1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2013-2016 Vincenzo Maffione
5 * Copyright (C) 2013-2016 Luigi Rizzo
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * This module implements netmap support on top of standard,
32 * unmodified device drivers.
33 *
34 * A NIOCREGIF request is handled here if the device does not
35 * have native support. TX and RX rings are emulated as follows:
36 *
37 * NIOCREGIF
38 * We preallocate a block of TX mbufs (roughly as many as
39 * tx descriptors; the number is not critical) to speed up
40 * operation during transmissions. The refcount on most of
41 * these buffers is artificially bumped up so we can recycle
42 * them more easily. Also, the destructor is intercepted
43 * so we use it as an interrupt notification to wake up
44 * processes blocked on a poll().
45 *
46 * For each receive ring we allocate one "struct mbq"
47 * (an mbuf tailq plus a spinlock). We intercept packets
48 * (through if_input)
49 * on the receive path and put them in the mbq from which
50 * netmap receive routines can grab them.
51 *
52 * TX:
53 * in the generic_txsync() routine, netmap buffers are copied
54 * (or linked, in a future) to the preallocated mbufs
55 * and pushed to the transmit queue. Some of these mbufs
56 * (those with NS_REPORT, or otherwise every half ring)
57 * have the refcount=1, others have refcount=2.
58 * When the destructor is invoked, we take that as
59 * a notification that all mbufs up to that one in
60 * the specific ring have been completed, and generate
61 * the equivalent of a transmit interrupt.
62 *
63 * RX:
64 *
65 */
66
67 #ifdef __FreeBSD__
68
69 #include <sys/cdefs.h> /* prerequisite */
70 #include <sys/types.h>
71 #include <sys/errno.h>
72 #include <sys/malloc.h>
73 #include <sys/lock.h> /* PROT_EXEC */
74 #include <sys/rwlock.h>
75 #include <sys/socket.h> /* sockaddrs */
76 #include <sys/selinfo.h>
77 #include <net/if.h>
78 #include <net/if_types.h>
79 #include <net/if_var.h>
80 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */
81
82 #include <net/netmap.h>
83 #include <dev/netmap/netmap_kern.h>
84 #include <dev/netmap/netmap_mem2.h>
85
86 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid)
87 #define smp_mb()
88
89 #elif defined _WIN32
90
91 #include "win_glue.h"
92
93 #define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid)
94 #define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid)
95 #define smp_mb() //XXX: to be correctly defined
96
97 #else /* linux */
98
99 #include "bsd_glue.h"
100
101 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */
102 #include <linux/hrtimer.h>
103
104 static inline struct mbuf *
nm_os_get_mbuf(struct ifnet * ifp,int len)105 nm_os_get_mbuf(struct ifnet *ifp, int len)
106 {
107 return alloc_skb(LL_RESERVED_SPACE(ifp) + len +
108 ifp->needed_tailroom, GFP_ATOMIC);
109 }
110
111 #endif /* linux */
112
113
114 /* Common headers. */
115 #include <net/netmap.h>
116 #include <dev/netmap/netmap_kern.h>
117 #include <dev/netmap/netmap_mem2.h>
118
119
120 #define for_each_kring_n(_i, _k, _karr, _n) \
121 for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)])
122
123 #define for_each_tx_kring(_i, _k, _na) \
124 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
125 #define for_each_tx_kring_h(_i, _k, _na) \
126 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
127
128 #define for_each_rx_kring(_i, _k, _na) \
129 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
130 #define for_each_rx_kring_h(_i, _k, _na) \
131 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
132
133
134 /* ======================== PERFORMANCE STATISTICS =========================== */
135
136 #ifdef RATE_GENERIC
137 #define IFRATE(x) x
138 struct rate_stats {
139 unsigned long txpkt;
140 unsigned long txsync;
141 unsigned long txirq;
142 unsigned long txrepl;
143 unsigned long txdrop;
144 unsigned long rxpkt;
145 unsigned long rxirq;
146 unsigned long rxsync;
147 };
148
149 struct rate_context {
150 unsigned refcount;
151 struct timer_list timer;
152 struct rate_stats new;
153 struct rate_stats old;
154 };
155
156 #define RATE_PRINTK(_NAME_) \
157 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
158 #define RATE_PERIOD 2
rate_callback(unsigned long arg)159 static void rate_callback(unsigned long arg)
160 {
161 struct rate_context * ctx = (struct rate_context *)arg;
162 struct rate_stats cur = ctx->new;
163 int r;
164
165 RATE_PRINTK(txpkt);
166 RATE_PRINTK(txsync);
167 RATE_PRINTK(txirq);
168 RATE_PRINTK(txrepl);
169 RATE_PRINTK(txdrop);
170 RATE_PRINTK(rxpkt);
171 RATE_PRINTK(rxsync);
172 RATE_PRINTK(rxirq);
173 printk("\n");
174
175 ctx->old = cur;
176 r = mod_timer(&ctx->timer, jiffies +
177 msecs_to_jiffies(RATE_PERIOD * 1000));
178 if (unlikely(r))
179 nm_prerr("mod_timer() failed");
180 }
181
182 static struct rate_context rate_ctx;
183
generic_rate(int txp,int txs,int txi,int rxp,int rxs,int rxi)184 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
185 {
186 if (txp) rate_ctx.new.txpkt++;
187 if (txs) rate_ctx.new.txsync++;
188 if (txi) rate_ctx.new.txirq++;
189 if (rxp) rate_ctx.new.rxpkt++;
190 if (rxs) rate_ctx.new.rxsync++;
191 if (rxi) rate_ctx.new.rxirq++;
192 }
193
194 #else /* !RATE */
195 #define IFRATE(x)
196 #endif /* !RATE */
197
198
199 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */
200
201 /*
202 * Wrapper used by the generic adapter layer to notify
203 * the poller threads. Differently from netmap_rx_irq(), we check
204 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
205 */
206 void
netmap_generic_irq(struct netmap_adapter * na,u_int q,u_int * work_done)207 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
208 {
209 if (unlikely(!nm_netmap_on(na)))
210 return;
211
212 netmap_common_irq(na, q, work_done);
213 #ifdef RATE_GENERIC
214 if (work_done)
215 rate_ctx.new.rxirq++;
216 else
217 rate_ctx.new.txirq++;
218 #endif /* RATE_GENERIC */
219 }
220
221 static int
generic_netmap_unregister(struct netmap_adapter * na)222 generic_netmap_unregister(struct netmap_adapter *na)
223 {
224 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
225 struct netmap_kring *kring = NULL;
226 int i, r;
227
228 if (na->active_fds == 0) {
229 na->na_flags &= ~NAF_NETMAP_ON;
230
231 /* Stop intercepting packets on the RX path. */
232 nm_os_catch_rx(gna, 0);
233
234 /* Release packet steering control. */
235 nm_os_catch_tx(gna, 0);
236 }
237
238 netmap_krings_mode_commit(na, /*onoff=*/0);
239
240 for_each_rx_kring(r, kring, na) {
241 /* Free the mbufs still pending in the RX queues,
242 * that did not end up into the corresponding netmap
243 * RX rings. */
244 mbq_safe_purge(&kring->rx_queue);
245 nm_os_mitigation_cleanup(&gna->mit[r]);
246 }
247
248 /* Decrement reference counter for the mbufs in the
249 * TX pools. These mbufs can be still pending in drivers,
250 * (e.g. this happens with virtio-net driver, which
251 * does lazy reclaiming of transmitted mbufs). */
252 for_each_tx_kring(r, kring, na) {
253 /* We must remove the destructor on the TX event,
254 * because the destructor invokes netmap code, and
255 * the netmap module may disappear before the
256 * TX event is consumed. */
257 mtx_lock_spin(&kring->tx_event_lock);
258 if (kring->tx_event) {
259 SET_MBUF_DESTRUCTOR(kring->tx_event, NULL, NULL);
260 }
261 kring->tx_event = NULL;
262 mtx_unlock_spin(&kring->tx_event_lock);
263 }
264
265 if (na->active_fds == 0) {
266 nm_os_free(gna->mit);
267
268 for_each_rx_kring(r, kring, na) {
269 mbq_safe_fini(&kring->rx_queue);
270 }
271
272 for_each_tx_kring(r, kring, na) {
273 callout_drain(&kring->tx_event_callout);
274
275 if (kring->tx_pool == NULL) {
276 continue;
277 }
278
279 for (i=0; i<na->num_tx_desc; i++) {
280 if (kring->tx_pool[i]) {
281 m_free(kring->tx_pool[i]);
282 kring->tx_pool[i] = NULL;
283 }
284 }
285 mtx_destroy(&kring->tx_event_lock);
286 nm_os_free(kring->tx_pool);
287 kring->tx_pool = NULL;
288 }
289
290 #ifdef RATE_GENERIC
291 if (--rate_ctx.refcount == 0) {
292 nm_prinf("del_timer()");
293 del_timer(&rate_ctx.timer);
294 }
295 #endif
296 nm_prinf("Emulated adapter for %s deactivated", na->name);
297 }
298
299 return 0;
300 }
301
302 /* Enable/disable netmap mode for a generic network interface. */
303 static int
generic_netmap_register(struct netmap_adapter * na,int enable)304 generic_netmap_register(struct netmap_adapter *na, int enable)
305 {
306 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
307 struct netmap_kring *kring = NULL;
308 int error;
309 int i, r;
310
311 if (!na) {
312 return EINVAL;
313 }
314
315 if (!enable) {
316 /* This is actually an unregif. */
317 return generic_netmap_unregister(na);
318 }
319
320 if (na->active_fds == 0) {
321 nm_prinf("Emulated adapter for %s activated", na->name);
322 /* Do all memory allocations when (na->active_fds == 0), to
323 * simplify error management. */
324
325 /* Allocate memory for mitigation support on all the rx queues. */
326 gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit));
327 if (!gna->mit) {
328 nm_prerr("mitigation allocation failed");
329 error = ENOMEM;
330 goto out;
331 }
332
333 for_each_rx_kring(r, kring, na) {
334 /* Init mitigation support. */
335 nm_os_mitigation_init(&gna->mit[r], r, na);
336
337 /* Initialize the rx queue, as generic_rx_handler() can
338 * be called as soon as nm_os_catch_rx() returns.
339 */
340 mbq_safe_init(&kring->rx_queue);
341 }
342
343 /*
344 * Prepare mbuf pools (parallel to the tx rings), for packet
345 * transmission. Don't preallocate the mbufs here, it's simpler
346 * to leave this task to txsync.
347 */
348 for_each_tx_kring(r, kring, na) {
349 kring->tx_pool = NULL;
350 }
351 for_each_tx_kring(r, kring, na) {
352 kring->tx_pool =
353 nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *));
354 if (!kring->tx_pool) {
355 nm_prerr("tx_pool allocation failed");
356 error = ENOMEM;
357 goto free_tx_pools;
358 }
359 mtx_init(&kring->tx_event_lock, "tx_event_lock",
360 NULL, MTX_SPIN);
361 callout_init_mtx(&kring->tx_event_callout,
362 &kring->tx_event_lock,
363 CALLOUT_RETURNUNLOCKED);
364 }
365 }
366
367 netmap_krings_mode_commit(na, /*onoff=*/1);
368
369 for_each_tx_kring(r, kring, na) {
370 /* Initialize tx_pool and tx_event. */
371 for (i=0; i<na->num_tx_desc; i++) {
372 kring->tx_pool[i] = NULL;
373 }
374
375 kring->tx_event = NULL;
376 }
377
378 if (na->active_fds == 0) {
379 /* Prepare to intercept incoming traffic. */
380 error = nm_os_catch_rx(gna, 1);
381 if (error) {
382 nm_prerr("nm_os_catch_rx(1) failed (%d)", error);
383 goto free_tx_pools;
384 }
385
386 /* Let netmap control the packet steering. */
387 error = nm_os_catch_tx(gna, 1);
388 if (error) {
389 nm_prerr("nm_os_catch_tx(1) failed (%d)", error);
390 goto catch_rx;
391 }
392
393 na->na_flags |= NAF_NETMAP_ON;
394
395 #ifdef RATE_GENERIC
396 if (rate_ctx.refcount == 0) {
397 nm_prinf("setup_timer()");
398 memset(&rate_ctx, 0, sizeof(rate_ctx));
399 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
400 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
401 nm_prerr("Error: mod_timer()");
402 }
403 }
404 rate_ctx.refcount++;
405 #endif /* RATE */
406 }
407
408 return 0;
409
410 /* Here (na->active_fds == 0) holds. */
411 catch_rx:
412 nm_os_catch_rx(gna, 0);
413 free_tx_pools:
414 for_each_tx_kring(r, kring, na) {
415 mtx_destroy(&kring->tx_event_lock);
416 if (kring->tx_pool == NULL) {
417 continue;
418 }
419 nm_os_free(kring->tx_pool);
420 kring->tx_pool = NULL;
421 }
422 for_each_rx_kring(r, kring, na) {
423 mbq_safe_fini(&kring->rx_queue);
424 }
425 nm_os_free(gna->mit);
426 out:
427
428 return error;
429 }
430
431 /*
432 * Callback invoked when the device driver frees an mbuf used
433 * by netmap to transmit a packet. This usually happens when
434 * the NIC notifies the driver that transmission is completed.
435 */
436 static void
generic_mbuf_dtor(struct mbuf * m)437 generic_mbuf_dtor(struct mbuf *m)
438 {
439 struct netmap_adapter *na = GEN_TX_MBUF_NA(m);
440 struct netmap_kring *kring;
441 unsigned int r = MBUF_TXQ(m);
442 unsigned int r_orig = r;
443
444 if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
445 nm_prerr("Error: no netmap adapter on device %p",
446 GEN_TX_MBUF_IFP(m));
447 return;
448 }
449
450 /*
451 * First, clear the event mbuf.
452 * In principle, the event 'm' should match the one stored
453 * on ring 'r'. However we check it explicitly to stay
454 * safe against lower layers (qdisc, driver, etc.) changing
455 * MBUF_TXQ(m) under our feet. If the match is not found
456 * on 'r', we try to see if it belongs to some other ring.
457 */
458 for (;;) {
459 bool match = false;
460
461 kring = na->tx_rings[r];
462 mtx_lock_spin(&kring->tx_event_lock);
463
464 /*
465 * The netmap destructor can be called between us getting the
466 * reference and taking the lock, in that case the ring
467 * reference won't be valid. The destructor will free this mbuf
468 * so we can stop here.
469 */
470 if (GEN_TX_MBUF_NA(m) == NULL) {
471 mtx_unlock_spin(&kring->tx_event_lock);
472 return;
473 }
474
475 if (kring->tx_event == m) {
476 kring->tx_event = NULL;
477 match = true;
478 }
479 mtx_unlock_spin(&kring->tx_event_lock);
480
481 if (match) {
482 if (r != r_orig) {
483 nm_prlim(1, "event %p migrated: ring %u --> %u",
484 m, r_orig, r);
485 }
486 break;
487 }
488
489 if (++r == na->num_tx_rings) r = 0;
490
491 if (r == r_orig) {
492 #ifndef __FreeBSD__
493 /*
494 * On FreeBSD this situation can arise if the tx_event
495 * callout handler cleared a stuck packet.
496 */
497 nm_prlim(1, "Cannot match event %p", m);
498 #endif
499 nm_generic_mbuf_dtor(m);
500 return;
501 }
502 }
503
504 /* Second, wake up clients. They will reclaim the event through
505 * txsync. */
506 netmap_generic_irq(na, r, NULL);
507 nm_generic_mbuf_dtor(m);
508 }
509
510 /* Record completed transmissions and update hwtail.
511 *
512 * The oldest tx buffer not yet completed is at nr_hwtail + 1,
513 * nr_hwcur is the first unsent buffer.
514 */
515 static u_int
generic_netmap_tx_clean(struct netmap_kring * kring,int txqdisc)516 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
517 {
518 u_int const lim = kring->nkr_num_slots - 1;
519 u_int nm_i = nm_next(kring->nr_hwtail, lim);
520 u_int hwcur = kring->nr_hwcur;
521 u_int n = 0;
522 struct mbuf **tx_pool = kring->tx_pool;
523
524 nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
525
526 while (nm_i != hwcur) { /* buffers not completed */
527 struct mbuf *m = tx_pool[nm_i];
528
529 if (txqdisc) {
530 if (m == NULL) {
531 /* Nothing to do, this is going
532 * to be replenished. */
533 nm_prlim(3, "Is this happening?");
534
535 } else if (MBUF_QUEUED(m)) {
536 break; /* Not dequeued yet. */
537
538 } else if (MBUF_REFCNT(m) != 1) {
539 /* This mbuf has been dequeued but is still busy
540 * (refcount is 2).
541 * Leave it to the driver and replenish. */
542 m_free(m);
543 tx_pool[nm_i] = NULL;
544 }
545
546 } else {
547 if (unlikely(m == NULL)) {
548 int event_consumed;
549
550 /* This slot was used to place an event. */
551 mtx_lock_spin(&kring->tx_event_lock);
552 event_consumed = (kring->tx_event == NULL);
553 mtx_unlock_spin(&kring->tx_event_lock);
554 if (!event_consumed) {
555 /* The event has not been consumed yet,
556 * still busy in the driver. */
557 break;
558 }
559 /* The event has been consumed, we can go
560 * ahead. */
561 } else if (MBUF_REFCNT(m) != 1) {
562 /* This mbuf is still busy: its refcnt is 2. */
563 break;
564 }
565 }
566
567 n++;
568 nm_i = nm_next(nm_i, lim);
569 }
570 kring->nr_hwtail = nm_prev(nm_i, lim);
571 nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
572
573 return n;
574 }
575
576 /* Compute a slot index in the middle between inf and sup. */
577 static inline u_int
ring_middle(u_int inf,u_int sup,u_int lim)578 ring_middle(u_int inf, u_int sup, u_int lim)
579 {
580 u_int n = lim + 1;
581 u_int e;
582
583 if (sup >= inf) {
584 e = (sup + inf) / 2;
585 } else { /* wrap around */
586 e = (sup + n + inf) / 2;
587 if (e >= n) {
588 e -= n;
589 }
590 }
591
592 if (unlikely(e >= n)) {
593 nm_prerr("This cannot happen");
594 e = 0;
595 }
596
597 return e;
598 }
599
600 #ifdef __FreeBSD__
601 static void
generic_tx_callout(void * arg)602 generic_tx_callout(void *arg)
603 {
604 struct netmap_kring *kring = arg;
605
606 kring->tx_event = NULL;
607 mtx_unlock_spin(&kring->tx_event_lock);
608 netmap_generic_irq(kring->na, kring->ring_id, NULL);
609 }
610 #endif
611
612 static void
generic_set_tx_event(struct netmap_kring * kring,u_int hwcur)613 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
614 {
615 u_int lim = kring->nkr_num_slots - 1;
616 struct mbuf *m;
617 u_int e;
618 u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
619
620 if (ntc == hwcur) {
621 return; /* all buffers are free */
622 }
623
624 /*
625 * We have pending packets in the driver between hwtail+1
626 * and hwcur, and we have to chose one of these slot to
627 * generate a notification.
628 * There is a race but this is only called within txsync which
629 * does a double check.
630 */
631 #if 0
632 /* Choose a slot in the middle, so that we don't risk ending
633 * up in a situation where the client continuously wake up,
634 * fills one or a few TX slots and go to sleep again. */
635 e = ring_middle(ntc, hwcur, lim);
636 #else
637 /* Choose the first pending slot, to be safe against driver
638 * reordering mbuf transmissions. */
639 e = ntc;
640 #endif
641
642 m = kring->tx_pool[e];
643 if (m == NULL) {
644 /* An event is already in place. */
645 return;
646 }
647
648 mtx_lock_spin(&kring->tx_event_lock);
649 if (kring->tx_event) {
650 /* An event is already in place. */
651 mtx_unlock_spin(&kring->tx_event_lock);
652 return;
653 }
654
655 SET_MBUF_DESTRUCTOR(m, generic_mbuf_dtor, kring->na);
656
657 kring->tx_event = m;
658 #ifdef __FreeBSD__
659 /*
660 * Handle the possibility that the transmitted buffer isn't reclaimed
661 * within a bounded period of time. This can arise when transmitting
662 * out of multiple ports via a lagg or bridge interface, since the
663 * member ports may legitimately only free transmitted buffers in
664 * batches.
665 *
666 * The callout handler clears the stuck packet from the ring, allowing
667 * transmission to proceed. In the common case we let
668 * generic_mbuf_dtor() unstick the ring, allowing mbufs to be
669 * reused most of the time.
670 */
671 callout_reset_sbt_curcpu(&kring->tx_event_callout, SBT_1MS, 0,
672 generic_tx_callout, kring, 0);
673 #endif
674 mtx_unlock_spin(&kring->tx_event_lock);
675
676 kring->tx_pool[e] = NULL;
677
678 nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
679
680 /* Decrement the refcount. This will free it if we lose the race
681 * with the driver. */
682 m_free(m);
683 }
684
685 /*
686 * generic_netmap_txsync() transforms netmap buffers into mbufs
687 * and passes them to the standard device driver
688 * (ndo_start_xmit() or ifp->if_transmit() ).
689 * On linux this is not done directly, but using dev_queue_xmit(),
690 * since it implements the TX flow control (and takes some locks).
691 */
692 static int
generic_netmap_txsync(struct netmap_kring * kring,int flags)693 generic_netmap_txsync(struct netmap_kring *kring, int flags)
694 {
695 struct netmap_adapter *na = kring->na;
696 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
697 if_t ifp = na->ifp;
698 struct netmap_ring *ring = kring->ring;
699 u_int nm_i; /* index into the netmap ring */ // j
700 u_int const lim = kring->nkr_num_slots - 1;
701 u_int const head = kring->rhead;
702 u_int ring_nr = kring->ring_id;
703
704 IFRATE(rate_ctx.new.txsync++);
705
706 rmb();
707
708 /*
709 * First part: process new packets to send.
710 */
711 nm_i = kring->nr_hwcur;
712 if (nm_i != head) { /* we have new packets to send */
713 struct nm_os_gen_arg a;
714 u_int event = -1;
715 #ifdef __FreeBSD__
716 struct epoch_tracker et;
717
718 NET_EPOCH_ENTER(et);
719 #endif
720
721 if (gna->txqdisc && nm_kr_txempty(kring)) {
722 /* In txqdisc mode, we ask for a delayed notification,
723 * but only when cur == hwtail, which means that the
724 * client is going to block. */
725 event = ring_middle(nm_i, head, lim);
726 nm_prdis("Place txqdisc event (hwcur=%u,event=%u,"
727 "head=%u,hwtail=%u)", nm_i, event, head,
728 kring->nr_hwtail);
729 }
730
731 a.ifp = ifp;
732 a.ring_nr = ring_nr;
733 a.head = a.tail = NULL;
734
735 while (nm_i != head) {
736 struct netmap_slot *slot = &ring->slot[nm_i];
737 u_int len = slot->len;
738 void *addr = NMB(na, slot);
739 /* device-specific */
740 struct mbuf *m;
741 int tx_ret;
742
743 NM_CHECK_ADDR_LEN(na, addr, len);
744
745 /* Tale a mbuf from the tx pool (replenishing the pool
746 * entry if necessary) and copy in the user packet. */
747 m = kring->tx_pool[nm_i];
748 if (unlikely(m == NULL)) {
749 kring->tx_pool[nm_i] = m =
750 nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
751 if (m == NULL) {
752 nm_prlim(2, "Failed to replenish mbuf");
753 /* Here we could schedule a timer which
754 * retries to replenish after a while,
755 * and notifies the client when it
756 * manages to replenish some slots. In
757 * any case we break early to avoid
758 * crashes. */
759 break;
760 }
761 IFRATE(rate_ctx.new.txrepl++);
762 } else {
763 nm_os_mbuf_reinit(m);
764 }
765
766 a.m = m;
767 a.addr = addr;
768 a.len = len;
769 a.qevent = (nm_i == event);
770 /* When not in txqdisc mode, we should ask
771 * notifications when NS_REPORT is set, or roughly
772 * every half ring. To optimize this, we set a
773 * notification event when the client runs out of
774 * TX ring space, or when transmission fails. In
775 * the latter case we also break early.
776 */
777 tx_ret = nm_os_generic_xmit_frame(&a);
778 if (unlikely(tx_ret)) {
779 if (!gna->txqdisc) {
780 /*
781 * No room for this mbuf in the device driver.
782 * Request a notification FOR A PREVIOUS MBUF,
783 * then call generic_netmap_tx_clean(kring) to do the
784 * double check and see if we can free more buffers.
785 * If there is space continue, else break;
786 * NOTE: the double check is necessary if the problem
787 * occurs in the txsync call after selrecord().
788 * Also, we need some way to tell the caller that not
789 * all buffers were queued onto the device (this was
790 * not a problem with native netmap driver where space
791 * is preallocated). The bridge has a similar problem
792 * and we solve it there by dropping the excess packets.
793 */
794 generic_set_tx_event(kring, nm_i);
795 if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
796 /* space now available */
797 continue;
798 } else {
799 break;
800 }
801 }
802
803 /* In txqdisc mode, the netmap-aware qdisc
804 * queue has the same length as the number of
805 * netmap slots (N). Since tail is advanced
806 * only when packets are dequeued, qdisc
807 * queue overrun cannot happen, so
808 * nm_os_generic_xmit_frame() did not fail
809 * because of that.
810 * However, packets can be dropped because
811 * carrier is off, or because our qdisc is
812 * being deactivated, or possibly for other
813 * reasons. In these cases, we just let the
814 * packet to be dropped. */
815 IFRATE(rate_ctx.new.txdrop++);
816 }
817
818 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
819 nm_i = nm_next(nm_i, lim);
820 IFRATE(rate_ctx.new.txpkt++);
821 }
822 if (a.head != NULL) {
823 a.addr = NULL;
824 nm_os_generic_xmit_frame(&a);
825 }
826 /* Update hwcur to the next slot to transmit. Here nm_i
827 * is not necessarily head, we could break early. */
828 kring->nr_hwcur = nm_i;
829
830 #ifdef __FreeBSD__
831 NET_EPOCH_EXIT(et);
832 #endif
833 }
834
835 if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
836 /* No more available slots? Set a notification event
837 * on a netmap slot that will be cleaned in the future.
838 * No doublecheck is performed, since txsync() will be
839 * called twice by netmap_poll().
840 */
841 generic_set_tx_event(kring, nm_i);
842 }
843
844 /*
845 * Second, reclaim completed buffers
846 */
847 generic_netmap_tx_clean(kring, gna->txqdisc);
848
849 return 0;
850 }
851
852
853 /*
854 * This handler is registered (through nm_os_catch_rx())
855 * within the attached network interface
856 * in the RX subsystem, so that every mbuf passed up by
857 * the driver can be stolen to the network stack.
858 * Stolen packets are put in a queue where the
859 * generic_netmap_rxsync() callback can extract them.
860 * Returns 1 if the packet was stolen, 0 otherwise.
861 */
862 int
generic_rx_handler(if_t ifp,struct mbuf * m)863 generic_rx_handler(if_t ifp, struct mbuf *m)
864 {
865 struct netmap_adapter *na = NA(ifp);
866 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
867 struct netmap_kring *kring;
868 u_int work_done;
869 u_int r = MBUF_RXQ(m); /* receive ring number */
870
871 if (r >= na->num_rx_rings) {
872 r = r % na->num_rx_rings;
873 }
874
875 kring = na->rx_rings[r];
876
877 if (kring->nr_mode == NKR_NETMAP_OFF) {
878 /* We must not intercept this mbuf. */
879 return 0;
880 }
881
882 /* limit the size of the queue */
883 if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
884 /* This may happen when GRO/LRO features are enabled for
885 * the NIC driver when the generic adapter does not
886 * support RX scatter-gather. */
887 nm_prlim(2, "Warning: driver pushed up big packet "
888 "(size=%d)", (int)MBUF_LEN(m));
889 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
890 m_freem(m);
891 } else if (unlikely(mbq_len(&kring->rx_queue) > na->num_rx_desc)) {
892 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
893 m_freem(m);
894 } else {
895 mbq_safe_enqueue(&kring->rx_queue, m);
896 }
897
898 if (netmap_generic_mit < 32768) {
899 /* no rx mitigation, pass notification up */
900 netmap_generic_irq(na, r, &work_done);
901 } else {
902 /* same as send combining, filter notification if there is a
903 * pending timer, otherwise pass it up and start a timer.
904 */
905 if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
906 /* Record that there is some pending work. */
907 gna->mit[r].mit_pending = 1;
908 } else {
909 netmap_generic_irq(na, r, &work_done);
910 nm_os_mitigation_start(&gna->mit[r]);
911 }
912 }
913
914 /* We have intercepted the mbuf. */
915 return 1;
916 }
917
918 /*
919 * generic_netmap_rxsync() extracts mbufs from the queue filled by
920 * generic_netmap_rx_handler() and puts their content in the netmap
921 * receive ring.
922 * Access must be protected because the rx handler is asynchronous,
923 */
924 static int
generic_netmap_rxsync(struct netmap_kring * kring,int flags)925 generic_netmap_rxsync(struct netmap_kring *kring, int flags)
926 {
927 struct netmap_ring *ring = kring->ring;
928 struct netmap_adapter *na = kring->na;
929 u_int nm_i; /* index into the netmap ring */ //j,
930 u_int n;
931 u_int const lim = kring->nkr_num_slots - 1;
932 u_int const head = kring->rhead;
933 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
934
935 /* Adapter-specific variables. */
936 u_int nm_buf_len = NETMAP_BUF_SIZE(na);
937 struct mbq tmpq;
938 struct mbuf *m;
939 int avail; /* in bytes */
940 int mlen;
941 int copy;
942
943 if (head > lim)
944 return netmap_ring_reinit(kring);
945
946 IFRATE(rate_ctx.new.rxsync++);
947
948 /*
949 * First part: skip past packets that userspace has released.
950 * This can possibly make room for the second part.
951 */
952 nm_i = kring->nr_hwcur;
953 if (nm_i != head) {
954 /* Userspace has released some packets. */
955 for (n = 0; nm_i != head; n++) {
956 struct netmap_slot *slot = &ring->slot[nm_i];
957
958 slot->flags &= ~NS_BUF_CHANGED;
959 nm_i = nm_next(nm_i, lim);
960 }
961 kring->nr_hwcur = head;
962 }
963
964 /*
965 * Second part: import newly received packets.
966 */
967 if (!netmap_no_pendintr && !force_update) {
968 return 0;
969 }
970
971 nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
972
973 /* Compute the available space (in bytes) in this netmap ring.
974 * The first slot that is not considered in is the one before
975 * nr_hwcur. */
976
977 avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
978 if (avail < 0)
979 avail += lim + 1;
980 avail *= nm_buf_len;
981
982 /* First pass: While holding the lock on the RX mbuf queue,
983 * extract as many mbufs as they fit the available space,
984 * and put them in a temporary queue.
985 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to
986 * to update avail, we do the update in a while loop that we
987 * also use to set the RX slots, but without performing the copy. */
988 mbq_init(&tmpq);
989 mbq_lock(&kring->rx_queue);
990 for (n = 0;; n++) {
991 m = mbq_peek(&kring->rx_queue);
992 if (!m) {
993 /* No more packets from the driver. */
994 break;
995 }
996
997 mlen = MBUF_LEN(m);
998 if (mlen > avail) {
999 /* No more space in the ring. */
1000 break;
1001 }
1002
1003 mbq_dequeue(&kring->rx_queue);
1004
1005 while (mlen) {
1006 copy = nm_buf_len;
1007 if (mlen < copy) {
1008 copy = mlen;
1009 }
1010 mlen -= copy;
1011 avail -= nm_buf_len;
1012
1013 ring->slot[nm_i].len = copy;
1014 ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0);
1015 nm_i = nm_next(nm_i, lim);
1016 }
1017
1018 mbq_enqueue(&tmpq, m);
1019 }
1020 mbq_unlock(&kring->rx_queue);
1021
1022 /* Second pass: Drain the temporary queue, going over the used RX slots,
1023 * and perform the copy out of the RX queue lock. */
1024 nm_i = kring->nr_hwtail;
1025
1026 for (;;) {
1027 void *nmaddr;
1028 int ofs = 0;
1029 int morefrag;
1030
1031 m = mbq_dequeue(&tmpq);
1032 if (!m) {
1033 break;
1034 }
1035
1036 do {
1037 nmaddr = NMB(na, &ring->slot[nm_i]);
1038 /* We only check the address here on generic rx rings. */
1039 if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
1040 m_freem(m);
1041 mbq_purge(&tmpq);
1042 mbq_fini(&tmpq);
1043 return netmap_ring_reinit(kring);
1044 }
1045
1046 copy = ring->slot[nm_i].len;
1047 m_copydata(m, ofs, copy, nmaddr);
1048 ofs += copy;
1049 morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
1050 nm_i = nm_next(nm_i, lim);
1051 } while (morefrag);
1052
1053 m_freem(m);
1054 }
1055
1056 mbq_fini(&tmpq);
1057
1058 if (n) {
1059 kring->nr_hwtail = nm_i;
1060 IFRATE(rate_ctx.new.rxpkt += n);
1061 }
1062 kring->nr_kflags &= ~NKR_PENDINTR;
1063
1064 return 0;
1065 }
1066
1067 static void
generic_netmap_dtor(struct netmap_adapter * na)1068 generic_netmap_dtor(struct netmap_adapter *na)
1069 {
1070 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
1071 if_t ifp = netmap_generic_getifp(gna);
1072 struct netmap_adapter *prev_na = gna->prev;
1073
1074 if (prev_na != NULL) {
1075 netmap_adapter_put(prev_na);
1076 if (nm_iszombie(na)) {
1077 /*
1078 * The driver has been removed without releasing
1079 * the reference so we need to do it here.
1080 */
1081 netmap_adapter_put(prev_na);
1082 }
1083 nm_prinf("Native netmap adapter for %s restored", prev_na->name);
1084 }
1085 NM_RESTORE_NA(ifp, prev_na);
1086 na->ifp = NULL;
1087 nm_prinf("Emulated netmap adapter for %s destroyed", na->name);
1088 }
1089
1090 int
na_is_generic(struct netmap_adapter * na)1091 na_is_generic(struct netmap_adapter *na)
1092 {
1093 return na->nm_register == generic_netmap_register;
1094 }
1095
1096 /*
1097 * generic_netmap_attach() makes it possible to use netmap on
1098 * a device without native netmap support.
1099 * This is less performant than native support but potentially
1100 * faster than raw sockets or similar schemes.
1101 *
1102 * In this "emulated" mode, netmap rings do not necessarily
1103 * have the same size as those in the NIC. We use a default
1104 * value and possibly override it if the OS has ways to fetch the
1105 * actual configuration.
1106 */
1107 int
generic_netmap_attach(if_t ifp)1108 generic_netmap_attach(if_t ifp)
1109 {
1110 struct netmap_adapter *na;
1111 struct netmap_generic_adapter *gna;
1112 int retval;
1113 u_int num_tx_desc, num_rx_desc;
1114
1115 #ifdef __FreeBSD__
1116 if (if_gettype(ifp) == IFT_LOOP) {
1117 nm_prerr("if_loop is not supported by %s", __func__);
1118 return EINVAL;
1119 }
1120 #endif
1121
1122 if (NM_NA_CLASH(ifp)) {
1123 /* If NA(ifp) is not null but there is no valid netmap
1124 * adapter it means that someone else is using the same
1125 * pointer (e.g. ax25_ptr on linux). This happens for
1126 * instance when also PF_RING is in use. */
1127 nm_prerr("Error: netmap adapter hook is busy");
1128 return EBUSY;
1129 }
1130
1131 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
1132
1133 nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
1134 if (num_tx_desc == 0 || num_rx_desc == 0) {
1135 nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
1136 return EINVAL;
1137 }
1138
1139 gna = nm_os_malloc(sizeof(*gna));
1140 if (gna == NULL) {
1141 nm_prerr("no memory on attach, give up");
1142 return ENOMEM;
1143 }
1144 na = (struct netmap_adapter *)gna;
1145 strlcpy(na->name, if_name(ifp), sizeof(na->name));
1146 na->ifp = ifp;
1147 na->num_tx_desc = num_tx_desc;
1148 na->num_rx_desc = num_rx_desc;
1149 na->rx_buf_maxsize = 32768;
1150 na->nm_register = &generic_netmap_register;
1151 na->nm_txsync = &generic_netmap_txsync;
1152 na->nm_rxsync = &generic_netmap_rxsync;
1153 na->nm_dtor = &generic_netmap_dtor;
1154 /* when using generic, NAF_NETMAP_ON is set so we force
1155 * NAF_SKIP_INTR to use the regular interrupt handler
1156 */
1157 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
1158
1159 nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
1160 ifp->num_tx_queues, ifp->real_num_tx_queues,
1161 ifp->tx_queue_len);
1162 nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
1163 ifp->num_rx_queues, ifp->real_num_rx_queues);
1164
1165 nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
1166
1167 retval = netmap_attach_common(na);
1168 if (retval) {
1169 nm_os_free(gna);
1170 return retval;
1171 }
1172
1173 if (NM_NA_VALID(ifp)) {
1174 gna->prev = NA(ifp); /* save old na */
1175 netmap_adapter_get(gna->prev);
1176 }
1177 NM_ATTACH_NA(ifp, na);
1178
1179 nm_os_generic_set_features(gna);
1180
1181 nm_prinf("Emulated adapter for %s created (prev was %s)", na->name,
1182 gna->prev ? gna->prev->name : "NULL");
1183
1184 return retval;
1185 }
1186