/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (C) 2012-2013 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme_private.h" static void nvme_bio_child_inbed(struct bio *parent, int bio_error); static void nvme_bio_child_done(void *arg, const struct nvme_completion *cpl); static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t alignment); static void nvme_free_child_bios(int num_bios, struct bio **child_bios); static struct bio ** nvme_allocate_child_bios(int num_bios); static struct bio ** nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios); static int nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, uint32_t alignment); static int nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct nvme_namespace *ns; struct nvme_controller *ctrlr; struct nvme_pt_command *pt; ns = cdev->si_drv1; ctrlr = ns->ctrlr; switch (cmd) { case NVME_IO_TEST: case NVME_BIO_TEST: nvme_ns_test(ns, cmd, arg); break; case NVME_PASSTHROUGH_CMD: pt = (struct nvme_pt_command *)arg; return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); case NVME_GET_NSID: { struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), sizeof(gnsid->cdev)); gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; gnsid->nsid = ns->id; break; } case DIOCGMEDIASIZE: *(off_t *)arg = (off_t)nvme_ns_get_size(ns); break; case DIOCGSECTORSIZE: *(u_int *)arg = nvme_ns_get_sector_size(ns); break; default: return (ENOTTY); } return (0); } static int nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, struct thread *td) { int error = 0; if (flags & FWRITE) error = securelevel_gt(td->td_ucred, 0); return (error); } static int nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, struct thread *td) { return (0); } static void nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) { struct bio *bp = arg; /* * TODO: add more extensive translation of NVMe status codes * to different bio error codes (i.e. EIO, EINVAL, etc.) */ if (nvme_completion_is_error(cpl)) { bp->bio_error = EIO; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; } else bp->bio_resid = 0; biodone(bp); } static void nvme_ns_strategy(struct bio *bp) { struct nvme_namespace *ns; int err; ns = bp->bio_dev->si_drv1; err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); if (err) { bp->bio_error = err; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; biodone(bp); } } static struct cdevsw nvme_ns_cdevsw = { .d_version = D_VERSION, .d_flags = D_DISK, .d_read = physread, .d_write = physwrite, .d_open = nvme_ns_open, .d_close = nvme_ns_close, .d_strategy = nvme_ns_strategy, .d_ioctl = nvme_ns_ioctl }; uint32_t nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) { return ns->ctrlr->max_xfer_size; } uint32_t nvme_ns_get_sector_size(struct nvme_namespace *ns) { uint8_t flbas_fmt, lbads; flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas); lbads = NVMEV(NVME_NS_DATA_LBAF_LBADS, ns->data.lbaf[flbas_fmt]); return (1 << lbads); } uint64_t nvme_ns_get_num_sectors(struct nvme_namespace *ns) { return (ns->data.nsze); } uint64_t nvme_ns_get_size(struct nvme_namespace *ns) { return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); } uint32_t nvme_ns_get_flags(struct nvme_namespace *ns) { return (ns->flags); } const char * nvme_ns_get_serial_number(struct nvme_namespace *ns) { return ((const char *)ns->ctrlr->cdata.sn); } const char * nvme_ns_get_model_number(struct nvme_namespace *ns) { return ((const char *)ns->ctrlr->cdata.mn); } const struct nvme_namespace_data * nvme_ns_get_data(struct nvme_namespace *ns) { return (&ns->data); } uint32_t nvme_ns_get_stripesize(struct nvme_namespace *ns) { uint32_t ss; if (NVMEV(NVME_NS_DATA_NSFEAT_NPVALID, ns->data.nsfeat) != 0) { ss = nvme_ns_get_sector_size(ns); if (ns->data.npwa != 0) return ((ns->data.npwa + 1) * ss); else if (ns->data.npwg != 0) return ((ns->data.npwg + 1) * ss); } return (ns->boundary); } static void nvme_ns_bio_done(void *arg, const struct nvme_completion *status) { struct bio *bp = arg; nvme_cb_fn_t bp_cb_fn; bp_cb_fn = bp->bio_driver1; if (bp->bio_driver2) free(bp->bio_driver2, M_NVME); if (nvme_completion_is_error(status)) { bp->bio_flags |= BIO_ERROR; if (bp->bio_error == 0) bp->bio_error = EIO; } if ((bp->bio_flags & BIO_ERROR) == 0) bp->bio_resid = 0; else bp->bio_resid = bp->bio_bcount; bp_cb_fn(bp, status); } static void nvme_bio_child_inbed(struct bio *parent, int bio_error) { struct nvme_completion parent_cpl; int children, inbed; if (bio_error != 0) { parent->bio_flags |= BIO_ERROR; parent->bio_error = bio_error; } /* * atomic_fetchadd will return value before adding 1, so we still * must add 1 to get the updated inbed number. Save bio_children * before incrementing to guard against race conditions when * two children bios complete on different queues. */ children = atomic_load_acq_int(&parent->bio_children); inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; if (inbed == children) { bzero(&parent_cpl, sizeof(parent_cpl)); if (parent->bio_flags & BIO_ERROR) { parent_cpl.status &= ~NVMEM(NVME_STATUS_SC); parent_cpl.status |= NVMEF(NVME_STATUS_SC, NVME_SC_DATA_TRANSFER_ERROR); } nvme_ns_bio_done(parent, &parent_cpl); } } static void nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) { struct bio *child = arg; struct bio *parent; int bio_error; parent = child->bio_parent; g_destroy_bio(child); bio_error = nvme_completion_is_error(cpl) ? EIO : 0; nvme_bio_child_inbed(parent, bio_error); } static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) { uint32_t num_segs, offset, remainder; if (align == 0) return (1); KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); num_segs = size / align; remainder = size & (align - 1); offset = addr & (align - 1); if (remainder > 0 || offset > 0) num_segs += 1 + (remainder + offset - 1) / align; return (num_segs); } static void nvme_free_child_bios(int num_bios, struct bio **child_bios) { int i; for (i = 0; i < num_bios; i++) { if (child_bios[i] != NULL) g_destroy_bio(child_bios[i]); } free(child_bios, M_NVME); } static struct bio ** nvme_allocate_child_bios(int num_bios) { struct bio **child_bios; int err = 0, i; child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); if (child_bios == NULL) return (NULL); for (i = 0; i < num_bios; i++) { child_bios[i] = g_new_bio(); if (child_bios[i] == NULL) err = ENOMEM; } if (err == ENOMEM) { nvme_free_child_bios(num_bios, child_bios); return (NULL); } return (child_bios); } static struct bio ** nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) { struct bio **child_bios; struct bio *child; uint64_t cur_offset; caddr_t data; uint32_t rem_bcount; int i; struct vm_page **ma; uint32_t ma_offset; *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, alignment); child_bios = nvme_allocate_child_bios(*num_bios); if (child_bios == NULL) return (NULL); bp->bio_children = *num_bios; bp->bio_inbed = 0; cur_offset = bp->bio_offset; rem_bcount = bp->bio_bcount; data = bp->bio_data; ma_offset = bp->bio_ma_offset; ma = bp->bio_ma; for (i = 0; i < *num_bios; i++) { child = child_bios[i]; child->bio_parent = bp; child->bio_cmd = bp->bio_cmd; child->bio_offset = cur_offset; child->bio_bcount = min(rem_bcount, alignment - (cur_offset & (alignment - 1))); child->bio_flags = bp->bio_flags; if (bp->bio_flags & BIO_UNMAPPED) { child->bio_ma_offset = ma_offset; child->bio_ma = ma; child->bio_ma_n = nvme_get_num_segments(child->bio_ma_offset, child->bio_bcount, PAGE_SIZE); ma_offset = (ma_offset + child->bio_bcount) & PAGE_MASK; ma += child->bio_ma_n; if (ma_offset != 0) ma -= 1; } else { child->bio_data = data; data += child->bio_bcount; } cur_offset += child->bio_bcount; rem_bcount -= child->bio_bcount; } return (child_bios); } static int nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, uint32_t alignment) { struct bio *child; struct bio **child_bios; int err, i, num_bios; child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); if (child_bios == NULL) return (ENOMEM); for (i = 0; i < num_bios; i++) { child = child_bios[i]; err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); if (err != 0) { nvme_bio_child_inbed(bp, err); g_destroy_bio(child); } } free(child_bios, M_NVME); return (0); } int nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn) { struct nvme_dsm_range *dsm_range; uint32_t num_bios; int err; bp->bio_driver1 = cb_fn; if (ns->boundary > 0 && (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, ns->boundary); if (num_bios > 1) return (nvme_ns_split_bio(ns, bp, ns->boundary)); } switch (bp->bio_cmd) { case BIO_READ: err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); break; case BIO_WRITE: err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); break; case BIO_FLUSH: err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); break; case BIO_DELETE: dsm_range = malloc(sizeof(struct nvme_dsm_range), M_NVME, M_ZERO | M_NOWAIT); if (!dsm_range) { err = ENOMEM; break; } dsm_range->length = htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns)); dsm_range->starting_lba = htole64(bp->bio_offset/nvme_ns_get_sector_size(ns)); bp->bio_driver2 = dsm_range; err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, nvme_ns_bio_done, bp); if (err != 0) free(dsm_range, M_NVME); break; default: err = EOPNOTSUPP; break; } return (err); } int nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg, int flag, struct thread *td) { return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td)); } int nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, struct nvme_controller *ctrlr) { struct make_dev_args md_args; struct nvme_completion_poll_status status; int res; int unit; uint8_t flbas_fmt; uint8_t vwc_present; ns->ctrlr = ctrlr; ns->id = id; /* * Namespaces are reconstructed after a controller reset, so check * to make sure we only call mtx_init once on each mtx. * * TODO: Move this somewhere where it gets called at controller * construction time, which is not invoked as part of each * controller reset. */ if (!mtx_initialized(&ns->lock)) mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); status.done = 0; nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, nvme_completion_poll_cb, &status); nvme_completion_poll(&status); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); return (ENXIO); } /* Convert data to host endian */ nvme_namespace_data_swapbytes(&ns->data); /* * If the size of is zero, chances are this isn't a valid * namespace (eg one that's not been configured yet). The * standard says the entire id will be zeros, so this is a * cheap way to test for that. */ if (ns->data.nsze == 0) return (ENXIO); flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas); /* * Note: format is a 0-based value, so > is appropriate here, * not >=. */ if (flbas_fmt > ns->data.nlbaf) { nvme_printf(ctrlr, "lba format %d exceeds number supported (%d)\n", flbas_fmt, ns->data.nlbaf + 1); return (ENXIO); } /* * Older Intel devices (like the PC35xxx and P45xx series) advertise in * vendor specific space an alignment that improves performance. If * present use for the stripe size. NVMe 1.3 standardized this as * NOIOB, and newer Intel drives use that. */ if ((ctrlr->quirks & QUIRK_INTEL_ALIGNMENT) != 0) { if (ctrlr->cdata.vs[3] != 0) ns->boundary = 1 << (ctrlr->cdata.vs[3] + NVME_MPS_SHIFT + NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)); else ns->boundary = 0; } else { ns->boundary = ns->data.noiob * nvme_ns_get_sector_size(ns); } if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata)) ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; vwc_present = NVMEV(NVME_CTRLR_DATA_VWC_PRESENT, ctrlr->cdata.vwc); if (vwc_present) ns->flags |= NVME_NS_FLUSH_SUPPORTED; /* * cdev may have already been created, if we are reconstructing the * namespace after a controller-level reset. */ if (ns->cdev != NULL) return (0); /* * Namespace IDs start at 1, so we need to subtract 1 to create a * correct unit number. */ unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; make_dev_args_init(&md_args); md_args.mda_devsw = &nvme_ns_cdevsw; md_args.mda_unit = unit; md_args.mda_mode = 0600; md_args.mda_si_drv1 = ns; res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d", device_get_unit(ctrlr->dev), ns->id); if (res != 0) return (ENXIO); ns->cdev->si_flags |= SI_UNMAPPED; return (0); } void nvme_ns_destruct(struct nvme_namespace *ns) { if (ns->cdev != NULL) destroy_dev(ns->cdev); }