1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2016 Vincenzo Maffione 5 * Copyright (C) 2013-2016 Luigi Rizzo 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * This module implements netmap support on top of standard, 32 * unmodified device drivers. 33 * 34 * A NIOCREGIF request is handled here if the device does not 35 * have native support. TX and RX rings are emulated as follows: 36 * 37 * NIOCREGIF 38 * We preallocate a block of TX mbufs (roughly as many as 39 * tx descriptors; the number is not critical) to speed up 40 * operation during transmissions. The refcount on most of 41 * these buffers is artificially bumped up so we can recycle 42 * them more easily. Also, the destructor is intercepted 43 * so we use it as an interrupt notification to wake up 44 * processes blocked on a poll(). 45 * 46 * For each receive ring we allocate one "struct mbq" 47 * (an mbuf tailq plus a spinlock). We intercept packets 48 * (through if_input) 49 * on the receive path and put them in the mbq from which 50 * netmap receive routines can grab them. 51 * 52 * TX: 53 * in the generic_txsync() routine, netmap buffers are copied 54 * (or linked, in a future) to the preallocated mbufs 55 * and pushed to the transmit queue. Some of these mbufs 56 * (those with NS_REPORT, or otherwise every half ring) 57 * have the refcount=1, others have refcount=2. 58 * When the destructor is invoked, we take that as 59 * a notification that all mbufs up to that one in 60 * the specific ring have been completed, and generate 61 * the equivalent of a transmit interrupt. 62 * 63 * RX: 64 * 65 */ 66 67 #ifdef __FreeBSD__ 68 69 #include <sys/cdefs.h> /* prerequisite */ 70 __FBSDID("$FreeBSD$"); 71 72 #include <sys/types.h> 73 #include <sys/errno.h> 74 #include <sys/malloc.h> 75 #include <sys/lock.h> /* PROT_EXEC */ 76 #include <sys/rwlock.h> 77 #include <sys/socket.h> /* sockaddrs */ 78 #include <sys/selinfo.h> 79 #include <net/if.h> 80 #include <net/if_types.h> 81 #include <net/if_var.h> 82 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */ 83 84 // XXX temporary - D() defined here 85 #include <net/netmap.h> 86 #include <dev/netmap/netmap_kern.h> 87 #include <dev/netmap/netmap_mem2.h> 88 89 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid) 90 #define smp_mb() 91 92 #elif defined _WIN32 93 94 #include "win_glue.h" 95 96 #define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid) 97 #define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid) 98 #define smp_mb() //XXX: to be correctly defined 99 100 #else /* linux */ 101 102 #include "bsd_glue.h" 103 104 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */ 105 #include <linux/hrtimer.h> 106 107 static inline struct mbuf * 108 nm_os_get_mbuf(struct ifnet *ifp, int len) 109 { 110 return alloc_skb(ifp->needed_headroom + len + 111 ifp->needed_tailroom, GFP_ATOMIC); 112 } 113 114 #endif /* linux */ 115 116 117 /* Common headers. */ 118 #include <net/netmap.h> 119 #include <dev/netmap/netmap_kern.h> 120 #include <dev/netmap/netmap_mem2.h> 121 122 123 #define for_each_kring_n(_i, _k, _karr, _n) \ 124 for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)]) 125 126 #define for_each_tx_kring(_i, _k, _na) \ 127 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings) 128 #define for_each_tx_kring_h(_i, _k, _na) \ 129 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1) 130 131 #define for_each_rx_kring(_i, _k, _na) \ 132 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings) 133 #define for_each_rx_kring_h(_i, _k, _na) \ 134 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1) 135 136 137 /* ======================== PERFORMANCE STATISTICS =========================== */ 138 139 #ifdef RATE_GENERIC 140 #define IFRATE(x) x 141 struct rate_stats { 142 unsigned long txpkt; 143 unsigned long txsync; 144 unsigned long txirq; 145 unsigned long txrepl; 146 unsigned long txdrop; 147 unsigned long rxpkt; 148 unsigned long rxirq; 149 unsigned long rxsync; 150 }; 151 152 struct rate_context { 153 unsigned refcount; 154 struct timer_list timer; 155 struct rate_stats new; 156 struct rate_stats old; 157 }; 158 159 #define RATE_PRINTK(_NAME_) \ 160 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD); 161 #define RATE_PERIOD 2 162 static void rate_callback(unsigned long arg) 163 { 164 struct rate_context * ctx = (struct rate_context *)arg; 165 struct rate_stats cur = ctx->new; 166 int r; 167 168 RATE_PRINTK(txpkt); 169 RATE_PRINTK(txsync); 170 RATE_PRINTK(txirq); 171 RATE_PRINTK(txrepl); 172 RATE_PRINTK(txdrop); 173 RATE_PRINTK(rxpkt); 174 RATE_PRINTK(rxsync); 175 RATE_PRINTK(rxirq); 176 printk("\n"); 177 178 ctx->old = cur; 179 r = mod_timer(&ctx->timer, jiffies + 180 msecs_to_jiffies(RATE_PERIOD * 1000)); 181 if (unlikely(r)) 182 D("[v1000] Error: mod_timer()"); 183 } 184 185 static struct rate_context rate_ctx; 186 187 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi) 188 { 189 if (txp) rate_ctx.new.txpkt++; 190 if (txs) rate_ctx.new.txsync++; 191 if (txi) rate_ctx.new.txirq++; 192 if (rxp) rate_ctx.new.rxpkt++; 193 if (rxs) rate_ctx.new.rxsync++; 194 if (rxi) rate_ctx.new.rxirq++; 195 } 196 197 #else /* !RATE */ 198 #define IFRATE(x) 199 #endif /* !RATE */ 200 201 202 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */ 203 204 /* 205 * Wrapper used by the generic adapter layer to notify 206 * the poller threads. Differently from netmap_rx_irq(), we check 207 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq. 208 */ 209 void 210 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 211 { 212 if (unlikely(!nm_netmap_on(na))) 213 return; 214 215 netmap_common_irq(na, q, work_done); 216 #ifdef RATE_GENERIC 217 if (work_done) 218 rate_ctx.new.rxirq++; 219 else 220 rate_ctx.new.txirq++; 221 #endif /* RATE_GENERIC */ 222 } 223 224 static int 225 generic_netmap_unregister(struct netmap_adapter *na) 226 { 227 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 228 struct netmap_kring *kring = NULL; 229 int i, r; 230 231 if (na->active_fds == 0) { 232 na->na_flags &= ~NAF_NETMAP_ON; 233 234 /* Stop intercepting packets on the RX path. */ 235 nm_os_catch_rx(gna, 0); 236 237 /* Release packet steering control. */ 238 nm_os_catch_tx(gna, 0); 239 } 240 241 for_each_rx_kring_h(r, kring, na) { 242 if (nm_kring_pending_off(kring)) { 243 D("Emulated adapter: ring '%s' deactivated", kring->name); 244 kring->nr_mode = NKR_NETMAP_OFF; 245 } 246 } 247 for_each_tx_kring_h(r, kring, na) { 248 if (nm_kring_pending_off(kring)) { 249 kring->nr_mode = NKR_NETMAP_OFF; 250 D("Emulated adapter: ring '%s' deactivated", kring->name); 251 } 252 } 253 254 for_each_rx_kring(r, kring, na) { 255 /* Free the mbufs still pending in the RX queues, 256 * that did not end up into the corresponding netmap 257 * RX rings. */ 258 mbq_safe_purge(&kring->rx_queue); 259 nm_os_mitigation_cleanup(&gna->mit[r]); 260 } 261 262 /* Decrement reference counter for the mbufs in the 263 * TX pools. These mbufs can be still pending in drivers, 264 * (e.g. this happens with virtio-net driver, which 265 * does lazy reclaiming of transmitted mbufs). */ 266 for_each_tx_kring(r, kring, na) { 267 /* We must remove the destructor on the TX event, 268 * because the destructor invokes netmap code, and 269 * the netmap module may disappear before the 270 * TX event is consumed. */ 271 mtx_lock_spin(&kring->tx_event_lock); 272 if (kring->tx_event) { 273 SET_MBUF_DESTRUCTOR(kring->tx_event, NULL); 274 } 275 kring->tx_event = NULL; 276 mtx_unlock_spin(&kring->tx_event_lock); 277 } 278 279 if (na->active_fds == 0) { 280 nm_os_free(gna->mit); 281 282 for_each_rx_kring(r, kring, na) { 283 mbq_safe_fini(&kring->rx_queue); 284 } 285 286 for_each_tx_kring(r, kring, na) { 287 mtx_destroy(&kring->tx_event_lock); 288 if (kring->tx_pool == NULL) { 289 continue; 290 } 291 292 for (i=0; i<na->num_tx_desc; i++) { 293 if (kring->tx_pool[i]) { 294 m_freem(kring->tx_pool[i]); 295 } 296 } 297 nm_os_free(kring->tx_pool); 298 kring->tx_pool = NULL; 299 } 300 301 #ifdef RATE_GENERIC 302 if (--rate_ctx.refcount == 0) { 303 D("del_timer()"); 304 del_timer(&rate_ctx.timer); 305 } 306 #endif 307 D("Emulated adapter for %s deactivated", na->name); 308 } 309 310 return 0; 311 } 312 313 /* Enable/disable netmap mode for a generic network interface. */ 314 static int 315 generic_netmap_register(struct netmap_adapter *na, int enable) 316 { 317 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 318 struct netmap_kring *kring = NULL; 319 int error; 320 int i, r; 321 322 if (!na) { 323 return EINVAL; 324 } 325 326 if (!enable) { 327 /* This is actually an unregif. */ 328 return generic_netmap_unregister(na); 329 } 330 331 if (na->active_fds == 0) { 332 D("Emulated adapter for %s activated", na->name); 333 /* Do all memory allocations when (na->active_fds == 0), to 334 * simplify error management. */ 335 336 /* Allocate memory for mitigation support on all the rx queues. */ 337 gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit)); 338 if (!gna->mit) { 339 D("mitigation allocation failed"); 340 error = ENOMEM; 341 goto out; 342 } 343 344 for_each_rx_kring(r, kring, na) { 345 /* Init mitigation support. */ 346 nm_os_mitigation_init(&gna->mit[r], r, na); 347 348 /* Initialize the rx queue, as generic_rx_handler() can 349 * be called as soon as nm_os_catch_rx() returns. 350 */ 351 mbq_safe_init(&kring->rx_queue); 352 } 353 354 /* 355 * Prepare mbuf pools (parallel to the tx rings), for packet 356 * transmission. Don't preallocate the mbufs here, it's simpler 357 * to leave this task to txsync. 358 */ 359 for_each_tx_kring(r, kring, na) { 360 kring->tx_pool = NULL; 361 } 362 for_each_tx_kring(r, kring, na) { 363 kring->tx_pool = 364 nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *)); 365 if (!kring->tx_pool) { 366 D("tx_pool allocation failed"); 367 error = ENOMEM; 368 goto free_tx_pools; 369 } 370 mtx_init(&kring->tx_event_lock, "tx_event_lock", 371 NULL, MTX_SPIN); 372 } 373 } 374 375 for_each_rx_kring_h(r, kring, na) { 376 if (nm_kring_pending_on(kring)) { 377 D("Emulated adapter: ring '%s' activated", kring->name); 378 kring->nr_mode = NKR_NETMAP_ON; 379 } 380 381 } 382 for_each_tx_kring_h(r, kring, na) { 383 if (nm_kring_pending_on(kring)) { 384 D("Emulated adapter: ring '%s' activated", kring->name); 385 kring->nr_mode = NKR_NETMAP_ON; 386 } 387 } 388 389 for_each_tx_kring(r, kring, na) { 390 /* Initialize tx_pool and tx_event. */ 391 for (i=0; i<na->num_tx_desc; i++) { 392 kring->tx_pool[i] = NULL; 393 } 394 395 kring->tx_event = NULL; 396 } 397 398 if (na->active_fds == 0) { 399 /* Prepare to intercept incoming traffic. */ 400 error = nm_os_catch_rx(gna, 1); 401 if (error) { 402 D("nm_os_catch_rx(1) failed (%d)", error); 403 goto free_tx_pools; 404 } 405 406 /* Let netmap control the packet steering. */ 407 error = nm_os_catch_tx(gna, 1); 408 if (error) { 409 D("nm_os_catch_tx(1) failed (%d)", error); 410 goto catch_rx; 411 } 412 413 na->na_flags |= NAF_NETMAP_ON; 414 415 #ifdef RATE_GENERIC 416 if (rate_ctx.refcount == 0) { 417 D("setup_timer()"); 418 memset(&rate_ctx, 0, sizeof(rate_ctx)); 419 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx); 420 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) { 421 D("Error: mod_timer()"); 422 } 423 } 424 rate_ctx.refcount++; 425 #endif /* RATE */ 426 } 427 428 return 0; 429 430 /* Here (na->active_fds == 0) holds. */ 431 catch_rx: 432 nm_os_catch_rx(gna, 0); 433 free_tx_pools: 434 for_each_tx_kring(r, kring, na) { 435 mtx_destroy(&kring->tx_event_lock); 436 if (kring->tx_pool == NULL) { 437 continue; 438 } 439 nm_os_free(kring->tx_pool); 440 kring->tx_pool = NULL; 441 } 442 for_each_rx_kring(r, kring, na) { 443 mbq_safe_fini(&kring->rx_queue); 444 } 445 nm_os_free(gna->mit); 446 out: 447 448 return error; 449 } 450 451 /* 452 * Callback invoked when the device driver frees an mbuf used 453 * by netmap to transmit a packet. This usually happens when 454 * the NIC notifies the driver that transmission is completed. 455 */ 456 static void 457 generic_mbuf_destructor(struct mbuf *m) 458 { 459 struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m)); 460 struct netmap_kring *kring; 461 unsigned int r = MBUF_TXQ(m); 462 unsigned int r_orig = r; 463 464 if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) { 465 D("Error: no netmap adapter on device %p", 466 GEN_TX_MBUF_IFP(m)); 467 return; 468 } 469 470 /* 471 * First, clear the event mbuf. 472 * In principle, the event 'm' should match the one stored 473 * on ring 'r'. However we check it explicitely to stay 474 * safe against lower layers (qdisc, driver, etc.) changing 475 * MBUF_TXQ(m) under our feet. If the match is not found 476 * on 'r', we try to see if it belongs to some other ring. 477 */ 478 for (;;) { 479 bool match = false; 480 481 kring = na->tx_rings[r]; 482 mtx_lock_spin(&kring->tx_event_lock); 483 if (kring->tx_event == m) { 484 kring->tx_event = NULL; 485 match = true; 486 } 487 mtx_unlock_spin(&kring->tx_event_lock); 488 489 if (match) { 490 if (r != r_orig) { 491 RD(1, "event %p migrated: ring %u --> %u", 492 m, r_orig, r); 493 } 494 break; 495 } 496 497 if (++r == na->num_tx_rings) r = 0; 498 499 if (r == r_orig) { 500 RD(1, "Cannot match event %p", m); 501 return; 502 } 503 } 504 505 /* Second, wake up clients. They will reclaim the event through 506 * txsync. */ 507 netmap_generic_irq(na, r, NULL); 508 #ifdef __FreeBSD__ 509 #if __FreeBSD_version <= 1200050 510 void_mbuf_dtor(m, NULL, NULL); 511 #else /* __FreeBSD_version >= 1200051 */ 512 void_mbuf_dtor(m); 513 #endif /* __FreeBSD_version >= 1200051 */ 514 #endif 515 } 516 517 /* Record completed transmissions and update hwtail. 518 * 519 * The oldest tx buffer not yet completed is at nr_hwtail + 1, 520 * nr_hwcur is the first unsent buffer. 521 */ 522 static u_int 523 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc) 524 { 525 u_int const lim = kring->nkr_num_slots - 1; 526 u_int nm_i = nm_next(kring->nr_hwtail, lim); 527 u_int hwcur = kring->nr_hwcur; 528 u_int n = 0; 529 struct mbuf **tx_pool = kring->tx_pool; 530 531 ND("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail); 532 533 while (nm_i != hwcur) { /* buffers not completed */ 534 struct mbuf *m = tx_pool[nm_i]; 535 536 if (txqdisc) { 537 if (m == NULL) { 538 /* Nothing to do, this is going 539 * to be replenished. */ 540 RD(3, "Is this happening?"); 541 542 } else if (MBUF_QUEUED(m)) { 543 break; /* Not dequeued yet. */ 544 545 } else if (MBUF_REFCNT(m) != 1) { 546 /* This mbuf has been dequeued but is still busy 547 * (refcount is 2). 548 * Leave it to the driver and replenish. */ 549 m_freem(m); 550 tx_pool[nm_i] = NULL; 551 } 552 553 } else { 554 if (unlikely(m == NULL)) { 555 int event_consumed; 556 557 /* This slot was used to place an event. */ 558 mtx_lock_spin(&kring->tx_event_lock); 559 event_consumed = (kring->tx_event == NULL); 560 mtx_unlock_spin(&kring->tx_event_lock); 561 if (!event_consumed) { 562 /* The event has not been consumed yet, 563 * still busy in the driver. */ 564 break; 565 } 566 /* The event has been consumed, we can go 567 * ahead. */ 568 569 } else if (MBUF_REFCNT(m) != 1) { 570 /* This mbuf is still busy: its refcnt is 2. */ 571 break; 572 } 573 } 574 575 n++; 576 nm_i = nm_next(nm_i, lim); 577 } 578 kring->nr_hwtail = nm_prev(nm_i, lim); 579 ND("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail); 580 581 return n; 582 } 583 584 /* Compute a slot index in the middle between inf and sup. */ 585 static inline u_int 586 ring_middle(u_int inf, u_int sup, u_int lim) 587 { 588 u_int n = lim + 1; 589 u_int e; 590 591 if (sup >= inf) { 592 e = (sup + inf) / 2; 593 } else { /* wrap around */ 594 e = (sup + n + inf) / 2; 595 if (e >= n) { 596 e -= n; 597 } 598 } 599 600 if (unlikely(e >= n)) { 601 D("This cannot happen"); 602 e = 0; 603 } 604 605 return e; 606 } 607 608 static void 609 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur) 610 { 611 u_int lim = kring->nkr_num_slots - 1; 612 struct mbuf *m; 613 u_int e; 614 u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */ 615 616 if (ntc == hwcur) { 617 return; /* all buffers are free */ 618 } 619 620 /* 621 * We have pending packets in the driver between hwtail+1 622 * and hwcur, and we have to chose one of these slot to 623 * generate a notification. 624 * There is a race but this is only called within txsync which 625 * does a double check. 626 */ 627 #if 0 628 /* Choose a slot in the middle, so that we don't risk ending 629 * up in a situation where the client continuously wake up, 630 * fills one or a few TX slots and go to sleep again. */ 631 e = ring_middle(ntc, hwcur, lim); 632 #else 633 /* Choose the first pending slot, to be safe against driver 634 * reordering mbuf transmissions. */ 635 e = ntc; 636 #endif 637 638 m = kring->tx_pool[e]; 639 if (m == NULL) { 640 /* An event is already in place. */ 641 return; 642 } 643 644 mtx_lock_spin(&kring->tx_event_lock); 645 if (kring->tx_event) { 646 /* An event is already in place. */ 647 mtx_unlock_spin(&kring->tx_event_lock); 648 return; 649 } 650 651 SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor); 652 kring->tx_event = m; 653 mtx_unlock_spin(&kring->tx_event_lock); 654 655 kring->tx_pool[e] = NULL; 656 657 ND(5, "Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 ); 658 659 /* Decrement the refcount. This will free it if we lose the race 660 * with the driver. */ 661 m_freem(m); 662 smp_mb(); 663 } 664 665 666 /* 667 * generic_netmap_txsync() transforms netmap buffers into mbufs 668 * and passes them to the standard device driver 669 * (ndo_start_xmit() or ifp->if_transmit() ). 670 * On linux this is not done directly, but using dev_queue_xmit(), 671 * since it implements the TX flow control (and takes some locks). 672 */ 673 static int 674 generic_netmap_txsync(struct netmap_kring *kring, int flags) 675 { 676 struct netmap_adapter *na = kring->na; 677 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 678 struct ifnet *ifp = na->ifp; 679 struct netmap_ring *ring = kring->ring; 680 u_int nm_i; /* index into the netmap ring */ // j 681 u_int const lim = kring->nkr_num_slots - 1; 682 u_int const head = kring->rhead; 683 u_int ring_nr = kring->ring_id; 684 685 IFRATE(rate_ctx.new.txsync++); 686 687 rmb(); 688 689 /* 690 * First part: process new packets to send. 691 */ 692 nm_i = kring->nr_hwcur; 693 if (nm_i != head) { /* we have new packets to send */ 694 struct nm_os_gen_arg a; 695 u_int event = -1; 696 697 if (gna->txqdisc && nm_kr_txempty(kring)) { 698 /* In txqdisc mode, we ask for a delayed notification, 699 * but only when cur == hwtail, which means that the 700 * client is going to block. */ 701 event = ring_middle(nm_i, head, lim); 702 ND(3, "Place txqdisc event (hwcur=%u,event=%u," 703 "head=%u,hwtail=%u)", nm_i, event, head, 704 kring->nr_hwtail); 705 } 706 707 a.ifp = ifp; 708 a.ring_nr = ring_nr; 709 a.head = a.tail = NULL; 710 711 while (nm_i != head) { 712 struct netmap_slot *slot = &ring->slot[nm_i]; 713 u_int len = slot->len; 714 void *addr = NMB(na, slot); 715 /* device-specific */ 716 struct mbuf *m; 717 int tx_ret; 718 719 NM_CHECK_ADDR_LEN(na, addr, len); 720 721 /* Tale a mbuf from the tx pool (replenishing the pool 722 * entry if necessary) and copy in the user packet. */ 723 m = kring->tx_pool[nm_i]; 724 if (unlikely(m == NULL)) { 725 kring->tx_pool[nm_i] = m = 726 nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na)); 727 if (m == NULL) { 728 RD(2, "Failed to replenish mbuf"); 729 /* Here we could schedule a timer which 730 * retries to replenish after a while, 731 * and notifies the client when it 732 * manages to replenish some slots. In 733 * any case we break early to avoid 734 * crashes. */ 735 break; 736 } 737 IFRATE(rate_ctx.new.txrepl++); 738 } 739 740 a.m = m; 741 a.addr = addr; 742 a.len = len; 743 a.qevent = (nm_i == event); 744 /* When not in txqdisc mode, we should ask 745 * notifications when NS_REPORT is set, or roughly 746 * every half ring. To optimize this, we set a 747 * notification event when the client runs out of 748 * TX ring space, or when transmission fails. In 749 * the latter case we also break early. 750 */ 751 tx_ret = nm_os_generic_xmit_frame(&a); 752 if (unlikely(tx_ret)) { 753 if (!gna->txqdisc) { 754 /* 755 * No room for this mbuf in the device driver. 756 * Request a notification FOR A PREVIOUS MBUF, 757 * then call generic_netmap_tx_clean(kring) to do the 758 * double check and see if we can free more buffers. 759 * If there is space continue, else break; 760 * NOTE: the double check is necessary if the problem 761 * occurs in the txsync call after selrecord(). 762 * Also, we need some way to tell the caller that not 763 * all buffers were queued onto the device (this was 764 * not a problem with native netmap driver where space 765 * is preallocated). The bridge has a similar problem 766 * and we solve it there by dropping the excess packets. 767 */ 768 generic_set_tx_event(kring, nm_i); 769 if (generic_netmap_tx_clean(kring, gna->txqdisc)) { 770 /* space now available */ 771 continue; 772 } else { 773 break; 774 } 775 } 776 777 /* In txqdisc mode, the netmap-aware qdisc 778 * queue has the same length as the number of 779 * netmap slots (N). Since tail is advanced 780 * only when packets are dequeued, qdisc 781 * queue overrun cannot happen, so 782 * nm_os_generic_xmit_frame() did not fail 783 * because of that. 784 * However, packets can be dropped because 785 * carrier is off, or because our qdisc is 786 * being deactivated, or possibly for other 787 * reasons. In these cases, we just let the 788 * packet to be dropped. */ 789 IFRATE(rate_ctx.new.txdrop++); 790 } 791 792 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); 793 nm_i = nm_next(nm_i, lim); 794 IFRATE(rate_ctx.new.txpkt++); 795 } 796 if (a.head != NULL) { 797 a.addr = NULL; 798 nm_os_generic_xmit_frame(&a); 799 } 800 /* Update hwcur to the next slot to transmit. Here nm_i 801 * is not necessarily head, we could break early. */ 802 kring->nr_hwcur = nm_i; 803 } 804 805 /* 806 * Second, reclaim completed buffers 807 */ 808 if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) { 809 /* No more available slots? Set a notification event 810 * on a netmap slot that will be cleaned in the future. 811 * No doublecheck is performed, since txsync() will be 812 * called twice by netmap_poll(). 813 */ 814 generic_set_tx_event(kring, nm_i); 815 } 816 817 generic_netmap_tx_clean(kring, gna->txqdisc); 818 819 return 0; 820 } 821 822 823 /* 824 * This handler is registered (through nm_os_catch_rx()) 825 * within the attached network interface 826 * in the RX subsystem, so that every mbuf passed up by 827 * the driver can be stolen to the network stack. 828 * Stolen packets are put in a queue where the 829 * generic_netmap_rxsync() callback can extract them. 830 * Returns 1 if the packet was stolen, 0 otherwise. 831 */ 832 int 833 generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 834 { 835 struct netmap_adapter *na = NA(ifp); 836 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 837 struct netmap_kring *kring; 838 u_int work_done; 839 u_int r = MBUF_RXQ(m); /* receive ring number */ 840 841 if (r >= na->num_rx_rings) { 842 r = r % na->num_rx_rings; 843 } 844 845 kring = na->rx_rings[r]; 846 847 if (kring->nr_mode == NKR_NETMAP_OFF) { 848 /* We must not intercept this mbuf. */ 849 return 0; 850 } 851 852 /* limit the size of the queue */ 853 if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) { 854 /* This may happen when GRO/LRO features are enabled for 855 * the NIC driver when the generic adapter does not 856 * support RX scatter-gather. */ 857 RD(2, "Warning: driver pushed up big packet " 858 "(size=%d)", (int)MBUF_LEN(m)); 859 m_freem(m); 860 } else if (unlikely(mbq_len(&kring->rx_queue) > 1024)) { 861 m_freem(m); 862 } else { 863 mbq_safe_enqueue(&kring->rx_queue, m); 864 } 865 866 if (netmap_generic_mit < 32768) { 867 /* no rx mitigation, pass notification up */ 868 netmap_generic_irq(na, r, &work_done); 869 } else { 870 /* same as send combining, filter notification if there is a 871 * pending timer, otherwise pass it up and start a timer. 872 */ 873 if (likely(nm_os_mitigation_active(&gna->mit[r]))) { 874 /* Record that there is some pending work. */ 875 gna->mit[r].mit_pending = 1; 876 } else { 877 netmap_generic_irq(na, r, &work_done); 878 nm_os_mitigation_start(&gna->mit[r]); 879 } 880 } 881 882 /* We have intercepted the mbuf. */ 883 return 1; 884 } 885 886 /* 887 * generic_netmap_rxsync() extracts mbufs from the queue filled by 888 * generic_netmap_rx_handler() and puts their content in the netmap 889 * receive ring. 890 * Access must be protected because the rx handler is asynchronous, 891 */ 892 static int 893 generic_netmap_rxsync(struct netmap_kring *kring, int flags) 894 { 895 struct netmap_ring *ring = kring->ring; 896 struct netmap_adapter *na = kring->na; 897 u_int nm_i; /* index into the netmap ring */ //j, 898 u_int n; 899 u_int const lim = kring->nkr_num_slots - 1; 900 u_int const head = kring->rhead; 901 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 902 903 /* Adapter-specific variables. */ 904 u_int nm_buf_len = NETMAP_BUF_SIZE(na); 905 struct mbq tmpq; 906 struct mbuf *m; 907 int avail; /* in bytes */ 908 int mlen; 909 int copy; 910 911 if (head > lim) 912 return netmap_ring_reinit(kring); 913 914 IFRATE(rate_ctx.new.rxsync++); 915 916 /* 917 * First part: skip past packets that userspace has released. 918 * This can possibly make room for the second part. 919 */ 920 nm_i = kring->nr_hwcur; 921 if (nm_i != head) { 922 /* Userspace has released some packets. */ 923 for (n = 0; nm_i != head; n++) { 924 struct netmap_slot *slot = &ring->slot[nm_i]; 925 926 slot->flags &= ~NS_BUF_CHANGED; 927 nm_i = nm_next(nm_i, lim); 928 } 929 kring->nr_hwcur = head; 930 } 931 932 /* 933 * Second part: import newly received packets. 934 */ 935 if (!netmap_no_pendintr && !force_update) { 936 return 0; 937 } 938 939 nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */ 940 941 /* Compute the available space (in bytes) in this netmap ring. 942 * The first slot that is not considered in is the one before 943 * nr_hwcur. */ 944 945 avail = nm_prev(kring->nr_hwcur, lim) - nm_i; 946 if (avail < 0) 947 avail += lim + 1; 948 avail *= nm_buf_len; 949 950 /* First pass: While holding the lock on the RX mbuf queue, 951 * extract as many mbufs as they fit the available space, 952 * and put them in a temporary queue. 953 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to 954 * to update avail, we do the update in a while loop that we 955 * also use to set the RX slots, but without performing the copy. */ 956 mbq_init(&tmpq); 957 mbq_lock(&kring->rx_queue); 958 for (n = 0;; n++) { 959 m = mbq_peek(&kring->rx_queue); 960 if (!m) { 961 /* No more packets from the driver. */ 962 break; 963 } 964 965 mlen = MBUF_LEN(m); 966 if (mlen > avail) { 967 /* No more space in the ring. */ 968 break; 969 } 970 971 mbq_dequeue(&kring->rx_queue); 972 973 while (mlen) { 974 copy = nm_buf_len; 975 if (mlen < copy) { 976 copy = mlen; 977 } 978 mlen -= copy; 979 avail -= nm_buf_len; 980 981 ring->slot[nm_i].len = copy; 982 ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0); 983 nm_i = nm_next(nm_i, lim); 984 } 985 986 mbq_enqueue(&tmpq, m); 987 } 988 mbq_unlock(&kring->rx_queue); 989 990 /* Second pass: Drain the temporary queue, going over the used RX slots, 991 * and perform the copy out of the RX queue lock. */ 992 nm_i = kring->nr_hwtail; 993 994 for (;;) { 995 void *nmaddr; 996 int ofs = 0; 997 int morefrag; 998 999 m = mbq_dequeue(&tmpq); 1000 if (!m) { 1001 break; 1002 } 1003 1004 do { 1005 nmaddr = NMB(na, &ring->slot[nm_i]); 1006 /* We only check the address here on generic rx rings. */ 1007 if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */ 1008 m_freem(m); 1009 mbq_purge(&tmpq); 1010 mbq_fini(&tmpq); 1011 return netmap_ring_reinit(kring); 1012 } 1013 1014 copy = ring->slot[nm_i].len; 1015 m_copydata(m, ofs, copy, nmaddr); 1016 ofs += copy; 1017 morefrag = ring->slot[nm_i].flags & NS_MOREFRAG; 1018 nm_i = nm_next(nm_i, lim); 1019 } while (morefrag); 1020 1021 m_freem(m); 1022 } 1023 1024 mbq_fini(&tmpq); 1025 1026 if (n) { 1027 kring->nr_hwtail = nm_i; 1028 IFRATE(rate_ctx.new.rxpkt += n); 1029 } 1030 kring->nr_kflags &= ~NKR_PENDINTR; 1031 1032 return 0; 1033 } 1034 1035 static void 1036 generic_netmap_dtor(struct netmap_adapter *na) 1037 { 1038 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na; 1039 struct ifnet *ifp = netmap_generic_getifp(gna); 1040 struct netmap_adapter *prev_na = gna->prev; 1041 1042 if (prev_na != NULL) { 1043 netmap_adapter_put(prev_na); 1044 if (nm_iszombie(na)) { 1045 /* 1046 * The driver has been removed without releasing 1047 * the reference so we need to do it here. 1048 */ 1049 netmap_adapter_put(prev_na); 1050 } 1051 D("Native netmap adapter %p restored", prev_na); 1052 } 1053 NM_RESTORE_NA(ifp, prev_na); 1054 /* 1055 * netmap_detach_common(), that it's called after this function, 1056 * overrides WNA(ifp) if na->ifp is not NULL. 1057 */ 1058 na->ifp = NULL; 1059 D("Emulated netmap adapter for %s destroyed", na->name); 1060 } 1061 1062 int 1063 na_is_generic(struct netmap_adapter *na) 1064 { 1065 return na->nm_register == generic_netmap_register; 1066 } 1067 1068 /* 1069 * generic_netmap_attach() makes it possible to use netmap on 1070 * a device without native netmap support. 1071 * This is less performant than native support but potentially 1072 * faster than raw sockets or similar schemes. 1073 * 1074 * In this "emulated" mode, netmap rings do not necessarily 1075 * have the same size as those in the NIC. We use a default 1076 * value and possibly override it if the OS has ways to fetch the 1077 * actual configuration. 1078 */ 1079 int 1080 generic_netmap_attach(struct ifnet *ifp) 1081 { 1082 struct netmap_adapter *na; 1083 struct netmap_generic_adapter *gna; 1084 int retval; 1085 u_int num_tx_desc, num_rx_desc; 1086 1087 #ifdef __FreeBSD__ 1088 if (ifp->if_type == IFT_LOOP) { 1089 D("if_loop is not supported by %s", __func__); 1090 return EINVAL; 1091 } 1092 #endif 1093 1094 if (NM_NA_CLASH(ifp)) { 1095 /* If NA(ifp) is not null but there is no valid netmap 1096 * adapter it means that someone else is using the same 1097 * pointer (e.g. ax25_ptr on linux). This happens for 1098 * instance when also PF_RING is in use. */ 1099 D("Error: netmap adapter hook is busy"); 1100 return EBUSY; 1101 } 1102 1103 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */ 1104 1105 nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */ 1106 ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc); 1107 if (num_tx_desc == 0 || num_rx_desc == 0) { 1108 D("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc); 1109 return EINVAL; 1110 } 1111 1112 gna = nm_os_malloc(sizeof(*gna)); 1113 if (gna == NULL) { 1114 D("no memory on attach, give up"); 1115 return ENOMEM; 1116 } 1117 na = (struct netmap_adapter *)gna; 1118 strncpy(na->name, ifp->if_xname, sizeof(na->name)); 1119 na->ifp = ifp; 1120 na->num_tx_desc = num_tx_desc; 1121 na->num_rx_desc = num_rx_desc; 1122 na->rx_buf_maxsize = 32768; 1123 na->nm_register = &generic_netmap_register; 1124 na->nm_txsync = &generic_netmap_txsync; 1125 na->nm_rxsync = &generic_netmap_rxsync; 1126 na->nm_dtor = &generic_netmap_dtor; 1127 /* when using generic, NAF_NETMAP_ON is set so we force 1128 * NAF_SKIP_INTR to use the regular interrupt handler 1129 */ 1130 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS; 1131 1132 ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)", 1133 ifp->num_tx_queues, ifp->real_num_tx_queues, 1134 ifp->tx_queue_len); 1135 ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)", 1136 ifp->num_rx_queues, ifp->real_num_rx_queues); 1137 1138 nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings); 1139 1140 retval = netmap_attach_common(na); 1141 if (retval) { 1142 nm_os_free(gna); 1143 return retval; 1144 } 1145 1146 if (NM_NA_VALID(ifp)) { 1147 gna->prev = NA(ifp); /* save old na */ 1148 netmap_adapter_get(gna->prev); 1149 } 1150 NM_ATTACH_NA(ifp, na); 1151 1152 nm_os_generic_set_features(gna); 1153 1154 D("Emulated adapter for %s created (prev was %p)", na->name, gna->prev); 1155 1156 return retval; 1157 } 1158