1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2013 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/bio.h> 31 #include <sys/bus.h> 32 #include <sys/conf.h> 33 #include <sys/disk.h> 34 #include <sys/fcntl.h> 35 #include <sys/ioccom.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/proc.h> 39 #include <sys/systm.h> 40 41 #include <dev/pci/pcivar.h> 42 43 #include <geom/geom.h> 44 45 #include "nvme_private.h" 46 47 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 48 static void nvme_bio_child_done(void *arg, 49 const struct nvme_completion *cpl); 50 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 51 uint32_t alignment); 52 static void nvme_free_child_bios(int num_bios, 53 struct bio **child_bios); 54 static struct bio ** nvme_allocate_child_bios(int num_bios); 55 static struct bio ** nvme_construct_child_bios(struct bio *bp, 56 uint32_t alignment, 57 int *num_bios); 58 static int nvme_ns_split_bio(struct nvme_namespace *ns, 59 struct bio *bp, 60 uint32_t alignment); 61 62 static int 63 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 64 struct thread *td) 65 { 66 struct nvme_namespace *ns; 67 struct nvme_controller *ctrlr; 68 struct nvme_pt_command *pt; 69 70 ns = cdev->si_drv1; 71 ctrlr = ns->ctrlr; 72 73 switch (cmd) { 74 case NVME_IO_TEST: 75 case NVME_BIO_TEST: 76 nvme_ns_test(ns, cmd, arg); 77 break; 78 case NVME_PASSTHROUGH_CMD: 79 pt = (struct nvme_pt_command *)arg; 80 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 81 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 82 case NVME_GET_NSID: 83 { 84 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 85 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 86 sizeof(gnsid->cdev)); 87 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; 88 gnsid->nsid = ns->id; 89 break; 90 } 91 case DIOCGMEDIASIZE: 92 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 93 break; 94 case DIOCGSECTORSIZE: 95 *(u_int *)arg = nvme_ns_get_sector_size(ns); 96 break; 97 default: 98 return (ENOTTY); 99 } 100 101 return (0); 102 } 103 104 static int 105 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 106 struct thread *td) 107 { 108 int error = 0; 109 110 if (flags & FWRITE) 111 error = securelevel_gt(td->td_ucred, 0); 112 113 return (error); 114 } 115 116 static int 117 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 118 struct thread *td) 119 { 120 121 return (0); 122 } 123 124 static void 125 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 126 { 127 struct bio *bp = arg; 128 129 /* 130 * TODO: add more extensive translation of NVMe status codes 131 * to different bio error codes (i.e. EIO, EINVAL, etc.) 132 */ 133 if (nvme_completion_is_error(cpl)) { 134 bp->bio_error = EIO; 135 bp->bio_flags |= BIO_ERROR; 136 bp->bio_resid = bp->bio_bcount; 137 } else 138 bp->bio_resid = 0; 139 140 biodone(bp); 141 } 142 143 static void 144 nvme_ns_strategy(struct bio *bp) 145 { 146 struct nvme_namespace *ns; 147 int err; 148 149 ns = bp->bio_dev->si_drv1; 150 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 151 152 if (err) { 153 bp->bio_error = err; 154 bp->bio_flags |= BIO_ERROR; 155 bp->bio_resid = bp->bio_bcount; 156 biodone(bp); 157 } 158 159 } 160 161 static struct cdevsw nvme_ns_cdevsw = { 162 .d_version = D_VERSION, 163 .d_flags = D_DISK, 164 .d_read = physread, 165 .d_write = physwrite, 166 .d_open = nvme_ns_open, 167 .d_close = nvme_ns_close, 168 .d_strategy = nvme_ns_strategy, 169 .d_ioctl = nvme_ns_ioctl 170 }; 171 172 uint32_t 173 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 174 { 175 return ns->ctrlr->max_xfer_size; 176 } 177 178 uint32_t 179 nvme_ns_get_sector_size(struct nvme_namespace *ns) 180 { 181 uint8_t flbas_fmt, lbads; 182 183 flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas); 184 lbads = NVMEV(NVME_NS_DATA_LBAF_LBADS, ns->data.lbaf[flbas_fmt]); 185 186 return (1 << lbads); 187 } 188 189 uint64_t 190 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 191 { 192 return (ns->data.nsze); 193 } 194 195 uint64_t 196 nvme_ns_get_size(struct nvme_namespace *ns) 197 { 198 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 199 } 200 201 uint32_t 202 nvme_ns_get_flags(struct nvme_namespace *ns) 203 { 204 return (ns->flags); 205 } 206 207 const char * 208 nvme_ns_get_serial_number(struct nvme_namespace *ns) 209 { 210 return ((const char *)ns->ctrlr->cdata.sn); 211 } 212 213 const char * 214 nvme_ns_get_model_number(struct nvme_namespace *ns) 215 { 216 return ((const char *)ns->ctrlr->cdata.mn); 217 } 218 219 const struct nvme_namespace_data * 220 nvme_ns_get_data(struct nvme_namespace *ns) 221 { 222 223 return (&ns->data); 224 } 225 226 uint32_t 227 nvme_ns_get_stripesize(struct nvme_namespace *ns) 228 { 229 uint32_t ss; 230 231 if (NVMEV(NVME_NS_DATA_NSFEAT_NPVALID, ns->data.nsfeat) != 0) { 232 ss = nvme_ns_get_sector_size(ns); 233 if (ns->data.npwa != 0) 234 return ((ns->data.npwa + 1) * ss); 235 else if (ns->data.npwg != 0) 236 return ((ns->data.npwg + 1) * ss); 237 } 238 return (ns->boundary); 239 } 240 241 static void 242 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 243 { 244 struct bio *bp = arg; 245 nvme_cb_fn_t bp_cb_fn; 246 247 bp_cb_fn = bp->bio_driver1; 248 249 if (bp->bio_driver2) 250 free(bp->bio_driver2, M_NVME); 251 252 if (nvme_completion_is_error(status)) { 253 bp->bio_flags |= BIO_ERROR; 254 if (bp->bio_error == 0) 255 bp->bio_error = EIO; 256 } 257 258 if ((bp->bio_flags & BIO_ERROR) == 0) 259 bp->bio_resid = 0; 260 else 261 bp->bio_resid = bp->bio_bcount; 262 263 bp_cb_fn(bp, status); 264 } 265 266 static void 267 nvme_bio_child_inbed(struct bio *parent, int bio_error) 268 { 269 struct nvme_completion parent_cpl; 270 int children, inbed; 271 272 if (bio_error != 0) { 273 parent->bio_flags |= BIO_ERROR; 274 parent->bio_error = bio_error; 275 } 276 277 /* 278 * atomic_fetchadd will return value before adding 1, so we still 279 * must add 1 to get the updated inbed number. Save bio_children 280 * before incrementing to guard against race conditions when 281 * two children bios complete on different queues. 282 */ 283 children = atomic_load_acq_int(&parent->bio_children); 284 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 285 if (inbed == children) { 286 bzero(&parent_cpl, sizeof(parent_cpl)); 287 if (parent->bio_flags & BIO_ERROR) { 288 parent_cpl.status &= ~NVMEM(NVME_STATUS_SC); 289 parent_cpl.status |= NVMEF(NVME_STATUS_SC, 290 NVME_SC_DATA_TRANSFER_ERROR); 291 } 292 nvme_ns_bio_done(parent, &parent_cpl); 293 } 294 } 295 296 static void 297 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 298 { 299 struct bio *child = arg; 300 struct bio *parent; 301 int bio_error; 302 303 parent = child->bio_parent; 304 g_destroy_bio(child); 305 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 306 nvme_bio_child_inbed(parent, bio_error); 307 } 308 309 static uint32_t 310 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 311 { 312 uint32_t num_segs, offset, remainder; 313 314 if (align == 0) 315 return (1); 316 317 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 318 319 num_segs = size / align; 320 remainder = size & (align - 1); 321 offset = addr & (align - 1); 322 if (remainder > 0 || offset > 0) 323 num_segs += 1 + (remainder + offset - 1) / align; 324 return (num_segs); 325 } 326 327 static void 328 nvme_free_child_bios(int num_bios, struct bio **child_bios) 329 { 330 int i; 331 332 for (i = 0; i < num_bios; i++) { 333 if (child_bios[i] != NULL) 334 g_destroy_bio(child_bios[i]); 335 } 336 337 free(child_bios, M_NVME); 338 } 339 340 static struct bio ** 341 nvme_allocate_child_bios(int num_bios) 342 { 343 struct bio **child_bios; 344 int err = 0, i; 345 346 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 347 if (child_bios == NULL) 348 return (NULL); 349 350 for (i = 0; i < num_bios; i++) { 351 child_bios[i] = g_new_bio(); 352 if (child_bios[i] == NULL) 353 err = ENOMEM; 354 } 355 356 if (err == ENOMEM) { 357 nvme_free_child_bios(num_bios, child_bios); 358 return (NULL); 359 } 360 361 return (child_bios); 362 } 363 364 static struct bio ** 365 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 366 { 367 struct bio **child_bios; 368 struct bio *child; 369 uint64_t cur_offset; 370 caddr_t data; 371 uint32_t rem_bcount; 372 int i; 373 struct vm_page **ma; 374 uint32_t ma_offset; 375 376 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 377 alignment); 378 child_bios = nvme_allocate_child_bios(*num_bios); 379 if (child_bios == NULL) 380 return (NULL); 381 382 bp->bio_children = *num_bios; 383 bp->bio_inbed = 0; 384 cur_offset = bp->bio_offset; 385 rem_bcount = bp->bio_bcount; 386 data = bp->bio_data; 387 ma_offset = bp->bio_ma_offset; 388 ma = bp->bio_ma; 389 390 for (i = 0; i < *num_bios; i++) { 391 child = child_bios[i]; 392 child->bio_parent = bp; 393 child->bio_cmd = bp->bio_cmd; 394 child->bio_offset = cur_offset; 395 child->bio_bcount = min(rem_bcount, 396 alignment - (cur_offset & (alignment - 1))); 397 child->bio_flags = bp->bio_flags; 398 if (bp->bio_flags & BIO_UNMAPPED) { 399 child->bio_ma_offset = ma_offset; 400 child->bio_ma = ma; 401 child->bio_ma_n = 402 nvme_get_num_segments(child->bio_ma_offset, 403 child->bio_bcount, PAGE_SIZE); 404 ma_offset = (ma_offset + child->bio_bcount) & 405 PAGE_MASK; 406 ma += child->bio_ma_n; 407 if (ma_offset != 0) 408 ma -= 1; 409 } else { 410 child->bio_data = data; 411 data += child->bio_bcount; 412 } 413 cur_offset += child->bio_bcount; 414 rem_bcount -= child->bio_bcount; 415 } 416 417 return (child_bios); 418 } 419 420 static int 421 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 422 uint32_t alignment) 423 { 424 struct bio *child; 425 struct bio **child_bios; 426 int err, i, num_bios; 427 428 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 429 if (child_bios == NULL) 430 return (ENOMEM); 431 432 for (i = 0; i < num_bios; i++) { 433 child = child_bios[i]; 434 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 435 if (err != 0) { 436 nvme_bio_child_inbed(bp, err); 437 g_destroy_bio(child); 438 } 439 } 440 441 free(child_bios, M_NVME); 442 return (0); 443 } 444 445 int 446 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 447 nvme_cb_fn_t cb_fn) 448 { 449 struct nvme_dsm_range *dsm_range; 450 uint32_t num_bios; 451 int err; 452 453 bp->bio_driver1 = cb_fn; 454 455 if (ns->boundary > 0 && 456 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 457 num_bios = nvme_get_num_segments(bp->bio_offset, 458 bp->bio_bcount, ns->boundary); 459 if (num_bios > 1) 460 return (nvme_ns_split_bio(ns, bp, ns->boundary)); 461 } 462 463 switch (bp->bio_cmd) { 464 case BIO_READ: 465 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 466 break; 467 case BIO_WRITE: 468 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 469 break; 470 case BIO_FLUSH: 471 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 472 break; 473 case BIO_DELETE: 474 dsm_range = 475 malloc(sizeof(struct nvme_dsm_range), M_NVME, 476 M_ZERO | M_NOWAIT); 477 if (!dsm_range) { 478 err = ENOMEM; 479 break; 480 } 481 dsm_range->length = 482 htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns)); 483 dsm_range->starting_lba = 484 htole64(bp->bio_offset/nvme_ns_get_sector_size(ns)); 485 bp->bio_driver2 = dsm_range; 486 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 487 nvme_ns_bio_done, bp); 488 if (err != 0) 489 free(dsm_range, M_NVME); 490 break; 491 default: 492 err = EOPNOTSUPP; 493 break; 494 } 495 496 return (err); 497 } 498 499 int 500 nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg, 501 int flag, struct thread *td) 502 { 503 return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td)); 504 } 505 506 int 507 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, 508 struct nvme_controller *ctrlr) 509 { 510 struct make_dev_args md_args; 511 struct nvme_completion_poll_status status; 512 int res; 513 int unit; 514 uint8_t flbas_fmt; 515 uint8_t vwc_present; 516 517 ns->ctrlr = ctrlr; 518 ns->id = id; 519 520 /* 521 * Namespaces are reconstructed after a controller reset, so check 522 * to make sure we only call mtx_init once on each mtx. 523 * 524 * TODO: Move this somewhere where it gets called at controller 525 * construction time, which is not invoked as part of each 526 * controller reset. 527 */ 528 if (!mtx_initialized(&ns->lock)) 529 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 530 531 status.done = 0; 532 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 533 nvme_completion_poll_cb, &status); 534 nvme_completion_poll(&status); 535 if (nvme_completion_is_error(&status.cpl)) { 536 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 537 return (ENXIO); 538 } 539 540 /* Convert data to host endian */ 541 nvme_namespace_data_swapbytes(&ns->data); 542 543 /* 544 * If the size of is zero, chances are this isn't a valid 545 * namespace (eg one that's not been configured yet). The 546 * standard says the entire id will be zeros, so this is a 547 * cheap way to test for that. 548 */ 549 if (ns->data.nsze == 0) 550 return (ENXIO); 551 552 flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas); 553 554 /* 555 * Note: format is a 0-based value, so > is appropriate here, 556 * not >=. 557 */ 558 if (flbas_fmt > ns->data.nlbaf) { 559 nvme_printf(ctrlr, 560 "lba format %d exceeds number supported (%d)\n", 561 flbas_fmt, ns->data.nlbaf + 1); 562 return (ENXIO); 563 } 564 565 /* 566 * Older Intel devices (like the PC35xxx and P45xx series) advertise in 567 * vendor specific space an alignment that improves performance. If 568 * present use for the stripe size. NVMe 1.3 standardized this as 569 * NOIOB, and newer Intel drives use that. 570 */ 571 if ((ctrlr->quirks & QUIRK_INTEL_ALIGNMENT) != 0) { 572 if (ctrlr->cdata.vs[3] != 0) 573 ns->boundary = 574 1 << (ctrlr->cdata.vs[3] + NVME_MPS_SHIFT + 575 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)); 576 else 577 ns->boundary = 0; 578 } else { 579 ns->boundary = ns->data.noiob * nvme_ns_get_sector_size(ns); 580 } 581 582 if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata)) 583 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 584 585 vwc_present = NVMEV(NVME_CTRLR_DATA_VWC_PRESENT, ctrlr->cdata.vwc); 586 if (vwc_present) 587 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 588 589 /* 590 * cdev may have already been created, if we are reconstructing the 591 * namespace after a controller-level reset. 592 */ 593 if (ns->cdev != NULL) 594 return (0); 595 596 /* 597 * Namespace IDs start at 1, so we need to subtract 1 to create a 598 * correct unit number. 599 */ 600 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 601 602 make_dev_args_init(&md_args); 603 md_args.mda_devsw = &nvme_ns_cdevsw; 604 md_args.mda_unit = unit; 605 md_args.mda_mode = 0600; 606 md_args.mda_si_drv1 = ns; 607 res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d", 608 device_get_unit(ctrlr->dev), ns->id); 609 if (res != 0) 610 return (ENXIO); 611 612 ns->cdev->si_flags |= SI_UNMAPPED; 613 614 return (0); 615 } 616 617 void 618 nvme_ns_destruct(struct nvme_namespace *ns) 619 { 620 621 if (ns->cdev != NULL) 622 destroy_dev(ns->cdev); 623 } 624