1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2016 Vincenzo Maffione 5 * Copyright (C) 2013-2016 Luigi Rizzo 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * This module implements netmap support on top of standard, 32 * unmodified device drivers. 33 * 34 * A NIOCREGIF request is handled here if the device does not 35 * have native support. TX and RX rings are emulated as follows: 36 * 37 * NIOCREGIF 38 * We preallocate a block of TX mbufs (roughly as many as 39 * tx descriptors; the number is not critical) to speed up 40 * operation during transmissions. The refcount on most of 41 * these buffers is artificially bumped up so we can recycle 42 * them more easily. Also, the destructor is intercepted 43 * so we use it as an interrupt notification to wake up 44 * processes blocked on a poll(). 45 * 46 * For each receive ring we allocate one "struct mbq" 47 * (an mbuf tailq plus a spinlock). We intercept packets 48 * (through if_input) 49 * on the receive path and put them in the mbq from which 50 * netmap receive routines can grab them. 51 * 52 * TX: 53 * in the generic_txsync() routine, netmap buffers are copied 54 * (or linked, in a future) to the preallocated mbufs 55 * and pushed to the transmit queue. Some of these mbufs 56 * (those with NS_REPORT, or otherwise every half ring) 57 * have the refcount=1, others have refcount=2. 58 * When the destructor is invoked, we take that as 59 * a notification that all mbufs up to that one in 60 * the specific ring have been completed, and generate 61 * the equivalent of a transmit interrupt. 62 * 63 * RX: 64 * 65 */ 66 67 #ifdef __FreeBSD__ 68 69 #include <sys/cdefs.h> /* prerequisite */ 70 __FBSDID("$FreeBSD$"); 71 72 #include <sys/types.h> 73 #include <sys/errno.h> 74 #include <sys/malloc.h> 75 #include <sys/lock.h> /* PROT_EXEC */ 76 #include <sys/rwlock.h> 77 #include <sys/socket.h> /* sockaddrs */ 78 #include <sys/selinfo.h> 79 #include <net/if.h> 80 #include <net/if_types.h> 81 #include <net/if_var.h> 82 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */ 83 84 #include <net/netmap.h> 85 #include <dev/netmap/netmap_kern.h> 86 #include <dev/netmap/netmap_mem2.h> 87 88 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid) 89 #define smp_mb() 90 91 #elif defined _WIN32 92 93 #include "win_glue.h" 94 95 #define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid) 96 #define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid) 97 #define smp_mb() //XXX: to be correctly defined 98 99 #else /* linux */ 100 101 #include "bsd_glue.h" 102 103 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */ 104 #include <linux/hrtimer.h> 105 106 static inline struct mbuf * 107 nm_os_get_mbuf(struct ifnet *ifp, int len) 108 { 109 return alloc_skb(LL_RESERVED_SPACE(ifp) + len + 110 ifp->needed_tailroom, GFP_ATOMIC); 111 } 112 113 #endif /* linux */ 114 115 116 /* Common headers. */ 117 #include <net/netmap.h> 118 #include <dev/netmap/netmap_kern.h> 119 #include <dev/netmap/netmap_mem2.h> 120 121 122 #define for_each_kring_n(_i, _k, _karr, _n) \ 123 for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)]) 124 125 #define for_each_tx_kring(_i, _k, _na) \ 126 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings) 127 #define for_each_tx_kring_h(_i, _k, _na) \ 128 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1) 129 130 #define for_each_rx_kring(_i, _k, _na) \ 131 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings) 132 #define for_each_rx_kring_h(_i, _k, _na) \ 133 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1) 134 135 136 /* ======================== PERFORMANCE STATISTICS =========================== */ 137 138 #ifdef RATE_GENERIC 139 #define IFRATE(x) x 140 struct rate_stats { 141 unsigned long txpkt; 142 unsigned long txsync; 143 unsigned long txirq; 144 unsigned long txrepl; 145 unsigned long txdrop; 146 unsigned long rxpkt; 147 unsigned long rxirq; 148 unsigned long rxsync; 149 }; 150 151 struct rate_context { 152 unsigned refcount; 153 struct timer_list timer; 154 struct rate_stats new; 155 struct rate_stats old; 156 }; 157 158 #define RATE_PRINTK(_NAME_) \ 159 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD); 160 #define RATE_PERIOD 2 161 static void rate_callback(unsigned long arg) 162 { 163 struct rate_context * ctx = (struct rate_context *)arg; 164 struct rate_stats cur = ctx->new; 165 int r; 166 167 RATE_PRINTK(txpkt); 168 RATE_PRINTK(txsync); 169 RATE_PRINTK(txirq); 170 RATE_PRINTK(txrepl); 171 RATE_PRINTK(txdrop); 172 RATE_PRINTK(rxpkt); 173 RATE_PRINTK(rxsync); 174 RATE_PRINTK(rxirq); 175 printk("\n"); 176 177 ctx->old = cur; 178 r = mod_timer(&ctx->timer, jiffies + 179 msecs_to_jiffies(RATE_PERIOD * 1000)); 180 if (unlikely(r)) 181 nm_prerr("mod_timer() failed"); 182 } 183 184 static struct rate_context rate_ctx; 185 186 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi) 187 { 188 if (txp) rate_ctx.new.txpkt++; 189 if (txs) rate_ctx.new.txsync++; 190 if (txi) rate_ctx.new.txirq++; 191 if (rxp) rate_ctx.new.rxpkt++; 192 if (rxs) rate_ctx.new.rxsync++; 193 if (rxi) rate_ctx.new.rxirq++; 194 } 195 196 #else /* !RATE */ 197 #define IFRATE(x) 198 #endif /* !RATE */ 199 200 201 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */ 202 203 /* 204 * Wrapper used by the generic adapter layer to notify 205 * the poller threads. Differently from netmap_rx_irq(), we check 206 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq. 207 */ 208 void 209 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 210 { 211 if (unlikely(!nm_netmap_on(na))) 212 return; 213 214 netmap_common_irq(na, q, work_done); 215 #ifdef RATE_GENERIC 216 if (work_done) 217 rate_ctx.new.rxirq++; 218 else 219 rate_ctx.new.txirq++; 220 #endif /* RATE_GENERIC */ 221 } 222 223 static int 224 generic_netmap_unregister(struct netmap_adapter *na) 225 { 226 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 227 struct netmap_kring *kring = NULL; 228 int i, r; 229 230 if (na->active_fds == 0) { 231 na->na_flags &= ~NAF_NETMAP_ON; 232 233 /* Stop intercepting packets on the RX path. */ 234 nm_os_catch_rx(gna, 0); 235 236 /* Release packet steering control. */ 237 nm_os_catch_tx(gna, 0); 238 } 239 240 netmap_krings_mode_commit(na, /*onoff=*/0); 241 242 for_each_rx_kring(r, kring, na) { 243 /* Free the mbufs still pending in the RX queues, 244 * that did not end up into the corresponding netmap 245 * RX rings. */ 246 mbq_safe_purge(&kring->rx_queue); 247 nm_os_mitigation_cleanup(&gna->mit[r]); 248 } 249 250 /* Decrement reference counter for the mbufs in the 251 * TX pools. These mbufs can be still pending in drivers, 252 * (e.g. this happens with virtio-net driver, which 253 * does lazy reclaiming of transmitted mbufs). */ 254 for_each_tx_kring(r, kring, na) { 255 /* We must remove the destructor on the TX event, 256 * because the destructor invokes netmap code, and 257 * the netmap module may disappear before the 258 * TX event is consumed. */ 259 mtx_lock_spin(&kring->tx_event_lock); 260 if (kring->tx_event) { 261 SET_MBUF_DESTRUCTOR(kring->tx_event, NULL); 262 } 263 kring->tx_event = NULL; 264 mtx_unlock_spin(&kring->tx_event_lock); 265 } 266 267 if (na->active_fds == 0) { 268 nm_os_free(gna->mit); 269 270 for_each_rx_kring(r, kring, na) { 271 mbq_safe_fini(&kring->rx_queue); 272 } 273 274 for_each_tx_kring(r, kring, na) { 275 mtx_destroy(&kring->tx_event_lock); 276 if (kring->tx_pool == NULL) { 277 continue; 278 } 279 280 for (i=0; i<na->num_tx_desc; i++) { 281 if (kring->tx_pool[i]) { 282 m_freem(kring->tx_pool[i]); 283 } 284 } 285 nm_os_free(kring->tx_pool); 286 kring->tx_pool = NULL; 287 } 288 289 #ifdef RATE_GENERIC 290 if (--rate_ctx.refcount == 0) { 291 nm_prinf("del_timer()"); 292 del_timer(&rate_ctx.timer); 293 } 294 #endif 295 nm_prinf("Emulated adapter for %s deactivated", na->name); 296 } 297 298 return 0; 299 } 300 301 /* Enable/disable netmap mode for a generic network interface. */ 302 static int 303 generic_netmap_register(struct netmap_adapter *na, int enable) 304 { 305 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 306 struct netmap_kring *kring = NULL; 307 int error; 308 int i, r; 309 310 if (!na) { 311 return EINVAL; 312 } 313 314 if (!enable) { 315 /* This is actually an unregif. */ 316 return generic_netmap_unregister(na); 317 } 318 319 if (na->active_fds == 0) { 320 nm_prinf("Emulated adapter for %s activated", na->name); 321 /* Do all memory allocations when (na->active_fds == 0), to 322 * simplify error management. */ 323 324 /* Allocate memory for mitigation support on all the rx queues. */ 325 gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit)); 326 if (!gna->mit) { 327 nm_prerr("mitigation allocation failed"); 328 error = ENOMEM; 329 goto out; 330 } 331 332 for_each_rx_kring(r, kring, na) { 333 /* Init mitigation support. */ 334 nm_os_mitigation_init(&gna->mit[r], r, na); 335 336 /* Initialize the rx queue, as generic_rx_handler() can 337 * be called as soon as nm_os_catch_rx() returns. 338 */ 339 mbq_safe_init(&kring->rx_queue); 340 } 341 342 /* 343 * Prepare mbuf pools (parallel to the tx rings), for packet 344 * transmission. Don't preallocate the mbufs here, it's simpler 345 * to leave this task to txsync. 346 */ 347 for_each_tx_kring(r, kring, na) { 348 kring->tx_pool = NULL; 349 } 350 for_each_tx_kring(r, kring, na) { 351 kring->tx_pool = 352 nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *)); 353 if (!kring->tx_pool) { 354 nm_prerr("tx_pool allocation failed"); 355 error = ENOMEM; 356 goto free_tx_pools; 357 } 358 mtx_init(&kring->tx_event_lock, "tx_event_lock", 359 NULL, MTX_SPIN); 360 } 361 } 362 363 netmap_krings_mode_commit(na, /*onoff=*/1); 364 365 for_each_tx_kring(r, kring, na) { 366 /* Initialize tx_pool and tx_event. */ 367 for (i=0; i<na->num_tx_desc; i++) { 368 kring->tx_pool[i] = NULL; 369 } 370 371 kring->tx_event = NULL; 372 } 373 374 if (na->active_fds == 0) { 375 /* Prepare to intercept incoming traffic. */ 376 error = nm_os_catch_rx(gna, 1); 377 if (error) { 378 nm_prerr("nm_os_catch_rx(1) failed (%d)", error); 379 goto free_tx_pools; 380 } 381 382 /* Let netmap control the packet steering. */ 383 error = nm_os_catch_tx(gna, 1); 384 if (error) { 385 nm_prerr("nm_os_catch_tx(1) failed (%d)", error); 386 goto catch_rx; 387 } 388 389 na->na_flags |= NAF_NETMAP_ON; 390 391 #ifdef RATE_GENERIC 392 if (rate_ctx.refcount == 0) { 393 nm_prinf("setup_timer()"); 394 memset(&rate_ctx, 0, sizeof(rate_ctx)); 395 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx); 396 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) { 397 nm_prerr("Error: mod_timer()"); 398 } 399 } 400 rate_ctx.refcount++; 401 #endif /* RATE */ 402 } 403 404 return 0; 405 406 /* Here (na->active_fds == 0) holds. */ 407 catch_rx: 408 nm_os_catch_rx(gna, 0); 409 free_tx_pools: 410 for_each_tx_kring(r, kring, na) { 411 mtx_destroy(&kring->tx_event_lock); 412 if (kring->tx_pool == NULL) { 413 continue; 414 } 415 nm_os_free(kring->tx_pool); 416 kring->tx_pool = NULL; 417 } 418 for_each_rx_kring(r, kring, na) { 419 mbq_safe_fini(&kring->rx_queue); 420 } 421 nm_os_free(gna->mit); 422 out: 423 424 return error; 425 } 426 427 /* 428 * Callback invoked when the device driver frees an mbuf used 429 * by netmap to transmit a packet. This usually happens when 430 * the NIC notifies the driver that transmission is completed. 431 */ 432 static void 433 generic_mbuf_destructor(struct mbuf *m) 434 { 435 struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m)); 436 struct netmap_kring *kring; 437 unsigned int r = MBUF_TXQ(m); 438 unsigned int r_orig = r; 439 440 if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) { 441 nm_prerr("Error: no netmap adapter on device %p", 442 GEN_TX_MBUF_IFP(m)); 443 return; 444 } 445 446 /* 447 * First, clear the event mbuf. 448 * In principle, the event 'm' should match the one stored 449 * on ring 'r'. However we check it explicitly to stay 450 * safe against lower layers (qdisc, driver, etc.) changing 451 * MBUF_TXQ(m) under our feet. If the match is not found 452 * on 'r', we try to see if it belongs to some other ring. 453 */ 454 for (;;) { 455 bool match = false; 456 457 kring = na->tx_rings[r]; 458 mtx_lock_spin(&kring->tx_event_lock); 459 if (kring->tx_event == m) { 460 kring->tx_event = NULL; 461 match = true; 462 } 463 mtx_unlock_spin(&kring->tx_event_lock); 464 465 if (match) { 466 if (r != r_orig) { 467 nm_prlim(1, "event %p migrated: ring %u --> %u", 468 m, r_orig, r); 469 } 470 break; 471 } 472 473 if (++r == na->num_tx_rings) r = 0; 474 475 if (r == r_orig) { 476 nm_prlim(1, "Cannot match event %p", m); 477 return; 478 } 479 } 480 481 /* Second, wake up clients. They will reclaim the event through 482 * txsync. */ 483 netmap_generic_irq(na, r, NULL); 484 #ifdef __FreeBSD__ 485 void_mbuf_dtor(m); 486 #endif 487 } 488 489 /* Record completed transmissions and update hwtail. 490 * 491 * The oldest tx buffer not yet completed is at nr_hwtail + 1, 492 * nr_hwcur is the first unsent buffer. 493 */ 494 static u_int 495 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc) 496 { 497 u_int const lim = kring->nkr_num_slots - 1; 498 u_int nm_i = nm_next(kring->nr_hwtail, lim); 499 u_int hwcur = kring->nr_hwcur; 500 u_int n = 0; 501 struct mbuf **tx_pool = kring->tx_pool; 502 503 nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail); 504 505 while (nm_i != hwcur) { /* buffers not completed */ 506 struct mbuf *m = tx_pool[nm_i]; 507 508 if (txqdisc) { 509 if (m == NULL) { 510 /* Nothing to do, this is going 511 * to be replenished. */ 512 nm_prlim(3, "Is this happening?"); 513 514 } else if (MBUF_QUEUED(m)) { 515 break; /* Not dequeued yet. */ 516 517 } else if (MBUF_REFCNT(m) != 1) { 518 /* This mbuf has been dequeued but is still busy 519 * (refcount is 2). 520 * Leave it to the driver and replenish. */ 521 m_freem(m); 522 tx_pool[nm_i] = NULL; 523 } 524 525 } else { 526 if (unlikely(m == NULL)) { 527 int event_consumed; 528 529 /* This slot was used to place an event. */ 530 mtx_lock_spin(&kring->tx_event_lock); 531 event_consumed = (kring->tx_event == NULL); 532 mtx_unlock_spin(&kring->tx_event_lock); 533 if (!event_consumed) { 534 /* The event has not been consumed yet, 535 * still busy in the driver. */ 536 break; 537 } 538 /* The event has been consumed, we can go 539 * ahead. */ 540 541 } else if (MBUF_REFCNT(m) != 1) { 542 /* This mbuf is still busy: its refcnt is 2. */ 543 break; 544 } 545 } 546 547 n++; 548 nm_i = nm_next(nm_i, lim); 549 } 550 kring->nr_hwtail = nm_prev(nm_i, lim); 551 nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail); 552 553 return n; 554 } 555 556 /* Compute a slot index in the middle between inf and sup. */ 557 static inline u_int 558 ring_middle(u_int inf, u_int sup, u_int lim) 559 { 560 u_int n = lim + 1; 561 u_int e; 562 563 if (sup >= inf) { 564 e = (sup + inf) / 2; 565 } else { /* wrap around */ 566 e = (sup + n + inf) / 2; 567 if (e >= n) { 568 e -= n; 569 } 570 } 571 572 if (unlikely(e >= n)) { 573 nm_prerr("This cannot happen"); 574 e = 0; 575 } 576 577 return e; 578 } 579 580 static void 581 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur) 582 { 583 u_int lim = kring->nkr_num_slots - 1; 584 struct mbuf *m; 585 u_int e; 586 u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */ 587 588 if (ntc == hwcur) { 589 return; /* all buffers are free */ 590 } 591 592 /* 593 * We have pending packets in the driver between hwtail+1 594 * and hwcur, and we have to chose one of these slot to 595 * generate a notification. 596 * There is a race but this is only called within txsync which 597 * does a double check. 598 */ 599 #if 0 600 /* Choose a slot in the middle, so that we don't risk ending 601 * up in a situation where the client continuously wake up, 602 * fills one or a few TX slots and go to sleep again. */ 603 e = ring_middle(ntc, hwcur, lim); 604 #else 605 /* Choose the first pending slot, to be safe against driver 606 * reordering mbuf transmissions. */ 607 e = ntc; 608 #endif 609 610 m = kring->tx_pool[e]; 611 if (m == NULL) { 612 /* An event is already in place. */ 613 return; 614 } 615 616 mtx_lock_spin(&kring->tx_event_lock); 617 if (kring->tx_event) { 618 /* An event is already in place. */ 619 mtx_unlock_spin(&kring->tx_event_lock); 620 return; 621 } 622 623 SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor); 624 kring->tx_event = m; 625 mtx_unlock_spin(&kring->tx_event_lock); 626 627 kring->tx_pool[e] = NULL; 628 629 nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 ); 630 631 /* Decrement the refcount. This will free it if we lose the race 632 * with the driver. */ 633 m_freem(m); 634 smp_mb(); 635 } 636 637 638 /* 639 * generic_netmap_txsync() transforms netmap buffers into mbufs 640 * and passes them to the standard device driver 641 * (ndo_start_xmit() or ifp->if_transmit() ). 642 * On linux this is not done directly, but using dev_queue_xmit(), 643 * since it implements the TX flow control (and takes some locks). 644 */ 645 static int 646 generic_netmap_txsync(struct netmap_kring *kring, int flags) 647 { 648 struct netmap_adapter *na = kring->na; 649 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 650 struct ifnet *ifp = na->ifp; 651 struct netmap_ring *ring = kring->ring; 652 u_int nm_i; /* index into the netmap ring */ // j 653 u_int const lim = kring->nkr_num_slots - 1; 654 u_int const head = kring->rhead; 655 u_int ring_nr = kring->ring_id; 656 657 IFRATE(rate_ctx.new.txsync++); 658 659 rmb(); 660 661 /* 662 * First part: process new packets to send. 663 */ 664 nm_i = kring->nr_hwcur; 665 if (nm_i != head) { /* we have new packets to send */ 666 struct nm_os_gen_arg a; 667 u_int event = -1; 668 #ifdef __FreeBSD__ 669 struct epoch_tracker et; 670 671 NET_EPOCH_ENTER(et); 672 #endif 673 674 if (gna->txqdisc && nm_kr_txempty(kring)) { 675 /* In txqdisc mode, we ask for a delayed notification, 676 * but only when cur == hwtail, which means that the 677 * client is going to block. */ 678 event = ring_middle(nm_i, head, lim); 679 nm_prdis("Place txqdisc event (hwcur=%u,event=%u," 680 "head=%u,hwtail=%u)", nm_i, event, head, 681 kring->nr_hwtail); 682 } 683 684 a.ifp = ifp; 685 a.ring_nr = ring_nr; 686 a.head = a.tail = NULL; 687 688 while (nm_i != head) { 689 struct netmap_slot *slot = &ring->slot[nm_i]; 690 u_int len = slot->len; 691 void *addr = NMB(na, slot); 692 /* device-specific */ 693 struct mbuf *m; 694 int tx_ret; 695 696 NM_CHECK_ADDR_LEN(na, addr, len); 697 698 /* Tale a mbuf from the tx pool (replenishing the pool 699 * entry if necessary) and copy in the user packet. */ 700 m = kring->tx_pool[nm_i]; 701 if (unlikely(m == NULL)) { 702 kring->tx_pool[nm_i] = m = 703 nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na)); 704 if (m == NULL) { 705 nm_prlim(2, "Failed to replenish mbuf"); 706 /* Here we could schedule a timer which 707 * retries to replenish after a while, 708 * and notifies the client when it 709 * manages to replenish some slots. In 710 * any case we break early to avoid 711 * crashes. */ 712 break; 713 } 714 IFRATE(rate_ctx.new.txrepl++); 715 } 716 717 a.m = m; 718 a.addr = addr; 719 a.len = len; 720 a.qevent = (nm_i == event); 721 /* When not in txqdisc mode, we should ask 722 * notifications when NS_REPORT is set, or roughly 723 * every half ring. To optimize this, we set a 724 * notification event when the client runs out of 725 * TX ring space, or when transmission fails. In 726 * the latter case we also break early. 727 */ 728 tx_ret = nm_os_generic_xmit_frame(&a); 729 if (unlikely(tx_ret)) { 730 if (!gna->txqdisc) { 731 /* 732 * No room for this mbuf in the device driver. 733 * Request a notification FOR A PREVIOUS MBUF, 734 * then call generic_netmap_tx_clean(kring) to do the 735 * double check and see if we can free more buffers. 736 * If there is space continue, else break; 737 * NOTE: the double check is necessary if the problem 738 * occurs in the txsync call after selrecord(). 739 * Also, we need some way to tell the caller that not 740 * all buffers were queued onto the device (this was 741 * not a problem with native netmap driver where space 742 * is preallocated). The bridge has a similar problem 743 * and we solve it there by dropping the excess packets. 744 */ 745 generic_set_tx_event(kring, nm_i); 746 if (generic_netmap_tx_clean(kring, gna->txqdisc)) { 747 /* space now available */ 748 continue; 749 } else { 750 break; 751 } 752 } 753 754 /* In txqdisc mode, the netmap-aware qdisc 755 * queue has the same length as the number of 756 * netmap slots (N). Since tail is advanced 757 * only when packets are dequeued, qdisc 758 * queue overrun cannot happen, so 759 * nm_os_generic_xmit_frame() did not fail 760 * because of that. 761 * However, packets can be dropped because 762 * carrier is off, or because our qdisc is 763 * being deactivated, or possibly for other 764 * reasons. In these cases, we just let the 765 * packet to be dropped. */ 766 IFRATE(rate_ctx.new.txdrop++); 767 } 768 769 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); 770 nm_i = nm_next(nm_i, lim); 771 IFRATE(rate_ctx.new.txpkt++); 772 } 773 if (a.head != NULL) { 774 a.addr = NULL; 775 nm_os_generic_xmit_frame(&a); 776 } 777 /* Update hwcur to the next slot to transmit. Here nm_i 778 * is not necessarily head, we could break early. */ 779 kring->nr_hwcur = nm_i; 780 781 #ifdef __FreeBSD__ 782 NET_EPOCH_EXIT(et); 783 #endif 784 } 785 786 /* 787 * Second, reclaim completed buffers 788 */ 789 if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) { 790 /* No more available slots? Set a notification event 791 * on a netmap slot that will be cleaned in the future. 792 * No doublecheck is performed, since txsync() will be 793 * called twice by netmap_poll(). 794 */ 795 generic_set_tx_event(kring, nm_i); 796 } 797 798 generic_netmap_tx_clean(kring, gna->txqdisc); 799 800 return 0; 801 } 802 803 804 /* 805 * This handler is registered (through nm_os_catch_rx()) 806 * within the attached network interface 807 * in the RX subsystem, so that every mbuf passed up by 808 * the driver can be stolen to the network stack. 809 * Stolen packets are put in a queue where the 810 * generic_netmap_rxsync() callback can extract them. 811 * Returns 1 if the packet was stolen, 0 otherwise. 812 */ 813 int 814 generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 815 { 816 struct netmap_adapter *na = NA(ifp); 817 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 818 struct netmap_kring *kring; 819 u_int work_done; 820 u_int r = MBUF_RXQ(m); /* receive ring number */ 821 822 if (r >= na->num_rx_rings) { 823 r = r % na->num_rx_rings; 824 } 825 826 kring = na->rx_rings[r]; 827 828 if (kring->nr_mode == NKR_NETMAP_OFF) { 829 /* We must not intercept this mbuf. */ 830 return 0; 831 } 832 833 /* limit the size of the queue */ 834 if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) { 835 /* This may happen when GRO/LRO features are enabled for 836 * the NIC driver when the generic adapter does not 837 * support RX scatter-gather. */ 838 nm_prlim(2, "Warning: driver pushed up big packet " 839 "(size=%d)", (int)MBUF_LEN(m)); 840 m_freem(m); 841 } else if (unlikely(mbq_len(&kring->rx_queue) > 1024)) { 842 m_freem(m); 843 } else { 844 mbq_safe_enqueue(&kring->rx_queue, m); 845 } 846 847 if (netmap_generic_mit < 32768) { 848 /* no rx mitigation, pass notification up */ 849 netmap_generic_irq(na, r, &work_done); 850 } else { 851 /* same as send combining, filter notification if there is a 852 * pending timer, otherwise pass it up and start a timer. 853 */ 854 if (likely(nm_os_mitigation_active(&gna->mit[r]))) { 855 /* Record that there is some pending work. */ 856 gna->mit[r].mit_pending = 1; 857 } else { 858 netmap_generic_irq(na, r, &work_done); 859 nm_os_mitigation_start(&gna->mit[r]); 860 } 861 } 862 863 /* We have intercepted the mbuf. */ 864 return 1; 865 } 866 867 /* 868 * generic_netmap_rxsync() extracts mbufs from the queue filled by 869 * generic_netmap_rx_handler() and puts their content in the netmap 870 * receive ring. 871 * Access must be protected because the rx handler is asynchronous, 872 */ 873 static int 874 generic_netmap_rxsync(struct netmap_kring *kring, int flags) 875 { 876 struct netmap_ring *ring = kring->ring; 877 struct netmap_adapter *na = kring->na; 878 u_int nm_i; /* index into the netmap ring */ //j, 879 u_int n; 880 u_int const lim = kring->nkr_num_slots - 1; 881 u_int const head = kring->rhead; 882 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 883 884 /* Adapter-specific variables. */ 885 u_int nm_buf_len = NETMAP_BUF_SIZE(na); 886 struct mbq tmpq; 887 struct mbuf *m; 888 int avail; /* in bytes */ 889 int mlen; 890 int copy; 891 892 if (head > lim) 893 return netmap_ring_reinit(kring); 894 895 IFRATE(rate_ctx.new.rxsync++); 896 897 /* 898 * First part: skip past packets that userspace has released. 899 * This can possibly make room for the second part. 900 */ 901 nm_i = kring->nr_hwcur; 902 if (nm_i != head) { 903 /* Userspace has released some packets. */ 904 for (n = 0; nm_i != head; n++) { 905 struct netmap_slot *slot = &ring->slot[nm_i]; 906 907 slot->flags &= ~NS_BUF_CHANGED; 908 nm_i = nm_next(nm_i, lim); 909 } 910 kring->nr_hwcur = head; 911 } 912 913 /* 914 * Second part: import newly received packets. 915 */ 916 if (!netmap_no_pendintr && !force_update) { 917 return 0; 918 } 919 920 nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */ 921 922 /* Compute the available space (in bytes) in this netmap ring. 923 * The first slot that is not considered in is the one before 924 * nr_hwcur. */ 925 926 avail = nm_prev(kring->nr_hwcur, lim) - nm_i; 927 if (avail < 0) 928 avail += lim + 1; 929 avail *= nm_buf_len; 930 931 /* First pass: While holding the lock on the RX mbuf queue, 932 * extract as many mbufs as they fit the available space, 933 * and put them in a temporary queue. 934 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to 935 * to update avail, we do the update in a while loop that we 936 * also use to set the RX slots, but without performing the copy. */ 937 mbq_init(&tmpq); 938 mbq_lock(&kring->rx_queue); 939 for (n = 0;; n++) { 940 m = mbq_peek(&kring->rx_queue); 941 if (!m) { 942 /* No more packets from the driver. */ 943 break; 944 } 945 946 mlen = MBUF_LEN(m); 947 if (mlen > avail) { 948 /* No more space in the ring. */ 949 break; 950 } 951 952 mbq_dequeue(&kring->rx_queue); 953 954 while (mlen) { 955 copy = nm_buf_len; 956 if (mlen < copy) { 957 copy = mlen; 958 } 959 mlen -= copy; 960 avail -= nm_buf_len; 961 962 ring->slot[nm_i].len = copy; 963 ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0); 964 nm_i = nm_next(nm_i, lim); 965 } 966 967 mbq_enqueue(&tmpq, m); 968 } 969 mbq_unlock(&kring->rx_queue); 970 971 /* Second pass: Drain the temporary queue, going over the used RX slots, 972 * and perform the copy out of the RX queue lock. */ 973 nm_i = kring->nr_hwtail; 974 975 for (;;) { 976 void *nmaddr; 977 int ofs = 0; 978 int morefrag; 979 980 m = mbq_dequeue(&tmpq); 981 if (!m) { 982 break; 983 } 984 985 do { 986 nmaddr = NMB(na, &ring->slot[nm_i]); 987 /* We only check the address here on generic rx rings. */ 988 if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */ 989 m_freem(m); 990 mbq_purge(&tmpq); 991 mbq_fini(&tmpq); 992 return netmap_ring_reinit(kring); 993 } 994 995 copy = ring->slot[nm_i].len; 996 m_copydata(m, ofs, copy, nmaddr); 997 ofs += copy; 998 morefrag = ring->slot[nm_i].flags & NS_MOREFRAG; 999 nm_i = nm_next(nm_i, lim); 1000 } while (morefrag); 1001 1002 m_freem(m); 1003 } 1004 1005 mbq_fini(&tmpq); 1006 1007 if (n) { 1008 kring->nr_hwtail = nm_i; 1009 IFRATE(rate_ctx.new.rxpkt += n); 1010 } 1011 kring->nr_kflags &= ~NKR_PENDINTR; 1012 1013 return 0; 1014 } 1015 1016 static void 1017 generic_netmap_dtor(struct netmap_adapter *na) 1018 { 1019 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na; 1020 struct ifnet *ifp = netmap_generic_getifp(gna); 1021 struct netmap_adapter *prev_na = gna->prev; 1022 1023 if (prev_na != NULL) { 1024 netmap_adapter_put(prev_na); 1025 if (nm_iszombie(na)) { 1026 /* 1027 * The driver has been removed without releasing 1028 * the reference so we need to do it here. 1029 */ 1030 netmap_adapter_put(prev_na); 1031 } 1032 nm_prinf("Native netmap adapter for %s restored", prev_na->name); 1033 } 1034 NM_RESTORE_NA(ifp, prev_na); 1035 /* 1036 * netmap_detach_common(), that it's called after this function, 1037 * overrides WNA(ifp) if na->ifp is not NULL. 1038 */ 1039 na->ifp = NULL; 1040 nm_prinf("Emulated netmap adapter for %s destroyed", na->name); 1041 } 1042 1043 int 1044 na_is_generic(struct netmap_adapter *na) 1045 { 1046 return na->nm_register == generic_netmap_register; 1047 } 1048 1049 /* 1050 * generic_netmap_attach() makes it possible to use netmap on 1051 * a device without native netmap support. 1052 * This is less performant than native support but potentially 1053 * faster than raw sockets or similar schemes. 1054 * 1055 * In this "emulated" mode, netmap rings do not necessarily 1056 * have the same size as those in the NIC. We use a default 1057 * value and possibly override it if the OS has ways to fetch the 1058 * actual configuration. 1059 */ 1060 int 1061 generic_netmap_attach(struct ifnet *ifp) 1062 { 1063 struct netmap_adapter *na; 1064 struct netmap_generic_adapter *gna; 1065 int retval; 1066 u_int num_tx_desc, num_rx_desc; 1067 1068 #ifdef __FreeBSD__ 1069 if (ifp->if_type == IFT_LOOP) { 1070 nm_prerr("if_loop is not supported by %s", __func__); 1071 return EINVAL; 1072 } 1073 #endif 1074 1075 if (NM_NA_CLASH(ifp)) { 1076 /* If NA(ifp) is not null but there is no valid netmap 1077 * adapter it means that someone else is using the same 1078 * pointer (e.g. ax25_ptr on linux). This happens for 1079 * instance when also PF_RING is in use. */ 1080 nm_prerr("Error: netmap adapter hook is busy"); 1081 return EBUSY; 1082 } 1083 1084 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */ 1085 1086 nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */ 1087 if (num_tx_desc == 0 || num_rx_desc == 0) { 1088 nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc); 1089 return EINVAL; 1090 } 1091 1092 gna = nm_os_malloc(sizeof(*gna)); 1093 if (gna == NULL) { 1094 nm_prerr("no memory on attach, give up"); 1095 return ENOMEM; 1096 } 1097 na = (struct netmap_adapter *)gna; 1098 strlcpy(na->name, ifp->if_xname, sizeof(na->name)); 1099 na->ifp = ifp; 1100 na->num_tx_desc = num_tx_desc; 1101 na->num_rx_desc = num_rx_desc; 1102 na->rx_buf_maxsize = 32768; 1103 na->nm_register = &generic_netmap_register; 1104 na->nm_txsync = &generic_netmap_txsync; 1105 na->nm_rxsync = &generic_netmap_rxsync; 1106 na->nm_dtor = &generic_netmap_dtor; 1107 /* when using generic, NAF_NETMAP_ON is set so we force 1108 * NAF_SKIP_INTR to use the regular interrupt handler 1109 */ 1110 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS; 1111 1112 nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)", 1113 ifp->num_tx_queues, ifp->real_num_tx_queues, 1114 ifp->tx_queue_len); 1115 nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)", 1116 ifp->num_rx_queues, ifp->real_num_rx_queues); 1117 1118 nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings); 1119 1120 retval = netmap_attach_common(na); 1121 if (retval) { 1122 nm_os_free(gna); 1123 return retval; 1124 } 1125 1126 if (NM_NA_VALID(ifp)) { 1127 gna->prev = NA(ifp); /* save old na */ 1128 netmap_adapter_get(gna->prev); 1129 } 1130 NM_ATTACH_NA(ifp, na); 1131 1132 nm_os_generic_set_features(gna); 1133 1134 nm_prinf("Emulated adapter for %s created (prev was %s)", na->name, 1135 gna->prev ? gna->prev->name : "NULL"); 1136 1137 return retval; 1138 } 1139