1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2013-2016 Vincenzo Maffione 5 * Copyright (C) 2013-2016 Luigi Rizzo 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * This module implements netmap support on top of standard, 32 * unmodified device drivers. 33 * 34 * A NIOCREGIF request is handled here if the device does not 35 * have native support. TX and RX rings are emulated as follows: 36 * 37 * NIOCREGIF 38 * We preallocate a block of TX mbufs (roughly as many as 39 * tx descriptors; the number is not critical) to speed up 40 * operation during transmissions. The refcount on most of 41 * these buffers is artificially bumped up so we can recycle 42 * them more easily. Also, the destructor is intercepted 43 * so we use it as an interrupt notification to wake up 44 * processes blocked on a poll(). 45 * 46 * For each receive ring we allocate one "struct mbq" 47 * (an mbuf tailq plus a spinlock). We intercept packets 48 * (through if_input) 49 * on the receive path and put them in the mbq from which 50 * netmap receive routines can grab them. 51 * 52 * TX: 53 * in the generic_txsync() routine, netmap buffers are copied 54 * (or linked, in a future) to the preallocated mbufs 55 * and pushed to the transmit queue. Some of these mbufs 56 * (those with NS_REPORT, or otherwise every half ring) 57 * have the refcount=1, others have refcount=2. 58 * When the destructor is invoked, we take that as 59 * a notification that all mbufs up to that one in 60 * the specific ring have been completed, and generate 61 * the equivalent of a transmit interrupt. 62 * 63 * RX: 64 * 65 */ 66 67 #ifdef __FreeBSD__ 68 69 #include <sys/cdefs.h> /* prerequisite */ 70 #include <sys/types.h> 71 #include <sys/errno.h> 72 #include <sys/malloc.h> 73 #include <sys/lock.h> /* PROT_EXEC */ 74 #include <sys/rwlock.h> 75 #include <sys/socket.h> /* sockaddrs */ 76 #include <sys/selinfo.h> 77 #include <net/if.h> 78 #include <net/if_types.h> 79 #include <net/if_var.h> 80 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */ 81 82 #include <net/netmap.h> 83 #include <dev/netmap/netmap_kern.h> 84 #include <dev/netmap/netmap_mem2.h> 85 86 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid) 87 #define smp_mb() 88 89 #elif defined _WIN32 90 91 #include "win_glue.h" 92 93 #define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid) 94 #define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid) 95 #define smp_mb() //XXX: to be correctly defined 96 97 #else /* linux */ 98 99 #include "bsd_glue.h" 100 101 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */ 102 #include <linux/hrtimer.h> 103 104 static inline struct mbuf * 105 nm_os_get_mbuf(struct ifnet *ifp, int len) 106 { 107 return alloc_skb(LL_RESERVED_SPACE(ifp) + len + 108 ifp->needed_tailroom, GFP_ATOMIC); 109 } 110 111 #endif /* linux */ 112 113 114 /* Common headers. */ 115 #include <net/netmap.h> 116 #include <dev/netmap/netmap_kern.h> 117 #include <dev/netmap/netmap_mem2.h> 118 119 120 #define for_each_kring_n(_i, _k, _karr, _n) \ 121 for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)]) 122 123 #define for_each_tx_kring(_i, _k, _na) \ 124 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings) 125 #define for_each_tx_kring_h(_i, _k, _na) \ 126 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1) 127 128 #define for_each_rx_kring(_i, _k, _na) \ 129 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings) 130 #define for_each_rx_kring_h(_i, _k, _na) \ 131 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1) 132 133 134 /* ======================== PERFORMANCE STATISTICS =========================== */ 135 136 #ifdef RATE_GENERIC 137 #define IFRATE(x) x 138 struct rate_stats { 139 unsigned long txpkt; 140 unsigned long txsync; 141 unsigned long txirq; 142 unsigned long txrepl; 143 unsigned long txdrop; 144 unsigned long rxpkt; 145 unsigned long rxirq; 146 unsigned long rxsync; 147 }; 148 149 struct rate_context { 150 unsigned refcount; 151 struct timer_list timer; 152 struct rate_stats new; 153 struct rate_stats old; 154 }; 155 156 #define RATE_PRINTK(_NAME_) \ 157 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD); 158 #define RATE_PERIOD 2 159 static void rate_callback(unsigned long arg) 160 { 161 struct rate_context * ctx = (struct rate_context *)arg; 162 struct rate_stats cur = ctx->new; 163 int r; 164 165 RATE_PRINTK(txpkt); 166 RATE_PRINTK(txsync); 167 RATE_PRINTK(txirq); 168 RATE_PRINTK(txrepl); 169 RATE_PRINTK(txdrop); 170 RATE_PRINTK(rxpkt); 171 RATE_PRINTK(rxsync); 172 RATE_PRINTK(rxirq); 173 printk("\n"); 174 175 ctx->old = cur; 176 r = mod_timer(&ctx->timer, jiffies + 177 msecs_to_jiffies(RATE_PERIOD * 1000)); 178 if (unlikely(r)) 179 nm_prerr("mod_timer() failed"); 180 } 181 182 static struct rate_context rate_ctx; 183 184 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi) 185 { 186 if (txp) rate_ctx.new.txpkt++; 187 if (txs) rate_ctx.new.txsync++; 188 if (txi) rate_ctx.new.txirq++; 189 if (rxp) rate_ctx.new.rxpkt++; 190 if (rxs) rate_ctx.new.rxsync++; 191 if (rxi) rate_ctx.new.rxirq++; 192 } 193 194 #else /* !RATE */ 195 #define IFRATE(x) 196 #endif /* !RATE */ 197 198 199 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */ 200 201 /* 202 * Wrapper used by the generic adapter layer to notify 203 * the poller threads. Differently from netmap_rx_irq(), we check 204 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq. 205 */ 206 void 207 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 208 { 209 if (unlikely(!nm_netmap_on(na))) 210 return; 211 212 netmap_common_irq(na, q, work_done); 213 #ifdef RATE_GENERIC 214 if (work_done) 215 rate_ctx.new.rxirq++; 216 else 217 rate_ctx.new.txirq++; 218 #endif /* RATE_GENERIC */ 219 } 220 221 static int 222 generic_netmap_unregister(struct netmap_adapter *na) 223 { 224 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 225 struct netmap_kring *kring = NULL; 226 int i, r; 227 228 if (na->active_fds == 0) { 229 na->na_flags &= ~NAF_NETMAP_ON; 230 231 /* Stop intercepting packets on the RX path. */ 232 nm_os_catch_rx(gna, 0); 233 234 /* Release packet steering control. */ 235 nm_os_catch_tx(gna, 0); 236 } 237 238 netmap_krings_mode_commit(na, /*onoff=*/0); 239 240 for_each_rx_kring(r, kring, na) { 241 /* Free the mbufs still pending in the RX queues, 242 * that did not end up into the corresponding netmap 243 * RX rings. */ 244 mbq_safe_purge(&kring->rx_queue); 245 nm_os_mitigation_cleanup(&gna->mit[r]); 246 } 247 248 /* Decrement reference counter for the mbufs in the 249 * TX pools. These mbufs can be still pending in drivers, 250 * (e.g. this happens with virtio-net driver, which 251 * does lazy reclaiming of transmitted mbufs). */ 252 for_each_tx_kring(r, kring, na) { 253 /* We must remove the destructor on the TX event, 254 * because the destructor invokes netmap code, and 255 * the netmap module may disappear before the 256 * TX event is consumed. */ 257 mtx_lock_spin(&kring->tx_event_lock); 258 if (kring->tx_event) { 259 SET_MBUF_DESTRUCTOR(kring->tx_event, NULL); 260 } 261 kring->tx_event = NULL; 262 mtx_unlock_spin(&kring->tx_event_lock); 263 } 264 265 if (na->active_fds == 0) { 266 nm_os_free(gna->mit); 267 268 for_each_rx_kring(r, kring, na) { 269 mbq_safe_fini(&kring->rx_queue); 270 } 271 272 for_each_tx_kring(r, kring, na) { 273 callout_drain(&kring->tx_event_callout); 274 mtx_destroy(&kring->tx_event_lock); 275 if (kring->tx_pool == NULL) { 276 continue; 277 } 278 279 for (i=0; i<na->num_tx_desc; i++) { 280 if (kring->tx_pool[i]) { 281 m_freem(kring->tx_pool[i]); 282 } 283 } 284 nm_os_free(kring->tx_pool); 285 kring->tx_pool = NULL; 286 } 287 288 #ifdef RATE_GENERIC 289 if (--rate_ctx.refcount == 0) { 290 nm_prinf("del_timer()"); 291 del_timer(&rate_ctx.timer); 292 } 293 #endif 294 nm_prinf("Emulated adapter for %s deactivated", na->name); 295 } 296 297 return 0; 298 } 299 300 /* Enable/disable netmap mode for a generic network interface. */ 301 static int 302 generic_netmap_register(struct netmap_adapter *na, int enable) 303 { 304 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 305 struct netmap_kring *kring = NULL; 306 int error; 307 int i, r; 308 309 if (!na) { 310 return EINVAL; 311 } 312 313 if (!enable) { 314 /* This is actually an unregif. */ 315 return generic_netmap_unregister(na); 316 } 317 318 if (na->active_fds == 0) { 319 nm_prinf("Emulated adapter for %s activated", na->name); 320 /* Do all memory allocations when (na->active_fds == 0), to 321 * simplify error management. */ 322 323 /* Allocate memory for mitigation support on all the rx queues. */ 324 gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit)); 325 if (!gna->mit) { 326 nm_prerr("mitigation allocation failed"); 327 error = ENOMEM; 328 goto out; 329 } 330 331 for_each_rx_kring(r, kring, na) { 332 /* Init mitigation support. */ 333 nm_os_mitigation_init(&gna->mit[r], r, na); 334 335 /* Initialize the rx queue, as generic_rx_handler() can 336 * be called as soon as nm_os_catch_rx() returns. 337 */ 338 mbq_safe_init(&kring->rx_queue); 339 } 340 341 /* 342 * Prepare mbuf pools (parallel to the tx rings), for packet 343 * transmission. Don't preallocate the mbufs here, it's simpler 344 * to leave this task to txsync. 345 */ 346 for_each_tx_kring(r, kring, na) { 347 kring->tx_pool = NULL; 348 } 349 for_each_tx_kring(r, kring, na) { 350 kring->tx_pool = 351 nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *)); 352 if (!kring->tx_pool) { 353 nm_prerr("tx_pool allocation failed"); 354 error = ENOMEM; 355 goto free_tx_pools; 356 } 357 mtx_init(&kring->tx_event_lock, "tx_event_lock", 358 NULL, MTX_SPIN); 359 callout_init_mtx(&kring->tx_event_callout, 360 &kring->tx_event_lock, 361 CALLOUT_RETURNUNLOCKED); 362 } 363 } 364 365 netmap_krings_mode_commit(na, /*onoff=*/1); 366 367 for_each_tx_kring(r, kring, na) { 368 /* Initialize tx_pool and tx_event. */ 369 for (i=0; i<na->num_tx_desc; i++) { 370 kring->tx_pool[i] = NULL; 371 } 372 373 kring->tx_event = NULL; 374 } 375 376 if (na->active_fds == 0) { 377 /* Prepare to intercept incoming traffic. */ 378 error = nm_os_catch_rx(gna, 1); 379 if (error) { 380 nm_prerr("nm_os_catch_rx(1) failed (%d)", error); 381 goto free_tx_pools; 382 } 383 384 /* Let netmap control the packet steering. */ 385 error = nm_os_catch_tx(gna, 1); 386 if (error) { 387 nm_prerr("nm_os_catch_tx(1) failed (%d)", error); 388 goto catch_rx; 389 } 390 391 na->na_flags |= NAF_NETMAP_ON; 392 393 #ifdef RATE_GENERIC 394 if (rate_ctx.refcount == 0) { 395 nm_prinf("setup_timer()"); 396 memset(&rate_ctx, 0, sizeof(rate_ctx)); 397 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx); 398 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) { 399 nm_prerr("Error: mod_timer()"); 400 } 401 } 402 rate_ctx.refcount++; 403 #endif /* RATE */ 404 } 405 406 return 0; 407 408 /* Here (na->active_fds == 0) holds. */ 409 catch_rx: 410 nm_os_catch_rx(gna, 0); 411 free_tx_pools: 412 for_each_tx_kring(r, kring, na) { 413 mtx_destroy(&kring->tx_event_lock); 414 if (kring->tx_pool == NULL) { 415 continue; 416 } 417 nm_os_free(kring->tx_pool); 418 kring->tx_pool = NULL; 419 } 420 for_each_rx_kring(r, kring, na) { 421 mbq_safe_fini(&kring->rx_queue); 422 } 423 nm_os_free(gna->mit); 424 out: 425 426 return error; 427 } 428 429 /* 430 * Callback invoked when the device driver frees an mbuf used 431 * by netmap to transmit a packet. This usually happens when 432 * the NIC notifies the driver that transmission is completed. 433 */ 434 static void 435 generic_mbuf_dtor(struct mbuf *m) 436 { 437 struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m)); 438 struct netmap_kring *kring; 439 unsigned int r = MBUF_TXQ(m); 440 unsigned int r_orig = r; 441 442 if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) { 443 nm_prerr("Error: no netmap adapter on device %p", 444 GEN_TX_MBUF_IFP(m)); 445 return; 446 } 447 448 /* 449 * First, clear the event mbuf. 450 * In principle, the event 'm' should match the one stored 451 * on ring 'r'. However we check it explicitly to stay 452 * safe against lower layers (qdisc, driver, etc.) changing 453 * MBUF_TXQ(m) under our feet. If the match is not found 454 * on 'r', we try to see if it belongs to some other ring. 455 */ 456 for (;;) { 457 bool match = false; 458 459 kring = na->tx_rings[r]; 460 mtx_lock_spin(&kring->tx_event_lock); 461 if (kring->tx_event == m) { 462 kring->tx_event = NULL; 463 match = true; 464 } 465 mtx_unlock_spin(&kring->tx_event_lock); 466 467 if (match) { 468 if (r != r_orig) { 469 nm_prlim(1, "event %p migrated: ring %u --> %u", 470 m, r_orig, r); 471 } 472 break; 473 } 474 475 if (++r == na->num_tx_rings) r = 0; 476 477 if (r == r_orig) { 478 #ifndef __FreeBSD__ 479 /* 480 * On FreeBSD this situation can arise if the tx_event 481 * callout handler cleared a stuck packet. 482 */ 483 nm_prlim(1, "Cannot match event %p", m); 484 #endif 485 nm_generic_mbuf_dtor(m); 486 return; 487 } 488 } 489 490 /* Second, wake up clients. They will reclaim the event through 491 * txsync. */ 492 netmap_generic_irq(na, r, NULL); 493 nm_generic_mbuf_dtor(m); 494 } 495 496 /* Record completed transmissions and update hwtail. 497 * 498 * The oldest tx buffer not yet completed is at nr_hwtail + 1, 499 * nr_hwcur is the first unsent buffer. 500 */ 501 static u_int 502 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc) 503 { 504 u_int const lim = kring->nkr_num_slots - 1; 505 u_int nm_i = nm_next(kring->nr_hwtail, lim); 506 u_int hwcur = kring->nr_hwcur; 507 u_int n = 0; 508 struct mbuf **tx_pool = kring->tx_pool; 509 510 nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail); 511 512 while (nm_i != hwcur) { /* buffers not completed */ 513 struct mbuf *m = tx_pool[nm_i]; 514 515 if (txqdisc) { 516 if (m == NULL) { 517 /* Nothing to do, this is going 518 * to be replenished. */ 519 nm_prlim(3, "Is this happening?"); 520 521 } else if (MBUF_QUEUED(m)) { 522 break; /* Not dequeued yet. */ 523 524 } else if (MBUF_REFCNT(m) != 1) { 525 /* This mbuf has been dequeued but is still busy 526 * (refcount is 2). 527 * Leave it to the driver and replenish. */ 528 m_freem(m); 529 tx_pool[nm_i] = NULL; 530 } 531 532 } else { 533 if (unlikely(m == NULL)) { 534 int event_consumed; 535 536 /* This slot was used to place an event. */ 537 mtx_lock_spin(&kring->tx_event_lock); 538 event_consumed = (kring->tx_event == NULL); 539 mtx_unlock_spin(&kring->tx_event_lock); 540 if (!event_consumed) { 541 /* The event has not been consumed yet, 542 * still busy in the driver. */ 543 break; 544 } 545 /* The event has been consumed, we can go 546 * ahead. */ 547 } else if (MBUF_REFCNT(m) != 1) { 548 /* This mbuf is still busy: its refcnt is 2. */ 549 break; 550 } 551 } 552 553 n++; 554 nm_i = nm_next(nm_i, lim); 555 } 556 kring->nr_hwtail = nm_prev(nm_i, lim); 557 nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail); 558 559 return n; 560 } 561 562 /* Compute a slot index in the middle between inf and sup. */ 563 static inline u_int 564 ring_middle(u_int inf, u_int sup, u_int lim) 565 { 566 u_int n = lim + 1; 567 u_int e; 568 569 if (sup >= inf) { 570 e = (sup + inf) / 2; 571 } else { /* wrap around */ 572 e = (sup + n + inf) / 2; 573 if (e >= n) { 574 e -= n; 575 } 576 } 577 578 if (unlikely(e >= n)) { 579 nm_prerr("This cannot happen"); 580 e = 0; 581 } 582 583 return e; 584 } 585 586 #ifdef __FreeBSD__ 587 static void 588 generic_tx_callout(void *arg) 589 { 590 struct netmap_kring *kring = arg; 591 592 kring->tx_event = NULL; 593 mtx_unlock_spin(&kring->tx_event_lock); 594 netmap_generic_irq(kring->na, kring->ring_id, NULL); 595 } 596 #endif 597 598 static void 599 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur) 600 { 601 u_int lim = kring->nkr_num_slots - 1; 602 struct mbuf *m; 603 u_int e; 604 u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */ 605 606 if (ntc == hwcur) { 607 return; /* all buffers are free */ 608 } 609 610 /* 611 * We have pending packets in the driver between hwtail+1 612 * and hwcur, and we have to chose one of these slot to 613 * generate a notification. 614 * There is a race but this is only called within txsync which 615 * does a double check. 616 */ 617 #if 0 618 /* Choose a slot in the middle, so that we don't risk ending 619 * up in a situation where the client continuously wake up, 620 * fills one or a few TX slots and go to sleep again. */ 621 e = ring_middle(ntc, hwcur, lim); 622 #else 623 /* Choose the first pending slot, to be safe against driver 624 * reordering mbuf transmissions. */ 625 e = ntc; 626 #endif 627 628 m = kring->tx_pool[e]; 629 if (m == NULL) { 630 /* An event is already in place. */ 631 return; 632 } 633 634 mtx_lock_spin(&kring->tx_event_lock); 635 if (kring->tx_event) { 636 /* An event is already in place. */ 637 mtx_unlock_spin(&kring->tx_event_lock); 638 return; 639 } 640 641 SET_MBUF_DESTRUCTOR(m, generic_mbuf_dtor); 642 kring->tx_event = m; 643 #ifdef __FreeBSD__ 644 /* 645 * Handle the possibility that the transmitted buffer isn't reclaimed 646 * within a bounded period of time. This can arise when transmitting 647 * out of multiple ports via a lagg or bridge interface, since the 648 * member ports may legitimately only free transmitted buffers in 649 * batches. 650 * 651 * The callout handler clears the stuck packet from the ring, allowing 652 * transmission to proceed. In the common case we let 653 * generic_mbuf_dtor() unstick the ring, allowing mbufs to be 654 * reused most of the time. 655 */ 656 callout_reset_sbt_curcpu(&kring->tx_event_callout, SBT_1MS, 0, 657 generic_tx_callout, kring, 0); 658 #endif 659 mtx_unlock_spin(&kring->tx_event_lock); 660 661 kring->tx_pool[e] = NULL; 662 663 nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 ); 664 665 /* Decrement the refcount. This will free it if we lose the race 666 * with the driver. */ 667 m_freem(m); 668 } 669 670 /* 671 * generic_netmap_txsync() transforms netmap buffers into mbufs 672 * and passes them to the standard device driver 673 * (ndo_start_xmit() or ifp->if_transmit() ). 674 * On linux this is not done directly, but using dev_queue_xmit(), 675 * since it implements the TX flow control (and takes some locks). 676 */ 677 static int 678 generic_netmap_txsync(struct netmap_kring *kring, int flags) 679 { 680 struct netmap_adapter *na = kring->na; 681 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 682 if_t ifp = na->ifp; 683 struct netmap_ring *ring = kring->ring; 684 u_int nm_i; /* index into the netmap ring */ // j 685 u_int const lim = kring->nkr_num_slots - 1; 686 u_int const head = kring->rhead; 687 u_int ring_nr = kring->ring_id; 688 689 IFRATE(rate_ctx.new.txsync++); 690 691 rmb(); 692 693 /* 694 * First part: process new packets to send. 695 */ 696 nm_i = kring->nr_hwcur; 697 if (nm_i != head) { /* we have new packets to send */ 698 struct nm_os_gen_arg a; 699 u_int event = -1; 700 #ifdef __FreeBSD__ 701 struct epoch_tracker et; 702 703 NET_EPOCH_ENTER(et); 704 #endif 705 706 if (gna->txqdisc && nm_kr_txempty(kring)) { 707 /* In txqdisc mode, we ask for a delayed notification, 708 * but only when cur == hwtail, which means that the 709 * client is going to block. */ 710 event = ring_middle(nm_i, head, lim); 711 nm_prdis("Place txqdisc event (hwcur=%u,event=%u," 712 "head=%u,hwtail=%u)", nm_i, event, head, 713 kring->nr_hwtail); 714 } 715 716 a.ifp = ifp; 717 a.ring_nr = ring_nr; 718 a.head = a.tail = NULL; 719 720 while (nm_i != head) { 721 struct netmap_slot *slot = &ring->slot[nm_i]; 722 u_int len = slot->len; 723 void *addr = NMB(na, slot); 724 /* device-specific */ 725 struct mbuf *m; 726 int tx_ret; 727 728 NM_CHECK_ADDR_LEN(na, addr, len); 729 730 /* Tale a mbuf from the tx pool (replenishing the pool 731 * entry if necessary) and copy in the user packet. */ 732 m = kring->tx_pool[nm_i]; 733 if (unlikely(m == NULL)) { 734 kring->tx_pool[nm_i] = m = 735 nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na)); 736 if (m == NULL) { 737 nm_prlim(2, "Failed to replenish mbuf"); 738 /* Here we could schedule a timer which 739 * retries to replenish after a while, 740 * and notifies the client when it 741 * manages to replenish some slots. In 742 * any case we break early to avoid 743 * crashes. */ 744 break; 745 } 746 IFRATE(rate_ctx.new.txrepl++); 747 } else { 748 nm_os_mbuf_reinit(m); 749 } 750 751 a.m = m; 752 a.addr = addr; 753 a.len = len; 754 a.qevent = (nm_i == event); 755 /* When not in txqdisc mode, we should ask 756 * notifications when NS_REPORT is set, or roughly 757 * every half ring. To optimize this, we set a 758 * notification event when the client runs out of 759 * TX ring space, or when transmission fails. In 760 * the latter case we also break early. 761 */ 762 tx_ret = nm_os_generic_xmit_frame(&a); 763 if (unlikely(tx_ret)) { 764 if (!gna->txqdisc) { 765 /* 766 * No room for this mbuf in the device driver. 767 * Request a notification FOR A PREVIOUS MBUF, 768 * then call generic_netmap_tx_clean(kring) to do the 769 * double check and see if we can free more buffers. 770 * If there is space continue, else break; 771 * NOTE: the double check is necessary if the problem 772 * occurs in the txsync call after selrecord(). 773 * Also, we need some way to tell the caller that not 774 * all buffers were queued onto the device (this was 775 * not a problem with native netmap driver where space 776 * is preallocated). The bridge has a similar problem 777 * and we solve it there by dropping the excess packets. 778 */ 779 generic_set_tx_event(kring, nm_i); 780 if (generic_netmap_tx_clean(kring, gna->txqdisc)) { 781 /* space now available */ 782 continue; 783 } else { 784 break; 785 } 786 } 787 788 /* In txqdisc mode, the netmap-aware qdisc 789 * queue has the same length as the number of 790 * netmap slots (N). Since tail is advanced 791 * only when packets are dequeued, qdisc 792 * queue overrun cannot happen, so 793 * nm_os_generic_xmit_frame() did not fail 794 * because of that. 795 * However, packets can be dropped because 796 * carrier is off, or because our qdisc is 797 * being deactivated, or possibly for other 798 * reasons. In these cases, we just let the 799 * packet to be dropped. */ 800 IFRATE(rate_ctx.new.txdrop++); 801 } 802 803 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); 804 nm_i = nm_next(nm_i, lim); 805 IFRATE(rate_ctx.new.txpkt++); 806 } 807 if (a.head != NULL) { 808 a.addr = NULL; 809 nm_os_generic_xmit_frame(&a); 810 } 811 /* Update hwcur to the next slot to transmit. Here nm_i 812 * is not necessarily head, we could break early. */ 813 kring->nr_hwcur = nm_i; 814 815 #ifdef __FreeBSD__ 816 NET_EPOCH_EXIT(et); 817 #endif 818 } 819 820 if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) { 821 /* No more available slots? Set a notification event 822 * on a netmap slot that will be cleaned in the future. 823 * No doublecheck is performed, since txsync() will be 824 * called twice by netmap_poll(). 825 */ 826 generic_set_tx_event(kring, nm_i); 827 } 828 829 /* 830 * Second, reclaim completed buffers 831 */ 832 generic_netmap_tx_clean(kring, gna->txqdisc); 833 834 return 0; 835 } 836 837 838 /* 839 * This handler is registered (through nm_os_catch_rx()) 840 * within the attached network interface 841 * in the RX subsystem, so that every mbuf passed up by 842 * the driver can be stolen to the network stack. 843 * Stolen packets are put in a queue where the 844 * generic_netmap_rxsync() callback can extract them. 845 * Returns 1 if the packet was stolen, 0 otherwise. 846 */ 847 int 848 generic_rx_handler(if_t ifp, struct mbuf *m) 849 { 850 struct netmap_adapter *na = NA(ifp); 851 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 852 struct netmap_kring *kring; 853 u_int work_done; 854 u_int r = MBUF_RXQ(m); /* receive ring number */ 855 856 if (r >= na->num_rx_rings) { 857 r = r % na->num_rx_rings; 858 } 859 860 kring = na->rx_rings[r]; 861 862 if (kring->nr_mode == NKR_NETMAP_OFF) { 863 /* We must not intercept this mbuf. */ 864 return 0; 865 } 866 867 /* limit the size of the queue */ 868 if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) { 869 /* This may happen when GRO/LRO features are enabled for 870 * the NIC driver when the generic adapter does not 871 * support RX scatter-gather. */ 872 nm_prlim(2, "Warning: driver pushed up big packet " 873 "(size=%d)", (int)MBUF_LEN(m)); 874 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 875 m_freem(m); 876 } else if (unlikely(mbq_len(&kring->rx_queue) > na->num_rx_desc)) { 877 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 878 m_freem(m); 879 } else { 880 mbq_safe_enqueue(&kring->rx_queue, m); 881 } 882 883 if (netmap_generic_mit < 32768) { 884 /* no rx mitigation, pass notification up */ 885 netmap_generic_irq(na, r, &work_done); 886 } else { 887 /* same as send combining, filter notification if there is a 888 * pending timer, otherwise pass it up and start a timer. 889 */ 890 if (likely(nm_os_mitigation_active(&gna->mit[r]))) { 891 /* Record that there is some pending work. */ 892 gna->mit[r].mit_pending = 1; 893 } else { 894 netmap_generic_irq(na, r, &work_done); 895 nm_os_mitigation_start(&gna->mit[r]); 896 } 897 } 898 899 /* We have intercepted the mbuf. */ 900 return 1; 901 } 902 903 /* 904 * generic_netmap_rxsync() extracts mbufs from the queue filled by 905 * generic_netmap_rx_handler() and puts their content in the netmap 906 * receive ring. 907 * Access must be protected because the rx handler is asynchronous, 908 */ 909 static int 910 generic_netmap_rxsync(struct netmap_kring *kring, int flags) 911 { 912 struct netmap_ring *ring = kring->ring; 913 struct netmap_adapter *na = kring->na; 914 u_int nm_i; /* index into the netmap ring */ //j, 915 u_int n; 916 u_int const lim = kring->nkr_num_slots - 1; 917 u_int const head = kring->rhead; 918 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 919 920 /* Adapter-specific variables. */ 921 u_int nm_buf_len = NETMAP_BUF_SIZE(na); 922 struct mbq tmpq; 923 struct mbuf *m; 924 int avail; /* in bytes */ 925 int mlen; 926 int copy; 927 928 if (head > lim) 929 return netmap_ring_reinit(kring); 930 931 IFRATE(rate_ctx.new.rxsync++); 932 933 /* 934 * First part: skip past packets that userspace has released. 935 * This can possibly make room for the second part. 936 */ 937 nm_i = kring->nr_hwcur; 938 if (nm_i != head) { 939 /* Userspace has released some packets. */ 940 for (n = 0; nm_i != head; n++) { 941 struct netmap_slot *slot = &ring->slot[nm_i]; 942 943 slot->flags &= ~NS_BUF_CHANGED; 944 nm_i = nm_next(nm_i, lim); 945 } 946 kring->nr_hwcur = head; 947 } 948 949 /* 950 * Second part: import newly received packets. 951 */ 952 if (!netmap_no_pendintr && !force_update) { 953 return 0; 954 } 955 956 nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */ 957 958 /* Compute the available space (in bytes) in this netmap ring. 959 * The first slot that is not considered in is the one before 960 * nr_hwcur. */ 961 962 avail = nm_prev(kring->nr_hwcur, lim) - nm_i; 963 if (avail < 0) 964 avail += lim + 1; 965 avail *= nm_buf_len; 966 967 /* First pass: While holding the lock on the RX mbuf queue, 968 * extract as many mbufs as they fit the available space, 969 * and put them in a temporary queue. 970 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to 971 * to update avail, we do the update in a while loop that we 972 * also use to set the RX slots, but without performing the copy. */ 973 mbq_init(&tmpq); 974 mbq_lock(&kring->rx_queue); 975 for (n = 0;; n++) { 976 m = mbq_peek(&kring->rx_queue); 977 if (!m) { 978 /* No more packets from the driver. */ 979 break; 980 } 981 982 mlen = MBUF_LEN(m); 983 if (mlen > avail) { 984 /* No more space in the ring. */ 985 break; 986 } 987 988 mbq_dequeue(&kring->rx_queue); 989 990 while (mlen) { 991 copy = nm_buf_len; 992 if (mlen < copy) { 993 copy = mlen; 994 } 995 mlen -= copy; 996 avail -= nm_buf_len; 997 998 ring->slot[nm_i].len = copy; 999 ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0); 1000 nm_i = nm_next(nm_i, lim); 1001 } 1002 1003 mbq_enqueue(&tmpq, m); 1004 } 1005 mbq_unlock(&kring->rx_queue); 1006 1007 /* Second pass: Drain the temporary queue, going over the used RX slots, 1008 * and perform the copy out of the RX queue lock. */ 1009 nm_i = kring->nr_hwtail; 1010 1011 for (;;) { 1012 void *nmaddr; 1013 int ofs = 0; 1014 int morefrag; 1015 1016 m = mbq_dequeue(&tmpq); 1017 if (!m) { 1018 break; 1019 } 1020 1021 do { 1022 nmaddr = NMB(na, &ring->slot[nm_i]); 1023 /* We only check the address here on generic rx rings. */ 1024 if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */ 1025 m_freem(m); 1026 mbq_purge(&tmpq); 1027 mbq_fini(&tmpq); 1028 return netmap_ring_reinit(kring); 1029 } 1030 1031 copy = ring->slot[nm_i].len; 1032 m_copydata(m, ofs, copy, nmaddr); 1033 ofs += copy; 1034 morefrag = ring->slot[nm_i].flags & NS_MOREFRAG; 1035 nm_i = nm_next(nm_i, lim); 1036 } while (morefrag); 1037 1038 m_freem(m); 1039 } 1040 1041 mbq_fini(&tmpq); 1042 1043 if (n) { 1044 kring->nr_hwtail = nm_i; 1045 IFRATE(rate_ctx.new.rxpkt += n); 1046 } 1047 kring->nr_kflags &= ~NKR_PENDINTR; 1048 1049 return 0; 1050 } 1051 1052 static void 1053 generic_netmap_dtor(struct netmap_adapter *na) 1054 { 1055 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na; 1056 if_t ifp = netmap_generic_getifp(gna); 1057 struct netmap_adapter *prev_na = gna->prev; 1058 1059 if (prev_na != NULL) { 1060 netmap_adapter_put(prev_na); 1061 if (nm_iszombie(na)) { 1062 /* 1063 * The driver has been removed without releasing 1064 * the reference so we need to do it here. 1065 */ 1066 netmap_adapter_put(prev_na); 1067 } 1068 nm_prinf("Native netmap adapter for %s restored", prev_na->name); 1069 } 1070 NM_RESTORE_NA(ifp, prev_na); 1071 na->ifp = NULL; 1072 nm_prinf("Emulated netmap adapter for %s destroyed", na->name); 1073 } 1074 1075 int 1076 na_is_generic(struct netmap_adapter *na) 1077 { 1078 return na->nm_register == generic_netmap_register; 1079 } 1080 1081 /* 1082 * generic_netmap_attach() makes it possible to use netmap on 1083 * a device without native netmap support. 1084 * This is less performant than native support but potentially 1085 * faster than raw sockets or similar schemes. 1086 * 1087 * In this "emulated" mode, netmap rings do not necessarily 1088 * have the same size as those in the NIC. We use a default 1089 * value and possibly override it if the OS has ways to fetch the 1090 * actual configuration. 1091 */ 1092 int 1093 generic_netmap_attach(if_t ifp) 1094 { 1095 struct netmap_adapter *na; 1096 struct netmap_generic_adapter *gna; 1097 int retval; 1098 u_int num_tx_desc, num_rx_desc; 1099 1100 #ifdef __FreeBSD__ 1101 if (if_gettype(ifp) == IFT_LOOP) { 1102 nm_prerr("if_loop is not supported by %s", __func__); 1103 return EINVAL; 1104 } 1105 #endif 1106 1107 if (NM_NA_CLASH(ifp)) { 1108 /* If NA(ifp) is not null but there is no valid netmap 1109 * adapter it means that someone else is using the same 1110 * pointer (e.g. ax25_ptr on linux). This happens for 1111 * instance when also PF_RING is in use. */ 1112 nm_prerr("Error: netmap adapter hook is busy"); 1113 return EBUSY; 1114 } 1115 1116 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */ 1117 1118 nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */ 1119 if (num_tx_desc == 0 || num_rx_desc == 0) { 1120 nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc); 1121 return EINVAL; 1122 } 1123 1124 gna = nm_os_malloc(sizeof(*gna)); 1125 if (gna == NULL) { 1126 nm_prerr("no memory on attach, give up"); 1127 return ENOMEM; 1128 } 1129 na = (struct netmap_adapter *)gna; 1130 strlcpy(na->name, if_name(ifp), sizeof(na->name)); 1131 na->ifp = ifp; 1132 na->num_tx_desc = num_tx_desc; 1133 na->num_rx_desc = num_rx_desc; 1134 na->rx_buf_maxsize = 32768; 1135 na->nm_register = &generic_netmap_register; 1136 na->nm_txsync = &generic_netmap_txsync; 1137 na->nm_rxsync = &generic_netmap_rxsync; 1138 na->nm_dtor = &generic_netmap_dtor; 1139 /* when using generic, NAF_NETMAP_ON is set so we force 1140 * NAF_SKIP_INTR to use the regular interrupt handler 1141 */ 1142 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS; 1143 1144 nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)", 1145 ifp->num_tx_queues, ifp->real_num_tx_queues, 1146 ifp->tx_queue_len); 1147 nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)", 1148 ifp->num_rx_queues, ifp->real_num_rx_queues); 1149 1150 nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings); 1151 1152 retval = netmap_attach_common(na); 1153 if (retval) { 1154 nm_os_free(gna); 1155 return retval; 1156 } 1157 1158 if (NM_NA_VALID(ifp)) { 1159 gna->prev = NA(ifp); /* save old na */ 1160 netmap_adapter_get(gna->prev); 1161 } 1162 NM_ATTACH_NA(ifp, na); 1163 1164 nm_os_generic_set_features(gna); 1165 1166 nm_prinf("Emulated adapter for %s created (prev was %s)", na->name, 1167 gna->prev ? gna->prev->name : "NULL"); 1168 1169 return retval; 1170 } 1171