1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2016 Vincenzo Maffione 5 * Copyright (C) 2013-2016 Luigi Rizzo 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * This module implements netmap support on top of standard, 32 * unmodified device drivers. 33 * 34 * A NIOCREGIF request is handled here if the device does not 35 * have native support. TX and RX rings are emulated as follows: 36 * 37 * NIOCREGIF 38 * We preallocate a block of TX mbufs (roughly as many as 39 * tx descriptors; the number is not critical) to speed up 40 * operation during transmissions. The refcount on most of 41 * these buffers is artificially bumped up so we can recycle 42 * them more easily. Also, the destructor is intercepted 43 * so we use it as an interrupt notification to wake up 44 * processes blocked on a poll(). 45 * 46 * For each receive ring we allocate one "struct mbq" 47 * (an mbuf tailq plus a spinlock). We intercept packets 48 * (through if_input) 49 * on the receive path and put them in the mbq from which 50 * netmap receive routines can grab them. 51 * 52 * TX: 53 * in the generic_txsync() routine, netmap buffers are copied 54 * (or linked, in a future) to the preallocated mbufs 55 * and pushed to the transmit queue. Some of these mbufs 56 * (those with NS_REPORT, or otherwise every half ring) 57 * have the refcount=1, others have refcount=2. 58 * When the destructor is invoked, we take that as 59 * a notification that all mbufs up to that one in 60 * the specific ring have been completed, and generate 61 * the equivalent of a transmit interrupt. 62 * 63 * RX: 64 * 65 */ 66 67 #ifdef __FreeBSD__ 68 69 #include <sys/cdefs.h> /* prerequisite */ 70 __FBSDID("$FreeBSD$"); 71 72 #include <sys/types.h> 73 #include <sys/errno.h> 74 #include <sys/malloc.h> 75 #include <sys/lock.h> /* PROT_EXEC */ 76 #include <sys/rwlock.h> 77 #include <sys/socket.h> /* sockaddrs */ 78 #include <sys/selinfo.h> 79 #include <net/if.h> 80 #include <net/if_types.h> 81 #include <net/if_var.h> 82 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */ 83 84 #include <net/netmap.h> 85 #include <dev/netmap/netmap_kern.h> 86 #include <dev/netmap/netmap_mem2.h> 87 88 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid) 89 #define smp_mb() 90 91 #elif defined _WIN32 92 93 #include "win_glue.h" 94 95 #define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid) 96 #define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid) 97 #define smp_mb() //XXX: to be correctly defined 98 99 #else /* linux */ 100 101 #include "bsd_glue.h" 102 103 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */ 104 #include <linux/hrtimer.h> 105 106 static inline struct mbuf * 107 nm_os_get_mbuf(struct ifnet *ifp, int len) 108 { 109 return alloc_skb(ifp->needed_headroom + len + 110 ifp->needed_tailroom, GFP_ATOMIC); 111 } 112 113 #endif /* linux */ 114 115 116 /* Common headers. */ 117 #include <net/netmap.h> 118 #include <dev/netmap/netmap_kern.h> 119 #include <dev/netmap/netmap_mem2.h> 120 121 122 #define for_each_kring_n(_i, _k, _karr, _n) \ 123 for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)]) 124 125 #define for_each_tx_kring(_i, _k, _na) \ 126 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings) 127 #define for_each_tx_kring_h(_i, _k, _na) \ 128 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1) 129 130 #define for_each_rx_kring(_i, _k, _na) \ 131 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings) 132 #define for_each_rx_kring_h(_i, _k, _na) \ 133 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1) 134 135 136 /* ======================== PERFORMANCE STATISTICS =========================== */ 137 138 #ifdef RATE_GENERIC 139 #define IFRATE(x) x 140 struct rate_stats { 141 unsigned long txpkt; 142 unsigned long txsync; 143 unsigned long txirq; 144 unsigned long txrepl; 145 unsigned long txdrop; 146 unsigned long rxpkt; 147 unsigned long rxirq; 148 unsigned long rxsync; 149 }; 150 151 struct rate_context { 152 unsigned refcount; 153 struct timer_list timer; 154 struct rate_stats new; 155 struct rate_stats old; 156 }; 157 158 #define RATE_PRINTK(_NAME_) \ 159 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD); 160 #define RATE_PERIOD 2 161 static void rate_callback(unsigned long arg) 162 { 163 struct rate_context * ctx = (struct rate_context *)arg; 164 struct rate_stats cur = ctx->new; 165 int r; 166 167 RATE_PRINTK(txpkt); 168 RATE_PRINTK(txsync); 169 RATE_PRINTK(txirq); 170 RATE_PRINTK(txrepl); 171 RATE_PRINTK(txdrop); 172 RATE_PRINTK(rxpkt); 173 RATE_PRINTK(rxsync); 174 RATE_PRINTK(rxirq); 175 printk("\n"); 176 177 ctx->old = cur; 178 r = mod_timer(&ctx->timer, jiffies + 179 msecs_to_jiffies(RATE_PERIOD * 1000)); 180 if (unlikely(r)) 181 nm_prerr("mod_timer() failed"); 182 } 183 184 static struct rate_context rate_ctx; 185 186 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi) 187 { 188 if (txp) rate_ctx.new.txpkt++; 189 if (txs) rate_ctx.new.txsync++; 190 if (txi) rate_ctx.new.txirq++; 191 if (rxp) rate_ctx.new.rxpkt++; 192 if (rxs) rate_ctx.new.rxsync++; 193 if (rxi) rate_ctx.new.rxirq++; 194 } 195 196 #else /* !RATE */ 197 #define IFRATE(x) 198 #endif /* !RATE */ 199 200 201 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */ 202 203 /* 204 * Wrapper used by the generic adapter layer to notify 205 * the poller threads. Differently from netmap_rx_irq(), we check 206 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq. 207 */ 208 void 209 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 210 { 211 if (unlikely(!nm_netmap_on(na))) 212 return; 213 214 netmap_common_irq(na, q, work_done); 215 #ifdef RATE_GENERIC 216 if (work_done) 217 rate_ctx.new.rxirq++; 218 else 219 rate_ctx.new.txirq++; 220 #endif /* RATE_GENERIC */ 221 } 222 223 static int 224 generic_netmap_unregister(struct netmap_adapter *na) 225 { 226 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 227 struct netmap_kring *kring = NULL; 228 int i, r; 229 230 if (na->active_fds == 0) { 231 na->na_flags &= ~NAF_NETMAP_ON; 232 233 /* Stop intercepting packets on the RX path. */ 234 nm_os_catch_rx(gna, 0); 235 236 /* Release packet steering control. */ 237 nm_os_catch_tx(gna, 0); 238 } 239 240 netmap_krings_mode_commit(na, /*onoff=*/0); 241 242 for_each_rx_kring(r, kring, na) { 243 /* Free the mbufs still pending in the RX queues, 244 * that did not end up into the corresponding netmap 245 * RX rings. */ 246 mbq_safe_purge(&kring->rx_queue); 247 nm_os_mitigation_cleanup(&gna->mit[r]); 248 } 249 250 /* Decrement reference counter for the mbufs in the 251 * TX pools. These mbufs can be still pending in drivers, 252 * (e.g. this happens with virtio-net driver, which 253 * does lazy reclaiming of transmitted mbufs). */ 254 for_each_tx_kring(r, kring, na) { 255 /* We must remove the destructor on the TX event, 256 * because the destructor invokes netmap code, and 257 * the netmap module may disappear before the 258 * TX event is consumed. */ 259 mtx_lock_spin(&kring->tx_event_lock); 260 if (kring->tx_event) { 261 SET_MBUF_DESTRUCTOR(kring->tx_event, NULL); 262 } 263 kring->tx_event = NULL; 264 mtx_unlock_spin(&kring->tx_event_lock); 265 } 266 267 if (na->active_fds == 0) { 268 nm_os_free(gna->mit); 269 270 for_each_rx_kring(r, kring, na) { 271 mbq_safe_fini(&kring->rx_queue); 272 } 273 274 for_each_tx_kring(r, kring, na) { 275 mtx_destroy(&kring->tx_event_lock); 276 if (kring->tx_pool == NULL) { 277 continue; 278 } 279 280 for (i=0; i<na->num_tx_desc; i++) { 281 if (kring->tx_pool[i]) { 282 m_freem(kring->tx_pool[i]); 283 } 284 } 285 nm_os_free(kring->tx_pool); 286 kring->tx_pool = NULL; 287 } 288 289 #ifdef RATE_GENERIC 290 if (--rate_ctx.refcount == 0) { 291 nm_prinf("del_timer()"); 292 del_timer(&rate_ctx.timer); 293 } 294 #endif 295 nm_prinf("Emulated adapter for %s deactivated", na->name); 296 } 297 298 return 0; 299 } 300 301 /* Enable/disable netmap mode for a generic network interface. */ 302 static int 303 generic_netmap_register(struct netmap_adapter *na, int enable) 304 { 305 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 306 struct netmap_kring *kring = NULL; 307 int error; 308 int i, r; 309 310 if (!na) { 311 return EINVAL; 312 } 313 314 if (!enable) { 315 /* This is actually an unregif. */ 316 return generic_netmap_unregister(na); 317 } 318 319 if (na->active_fds == 0) { 320 nm_prinf("Emulated adapter for %s activated", na->name); 321 /* Do all memory allocations when (na->active_fds == 0), to 322 * simplify error management. */ 323 324 /* Allocate memory for mitigation support on all the rx queues. */ 325 gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit)); 326 if (!gna->mit) { 327 nm_prerr("mitigation allocation failed"); 328 error = ENOMEM; 329 goto out; 330 } 331 332 for_each_rx_kring(r, kring, na) { 333 /* Init mitigation support. */ 334 nm_os_mitigation_init(&gna->mit[r], r, na); 335 336 /* Initialize the rx queue, as generic_rx_handler() can 337 * be called as soon as nm_os_catch_rx() returns. 338 */ 339 mbq_safe_init(&kring->rx_queue); 340 } 341 342 /* 343 * Prepare mbuf pools (parallel to the tx rings), for packet 344 * transmission. Don't preallocate the mbufs here, it's simpler 345 * to leave this task to txsync. 346 */ 347 for_each_tx_kring(r, kring, na) { 348 kring->tx_pool = NULL; 349 } 350 for_each_tx_kring(r, kring, na) { 351 kring->tx_pool = 352 nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *)); 353 if (!kring->tx_pool) { 354 nm_prerr("tx_pool allocation failed"); 355 error = ENOMEM; 356 goto free_tx_pools; 357 } 358 mtx_init(&kring->tx_event_lock, "tx_event_lock", 359 NULL, MTX_SPIN); 360 } 361 } 362 363 netmap_krings_mode_commit(na, /*onoff=*/1); 364 365 for_each_tx_kring(r, kring, na) { 366 /* Initialize tx_pool and tx_event. */ 367 for (i=0; i<na->num_tx_desc; i++) { 368 kring->tx_pool[i] = NULL; 369 } 370 371 kring->tx_event = NULL; 372 } 373 374 if (na->active_fds == 0) { 375 /* Prepare to intercept incoming traffic. */ 376 error = nm_os_catch_rx(gna, 1); 377 if (error) { 378 nm_prerr("nm_os_catch_rx(1) failed (%d)", error); 379 goto free_tx_pools; 380 } 381 382 /* Let netmap control the packet steering. */ 383 error = nm_os_catch_tx(gna, 1); 384 if (error) { 385 nm_prerr("nm_os_catch_tx(1) failed (%d)", error); 386 goto catch_rx; 387 } 388 389 na->na_flags |= NAF_NETMAP_ON; 390 391 #ifdef RATE_GENERIC 392 if (rate_ctx.refcount == 0) { 393 nm_prinf("setup_timer()"); 394 memset(&rate_ctx, 0, sizeof(rate_ctx)); 395 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx); 396 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) { 397 nm_prerr("Error: mod_timer()"); 398 } 399 } 400 rate_ctx.refcount++; 401 #endif /* RATE */ 402 } 403 404 return 0; 405 406 /* Here (na->active_fds == 0) holds. */ 407 catch_rx: 408 nm_os_catch_rx(gna, 0); 409 free_tx_pools: 410 for_each_tx_kring(r, kring, na) { 411 mtx_destroy(&kring->tx_event_lock); 412 if (kring->tx_pool == NULL) { 413 continue; 414 } 415 nm_os_free(kring->tx_pool); 416 kring->tx_pool = NULL; 417 } 418 for_each_rx_kring(r, kring, na) { 419 mbq_safe_fini(&kring->rx_queue); 420 } 421 nm_os_free(gna->mit); 422 out: 423 424 return error; 425 } 426 427 /* 428 * Callback invoked when the device driver frees an mbuf used 429 * by netmap to transmit a packet. This usually happens when 430 * the NIC notifies the driver that transmission is completed. 431 */ 432 static void 433 generic_mbuf_destructor(struct mbuf *m) 434 { 435 struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m)); 436 struct netmap_kring *kring; 437 unsigned int r = MBUF_TXQ(m); 438 unsigned int r_orig = r; 439 440 if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) { 441 nm_prerr("Error: no netmap adapter on device %p", 442 GEN_TX_MBUF_IFP(m)); 443 return; 444 } 445 446 /* 447 * First, clear the event mbuf. 448 * In principle, the event 'm' should match the one stored 449 * on ring 'r'. However we check it explicitely to stay 450 * safe against lower layers (qdisc, driver, etc.) changing 451 * MBUF_TXQ(m) under our feet. If the match is not found 452 * on 'r', we try to see if it belongs to some other ring. 453 */ 454 for (;;) { 455 bool match = false; 456 457 kring = na->tx_rings[r]; 458 mtx_lock_spin(&kring->tx_event_lock); 459 if (kring->tx_event == m) { 460 kring->tx_event = NULL; 461 match = true; 462 } 463 mtx_unlock_spin(&kring->tx_event_lock); 464 465 if (match) { 466 if (r != r_orig) { 467 nm_prlim(1, "event %p migrated: ring %u --> %u", 468 m, r_orig, r); 469 } 470 break; 471 } 472 473 if (++r == na->num_tx_rings) r = 0; 474 475 if (r == r_orig) { 476 nm_prlim(1, "Cannot match event %p", m); 477 return; 478 } 479 } 480 481 /* Second, wake up clients. They will reclaim the event through 482 * txsync. */ 483 netmap_generic_irq(na, r, NULL); 484 #ifdef __FreeBSD__ 485 #if __FreeBSD_version <= 1200050 486 void_mbuf_dtor(m, NULL, NULL); 487 #else /* __FreeBSD_version >= 1200051 */ 488 void_mbuf_dtor(m); 489 #endif /* __FreeBSD_version >= 1200051 */ 490 #endif 491 } 492 493 /* Record completed transmissions and update hwtail. 494 * 495 * The oldest tx buffer not yet completed is at nr_hwtail + 1, 496 * nr_hwcur is the first unsent buffer. 497 */ 498 static u_int 499 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc) 500 { 501 u_int const lim = kring->nkr_num_slots - 1; 502 u_int nm_i = nm_next(kring->nr_hwtail, lim); 503 u_int hwcur = kring->nr_hwcur; 504 u_int n = 0; 505 struct mbuf **tx_pool = kring->tx_pool; 506 507 nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail); 508 509 while (nm_i != hwcur) { /* buffers not completed */ 510 struct mbuf *m = tx_pool[nm_i]; 511 512 if (txqdisc) { 513 if (m == NULL) { 514 /* Nothing to do, this is going 515 * to be replenished. */ 516 nm_prlim(3, "Is this happening?"); 517 518 } else if (MBUF_QUEUED(m)) { 519 break; /* Not dequeued yet. */ 520 521 } else if (MBUF_REFCNT(m) != 1) { 522 /* This mbuf has been dequeued but is still busy 523 * (refcount is 2). 524 * Leave it to the driver and replenish. */ 525 m_freem(m); 526 tx_pool[nm_i] = NULL; 527 } 528 529 } else { 530 if (unlikely(m == NULL)) { 531 int event_consumed; 532 533 /* This slot was used to place an event. */ 534 mtx_lock_spin(&kring->tx_event_lock); 535 event_consumed = (kring->tx_event == NULL); 536 mtx_unlock_spin(&kring->tx_event_lock); 537 if (!event_consumed) { 538 /* The event has not been consumed yet, 539 * still busy in the driver. */ 540 break; 541 } 542 /* The event has been consumed, we can go 543 * ahead. */ 544 545 } else if (MBUF_REFCNT(m) != 1) { 546 /* This mbuf is still busy: its refcnt is 2. */ 547 break; 548 } 549 } 550 551 n++; 552 nm_i = nm_next(nm_i, lim); 553 } 554 kring->nr_hwtail = nm_prev(nm_i, lim); 555 nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail); 556 557 return n; 558 } 559 560 /* Compute a slot index in the middle between inf and sup. */ 561 static inline u_int 562 ring_middle(u_int inf, u_int sup, u_int lim) 563 { 564 u_int n = lim + 1; 565 u_int e; 566 567 if (sup >= inf) { 568 e = (sup + inf) / 2; 569 } else { /* wrap around */ 570 e = (sup + n + inf) / 2; 571 if (e >= n) { 572 e -= n; 573 } 574 } 575 576 if (unlikely(e >= n)) { 577 nm_prerr("This cannot happen"); 578 e = 0; 579 } 580 581 return e; 582 } 583 584 static void 585 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur) 586 { 587 u_int lim = kring->nkr_num_slots - 1; 588 struct mbuf *m; 589 u_int e; 590 u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */ 591 592 if (ntc == hwcur) { 593 return; /* all buffers are free */ 594 } 595 596 /* 597 * We have pending packets in the driver between hwtail+1 598 * and hwcur, and we have to chose one of these slot to 599 * generate a notification. 600 * There is a race but this is only called within txsync which 601 * does a double check. 602 */ 603 #if 0 604 /* Choose a slot in the middle, so that we don't risk ending 605 * up in a situation where the client continuously wake up, 606 * fills one or a few TX slots and go to sleep again. */ 607 e = ring_middle(ntc, hwcur, lim); 608 #else 609 /* Choose the first pending slot, to be safe against driver 610 * reordering mbuf transmissions. */ 611 e = ntc; 612 #endif 613 614 m = kring->tx_pool[e]; 615 if (m == NULL) { 616 /* An event is already in place. */ 617 return; 618 } 619 620 mtx_lock_spin(&kring->tx_event_lock); 621 if (kring->tx_event) { 622 /* An event is already in place. */ 623 mtx_unlock_spin(&kring->tx_event_lock); 624 return; 625 } 626 627 SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor); 628 kring->tx_event = m; 629 mtx_unlock_spin(&kring->tx_event_lock); 630 631 kring->tx_pool[e] = NULL; 632 633 nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 ); 634 635 /* Decrement the refcount. This will free it if we lose the race 636 * with the driver. */ 637 m_freem(m); 638 smp_mb(); 639 } 640 641 642 /* 643 * generic_netmap_txsync() transforms netmap buffers into mbufs 644 * and passes them to the standard device driver 645 * (ndo_start_xmit() or ifp->if_transmit() ). 646 * On linux this is not done directly, but using dev_queue_xmit(), 647 * since it implements the TX flow control (and takes some locks). 648 */ 649 static int 650 generic_netmap_txsync(struct netmap_kring *kring, int flags) 651 { 652 struct netmap_adapter *na = kring->na; 653 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 654 struct ifnet *ifp = na->ifp; 655 struct netmap_ring *ring = kring->ring; 656 u_int nm_i; /* index into the netmap ring */ // j 657 u_int const lim = kring->nkr_num_slots - 1; 658 u_int const head = kring->rhead; 659 u_int ring_nr = kring->ring_id; 660 661 IFRATE(rate_ctx.new.txsync++); 662 663 rmb(); 664 665 /* 666 * First part: process new packets to send. 667 */ 668 nm_i = kring->nr_hwcur; 669 if (nm_i != head) { /* we have new packets to send */ 670 struct nm_os_gen_arg a; 671 u_int event = -1; 672 #ifdef __FreeBSD__ 673 struct epoch_tracker et; 674 675 NET_EPOCH_ENTER(et); 676 #endif 677 678 if (gna->txqdisc && nm_kr_txempty(kring)) { 679 /* In txqdisc mode, we ask for a delayed notification, 680 * but only when cur == hwtail, which means that the 681 * client is going to block. */ 682 event = ring_middle(nm_i, head, lim); 683 nm_prdis("Place txqdisc event (hwcur=%u,event=%u," 684 "head=%u,hwtail=%u)", nm_i, event, head, 685 kring->nr_hwtail); 686 } 687 688 a.ifp = ifp; 689 a.ring_nr = ring_nr; 690 a.head = a.tail = NULL; 691 692 while (nm_i != head) { 693 struct netmap_slot *slot = &ring->slot[nm_i]; 694 u_int len = slot->len; 695 void *addr = NMB(na, slot); 696 /* device-specific */ 697 struct mbuf *m; 698 int tx_ret; 699 700 NM_CHECK_ADDR_LEN(na, addr, len); 701 702 /* Tale a mbuf from the tx pool (replenishing the pool 703 * entry if necessary) and copy in the user packet. */ 704 m = kring->tx_pool[nm_i]; 705 if (unlikely(m == NULL)) { 706 kring->tx_pool[nm_i] = m = 707 nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na)); 708 if (m == NULL) { 709 nm_prlim(2, "Failed to replenish mbuf"); 710 /* Here we could schedule a timer which 711 * retries to replenish after a while, 712 * and notifies the client when it 713 * manages to replenish some slots. In 714 * any case we break early to avoid 715 * crashes. */ 716 break; 717 } 718 IFRATE(rate_ctx.new.txrepl++); 719 } 720 721 a.m = m; 722 a.addr = addr; 723 a.len = len; 724 a.qevent = (nm_i == event); 725 /* When not in txqdisc mode, we should ask 726 * notifications when NS_REPORT is set, or roughly 727 * every half ring. To optimize this, we set a 728 * notification event when the client runs out of 729 * TX ring space, or when transmission fails. In 730 * the latter case we also break early. 731 */ 732 tx_ret = nm_os_generic_xmit_frame(&a); 733 if (unlikely(tx_ret)) { 734 if (!gna->txqdisc) { 735 /* 736 * No room for this mbuf in the device driver. 737 * Request a notification FOR A PREVIOUS MBUF, 738 * then call generic_netmap_tx_clean(kring) to do the 739 * double check and see if we can free more buffers. 740 * If there is space continue, else break; 741 * NOTE: the double check is necessary if the problem 742 * occurs in the txsync call after selrecord(). 743 * Also, we need some way to tell the caller that not 744 * all buffers were queued onto the device (this was 745 * not a problem with native netmap driver where space 746 * is preallocated). The bridge has a similar problem 747 * and we solve it there by dropping the excess packets. 748 */ 749 generic_set_tx_event(kring, nm_i); 750 if (generic_netmap_tx_clean(kring, gna->txqdisc)) { 751 /* space now available */ 752 continue; 753 } else { 754 break; 755 } 756 } 757 758 /* In txqdisc mode, the netmap-aware qdisc 759 * queue has the same length as the number of 760 * netmap slots (N). Since tail is advanced 761 * only when packets are dequeued, qdisc 762 * queue overrun cannot happen, so 763 * nm_os_generic_xmit_frame() did not fail 764 * because of that. 765 * However, packets can be dropped because 766 * carrier is off, or because our qdisc is 767 * being deactivated, or possibly for other 768 * reasons. In these cases, we just let the 769 * packet to be dropped. */ 770 IFRATE(rate_ctx.new.txdrop++); 771 } 772 773 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); 774 nm_i = nm_next(nm_i, lim); 775 IFRATE(rate_ctx.new.txpkt++); 776 } 777 if (a.head != NULL) { 778 a.addr = NULL; 779 nm_os_generic_xmit_frame(&a); 780 } 781 /* Update hwcur to the next slot to transmit. Here nm_i 782 * is not necessarily head, we could break early. */ 783 kring->nr_hwcur = nm_i; 784 785 #ifdef __FreeBSD__ 786 NET_EPOCH_EXIT(et); 787 #endif 788 } 789 790 /* 791 * Second, reclaim completed buffers 792 */ 793 if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) { 794 /* No more available slots? Set a notification event 795 * on a netmap slot that will be cleaned in the future. 796 * No doublecheck is performed, since txsync() will be 797 * called twice by netmap_poll(). 798 */ 799 generic_set_tx_event(kring, nm_i); 800 } 801 802 generic_netmap_tx_clean(kring, gna->txqdisc); 803 804 return 0; 805 } 806 807 808 /* 809 * This handler is registered (through nm_os_catch_rx()) 810 * within the attached network interface 811 * in the RX subsystem, so that every mbuf passed up by 812 * the driver can be stolen to the network stack. 813 * Stolen packets are put in a queue where the 814 * generic_netmap_rxsync() callback can extract them. 815 * Returns 1 if the packet was stolen, 0 otherwise. 816 */ 817 int 818 generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 819 { 820 struct netmap_adapter *na = NA(ifp); 821 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 822 struct netmap_kring *kring; 823 u_int work_done; 824 u_int r = MBUF_RXQ(m); /* receive ring number */ 825 826 if (r >= na->num_rx_rings) { 827 r = r % na->num_rx_rings; 828 } 829 830 kring = na->rx_rings[r]; 831 832 if (kring->nr_mode == NKR_NETMAP_OFF) { 833 /* We must not intercept this mbuf. */ 834 return 0; 835 } 836 837 /* limit the size of the queue */ 838 if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) { 839 /* This may happen when GRO/LRO features are enabled for 840 * the NIC driver when the generic adapter does not 841 * support RX scatter-gather. */ 842 nm_prlim(2, "Warning: driver pushed up big packet " 843 "(size=%d)", (int)MBUF_LEN(m)); 844 m_freem(m); 845 } else if (unlikely(mbq_len(&kring->rx_queue) > 1024)) { 846 m_freem(m); 847 } else { 848 mbq_safe_enqueue(&kring->rx_queue, m); 849 } 850 851 if (netmap_generic_mit < 32768) { 852 /* no rx mitigation, pass notification up */ 853 netmap_generic_irq(na, r, &work_done); 854 } else { 855 /* same as send combining, filter notification if there is a 856 * pending timer, otherwise pass it up and start a timer. 857 */ 858 if (likely(nm_os_mitigation_active(&gna->mit[r]))) { 859 /* Record that there is some pending work. */ 860 gna->mit[r].mit_pending = 1; 861 } else { 862 netmap_generic_irq(na, r, &work_done); 863 nm_os_mitigation_start(&gna->mit[r]); 864 } 865 } 866 867 /* We have intercepted the mbuf. */ 868 return 1; 869 } 870 871 /* 872 * generic_netmap_rxsync() extracts mbufs from the queue filled by 873 * generic_netmap_rx_handler() and puts their content in the netmap 874 * receive ring. 875 * Access must be protected because the rx handler is asynchronous, 876 */ 877 static int 878 generic_netmap_rxsync(struct netmap_kring *kring, int flags) 879 { 880 struct netmap_ring *ring = kring->ring; 881 struct netmap_adapter *na = kring->na; 882 u_int nm_i; /* index into the netmap ring */ //j, 883 u_int n; 884 u_int const lim = kring->nkr_num_slots - 1; 885 u_int const head = kring->rhead; 886 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 887 888 /* Adapter-specific variables. */ 889 u_int nm_buf_len = NETMAP_BUF_SIZE(na); 890 struct mbq tmpq; 891 struct mbuf *m; 892 int avail; /* in bytes */ 893 int mlen; 894 int copy; 895 896 if (head > lim) 897 return netmap_ring_reinit(kring); 898 899 IFRATE(rate_ctx.new.rxsync++); 900 901 /* 902 * First part: skip past packets that userspace has released. 903 * This can possibly make room for the second part. 904 */ 905 nm_i = kring->nr_hwcur; 906 if (nm_i != head) { 907 /* Userspace has released some packets. */ 908 for (n = 0; nm_i != head; n++) { 909 struct netmap_slot *slot = &ring->slot[nm_i]; 910 911 slot->flags &= ~NS_BUF_CHANGED; 912 nm_i = nm_next(nm_i, lim); 913 } 914 kring->nr_hwcur = head; 915 } 916 917 /* 918 * Second part: import newly received packets. 919 */ 920 if (!netmap_no_pendintr && !force_update) { 921 return 0; 922 } 923 924 nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */ 925 926 /* Compute the available space (in bytes) in this netmap ring. 927 * The first slot that is not considered in is the one before 928 * nr_hwcur. */ 929 930 avail = nm_prev(kring->nr_hwcur, lim) - nm_i; 931 if (avail < 0) 932 avail += lim + 1; 933 avail *= nm_buf_len; 934 935 /* First pass: While holding the lock on the RX mbuf queue, 936 * extract as many mbufs as they fit the available space, 937 * and put them in a temporary queue. 938 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to 939 * to update avail, we do the update in a while loop that we 940 * also use to set the RX slots, but without performing the copy. */ 941 mbq_init(&tmpq); 942 mbq_lock(&kring->rx_queue); 943 for (n = 0;; n++) { 944 m = mbq_peek(&kring->rx_queue); 945 if (!m) { 946 /* No more packets from the driver. */ 947 break; 948 } 949 950 mlen = MBUF_LEN(m); 951 if (mlen > avail) { 952 /* No more space in the ring. */ 953 break; 954 } 955 956 mbq_dequeue(&kring->rx_queue); 957 958 while (mlen) { 959 copy = nm_buf_len; 960 if (mlen < copy) { 961 copy = mlen; 962 } 963 mlen -= copy; 964 avail -= nm_buf_len; 965 966 ring->slot[nm_i].len = copy; 967 ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0); 968 nm_i = nm_next(nm_i, lim); 969 } 970 971 mbq_enqueue(&tmpq, m); 972 } 973 mbq_unlock(&kring->rx_queue); 974 975 /* Second pass: Drain the temporary queue, going over the used RX slots, 976 * and perform the copy out of the RX queue lock. */ 977 nm_i = kring->nr_hwtail; 978 979 for (;;) { 980 void *nmaddr; 981 int ofs = 0; 982 int morefrag; 983 984 m = mbq_dequeue(&tmpq); 985 if (!m) { 986 break; 987 } 988 989 do { 990 nmaddr = NMB(na, &ring->slot[nm_i]); 991 /* We only check the address here on generic rx rings. */ 992 if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */ 993 m_freem(m); 994 mbq_purge(&tmpq); 995 mbq_fini(&tmpq); 996 return netmap_ring_reinit(kring); 997 } 998 999 copy = ring->slot[nm_i].len; 1000 m_copydata(m, ofs, copy, nmaddr); 1001 ofs += copy; 1002 morefrag = ring->slot[nm_i].flags & NS_MOREFRAG; 1003 nm_i = nm_next(nm_i, lim); 1004 } while (morefrag); 1005 1006 m_freem(m); 1007 } 1008 1009 mbq_fini(&tmpq); 1010 1011 if (n) { 1012 kring->nr_hwtail = nm_i; 1013 IFRATE(rate_ctx.new.rxpkt += n); 1014 } 1015 kring->nr_kflags &= ~NKR_PENDINTR; 1016 1017 return 0; 1018 } 1019 1020 static void 1021 generic_netmap_dtor(struct netmap_adapter *na) 1022 { 1023 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na; 1024 struct ifnet *ifp = netmap_generic_getifp(gna); 1025 struct netmap_adapter *prev_na = gna->prev; 1026 1027 if (prev_na != NULL) { 1028 netmap_adapter_put(prev_na); 1029 if (nm_iszombie(na)) { 1030 /* 1031 * The driver has been removed without releasing 1032 * the reference so we need to do it here. 1033 */ 1034 netmap_adapter_put(prev_na); 1035 } 1036 nm_prinf("Native netmap adapter for %s restored", prev_na->name); 1037 } 1038 NM_RESTORE_NA(ifp, prev_na); 1039 /* 1040 * netmap_detach_common(), that it's called after this function, 1041 * overrides WNA(ifp) if na->ifp is not NULL. 1042 */ 1043 na->ifp = NULL; 1044 nm_prinf("Emulated netmap adapter for %s destroyed", na->name); 1045 } 1046 1047 int 1048 na_is_generic(struct netmap_adapter *na) 1049 { 1050 return na->nm_register == generic_netmap_register; 1051 } 1052 1053 /* 1054 * generic_netmap_attach() makes it possible to use netmap on 1055 * a device without native netmap support. 1056 * This is less performant than native support but potentially 1057 * faster than raw sockets or similar schemes. 1058 * 1059 * In this "emulated" mode, netmap rings do not necessarily 1060 * have the same size as those in the NIC. We use a default 1061 * value and possibly override it if the OS has ways to fetch the 1062 * actual configuration. 1063 */ 1064 int 1065 generic_netmap_attach(struct ifnet *ifp) 1066 { 1067 struct netmap_adapter *na; 1068 struct netmap_generic_adapter *gna; 1069 int retval; 1070 u_int num_tx_desc, num_rx_desc; 1071 1072 #ifdef __FreeBSD__ 1073 if (ifp->if_type == IFT_LOOP) { 1074 nm_prerr("if_loop is not supported by %s", __func__); 1075 return EINVAL; 1076 } 1077 #endif 1078 1079 if (NM_NA_CLASH(ifp)) { 1080 /* If NA(ifp) is not null but there is no valid netmap 1081 * adapter it means that someone else is using the same 1082 * pointer (e.g. ax25_ptr on linux). This happens for 1083 * instance when also PF_RING is in use. */ 1084 nm_prerr("Error: netmap adapter hook is busy"); 1085 return EBUSY; 1086 } 1087 1088 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */ 1089 1090 nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */ 1091 if (num_tx_desc == 0 || num_rx_desc == 0) { 1092 nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc); 1093 return EINVAL; 1094 } 1095 1096 gna = nm_os_malloc(sizeof(*gna)); 1097 if (gna == NULL) { 1098 nm_prerr("no memory on attach, give up"); 1099 return ENOMEM; 1100 } 1101 na = (struct netmap_adapter *)gna; 1102 strlcpy(na->name, ifp->if_xname, sizeof(na->name)); 1103 na->ifp = ifp; 1104 na->num_tx_desc = num_tx_desc; 1105 na->num_rx_desc = num_rx_desc; 1106 na->rx_buf_maxsize = 32768; 1107 na->nm_register = &generic_netmap_register; 1108 na->nm_txsync = &generic_netmap_txsync; 1109 na->nm_rxsync = &generic_netmap_rxsync; 1110 na->nm_dtor = &generic_netmap_dtor; 1111 /* when using generic, NAF_NETMAP_ON is set so we force 1112 * NAF_SKIP_INTR to use the regular interrupt handler 1113 */ 1114 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS; 1115 1116 nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)", 1117 ifp->num_tx_queues, ifp->real_num_tx_queues, 1118 ifp->tx_queue_len); 1119 nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)", 1120 ifp->num_rx_queues, ifp->real_num_rx_queues); 1121 1122 nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings); 1123 1124 retval = netmap_attach_common(na); 1125 if (retval) { 1126 nm_os_free(gna); 1127 return retval; 1128 } 1129 1130 if (NM_NA_VALID(ifp)) { 1131 gna->prev = NA(ifp); /* save old na */ 1132 netmap_adapter_get(gna->prev); 1133 } 1134 NM_ATTACH_NA(ifp, na); 1135 1136 nm_os_generic_set_features(gna); 1137 1138 nm_prinf("Emulated adapter for %s created (prev was %s)", na->name, 1139 gna->prev ? gna->prev->name : "NULL"); 1140 1141 return retval; 1142 } 1143