1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * Copyright (C) 2018-2020 Alexander Motin <mav@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bio.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/queue.h> 39 #include <sys/sysctl.h> 40 #include <sys/systm.h> 41 #include <sys/taskqueue.h> 42 #include <machine/atomic.h> 43 44 #include <geom/geom.h> 45 #include <geom/geom_disk.h> 46 47 #include <dev/nvme/nvme.h> 48 #include <dev/nvme/nvme_private.h> 49 50 #include <dev/pci/pcivar.h> 51 52 #define NVD_STR "nvd" 53 54 struct nvd_disk; 55 struct nvd_controller; 56 57 static disk_ioctl_t nvd_ioctl; 58 static disk_strategy_t nvd_strategy; 59 static dumper_t nvd_dump; 60 static disk_getattr_t nvd_getattr; 61 62 static void nvd_done(void *arg, const struct nvme_completion *cpl); 63 static void nvd_gone(struct nvd_disk *ndisk); 64 65 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr); 66 67 static void *nvd_new_controller(struct nvme_controller *ctrlr); 68 static void nvd_controller_fail(void *ctrlr); 69 70 static int nvd_load(void); 71 static void nvd_unload(void); 72 73 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations"); 74 75 struct nvme_consumer *consumer_handle; 76 77 struct nvd_disk { 78 struct nvd_controller *ctrlr; 79 80 struct bio_queue_head bioq; 81 struct task bioqtask; 82 struct mtx bioqlock; 83 84 struct disk *disk; 85 struct taskqueue *tq; 86 struct nvme_namespace *ns; 87 88 uint32_t cur_depth; 89 #define NVD_ODEPTH (1 << 30) 90 uint32_t ordered_in_flight; 91 u_int unit; 92 93 TAILQ_ENTRY(nvd_disk) global_tailq; 94 TAILQ_ENTRY(nvd_disk) ctrlr_tailq; 95 }; 96 97 struct nvd_controller { 98 struct nvme_controller *ctrlr; 99 TAILQ_ENTRY(nvd_controller) tailq; 100 TAILQ_HEAD(, nvd_disk) disk_head; 101 }; 102 103 static struct mtx nvd_lock; 104 static TAILQ_HEAD(, nvd_controller) ctrlr_head; 105 static TAILQ_HEAD(disk_list, nvd_disk) disk_head; 106 107 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 108 "nvd driver parameters"); 109 /* 110 * The NVMe specification does not define a maximum or optimal delete size, so 111 * technically max delete size is min(full size of the namespace, 2^32 - 1 112 * LBAs). A single delete for a multi-TB NVMe namespace though may take much 113 * longer to complete than the nvme(4) I/O timeout period. So choose a sensible 114 * default here that is still suitably large to minimize the number of overall 115 * delete operations. 116 */ 117 static uint64_t nvd_delete_max = (1024 * 1024 * 1024); /* 1GB */ 118 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0, 119 "nvd maximum BIO_DELETE size in bytes"); 120 121 static int nvd_modevent(module_t mod, int type, void *arg) 122 { 123 int error = 0; 124 125 switch (type) { 126 case MOD_LOAD: 127 error = nvd_load(); 128 break; 129 case MOD_UNLOAD: 130 nvd_unload(); 131 break; 132 default: 133 break; 134 } 135 136 return (error); 137 } 138 139 moduledata_t nvd_mod = { 140 NVD_STR, 141 (modeventhand_t)nvd_modevent, 142 0 143 }; 144 145 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY); 146 MODULE_VERSION(nvd, 1); 147 MODULE_DEPEND(nvd, nvme, 1, 1, 1); 148 149 static int 150 nvd_load() 151 { 152 if (!nvme_use_nvd) 153 return 0; 154 155 mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF); 156 TAILQ_INIT(&ctrlr_head); 157 TAILQ_INIT(&disk_head); 158 159 consumer_handle = nvme_register_consumer(nvd_new_disk, 160 nvd_new_controller, NULL, nvd_controller_fail); 161 162 return (consumer_handle != NULL ? 0 : -1); 163 } 164 165 static void 166 nvd_unload() 167 { 168 struct nvd_controller *ctrlr; 169 struct nvd_disk *ndisk; 170 171 if (!nvme_use_nvd) 172 return; 173 174 mtx_lock(&nvd_lock); 175 while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) { 176 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 177 TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) 178 nvd_gone(ndisk); 179 while (!TAILQ_EMPTY(&ctrlr->disk_head)) 180 msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0); 181 free(ctrlr, M_NVD); 182 } 183 mtx_unlock(&nvd_lock); 184 185 nvme_unregister_consumer(consumer_handle); 186 187 mtx_destroy(&nvd_lock); 188 } 189 190 static void 191 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp) 192 { 193 int err; 194 195 bp->bio_driver1 = NULL; 196 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 197 atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH); 198 else 199 atomic_add_int(&ndisk->cur_depth, 1); 200 err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done); 201 if (err) { 202 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 203 atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); 204 atomic_add_int(&ndisk->ordered_in_flight, -1); 205 wakeup(&ndisk->cur_depth); 206 } else { 207 if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && 208 __predict_false(ndisk->ordered_in_flight != 0)) 209 wakeup(&ndisk->cur_depth); 210 } 211 bp->bio_error = err; 212 bp->bio_flags |= BIO_ERROR; 213 bp->bio_resid = bp->bio_bcount; 214 biodone(bp); 215 } 216 } 217 218 static void 219 nvd_strategy(struct bio *bp) 220 { 221 struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; 222 223 /* 224 * bio with BIO_ORDERED flag must be executed after all previous 225 * bios in the queue, and before any successive bios. 226 */ 227 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 228 if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 && 229 ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) { 230 nvd_bio_submit(ndisk, bp); 231 return; 232 } 233 } else if (__predict_true(ndisk->ordered_in_flight == 0)) { 234 nvd_bio_submit(ndisk, bp); 235 return; 236 } 237 238 /* 239 * There are ordered bios in flight, so we need to submit 240 * bios through the task queue to enforce ordering. 241 */ 242 mtx_lock(&ndisk->bioqlock); 243 bioq_insert_tail(&ndisk->bioq, bp); 244 mtx_unlock(&ndisk->bioqlock); 245 taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask); 246 } 247 248 static void 249 nvd_gone(struct nvd_disk *ndisk) 250 { 251 struct bio *bp; 252 253 printf(NVD_STR"%u: detached\n", ndisk->unit); 254 mtx_lock(&ndisk->bioqlock); 255 disk_gone(ndisk->disk); 256 while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) { 257 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 258 atomic_add_int(&ndisk->ordered_in_flight, -1); 259 bp->bio_error = ENXIO; 260 bp->bio_flags |= BIO_ERROR; 261 bp->bio_resid = bp->bio_bcount; 262 biodone(bp); 263 } 264 mtx_unlock(&ndisk->bioqlock); 265 } 266 267 static void 268 nvd_gonecb(struct disk *dp) 269 { 270 struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1; 271 272 disk_destroy(ndisk->disk); 273 mtx_lock(&nvd_lock); 274 TAILQ_REMOVE(&disk_head, ndisk, global_tailq); 275 TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq); 276 if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head)) 277 wakeup(&ndisk->ctrlr->disk_head); 278 mtx_unlock(&nvd_lock); 279 taskqueue_free(ndisk->tq); 280 mtx_destroy(&ndisk->bioqlock); 281 free(ndisk, M_NVD); 282 } 283 284 static int 285 nvd_ioctl(struct disk *dp, u_long cmd, void *data, int fflag, 286 struct thread *td) 287 { 288 struct nvd_disk *ndisk = dp->d_drv1; 289 290 return (nvme_ns_ioctl_process(ndisk->ns, cmd, data, fflag, td)); 291 } 292 293 static int 294 nvd_dump(void *arg, void *virt, off_t offset, size_t len) 295 { 296 struct disk *dp = arg; 297 struct nvd_disk *ndisk = dp->d_drv1; 298 299 return (nvme_ns_dump(ndisk->ns, virt, offset, len)); 300 } 301 302 static int 303 nvd_getattr(struct bio *bp) 304 { 305 struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; 306 const struct nvme_namespace_data *nsdata; 307 u_int i; 308 309 if (!strcmp("GEOM::lunid", bp->bio_attribute)) { 310 nsdata = nvme_ns_get_data(ndisk->ns); 311 312 /* Try to return NGUID as lunid. */ 313 for (i = 0; i < sizeof(nsdata->nguid); i++) { 314 if (nsdata->nguid[i] != 0) 315 break; 316 } 317 if (i < sizeof(nsdata->nguid)) { 318 if (bp->bio_length < sizeof(nsdata->nguid) * 2 + 1) 319 return (EFAULT); 320 for (i = 0; i < sizeof(nsdata->nguid); i++) { 321 sprintf(&bp->bio_data[i * 2], "%02x", 322 nsdata->nguid[i]); 323 } 324 bp->bio_completed = bp->bio_length; 325 return (0); 326 } 327 328 /* Try to return EUI64 as lunid. */ 329 for (i = 0; i < sizeof(nsdata->eui64); i++) { 330 if (nsdata->eui64[i] != 0) 331 break; 332 } 333 if (i < sizeof(nsdata->eui64)) { 334 if (bp->bio_length < sizeof(nsdata->eui64) * 2 + 1) 335 return (EFAULT); 336 for (i = 0; i < sizeof(nsdata->eui64); i++) { 337 sprintf(&bp->bio_data[i * 2], "%02x", 338 nsdata->eui64[i]); 339 } 340 bp->bio_completed = bp->bio_length; 341 return (0); 342 } 343 } 344 return (-1); 345 } 346 347 static void 348 nvd_done(void *arg, const struct nvme_completion *cpl) 349 { 350 struct bio *bp = (struct bio *)arg; 351 struct nvd_disk *ndisk = bp->bio_disk->d_drv1; 352 353 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 354 atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); 355 atomic_add_int(&ndisk->ordered_in_flight, -1); 356 wakeup(&ndisk->cur_depth); 357 } else { 358 if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && 359 __predict_false(ndisk->ordered_in_flight != 0)) 360 wakeup(&ndisk->cur_depth); 361 } 362 363 biodone(bp); 364 } 365 366 static void 367 nvd_bioq_process(void *arg, int pending) 368 { 369 struct nvd_disk *ndisk = arg; 370 struct bio *bp; 371 372 for (;;) { 373 mtx_lock(&ndisk->bioqlock); 374 bp = bioq_takefirst(&ndisk->bioq); 375 mtx_unlock(&ndisk->bioqlock); 376 if (bp == NULL) 377 break; 378 379 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 380 /* 381 * bio with BIO_ORDERED flag set must be executed 382 * after all previous bios. 383 */ 384 while (ndisk->cur_depth > 0) 385 tsleep(&ndisk->cur_depth, 0, "nvdorb", 1); 386 } else { 387 /* 388 * bio with BIO_ORDERED flag set must be completed 389 * before proceeding with additional bios. 390 */ 391 while (ndisk->cur_depth >= NVD_ODEPTH) 392 tsleep(&ndisk->cur_depth, 0, "nvdora", 1); 393 } 394 395 nvd_bio_submit(ndisk, bp); 396 } 397 } 398 399 static void * 400 nvd_new_controller(struct nvme_controller *ctrlr) 401 { 402 struct nvd_controller *nvd_ctrlr; 403 404 nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD, 405 M_ZERO | M_WAITOK); 406 407 nvd_ctrlr->ctrlr = ctrlr; 408 TAILQ_INIT(&nvd_ctrlr->disk_head); 409 mtx_lock(&nvd_lock); 410 TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq); 411 mtx_unlock(&nvd_lock); 412 413 return (nvd_ctrlr); 414 } 415 416 static void * 417 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg) 418 { 419 uint8_t descr[NVME_MODEL_NUMBER_LENGTH+1]; 420 struct nvd_disk *ndisk, *tnd; 421 struct disk *disk; 422 struct nvd_controller *ctrlr = ctrlr_arg; 423 device_t dev = ctrlr->ctrlr->dev; 424 int unit; 425 426 ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK); 427 ndisk->ctrlr = ctrlr; 428 ndisk->ns = ns; 429 ndisk->cur_depth = 0; 430 ndisk->ordered_in_flight = 0; 431 mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF); 432 bioq_init(&ndisk->bioq); 433 TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk); 434 435 mtx_lock(&nvd_lock); 436 unit = 0; 437 TAILQ_FOREACH(tnd, &disk_head, global_tailq) { 438 if (tnd->unit > unit) 439 break; 440 unit = tnd->unit + 1; 441 } 442 ndisk->unit = unit; 443 if (tnd != NULL) 444 TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq); 445 else 446 TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq); 447 TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq); 448 mtx_unlock(&nvd_lock); 449 450 ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK, 451 taskqueue_thread_enqueue, &ndisk->tq); 452 taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq"); 453 454 disk = ndisk->disk = disk_alloc(); 455 disk->d_strategy = nvd_strategy; 456 disk->d_ioctl = nvd_ioctl; 457 disk->d_dump = nvd_dump; 458 disk->d_getattr = nvd_getattr; 459 disk->d_gone = nvd_gonecb; 460 disk->d_name = NVD_STR; 461 disk->d_unit = ndisk->unit; 462 disk->d_drv1 = ndisk; 463 464 disk->d_sectorsize = nvme_ns_get_sector_size(ns); 465 disk->d_mediasize = (off_t)nvme_ns_get_size(ns); 466 disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns); 467 disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns); 468 if (disk->d_delmaxsize > nvd_delete_max) 469 disk->d_delmaxsize = nvd_delete_max; 470 disk->d_stripesize = nvme_ns_get_stripesize(ns); 471 disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION; 472 if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED) 473 disk->d_flags |= DISKFLAG_CANDELETE; 474 if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED) 475 disk->d_flags |= DISKFLAG_CANFLUSHCACHE; 476 477 /* 478 * d_ident and d_descr are both far bigger than the length of either 479 * the serial or model number strings. 480 */ 481 nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns), 482 sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH); 483 nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr), 484 NVME_MODEL_NUMBER_LENGTH); 485 strlcpy(disk->d_descr, descr, sizeof(descr)); 486 487 /* 488 * For devices that are reported as children of the AHCI controller, 489 * which has no access to the config space for this controller, report 490 * the AHCI controller's data. 491 */ 492 if (ctrlr->ctrlr->quirks & QUIRK_AHCI) 493 dev = device_get_parent(dev); 494 disk->d_hba_vendor = pci_get_vendor(dev); 495 disk->d_hba_device = pci_get_device(dev); 496 disk->d_hba_subvendor = pci_get_subvendor(dev); 497 disk->d_hba_subdevice = pci_get_subdevice(dev); 498 disk->d_rotation_rate = DISK_RR_NON_ROTATING; 499 strlcpy(disk->d_attachment, device_get_nameunit(dev), 500 sizeof(disk->d_attachment)); 501 502 disk_create(disk, DISK_VERSION); 503 504 printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr); 505 printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit, 506 (uintmax_t)disk->d_mediasize / (1024*1024), 507 (uintmax_t)disk->d_mediasize / disk->d_sectorsize, 508 disk->d_sectorsize); 509 510 return (ndisk); 511 } 512 513 static void 514 nvd_controller_fail(void *ctrlr_arg) 515 { 516 struct nvd_controller *ctrlr = ctrlr_arg; 517 struct nvd_disk *ndisk; 518 519 mtx_lock(&nvd_lock); 520 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 521 TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) 522 nvd_gone(ndisk); 523 while (!TAILQ_EMPTY(&ctrlr->disk_head)) 524 msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0); 525 mtx_unlock(&nvd_lock); 526 free(ctrlr, M_NVD); 527 } 528