1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2013-2016 Vincenzo Maffione 5 * Copyright (C) 2013-2016 Luigi Rizzo 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * This module implements netmap support on top of standard, 32 * unmodified device drivers. 33 * 34 * A NIOCREGIF request is handled here if the device does not 35 * have native support. TX and RX rings are emulated as follows: 36 * 37 * NIOCREGIF 38 * We preallocate a block of TX mbufs (roughly as many as 39 * tx descriptors; the number is not critical) to speed up 40 * operation during transmissions. The refcount on most of 41 * these buffers is artificially bumped up so we can recycle 42 * them more easily. Also, the destructor is intercepted 43 * so we use it as an interrupt notification to wake up 44 * processes blocked on a poll(). 45 * 46 * For each receive ring we allocate one "struct mbq" 47 * (an mbuf tailq plus a spinlock). We intercept packets 48 * (through if_input) 49 * on the receive path and put them in the mbq from which 50 * netmap receive routines can grab them. 51 * 52 * TX: 53 * in the generic_txsync() routine, netmap buffers are copied 54 * (or linked, in a future) to the preallocated mbufs 55 * and pushed to the transmit queue. Some of these mbufs 56 * (those with NS_REPORT, or otherwise every half ring) 57 * have the refcount=1, others have refcount=2. 58 * When the destructor is invoked, we take that as 59 * a notification that all mbufs up to that one in 60 * the specific ring have been completed, and generate 61 * the equivalent of a transmit interrupt. 62 * 63 * RX: 64 * 65 */ 66 67 #ifdef __FreeBSD__ 68 69 #include <sys/cdefs.h> /* prerequisite */ 70 __FBSDID("$FreeBSD$"); 71 72 #include <sys/types.h> 73 #include <sys/errno.h> 74 #include <sys/malloc.h> 75 #include <sys/lock.h> /* PROT_EXEC */ 76 #include <sys/rwlock.h> 77 #include <sys/socket.h> /* sockaddrs */ 78 #include <sys/selinfo.h> 79 #include <net/if.h> 80 #include <net/if_types.h> 81 #include <net/if_var.h> 82 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */ 83 84 #include <net/netmap.h> 85 #include <dev/netmap/netmap_kern.h> 86 #include <dev/netmap/netmap_mem2.h> 87 88 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid) 89 #define smp_mb() 90 91 #elif defined _WIN32 92 93 #include "win_glue.h" 94 95 #define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid) 96 #define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid) 97 #define smp_mb() //XXX: to be correctly defined 98 99 #else /* linux */ 100 101 #include "bsd_glue.h" 102 103 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */ 104 #include <linux/hrtimer.h> 105 106 static inline struct mbuf * 107 nm_os_get_mbuf(struct ifnet *ifp, int len) 108 { 109 return alloc_skb(LL_RESERVED_SPACE(ifp) + len + 110 ifp->needed_tailroom, GFP_ATOMIC); 111 } 112 113 #endif /* linux */ 114 115 116 /* Common headers. */ 117 #include <net/netmap.h> 118 #include <dev/netmap/netmap_kern.h> 119 #include <dev/netmap/netmap_mem2.h> 120 121 122 #define for_each_kring_n(_i, _k, _karr, _n) \ 123 for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)]) 124 125 #define for_each_tx_kring(_i, _k, _na) \ 126 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings) 127 #define for_each_tx_kring_h(_i, _k, _na) \ 128 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1) 129 130 #define for_each_rx_kring(_i, _k, _na) \ 131 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings) 132 #define for_each_rx_kring_h(_i, _k, _na) \ 133 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1) 134 135 136 /* ======================== PERFORMANCE STATISTICS =========================== */ 137 138 #ifdef RATE_GENERIC 139 #define IFRATE(x) x 140 struct rate_stats { 141 unsigned long txpkt; 142 unsigned long txsync; 143 unsigned long txirq; 144 unsigned long txrepl; 145 unsigned long txdrop; 146 unsigned long rxpkt; 147 unsigned long rxirq; 148 unsigned long rxsync; 149 }; 150 151 struct rate_context { 152 unsigned refcount; 153 struct timer_list timer; 154 struct rate_stats new; 155 struct rate_stats old; 156 }; 157 158 #define RATE_PRINTK(_NAME_) \ 159 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD); 160 #define RATE_PERIOD 2 161 static void rate_callback(unsigned long arg) 162 { 163 struct rate_context * ctx = (struct rate_context *)arg; 164 struct rate_stats cur = ctx->new; 165 int r; 166 167 RATE_PRINTK(txpkt); 168 RATE_PRINTK(txsync); 169 RATE_PRINTK(txirq); 170 RATE_PRINTK(txrepl); 171 RATE_PRINTK(txdrop); 172 RATE_PRINTK(rxpkt); 173 RATE_PRINTK(rxsync); 174 RATE_PRINTK(rxirq); 175 printk("\n"); 176 177 ctx->old = cur; 178 r = mod_timer(&ctx->timer, jiffies + 179 msecs_to_jiffies(RATE_PERIOD * 1000)); 180 if (unlikely(r)) 181 nm_prerr("mod_timer() failed"); 182 } 183 184 static struct rate_context rate_ctx; 185 186 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi) 187 { 188 if (txp) rate_ctx.new.txpkt++; 189 if (txs) rate_ctx.new.txsync++; 190 if (txi) rate_ctx.new.txirq++; 191 if (rxp) rate_ctx.new.rxpkt++; 192 if (rxs) rate_ctx.new.rxsync++; 193 if (rxi) rate_ctx.new.rxirq++; 194 } 195 196 #else /* !RATE */ 197 #define IFRATE(x) 198 #endif /* !RATE */ 199 200 201 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */ 202 203 /* 204 * Wrapper used by the generic adapter layer to notify 205 * the poller threads. Differently from netmap_rx_irq(), we check 206 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq. 207 */ 208 void 209 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 210 { 211 if (unlikely(!nm_netmap_on(na))) 212 return; 213 214 netmap_common_irq(na, q, work_done); 215 #ifdef RATE_GENERIC 216 if (work_done) 217 rate_ctx.new.rxirq++; 218 else 219 rate_ctx.new.txirq++; 220 #endif /* RATE_GENERIC */ 221 } 222 223 static int 224 generic_netmap_unregister(struct netmap_adapter *na) 225 { 226 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 227 struct netmap_kring *kring = NULL; 228 int i, r; 229 230 if (na->active_fds == 0) { 231 na->na_flags &= ~NAF_NETMAP_ON; 232 233 /* Stop intercepting packets on the RX path. */ 234 nm_os_catch_rx(gna, 0); 235 236 /* Release packet steering control. */ 237 nm_os_catch_tx(gna, 0); 238 } 239 240 netmap_krings_mode_commit(na, /*onoff=*/0); 241 242 for_each_rx_kring(r, kring, na) { 243 /* Free the mbufs still pending in the RX queues, 244 * that did not end up into the corresponding netmap 245 * RX rings. */ 246 mbq_safe_purge(&kring->rx_queue); 247 nm_os_mitigation_cleanup(&gna->mit[r]); 248 } 249 250 /* Decrement reference counter for the mbufs in the 251 * TX pools. These mbufs can be still pending in drivers, 252 * (e.g. this happens with virtio-net driver, which 253 * does lazy reclaiming of transmitted mbufs). */ 254 for_each_tx_kring(r, kring, na) { 255 /* We must remove the destructor on the TX event, 256 * because the destructor invokes netmap code, and 257 * the netmap module may disappear before the 258 * TX event is consumed. */ 259 mtx_lock_spin(&kring->tx_event_lock); 260 if (kring->tx_event) { 261 SET_MBUF_DESTRUCTOR(kring->tx_event, NULL); 262 } 263 kring->tx_event = NULL; 264 mtx_unlock_spin(&kring->tx_event_lock); 265 } 266 267 if (na->active_fds == 0) { 268 nm_os_free(gna->mit); 269 270 for_each_rx_kring(r, kring, na) { 271 mbq_safe_fini(&kring->rx_queue); 272 } 273 274 for_each_tx_kring(r, kring, na) { 275 callout_drain(&kring->tx_event_callout); 276 mtx_destroy(&kring->tx_event_lock); 277 if (kring->tx_pool == NULL) { 278 continue; 279 } 280 281 for (i=0; i<na->num_tx_desc; i++) { 282 if (kring->tx_pool[i]) { 283 m_freem(kring->tx_pool[i]); 284 } 285 } 286 nm_os_free(kring->tx_pool); 287 kring->tx_pool = NULL; 288 } 289 290 #ifdef RATE_GENERIC 291 if (--rate_ctx.refcount == 0) { 292 nm_prinf("del_timer()"); 293 del_timer(&rate_ctx.timer); 294 } 295 #endif 296 nm_prinf("Emulated adapter for %s deactivated", na->name); 297 } 298 299 return 0; 300 } 301 302 /* Enable/disable netmap mode for a generic network interface. */ 303 static int 304 generic_netmap_register(struct netmap_adapter *na, int enable) 305 { 306 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 307 struct netmap_kring *kring = NULL; 308 int error; 309 int i, r; 310 311 if (!na) { 312 return EINVAL; 313 } 314 315 if (!enable) { 316 /* This is actually an unregif. */ 317 return generic_netmap_unregister(na); 318 } 319 320 if (na->active_fds == 0) { 321 nm_prinf("Emulated adapter for %s activated", na->name); 322 /* Do all memory allocations when (na->active_fds == 0), to 323 * simplify error management. */ 324 325 /* Allocate memory for mitigation support on all the rx queues. */ 326 gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit)); 327 if (!gna->mit) { 328 nm_prerr("mitigation allocation failed"); 329 error = ENOMEM; 330 goto out; 331 } 332 333 for_each_rx_kring(r, kring, na) { 334 /* Init mitigation support. */ 335 nm_os_mitigation_init(&gna->mit[r], r, na); 336 337 /* Initialize the rx queue, as generic_rx_handler() can 338 * be called as soon as nm_os_catch_rx() returns. 339 */ 340 mbq_safe_init(&kring->rx_queue); 341 } 342 343 /* 344 * Prepare mbuf pools (parallel to the tx rings), for packet 345 * transmission. Don't preallocate the mbufs here, it's simpler 346 * to leave this task to txsync. 347 */ 348 for_each_tx_kring(r, kring, na) { 349 kring->tx_pool = NULL; 350 } 351 for_each_tx_kring(r, kring, na) { 352 kring->tx_pool = 353 nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *)); 354 if (!kring->tx_pool) { 355 nm_prerr("tx_pool allocation failed"); 356 error = ENOMEM; 357 goto free_tx_pools; 358 } 359 mtx_init(&kring->tx_event_lock, "tx_event_lock", 360 NULL, MTX_SPIN); 361 callout_init_mtx(&kring->tx_event_callout, 362 &kring->tx_event_lock, 363 CALLOUT_RETURNUNLOCKED); 364 } 365 } 366 367 netmap_krings_mode_commit(na, /*onoff=*/1); 368 369 for_each_tx_kring(r, kring, na) { 370 /* Initialize tx_pool and tx_event. */ 371 for (i=0; i<na->num_tx_desc; i++) { 372 kring->tx_pool[i] = NULL; 373 } 374 375 kring->tx_event = NULL; 376 } 377 378 if (na->active_fds == 0) { 379 /* Prepare to intercept incoming traffic. */ 380 error = nm_os_catch_rx(gna, 1); 381 if (error) { 382 nm_prerr("nm_os_catch_rx(1) failed (%d)", error); 383 goto free_tx_pools; 384 } 385 386 /* Let netmap control the packet steering. */ 387 error = nm_os_catch_tx(gna, 1); 388 if (error) { 389 nm_prerr("nm_os_catch_tx(1) failed (%d)", error); 390 goto catch_rx; 391 } 392 393 na->na_flags |= NAF_NETMAP_ON; 394 395 #ifdef RATE_GENERIC 396 if (rate_ctx.refcount == 0) { 397 nm_prinf("setup_timer()"); 398 memset(&rate_ctx, 0, sizeof(rate_ctx)); 399 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx); 400 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) { 401 nm_prerr("Error: mod_timer()"); 402 } 403 } 404 rate_ctx.refcount++; 405 #endif /* RATE */ 406 } 407 408 return 0; 409 410 /* Here (na->active_fds == 0) holds. */ 411 catch_rx: 412 nm_os_catch_rx(gna, 0); 413 free_tx_pools: 414 for_each_tx_kring(r, kring, na) { 415 mtx_destroy(&kring->tx_event_lock); 416 if (kring->tx_pool == NULL) { 417 continue; 418 } 419 nm_os_free(kring->tx_pool); 420 kring->tx_pool = NULL; 421 } 422 for_each_rx_kring(r, kring, na) { 423 mbq_safe_fini(&kring->rx_queue); 424 } 425 nm_os_free(gna->mit); 426 out: 427 428 return error; 429 } 430 431 /* 432 * Callback invoked when the device driver frees an mbuf used 433 * by netmap to transmit a packet. This usually happens when 434 * the NIC notifies the driver that transmission is completed. 435 */ 436 static void 437 generic_mbuf_dtor(struct mbuf *m) 438 { 439 struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m)); 440 struct netmap_kring *kring; 441 unsigned int r = MBUF_TXQ(m); 442 unsigned int r_orig = r; 443 444 if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) { 445 nm_prerr("Error: no netmap adapter on device %p", 446 GEN_TX_MBUF_IFP(m)); 447 return; 448 } 449 450 /* 451 * First, clear the event mbuf. 452 * In principle, the event 'm' should match the one stored 453 * on ring 'r'. However we check it explicitly to stay 454 * safe against lower layers (qdisc, driver, etc.) changing 455 * MBUF_TXQ(m) under our feet. If the match is not found 456 * on 'r', we try to see if it belongs to some other ring. 457 */ 458 for (;;) { 459 bool match = false; 460 461 kring = na->tx_rings[r]; 462 mtx_lock_spin(&kring->tx_event_lock); 463 if (kring->tx_event == m) { 464 kring->tx_event = NULL; 465 match = true; 466 } 467 mtx_unlock_spin(&kring->tx_event_lock); 468 469 if (match) { 470 if (r != r_orig) { 471 nm_prlim(1, "event %p migrated: ring %u --> %u", 472 m, r_orig, r); 473 } 474 break; 475 } 476 477 if (++r == na->num_tx_rings) r = 0; 478 479 if (r == r_orig) { 480 #ifndef __FreeBSD__ 481 /* 482 * On FreeBSD this situation can arise if the tx_event 483 * callout handler cleared a stuck packet. 484 */ 485 nm_prlim(1, "Cannot match event %p", m); 486 #endif 487 nm_generic_mbuf_dtor(m); 488 return; 489 } 490 } 491 492 /* Second, wake up clients. They will reclaim the event through 493 * txsync. */ 494 netmap_generic_irq(na, r, NULL); 495 nm_generic_mbuf_dtor(m); 496 } 497 498 /* Record completed transmissions and update hwtail. 499 * 500 * The oldest tx buffer not yet completed is at nr_hwtail + 1, 501 * nr_hwcur is the first unsent buffer. 502 */ 503 static u_int 504 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc) 505 { 506 u_int const lim = kring->nkr_num_slots - 1; 507 u_int nm_i = nm_next(kring->nr_hwtail, lim); 508 u_int hwcur = kring->nr_hwcur; 509 u_int n = 0; 510 struct mbuf **tx_pool = kring->tx_pool; 511 512 nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail); 513 514 while (nm_i != hwcur) { /* buffers not completed */ 515 struct mbuf *m = tx_pool[nm_i]; 516 517 if (txqdisc) { 518 if (m == NULL) { 519 /* Nothing to do, this is going 520 * to be replenished. */ 521 nm_prlim(3, "Is this happening?"); 522 523 } else if (MBUF_QUEUED(m)) { 524 break; /* Not dequeued yet. */ 525 526 } else if (MBUF_REFCNT(m) != 1) { 527 /* This mbuf has been dequeued but is still busy 528 * (refcount is 2). 529 * Leave it to the driver and replenish. */ 530 m_freem(m); 531 tx_pool[nm_i] = NULL; 532 } 533 534 } else { 535 if (unlikely(m == NULL)) { 536 int event_consumed; 537 538 /* This slot was used to place an event. */ 539 mtx_lock_spin(&kring->tx_event_lock); 540 event_consumed = (kring->tx_event == NULL); 541 mtx_unlock_spin(&kring->tx_event_lock); 542 if (!event_consumed) { 543 /* The event has not been consumed yet, 544 * still busy in the driver. */ 545 break; 546 } 547 /* The event has been consumed, we can go 548 * ahead. */ 549 } else if (MBUF_REFCNT(m) != 1) { 550 /* This mbuf is still busy: its refcnt is 2. */ 551 break; 552 } 553 } 554 555 n++; 556 nm_i = nm_next(nm_i, lim); 557 } 558 kring->nr_hwtail = nm_prev(nm_i, lim); 559 nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail); 560 561 return n; 562 } 563 564 /* Compute a slot index in the middle between inf and sup. */ 565 static inline u_int 566 ring_middle(u_int inf, u_int sup, u_int lim) 567 { 568 u_int n = lim + 1; 569 u_int e; 570 571 if (sup >= inf) { 572 e = (sup + inf) / 2; 573 } else { /* wrap around */ 574 e = (sup + n + inf) / 2; 575 if (e >= n) { 576 e -= n; 577 } 578 } 579 580 if (unlikely(e >= n)) { 581 nm_prerr("This cannot happen"); 582 e = 0; 583 } 584 585 return e; 586 } 587 588 #ifdef __FreeBSD__ 589 static void 590 generic_tx_callout(void *arg) 591 { 592 struct netmap_kring *kring = arg; 593 594 kring->tx_event = NULL; 595 mtx_unlock_spin(&kring->tx_event_lock); 596 netmap_generic_irq(kring->na, kring->ring_id, NULL); 597 } 598 #endif 599 600 static void 601 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur) 602 { 603 u_int lim = kring->nkr_num_slots - 1; 604 struct mbuf *m; 605 u_int e; 606 u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */ 607 608 if (ntc == hwcur) { 609 return; /* all buffers are free */ 610 } 611 612 /* 613 * We have pending packets in the driver between hwtail+1 614 * and hwcur, and we have to chose one of these slot to 615 * generate a notification. 616 * There is a race but this is only called within txsync which 617 * does a double check. 618 */ 619 #if 0 620 /* Choose a slot in the middle, so that we don't risk ending 621 * up in a situation where the client continuously wake up, 622 * fills one or a few TX slots and go to sleep again. */ 623 e = ring_middle(ntc, hwcur, lim); 624 #else 625 /* Choose the first pending slot, to be safe against driver 626 * reordering mbuf transmissions. */ 627 e = ntc; 628 #endif 629 630 m = kring->tx_pool[e]; 631 if (m == NULL) { 632 /* An event is already in place. */ 633 return; 634 } 635 636 mtx_lock_spin(&kring->tx_event_lock); 637 if (kring->tx_event) { 638 /* An event is already in place. */ 639 mtx_unlock_spin(&kring->tx_event_lock); 640 return; 641 } 642 643 SET_MBUF_DESTRUCTOR(m, generic_mbuf_dtor); 644 kring->tx_event = m; 645 #ifdef __FreeBSD__ 646 /* 647 * Handle the possibility that the transmitted buffer isn't reclaimed 648 * within a bounded period of time. This can arise when transmitting 649 * out of multiple ports via a lagg or bridge interface, since the 650 * member ports may legitimately only free transmitted buffers in 651 * batches. 652 * 653 * The callout handler clears the stuck packet from the ring, allowing 654 * transmission to proceed. In the common case we let 655 * generic_mbuf_dtor() unstick the ring, allowing mbufs to be 656 * reused most of the time. 657 */ 658 callout_reset_sbt_curcpu(&kring->tx_event_callout, SBT_1MS, 0, 659 generic_tx_callout, kring, 0); 660 #endif 661 mtx_unlock_spin(&kring->tx_event_lock); 662 663 kring->tx_pool[e] = NULL; 664 665 nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 ); 666 667 /* Decrement the refcount. This will free it if we lose the race 668 * with the driver. */ 669 m_freem(m); 670 } 671 672 /* 673 * generic_netmap_txsync() transforms netmap buffers into mbufs 674 * and passes them to the standard device driver 675 * (ndo_start_xmit() or ifp->if_transmit() ). 676 * On linux this is not done directly, but using dev_queue_xmit(), 677 * since it implements the TX flow control (and takes some locks). 678 */ 679 static int 680 generic_netmap_txsync(struct netmap_kring *kring, int flags) 681 { 682 struct netmap_adapter *na = kring->na; 683 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 684 if_t ifp = na->ifp; 685 struct netmap_ring *ring = kring->ring; 686 u_int nm_i; /* index into the netmap ring */ // j 687 u_int const lim = kring->nkr_num_slots - 1; 688 u_int const head = kring->rhead; 689 u_int ring_nr = kring->ring_id; 690 691 IFRATE(rate_ctx.new.txsync++); 692 693 rmb(); 694 695 /* 696 * First part: process new packets to send. 697 */ 698 nm_i = kring->nr_hwcur; 699 if (nm_i != head) { /* we have new packets to send */ 700 struct nm_os_gen_arg a; 701 u_int event = -1; 702 #ifdef __FreeBSD__ 703 struct epoch_tracker et; 704 705 NET_EPOCH_ENTER(et); 706 #endif 707 708 if (gna->txqdisc && nm_kr_txempty(kring)) { 709 /* In txqdisc mode, we ask for a delayed notification, 710 * but only when cur == hwtail, which means that the 711 * client is going to block. */ 712 event = ring_middle(nm_i, head, lim); 713 nm_prdis("Place txqdisc event (hwcur=%u,event=%u," 714 "head=%u,hwtail=%u)", nm_i, event, head, 715 kring->nr_hwtail); 716 } 717 718 a.ifp = ifp; 719 a.ring_nr = ring_nr; 720 a.head = a.tail = NULL; 721 722 while (nm_i != head) { 723 struct netmap_slot *slot = &ring->slot[nm_i]; 724 u_int len = slot->len; 725 void *addr = NMB(na, slot); 726 /* device-specific */ 727 struct mbuf *m; 728 int tx_ret; 729 730 NM_CHECK_ADDR_LEN(na, addr, len); 731 732 /* Tale a mbuf from the tx pool (replenishing the pool 733 * entry if necessary) and copy in the user packet. */ 734 m = kring->tx_pool[nm_i]; 735 if (unlikely(m == NULL)) { 736 kring->tx_pool[nm_i] = m = 737 nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na)); 738 if (m == NULL) { 739 nm_prlim(2, "Failed to replenish mbuf"); 740 /* Here we could schedule a timer which 741 * retries to replenish after a while, 742 * and notifies the client when it 743 * manages to replenish some slots. In 744 * any case we break early to avoid 745 * crashes. */ 746 break; 747 } 748 IFRATE(rate_ctx.new.txrepl++); 749 } else { 750 nm_os_mbuf_reinit(m); 751 } 752 753 a.m = m; 754 a.addr = addr; 755 a.len = len; 756 a.qevent = (nm_i == event); 757 /* When not in txqdisc mode, we should ask 758 * notifications when NS_REPORT is set, or roughly 759 * every half ring. To optimize this, we set a 760 * notification event when the client runs out of 761 * TX ring space, or when transmission fails. In 762 * the latter case we also break early. 763 */ 764 tx_ret = nm_os_generic_xmit_frame(&a); 765 if (unlikely(tx_ret)) { 766 if (!gna->txqdisc) { 767 /* 768 * No room for this mbuf in the device driver. 769 * Request a notification FOR A PREVIOUS MBUF, 770 * then call generic_netmap_tx_clean(kring) to do the 771 * double check and see if we can free more buffers. 772 * If there is space continue, else break; 773 * NOTE: the double check is necessary if the problem 774 * occurs in the txsync call after selrecord(). 775 * Also, we need some way to tell the caller that not 776 * all buffers were queued onto the device (this was 777 * not a problem with native netmap driver where space 778 * is preallocated). The bridge has a similar problem 779 * and we solve it there by dropping the excess packets. 780 */ 781 generic_set_tx_event(kring, nm_i); 782 if (generic_netmap_tx_clean(kring, gna->txqdisc)) { 783 /* space now available */ 784 continue; 785 } else { 786 break; 787 } 788 } 789 790 /* In txqdisc mode, the netmap-aware qdisc 791 * queue has the same length as the number of 792 * netmap slots (N). Since tail is advanced 793 * only when packets are dequeued, qdisc 794 * queue overrun cannot happen, so 795 * nm_os_generic_xmit_frame() did not fail 796 * because of that. 797 * However, packets can be dropped because 798 * carrier is off, or because our qdisc is 799 * being deactivated, or possibly for other 800 * reasons. In these cases, we just let the 801 * packet to be dropped. */ 802 IFRATE(rate_ctx.new.txdrop++); 803 } 804 805 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); 806 nm_i = nm_next(nm_i, lim); 807 IFRATE(rate_ctx.new.txpkt++); 808 } 809 if (a.head != NULL) { 810 a.addr = NULL; 811 nm_os_generic_xmit_frame(&a); 812 } 813 /* Update hwcur to the next slot to transmit. Here nm_i 814 * is not necessarily head, we could break early. */ 815 kring->nr_hwcur = nm_i; 816 817 #ifdef __FreeBSD__ 818 NET_EPOCH_EXIT(et); 819 #endif 820 } 821 822 if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) { 823 /* No more available slots? Set a notification event 824 * on a netmap slot that will be cleaned in the future. 825 * No doublecheck is performed, since txsync() will be 826 * called twice by netmap_poll(). 827 */ 828 generic_set_tx_event(kring, nm_i); 829 } 830 831 /* 832 * Second, reclaim completed buffers 833 */ 834 generic_netmap_tx_clean(kring, gna->txqdisc); 835 836 return 0; 837 } 838 839 840 /* 841 * This handler is registered (through nm_os_catch_rx()) 842 * within the attached network interface 843 * in the RX subsystem, so that every mbuf passed up by 844 * the driver can be stolen to the network stack. 845 * Stolen packets are put in a queue where the 846 * generic_netmap_rxsync() callback can extract them. 847 * Returns 1 if the packet was stolen, 0 otherwise. 848 */ 849 int 850 generic_rx_handler(if_t ifp, struct mbuf *m) 851 { 852 struct netmap_adapter *na = NA(ifp); 853 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 854 struct netmap_kring *kring; 855 u_int work_done; 856 u_int r = MBUF_RXQ(m); /* receive ring number */ 857 858 if (r >= na->num_rx_rings) { 859 r = r % na->num_rx_rings; 860 } 861 862 kring = na->rx_rings[r]; 863 864 if (kring->nr_mode == NKR_NETMAP_OFF) { 865 /* We must not intercept this mbuf. */ 866 return 0; 867 } 868 869 /* limit the size of the queue */ 870 if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) { 871 /* This may happen when GRO/LRO features are enabled for 872 * the NIC driver when the generic adapter does not 873 * support RX scatter-gather. */ 874 nm_prlim(2, "Warning: driver pushed up big packet " 875 "(size=%d)", (int)MBUF_LEN(m)); 876 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 877 m_freem(m); 878 } else if (unlikely(mbq_len(&kring->rx_queue) > na->num_rx_desc)) { 879 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 880 m_freem(m); 881 } else { 882 mbq_safe_enqueue(&kring->rx_queue, m); 883 } 884 885 if (netmap_generic_mit < 32768) { 886 /* no rx mitigation, pass notification up */ 887 netmap_generic_irq(na, r, &work_done); 888 } else { 889 /* same as send combining, filter notification if there is a 890 * pending timer, otherwise pass it up and start a timer. 891 */ 892 if (likely(nm_os_mitigation_active(&gna->mit[r]))) { 893 /* Record that there is some pending work. */ 894 gna->mit[r].mit_pending = 1; 895 } else { 896 netmap_generic_irq(na, r, &work_done); 897 nm_os_mitigation_start(&gna->mit[r]); 898 } 899 } 900 901 /* We have intercepted the mbuf. */ 902 return 1; 903 } 904 905 /* 906 * generic_netmap_rxsync() extracts mbufs from the queue filled by 907 * generic_netmap_rx_handler() and puts their content in the netmap 908 * receive ring. 909 * Access must be protected because the rx handler is asynchronous, 910 */ 911 static int 912 generic_netmap_rxsync(struct netmap_kring *kring, int flags) 913 { 914 struct netmap_ring *ring = kring->ring; 915 struct netmap_adapter *na = kring->na; 916 u_int nm_i; /* index into the netmap ring */ //j, 917 u_int n; 918 u_int const lim = kring->nkr_num_slots - 1; 919 u_int const head = kring->rhead; 920 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 921 922 /* Adapter-specific variables. */ 923 u_int nm_buf_len = NETMAP_BUF_SIZE(na); 924 struct mbq tmpq; 925 struct mbuf *m; 926 int avail; /* in bytes */ 927 int mlen; 928 int copy; 929 930 if (head > lim) 931 return netmap_ring_reinit(kring); 932 933 IFRATE(rate_ctx.new.rxsync++); 934 935 /* 936 * First part: skip past packets that userspace has released. 937 * This can possibly make room for the second part. 938 */ 939 nm_i = kring->nr_hwcur; 940 if (nm_i != head) { 941 /* Userspace has released some packets. */ 942 for (n = 0; nm_i != head; n++) { 943 struct netmap_slot *slot = &ring->slot[nm_i]; 944 945 slot->flags &= ~NS_BUF_CHANGED; 946 nm_i = nm_next(nm_i, lim); 947 } 948 kring->nr_hwcur = head; 949 } 950 951 /* 952 * Second part: import newly received packets. 953 */ 954 if (!netmap_no_pendintr && !force_update) { 955 return 0; 956 } 957 958 nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */ 959 960 /* Compute the available space (in bytes) in this netmap ring. 961 * The first slot that is not considered in is the one before 962 * nr_hwcur. */ 963 964 avail = nm_prev(kring->nr_hwcur, lim) - nm_i; 965 if (avail < 0) 966 avail += lim + 1; 967 avail *= nm_buf_len; 968 969 /* First pass: While holding the lock on the RX mbuf queue, 970 * extract as many mbufs as they fit the available space, 971 * and put them in a temporary queue. 972 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to 973 * to update avail, we do the update in a while loop that we 974 * also use to set the RX slots, but without performing the copy. */ 975 mbq_init(&tmpq); 976 mbq_lock(&kring->rx_queue); 977 for (n = 0;; n++) { 978 m = mbq_peek(&kring->rx_queue); 979 if (!m) { 980 /* No more packets from the driver. */ 981 break; 982 } 983 984 mlen = MBUF_LEN(m); 985 if (mlen > avail) { 986 /* No more space in the ring. */ 987 break; 988 } 989 990 mbq_dequeue(&kring->rx_queue); 991 992 while (mlen) { 993 copy = nm_buf_len; 994 if (mlen < copy) { 995 copy = mlen; 996 } 997 mlen -= copy; 998 avail -= nm_buf_len; 999 1000 ring->slot[nm_i].len = copy; 1001 ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0); 1002 nm_i = nm_next(nm_i, lim); 1003 } 1004 1005 mbq_enqueue(&tmpq, m); 1006 } 1007 mbq_unlock(&kring->rx_queue); 1008 1009 /* Second pass: Drain the temporary queue, going over the used RX slots, 1010 * and perform the copy out of the RX queue lock. */ 1011 nm_i = kring->nr_hwtail; 1012 1013 for (;;) { 1014 void *nmaddr; 1015 int ofs = 0; 1016 int morefrag; 1017 1018 m = mbq_dequeue(&tmpq); 1019 if (!m) { 1020 break; 1021 } 1022 1023 do { 1024 nmaddr = NMB(na, &ring->slot[nm_i]); 1025 /* We only check the address here on generic rx rings. */ 1026 if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */ 1027 m_freem(m); 1028 mbq_purge(&tmpq); 1029 mbq_fini(&tmpq); 1030 return netmap_ring_reinit(kring); 1031 } 1032 1033 copy = ring->slot[nm_i].len; 1034 m_copydata(m, ofs, copy, nmaddr); 1035 ofs += copy; 1036 morefrag = ring->slot[nm_i].flags & NS_MOREFRAG; 1037 nm_i = nm_next(nm_i, lim); 1038 } while (morefrag); 1039 1040 m_freem(m); 1041 } 1042 1043 mbq_fini(&tmpq); 1044 1045 if (n) { 1046 kring->nr_hwtail = nm_i; 1047 IFRATE(rate_ctx.new.rxpkt += n); 1048 } 1049 kring->nr_kflags &= ~NKR_PENDINTR; 1050 1051 return 0; 1052 } 1053 1054 static void 1055 generic_netmap_dtor(struct netmap_adapter *na) 1056 { 1057 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na; 1058 if_t ifp = netmap_generic_getifp(gna); 1059 struct netmap_adapter *prev_na = gna->prev; 1060 1061 if (prev_na != NULL) { 1062 netmap_adapter_put(prev_na); 1063 if (nm_iszombie(na)) { 1064 /* 1065 * The driver has been removed without releasing 1066 * the reference so we need to do it here. 1067 */ 1068 netmap_adapter_put(prev_na); 1069 } 1070 nm_prinf("Native netmap adapter for %s restored", prev_na->name); 1071 } 1072 NM_RESTORE_NA(ifp, prev_na); 1073 na->ifp = NULL; 1074 nm_prinf("Emulated netmap adapter for %s destroyed", na->name); 1075 } 1076 1077 int 1078 na_is_generic(struct netmap_adapter *na) 1079 { 1080 return na->nm_register == generic_netmap_register; 1081 } 1082 1083 /* 1084 * generic_netmap_attach() makes it possible to use netmap on 1085 * a device without native netmap support. 1086 * This is less performant than native support but potentially 1087 * faster than raw sockets or similar schemes. 1088 * 1089 * In this "emulated" mode, netmap rings do not necessarily 1090 * have the same size as those in the NIC. We use a default 1091 * value and possibly override it if the OS has ways to fetch the 1092 * actual configuration. 1093 */ 1094 int 1095 generic_netmap_attach(if_t ifp) 1096 { 1097 struct netmap_adapter *na; 1098 struct netmap_generic_adapter *gna; 1099 int retval; 1100 u_int num_tx_desc, num_rx_desc; 1101 1102 #ifdef __FreeBSD__ 1103 if (if_gettype(ifp) == IFT_LOOP) { 1104 nm_prerr("if_loop is not supported by %s", __func__); 1105 return EINVAL; 1106 } 1107 #endif 1108 1109 if (NM_NA_CLASH(ifp)) { 1110 /* If NA(ifp) is not null but there is no valid netmap 1111 * adapter it means that someone else is using the same 1112 * pointer (e.g. ax25_ptr on linux). This happens for 1113 * instance when also PF_RING is in use. */ 1114 nm_prerr("Error: netmap adapter hook is busy"); 1115 return EBUSY; 1116 } 1117 1118 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */ 1119 1120 nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */ 1121 if (num_tx_desc == 0 || num_rx_desc == 0) { 1122 nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc); 1123 return EINVAL; 1124 } 1125 1126 gna = nm_os_malloc(sizeof(*gna)); 1127 if (gna == NULL) { 1128 nm_prerr("no memory on attach, give up"); 1129 return ENOMEM; 1130 } 1131 na = (struct netmap_adapter *)gna; 1132 strlcpy(na->name, if_name(ifp), sizeof(na->name)); 1133 na->ifp = ifp; 1134 na->num_tx_desc = num_tx_desc; 1135 na->num_rx_desc = num_rx_desc; 1136 na->rx_buf_maxsize = 32768; 1137 na->nm_register = &generic_netmap_register; 1138 na->nm_txsync = &generic_netmap_txsync; 1139 na->nm_rxsync = &generic_netmap_rxsync; 1140 na->nm_dtor = &generic_netmap_dtor; 1141 /* when using generic, NAF_NETMAP_ON is set so we force 1142 * NAF_SKIP_INTR to use the regular interrupt handler 1143 */ 1144 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS; 1145 1146 nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)", 1147 ifp->num_tx_queues, ifp->real_num_tx_queues, 1148 ifp->tx_queue_len); 1149 nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)", 1150 ifp->num_rx_queues, ifp->real_num_rx_queues); 1151 1152 nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings); 1153 1154 retval = netmap_attach_common(na); 1155 if (retval) { 1156 nm_os_free(gna); 1157 return retval; 1158 } 1159 1160 if (NM_NA_VALID(ifp)) { 1161 gna->prev = NA(ifp); /* save old na */ 1162 netmap_adapter_get(gna->prev); 1163 } 1164 NM_ATTACH_NA(ifp, na); 1165 1166 nm_os_generic_set_features(gna); 1167 1168 nm_prinf("Emulated adapter for %s created (prev was %s)", na->name, 1169 gna->prev ? gna->prev->name : "NULL"); 1170 1171 return retval; 1172 } 1173