/*- * Copyright (c) 2005 Poul-Henning Kamp * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are * available from http://www.sis.com.tw. * * This driver also supports the NatSemi DP83815. Datasheets are * available from http://www.national.com. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The SiS 900 is a fairly simple chip. It uses bus master DMA with * simple TX and RX descriptors of 3 longwords in size. The receiver * has a single perfect filter entry for the station address and a * 128-bit multicast hash table. The SiS 900 has a built-in MII-based * transceiver while the 7016 requires an external transceiver chip. * Both chips offer the standard bit-bang MII interface as well as * an enchanced PHY interface which simplifies accessing MII registers. * * The only downside to this chipset is that RX descriptors must be * longword aligned. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SIS_USEIOSPACE #include MODULE_DEPEND(sis, pci, 1, 1, 1); MODULE_DEPEND(sis, ether, 1, 1, 1); MODULE_DEPEND(sis, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #define SIS_LOCK(_sc) mtx_lock(&(_sc)->sis_mtx) #define SIS_UNLOCK(_sc) mtx_unlock(&(_sc)->sis_mtx) #define SIS_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sis_mtx, MA_OWNED) /* * register space access macros */ #define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sis_res[0], reg, val) #define CSR_READ_4(sc, reg) bus_read_4(sc->sis_res[0], reg) #define CSR_READ_2(sc, reg) bus_read_2(sc->sis_res[0], reg) #define CSR_BARRIER(sc, reg, length, flags) \ bus_barrier(sc->sis_res[0], reg, length, flags) /* * Various supported device vendors/types and their names. */ static const struct sis_type sis_devs[] = { { SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" }, { SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" }, { NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" }, { 0, 0, NULL } }; static int sis_detach(device_t); static __inline void sis_discard_rxbuf(struct sis_rxdesc *); static int sis_dma_alloc(struct sis_softc *); static void sis_dma_free(struct sis_softc *); static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t, bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int); #ifndef __NO_STRICT_ALIGNMENT static __inline void sis_fixup_rx(struct mbuf *); #endif static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int sis_ifmedia_upd(struct ifnet *); static void sis_init(void *); static void sis_initl(struct sis_softc *); static void sis_intr(void *); static int sis_ioctl(struct ifnet *, u_long, caddr_t); static uint32_t sis_mii_bitbang_read(device_t); static void sis_mii_bitbang_write(device_t, uint32_t); static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *); static int sis_resume(device_t); static int sis_rxeof(struct sis_softc *); static void sis_rxfilter(struct sis_softc *); static void sis_rxfilter_ns(struct sis_softc *); static void sis_rxfilter_sis(struct sis_softc *); static void sis_start(struct ifnet *); static void sis_startl(struct ifnet *); static void sis_stop(struct sis_softc *); static int sis_suspend(device_t); static void sis_add_sysctls(struct sis_softc *); static void sis_watchdog(struct sis_softc *); static void sis_wol(struct sis_softc *); /* * MII bit-bang glue */ static const struct mii_bitbang_ops sis_mii_bitbang_ops = { sis_mii_bitbang_read, sis_mii_bitbang_write, { SIS_MII_DATA, /* MII_BIT_MDO */ SIS_MII_DATA, /* MII_BIT_MDI */ SIS_MII_CLK, /* MII_BIT_MDC */ SIS_MII_DIR, /* MII_BIT_DIR_HOST_PHY */ 0, /* MII_BIT_DIR_PHY_HOST */ } }; static struct resource_spec sis_res_spec[] = { #ifdef SIS_USEIOSPACE { SYS_RES_IOPORT, SIS_PCI_LOIO, RF_ACTIVE}, #else { SYS_RES_MEMORY, SIS_PCI_LOMEM, RF_ACTIVE}, #endif { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE}, { -1, 0 } }; #define SIS_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define SIS_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x) #define SIO_CLR(x) \ CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x) /* * Routine to reverse the bits in a word. Stolen almost * verbatim from /usr/games/fortune. */ static uint16_t sis_reverse(uint16_t n) { n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa); n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc); n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0); n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00); return (n); } static void sis_delay(struct sis_softc *sc) { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, SIS_CSR); } static void sis_eeprom_idle(struct sis_softc *sc) { int i; SIO_SET(SIS_EECTL_CSEL); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); for (i = 0; i < 25; i++) { SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); } SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_CLR(SIS_EECTL_CSEL); sis_delay(sc); CSR_WRITE_4(sc, SIS_EECTL, 0x00000000); } /* * Send a read command and address to the EEPROM, check for ACK. */ static void sis_eeprom_putbyte(struct sis_softc *sc, int addr) { int d, i; d = addr | SIS_EECMD_READ; /* * Feed in each bit and stobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { SIO_SET(SIS_EECTL_DIN); } else { SIO_CLR(SIS_EECTL_DIN); } sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest) { int i; uint16_t word = 0; /* Force EEPROM to idle state. */ sis_eeprom_idle(sc); /* Enter EEPROM access mode. */ sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_SET(SIS_EECTL_CSEL); sis_delay(sc); /* * Send address of word we want to read. */ sis_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(SIS_EECTL_CLK); sis_delay(sc); if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT) word |= i; sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); } /* Turn off EEPROM access mode. */ sis_eeprom_idle(sc); *dest = word; } /* * Read a sequence of words from the EEPROM. */ static void sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap) { int i; uint16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { sis_eeprom_getword(sc, off + i, &word); ptr = (uint16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } } #if defined(__i386__) || defined(__amd64__) static device_t sis_find_bridge(device_t dev) { devclass_t pci_devclass; device_t *pci_devices; int pci_count = 0; device_t *pci_children; int pci_childcount = 0; device_t *busp, *childp; device_t child = NULL; int i, j; if ((pci_devclass = devclass_find("pci")) == NULL) return (NULL); devclass_get_devices(pci_devclass, &pci_devices, &pci_count); for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) { if (device_get_children(*busp, &pci_children, &pci_childcount)) continue; for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) { if (pci_get_vendor(*childp) == SIS_VENDORID && pci_get_device(*childp) == 0x0008) { child = *childp; free(pci_children, M_TEMP); goto done; } } free(pci_children, M_TEMP); } done: free(pci_devices, M_TEMP); return (child); } static void sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt) { device_t bridge; uint8_t reg; int i; bus_space_tag_t btag; bridge = sis_find_bridge(dev); if (bridge == NULL) return; reg = pci_read_config(bridge, 0x48, 1); pci_write_config(bridge, 0x48, reg|0x40, 1); /* XXX */ #if defined(__amd64__) || defined(__i386__) btag = X86_BUS_SPACE_IO; #endif for (i = 0; i < cnt; i++) { bus_space_write_1(btag, 0x0, 0x70, i + off); *(dest + i) = bus_space_read_1(btag, 0x0, 0x71); } pci_write_config(bridge, 0x48, reg & ~0x40, 1); } static void sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest) { uint32_t filtsave, csrsave; filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL); csrsave = CSR_READ_4(sc, SIS_CSR); CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave); CSR_WRITE_4(sc, SIS_CSR, 0); CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); ((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA); CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1); ((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); ((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA); CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave); CSR_WRITE_4(sc, SIS_CSR, csrsave); } #endif /* * Read the MII serial port for the MII bit-bang module. */ static uint32_t sis_mii_bitbang_read(device_t dev) { struct sis_softc *sc; uint32_t val; sc = device_get_softc(dev); val = CSR_READ_4(sc, SIS_EECTL); CSR_BARRIER(sc, SIS_EECTL, 4, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); return (val); } /* * Write the MII serial port for the MII bit-bang module. */ static void sis_mii_bitbang_write(device_t dev, uint32_t val) { struct sis_softc *sc; sc = device_get_softc(dev); CSR_WRITE_4(sc, SIS_EECTL, val); CSR_BARRIER(sc, SIS_EECTL, 4, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); } static int sis_miibus_readreg(device_t dev, int phy, int reg) { struct sis_softc *sc; sc = device_get_softc(dev); if (sc->sis_type == SIS_TYPE_83815) { if (phy != 0) return (0); /* * The NatSemi chip can take a while after * a reset to come ready, during which the BMSR * returns a value of 0. This is *never* supposed * to happen: some of the BMSR bits are meant to * be hardwired in the on position, and this can * confuse the miibus code a bit during the probe * and attach phase. So we make an effort to check * for this condition and wait for it to clear. */ if (!CSR_READ_4(sc, NS_BMSR)) DELAY(1000); return CSR_READ_4(sc, NS_BMCR + (reg * 4)); } /* * Chipsets < SIS_635 seem not to be able to read/write * through mdio. Use the enhanced PHY access register * again for them. */ if (sc->sis_type == SIS_TYPE_900 && sc->sis_rev < SIS_REV_635) { int i, val = 0; if (phy != 0) return (0); CSR_WRITE_4(sc, SIS_PHYCTL, (phy << 11) | (reg << 6) | SIS_PHYOP_READ); SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) break; } if (i == SIS_TIMEOUT) { device_printf(sc->sis_dev, "PHY failed to come ready\n"); return (0); } val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF; if (val == 0xFFFF) return (0); return (val); } else return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy, reg)); } static int sis_miibus_writereg(device_t dev, int phy, int reg, int data) { struct sis_softc *sc; sc = device_get_softc(dev); if (sc->sis_type == SIS_TYPE_83815) { if (phy != 0) return (0); CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data); return (0); } /* * Chipsets < SIS_635 seem not to be able to read/write * through mdio. Use the enhanced PHY access register * again for them. */ if (sc->sis_type == SIS_TYPE_900 && sc->sis_rev < SIS_REV_635) { int i; if (phy != 0) return (0); CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) | (reg << 6) | SIS_PHYOP_WRITE); SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) break; } if (i == SIS_TIMEOUT) device_printf(sc->sis_dev, "PHY failed to come ready\n"); } else mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg, data); return (0); } static void sis_miibus_statchg(device_t dev) { struct sis_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint32_t reg; sc = device_get_softc(dev); SIS_LOCK_ASSERT(sc); mii = device_get_softc(sc->sis_miibus); ifp = sc->sis_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc->sis_flags &= ~SIS_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10); sc->sis_flags |= SIS_FLAG_LINK; break; case IFM_100_TX: CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); sc->sis_flags |= SIS_FLAG_LINK; break; default: break; } } if ((sc->sis_flags & SIS_FLAG_LINK) == 0) { /* * Stopping MACs seem to reset SIS_TX_LISTPTR and * SIS_RX_LISTPTR which in turn requires resetting * TX/RX buffers. So just don't do anything for * lost link. */ return; } /* Set full/half duplex mode. */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { SIS_SETBIT(sc, SIS_TX_CFG, (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); } else { SIS_CLRBIT(sc, SIS_TX_CFG, (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); } if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { /* * MPII03.D: Half Duplex Excessive Collisions. * Also page 49 in 83816 manual */ SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D); } if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A && IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { /* * Short Cable Receive Errors (MP21.E) */ CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff; CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000); DELAY(100); reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff; if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) { device_printf(sc->sis_dev, "Applying short cable fix (reg=%x)\n", reg); CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8); SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20); } CSR_WRITE_4(sc, NS_PHY_PAGE, 0); } /* Enable TX/RX MACs. */ SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE); } static uint32_t sis_mchash(struct sis_softc *sc, const uint8_t *addr) { uint32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_be(addr, ETHER_ADDR_LEN); /* * return the filter bit position * * The NatSemi chip has a 512-bit filter, which is * different than the SiS, so we special-case it. */ if (sc->sis_type == SIS_TYPE_83815) return (crc >> 23); else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) return (crc >> 24); else return (crc >> 25); } static void sis_rxfilter(struct sis_softc *sc) { SIS_LOCK_ASSERT(sc); if (sc->sis_type == SIS_TYPE_83815) sis_rxfilter_ns(sc); else sis_rxfilter_sis(sc); } static void sis_rxfilter_ns(struct sis_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t h, i, filter; int bit, index; ifp = sc->sis_ifp; filter = CSR_READ_4(sc, SIS_RXFILT_CTL); if (filter & SIS_RXFILTCTL_ENABLE) { /* * Filter should be disabled to program other bits. */ CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE); CSR_READ_4(sc, SIS_RXFILT_CTL); } filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT | NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD | SIS_RXFILTCTL_ALLMULTI); if (ifp->if_flags & IFF_BROADCAST) filter |= SIS_RXFILTCTL_BROAD; /* * For the NatSemi chip, we have to explicitly enable the * reception of ARP frames, as well as turn on the 'perfect * match' filter where we store the station address, otherwise * we won't receive unicasts meant for this host. */ filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT; if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { filter |= SIS_RXFILTCTL_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) filter |= SIS_RXFILTCTL_ALLPHYS; } else { /* * We have to explicitly enable the multicast hash table * on the NatSemi chip if we want to use it, which we do. */ filter |= NS_RXFILTCTL_MCHASH; /* first, zot all the existing hash bits */ for (i = 0; i < 32; i++) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i * 2)); CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0); } if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = sis_mchash(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); index = h >> 3; bit = h & 0x1F; CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index); if (bit > 0xF) bit -= 0x10; SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit)); } if_maddr_runlock(ifp); } CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter); CSR_READ_4(sc, SIS_RXFILT_CTL); } static void sis_rxfilter_sis(struct sis_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t filter, h, i, n; uint16_t hashes[16]; ifp = sc->sis_ifp; /* hash table size */ if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) n = 16; else n = 8; filter = CSR_READ_4(sc, SIS_RXFILT_CTL); if (filter & SIS_RXFILTCTL_ENABLE) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE); CSR_READ_4(sc, SIS_RXFILT_CTL); } filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD | SIS_RXFILTCTL_ALLMULTI); if (ifp->if_flags & IFF_BROADCAST) filter |= SIS_RXFILTCTL_BROAD; if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { filter |= SIS_RXFILTCTL_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) filter |= SIS_RXFILTCTL_ALLPHYS; for (i = 0; i < n; i++) hashes[i] = ~0; } else { for (i = 0; i < n; i++) hashes[i] = 0; i = 0; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = sis_mchash(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); hashes[h >> 4] |= 1 << (h & 0xf); i++; } if_maddr_runlock(ifp); if (i > n) { filter |= SIS_RXFILTCTL_ALLMULTI; for (i = 0; i < n; i++) hashes[i] = ~0; } } for (i = 0; i < n; i++) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16); CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]); } CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter); CSR_READ_4(sc, SIS_RXFILT_CTL); } static void sis_reset(struct sis_softc *sc) { int i; SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET)) break; } if (i == SIS_TIMEOUT) device_printf(sc->sis_dev, "reset never completed\n"); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* * If this is a NetSemi chip, make sure to clear * PME mode. */ if (sc->sis_type == SIS_TYPE_83815) { CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS); CSR_WRITE_4(sc, NS_CLKRUN, 0); } else { /* Disable WOL functions. */ CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0); } } /* * Probe for an SiS chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int sis_probe(device_t dev) { const struct sis_type *t; t = sis_devs; while (t->sis_name != NULL) { if ((pci_get_vendor(dev) == t->sis_vid) && (pci_get_device(dev) == t->sis_did)) { device_set_desc(dev, t->sis_name); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int sis_attach(device_t dev) { u_char eaddr[ETHER_ADDR_LEN]; struct sis_softc *sc; struct ifnet *ifp; int error = 0, pmc, waittime = 0; waittime = 0; sc = device_get_softc(dev); sc->sis_dev = dev; mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0); if (pci_get_device(dev) == SIS_DEVICEID_900) sc->sis_type = SIS_TYPE_900; if (pci_get_device(dev) == SIS_DEVICEID_7016) sc->sis_type = SIS_TYPE_7016; if (pci_get_vendor(dev) == NS_VENDORID) sc->sis_type = SIS_TYPE_83815; sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1); /* * Map control/status registers. */ pci_enable_busmaster(dev); error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res); if (error) { device_printf(dev, "couldn't allocate resources\n"); goto fail; } /* Reset the adapter. */ sis_reset(sc); if (sc->sis_type == SIS_TYPE_900 && (sc->sis_rev == SIS_REV_635 || sc->sis_rev == SIS_REV_900B)) { SIO_SET(SIS_CFG_RND_CNT); SIO_SET(SIS_CFG_PERR_DETECT); } /* * Get station address from the EEPROM. */ switch (pci_get_vendor(dev)) { case NS_VENDORID: sc->sis_srr = CSR_READ_4(sc, NS_SRR); /* We can't update the device description, so spew */ if (sc->sis_srr == NS_SRR_15C) device_printf(dev, "Silicon Revision: DP83815C\n"); else if (sc->sis_srr == NS_SRR_15D) device_printf(dev, "Silicon Revision: DP83815D\n"); else if (sc->sis_srr == NS_SRR_16A) device_printf(dev, "Silicon Revision: DP83816A\n"); else device_printf(dev, "Silicon Revision %x\n", sc->sis_srr); /* * Reading the MAC address out of the EEPROM on * the NatSemi chip takes a bit more work than * you'd expect. The address spans 4 16-bit words, * with the first word containing only a single bit. * You have to shift everything over one bit to * get it aligned properly. Also, the bits are * stored backwards (the LSB is really the MSB, * and so on) so you have to reverse them in order * to get the MAC address into the form we want. * Why? Who the hell knows. */ { uint16_t tmp[4]; sis_read_eeprom(sc, (caddr_t)&tmp, NS_EE_NODEADDR, 4, 0); /* Shift everything over one bit. */ tmp[3] = tmp[3] >> 1; tmp[3] |= tmp[2] << 15; tmp[2] = tmp[2] >> 1; tmp[2] |= tmp[1] << 15; tmp[1] = tmp[1] >> 1; tmp[1] |= tmp[0] << 15; /* Now reverse all the bits. */ tmp[3] = sis_reverse(tmp[3]); tmp[2] = sis_reverse(tmp[2]); tmp[1] = sis_reverse(tmp[1]); eaddr[0] = (tmp[1] >> 0) & 0xFF; eaddr[1] = (tmp[1] >> 8) & 0xFF; eaddr[2] = (tmp[2] >> 0) & 0xFF; eaddr[3] = (tmp[2] >> 8) & 0xFF; eaddr[4] = (tmp[3] >> 0) & 0xFF; eaddr[5] = (tmp[3] >> 8) & 0xFF; } break; case SIS_VENDORID: default: #if defined(__i386__) || defined(__amd64__) /* * If this is a SiS 630E chipset with an embedded * SiS 900 controller, we have to read the MAC address * from the APC CMOS RAM. Our method for doing this * is very ugly since we have to reach out and grab * ahold of hardware for which we cannot properly * allocate resources. This code is only compiled on * the i386 architecture since the SiS 630E chipset * is for x86 motherboards only. Note that there are * a lot of magic numbers in this hack. These are * taken from SiS's Linux driver. I'd like to replace * them with proper symbolic definitions, but that * requires some datasheets that I don't have access * to at the moment. */ if (sc->sis_rev == SIS_REV_630S || sc->sis_rev == SIS_REV_630E || sc->sis_rev == SIS_REV_630EA1) sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6); else if (sc->sis_rev == SIS_REV_635 || sc->sis_rev == SIS_REV_630ET) sis_read_mac(sc, dev, (caddr_t)&eaddr); else if (sc->sis_rev == SIS_REV_96x) { /* Allow to read EEPROM from LAN. It is shared * between a 1394 controller and the NIC and each * time we access it, we need to set SIS_EECMD_REQ. */ SIO_SET(SIS_EECMD_REQ); for (waittime = 0; waittime < SIS_TIMEOUT; waittime++) { /* Force EEPROM to idle state. */ sis_eeprom_idle(sc); if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) { sis_read_eeprom(sc, (caddr_t)&eaddr, SIS_EE_NODEADDR, 3, 0); break; } DELAY(1); } /* * Set SIS_EECTL_CLK to high, so a other master * can operate on the i2c bus. */ SIO_SET(SIS_EECTL_CLK); /* Refuse EEPROM access by LAN */ SIO_SET(SIS_EECMD_DONE); } else #endif sis_read_eeprom(sc, (caddr_t)&eaddr, SIS_EE_NODEADDR, 3, 0); break; } sis_add_sysctls(sc); /* Allocate DMA'able memory. */ if ((error = sis_dma_alloc(sc)) != 0) goto fail; ifp = sc->sis_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sis_ioctl; ifp->if_start = sis_start; ifp->if_init = sis_init; IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1); ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1; IFQ_SET_READY(&ifp->if_snd); if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) { if (sc->sis_type == SIS_TYPE_83815) ifp->if_capabilities |= IFCAP_WOL; else ifp->if_capabilities |= IFCAP_WOL_MAGIC; ifp->if_capenable = ifp->if_capabilities; } /* * Do MII setup. */ error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd, sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* * Tell the upper layer(s) we support long frames. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE, NULL, sis_intr, sc, &sc->sis_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) sis_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int sis_detach(device_t dev) { struct sis_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized")); ifp = sc->sis_ifp; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif /* These should only be active if attach succeeded. */ if (device_is_attached(dev)) { SIS_LOCK(sc); sis_stop(sc); SIS_UNLOCK(sc); callout_drain(&sc->sis_stat_ch); ether_ifdetach(ifp); } if (sc->sis_miibus) device_delete_child(dev, sc->sis_miibus); bus_generic_detach(dev); if (sc->sis_intrhand) bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand); bus_release_resources(dev, sis_res_spec, sc->sis_res); if (ifp) if_free(ifp); sis_dma_free(sc); mtx_destroy(&sc->sis_mtx); return (0); } struct sis_dmamap_arg { bus_addr_t sis_busaddr; }; static void sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct sis_dmamap_arg *ctx; if (error != 0) return; KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); ctx = (struct sis_dmamap_arg *)arg; ctx->sis_busaddr = segs[0].ds_addr; } static int sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment, bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr, const char *msg) { struct sis_dmamap_arg ctx; int error; error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); if (error != 0) { device_printf(sc->sis_dev, "could not create %s dma tag\n", msg); return (ENOMEM); } /* Allocate DMA'able memory for ring. */ error = bus_dmamem_alloc(*tag, (void **)ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); if (error != 0) { device_printf(sc->sis_dev, "could not allocate DMA'able memory for %s\n", msg); return (ENOMEM); } /* Load the address of the ring. */ ctx.sis_busaddr = 0; error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sis_dev, "could not load DMA'able memory for %s\n", msg); return (ENOMEM); } *paddr = ctx.sis_busaddr; return (0); } static int sis_dma_alloc(struct sis_softc *sc) { struct sis_rxdesc *rxd; struct sis_txdesc *txd; int error, i; /* Allocate the parent bus DMA tag appropriate for PCI. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sis_parent_tag); if (error != 0) { device_printf(sc->sis_dev, "could not allocate parent dma tag\n"); return (ENOMEM); } /* Create RX ring. */ error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ, &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list, &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring"); if (error) return (error); /* Create TX ring. */ error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ, &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list, &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring"); if (error) return (error); /* Create tag for RX mbufs. */ error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag); if (error) { device_printf(sc->sis_dev, "could not allocate RX dma tag\n"); return (error); } /* Create tag for TX mbufs. */ error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL, &sc->sis_tx_tag); if (error) { device_printf(sc->sis_dev, "could not allocate TX dma tag\n"); return (error); } /* Create DMA maps for RX buffers. */ error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap); if (error) { device_printf(sc->sis_dev, "can't create spare DMA map for RX\n"); return (error); } for (i = 0; i < SIS_RX_LIST_CNT; i++) { rxd = &sc->sis_rxdesc[i]; rxd->rx_m = NULL; error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap); if (error) { device_printf(sc->sis_dev, "can't create DMA map for RX\n"); return (error); } } /* Create DMA maps for TX buffers. */ for (i = 0; i < SIS_TX_LIST_CNT; i++) { txd = &sc->sis_txdesc[i]; txd->tx_m = NULL; error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap); if (error) { device_printf(sc->sis_dev, "can't create DMA map for TX\n"); return (error); } } return (0); } static void sis_dma_free(struct sis_softc *sc) { struct sis_rxdesc *rxd; struct sis_txdesc *txd; int i; /* Destroy DMA maps for RX buffers. */ for (i = 0; i < SIS_RX_LIST_CNT; i++) { rxd = &sc->sis_rxdesc[i]; if (rxd->rx_dmamap) bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap); } if (sc->sis_rx_sparemap) bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap); /* Destroy DMA maps for TX buffers. */ for (i = 0; i < SIS_TX_LIST_CNT; i++) { txd = &sc->sis_txdesc[i]; if (txd->tx_dmamap) bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap); } if (sc->sis_rx_tag) bus_dma_tag_destroy(sc->sis_rx_tag); if (sc->sis_tx_tag) bus_dma_tag_destroy(sc->sis_tx_tag); /* Destroy RX ring. */ if (sc->sis_rx_paddr) bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map); if (sc->sis_rx_list) bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list, sc->sis_rx_list_map); if (sc->sis_rx_list_tag) bus_dma_tag_destroy(sc->sis_rx_list_tag); /* Destroy TX ring. */ if (sc->sis_tx_paddr) bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map); if (sc->sis_tx_list) bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list, sc->sis_tx_list_map); if (sc->sis_tx_list_tag) bus_dma_tag_destroy(sc->sis_tx_list_tag); /* Destroy the parent tag. */ if (sc->sis_parent_tag) bus_dma_tag_destroy(sc->sis_parent_tag); } /* * Initialize the TX and RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int sis_ring_init(struct sis_softc *sc) { struct sis_rxdesc *rxd; struct sis_txdesc *txd; bus_addr_t next; int error, i; bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ); for (i = 0; i < SIS_TX_LIST_CNT; i++) { txd = &sc->sis_txdesc[i]; txd->tx_m = NULL; if (i == SIS_TX_LIST_CNT - 1) next = SIS_TX_RING_ADDR(sc, 0); else next = SIS_TX_RING_ADDR(sc, i + 1); sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next)); } sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0; bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sis_rx_cons = 0; bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ); for (i = 0; i < SIS_RX_LIST_CNT; i++) { rxd = &sc->sis_rxdesc[i]; rxd->rx_desc = &sc->sis_rx_list[i]; if (i == SIS_RX_LIST_CNT - 1) next = SIS_RX_RING_ADDR(sc, 0); else next = SIS_RX_RING_ADDR(sc, i + 1); rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next)); error = sis_newbuf(sc, rxd); if (error) return (error); } bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd) { struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = SIS_RXLEN; #ifndef __NO_STRICT_ALIGNMENT m_adj(m, SIS_RX_BUF_ALIGN); #endif if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->sis_rx_sparemap; sc->sis_rx_sparemap = map; bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr)); rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN); return (0); } static __inline void sis_discard_rxbuf(struct sis_rxdesc *rxd) { rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN); } #ifndef __NO_STRICT_ALIGNMENT static __inline void sis_fixup_rx(struct mbuf *m) { uint16_t *src, *dst; int i; src = mtod(m, uint16_t *); dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src); for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN; } #endif /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static int sis_rxeof(struct sis_softc *sc) { struct mbuf *m; struct ifnet *ifp; struct sis_rxdesc *rxd; struct sis_desc *cur_rx; int prog, rx_cons, rx_npkts = 0, total_len; uint32_t rxstat; SIS_LOCK_ASSERT(sc); bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rx_cons = sc->sis_rx_cons; ifp = sc->sis_ifp; for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) { #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif cur_rx = &sc->sis_rx_list[rx_cons]; rxstat = le32toh(cur_rx->sis_cmdsts); if ((rxstat & SIS_CMDSTS_OWN) == 0) break; rxd = &sc->sis_rxdesc[rx_cons]; total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN; if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 && total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN - ETHER_CRC_LEN)) rxstat &= ~SIS_RXSTAT_GIANT; if (SIS_RXSTAT_ERROR(rxstat) != 0) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); if (rxstat & SIS_RXSTAT_COLL) if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); sis_discard_rxbuf(rxd); continue; } /* Add a new receive buffer to the ring. */ m = rxd->rx_m; if (sis_newbuf(sc, rxd) != 0) { if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); sis_discard_rxbuf(rxd); continue; } /* No errors; receive the packet. */ m->m_pkthdr.len = m->m_len = total_len; #ifndef __NO_STRICT_ALIGNMENT /* * On architectures without alignment problems we try to * allocate a new buffer for the receive ring, and pass up * the one where the packet is already, saving the expensive * copy operation. */ sis_fixup_rx(m); #endif if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); m->m_pkthdr.rcvif = ifp; SIS_UNLOCK(sc); (*ifp->if_input)(ifp, m); SIS_LOCK(sc); rx_npkts++; } if (prog > 0) { sc->sis_rx_cons = rx_cons; bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } return (rx_npkts); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void sis_txeof(struct sis_softc *sc) { struct ifnet *ifp; struct sis_desc *cur_tx; struct sis_txdesc *txd; uint32_t cons, txstat; SIS_LOCK_ASSERT(sc); cons = sc->sis_tx_cons; if (cons == sc->sis_tx_prod) return; ifp = sc->sis_ifp; bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) { cur_tx = &sc->sis_tx_list[cons]; txstat = le32toh(cur_tx->sis_cmdsts); if ((txstat & SIS_CMDSTS_OWN) != 0) break; txd = &sc->sis_txdesc[cons]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; if ((txstat & SIS_CMDSTS_PKT_OK) != 0) { if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & SIS_TXSTAT_COLLCNT) >> 16); } else { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (txstat & SIS_TXSTAT_EXCESSCOLLS) if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); if (txstat & SIS_TXSTAT_OUTOFWINCOLL) if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); } } sc->sis_tx_cnt--; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } sc->sis_tx_cons = cons; if (sc->sis_tx_cnt == 0) sc->sis_watchdog_timer = 0; } static void sis_tick(void *xsc) { struct sis_softc *sc; struct mii_data *mii; sc = xsc; SIS_LOCK_ASSERT(sc); mii = device_get_softc(sc->sis_miibus); mii_tick(mii); sis_watchdog(sc); if ((sc->sis_flags & SIS_FLAG_LINK) == 0) sis_miibus_statchg(sc->sis_dev); callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc); } #ifdef DEVICE_POLLING static poll_handler_t sis_poll; static int sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct sis_softc *sc = ifp->if_softc; int rx_npkts = 0; SIS_LOCK(sc); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { SIS_UNLOCK(sc); return (rx_npkts); } /* * On the sis, reading the status register also clears it. * So before returning to intr mode we must make sure that all * possible pending sources of interrupts have been served. * In practice this means run to completion the *eof routines, * and then call the interrupt routine */ sc->rxcycles = count; rx_npkts = sis_rxeof(sc); sis_txeof(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) sis_startl(ifp); if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) { uint32_t status; /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, SIS_ISR); if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW)) if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); if (status & (SIS_ISR_RX_IDLE)) SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); if (status & SIS_ISR_SYSERR) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sis_initl(sc); } } SIS_UNLOCK(sc); return (rx_npkts); } #endif /* DEVICE_POLLING */ static void sis_intr(void *arg) { struct sis_softc *sc; struct ifnet *ifp; uint32_t status; sc = arg; ifp = sc->sis_ifp; SIS_LOCK(sc); #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { SIS_UNLOCK(sc); return; } #endif /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, SIS_ISR); if ((status & SIS_INTRS) == 0) { /* Not ours. */ SIS_UNLOCK(sc); return; } /* Disable interrupts. */ CSR_WRITE_4(sc, SIS_IER, 0); for (;(status & SIS_INTRS) != 0;) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) break; if (status & (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) ) sis_txeof(sc); if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE)) sis_rxeof(sc); if (status & SIS_ISR_RX_OFLOW) if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); if (status & (SIS_ISR_RX_IDLE)) SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); if (status & SIS_ISR_SYSERR) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sis_initl(sc); SIS_UNLOCK(sc); return; } status = CSR_READ_4(sc, SIS_ISR); } if (ifp->if_drv_flags & IFF_DRV_RUNNING) { /* Re-enable interrupts. */ CSR_WRITE_4(sc, SIS_IER, 1); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) sis_startl(ifp); } SIS_UNLOCK(sc); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int sis_encap(struct sis_softc *sc, struct mbuf **m_head) { struct mbuf *m; struct sis_txdesc *txd; struct sis_desc *f; bus_dma_segment_t segs[SIS_MAXTXSEGS]; bus_dmamap_t map; int error, i, frag, nsegs, prod; int padlen; prod = sc->sis_tx_prod; txd = &sc->sis_txdesc[prod]; if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 && (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) { m = *m_head; padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len; if (M_WRITABLE(m) == 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_NOWAIT); m_freem(*m_head); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) { m = m_defrag(m, M_NOWAIT); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } } /* * Manually pad short frames, and zero the pad space * to avoid leaking data. */ bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); m->m_pkthdr.len += padlen; m->m_len = m->m_pkthdr.len; *m_head = m; } error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap, *m_head, segs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap, *m_head, segs, &nsegs, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); /* Check for descriptor overruns. */ if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) { bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); return (ENOBUFS); } bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); frag = prod; for (i = 0; i < nsegs; i++) { f = &sc->sis_tx_list[prod]; if (i == 0) f->sis_cmdsts = htole32(segs[i].ds_len | SIS_CMDSTS_MORE); else f->sis_cmdsts = htole32(segs[i].ds_len | SIS_CMDSTS_OWN | SIS_CMDSTS_MORE); f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr)); SIS_INC(prod, SIS_TX_LIST_CNT); sc->sis_tx_cnt++; } /* Update producer index. */ sc->sis_tx_prod = prod; /* Remove MORE flag on the last descriptor. */ prod = (prod - 1) & (SIS_TX_LIST_CNT - 1); f = &sc->sis_tx_list[prod]; f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE); /* Lastly transfer ownership of packet to the controller. */ f = &sc->sis_tx_list[frag]; f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN); /* Swap the last and the first dmamaps. */ map = txd->tx_dmamap; txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap; sc->sis_txdesc[prod].tx_dmamap = map; sc->sis_txdesc[prod].tx_m = *m_head; return (0); } static void sis_start(struct ifnet *ifp) { struct sis_softc *sc; sc = ifp->if_softc; SIS_LOCK(sc); sis_startl(ifp); SIS_UNLOCK(sc); } static void sis_startl(struct ifnet *ifp) { struct sis_softc *sc; struct mbuf *m_head; int queued; sc = ifp->if_softc; SIS_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0) return; for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (sis_encap(sc, &m_head) != 0) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } queued++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (queued) { /* Transmit */ bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE); /* * Set a timeout in case the chip goes out to lunch. */ sc->sis_watchdog_timer = 5; } } static void sis_init(void *xsc) { struct sis_softc *sc = xsc; SIS_LOCK(sc); sis_initl(sc); SIS_UNLOCK(sc); } static void sis_initl(struct sis_softc *sc) { struct ifnet *ifp = sc->sis_ifp; struct mii_data *mii; uint8_t *eaddr; SIS_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* * Cancel pending I/O and free all RX/TX buffers. */ sis_stop(sc); /* * Reset the chip to a known state. */ sis_reset(sc); #ifdef notyet if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { /* * Configure 400usec of interrupt holdoff. This is based * on emperical tests on a Soekris 4801. */ CSR_WRITE_4(sc, NS_IHR, 0x100 | 4); } #endif mii = device_get_softc(sc->sis_miibus); /* Set MAC address */ eaddr = IF_LLADDR(sc->sis_ifp); if (sc->sis_type == SIS_TYPE_83815) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0); CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8); CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1); CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8); CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2); CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8); } else { CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8); } /* Init circular TX/RX lists. */ if (sis_ring_init(sc) != 0) { device_printf(sc->sis_dev, "initialization failed: no memory for rx buffers\n"); sis_stop(sc); return; } if (sc->sis_type == SIS_TYPE_83815) { if (sc->sis_manual_pad != 0) sc->sis_flags |= SIS_FLAG_MANUAL_PAD; else sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD; } /* * Short Cable Receive Errors (MP21.E) * also: Page 78 of the DP83815 data sheet (september 2002 version) * recommends the following register settings "for optimum * performance." for rev 15C. Set this also for 15D parts as * they require it in practice. */ if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) { CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); CSR_WRITE_4(sc, NS_PHY_CR, 0x189C); /* set val for c2 */ CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000); /* load/kill c2 */ CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040); /* rais SD off, from 4 to c */ CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C); CSR_WRITE_4(sc, NS_PHY_PAGE, 0); } sis_rxfilter(sc); /* Turn the receive filter on */ SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE); /* * Load the address of the RX and TX lists. */ CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr)); CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr)); /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of * the PCI bus. When this bit is set, the Max DMA Burst Size * for TX/RX DMA should be no larger than 16 double words. */ if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) { CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64); } else { CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256); } /* Accept Long Packets for VLAN support */ SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER); /* * Assume 100Mbps link, actual MAC configuration is done * after getting a valid link. */ CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); /* * Enable interrupts. */ CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS); #ifdef DEVICE_POLLING /* * ... only enable interrupts if we are not polling, make sure * they are off otherwise. */ if (ifp->if_capenable & IFCAP_POLLING) CSR_WRITE_4(sc, SIS_IER, 0); else #endif CSR_WRITE_4(sc, SIS_IER, 1); /* Clear MAC disable. */ SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); sc->sis_flags &= ~SIS_FLAG_LINK; mii_mediachg(mii); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc); } /* * Set media options. */ static int sis_ifmedia_upd(struct ifnet *ifp) { struct sis_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; SIS_LOCK(sc); mii = device_get_softc(sc->sis_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); SIS_UNLOCK(sc); return (error); } /* * Report current media status. */ static void sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct sis_softc *sc; struct mii_data *mii; sc = ifp->if_softc; SIS_LOCK(sc); mii = device_get_softc(sc->sis_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; SIS_UNLOCK(sc); } static int sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct sis_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0, mask; switch (command) { case SIOCSIFFLAGS: SIS_LOCK(sc); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc->sis_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) sis_rxfilter(sc); else sis_initl(sc); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) sis_stop(sc); sc->sis_if_flags = ifp->if_flags; SIS_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: SIS_LOCK(sc); sis_rxfilter(sc); SIS_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->sis_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: SIS_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; #ifdef DEVICE_POLLING if ((mask & IFCAP_POLLING) != 0 && (IFCAP_POLLING & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_POLLING; if ((IFCAP_POLLING & ifp->if_capenable) != 0) { error = ether_poll_register(sis_poll, ifp); if (error != 0) { SIS_UNLOCK(sc); break; } /* Disable interrupts. */ CSR_WRITE_4(sc, SIS_IER, 0); } else { error = ether_poll_deregister(ifp); /* Enable interrupts. */ CSR_WRITE_4(sc, SIS_IER, 1); } } #endif /* DEVICE_POLLING */ if ((mask & IFCAP_WOL) != 0 && (ifp->if_capabilities & IFCAP_WOL) != 0) { if ((mask & IFCAP_WOL_UCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_UCAST; if ((mask & IFCAP_WOL_MCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_MCAST; if ((mask & IFCAP_WOL_MAGIC) != 0) ifp->if_capenable ^= IFCAP_WOL_MAGIC; } SIS_UNLOCK(sc); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void sis_watchdog(struct sis_softc *sc) { SIS_LOCK_ASSERT(sc); if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0) return; device_printf(sc->sis_dev, "watchdog timeout\n"); if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1); sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sis_initl(sc); if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd)) sis_startl(sc->sis_ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void sis_stop(struct sis_softc *sc) { struct ifnet *ifp; struct sis_rxdesc *rxd; struct sis_txdesc *txd; int i; SIS_LOCK_ASSERT(sc); ifp = sc->sis_ifp; sc->sis_watchdog_timer = 0; callout_stop(&sc->sis_stat_ch); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); CSR_WRITE_4(sc, SIS_IER, 0); CSR_WRITE_4(sc, SIS_IMR, 0); CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */ SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE); DELAY(1000); CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0); CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); sc->sis_flags &= ~SIS_FLAG_LINK; /* * Free data in the RX lists. */ for (i = 0; i < SIS_RX_LIST_CNT; i++) { rxd = &sc->sis_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } /* * Free the TX list buffers. */ for (i = 0; i < SIS_TX_LIST_CNT; i++) { txd = &sc->sis_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int sis_shutdown(device_t dev) { return (sis_suspend(dev)); } static int sis_suspend(device_t dev) { struct sis_softc *sc; sc = device_get_softc(dev); SIS_LOCK(sc); sis_stop(sc); sis_wol(sc); SIS_UNLOCK(sc); return (0); } static int sis_resume(device_t dev) { struct sis_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); SIS_LOCK(sc); ifp = sc->sis_ifp; if ((ifp->if_flags & IFF_UP) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sis_initl(sc); } SIS_UNLOCK(sc); return (0); } static void sis_wol(struct sis_softc *sc) { struct ifnet *ifp; uint32_t val; uint16_t pmstat; int pmc; ifp = sc->sis_ifp; if ((ifp->if_capenable & IFCAP_WOL) == 0) return; if (sc->sis_type == SIS_TYPE_83815) { /* Reset RXDP. */ CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); /* Configure WOL events. */ CSR_READ_4(sc, NS_WCSR); val = 0; if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) val |= NS_WCSR_WAKE_UCAST; if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) val |= NS_WCSR_WAKE_MCAST; if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) val |= NS_WCSR_WAKE_MAGIC; CSR_WRITE_4(sc, NS_WCSR, val); /* Enable PME and clear PMESTS. */ val = CSR_READ_4(sc, NS_CLKRUN); val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS; CSR_WRITE_4(sc, NS_CLKRUN, val); /* Enable silent RX mode. */ SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); } else { if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0) return; val = 0; if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) val |= SIS_PWRMAN_WOL_MAGIC; CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val); /* Request PME. */ pmstat = pci_read_config(sc->sis_dev, pmc + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(sc->sis_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } } static void sis_add_sysctls(struct sis_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children; int unit; ctx = device_get_sysctl_ctx(sc->sis_dev); children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev)); unit = device_get_unit(sc->sis_dev); /* * Unlike most other controllers, NS DP83815/DP83816 controllers * seem to pad with 0xFF when it encounter short frames. According * to RFC 1042 the pad bytes should be 0x00. Turning this tunable * on will have driver pad manully but it's disabled by default * because it will consume extra CPU cycles for short frames. */ sc->sis_manual_pad = 0; SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad", CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames"); } static device_method_t sis_methods[] = { /* Device interface */ DEVMETHOD(device_probe, sis_probe), DEVMETHOD(device_attach, sis_attach), DEVMETHOD(device_detach, sis_detach), DEVMETHOD(device_shutdown, sis_shutdown), DEVMETHOD(device_suspend, sis_suspend), DEVMETHOD(device_resume, sis_resume), /* MII interface */ DEVMETHOD(miibus_readreg, sis_miibus_readreg), DEVMETHOD(miibus_writereg, sis_miibus_writereg), DEVMETHOD(miibus_statchg, sis_miibus_statchg), DEVMETHOD_END }; static driver_t sis_driver = { "sis", sis_methods, sizeof(struct sis_softc) }; static devclass_t sis_devclass; DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0); DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);