1 /* 2 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * This module implements netmap support on top of standard, 28 * unmodified device drivers. 29 * 30 * A NIOCREGIF request is handled here if the device does not 31 * have native support. TX and RX rings are emulated as follows: 32 * 33 * NIOCREGIF 34 * We preallocate a block of TX mbufs (roughly as many as 35 * tx descriptors; the number is not critical) to speed up 36 * operation during transmissions. The refcount on most of 37 * these buffers is artificially bumped up so we can recycle 38 * them more easily. Also, the destructor is intercepted 39 * so we use it as an interrupt notification to wake up 40 * processes blocked on a poll(). 41 * 42 * For each receive ring we allocate one "struct mbq" 43 * (an mbuf tailq plus a spinlock). We intercept packets 44 * (through if_input) 45 * on the receive path and put them in the mbq from which 46 * netmap receive routines can grab them. 47 * 48 * TX: 49 * in the generic_txsync() routine, netmap buffers are copied 50 * (or linked, in a future) to the preallocated mbufs 51 * and pushed to the transmit queue. Some of these mbufs 52 * (those with NS_REPORT, or otherwise every half ring) 53 * have the refcount=1, others have refcount=2. 54 * When the destructor is invoked, we take that as 55 * a notification that all mbufs up to that one in 56 * the specific ring have been completed, and generate 57 * the equivalent of a transmit interrupt. 58 * 59 * RX: 60 * 61 */ 62 63 #ifdef __FreeBSD__ 64 65 #include <sys/cdefs.h> /* prerequisite */ 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/types.h> 69 #include <sys/errno.h> 70 #include <sys/malloc.h> 71 #include <sys/lock.h> /* PROT_EXEC */ 72 #include <sys/rwlock.h> 73 #include <sys/socket.h> /* sockaddrs */ 74 #include <sys/selinfo.h> 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */ 78 79 // XXX temporary - D() defined here 80 #include <net/netmap.h> 81 #include <dev/netmap/netmap_kern.h> 82 #include <dev/netmap/netmap_mem2.h> 83 84 #define rtnl_lock() D("rtnl_lock called"); 85 #define rtnl_unlock() D("rtnl_unlock called"); 86 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 87 #define smp_mb() 88 89 /* 90 * mbuf wrappers 91 */ 92 93 /* 94 * we allocate an EXT_PACKET 95 */ 96 #define netmap_get_mbuf(len) m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR|M_NOFREE) 97 98 /* mbuf destructor, also need to change the type to EXT_EXTREF, 99 * add an M_NOFREE flag, and then clear the flag and 100 * chain into uma_zfree(zone_pack, mf) 101 * (or reinstall the buffer ?) 102 */ 103 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 104 (m)->m_ext.ext_free = (void *)fn; \ 105 (m)->m_ext.ext_type = EXT_EXTREF; \ 106 } while (0) 107 108 109 #define GET_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *(m)->m_ext.ref_cnt : -1) 110 111 112 113 #else /* linux */ 114 115 #include "bsd_glue.h" 116 117 #include <linux/rtnetlink.h> /* rtnl_[un]lock() */ 118 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */ 119 #include <linux/hrtimer.h> 120 121 //#define RATE /* Enables communication statistics. */ 122 123 //#define REG_RESET 124 125 #endif /* linux */ 126 127 128 /* Common headers. */ 129 #include <net/netmap.h> 130 #include <dev/netmap/netmap_kern.h> 131 #include <dev/netmap/netmap_mem2.h> 132 133 134 135 /* ======================== usage stats =========================== */ 136 137 #ifdef RATE 138 #define IFRATE(x) x 139 struct rate_stats { 140 unsigned long txpkt; 141 unsigned long txsync; 142 unsigned long txirq; 143 unsigned long rxpkt; 144 unsigned long rxirq; 145 unsigned long rxsync; 146 }; 147 148 struct rate_context { 149 unsigned refcount; 150 struct timer_list timer; 151 struct rate_stats new; 152 struct rate_stats old; 153 }; 154 155 #define RATE_PRINTK(_NAME_) \ 156 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD); 157 #define RATE_PERIOD 2 158 static void rate_callback(unsigned long arg) 159 { 160 struct rate_context * ctx = (struct rate_context *)arg; 161 struct rate_stats cur = ctx->new; 162 int r; 163 164 RATE_PRINTK(txpkt); 165 RATE_PRINTK(txsync); 166 RATE_PRINTK(txirq); 167 RATE_PRINTK(rxpkt); 168 RATE_PRINTK(rxsync); 169 RATE_PRINTK(rxirq); 170 printk("\n"); 171 172 ctx->old = cur; 173 r = mod_timer(&ctx->timer, jiffies + 174 msecs_to_jiffies(RATE_PERIOD * 1000)); 175 if (unlikely(r)) 176 D("[v1000] Error: mod_timer()"); 177 } 178 179 static struct rate_context rate_ctx; 180 181 #else /* !RATE */ 182 #define IFRATE(x) 183 #endif /* !RATE */ 184 185 186 /* =============== GENERIC NETMAP ADAPTER SUPPORT ================= */ 187 #define GENERIC_BUF_SIZE netmap_buf_size /* Size of the mbufs in the Tx pool. */ 188 189 /* 190 * Wrapper used by the generic adapter layer to notify 191 * the poller threads. Differently from netmap_rx_irq(), we check 192 * only IFCAP_NETMAP instead of NAF_NATIVE_ON to enable the irq. 193 */ 194 static void 195 netmap_generic_irq(struct ifnet *ifp, u_int q, u_int *work_done) 196 { 197 if (unlikely(!(ifp->if_capenable & IFCAP_NETMAP))) 198 return; 199 200 netmap_common_irq(ifp, q, work_done); 201 } 202 203 204 /* Enable/disable netmap mode for a generic network interface. */ 205 static int 206 generic_netmap_register(struct netmap_adapter *na, int enable) 207 { 208 struct ifnet *ifp = na->ifp; 209 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 210 struct mbuf *m; 211 int error; 212 int i, r; 213 214 if (!na) 215 return EINVAL; 216 217 #ifdef REG_RESET 218 error = ifp->netdev_ops->ndo_stop(ifp); 219 if (error) { 220 return error; 221 } 222 #endif /* REG_RESET */ 223 224 if (enable) { /* Enable netmap mode. */ 225 /* Initialize the rx queue, as generic_rx_handler() can 226 * be called as soon as netmap_catch_rx() returns. 227 */ 228 for (r=0; r<na->num_rx_rings; r++) { 229 mbq_safe_init(&na->rx_rings[r].rx_queue); 230 } 231 232 /* Init the mitigation timer. */ 233 netmap_mitigation_init(gna); 234 235 /* 236 * Preallocate packet buffers for the tx rings. 237 */ 238 for (r=0; r<na->num_tx_rings; r++) 239 na->tx_rings[r].tx_pool = NULL; 240 for (r=0; r<na->num_tx_rings; r++) { 241 na->tx_rings[r].tx_pool = malloc(na->num_tx_desc * sizeof(struct mbuf *), 242 M_DEVBUF, M_NOWAIT | M_ZERO); 243 if (!na->tx_rings[r].tx_pool) { 244 D("tx_pool allocation failed"); 245 error = ENOMEM; 246 goto free_tx_pools; 247 } 248 for (i=0; i<na->num_tx_desc; i++) 249 na->tx_rings[r].tx_pool[i] = NULL; 250 for (i=0; i<na->num_tx_desc; i++) { 251 m = netmap_get_mbuf(GENERIC_BUF_SIZE); 252 if (!m) { 253 D("tx_pool[%d] allocation failed", i); 254 error = ENOMEM; 255 goto free_tx_pools; 256 } 257 na->tx_rings[r].tx_pool[i] = m; 258 } 259 } 260 rtnl_lock(); 261 /* Prepare to intercept incoming traffic. */ 262 error = netmap_catch_rx(na, 1); 263 if (error) { 264 D("netdev_rx_handler_register() failed (%d)", error); 265 goto register_handler; 266 } 267 ifp->if_capenable |= IFCAP_NETMAP; 268 269 /* Make netmap control the packet steering. */ 270 netmap_catch_tx(gna, 1); 271 272 rtnl_unlock(); 273 274 #ifdef RATE 275 if (rate_ctx.refcount == 0) { 276 D("setup_timer()"); 277 memset(&rate_ctx, 0, sizeof(rate_ctx)); 278 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx); 279 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) { 280 D("Error: mod_timer()"); 281 } 282 } 283 rate_ctx.refcount++; 284 #endif /* RATE */ 285 286 } else if (na->tx_rings[0].tx_pool) { 287 /* Disable netmap mode. We enter here only if the previous 288 generic_netmap_register(na, 1) was successfull. 289 If it was not, na->tx_rings[0].tx_pool was set to NULL by the 290 error handling code below. */ 291 rtnl_lock(); 292 293 ifp->if_capenable &= ~IFCAP_NETMAP; 294 295 /* Release packet steering control. */ 296 netmap_catch_tx(gna, 0); 297 298 /* Do not intercept packets on the rx path. */ 299 netmap_catch_rx(na, 0); 300 301 rtnl_unlock(); 302 303 /* Free the mbufs going to the netmap rings */ 304 for (r=0; r<na->num_rx_rings; r++) { 305 mbq_safe_purge(&na->rx_rings[r].rx_queue); 306 mbq_safe_destroy(&na->rx_rings[r].rx_queue); 307 } 308 309 netmap_mitigation_cleanup(gna); 310 311 for (r=0; r<na->num_tx_rings; r++) { 312 for (i=0; i<na->num_tx_desc; i++) { 313 m_freem(na->tx_rings[r].tx_pool[i]); 314 } 315 free(na->tx_rings[r].tx_pool, M_DEVBUF); 316 } 317 318 #ifdef RATE 319 if (--rate_ctx.refcount == 0) { 320 D("del_timer()"); 321 del_timer(&rate_ctx.timer); 322 } 323 #endif 324 } 325 326 #ifdef REG_RESET 327 error = ifp->netdev_ops->ndo_open(ifp); 328 if (error) { 329 goto free_tx_pools; 330 } 331 #endif 332 333 return 0; 334 335 register_handler: 336 rtnl_unlock(); 337 free_tx_pools: 338 for (r=0; r<na->num_tx_rings; r++) { 339 if (na->tx_rings[r].tx_pool == NULL) 340 continue; 341 for (i=0; i<na->num_tx_desc; i++) 342 if (na->tx_rings[r].tx_pool[i]) 343 m_freem(na->tx_rings[r].tx_pool[i]); 344 free(na->tx_rings[r].tx_pool, M_DEVBUF); 345 na->tx_rings[r].tx_pool = NULL; 346 } 347 netmap_mitigation_cleanup(gna); 348 for (r=0; r<na->num_rx_rings; r++) { 349 mbq_safe_destroy(&na->rx_rings[r].rx_queue); 350 } 351 352 return error; 353 } 354 355 /* 356 * Callback invoked when the device driver frees an mbuf used 357 * by netmap to transmit a packet. This usually happens when 358 * the NIC notifies the driver that transmission is completed. 359 */ 360 static void 361 generic_mbuf_destructor(struct mbuf *m) 362 { 363 if (netmap_verbose) 364 D("Tx irq (%p) queue %d", m, MBUF_TXQ(m)); 365 netmap_generic_irq(MBUF_IFP(m), MBUF_TXQ(m), NULL); 366 #ifdef __FreeBSD__ 367 m->m_ext.ext_type = EXT_PACKET; 368 m->m_ext.ext_free = NULL; 369 if (*(m->m_ext.ref_cnt) == 0) 370 *(m->m_ext.ref_cnt) = 1; 371 uma_zfree(zone_pack, m); 372 #endif /* __FreeBSD__ */ 373 IFRATE(rate_ctx.new.txirq++); 374 } 375 376 /* Record completed transmissions and update hwtail. 377 * 378 * The oldest tx buffer not yet completed is at nr_hwtail + 1, 379 * nr_hwcur is the first unsent buffer. 380 */ 381 static u_int 382 generic_netmap_tx_clean(struct netmap_kring *kring) 383 { 384 u_int const lim = kring->nkr_num_slots - 1; 385 u_int nm_i = nm_next(kring->nr_hwtail, lim); 386 u_int hwcur = kring->nr_hwcur; 387 u_int n = 0; 388 struct mbuf **tx_pool = kring->tx_pool; 389 390 while (nm_i != hwcur) { /* buffers not completed */ 391 struct mbuf *m = tx_pool[nm_i]; 392 393 if (unlikely(m == NULL)) { 394 /* this is done, try to replenish the entry */ 395 tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE); 396 if (unlikely(m == NULL)) { 397 D("mbuf allocation failed, XXX error"); 398 // XXX how do we proceed ? break ? 399 return -ENOMEM; 400 } 401 } else if (GET_MBUF_REFCNT(m) != 1) { 402 break; /* This mbuf is still busy: its refcnt is 2. */ 403 } 404 n++; 405 nm_i = nm_next(nm_i, lim); 406 } 407 kring->nr_hwtail = nm_prev(nm_i, lim); 408 ND("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail); 409 410 return n; 411 } 412 413 414 /* 415 * We have pending packets in the driver between nr_hwtail +1 and hwcur. 416 * Compute a position in the middle, to be used to generate 417 * a notification. 418 */ 419 static inline u_int 420 generic_tx_event_middle(struct netmap_kring *kring, u_int hwcur) 421 { 422 u_int n = kring->nkr_num_slots; 423 u_int ntc = nm_next(kring->nr_hwtail, n-1); 424 u_int e; 425 426 if (hwcur >= ntc) { 427 e = (hwcur + ntc) / 2; 428 } else { /* wrap around */ 429 e = (hwcur + n + ntc) / 2; 430 if (e >= n) { 431 e -= n; 432 } 433 } 434 435 if (unlikely(e >= n)) { 436 D("This cannot happen"); 437 e = 0; 438 } 439 440 return e; 441 } 442 443 /* 444 * We have pending packets in the driver between nr_hwtail+1 and hwcur. 445 * Schedule a notification approximately in the middle of the two. 446 * There is a race but this is only called within txsync which does 447 * a double check. 448 */ 449 static void 450 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur) 451 { 452 struct mbuf *m; 453 u_int e; 454 455 if (nm_next(kring->nr_hwtail, kring->nkr_num_slots -1) == hwcur) { 456 return; /* all buffers are free */ 457 } 458 e = generic_tx_event_middle(kring, hwcur); 459 460 m = kring->tx_pool[e]; 461 if (m == NULL) { 462 /* This can happen if there is already an event on the netmap 463 slot 'e': There is nothing to do. */ 464 return; 465 } 466 ND("Event at %d mbuf %p refcnt %d", e, m, GET_MBUF_REFCNT(m)); 467 kring->tx_pool[e] = NULL; 468 SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor); 469 470 // XXX wmb() ? 471 /* Decrement the refcount an free it if we have the last one. */ 472 m_freem(m); 473 smp_mb(); 474 } 475 476 477 /* 478 * generic_netmap_txsync() transforms netmap buffers into mbufs 479 * and passes them to the standard device driver 480 * (ndo_start_xmit() or ifp->if_transmit() ). 481 * On linux this is not done directly, but using dev_queue_xmit(), 482 * since it implements the TX flow control (and takes some locks). 483 */ 484 static int 485 generic_netmap_txsync(struct netmap_adapter *na, u_int ring_nr, int flags) 486 { 487 struct ifnet *ifp = na->ifp; 488 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 489 struct netmap_ring *ring = kring->ring; 490 u_int nm_i; /* index into the netmap ring */ // j 491 u_int const lim = kring->nkr_num_slots - 1; 492 u_int const head = kring->rhead; 493 494 IFRATE(rate_ctx.new.txsync++); 495 496 // TODO: handle the case of mbuf allocation failure 497 498 rmb(); 499 500 /* 501 * First part: process new packets to send. 502 */ 503 nm_i = kring->nr_hwcur; 504 if (nm_i != head) { /* we have new packets to send */ 505 while (nm_i != head) { 506 struct netmap_slot *slot = &ring->slot[nm_i]; 507 u_int len = slot->len; 508 void *addr = NMB(slot); 509 510 /* device-specific */ 511 struct mbuf *m; 512 int tx_ret; 513 514 NM_CHECK_ADDR_LEN(addr, len); 515 516 /* Tale a mbuf from the tx pool and copy in the user packet. */ 517 m = kring->tx_pool[nm_i]; 518 if (unlikely(!m)) { 519 RD(5, "This should never happen"); 520 kring->tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE); 521 if (unlikely(m == NULL)) { 522 D("mbuf allocation failed"); 523 break; 524 } 525 } 526 /* XXX we should ask notifications when NS_REPORT is set, 527 * or roughly every half frame. We can optimize this 528 * by lazily requesting notifications only when a 529 * transmission fails. Probably the best way is to 530 * break on failures and set notifications when 531 * ring->cur == ring->tail || nm_i != cur 532 */ 533 tx_ret = generic_xmit_frame(ifp, m, addr, len, ring_nr); 534 if (unlikely(tx_ret)) { 535 RD(5, "start_xmit failed: err %d [nm_i %u, head %u, hwtail %u]", 536 tx_ret, nm_i, head, kring->nr_hwtail); 537 /* 538 * No room for this mbuf in the device driver. 539 * Request a notification FOR A PREVIOUS MBUF, 540 * then call generic_netmap_tx_clean(kring) to do the 541 * double check and see if we can free more buffers. 542 * If there is space continue, else break; 543 * NOTE: the double check is necessary if the problem 544 * occurs in the txsync call after selrecord(). 545 * Also, we need some way to tell the caller that not 546 * all buffers were queued onto the device (this was 547 * not a problem with native netmap driver where space 548 * is preallocated). The bridge has a similar problem 549 * and we solve it there by dropping the excess packets. 550 */ 551 generic_set_tx_event(kring, nm_i); 552 if (generic_netmap_tx_clean(kring)) { /* space now available */ 553 continue; 554 } else { 555 break; 556 } 557 } 558 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); 559 nm_i = nm_next(nm_i, lim); 560 } 561 562 /* Update hwcur to the next slot to transmit. */ 563 kring->nr_hwcur = nm_i; /* not head, we could break early */ 564 565 IFRATE(rate_ctx.new.txpkt += ntx); 566 } 567 568 /* 569 * Second, reclaim completed buffers 570 */ 571 if (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring)) { 572 /* No more available slots? Set a notification event 573 * on a netmap slot that will be cleaned in the future. 574 * No doublecheck is performed, since txsync() will be 575 * called twice by netmap_poll(). 576 */ 577 generic_set_tx_event(kring, nm_i); 578 } 579 ND("tx #%d, hwtail = %d", n, kring->nr_hwtail); 580 581 generic_netmap_tx_clean(kring); 582 583 nm_txsync_finalize(kring); 584 585 return 0; 586 } 587 588 589 /* 590 * This handler is registered (through netmap_catch_rx()) 591 * within the attached network interface 592 * in the RX subsystem, so that every mbuf passed up by 593 * the driver can be stolen to the network stack. 594 * Stolen packets are put in a queue where the 595 * generic_netmap_rxsync() callback can extract them. 596 */ 597 void 598 generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 599 { 600 struct netmap_adapter *na = NA(ifp); 601 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na; 602 u_int work_done; 603 u_int rr = 0; // receive ring number 604 605 /* limit the size of the queue */ 606 if (unlikely(mbq_len(&na->rx_rings[rr].rx_queue) > 1024)) { 607 m_freem(m); 608 } else { 609 mbq_safe_enqueue(&na->rx_rings[rr].rx_queue, m); 610 } 611 612 if (netmap_generic_mit < 32768) { 613 /* no rx mitigation, pass notification up */ 614 netmap_generic_irq(na->ifp, rr, &work_done); 615 IFRATE(rate_ctx.new.rxirq++); 616 } else { 617 /* same as send combining, filter notification if there is a 618 * pending timer, otherwise pass it up and start a timer. 619 */ 620 if (likely(netmap_mitigation_active(gna))) { 621 /* Record that there is some pending work. */ 622 gna->mit_pending = 1; 623 } else { 624 netmap_generic_irq(na->ifp, rr, &work_done); 625 IFRATE(rate_ctx.new.rxirq++); 626 netmap_mitigation_start(gna); 627 } 628 } 629 } 630 631 /* 632 * generic_netmap_rxsync() extracts mbufs from the queue filled by 633 * generic_netmap_rx_handler() and puts their content in the netmap 634 * receive ring. 635 * Access must be protected because the rx handler is asynchronous, 636 */ 637 static int 638 generic_netmap_rxsync(struct netmap_adapter *na, u_int ring_nr, int flags) 639 { 640 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 641 struct netmap_ring *ring = kring->ring; 642 u_int nm_i; /* index into the netmap ring */ //j, 643 u_int n; 644 u_int const lim = kring->nkr_num_slots - 1; 645 u_int const head = nm_rxsync_prologue(kring); 646 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 647 648 if (head > lim) 649 return netmap_ring_reinit(kring); 650 651 /* 652 * First part: import newly received packets. 653 */ 654 if (netmap_no_pendintr || force_update) { 655 /* extract buffers from the rx queue, stop at most one 656 * slot before nr_hwcur (stop_i) 657 */ 658 uint16_t slot_flags = kring->nkr_slot_flags; 659 u_int stop_i = nm_prev(kring->nr_hwcur, lim); 660 661 nm_i = kring->nr_hwtail; /* first empty slot in the receive ring */ 662 for (n = 0; nm_i != stop_i; n++) { 663 int len; 664 void *addr = NMB(&ring->slot[nm_i]); 665 struct mbuf *m; 666 667 /* we only check the address here on generic rx rings */ 668 if (addr == netmap_buffer_base) { /* Bad buffer */ 669 return netmap_ring_reinit(kring); 670 } 671 /* 672 * Call the locked version of the function. 673 * XXX Ideally we could grab a batch of mbufs at once 674 * and save some locking overhead. 675 */ 676 m = mbq_safe_dequeue(&kring->rx_queue); 677 if (!m) /* no more data */ 678 break; 679 len = MBUF_LEN(m); 680 m_copydata(m, 0, len, addr); 681 ring->slot[nm_i].len = len; 682 ring->slot[nm_i].flags = slot_flags; 683 m_freem(m); 684 nm_i = nm_next(nm_i, lim); 685 n++; 686 } 687 if (n) { 688 kring->nr_hwtail = nm_i; 689 IFRATE(rate_ctx.new.rxpkt += n); 690 } 691 kring->nr_kflags &= ~NKR_PENDINTR; 692 } 693 694 // XXX should we invert the order ? 695 /* 696 * Second part: skip past packets that userspace has released. 697 */ 698 nm_i = kring->nr_hwcur; 699 if (nm_i != head) { 700 /* Userspace has released some packets. */ 701 for (n = 0; nm_i != head; n++) { 702 struct netmap_slot *slot = &ring->slot[nm_i]; 703 704 slot->flags &= ~NS_BUF_CHANGED; 705 nm_i = nm_next(nm_i, lim); 706 } 707 kring->nr_hwcur = head; 708 } 709 /* tell userspace that there might be new packets. */ 710 nm_rxsync_finalize(kring); 711 IFRATE(rate_ctx.new.rxsync++); 712 713 return 0; 714 } 715 716 static void 717 generic_netmap_dtor(struct netmap_adapter *na) 718 { 719 struct ifnet *ifp = na->ifp; 720 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na; 721 struct netmap_adapter *prev_na = gna->prev; 722 723 if (prev_na != NULL) { 724 D("Released generic NA %p", gna); 725 if_rele(na->ifp); 726 netmap_adapter_put(prev_na); 727 } 728 if (ifp != NULL) { 729 WNA(ifp) = prev_na; 730 D("Restored native NA %p", prev_na); 731 na->ifp = NULL; 732 } 733 } 734 735 /* 736 * generic_netmap_attach() makes it possible to use netmap on 737 * a device without native netmap support. 738 * This is less performant than native support but potentially 739 * faster than raw sockets or similar schemes. 740 * 741 * In this "emulated" mode, netmap rings do not necessarily 742 * have the same size as those in the NIC. We use a default 743 * value and possibly override it if the OS has ways to fetch the 744 * actual configuration. 745 */ 746 int 747 generic_netmap_attach(struct ifnet *ifp) 748 { 749 struct netmap_adapter *na; 750 struct netmap_generic_adapter *gna; 751 int retval; 752 u_int num_tx_desc, num_rx_desc; 753 754 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */ 755 756 generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); 757 ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc); 758 759 gna = malloc(sizeof(*gna), M_DEVBUF, M_NOWAIT | M_ZERO); 760 if (gna == NULL) { 761 D("no memory on attach, give up"); 762 return ENOMEM; 763 } 764 na = (struct netmap_adapter *)gna; 765 na->ifp = ifp; 766 na->num_tx_desc = num_tx_desc; 767 na->num_rx_desc = num_rx_desc; 768 na->nm_register = &generic_netmap_register; 769 na->nm_txsync = &generic_netmap_txsync; 770 na->nm_rxsync = &generic_netmap_rxsync; 771 na->nm_dtor = &generic_netmap_dtor; 772 /* when using generic, IFCAP_NETMAP is set so we force 773 * NAF_SKIP_INTR to use the regular interrupt handler 774 */ 775 na->na_flags = NAF_SKIP_INTR; 776 777 ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)", 778 ifp->num_tx_queues, ifp->real_num_tx_queues, 779 ifp->tx_queue_len); 780 ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)", 781 ifp->num_rx_queues, ifp->real_num_rx_queues); 782 783 generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings); 784 785 retval = netmap_attach_common(na); 786 if (retval) { 787 free(gna, M_DEVBUF); 788 } 789 790 return retval; 791 } 792