1 /* 2 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * This module implements netmap support on top of standard, 28 * unmodified device drivers. 29 * 30 * A NIOCREGIF request is handled here if the device does not 31 * have native support. TX and RX rings are emulated as follows: 32 * 33 * NIOCREGIF 34 * We preallocate a block of TX mbufs (roughly as many as 35 * tx descriptors; the number is not critical) to speed up 36 * operation during transmissions. The refcount on most of 37 * these buffers is artificially bumped up so we can recycle 38 * them more easily. Also, the destructor is intercepted 39 * so we use it as an interrupt notification to wake up 40 * processes blocked on a poll(). 41 * 42 * For each receive ring we allocate one "struct mbq" 43 * (an mbuf tailq plus a spinlock). We intercept packets 44 * (through if_input) 45 * on the receive path and put them in the mbq from which 46 * netmap receive routines can grab them. 47 * 48 * TX: 49 * in the generic_txsync() routine, netmap buffers are copied 50 * (or linked, in a future) to the preallocated mbufs 51 * and pushed to the transmit queue. Some of these mbufs 52 * (those with NS_REPORT, or otherwise every half ring) 53 * have the refcount=1, others have refcount=2. 54 * When the destructor is invoked, we take that as 55 * a notification that all mbufs up to that one in 56 * the specific ring have been completed, and generate 57 * the equivalent of a transmit interrupt. 58 * 59 * RX: 60 * 61 */ 62 63 #ifdef __FreeBSD__ 64 65 #include <sys/cdefs.h> /* prerequisite */ 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/types.h> 69 #include <sys/errno.h> 70 #include <sys/malloc.h> 71 #include <sys/lock.h> /* PROT_EXEC */ 72 #include <sys/rwlock.h> 73 #include <sys/socket.h> /* sockaddrs */ 74 #include <sys/selinfo.h> 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */ 78 79 // XXX temporary - D() defined here 80 #include <net/netmap.h> 81 #include <dev/netmap/netmap_kern.h> 82 #include <dev/netmap/netmap_mem2.h> 83 84 #define rtnl_lock() D("rtnl_lock called"); 85 #define rtnl_unlock() D("rtnl_unlock called"); 86 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 87 #define smp_mb() 88 89 /* 90 * mbuf wrappers 91 */ 92 93 /* 94 * we allocate an EXT_PACKET 95 */ 96 #define netmap_get_mbuf(len) m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR|M_NOFREE) 97 98 /* mbuf destructor, also need to change the type to EXT_EXTREF, 99 * add an M_NOFREE flag, and then clear the flag and 100 * chain into uma_zfree(zone_pack, mf) 101 * (or reinstall the buffer ?) 102 */ 103 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 104 (m)->m_ext.ext_free = (void *)fn; \ 105 (m)->m_ext.ext_type = EXT_EXTREF; \ 106 } while (0) 107 108 109 #define GET_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *(m)->m_ext.ref_cnt : -1) 110 111 112 113 #else /* linux */ 114 115 #include "bsd_glue.h" 116 117 #include <linux/rtnetlink.h> /* rtnl_[un]lock() */ 118 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */ 119 #include <linux/hrtimer.h> 120 121 //#define RATE /* Enables communication statistics. */ 122 123 //#define REG_RESET 124 125 #endif /* linux */ 126 127 128 /* Common headers. */ 129 #include <net/netmap.h> 130 #include <dev/netmap/netmap_kern.h> 131 #include <dev/netmap/netmap_mem2.h> 132 133 134 135 /* ======================== usage stats =========================== */ 136 137 #ifdef RATE 138 #define IFRATE(x) x 139 struct rate_stats { 140 unsigned long txpkt; 141 unsigned long txsync; 142 unsigned long txirq; 143 unsigned long rxpkt; 144 unsigned long rxirq; 145 unsigned long rxsync; 146 }; 147 148 struct rate_context { 149 unsigned refcount; 150 struct timer_list timer; 151 struct rate_stats new; 152 struct rate_stats old; 153 }; 154 155 #define RATE_PRINTK(_NAME_) \ 156 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD); 157 #define RATE_PERIOD 2 158 static void rate_callback(unsigned long arg) 159 { 160 struct rate_context * ctx = (struct rate_context *)arg; 161 struct rate_stats cur = ctx->new; 162 int r; 163 164 RATE_PRINTK(txpkt); 165 RATE_PRINTK(txsync); 166 RATE_PRINTK(txirq); 167 RATE_PRINTK(rxpkt); 168 RATE_PRINTK(rxsync); 169 RATE_PRINTK(rxirq); 170 printk("\n"); 171 172 ctx->old = cur; 173 r = mod_timer(&ctx->timer, jiffies + 174 msecs_to_jiffies(RATE_PERIOD * 1000)); 175 if (unlikely(r)) 176 D("[v1000] Error: mod_timer()"); 177 } 178 179 static struct rate_context rate_ctx; 180 181 #else /* !RATE */ 182 #define IFRATE(x) 183 #endif /* !RATE */ 184 185 186 /* =============== GENERIC NETMAP ADAPTER SUPPORT ================= */ 187 #define GENERIC_BUF_SIZE netmap_buf_size /* Size of the mbufs in the Tx pool. */ 188 189 /* 190 * Wrapper used by the generic adapter layer to notify 191 * the poller threads. Differently from netmap_rx_irq(), we check 192 * only IFCAP_NETMAP instead of NAF_NATIVE_ON to enable the irq. 193 */ 194 static void 195 netmap_generic_irq(struct ifnet *ifp, u_int q, u_int *work_done) 196 { 197 if (unlikely(!(ifp->if_capenable & IFCAP_NETMAP))) 198 return; 199 200 netmap_common_irq(ifp, q, work_done); 201 } 202 203 204 /* Enable/disable netmap mode for a generic network interface. */ 205 static int 206 generic_netmap_register(struct netmap_adapter *na, int enable) 207 { 208 struct ifnet *ifp = na->ifp; 209 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 210 struct mbuf *m; 211 int error; 212 int i, r; 213 214 if (!na) 215 return EINVAL; 216 217 #ifdef REG_RESET 218 error = ifp->netdev_ops->ndo_stop(ifp); 219 if (error) { 220 return error; 221 } 222 #endif /* REG_RESET */ 223 224 if (enable) { /* Enable netmap mode. */ 225 /* Initialize the rx queue, as generic_rx_handler() can 226 * be called as soon as netmap_catch_rx() returns. 227 */ 228 for (r=0; r<na->num_rx_rings; r++) { 229 mbq_safe_init(&na->rx_rings[r].rx_queue); 230 } 231 232 /* Init the mitigation timer. */ 233 netmap_mitigation_init(gna); 234 235 /* 236 * Preallocate packet buffers for the tx rings. 237 */ 238 for (r=0; r<na->num_tx_rings; r++) 239 na->tx_rings[r].tx_pool = NULL; 240 for (r=0; r<na->num_tx_rings; r++) { 241 na->tx_rings[r].tx_pool = malloc(na->num_tx_desc * sizeof(struct mbuf *), 242 M_DEVBUF, M_NOWAIT | M_ZERO); 243 if (!na->tx_rings[r].tx_pool) { 244 D("tx_pool allocation failed"); 245 error = ENOMEM; 246 goto free_tx_pools; 247 } 248 for (i=0; i<na->num_tx_desc; i++) 249 na->tx_rings[r].tx_pool[i] = NULL; 250 for (i=0; i<na->num_tx_desc; i++) { 251 m = netmap_get_mbuf(GENERIC_BUF_SIZE); 252 if (!m) { 253 D("tx_pool[%d] allocation failed", i); 254 error = ENOMEM; 255 goto free_tx_pools; 256 } 257 na->tx_rings[r].tx_pool[i] = m; 258 } 259 } 260 rtnl_lock(); 261 /* Prepare to intercept incoming traffic. */ 262 error = netmap_catch_rx(na, 1); 263 if (error) { 264 D("netdev_rx_handler_register() failed"); 265 goto register_handler; 266 } 267 ifp->if_capenable |= IFCAP_NETMAP; 268 269 /* Make netmap control the packet steering. */ 270 netmap_catch_tx(gna, 1); 271 272 rtnl_unlock(); 273 274 #ifdef RATE 275 if (rate_ctx.refcount == 0) { 276 D("setup_timer()"); 277 memset(&rate_ctx, 0, sizeof(rate_ctx)); 278 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx); 279 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) { 280 D("Error: mod_timer()"); 281 } 282 } 283 rate_ctx.refcount++; 284 #endif /* RATE */ 285 286 } else { /* Disable netmap mode. */ 287 rtnl_lock(); 288 289 ifp->if_capenable &= ~IFCAP_NETMAP; 290 291 /* Release packet steering control. */ 292 netmap_catch_tx(gna, 0); 293 294 /* Do not intercept packets on the rx path. */ 295 netmap_catch_rx(na, 0); 296 297 rtnl_unlock(); 298 299 /* Free the mbufs going to the netmap rings */ 300 for (r=0; r<na->num_rx_rings; r++) { 301 mbq_safe_purge(&na->rx_rings[r].rx_queue); 302 mbq_safe_destroy(&na->rx_rings[r].rx_queue); 303 } 304 305 netmap_mitigation_cleanup(gna); 306 307 for (r=0; r<na->num_tx_rings; r++) { 308 for (i=0; i<na->num_tx_desc; i++) { 309 m_freem(na->tx_rings[r].tx_pool[i]); 310 } 311 free(na->tx_rings[r].tx_pool, M_DEVBUF); 312 } 313 314 #ifdef RATE 315 if (--rate_ctx.refcount == 0) { 316 D("del_timer()"); 317 del_timer(&rate_ctx.timer); 318 } 319 #endif 320 } 321 322 #ifdef REG_RESET 323 error = ifp->netdev_ops->ndo_open(ifp); 324 if (error) { 325 goto alloc_tx_pool; 326 } 327 #endif 328 329 return 0; 330 331 register_handler: 332 rtnl_unlock(); 333 free_tx_pools: 334 for (r=0; r<na->num_tx_rings; r++) { 335 if (na->tx_rings[r].tx_pool == NULL) 336 continue; 337 for (i=0; i<na->num_tx_desc; i++) 338 if (na->tx_rings[r].tx_pool[i]) 339 m_freem(na->tx_rings[r].tx_pool[i]); 340 free(na->tx_rings[r].tx_pool, M_DEVBUF); 341 } 342 343 return error; 344 } 345 346 /* 347 * Callback invoked when the device driver frees an mbuf used 348 * by netmap to transmit a packet. This usually happens when 349 * the NIC notifies the driver that transmission is completed. 350 */ 351 static void 352 generic_mbuf_destructor(struct mbuf *m) 353 { 354 if (netmap_verbose) 355 D("Tx irq (%p) queue %d", m, MBUF_TXQ(m)); 356 netmap_generic_irq(MBUF_IFP(m), MBUF_TXQ(m), NULL); 357 #ifdef __FreeBSD__ 358 m->m_ext.ext_type = EXT_PACKET; 359 m->m_ext.ext_free = NULL; 360 if (*(m->m_ext.ref_cnt) == 0) 361 *(m->m_ext.ref_cnt) = 1; 362 uma_zfree(zone_pack, m); 363 #endif /* __FreeBSD__ */ 364 IFRATE(rate_ctx.new.txirq++); 365 } 366 367 /* Record completed transmissions and update hwtail. 368 * 369 * The oldest tx buffer not yet completed is at nr_hwtail + 1, 370 * nr_hwcur is the first unsent buffer. 371 */ 372 static u_int 373 generic_netmap_tx_clean(struct netmap_kring *kring) 374 { 375 u_int const lim = kring->nkr_num_slots - 1; 376 u_int nm_i = nm_next(kring->nr_hwtail, lim); 377 u_int hwcur = kring->nr_hwcur; 378 u_int n = 0; 379 struct mbuf **tx_pool = kring->tx_pool; 380 381 while (nm_i != hwcur) { /* buffers not completed */ 382 struct mbuf *m = tx_pool[nm_i]; 383 384 if (unlikely(m == NULL)) { 385 /* this is done, try to replenish the entry */ 386 tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE); 387 if (unlikely(m == NULL)) { 388 D("mbuf allocation failed, XXX error"); 389 // XXX how do we proceed ? break ? 390 return -ENOMEM; 391 } 392 } else if (GET_MBUF_REFCNT(m) != 1) { 393 break; /* This mbuf is still busy: its refcnt is 2. */ 394 } 395 n++; 396 nm_i = nm_next(nm_i, lim); 397 } 398 kring->nr_hwtail = nm_prev(nm_i, lim); 399 ND("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail); 400 401 return n; 402 } 403 404 405 /* 406 * We have pending packets in the driver between nr_hwtail +1 and hwcur. 407 * Compute a position in the middle, to be used to generate 408 * a notification. 409 */ 410 static inline u_int 411 generic_tx_event_middle(struct netmap_kring *kring, u_int hwcur) 412 { 413 u_int n = kring->nkr_num_slots; 414 u_int ntc = nm_next(kring->nr_hwtail, n-1); 415 u_int e; 416 417 if (hwcur >= ntc) { 418 e = (hwcur + ntc) / 2; 419 } else { /* wrap around */ 420 e = (hwcur + n + ntc) / 2; 421 if (e >= n) { 422 e -= n; 423 } 424 } 425 426 if (unlikely(e >= n)) { 427 D("This cannot happen"); 428 e = 0; 429 } 430 431 return e; 432 } 433 434 /* 435 * We have pending packets in the driver between nr_hwtail+1 and hwcur. 436 * Schedule a notification approximately in the middle of the two. 437 * There is a race but this is only called within txsync which does 438 * a double check. 439 */ 440 static void 441 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur) 442 { 443 struct mbuf *m; 444 u_int e; 445 446 if (nm_next(kring->nr_hwtail, kring->nkr_num_slots -1) == hwcur) { 447 return; /* all buffers are free */ 448 } 449 e = generic_tx_event_middle(kring, hwcur); 450 451 m = kring->tx_pool[e]; 452 if (m == NULL) { 453 /* This can happen if there is already an event on the netmap 454 slot 'e': There is nothing to do. */ 455 return; 456 } 457 ND("Event at %d mbuf %p refcnt %d", e, m, GET_MBUF_REFCNT(m)); 458 kring->tx_pool[e] = NULL; 459 SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor); 460 461 // XXX wmb() ? 462 /* Decrement the refcount an free it if we have the last one. */ 463 m_freem(m); 464 smp_mb(); 465 } 466 467 468 /* 469 * generic_netmap_txsync() transforms netmap buffers into mbufs 470 * and passes them to the standard device driver 471 * (ndo_start_xmit() or ifp->if_transmit() ). 472 * On linux this is not done directly, but using dev_queue_xmit(), 473 * since it implements the TX flow control (and takes some locks). 474 */ 475 static int 476 generic_netmap_txsync(struct netmap_adapter *na, u_int ring_nr, int flags) 477 { 478 struct ifnet *ifp = na->ifp; 479 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 480 struct netmap_ring *ring = kring->ring; 481 u_int nm_i; /* index into the netmap ring */ // j 482 u_int const lim = kring->nkr_num_slots - 1; 483 u_int const head = kring->rhead; 484 485 IFRATE(rate_ctx.new.txsync++); 486 487 // TODO: handle the case of mbuf allocation failure 488 489 rmb(); 490 491 /* 492 * First part: process new packets to send. 493 */ 494 nm_i = kring->nr_hwcur; 495 if (nm_i != head) { /* we have new packets to send */ 496 while (nm_i != head) { 497 struct netmap_slot *slot = &ring->slot[nm_i]; 498 u_int len = slot->len; 499 void *addr = NMB(slot); 500 501 /* device-specific */ 502 struct mbuf *m; 503 int tx_ret; 504 505 NM_CHECK_ADDR_LEN(addr, len); 506 507 /* Tale a mbuf from the tx pool and copy in the user packet. */ 508 m = kring->tx_pool[nm_i]; 509 if (unlikely(!m)) { 510 RD(5, "This should never happen"); 511 kring->tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE); 512 if (unlikely(m == NULL)) { 513 D("mbuf allocation failed"); 514 break; 515 } 516 } 517 /* XXX we should ask notifications when NS_REPORT is set, 518 * or roughly every half frame. We can optimize this 519 * by lazily requesting notifications only when a 520 * transmission fails. Probably the best way is to 521 * break on failures and set notifications when 522 * ring->cur == ring->tail || nm_i != cur 523 */ 524 tx_ret = generic_xmit_frame(ifp, m, addr, len, ring_nr); 525 if (unlikely(tx_ret)) { 526 RD(5, "start_xmit failed: err %d [nm_i %u, head %u, hwtail %u]", 527 tx_ret, nm_i, head, kring->nr_hwtail); 528 /* 529 * No room for this mbuf in the device driver. 530 * Request a notification FOR A PREVIOUS MBUF, 531 * then call generic_netmap_tx_clean(kring) to do the 532 * double check and see if we can free more buffers. 533 * If there is space continue, else break; 534 * NOTE: the double check is necessary if the problem 535 * occurs in the txsync call after selrecord(). 536 * Also, we need some way to tell the caller that not 537 * all buffers were queued onto the device (this was 538 * not a problem with native netmap driver where space 539 * is preallocated). The bridge has a similar problem 540 * and we solve it there by dropping the excess packets. 541 */ 542 generic_set_tx_event(kring, nm_i); 543 if (generic_netmap_tx_clean(kring)) { /* space now available */ 544 continue; 545 } else { 546 break; 547 } 548 } 549 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); 550 nm_i = nm_next(nm_i, lim); 551 } 552 553 /* Update hwcur to the next slot to transmit. */ 554 kring->nr_hwcur = nm_i; /* not head, we could break early */ 555 556 IFRATE(rate_ctx.new.txpkt += ntx); 557 } 558 559 /* 560 * Second, reclaim completed buffers 561 */ 562 if (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring)) { 563 /* No more available slots? Set a notification event 564 * on a netmap slot that will be cleaned in the future. 565 * No doublecheck is performed, since txsync() will be 566 * called twice by netmap_poll(). 567 */ 568 generic_set_tx_event(kring, nm_i); 569 } 570 ND("tx #%d, hwtail = %d", n, kring->nr_hwtail); 571 572 generic_netmap_tx_clean(kring); 573 574 nm_txsync_finalize(kring); 575 576 return 0; 577 } 578 579 580 /* 581 * This handler is registered (through netmap_catch_rx()) 582 * within the attached network interface 583 * in the RX subsystem, so that every mbuf passed up by 584 * the driver can be stolen to the network stack. 585 * Stolen packets are put in a queue where the 586 * generic_netmap_rxsync() callback can extract them. 587 */ 588 void 589 generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 590 { 591 struct netmap_adapter *na = NA(ifp); 592 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 593 u_int work_done; 594 u_int rr = 0; // receive ring number 595 596 /* limit the size of the queue */ 597 if (unlikely(mbq_len(&na->rx_rings[rr].rx_queue) > 1024)) { 598 m_freem(m); 599 } else { 600 mbq_safe_enqueue(&na->rx_rings[rr].rx_queue, m); 601 } 602 603 if (netmap_generic_mit < 32768) { 604 /* no rx mitigation, pass notification up */ 605 netmap_generic_irq(na->ifp, rr, &work_done); 606 IFRATE(rate_ctx.new.rxirq++); 607 } else { 608 /* same as send combining, filter notification if there is a 609 * pending timer, otherwise pass it up and start a timer. 610 */ 611 if (likely(netmap_mitigation_active(gna))) { 612 /* Record that there is some pending work. */ 613 gna->mit_pending = 1; 614 } else { 615 netmap_generic_irq(na->ifp, rr, &work_done); 616 IFRATE(rate_ctx.new.rxirq++); 617 netmap_mitigation_start(gna); 618 } 619 } 620 } 621 622 /* 623 * generic_netmap_rxsync() extracts mbufs from the queue filled by 624 * generic_netmap_rx_handler() and puts their content in the netmap 625 * receive ring. 626 * Access must be protected because the rx handler is asynchronous, 627 */ 628 static int 629 generic_netmap_rxsync(struct netmap_adapter *na, u_int ring_nr, int flags) 630 { 631 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 632 struct netmap_ring *ring = kring->ring; 633 u_int nm_i; /* index into the netmap ring */ //j, 634 u_int n; 635 u_int const lim = kring->nkr_num_slots - 1; 636 u_int const head = nm_rxsync_prologue(kring); 637 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 638 639 if (head > lim) 640 return netmap_ring_reinit(kring); 641 642 /* 643 * First part: import newly received packets. 644 */ 645 if (netmap_no_pendintr || force_update) { 646 /* extract buffers from the rx queue, stop at most one 647 * slot before nr_hwcur (stop_i) 648 */ 649 uint16_t slot_flags = kring->nkr_slot_flags; 650 u_int stop_i = nm_prev(kring->nr_hwcur, lim); 651 652 nm_i = kring->nr_hwtail; /* first empty slot in the receive ring */ 653 for (n = 0; nm_i != stop_i; n++) { 654 int len; 655 void *addr = NMB(&ring->slot[nm_i]); 656 struct mbuf *m; 657 658 /* we only check the address here on generic rx rings */ 659 if (addr == netmap_buffer_base) { /* Bad buffer */ 660 return netmap_ring_reinit(kring); 661 } 662 /* 663 * Call the locked version of the function. 664 * XXX Ideally we could grab a batch of mbufs at once 665 * and save some locking overhead. 666 */ 667 m = mbq_safe_dequeue(&kring->rx_queue); 668 if (!m) /* no more data */ 669 break; 670 len = MBUF_LEN(m); 671 m_copydata(m, 0, len, addr); 672 ring->slot[nm_i].len = len; 673 ring->slot[nm_i].flags = slot_flags; 674 m_freem(m); 675 nm_i = nm_next(nm_i, lim); 676 n++; 677 } 678 if (n) { 679 kring->nr_hwtail = nm_i; 680 IFRATE(rate_ctx.new.rxpkt += n); 681 } 682 kring->nr_kflags &= ~NKR_PENDINTR; 683 } 684 685 // XXX should we invert the order ? 686 /* 687 * Second part: skip past packets that userspace has released. 688 */ 689 nm_i = kring->nr_hwcur; 690 if (nm_i != head) { 691 /* Userspace has released some packets. */ 692 for (n = 0; nm_i != head; n++) { 693 struct netmap_slot *slot = &ring->slot[nm_i]; 694 695 slot->flags &= ~NS_BUF_CHANGED; 696 nm_i = nm_next(nm_i, lim); 697 } 698 kring->nr_hwcur = head; 699 } 700 /* tell userspace that there might be new packets. */ 701 nm_rxsync_finalize(kring); 702 IFRATE(rate_ctx.new.rxsync++); 703 704 return 0; 705 } 706 707 static void 708 generic_netmap_dtor(struct netmap_adapter *na) 709 { 710 struct ifnet *ifp = na->ifp; 711 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na; 712 struct netmap_adapter *prev_na = gna->prev; 713 714 if (prev_na != NULL) { 715 D("Released generic NA %p", gna); 716 if_rele(na->ifp); 717 netmap_adapter_put(prev_na); 718 } 719 if (ifp != NULL) { 720 WNA(ifp) = prev_na; 721 D("Restored native NA %p", prev_na); 722 na->ifp = NULL; 723 } 724 } 725 726 /* 727 * generic_netmap_attach() makes it possible to use netmap on 728 * a device without native netmap support. 729 * This is less performant than native support but potentially 730 * faster than raw sockets or similar schemes. 731 * 732 * In this "emulated" mode, netmap rings do not necessarily 733 * have the same size as those in the NIC. We use a default 734 * value and possibly override it if the OS has ways to fetch the 735 * actual configuration. 736 */ 737 int 738 generic_netmap_attach(struct ifnet *ifp) 739 { 740 struct netmap_adapter *na; 741 struct netmap_generic_adapter *gna; 742 int retval; 743 u_int num_tx_desc, num_rx_desc; 744 745 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */ 746 747 generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); 748 ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc); 749 750 gna = malloc(sizeof(*gna), M_DEVBUF, M_NOWAIT | M_ZERO); 751 if (gna == NULL) { 752 D("no memory on attach, give up"); 753 return ENOMEM; 754 } 755 na = (struct netmap_adapter *)gna; 756 na->ifp = ifp; 757 na->num_tx_desc = num_tx_desc; 758 na->num_rx_desc = num_rx_desc; 759 na->nm_register = &generic_netmap_register; 760 na->nm_txsync = &generic_netmap_txsync; 761 na->nm_rxsync = &generic_netmap_rxsync; 762 na->nm_dtor = &generic_netmap_dtor; 763 /* when using generic, IFCAP_NETMAP is set so we force 764 * NAF_SKIP_INTR to use the regular interrupt handler 765 */ 766 na->na_flags = NAF_SKIP_INTR; 767 768 ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)", 769 ifp->num_tx_queues, ifp->real_num_tx_queues, 770 ifp->tx_queue_len); 771 ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)", 772 ifp->num_rx_queues, ifp->real_num_rx_queues); 773 774 generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings); 775 776 retval = netmap_attach_common(na); 777 if (retval) { 778 free(gna, M_DEVBUF); 779 } 780 781 return retval; 782 } 783