1 /* 2 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * This module implements netmap support on top of standard, 28 * unmodified device drivers. 29 * 30 * A NIOCREGIF request is handled here if the device does not 31 * have native support. TX and RX rings are emulated as follows: 32 * 33 * NIOCREGIF 34 * We preallocate a block of TX mbufs (roughly as many as 35 * tx descriptors; the number is not critical) to speed up 36 * operation during transmissions. The refcount on most of 37 * these buffers is artificially bumped up so we can recycle 38 * them more easily. Also, the destructor is intercepted 39 * so we use it as an interrupt notification to wake up 40 * processes blocked on a poll(). 41 * 42 * For each receive ring we allocate one "struct mbq" 43 * (an mbuf tailq plus a spinlock). We intercept packets 44 * (through if_input) 45 * on the receive path and put them in the mbq from which 46 * netmap receive routines can grab them. 47 * 48 * TX: 49 * in the generic_txsync() routine, netmap buffers are copied 50 * (or linked, in a future) to the preallocated mbufs 51 * and pushed to the transmit queue. Some of these mbufs 52 * (those with NS_REPORT, or otherwise every half ring) 53 * have the refcount=1, others have refcount=2. 54 * When the destructor is invoked, we take that as 55 * a notification that all mbufs up to that one in 56 * the specific ring have been completed, and generate 57 * the equivalent of a transmit interrupt. 58 * 59 * RX: 60 * 61 */ 62 63 #ifdef __FreeBSD__ 64 65 #include <sys/cdefs.h> /* prerequisite */ 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/types.h> 69 #include <sys/errno.h> 70 #include <sys/malloc.h> 71 #include <sys/lock.h> /* PROT_EXEC */ 72 #include <sys/rwlock.h> 73 #include <sys/socket.h> /* sockaddrs */ 74 #include <sys/selinfo.h> 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */ 78 79 // XXX temporary - D() defined here 80 #include <net/netmap.h> 81 #include <dev/netmap/netmap_kern.h> 82 #include <dev/netmap/netmap_mem2.h> 83 84 #define rtnl_lock() D("rtnl_lock called"); 85 #define rtnl_unlock() D("rtnl_unlock called"); 86 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 87 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid) 88 #define smp_mb() 89 90 /* 91 * mbuf wrappers 92 */ 93 94 /* 95 * we allocate an EXT_PACKET 96 */ 97 #define netmap_get_mbuf(len) m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR|M_NOFREE) 98 99 /* mbuf destructor, also need to change the type to EXT_EXTREF, 100 * add an M_NOFREE flag, and then clear the flag and 101 * chain into uma_zfree(zone_pack, mf) 102 * (or reinstall the buffer ?) 103 */ 104 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 105 (m)->m_ext.ext_free = (void *)fn; \ 106 (m)->m_ext.ext_type = EXT_EXTREF; \ 107 } while (0) 108 109 110 #define GET_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *(m)->m_ext.ref_cnt : -1) 111 112 113 114 #else /* linux */ 115 116 #include "bsd_glue.h" 117 118 #include <linux/rtnetlink.h> /* rtnl_[un]lock() */ 119 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */ 120 #include <linux/hrtimer.h> 121 122 //#define RATE /* Enables communication statistics. */ 123 124 //#define REG_RESET 125 126 #endif /* linux */ 127 128 129 /* Common headers. */ 130 #include <net/netmap.h> 131 #include <dev/netmap/netmap_kern.h> 132 #include <dev/netmap/netmap_mem2.h> 133 134 135 136 /* ======================== usage stats =========================== */ 137 138 #ifdef RATE 139 #define IFRATE(x) x 140 struct rate_stats { 141 unsigned long txpkt; 142 unsigned long txsync; 143 unsigned long txirq; 144 unsigned long rxpkt; 145 unsigned long rxirq; 146 unsigned long rxsync; 147 }; 148 149 struct rate_context { 150 unsigned refcount; 151 struct timer_list timer; 152 struct rate_stats new; 153 struct rate_stats old; 154 }; 155 156 #define RATE_PRINTK(_NAME_) \ 157 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD); 158 #define RATE_PERIOD 2 159 static void rate_callback(unsigned long arg) 160 { 161 struct rate_context * ctx = (struct rate_context *)arg; 162 struct rate_stats cur = ctx->new; 163 int r; 164 165 RATE_PRINTK(txpkt); 166 RATE_PRINTK(txsync); 167 RATE_PRINTK(txirq); 168 RATE_PRINTK(rxpkt); 169 RATE_PRINTK(rxsync); 170 RATE_PRINTK(rxirq); 171 printk("\n"); 172 173 ctx->old = cur; 174 r = mod_timer(&ctx->timer, jiffies + 175 msecs_to_jiffies(RATE_PERIOD * 1000)); 176 if (unlikely(r)) 177 D("[v1000] Error: mod_timer()"); 178 } 179 180 static struct rate_context rate_ctx; 181 182 #else /* !RATE */ 183 #define IFRATE(x) 184 #endif /* !RATE */ 185 186 187 /* =============== GENERIC NETMAP ADAPTER SUPPORT ================= */ 188 #define GENERIC_BUF_SIZE netmap_buf_size /* Size of the mbufs in the Tx pool. */ 189 190 /* 191 * Wrapper used by the generic adapter layer to notify 192 * the poller threads. Differently from netmap_rx_irq(), we check 193 * only IFCAP_NETMAP instead of NAF_NATIVE_ON to enable the irq. 194 */ 195 static void 196 netmap_generic_irq(struct ifnet *ifp, u_int q, u_int *work_done) 197 { 198 if (unlikely(!(ifp->if_capenable & IFCAP_NETMAP))) 199 return; 200 201 netmap_common_irq(ifp, q, work_done); 202 } 203 204 205 /* Enable/disable netmap mode for a generic network interface. */ 206 static int 207 generic_netmap_register(struct netmap_adapter *na, int enable) 208 { 209 struct ifnet *ifp = na->ifp; 210 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 211 struct mbuf *m; 212 int error; 213 int i, r; 214 215 if (!na) 216 return EINVAL; 217 218 #ifdef REG_RESET 219 error = ifp->netdev_ops->ndo_stop(ifp); 220 if (error) { 221 return error; 222 } 223 #endif /* REG_RESET */ 224 225 if (enable) { /* Enable netmap mode. */ 226 /* Init the mitigation support. */ 227 gna->mit = malloc(na->num_rx_rings * sizeof(struct nm_generic_mit), 228 M_DEVBUF, M_NOWAIT | M_ZERO); 229 if (!gna->mit) { 230 D("mitigation allocation failed"); 231 error = ENOMEM; 232 goto out; 233 } 234 for (r=0; r<na->num_rx_rings; r++) 235 netmap_mitigation_init(&gna->mit[r], na); 236 237 /* Initialize the rx queue, as generic_rx_handler() can 238 * be called as soon as netmap_catch_rx() returns. 239 */ 240 for (r=0; r<na->num_rx_rings; r++) { 241 mbq_safe_init(&na->rx_rings[r].rx_queue); 242 } 243 244 /* 245 * Preallocate packet buffers for the tx rings. 246 */ 247 for (r=0; r<na->num_tx_rings; r++) 248 na->tx_rings[r].tx_pool = NULL; 249 for (r=0; r<na->num_tx_rings; r++) { 250 na->tx_rings[r].tx_pool = malloc(na->num_tx_desc * sizeof(struct mbuf *), 251 M_DEVBUF, M_NOWAIT | M_ZERO); 252 if (!na->tx_rings[r].tx_pool) { 253 D("tx_pool allocation failed"); 254 error = ENOMEM; 255 goto free_tx_pools; 256 } 257 for (i=0; i<na->num_tx_desc; i++) 258 na->tx_rings[r].tx_pool[i] = NULL; 259 for (i=0; i<na->num_tx_desc; i++) { 260 m = netmap_get_mbuf(GENERIC_BUF_SIZE); 261 if (!m) { 262 D("tx_pool[%d] allocation failed", i); 263 error = ENOMEM; 264 goto free_tx_pools; 265 } 266 na->tx_rings[r].tx_pool[i] = m; 267 } 268 } 269 rtnl_lock(); 270 /* Prepare to intercept incoming traffic. */ 271 error = netmap_catch_rx(na, 1); 272 if (error) { 273 D("netdev_rx_handler_register() failed (%d)", error); 274 goto register_handler; 275 } 276 ifp->if_capenable |= IFCAP_NETMAP; 277 278 /* Make netmap control the packet steering. */ 279 netmap_catch_tx(gna, 1); 280 281 rtnl_unlock(); 282 283 #ifdef RATE 284 if (rate_ctx.refcount == 0) { 285 D("setup_timer()"); 286 memset(&rate_ctx, 0, sizeof(rate_ctx)); 287 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx); 288 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) { 289 D("Error: mod_timer()"); 290 } 291 } 292 rate_ctx.refcount++; 293 #endif /* RATE */ 294 295 } else if (na->tx_rings[0].tx_pool) { 296 /* Disable netmap mode. We enter here only if the previous 297 generic_netmap_register(na, 1) was successfull. 298 If it was not, na->tx_rings[0].tx_pool was set to NULL by the 299 error handling code below. */ 300 rtnl_lock(); 301 302 ifp->if_capenable &= ~IFCAP_NETMAP; 303 304 /* Release packet steering control. */ 305 netmap_catch_tx(gna, 0); 306 307 /* Do not intercept packets on the rx path. */ 308 netmap_catch_rx(na, 0); 309 310 rtnl_unlock(); 311 312 /* Free the mbufs going to the netmap rings */ 313 for (r=0; r<na->num_rx_rings; r++) { 314 mbq_safe_purge(&na->rx_rings[r].rx_queue); 315 mbq_safe_destroy(&na->rx_rings[r].rx_queue); 316 } 317 318 for (r=0; r<na->num_rx_rings; r++) 319 netmap_mitigation_cleanup(&gna->mit[r]); 320 free(gna->mit, M_DEVBUF); 321 322 for (r=0; r<na->num_tx_rings; r++) { 323 for (i=0; i<na->num_tx_desc; i++) { 324 m_freem(na->tx_rings[r].tx_pool[i]); 325 } 326 free(na->tx_rings[r].tx_pool, M_DEVBUF); 327 } 328 329 #ifdef RATE 330 if (--rate_ctx.refcount == 0) { 331 D("del_timer()"); 332 del_timer(&rate_ctx.timer); 333 } 334 #endif 335 } 336 337 #ifdef REG_RESET 338 error = ifp->netdev_ops->ndo_open(ifp); 339 if (error) { 340 goto free_tx_pools; 341 } 342 #endif 343 344 return 0; 345 346 register_handler: 347 rtnl_unlock(); 348 free_tx_pools: 349 for (r=0; r<na->num_tx_rings; r++) { 350 if (na->tx_rings[r].tx_pool == NULL) 351 continue; 352 for (i=0; i<na->num_tx_desc; i++) 353 if (na->tx_rings[r].tx_pool[i]) 354 m_freem(na->tx_rings[r].tx_pool[i]); 355 free(na->tx_rings[r].tx_pool, M_DEVBUF); 356 na->tx_rings[r].tx_pool = NULL; 357 } 358 for (r=0; r<na->num_rx_rings; r++) { 359 netmap_mitigation_cleanup(&gna->mit[r]); 360 mbq_safe_destroy(&na->rx_rings[r].rx_queue); 361 } 362 free(gna->mit, M_DEVBUF); 363 out: 364 365 return error; 366 } 367 368 /* 369 * Callback invoked when the device driver frees an mbuf used 370 * by netmap to transmit a packet. This usually happens when 371 * the NIC notifies the driver that transmission is completed. 372 */ 373 static void 374 generic_mbuf_destructor(struct mbuf *m) 375 { 376 if (netmap_verbose) 377 D("Tx irq (%p) queue %d", m, MBUF_TXQ(m)); 378 netmap_generic_irq(MBUF_IFP(m), MBUF_TXQ(m), NULL); 379 #ifdef __FreeBSD__ 380 m->m_ext.ext_type = EXT_PACKET; 381 m->m_ext.ext_free = NULL; 382 if (*(m->m_ext.ref_cnt) == 0) 383 *(m->m_ext.ref_cnt) = 1; 384 uma_zfree(zone_pack, m); 385 #endif /* __FreeBSD__ */ 386 IFRATE(rate_ctx.new.txirq++); 387 } 388 389 /* Record completed transmissions and update hwtail. 390 * 391 * The oldest tx buffer not yet completed is at nr_hwtail + 1, 392 * nr_hwcur is the first unsent buffer. 393 */ 394 static u_int 395 generic_netmap_tx_clean(struct netmap_kring *kring) 396 { 397 u_int const lim = kring->nkr_num_slots - 1; 398 u_int nm_i = nm_next(kring->nr_hwtail, lim); 399 u_int hwcur = kring->nr_hwcur; 400 u_int n = 0; 401 struct mbuf **tx_pool = kring->tx_pool; 402 403 while (nm_i != hwcur) { /* buffers not completed */ 404 struct mbuf *m = tx_pool[nm_i]; 405 406 if (unlikely(m == NULL)) { 407 /* this is done, try to replenish the entry */ 408 tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE); 409 if (unlikely(m == NULL)) { 410 D("mbuf allocation failed, XXX error"); 411 // XXX how do we proceed ? break ? 412 return -ENOMEM; 413 } 414 } else if (GET_MBUF_REFCNT(m) != 1) { 415 break; /* This mbuf is still busy: its refcnt is 2. */ 416 } 417 n++; 418 nm_i = nm_next(nm_i, lim); 419 } 420 kring->nr_hwtail = nm_prev(nm_i, lim); 421 ND("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail); 422 423 return n; 424 } 425 426 427 /* 428 * We have pending packets in the driver between nr_hwtail +1 and hwcur. 429 * Compute a position in the middle, to be used to generate 430 * a notification. 431 */ 432 static inline u_int 433 generic_tx_event_middle(struct netmap_kring *kring, u_int hwcur) 434 { 435 u_int n = kring->nkr_num_slots; 436 u_int ntc = nm_next(kring->nr_hwtail, n-1); 437 u_int e; 438 439 if (hwcur >= ntc) { 440 e = (hwcur + ntc) / 2; 441 } else { /* wrap around */ 442 e = (hwcur + n + ntc) / 2; 443 if (e >= n) { 444 e -= n; 445 } 446 } 447 448 if (unlikely(e >= n)) { 449 D("This cannot happen"); 450 e = 0; 451 } 452 453 return e; 454 } 455 456 /* 457 * We have pending packets in the driver between nr_hwtail+1 and hwcur. 458 * Schedule a notification approximately in the middle of the two. 459 * There is a race but this is only called within txsync which does 460 * a double check. 461 */ 462 static void 463 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur) 464 { 465 struct mbuf *m; 466 u_int e; 467 468 if (nm_next(kring->nr_hwtail, kring->nkr_num_slots -1) == hwcur) { 469 return; /* all buffers are free */ 470 } 471 e = generic_tx_event_middle(kring, hwcur); 472 473 m = kring->tx_pool[e]; 474 if (m == NULL) { 475 /* This can happen if there is already an event on the netmap 476 slot 'e': There is nothing to do. */ 477 return; 478 } 479 ND("Event at %d mbuf %p refcnt %d", e, m, GET_MBUF_REFCNT(m)); 480 kring->tx_pool[e] = NULL; 481 SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor); 482 483 // XXX wmb() ? 484 /* Decrement the refcount an free it if we have the last one. */ 485 m_freem(m); 486 smp_mb(); 487 } 488 489 490 /* 491 * generic_netmap_txsync() transforms netmap buffers into mbufs 492 * and passes them to the standard device driver 493 * (ndo_start_xmit() or ifp->if_transmit() ). 494 * On linux this is not done directly, but using dev_queue_xmit(), 495 * since it implements the TX flow control (and takes some locks). 496 */ 497 static int 498 generic_netmap_txsync(struct netmap_adapter *na, u_int ring_nr, int flags) 499 { 500 struct ifnet *ifp = na->ifp; 501 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 502 struct netmap_ring *ring = kring->ring; 503 u_int nm_i; /* index into the netmap ring */ // j 504 u_int const lim = kring->nkr_num_slots - 1; 505 u_int const head = kring->rhead; 506 507 IFRATE(rate_ctx.new.txsync++); 508 509 // TODO: handle the case of mbuf allocation failure 510 511 rmb(); 512 513 /* 514 * First part: process new packets to send. 515 */ 516 nm_i = kring->nr_hwcur; 517 if (nm_i != head) { /* we have new packets to send */ 518 while (nm_i != head) { 519 struct netmap_slot *slot = &ring->slot[nm_i]; 520 u_int len = slot->len; 521 void *addr = NMB(slot); 522 523 /* device-specific */ 524 struct mbuf *m; 525 int tx_ret; 526 527 NM_CHECK_ADDR_LEN(addr, len); 528 529 /* Tale a mbuf from the tx pool and copy in the user packet. */ 530 m = kring->tx_pool[nm_i]; 531 if (unlikely(!m)) { 532 RD(5, "This should never happen"); 533 kring->tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE); 534 if (unlikely(m == NULL)) { 535 D("mbuf allocation failed"); 536 break; 537 } 538 } 539 /* XXX we should ask notifications when NS_REPORT is set, 540 * or roughly every half frame. We can optimize this 541 * by lazily requesting notifications only when a 542 * transmission fails. Probably the best way is to 543 * break on failures and set notifications when 544 * ring->cur == ring->tail || nm_i != cur 545 */ 546 tx_ret = generic_xmit_frame(ifp, m, addr, len, ring_nr); 547 if (unlikely(tx_ret)) { 548 RD(5, "start_xmit failed: err %d [nm_i %u, head %u, hwtail %u]", 549 tx_ret, nm_i, head, kring->nr_hwtail); 550 /* 551 * No room for this mbuf in the device driver. 552 * Request a notification FOR A PREVIOUS MBUF, 553 * then call generic_netmap_tx_clean(kring) to do the 554 * double check and see if we can free more buffers. 555 * If there is space continue, else break; 556 * NOTE: the double check is necessary if the problem 557 * occurs in the txsync call after selrecord(). 558 * Also, we need some way to tell the caller that not 559 * all buffers were queued onto the device (this was 560 * not a problem with native netmap driver where space 561 * is preallocated). The bridge has a similar problem 562 * and we solve it there by dropping the excess packets. 563 */ 564 generic_set_tx_event(kring, nm_i); 565 if (generic_netmap_tx_clean(kring)) { /* space now available */ 566 continue; 567 } else { 568 break; 569 } 570 } 571 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); 572 nm_i = nm_next(nm_i, lim); 573 IFRATE(rate_ctx.new.txpkt ++); 574 } 575 576 /* Update hwcur to the next slot to transmit. */ 577 kring->nr_hwcur = nm_i; /* not head, we could break early */ 578 } 579 580 /* 581 * Second, reclaim completed buffers 582 */ 583 if (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring)) { 584 /* No more available slots? Set a notification event 585 * on a netmap slot that will be cleaned in the future. 586 * No doublecheck is performed, since txsync() will be 587 * called twice by netmap_poll(). 588 */ 589 generic_set_tx_event(kring, nm_i); 590 } 591 ND("tx #%d, hwtail = %d", n, kring->nr_hwtail); 592 593 generic_netmap_tx_clean(kring); 594 595 nm_txsync_finalize(kring); 596 597 return 0; 598 } 599 600 601 /* 602 * This handler is registered (through netmap_catch_rx()) 603 * within the attached network interface 604 * in the RX subsystem, so that every mbuf passed up by 605 * the driver can be stolen to the network stack. 606 * Stolen packets are put in a queue where the 607 * generic_netmap_rxsync() callback can extract them. 608 */ 609 void 610 generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 611 { 612 struct netmap_adapter *na = NA(ifp); 613 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 614 u_int work_done; 615 u_int rr = MBUF_RXQ(m); // receive ring number 616 617 if (rr >= na->num_rx_rings) { 618 rr = rr % na->num_rx_rings; // XXX expensive... 619 } 620 621 /* limit the size of the queue */ 622 if (unlikely(mbq_len(&na->rx_rings[rr].rx_queue) > 1024)) { 623 m_freem(m); 624 } else { 625 mbq_safe_enqueue(&na->rx_rings[rr].rx_queue, m); 626 } 627 628 if (netmap_generic_mit < 32768) { 629 /* no rx mitigation, pass notification up */ 630 netmap_generic_irq(na->ifp, rr, &work_done); 631 IFRATE(rate_ctx.new.rxirq++); 632 } else { 633 /* same as send combining, filter notification if there is a 634 * pending timer, otherwise pass it up and start a timer. 635 */ 636 if (likely(netmap_mitigation_active(&gna->mit[rr]))) { 637 /* Record that there is some pending work. */ 638 gna->mit[rr].mit_pending = 1; 639 } else { 640 netmap_generic_irq(na->ifp, rr, &work_done); 641 IFRATE(rate_ctx.new.rxirq++); 642 netmap_mitigation_start(&gna->mit[rr]); 643 } 644 } 645 } 646 647 /* 648 * generic_netmap_rxsync() extracts mbufs from the queue filled by 649 * generic_netmap_rx_handler() and puts their content in the netmap 650 * receive ring. 651 * Access must be protected because the rx handler is asynchronous, 652 */ 653 static int 654 generic_netmap_rxsync(struct netmap_adapter *na, u_int ring_nr, int flags) 655 { 656 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 657 struct netmap_ring *ring = kring->ring; 658 u_int nm_i; /* index into the netmap ring */ //j, 659 u_int n; 660 u_int const lim = kring->nkr_num_slots - 1; 661 u_int const head = nm_rxsync_prologue(kring); 662 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 663 664 if (head > lim) 665 return netmap_ring_reinit(kring); 666 667 /* 668 * First part: import newly received packets. 669 */ 670 if (netmap_no_pendintr || force_update) { 671 /* extract buffers from the rx queue, stop at most one 672 * slot before nr_hwcur (stop_i) 673 */ 674 uint16_t slot_flags = kring->nkr_slot_flags; 675 u_int stop_i = nm_prev(kring->nr_hwcur, lim); 676 677 nm_i = kring->nr_hwtail; /* first empty slot in the receive ring */ 678 for (n = 0; nm_i != stop_i; n++) { 679 int len; 680 void *addr = NMB(&ring->slot[nm_i]); 681 struct mbuf *m; 682 683 /* we only check the address here on generic rx rings */ 684 if (addr == netmap_buffer_base) { /* Bad buffer */ 685 return netmap_ring_reinit(kring); 686 } 687 /* 688 * Call the locked version of the function. 689 * XXX Ideally we could grab a batch of mbufs at once 690 * and save some locking overhead. 691 */ 692 m = mbq_safe_dequeue(&kring->rx_queue); 693 if (!m) /* no more data */ 694 break; 695 len = MBUF_LEN(m); 696 m_copydata(m, 0, len, addr); 697 ring->slot[nm_i].len = len; 698 ring->slot[nm_i].flags = slot_flags; 699 m_freem(m); 700 nm_i = nm_next(nm_i, lim); 701 } 702 if (n) { 703 kring->nr_hwtail = nm_i; 704 IFRATE(rate_ctx.new.rxpkt += n); 705 } 706 kring->nr_kflags &= ~NKR_PENDINTR; 707 } 708 709 // XXX should we invert the order ? 710 /* 711 * Second part: skip past packets that userspace has released. 712 */ 713 nm_i = kring->nr_hwcur; 714 if (nm_i != head) { 715 /* Userspace has released some packets. */ 716 for (n = 0; nm_i != head; n++) { 717 struct netmap_slot *slot = &ring->slot[nm_i]; 718 719 slot->flags &= ~NS_BUF_CHANGED; 720 nm_i = nm_next(nm_i, lim); 721 } 722 kring->nr_hwcur = head; 723 } 724 /* tell userspace that there might be new packets. */ 725 nm_rxsync_finalize(kring); 726 IFRATE(rate_ctx.new.rxsync++); 727 728 return 0; 729 } 730 731 static void 732 generic_netmap_dtor(struct netmap_adapter *na) 733 { 734 struct ifnet *ifp = na->ifp; 735 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na; 736 struct netmap_adapter *prev_na = gna->prev; 737 738 if (prev_na != NULL) { 739 D("Released generic NA %p", gna); 740 if_rele(na->ifp); 741 netmap_adapter_put(prev_na); 742 } 743 if (ifp != NULL) { 744 WNA(ifp) = prev_na; 745 D("Restored native NA %p", prev_na); 746 na->ifp = NULL; 747 } 748 } 749 750 /* 751 * generic_netmap_attach() makes it possible to use netmap on 752 * a device without native netmap support. 753 * This is less performant than native support but potentially 754 * faster than raw sockets or similar schemes. 755 * 756 * In this "emulated" mode, netmap rings do not necessarily 757 * have the same size as those in the NIC. We use a default 758 * value and possibly override it if the OS has ways to fetch the 759 * actual configuration. 760 */ 761 int 762 generic_netmap_attach(struct ifnet *ifp) 763 { 764 struct netmap_adapter *na; 765 struct netmap_generic_adapter *gna; 766 int retval; 767 u_int num_tx_desc, num_rx_desc; 768 769 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */ 770 771 generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); 772 ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc); 773 774 gna = malloc(sizeof(*gna), M_DEVBUF, M_NOWAIT | M_ZERO); 775 if (gna == NULL) { 776 D("no memory on attach, give up"); 777 return ENOMEM; 778 } 779 na = (struct netmap_adapter *)gna; 780 na->ifp = ifp; 781 na->num_tx_desc = num_tx_desc; 782 na->num_rx_desc = num_rx_desc; 783 na->nm_register = &generic_netmap_register; 784 na->nm_txsync = &generic_netmap_txsync; 785 na->nm_rxsync = &generic_netmap_rxsync; 786 na->nm_dtor = &generic_netmap_dtor; 787 /* when using generic, IFCAP_NETMAP is set so we force 788 * NAF_SKIP_INTR to use the regular interrupt handler 789 */ 790 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS; 791 792 ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)", 793 ifp->num_tx_queues, ifp->real_num_tx_queues, 794 ifp->tx_queue_len); 795 ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)", 796 ifp->num_rx_queues, ifp->real_num_rx_queues); 797 798 generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings); 799 800 retval = netmap_attach_common(na); 801 if (retval) { 802 free(gna, M_DEVBUF); 803 } 804 805 return retval; 806 } 807