xref: /freebsd/sys/dev/netmap/netmap_generic.c (revision 1a61beb0549e05b33df31380e427d90f6e46ff7e)
1 /*
2  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *   1. Redistributions of source code must retain the above copyright
8  *      notice, this list of conditions and the following disclaimer.
9  *   2. Redistributions in binary form must reproduce the above copyright
10  *      notice, this list of conditions and the following disclaimer in the
11  *      documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /*
27  * This module implements netmap support on top of standard,
28  * unmodified device drivers.
29  *
30  * A NIOCREGIF request is handled here if the device does not
31  * have native support. TX and RX rings are emulated as follows:
32  *
33  * NIOCREGIF
34  *	We preallocate a block of TX mbufs (roughly as many as
35  *	tx descriptors; the number is not critical) to speed up
36  *	operation during transmissions. The refcount on most of
37  *	these buffers is artificially bumped up so we can recycle
38  *	them more easily. Also, the destructor is intercepted
39  *	so we use it as an interrupt notification to wake up
40  *	processes blocked on a poll().
41  *
42  *	For each receive ring we allocate one "struct mbq"
43  *	(an mbuf tailq plus a spinlock). We intercept packets
44  *	(through if_input)
45  *	on the receive path and put them in the mbq from which
46  *	netmap receive routines can grab them.
47  *
48  * TX:
49  *	in the generic_txsync() routine, netmap buffers are copied
50  *	(or linked, in a future) to the preallocated mbufs
51  *	and pushed to the transmit queue. Some of these mbufs
52  *	(those with NS_REPORT, or otherwise every half ring)
53  *	have the refcount=1, others have refcount=2.
54  *	When the destructor is invoked, we take that as
55  *	a notification that all mbufs up to that one in
56  *	the specific ring have been completed, and generate
57  *	the equivalent of a transmit interrupt.
58  *
59  * RX:
60  *
61  */
62 
63 #ifdef __FreeBSD__
64 
65 #include <sys/cdefs.h> /* prerequisite */
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/types.h>
69 #include <sys/errno.h>
70 #include <sys/malloc.h>
71 #include <sys/lock.h>   /* PROT_EXEC */
72 #include <sys/rwlock.h>
73 #include <sys/socket.h> /* sockaddrs */
74 #include <sys/selinfo.h>
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <machine/bus.h>        /* bus_dmamap_* in netmap_kern.h */
78 
79 // XXX temporary - D() defined here
80 #include <net/netmap.h>
81 #include <dev/netmap/netmap_kern.h>
82 #include <dev/netmap/netmap_mem2.h>
83 
84 #define rtnl_lock() D("rtnl_lock called");
85 #define rtnl_unlock() D("rtnl_unlock called");
86 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
87 #define smp_mb()
88 
89 /*
90  * mbuf wrappers
91  */
92 
93 /*
94  * we allocate an EXT_PACKET
95  */
96 #define netmap_get_mbuf(len) m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR|M_NOFREE)
97 
98 /* mbuf destructor, also need to change the type to EXT_EXTREF,
99  * add an M_NOFREE flag, and then clear the flag and
100  * chain into uma_zfree(zone_pack, mf)
101  * (or reinstall the buffer ?)
102  */
103 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
104 	(m)->m_ext.ext_free = (void *)fn;	\
105 	(m)->m_ext.ext_type = EXT_EXTREF;	\
106 } while (0)
107 
108 
109 #define GET_MBUF_REFCNT(m)	((m)->m_ext.ref_cnt ? *(m)->m_ext.ref_cnt : -1)
110 
111 
112 
113 #else /* linux */
114 
115 #include "bsd_glue.h"
116 
117 #include <linux/rtnetlink.h>    /* rtnl_[un]lock() */
118 #include <linux/ethtool.h>      /* struct ethtool_ops, get_ringparam */
119 #include <linux/hrtimer.h>
120 
121 //#define RATE  /* Enables communication statistics. */
122 
123 //#define REG_RESET
124 
125 #endif /* linux */
126 
127 
128 /* Common headers. */
129 #include <net/netmap.h>
130 #include <dev/netmap/netmap_kern.h>
131 #include <dev/netmap/netmap_mem2.h>
132 
133 
134 
135 /* ======================== usage stats =========================== */
136 
137 #ifdef RATE
138 #define IFRATE(x) x
139 struct rate_stats {
140 	unsigned long txpkt;
141 	unsigned long txsync;
142 	unsigned long txirq;
143 	unsigned long rxpkt;
144 	unsigned long rxirq;
145 	unsigned long rxsync;
146 };
147 
148 struct rate_context {
149 	unsigned refcount;
150 	struct timer_list timer;
151 	struct rate_stats new;
152 	struct rate_stats old;
153 };
154 
155 #define RATE_PRINTK(_NAME_) \
156 	printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
157 #define RATE_PERIOD  2
158 static void rate_callback(unsigned long arg)
159 {
160 	struct rate_context * ctx = (struct rate_context *)arg;
161 	struct rate_stats cur = ctx->new;
162 	int r;
163 
164 	RATE_PRINTK(txpkt);
165 	RATE_PRINTK(txsync);
166 	RATE_PRINTK(txirq);
167 	RATE_PRINTK(rxpkt);
168 	RATE_PRINTK(rxsync);
169 	RATE_PRINTK(rxirq);
170 	printk("\n");
171 
172 	ctx->old = cur;
173 	r = mod_timer(&ctx->timer, jiffies +
174 			msecs_to_jiffies(RATE_PERIOD * 1000));
175 	if (unlikely(r))
176 		D("[v1000] Error: mod_timer()");
177 }
178 
179 static struct rate_context rate_ctx;
180 
181 #else /* !RATE */
182 #define IFRATE(x)
183 #endif /* !RATE */
184 
185 
186 /* =============== GENERIC NETMAP ADAPTER SUPPORT ================= */
187 #define GENERIC_BUF_SIZE        netmap_buf_size    /* Size of the mbufs in the Tx pool. */
188 
189 /*
190  * Wrapper used by the generic adapter layer to notify
191  * the poller threads. Differently from netmap_rx_irq(), we check
192  * only IFCAP_NETMAP instead of NAF_NATIVE_ON to enable the irq.
193  */
194 static void
195 netmap_generic_irq(struct ifnet *ifp, u_int q, u_int *work_done)
196 {
197 	if (unlikely(!(ifp->if_capenable & IFCAP_NETMAP)))
198 		return;
199 
200 	netmap_common_irq(ifp, q, work_done);
201 }
202 
203 
204 /* Enable/disable netmap mode for a generic network interface. */
205 static int
206 generic_netmap_register(struct netmap_adapter *na, int enable)
207 {
208 	struct ifnet *ifp = na->ifp;
209 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
210 	struct mbuf *m;
211 	int error;
212 	int i, r;
213 
214 	if (!na)
215 		return EINVAL;
216 
217 #ifdef REG_RESET
218 	error = ifp->netdev_ops->ndo_stop(ifp);
219 	if (error) {
220 		return error;
221 	}
222 #endif /* REG_RESET */
223 
224 	if (enable) { /* Enable netmap mode. */
225 		/* Initialize the rx queue, as generic_rx_handler() can
226 		 * be called as soon as netmap_catch_rx() returns.
227 		 */
228 		for (r=0; r<na->num_rx_rings; r++) {
229 			mbq_safe_init(&na->rx_rings[r].rx_queue);
230 		}
231 
232 		/* Init the mitigation timer. */
233 		netmap_mitigation_init(gna);
234 
235 		/*
236 		 * Preallocate packet buffers for the tx rings.
237 		 */
238 		for (r=0; r<na->num_tx_rings; r++)
239 			na->tx_rings[r].tx_pool = NULL;
240 		for (r=0; r<na->num_tx_rings; r++) {
241 			na->tx_rings[r].tx_pool = malloc(na->num_tx_desc * sizeof(struct mbuf *),
242 					M_DEVBUF, M_NOWAIT | M_ZERO);
243 			if (!na->tx_rings[r].tx_pool) {
244 				D("tx_pool allocation failed");
245 				error = ENOMEM;
246 				goto free_tx_pools;
247 			}
248 			for (i=0; i<na->num_tx_desc; i++)
249 				na->tx_rings[r].tx_pool[i] = NULL;
250 			for (i=0; i<na->num_tx_desc; i++) {
251 				m = netmap_get_mbuf(GENERIC_BUF_SIZE);
252 				if (!m) {
253 					D("tx_pool[%d] allocation failed", i);
254 					error = ENOMEM;
255 					goto free_tx_pools;
256 				}
257 				na->tx_rings[r].tx_pool[i] = m;
258 			}
259 		}
260 		rtnl_lock();
261 		/* Prepare to intercept incoming traffic. */
262 		error = netmap_catch_rx(na, 1);
263 		if (error) {
264 			D("netdev_rx_handler_register() failed (%d)", error);
265 			goto register_handler;
266 		}
267 		ifp->if_capenable |= IFCAP_NETMAP;
268 
269 		/* Make netmap control the packet steering. */
270 		netmap_catch_tx(gna, 1);
271 
272 		rtnl_unlock();
273 
274 #ifdef RATE
275 		if (rate_ctx.refcount == 0) {
276 			D("setup_timer()");
277 			memset(&rate_ctx, 0, sizeof(rate_ctx));
278 			setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
279 			if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
280 				D("Error: mod_timer()");
281 			}
282 		}
283 		rate_ctx.refcount++;
284 #endif /* RATE */
285 
286 	} else if (na->tx_rings[0].tx_pool) {
287 		/* Disable netmap mode. We enter here only if the previous
288 		   generic_netmap_register(na, 1) was successfull.
289 		   If it was not, na->tx_rings[0].tx_pool was set to NULL by the
290 		   error handling code below. */
291 		rtnl_lock();
292 
293 		ifp->if_capenable &= ~IFCAP_NETMAP;
294 
295 		/* Release packet steering control. */
296 		netmap_catch_tx(gna, 0);
297 
298 		/* Do not intercept packets on the rx path. */
299 		netmap_catch_rx(na, 0);
300 
301 		rtnl_unlock();
302 
303 		/* Free the mbufs going to the netmap rings */
304 		for (r=0; r<na->num_rx_rings; r++) {
305 			mbq_safe_purge(&na->rx_rings[r].rx_queue);
306 			mbq_safe_destroy(&na->rx_rings[r].rx_queue);
307 		}
308 
309 		netmap_mitigation_cleanup(gna);
310 
311 		for (r=0; r<na->num_tx_rings; r++) {
312 			for (i=0; i<na->num_tx_desc; i++) {
313 				m_freem(na->tx_rings[r].tx_pool[i]);
314 			}
315 			free(na->tx_rings[r].tx_pool, M_DEVBUF);
316 		}
317 
318 #ifdef RATE
319 		if (--rate_ctx.refcount == 0) {
320 			D("del_timer()");
321 			del_timer(&rate_ctx.timer);
322 		}
323 #endif
324 	}
325 
326 #ifdef REG_RESET
327 	error = ifp->netdev_ops->ndo_open(ifp);
328 	if (error) {
329 		goto free_tx_pools;
330 	}
331 #endif
332 
333 	return 0;
334 
335 register_handler:
336 	rtnl_unlock();
337 free_tx_pools:
338 	for (r=0; r<na->num_tx_rings; r++) {
339 		if (na->tx_rings[r].tx_pool == NULL)
340 			continue;
341 		for (i=0; i<na->num_tx_desc; i++)
342 			if (na->tx_rings[r].tx_pool[i])
343 				m_freem(na->tx_rings[r].tx_pool[i]);
344 		free(na->tx_rings[r].tx_pool, M_DEVBUF);
345 		na->tx_rings[r].tx_pool = NULL;
346 	}
347 	netmap_mitigation_cleanup(gna);
348 	for (r=0; r<na->num_rx_rings; r++) {
349 		mbq_safe_destroy(&na->rx_rings[r].rx_queue);
350 	}
351 
352 	return error;
353 }
354 
355 /*
356  * Callback invoked when the device driver frees an mbuf used
357  * by netmap to transmit a packet. This usually happens when
358  * the NIC notifies the driver that transmission is completed.
359  */
360 static void
361 generic_mbuf_destructor(struct mbuf *m)
362 {
363 	if (netmap_verbose)
364 		D("Tx irq (%p) queue %d", m, MBUF_TXQ(m));
365 	netmap_generic_irq(MBUF_IFP(m), MBUF_TXQ(m), NULL);
366 #ifdef __FreeBSD__
367 	m->m_ext.ext_type = EXT_PACKET;
368 	m->m_ext.ext_free = NULL;
369 	if (*(m->m_ext.ref_cnt) == 0)
370 		*(m->m_ext.ref_cnt) = 1;
371 	uma_zfree(zone_pack, m);
372 #endif /* __FreeBSD__ */
373 	IFRATE(rate_ctx.new.txirq++);
374 }
375 
376 /* Record completed transmissions and update hwtail.
377  *
378  * The oldest tx buffer not yet completed is at nr_hwtail + 1,
379  * nr_hwcur is the first unsent buffer.
380  */
381 static u_int
382 generic_netmap_tx_clean(struct netmap_kring *kring)
383 {
384 	u_int const lim = kring->nkr_num_slots - 1;
385 	u_int nm_i = nm_next(kring->nr_hwtail, lim);
386 	u_int hwcur = kring->nr_hwcur;
387 	u_int n = 0;
388 	struct mbuf **tx_pool = kring->tx_pool;
389 
390 	while (nm_i != hwcur) { /* buffers not completed */
391 		struct mbuf *m = tx_pool[nm_i];
392 
393 		if (unlikely(m == NULL)) {
394 			/* this is done, try to replenish the entry */
395 			tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE);
396 			if (unlikely(m == NULL)) {
397 				D("mbuf allocation failed, XXX error");
398 				// XXX how do we proceed ? break ?
399 				return -ENOMEM;
400 			}
401 		} else if (GET_MBUF_REFCNT(m) != 1) {
402 			break; /* This mbuf is still busy: its refcnt is 2. */
403 		}
404 		n++;
405 		nm_i = nm_next(nm_i, lim);
406 	}
407 	kring->nr_hwtail = nm_prev(nm_i, lim);
408 	ND("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
409 
410 	return n;
411 }
412 
413 
414 /*
415  * We have pending packets in the driver between nr_hwtail +1 and hwcur.
416  * Compute a position in the middle, to be used to generate
417  * a notification.
418  */
419 static inline u_int
420 generic_tx_event_middle(struct netmap_kring *kring, u_int hwcur)
421 {
422 	u_int n = kring->nkr_num_slots;
423 	u_int ntc = nm_next(kring->nr_hwtail, n-1);
424 	u_int e;
425 
426 	if (hwcur >= ntc) {
427 		e = (hwcur + ntc) / 2;
428 	} else { /* wrap around */
429 		e = (hwcur + n + ntc) / 2;
430 		if (e >= n) {
431 			e -= n;
432 		}
433 	}
434 
435 	if (unlikely(e >= n)) {
436 		D("This cannot happen");
437 		e = 0;
438 	}
439 
440 	return e;
441 }
442 
443 /*
444  * We have pending packets in the driver between nr_hwtail+1 and hwcur.
445  * Schedule a notification approximately in the middle of the two.
446  * There is a race but this is only called within txsync which does
447  * a double check.
448  */
449 static void
450 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
451 {
452 	struct mbuf *m;
453 	u_int e;
454 
455 	if (nm_next(kring->nr_hwtail, kring->nkr_num_slots -1) == hwcur) {
456 		return; /* all buffers are free */
457 	}
458 	e = generic_tx_event_middle(kring, hwcur);
459 
460 	m = kring->tx_pool[e];
461 	if (m == NULL) {
462 		/* This can happen if there is already an event on the netmap
463 		   slot 'e': There is nothing to do. */
464 		return;
465 	}
466 	ND("Event at %d mbuf %p refcnt %d", e, m, GET_MBUF_REFCNT(m));
467 	kring->tx_pool[e] = NULL;
468 	SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
469 
470 	// XXX wmb() ?
471 	/* Decrement the refcount an free it if we have the last one. */
472 	m_freem(m);
473 	smp_mb();
474 }
475 
476 
477 /*
478  * generic_netmap_txsync() transforms netmap buffers into mbufs
479  * and passes them to the standard device driver
480  * (ndo_start_xmit() or ifp->if_transmit() ).
481  * On linux this is not done directly, but using dev_queue_xmit(),
482  * since it implements the TX flow control (and takes some locks).
483  */
484 static int
485 generic_netmap_txsync(struct netmap_adapter *na, u_int ring_nr, int flags)
486 {
487 	struct ifnet *ifp = na->ifp;
488 	struct netmap_kring *kring = &na->tx_rings[ring_nr];
489 	struct netmap_ring *ring = kring->ring;
490 	u_int nm_i;	/* index into the netmap ring */ // j
491 	u_int const lim = kring->nkr_num_slots - 1;
492 	u_int const head = kring->rhead;
493 
494 	IFRATE(rate_ctx.new.txsync++);
495 
496 	// TODO: handle the case of mbuf allocation failure
497 
498 	rmb();
499 
500 	/*
501 	 * First part: process new packets to send.
502 	 */
503 	nm_i = kring->nr_hwcur;
504 	if (nm_i != head) {	/* we have new packets to send */
505 		while (nm_i != head) {
506 			struct netmap_slot *slot = &ring->slot[nm_i];
507 			u_int len = slot->len;
508 			void *addr = NMB(slot);
509 
510 			/* device-specific */
511 			struct mbuf *m;
512 			int tx_ret;
513 
514 			NM_CHECK_ADDR_LEN(addr, len);
515 
516 			/* Tale a mbuf from the tx pool and copy in the user packet. */
517 			m = kring->tx_pool[nm_i];
518 			if (unlikely(!m)) {
519 				RD(5, "This should never happen");
520 				kring->tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE);
521 				if (unlikely(m == NULL)) {
522 					D("mbuf allocation failed");
523 					break;
524 				}
525 			}
526 			/* XXX we should ask notifications when NS_REPORT is set,
527 			 * or roughly every half frame. We can optimize this
528 			 * by lazily requesting notifications only when a
529 			 * transmission fails. Probably the best way is to
530 			 * break on failures and set notifications when
531 			 * ring->cur == ring->tail || nm_i != cur
532 			 */
533 			tx_ret = generic_xmit_frame(ifp, m, addr, len, ring_nr);
534 			if (unlikely(tx_ret)) {
535 				RD(5, "start_xmit failed: err %d [nm_i %u, head %u, hwtail %u]",
536 						tx_ret, nm_i, head, kring->nr_hwtail);
537 				/*
538 				 * No room for this mbuf in the device driver.
539 				 * Request a notification FOR A PREVIOUS MBUF,
540 				 * then call generic_netmap_tx_clean(kring) to do the
541 				 * double check and see if we can free more buffers.
542 				 * If there is space continue, else break;
543 				 * NOTE: the double check is necessary if the problem
544 				 * occurs in the txsync call after selrecord().
545 				 * Also, we need some way to tell the caller that not
546 				 * all buffers were queued onto the device (this was
547 				 * not a problem with native netmap driver where space
548 				 * is preallocated). The bridge has a similar problem
549 				 * and we solve it there by dropping the excess packets.
550 				 */
551 				generic_set_tx_event(kring, nm_i);
552 				if (generic_netmap_tx_clean(kring)) { /* space now available */
553 					continue;
554 				} else {
555 					break;
556 				}
557 			}
558 			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
559 			nm_i = nm_next(nm_i, lim);
560 		}
561 
562 		/* Update hwcur to the next slot to transmit. */
563 		kring->nr_hwcur = nm_i; /* not head, we could break early */
564 
565 		IFRATE(rate_ctx.new.txpkt += ntx);
566 	}
567 
568 	/*
569 	 * Second, reclaim completed buffers
570 	 */
571 	if (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring)) {
572 		/* No more available slots? Set a notification event
573 		 * on a netmap slot that will be cleaned in the future.
574 		 * No doublecheck is performed, since txsync() will be
575 		 * called twice by netmap_poll().
576 		 */
577 		generic_set_tx_event(kring, nm_i);
578 	}
579 	ND("tx #%d, hwtail = %d", n, kring->nr_hwtail);
580 
581 	generic_netmap_tx_clean(kring);
582 
583 	nm_txsync_finalize(kring);
584 
585 	return 0;
586 }
587 
588 
589 /*
590  * This handler is registered (through netmap_catch_rx())
591  * within the attached network interface
592  * in the RX subsystem, so that every mbuf passed up by
593  * the driver can be stolen to the network stack.
594  * Stolen packets are put in a queue where the
595  * generic_netmap_rxsync() callback can extract them.
596  */
597 void
598 generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
599 {
600 	struct netmap_adapter *na = NA(ifp);
601 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
602 	u_int work_done;
603 	u_int rr = 0; // receive ring number
604 
605 	/* limit the size of the queue */
606 	if (unlikely(mbq_len(&na->rx_rings[rr].rx_queue) > 1024)) {
607 		m_freem(m);
608 	} else {
609 		mbq_safe_enqueue(&na->rx_rings[rr].rx_queue, m);
610 	}
611 
612 	if (netmap_generic_mit < 32768) {
613 		/* no rx mitigation, pass notification up */
614 		netmap_generic_irq(na->ifp, rr, &work_done);
615 		IFRATE(rate_ctx.new.rxirq++);
616 	} else {
617 		/* same as send combining, filter notification if there is a
618 		 * pending timer, otherwise pass it up and start a timer.
619 		 */
620 		if (likely(netmap_mitigation_active(gna))) {
621 			/* Record that there is some pending work. */
622 			gna->mit_pending = 1;
623 		} else {
624 			netmap_generic_irq(na->ifp, rr, &work_done);
625 			IFRATE(rate_ctx.new.rxirq++);
626 			netmap_mitigation_start(gna);
627 		}
628 	}
629 }
630 
631 /*
632  * generic_netmap_rxsync() extracts mbufs from the queue filled by
633  * generic_netmap_rx_handler() and puts their content in the netmap
634  * receive ring.
635  * Access must be protected because the rx handler is asynchronous,
636  */
637 static int
638 generic_netmap_rxsync(struct netmap_adapter *na, u_int ring_nr, int flags)
639 {
640 	struct netmap_kring *kring = &na->rx_rings[ring_nr];
641 	struct netmap_ring *ring = kring->ring;
642 	u_int nm_i;	/* index into the netmap ring */ //j,
643 	u_int n;
644 	u_int const lim = kring->nkr_num_slots - 1;
645 	u_int const head = nm_rxsync_prologue(kring);
646 	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
647 
648 	if (head > lim)
649 		return netmap_ring_reinit(kring);
650 
651 	/*
652 	 * First part: import newly received packets.
653 	 */
654 	if (netmap_no_pendintr || force_update) {
655 		/* extract buffers from the rx queue, stop at most one
656 		 * slot before nr_hwcur (stop_i)
657 		 */
658 		uint16_t slot_flags = kring->nkr_slot_flags;
659 		u_int stop_i = nm_prev(kring->nr_hwcur, lim);
660 
661 		nm_i = kring->nr_hwtail; /* first empty slot in the receive ring */
662 		for (n = 0; nm_i != stop_i; n++) {
663 			int len;
664 			void *addr = NMB(&ring->slot[nm_i]);
665 			struct mbuf *m;
666 
667 			/* we only check the address here on generic rx rings */
668 			if (addr == netmap_buffer_base) { /* Bad buffer */
669 				return netmap_ring_reinit(kring);
670 			}
671 			/*
672 			 * Call the locked version of the function.
673 			 * XXX Ideally we could grab a batch of mbufs at once
674 			 * and save some locking overhead.
675 			 */
676 			m = mbq_safe_dequeue(&kring->rx_queue);
677 			if (!m)	/* no more data */
678 				break;
679 			len = MBUF_LEN(m);
680 			m_copydata(m, 0, len, addr);
681 			ring->slot[nm_i].len = len;
682 			ring->slot[nm_i].flags = slot_flags;
683 			m_freem(m);
684 			nm_i = nm_next(nm_i, lim);
685 			n++;
686 		}
687 		if (n) {
688 			kring->nr_hwtail = nm_i;
689 			IFRATE(rate_ctx.new.rxpkt += n);
690 		}
691 		kring->nr_kflags &= ~NKR_PENDINTR;
692 	}
693 
694 	// XXX should we invert the order ?
695 	/*
696 	 * Second part: skip past packets that userspace has released.
697 	 */
698 	nm_i = kring->nr_hwcur;
699 	if (nm_i != head) {
700 		/* Userspace has released some packets. */
701 		for (n = 0; nm_i != head; n++) {
702 			struct netmap_slot *slot = &ring->slot[nm_i];
703 
704 			slot->flags &= ~NS_BUF_CHANGED;
705 			nm_i = nm_next(nm_i, lim);
706 		}
707 		kring->nr_hwcur = head;
708 	}
709 	/* tell userspace that there might be new packets. */
710 	nm_rxsync_finalize(kring);
711 	IFRATE(rate_ctx.new.rxsync++);
712 
713 	return 0;
714 }
715 
716 static void
717 generic_netmap_dtor(struct netmap_adapter *na)
718 {
719 	struct ifnet *ifp = na->ifp;
720 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
721 	struct netmap_adapter *prev_na = gna->prev;
722 
723 	if (prev_na != NULL) {
724 		D("Released generic NA %p", gna);
725 		if_rele(na->ifp);
726 		netmap_adapter_put(prev_na);
727 	}
728 	if (ifp != NULL) {
729 		WNA(ifp) = prev_na;
730 		D("Restored native NA %p", prev_na);
731 		na->ifp = NULL;
732 	}
733 }
734 
735 /*
736  * generic_netmap_attach() makes it possible to use netmap on
737  * a device without native netmap support.
738  * This is less performant than native support but potentially
739  * faster than raw sockets or similar schemes.
740  *
741  * In this "emulated" mode, netmap rings do not necessarily
742  * have the same size as those in the NIC. We use a default
743  * value and possibly override it if the OS has ways to fetch the
744  * actual configuration.
745  */
746 int
747 generic_netmap_attach(struct ifnet *ifp)
748 {
749 	struct netmap_adapter *na;
750 	struct netmap_generic_adapter *gna;
751 	int retval;
752 	u_int num_tx_desc, num_rx_desc;
753 
754 	num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
755 
756 	generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc);
757 	ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc);
758 
759 	gna = malloc(sizeof(*gna), M_DEVBUF, M_NOWAIT | M_ZERO);
760 	if (gna == NULL) {
761 		D("no memory on attach, give up");
762 		return ENOMEM;
763 	}
764 	na = (struct netmap_adapter *)gna;
765 	na->ifp = ifp;
766 	na->num_tx_desc = num_tx_desc;
767 	na->num_rx_desc = num_rx_desc;
768 	na->nm_register = &generic_netmap_register;
769 	na->nm_txsync = &generic_netmap_txsync;
770 	na->nm_rxsync = &generic_netmap_rxsync;
771 	na->nm_dtor = &generic_netmap_dtor;
772 	/* when using generic, IFCAP_NETMAP is set so we force
773 	 * NAF_SKIP_INTR to use the regular interrupt handler
774 	 */
775 	na->na_flags = NAF_SKIP_INTR;
776 
777 	ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
778 			ifp->num_tx_queues, ifp->real_num_tx_queues,
779 			ifp->tx_queue_len);
780 	ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
781 			ifp->num_rx_queues, ifp->real_num_rx_queues);
782 
783 	generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
784 
785 	retval = netmap_attach_common(na);
786 	if (retval) {
787 		free(gna, M_DEVBUF);
788 	}
789 
790 	return retval;
791 }
792