1 /* 2 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * This module implements netmap support on top of standard, 28 * unmodified device drivers. 29 * 30 * A NIOCREGIF request is handled here if the device does not 31 * have native support. TX and RX rings are emulated as follows: 32 * 33 * NIOCREGIF 34 * We preallocate a block of TX mbufs (roughly as many as 35 * tx descriptors; the number is not critical) to speed up 36 * operation during transmissions. The refcount on most of 37 * these buffers is artificially bumped up so we can recycle 38 * them more easily. Also, the destructor is intercepted 39 * so we use it as an interrupt notification to wake up 40 * processes blocked on a poll(). 41 * 42 * For each receive ring we allocate one "struct mbq" 43 * (an mbuf tailq plus a spinlock). We intercept packets 44 * (through if_input) 45 * on the receive path and put them in the mbq from which 46 * netmap receive routines can grab them. 47 * 48 * TX: 49 * in the generic_txsync() routine, netmap buffers are copied 50 * (or linked, in a future) to the preallocated mbufs 51 * and pushed to the transmit queue. Some of these mbufs 52 * (those with NS_REPORT, or otherwise every half ring) 53 * have the refcount=1, others have refcount=2. 54 * When the destructor is invoked, we take that as 55 * a notification that all mbufs up to that one in 56 * the specific ring have been completed, and generate 57 * the equivalent of a transmit interrupt. 58 * 59 * RX: 60 * 61 */ 62 63 #ifdef __FreeBSD__ 64 65 #include <sys/cdefs.h> /* prerequisite */ 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/types.h> 69 #include <sys/errno.h> 70 #include <sys/malloc.h> 71 #include <sys/lock.h> /* PROT_EXEC */ 72 #include <sys/rwlock.h> 73 #include <sys/socket.h> /* sockaddrs */ 74 #include <sys/selinfo.h> 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */ 78 79 // XXX temporary - D() defined here 80 #include <net/netmap.h> 81 #include <dev/netmap/netmap_kern.h> 82 #include <dev/netmap/netmap_mem2.h> 83 84 #define rtnl_lock() ND("rtnl_lock called") 85 #define rtnl_unlock() ND("rtnl_unlock called") 86 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 87 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid) 88 #define smp_mb() 89 90 /* 91 * FreeBSD mbuf allocator/deallocator in emulation mode: 92 * 93 * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE 94 * so that the destructor, if invoked, will not free the packet. 95 * In principle we should set the destructor only on demand, 96 * but since there might be a race we better do it on allocation. 97 * As a consequence, we also need to set the destructor or we 98 * would leak buffers. 99 */ 100 101 /* 102 * mbuf wrappers 103 */ 104 105 /* mbuf destructor, also need to change the type to EXT_EXTREF, 106 * add an M_NOFREE flag, and then clear the flag and 107 * chain into uma_zfree(zone_pack, mf) 108 * (or reinstall the buffer ?) 109 */ 110 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 111 (m)->m_ext.ext_free = (void *)fn; \ 112 (m)->m_ext.ext_type = EXT_EXTREF; \ 113 } while (0) 114 115 static void 116 netmap_default_mbuf_destructor(struct mbuf *m) 117 { 118 /* restore original mbuf */ 119 m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1; 120 m->m_ext.ext_arg1 = NULL; 121 m->m_ext.ext_type = EXT_PACKET; 122 m->m_ext.ext_free = NULL; 123 if (GET_MBUF_REFCNT(m) == 0) 124 SET_MBUF_REFCNT(m, 1); 125 uma_zfree(zone_pack, m); 126 } 127 128 static inline struct mbuf * 129 netmap_get_mbuf(int len) 130 { 131 struct mbuf *m; 132 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR | M_NOFREE); 133 if (m) { 134 m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save 135 m->m_ext.ext_free = (void *)netmap_default_mbuf_destructor; 136 m->m_ext.ext_type = EXT_EXTREF; 137 ND(5, "create m %p refcnt %d", m, GET_MBUF_REFCNT(m)); 138 } 139 return m; 140 } 141 142 143 144 #else /* linux */ 145 146 #include "bsd_glue.h" 147 148 #include <linux/rtnetlink.h> /* rtnl_[un]lock() */ 149 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */ 150 #include <linux/hrtimer.h> 151 152 //#define REG_RESET 153 154 #endif /* linux */ 155 156 157 /* Common headers. */ 158 #include <net/netmap.h> 159 #include <dev/netmap/netmap_kern.h> 160 #include <dev/netmap/netmap_mem2.h> 161 162 163 164 /* ======================== usage stats =========================== */ 165 166 #ifdef RATE_GENERIC 167 #define IFRATE(x) x 168 struct rate_stats { 169 unsigned long txpkt; 170 unsigned long txsync; 171 unsigned long txirq; 172 unsigned long rxpkt; 173 unsigned long rxirq; 174 unsigned long rxsync; 175 }; 176 177 struct rate_context { 178 unsigned refcount; 179 struct timer_list timer; 180 struct rate_stats new; 181 struct rate_stats old; 182 }; 183 184 #define RATE_PRINTK(_NAME_) \ 185 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD); 186 #define RATE_PERIOD 2 187 static void rate_callback(unsigned long arg) 188 { 189 struct rate_context * ctx = (struct rate_context *)arg; 190 struct rate_stats cur = ctx->new; 191 int r; 192 193 RATE_PRINTK(txpkt); 194 RATE_PRINTK(txsync); 195 RATE_PRINTK(txirq); 196 RATE_PRINTK(rxpkt); 197 RATE_PRINTK(rxsync); 198 RATE_PRINTK(rxirq); 199 printk("\n"); 200 201 ctx->old = cur; 202 r = mod_timer(&ctx->timer, jiffies + 203 msecs_to_jiffies(RATE_PERIOD * 1000)); 204 if (unlikely(r)) 205 D("[v1000] Error: mod_timer()"); 206 } 207 208 static struct rate_context rate_ctx; 209 210 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi) 211 { 212 if (txp) rate_ctx.new.txpkt++; 213 if (txs) rate_ctx.new.txsync++; 214 if (txi) rate_ctx.new.txirq++; 215 if (rxp) rate_ctx.new.rxpkt++; 216 if (rxs) rate_ctx.new.rxsync++; 217 if (rxi) rate_ctx.new.rxirq++; 218 } 219 220 #else /* !RATE */ 221 #define IFRATE(x) 222 #endif /* !RATE */ 223 224 225 /* =============== GENERIC NETMAP ADAPTER SUPPORT ================= */ 226 227 /* 228 * Wrapper used by the generic adapter layer to notify 229 * the poller threads. Differently from netmap_rx_irq(), we check 230 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq. 231 */ 232 static void 233 netmap_generic_irq(struct ifnet *ifp, u_int q, u_int *work_done) 234 { 235 struct netmap_adapter *na = NA(ifp); 236 if (unlikely(!nm_netmap_on(na))) 237 return; 238 239 netmap_common_irq(ifp, q, work_done); 240 } 241 242 243 /* Enable/disable netmap mode for a generic network interface. */ 244 static int 245 generic_netmap_register(struct netmap_adapter *na, int enable) 246 { 247 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 248 struct mbuf *m; 249 int error; 250 int i, r; 251 252 if (!na) 253 return EINVAL; 254 255 #ifdef REG_RESET 256 error = ifp->netdev_ops->ndo_stop(ifp); 257 if (error) { 258 return error; 259 } 260 #endif /* REG_RESET */ 261 262 if (enable) { /* Enable netmap mode. */ 263 /* Init the mitigation support on all the rx queues. */ 264 gna->mit = malloc(na->num_rx_rings * sizeof(struct nm_generic_mit), 265 M_DEVBUF, M_NOWAIT | M_ZERO); 266 if (!gna->mit) { 267 D("mitigation allocation failed"); 268 error = ENOMEM; 269 goto out; 270 } 271 for (r=0; r<na->num_rx_rings; r++) 272 netmap_mitigation_init(&gna->mit[r], r, na); 273 274 /* Initialize the rx queue, as generic_rx_handler() can 275 * be called as soon as netmap_catch_rx() returns. 276 */ 277 for (r=0; r<na->num_rx_rings; r++) { 278 mbq_safe_init(&na->rx_rings[r].rx_queue); 279 } 280 281 /* 282 * Preallocate packet buffers for the tx rings. 283 */ 284 for (r=0; r<na->num_tx_rings; r++) 285 na->tx_rings[r].tx_pool = NULL; 286 for (r=0; r<na->num_tx_rings; r++) { 287 na->tx_rings[r].tx_pool = malloc(na->num_tx_desc * sizeof(struct mbuf *), 288 M_DEVBUF, M_NOWAIT | M_ZERO); 289 if (!na->tx_rings[r].tx_pool) { 290 D("tx_pool allocation failed"); 291 error = ENOMEM; 292 goto free_tx_pools; 293 } 294 for (i=0; i<na->num_tx_desc; i++) 295 na->tx_rings[r].tx_pool[i] = NULL; 296 for (i=0; i<na->num_tx_desc; i++) { 297 m = netmap_get_mbuf(NETMAP_BUF_SIZE(na)); 298 if (!m) { 299 D("tx_pool[%d] allocation failed", i); 300 error = ENOMEM; 301 goto free_tx_pools; 302 } 303 na->tx_rings[r].tx_pool[i] = m; 304 } 305 } 306 rtnl_lock(); 307 /* Prepare to intercept incoming traffic. */ 308 error = netmap_catch_rx(na, 1); 309 if (error) { 310 D("netdev_rx_handler_register() failed (%d)", error); 311 goto register_handler; 312 } 313 na->na_flags |= NAF_NETMAP_ON; 314 315 /* Make netmap control the packet steering. */ 316 netmap_catch_tx(gna, 1); 317 318 rtnl_unlock(); 319 320 #ifdef RATE_GENERIC 321 if (rate_ctx.refcount == 0) { 322 D("setup_timer()"); 323 memset(&rate_ctx, 0, sizeof(rate_ctx)); 324 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx); 325 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) { 326 D("Error: mod_timer()"); 327 } 328 } 329 rate_ctx.refcount++; 330 #endif /* RATE */ 331 332 } else if (na->tx_rings[0].tx_pool) { 333 /* Disable netmap mode. We enter here only if the previous 334 generic_netmap_register(na, 1) was successfull. 335 If it was not, na->tx_rings[0].tx_pool was set to NULL by the 336 error handling code below. */ 337 rtnl_lock(); 338 339 na->na_flags &= ~NAF_NETMAP_ON; 340 341 /* Release packet steering control. */ 342 netmap_catch_tx(gna, 0); 343 344 /* Do not intercept packets on the rx path. */ 345 netmap_catch_rx(na, 0); 346 347 rtnl_unlock(); 348 349 /* Free the mbufs going to the netmap rings */ 350 for (r=0; r<na->num_rx_rings; r++) { 351 mbq_safe_purge(&na->rx_rings[r].rx_queue); 352 mbq_safe_destroy(&na->rx_rings[r].rx_queue); 353 } 354 355 for (r=0; r<na->num_rx_rings; r++) 356 netmap_mitigation_cleanup(&gna->mit[r]); 357 free(gna->mit, M_DEVBUF); 358 359 for (r=0; r<na->num_tx_rings; r++) { 360 for (i=0; i<na->num_tx_desc; i++) { 361 m_freem(na->tx_rings[r].tx_pool[i]); 362 } 363 free(na->tx_rings[r].tx_pool, M_DEVBUF); 364 } 365 366 #ifdef RATE_GENERIC 367 if (--rate_ctx.refcount == 0) { 368 D("del_timer()"); 369 del_timer(&rate_ctx.timer); 370 } 371 #endif 372 } 373 374 #ifdef REG_RESET 375 error = ifp->netdev_ops->ndo_open(ifp); 376 if (error) { 377 goto free_tx_pools; 378 } 379 #endif 380 381 return 0; 382 383 register_handler: 384 rtnl_unlock(); 385 free_tx_pools: 386 for (r=0; r<na->num_tx_rings; r++) { 387 if (na->tx_rings[r].tx_pool == NULL) 388 continue; 389 for (i=0; i<na->num_tx_desc; i++) 390 if (na->tx_rings[r].tx_pool[i]) 391 m_freem(na->tx_rings[r].tx_pool[i]); 392 free(na->tx_rings[r].tx_pool, M_DEVBUF); 393 na->tx_rings[r].tx_pool = NULL; 394 } 395 for (r=0; r<na->num_rx_rings; r++) { 396 netmap_mitigation_cleanup(&gna->mit[r]); 397 mbq_safe_destroy(&na->rx_rings[r].rx_queue); 398 } 399 free(gna->mit, M_DEVBUF); 400 out: 401 402 return error; 403 } 404 405 /* 406 * Callback invoked when the device driver frees an mbuf used 407 * by netmap to transmit a packet. This usually happens when 408 * the NIC notifies the driver that transmission is completed. 409 */ 410 static void 411 generic_mbuf_destructor(struct mbuf *m) 412 { 413 netmap_generic_irq(MBUF_IFP(m), MBUF_TXQ(m), NULL); 414 #ifdef __FreeBSD__ 415 if (netmap_verbose) 416 RD(5, "Tx irq (%p) queue %d index %d" , m, MBUF_TXQ(m), (int)(uintptr_t)m->m_ext.ext_arg1); 417 netmap_default_mbuf_destructor(m); 418 #endif /* __FreeBSD__ */ 419 IFRATE(rate_ctx.new.txirq++); 420 } 421 422 extern int netmap_adaptive_io; 423 424 /* Record completed transmissions and update hwtail. 425 * 426 * The oldest tx buffer not yet completed is at nr_hwtail + 1, 427 * nr_hwcur is the first unsent buffer. 428 */ 429 static u_int 430 generic_netmap_tx_clean(struct netmap_kring *kring) 431 { 432 u_int const lim = kring->nkr_num_slots - 1; 433 u_int nm_i = nm_next(kring->nr_hwtail, lim); 434 u_int hwcur = kring->nr_hwcur; 435 u_int n = 0; 436 struct mbuf **tx_pool = kring->tx_pool; 437 438 while (nm_i != hwcur) { /* buffers not completed */ 439 struct mbuf *m = tx_pool[nm_i]; 440 441 if (unlikely(m == NULL)) { 442 /* this is done, try to replenish the entry */ 443 tx_pool[nm_i] = m = netmap_get_mbuf(NETMAP_BUF_SIZE(kring->na)); 444 if (unlikely(m == NULL)) { 445 D("mbuf allocation failed, XXX error"); 446 // XXX how do we proceed ? break ? 447 return -ENOMEM; 448 } 449 } else if (GET_MBUF_REFCNT(m) != 1) { 450 break; /* This mbuf is still busy: its refcnt is 2. */ 451 } 452 n++; 453 nm_i = nm_next(nm_i, lim); 454 #if 0 /* rate adaptation */ 455 if (netmap_adaptive_io > 1) { 456 if (n >= netmap_adaptive_io) 457 break; 458 } else if (netmap_adaptive_io) { 459 /* if hwcur - nm_i < lim/8 do an early break 460 * so we prevent the sender from stalling. See CVT. 461 */ 462 if (hwcur >= nm_i) { 463 if (hwcur - nm_i < lim/2) 464 break; 465 } else { 466 if (hwcur + lim + 1 - nm_i < lim/2) 467 break; 468 } 469 } 470 #endif 471 } 472 kring->nr_hwtail = nm_prev(nm_i, lim); 473 ND("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail); 474 475 return n; 476 } 477 478 479 /* 480 * We have pending packets in the driver between nr_hwtail +1 and hwcur. 481 * Compute a position in the middle, to be used to generate 482 * a notification. 483 */ 484 static inline u_int 485 generic_tx_event_middle(struct netmap_kring *kring, u_int hwcur) 486 { 487 u_int n = kring->nkr_num_slots; 488 u_int ntc = nm_next(kring->nr_hwtail, n-1); 489 u_int e; 490 491 if (hwcur >= ntc) { 492 e = (hwcur + ntc) / 2; 493 } else { /* wrap around */ 494 e = (hwcur + n + ntc) / 2; 495 if (e >= n) { 496 e -= n; 497 } 498 } 499 500 if (unlikely(e >= n)) { 501 D("This cannot happen"); 502 e = 0; 503 } 504 505 return e; 506 } 507 508 /* 509 * We have pending packets in the driver between nr_hwtail+1 and hwcur. 510 * Schedule a notification approximately in the middle of the two. 511 * There is a race but this is only called within txsync which does 512 * a double check. 513 */ 514 static void 515 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur) 516 { 517 struct mbuf *m; 518 u_int e; 519 520 if (nm_next(kring->nr_hwtail, kring->nkr_num_slots -1) == hwcur) { 521 return; /* all buffers are free */ 522 } 523 e = generic_tx_event_middle(kring, hwcur); 524 525 m = kring->tx_pool[e]; 526 ND(5, "Request Event at %d mbuf %p refcnt %d", e, m, m ? GET_MBUF_REFCNT(m) : -2 ); 527 if (m == NULL) { 528 /* This can happen if there is already an event on the netmap 529 slot 'e': There is nothing to do. */ 530 return; 531 } 532 kring->tx_pool[e] = NULL; 533 SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor); 534 535 // XXX wmb() ? 536 /* Decrement the refcount an free it if we have the last one. */ 537 m_freem(m); 538 smp_mb(); 539 } 540 541 542 /* 543 * generic_netmap_txsync() transforms netmap buffers into mbufs 544 * and passes them to the standard device driver 545 * (ndo_start_xmit() or ifp->if_transmit() ). 546 * On linux this is not done directly, but using dev_queue_xmit(), 547 * since it implements the TX flow control (and takes some locks). 548 */ 549 static int 550 generic_netmap_txsync(struct netmap_kring *kring, int flags) 551 { 552 struct netmap_adapter *na = kring->na; 553 struct ifnet *ifp = na->ifp; 554 struct netmap_ring *ring = kring->ring; 555 u_int nm_i; /* index into the netmap ring */ // j 556 u_int const lim = kring->nkr_num_slots - 1; 557 u_int const head = kring->rhead; 558 u_int ring_nr = kring->ring_id; 559 560 IFRATE(rate_ctx.new.txsync++); 561 562 // TODO: handle the case of mbuf allocation failure 563 564 rmb(); 565 566 /* 567 * First part: process new packets to send. 568 */ 569 nm_i = kring->nr_hwcur; 570 if (nm_i != head) { /* we have new packets to send */ 571 while (nm_i != head) { 572 struct netmap_slot *slot = &ring->slot[nm_i]; 573 u_int len = slot->len; 574 void *addr = NMB(na, slot); 575 576 /* device-specific */ 577 struct mbuf *m; 578 int tx_ret; 579 580 NM_CHECK_ADDR_LEN(na, addr, len); 581 582 /* Tale a mbuf from the tx pool and copy in the user packet. */ 583 m = kring->tx_pool[nm_i]; 584 if (unlikely(!m)) { 585 RD(5, "This should never happen"); 586 kring->tx_pool[nm_i] = m = netmap_get_mbuf(NETMAP_BUF_SIZE(na)); 587 if (unlikely(m == NULL)) { 588 D("mbuf allocation failed"); 589 break; 590 } 591 } 592 /* XXX we should ask notifications when NS_REPORT is set, 593 * or roughly every half frame. We can optimize this 594 * by lazily requesting notifications only when a 595 * transmission fails. Probably the best way is to 596 * break on failures and set notifications when 597 * ring->cur == ring->tail || nm_i != cur 598 */ 599 tx_ret = generic_xmit_frame(ifp, m, addr, len, ring_nr); 600 if (unlikely(tx_ret)) { 601 ND(5, "start_xmit failed: err %d [nm_i %u, head %u, hwtail %u]", 602 tx_ret, nm_i, head, kring->nr_hwtail); 603 /* 604 * No room for this mbuf in the device driver. 605 * Request a notification FOR A PREVIOUS MBUF, 606 * then call generic_netmap_tx_clean(kring) to do the 607 * double check and see if we can free more buffers. 608 * If there is space continue, else break; 609 * NOTE: the double check is necessary if the problem 610 * occurs in the txsync call after selrecord(). 611 * Also, we need some way to tell the caller that not 612 * all buffers were queued onto the device (this was 613 * not a problem with native netmap driver where space 614 * is preallocated). The bridge has a similar problem 615 * and we solve it there by dropping the excess packets. 616 */ 617 generic_set_tx_event(kring, nm_i); 618 if (generic_netmap_tx_clean(kring)) { /* space now available */ 619 continue; 620 } else { 621 break; 622 } 623 } 624 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); 625 nm_i = nm_next(nm_i, lim); 626 IFRATE(rate_ctx.new.txpkt ++); 627 } 628 629 /* Update hwcur to the next slot to transmit. */ 630 kring->nr_hwcur = nm_i; /* not head, we could break early */ 631 } 632 633 /* 634 * Second, reclaim completed buffers 635 */ 636 if (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring)) { 637 /* No more available slots? Set a notification event 638 * on a netmap slot that will be cleaned in the future. 639 * No doublecheck is performed, since txsync() will be 640 * called twice by netmap_poll(). 641 */ 642 generic_set_tx_event(kring, nm_i); 643 } 644 ND("tx #%d, hwtail = %d", n, kring->nr_hwtail); 645 646 generic_netmap_tx_clean(kring); 647 648 nm_txsync_finalize(kring); 649 650 return 0; 651 } 652 653 654 /* 655 * This handler is registered (through netmap_catch_rx()) 656 * within the attached network interface 657 * in the RX subsystem, so that every mbuf passed up by 658 * the driver can be stolen to the network stack. 659 * Stolen packets are put in a queue where the 660 * generic_netmap_rxsync() callback can extract them. 661 */ 662 void 663 generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 664 { 665 struct netmap_adapter *na = NA(ifp); 666 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 667 u_int work_done; 668 u_int rr = MBUF_RXQ(m); // receive ring number 669 670 if (rr >= na->num_rx_rings) { 671 rr = rr % na->num_rx_rings; // XXX expensive... 672 } 673 674 /* limit the size of the queue */ 675 if (unlikely(mbq_len(&na->rx_rings[rr].rx_queue) > 1024)) { 676 m_freem(m); 677 } else { 678 mbq_safe_enqueue(&na->rx_rings[rr].rx_queue, m); 679 } 680 681 if (netmap_generic_mit < 32768) { 682 /* no rx mitigation, pass notification up */ 683 netmap_generic_irq(na->ifp, rr, &work_done); 684 IFRATE(rate_ctx.new.rxirq++); 685 } else { 686 /* same as send combining, filter notification if there is a 687 * pending timer, otherwise pass it up and start a timer. 688 */ 689 if (likely(netmap_mitigation_active(&gna->mit[rr]))) { 690 /* Record that there is some pending work. */ 691 gna->mit[rr].mit_pending = 1; 692 } else { 693 netmap_generic_irq(na->ifp, rr, &work_done); 694 IFRATE(rate_ctx.new.rxirq++); 695 netmap_mitigation_start(&gna->mit[rr]); 696 } 697 } 698 } 699 700 /* 701 * generic_netmap_rxsync() extracts mbufs from the queue filled by 702 * generic_netmap_rx_handler() and puts their content in the netmap 703 * receive ring. 704 * Access must be protected because the rx handler is asynchronous, 705 */ 706 static int 707 generic_netmap_rxsync(struct netmap_kring *kring, int flags) 708 { 709 struct netmap_ring *ring = kring->ring; 710 struct netmap_adapter *na = kring->na; 711 u_int nm_i; /* index into the netmap ring */ //j, 712 u_int n; 713 u_int const lim = kring->nkr_num_slots - 1; 714 u_int const head = nm_rxsync_prologue(kring); 715 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 716 717 if (head > lim) 718 return netmap_ring_reinit(kring); 719 720 /* 721 * First part: import newly received packets. 722 */ 723 if (netmap_no_pendintr || force_update) { 724 /* extract buffers from the rx queue, stop at most one 725 * slot before nr_hwcur (stop_i) 726 */ 727 uint16_t slot_flags = kring->nkr_slot_flags; 728 u_int stop_i = nm_prev(kring->nr_hwcur, lim); 729 730 nm_i = kring->nr_hwtail; /* first empty slot in the receive ring */ 731 for (n = 0; nm_i != stop_i; n++) { 732 int len; 733 void *addr = NMB(na, &ring->slot[nm_i]); 734 struct mbuf *m; 735 736 /* we only check the address here on generic rx rings */ 737 if (addr == NETMAP_BUF_BASE(na)) { /* Bad buffer */ 738 return netmap_ring_reinit(kring); 739 } 740 /* 741 * Call the locked version of the function. 742 * XXX Ideally we could grab a batch of mbufs at once 743 * and save some locking overhead. 744 */ 745 m = mbq_safe_dequeue(&kring->rx_queue); 746 if (!m) /* no more data */ 747 break; 748 len = MBUF_LEN(m); 749 m_copydata(m, 0, len, addr); 750 ring->slot[nm_i].len = len; 751 ring->slot[nm_i].flags = slot_flags; 752 m_freem(m); 753 nm_i = nm_next(nm_i, lim); 754 } 755 if (n) { 756 kring->nr_hwtail = nm_i; 757 IFRATE(rate_ctx.new.rxpkt += n); 758 } 759 kring->nr_kflags &= ~NKR_PENDINTR; 760 } 761 762 // XXX should we invert the order ? 763 /* 764 * Second part: skip past packets that userspace has released. 765 */ 766 nm_i = kring->nr_hwcur; 767 if (nm_i != head) { 768 /* Userspace has released some packets. */ 769 for (n = 0; nm_i != head; n++) { 770 struct netmap_slot *slot = &ring->slot[nm_i]; 771 772 slot->flags &= ~NS_BUF_CHANGED; 773 nm_i = nm_next(nm_i, lim); 774 } 775 kring->nr_hwcur = head; 776 } 777 /* tell userspace that there might be new packets. */ 778 nm_rxsync_finalize(kring); 779 IFRATE(rate_ctx.new.rxsync++); 780 781 return 0; 782 } 783 784 static void 785 generic_netmap_dtor(struct netmap_adapter *na) 786 { 787 struct ifnet *ifp = na->ifp; 788 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na; 789 struct netmap_adapter *prev_na = gna->prev; 790 791 if (prev_na != NULL) { 792 D("Released generic NA %p", gna); 793 if_rele(na->ifp); 794 netmap_adapter_put(prev_na); 795 } 796 if (ifp != NULL) { 797 WNA(ifp) = prev_na; 798 D("Restored native NA %p", prev_na); 799 na->ifp = NULL; 800 } 801 } 802 803 /* 804 * generic_netmap_attach() makes it possible to use netmap on 805 * a device without native netmap support. 806 * This is less performant than native support but potentially 807 * faster than raw sockets or similar schemes. 808 * 809 * In this "emulated" mode, netmap rings do not necessarily 810 * have the same size as those in the NIC. We use a default 811 * value and possibly override it if the OS has ways to fetch the 812 * actual configuration. 813 */ 814 int 815 generic_netmap_attach(struct ifnet *ifp) 816 { 817 struct netmap_adapter *na; 818 struct netmap_generic_adapter *gna; 819 int retval; 820 u_int num_tx_desc, num_rx_desc; 821 822 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */ 823 824 generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */ 825 ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc); 826 if (num_tx_desc == 0 || num_rx_desc == 0) { 827 D("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc); 828 return EINVAL; 829 } 830 831 gna = malloc(sizeof(*gna), M_DEVBUF, M_NOWAIT | M_ZERO); 832 if (gna == NULL) { 833 D("no memory on attach, give up"); 834 return ENOMEM; 835 } 836 na = (struct netmap_adapter *)gna; 837 na->ifp = ifp; 838 na->num_tx_desc = num_tx_desc; 839 na->num_rx_desc = num_rx_desc; 840 na->nm_register = &generic_netmap_register; 841 na->nm_txsync = &generic_netmap_txsync; 842 na->nm_rxsync = &generic_netmap_rxsync; 843 na->nm_dtor = &generic_netmap_dtor; 844 /* when using generic, NAF_NETMAP_ON is set so we force 845 * NAF_SKIP_INTR to use the regular interrupt handler 846 */ 847 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS; 848 849 ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)", 850 ifp->num_tx_queues, ifp->real_num_tx_queues, 851 ifp->tx_queue_len); 852 ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)", 853 ifp->num_rx_queues, ifp->real_num_rx_queues); 854 855 generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings); 856 857 retval = netmap_attach_common(na); 858 if (retval) { 859 free(gna, M_DEVBUF); 860 } 861 862 return retval; 863 } 864