/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2012-2016 Intel Corporation * All rights reserved. * Copyright (C) 2018-2020 Alexander Motin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NVD_STR "nvd" struct nvd_disk; struct nvd_controller; static disk_ioctl_t nvd_ioctl; static disk_strategy_t nvd_strategy; static dumper_t nvd_dump; static disk_getattr_t nvd_getattr; static void nvd_done(void *arg, const struct nvme_completion *cpl); static void nvd_gone(struct nvd_disk *ndisk); static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr); static void *nvd_new_controller(struct nvme_controller *ctrlr); static void nvd_controller_fail(void *ctrlr); static int nvd_load(void); static void nvd_unload(void); MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations"); struct nvme_consumer *consumer_handle; struct nvd_disk { struct nvd_controller *ctrlr; struct bio_queue_head bioq; struct task bioqtask; struct mtx bioqlock; struct disk *disk; struct taskqueue *tq; struct nvme_namespace *ns; uint32_t cur_depth; #define NVD_ODEPTH (1 << 30) uint32_t ordered_in_flight; u_int unit; TAILQ_ENTRY(nvd_disk) global_tailq; TAILQ_ENTRY(nvd_disk) ctrlr_tailq; }; struct nvd_controller { struct nvme_controller *ctrlr; TAILQ_ENTRY(nvd_controller) tailq; TAILQ_HEAD(, nvd_disk) disk_head; }; static struct mtx nvd_lock; static TAILQ_HEAD(, nvd_controller) ctrlr_head; static TAILQ_HEAD(disk_list, nvd_disk) disk_head; static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "nvd driver parameters"); /* * The NVMe specification does not define a maximum or optimal delete size, so * technically max delete size is min(full size of the namespace, 2^32 - 1 * LBAs). A single delete for a multi-TB NVMe namespace though may take much * longer to complete than the nvme(4) I/O timeout period. So choose a sensible * default here that is still suitably large to minimize the number of overall * delete operations. */ static uint64_t nvd_delete_max = (1024 * 1024 * 1024); /* 1GB */ SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0, "nvd maximum BIO_DELETE size in bytes"); static int nvd_modevent(module_t mod, int type, void *arg) { int error = 0; switch (type) { case MOD_LOAD: error = nvd_load(); break; case MOD_UNLOAD: nvd_unload(); break; default: break; } return (error); } moduledata_t nvd_mod = { NVD_STR, (modeventhand_t)nvd_modevent, 0 }; DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY); MODULE_VERSION(nvd, 1); MODULE_DEPEND(nvd, nvme, 1, 1, 1); static int nvd_load() { if (!nvme_use_nvd) return 0; mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF); TAILQ_INIT(&ctrlr_head); TAILQ_INIT(&disk_head); consumer_handle = nvme_register_consumer(nvd_new_disk, nvd_new_controller, NULL, nvd_controller_fail); return (consumer_handle != NULL ? 0 : -1); } static void nvd_unload() { struct nvd_controller *ctrlr; struct nvd_disk *ndisk; if (!nvme_use_nvd) return; mtx_lock(&nvd_lock); while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) { TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) nvd_gone(ndisk); while (!TAILQ_EMPTY(&ctrlr->disk_head)) msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0); free(ctrlr, M_NVD); } mtx_unlock(&nvd_lock); nvme_unregister_consumer(consumer_handle); mtx_destroy(&nvd_lock); } static void nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp) { int err; bp->bio_driver1 = NULL; if (__predict_false(bp->bio_flags & BIO_ORDERED)) atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH); else atomic_add_int(&ndisk->cur_depth, 1); err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done); if (err) { if (__predict_false(bp->bio_flags & BIO_ORDERED)) { atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); atomic_add_int(&ndisk->ordered_in_flight, -1); wakeup(&ndisk->cur_depth); } else { if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && __predict_false(ndisk->ordered_in_flight != 0)) wakeup(&ndisk->cur_depth); } bp->bio_error = err; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; biodone(bp); } } static void nvd_strategy(struct bio *bp) { struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; /* * bio with BIO_ORDERED flag must be executed after all previous * bios in the queue, and before any successive bios. */ if (__predict_false(bp->bio_flags & BIO_ORDERED)) { if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 && ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) { nvd_bio_submit(ndisk, bp); return; } } else if (__predict_true(ndisk->ordered_in_flight == 0)) { nvd_bio_submit(ndisk, bp); return; } /* * There are ordered bios in flight, so we need to submit * bios through the task queue to enforce ordering. */ mtx_lock(&ndisk->bioqlock); bioq_insert_tail(&ndisk->bioq, bp); mtx_unlock(&ndisk->bioqlock); taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask); } static void nvd_gone(struct nvd_disk *ndisk) { struct bio *bp; printf(NVD_STR"%u: detached\n", ndisk->unit); mtx_lock(&ndisk->bioqlock); disk_gone(ndisk->disk); while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) { if (__predict_false(bp->bio_flags & BIO_ORDERED)) atomic_add_int(&ndisk->ordered_in_flight, -1); bp->bio_error = ENXIO; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; biodone(bp); } mtx_unlock(&ndisk->bioqlock); } static void nvd_gonecb(struct disk *dp) { struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1; disk_destroy(ndisk->disk); mtx_lock(&nvd_lock); TAILQ_REMOVE(&disk_head, ndisk, global_tailq); TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq); if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head)) wakeup(&ndisk->ctrlr->disk_head); mtx_unlock(&nvd_lock); taskqueue_free(ndisk->tq); mtx_destroy(&ndisk->bioqlock); free(ndisk, M_NVD); } static int nvd_ioctl(struct disk *dp, u_long cmd, void *data, int fflag, struct thread *td) { struct nvd_disk *ndisk = dp->d_drv1; return (nvme_ns_ioctl_process(ndisk->ns, cmd, data, fflag, td)); } static int nvd_dump(void *arg, void *virt, off_t offset, size_t len) { struct disk *dp = arg; struct nvd_disk *ndisk = dp->d_drv1; return (nvme_ns_dump(ndisk->ns, virt, offset, len)); } static int nvd_getattr(struct bio *bp) { struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; const struct nvme_namespace_data *nsdata; u_int i; if (!strcmp("GEOM::lunid", bp->bio_attribute)) { nsdata = nvme_ns_get_data(ndisk->ns); /* Try to return NGUID as lunid. */ for (i = 0; i < sizeof(nsdata->nguid); i++) { if (nsdata->nguid[i] != 0) break; } if (i < sizeof(nsdata->nguid)) { if (bp->bio_length < sizeof(nsdata->nguid) * 2 + 1) return (EFAULT); for (i = 0; i < sizeof(nsdata->nguid); i++) { sprintf(&bp->bio_data[i * 2], "%02x", nsdata->nguid[i]); } bp->bio_completed = bp->bio_length; return (0); } /* Try to return EUI64 as lunid. */ for (i = 0; i < sizeof(nsdata->eui64); i++) { if (nsdata->eui64[i] != 0) break; } if (i < sizeof(nsdata->eui64)) { if (bp->bio_length < sizeof(nsdata->eui64) * 2 + 1) return (EFAULT); for (i = 0; i < sizeof(nsdata->eui64); i++) { sprintf(&bp->bio_data[i * 2], "%02x", nsdata->eui64[i]); } bp->bio_completed = bp->bio_length; return (0); } } return (-1); } static void nvd_done(void *arg, const struct nvme_completion *cpl) { struct bio *bp = (struct bio *)arg; struct nvd_disk *ndisk = bp->bio_disk->d_drv1; if (__predict_false(bp->bio_flags & BIO_ORDERED)) { atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); atomic_add_int(&ndisk->ordered_in_flight, -1); wakeup(&ndisk->cur_depth); } else { if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && __predict_false(ndisk->ordered_in_flight != 0)) wakeup(&ndisk->cur_depth); } biodone(bp); } static void nvd_bioq_process(void *arg, int pending) { struct nvd_disk *ndisk = arg; struct bio *bp; for (;;) { mtx_lock(&ndisk->bioqlock); bp = bioq_takefirst(&ndisk->bioq); mtx_unlock(&ndisk->bioqlock); if (bp == NULL) break; if (__predict_false(bp->bio_flags & BIO_ORDERED)) { /* * bio with BIO_ORDERED flag set must be executed * after all previous bios. */ while (ndisk->cur_depth > 0) tsleep(&ndisk->cur_depth, 0, "nvdorb", 1); } else { /* * bio with BIO_ORDERED flag set must be completed * before proceeding with additional bios. */ while (ndisk->cur_depth >= NVD_ODEPTH) tsleep(&ndisk->cur_depth, 0, "nvdora", 1); } nvd_bio_submit(ndisk, bp); } } static void * nvd_new_controller(struct nvme_controller *ctrlr) { struct nvd_controller *nvd_ctrlr; nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD, M_ZERO | M_WAITOK); nvd_ctrlr->ctrlr = ctrlr; TAILQ_INIT(&nvd_ctrlr->disk_head); mtx_lock(&nvd_lock); TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq); mtx_unlock(&nvd_lock); return (nvd_ctrlr); } static void * nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg) { uint8_t descr[NVME_MODEL_NUMBER_LENGTH+1]; struct nvd_disk *ndisk, *tnd; struct disk *disk; struct nvd_controller *ctrlr = ctrlr_arg; device_t dev = ctrlr->ctrlr->dev; int unit; ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK); ndisk->ctrlr = ctrlr; ndisk->ns = ns; ndisk->cur_depth = 0; ndisk->ordered_in_flight = 0; mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF); bioq_init(&ndisk->bioq); TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk); mtx_lock(&nvd_lock); unit = 0; TAILQ_FOREACH(tnd, &disk_head, global_tailq) { if (tnd->unit > unit) break; unit = tnd->unit + 1; } ndisk->unit = unit; if (tnd != NULL) TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq); else TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq); TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq); mtx_unlock(&nvd_lock); ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK, taskqueue_thread_enqueue, &ndisk->tq); taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq"); disk = ndisk->disk = disk_alloc(); disk->d_strategy = nvd_strategy; disk->d_ioctl = nvd_ioctl; disk->d_dump = nvd_dump; disk->d_getattr = nvd_getattr; disk->d_gone = nvd_gonecb; disk->d_name = NVD_STR; disk->d_unit = ndisk->unit; disk->d_drv1 = ndisk; disk->d_sectorsize = nvme_ns_get_sector_size(ns); disk->d_mediasize = (off_t)nvme_ns_get_size(ns); disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns); disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns); if (disk->d_delmaxsize > nvd_delete_max) disk->d_delmaxsize = nvd_delete_max; disk->d_stripesize = nvme_ns_get_stripesize(ns); disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION; if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED) disk->d_flags |= DISKFLAG_CANDELETE; if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED) disk->d_flags |= DISKFLAG_CANFLUSHCACHE; /* * d_ident and d_descr are both far bigger than the length of either * the serial or model number strings. */ nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns), sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH); nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr), NVME_MODEL_NUMBER_LENGTH); strlcpy(disk->d_descr, descr, sizeof(descr)); /* * For devices that are reported as children of the AHCI controller, * which has no access to the config space for this controller, report * the AHCI controller's data. */ if (ctrlr->ctrlr->quirks & QUIRK_AHCI) dev = device_get_parent(dev); disk->d_hba_vendor = pci_get_vendor(dev); disk->d_hba_device = pci_get_device(dev); disk->d_hba_subvendor = pci_get_subvendor(dev); disk->d_hba_subdevice = pci_get_subdevice(dev); disk->d_rotation_rate = DISK_RR_NON_ROTATING; strlcpy(disk->d_attachment, device_get_nameunit(dev), sizeof(disk->d_attachment)); disk_create(disk, DISK_VERSION); printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr); printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit, (uintmax_t)disk->d_mediasize / (1024*1024), (uintmax_t)disk->d_mediasize / disk->d_sectorsize, disk->d_sectorsize); return (ndisk); } static void nvd_controller_fail(void *ctrlr_arg) { struct nvd_controller *ctrlr = ctrlr_arg; struct nvd_disk *ndisk; mtx_lock(&nvd_lock); TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) nvd_gone(ndisk); while (!TAILQ_EMPTY(&ctrlr->disk_head)) msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0); mtx_unlock(&nvd_lock); free(ctrlr, M_NVD); }