_spec, sc->sis_res); 1153 1154 if (ifp) 1155 if_free(ifp); 1156 1157 sis_dma_free(sc); 1158 1159 mtx_destroy(&sc->sis_mtx); 1160 1161 return (0); 1162 } 1163 1164 struct sis_dmamap_arg { 1165 bus_addr_t sis_busaddr; 1166 }; 1167 1168 static void 1169 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1170 { 1171 struct sis_dmamap_arg *ctx; 1172 1173 if (error != 0) 1174 return; 1175 1176 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1177 1178 ctx = (struct sis_dmamap_arg *)arg; 1179 ctx->sis_busaddr = segs[0].ds_addr; 1180 } 1181 1182 static int 1183 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment, 1184 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 1185 bus_addr_t *paddr, const char *msg) 1186 { 1187 struct sis_dmamap_arg ctx; 1188 int error; 1189 1190 error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0, 1191 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1, 1192 maxsize, 0, NULL, NULL, tag); 1193 if (error != 0) { 1194 device_printf(sc->sis_dev, 1195 "could not create %s dma tag\n", msg); 1196 return (ENOMEM); 1197 } 1198 /* Allocate DMA'able memory for ring. */ 1199 error = bus_dmamem_alloc(*tag, (void **)ring, 1200 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 1201 if (error != 0) { 1202 device_printf(sc->sis_dev, 1203 "could not allocate DMA'able memory for %s\n", msg); 1204 return (ENOMEM); 1205 } 1206 /* Load the address of the ring. */ 1207 ctx.sis_busaddr = 0; 1208 error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb, 1209 &ctx, BUS_DMA_NOWAIT); 1210 if (error != 0) { 1211 device_printf(sc->sis_dev, 1212 "could not load DMA'able memory for %s\n", msg); 1213 return (ENOMEM); 1214 } 1215 *paddr = ctx.sis_busaddr; 1216 return (0); 1217 } 1218 1219 static int 1220 sis_dma_alloc(struct sis_softc *sc) 1221 { 1222 struct sis_rxdesc *rxd; 1223 struct sis_txdesc *txd; 1224 int error, i; 1225 1226 /* Allocate the parent bus DMA tag appropriate for PCI. */ 1227 error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev), 1228 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1229 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 1230 0, NULL, NULL, &sc->sis_parent_tag); 1231 if (error != 0) { 1232 device_printf(sc->sis_dev, 1233 "could not allocate parent dma tag\n"); 1234 return (ENOMEM); 1235 } 1236 1237 /* Create RX ring. */ 1238 error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ, 1239 &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list, 1240 &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring"); 1241 if (error) 1242 return (error); 1243 1244 /* Create TX ring. */ 1245 error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ, 1246 &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list, 1247 &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring"); 1248 if (error) 1249 return (error); 1250 1251 /* Create tag for RX mbufs. */ 1252 error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0, 1253 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, 1254 MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag); 1255 if (error) { 1256 device_printf(sc->sis_dev, "could not allocate RX dma tag\n"); 1257 return (error); 1258 } 1259 1260 /* Create tag for TX mbufs. */ 1261 error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0, 1262 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1263 MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL, 1264 &sc->sis_tx_tag); 1265 if (error) { 1266 device_printf(sc->sis_dev, "could not allocate TX dma tag\n"); 1267 return (error); 1268 } 1269 1270 /* Create DMA maps for RX buffers. */ 1271 error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap); 1272 if (error) { 1273 device_printf(sc->sis_dev, 1274 "can't create spare DMA map for RX\n"); 1275 return (error); 1276 } 1277 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1278 rxd = &sc->sis_rxdesc[i]; 1279 rxd->rx_m = NULL; 1280 error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap); 1281 if (error) { 1282 device_printf(sc->sis_dev, 1283 "can't create DMA map for RX\n"); 1284 return (error); 1285 } 1286 } 1287 1288 /* Create DMA maps for TX buffers. */ 1289 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1290 txd = &sc->sis_txdesc[i]; 1291 txd->tx_m = NULL; 1292 error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap); 1293 if (error) { 1294 device_printf(sc->sis_dev, 1295 "can't create DMA map for TX\n"); 1296 return (error); 1297 } 1298 } 1299 1300 return (0); 1301 } 1302 1303 static void 1304 sis_dma_free(struct sis_softc *sc) 1305 { 1306 struct sis_rxdesc *rxd; 1307 struct sis_txdesc *txd; 1308 int i; 1309 1310 /* Destroy DMA maps for RX buffers. */ 1311 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1312 rxd = &sc->sis_rxdesc[i]; 1313 if (rxd->rx_dmamap) 1314 bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap); 1315 } 1316 if (sc->sis_rx_sparemap) 1317 bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap); 1318 1319 /* Destroy DMA maps for TX buffers. */ 1320 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1321 txd = &sc->sis_txdesc[i]; 1322 if (txd->tx_dmamap) 1323 bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap); 1324 } 1325 1326 if (sc->sis_rx_tag) 1327 bus_dma_tag_destroy(sc->sis_rx_tag); 1328 if (sc->sis_tx_tag) 1329 bus_dma_tag_destroy(sc->sis_tx_tag); 1330 1331 /* Destroy RX ring. */ 1332 if (sc->sis_rx_paddr) 1333 bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map); 1334 if (sc->sis_rx_list) 1335 bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list, 1336 sc->sis_rx_list_map); 1337 1338 if (sc->sis_rx_list_tag) 1339 bus_dma_tag_destroy(sc->sis_rx_list_tag); 1340 1341 /* Destroy TX ring. */ 1342 if (sc->sis_tx_paddr) 1343 bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map); 1344 1345 if (sc->sis_tx_list) 1346 bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list, 1347 sc->sis_tx_list_map); 1348 1349 if (sc->sis_tx_list_tag) 1350 bus_dma_tag_destroy(sc->sis_tx_list_tag); 1351 1352 /* Destroy the parent tag. */ 1353 if (sc->sis_parent_tag) 1354 bus_dma_tag_destroy(sc->sis_parent_tag); 1355 } 1356 1357 /* 1358 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that 1359 * we arrange the descriptors in a closed ring, so that the last descriptor 1360 * points back to the first. 1361 */ 1362 static int 1363 sis_ring_init(struct sis_softc *sc) 1364 { 1365 struct sis_rxdesc *rxd; 1366 struct sis_txdesc *txd; 1367 bus_addr_t next; 1368 int error, i; 1369 1370 bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ); 1371 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1372 txd = &sc->sis_txdesc[i]; 1373 txd->tx_m = NULL; 1374 if (i == SIS_TX_LIST_CNT - 1) 1375 next = SIS_TX_RING_ADDR(sc, 0); 1376 else 1377 next = SIS_TX_RING_ADDR(sc, i + 1); 1378 sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next)); 1379 } 1380 sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0; 1381 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, 1382 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1383 1384 sc->sis_rx_cons = 0; 1385 bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ); 1386 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1387 rxd = &sc->sis_rxdesc[i]; 1388 rxd->rx_desc = &sc->sis_rx_list[i]; 1389 if (i == SIS_RX_LIST_CNT - 1) 1390 next = SIS_RX_RING_ADDR(sc, 0); 1391 else 1392 next = SIS_RX_RING_ADDR(sc, i + 1); 1393 rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next)); 1394 error = sis_newbuf(sc, rxd); 1395 if (error) 1396 return (error); 1397 } 1398 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, 1399 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1400 1401 return (0); 1402 } 1403 1404 /* 1405 * Initialize an RX descriptor and attach an MBUF cluster. 1406 */ 1407 static int 1408 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd) 1409 { 1410 struct mbuf *m; 1411 bus_dma_segment_t segs[1]; 1412 bus_dmamap_t map; 1413 int nsegs; 1414 1415 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1416 if (m == NULL) 1417 return (ENOBUFS); 1418 m->m_len = m->m_pkthdr.len = SIS_RXLEN; 1419 #ifndef __NO_STRICT_ALIGNMENT 1420 m_adj(m, SIS_RX_BUF_ALIGN); 1421 #endif 1422 1423 if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m, 1424 segs, &nsegs, 0) != 0) { 1425 m_freem(m); 1426 return (ENOBUFS); 1427 } 1428 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1429 1430 if (rxd->rx_m != NULL) { 1431 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, 1432 BUS_DMASYNC_POSTREAD); 1433 bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap); 1434 } 1435 map = rxd->rx_dmamap; 1436 rxd->rx_dmamap = sc->sis_rx_sparemap; 1437 sc->sis_rx_sparemap = map; 1438 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); 1439 rxd->rx_m = m; 1440 rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr)); 1441 rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN); 1442 return (0); 1443 } 1444 1445 static __inline void 1446 sis_discard_rxbuf(struct sis_rxdesc *rxd) 1447 { 1448 1449 rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN); 1450 } 1451 1452 #ifndef __NO_STRICT_ALIGNMENT 1453 static __inline void 1454 sis_fixup_rx(struct mbuf *m) 1455 { 1456 uint16_t *src, *dst; 1457 int i; 1458 1459 src = mtod(m, uint16_t *); 1460 dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src); 1461 1462 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1463 *dst++ = *src++; 1464 1465 m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN; 1466 } 1467 #endif 1468 1469 /* 1470 * A frame has been uploaded: pass the resulting mbuf chain up to 1471 * the higher level protocols. 1472 */ 1473 static int 1474 sis_rxeof(struct sis_softc *sc) 1475 { 1476 struct mbuf *m; 1477 struct ifnet *ifp; 1478 struct sis_rxdesc *rxd; 1479 struct sis_desc *cur_rx; 1480 int prog, rx_cons, rx_npkts = 0, total_len; 1481 uint32_t rxstat; 1482 1483 SIS_LOCK_ASSERT(sc); 1484 1485 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, 1486 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1487 1488 rx_cons = sc->sis_rx_cons; 1489 ifp = sc->sis_ifp; 1490 1491 for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; 1492 SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) { 1493 #ifdef DEVICE_POLLING 1494 if (ifp->if_capenable & IFCAP_POLLING) { 1495 if (sc->rxcycles <= 0) 1496 break; 1497 sc->rxcycles--; 1498 } 1499 #endif 1500 cur_rx = &sc->sis_rx_list[rx_cons]; 1501 rxstat = le32toh(cur_rx->sis_cmdsts); 1502 if ((rxstat & SIS_CMDSTS_OWN) == 0) 1503 break; 1504 rxd = &sc->sis_rxdesc[rx_cons]; 1505 1506 total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN; 1507 if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 && 1508 total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN - 1509 ETHER_CRC_LEN)) 1510 rxstat &= ~SIS_RXSTAT_GIANT; 1511 if (SIS_RXSTAT_ERROR(rxstat) != 0) { 1512 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1513 if (rxstat & SIS_RXSTAT_COLL) 1514 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1515 sis_discard_rxbuf(rxd); 1516 continue; 1517 } 1518 1519 /* Add a new receive buffer to the ring. */ 1520 m = rxd->rx_m; 1521 if (sis_newbuf(sc, rxd) != 0) { 1522 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1523 sis_discard_rxbuf(rxd); 1524 continue; 1525 } 1526 1527 /* No errors; receive the packet. */ 1528 m->m_pkthdr.len = m->m_len = total_len; 1529 #ifndef __NO_STRICT_ALIGNMENT 1530 /* 1531 * On architectures without alignment problems we try to 1532 * allocate a new buffer for the receive ring, and pass up 1533 * the one where the packet is already, saving the expensive 1534 * copy operation. 1535 */ 1536 sis_fixup_rx(m); 1537 #endif 1538 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1539 m->m_pkthdr.rcvif = ifp; 1540 1541 SIS_UNLOCK(sc); 1542 (*ifp->if_input)(ifp, m); 1543 SIS_LOCK(sc); 1544 rx_npkts++; 1545 } 1546 1547 if (prog > 0) { 1548 sc->sis_rx_cons = rx_cons; 1549 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, 1550 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1551 } 1552 1553 return (rx_npkts); 1554 } 1555 1556 /* 1557 * A frame was downloaded to the chip. It's safe for us to clean up 1558 * the list buffers. 1559 */ 1560 1561 static void 1562 sis_txeof(struct sis_softc *sc) 1563 { 1564 struct ifnet *ifp; 1565 struct sis_desc *cur_tx; 1566 struct sis_txdesc *txd; 1567 uint32_t cons, txstat; 1568 1569 SIS_LOCK_ASSERT(sc); 1570 1571 cons = sc->sis_tx_cons; 1572 if (cons == sc->sis_tx_prod) 1573 return; 1574 1575 ifp = sc->sis_ifp; 1576 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, 1577 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1578 1579 /* 1580 * Go through our tx list and free mbufs for those 1581 * frames that have been transmitted. 1582 */ 1583 for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) { 1584 cur_tx = &sc->sis_tx_list[cons]; 1585 txstat = le32toh(cur_tx->sis_cmdsts); 1586 if ((txstat & SIS_CMDSTS_OWN) != 0) 1587 break; 1588 txd = &sc->sis_txdesc[cons]; 1589 if (txd->tx_m != NULL) { 1590 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, 1591 BUS_DMASYNC_POSTWRITE); 1592 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); 1593 m_freem(txd->tx_m); 1594 txd->tx_m = NULL; 1595 if ((txstat & SIS_CMDSTS_PKT_OK) != 0) { 1596 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1597 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1598 (txstat & SIS_TXSTAT_COLLCNT) >> 16); 1599 } else { 1600 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1601 if (txstat & SIS_TXSTAT_EXCESSCOLLS) 1602 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1603 if (txstat & SIS_TXSTAT_OUTOFWINCOLL) 1604 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1605 } 1606 } 1607 sc->sis_tx_cnt--; 1608 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1609 } 1610 sc->sis_tx_cons = cons; 1611 if (sc->sis_tx_cnt == 0) 1612 sc->sis_watchdog_timer = 0; 1613 } 1614 1615 static void 1616 sis_tick(void *xsc) 1617 { 1618 struct sis_softc *sc; 1619 struct mii_data *mii; 1620 1621 sc = xsc; 1622 SIS_LOCK_ASSERT(sc); 1623 1624 mii = device_get_softc(sc->sis_miibus); 1625 mii_tick(mii); 1626 sis_watchdog(sc); 1627 if ((sc->sis_flags & SIS_FLAG_LINK) == 0) 1628 sis_miibus_statchg(sc->sis_dev); 1629 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc); 1630 } 1631 1632 #ifdef DEVICE_POLLING 1633 static poll_handler_t sis_poll; 1634 1635 static int 1636 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1637 { 1638 struct sis_softc *sc = ifp->if_softc; 1639 int rx_npkts = 0; 1640 1641 SIS_LOCK(sc); 1642 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1643 SIS_UNLOCK(sc); 1644 return (rx_npkts); 1645 } 1646 1647 /* 1648 * On the sis, reading the status register also clears it. 1649 * So before returning to intr mode we must make sure that all 1650 * possible pending sources of interrupts have been served. 1651 * In practice this means run to completion the *eof routines, 1652 * and then call the interrupt routine 1653 */ 1654 sc->rxcycles = count; 1655 rx_npkts = sis_rxeof(sc); 1656 sis_txeof(sc); 1657 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1658 sis_startl(ifp); 1659 1660 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) { 1661 uint32_t status; 1662 1663 /* Reading the ISR register clears all interrupts. */ 1664 status = CSR_READ_4(sc, SIS_ISR); 1665 1666 if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW)) 1667 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1668 1669 if (status & (SIS_ISR_RX_IDLE)) 1670 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 1671 1672 if (status & SIS_ISR_SYSERR) { 1673 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1674 sis_initl(sc); 1675 } 1676 } 1677 1678 SIS_UNLOCK(sc); 1679 return (rx_npkts); 1680 } 1681 #endif /* DEVICE_POLLING */ 1682 1683 static void 1684 sis_intr(void *arg) 1685 { 1686 struct sis_softc *sc; 1687 struct ifnet *ifp; 1688 uint32_t status; 1689 1690 sc = arg; 1691 ifp = sc->sis_ifp; 1692 1693 SIS_LOCK(sc); 1694 #ifdef DEVICE_POLLING 1695 if (ifp->if_capenable & IFCAP_POLLING) { 1696 SIS_UNLOCK(sc); 1697 return; 1698 } 1699 #endif 1700 1701 /* Reading the ISR register clears all interrupts. */ 1702 status = CSR_READ_4(sc, SIS_ISR); 1703 if ((status & SIS_INTRS) == 0) { 1704 /* Not ours. */ 1705 SIS_UNLOCK(sc); 1706 return; 1707 } 1708 1709 /* Disable interrupts. */ 1710 CSR_WRITE_4(sc, SIS_IER, 0); 1711 1712 for (;(status & SIS_INTRS) != 0;) { 1713 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1714 break; 1715 if (status & 1716 (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | 1717 SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) ) 1718 sis_txeof(sc); 1719 1720 if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | 1721 SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE)) 1722 sis_rxeof(sc); 1723 1724 if (status & SIS_ISR_RX_OFLOW) 1725 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1726 1727 if (status & (SIS_ISR_RX_IDLE)) 1728 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 1729 1730 if (status & SIS_ISR_SYSERR) { 1731 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1732 sis_initl(sc); 1733 SIS_UNLOCK(sc); 1734 return; 1735 } 1736 status = CSR_READ_4(sc, SIS_ISR); 1737 } 1738 1739 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1740 /* Re-enable interrupts. */ 1741 CSR_WRITE_4(sc, SIS_IER, 1); 1742 1743 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1744 sis_startl(ifp); 1745 } 1746 1747 SIS_UNLOCK(sc); 1748 } 1749 1750 /* 1751 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1752 * pointers to the fragment pointers. 1753 */ 1754 static int 1755 sis_encap(struct sis_softc *sc, struct mbuf **m_head) 1756 { 1757 struct mbuf *m; 1758 struct sis_txdesc *txd; 1759 struct sis_desc *f; 1760 bus_dma_segment_t segs[SIS_MAXTXSEGS]; 1761 bus_dmamap_t map; 1762 int error, i, frag, nsegs, prod; 1763 int padlen; 1764 1765 prod = sc->sis_tx_prod; 1766 txd = &sc->sis_txdesc[prod]; 1767 if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 && 1768 (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) { 1769 m = *m_head; 1770 padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len; 1771 if (M_WRITABLE(m) == 0) { 1772 /* Get a writable copy. */ 1773 m = m_dup(*m_head, M_NOWAIT); 1774 m_freem(*m_head); 1775 if (m == NULL) { 1776 *m_head = NULL; 1777 return (ENOBUFS); 1778 } 1779 *m_head = m; 1780 } 1781 if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) { 1782 m = m_defrag(m, M_NOWAIT); 1783 if (m == NULL) { 1784 m_freem(*m_head); 1785 *m_head = NULL; 1786 return (ENOBUFS); 1787 } 1788 } 1789 /* 1790 * Manually pad short frames, and zero the pad space 1791 * to avoid leaking data. 1792 */ 1793 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); 1794 m->m_pkthdr.len += padlen; 1795 m->m_len = m->m_pkthdr.len; 1796 *m_head = m; 1797 } 1798 error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap, 1799 *m_head, segs, &nsegs, 0); 1800 if (error == EFBIG) { 1801 m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS); 1802 if (m == NULL) { 1803 m_freem(*m_head); 1804 *m_head = NULL; 1805 return (ENOBUFS); 1806 } 1807 *m_head = m; 1808 error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap, 1809 *m_head, segs, &nsegs, 0); 1810 if (error != 0) { 1811 m_freem(*m_head); 1812 *m_head = NULL; 1813 return (error); 1814 } 1815 } else if (error != 0) 1816 return (error); 1817 1818 /* Check for descriptor overruns. */ 1819 if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) { 1820 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); 1821 return (ENOBUFS); 1822 } 1823 1824 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); 1825 1826 frag = prod; 1827 for (i = 0; i < nsegs; i++) { 1828 f = &sc->sis_tx_list[prod]; 1829 if (i == 0) 1830 f->sis_cmdsts = htole32(segs[i].ds_len | 1831 SIS_CMDSTS_MORE); 1832 else 1833 f->sis_cmdsts = htole32(segs[i].ds_len | 1834 SIS_CMDSTS_OWN | SIS_CMDSTS_MORE); 1835 f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr)); 1836 SIS_INC(prod, SIS_TX_LIST_CNT); 1837 sc->sis_tx_cnt++; 1838 } 1839 1840 /* Update producer index. */ 1841 sc->sis_tx_prod = prod; 1842 1843 /* Remove MORE flag on the last descriptor. */ 1844 prod = (prod - 1) & (SIS_TX_LIST_CNT - 1); 1845 f = &sc->sis_tx_list[prod]; 1846 f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE); 1847 1848 /* Lastly transfer ownership of packet to the controller. */ 1849 f = &sc->sis_tx_list[frag]; 1850 f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN); 1851 1852 /* Swap the last and the first dmamaps. */ 1853 map = txd->tx_dmamap; 1854 txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap; 1855 sc->sis_txdesc[prod].tx_dmamap = map; 1856 sc->sis_txdesc[prod].tx_m = *m_head; 1857 1858 return (0); 1859 } 1860 1861 static void 1862 sis_start(struct ifnet *ifp) 1863 { 1864 struct sis_softc *sc; 1865 1866 sc = ifp->if_softc; 1867 SIS_LOCK(sc); 1868 sis_startl(ifp); 1869 SIS_UNLOCK(sc); 1870 } 1871 1872 static void 1873 sis_startl(struct ifnet *ifp) 1874 { 1875 struct sis_softc *sc; 1876 struct mbuf *m_head; 1877 int queued; 1878 1879 sc = ifp->if_softc; 1880 1881 SIS_LOCK_ASSERT(sc); 1882 1883 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1884 IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0) 1885 return; 1886 1887 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 1888 sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) { 1889 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1890 if (m_head == NULL) 1891 break; 1892 1893 if (sis_encap(sc, &m_head) != 0) { 1894 if (m_head == NULL) 1895 break; 1896 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1897 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1898 break; 1899 } 1900 1901 queued++; 1902 1903 /* 1904 * If there's a BPF listener, bounce a copy of this frame 1905 * to him. 1906 */ 1907 BPF_MTAP(ifp, m_head); 1908 } 1909 1910 if (queued) { 1911 /* Transmit */ 1912 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, 1913 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1914 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE); 1915 1916 /* 1917 * Set a timeout in case the chip goes out to lunch. 1918 */ 1919 sc->sis_watchdog_timer = 5; 1920 } 1921 } 1922 1923 static void 1924 sis_init(void *xsc) 1925 { 1926 struct sis_softc *sc = xsc; 1927 1928 SIS_LOCK(sc); 1929 sis_initl(sc); 1930 SIS_UNLOCK(sc); 1931 } 1932 1933 static void 1934 sis_initl(struct sis_softc *sc) 1935 { 1936 struct ifnet *ifp = sc->sis_ifp; 1937 struct mii_data *mii; 1938 uint8_t *eaddr; 1939 1940 SIS_LOCK_ASSERT(sc); 1941 1942 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1943 return; 1944 1945 /* 1946 * Cancel pending I/O and free all RX/TX buffers. 1947 */ 1948 sis_stop(sc); 1949 /* 1950 * Reset the chip to a known state. 1951 */ 1952 sis_reset(sc); 1953 #ifdef notyet 1954 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { 1955 /* 1956 * Configure 400usec of interrupt holdoff. This is based 1957 * on emperical tests on a Soekris 4801. 1958 */ 1959 CSR_WRITE_4(sc, NS_IHR, 0x100 | 4); 1960 } 1961 #endif 1962 1963 mii = device_get_softc(sc->sis_miibus); 1964 1965 /* Set MAC address */ 1966 eaddr = IF_LLADDR(sc->sis_ifp); 1967 if (sc->sis_type == SIS_TYPE_83815) { 1968 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0); 1969 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8); 1970 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1); 1971 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8); 1972 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2); 1973 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8); 1974 } else { 1975 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); 1976 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8); 1977 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); 1978 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8); 1979 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); 1980 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8); 1981 } 1982 1983 /* Init circular TX/RX lists. */ 1984 if (sis_ring_init(sc) != 0) { 1985 device_printf(sc->sis_dev, 1986 "initialization failed: no memory for rx buffers\n"); 1987 sis_stop(sc); 1988 return; 1989 } 1990 1991 if (sc->sis_type == SIS_TYPE_83815) { 1992 if (sc->sis_manual_pad != 0) 1993 sc->sis_flags |= SIS_FLAG_MANUAL_PAD; 1994 else 1995 sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD; 1996 } 1997 1998 /* 1999 * Short Cable Receive Errors (MP21.E) 2000 * also: Page 78 of the DP83815 data sheet (september 2002 version) 2001 * recommends the following register settings "for optimum 2002 * performance." for rev 15C. Set this also for 15D parts as 2003 * they require it in practice. 2004 */ 2005 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) { 2006 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); 2007 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C); 2008 /* set val for c2 */ 2009 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000); 2010 /* load/kill c2 */ 2011 CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040); 2012 /* rais SD off, from 4 to c */ 2013 CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C); 2014 CSR_WRITE_4(sc, NS_PHY_PAGE, 0); 2015 } 2016 2017 sis_rxfilter(sc); 2018 /* Turn the receive filter on */ 2019 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE); 2020 2021 /* 2022 * Load the address of the RX and TX lists. 2023 */ 2024 CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr)); 2025 CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr)); 2026 2027 /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of 2028 * the PCI bus. When this bit is set, the Max DMA Burst Size 2029 * for TX/RX DMA should be no larger than 16 double words. 2030 */ 2031 if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) { 2032 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64); 2033 } else { 2034 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256); 2035 } 2036 2037 /* Accept Long Packets for VLAN support */ 2038 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER); 2039 2040 /* 2041 * Assume 100Mbps link, actual MAC configuration is done 2042 * after getting a valid link. 2043 */ 2044 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); 2045 2046 /* 2047 * Enable interrupts. 2048 */ 2049 CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS); 2050 #ifdef DEVICE_POLLING 2051 /* 2052 * ... only enable interrupts if we are not polling, make sure 2053 * they are off otherwise. 2054 */ 2055 if (ifp->if_capenable & IFCAP_POLLING) 2056 CSR_WRITE_4(sc, SIS_IER, 0); 2057 else 2058 #endif 2059 CSR_WRITE_4(sc, SIS_IER, 1); 2060 2061 /* Clear MAC disable. */ 2062 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); 2063 2064 sc->sis_flags &= ~SIS_FLAG_LINK; 2065 mii_mediachg(mii); 2066 2067 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2068 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2069 2070 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc); 2071 } 2072 2073 /* 2074 * Set media options. 2075 */ 2076 static int 2077 sis_ifmedia_upd(struct ifnet *ifp) 2078 { 2079 struct sis_softc *sc; 2080 struct mii_data *mii; 2081 struct mii_softc *miisc; 2082 int error; 2083 2084 sc = ifp->if_softc; 2085 2086 SIS_LOCK(sc); 2087 mii = device_get_softc(sc->sis_miibus); 2088 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2089 PHY_RESET(miisc); 2090 error = mii_mediachg(mii); 2091 SIS_UNLOCK(sc); 2092 2093 return (error); 2094 } 2095 2096 /* 2097 * Report current media status. 2098 */ 2099 static void 2100 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2101 { 2102 struct sis_softc *sc; 2103 struct mii_data *mii; 2104 2105 sc = ifp->if_softc; 2106 2107 SIS_LOCK(sc); 2108 mii = device_get_softc(sc->sis_miibus); 2109 mii_pollstat(mii); 2110 ifmr->ifm_active = mii->mii_media_active; 2111 ifmr->ifm_status = mii->mii_media_status; 2112 SIS_UNLOCK(sc); 2113 } 2114 2115 static int 2116 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2117 { 2118 struct sis_softc *sc = ifp->if_softc; 2119 struct ifreq *ifr = (struct ifreq *) data; 2120 struct mii_data *mii; 2121 int error = 0, mask; 2122 2123 switch (command) { 2124 case SIOCSIFFLAGS: 2125 SIS_LOCK(sc); 2126 if (ifp->if_flags & IFF_UP) { 2127 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && 2128 ((ifp->if_flags ^ sc->sis_if_flags) & 2129 (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2130 sis_rxfilter(sc); 2131 else 2132 sis_initl(sc); 2133 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2134 sis_stop(sc); 2135 sc->sis_if_flags = ifp->if_flags; 2136 SIS_UNLOCK(sc); 2137 break; 2138 case SIOCADDMULTI: 2139 case SIOCDELMULTI: 2140 SIS_LOCK(sc); 2141 sis_rxfilter(sc); 2142 SIS_UNLOCK(sc); 2143 break; 2144 case SIOCGIFMEDIA: 2145 case SIOCSIFMEDIA: 2146 mii = device_get_softc(sc->sis_miibus); 2147 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2148 break; 2149 case SIOCSIFCAP: 2150 SIS_LOCK(sc); 2151 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2152 #ifdef DEVICE_POLLING 2153 if ((mask & IFCAP_POLLING) != 0 && 2154 (IFCAP_POLLING & ifp->if_capabilities) != 0) { 2155 ifp->if_capenable ^= IFCAP_POLLING; 2156 if ((IFCAP_POLLING & ifp->if_capenable) != 0) { 2157 error = ether_poll_register(sis_poll, ifp); 2158 if (error != 0) { 2159 SIS_UNLOCK(sc); 2160 break; 2161 } 2162 /* Disable interrupts. */ 2163 CSR_WRITE_4(sc, SIS_IER, 0); 2164 } else { 2165 error = ether_poll_deregister(ifp); 2166 /* Enable interrupts. */ 2167 CSR_WRITE_4(sc, SIS_IER, 1); 2168 } 2169 } 2170 #endif /* DEVICE_POLLING */ 2171 if ((mask & IFCAP_WOL) != 0 && 2172 (ifp->if_capabilities & IFCAP_WOL) != 0) { 2173 if ((mask & IFCAP_WOL_UCAST) != 0) 2174 ifp->if_capenable ^= IFCAP_WOL_UCAST; 2175 if ((mask & IFCAP_WOL_MCAST) != 0) 2176 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2177 if ((mask & IFCAP_WOL_MAGIC) != 0) 2178 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2179 } 2180 SIS_UNLOCK(sc); 2181 break; 2182 default: 2183 error = ether_ioctl(ifp, command, data); 2184 break; 2185 } 2186 2187 return (error); 2188 } 2189 2190 static void 2191 sis_watchdog(struct sis_softc *sc) 2192 { 2193 2194 SIS_LOCK_ASSERT(sc); 2195 2196 if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0) 2197 return; 2198 2199 device_printf(sc->sis_dev, "watchdog timeout\n"); 2200 if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1); 2201 2202 sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2203 sis_initl(sc); 2204 2205 if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd)) 2206 sis_startl(sc->sis_ifp); 2207 } 2208 2209 /* 2210 * Stop the adapter and free any mbufs allocated to the 2211 * RX and TX lists. 2212 */ 2213 static void 2214 sis_stop(struct sis_softc *sc) 2215 { 2216 struct ifnet *ifp; 2217 struct sis_rxdesc *rxd; 2218 struct sis_txdesc *txd; 2219 int i; 2220 2221 SIS_LOCK_ASSERT(sc); 2222 2223 ifp = sc->sis_ifp; 2224 sc->sis_watchdog_timer = 0; 2225 2226 callout_stop(&sc->sis_stat_ch); 2227 2228 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2229 CSR_WRITE_4(sc, SIS_IER, 0); 2230 CSR_WRITE_4(sc, SIS_IMR, 0); 2231 CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */ 2232 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE); 2233 DELAY(1000); 2234 CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0); 2235 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); 2236 2237 sc->sis_flags &= ~SIS_FLAG_LINK; 2238 2239 /* 2240 * Free data in the RX lists. 2241 */ 2242 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 2243 rxd = &sc->sis_rxdesc[i]; 2244 if (rxd->rx_m != NULL) { 2245 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, 2246 BUS_DMASYNC_POSTREAD); 2247 bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap); 2248 m_freem(rxd->rx_m); 2249 rxd->rx_m = NULL; 2250 } 2251 } 2252 2253 /* 2254 * Free the TX list buffers. 2255 */ 2256 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 2257 txd = &sc->sis_txdesc[i]; 2258 if (txd->tx_m != NULL) { 2259 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, 2260 BUS_DMASYNC_POSTWRITE); 2261 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); 2262 m_freem(txd->tx_m); 2263 txd->tx_m = NULL; 2264 } 2265 } 2266 } 2267 2268 /* 2269 * Stop all chip I/O so that the kernel's probe routines don't 2270 * get confused by errant DMAs when rebooting. 2271 */ 2272 static int 2273 sis_shutdown(device_t dev) 2274 { 2275 2276 return (sis_suspend(dev)); 2277 } 2278 2279 static int 2280 sis_suspend(device_t dev) 2281 { 2282 struct sis_softc *sc; 2283 2284 sc = device_get_softc(dev); 2285 SIS_LOCK(sc); 2286 sis_stop(sc); 2287 sis_wol(sc); 2288 SIS_UNLOCK(sc); 2289 return (0); 2290 } 2291 2292 static int 2293 sis_resume(device_t dev) 2294 { 2295 struct sis_softc *sc; 2296 struct ifnet *ifp; 2297 2298 sc = device_get_softc(dev); 2299 SIS_LOCK(sc); 2300 ifp = sc->sis_ifp; 2301 if ((ifp->if_flags & IFF_UP) != 0) { 2302 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2303 sis_initl(sc); 2304 } 2305 SIS_UNLOCK(sc); 2306 return (0); 2307 } 2308 2309 static void 2310 sis_wol(struct sis_softc *sc) 2311 { 2312 struct ifnet *ifp; 2313 uint32_t val; 2314 uint16_t pmstat; 2315 int pmc; 2316 2317 ifp = sc->sis_ifp; 2318 if ((ifp->if_capenable & IFCAP_WOL) == 0) 2319 return; 2320 2321 if (sc->sis_type == SIS_TYPE_83815) { 2322 /* Reset RXDP. */ 2323 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); 2324 2325 /* Configure WOL events. */ 2326 CSR_READ_4(sc, NS_WCSR); 2327 val = 0; 2328 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 2329 val |= NS_WCSR_WAKE_UCAST; 2330 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 2331 val |= NS_WCSR_WAKE_MCAST; 2332 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2333 val |= NS_WCSR_WAKE_MAGIC; 2334 CSR_WRITE_4(sc, NS_WCSR, val); 2335 /* Enable PME and clear PMESTS. */ 2336 val = CSR_READ_4(sc, NS_CLKRUN); 2337 val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS; 2338 CSR_WRITE_4(sc, NS_CLKRUN, val); 2339 /* Enable silent RX mode. */ 2340 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 2341 } else { 2342 if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0) 2343 return; 2344 val = 0; 2345 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2346 val |= SIS_PWRMAN_WOL_MAGIC; 2347 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val); 2348 /* Request PME. */ 2349 pmstat = pci_read_config(sc->sis_dev, 2350 pmc + PCIR_POWER_STATUS, 2); 2351 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 2352 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2353 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 2354 pci_write_config(sc->sis_dev, 2355 pmc + PCIR_POWER_STATUS, pmstat, 2); 2356 } 2357 } 2358 2359 static void 2360 sis_add_sysctls(struct sis_softc *sc) 2361 { 2362 struct sysctl_ctx_list *ctx; 2363 struct sysctl_oid_list *children; 2364 int unit; 2365 2366 ctx = device_get_sysctl_ctx(sc->sis_dev); 2367 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev)); 2368 2369 unit = device_get_unit(sc->sis_dev); 2370 /* 2371 * Unlike most other controllers, NS DP83815/DP83816 controllers 2372 * seem to pad with 0xFF when it encounter short frames. According 2373 * to RFC 1042 the pad bytes should be 0x00. Turning this tunable 2374 * on will have driver pad manully but it's disabled by default 2375 * because it will consume extra CPU cycles for short frames. 2376 */ 2377 sc->sis_manual_pad = 0; 2378 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad", 2379 CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames"); 2380 } 2381 2382 static device_method_t sis_methods[] = { 2383 /* Device interface */ 2384 DEVMETHOD(device_probe, sis_probe), 2385 DEVMETHOD(device_attach, sis_attach), 2386 DEVMETHOD(device_detach, sis_detach), 2387 DEVMETHOD(device_shutdown, sis_shutdown), 2388 DEVMETHOD(device_suspend, sis_suspend), 2389 DEVMETHOD(device_resume, sis_resume), 2390 2391 /* MII interface */ 2392 DEVMETHOD(miibus_readreg, sis_miibus_readreg), 2393 DEVMETHOD(miibus_writereg, sis_miibus_writereg), 2394 DEVMETHOD(miibus_statchg, sis_miibus_statchg), 2395 2396 DEVMETHOD_END 2397 }; 2398 2399 static driver_t sis_driver = { 2400 "sis", 2401 sis_methods, 2402 sizeof(struct sis_softc) 2403 }; 2404 2405 static devclass_t sis_devclass; 2406 2407 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0); 2408 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0); 2409